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ABSTRACT OF THE THESIS

Improved Active Shape Models for Segmentation of the
Prostate on MR Imagery

by Robert James Toth

Thesis Director: Anant Madabhushi

Segmentation aims to determine which locations within an inage contain the object
of interest. Segmentation of the prostate boundary on clintal images is useful in a
large number of applications including calculation of prosate volume pre- and post-
treatment, detection of extra-capsular spread, and creatbn of patient-speci ¢ anatomi-
cal models. Manual segmentation of the prostate boundary ishowever, time consuming
and subject to inter- and intra-reader variability. T2-wei ghted (T2-w) Magnetic Res-
onance (MR) structural imaging (MRI) and MR Spectroscopy (MRS) have recently
emerged as promising modalities for detection of prostate ancer in vivo. With the
recent advance in prostate imagery, we have generated an ao@te prostate segmenta-
tion system for MR imagery. Our system builds upon the popula Active Shape Model
(ASM) framework, in which a statistical description of the shape is rst generated, after
which an appearance of the object of interest is modeled.

In our system, the shape model can be generated in either 2D @D, and is de ned
by a set of anatomical landmarks. For the appearance model, &0 er several improve-
ments. We generated statistical texture features of the prgtate images, and use those
features to overcome limitations of solely using intensites. In addition, we use intel-

ligent feature selection algorithms including forward fedure selection and adaboost to



determine which features to include in our segmentation syiem. The statistical ap-
pearance models are not modeled as a simple Gaussian distuiion, but rather as a
sum of Gaussians, resulting in more accurate models. In 2D, lcal appearance model
is generated for each landmark location on the prostate bordr. However, in 3D this is
infeasible, so we generate a global appearance model debang the voxels within the
prostate. The 2D ASM resulted in a Dice similarity coe cient (DSC) of 0:85, while
our 3D system resulted in a DSC of B9 (over 56 and 37 studies respectively). This is
comparable to other state of the art prostate MR segmentation schemes. Finally, we
have shown that in the speci ¢ application of prostate volume estimation, our system
performs more accurate volume estimations than currently enployed clinical models.
Our system achieved a correlation R? value) with the ground truth volume of 0:82
while the clinical model achieved anR? value of 070. Our system had a volume frac-
tion of 1.05 in comparison to the ground truth volume, while the clinical model achieved
a volume fraction of 1:14. Overall, we have developed an e cient, accurate, and uskil

prostate segmentation scheme for MR imagery.
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Chapter 1

Introduction

1.1 Background and Motivation

Prostatic adenocarcinoma (CaP) is the second leading causef cancer related deaths
among men in the United States, with an estimated 192,280 newases in 2009 (Source:
American Cancer Society). The current standard for detection of CaP is transrectal
ultrasound (TRUS) guided symmetrical needle biopsy, whichcan have a high false
negative rate [1]. Recently, multi-modal Magnetic Resonage (MR) Imaging (MRI)
comprising both structural T2-weighted (T2-w) MRI [2, 3] an d MR Spectroscopy (MRS)
[4,5,6,7,8,9, 10, 11, 12] has emerged as promising multi-mal image data for early
detection of CaP [5, 6].

Several computer-aided diagnosis (CAD) schemes have emedin recent years for
automated CaP detection from prostate T2-w MRI [2, 13, 14] ad MRS [8, 15, 16].
MRS measures the relative concentrations of di erent biochenicals and metabolites in
the prostate, and changes in relative concentrations of cHime, creatine, and citrate are
highly indicative of the presence of CaP. It's important to note that MRS acquisition has
a lower resolution than MRI acquisition, and thus each MRS meéavoxel (containing a
spectral signal) is approximately 13 times the radius of an MRI voxel (containing a single
intensity value). CAD systems for prostate cancer utilize alvanced machine learning
algorithms, using the data at hand (whether intensities or gectral signals) to determine
which locations within the prostate have a high probability of being cancerous.

With the increasing use of structural, functional, and metabolic MR imaging of
the prostate [13, 15, 17, 18, 19, 20], MR imaging is used to elksmte e cacy of CaP
therapy [21, 22, 23]. This is typically done by estimating prostate volume, pre-and post-

treatment for CaP on MRI. Prostate volume has been shown to bea strong predictor



of treatment outcome for patients with prostate cancer [24] especially when combined
with a baseline prostate-speci ¢ antigen (PSA) level [25].Prostate volume is important
in determining PSA density [26] and is an important factor in diagnosing and managing
both benign and malignant conditions of the prostate [27]. The most common method
for estimating prostate volume is by manually determining the anterior-posterior, trans-
verse, and rostral-caudal measurements of the prostate andstimating the prostate as
a simple ellipsoid [22, 26, 27, 28, 29, 30, 31, 32, 33, 23, 34)hile TRUS is cheaper
and easier to perform than endorectaln vivo prostate MRI, it lacks the high structural
information (such as a clear view of the prostate border) assciated with T2-weighted
MRI (T2-w), and has a lower signal to noise ratio. Most prostae volume estimations
are done using TRUS imagery, yet it has been shown that theresi a strong correlation
(R?  0:93) between volume estimations obtained using TRUS, and voime estimations
obtained from MR imagery [27]. In addition, the ellipsoidal model can yield accurate
volume estimations for T2-w MR imagery of the prostate, evenwhen an endorectal coil
is used (as in our data) [33].

Segmentation of the prostate can be useful in both CAD systerm and in volume
estimations of the prostate. Segmentation is the process afe ning where an object is
in an image. In CAD systems, segmentation of the prostate is & important rst step
for determining a region of interest (ROI) on which to perform the algorithm. Once the
prostate surface is delineated, the CAD algorithm can be impemented on just the part
of the image in which the prostate is seen. In addition, prosate segmentation could be
useful in using planimetry to determine prostate volume. Gven a set of segmentations,
prostate volume estimation is done by aggregating the areaassociated with the gland
segmentations on a series of 2D slices [27]. Overall, acctegprostate segmentation is
useful both as a rst step for CAD systems to aid in detecting prostate cancer, and
for accurately determining prostate volume to evaluate theaapies of prostate cancer.
Manual segmentation of the prostate, however, is not only l@orious, but is also subject

to a high degree of inter-, and intra-observer variability [35].



1.2 Previous Work

1.2.1 Active Shape Models

The Active Shape Model (ASM) [36] and Active Appearance Modé(AAM) [37] are both
popular methods for segmenting known anatomical structurs. Active Shape Models
(ASM's) [36] provide a statistical framework for automatically segmenting objects with
a known shape from images and are particularly relevant in te context of medical
imagery. ASM's involve the use of a series of manually landn&ed training images to
generate a point distribution model. An expert segments theprostate on a series of
M training images, and manually aligns a set ofN landmarks around the border of
the prostate. Once a set of anatomical landmark points have ben placed, principal
component analysis (PCA) is performed to evaluate known vaiations in the shape.
PCA essentially calculates the eigenvectors of the entireet of landmark points, and
retains the top few eigenvectors which contain most of the shpe variation. For N
landmark points in d dimensions, the prostate shape in an image is de ned by alN d
vector of Cartesian coordinates. PCA can then be performed m all training images to
develop a statistical shape model of the prostate shape.

The appearance model for ASM's is usually de ned by calculang the direction
normal to the shape at each landmark point. Then, intensity values are sampled
along this normal on each training image. A -dimensional Gaussian is de ned for each
landmark point, thus de ning the statistical appearance model. To locate the border
on a new image, the Mahalanobis distance to this appearance odel is minimized, and
the location in the image with the minimum Mahalanobis distance is chosen as the
border [36]. The Mahalanobis distance measures the distarcof a vector to a Gaussian
distribution. This is repeated for all landmark points, and the statistical shape model

is optimally t to the border.

1.2.2 3D Active Shape Models

While the original proposed framework was mainly used for 2Dimages, it is easily

extendable to 3D. 3D ASM's have been used for a multitude of taks, such as bone



segmentation [38], liver segmentation [39], and artery segentation [40]. A thorough
review of 3D ASM's from recent years can be found in [41]. In 3Da large set of
landmarks can be used to de ne a triangulated surface. The wvaations captured by
performing PCA on these landmarks will contain variations in all 3 dimensions. ForN
landmarks, each containing anx, y, and z coordinate, a maximum of 3 N principle
components can be calculated. However, most (98%) of the spa variations seen in
the training set can usually be captured using only the rst few principle components.
One advantage to generating 3D statistical shape models ov&D models is that unique
variations at dierent z locations can be captured. In addition, a second advantage
to 3D models is that interslice variations can be captured, vhich 2D models would
completely ignore. This is more important if the interslice spacing is small, but is still
important even when the voxels are anisotropic. However, mst 3D ASM's su er from

distinct limitations which are described below.

1. In the traditional ASM methodology, a unique appearance nodel is created at
each landmark point. In 3D, however, there can exist hundred or thousands of
landmarks used to de ne the surface shape, and a unique statiical appearance

model at each landmark can quickly become infeasible.

2. A given landmark point must correspond to a speci ¢ anatonical location, and
any slight misalignment could result in a severe degradatio of the quality of the

local appearance models.

3. Since each local appearance model is created by samplingpag the normal di-
rection, slightly inaccurate triangulations could drastically change the calculated

normal directions, which would result in inaccurate local gppearance models.

4. If one were to use neighborhood voxels to de ne the local appearance model,
a dimensional Gaussian would be created at each landmark padinrequiring a

large number of training volumes.

5. The 15 dimension of the Gaussian representing the local appeararanodel must

represent the intensity value exactly voxels away from the landmark point.



However, neighboring objects locations may be di erent acrgs training images,
and theres nothing to suggest that the intensity valueexactly voxels away on

each di erent training image would provide any meaningful appearance model.

6. The distribution of intensity values may not be accurately described by a Gaus-

sian, which using the Mahalanobis distance assumes.
7. The image intensity may not be the optimal representationof the object's texture.

8. The fact that a region is searched near each landmark poinin segmenting a new

image requires an accurate initial location of the shape moel.

1.2.3 Extensions to Active Shape Models

While ASM's set the groundwork for a very e cient and accurat e segmentation sys-
tem, there are some inherent limitations. The rst is the requirement for a proper
initialization. If the system is initialized too far from th e ground truth, the system
won't be able to converge on the correct object border. Over lte last few years, some
researchers have been exploring schemes for accurate angmaducible initialization of
ASM's [42, 43, 44]. Seghers et al. [45] presented a segmentet scheme where the
entire image is searched for landmarks. They however concedhat accurately initial-
ized regions of interest (ROIs) would greatly improve their algorithm's e ciency and
accuracy. Ginneken et al. [46] pointed out that without a-priori spatial knowledge of
the ROI, very computationally expensive searches would beaquired for ASM initializa-
tion, contributing to a slow overall convergence time. Multi-resolution ASMs have also
been proposed, wherein the model searches for the ROI in thenire scene at progres-
sively higher image resolutions [44]. Brejl et al. [43] premnted a shape-variant Hough
transform to initialize an ASM, but the scheme can be very conputationally expensive.
Cosio [42] presented an ASM initialization method based on el classi cation which
was applied to segmenting TRUS prostate imagery. The methocemploys a Bayesian
classi er to discriminate between prostate and non-prostae pixels in ultrasound im-

agery. A trained prostate shape is then t to the edge of the prostate, identi ed via



the Bayesian classi er. A Genetic Algorithm [47] is employal to minimize the distance
between the trained prostate shape and the edge of the prosta.

In addition to ASM initialization, the use of the Mahalanobi s distance leads to some
limitations. First of all, the Mahalanobis distance assumes that the distribution of in-
tensity values is Gaussian, which need not necessarily be ¢hcase. ASM's normally nd
the location with the minimum Mahalanobis distance, and assime that is close to the
object border. But outliers, local minima, and intensity artifacts often prevent accurate
segmentations. Secondly, image intensities might not nessarily be the optimal texture
to use, as intensities are prone to noise and artifacts, whict detracts from an accurate
segmentation. In addition, with limited training data, the Mahalanobis distance will
be unde ned if too many pixels are sampled.

Several improvements to traditional Mahalanobis distancehave been proposed. The
rst is the popular Active Appearance Model (AAM), which cre ates a global appear-
ance model of the object, and combines that model with the shae information [37].
In addition, the AAM model was improved to be more robust to occlusion and outliers
(called Robust AAM) [48], and the ASM model was also independntly improved to be
more robust to outliers [49]. A major improvement to the traditional ASM is ASM with
Optimal Features (ASMOF) [46], which was shown to o er signi cant improvements.
ASMOF steers clear entirely of using the Mahalanobis distane, and instead creates
a classi er as to whether a pixel is considered inside or outde of the object. Then,
whichever features best classify pixels are used in the segmtation algorithm. The
signi cant improvements o ered by this approach show the usdulness of using features
other than just image intensities, although it is unclear whether the improvements come
from the features or from using a classi er instead of the Matalanobis distance. A sec-
ond segmentation system which builds upon the traditional ASM scheme is Minimal
Shape and Intensity Cost Path Segmentation (MISCP) [45]. WHile this system con-
tains many di erences to the traditional ASM, we focus on two major improvements.
The rst improvement is the idea of sampling a neighborhood aound each landmark
point instead of just pixels along a straight line. This allows more information to be

gleaned from the training data. The second improvement is tle combination of multiple



statistical texture features to improve segmentation, ove simply using intensities.

1.3 Proposed Prostate Segmentation Scheme

With the recent advancements of prostate imaging, several pstate segmentation schemes
have been developed [3, 42, 50, 51, 52, 53, 54, 55]. In the p&stears, prostate seg-
mentation schemes speci cally for MR imagery of the prostat have been developed by
Klein et al. [56], Martin et al. [57, 58], Pasquier et al. [59] and Makni et al. [60].
Klein et al. [56] performed a registration between an MR imag of the prostate and
an atlas of training data to achieve a segmentation of the pretate. Martin et al. [58]
also used an atlas of training images, but constrained the ggnentation model through
the use of a statistical shape model. Pasquier et al. [59] udean Active Shape Model
[36] method for extracting a statistical shape model of the postate and searched for
strong gradients to detect the prostate edge. Finally, Makn et al. [60] used a statistical
shape model of the prostate, and clustered the intensitiesnia manually placed region
of interest into 3 clusters: surrounding tissues and fat, cetral prostate zone, peripheral
prostate zone. Any voxels within the latter 2 zones were detemined to be part of the
prostate. In these studies, the number of prostate volume sitdies tested range from
12 to 50 studies and there are varying degrees of manual inteention, ranging from
completely automated to fully interactive initialization of the segmentation.

For our system, the shape model was rst developed in 2D, but ks been since ex-
tended to be fully 3D. The main contributions are regarding the appearance model, and
the initialization of the segmentation system. For the appearance model, we have ex-
plored the use of statistical texture features over simply sing image intensities [61, 62]
and alternatives to using the Mahalanobis distance to detetthe prostate border [61].
The ASM appearance model typically uses the intensities oftie image to learn a statis-
tical appearance model. However, relying solely on the intesity information may not
be su cient for accurately detecting the correct boundary, especially if di erent regions
of the image, or di erent regions within the desired object, have similar intensity values.
This is particularly true of MR imagery where strong bias el d inhomogeneity artifacts

can signi cantly obfuscate object boundaries [2]. We calclate the gray level statistics



of each image by convolving a set of kernels with the intensyt image. These include
the Kirsch [63] and Sobel [64] kernels to better quantify theedges of the prostate bor-
der, and Gaussian and mean kernels to intelligently incorpmate neighboring intensity
information. While traditional ASM's use neighboring inte nsity information, they are
dependent on the normal to the shape at any given landmark pait. By contrast, the
Gaussian and mean kernels take neighboring information ird account and yet do not
depend on the normal of the shape. In conjunction with the texure features, we found
that using the Cartesian x and y coordinates of landmark point as additional "features"
greatly improved our results. This was inspired by the work d Cosio [42], who using
the Cartesian coordinates as additional dimensions of hisidtribution. Finally, we dis-
covered that the texture features of the prostate boundary @e not always optimally
modeled as a Gaussian, as the Mahalanobis distance assum@#ws, in our system we
de ne the distribution as the sum of multiple Gaussians, otherwise known as Gaussian
Mixture Models (GMM's) [65] to de ne the distribution of the prostate border at each
landmark. A multi-dimensional GMM comprised of di erent ker nel responses is thus
created for each landmark point. As a nal step in our training, we performed ex-
periments testing various algorithms for feature selectio to determine which features
o ered the highest segmentation accuracy. In summary, our catributions to the ASM

appearance model are 3-fold:
1. Use of statistical texture features to better identify the prostate.

2. Use of Gaussian Mixture Models instead of the Mahalanobislistance for gener-

ating more accurate appearance models.

3. Use of feature selection algorithms to determine which fgures to use for segmen-

tation.

In addition, we present a fully automated ASM initializatio n scheme for segmen-
tation of the prostate on multi-protocol in vivo MR imagery by exploiting the MR
spectral data. Note that for the studies considered in this vork, the MRS data was
acquired as part of routine multi-protocol prostate MR imaging and not speci cally for

the purposes of this project. While the resolution of MR and MRS data are di erent,



the identi cation of prostate spectra by eliminating non-i nformative spectra outside
the prostate provides an initial accurate ROI for the prostate ASM. We leverage the
idea rstintroduced in [8, 15], in which spectral clustering was employed to distinguish
between prostatic and extra-prostatic spectra. We achievethis through replicated k-

means clustering of the MR spectra in the midgland. Replicagéd k-means clustering
aims to overcome limitations associated with the traditional k-means algorithm (sen-
sitivity to choice of initial cluster centers) by randomly i nitializing the cluster centers,

and repeating the process until a global minima is found. Foreach slice, the largest
cluster (identi ed as the non-informative cluster) is eliminated. The mean shape of
the prostate is then transformed to t inside the remaining spectra, which serves to
provide the initial landmark points for a 2D ASM. In addition , since the spectral data
severely degrades away from the midgland of the prostate, weerform clustering in the

midgland. The resulting initialized shape is then rescaledo account for the change in

size of the gland towards the base and the apex.
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Chapter 2

Thesis Overview

2.1 Organization

The rest of the thesis will be organized as follows. Section.2 contains a list of notation
to be used throughout the thesis, and Section 2.3 contains aeakcription of our prostate
MR data. Chapter 3 will contain a full description of using MR S data to initialize
the prostate segmentation scheme, and quantitative result for our ASM initialization.

Chapter 4 will contain a full description of the traditional ASM segmentation method
and our novel contributions to the ASM, as well as the resultson prostate MR images.
An application to prostate volume estimation is presented n Chapter 5, and nally

concluding remarks and future directions are presented in Gapter 6.

2.2 Notation

We de ne a T2-w MR intensity image scene asC  C;f , where C represents a set of
spatial locations (voxels),f ¢ is the MR image intensity function associated with every
¢ C. Throughout the thesis, we will usec, d, or e as placeholders for spatial locations
within an image, and i, j, or k as placeholder for scalars. We de ne the associated
spectral scene€  &;F where € is a 2D grid of metavoxels. Note that a metavoxel
is a voxel at the lower spectral resolution. For each spatiallocation ¢ €, there is
an associated 256-dimensional valued spectral vectdf ¢ f'} ¢ 1;::;,256 ,
where f’] ¢ represents the concentration of di erent biochemicals (sub as creatine,
citrate, and choline). The distance between any two adjacenmetavoxels, &d C:k
¢ ko, (where k k» denotes theL , norm) is roughly 13 times the distance between

any two adjacent spatial voxelsc;d C. We dene X C1:::CN C as a set
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Figure 2.1: 2D section of T2-weighted MR image intensity scee. The spectral signal
in red corresponds to the voxel shown in red (within the prosate), and the spectral
signal in green corresponds to the voxel shown in green (outke the prostate).

of N landmarks used to de ne a given prostate shape. The -neighborhood of pixels
surrounding eachc C is denoted asN ¢, wherefor d N c;kd cky ;c
N c. If we are referring to only those locations inN ¢ along the normal direction

to the given shape, we denote those voxels ald ¢ .

2.3 Data Description

Our data comprises multi-protocol clinical prostate MR datasets including both MRI
and MRS endorectalin vivo data. These were collected during the American College
of Radiology Imaging Network (ACRIN) multi-site trial [66] (19 studies), from the
University of California, San Fransisco (14 studies), and fom the Beth Israel medical
center in Boston (37 studies). The MRS and MRI studies were otained on either 1.5
Tesla (1.5T) or 3T MRI scanners, and all MRI studies were axid T2-w images. Each
2D slices had a spatialXY resolution of 256 256 pixels, or 140 140 mm, for the 1.5T
data and 512 512 pixels, or 140 140 mm, for the 3T data. An example of a T2-w

MR image of the prostate along with its associated spectra ishown in Figure 2.1.
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2.4 Quantitative Metrics for Segmentation Accuracy

The ground truth for the prostate boundary on the T2-w images was obtained by man-
ual outlining of the prostate border on each 2D section by a skitary expert radiologist,

one with over 10 years of experience in prostate MR imagery. ¢ each image to be
segmented, the expert segmentation the prostate region isahoted as a set of ground
truth landmarks X g. For a given shapeX, the set of pixels contained within the shape
is denoted asSy. The most commonly reported metrics for evaluating prostae seg-
mentation performance are the Dice Similarity Coe cient (D SC) [67] and the mean

absolute distance (MAD). These are de ned as follows:

Sx Sy
DSC X 2 = 2.1
1 N
MAD X N ch dn 2;ch X;dn X©g (2.2)
n 1

DSC is a region based performance measures, in which a highealue indicates a
more accurate segmentation (maximum value of D0). MAD is an edge based perfor-
mance measures which evaluate proximity of the ASM extractd boundary compared
to the manually delineated boundary, in which a lower value e ects a more accurate
segmentation (minimum value of Q00). In general the DSC is used to compare our
method to other state of the art methods (as most prostate segentation papers report

the DSC value [56, 58, 59, 60]), and the MAD value is given for @mpleteness.
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Chapter 3

Novel ASM Initialization Methodology

Section 3.1 describes an overview of our initialization proedure. Section 3.2 describes
our clustering algorithm in detail. Section 3.3 describes tting the prostate shape to the

resulting clusters. Section 3.4 discusses extending thegelts to the base and apex slices
(since the clustering is performed in the midgland), and naly Section 3.5 discusses

the quantitative results.

3.1 Overview of ASM Initialization Procedure

Figure 3.1 illustrates the modules and the pathways comprisg our automated initial-
ization system. First, replicated k-means clustering is performed on the spectra in the
midgland. The largest cluster obtained is identi ed as the non-informative cluster cor-
responding to the extra-prostatic spectra and removed. Theemaining spatial locations
corresponding to the resulting spectra are denoted bySyrs . The prostate shape is t
to the region corresponding to these informative spectra. Te clustering results are

then extended to the base and apex slices, ersulting in an itial segmentation X ©.

Clustering of Spectra Calculation of S, , ¢ Calculation of X’ Estimation of X ° in

Base and Apex

F
.

Figure 3.1: Pathways and modules involving in the MRS-basedASM initialization
scheme for prostate segmentation on multi-protocolin vivo MRI.
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3.2 Clustering of Spectra (Calculation of SuvRrs )

The crux of the methodology is to determine a set of prostate oxels (Syrs) based
on a clustering of the spectroscopic data. This algorithm isdescribed in the form of a

sequence of steps below.

1. For a given 2D MRS slice€  &;F , we rst obtain the MR spectra
Fe e j 1::::25

2. The metavoxels €, are aggregated intok clustersV, C;a  1;::::k ,
by applying k-means clustering to allF ¢ ; ¢ €. k-means clustering aims to
minimize the sum of distances to the clusters' centroids, foall clusters. Formally,

it iteratively estimates

k
. 1
argmin F e v Fe (3.1)
ViV a 16 v, A 2

3. Since thek-means algorithm is dependent on the starting locations of he cen-
troids (i.e. which V, each 'initially belongs to), the result is sometimes a local
minima instead of a global minima. To overcome this limitation, the clustering
was repeated 25 times with random initial locations of the cetroids, and the re-
sulting clustering which yields the minimum value from Equation 3.1 is selected.
Repeating the clustering more than 25 times did not signi cantly change the

results.

4. The dominant cluster is identi ed as being extra-prostatic (hon-informative), and
the metavoxels in this cluster are removed. The set of remaiimg metavoxels is

then de ned as,

SuRs € ¢ Vaa arg;naxva : (3.2)

The set of MRI voxels corresponding to metavoxels inS,,s5 are then iden tied.
For our data, we found that k 3 clusters yielded the best results. Figure 3.2a

shows the 3 clustersV; V3 as colored metavoxels. The largest cluster is shown in
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—©)

Figure 3.2: (@) MRS metavoxels € (shown as colored boxes) overlaid onto the T2-
w image C where each color represents a di erent class resulting fromhe replicated

k-means clustering scheme. The voxels associated with the farmative metavoxels

(Smrs ) are shown as a red overlay in (b), with the resulting shape iitialization ( X ?ARS )

shown as a green line in (b) and (c).

green, and would be eliminated, yieldingS,,s5 as the cluster comprising blue and
red metavoxels. The voxels associated witl§5,45 , denoted asSyrs are shown

in red in Figure 3.2b.

3.3 Fitting the Prostate Shape (Calculation of X )

In [42], Cosio employed the Genetic Algorithm [47] to optimize the pose parameters
of the prostate shape to t a given binary mask. We found that using the objective

function described below (Equation 3.3) yielded an accurag initialization for a given set

of prostate pixelsSyrs . In addition, we found that a direct pattern search as preseied

in [68] yielded more accurate results than using the Geneti@lgorithm. The mean shape

X constitutes a polygon, and the set of voxels inside this polgon is denoted asSy.

More generally, for a given set of a ne transformations T, which represent scaling
rotation and translation, the set of voxels within that poly gon are denoted asS; x .

The objective function we use aims to maximize the true posiwve ratio, so that the

initialization is given as

SMrs Sy x¢

X% T X ;whereT argmax

; 3.3
T SMrs St x (33)

where the argmax calculation is performed using a direct paern search as presented
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(b)

Figure 3.3: (a) Example of a clustering result in the base of lhe prostate, in which the
3 colors representVy;a  1;2;3 . The results demonstrate the degradation of quality
of MR spectra in the prostate near the base, a phenomenon whicalso occurs near the
apex. (b) A 2D histogram of the relative size of the prostate & a function of the slice
index from base to apex reveals that the prostate is largestn the center and tapers o
towards the extrema.

in [68]. Essentially, Equation 3.3 determines which a ne transformation T will yield
the best initialization, and applies that transformation t o the mean shapeX, resulting

in an initialization X°©.

3.4 Initializing the Base and Apex Slices

The MRS spectra lose their delity towards the base and the apex of the prostate. This

via red, green, and blue metavoxels respectively. It was faud that the spectra in the
midgland of the prostate yielded accurate estimations ofSyrs . For this reason, we
perform our clustering algorithm in the midgland of the prostate, the results of which
are then extended to the base and apex. Note that since the 2D Z-w MRI slices tend
to cover the prostate from base to apex, the middle slice invaably corresponds to the
midgland. We observed that the area of the prostate decreaseto 80% its size in the
base, and 30% its size in the apex. Figure 3.3b demonstrateit tapering o of the

gland in the base and apex. Figure 3.3b is a histogram showinthe size of the prostate

relative to the central slice for all ground truth segmentations. Hence, to calculateX ©
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Table 3.1: Quantitative results of the various clustering dgorithms used on the MRS
data to initialize the segmentation. The values are given interms of mean standard
deviation, over 35 studies.

| Metric || Hierarchical | Meanshift | Replicated k-means |
DSC 0:28 0:30 | 0:52 0:33 0:75 0:29
MAD (mm) 5:87 435 | 555 317 5:60 4:19

for the remaining slices, X 9 is rst calculated for slice 5, and is linearly scaled down to

80% its size for the base, and to 30% its size for the apex of thaand.

3.5 Results for Segmentation Initialization

We had 35 datasets with MRS signals available. We compared # e cacy of the repli-

cated k-means clustering scheme with hierarchical clustering anehean-shift clustering.
Hierarchical clustering generates a dendrogram based o th Euclidean distance be-
tween spectra, and hierarchically combines spectra which &ve a low distance between
them into a single cluster. The process is repeated until a pr-speci ed number of
clusters remain [69]. Mean-shift clustering attempts to iteratively learn the density
of the feature space and yields a clustering result based ohé manifold instead of a
pre-speci ed number of clusters [70]. Each methodology wasised to calculate Syrs

in the midgland, and extended the results to the apex and baseThese estimations of
X0 were compared to the ground truth segmentationsX g for all studies. Table 3.1
summarizes the results from clustering experiments perfened. The results show that

using replicated k-means clustering yielded a more accurate initialization.
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Chapter 4

Novel ASM Segmentation Methodology

An overview of our methodology is presented in Section 4.1. &tion 4.2 presents our
description of how to generate a statistical shape model an&ection 4.3 describes our
improved appearance model in detail. Finally our methodolay for segmenting an image
of the prostate is presented in Section 4.4 and quantitativeresults are given in Section

4.5.

4.1 Overview of Segmentation Methodology

We begin by generating a statistical shape model from a set amanually placed land-
mark points. This shape model is de ned by the mean Cartesiarcoordinates, and the
rst few eigenvectors of the Cartesian coordinates. Then, a appearance model is cre-
ated. We have developed a methodology for creating both a l& appearance model
near each landmark point, and a global appearance model of thentire prostate. These
trained shape and appearance model are then used to segmentrew image of the

prostate.

4.2 Generation of a Statistical Shape Model

matrix of the top  eigenvectors is given a$ RX  with corresponding eigenvalues

1000 . is chosen to represent 98% of the variance seen in the trainjndata,
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Figure 4.1: Column 1 shows 3 , column 2 showsX, and column 3 shows 3 ;.
Row 1 signiesi 1, row 2 signiesi 2, and row 3 signiesi 3.

or stated explicitely, is set as large as possible such that; ; ; 0:98 iX1 i is
still satis ed.

We can now de ne an ASM by the equation,

X X P b; (4.1)

whereb R is a vector de ning the shape. Each individual elementofb  L;:::;b

can range between 3 standard deviations from the mean shapeX. This is accom-
plished by setting bounds on eachb, sothat 3 | b 3 jfor b b.
Therefore, our statistical shape model is de ned byX;P, and , and by changing the
variable b, we can de ne an in nite number of prostate shapes, all within 3 standard
deviations from the mean shape. An example of a 2D statistidashape model of the
prostate is shown in Figure 4.1 in which column 1 shows 3 , column 2 showsX,
and column 3 shows 3 ;. Row 1 signiesi 1, row 2 signiesi 2, and row 3

signiesi 3.
4.3 Generation of a Statistical Appearance Model

4.3.1 Traditional ASM Appearance Model

We begin with a discussion of the traditional method for geneating an appearance
model (de ned in [36]) and then discuss our improved appearace model. In the tradi-

tional ASM, for each landmark point ¢ an appearance model is generated. The set of
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(@) (b)

Figure 4.2: (a) shows a 3 Tesla, T2-w MR image of the prostate.lt can be seen that
the strong bias eld near the center of the image makes the rasof the image too dark
to see. (b) shows the same image after preprocessing. The [state can be seen quite
visibly in the center of the image.

intensities in the normal direction to c is given asFy ¢ fdd Nc . Forthe
given anatomical landmark, the meanF over all training images is denoted as with
a covariance matrix of , which de nes a Gaussian distributi on and hence constitutes

the appearance model for a given landmark point.

4.3.2 Preprocessing and Feature Extraction

In our appearance model, we begin by performing a bias eld awection on each MR
image. The endorectal coil used in our data creates excessiy high intensity values
near the prostate. The algorithm in [71] is used to perform tre bias eld correction on
our images. An example of an MR image before and after the biasld correction is
shown in Figure 4.2. Once the images have all been correctedie convolve each image
with a Gaussian kernel to remove noise in the images, and ndy we normalize each
image to have the same range of intensities.

Each image is then convolved withK kernels to derive statistical texture descriptors
of the object. The set of kernels is denoted as, | 1;:::;] k ,» where we use the
4 directional Kirsch kernels [63], the 4 directional Sobel krnels [64], Gaussian kernels

with standard deviations 0:5;1;5 , and mean kernels with various window sizes.
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Examples of a Kirsch and Sobel kernel are,

5 5 5 1 2 1
1 3 0 3 ;ls O 0 O
3 3 3 1 2 1

Denoting the intensities of the neighborhood surroundingcasFy € fdd N c
and the convolution operator as , the feature vector G ¢ associated with eachc C

is de ned as,

Gc Gkc k 1I1:::;K ,where G ¢ Fn ¢ |k (4.2)

4.3.3 Local Appearance Model

Once texture features have been extracted, we can either caée a local appearance
model near each landmark pointc, or we can create a global appearance model for all
voxels inside the prostate. In this section we discuss creatg a local appearance model,
and in Section 4.3.4 we discuss creating a global appearancsodel.

The most straightforward extension to the traditional ASM a ppearance model would
be to model the distribution of features near eachc as a Gaussian. Except in this
case, we use each statistical texture feature as a dimensiasf the Gaussian, whereas
the traditional ASM uses nearby intensities to de ne each dimension of the Gaussian.
Hence, we extract and as before, but use G ¢ instead of Fy c.

However, this assumes that the distribution of features carbe modeled as a Gaussian
distribution, which may not necessarily be the case. To overome this limitation, we use
Gaussian Mixture Models (GMM's) [65] to de ne the distribut ion. We denote the set
of feature vectors fromM training images asSg G1;:::;Gm . We therefore have
M datapoints, each with dimensionality G . We model this distribution as a linear
combination of Q Gaussians by maximizing the log-likelihood of the model. If denotes
a normal (Gaussian) distribution with mean RC and covariance R®¢ ©  and
p denotes the probability returned by that distribution, the n our set of Q distributions is

de ned by 100 Q5 ;.0 @ andw  wg;iii;Wo wherew denotes
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(@) (b)

Figure 4.3: A histogram of a texture feature around a landmak, in which (a) shows a
Gaussian tin green, and (b) shows a GMM tin red. The X axis refers to the value
of each texture feature, and theY axis refers to the number of voxels containing that
value. It can be seen that the GMM more accurately models the stogram.

a weight parameter. We therefore use the Expectation Maximzation algorithm [65] to
maximize the log likelihood L, thereby de ning our appearance model by the variables
; ,and w, where
M Q

; ;w argmaxL; where L In Wqg PGm ¢ q - (4.3)
P oW 1 g1

m

To determine the optimal number of Gaussians Q) to use, the Bayes Information
Criteria (BIC) [72] is minimized, which aims to maximize the accuracy of the model
while minimizing the number of parameters (the number of Gatssians) to avoid over t-
ting the training data. The BIC is de ned as BIC 2L Q In G wherelL isthe
log likelihood value calculated from theEM algorithm in Equation 4.3. Therefore, the
Q which minimizes the BIC is selected. To explain the advantag of using GMM's over
the Mahalanobis distance, we refer the reader to Figure 4.3in which a histogram of a
texture feature for a given landmark point is shown in blue. In Figure 4.3a, a Gaussian
is tto the data in green. In Figure 4.3b, a GMM is t to the data in red, which clearly
models the data more accurately.

While a GMM de ning the distribution of statistical texture features of the border

is useful, we can extend this even further by implementing anintelligent method for



23

selecting which features to include in our multi-dimensioral distribution. Our segmen-
tation algorithm was run through a cross-validation schemeusing a forward feature
selection [73] to choose which dimensions @& (i.e. which features) to include. This
was done by running a 5-fold cross validation on a subset of # training data for each
feature individually. The best performing feature was thenselected using the mean Dice
similarity coe cient (DSC) [67]. Then, each other feature was subsequently tested in
a 5-fold cross validation scheme. The feature which improwe the DSC the most was
then selected. This was repeated until a maximum DSC value wa achieved. In the
experiments we performed, the DSC value was maximized aftet features were selected.
For the rst feature selected, 4 R, and 4 R?, for the second feature, 4 R2?and

q¢ R? 2 andforourdata, 4 R*and 4 R* %

4.3.4 Global Appearance Model

Having a unique appearance model for each landmark point ise;asonable for 2D, but
in 3D a substantial number of landmark points must be used to @& ne the surface of
the object, especially for regions of high curvature. In oursystem, we usedN 100
landmark points to de ne the shape for each slice in 2D, but rguired almost N
2000 landmark points to de ne the surface for each volumetrt image. Therefore, a
unique appearance model for each landmark point can quickipecome infeasible. In
addition, for each patient, there is only 1 3D volume, while there are a multitude of
2D slices within that volume. Therefore, for a given number ¢ patients, there are
signi cantly more 2D slices than there are 3D volumetric images. So to accurately
de ne a distribution, there may not be enough 3D volumetric images. For example,
ifa G 15 dimensional Gaussian is being modeled, several hundredzlices could
be su cient to de ne that 15-dimensional distribution if th e ASM is being generated
in 2D. However, those several hundred slices could perhapsily be contained within
50 or so 3D volumetric images, which would not be enough to accately model the
15-dimensional distributions if local appearance models @re to be used.

We therefore aim to create a global appearance model of the xels within the

prostate, instead of local appearance models used to de nehe prostate border, and
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aim to minimize the dimensionality of this distribution. Th e algorithm in [42] de ned
the distribution of prostate voxels as a GMM, and de ned the distribution of non-
prostate voxels as a second GMM. A Bayesian classi er was uddo distinguish between
the 2 distributions when segmenting a new image. In [42], e&cdistribution was 3
dimensional, de ned by f ¢ ;X¢;yc . We did not want to exceed 3 dimensions for our
distribution, yet wanted to use multiple statistical textu re features. The solution we
decided upon was to use the adaboost [74] algorithm to gende a weighted sum of
GMM's (one for each texture feature).

The nal outputs are the distributions ( D) for voxels inside and outside the prostate,
and a weight ( ) for each feature. We denote! as the class of voxels within the
prostate, and! as the class of voxels outside the prostate, witts, denoting the set
of voxels in class! . We also denote as a normal (Gaussian) distribution, and use
the method from Section 4.3.3 to de ne a GMM. B ¢ denotes a binary classi cation,
in which By c 1 if cis correctly determined to be within !  using feature k and
Bk ¢ Ootherwise. Finally, the adaboost [74] algorithm (denotedas adaboost) returns
a set of weights ;k 1;:::;K , for each feature given a set of binary classi cation
results.

Algorithm  GlobalAppearance

Input S, ;Sy ;P! ;P! ;t

for k: 1toK do
for ! : 1 ;I do
Calculate Xx¢;yo;Fk ¢ ¢ Sy

Let Q argming BIC

Let Dik g1 @ q
end for
P! D x P!
LetBkC o5 57— t C©S ¢S S

end for

Let B Brk 1;:::;K

Let  adaboostB ;k 1;:::;K
return k;Di ;D ook LK
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In the algorithm above, t does not necessarily need to be:B, but this is what we found
worked well. In addition, adaboost [74] is unique in that it chooses di erent features
which correctly classify di erent sets of voxels, thereby nd redundently selecting similar
features. A weight of ¢ 0 would indicate that the feature was not chosen by the
adaboost algorithm. Therefore, our nal global appearancemodel for the prostate
consists of a GMM for the prostate O, ) voxels, the non-prostate voxels D, ), and

a weight | for each featurek  1;:::;K . It should be noted that for implementation

purposes, if 0, then D;x need not be de ned.

4.4 Segmention of an Image of the Prostate

4.4.1 Traditional ASM Segmentation

The process of segmenting an image in the traditional ASM mdtodology is as follows:
detect the border, t the shape, and repeat until convergen®. Given a set of landmark
points X' for iteration i, the goal is to nd landmark points X' closest to the object

border. The shape is then updated using Equation 4.1 where

b PT R X' ; (4.4)

and where each element ob can only be within 3 standard deviations of the mean
shape. To determineX, the set of pixels along the normal toc (denoted asN' ¢ ) are
checked as potential locations for the prostate border. Thestandard cost function for
a given pixel to the training set is the Mahalanobis distance Therefore, X' is de ned

as

X' dy n L:::N ; whered, argmin Fy e L. Fg € nol

e N cn
(4.5)
where , and | are the mean and covariance matrix for landmarkn de ned in Section

4.3.1.
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4.4.2 Segmentation Using a Local Appearance Model

If a local appearance model near each landmark point is creatl as described in Section
4.3.3, then Equation 4.4 can also be used to de ne the shaperfiteration i. However,
instead of minimizing Mahalanobis distance, as in Equation4.5, we aim to maximize
the probability given the GMM. In addition, we chose to not only search in the nor-
mal direction, but in a neighborhood surrounding each curret landmark point. We

therefore de ne our segmentation cost function as,

R dv n 1,:::N ; whered, argmaxP G e

eN cn

N niWn (4.6)

where ,; n, andw, are the appearance model for landmarkn, as de ned in Section

4.3.3.

4.4.3 Segmentation Using a Global Appearance Model

If a global appearance model is created, as in our 3D methodadly, a new image can
be segmented using the trained distributionsD along with the set of features selected
by the adaboost algorithm. The set of voxels calculated to ke within the object are
denoted asS, . The set of voxels calculated to lie within the current shapeis denoted
asSy. The shape is tto the resulting set of voxels presumed to liewithin the object of
interest by optimizing b to maximize the Dice overlap betweenS, and Sy, resulting
in a nal segmentation. This is summarized in the algorithm below.

Algorithm  ShapeFit:

Input C Dy «;Dw «; k;k 1K

for ¢ C; k 1:::;K do

Calculate x¢;yc; Gk €

end for

K Pw c¢cDy «x Pw
Let Sy c k1 Kk Pw cDy %« PW
Sy, S

Letb argmax, 5—s—

LetX X P b

return X
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Table 4.1: DSC values from other state of the art prostate MR ggmentation systems,
the number of volumes used in the study, the e ciency (in secads per volume), and
the level of user interaction required.

Reference Volumes | DSC | Seconds| Interaction
Local Appearance Model (2D) 56 0.85 55 minimal
Global Appearance Model (3D) 37 0.89 120 minimal
Makni et al. [60] 12 0.91 | 76 [60] none
Klein et al. [56] 50 0.88 | 900 [60] none
Pasquier et al. [59] 24 0.88 | 1200 [60]| medium
Martin et al. [58] 36 0.84 | 240 [58] | unknown

To perform the argmax calculation, we used a direct pattern garch as presented in [68],
in which each element inb was constrained to be within 3 standard deviations from

the mean shape. Our nal segmentation is thus the outputX.

4.5 Prostate Segmentation Results

Both the local appearance model (for the 2D ASM) and global apearance model (for
the 3D ASM) were compared to other state of the art prostate sgmentation schemes
for MR imagery. We tested our local appearance model ASM oveb6 studies in terms
of DSC and MAD. The local appearance model in 2D achieved a me&aDSC of 08483
with a standard deviation of 0:0448 (standard error of 00060 mm). Our mean MAD
(over 56 studies) was 249 mm with a standard deviation of 0:73 mm (standard error
of 0:10 mm). The 3D global appearance model was tested over 37 stigd in terms of
the DSC, which resulted in a mean DSC of 887 with a standard deviation of 00329
(standard error of 0:0055). Our system took under a minute for the 2D system and
approximately 2 minutes for the 3D system.

Makni et al. [60] achieved a mean DSC of @1, with approximately 76 seconds per
volume, yet it was only over 12 studies. Klein et al. [56] achéved a median (not mean)
DSC of 088 over 50 studies. However, it was noted in [60] that Klein egl.'s system took
approximately 15 minutes per volume on a standard PC, while ar ASM took under 1
minute per volume. Pasquier et al. [59] achieved a mean ovexp ratio of 0:784 over 24

studies which corresponds to a DSC of 879 as per the equation in [56]. In addition, it
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was noted in [60] that it takes approximately 20 minutes to sgment an entire volume
on a standard PC for the method by Pasquier et al., and it was chimed in [59] that the
user must interactively place the segmentation model over he target. Finally, one of
the most recent papers on prostate MR segmentation is by Maiith et al. [58], in which
a mean DSC of 84 was achieved over 36 studies, which took approximately 4 imutes
per volume. Overall, given the e ciency of our segmentation system, our accuracy is
comparable to many state of the art systems. The systems whit outperformed our
system were tested on less studies and took longer to run. Thentire set of comparisons

is given in Table 4.1.
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Chapter 5

Application to Prostate Volume Estimation

One of the bene ts for accurate prostate segmentation is in acurate estimation of the
prostate volume. Hence we have employed our 2D prostate segmtation scheme for
use in estimating the prostate volume. Of the 56 studies we wed in our evaluation
of our 2D ASM, we had clinical volume estimations for 45 of then. Section 5.1.1
describes the calculation of a ground truth volume estimaton. Section 5.1.2 describes
several volume estimations currently performed in the clinc. Section 5.1.3 describes
our volume estimation methodology, and Section 5.2 gives th quantitative results for

our volume estimations.

5.1 Methods for Estimating Prostate Volume

5.1.1 Ground Truth Volume Estimation

The ground truth volume ( Vg ) for the prostate in each of the 45 studies was determined
as follows. For each studyC, an expert radiologist provided a manual segmentation of
the prostate for all slices in which the prostate was visible Figures 5.1(b),(f),(j) show
the expert segmentations in red for a base, midgland, and apeMRI slice respectively.
The set comprising the area estimates of the prostate from &lM slices within a single
3D study C is denoted asS Am m L::o;M Ex, where A,
denotes the segmented area of 2D sliam. The estimated prostate areas (areas within
manual delineations) on all slices are integrated and multplied by the slice interval |
(the spacing between adjacent slices). The prostate volum@/gx ) in Cis then calculated

as
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(VAR Am (5.1)

5.1.2 Clinical Volume Estimation

Three common techniques currently in use in the clinic for postate volume estimation
(ellipsoid, Myschetzky, and prolate spheroid) depend on tk transverse, cranio-caudal,
and anterior-posterior distances, all determined from the3D acquisitions. An expert
manually determined the transverse D), cranio-caudal (D»), and anterior-posterior
(D3) lengths of the prostate for each of the 45 studies.

Ellipsoid

This estimation technique is based on the ellipsoid formuld26] and expressed as,

Ve D1 D, D3 6: (5.2)

Myschetzky

This formula [75] aims to slightly increase the volume estinate compared to the ellip-

soidal model (Equation 5.2) and is expressed as,

VMys D1 Dy, D3 0:7: (53)

Prolate Spheroid

This formulation models the prostate as a prolated spheroidnstead of an ellipsoid and
is expressed as [26],

Vspphn D12 D2 G (5.4)

5.1.3 ASM Based Volume Estimation

We denote Vasy  as the volume estimation from the traditional ASM, and Vyea as
the 2D multi-feature ASM using a local appearance model, desibed in Section 4.3.3.

Vasm and Vygpa require no assumptions about the shape of the gland. This mébd
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Figure 5.1. Images of the resulting volume from 2 studies. Foeach result, we show
the volumes overlaid on the T2-w MR image (columns 1 and 3), ad just the volumes
themselves (columns 2 and 4). (a), (b), (e), (f) show ASM while (c), (d), (9), (h)
show MFA . In each image, the red represents the ground truth and the geen
represents the aggregation of segmentations for each slice

involves an automated ASM segmentation of the prostate in eeh 2D slice, thereby
yielding a set of area estimates for a given studyC. These slice areas are then used
to determine the prostate volume (as described in Equation 5l) by considering the
inter-slice interval 1.

For a given 3D MR acquisition, the 2D ASM algorithm is run on each of the M
slices. The set of allM slice areas for a given 3D acquisition is denoted a$

Am m 1;:::;M . Vasuw and Vyea are thus calculated using Equation 5.1.

5.2 Results of Volume Estimations

5.2.1 Pearson's Correlation Coe cient Between V and Vgy

We rst compared the ASM estimated volumes ( ASM; MFA ) with the clinical

models ( Ell; Mys; Sph ). This was done by calculating the Pearson correlation
coe cient [76] (the R? value) betweenV , for Ell; Mys; Sph; ASM; MFA and
the expert volume estimation Vg4, over all testing studies. The hypothesis was that

both Vasm and Viwea should have at least as high of anR? value as the commonly
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Figure 5.2: Each datapoint represents a patient.Vex is shown in the X -axis andV is
shown on theY -axis for MFA; ASM; Ell; Mys; Sph

employed clinical models.

The corresponding R? values betweenV , for Ell; Mys; Sph; ASM; MFA
and Vex were computed. The data is shown in Figure 5.2, and the resudt are shown in
Table 5.1. The number of studies used to compute eacR? value was 45 for the clinical
volume estimations, and 56 for the ASM based volume estimatins. The lowestR? value
(0:31) was obtained by using the traditional ASM methodology, and comparatively the
highest value (082) was obtained from the 2D MFA. It was to be expected that the
ellipsoidal and Myschetzky have the sameR? value, as they are simply scaled variants
of each other. In addition, the prolate spheroid expectedlyperformed the worst of the
clinical estimation techniques, as it only used 2 axes in itsyolume estimation while the

ellipsoidal and Myschetzky used measurements from 3 axes.
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Table 5.1: Pearson's correlation coe cient (R?) between V and Vgx for
Ell; Mys; Sph; ASM; MFA

EIl | Mys | Sph | ASM | MFA
RZ | .700| .700 | .454| .314 | .823

Table 5.2: Comparison ofV Vgy for Ell; Mys; Sph; ASM;MFA in terms of
mean, standard deviation (std.), number of studies (#), and standard error (ste.)

Mean | Std. | # Ste.
Ell 1.143 | 0.252 | 45 | 0.0376
Mys || 1.528 | 0.337 | 45 | 0.0502
Sph | 1.958 | 0.587 | 45| 0.0875
ASM | 0.433| 0.189| 56 | 0.0252
MFA || 1.053| 0.207| 56 | 0.0277

5.2.2 Comparison of Volume Fractions (V. Vgy)

The volume fraction betweenV and Vex was calculated for each study as/ Vgy, in

which a value of 100 indicates that the estimated volume is exactly equal to tke ground
truth volume. The results from these calculations are shownin Table 5.2. The ellip-

soid, Myschetzky, and prolate spheroid methodologies had ean volume fractions of
1:14; 1:53; and 1:96 respectively, with standard deviations of 025; 0:34; and 0:59 respec-
tively. The fact that the ellipsoidal estimation performed better than the Myschetzky

estimation was not surprising, as the Myschetzky correctio aims to increase the ellip-
soidal's estimation.

The traditional ASM had a volume fraction of 0:43 with a standard deviation of
0:18. Finally, the MFA had a volume fraction of 1:05 with a standard deviation of 0:21.
The fact that the mean volume fraction from the traditional A SM was signi cantly
less than 100 suggests that the ASM consistently undersegmented the ghd. This
could have occured if the traditional ASM detected edges whin the capsule as the
capsule boundary, as re ected in Figure 5.1(b),(f). In Figure 5.1, the aggregation of
segmentations from all slices are shown in green, with the agegation of ground truth

segmentations shown in red. As stated previously, the ASM aosistently detected edges
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within the prostate, and thus severely undersegmented the lgnd. However, the MFA
as compared to the traditional intensity-driven ASM was able to adequately determine
the correct boundary of the prostate. Note that almost any sgmentation scheme (not
just ASM's) would nd it di cult to correctly identify the pr  ostate boundary on the

extreme base and apical sections [77].
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Chapter 6

Concluding Remarks and Future Work

In segmenting new images, we have presented a fully automadeand accurate ASM
initialization scheme for prostate segmentation from multi-protocol in vivo MRI/MRS
data. With the increasing use of MR imaging of the prostate, gveral institutions
are beginning to acquire multi-modal MR prostate data, including MR spectroscopy
[4, 5, 6, 7, 8]. The primary novel contribution of our work on ASM initialization
is in leveraging information from one imaging protocol (spetroscopy) to drive the
segmentation of the prostate on a di erent protocol (T2-weighted structural MRI). To
the best of our knowledge this is the rstinstance of multi-modal information being used
in this fashion for ASM initialization. Our method uses replicated k-means clustering
to cluster the MRS spectra in the midgland, from which we elininate the background
spectra, t the shape to the remaining spectra, and extend ou initializations to the
base and apex of the prostate.

We have developed a system for accurately segmenting prog&a MR images. In
both our 2D and 3D segmentation systems, multiple statisti@al texture features are
extracted from the image, and used to better quantify the prastate. In addition, we
have used intelligent feature selection algorithms (eithe forward feature selection in
2D or adaboost in 3D) to only select those features which o er acurate segmentations.
Moreover, we have modeled the distribution of our feature vetors by using Gaussian
Mixture Models (GMM's) with an adaptive number of Gaussians. The fact that we
sum multiple Gaussians to determine the model for the distrbution means that the
underlying distribution does not necessarily have to be a Gassian. Local appearance
models around each landmark point are used when su cient traning images exist (such

as in the 2D case), and a global appearance model of the proséais generated when
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limited training data prevents accurate models of the distribution (such as in the 3D
case).

Our system was compared to other state of the art segmentatio systems and per-
formed admirably. It took either a similar amount of time, or less time, than other
methods, was tested over more studies, and achieved very higaccuracies (085 DSC
for 2D and 0:89 DSC for 3D). Moreover, our model was used to determine thenostate
volume and had a higher correlation with the ground truth (R?  0:82) compared to
such traditional schemes as the ellipsoid volume estimatio (R?  0:70), the Myschet-
zky volume estimation (R?  0:70), the prolate spheroid volume estimation R  0:45)
and the traditional ASM volume estimation (R?  0:31). In summary, our ASM vol-
ume estimation method can save valuable time for cliniciansand can yield a consis-
tently accurate prostate volume estimation which is extremely useful for evaluating
post-therapeutic response to cancer therapy. Future work \ill entail testing our system
on a large cohort of data and exploring other applications fo our accurate segmentation

system, such as in guiding biopsies and in treatment plannig.
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