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ABSTRACT OF THE DISSERTATION

Protected quantum bits and Josephson junction arrays

by Ruslan Usmanov

Dissertation Director: Professor Lev Ioffe

In this thesis we consider a Josephson junction device whose symmetry is described by

the point group Td. It can be visualized as a tetrahedron that contains two Josephson

junctions on each edge. We find the conditions under which the ground state of the system

is degenerate or almost degenerate. In this case, the low-energy degrees of freedom can

be mapped to the Hilbert space of a quantum spin 1/2. We evaluate effects of different

physical perturbations on the degenerate ground state and find that they are small for most

perturbations. We argue that this system can be considered as a very promising candidate

for a protected quantum bit with built-in error correction.

We propose and discuss an experimental method that allows to test validity of some

of the theoretical results obtained for the tetrahedral Josephson junction array and other

similar symmetric circuits. We have chosen a simpler pyramidal array to demonstrate the

main ideas of our method. Even though the noise resistance and theoretical decoherence

time of the pyramidal array are worse than those of the more complex tetrahedral systems,

it is much easier to realize the pyramid experimentally. The proposed design can be used

with any symmetric Josephson junction circuit.

We explore a natural generalization of the tetrahedral quantum bit and consider devices

whose symmetry can be described by one of the higher-order permutation groups Sn. We

ii



study the level structure and the associated built-in protection of some conceptually simple

circuits and show that these circuits have many interesting properties. In particular, their

ground state can be highly degenerate and stable with respect to perturbations violating

the symmetry. Unfortunately, these highly symmetric systems consist of a large number of

identical Josephson junctions. This makes them too complicated for experimental realiza-

tion.
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Chapter 1

Introduction

This thesis consists of four chapters. The first chapter can be considered as an introduction

into the subject. In the first section of the introduction we give a brief description of the

idea of a quantum computer. The section tells why quantum computers can be so powerful

and describes two main classes of physical systems that can be used to perform quantum

calculations.

In the second section of the introduction we describe the main obstacle to creating

working devices that arose when people had tried to realize the idea of a quantum computer

in practice. The problem is relevant for all quantum bits made of superconducting materials

and caused by decoherence processes in qubits due to interaction with their environment.

The third section of the introduction tells briefly about the most recent experiments

that tried to resolve the problem of decoherence described in the previous section. These

experiments are extremely important since they demonstrate that macroscopic quantum

bits are not just interesting theoretical toys but something that can be made and studied

in practice. The byproducts of these studies were some experimental techniques that can

be very useful not only for scientists working on quantum computers but also for all people

studying macroscopic quantum systems.

The second chapter is devoted to a specific representative of one very interesting and

important class of superconducting devices: all systems that belong to this class can be char-

acterized by one or another nonabelian symmetry. In particular, we consider a Josephson

junction device whose symmetry is described by the point group Td. It can be visualized as

a tetrahedron that contains two Josephson junctions on each edge. We find the conditions

under which the ground state of the system is degenerate or almost degenerate. In this
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case, the low-energy degrees of freedom can be mapped to the Hilbert space of a quantum

spin 1/2. We evaluate effects of different physical perturbations on the degenerate ground

state and find that they are small for most perturbations. We argue that this system can

be considered as a very promising candidate for a protected quantum bit with built-in error

correction.

The third chapter proposes an experimental method that allows to test validity of some

theoretical results obtained in the second chapter. We generalize the ideas developed in

[1, 2, 3, 4, 5]. We have chosen a simpler pyramidal array to demonstrate the main ideas

of our method. Even though the noise resistance and theoretical decoherence time of the

pyramidal array are worse than those of the more complex tetrahedral systems, it is much

easier to realize the pyramid experimentally.

Any symmetric Josephson junction array can be considered as a set of a few supercon-

ducting islands connected with each other and with the environment through Josephson

junctions. Since the size of these islands is very small, the Coulomb blockade effects be-

come very important. If we use gate voltages to control the potentials of the islands, we

can consider the array as a generalized version of the Single-Electron Transistor (SET). We

can draw the current-voltage curve of the system and extract the information about the

spectrum and decoherence rates. The proposed design can be used with any symmetric

Josephson junction circuit.

In the fourth chapter we explore a natural generalization of the tetrahedral quantum

bit and consider devices whose symmetry can be described by one of the higher-order

permutation groups Sn. We study the level structure and the associated built-in protection

of some conceptually simple circuits and show that these circuits have many interesting

properties. In particular, their ground state can be highly degenerate and stable with

respect to perturbations violating the symmetry. Unfortunately, these highly symmetric

systems consist of a large number of identical Josephson junctions. This makes them too

complicated for experimental realization.

The fifth chapter evaluates the results of the previous three chapters and concludes the
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thesis by identifying the future work that should be done.

The appendices provide a brief discussion of the three terms widely used in physics of

quantum computers: the RSA algorithm, Shor’s algorithm, and the quantum error correc-

tion scheme1.

1.1 Background

The idea of a quantum computer dates back to 1982 when Richard Feynman tried to model

quantum processes numerically. He has quickly realized that even the most powerful tra-

ditional computers do not allow researchers to simulate dynamics of complicated quantum

systems. Feynman has proposed a very interesting solution: a new type of computers where

such fundamental phenomena of quantum mechanics as quantum superposition and prob-

abilistic character of quantum processes would play an important role. Computers of this

new type are now known as ”quantum computers”.

To better understand Feynman’s ideas, note that classical mechanics is a very special

case of quantum mechanics and, therefore, the set of all classical trajectories is a subset of

all quantum trajectories. We can expect that a computer using general quantum processes

to perform calculations should be at least as much powerful as a computer that is only

allowed to use classical processes. Furthermore, it is likely that the quantum computer will

be in general more powerful.

In a traditional computer, information is encoded in a series of bits and these bits

are manipulated via Boolean logic gates arranged in succession to produce a final result.

Similarly, a quantum computer manipulates qubits by executing a series of quantum gates.

Each gate produces a unitary transformation acting on a single qubit or a pair of qubits.

Applying the gates in succession, a quantum computer can perform a complicated unitary

transformation to a set of qubits in some initial state. The qubits’s quantum state can

then be found, with the final computational result being determined by the state’s wave

1Even though the RSA and Shor’s algorithms are not used in this thesis, their brief description is given
because it is very common among physicists working on the theory of quantum computations and information
to refer to the algorithms as scientific evidence that substantiates the need for quantum computers.



4

function. This similarity in calculation between classical and quantum computers leads to

the fact that in theory, a classical computer can accurately simulate a quantum computer.

However, if a quantum computer has N quantum bits, the corresponding classical computer

will have to store a wave function of these N qubits, which implies dealing with 2N complex

variables. If N � 100, this number becomes too big even for supercomputers.

Thus, although a classical computer can theoretically simulate a quantum computer,

it is incredibly inefficient. There are many computational problems that can hardly be

solved using a classical computer because the total time required to finish computations

is comparable to the age of the Universe while a quantum computer solves these problems

with ease. The simulation of a quantum computer on a classical one is a computationally

hard problem because the correlations among quantum bits are qualitatively different from

correlations among classical bits. Take, for example, a system that contains only one thou-

sand qubits. Its Hilbert space is of dimension ∼ 10330. Hence, a classical computer that

is able to simulate it has to deal with exponentially large vectors, so that, we have to wait

exponentially longer than we would in the case when we have even a primitive quantum

computer.

Let us imagine that we have a system that contains 1000 qubits. Each quantum state

of such a system can be represented as a quantum superposition of as many as 21000 states:

|ψ〉 = a1|000...00〉+ a2|000...01〉+ ...+ a21000 |111...11〉.

When we perform a calculation, we rotate this quantum state in the 21000-dimensional

Hilbert space. Doing this, we change all coefficients in the quantum superposition. There-

fore, with one tick of the computer clock, a quantum operation could compute not just on

one machine state, as serial computers do, but on 21000 machine states at once. Even if one

tick of a quantum computer takes very long time, its computing power will be exponentially

better than that of a classical computer.

Scientists were naturally excited by the potential of such enormous computing power,

and a few algorithms that allow to use it have been invented in the early 90s. These include

the following well-known quantum algorithms: Deutsch–Jozsa algorithm [6, 7], Grover’s
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algorithm for searching an unsorted database [8, 9] and, of course, Shor’s algorithm [10]

(see Appendix B).

Shor’s algorithm allows very fast factorization of a large number (its complexity is pro-

portional to n2, where n is the number of digits contained in a decimal record of the large

number, while the complexity of the classical algorithm is proportional to exp(n)). This

algorithm is very useful for different encryption problems. One of the best encryption code

RSA relies heavily on the difficulty of factoring very large composite numbers into their

primes (see Appendix A). It is rather natural that all organizations and individuals that

use RSA are interested in getting a quantum computer.

Encryption is not the only application of a quantum computer. Feynman asserted [11, 12]

that a quantum computer could function as a simulator for quantum physics and especially

for condensed matter physics, where the number of degrees of freedom is usually very large.

Taking all the above into account, it is rather natural that nowadays, one of the most

important topics in condensed matter physics is implementation of quantum computations.

In general, creation of a quantum computer seems to be an extremely difficult problem

because two almost contradictory conditions must be satisfied [13]. First, the system in

consideration should be tolerant to all environmental perturbations. This means that all

interactions of the system with its environment should be very weak. Second, we want to be

able to control its quantum state (when we do some quantum calculations) and also we want

a final state to be readable (since we desire to know the result of our calculation) without loss

of information. But any measurement process involves interaction of the system whose state

we want to know with a macroscopic device which is a part of the environment [14]. Some

compromise between these two requirements can still be found. The compromise means

that one should be able to turn off the interaction with the environment while running

quantum algorithms and turn it on while reading quantum information. In this case, the

most important characteristic of the system is the so-called decoherence time which can be

defined as typical decay time of a quantum state of the system2.

2 The decoherence time is infinite if the interaction of a qubit with its environment is completely sup-
pressed. This means that all matrix elements of non-unitary noise operators projected to the Hilbert subspace
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A variety of different approaches to the solution of the problem of a quantum computer

have been developed. Strictly speaking, we can say that all the systems realized so far

belong to two big classes. The first class consists of all systems in which each elementary

cell called a quantum bit has microscopic size. These are examples of such systems: ions and

atoms in magnetic traps [15, 16], nuclear spins [17, 18, 19], and photons in cavities [20, 21].

At the same time, all quantum computers that include macroscopic quantum bits belong to

the second class. The most important representatives of this class are Josephson junction

arrays [22, 23, 24, 25, 26, 27, 28, 29, 30, 31], transmons [32, 33, 34, 35] and quantum dot

devices [36, 37].

Each of these two approaches has its own advantages and drawbacks. For example,

decoherence processes in microscopic systems can be very slow3, so that the decoherence

time (introduced in the next section) is long enough to run quantum algorithms (all the mi-

croscopic systems listed in the previous paragraph are characterized by ”long” decoherence

time). However, it seems to be almost impossible to build a quantum computer that con-

tains more than a few dozens of such microscopic bits. The main problems that arise here

are due to impossibility to control many quantum bits simultaneously4 and even produce a

stable system that has so many qubits.

Probably, the most successful device using the microscopic approach was demonstrated

in 2001 by a research group from IBM’s Almaden Research Center [19, 38]. In this ex-

periment a seven-qubit quantum computer has found the prime factors 3 and 5 of the

number 15. The computer itself was represented by a molecule that had seven nuclear

spins. These nuclear spins have been programmed by radio frequency pulses and detected

by nuclear magnetic resonance devices. Unfortunately, as the scientists said, it would be

spanned by the vectors |0〉 and |1〉 are zero, that is, the subspace is invariant to the noise operators. Such
a subspace is called a decoherence free subspace (DFT). In some sense, qubits whose eigenstates |0〉 and |1〉
form a basis of DFT support a built-in quantum error correction scheme.

3By definition, decoherence processes lead to decay of a quantum state. This means that any quantum
information that is stored in a quantum bit is being lost as time passes.

4One can easily control 10 individual ions but no modern technique allows to control 1000 (not saying
about millions) individual ions. It is also very unlikely that such a technique will be developed in the
foreseeable future.
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extremely difficult (or even impossible) to synthesize similar molecules with thousands of

nuclear spins.

In contrast to the microscopic case, systems of the second class do not suffer from this

disadvantage, that is, quantum computers built using macroscopic elementary cells can

contain any number of such cells. This allows us to consider them as very perspective

candidates for being the material base of the future quantum computer. However, the

macroscopic size also presents a challenge: is it possible to isolate qubits from outside

parasitic noise while retaining efficient communication channels for the write, control and

read operations? The outside parasitic noise leads to very short decoherence time and,

therefore, to very severe restrictions on the typical time required to run quantum algorithms.

The main task for scientists who try to build a quantum computer using solid state sys-

tems is increasing the decoherence time without losing advantages of working with macro-

scopic quantum bits.

The first implementation of a quantum bit in a solid state device was achieved 11

years ago in a Cooper pair box, a circuit where a single superconducting island is coupled

to a reservoir by a low capacitance tunnel junction [3]. In this circuit, the competition

between the Coulomb blockade and the Josephson effect allows the coherent superposition

and manipulation of charge states [39]. However, the processes leading to decoherence

are more difficult to control than in microscopic systems. For this reason, it is important

to understand both origin and effects of the interaction of qubits with other macroscopic

degrees of freedom of the circuit. This interaction determines the decoherence time which

is the main topic of the next section.

1.2 Decoherence time in superconducting qubits

In this section we will discuss decoherence in a simple Josephson junction circuit that can

be considered as a quantum bit. We also introduce two very important phenomenological

quantities: pure dephasing time and relaxation time. This will allow us to study more inter-

esting ”protected” devices whose internal symmetry suppresses some effects of decoherence
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Figure 1.1: An example of a superconducting qubit.

processes.

Let us consider the system shown in Fig. 1.1. This system consists of three identical

Josephson contacts and three superconducting wires. The contacts are characterized by

the Josephson energy EJ = (�/2e)Ic and the charge energy Ec = e2/2C. We will consider

the case of EJ being much larger than Ec, EJ � Ec, that is, we will use the quasiclassical

approximation. If the magnetic flow through the ring is equal to Φ0/2, then the following

equation must be valid:

φ1 + φ2 + φ3 = π.

In this case, the potential energy of the system,

EJ = −EJ cos(φ1)− EJ cos(φ2)− EJ cos(φ3), (1.2.1)

has two classical minima:

EL = ER = −3

2
EJ .

Here we denote the phase differences across the three contacts by φ1, φ2, and φ3. The

corresponding quasiclassical wave functions can be written in the form:

|L〉 =
∣∣∣φ1 =

π

3
, φ2 =

π

3
, φ3 =

π

3

〉
,

|R〉 =
∣∣∣∣φ1 = −π

3
, φ2 = −π

3
, φ3 =

5π

3

〉
.

(1.2.2)

We can see that the minima are characterized by identical in magnitude but opposite

directed currents through the junctions (see Fig. 1.2):

|IL| = |IR| =
√
3eEJ

�
.
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(a) |L〉

	���

	��� �
���

(b) |R〉

Figure 1.2: Two classical states corresponding to the minimum of the potential energy
(1.2.1).

The effective Hamiltonian of the qubit has the following simple form:

Ĥeff =

⎡⎢⎢⎢⎣
Elocal t

t Elocal

⎤⎥⎥⎥⎦ ,

where Elocal is the energy of a localized quantum state and t is the non-diagonal matrix

element that describes tunneling between the quantum states |L〉 and |R〉.
If dissipation in the Josephson junctions is sufficiently weak5, then tunneling from one

minimum to the other becomes possible (with the tunneling amplitude between the two

quasiclassical minima being equal to t) and the eigenstates of the system can be written

in the form of the symmetric and the antisymmetric superpositions of the wave functions

(1.2.2):

|0〉 = 1√
2
(|L〉+ |R〉) , E0 = Elocal − |t|,

|1〉 = 1√
2
(|L〉 − |R〉) , E1 = Elocal + |t|.

(1.2.4)

5 If we denote the widths of the two levels (1.2.4) by Γ0, Γ1, we will find that the described system can
be considered as a quantum bit only if the following conditions are satisfied:

Γ0,Γ1 � ΔE = 2|t|,
Γ0,Γ1 � ΔE12,

(1.2.3)

where E2 is the next energy level of the system, and ΔE12 = E2 − E1. Otherwise, it does not make sense
to speak about the energy levels |0〉 and |1〉.



10

�

U(�)

����t |

Figure 1.3: The potential energy of the qubit in the case when φ1 = φ2 = φ, φ3 = π − 2φ:
U(φ) = −EJ(2 cos(φ)−cos(2φ)). Two classical minima correspond to two localized quantum
states. If dissipation in the system is weak, the eigenstates of the qubit are symmetric and
antisymmetric linear combinations of the localized quantum states.

The energies of the two eigeinstates are separated by the energy gap ΔE = �ω = 2|t| (see
Fig. 1.3).

In those cases when the lifetime of any linear combination

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1, (1.2.5)

of these quantum eigenstates (that is, its decoherence time) is long enough, the system can

be considered as a candidate for a quantum bit, with the two states |0〉, |1〉 being a basis

in the two-dimensional Hilbert space of the qubit. The coefficients a and b of the linear

combination carry quantum information.

Unfortunately, there are physical processes that lead to ”dissipation” of the quantum

information, that is, to finite lifetime of the quantum state |ψ〉. In reality, any measurement

is performed by a device that is a physical system: the circuit used for readout and control

is composed of some macroscopic impedances, inductances, and conductances. Each of

these elements is a source of various noises, and, therefore, a source of decoherence. It is

convenient to speak about five different sources of decoherence: 1) charge noise; 2) critical

current noise; 3) flux noise; 4) quasiparticles; 5) phonon (photon) emission.

To understand the origin and effects of all these noises, we will need the Hamiltonian of
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a general Josephson junction circuit:

H = Hqubit +Hcontrol +Hint, (1.2.6)

where Hcontrol is the Hamiltonian of the readout and control circuit, Hint describes in-

teraction of a qubit and a readout circuit, and Hqubit is the Hamiltonian of the quantum

bit:

Hqubit =
∑
i

q2i
2Ci

−
∑
j

EJ cos(φj − aj). (1.2.7)

Here qi are the charges of superconducting islands, φj are the phases across the correspond-

ing Josephson junctions, and aj are chosen to agree with the magnetic fluxes through all

contours of the circuit.

The charge noise is explained by fluctuations of the charges qi of superconducting islands.

Physically these charges are induced by potentials produced by the electrostatic environment

(for example, by dipoles in the insulating environment). The low frequency part of this noise

(f < 1 kHz) is characterized by the spectral density

Sq(f) =
αq

f
, (1.2.8)

where αq has been found in a number of experiments to be of order (10−3e)2 [40, 41, 42,

43, 44].

The critical current noise is caused by fluctuations of the Josephson energy EJ . There

are a few sources of this noise. First, it might occur due to changes in the ion configurations

which lead to opening and closing of the conducting channels of Josephson junctions [45].

Second, it might occur due to electrons trapped in shallow subgap states that can appear

at the superconductor-insulator boundary [46, 47]. Phenomenologically, the critical current

noise is characterized by 1/f spectrum, when f belongs to the range f = 1 mHz to 60 Hz:

SI0(f) ≈
αI0

f
. (1.2.9)

If the area of a junction is 1 μm2, its temperature is 100 mK, and the critical current is

1 μA, then αI0 can be estimated by αI0 = 8.2 · 10−26A2 ·Hz−1 [45, 48].
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Flux noise. The source of this noise is fluctuating magnetic fields applied to a quantum

bit. Typically, it becomes important, when EJ � EC . The qubit’s energy levels change,

which leads to dephasing. The flux noise is characterized by 1/f spectrum, when f belongs

to the range f = 1 mHz to 10 Hz:

SΦ(f) =
αΦ

f
, (1.2.10)

where αΦ ∼ 10−12 Hz−1 [49].

Quasiparticles. Even though all real experiments are performed at very low temperatures

(T � Δ), a small number of quasiparticles might exist. These wandering out-of-equilibrium

quasiparticles randomly change the charges of superconducting islands. This effectively

resembles the charge noise with very low frequency but very large magnitude.

Finally, emission of photons and phonons results in decay of the excited state of a qubit

[50, 51, 52]. These processes are similar to the conventional dipolar emission of light by

atoms (see Fig. 1.4) and are characterized by the decay rate Γ that strongly depends on the

energy gap ΔE = �ω between the logical states |0〉 and |1〉 [51]:

Γ ∼ ΔE4. (1.2.11)

As one can see, large energy gaps lead to very short decoherence time6.

The photon emission can be efficiently suppressed by placing a qubit in a resonator

[32, 33, 34, 35], but due to the technological constraints, it is very difficult to avoid coupling

of the qubit with substrates and, therefore, to eliminate the phonon emission. This source

of decoherence becomes, however, insignificant when the energy gap ΔE separating the

logical states of the qubit is small.

It should be clear from this short summary that the most dangerous of all the low

frequency noises is the charge noise because of its large magnitude. This noise leads to fast

6The main reason why Γ grows so fast as ΔE increases is the following. The particles and quasiparticles
that can carry away the energy difference ΔE have a larger density of states at higher energies. The
probability of decay |1〉 −→ |0〉+ γ is determined by

Γ ∼ 1

1/ω

∫
δ (�ω −ΔE) δ (ck − �ω)

d�kdw

(2π)4
∼ ω4 ∼ ΔE4.
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Figure 1.4: The quantum state |1〉 decays. The energy difference is carried away by a photon
or a phonon.

decoherence if it is directly coupled to the energy gap between the logical states. This is a

typical situation when EC � EJ because in this regime different states are characterized

by different charges and electrostatic potentials. The charge noise dominates in this case

and leads to fast dephasing because the difference ΔE01 fluctuates (see below).

However, its effects remain large even in the opposite limit of EJ � Ec, if the phase slips

are not excluded. In this case, the energy difference ΔE01 = E1 − E0 does not fluctuate.

What is worse is that the states |0〉 and |1〉 change [53]. To explain this, let’s return back to

the quantum bit described at the beginning of this section. Imagine that the charge of one

of the islands of the qubit has increased by δq. In this case the quasiclassical wave functions

(1.2.2) rotate:

|L〉 −→ e−i(π/3)δq|L〉, |R〉 −→ ei(π/3)δq|R〉.

As a result, the effective Hamiltonian of the qubit changes:

Ĥeff =

⎡⎢⎢⎢⎣
Elocal te−i(2π/3)δq

tei(2π/3)δq Elocal

⎤⎥⎥⎥⎦ ,



14

so that the eigenstates (1.2.4) also change:

|0〉 −→ |0′〉 = 1√
2

(
|L〉+ ei(2π/3)δq|R〉

)
, E0′ = Elocal − |t|,

|1〉 −→ |1′〉 = 1√
2

(
e−i(2π/3)δq|L〉 − |R〉

)
, E1′ = Elocal + |t|.

(1.2.12)

The matrix elements 〈1|0′〉 and 〈0|1′〉 are not equal to zero. Therefore, the quantum state

(1.2.5) can decay. The probability of this event becomes especially large if δq is not a small

fluctuation7. In section 1.4 we will discuss how one can resolve this problem.

In almost all cases the combined effect of all the noise sources on the qubit states can

be described phenomenologically by two parameters that have the dimension of time: the

relaxation time τr and the pure dephasing time τφ. In physical literature one can also meet

the notations T1 and T2 for the quantities8

T1 = τr, T−1
2 =

1

2
T−1
1 + τ−1

φ .

Sometimes they are more convenient, because T1 and T2 are the quantities that are usually

measured in real experiments. However, only τr and τφ make physical sense.

In general, one can distinguish two types of processes that destroy coherence. First, in

real systems there are always higher energy levels Ei, i = 2, 3, .... If interaction with the

environment is strong, the probabilities of transitions between the quantum state (1.2.5)

and the higher energy levels and also between the eigenstates |0〉 and |1〉 become large and

quantum information is being lost because the magnitudes |a| and |b| change9. As a result,

if the interaction is very strong, the system cannot be used for quantum calculations. Decay

of the coefficients a and b is described by the relaxation time τr. This is the typical time

that is required for the magnitudes |a| and |b| to decrease to one half of their original value.

7One can argue that the charges of all the three superconducting islands will increase by the same amount
if EJ � Ec: the additional charge δq will be distributed uniformly over the quantum bit. As a result, the
wave functions |L〉 and |R〉 should not rotate. However, this will be the case only if all the three islands
are absolutely identical. In real life, they are not since there are always some defects caused by non-ideal
technological processes. In addition, parasitic charges can be trapped on the islands. As a result, the island
potentials are different so that the charge fluctuations are not uniformly distributed and the wave functions
do rotate.

8The quantity T2 is called transverse relaxation time.

9The stronger the interaction with the environment, the larger the probabilities of transitions and the
faster decay of quantum information.
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Second, the interaction with the environment can change not only the magnitudes of

the coefficients a and b but also their relative phase φ. In the ideal case, when there is no

decoherence in the system, the time evolution of the state

|ψ(0)〉 = a|0〉+ b|1〉

is given by

|ψ(t)〉 = a(t)|0〉+ b(t)|1〉,

where

a(t) = ae−iE0t/�, b(t) = be−iE1t/�.

We see that the relative phase of the coefficients evolves as

φideal(t) = log

(
a(t)

b(t)

)
= φ(0) +

i(E1 − E0)t

�
.

In the ideal situation, we know the eigenenergies E0 and E1, so that we can take into

account this evolution in all our calculations.

However, due to interactions with the environment, the real eigenenergies E0 and E1

are not constant quantities. They change unpredictably as time passes so that the time

evolution of the relative phase φ(t) is an extremely complicated stochastic process:

φreal(t) = φ(0) +

∫ t

0

i(E1(τ)− E0(τ))

�
dτ.

If the phase error Δφ = φreal(t) − φideal(t) becomes very large, one can say that all initial

quantum information is completely lost.

The typical time that is required for the phase error Δφ to become as large as 1 radian

is called the pure dephasing time τφ. One can calculate it if the spectral densities of all

noises are known [40, 41, 45, 48, 49, 54]. To show this, we will assume that fluctuations of

the energy difference

δE(t) = (E1(t)− E0(t))− (E1 − E0)

are distributed normally. In this case the expected parasitic shift of the relative phase φ(t)
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is given by10 [40, 41]

〈
eiΔφ(τ)

〉
= exp

[
−1

2

〈(
1

�

∫ τ

0
δE(t)dt

)2
〉]

= exp(−g(τ)),

where

g(τ) =
1

2�2

∫ ∞

ωm

dw SδE(w)

(
sin(ωτ/2)

ω/2

)2

.

Here ωm = 2π/tm is the low-frequency cut-off due to the finite duration tm of all measure-

ments and operations and SδE(ω) is the spectral density of δE(τ). The pure dephasing time

can be found from the equation

g(τφ) = 1. (1.2.13)

The spectral quantity SδE(ω) can be expressed in terms of the noise spectral density. For

example, assuming that the charge noise is a Gaussian noise produced by many fluctuators

weakly coupled to a Josephson junction circuit and there are no other noise sources, one

can write the equation [40, 41]:

SδE(ω) =

(
4Ec

e

)2

Sq

( ω

2π

)
,

where Sq(f) is given by (1.2.8).

A more detailed analysis of the evolution of the qubit’s density matrix reveals that both

τφ and τr can be found if the spectral properties of all interactions are known [54, 55]. In

addition, such an analysis allows a systematic treatment of different parameter regimes. In

particular, the case of relatively high temperatures can be studied.

It is very important to understand that relaxation and dephasing processes lead to

very different consequences. Quantum errors caused by relaxation cannot be fixed by error

correction algorithms. At the same time, errors caused by dephasing can be fixed if τφ is not

10We use the following property of the Brownian motion:

〈eiut〉 = exp

(
−〈u2

t 〉
2

)
.

The spectral density Sx(ω) is defined as:

〈xωxω′〉 = Sx(ω)δ(ω + ω′).

Also, we ignore nonzero temperature effects. This can be done if kBT � δE(t), t > 0.
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too short (see below). However, it is much easier to fight with relaxation on physical level

than to fight with dephasing, especially with dephasing that occurs due to the charge noise.

It is worth emphasizing again that the charge noise is sufficiently different from the rest of

the low frequency noises because it leads not only to fluctuations of the energy levels, but

also (for some systems) to rotations of the quantum eigenstates |0〉 and |1〉. This rotation of

the quantum states is a unitary transformation, while the regular noise effects are described

by non-unitary operators. The pure dephasing time which characterizes the unitary rotation

cannot be calculated from the spectral density of the charge noise, so that one has to use a

special probabilistic analysis (see also the discussion earlier in this section)11.

To complete our brief discussion of noises that affect a Josephson junction quantum

bit, we should mention effects of classical impedances in readout circuits. These effects

are explained by thermal (Johnson-Nyquist) noise which is the electronic noise that exists

regardless of any applied voltage [56]. It can be explained by the thermal agitation of

electrons in electric conductors and has approximately white spectrum [57]. The voltage

variance (per hertz of bandwidth) is given by

〈V 2(ω)〉 = 4kBT Re[Z(ω)],

where Z(ω) is the impedance of the outer circuit. The thermal noise leads to very fast

dephasing12 but can be almost completely suppressed by inserting a very small Josephson

junction (as shown in Fig.(1.5)). If this additional junction is very small, its capacitance

is also very small relative to the capacitance of the quantum bit. As a result, voltage

fluctuations do not destroy quantum coherence. In this case, Johnson-Nyquist noise affects

only readout current-voltage curves (as explained in detail in Chapter 3).

The lifetime of quantum information is determined by the smallest of the two quantities,

τr and τφ. But is it possible to make this lifetime long enough to implement at least the

simplest quantum algorithm? In other words, we want to know if there is a limitation on

11However, the pure dephasing time which characterizes non-unitary transformations is still given by
(1.2.13).

12Dephasing is explained by fluctuations of the total charge of a quantum bit (like in the case of the charge
noise).
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Figure 1.5: A small Josephson junction should be inserted between the qubit and the readout
circuit whose impedance Z(ω) is a source of Johnson-Nyquist noise. The capacitance of the
additional Josephson junction is very small relative to the capacitance of the qubit so that
voltage fluctuations do not affect the quantum bit and its state.

the decoherence rate and if it is possible to realize Shor’s (or any other) error correction

scheme (see Appendix (C)). For the error correction scheme to work, the decoherence time

should be at least 102−104 times longer than the greater of the duration of one elementary

operation13 and the typical measurement time14 [14, 59, 60, 61]. Furthermore, there exist

some estimates that show that the required decoherence time can be even longer: 106− 108

times longer than duration of one elementary operation [62].

Unfortunately, all these estimates are distributed too wide and cannot give a clear answer

to experimentalists on what they should try to achieve. Also, in practice, our final goal is

13Duration of an elementary operation is the typical time required for a quantum logic gate to change a
quantum state of a quantum bit. For example, if the quantum bit is represented by an atom, the quantum
states |0〉 and |1〉 are represented, correspondingly, by the ground and the first excited levels of the atom
and the quantum logic gate is represented by a laser beam that induces transitions between the quantum
states |0〉 and |1〉 then duration of an elementary operation is the laser pulse duration.

In the case of Josephson junction devices, duration of an elementary operation is determined by

τ =
2π

ωp
=

π�√
EJEc

,

where ωp is the plasma frequency of a junction.
If the state |1〉 is separated from the next excited state by a significant gap ΔE12, then ΔE12 sets the

scale for duration of all operations because an attempt to change the state of the system faster than for the
time 1/ΔE12 would excite higher levels. It means that there exists minimal pulse duration that can be used.
In practice, it should be at least 10 times longer than �/ΔE12. One should be very cautious comparing the
estimates for the decoherence time taken from different papers since this time can be expressed either in
terms of logical elementary operations or in terms of ΔE12.

14The measurement time is the time taken for the measuring device to reach a signal-to-noise ratio of 1
[58].
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Figure 1.6: This figure has been borrowed from [63]. It shows the dependence of the
maximum algorithm size KQ on the gate noise γ and the ratio N/K, at ε = γ/100 and
tm = 25, where tm is the time involved in measuring a physical qubit. tm is expressed in
terms of the duration of one elementary operation. All the axes have logarithmic scales,
labelled in powers of 10.

doing something more complicated than running the simplest quantum algorithms using a

few qubits. Therefore, it is very important to answer a more precise question: given the

number of logical qubits K and the number of elementary operations Q needed to complete

a quantum algorithm, what is the minimal decoherence time required to run the whole

computation and get the right result? This question has been investigated in [63]. The

answer is shown in Fig. 1.6. To understand the graph, we will remind here that the error

correction scheme requires the actual number of physical qubits N to be much greater than

the number of logical qubits K: we have to run a few copies of our computation so that

at each step we can fix all errors. Obviously, the more physical copies of a logical qubit

we have, the more reliable the error correction scheme is. Therefore, the ratio N/K is

an important parameter and shown on one of the horizontal axes of the graph. Another

important parameter γ that describes the probability for a physical qubit to get an erroneous

state15 is shown on another horizontal axis. The graph itself shows the dependence of the

15There are a few different types of errors: 1) at each step, every freely evolving physical quantum bit
has no change in its state with probability 1 − ε but undergoes some random rotation with probability ε;
2) a single-qubit gate can fail with probability γ1; 3) a two-qubit gate can fail with probability γ2; 4) each
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maximal algorithm size KQ on the probability γ and the ratio N/K. One can see from the

graph that large algorithms (KQ ∼ 1010) are possible for a modest ratio N/K = 10, once

the probability γ is small enough (γ ≤ 10−4).

Using these results, it is easy to estimate the minimal required decoherence time :

τφ ∼ τ

γ
= 104 τ,

where τ is the duration of an elementary operation. Taking into account what we said in

Footnote 13, this translates into

τφ ∼ 105
�

ΔE12
,

where ΔE12 is the energy gap between |1〉 and the first excited level outside the qubit’s

Hilbert space.

For Josephson junction devices some of the best results were achieved in 2002 [64, 65].

In these experiments the relaxation time was τr = 1.8μs, while the pure dephasing time

was as long as τφ = 0.5 μs ≈ 8000τ , where τ = 2π�/ΔE01 ∼ π�/
√
EJEc. Later these

results were significantly improved so that the physical quality factor has reached 25000

[58]. Recently, even better numbers have been received [66]: T1 = 11.5 ms, T2 = 20 ms.

As we mentioned earlier, the relaxation time strongly depends on the energy gap ΔE =

�ω between the states |0〉 and |1〉, so that it is impossible to increase τr without decreasing

ΔE. The results [64, 65] cannot be improved neither by using better materials, nor by

using better technologies as soon as the gap stays the same. If we substitute the value

ΔE = 1 K used in many modern experiments into the formula (1.2.11), we will find that

the decoherence time is at least (see Footnote 13)

τφ = 104
�

ΔE12
.

This formula agrees with the experimental result obtained in [64, 65].

preparation of a single physical bit in |0〉 can fail with probability γp; 5) every measurement of a single
physical qubit can give a wrong result with probability γm. All these noise parameters were chosen to be
γ1 = γ2 = γp = γm = γ because as numerical study has shown, the final result depends mostly on γ2 [63].
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Figure 1.7: Quantronium

1.3 Quantronium and transmon

In this section we will briefly describe some recent experiments that tried to suppress effects

of the noises and implement a simple readout scheme. All these experiments built a circuit

around a Cooper pair box16.

The first experiments [64, 67] studied the system called ”quantronium” which is a modi-

fied version of a Cooper pair box where one Josephson junction (E0
J , E

0
C) has been replaced

by two smaller junctions (EJ = E0
J/2, CJ = 2C0

J) (see Fig. 1.7). If a phase difference δ is

the combined phase across the two junctions, the Hamiltonian of the quantronium is given

by [67]

Ĥ = −2EJ cos(δ/2) cos θ̂ + EC(N̂ −Ng)
2. (1.3.2)

Let EC ≈ EJ , where EC = (2e)2/2(Cg +CJ). In this case, neither N̂ nor θ̂ is a well defined

quantum number.

The ground state |0〉 and the first excited level |1〉 of the Hamiltonian (1.3.2) form a

two-level state space which is separated by a significant gap from the other energy levels

16The basic Cooper pair box consists of a superconducting island connected to a superconducting reservoir
by a Josephson tunnel junction with capacitance C0

J and Josephson energy E0
J . The junction is biased by

voltage Vg applied to the island. The gate capacitance is Cg. Cooper pairs can tunnel to the island from
the reservoir and back again. The Hamiltonian of the box is given by [64]

Ĥ =
(2e)2

2(Cg + C0
J)

(
N̂ −Ng

)2

− E0
J cos θ̂, (1.3.1)

where θ̂ is the phase of the island and Ng = CgVg/2e is the charge of the island induced by the gate voltage
Vg.
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[67]:

E0,1 = ∓
√

(EJ cos(δ/2))2 + (EC(1− 2Ng))2.

The difference ΔE01 = E1 −E0 is minimal if Ng = 1/2. This point is known as the ”sweet

point” because in this case ∂E0,1/∂Ng = 0, so that the charge noise is suppressed. Also, if

δ = 0, we have ∂E0,1/∂δ = 0, so that the flux and critical current noises are suppressed.

As a result, if Ng = 1/2 and δ = 0, there is no dephasing in the first order. By applying

voltage pulses Vg(t) with frequency Ω = ΔE01/� to the gate, one can control the quantum

state of the system.

The two states are characterized by currents flowing through the junctions:

I0,1 =
2e

�

(
∂E0,1

∂δ

)
.

If δ �= 0, these currents are different. This fact allows us to implement a readout. If one

more Josephson junction whose Josephson energy is Elarge
J = 20EJ is inserted in the circuit

(as shown in Fig.1.7), then the phases δ and γ must satisfy the equation δ − γ = 2eΦ/�,

where Φ is the external magnetic flux applied to the loop that consists of the three junctions.

The maximal total current that can flow through the system depends on the quantum state

and is given by

Itotal = I largeC sin(γ) + Ii(γ + 2eΦ/�),

where Ii depends on the quantum state of the qubit. If we want to measure the state, we

apply a short pulse Iread(t):

Iread(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, t <= 0,

I1, 0 < t <= Tread,

0, t > Tread,

where Tread is the duration of the pulse and I1 is slightly lower than I largeC . Because the

large junction dominates, the phase γ is very close to π/2 when the pulse is applied. The

current flowing through the large junction is almost equal to I largeC , so that the system can

be described by the tilted-washboard model [1, 67]. If Z(ω) is the impedance and C is the
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total capacitance of the circuit, then the damping quality factor is defined as

Qd =
Cωp

ReZ(ωp)
,

where ωp is the plasma frequency of the large junction. If Qd > 1, then a finite voltage

can develop. We assume that the temperature is very low: kBT � �ωp. In this case, the

switching probability is only determined by quantum fluctuations [67]:

P = 1− e−ΓiTread , Γi = 52

√
ΔUi

�ωp

ωp

2π
exp

(
−7.2

ΔUi

�ωp

)
,

where

ΔUi =
4
√
2

3
Elarge

J (1− sin(γi))
3/2.

The phase γi depends on the quantum state |i〉, so does the switching probability. This

allows us to distinguish the states |0〉 and |1〉 and, therefore, read quantum information17.

The decoherence time has been measured in [64]: T1 = 1.8 μs, τφ = 0.5 μs (also, see

Table 1.1 for the theoretical numbers).

Let’s now consider another series of experiments where researchers studied the so-called

transmon [32, 33, 34, 35]. This is a superconducting charge qubit derived from the Cooper

pair box with minimal sensitivity to 1/f noise.

Imagine that we have a one-dimensional transmission line resonator with resonance

frequency fC (see Fig. 1.8). This means that electromagnetic waves with frequencies other

than fC are suppressed inside the resonator, so that we can write the Hamiltonian of the

system as

Ĥ0 = �ωC

(
a†a+

1

2

)
+ Ĥκ, (1.3.3)

where ωC = 2πfC and Ĥκ describes interactions of the resonator with its environment.

These interactions lead to decay of the electromagnetic field created in the cavity of the

17It is important to note that the pulse current I1 should be very close to the critical current IlargeC .
Otherwise, the switching probability for Tread < τφ will be too low and it will be impossible to distinguish
the states |0〉 and |1〉. However, if the resulting current through the large junction exceeds IlargeC , the
whole system becomes classical. As a result, quantum states of the qubit decay extremely fast (almost
immediately), which does not allow one to distinguish the quantum states. Therefore, I1 should be small
enough, so that the large junction current is less than IlargeC for any quantum state of the qubit.
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Figure 1.8: The so-called transmon is a Cooper pair box placed in a one-dimensional trans-
mission line resonator. The transmon can be described by the Cavity Quantum Electrody-
namics (cQED) equations. Applying microwave pulses at the qubit transition frequencies
fL and fR, we can control the quantum state of the qubits, while applying pulses at the
cavity resonance frequency fC and measuring the output signal, we can read quantum in-
formation. If we have two transmons in the same cavity, they will interact with each other,
so that it becomes possible to run quantum computations. The main difference between a
transmon and a Copper pair box is that EJ � EC for the transmon, while EJ ≈ EC for
the Cooper pair box.

resonator. The quality factor Q of the resonator is high enough (104 − 106), so that the

decay rate κ = ωC/Q is small (compared to the decoherence rate of the transmon which is

discussed below).

Unfortunately, the resonator itself cannot be used as a quantum bit since electromagnetic

field applied to it excites all its levels (not just the first one). The reason is that the energy

levels of the resonator (which is a linear system) are equidistant18. However, we can try to

use the high quality factor of the resonator to increase the decorence time of the Cooper pair

box. The two lower eigenstates of the box are isolated from the higher levels but depend

on the parameters of its environment. The energy levels of the resonator do not depend

on these parameters but are not isolated from the higher levels. One can build a system

18It is very important to emphasize that any two energy levels that are used as two eigenstates of some
qubit should be isolated from all other energy levels. This means that all transitions from these two levels
to the others should be energetically forbidden or at least suppressed. In linear systems all levels are
equidistant and transitions outside the Hilbert space of the qubit are allowed. Therefore, linear systems
cannot be considered as candidates for a quantum bit. The essential parameter that describes how close is
the system to being linear is the difference

ΔE = ΔE12 −ΔE01, (1.3.4)

where ΔE01 = E1 −E0 is the energy splitting of the qubit’s levels, and ΔE12 = E2 −E1 is the gap between
the qubit’s level |1〉 and the lowest outer level |2〉. The energy gap ΔE determines to what extent transitions
between the levels |1〉 and |2〉 are suppressed and, therefore, the minimal time required to run a quantum
algorithm.
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Transmon Quantronium
EJ/EC = 100 EJ/EC = 1

Noise source 1/f amplitude τφ(μs) τφ(μs)

Charge 10−4 − 10−3e 24600 1.1
Flux 10−6 − 10−5Φ0 3600 1800

Crit. current 10−7 − 10−6I0 35 17

Table 1.1: Comparison of the theoretical contributions to the dephasing time τφ for the
transmon and the Cooper pair box with ΔE01/2π� = 7 GHz [34]. In reality, the dephasing
time will have an upper limit set by the quality factor of the transmission line that can
be as large as Q ∼ 106 [70, 71]. This means that in practice the decoherence time of the
transmon cannot exceed 2πQ/ωr ≈ 31 μs, where ωr/2π = 5 GHz is the typical resonator
frequency [32].

that combines the resonator and the Cooper pair box, so that the dependence of the energy

levels on the environment parameters is very weak but the gap (1.3.4) is still significant.

As a result, the decoherence time increases.

Imagine that a Cooper pair box has been placed into the cavity (1.3.3). This pair

interacts with the resonator [68, 69]:

Ĥ = �ωC

(
a†a+

1

2

)
+

�Ω

2
σz + �g(a†σ− + aσ+) + Ĥκ + Ĥγ , (1.3.5)

where Ĥγ describes the coupling of the Cooper pair to modes other than the cavity reso-

nance mode (this leads to decay of the state |1〉). Those modes are suppressed inside the

resonator, so that this interaction is much weaker than the interaction with the main mode

g. Furthermore, it is obvious that if the frequencies ωC and Ω = ΔE01/� are different, the

interaction of the Cooper pair box with the cavity is very weak.

These two observations lead to the conclusion that the probability for the excited state

|1〉 to decay via photon emission is significantly lower than it would be in the case when the

Cooper pair box is situated outside the cavity. As a result, the decoherence time increases

significantly [34] (see Table 1.1). If the energy gap ΔE01 is equal to 7 GHz and EJ/EC = 100

then the dephasing time τφ ≥ 25 ms and the decoherence time is only determined by pure

relaxation processes. The best experimental result was measured at a flux sweet spot where

T1 = 1.57± 0.04 μs, T2 = 2.94± 0.04 μs.

We can see that the transmon design has significantly increased the dephasing time τφ
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(great achievement!) but not the relaxation time τr. Unfortunately, successful implemen-

tation of a quantum computer requires both τφ and τr to be large. The design described in

the following section has been developed to solve the problem of small τr. If we combine

this design with the transmon idea, we will potentially get an ideal quantum bit.

1.4 Josephson junction arrays with non-Abelian symmetry

Another way to resolve the problem described in the second section and eliminate the natural

limitation on decoherence time is to build a Josephson junction device whose ground state

is degenerate. In this case, there is no relaxation of the quantum state |1〉 to |0〉 because

their energies are equal, so that the decoherence time τr should increase dramatically (it

still cannot be infinite).

More formally, the device we want to build should satisfy the following requirements:

its ground state should be twofold degenerate19 and separated from the other states by a

significant gap, ΔE ∼ 1 K. This gap sets the scale for the minimal duration of all operations

because all attempts to change the state of the system faster than for Δt = 1/ΔE would

excite higher levels. Further, the physical noises should have little effect on the ground state

splitting.

Very good theoretical progress has been achieved in this field. The natural avenue

of research was to study more complicated Josephson junction circuits that are better

decoupled from the environment than a simple (consisting of only three junctions) device

considered in the previous section. These complicated Josephson junction circuits have a

degenerate ground state [72, 73], so that we can use this degenerate low-energy state system

as a quantum bit.

The basic idea of some of the recent suggestions for solid-state qubits is to use a small

but highly symmetric Josephson junction array [74, 75]. The essential observation is that

19Or almost degenerate, that is, the energy gap between the two lower levels must be very small: ΔE01 ≤
100 mK.
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a structure with a nonabelian symmetry group naturally has degenerate states that cor-

respond to higher dimensional representations of the group. The simplest structure of

this type that contains six junctions has been considered in [74]. Even though it can be

implemented as a usual planar circuit, it can be viewed as a tetrahedron made of super-

conducting wires with one Josephson junction on each edge. The tetrahedron symmetry

group is the point group Td which has two one-dimensional, one two-dimensional and two

three-dimensional irreducible representations.

The parameters of the system can be tuned, so that the ground state corresponds to

the two-dimensional representation of the symmetry group and, therefore, is twofold de-

generate. This degenerate ground state can be used as the Hilbert space of a quantum bit.

The degeneracy of the logical states eliminates the problem of decoherence associated with

photon and phonon emission. All the other decay processes that involve interaction with

the modes characterized by the low density of states at low energies are equally suppressed.

The symmetry of the circuit also significantly suppresses the effects of the charge noise.

If the charge induced on one of the islands is different from the others, the tetrahedron

symmetry is destroyed. However, the remaining symmetry is described by the point group

C3v which has two one-dimensional and one two-dimensional irreducible representations.

It is easy to show that the ground state is twofold degenerate and forms the same Hilbert

space if the parameters of the system remain the same. This means that the degeneracy

is completely insensitive to a local charge noise: the corresponding coupling is absent in

all orders. A simultaneous effect of the charge noise on two different islands would lead

to decoherence but this effect is small for uncorrelated noises. It is usually believed that

the charge fluctuations on different islands are not correlated, so that decoherence induced

by the charge noise in this device should be weak. One can also use this fact to study

correlations between the charge noises on different islands.

Unfortunately, the situation is worse for the flux noise and the critical current noise. This

is because deviations of the current on one of the edges (or deviations of the magnetic fluxes

through one of the faces) destroy the tetrahedron symmetry but the resulting symmetry is
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described not by the point group C3v but by the much smaller group C2v (or S2) which has

only one-dimensional irreducible representations. As a result, the degenerate ground state

splits and the effects of the critical current noise are not suppressed to the same extent

as the effects of the charge noise. However, the decoherence time of the logical states of

the tetrahedral qubit is still expected to be much longer than that of a typical unprotected

structure because the magnitude of the current and flux noises is usually rather small.

Two questions arise immediately. First, can we improve the noise characteristics of the

proposed quantum bits? Second, is it possible to make and manipulate the tetrahedral

qubit from an experimental point of view?

To answer the first question we have to study other possible Josephson junction arrays

with nonabelian symmetry and calculate the noise magnitude in each of them. The smaller

the noise level, the longer the decoherence time.

The second chapter of this thesis is devoted to a modified version of the tetrahedral array

that contains 12 identical Josephson junctions (two junctions on each edge). It is shown in

Fig. 2.1 and differs from the system described in [74] in the number of Josephson junctions.

We show that the twelve-junction tetrahedron has very interesting physical properties:

1. The system’s ground state is a doublet.

2. The ground state of the system does not suffer from the classical degeneracy that is

inherent to the ground state of the six-junction tetrahedron. This leads to quantita-

tively smaller effects of the critical current noise. At the same time, the most attractive

feature of the six-junction tetrahedron (the absence of linear coupling to the flux and

charge noises) still exists. We calculate the coupling strength theoretically.

As a result, we can positively answer the first question and conclude that the twelve-

junction tetrahedron is a very perspective candidate for a quantum bit with potentially very

long decoherence time. If it is implemented experimentally, it would allow us to study the

noises that are not currently known.

The second question is more difficult because experimental techniques available to us

will improve in the future. Currently, experimenters cannot make systems containing more
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than a few identical Josephson junctions. Also, a variety of different technological problems

arise when we want to make very small junctions. Hopefully, these problems will be resolved

in the future. However, even now we can propose some experimental methods that can help

us to study the properties of the tetrahedral and other symmetric quantum bits.

The third chapter of this thesis proposes and discusses an experimental method that

allows to measure spectrums and decoherence times of symmetric circuits. We have chosen

a simple pyramidal array to demonstrate the main ideas of our method. Even though the

noise resistance and theoretical decoherence time of the pyramidal array are worse than

those of the more complex tetrahedral systems, it is much easier to realize the pyramid

experimentally. The proposed design can be used with any symmetric Josephson junction

circuit.
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Chapter 2

A small Josephson junction array with tetrahedral symmetry

This chapter is based on the paper [76] and organized as follows. In section 2.1 we review

the system in question. We calculate its spectrum and eigenstates. In section 2.2 we explore

the physical properties of the system. Especially we want to know how different physical

noises effect the spectrum and the eigenstates. We also find under which physical conditions

the system can be used as a quantum bit. In section 2.3 we address the questions of readout

and quantum manipulations.

2.1 The system

The system we are going to study is an array that consists of 12 identical Josephson junc-

tions. The symmetries of the system become transparent when it is viewed as a tetrahedron

made of superconducting wires with two Josephson junctions on each edge, as shown in

Fig. 2.1. This tetrahedron is placed in a magnetic field, so that the magnetic flux through

each lateral face equals Φ0/2 and the magnetic flux through the base face equals 3Φ0/2.

Note that any two fluxes that differ by a flux quantum are physically indistinguishable, so

that the four faces of the tetrahedron are equivalent.

Each junction is characterized by its Josephson energy EJ = (�/2e)Ic and by its charging

energy EC = (e2/2C), while the whole system is characterized by the capacitance matrix of

the superconducting wires. In principle, the capacitance matrix also contains some contri-

butions of self-capacitances of individual islands, but for a typical physical implementation

(see below) these contributions are much smaller than those of the junctions, so that we
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Φ = Φ /2
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0

Figure 2.1: The tetrahedral Josephson junction array. Each edge consists of a superconduct-
ing wire with two Josephson junctions. The tetrahedron is placed in a uniform magnetic
field, so that the fluxes through the lateral faces are Φ0/2 each, while the flux through the
base face is 3Φ0/2.

will neglect them. The whole system is described by the Lagrangian

L =

12∑
i=1

1

16Ec
φ̇2
i + EJ cos(φi − ai), (2.1.1)

where φi are the phase differences across the Josephson junctions, and ai are chosen to

produce the correct magnetic fluxes.

In the following analysis it will be more convenient to consider an orthogonal projection

of the tetrahedron onto its base (see Fig. 2.2). The planar array that is the result of such a

projection is physically equivalent to the three-dimensional tetrahedron but is much simpler

from an experimental point of view. To preserve the frustration induced by the magnetic

fluxes, we need to place the system in a uniform field, so that the flux through each small

triangle is Φ0/2.

The symmetry group of the system is the point group Td which is isomorphic to the

permutation group S4. It has two-dimensional representations and, therefore, some of the

levels of the tetrahedron can be twofold degenerate. If we want the tetrahedron to perform

as a protected quantum bit, we should tune the physical parameters of the system, so that

the ground state corresponds to one of these degenerate levels. To find the level structure
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Figure 2.2: The planar array that is obtained by orthogonal projection of the tetrahedron
onto its base. An orthogonal magnetic field is applied to the system, so that the flux through
each of the small triangles is a half-flux quantum Φ0/2.

and determine the parameter range that leads to degeneracy of the ground state, we will

consider the quasiclassical limit EJ � EC , in which all superconducting phases are well-

defined quantum variables1.

The potential energy (2.1.1) is invariant under any gauge transformations, since it de-

pends only on differences of superconducting phases. Let ψi, i = 0, 1, 2, 3 be the supercon-

ducting phases of the vertices of the tetrahedron (as shown in Fig. 2.2). If we choose the

gauge, so that ψ0 ≡ 0, then it is easy to show that the potential energy of the system has

1The numerical diagonalization that we carried out for the tetrahedron shows that the energy structure
stays the same even for very small EJ/EC .
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the following six classical minima:

V1 :
(
ψ1 = 0, ψ2 = −π

2
, ψ3 =

π

2

)
,

V2 :
(
ψ1 = −π

2
, ψ2 =

π

2
, ψ3 = 0

)
,

V3 :
(
ψ1 = −π

2
, ψ2 = 0, ψ3 = −π

2

)
,

W1 :
(
ψ1 = 0, ψ2 =

π

2
, ψ3 = −π

2

)
,

W2 :
(
ψ1 =

π

2
, ψ2 = −π

2
, ψ3 = 0

)
,

W3 :
(
ψ1 = −π

2
, ψ2 = 0, ψ3 =

π

2

)
.

(2.1.2)

These minima can be mapped to each other by symmetry transformations.

Even though each minimum represents a whole family of quantum states, we can forget

about this in the quasiclassical limit EJ � EC and consider only the lowest level of each

family. As a result, we get a sixfold degenerate quasiclassical ground state (all six minima

have the same energy). Quantum fluctuations lead to transitions between the minima

and, thus, destroy the degeneracy. Taking into account the symmetry, we can write the

Hamiltonian:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a a b c c

a 0 a c b c

a a 0 c c b

b c c 0 a a

c b c a 0 a

c c b a a 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here a, b, c are the tunneling amplitudes. The absolute values of a and c are equal because

both these amplitudes correspond to rotations around different altitudes of the tetrahedron.

However, their signs can be opposite. The amplitude b corresponds to inversion of all

currents.
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The eigenvalues and the corresponding eigenvectors of the Hamiltonian are given by

E1 = −a+ b− c,

ψ1 =
1

2
√
3
(2V1 − V2 − V3 + 2W1 −W2 −W3),

ψ2 =
1

2
(V2 − V3 +W2 −W3);

E2 = −a− b+ c,

χ1 =
1

2
√
3
(2V1 − V2 − V3 − 2W1 +W2 +W3),

χ2 =
1

2
(V2 − V3 −W2 +W3);

E3 = 2a+ b+ 2c,

η =
1√
6
(V1 + V2 + V3 +W1 +W2 +W3);

E4 = 2a− b− 2c,

φ =
1√
6
(V1 + V2 + V3 −W1 −W2 −W3).

One can see that if c = a then the ground state is a singlet, the first excited state is a

triplet, and the second excited state is a doublet. But if c = −a and a > 0 then the ground

state is a doublet, which is what we want (see Fig.2.3). Therefore, the physical parameters

of the system should be chosen, so that c = −a and a > 0. Of course, such a choice of the

parameters should not destroy the tetrahedral symmetry.

Since superconducting phases and charges are conjugate variables, the amplitude t of

the process in which the ith phase changes by Δφi is given by t = −|t| exp(iqiΔφi). Here,

qi is the charge of the ith island (in terms of 2e). Therefore, the sign of each amplitude is
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Figure 2.3: The energy spectrum of an isolated tetrahedron.

determined by the exponent exp(i
∑

qiΔφi), where Δφi are transformation-specific:

a = −|a| exp(i∑ qiΔφi),

b = −|b| exp(i∑ qiΔφ′
i),

c = −|c| exp(i∑ qiΔφ′′
i ).

The overall sign (−) is explained by the following condition: if the charges of all islands

are zero, the quantum state η which is described by the symmetric wave function should

have the lowest energy. This means that in this case all the amplitudes a, b, c should be

negative.

For a to be positive, the charges of the four tetrahedron vertices should be equal to

1/2. The charges of the other four islands should be equal to zero. If this is the case, the

amplitude b is positive, while c is negative. The ground state is a doublet E0 = −2a− b:

χ1 =
1

2
√
3
(2V1 − V2 − V3 − 2W1 +W2 +W3),

χ2 =
1

2
(V2 − V3 −W2 +W3).

(2.1.3)

The first excited level is a triplet and the second excited level is a singlet. The tetrahedral

symmetry survives in this case because the total charge is an integer.

To find the absolute values |a|, |b|, we need to find the saddle trajectories that correspond

to these processes2 and then use the results to calculate the action of these processes. We

2This means that we should numerically look for the solution φi(t) of the Euler-Lagrange equations:

d

dt

(
∂L
∂φ̇i

)
− ∂L

∂φi
= 0
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get:

|a| ≈ 2E
3/4
J E

1/4
C exp(−1.58

√
EJ/EC),

|b| ≈ 8E
3/4
J E

1/4
C exp(−3.08

√
EJ/EC),

(2.1.4)

that is, |a| � |b| in the quasiclassical limit.

2.2 Effects of perturbations

The discussion above assumed that the tetrahedron is completely symmetric. One can see

that physical imperfections violate the symmetry of the tetrahedron. Generally, a physical

perturbation that reduces the symmetry of the tetrahedron to an abelian group splits the

doublet. However, a perturbation applied only to a vertex of the tetrahedron reduces the

symmetry to the point group C3v which is nonabelian. Even more, it is easy to show that the

doublet forms an irreducible representation of the group C3v. As a result, the perturbation

does not split the degeneracy. In particular, electrostatic potential applied to a vertex of the

tetrahedron does not affect the degeneracy. This means that the degeneracy is completely

insensitive to the local charge noise.

Let’s consider effects of the magnetic flux noise. Because the total magnetic flux through

the 3D tetrahedron is zero, an increase in flux through a face of the tetrahedron should be

accompanied by an increase in flux through another face. Such a perturbation reduces the

symmetry to the group S2, which is abelian. The remaining symmetry itself would not

be sufficient to preserve the degeneracy. However, in the case of an integer total charge,

with all the magnetic flux constraints on φi and the boundary conditions

φi(0) = φinitial state
i , φi(1) = φfinal state

i

and calculate the action along the resulting trajectory (or all trajectories if there are many of them):

S =

∫ 1

0

Ldt.

Of course, we should solve dimensionless equations. To get them, we have to replace time t by t
√
EJEC .

In the quasiclassical limit, the transition amplitude is determined by the trajectory that has the minimal
action Smin:

amplitude ∼ NE
3/4
J E

1/4
C exp (−Smin) ,

where N is the number of trajectories along which the action is minimal.
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the Hamiltonian has an additional symmetry: the time-reversal symmetry. It ensures that

complex one-dimensional representations of S2 have the same energies. Careful inspection

of the doublet (2.1.3) shows that its two states correspond to the symmetric and antisym-

metric combinations of the one-dimensional irreducible representations and, therefore, their

degeneracy is not affected by the increase in flux through one face. Physically, this means

that the matrix elements of the current operator between the states of the doublet are zero

and, therefore, the flux noise does not split the ground state in the linear order. Generally,

we expect that for small deviations δΦ (δΦ � Φ0), the splitting is given by

ε ∼
(
δΦ

Φ0

)2

EJ ,

because in the quasiclassical approximation the tunneling amplitudes a and b do not depend

on δΦ, but the energies of the six minima of the potential energy change differently. The

coefficient in the last formula has to be determined numerically. For example, in the case

of an additional flux δΦ through one face and −δΦ through another, we get

ε ≈ 40

(
δΦ

Φ0

)2

EJ .

Let’s now consider the situation when all the charges and magnetic fluxes are equal to

their ideal values but the junction energies are slightly different. In the general case, the

splitting ε depends linearly on variations of Josephson energies δEJ and can be calculated

numerically. For example, in the case when the Josephson energies of the junctions 1 and

2 in Fig. 2.2 are different from EJ , the splitting ε is given by ε ≈ 0.4 δEJ .

Finally, we need to take into account thermal effects. One can neglect effects of quasi-

particles at low temperatures T � Δs, where Δs is the superconducting gap. To be more

precise, the number of quasiparticles in each wire should be much smaller than one:

WνT exp(−Δs/T ) � 1.

Here W is the volume of the wire, ν ∼ ne/εF is the density of states, and ne is the electron

density3. Note, however, that if this condition is not satisfied, thermally excited quasipar-

ticles would lead to random fluctuations of the charge of each wire, which would affect the

3 For a typical aluminum wire whose volume is 0.01 μm3, this condition is satisfied for T � 0.1 K.



38

signs of the transition amplitudes a and b and destroy the quantum coherence of the states

(2.1.3). Therefore, it is very important to run the quantum bit at low temperatures. For the

same reason, measurement processes should not generate quasiparticles. In particular, they

should not make the quantum bit switch to the normal state. Even if some junctions used

for control and readout do switch to the normal state at some point, these junctions should

be isolated from the qubit so that quasiparticles cannot jump to the device. In the following

we will assume that this condition is satisfied, and that there are no BCS quasiparticles in

the whole system.

In this case the only dangerous modes that can excite the quantum Josephson system are

phonons and photons. In a typical setup both phonons and photons are gapless (although

one can eliminate photons placing the whole system in a resonator), but the interaction with

photons is extremely weak because a typical energy of an excitation is less than 1 K, which

corresponds to the photon wavelength of the order of λ ∼ 1 cm or more. The dipole matrix

element for the emission or absorption of the photon contains the factor (L/λ)4, where L is

the typical linear size of the system, so that it is extremely small. The situation is different

in the case of phonons [51], because the wavelength λs corresponding to excitations is about

the size of the system, so that these processes are not rare. Note, however, that transitions

between the two states lead to very small energy transfers4, so that they are suppressed by

a factor (L/λs)
4 similar to the one we meet in the case of photon excitations. Therefore,

we can conclude that the main temperature effect is photon-mediated excitations of the

higher energy levels. The probability of these transitions is determined by the Boltzmann

exponent

P =
1

Z
exp(−ΔE/T ),

where Z is the partition function and ΔE is the difference of the initial and the final

energies. Taking the energy level structure into account, we find that transitions from the

doublet into the triplet play the most important role. In this case, ΔE = 2(a + b) ≈ 2a

(since |b| � |a|) and the temperature T should be much less than |a| (T � |a|).

4The energy splitting is not zero because of small perturbations. However, the gap is very small.
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Figure 2.4: Schematic of the experiment. The central island of the tetrahedron is fabricated
in the form of three islands. Each pair of these islands is connected by a very large Joseph-
son junction. If external currents across these large Josephson junctions are zeros, then this
device is equivalent to the original tetrahedron. The value of the total outside current cor-
responding to the moment when the large junctions fall into the oscillating regime depends
on the state of the tetrahedron.

2.3 Readout and quantum manipulations

Suppose that after some manipulations the system is in a quantum state α|0〉+β|1〉, where
the logical states |0〉 and |1〉 are, correspondingly, χ1 and χ2 from (2.1.3). The coefficients

α and β are unknown and we want to derive them from the results of some experiment. We

will use the main ideas of the quantronium design [67, 64, 77]. A schematic of measurement

is shown in Fig. 2.4. One of the islands of the tetrahedron is fabricated in the form of three

islands. Each pair of these three islands is connected by a very large Josephson junction.

If external currents across these large Josephson junctions are zeros, then the device in

Fig. 2.4 is equivalent to the one shown in Fig. 2.2.

We start the measurement process from an initial state in which the external currents are

zeros. Then we apply nonzero current to one of the outside wires (for example, the top wire

in Fig. 2.4). At point A in Fig. 2.4 the current splits. Most of it flows through the two large

junctions but a small part of it flows through the tetrahedron. This small current depends

on the state of the tetrahedron. The value of the total outside current corresponding
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to the moment when the large junctions fall into the oscillating regime depends on this

small current flowing through the tetrahedron and, therefore, depends on the state of the

tetrahedron. We can distinguish three possible measurement outcomes: (1) the total current

is equal to I1 for the states V1, W1, (2) the total current is equal to I2 for the states V2, V3,

and (3) the total current is equal to I3 for the states W2, W3. If we measure the current in

the outside chain many times and find the probabilities p1, p2, p3 of these three outcomes,

we can determine the absolute values of the coefficients α and β using the following formulas:

p1 =
2

3
α, β2 = 1− α2.

We emphasize that the described effect does not contradict the statement in the last

section (which says that effects of the charge noise are absent and effects of the flux noise

appear only in the second order) because here we have a nonlinear effect: when the current

through the large junctions is close to the critical one, it induces additional phases π/2

across the corresponding tetrahedron edges. This deforms the quasiclassical states of the

tetrahedron and induces significant average currents across each edge of the tetrahedron.

Here, we need to address an important question that arises in any experiment with

quantum bits: we should have a procedure that allows us to prepare an initial state α|0〉+
β|1〉 with given α and β. The solution would be obvious if we had ΔE01 �= 0. For example,

in [67, 64] microwave pulses with frequency ω = ΔE01/� have been applied to the control

gate to prepare any desired initial state. However, in our case ΔE01 = 0, so that this method

does not work. There is at least one way to resolve the problem. We can intentionally choose

the gate potentials, so that ΔE01 is very small but nonzero. In this case, the properties of

the system are very close to the ideal ones (even though we lose degeneracy) but microwave

pulses can be used to prepare the initial state5.

The described experiment has two potential pitfalls. First, the additional phases induced

by the external current across the large Josephson junctions disturb the quantum state

of the tetrahedron and might smear the differences between the currents (I1, I2, I3) in

5There is a tradeoff here. If the energy gap ΔE01 is too large, the noise characteristic of the tetrahedron
worsens significantly. If ΔE01 is too small, the duration of the control pulse is too long and dephasing
processes will not allow to prepare the initial state. Therefore, one should find an optimal value ΔE01.
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Figure 2.5: If one junction on each edge is replaced by a pseudoinductor, then the charge
fluctuations affect only the islands connected to at least two regular junctions. As a result,
one needs only three control gates. At the same time, all properties of this modified physical
system are very similar to those of the original tetrahedron.

different states. We have solved the classical equations for the minima in the presence

of these phases and verified that the quantum states evolve smoothly if external currents

characterized by similar values (Ĩ1, Ĩ2, Ĩ3) are applied to the system. We did not find any

evidence for abrupt transitions from one state to another. Second, the current operator Î

generally has nondiagonal matrix elements, so that the measurement process itself would

excite higher states and would show not the slightly modified values of the currents (Ĩ1, Ĩ2,

Ĩ3) corresponding to the six low states, but the values of the current corresponding to these

higher states. To estimate this effect, we have calculated numerically matrix elements of Î

between all low-energy states. We have found that all nondiagonal elements are small in

the quasiclassical limit, so that the described measurement should be able to distinguish |0〉
and |1〉 with probability close to 1.

We see that the tetrahedron is an excellent candidate for a quantum bit from a theoretical

point of view. However, it has one very serious drawback: there are 9 superconducting

islands whose initial charges are random. As a result, one should have 9 gates to control

these charges. Otherwise, the ground state of the system is also random, as we explained

in the introduction. In practice, it is very difficult or may be even impossible to control

all 9 charges. However, one can modify the design proposed in Fig. 2.1 and consider the

system shown in Fig. 2.5, where we replaced one junction on each edge by a pseudoinductor,
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that is, a short chain of three larger Josephson junctions whose Josephson energy is 3EJ .

It is easy to show that in this system flux tunneling happens mostly through the weak

junctions (not pseudoinductors). Therefore, the charge fluctuations affect only the islands

formed by these weak junctions. As a result, one needs only 3 control gates. At the same

time, all properties of this modified physical system are very similar to those of the original

tetrahedron discussed in this chapter.

Another possible modification of the design avoids complicated elements such as pseu-

doinductors but uses a different symmetry group. An example is shown in Fig. 3.2 and will

be discussed in the next chapter.
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Chapter 3

The simplest experiment with nonabelian quantum bits

We have shown in chapter 2 that we can build a physical system with very interesting

properties using small Josephson junction arrays. These properties allow us to consider

the system as a wonderful candidate for a quantum bit. The most important of them is

nonabelity of a symmetry group. Due to this nonabelity, the ground state of the quantum

bit can be degenerate (this is the case when the physical parameters of the system which

we are able to control have some special values). The degeneracy is important because it

eliminates the problem of decoherence associated with the photon and phonon emission.

All the other decay processes that involve interaction with the modes characterized by the

low density of states at low energies are equally suppressed.

It is important to test the theoretical results obtained experimentally in [74, 76]. This

presents two challenges: fabrication of the symmetric systems and tuning their parameters

(the differences of the potentials of the islands and the fluxes) to get a degenerate ground

state. The latter task is not trivial because of a large number of parameters that one needs

to tune (three differences of potentials and three fluxes). This chapter has two goals: it

proposes a feasible experimental realization of a symmetric circuit required for significant

suppression of all noises and formulates an experimental algorithm that allows one to study

the spectrum of the system at the protected point and measure the decoherence time.

The system studied is simpler than the tetrahedron qubits but the algorithm can be easily

applied to them as well.
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3.1 The Josephson circuit and its mathematical model

A significant progress of technologies allows one to produce small Josephson junction arrays

with desired properties. However, it is still a difficult engineering task to make an array

with geometry of a tetrahedron which was the system studied in [74]. The problem is the

following. It is very important for successful implementation of this quantum bit that its

six junctions are characterized by identical values of the parameters EJ and Ec and that

the geometrical areas of all the superconducting loops are exactly equal to each other. Of

these three parameters it is the Josephson coupling EJ that presents the biggest challenge

because it depends exponentially on the thickness of a dielectric layer. In contrast, accuracy

of producing junction circuits with given geometrical sizes is determined by geometrical

reproducibility of a mask which is very good. The charge energy Ec depends on the thickness

of a dielectric layer, but to a much lesser extent than EJ does.

The task of producing identical Josephson junctions becomes much simpler if one can rely

on the natural symmetries of the technologies used to produce the junctions. For example,

the shadow mask litography is symmetric under rotations by 90 degrees. As a result, it

might be easier to fabricate a system whose symmetry is given by the point group C4 than

the one associated with the tetrahedron group (see Fig.3.1). In this case, the distribution

of the parameters of all Josephson junctions is only determined by the distribution of their

geometrical areas and possible locations of defects in the oxide layer.

These considerations imply that the systems characterized by the point group C4 might

be similar in their behavior to the tetrahedral qubits but much simpler to fabricate (see

Fig. 3.2). In this paper we are going to focus on a circuit that is made of superconducting

wires and has a symmetry of a pyramid. There is one Josephson junction on each edge.

The pyramid has almost ideal energy structure. Namely, one can tune the values of its

physical parameters so that the ground state of the system becomes almost degenerate,

that is, the gap between the ground state (which is still a singlet) and the first excited state

(which is a singlet too) turns out to be rather small (in comparison with the gap between

the first excited and the second excited levels). This dramatically suppresses the phonon
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=   Josephson junction

Figure 3.1: The system whose symmetry is given by the point group C4. One can see that
all the Josephson junctions can be made in one process.

and photon emission (1.2.11) whose rate is proportional to the high power of the frequency

and significantly decreases the coupling to the local noises.

Each junction is characterized by its Josephson energy, EJ = (�/2e)Ic, and by its charg-

ing energy, EC = (e2/2C), while the system as a whole is characterized by the capacitance

matrix of the superconducting wires. Exactly as it was in the case of the tetrahedron,

the capacitance matrix contains the contributions from the self-capacitance of individual

islands, but in a typical physical implementation these capacitances are much smaller than

those of the junctions. The pyramid is placed in a uniform magnetic field, so that the

magnetic flux through each small triangle equals Φ0/2. One of the islands (shown as “0”) is

grounded, so that its superconducting phase is always zero. The whole system is described

by the Lagrangian

L =
8∑

i=1

1

16EC
φ̇2
i + EJ cos(φi − ai),

where φi are the phase differences across the Josephson junctions and ai are chosen to

produce the correct magnetic fluxes.

The spectrum of the system for different values of the Josephson energies of individual

junctions can be obtained numerically and is shown in Fig. 3.3. It depends on the potentials

of the four islands ’1’, ’2’, ’3’, ’4’ and the parameters EJ and EC . We assume that the
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0

Figure 3.2: A small Josephson junction array with geometry of a pyramid. Each edge
consists of a superconducting wire with one Josephson junction. The array is placed in
a uniform magnetic field so that the fluxes through each of the smaller triangles is half-
flux quanta, Φ0/2. The Josephson energy is EJ = E0

J = 2 K and the charge energy is
Ec = E0

c = 1 K.

potentials of all the four islands are equal1. In this case, the symmetry group is the pyramid

symmetry group D4.

The ground state of the quantum bit can be described as the state in which the total

charge of the system induced by the gates is equal to zero. The four excited states are

obtained by adding an additional Cooper pair: each of them can be represented as a quan-

tum superposition of the four basis quantum states (those in which one of the four islands

contains an additional Cooper pair).

We are mostly interested in the gap between the ground state and the first excited

level. It turns out that the four potentials can be chosen so that the gap is very small

(even though it is still nonzero). This happens when the charge induced on each island of

the pyramid is approximately equal to 0.11e if EJ/EC = 1 and slightly greater for larger

EJ/EC . The gap between two logical levels in these cases is not exactly zero. However,

it is very small compared to the distance between the first and the second excited levels.

It is very important that at these points the energy gap as a function of the charge has a

minimum, so that the linear coupling between the qubit and the charge noise is absent. The

1Of course, this is not true in the general case. We have to use a special experimental algorithm to make
them equal.
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Figure 3.3: The spectrum of the system obtained numerically. The horizontal axis shows
the charge of one island (in terms of 2e), while the vertical axis shows the energy gap (in
terms of EC) between an excited level and the ground state. We assume that the potentials
and charges of all the four islands are the same. The spectrum has been calculated for four
different values of the ratio of the parameters EJ and EC : (a) EJ/EC = 1; (b) EJ/EC = 2;
(c) EJ/EC = 3; (d) EJ/EC = 4.
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doublet

almost doublet

singlet

Figure 3.4: The spectrum of the pyramid at the point where the gap between the ground
state and the first excited level is minimal.

curvature of this mimimum decreases rapidly as EJ/EC decreases, so that larger values of

this ratio are preferable for the charge noise suppression.

The qualitative understanding of the pyramid is greatly simplified in the charge basis.

Furthermore, in the limit of very large charge energies, EC � EJ , the qualitative description

becomes absolutely correct. However, the circuit also becomes very sensitive to the charge

noise in this limit. Therefore, in the following we will mostly discuss the intermediate

regime, EJ � Ec and give all numerical estimates for EJ = 2K and EC = 1K.

If the potentials of all the islands are equal, the lowest four excited eigenstates of the

pyramid can be described in terms of the irreducible representations of the group D4. If, in

addition, the potentials are chosen so that the gap between the ground state and the first

excited level is minimal, the second and the third excited levels merge. In this case, the

eigenstates are given by (see Fig. 3.4):

|ψ1〉 = 1

2
(|1〉+ |2〉+ |3〉+ |4〉〉) ,

|ψ2〉 = 1√
2
(|1〉 − |3〉) ,

|ψ3〉 = 1√
2
(|2〉 − |4〉) ,

|ψ4〉 = 1

2
(|1〉+ |2〉 − |3〉 − |4〉〉) ,

(3.1.1)

where |ψ1〉 is the first excited state, |ψ2〉 and |ψ3〉 form a doublet, and |ψ4〉 is a singlet.

Here the quantum states |1〉, |2〉, |3〉, |4〉 have the following physical meaning: the state |j〉
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Figure 3.5: Schematic of the measurement. Each Josephson junction belongs to one of the
following classes (within each class all junctions are identical): 1) Josephson junctions that
constitute the pyramid shown in Fig. 3.2; 2) large Josephson junctions that are situated
on the outside edges. Their Josephson energy is EJ = 10E0

J and their charge energy is
Ec = 0.1E0

c ; c) one very small junction. Its Josephson energy is EJ = 0.1E0
J and its charge

energy is Ec = 10E0
c . The additional phases of π are created by the current I = Ic

√
3/2

through very big junctions (instead of magnetic fluxes).

(j = 1, 2, 3, 4) describes the situation when the jth island contains one additional Cooper

pair while the others do not.

The schematics of the proposed experiment is shown in Fig. 3.5. It is convenient (as

shown in this Figure) to replace the central island ’0’ by four identical islands ’A’, ’B’, ’C’,

and ’D’ which are connected by superconducting wires forming an outer closed loop. We do

not use magnetic fluxes in our system since it is more difficult to control them independently.

To preserve the frustration, we have to insert additional Josephson junctions into the outer

loop with currents flowing through them. Doing this, we risk to change the Hamiltonian of

the system and destroy the spectrum structure. Therefore, the extra junctions must have

large Josephson energy, so that the phase fluctuations in them are negligible. In this case,
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their influence is very small. We choose the Josephson energy of the big junctions to be

Ebig
J = 10E0

J = 20 K, and their charge energy to be Ebig
C = 0.1E0

C = 0.1 K.

The currents flowing through the outer junctions should be chosen so that they create

the phase difference of π between each pair of the four new islands ’A’, ’B’, ’C’, and ’D’.

Unfortunately, the corresponding state of a single Josephson junction would be unstable.

To overcome this problem each outside edge should contain three identical junctions instead

of one (see Fig. 3.5). In this case, the Josephson energy of each junction is equal to Ebig
J =

20/3 K ≈ 6.7 K, the charge energy is equal to Ebig
C = 0.3 K, while the phase difference

across each junction is equal to π/3.

We assume that all four leads connecting islands A, B, C and D are electrostatically

connected to the ground, so that their electrical potentials are zero. Finally, as shown in

Fig. 3.5, the island ’1’ is connected to the dc current generator. To exclude any influence of

the generator on the spectrum and other physical properties, we need to decouple it from the

circuit by a very small Josephson junction whose Josephson energy is EJ = 0.1E0
J = 0.2K

and the charge energy is EC = 10E0
C = 10K.

3.2 Proposed measurements

3.2.1 Extracting the spectrum and decoherence rates

The goal of this section is to show that the current-voltage characteristic of the small

junction (see Fig. 3.5) gives information on both the spectrum and decoherence rates of the

circuit. We begin with the qualitative discussion of the current flow through the system.

We apply voltage V to the small junction without changing the potentials of the four islands

connected to the ground. The typical current-voltage curve is shown in Fig. 3.6. We see

four peaks which correspond to the four excited levels of the pyramid. The positions of

the peaks and the distances between each pair of neighbor peaks depend only on the island

potentials. Each peak is characterized by its own height Imax and width δV .

To understand the origin of the peaks, consider the process depicted schematically in

Fig. 3.7 where we have shown the energy structure of the two sides of the small Josephson
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Figure 3.6: The typical current-voltage curve. There are four peaks which correspond to
transitions from the four excited levels to the ground state. Each peak is characterized by
its own height Imax and width δV .
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� w2eV=

Figure 3.7: The tunneling process. If the chemical potential of the environment matches
one of the excited energy level, a Cooper pair can jump from the outside to the quantum bit.
As a result, the level gets some finite width Γ2 = �/τφ determined by the decoherence time
τφ. After the jump, the corresponding excited state decays, with a photon being emitted.
This process also contributes to the level width: Γ1 = �/τr determined by the decoherence
time τr. The total width Γ is obtained as a complex combination of the two values Γ1 and
Γ2.

junction. Voltage V applied to the small junction implies that a Cooper pair has energy

2eV when it tunnels across the junction. If this energy difference matches one of the four

excited energy levels, a process in which a Cooper pair jumps into the system from the

outside is accompanied by the pyramid excitation.

The lifetime of such an excited quantum state is expected to be short for high energy

states. There are two independent processes that destroy it. First, the additional Cooper

pair can tunnel back to the left side of the small junction. As a result, the system returns

back to the ground state. No current through the system (or, what is the same, the current
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in the outside chain) occurs in this case. Second, the pair can tunnel into the ground, that is

the quantum state can decay in the usual sense. The current through the system appears,

while the excessive energy is carried away by a photon/phonon with the corresponding

frequency. As a result, we see the peaks in Fig. 3.6.

These two decay processes compete with each other. If the second process (the additional

Cooper pair tunnels to the ground) is very quick (as it is expected for high energy states),

the pair does not have time to jump back: as soon as the pair gets on the right, the excited

state decays. In this case, the magnitude of the current is only determined by the probability

of the initial tunneling of the pair from the left side to the pyramid:

I ∼ eEsmall
J

�
exp

[
−(V − V0)

2

2 ¯δV 2

]
, (3.2.2)

where we denote the Josephson energy of the small junction by Esmall
J , while ¯δV 2 is deter-

mined by the Johnson–Nyquist formula:

¯δV 2 = 4kBT (ReZ)Δf, (3.2.3)

where kB is Boltzmann’s constant, Δf is the bandwidth and Z is the impedance of the

whole system.

Below we will use the following notations: Z1 is the impendance of the 8 main Josephson

junctions (the junctions shown in Fig. 3.2), Zs is the impedance of the small junction that

connects the pyramid and its environment, and Zout is the impedance of the environment.

To compute the impedance we use the equivalent scheme of the pyramid shown in Fig. 3.8

and get

Z = Zout + Zs +
7

15
Z1. (3.2.4)

The widths of the levels (3.2.2) imposed by the environment become small at low tem-

peratures. They can be further decreased by a proper impedance choice which we discuss

below. In this limit, the widths of the levels are dominated by the intrinsic processes

responsible for the decoherence in the circuit:

δV → �/τφ
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In the opposite case, when tunneling of an additional pair to the ground is slow, the pair

jumps back and forth through the small junction which strongly suppresses the tunneling

current. The magnitude of the current is only determined by the probability of decay:

Ir ∼ Γr =
�

τr
.

The width of the peak in this case is given by the sum of decay and dephasing processes:

δV → �/τφ + �/τr.

Thus, measuring the current-voltage characteristics of a small junction allows one in prin-

ciple to determine the spectrum and the decay rate and decoherence time of the excited

states.

It should be clear from the above discussion that the possibility of a meaningful mea-

surement depends on the impedance of the environment as seen by a small junction. Let’s

discuss how we can estimate this impedance. The pyramid and its environment are con-

nected through the small Josephson junction, so that the whole experimental system can

be described by the following quantum impedance:

Zwhole(ω) =
∑
n

iω

ω − ωn
0 + iΓn

|〈0|V j q̂j |ψn〉|2, (3.2.5)

where q̂j , j = 1, 2, 3, 4, is the operator of the induced charge of the island j (q̂j is not

necessarily an integer), V j , j = 1, 2, 3, 4, is the potential of the jth island induced by the

voltage V , and |ψn〉 is an eigenstate of the system (n runs over all eigenstates below the

superconducting gap).

If the quantum state of the system is

|ψn〉 = an1 |1〉+ an2 |2〉+ an3 |3〉+ an4 |4〉,

then the decay rate Γn in (3.2.5) is given by

Γn = |an1 |2ReZ(1) +
(|an2 |2 + |an4 |2

)
ReZ(2) + |an3 |2ReZ(3),

where Z(1), Z(2), Z(3) are the effective impedances between the ground and the islands ’1’,

’2’, ’3’ (due to the pyramid symmetry Z(4) = Z(2)), correspondingly, and can be described
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Figure 3.8: (a) The equivalent electric scheme of the pyramid and its environment. The
islands 1, 2, 3, 4 are shown by the corresponding points of the circuit; (b) the equivalent
electric circuit of the system describes the impedance Z(1) between the ground and the
island ’1’ and helps to understand decay of a quantum state in which the island ’1’ contains
one additional Cooper pair; (c) the equivalent electric circuit of the system describes the
impedance Z(2) between the ground and the island ’2’ and helps to understand decay of a
quantum state in which the island ’2’ contains one additional Cooper pair; (d) the equivalent
electric circuit of the system describes the impedance Z(3) between the ground and the island
’3’ and helps to understand decay of a quantum state in which the island ’3’ contains one
additional Cooper pair. We used the following notations: Z1 is the impendance of the 8
main Josephson junctions (the junctions shown in Fig. 3.2), Zs is the impedance of the
small junction that connects the pyramid and its environment, and Zout is the impedance
of the environment.
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by the equivalent schemes shown in Fig. 3.8. “Effective” means that these impedances

determine the currents that would flow through the system in the classic regime, when

some non-zero voltage is applied to the corresponding islands. One can check that the

impedances Z(1), Z(2), Z(3) are determined by the following formulas:

Z(1) =
7Z1(Zs + Zout)

7Z1 + 15(Zs + Zout)
,

Z(2) =
Z1(8Z1 + 21Zs + 21Zout)

21Z1 + 45Zs + 45Zout
,

Z(3) =
Z1(3Z1 + 7Zs + 7Zout)

7Z1 + 15(Zs + Zout)
.

(3.2.6)

At the point where the gap between the ground state and the first excited level is minimal,

we obtain for the quantum states (3.1.1):

Γ1 = Γ4 =
1

4

[
ReZ(1) + 2ReZ(2) +ReZ(3)

]
,

Γ2 =
1

2

[
ReZ(1) +ReZ(3)

]
,

Γ3 = ReZ(2).

(3.2.7)

Taking into account these formulas and technological constraints, we can choose the

outside impedance Zout, so that its influence is minimal.

3.2.2 The optimal point of the circuit

One important problem that has to be solved in order for the experiment to be success-

ful is the problem of tuning the parameters of the quantum bit and finding its optimal

point. In the case of the pyramid, there are eight such parameters: four charges of the

superconducting islands and four currents through the outside edges.

Phases across the outside edges

If there are no magnetic fluxes, the phases across the four outside edges should be equal

to π. One does not need to satisfy this condition precisely because small deviations of the
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phases lead to the shifts of the energy levels that are quadratic in the phase deviations.

In contrast, the deviations from ideality in producing Josephson junctions lead to much

stronger distortion of the spectrum (linear in imperfections).

For the phases across the outside edges to be equal to π, some currents should flow

through them. The magnitude of the currents is given by

I = Icf(π/3),

where Ic is the critical current of one large junction, and the function f(φ) describes the

tunneling properties of the junction. If the junctions are characterized by a small trans-

parency, the function f(φ) can be approximated very well by f(θ) = sin θ. The experimental

measurement of the critical current in each three-junction chain allows one to determine the

Ic and thus to apply the current that produces phase difference π/3 across each junction.

Parasitic charges of the islands

This problem is much more difficult than the problem discussed in 3.2.2 because we have no

apriori knowledge about the random charges induced on each island. Fortunately, one still

can tune the parameters of the system and find its optimal point. We will use the following

algorithm.

We denote the real potentials of the four islands by V1, V2, V3, V4 (Fig. 3.5). In general,

they do not exactly coincide with the potentials of the four gates (we denote the gate

potentials by U1, U2, U3, U4). We can only claim that the island potentials Vi are given by

some linear combinations of the gate potentials Uj :

Vi = V 0
i +

4∑
j=1

CijUj , i = 1, 2, 3, 4, (3.2.8)

where the coefficients Cij are some functions of all capacities in the system, and V 0
i are

the terms describing the potentials induced by the initial parasitic charges. Only the real

potentials of the islands, Vi, are physically meaningful. However, we can control only the

potentials of the gates Uj . Therefore, we need to know the matrix Cij . In 3.2.2, we describe
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an algorithm that allows us to determine it, so that in the rest of this subsection we will

assume that the coefficients Cij are known.

The expression (3.2.8) also includes linear contributions from the initial parasitic charges

of the four islands. These charges are not known, as we mentioned before. Fortunately, we

do not need to know these contributions which are static. What is really important for us

is that if the island potentials change, the spectrum of the system changes as well. Since

the change of the potentials V1, V2, V3, V4 is uniquely determined by the change of the gate

potentials U1, U2, U3, U4, it follows that we can try to work with the gate potentials and

the spectrum only and still be able to tune the system.

At each step of the following algorithm (that we describe in terms of the potentials Vi)

we apply the voltage V to the small junction (as shown in Fig. 3.5), while keeping the

potentials V1, V2, V3, V4 of the islands (and, therefore, positions of the peaks) fixed, and

measure the current I flowing through the system.

1. Fix the potentials V2, V4 and change the potentials V1, V3, so that the sum V1 + V3

stays constant. For each pair of values of the potentials V1 and V3 measure the current-

voltage characteristic. The positions of two peaks will not change while the other two

peaks will move. In particular, the distance between the moving peaks will change. We

should choose the potentials V1 and V3, so that this distance is minimal. This smallest

distance between the two peaks corresponds to the line in the two-dimensional space

(V1, V3) on which the potentials of the islands ’1’ and ’3’ are equal: V1 = V3. Note

that the moving peaks cannot merge because of the perturbation theory splitting.

2. Fix the potentials V1 and V3 (V1 = V3) and change the potentials V2, V4, so that

the sum V2 + V4 stays constant. For each pair of values of the potentials V2 and

V4 measure the current-voltage characteristic. The positions of the two peaks that

were motionless in the previous paragraph will change now, while the peaks that were

moving will stay fixed. Again, we should choose the potentials V2, V4, so that the

distance between the corresponding peaks is minimal. This smallest distance between

the two peaks corresponds to the line in the two-dimensional space (V2, V4) on which
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Figure 3.9: The current-voltage curve when the potentials of all the four islands are equal.
In this case, there are only three peaks instead of four.

the potentials of the islands ’2’ and ’4’ are equal: V2 = V4.

3. Change the potentials V1, V2, V3, V4, so that the linear combinations V1+V2+V3+V4,

V1 − V3 = 0, V2 − V4 = 0 stay constant. This means that the linear combination

V1−V2+V3−V4 can change its value. The positions of all the four peaks will change.

When any two of the four peaks merge (see Fig. 3.9), we can say that the potentials

of all islands are equal: V1 = V2 = V3 = V4.

4. Change the potentials V1, V2, V3, V4 so that the linear combinations V1−V2+V3−V4 =

0, V1 − V3 = 0, V2 − V4 = 0 stay constant. This means that the linear combination

V1 + V2 + V3 + V4 can change its value. All peaks will move, while at least one of

them will move to the left. Its height and width decrease as the peak moves. When

the peak that was received as a result of the merge of two original peaks reaches the

origin or disappears, the qubit is tuned.

Spectrum distortion caused by the small Josephson junction

The procedure described in the previous section allows us to tune the system assuming that

the potential V applied to the small junction does not cause any spectrum distortions. This
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would be true if the junction had infinitely small capacitance which is not realistic. A non-

zero value of its capacitance implies that the potentials of the four islands vary proportional

to V .

In order to compensate for this effect, we have to take into account the additional

potentials δVi, i = 1, 2, 3, 4. Using the notations of Fig. 3.8, we get

δV1 =
7Z1

7Z1 + 15Zs
V,

δV2,4 =
3Z1

7Z1 + 15Zs
V,

δV3 =
2Z1

7Z1 + 15Zs
V.

(3.2.9)

One can see that the variations δVi are very small if |Zs| � |Z1| which is true for the system

we study. Therefore, in the following discussion we will assume that the additional potentials

δVi can be treated as small corrections. This implies that even though the elements of the

matrix Cij do depend on δVi (see the next section), we can neglect this dependence.

We now describe the algorithm that allows one to compensate for these additional poten-

tials. As we discussed earlier, we cannot directly control the potentials of the four islands.

Therefore, we should use a method similar to those described in the previous section. First,

we fix the potentials of the islands ’2’ and ’4’. We choose the potential of the island ’3’, so

that the corresponding peak on the current-voltage curve is very close to the origin (this

means that the corresponding energy is very small). Using the algorithm described in the

previous subsection, we choose the potential of the island ’1’, so that the distance between

the peaks ’1’ and ’3’ is minimal. At this point, the potentials V1 and V3 are equal. Since

the peaks are close to the origin, the voltage V that should be applied to the pyramid to

produce the peaks is very small and the additional potentials are even smaller: V1 = V3 ≈ 0,

δV1 = δV3 ≈ 0.

We now increase the potential of the island ’3’ by a small amount and repeat all the

steps from the previous paragraph. That is, we find the gate voltages that correspond to

the minimal distance between the peaks ’1’ and ’3’. At this point, we can assume again

that the potentials of the two islands are equal. However, this time the total potential of
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each island is the sum of two contributions: V total
i = Vi + δVi, where the variations δVi are

determined by (3.2.9). Since the voltage V is not zero, δV1 �= δV3. Therefore, V1 �= V3,

that is, the gate potentials should be changed by different amounts if we want the peaks to

coincide. We know the exact changes of the gate potentials required to move the peaks ’1’

and ’3’. Their difference corresponds to the difference δV1−δV3. Using this information and

the fact that all dependencies are linear, we can always determine the necessary corrections

in terms of the gate potentials.

If it is needed, we can repeat the same procedure for the islands ’2’ or ’4’ and, thus, find

the corrections for the potentials of these islands. One can also use (3.2.9).

Matrix C

As we mentioned before, the only physical quantities that have real physical meaning, are

the potentials Vi, i = 1, ..., 4, of the four islands. But at the same time we are able to control

only the potentials Uj , j = 1, ..., 4, of the four gates. In other words, we need to know the

4 × 4 matrix Cij from (3.2.8) which binds the two sets, Vi and Uj . To find this matrix we

can use one very simple property of the pyramid.

Imagine that we can control the potentials of the islands Vi. We start increasing the

potential V1 of the island ’1’. At the same time, the potentials of the other islands should

be kept constant. As the potential V1 increases, the current-voltage curve changes. Namely,

one of the peaks moves.

Apparently, when the potential V1 becomes large enough, an additional Cooper pair will

tunnel from the outside onto the island ’1’. If we continue to increase V1, at some point we

will obtain the current-voltage curve that is identical to the initial one. In other words, the

properties of the system depend on V1 periodically, with the period being determined by

all capacities. The same arguments can be used for the other potentials Vi, i = 2, 3, 4. It is

evident that all the periods are the same due to the pyramid symmetry.

We now use the linear dependence (3.2.8). It implies that the current-voltage curve is

periodical in the gate voltages Uj , j = 1, ..., 4, or, to be more precise, in the four linear
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combinations of Ujs. For example, when the potential of the first island, V1, changes by

one period (with the potentials of the other islands being fixed), the gate voltages change

in the following way:

ΔU1 = (C−1)11ΔVT ,

ΔU2 = (C−1)21ΔVT ,

ΔU3 = (C−1)31ΔVT ,

ΔU4 = (C−1)41ΔVT ,

(3.2.10)

where ΔVT is the period in V1. Let us start with some values of the potentials and corre-

sponding positions of the peaks on the current-voltage curve. As the gate potentials change,

the peaks move. For the change corresponding to (3.2.10), the positions of the peaks exactly

match their initial positions.

If we repeat all the arguments for the potentials Vi, i = 2, 3, 4, we will find the other

twelve equations that give us the dependence between the change of Ujs and the change of

Vis. As a result, we have 16 equations and 17 unknowns (16 elements of the inverse matrix

C−1 and the period ΔVT ). From the 16 equations, we can easily express 15 coefficients

(C−1)ij in terms of the coefficient (C−1)11. Thus, we know the matrix C−1 up to an

unknown common prefactor. But we do not need to know this prefactor because the period

ΔVT (which is determined by the prefactor) is not important for us.

Inverting the matrix C−1, we find how the potentials of the islands change when the

gate potentials change (again, up to an unknown common factor):

ΔVi = CijΔUj . (3.2.11)

Experimental search for different periods in the gate voltage space Uj might be performed

in the following way. One scans the four-dimensional voltage space using some square

grid, measures current-voltage characteristics at each node and compares them to each

other. Because of a large space dimensionality (4D) the straightforward implementation of

this procedure would require scanning of a large number of nodes. The problem can be

made significantly easier by using the approximate values of the capacitance matrix that

corresponds to the simplified circuit shown in Fig. 3.5. In this approximation the matrix
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C−1 relating the applied and induced potentials is given by

Ĉ−1
full = C−1

g

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Cg + 3C0 −C0 0 −C0

−C0 Cg + 3C0 −C0 0

0 −C0 Cg + 3C0 −C0

−C0 0 −C0 Cg + 3C0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where C0 is the capacitance of the individual Josephson junctions constituting the pyramid

and Cg is the gate capacitance. From here one can derive the approximate values of the gate

voltages that correspond to one charge period. Measuring current-voltage characteristics

around this point, one can locate the values of the potentials that correspond to exactly

one period after a small number of steps.
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Chapter 4

Implementation of large protected Hilbert spaces

4.1 Higher symmetry systems

As we showed in the second chapter, the Josephson junction circuit with tetrahedral sym-

metry has a double-degenerate ground state protected from external noises and is a good

candidate for a quantum bit. A few such quantum bits connected by tunable elements form

a circuit that is in principle can be used for quantum computations. However, the tunable

elements break the symmetry of the individual qubits and destroy the protection. Thus,

it is worth asking if it is possible to construct more complex systems with much larger

protected space which can serve as a combined Hilbert space of two or more qubits.

The degeneracy required for existence of the protected subspace can be only realized

in highly symmetric qubits. From an experimental point of view, the simplest nontrivial

symmetry group is the pyramid group Cnv which contains rotations and reflections. It can

be implemented, for instance, as a long chain of identical junctions, or as a chain in which

all nodes are connected to the central island by a junction (see Fig.4.1).

Unfortunately, the pyramid groups have only one- and two-dimensional irreducible rep-

resentations (which are not protected), so that, they cannot be used for creating high-

dimensional protected spaces. Furthermore, a perturbation acting on any physical element

of such circuits (a junction or an island) destroys the symmetry completely. As a result, the

degenerate ground level splits, with the energy gap being proportional to the strength of

the perturbation. Therefore, in order to get higher dimensional Hilbert spaces with built-in

protection, one needs more complex symmetry groups such as the tetrahedron group which
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Figure 4.1: The simplest Josephson junction arrays whose symmetry group is Cnv, n = 6:
a) a closed loop with 6 junctions and b) a similar loop in which all islands are connected to
the central island.

is isomorphic to the permutation group S4 and was discussed earlier.

In this chapter we explore a natural generalization of the tetrahedral quantum bit and

consider devices whose symmetry can be described by one of the higher order permutation

groups Sn which have remarkable mathematical properties1.

We consider the level structure and associated built-in protection of some conceptually

simple circuits. They are probably not the best candidates for a real experimental sys-

tem but the discussion allows us to demonstrate the most interesting properties of higher-

symmetry circuits. In these devices each pair of superconducting islands is connected by a

junction, while the fluxes through the basic loops2 are all equal to Φ0/2. The Josephson

energy of each junction is given by

Vi,j = −EJ cos(ϕi − ϕj − π) = EJ cos(ϕi − ϕj), (4.1.1)

where we chose the gauge so that at each link there exists an additional phase difference π

(mod 2π) and ϕi is the phase of the ith island3. This formula can be rewritten using the

spin representation, in which the state of each superconducting island is characterized by

1Unfortunately, they also have a big drawback: it is very difficult (in most cases, impossible) to project
the corresponding Josephson junction circuit to a plane if n > 4. This means that their experimental
implementation might require bridges.

2The loops that cannot be represented as a sum of two smaller loops.

3One can easily show that both conditions and the gauge choice are realistic for all the specific systems
discussed below in this chapter.
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the complex classical unit vector z = (cosϕi, i sinϕi) called a pseudospin. The Josephson

energy is given by the sum of antiferromagnetic interactions between the pseudospins:

V =
1

2
EJ

∑
i,j

z∗i zj =
1

2
EJ

∣∣∣∣∣∣
∑
j

zj

∣∣∣∣∣∣
2

. (4.1.2)

Everywhere in this chapter we will assume that EJ/EC � 1. Repeating all the steps

done in [74] for the tetrahedron, we find the classical minima of the potential energy (4.1.2)

and then the tunneling amplitudes between these minima4. Similar to the tetrahedron case,

the level structure of the high-symmetry system described by the potential energy (4.1.2) is

peculiar because the classical ground state is infinitely degenerate: all states satisfying the

complex condition
∑
j

zj = 0 have exactly zero energy. This means that if the system has

n islands then the classical energy is equal to zero on a (n− 3)-dimensional hypersurface in

the (n− 1)-dimensional space of the superconducting phases {ϕi} (note that one degree of

freedom corresponds to the global phase and, therefore, is always irrelevant)5. The classical

degeneracy is destroyed by quantum fluctuations, so that there are some special points on

this hypersurface, where the energy is lowest. To proceed further we should find these

points and discuss the quantum transitions between them. For simplicity, we consider the

particular cases n = 5 and n = 6 for which our calculations can be done explicitly.

4.1.1 Pentagram

We begin with a five-node system that can be viewed as a pentagram and can be imple-

mented as a star or a square with two diagonals connected to the ground (see Fig.4.2). Its

symmetry group is isomorphic to the permutation group S5. Note that there is no any

electric contact (including Josephson junctions) between the diagonal wires of the penta-

gram. As was mentioned before, this presents an implementation problem because a bridge

is required.

Now we need to take the steps discussed earlier. First, we should choose the fluxes that

4 These tunneling amplitudes depend on the charging energy EC and the Josephson energy EJ .

5In the case of the tetrahedron, the hypersurface is a line in the 3-dimensional space [74].
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Figure 4.2: Schematics of the pentagonal Josephson circuit whose symmetry group is iso-
morphic to the permutation group S5 . Here all lines represent Josephson couplings, black
circles represent superconducting islands. Different colors represent different physical layers
of the structure, so that there is no contact between the wires of different colors when they
cross. The right pane shows an equivalent representation that involves only one bridge
crossing: in this representation one of the islands is replaced by a circuit shown as a large
outer square. All phases are measured with respect to this island.

result in the antiferromagnetic signs of Josephson couplings. To do this, we consider the

square representation of the pentagram (the right pane in Fig.4.2) and apply an external

magnetic field, so that the flux through the inner square is Φ0. We can also choose the size

of all contours in such a way that the flux through the outer square is 3Φ0 (i.e. the area of

the outer square should be 3 times greater than the area of the inner square). In this case,

the fluxes through all the basic loops are equal to Φ0/2. This is exactly what we required

when we wrote the expression (4.1.1).

As we mentioned above, the classical ground state is infinitely degenerate. The manifold

of these degenerate states is a surface described by the equation

5∑
j=1

zj = 0. We can always

fix one phase (for example, set z5 = 1) and consider the remaining four phases as indepen-

dent variables. The real and imaginary parts of the complex equation
4∑

j=1

zj = −1 reduce

the four-dimensional space to the two-dimensional surface. Therefore, the manifold that

describes infinitely degenerate states is a two-dimensional surface in the four-dimensional

phase space. The degeneracy is destroyed by quantum fluctuations. In the limit of large
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EJ/EC quantum fluctuations orthogonal to the surface are small. Therefore, one can re-

place the potential V (ϕ) by its harmonic approximation. For a simple (diagonal) mass term

the quantum system moving in a harmonic potential has energy

E =
1

2
√
m

∑
a

√
λa,

where λa are eigenvalues of the quadratic form that approximates the harmonic poten-

tial. This energy describes quantum fluctuations orthogonal to the surface and provides an

effective potential for the motion on the surface. This can be symbolically written as

Veff =
1

2
√
m

Tr

√
∂2V

∂xi∂xj
,

where x are the coordinates normal to the surface defined by the equation V (ϕ)=0. More

explicitly,

V = cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4)

+ cos(ϕ1 − ϕ2) + cos(ϕ1 − ϕ3) + cos(ϕ1 − ϕ4)

+ cos(ϕ2 − ϕ3) + cos(ϕ2 − ϕ4) + cos(ϕ3 − ϕ4)

The surface is defined by the following two equations:

f1(ϕ) = 1 + cos(ϕ1) + cos(ϕ2) + cos(ϕ3) + cos(ϕ4) = 0

f2(ϕ) = sin(ϕ1) + sin(ϕ2) + sin(ϕ3) + sin(ϕ4) = 0.

(4.1.3)

From these equations we can find two non-orthogonal (and non-unitary) vectors u1 =

∇f1(ϕ) and u2 = ∇f2(ϕ) which form the basis of the subspace orthogonal to the surface.

Fortunately, we do not need to work explicitly with the coordinates xi, because the

potential energy is constant on the surface, so that ∂2V
∂yi∂yj

= 0 for the coordinates on the

surface yi. As a result, the trace in Veff would not change if we calculate it for the whole

space. Since the trace is invariant under unitary transformations, the effective energy can

be written as

Veff =
1

2
√
m

Tr
√
V̂ ,

Vij =
∂2V

∂ϕi∂ϕj
.
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The arguments above can be used only if we assume that ϕi are canonical variables,

that is, if the kinetic energy is proportional to a unit matrix. If this is not correct (and this

is not correct in the realistic case when the charging energy is mostly determined by the

capacitances of the Josephson contacts), the result becomes slightly more complex. In the

general case, the kinetic energy is

T =
1

16Ec

∑
i,j

(
∂ϕi

∂t

)
Cij

(
∂ϕj

∂t

)
, (4.1.4)

where Cij is the dimensionless capacitance matrix.

Let’s assume that the capacitances of the Josephson junctions in Fig.4.2 are much larger

than the capacitances of the superconducting islands. In this case, the kinetic energy is given

by the formula (4.1.4) with the capacitance matrix

Ĉ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

4 −1 −1 −1

−1 4 −1 −1

−1 −1 4 −1

−1 −1 −1 4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.1.5)

The effective potential energy is given by

Veff = Tr

√
8EcĈ−1/2V̂ Ĉ−1/2.

It is easy to show that the square root of Ĉ is given by

Ĉ−1/2 =
1√
5
1̂ +

1

4

(
1− 1√

5

)
Î ,

where all elements of the matrix Î are equal to 1: Iij = 1. If we consider Veff as a function

of two phases ϕ1, ϕ2 (one phase ϕ0 = 0 is fixed and two other phases ϕ3 and ϕ4 can be

expressed in terms of ϕ1 and ϕ2 using (4.1.3)), we will find that the energy is minimal at

very special points. For example,

z0 = 1,

z1,2 = z+ ≡ −1
4 +

√
15
4 i,

z3,4 = z− ≡ −1
4 −

√
15
4 i.

(4.1.6)
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Figure 4.3: The quasiclassical energy as a function of two independent phases (ϕ1, ϕ2). The
phase ϕ0 is fixed and equal to 0, while the values (ϕ3, ϕ4) are determined from (4.1.3). The
energy minima (red) are given by the solution (4.1.6) and its mappings.

The plot of Veff (ϕ1, ϕ2) is shown in Fig. 4.3. Notice that the gauge choice ϕ0 = 0 which

is convenient for numerical calculations breaks the symmetry of the pentagram. This makes

interpretation of the figure more difficult. The close inspection of the plot reveals 30 energy

minima: 1) 12 different points (ϕ0
1, ϕ

0
2) for which there exist two different sets (ϕ0

3, ϕ
0
4) and

6 points (ϕ0
1, ϕ

0
2) for which there exists only one set (ϕ0

3, ϕ
0
4). All these minima can be

obtained from (4.1.6) by simple mappings.

To further discuss the quasiclassical minima and quantum transitions between them, we

will work in the symmetric gauge in which the phase ϕ0 is not fixed, so that the pentagram

symmetry is not broken. Different quasiclassical states can be obtained from (4.1.6) by
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permutations. To describe these states, we will denote the three possible values of each

phase by 0 , +κ, and −κ, where κ = arccos(−1/4) ≈ 1.82. We will also drop the letter κ to

make our notations compact. Thus, the state (ϕ1 = 0, ϕ2,3 = κ, ϕ4,5 = −κ) corresponds to

(0 + + − −). There are 30 different states6: we need to choose an island with z = 1 (five

alternatives) and then choose two islands with z = −1
4 +

√
15
4 (6 alternatives). The states

can be obtained from each other by different symmetry transformations and form a basis

of the 30-dimensional Hilbert space.

We can use the general methods of the group representation theory to describe how

quantum tunneling makes these 30 degenerate quasiclassical states split. Let’s consider

the representation of the pentagram symmetry group in the 30-dimensional Hilbert space

spanned by these states. The corresponding characters of the group elements are given in

the following table:

nP 1 10 15 20 20 30 24

P 15 (2, 13) (22, 1) (3, 12) (3, 2) (4, 1) (5)

χ 30 6 2 0 0 0 0

Here we use the following conventional notations: P denotes a permutation that consists

of a few cycles of the given lengths n1, n2, n3, ... (for example, (2, 13) is a permutation

that exchanges any two islands and does not move the others) and nP is the number of

such permutations. To calculate the characters χ of our 30-dimensional representation, we

notice that the matrix element 〈ψ|P |ψ〉, where |ψ〉 is one of the basis states, is not equal

to zero only if the state |ψ〉 is invariant under P . For a permutation of the type (2, 13)

the invariant states are those in which the phases that are exchanged both correspond

to z+ (or z−). One of the remaining three phases corresponds to z0 and the other two

correspond to z− (or z+). The total number of such states (and, therefore, the character of

this group element) is 6 (as shown in the table). For a permutation of the type (22, 1) there

are only two invariant states: the first two phases that are exchanged correspond to either

6In each state one of the phases is zero, two of the phases are +κ, and the other two phases are −κ.
However, it is important to remember that two states correspond to the same physical state if all five phases
are shifted by the same amount. For example, the states (0, 2π−2κ, 2π−2κ, 0, −κ) and (κ, 2π−κ, 2π−κ,
κ, 0) are equivalent because they both correspond to (+−−+ 0).
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z = −1
4 +

√
15
4 or z = −1

4 −
√
15
4 . Using the characters of the irreducible representations

of S5, one can find that our 30-dimensional representation is a product of the following

irreducible representations:

30 = 1⊕ 4⊕ 4⊕ 5⊕ 5⊕ 5A ⊕ 6.

This means that if quantum fluctuations are taken into account, the 30-fold degenerate

quasiclassical ground state splits into one non-degenerate, two four-fold degenerate, three

five-fold degenerate, and one six-fold degenerate states.

For the system to be a promising candidate for a qubit, the ground state should be

highly degenerate. Thus, our next goal is to find the leading-order quantum processes that

determine the energies of our 30 states and, therefore, conditions under which the ground

state is degenerate. The tunneling amplitudes between quasiclassical minima depend expo-

nentially on EJ/Ec: t ∝ exp[−c(EJ/Ec)
1/4] (similar to what we had for the tetrahedron).

The numerical coefficient c in this formula depends on the distance between the states7.

Because of the exponent the only important quantum processes are those connecting the

nearest states, so that we will deal only with them. Of course, the set of tunneling processes

that we consider should be invariant under the full group of symmetry transformations.

Let’s now discuss the structure of the phase space and find the nearest neighbors of a

given state. Consider the classical state A = {0, 2π−2κ, 2π−2κ, 0,−κ} which is equivalent

(after overall shift by κ) to the state (+−−+0). The four states closest to it in the phase

space (see Fig.4.3) are

(+−−+ 0) →

{0, 2κ, 2κ, κ, 0} = (−++0−)

{0, 2κ, κ, 0, 2κ} = (−+ 0−+)

{0, κ, 2κ, 0, 2κ} = (−0 +−+)

{0, κ, κ,−κ,−κ} = (0 + +−−)

Using the short-hand notations introduced above, these transitions can be described by

the following recipe: Swap zero and one of the pluses (or minuses) and then change all

7The distance is defined as the action S =
∫ Ldt corresponding to the quasiclassical path in the phase

space.
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signs. For example, we have for the first transition:

(+−−+ 0) ⇒ (+−−0+) ⇒ (−++0−).

As a result, the phases ϕ1, ϕ2 change from 2π − 2κ, 2π − 2κ to (2κ, 2κ), while the phases

ϕ3, ϕ4 increase by κ.

These transitions impose a peculiar structure in the space of the 30 states: direct in-

spection shows that the shortest cycles consist of five or six transitions, i.e. these states

form a graph with the branching number exactly equal to 4 and with loops having periods

of 5 or 6. An example of a 6-cycle is provided by the following chain of transitions:

(0 + +−−) → (−0−++) → (+ + 0−−) →

(0−−++) → (+0 +−−) → (−− 0 + +) → (0 + +−−)

An example of a 5-cycle is given by

(0 + +−−) → (−0−++) → (+−+0−) →

(−+ 0−+) → (+−−+ 0) → (0 + +−−)

The tunneling amplitudes t of all these transitions should be identical due to the sym-

metry constraints imposed by the permutation group. In order to find the resulting energy

spectra, we need to compute the eigenvalues of the tunneling matrix. The numerical diag-

onalization of this matrix gives the following spectrum:

E = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(1)

2(11)

0(5)

−1(4)

−2(5)

−3(4)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Here the upper subscript shows the degeneracy of each level. Thus, if the sign of t is

negative, the ground state is four-fold degenerate. Note that the spectrum is not symmetric
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due to the presence of odd cycles. Also, the eleven-fold degeneracy of the fifth level is

coincidental: if we take into account smaller transition amplitudes, the level splits into 5-

and 6-fold degenerate states. Apart from this coincidence, the spectrum is exactly what we

expected to find from the general symmetry arguments.

The sign of the transition amplitude t depends on the charges induced on the islands

by the control gates. To evaluate t, it is convenient to use the gauge that does not violate

the symmetry of the pentagram. Physically, this means that the total charge of the whole

system is fixed and the charges of the five islands are equal. We expect that in this case

the tunneling amplitudes of all transitions are identical. Let’s consider the transition we

discussed earlier:

(+−−+ 0) → (−++0−)

The shortest path between the states (in the phase space) is given by

δϕ = {2π − 2κ, 2κ− 2π, 2κ− 2π,−κ,−κ}

Each of these transitions results in Berry’s phase

exp

⎛⎝∑
j

iQδϕj

⎞⎠ ,

where Q is the charge of each island (in terms of 2e). The total charge of an isolated system

must be an integer number n. This means that the charge of each island is n/5, so that the

full amplitude of the transition is t ∝ exp(−2πin
5 ). Appropriately choosing n, we can make

the real part of t negative and its imaginary part small. As a result, the ground state of

the pentagram will be four-fold degenerate. Note that the complex value of t implies that

the states can be partitioned into two groups. Alternatively, one should be able to assign

arrows to all transitions. This classification should be compatible with the global symmetry

group.

In order to check the above conclusions, we numerically diagonalize the Hamiltonian

H =
4∑

i=1

n2
i +

(
4∑

i=1

ni

)2

+
EJ

2

⎛⎝∑
i,j

b†ibj +
∑
i

(
b†i + bi

)⎞⎠ ,
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Figure 4.4: The gaps between the ground state and first two excited energy levels of the
pentagram as functions of EJ . The red lines correspond to the bias charge Q = 0.2, the
4-fold degenerate ground state, and the 5-fold degenerate first excited state, while the green
lines correspond to the bias charge Q = 0.4, the 5-fold degenerate ground state, and the
4-fold degenerate first excited state.

where ni = b†ibi −Q and the values of ni are restricted and belong to the interval (−K,K),

while Q is the charge bias. We choose the charging energy coefficient to be 1. This cor-

responds to the charging energy of the individual junctions EC = 5/4. The system is

equivalent to the closed pentagram if Q = n/5, where n is an integer. The numerical results

shown in Fig. 4.4 indicate that in this case the ground state degeneracy coincides with the

one we get from the symmetry arguments. One can also check that for other values of Q

(for example, Q = 0.5) the ground state degeneracy is lower.

In more detail, the results of the numerical diagonalization are the following. The ground

state is a quadruplet for Q = 1/5 and a quintuplet for Q = 2/5. In both cases, the gap

between the ground state and the next energy level changes slowly. In Fig. 4.4, we show

the gap as a function of EJ . The red lines correspond to the bias charge Q = 0.2, the 4-fold

degenerate ground state, and the 5-fold degenerate first excited state, while the green lines

correspond to the bias charge Q = 0.4, the 5-fold degenerate ground state, and the 4-fold

degenerate first excited state.
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We can conclude that the Josephson junction circuit that contains five superconduct-

ing islands connected as shown in Fig. 4.2 displays high degeneracy of the ground state

(depending on the gate potential, it is 4- or 5-fold degenerate). All decay processes in this

system are naturally eliminated. Therefore, one can expect that the system will display very

long decay times. Unfortunately, effects of the low frequency noises on its energy levels are

probably strong: there are not any symmetry reasons why the matrix elements of the noise

should be small. To suppress the noises, one needs to add a few additional superconducting

islands and Josephson junctions to the system. This makes it too complicated. In this

respect, the situation is similar to the one realized in a simple chain of three junctions frus-

trated by the flux Φ0/2. If the charge bias is Q = n/3, the ground state level is degenerate.

However, this degeneracy is destroyed by perturbations even in the linear order.

4.1.2 The Star of David

To achieve protection, we should find an array whose symmetry group contains many more

elements than it is needed for degeneracy, so that a local perturbation that violates some

symmetries of the group does not destroy the degeneracy completely. One can formulate a

criterion more precisely. Degenerate levels of a qubit correspond to irreducible representa-

tions of the symmetry group. A local perturbation makes one or more islands or junctions

different from the others, destroying some part of the symmetry. The action of the re-

maining subgroup of the full symmetry group on the degenerate ground state of the qubit

generates a representation of this subgroup. If this representation is irreducible, then the

ground state remains degenerate and the qubit is protected.

It is a non-trivial task to design a circuit that satisfy the requirement outlined above.

In this subsection we show that it can be resolved for a pentagram-like circuit: we should

build a system whose symmetry is the permutation group S6. Physically, such a circuit can

be implemented in the form of the Star of David shown in Fig. 4.5.

A uniform magnetic field corresponding to the total flux 3Φ0 is applied to the star. Some

links should be deformed to guarantee that the fluxes through all the basic triangles (those
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Figure 4.5: The Josephson junction circuit whose symmetry is the permutation group S6.
The circles represent superconducting islands. The lines represent Josephson junctions con-
necting the islands. Different colors represent different layers, so that if two lines intersect,
they do not contact with each other. The left-hand diagram shows the star itself. The
right-hand diagram shows an equivalent circuit in which one island is implemented as the
ground.

formed by any three islands) are equal to either Φ0/2 or 3Φ0/2 (it would be enough to

deform only the red, yellow and green links). These fluxes can be described by a gauge field

that induces an additional phase a = 2e
c

∫
Adl = π across all the junctions. As a result, the

nodes of the star effectively interact with each other. The interaction is antiferromagnetic.

We will assume that this system is in the quasiclassical regime, that is, EJ � EC .

Exactly as it was for the tetrahedron and the pentagram, quantum fluctuations select the

states for which the effective potential Veff is minimal8, while quantum transitions between

the minima split the degenerate ground state.

If the star is in one of the minima realized in the quasiclassical regime, then three

superconducting islands have phases 0 and the other three islands have phases π. In total,

there are 20 such states. However, the states that can be obtained from each other by

simultaneous shift of all phases by π are physically identical, so that one can write down

8The fluctuations are strongest if all the spins zj = exp(iφj) are collinear because in this case the complex

equation
∑
j

zj = 0 reduces to two simple conditions: the linear equation
∑

δφi = 0 and the quadratic

equation
∑±δφ2

i = 0, while in the generic case of non-collinear spins we receive two linear equations for the
phase deviations.
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the following ten minima (0 corresponds to 0 and 1 corresponds to π):

1 (111000) ↔ (000111)

2 (110100) ↔ (001011)

3 (110010) ↔ (001101)

4 (110001) ↔ (001110)

5 (101100) ↔ (010011)

6 (101010) ↔ (010101)

7 (101001) ↔ (010110)

8 (100110) ↔ (011001)

9 (100101) ↔ (011010)

10 (100011) ↔ (011100)

The amplitudes of transitions between these states are invariant under the symmetry trans-

formations. In particular, they should be equal for all processes in which two phases 0 and

π swap. Such processes transform a basis state either to another basis state (for instance,

(111000) → (110100)) or to a state that is physically equivalent to another basis state (for

instance, (111000) → (011100) ↔ (100011)). For each basis state there exist six transfor-

mations of the first type and three transformations of the second type. In general case, their

amplitudes might be different because simultaneous shift of all the six phases by π results

in Berry’s phase eiπn, where n is the total charge (in terms of 2e) induced in the circuit by
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control gates. For odd values of n we have the following Hamiltonian:

H = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 −1 −1 −1

1 0 1 1 1 −1 −1 1 1 −1

1 1 0 1 −1 1 −1 1 −1 1

1 1 1 0 −1 −1 1 −1 1 1

1 1 −1 −1 0 1 1 1 1 −1

1 −1 1 −1 1 0 1 1 −1 1

1 −1 −1 1 1 1 0 −1 1 1

−1 1 1 −1 1 1 −1 0 1 1

−1 1 −1 1 1 −1 1 1 0 1

−1 −1 1 1 −1 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Diagonalizing it, we get two quintuplets E = ±3t. They form a basis of two different

irreducible representations of the permutation group S6.

If one of the elements of the star (an island or a junction) is different from the others,

the symmetry S6 reduces to S5. In this case, one of the 5-dimensional representations of

S6 reduces to a product 4⊗ 1 (where the four-dimensional and one-dimensional representa-

tions of S5 are irreducible), while the other 5-dimensional representation of S6 becomes an

irreducible representation of S5. Physically, this means that one of the quintuplets splits

into a quadruplet and a singlet, while the other one is stable under local perturbations. If

the second quintuplet is the ground state, then the quantum bit is protected.

In conclusion, we have shown that symmetric Josephson junction arrays that consist

of a small number (N ≤ 6) of identical superconducting islands possess many remarkable

properties. In particular, their ground state can be highly degenerate and stable with

respect to perturbations that violate the symmetry of the circuit. Unfortunately, both

designs we studied require a large number of identical Josephson junctions connecting the

islands. Therefore, experimental realization of these symmetric arrays is a non-trivial task.
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4.2 Systems less sensitive to induced charges

4.2.1 Pseudoinductors

The main problem of the highly symmetric qubits discussed in this thesis is that one needs

to adjust the charges of superconducting islands which are not ideal because of different

noises and impurities. This can be done by applying proper electrostatic potentials to the

islands. We mentioned in the previous chapters that the distribution of the charges induced

by control gates should have a symmetry that is compatible with the symmetry of the

whole system. For example, implementation of the tetrahedron in which one of the islands

is connected to the ground requires three control gates. They should induce charges n/4

(in terms of 2e) on each non-grounded island. Only in this case the resulting symmetry

is tetrahedral. Any other distribution of the induced charges breaks the symmetry of the

system. In particular, it breaks the symmetry between the grounded island and the other

three islands.

Similarly, the more symmetric qubit with four (or five) non-grounded islands requires

four (or five) control gates. The gates should induce charges n/5 (or n/6) on each non-

grounded island, because only in this case the symmetry of the system given by the permu-

tation group S5 (or S6) does not break. Since it is very difficult to tune the gate potentials

so precisely, producing such a symmetric charge distribution seems to be a very non-trivial

task.

In this section we will discuss an alternative approach that might be used to design

different highly symmetric systems that are not sensitive to the charge noise. The main

idea of this new approach is replacing all the Josephson junctions in Fig. 4.1, 4.2, 4.5 by

pseudoinductors whose Josephson energy is a periodic function of the phase difference φ:

ε(ϕ) =
1

2
EL(ϕ− 2πn)2. (4.2.7)

Here n is an integer (see Fig. 4.6). Different n correspond to different branches of the

Josephson energy. Such pseudoinductors are characterized by very small (but non-zero!)

amplitudes of transitions between the branches corresponding to different n. We will use
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Figure 4.6: The Josephson energy of a pseudoinductor, for which the amplitudes of tran-
sitions between different branches are small (but non-zero). Such a pseudoinductor can be
implemented as a long chain of large Josephson junctions.

the notation t̃ for these amplitudes and discuss the lower bounds on their magnitude later

in this subsection.

A pseudoinductor can be implemented as a very thin superconducting wire with large

kinetic inductance or as a long chain of N large Josephson junctions (see Fig.4.6). Such

a chain is characterized by the effective Josephson energy EL = EJ/N , where EJ is the

Josephson energy of each junction. The amplitude of transitions between different branches

is exponentially small if EJ/E
(J)
c � 1 [78, 79]:

t̃ =

(
16√
π

4

√
EJ

2E
(J)
c

)√
EJE

(J)
c N exp

(
−
√

8EJ

E
(J)
c

)

We show below that the optimal regime of the whole circuit is realized when the pa-

rameters characterizing the pseudoinductor satisfy the condition EL/Ec � 1. When the

phase difference across the pseudoinductor changes by O(π), the phase difference across

each junction changes by a small amount O(π/N). This allows us to use the Gaussian

approximation. In this approximation, the phase difference across the pseudoinductor is
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described by the same classical equation of motion as the phase differences across the indi-

vidual junctions and is characterized by the same plasma frequency ωp =

√
8EJE

(J)
c as the

individual junctions. Thus, the effective charging energy of the pseudoinductor is given by

Ec = NE
(J)
c . In terms of the parameters characterizing the pseudoinductor, the tunneling

amplitude is

t̃ =

(
4
√
2N√
π

4

√
EL

2Ec

)
Nωp exp

(
−N

√
8EL

Ec

)
(4.2.8)

For reasonable values of the ratio EL/Ec ∼ 2, the formula (4.2.8) implies that the tunneling

amplitude has the order of t̃ ∼ 10−9ωp for chains that contain six individual junctions and

t̃ ∼ 10−5ωp for chains that contain four individual junctions.

In the limit of small tunneling amplitudes, effects of the charges on the energy spectrum

of a Josephson device can be estimated using quasiclassical arguments. Since the charge

of an island is a conjugate to the phase of this island, in the regime when EJ � Ec, the

dynamics of the circuit can depend on the charge only because of Berry’s phase in the

action:

LBerry = iϕ̇q,

where q is measured in terms of 2e. The only effect of the charge is due to the process in

which the phase of the island changes by 2π and the physical state does not change. This is

possible in a circuit that consists of pseudoinductors only if the phase differences across all

the links connected to the island change by 2π. The amplitude of the phase rotation in the

case when there is only one pseudoinductor is equal to t̃. Simultaneous rotation of phases

across n − 1 pseudoinductors connected to the island is a higher order process. Assuming

that the energies of all intermediate states are of the same order ∼ EL, we can estimate the

energy splitting of the degenerate quasiclassical ground state caused by the charge noise:

ΔE ∼
(

t̃

EL

)n−1

t̃.

Thus, we expect that if the tunneling amplitude t̃ is smaller than the inductive energy εL,

effects of random charges of islands on a single quantum phase rotation process quickly

become insignificant as the symmetry of the system increases.
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The discussion above assumes that the energies of all intermediate states in which the

system finds itself in the process of phase rotation have the same order of magnitude (∼ EL).

Therefore, these intermediate states are not classically allowed. We will return to this

important question below.

4.2.2 Highly symmetric systems made of pseudoinductors

In this section we discuss the most important properties of symmetric qubits made of

pseudoinductors. The pseudounductors are characterized by the effective Josephson energy

(4.2.7) and small transition amplitude t̃. In the quasiclassical approximation EL/Ec � 1,

we should find the minima of the inductive energy

V =
1

4

∑
i,j

EL(ϕi − ϕj − aij)
2, (4.2.9)

where aij are the phase differences induced by external magnetic fields. As we discussed

before, the symmetry of the magnetic fields (and, therefore, the symmetry of the corre-

sponding fluxes) should not be lower than the symmetry of a quantum bit. In addition, the

flux through any closed surface should be a multiple of 2π. Only two sets of parameters

aij satisfy these two conditions. The first set corresponds to aij = 0 across all links, while

all aij from the second set are equal to π. The first case is trivial, because it leads to the

quasiclassical minimum φj = 0 on all islands9, and, therefore, is not interesting.

We will assume below that aij = π across all links. Physically, this means that all the

magnetic fluxes through basic triangles are equal to Φ0/2. Minimizing the Josephson energy

of the tetrahedron, the pentagram, and the star of David, we find that in all these cases the

quasiclassical minima are given by

ϕk = 2π(i[k]/n), k = 0, . . . , n− 1,

where i[k] is an arbitrary permutation of the indices (0, . . . , n−1). Similarly, for the systems,

in which one island is grounded, the quasiclassical minima are given by

ϕk = 2π(i[k]/n), k = 1, . . . , n− 1,

9We would get the same result for symmetric circuits with usual Josephson junctions.
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where i[k] is an arbitrary permutation of the indices (1, . . . , n− 1). The space spanned by

these quasiclassical states forms (n−1)!-dimensional representation of the symmetry group.

The corresponding energy level is (n− 1)!-fold degenerate10.

Quantum tunneling destroys this classical degeneracy (similar to the case of the Joseph-

son junction devices discussed in the previous sections): the leading-order process swaps

the phases ϕi and ϕj of the islands {i, j}. Furthermore, in the quasiclassical approximation

EL/Ec � 1 which we consider here, the amplitude of such a process depends exponentially

on the phase difference between the swapped phases δϕ = ϕi − ϕj . This allows us to fo-

cus on the leading process that corresponds to a swap of the phases characterized by the

smallest possible phase difference δϕ = ϕi − ϕj = 2π/n. This process changes the sign of

the phase difference between phases on these two islands whereas all other phase differences

retain their signs. This means that the inductive energy ε(ϕk − ϕl − π) changes its branch

only for the pair i,j in which the phases are swapped. This leading-order quantum process

involves only one tunneling, so that its amplitude t is approximately equal to the tunneling

amplitude t̃:

t ∼ t̃.

Ignoring other quantum processes for which two or more phase differences change their

sign or a given phase difference changes by more than 2π/n, we get a Hamiltonian in

the quasiclassical approximation. For example, in the case of the tetrahedron and one

grounded island (whose phase is 0), the classical minima are described by the phases

ϕ = kπ/2, k = 1, 2, 3 of the three non-grounded islands. We denote these states by

|123〉 , |213〉 , |132〉 , |231〉 , |312〉 , |321〉 and consider them as a basis of the Hilbert space.

10For the star of David, the level is 120-fold degenerate!
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In this basis the Hamiltonian has the explicit form

H = −t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0

1 0 1 1 0 1

1 1 0 0 1 1

1 1 0 0 1 1

1 0 1 1 0 1

0 1 1 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Its diagonalization determines the lower energy levels of the tetrahedron:

E4 = t

⎛⎜⎜⎜⎜⎝
2(2)

0(3)

−4

⎞⎟⎟⎟⎟⎠ , (4.2.10)

where the upper subscript shows the degeneracy of the corresponding level.

Note that the spectrum is not symmetric. This means that the spectrum depends on

the sign of the tunneling amplitude which is in turn depends on the charges of the islands.

To understand this result, note that each tunneling process changes the phase difference

across one of the links by π. It follows from here that cycles such as

|123〉 → |213〉 → |312〉 → |123〉 (4.2.11)

are possible. Note that in the symmetric gauge the last transition shifts the phases of all

islands by π/2: |312〉 = |0312〉 → |3012〉 +π/2
= |0123〉. Thus, it acquires Berry’s phase eπiQ/2

that depends on the charge. In the case of the three island circuit with a ground wire, the

process (4.2.11) changes the superconducting phase of the first island by 2π and results in

Berry’s phase e2πiq1 , where q1 is the charge induced on this island. These phases coincide

in the case of the symmetric system with q1 = Q/4.

We can say that in the case of the tetrahedron, the cycles described in the previous

section are sensitive to the charges of the islands, so that the charge noise is not completely

eliminated.



85

We now turn to the higher symmetry devices. Repeating what we have just done for

the tetrahedron, we get the spectrum of the pentagram:

E5 = t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5(1)

√
5
(6)

1(5)

−1(5)

−√
5
(6)

−5(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.2.12)

which is obviously symmetric. This indicates that the spectrum does not depend on the

sign of the tunneling amplitude. This can be better understood if we note that the sequence

of tunneling processes that forms a closed cycle similar to (4.2.11):

|1234〉 → |2134〉 → |3124〉 → |1234〉 (4.2.13)

contains an even number of tunnelings, so that only even powers of the amplitude are

present. Similar to (4.2.11), in the symmetric gauge the last process in this sequence shifts

the phases of all the islands by 2π/5. This induces Berry’s phase e2πiQ/5, where Q is the

total induced charge of all the islands. In the four-island configuration the loop (4.2.13) can

be thought of as vortex motion around the first island that induces Berry’s phase e2πiq1 .

The two phases coincide in the case of the symmetric system with q1 = Q/5.
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Finally, we consider the star of David. The energy levels are given by

E6 = t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 +
√
13)(5)

4(9)

2(25)

(−1 +
√
5)(9)

0(15)

−1(32)

(1−√
13)(5)

(−1−√
5)(9)

−4(10)

−6(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2.14)

Similar to the case of the tetrahedron, the energy spectrum is not symmetric relative to

the sign of t. This asymmetry can be explained by odd-cycles responsible for flips of the

phase of individual islands. Berry’s phase obtained as a result of a simple process in which

a vortex goes around an individual island is again e2πiq, where q is the charge of this island

induced by impurities and control gates.

The most interesting situation is realized when the transition amplitude is negative and

the lowest energy level is five-fold degenerate. The representation of S6 corresponding to

this level is an irreducible representation of S5, so that the quantum bit is protected from

all local external noises.

Thus, we conclude that symmetric quantum bits in which regular Josephson junctions

are replaced by pseudoinductors have very interesting properties. In particular, their ground

state is degenerate and protected (in the lowest order) from local noises. Unfortunately,

circuits of this type remain sensitive to charges induced by control gates. This is a serious

implementation problem and requires further investigation.
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Chapter 5

Conclusion

In this thesis we have positively answered the first question stated in Section 1.3: can we

improve the noise characteristics of the tetrahedral quantum bit proposed in [74]?

We have studied a small Josephson junction device whose ground state is twofold de-

generate and which is well protected from different noises. This device contains twelve

identical Josephson junctions and is a modified version of the simple six-junction quantum

bit studied in [74].

We have shown that interactions of this twelve-junction circuit with the charge and

magnetic noises destroy the ground-state degeneracy. However, this splitting is very small

because the linear coupling is completely absent. The only known source of physical noise

that remains linearly coupled to the ground-state doublet is the critical current noise but

the corresponding coupling constant is rather small (smaller than it is for the simpler six-

junction qubit in [74]). This makes the twelve-junction tetrahedron very attractive as a

candidate for a quantum bit with very long decoherence time.

However, our tetrahedron has one very serious drawback. It is a very complicated system

from an experimental point of view because modern technologies do not allow to produce

many identical Josephson junctions with sufficient accuracy.

In the future we would like to find a simple system in which the linear coupling with all

three types of noise (electric potential noise, magnetic noise, and critical current noise) are

suppressed. Also, it should contain as few Josephson junctions as possible. This can be done

by using arrays whose symmetry group is different from the tetrahedron symmetry group

Td. In fact, existence of other nonabelian arrays whose ground state is twofold degenerate

is an open question. Even though almost all symmetry groups do have multi-dimensional
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irreducible representations, only a few of them have two-dimensional ones.

We have studied some highly symmetric Josephson junction circuits and shown that they

have many very interesting properties. In particular, their ground state can be manifold

degenerate and stable with respect to perturbations violating the symmetry. Unfortunately,

experimental implementation of these highly symmetric systems requires a large number of

identical Josephson junctions and, therefore, is not a trivial task.

In this thesis we have also proposed an experimental method that can facilitate answer-

ing the second question stated in Section 1.3: is it possible to make any of the proposed

nonabelian quantum bits from an experimental point of view? Our method can be used for

initial characterization of Josephson junction quantum bits by measuring their spectrums

and decoherence times. We have also addressed the questions of readout and quantum

manipulations.

We focused on a simple pyramidal array to demonstrate the main ideas of our method.

However, it can be easily generalized and used for studying spectrums of any reasonable

Josephson junction arrays.
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Appendix A

The RSA algorithm

The algorithm RSA which is one of the best known algorithms for data encryption was

invented by R.Rivest, A.Shamir, and L.Adleman in 1977 and, therefore, is named after

them [80]. The idea that underlies the algorithm is very simple [81]. It is based on the

mathematical properties of prime numbers. We will describe the RSA algorithm in the

general case and then give a numerical example.

Imagine that we have two prime numbers p and q. In practice, these numbers should be

very large. We calculate the number n = pq and the so-called totient function φ(n) which

is defined as the number of positive integers less than or equal to n and comprime to n. It

can be easily shown that in our case,

φ(n) = (p− 1)(q − 1).

The next step is to find an integer e that satisfies two conditions: (i) e > 1; (ii) the largest

common divisor of the cotient φ(n) and e is equal to 1. The number e is called the public

key exponent1.

We will also need the private key exponent d which is defined as

de = kφ(n) + 1,

where k is an integer.

The public key consists of the modulus n and the public exponent e. It can be known

to the general public. The private key consists of the modulus and the private exponent d.

It should be kept in secret.

1A popular choice for the public exponent is e = 216 + 1 = 65537
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Imagine now that we have a text symbol m that must be encrypted. To do this, we

compute:

c = me mod n.

We should use the symbol c in our conversations.

We can decrypt the symbol c if the private key d is known:

m = cd mod n.

We see that the larger the numbers p and q, the more difficult to decipher our code for

an outsider.

To understand the RSA algorithm better, we consider one numerical example. We choose

the prime numbers p and q to be p = 83 and q = 47. As a result, we find n = pq = 3901

and φ(n) = (p − 1)(q − 1) = 3772. We set the public key exponent: e = 19. The private

key exponent is given by

de = 17 ∗ 3772 + 1 = 19 ∗ 3775,

so that, d = 3775.

The encryption function is

c = me mod n = m19 mod 3901,

while the decryption function is

m = cd mod n = c3775 mod 3901.
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Appendix B

Shor’s algorithm

Shor’s algorithm is an algorithm for factoring large numbers on a quantum computer. It was

invented by Peter Shor in 1994 [10]. In 2001, Shor’s algorithm was successfully implemented

by a research group from IBM [19, 38]. Using 7 quantum bits, they could factor the number

15 into 3 and 5.

While it has not been proven that factoring large numbers cannot be achieved on a

classical computer in polynomial time, one of the fastest known algorithms for factoring a

large number N (whose representation has �logN� bits) requires O
(
ec(logN)1/3∗(log logN)2/3

)
basic operations, or time that is exponentially large in N (see Appendix A). In contrast,

Shor’s algorithm requires O
(
(logN)2 ∗ log logN

)
basic operations on a quantum computer,

and then must perform O (logN) steps of post processing on a classical computer. Overall

then this time is polynomial. Of course, one quantum basic operation can be much slower

than one classical basic operation. However, if we speak about very large numbers N , the

quantum computer seems to be much more efficient.1

It is generally accepted to separate classical and quantum parts of Shor’s algorithm.

The classical part can be implemented on a classical computer. What is really important

and makes the algorithm so efficient is its quantum part.

To describe Shor’s algorithm in detail we need to prove a simple lemma.

Lemma. Let (N , a) be a pair of integer numbers and assume that a < N . If r is the period

1Shor’s algorithm is not the only useful algorithm that seems to run faster on a quantum computer.
Approximately at the same time when Peter Shor invented his algorithm, L.K.Grover developed a quantum
algorithm to find an item in an unsorted array of N elements in O(N1/2) basic operations [8]. No classical
algorithm can guarantee finding the item in less than N operations, even though some of the known classical
algorithms can be very efficient for special types of sorted arrays.
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of the function

f(x) = ax mod N (II.1)

and r is an even number such that ar/2 �= −1 mod N , then the number N is composite

and the factors of N are given by gcd(ar/2 ± 1, N), where gcd(x, y) is the greatest common

divisor of x and y.

Proof.

We have (f(x+ r) = f(x) since r is the period of f(x))

f(0) = 1 mod N = 1 =⇒ f(r) = ar mod N = 1.

Therefore,

ar − 1 = (ar/2 − 1)(ar/2 + 1) = 0 mod N = pN, (II.2)

where p is an integer number. The last equation can be satisfied in three cases: (a) N

divides ξ = (ar/2− 1) but does not have any nontrivial common factors with η = (ar/2+1);

(b) N divides η but does not have any nontrivial common factors with ξ; (c) N has a

nontrivial common factor with each of ξ and η.

We consider all these cases. The number N cannot divide ξ because r is the smallest

positive integer such that ar = 1 mod N . Therefore, (a) cannot be true. The case (b)

cannot be true either because ar/2 �= −1 mod N .

Imagine now that gcd(ξ,N) = 1. In this case, it should be also gcd(η,N) = 1 as we

have shown above. We have

kξ = mN + 1 =⇒ kξη = mηN + η,

where k and m are some integers. We obtain from (II.2):

kpN = mηN + η,

that is, the integers N and η must have nontrivial common factors. But gcd(η,N) = 1 and

we get a contradiction. Therefore, the greatest common factor of N and ξ (as well as the

greatest common factor of N and η) cannot be equal to 1.
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We see that the integers gcd(ξ,N) and gcd(η,N) are divisors of N . If they are prime

numbers, there is only one factorization of N :

N = gcd(ar/2 + 1, N) · gcd(ar/2 − 1, N).

�

We can know describe Shor’s algorithm which is based on the lemma. The classical part

of the algorithm is very simple. Imagine that we want to factorize the large number N .

First, choose a number a < N and calculate the greatest common divisor gcd(a,N)2. If

gcd(a,N) �= 1 then the problem can be reduced to much simpler problem of factorizing the

numbers gcd(a,N) and N/gcd(a,N) which can be solved using either Shor’s algorithm or

any classical algorithm.

If gcd(a,N) = 1, we need to compute the period of the function (II.1). If r is an odd

number or ar/2 = −1 mod N , we have to start from the very beginning and choose another

number a < N . Otherwise, we use the lemma and obtain the factors of N which are given

by gcd(ar/2 ± 1, N).

As one can see, the key step of the classical part is computation of the period r. Classical

computers can do this but all known classical algorithms are extremely slow. Shor was the

first to realize that quantum computers can help here. The quantum part of Shor’s algorithm

calculates the period r of the function (II.1).

Imagine that we have two independent systems, with each of them containing n =

�log2N� quantum bits. Also imagine that we managed to prepare the initial state |ψ0〉
given by

|ψ0〉 =
(

1√
N

N−1∑
x=0

|x〉
)

⊗ |0〉 = 1√
N

N−1∑
x=0

|x〉 ⊗ |0〉.

We apply the quantum function (II.1) to the state |ψ0〉:

|ψ〉 = Uf |ψ0〉 = (1⊗ f(x))|ψ0〉 = 1√
N

N−1∑
x=0

|x〉 ⊗ |f(x)〉

2The most efficient algorithm for doing this is Euclid’s algorithm [81, 82].
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The calculation by itself is done. Now we need to extract the information from the quantum

computer. This is not so trivial because we destroy the quantum information when we

perform our measurement. We have to repeat our calculation and measurement many

times and find probabilities of all possible different outputs. Analysis of these probabilities

will give us the answer.

Peter Shor have found a way to minimize the number of repetitions3. He used the inverse

Quantum Fourier Transform:

Uqf |x〉 = 1√
N

N−1∑
y=0

e2πixy/N |y〉

Upon application the unitary transformation Uqf to |ψ〉, we obtain

|ψqf 〉 = (Uqf ⊗ 1)|ψ〉 = 1

N

N−1∑
x=0

N−1∑
y=0

e2πixy/N |y〉 ⊗ |f(x)〉.

Now we perform measurements in the basis of |y〉⊗|f(x)〉 and compute the probabilities

of all possible outputs4. The probability of obtaining the state |y0〉 ⊗ |f(x0)〉 is equal to

P (x0, y0) = |〈y0 ⊗ f(x0)|ψqf 〉|2 = 1

N2

∣∣∣∣∣∑
b

e2πi(x0+rb)y0/N

∣∣∣∣∣
2

=
1

N2

∣∣∣∣∣∑
b

e2πirby0/N

∣∣∣∣∣
2

.

Let’s find all extremal points of P (x0, y0). We have

N2P (x0, y0) = φ(α) =
∑
b

∑
b′

e2πiα(b−b′),

3Generally, Shor’s algorithm requires up to 30 repetitions.

4We should not forget that the function (II.1) has a period r, so that, for any x,

|f(x+ r)〉 = |f(x)〉.
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Figure B.1: The dependence φ(α) in the case where N = 112, a = 17, r = 6. One can see
that the probability of the corresponding output is extremely small everywhere except for
the points where α is close to an integer.

where α = y0r/N . The maximum of φ(α) is observed at the point α = α0 where

0 =
dφ

dα
=

∑
b

∑
b′

2πi(b′ − b)e2πiα(b
′−b) =

= 2πi

[∑
b′

b′e2πiαb
′ ∑

b

e−2πiαb −
∑
b

be−2πiαb
∑
b′

e2πiαb
′
]
=

= 2πi
∑
b

be2πiαb
∑
b′

(
e2πiαb

′
+ e−2πiαb′

)
=

= 4πi
∑
b

be2πiαb
∑
b′

cos(2παb′) = 0.

This expression can be equal to zero if and only if

∑
b

be2πiαb = 2i

bmax∑
b=1

b sin(2παb) = 0. (II.3)

The series converges only if α is an integer. It follows from (II.3) that the probability of

obtaining the state |ψy0,x0〉 = |y0〉 ⊗ |f(x0)〉 is large only if y0r/N is very close to some

integer value (see Fig. B.1). Therefore, if we repeat our experiment many times, we can

assume that the value y0 that is shown by our measurement in each of these repetitions

is almost always corresponds to the case where α = y0r/N is an integer (or very close to

an integer). Since in each measurement we know y0 and f(x0), we can calculate y0/N and
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extract r = r(α) for all possible values of α:

r(α) =
α

y0/N
, α = 1, 2, ..., α ≤ (N − 1)2

N
.

Now for each value r = r(α) we can check if it is really the period of f(x):

f(x+ r(α)) = f(x). (II.4)

If (II.4) is satisfied for some α then the period of the function f(x) is found and we are done.

If for any α, (II.4) is not satisfied, we have to repeat our measurement and our calculation

with another y0.

As soon as the period r is known, it can be used in further calculations of the classical

part of the algorithm.
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Appendix C

Quantum error correction

One of the five most important criteria that any industrial quantum computer must satisfy

[13] says that the level of noise affecting quantum bits and logical gates should be low

enough (correspondingly, the decoherence time should be long) to make implementation of

at least the simplest quantum algorithms possible.

However, it is extremely difficult to build a system that is scalable and whose decoherence

time is long. Therefore, another approach has been invented. In 1994, Peter Shor proposed

the so-called quantum error correcting code [83].

The main idea used in Shor’s quantum error correcting code, redundancy, has been

borrowed from the classical theory of computational errors. In this theory, if we have a

classical bit that must be protected against accidental errors and a sequence of classical

logical gates that must be applied to the bit, we can make a few exact copies of the bit,

apply the sequence of the logical gates to each copy and compare the states of all the bits

after each operation. If some of them disagree with the majority, we can assume that an

error occured and fix the state of the renegades. One can see that we need to have at least

three bits to implement this error correction scheme.

Of course, there is a non-zero probability that more than half of the bits flip due to

the error. However, this probability is extremely small. The more bits we have, the less

probability of missing the error is.

Similarly, Shor notices that if we have a quantum bit that contains some quantum

information, we can make a few copies of the quantum bit in the same quantum state1.

1Of course, the so-called no-cloning theorem forbids creation of perfectly identical copies [84, 85]. How-
ever, it is still possible to produce imperfect copies [86, 87].
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If after a unitary transformation, the quantum states of some of them are different from

the quantum states of the majority, we can conclude that these qubits’s states have been

corrupted and apply suitable one-qubit unitary transformations to fix the errors.

The main problem here is that in the quantum case, we can potentially destroy quantum

information if we try to compare the quantum states of the qubits because we have to

use some measurement for comparison. Shor’s main invention is the so-called syndrome

measurement which can determine if a qubit’s state has been corrupted but does not tell us

anything about the quantum state itself. This measurement does not destroy the quantum

information and allows us to fix all errors.

Shor’s quantum error correcting code requires at least 9 qubits per one logical qubit for

its implementation because in the quantum case there are two different types of errors: flips

and phase errors.

However, there exist a few more complicated quantum error correcting codes which use

a smaller number of quantum bits. First of all, this is Andrew Steane’s error correcting

code which requires only 7 qubits [88]. A generalization of Shor’s and Steane’s concepts

are the CSS codes named after A.R.Calderbank, P. Shor, and A.Steane [88, 89, 90]. The

CSS codes require at least 5 physical qubits per one logical qubit for their implementation.

A more general class of codes (encompassing the former) are the stabilizer codes of Daniel

Gottesman [91].

A new very interesting family of error correcting codes was invented in 2006 [92]. It

was noticed that the noise in physical qubits is strongly asymmetric: phase errors occur

much more frequently than bit flips2. One can take an advantage of this asymmetry and

implement error correcting codes that require only 2 to 3 physical qubits per one logical

qubit.

In practice, each unitary transformation U can differ from the intended transformation

2For example, in a typical NMR device T1 ∼ 10− 100 s, T2 ∼ 1 s [19]; in superconducting phase qubits
T1 ∼ 10 μs, T2 ∼ 100 ns [50]; in superconducting charge qubits T1 ∼ 100 ns, T2 ∼ 1 ns [40]; in spin dot
qubits T1 ∼ 1 μs, T2 ∼ 10 ns [93, 94]
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U0 by some small amount of order ε:

U = U0(1 +O(ε)).

After about 1/ε unitary transformations are applied, these errors accumulate and induce

a serious failure. We can avoid the failure using some error correcting code. However, if a

sequence of unitary transformations is long enough and the typical magnitude of errors ε is

large enough, even error correcting codes will not be able to help. Provided that we have the

necessary number of physical qubits per one logical qubit (the number depends on the error

correcting code we choose to use), we can correct all errors in quantum computation of arbi-

trary length as soon as the magnitude of these errors is less than some small predetermined

threshold ε [95]. There are different estimates of this threshold [14, 59, 60, 62].

Some of the quantum error correcting codes have been implemented experimentally

[96, 97].

In 1997, Alexey Kitaev proposed an idea of the so-called topological quantum codes [98].

Even though the mathematical tools used by Kitaev are rather complicated, his basic ideas

can be easily understood from a physical point of view.

Kitaev notices that classical computers do not require any error correction schemes even

though they do interact with the environment. It becomes possible due to the remark-

able physical properties of magnetic materials that are used to make classical memory.

Magnetism exists due to interaction of quantum spins of electrons within a material. The

ferromagnetism is defined as the state when the electron spins all point in the same direc-

tion. Each spin in a ferromagnetic classical bit interacts with the environment and with

the other spins. The latter interaction is much stronger than the interaction with the en-

vironment. If one of the spins flips at some moment, the interaction with the other spins

immediately makes it flip back. We can say that the classical magnetic bit corrects itself if

an error occurs.

A natural question arises: can we make a quantum bit that will correct itself? Kitaev

gives a positive answer but emphasizes that the task is rather difficult. He considers a very

special Hamiltonian with local interactions and shows that quantum computation can be
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implemented if quantum bits are represented by the so-called non-Abelian anyons, that is,

excitations of this Hamiltonian which undergo a nontrivial unitary transformation when

one excitation moves around the other.

At the present time, we know a variety of two-dimensional physical systems that have

such excitations (for example, the fractional Quantum Hall Effect and sheets of graphite3).

The anyon approach has been further developed in [75, 99, 100, 101, 102, 103].

3It’s very easy for electrons in graphite to move within a plane, while jumps between different planes are
strongly suppressed.
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