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ABSTRACT OF THE DISSERTATION

Efficient Learning of Relational Models for Sequential

Decision Making

by Thomas J. Walsh

Dissertation Director: Michael L. Littman

The exploration-exploitation tradeoff is crucial to reinforcement-learning (RL) agents, and a

significant number of sample complexity results have been derived for agents in propositional

domains. These results guarantee, with high probability, near-optimal behavior in all but a

polynomial number of timesteps in the agent’s lifetime. In this work, we prove similar results

for certain relational representations, primarily a class we call “relational action schemas”.

These generalized models allow us to specify state transitions in a compact form, for instance

describing the effect of picking up a generic block instead of picking up 10 different specific

blocks. We present theoretical results on crucial subproblems in action-schema learning using

the KWIK framework, which allows us to characterize the sample efficiency of an agent learning

these models in a reinforcement-learning setting.

These results are extended in an apprenticeship learning paradigm where and agent has

access not only to its environment, but also to a teacher that can demonstrate traces of

state/action/state sequences. We show that the class of action schemas that are efficiently

learnable in this paradigm is strictly larger than those learnable in the online setting. We link

the class of efficiently learnable dynamics in the apprenticeship setting to a rich class of models

derived from well-known learning frameworks.

As an application, we present theoretical and empirical results on learning relational models

of web-service descriptions using a dataflow model called a Task Graph to capture the important
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connections between inputs and outputs of services in a workflow, with experiments constructed

using publicly available web services. This application shows that compact relational models

can be efficiently learned from limited amounts of basic data.

Finally, we present several extensions of the main results in the thesis, including expansions

of the languages with Description Logics. We also explore the use of sample-based planners to

speed up the computation time of our algorithms.
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Chapter 1

Introduction

1.1 The Art of the State and the State of the Art

It has been called a “state” (Sutton & Barto, 1998), a “context” (Martino et al., 2006), a

“situation” (McCarthy, 1963), and a myriad of other names, but whatever term you use, it’s a

description of the important facts or impressions of the world that influence our decisions. Since

this concept is central to the goals of Artificial intelligence (AI) (Russell & Norvig, 1995), it is no

surprise that so much work has been done on creating better representations to encode states.

But somewhat paradoxically, while early work in AI employed powerful generalized models

steeped in logic (McCarthy, 1963), most of the modern works in the reinforcement learning (RL)

(Sutton & Barto, 1998) subfield of AI instead use “bare bones” propositional representations.

This thesis is primarily about RL algorithms that use more powerful representations, akin to

the early AI models.

Traditional propositional representations of states and dynamics can model domains like the

grid world in Figure 1.1 in a number of ways. For instance they might use

• A discrete flat state space where every square in the grid is its own state and there is no

generalization on the dynamics across squares.

• A continuous factored state space where the state might be described as continuous coor-

dinates of the agent.

• A propositional discrete factored state space over discrete x and y values with some known

structure (like independence of x and y when moving), but where each possible x and y

value needs to be learned about independently.

Each of these representations has benefits and drawbacks and each one might be the right

representation for different tasks. The point here is not that there is one best representation,

but that the engineering of states, and of domain descriptions in general, is really an art in
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Figure 1.1: A simple RL grid world and some different representational views.

today’s machine learning. The representations listed above are common in the literature, and

many algorithms have been developed for using these models, but as we will soon see, they

are fundamentally limited in their ability to compactly represent many domains. This thesis

concentrates instead on relational representations that, in this case, could model dynamics like

“moving up increases the y coordinate by 1” (bottom right in Figure 1.1), a kind of generalization

not available to the “flat” propositional learners.

In the rest of this section, we describe some background on traditional reinforcement learning

problems, relational representations, and our goal of melding the two. We cover most of the

issues described below in far greater detail throughout the thesis, particularly the expanded

background description in Chapter 2, but here we provide a brief overview of the main results

of this document.

1.1.1 Exploration vs. Exploitation: A Classic Trade-off

One of the most prominent dilemmas in the reinforcement learning (Sutton & Barto, 1998)

paradigm, is determining when an agent should perform actions that exploit its knowledge
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about its environment versus actions that explore the environment—better refining its model

of the dynamics so it can later exploit a more complete model. For instance, suppose an agent

in the simple grid world above knew about all the rewards in each of the cells except for the

top-right cell, where it is uncertain what the reward is. The decision a learning agent faces in

such a situation, is whether to exploit its current knowledge of the world by performing actions

that avoid the unknown cell, or go to the top right corner and find out what the reward value is

there. Notice there is a some risk here. If the top right corner actually had a reward of −10, all

the steps going there would essentially be wasted. On the other hand, if the agent never went

to the top right, it might consistently miss out on a reward of +10. The trade-off is non-trivial

because in real domains, agents can’t realistically be expected to explore every possible state

of the world, and especially shouldn’t if they have already found an optimal way to perform a

task.

Making decisions about when to explore, and when to just exploit the known model is the

crux of many works in reinforcement learning, especially in model-based RL. However, almost

all such works have focused on the limited propositional representations described above. For

instance, several works (Kakade, 2003; Strehl et al., 2009; Auer et al., 2007) have derived sample

complexity bounds for flat MDPs. These results bound the worst-case number of steps where an

agent is acting suboptimally or limit the amount of lost reward (the so-called regret) incurred

over the agent’s lifetime. However, in both cases, these (polynomial) bounds are based (among

other factors) on the number of states in the domain. While this is acceptable for tiny grid

worlds like the one in Figure 1.1, in the real world, such bounds are not as helpful since the

number of ground states based on the agent’s sensors may be extremely large.

Moving up the generalization ladder, a number of works (such as Kearns & Koller (1999);

Strehl et al. (2007)) have also derived sample complexity bounds for more general propositional

models, such as Dynamic Bayesian Networks (DBNs) (Dean & Kanazawa, 1989), an example of

which appears in the bottom left of Figure 1.1. In learning DBNs, the exploration-exploitation

trade-off can be reformulated as one where the agent has to choose between exploiting the part of

the Bayes net structure and parameters it is certain of, versus exploring and performing actions

that will teach it more about the true underlying structure and parameters of the network. In

this case however, the sample complexity bounds do not depend explicitly on the size of the

state space. Instead, the bounds are only polynomial in the number of factors (assuming they

have small in-degree), which is often logarithmic in the number of states. This thesis is mainly
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focused on deriving bounds that similarly scale sublinearly with the size of the state space, but

in domains described using an even more powerful representation: relational models.

1.1.2 Relational Representations

While algorithms using propositional representations have performed admirably in the domains

they are built for, their weak representational power limits the type of domains they can actually

be applied in. Their main deficiency is that they cannot scale in large domains with repeated

structure in the dynamics. For instance, consider the classic Blocks World domain illustrated

in Figure 1.2. The domain consists of a set of |O| objects, specifically |O| − 2 blocks, a hand,

and a table. Blocks can be picked up and put down, or in some variants, moved from one

block to another in one fell swoop. Either way, there is considerable repetition in the domain

dynamics. Picking up block a has virtually the same effect as picking up block b; only the

name of the block is different. In such cases, an agent that learns the dynamics of picking up

any block X has a significant advantage over an agent that reasons about each individual object

separately. But none of the propositional representations above make use of this structure. The

number of states in the flat MDP model of blocks world grows exponentially with the number

of blocks (there are over 400, 000 states with just 8 blocks). And the propositional DBN does

not fare much better, because it needs to add factors for every ground proposition (On(a, b)

and On(b, c) need to be separate factors), and most of these factors are highly inter-related

(the in-degree of each factor grows with the number of objects), so both representations end up

being exponentially large in the number of objects.

In contrast, relational representations exploit this repeated structure in the domain dynamics

resulting in models whose size is independent of the number of objects in a domain. They do so

by representing transitions with compact rules that we generally call relational action schemas.

An example of such a rule is the stochastic STRIPS operator for the move action shown in Figure

1.2. This action description uses variables (X, From, To) to represent generic objects being

moved. In this specific language, pre-conditions enforce type and state constraints that must

hold for the action to work and Add/Delete lists describe the (again variablized) probabilistic

effects of an action. By using variables, the effects of an action can be described regardless

of the number of ground atoms in the domain, perfectly capturing the intuition about moving

generic blocks described earlier.

In recent years, a number of efforts have been made to use such relational state and action
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Figure 1.2: Blocks world and a Stochastic STRIPS operator for the move action. 10% of the
time the action has no effect.

descriptions, mostly within the fields of action schema learning (such as Pasula et al. (2007)) and

relational reinforcement learning (RRL) (Dzeroski et al., 2001). Work in action schema learning

usually focusses on taking logs of experience data (either fully observable state-action trajecto-

ries (Pasula et al., 2007) or partially observable action trajectories (Shahaf, 2007; Zhuo et al.,

2009)), with the goal of inferring the correct action models, such as the Stochastic STRIPS rule

in Figure 1.2. In contrast, work in relational reinforcement learning usually has more traditional

RL goals—instead of having a target model, an agent is judged based on the quality of its policy.

Most RRL work has considered a situation where experience is collected using epsilon-greedy

(randomized) or some other heuristic exploration (Dzeroski et al., 2001; Croonenborghs et al.,

2007b; Lang et al., 2010). From there, algorithms from the Inductive Logic Programming (ILP)

(Nienhuys-Cheng & de Wolf, 1997) community are used, usually to create relational representa-

tions of the value function itself (for instance a relational decision tree). While other methods

have come closer to our own in trying to create MDP models with these ILP techniques (such as

Croonenborghs et al. (2007b)), they are usually batch approaches—data is either already stored

or naively collected. In contrast to a large portion of the literature in traditional reinforcement

learning, and also in contrast to the emphasis on sample complexity results in behavioral cloning
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with relational models (Khardon, 1999b), the exploration-exploitation dilemma has not been

explicitly addressed in these works, or where it has, only heuristics have been considered as

solutions (Lang et al., 2010).

1.2 Bridging the Gap

This thesis’s main objective is to bridge this RL/RRL disconnect by bringing traditional RL-

style sample complexity analysis to sequential decision making domains where relational rep-

resentations are used. The algorithms and constructive positive results in this document allow

agents to learn generalized relational descriptions of otherwise large and unwieldy environments

(like blocks world) and still perform efficient (polynomial in the parameters of the individual

domain) exploration, limiting the number of steps needed to reach optimal behavior in a manner

consistent with earlier efforts with propositional representations.

We also go beyond this traditional RL setting in later chapters to consider the sample

complexity of learning action schemas in a setting (apprenticeship learning) where an agent has

access not only to the environment, but also to a teacher that can show it examples of policies

being enacted in the environment. We further consider apprenticeship learning in a real-world

application of learning web-service task descriptions from traces of users performing the task

(still a sequential decision making problem, but very different from traditional RL). In both

cases we again show how to bound the amount of experience (in this case interactions with

the teacher), needed to learn the relational models. This progression is expounded upon in the

roadmap below, but in a rare attempt at brevity, we can describe the results of this thesis in

one sentence as:

1.2.1 Thesis Statement

Compact relational models of actions, including action schemas and task-specific web ser-

vice descriptions, can be efficiently learned in the online-learning and apprenticeship-learning

paradigms, and used by agents that efficiently explore in corresponding sequential decision

making domains.
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1.3 A Roadmap for this Document

This section provides an outline of each chapter in this thesis, describing the different learn-

ing paradigms and sequential decision making problems considered in each chapter. We also

summarize some of the major results of each chapter at a high level.

The thesis progresses roughly from the highly theoretical results to more applied work. This

transformation can be seen clearly in the types of example and experiments conducted in these

chapters. At first, a number of “toy domains” are used to showcase and empirically validate

the algorithms introduced in each section. This is especially true in Chapters 3 and 4 where

domains like Blocks World and a variant of Logistics World (Minton, 1988) are used in most of

the experiments. This is partly done to showcase the algorithms in easy-to-understand domains,

but also because we are working in a somewhat uninformative learning paradigm (Chapter 3)

and using planners that are dependent on the (very large) size of the state space (both chapters,

but relaxed in Chapter 6). In contrast, Chapter 5 is largely application driven, applying the

learning paradigm from Chapter 4 and a more realistic relational representation to tackle a

real-world web-service modeling challenge. Many of the examples in that chapter are built from

real data and real-world third-party web services. While Chapter 6 mostly reverts back to the

“toy domains” of the earlier chapters, the extensions utilized in this chapter are designed to

push these earlier results towards use in real domains. These include the use of more complex

action languages and better planners for tackling large state spaces efficiently. We now present

more detailed summaries of each of the chapters.

1.3.1 Background Material

Chapter 2 introduces much of the background theory necessary for understanding the theoret-

ical results in this work. Topics covered include basic reinforcement learning terminology and

theory, basic model-based reinforcement learning algorithms like Rmax, and planning algorithms

like Value Iteration. We also describe the exploration-exploitation dilemma in reinforcement

learning and provide an extended treatment of the KWIK (“Knows What It Knows”) frame-

work (Li et al., 2008) for measuring the sample complexity of learning models in RL. While

some of the related work in this thesis is covered on a chapter by chapter basis, Section 2.4

presents a detailed description of the historical and state-of-the-art methods from the field of

relational reinforcement learning.
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1.3.2 Online Action Schema Learning

Chapter 3 describes a plethora of efficient reinforcement learning algorithms for different sub-

problems and types of dynamics for domains described with relational descriptions. Unlike

later chapters, the analysis in this chapter considers an agent’s experience to be confined to

the traditional reinforcement learning channel; an online agent taking steps in the world and

observing the changing state and rewards based on these actions. Because of this limited

form of experience, there are several negative results in this chapter, but, the findings are the

most comparable to traditional reinforcement learning results. That is, “sequential decision

making” in this chapter refers exactly to the traditional RL notion of choosing an action to

maximize possible long-term reward and solving the exploration-exploitation dilemma efficiently.

This latter quality is evaluated by whether or not the algorithms meet the KWIK criteria as

introduced in Chapter 2.

This chapter introduces terminology and definitions for a class of languages we call relational

action schemas. This class covers a wide array of languages that describe domain dynamics

with relational state descriptions, including traditional STRIPS and more advanced stochastic

descriptions. An example action schema for the action move(X, From, To) in Blocks World

appears in Figure 1.2. While we will not get into the technical details of the representation

here, it is important to note that in general, action schemas are composed of (1) A parameter-

ized action (move(X, From, To)), (2) some pre-conditions or conditions based on a relational

description of the current state, (3) a set of effects (perhaps conditional effects) that describe

how the action will change the state (the Add and Delete lists here), and (4) a probability

distributions over each effect set determining the frequency of each effect when the action is

invoked (in the example schema, the block is moved with probability 0.9 but nothing happens

with probability 0.1).

For this class of languages, we investigate several sub-problems that involve learning only

portions of the schemas while given others (for instance given the effects, how hard is it to learn

the pre-conditions and the effect distributions? What about just the distributions?). Each

of these sub-problems is in turn considered with different restrictions on the action schemas

themselves (for instance if they are deterministic or stochastic, or if they have pre-conditions

or conditional effects, and other restrictions like the size and type of the conditions). Each of

these different learning-problem/domain-constraint pairings elicit a different architecture and

set of component learning algorithms in the online setting, leading to a number of theoretical
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results. Some of the main theoretical results of Chapter 3 include:

• Learning the probability distributions over effects is a non-trivial problem due to “ef-

fect ambiguity” because multiple effects might look similar, making it impossible just to

“count” the frequency of each one. But a KWIK linear regression algorithm provides an

efficient solution to this learning problem.

• Large conjunctions are not efficiently learnable as pre-conditions or conditions governing

effects. But tractable algorithms are possible for conjunctions with only O(1) terms.

• Deterministic STRIPS effects are easily learnable, and more complex algorithms can be

used to learn effects in a number of stochastic STRIPS settings, including one where the

number of effects is known to be bound by a constant.

• A number of KWIK architectural solutions that combine component KWIK learners (like

the linear regression or small condition learners above) can be used to solve various com-

binations of the sub-problems (like learning just the conditions and effect distributions

when given the effects), and, with some assumptions, even the full action schemas are

efficiently learnable using these KWIK architectures.

1.3.3 Apprenticeship Action Schema Learning

While Chapter 3 performed analysis of learning relational action schemas in the traditional

(online) reinforcement learning setting, the class of domains that is learnable in this setting

is limited by the types of models that are KWIK-learnable. Unfortunately, many classes of

functions that are common with relational representations, such as conjunctions of more than

a few terms, are not KWIK-learnable for online RL agents. To circumvent this deficiency,

Chapter 4 considers learning such models in an apprenticeship learning protocol where an agent

can learn from both its own experience and can receive traces (trajectories of 〈state, action,

reward〉 tuples) of a teacher performing actions in the domain.

This new channel of experience slightly changes the type of sequential decision making

problems being considered and the nature of the exploration/exploitation trade-off. Instead of

trying to limit the number of suboptimal steps made by the agent during exploration, we instead

need to limit the number of times the teacher will step in to show the agent how to perform

a task. We do so by limiting the number of episodes where an agent executes a policy that

is outperformed by the teacher in the same domain instance. Hence, the sequential decision
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making problem is still one of an agent choosing actions, but instead of trying to maximize

long-term reward in the overall environment, it is just trying to take actions that do no worse

than its teacher.

While this dependence on the teacher’s policy may seem to be a drawback at first, one

should note that if the teacher is optimal, the agent will also learn to be optimal, so in that

case nothing would be lost versus the more limited traditional RL agents. Also, by essentially

limiting the agent’s online exploration, practical problems where an agent would not want to

explore a vast expanse of territory, or even worse fall off a cliff, are approachable thanks to this

guarantee. Moreover, we show that there is a much larger class of models that is learnable under

these conditions than in the traditional RL setting. These theoretical improvements allow us

to relax the restriction on the size of pre-conditions and conditions from Chapter 3 and have

implications of interest to the larger RL community. The major results of this chapter are:

• We introduce a new learning framework called Mistake Bound Predictor which covers

the classes of KWIK-learnable functions and Mistake Bound (Littlestone, 1988) learnable

functions and many combinations of these classes.

• We present a general theoretical result connecting learnability in this model class to ef-

ficient behavior under the “do no worse than the teacher” criteria for the apprenticeship

learning setting.

• Using these results, we can relax the size restrictions on learning pre-conditions in all the

learning problems from Chapter 3, allowing the conjunction to reference all the domain

literals.

• In the case of conditional effects, the size restriction can be similarly relaxed in the deter-

ministic case where the effects are given by using a clever k-term DNF learning algorithm.

1.3.4 Apprenticeship Learning of Web Service Descriptions

While the previous two chapters dealt mostly with theoretical issues and toy problems, Chapter

5 is about a specific application of relational models in the apprenticeship setting. Specifically,

we consider the problem of learning web-service task descriptions from traces of users performing

a task. These tasks run the gamut from mundane to complex, including tasks for looking up

and booking flights, filling in reimbursement forms for travel costs, and even buying birthday

gifts for colleagues. Each task involves invoking a sequence of web services, which can be viewed
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as parameterized actions, similar in form to the action schemas used in the theoretical portion

of this work.

But unlike those earlier examples, the sequential decision making problem in this setting is

not so much choosing actions (the sequence of web services that need to be invoked is known to

the agent), but rather choosing the correct parameters to those actions and making predictions

about their outcomes. This is different than the traditional reinforcement learning setting,

especially because we perform the analysis under the apprenticeship learning protocol. But

what makes it relevant to this thesis is that (1) relational models are necessary here to represent

the links between elements of the task (for instance realizing that the “departure city” for a

flight booking should be the flyer’s “home city”), and (2) there is a sequential component to this

problem because we often need to choose inputs to invoke a service in order to gain information

or because of requirements of a service used later in the task (for instance looking up flight

information to make sure it fits a user’s constraints before booking it).

While this chapter is focussed on practical matters, there are still some theoretical results

reported based on the number of traces needed (similar to the criteria from chapter 4) to learn

several classes of tasks. But a large portion of the chapter is also devoted to the problem of

mining the relational models from real data, because in this case the “traces” provided are only

assumed to be XML documents reporting the inputs and outputs of each service invocation (a

sort of structured log of users performing each task). The main results of this chapter are as

follows.

• We introduce a new relational representation for web-service tasks called a task graph

which stores structural and semantic links between the inputs and outputs of services as

well as between elements associated with different services.

• We link the learning of these representations to the apprenticeship learning results from

the previous chapter by showing, under certain conditions, these task graphs are mistake-

bound learnable from traces of users completing the tasks.

• We introduce several complex relations for selection of elements and rules for handling

missing objects and lists, which need to be modeled in order to understand the tasks. We

show that our task-graph representation and efficient learning algorithms can be adapted

for use with these new challenges.

• We present empirical results demonstrating our system learning tasks from real world
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Sample Efficient Sequential Decision Relational
Learning Making Representations

Sample Efficient Learning PAC-MDP RL PAC ILP

Sequential Decision Making PAC-MDP RL Relational RL

Relational Representations PAC ILP Relational RL

Table 1.1: Pairwise combinations of the three main features of this thesis that have been
considered in the literature. This thesis captures all three.

traces of XML documents showing clients invoking the services in the task. We show

experiments where the tasks are composed of services from single providers and also

multiple service providers (both Google and Amazon services used in different parts of a

task). Our system performs remarkably well in these situations, often learning the full

tasks with only a few traces.

1.3.5 Extensions

Chapter 6 explores several extensions of the theoretical (and more mainstream-RL) work pre-

sented in Chapters 3 and 4. First, where those chapters dealt almost exclusively with examples

from the Stochastic STRIPS language, we show that these results can be expanded to another

relational language from the literature (Object Oriented MDPs) that is covered by the rela-

tional actions schema family. We then investigate a class of action languages that go beyond

the simple relational representations studied in the bulk of this work to allow for constructors

from a powerful family of logical languages called Description Logics (Baader et al., 2003). This

portion is meant to bridge the gap between simple relational languages like STRIPS and the

more expressive Situation Calculus formalisms that allows full first order logic descriptions of

states. We present results that link the efficiency of such algorithms to well-studied operations

from the DL literature.

Finally, we present results concerning the use of sample-based planners for the large state

spaces considered in this work. This investigation is meant to speed up the computation time of

our algorithms, which hitherto have relied on planners that scale at least linearly with the size

of the state space (which is usually exponential in the number of objects in relational domains).

We show in this section that certain sample-based planners, which scale independently of the

state space size, can be integrated into our learning framework without sacrificing our sample

efficiency guarantees, thus expanding the practical reach of our algorithms. However, other

than in this section, we generally treat the computational burden of planning as an orthogonal

issue, instead concentrating on the sample efficiency of the learning algorithms.
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1.4 Common Threads

Above, we laid out a roadmap for the rest of this work, and while we cover a wide variety of

problems, we note here that there are several common threads running through the chapters.

Specifically, all of the algorithms perform sample efficient learning of relational representations

for sequential decision making problems. Combinations of these factors have occurred in the lit-

erature before (see Table 1.1), including work on efficiently learning policies in relational worlds

(Khardon, 1999b,a). However, these three properties have not been extensively studied together

as we attempt here. This is unfortunate because fast learning, generalized representations, and

chaining actions together, are fundamental problems in AI and in our understanding of human

decision making. While each factor can be studied in a vacuum, we contend that all three parts

must be considered together to paint a true behavioral portrait. So without further ado...
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Chapter 2

Background and Related Work

In this chapter, we cover a number of important frameworks, algorithms, and results that

underpin the theoretical and empirical studies carried out in later chapters. We begin by

describing some basic algorithms for reinforcement learning and frameworks for measuring their

sample complexity. Later in the chapter, we recount prior work on modeling action dynamics

with relational languages and then describe a branch of the lierature (RRL) that connects this

work back to reinforcement learning.

2.1 Reinforcement Learning

In this section we describe the general reinforcement learning (Sutton & Barto, 1998; Kaelbling

et al., 1996) (RL) framework, algorithms, representations, and some important theoretical re-

sults. We begin with a representation-agnostic description of the terminology and protocol that

underlies RL. Following that, we describe basic model-based reinforcement learning, which is

the class of algorithms considered throughout this work. We also describe planning algorithms

that are used in model-based RL, with specific attention on Value Iteration. After this, we

briefly discuss a “compact” propositional RL representation (factored MDPs) that uses gen-

eralization over the state space to make learning and planning more tractable in large, but

structured domains. Finally, we discuss some issues and algorithms related to the exploration

/ exploitation trade-off in RL, a topic we cover in far greater detail in the next section.

2.1.1 General Reinforcement Learning and Markov Decision Pro-

cesses

At the most basic level, a reinforcement learning agent interacts with its environment through

the protocol illustrated in Figure 2.1. At timestep t, the environment has some state st and

reports some observation ot to the reinforcement learning agent as well as a special observation

signal called the reward rt, which may also be based on the agent’s previous action. The agent
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Figure 2.1: The online RL protocol.

then is able to perform an action at in the environment, which along with the environment’s

current state, will determine (perhaps stochastically) the environment’s next state st+1, which

in turn produces a new observation and the cycle repeats. This back-and-forth interaction

continues over the agent’s lifetime, which may be infinite, have some finite horizon T , or be

episodic (see below). In this work, we consider this interaction as taking place over discrete

timesteps with no latency in the signals, though continuous time RL has been studied in the

literature (Puterman, 1994) and methods for dealing with latency in these signals have also

been addressed (Walsh et al., 2009a). The agent’s general goal during this interaction is not

necessarily to reach a specific state, but instead to maximize some function of the reward

sequence r0...rt (see Section 2.1.2 below) collected over its lifetime.

Delving deeper into the “environment box”, RL environments can be described using a

general representation called a Markov Decision Process (MDP) (Puterman, 1994), defined as

follows:

Definition 1. A general Markov Decision Process (MDP) is described by a 7-tuple

〈S, A, R, T, γ, S0, ST 〉 where S is a set of states the environment can be in, A is a set of ac-

tions an agent can take, R : S, A 7→ Pr[[Rmin, Rmax] ∈ ℜ] is a reward function determining rt,

T : S, A 7→ Pr[S] is a transition function determining state st+1 and γ ∈ [0, 1) is a discount fac-

tor, which measures the degradation of future rewards. S0 = Pr[S] is a probability distribution

over start states (determining s0) and ST is a set of terminal states for episodic environments

as defined below.

As an example of the basic MDP structures, in the simple grid-world in Figure 1.1, the set

of possible states is simply all 9 cells that the agent can occupy, the set of possible actions

are A = {Up, Down, Left, Right}, each of which have deterministic effects. Reward of +10 is

received if the agent enters the upper-right square (which is also a terminal state), while rt = −1

for all other state/action pairs.
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Figure 2.2: A simple Markov Decision process. The red (solid) action usually moves the agent
to the right but with probability 0.1 moves it left. The blue (dashed) action does the opposite.

Throughout this work, we assume both T and R are stationary (time invariant), though

we note that a portion of the literature has been devoted to non-stationary MDPs where these

functions can shift (perhaps adversarially) over time (see Lane et al. (2007)). While the example

above was deterministic, general MDPs can have non-determinism in both the transitions and

the rewards. An example of a basic non-deterministic MDP is depicted in Figure 2.2. There are

two actions in this MDP, a red (right) one and a blue (left) one, and each has a .9 probability

of achieving its intended outcome, and with probability 0.1 the unintended outcome occurs.

In a flat MDP, the states S have no room for generalization—that is states si and sj in S

where i 6= j have no inherent commonality and all that can be said about them is that they are

potentially different in terms of T and R. We call such representations flat MDPs and when

employing such a model, a reasonable representation for T and R is in a tabular form. That is,

T and R can be stored simply as tables with unique indexes for every 〈s, a〉 pair. But such tables

are potentially enormous in real-world domains . In this thesis, we will be investigating MDPs

that contain far more structure, so that even with exponentially (in the domain factors) large

|S|, compact models of T and R can be maintained without resorting to the tabular format.

When interacting with an MDP, an agent can be considered to be following a policy π : S 7→

Pr[A] with regard to its action selection. A policy is said to be stationary if the policy that

the agent uses at any time t is the same as the policy it uses at t + 1. Furthermore, a policy

is said to be deterministic if it maps each state to a single a ∈ A. The quality of a policy is

determined by a function of the rewards it garners over the agent’s lifetime, a subject we return

to in Section 2.1.2.
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Observability

Thus far, we have not discussed the observation function χ : S 7→ Pr[Obs], which (perhaps

stochastically) generates an observation for the agent from the world state. In general, if χ

takes on any stationary distribution where the observability property below does not hold, the

model becomes a Partially Observable Markov Decision Process (POMDP), where planning

and learning can become intractable (Littman, 1996) without extra structure. In this work, we

assume that the MDP is fully observable, meaning the following:

Definition 2. A Markov Decision Process is fully observable if the set of observations Obs

is a bijection onto the set of states S. That is, every state produces a unique observation.

We will however, briefly return to this partially observable setting when discussing related

work on relational RL models that are learned under these provably harsher conditions.

Episodic MDPs

A number of results in this thesis are for episodic MDPs where an agent interacts with the

environment until reaching a terminal state, one of the si ∈ ST , at which time the agent is reset

into a new initial state as dictated by the initial state distribution S0. We also often employ an

empirical “hard cap” on the number of steps an agent can take in an environment, which we

use simply to limit the length of experiments, though we return to the problem of “how long to

let a bad agent run” when we study the apprenticeship learning setting in Chapter 4.

Factored MDPs

Above, we have described MDPs in their most general form, the so called flat MDP, which has

a completely unstructured state space. That is, there is no correlation or similarity between

the effects of an action (or the rewards) when applied in states si and sj when i 6= j. But

this representation does not conform to the way we normally view the world. For instance,

if an agent finds that its alarm sensor triggers easily when it is out in the rain, the sensor

will activate if its in the rain at night or during the day. The states are wildly different in

terms of visibility, temperature, and other factors, but their commonality on a single factor

gives us a way to compactly describe its transitions for the sensor observation, say: “With

probability 0.8 the sensor activates when it is raining and it wasn’t on before”. Below, we

review a compact representation for propositional MDPs (the classical factored MDP) that
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formalizes such intuitions. This thesis, however, deals with an even further generalized and

compacted representation, relational MDPs, as introduced in Section 2.4.

A factored-state Markov decision process (fMDP) is an MDP, where a state s is the Cartesian

product of m smaller propositional literals, or factors S = l1 × l2 × . . . × lm. A standard

assumption (Kearns & Koller, 1999) in factored MDPs is that for each i there exist sets Γi

of size k = O(1) such that st+1[i] depends only on st[Γi] and at
1. That is, each factor is

dependent only on a small set of factor values from the previous timestep (whether the sensor

was on or not and whether it was raining) and the last action. The transition probabilities are

then T (~y | s, a) =
∏m

i=1 Ti(l
′[i] | s[Γi], a) for each l, l′ ∈ S, a ∈ A. Under these conditions,

the transitions can be compactly described using a Dynamic Bayesian Network (DBN) (Dean

& Kanazawa, 1989) as shown in the bottom-left representation in Figure 1.1. An analogous

assumption can be made for the reward function. Algorithms exist for planning in DBNs

with known parameters (for example, Guestrin et al. (2003b); Hoey et al. (1999)), for learning

transition probabilities (Kearns & Koller, 1999) and dependency structure (Diuk et al., 2009),

and for learning their reward functions (Walsh et al., 2009b).

Intuitively, DBNs capture the structure of transition functions where states are described in

terms of attribute-values for a set of features that is log(S). This makes them a very powerful

tool in RL because only this compact representation needs to be learned to know T (not the

full exponentially sized tabular form). However, in domains that contain objects DBNs need to

represent the changes to every object’s attributes with different factors. So if instead of having

one robot with a rain sensor, we had n such robots, the DBN representing each of their sensor

values would contain n unlinked copies of the same structure. This is intuitively unappealing

because we can describe this far more compactly with a “rule” about a generic robot’s sensor

dynamics as applied to all n robots. The relational MDPs used in this thesis will do just that.

2.1.2 The Value Function

A reinforcement learning agent’s goal is to maximize some function of the sequence of rewards

it sees while interacting with an environment. While a number of different functions have

been studied in the literature, including average reward (Mahadevan, 1996), in this thesis we

will consider maximization of expected discounted reward as calculated by the Value Function

1This can be relaxed to also allow members of Γi in the st+1 to capture correlated effects.
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(Puterman, 1994) induced by an MDP and a policy π.

V π(s) =
∑

a∈A

Pr(a|π)(R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′)) (2.1)

This equation itself represents a telescoping sum of the expected future rewards starting

from state s and following policy π thereafter. Specifically, for a sequence of states s0, s1... we

have

V π(s0) =

∞∑

t=0

γtrt (2.2)

It is known (Puterman, 1994) that using such a value function, there exists at least one

optimal policy π∗ such that ∀s ∈ S, V π∗(s) = V ∗(s) ≥ V π(s) and that there always exists

one such policy that is deterministic. We can write this equation (known as the Bellman

Equation (Bellman, 1957)) for V π∗

as

V ∗(s) = R(s, π∗(s)) + γ
∑

s′∈S

T (s, π∗(s), s′)V ∗(s′))

= max
a

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (2.3)

We will often find it useful when discussing reinforcement learning algorithms that have to

compare the values of different actions to consider a state-action version of the value function

Qπ(s, a) which is defined as:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V π(s′)) (2.4)

Intuitively, Qπ(s, a) simply represents the sum of expected discounted rewards for an agent

starting at state s, taking action a, and afterwards following policy π. Analogously, the Q-values

for actions followed by the optimal policy can be written as:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)) (2.5)
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Notice also that V ∗(s) = maxaQ∗(s, a) because the optimal policy can always be represented

deterministically. Since the ultimate goal of a reinforcement learning agent is to select actions

to maximize this quantity, it is important that we have algorithms to calculate these values

given an MDP. The next section discusses such planning algorithms.

2.1.3 MDP Planning Algorithms

This section considers the general MDP planning problem defined as the following:

Definition 3. The MDP Planning Problem with accuracy ǫ is, given an MDP, find a policy

π that is ǫ-optimal, that is,
∑

a π(s, a)Qπ(s, a) ≥ V ∗(s)− ǫ.

Notice that this planning problem is different from the full reinforcement learning problem

because in the planning case, T and R are already known, and don’t need to be learned. Thus,

planning is simply a computational process, no interaction is needed with the environment.

In this section, since we are only considering general MDPs without any other structure, we

focus only on representation-agnostic planners which work by finding the fixed point of the set

of linear equations represented by the optimal value function for all states. Perhaps the most

intuitive method for finding such a fixed point is a Dynamic Programming solution to the MDP

planning problem called Value Iteration (Puterman, 1994) as described in Algorithm 1.

Algorithm 1 Value Iteration

1: ∀s, V (s) = 0
2: δ =∞
3: while δ > ǫ do
4: δ = 0
5: for s ∈ S do
6: oldV = V (s)
7: V (s) = maxa R(s, a) + γ

∑
s′∈S T (s, a, s′)V (s′)

8: π(s) = argmaxa R(s, a) + γ
∑

s′∈S T (s, a, s′)V (s′)
9: if ||oldV − V (s)|| > δ then

10: δ = ||oldV − V (s)||
11: end if
12: end for
13: end while
14: Return π

Intuitively, Value Iteration simply iterates through all of the states and updates their value

functions based on the Bellman Equation for the policy currently considered optimal and the

current values of the other states. This approach takes polynomial (in S and A) time per

iteration, and the number of iterations before convergence is known to be pseudo-polynomial in
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the accuracy parameter ǫ and the discount factor γ (for a more complete analysis see Madani

(2002)).

Other methods exist for planning in general MDPs, including linear programming (Bertsi-

mas & Tsitsiklis, 1997) (which provides strong polynomial time guarantees) and Policy Itera-

tion (Puterman, 1994). For most of the algorithms in this thesis that rely on a “general MDP

planner” all of these methods can be thought of as interchangeable, as they are each essentially

representation agnostic (everything is treated as a flat MDP). With that being said, several

variants of Value Iteration are presented in this thesis that exploit MDPs with specific struc-

ture, so in those cases analogues to the structural modifications would have to be developed for

each algorithm.

2.1.4 Model-based Reinforcement Learning Algorithms

Having covered the general MDP model and planning algorithms above, we can now return

to the reinforcement learning problem. Here we describe the model-based reinforcement learn-

ing setting, the framework used in most of this document. We will briefly discuss model-free

methods in a later section.

In model-based reinforcement learning, the agent maintains some model MA of the envi-

ronment’s dynamics (T and R) as learned so far and uses this internal model to decide how to

act next. This model is not necessarily (and in this thesis is almost never) a flat MDP or even

the same model class as the domain’s true encoding (if it has one). Model-based reinforcement

learning algorithms alternate between two phases on each timestep (see Algorithm 2). In the

first phase, the algorithm selects an action using a planner P (such as Value Iteration) based

on some interpretation of its internal model (MI
A). These interpretations fill in the unknown

(by some threshold described below) parts of the model so that it is usable to the planner. The

exact scheme used in instantiating this interpretation has a critical effect on the behavior of the

algorithm and is discussed at length in the next section and beyond.

In the second phase of model-based reinforcement learning, the agent receives feedback from

the environment based on the action it took (a new observation and reward). This feedback is

then used to update MA and the process repeats on the next timestep. While this architecture is

certainly elegant, a näıve implementation can falter, because the model interpretation involves

filling in parts of MA where there is little information to construct a perfect model. We now

describe how strategies for filling in these gaps affects an agent’s ability to explore and exploit
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its domain.

Algorithm 2 General Model-based RL

1: Agent knows S (in some form), A, γ, ǫ, δ
2: Agent has access to planner P guaranteeing ǫ accuracy
3: Agent has access to the environment E which is representable as MDP M
4: initialize agent model MA

5: s0 = start state
6: while Episode not done do
7: at = P .getAction(MI

A)
8: 〈st+1, rt〉 = E.Execute(at)
9: MA.update(st, at, rt, st+1).

10: end while

2.1.5 Exploration / Exploitation in Reinforcement Learning

Intuitively, the exploration/exploitation dilemma describes a situation where an agent has a

partially learned model with different degrees of certainty for different state-action pairs. In

such a situation, the agent must decide whether it is best to explore the environment, that is

travel to areas where it has uncertainty and learn more about the dynamics and rewards in

that area, or exploit the areas where it has great certainty by doing the best actions it can with

respect to the known model.

The most simple example of this dilemma is embodied in the k-armed bandit problem (Fong,

1995), which is a degenerate reinforcement learning environment with only a single state and

k actions. Each of the actions can be thought of as a slot machine with a payoff distribution

over [Rmin, Rmax], but this distribution is unknown for each arm. By the pigeon-hole principle,

at least one of these arms must be optimal, that is it has the highest expectation on reward.

On every trial, since the distributions are stationary, the agent should pull this optimal arm.

That is exploitive behavior, but in order to find that optimal arm, it needs to try the arms

systematically, which is exploration. One common measure of the sample complexity of this

problem (described more formally below) is the number of times the agent pulls a suboptimal

arm.

The solution to this trade-off is non-trivial as behavior at either extreme can lead to disaster.

If the agent pulls a suboptimal arm on the first try (t = 0), and receives reward r0 > Rmin,

and always exploits with no further exploration, it will continue to pull this sub-optimal arm

in perpetuity, resulting in an infinite sample complexity. Likewise, if the agent is constantly

exploring, essentially ignoring all the empirical evidence it has gathered and just pulling arms



23

at random, in the limit its sample complexity is also infinite. In the k-armed bandit problem,

an optimal solution to this dilemma with respect to the PAC framework (described in Section

2.2) was derived by Fong (1995). This algorithm simply maintains upper confidence bounds on

the reward function for each arm by storing the sample mean and calculating confidence bounds

using Hoeffding’s Inequality (Hoeffding, 1963). The agent then pulls, on each trial, the arm

with the highest upper bound. This solution has a provably polynomial PAC sample complexity

on the number of suboptimal arm pulls with probability (1− δ).

With this simple, but intuitive, example in mind, we now formally define a notion of sample

complexity for a reinforcement learning agent. Such definitions have taken on many forms in

the literature (Kakade, 2003; Auer et al., 2007), but all of these definitions subscribe to some

basic tenants.

• They have some failure probability δ, which gives the agent slack when learning in a

stochastic (and adversarial) environment.

• They only require ǫ optimality, and demand polynomial dependence on ǫ.

• They bound either the number of steps where the agent acts using a policy π that has

value less than V ∗ − ǫ , or the expected loss in value associated with following such a

policy.

In the first half of this thesis, we will use the definition of PAC-MDP (Strehl et al., 2009) and

the associated KWIK model-learning framework (Li et al., 2008) to analyze the complexity of

model-learning and reinforcement learning in a more general way. A topic for future study

involves the adaptation of the results of this thesis to related sample complexity measures (such

as regret (Auer et al., 2007)) mentioned above. Formally, a PAC-MDP bound on an agent’s

behavior is defined as follows.

Definition 4. An algorithm A is considered PAC-MDP if for any MDP M, ǫ > 0, 0 < δ < 1,

0 < γ < 1, the sample complexity of A, that is the number of steps t such that V At(st) <

V ∗(st)− ǫ is bounded by some function that is polynomial in the relevant quantities ( 1
ǫ
, 1

δ
, 1

(1−γ)

and |M |, where |M | is a measure of the model complexity) with probability at least 1− δ.

In an attempt to meet this criteria, we now consider two exploration strategies and their

analogous model interpretations for Algorithm 2. The first set of strategies is not sufficient for

PAC-MDP behavior but is mentioned briefly because of its use in the literature. The second
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strategy is considered here only for the case where the flat MDP has S = Poly(|M |), but we

will revisit this strategy for more general (compact) MDPs in Section 2.3.

Greedy Interpretations

Greedy interpretations such as ǫ-greedy and Boltzman exploration (Sutton & Barto, 1998) make

very strict interpretations of their learned models. For instance, the ǫ-greedy strategy is to use

the maximum likelihood model given the current data for MA, find its value function, and act

greedily with respect to this model except for a certain proportion of the timesteps (ǫ) where the

agent simply chooses a random action. These exploration techniques are often combined with

model-free RL approaches like Q-Learning (Watkins, 1989), which simply does the following

backup on every observed transition 〈s, a, s′〉:

Q(s, a) = Q(s, a) + α(r(s, a) + γ
′

max
a

Q(s′, a′)−Q(s, a))

It has been shown (Whitehead, 1991) that in simple MDPs where a high reward is only

reached by following a sequence of actions to a specific state, this dependence on randomness

to reach unexplored regions can lead to an exponential number of suboptimal steps, and hence

this exploration strategy is not PAC-MDP. Since greedy methods can lead to such exponential

blowups in general (flat) MDPs, these results are easily reproducible when using relational

MDPs. Thus, for the bulk of this thesis we instead focus on an optimistic exploration strategy,

which we now describe for polynomial sized flat MDPs.

R-max for flat MDPs

Instead of the strict interpretation of the learned model considered by greedy exploration strate-

gies, the R-max Algorithm (Brafman & Tennenholtz, 2002), as seen in Algorithm 3, takes an

“optimism in the face of uncertainty” approach. The algorithm is a specific instantiation of the

model-based RL template in Algorithm 2 and works by explicitly constructing an optimistic

model based on a “known-ness” parameter m. Intuitively, state-action pairs that have been

tried more than m times are considered to be known and their maximum-likelihood estimates

can be used for T and R. The other states are considered “unknown” and their transitions

are interpreted as taking the agent to an “R-max state” where maximum reward is gained in

perpetuity. This potential over-valuation of the under-explored regions will lead the agent to

act in a way so as to reach these areas, unless it can be fairly certain that better value can be
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obtained within the currently “known” MDP.

Algorithm 3 R-max (Brafman & Tennenholtz, 2002)

1: Agent knows S (in some compact form), A, γ, ǫ, δ
2: Agent has access to planner P guaranteeing ǫ accuracy
3: Calculate m = Poly(S, A, 1

1−γ
, 1

ǫ
, 1

δ
)

4: ∀s, a : count(s, a) = 0
5: for Each step do
6: Construct MA = 〈S ∪ smax, A, R̂, T̂ , γ where smax is a trap state with reward Rmax and

is reached by any < s, a > where count(s, a) < m
7: Solve V ∗

MA
(st) and choose greedy action at

8: 〈st+1, rt〉 = E.nextState(st, at)
9: if count(st, at) < m then

10: Update T̂ and R̂ based on 〈st, at, rt, st+1〉
11: end if
12: count(st, at) = count(st, at) + 1
13: end for

The analysis of the PAC-MDP sample complexity of R-max (Brafman & Tennenholtz, 2002)

relies on showing that with m = Poly(S, A, 1
ǫ
, 1

δ
, 1

1−γ
), with probability (1 − δ) the flat MDP

model reaches ǫ-accuracy with at most m suboptimal steps. The sample complexity of learning

the model is then combined with known results about the value of a policy in two slightly

different flat MDPs (Singh & Yee, 1994) to achieve a similar PAC-MDP bound.

Viewed this way, the exploration/exploitation dilemma in model-based reinforcement learn-

ing hinges on the efficient solution to a supervised model-learning problem where uncertainty

needs to be quantified (m− k more samples until this pair is known) or at the very least qual-

ified (“I don’t know what happens in this state, but I know what this other one is like”). For

flat MDPs, R-max does just that, and the analysis is fairly intuitive (each sample increases

our certainty on the model and the agent is encouraged to explore unknown parts). But for

compact representations like factored MDPs or the relational MDPs considered in this thesis,

S is exponential in |M |. In such representations, the dependence of the algorithm on |S| does

not guarantee PAC-MDP behavior, and in fact guarantees that in most cases we won’t have

efficient exploration, as the agent will continue to explore different state configurations that

it ought to already know about (for example, the robot in the rain trying every street corner

in the city to determine how its rain sensor acts there). In order to get a proper feel for the

possible sample complexity results in a wider class of models, we now delve into the literature

on traditional (supervised) computational learning theory.
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2.2 Sample Complexity in Supervised Learning

Model learning can be thought of as a supervised-learning problem where an agent’s interaction

with the environment consists of an infinite sequence of predictions on inputs provided from the

environment. Formally, the realizable supervised learning paradigm has the following general

form:

• There is a (potentially infinite) set X of possible inputs and a (again possibly infinite) set

Y of possible labels.

• There are accuracy and certainty parameters ǫ and δ.

• There is a stationary hypothesis h∗ chosen from a hypothesis class H such that on every

timestep t, E[yt] = h∗(xt)

There are now a large number of frameworks for measuring sample complexity in supervised

learning (Valiant, 1984; Littlestone, 1988; Auer & Cesa-Bianchi, 1998; Helmbold et al., 2000; Li

et al., 2008). Each of these places different assumptions on the way that each xt is drawn from

X (i.i.d or adversarially), what kind of predictions the learner has to make (for example, can

the learner decline to make a prediction?), and what sort of interaction counts as a sample. One

early, and widely used, frameworks for measuring sample complexity was PAC (Probably Ap-

proximately Correct) (Valiant, 1984), under which inputs xt are drawn i.i.d. from an unknown

(but stationary) distribution over X , and the sample complexity is the number of timesteps

before, with probability (1 − δ), the learner can guarantee it is making ǫ accurate predictions

(||ŷt − h∗(xt)|| ≤ ǫ). However, these i.i.d. assumptions on inputs are rarely encountered in

the model-learning component of reinforcement-learning agents because their shifting policies

during exploration do not produce i.i.d. samples. For instance in a factored MDP, disregarding

certain factor combinations as unlikely based on the distribution of all states encountered so

far may be incorrect, because further exploration may show these combinations to be part of a

state that the optimal policy will visit many times. Below, we consider two different frameworks

(MB and KWIK) that do not rely on i.i.d. assumptions, and instead assume that each xt is

drawn adversarially from X . These two frameworks will be instrumental in our study of sample

complexity throughout this thesis.
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2.2.1 Mistake Bound Learning

The Mistake Bound (MB) framework (Littlestone, 1988) is designed only for deterministic

hypothesis classes where the true label is always provided by the environment. While this is

clearly insufficient for learning stochastic MDP models, we will make use of this framework in

the apprenticeship setting studied in Chapter 4, so we introduce it here and cover some of its

properties and learnable classes as well as its insufficiency for autonomous model-based RL.

Formally, the mistake-bound protocol is described in Algorithm 4. For every input, the

agent predicts a label, and if its prediction is wrong, it gets to view that input’s true label.

Notice that inputs are chosen adversarially by the environment (with no assumptions on the

input distribution).

Algorithm 4 The MB Protocol

1: The agent knows the input space X , output space Y , and the Hypothesis class H .
2: The environment chooses h∗ ∈ H adversarially.
3: for Each input x ∈ X chosen adversarially by the environment do
4: The agent predicts ŷ ∈ Y
5: if ŷ 6= h∗(x) then
6: The agent has made a mistake.
7: h∗(x) is revealed.
8: end if
9: end for

A hypothesis class H is said to be efficiently learnable in the mistake-bound setting if the

number of times the agent makes a mistake (ŷ 6= h∗(x)) can be bounded by a polynomial

function over problem’s parameters. For instance, in a situation where an agent was given an

input x ∈ [0...k] and had to predict a deterministic output from [0...k] for each x, an agent that

simply memorizes each x 7→ y mapping could MB-learn the function with at most k mistakes.

Here, we summarize a few results from the literature on mistake bound learning. Some of

these classes will be used extensively in Chapter 4, where we go into further detail on their

inner-workings and analyses.

• Conjunctions over n literals where the conjunction can contain any combination of 0’s and

1’s for each literal can be mistake bound learned (Littlestone, 1988; Kearns & Vazirani,

1994). The algorithm for doing so, which we call MB-Con, predicts false as the label

until it sees a positive example. After that, it maintains a set of literals lj ∈ LH where

lj = 1 for every positive example it has seen before2. If ∀ljt ∈ LH = 1 in xt, the agent

2For non-monotone conjunctions, the set of literals can be doubled to consider literals with0 values.
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correctly predicts true , otherwise it defaults to false . Further details are provided in

Section 4.2.1.

• k-term-DNF (disjunctive normal form of k = O(1) terms). k-term-DNF are of the form

(li∧ lj ∧ ...)1 ∨ ...∨ (...∧ ...)k , that is, a disjunction of k terms, each of at most size n. This

class of functions is known to be MB learnable (Kearns & Vazirani, 1994) by creating a

conjunction of new literals, each representing a disjunction of k original literals (for k = 3

we would have lijm = li ∨ lj ∨ lm), and then using the conjunction learning algorithm

described above.

Unlike PAC, MB does not rely on an i.i.d. assumption over the inputs, so it is a little closer

to what we need for the autonomous model learning in the reinforcement learning setting.

However, MB results are still insufficient for model learning that induces PAC-MDP behavior

because they fail the second criterion mentioned earlier: they do not keep track of model

certainty. To see why this trait is vexing, consider an MDP that models a combination lock

with n tumblers such that each tumbler can have values in {0/1} and there are n + 1 actions,

one to flip each tumbler, and one to “open” the lock. All rewards are −1 except for opening

the lock with the exact combination (where r = 0). Notice that learning the combination in the

MB setting can be done with a single mistake: the agent simply predicts “false” until it sees

the combination. However, for an RL agent using this MB hypothesis as its model, the “default

to false” predictions force it to assume every combination will result in the same outcome (not

open), and that none of them will have a reward that is any better than the others. There is no

explicit demarcation of what combinations have been tried before and which have not. Thus,

the MB learner provides no guidance for exploration and the agent is left to thrash at random.

Thus, MB learning is not sufficient for PAC-MDP learning. This incompatibility is addressed

in the following KWIK framework, which like MB, makes no assumptions about the distribution

over the inputs, but unlike MB, explicitly keeps track of which predictions it can make with

confidence, and which ones it does not know.

2.2.2 KWIK - A Framework for Model-Based Reinforcement learning

The KWIK framework (Li et al., 2008; Li, 2009) and associated protocol (Algorithm 5) are

similar to the MB setting described above in that inputs are picked adversarially, but there are

distinct differences:
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Learner Usage Bound
Coin-Flipping Binomial Distribution O( 1

ǫ2
1
δ
)

Dice-Learning Multinomial (n outcomes) Distribution O( n
ǫ2

n
δ
)

Enumeration Hypothesis class H H − 1
Union Combining k hypothesis classes (k − 1) +

∑
i Bi(ǫ/2, δ/k)

Table 2.1: Some simple KWIK-learnable classes and combination architectures for KWIK learn-
ers and their KWIK bounds for realizable hypothesis classes.

• Like the PAC framework, KWIK is designed for either deterministic or stochastic labeling

as the general goal is to predict the expected value of h∗(x). The labels provided to a

KWIK learner may be noisy observations z(xt) such that over time the expected label

yt = E[h∗(xt)], and the agent’s goal is to predict the correct expected value yt.

• Now, instead of always having to predict a label from Y , the learner has the option of

instead predicting a label or a unique symbol ⊥ (“I don’t know”), signaling the agent’s

uncertainty as to the true label for xt

• Labels (potentially noisy) are only provided when the agent predicts ⊥.

We will often describe the process of using this framework as simply KWIK-learning.

With these differences in the protocols, the definition of sample efficiency also changes in

the KWIK framework.

Definition 5. A model class is said to be efficiently KWIK-learnable (or just KWIK-learnable

when the meaning is clear) if and only if with high (1−δ) probability: (1) All ŷt predictions that

are not ⊥ are ǫ-accurate, that is ||ŷt−E[h∗(xt)]|| ≤ ǫ (or in the discrete case ŷt = E[h∗(xt)]) and

(2) the number of times ŷt = ⊥ is bounded by a polynomial function of the problem description.

Similarly, we can classify learning problems based on our ability to KWIK solve them using

the following definition.

Definition 6. A learning problem is said to be KWIK-solvable if and only if there exists a

KWIK algorithm for a model class (as stipulated above) that will make predictions for inputs in

the learning problem in accordance with the KWIK criteria.

Several simple KWIK learners and combination architectures for KWIK learners are listed

in Table 2.1, along with their accompanying KWIK bounds from Li (2009).

The relationships between PAC, MB and KWIK are summarized as follows. Any KWIK

algorithm for a deterministic hypothesis class can be turned into an MB algorithm by simply
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Algorithm 5 The KWIK Protocol

1: The agent knows the accuracy parameter ǫ and δ, the input space X , output space Y , and
the Hypothesis class H .

2: The environment chooses h∗ ∈ H adversarially.
3: for Each input x ∈ X chosen adversarially by the environment do
4: The agent predicts ŷ ∈ Y or ⊥ (“I don’t know”)
5: if ŷ = ⊥ then
6: z(x) is revealed. This is a noisy observation of h∗(x).
7: end if
8: end for

predicting a random element of Y any time the KWIK learner was going to predict ⊥. However,

an efficient MB learner for a hypothesis class does not guarantee an efficient KWIK learner. A

simple counter-example to this relationship is conjunction learning over n terms, as in the com-

bination lock example described above. MB can learn the conjunction by exploiting asymmetry

in the information content of the labeled examples. By defaulting to false, it is able to only

“count” the highly informative positive examples in its sample complexity measure. KWIK

learners are not afforded this luxury, because they must, with high probability, never make an

incorrect prediction. Hence, when learning a conjunction, a KWIK learner can make 2n − 1 ⊥

predictions, one for every new combination of literals, before it sees even one positive example.

The relationship to PAC is then straightforward because all MB algorithms can be turned into

PAC algorithms, but the reverse is not necessarily true (Blum, 1994).

As a “self aware” learning framework, KWIK lends itself to learning RL models (as elab-

orated on below) because, unlike PAC, it allows for adversarial inputs and unlike MB, KWIK

learners explicitly admit when they are uncertain about portions of the model, providing ex-

ploration guidance.

2.3 KWIK-R-max, A general Algorithm for Sample Efficient RL

We now return to the full reinforcement learning problem and will show how to generalize the

Flat-Rmax algorithm (Algorithm 3) to work for any model-class that is KWIK-learnable. We

first describe the algorithm and give a sketch of the previous analysis of its PAC-MDP property.

We then briefly list some domain classes that have been previously shown to be KWIK-learnable,

and therefore PAC-MDP learnable. These results are proven in far greater detail by Li (2009)

but are essential for the results described in the next chapter, and in Chapter 4 we will make a

similar connection between a framework related to MB and efficient RL in the apprenticeship

setting.
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KWIK-Rmax (Algorithm 6) is a model based RL algorithm that generalizes the ideas of the

original Flat Rmax (Algorithm 3) by replacing the “counts” on states with a reliance on KWIK

model learners. Specifically, instead of expressly enumerating the state space (which could be

exponentially large for compact models such as factored MDPs), the algorithm connects the

MDP planner (such as Value Iteration) directly to the KWIK model learner KL, which can be

queried by the planner to establish the actual state transitions. If, for a queried transition or

reward, KL predicts ⊥, this area of the state space is unknown (the analogue to count(s, a) < m

from Algorithm 3) and replaced by an Rmax trap-state transition.

Algorithm 6 KWIK-Rmax (Li, 2009)

1: Agent knows S (in some compact form), A, γ, ǫ, δ
2: Agent has access to planner P guaranteeing ǫ accuracy
3: Agent has KWIK learner KL for the domain
4: s0 = start state
5: while Episode not done do
6: MA = KL with ⊥ interpreted optimistically (Rmax state transition)
7: at = P .getAction(MA, s0)
8: Execute at, view st+1, KL.update(st, at, st+1).
9: end while

The following Theorem from Li (2009) establishes that this KWIK-Rmax algorithm is PAC-

MDP for efficiently KWIK-learnable models. It also links the sample complexity of the RL

agent directly to the sample complexity of learning the model, allowing us to concentrate on

the latter when establishing PAC-MDP results.

Theorem 1. (From Li (2009)): LetM be a class of MDPs with state space S and action space

A. If M can be (efficiently) KWIK-learned by algorithms KLT (for transition functions) and

KLR (for reward functions) with respective KWIK bounds BT and BR, then the KWIK-Rmax

algorithm is PAC-MDP.

The proof of the theorem (which is highly technical and can be found in detail in Li (2009))

relies on three properties of the model represented by KL: optimism, accuracy, and a bounded

number of surprises. Optimism here means that with high probability, the value function for a

partially learned model satisfies V ∗
MA
≥ V ∗

M , because of the Rmax-state transitions. Accuracy

and bounded number of surprises (equivalently bounded ⊥ predictions) follow from the two

criteria for efficient learning in the KWIK framework. The proof also relies on a version of

the simulation lemma, which establishes that if the learned model MA is sufficiently accurate,

behavior under policy π in MA will net similar expected values to π executed in M . More

formally, the lemma (originally due to Kearns & Singh (2002), though here a more specific
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version close to that from Li (2009) is presented) can be stated as:

Lemma 1. Let M and MA be two MDPs with the same S, A, and γ but the transition (T and

TA) and reward (R and RA) functions are such that there exists two constants ǫT and ǫR, such

that ||T (·|s, a)− TA(·|s, a)|| ≤ ǫT and ||R(s, a)−RA(s, a)|| ≤ ǫR where || · || is a 1-norm. Then

for all s ∈ S, ||V (s)− VA(s)|| ≤ ǫR+γVmaxǫT

1−γ
, where Vmax = Rmax

1−γ
.

This lemma can be extended to state/action value functions as well as the case where S is

uncountable (proofs of both cases appear in Li (2009)). We will make use of the contrapositive

of this statement (values for 1 MDP being very different from another means that one of their

transition or reward entries are very different) in our theoretical results later on.

In summary, if a class of MDP models is KWIK-learnable, the KWIK-Rmax algorithm

can be used along with the appropriate KWIK learner, and Algorithm 6 is guaranteed to be

PAC-MDP. This result generalizes RL sample complexity results in a number of propositional

domains, including compact models, that are known to be KWIK-learnable. These include

Flat MDPs, where KWIK-Rmax simply devolves into the Flat-Rmax algorithm introduced

earlier, and factored MDPs (Diuk et al., 2009; Walsh et al., 2009b). In the latter, the sample

complexity bounds are not dependent on the number of states, rather they depend on the

O(log(S)) number of factors, which is an exponential improvement over a näıve learner that

would flatten such a state space and learn about every possible combination of factors. Several

models of continuous dynamics (with S ∈ ℜn) are also known to be KWIK-learnable (Strehl &

Littman, 2007; Brunskill et al., 2008).

While these model classes are all of interest to the RL community and allow for general-

ization and tractable sample complexity in large state spaces, this thesis considers relational

MDPs where even more generalization and compression is possible because the dynamics of

individual objects are represented in terms of relations with variables. The next section intro-

duces relational languages and presents some results from the field of relational reinforcement

learning, though the exact formalism used in this work (relational action schemas) is presented

later (Section 3.1).
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2.4 Languages, Actions, and Learning for Relational Models

This section covers background material on the use of relational languages in reinforcement-

leaning-like domains. Such representations allow us to model transitions with even more gen-

erality than even the propositional DBNs mentioned above. This advantage is gained by using

action descriptions that contain variables, thereby representing transitions over generic objects

rather than over each individual grounding. For instance, in the Blocks World domain il-

lustrated in Figure 1.2, the relational Stochastic STRIPS rule in the diagram represents the

pre-conditions and effects of performing the move action on any 3 objects. It covers moving

a from b to c or moving b from the table to a or any other valid movement to a block. In

contrast, a propositional DBN or flat MDP both need to be trained on each of these transitions

separately.

The combination of relational representations and sequential decision making domains goes

back to the early days of Artificial Intelligence research, and has gone through many trans-

formations as the fields of machine learning, inductive logic programming, and reinforcement

learning each came of age. One major landmark in this evolution was the establishment of

the field of Relational Reinforcement Learning (RRL)(Dzeroski et al., 2001; van Otterlo, 2009),

which blended (mostly model-free) RL algorithms and relational state/dynamics descriptions.

While we cover a number of important and relevant works from this literature, a far more com-

prehensive history and portrait of this still maturing field can be found in the recent book by

van Otterlo (2009). We begin by describing very early work with relational languages for action

descriptions.

2.4.1 Early Approaches

The idea of using relational representations to model actions was used in many of the first the-

oretically grounded AI systems. These early works aimed to capture the most general version

of the world possible, often incorporating full (and undecidable) first order logic. Perhaps the

most famous of these frameworks is the Situation Calculus (McCarthy, 1963) (SC). The Situa-

tion Calculus is an axiomatized logical framework that allows state descriptions to be expressed

in full first-order logic (quantifiers, disjunction, etc.) and transitions are calculated by applying

successor axioms (such as paintGreen(X) → PaintedGreen(X)) to the current situation. These

actions can also be described conditionally, based on full first-order logic formulas. Because of

this, planning with the situation calculus or related languages often involves the use of a first
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order theorem prover, as it is possible to encode undecidable problems in this language.

In contrast, the more restricted STRIPS (Fikes & Nilsson, 1971) language describes transi-

tions for actions without axioms and using variablized action descriptions made up of a list of

pre-conditions, an Add-list, and a Delete-list similar to the blocks world example in Figure 1.2

(but with only deterministic outcomes). A STRIPS operator (a single action description) can

only reference the variables in its action list and the action only succeeds (actually executes)

if all the relations in the pre-condition list (with variable substitution based on the action’s

ground parameters on invocation) are true in the current state. If so, the relations in the Add-

list are made true in the next state and the relations in the Delete list are made false. All other

grounded relations in the current state retain their current truth values.

States in STRIPS domains do not contain logical formulas, and instead are encoded just

as a set of grounded predicates that are currently true. Because of this, and the fact that

planners must consider grounded action invocations, it is often remarked that “STRIPS is

propositional”, which is true from the planning perspective, but not true in terms of the model

(which is what our learning agents will construct). That is, the STRIPS operators themselves

represent transitions using variables, and can be applied to multiple propositional groundings

(for example, the pickup(X) operator can explain pickup(a) or pickup(b)), so the language is

indeed relational. Because it does not come anywhere near capturing the complexity of first-

order logic, planning in STRIPS is more reasonable than in SC (STRIPS planning is P-Space

Complete (Bylander, 1994)) and several heuristic planners perform well in many benchmark

STRIPS domains (such as GraphPlan (Blum & Furst, 1995)).

Following the terminology of van Otterlo (2009), we can separate the families of languages

derived from these earlier works into two classes: Action Formalisms and Action Languages.

Action Formalisms are the languages derived from the likes of the situation calculus, such as the

programming language GOLOG (Levesque et al., 1997). The tell-tale characteristic of action

formalisms is their axiomatization of the world’s dynamics, that is, a logical grounding for the

progression of states, as encoded in the successor state and frame axioms (see (Reiter, 1991))

in SC. Because of this strong logical underpinning, Action Formalisms can support complicated

(such as first-order) logical formulas in the state description. In contrast, Action Languages,

like STRIPS or its stochastic variant, NID rules (Pasula et al., 2007), have no explicit axioma-

tization. States are usually represented with relations over ground objects (rather than having
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actual first-order formulas in the state), and the rules for transitions are somewhat less struc-

tured. While somewhat less rigorous, the restricted (and more manageable/tractable) state

spaces associated with action languages and the freedom to model dynamics without resorting

to logical axiomatization, make them a more practically reasonable and easier studied repre-

sentation for integration with reinforcement learning. This thesis considers action languages,

though we note this does not preclude the application of these ideas to action formalisms, and

in fact we move slightly in this direction with our consideration of a (more close to axiomatized)

language based on Description Logics in Section 6.2.

2.4.2 Inductive Logic Programming and Early Attempts at Action

Schema Learning

While hard-coded relational action languages for representing static domain dynamics made

their debut early on in the AI continuum (McCarthy, 1963), they were not very widely consid-

ered in the machine learning literature until the rise of the field of Inductive Logic Programming

(ILP) (Nienhuys-Cheng & de Wolf, 1997) in the early 90’s. ILP is a large field that studies the

supervised learning of relational concepts. A full summary of ILP results and algorithms is well

outside the scope of this thesis, but we mention a few algorithms and sample complexity results

here because ILP has had such a strong influence on the field of relational RL (covered below)

and because some of these supervised sample complexity results have a bearing on the model

learning components of our algorithms in later chapters.

Inductive Logic Programming algorithms take a set of training data, which can be thought

of as instances of grounded relational predicates (or rows in a relational database), with a label

on each instance marking it as positive or negative. For instance, suppose we were trying to

learn which states are goal states and which aren’t, in blocks world (assuming goal states are

instances where more than three blocks are in a stack). The instances in the training data

might look like3 {On(a,b), On(b,c)|+}, {On(a,b), On(b,table), On(c,table)|-}, and {On(a,b),

On(d,b), On(c,table)|+}. From these and other examples, an ILP algorithm would be expected

to infer the concept Goal ← On(X,Y) ∧ On(Y,Z) ∧ Block(X) ∧ Block(Y)∧ Block(Z).

In early ILP work, a number of sample complexity results were derived in the PAC frame-

work. These included early results on learning specific concept types with restrictions on the

constructors and structure of the definitions (Dzeroski et al., 1992) and even those encoded with

3Descriptions shortened for readability.
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Description Logics (Cohen & Hirsh, 1994). A number of important PAC results (including a

very fine separation of positive and negative learnability) in ILP as well as some elegant con-

structive algorithms came in a series of papers from Cohen (1995a,b). The positive algorithms

in these works concentrated on representing the most specific concept that covered the training

data seen so far and generalizing based on data, a tactic we employ in a number of algorithms in

this thesis. However, the community has somewhat moved away from such sample complexity

analysis in recent years in favor of studying heuristic learning algorithms in richer languages

(inching closer to full First Order Logic).

Around the same time that ILP was emerging as a powerful field in machine learning, a

number of researchers (Wang, 1995; Gil, 1994; Benson, 1996) began working on learning action

schemas, a generalized term for the action languages (like STRIPS rules) shown above. We

describe many of these in greater detail in Section 3.3, but we mention here that a number of

these algorithms began by applying ILP algorithms directly to logged experience or experience

provided by a “teacher” (for example Benson (1996)). Most of these algorithms used heuristic-

search style methods and their goals were more towards learning specific “gold standard” models

rather than optimal behavior. However, these action schema learners served as the first step

towards using RL algorithms in concert with relational representations, and in many ways can

be seen as primordial model-based relational RL algorithms. But interestingly, as the field

of RRL developed (as chronicled below), the algorithms progressed4 from these model-based

systems to model-free approaches (the opposite of the traditional RL timeline in many ways).

2.4.3 Relational Reinforcement Learning

The field of relational reinforcement learning (RRL) (Dzeroski et al., 2001; van Otterlo, 2009)

sprung into its current form following a series of talks and workshops in the late 90’s culminating

in the seminal journal paper entitled Relational Reinforcement Learning (Dzeroski et al., 2001).

That work introduced the Q-RRL algorithm which used the model-free RL algorithm Q-learning

as its learning backbone but connected it to a first order decision tree learner—using the tree

learner as a function approximator Q̂ in the Q-learning backup:

Q(s, a) = Q(s, a) + α(r(s, a) + γ max
a′

Q̂(s′, a′)−Q(s, a))

4Some might say digressed.
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This generic backup with approximators had been used in Q-learning with Neural Networks

and linear function approximators (for Q̂) (Sutton & Barto, 1998) and the use of relational

decision trees is a technique common in ILP. But here for the first time, a function approximator

specifically tailored to relational domains was employed in RL, and domains with sequential

decision making characteristics were considered from an ILP-perspective. From the RL side,

this was quite a leap because, all of a sudden, environments like blocks world (where Q-RRL

was extensively tested) could be considered regardless of the number of blocks.

By classifying states based on Q-values, Q-RRL implicitly performed a form of state ab-

straction known as Q∗-irrelevance (Li et al., 2006). This form of abstraction is known to be

“safe” in the learning setting in that treating states with the same Q-values under the optimal

policy as being the same does not stop model-based or model-free algorithms from converging.

Thus, a degree of the empirical success and the convergence guarantees for simple algorithms

like Relational TD(λ) (Kersting & Raedt, 2004) can be attributed to the use of this safe state

abstraction. We note the another algorithm introduced in the original RRL paper, P-RRL,

which used an unsafe abstraction known as policy-irrelevance (Jong & Stone, 2005) can fail to

converge.

One major drawback to Q-RRL was that it had to recreate the entire decision tree on every

step, forcing it to maintain a large number of instances and take an inordinate amount of

computation time on each step. This problem was alleviated by the introduction of the RRL-

TG algorithm (Driessens et al., 2001) which incorporated an incremental decision tree learner

(TG) into the Q-learning architecture, greatly speeding up the algorithm. Variants of the RRL-

TG algorithm dominated the RRL field for the next several years and achieved a modicum of

empirical success. For example, an instance-based implementation of this algorithm (Driessens

& Ramon, 2003) performed well in a diverse set of relational testbeds and in a larger empirical

study of RRL techniques (Dzeroski, 2002) it was used to play video games such as Tetris and

“Digger”.

Meanwhile, the planning community was developing a number of powerful representations

and new planning algorithms. For instance, Boutilier et al. (2001) introduced a version of Value

Iteration that was shown to provably converge for general first-order MDPs (FOMDPs) written

in a stochastic version of the Situation Calculus. This work then progressed to approximate

linear programming (Sanner & Boutilier, 2005), approximate policy iteration (Fern et al., 2006),

and linear function approximation (Sanner & Boutilier, 2006) for FOMDPs and work on a similar
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representation based on the Fluent Calculus (Großmann et al., 2002). By the middle of the

2000’s, the stage was set for another batch of RRL and action schema learning works, focussed

on more complex problems with more exotic planning and learning algorithms.

2.4.4 Later RRL Approaches

The next wave of RRL techniques used more exotic representations, better algorithms, or delved

into other areas of AI. For example, a new instance-based RRL algorithm that used graph

kernels to compare the structure of abstract states (Driessens et al., 2006) (as opposed to the

older hand-tooled similarity metrics) saw success during this period. Work on model-based RRL

(Croonenborghs et al., 2007b) also progressed, again using mostly random exploration. Larger

environments were also tackled, including real time strategy games, with advanced planning

techniques (Guestrin et al., 2003a; Balla & Fern, 2009).

One area that saw a great amount of progress due to synergy with RRL was the field of

transfer learning, which is concerned with porting models, policies, or value functions between

domain instances, a natural fit for (variablized) relational models. Algorithms for transfer in

navigation tasks (Lane & Wilson, 2005) and general RRL tasks with model-based approaches

(Walker et al., 2007), options (extended time/non-atomic actions) (Croonenborghs et al., 2007a),

as well as environments where a teacher was available (Torrey et al., 2005) all achieved degrees

of success in this fairly new field.

A number of new planning algorithms for relational and first order MDPs were also intro-

duced (a good summary of the modern results appears in Sanner & Boutilier (2009)). These

included advancements in First Order Decision Diagrams (FODDs) (Wang et al., 2008; Joshi

et al., 2009), which provided a compact representation of the dynamics and value function

for a FOMDP. Also, an advanced planner (Lang & Toussaint, 2009) for Noisy Indeterministic

Deictic (NID) rules (Pasula et al., 2007), showed how to use an effective Bayesian Inference

technique to produce approximate plans much faster than previously used more general (but

slower) techniques like Sparse Sampling (Kearns et al., 2002).

In this renewed climate, the field of action-schema learning saw a reprisal in a number of

challenging domains with much stronger languages than were used in the first incarnation.

We cover these in more detail in the next chapter, but they included work on learning NID

rules (Stochastic STRIPS with “noise” outcomes) (Pasula et al., 2007), learning with partial

observability on the data (Shahaf, 2007; Yang et al., 2007), and learning hierarchical structures
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over the atomic action operators (Zhuo et al., 2009).

2.4.5 Excursions into Exploration

Perhaps because of the historical roots in inductive logic programming, which assumes a large

database of facts as training data, the classic RL problem of exploration versus exploitation

has received far less attention in the RRL community than it has in traditional RL. Still, there

are some exceptions. One early work on RRL (Driessens & Dzeroski, 2002) showed how to

introduce a rudimentary but common exploration technique (Boltzman exploration) into RRL-

TG. In order to keep the exploration focussed, the system was bootstrapped with a number

of expert traces (similar to the apprenticeship learning paradigm we use in Chapter 4). But

the reliance on Boltzman exploration and Q-learning, a combination known to have negative

sample complexity results even in propositional domains (Whitehead, 1991) is not sufficient for

attaining the theoretical (or practical) guarantees that algorithms like KWIK-Rmax can make.

A later approach to integrating intelligent exploration and tree-based RRL came in the

model based setting in the form of the MARLIE system (Croonenborghs et al., 2007b). Instead

of representing the Q-function with a decision tree, MARLIE uses a set of relational decision

trees to predict the transition and reward function for the domain. While MARLIE combines

many of the same ingredients we use in this work (model-based RL, compact representations,

and an approximate planner), the exploration in these domains is done in a greedy manner,

without explicit demarcation of known and unknown regions, and so it does not give convergence

guarantees. Instead, the “exploration” in this work is more a matter of speeding up the Q-

learning backbone of RRL-TG by using a lookahead tree and learned model to propagate values

faster.

Perhaps one of the closest RRL systems to those presented in this dissertation is the REX

(Lang et al., 2010) algorithm, which uses an architecture based on E3 (Kearns & Singh, 2002) to

trade-off exploration and exploitation while learning NID rules. Like our Rmax-based techniques,

REX uses optimism in the face of uncertainty to guide the agent. However, REX is designed

for a more complicated language (with deictic references, noise outcomes, etc.) than those used

in most of this thesis. This strong language and the planner used to reason about it (PRADA

(Lang & Toussaint, 2009)) requires REX to approximate the uncertainty in states in a factored

manner, resulting in good empirical exploration, though no sample-complexity bounds have

been derived. However, the empirical validation of REX in many ways justifies many of the
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same techniques we employ in our own solutions (model-based RL and optimism in the face of

uncertainty, among others).

In terms of sample complexity, there has been very little work in RRL on PAC-MDP bounds

similar to those in mainstream RL, but there are again a few exceptions. Early work on relational

MDPs (Guestrin et al., 2003a) considered more traditional PAC bounds for a scenario where

agents are learning in a class of environments (what we later call a domain, like Blocks World)

and a sample is defined as a single instance of this environment that the agent interacts with

(Blocks World with 6 specific blocks). Thus, exploration is measured in terms of the number of

worlds the agent is exposed to, not the number of steps it takes, and the derived PAC bounds

are dependent on the distribution of worlds (which is not adversarial). In some ways, this

measure is closer to the sample complexity metric we use in Chapter 4, where we consider

the number of teacher interactions with the agent in the complexity bounds. But the passive

learning scenario and distributional assumptions considered in this earlier work does not allow

for a direct translation.

In recent years, PAC-MDP bounds have been derived for agents using the Object Oriented

MDP language (Diuk et al., 2008), but this was only for a specific deterministic language that

we connect our formalism to in Section 6.1.1. Also, our own work that has appeared in various

forums (Walsh & Littman, 2008; Walsh et al., 2009b) established sample complexity and PAC-

MDP bounds for specific languages and learning subproblems, some of which are presented

in greater detail in Chapters 3 and 4. Other than these works, there has been very little

consideration in the RRL community to the exploration-exploitation dilemma.

2.5 Moving Forward

This Chapter has summarized results in two hitherto disparate fields. On the one hand, we

have seen the field of traditional (propositional) reinforcement learning expend considerable

energy on the exploration-exploitation dilemma. On the other hand, we have seen that the

representations studied in this still-emerging field of relational reinforcement learning are able

to compactly model domains that fell the basic propositional representations used in traditional

RL. Yet RRL has virtually ignored the exploration-exploitation dilemma, and in many ways

has followed an opposing trajectory from traditional RL by drifting from clearly model-based

approaches (action schema learning) to model-free approaches (like RRL-TG) that have known

difficulties with exploration. This disconnect is unfortunate because both sides have valid
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points and advantages—sturdy theoretical footing and exploration strategies in RL and better

representations and a stronger link to the seminal works of artificial intelligence in RRL. The

rest of this thesis attempts, in one form or another, to bridge this divide, showing that we can

use model-based RL with relational representations and still solve the exploration-exploitation

trade-off efficiently in several different learning paradigms. In the next chapter, we present

algorithms for doing so (and remark on their limitations) in the online RL setting.
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Chapter 3

Online Action-Schema Learning

This chapter describes positive and negative results on the sample efficiency of learning a class

of relational action schemas.1 Our investigation of learning these models takes place within

the context of the KWIK framework for a number of different dynamics settings and schema

types. Specifically, we consider different combinations of determinism/stochasticity and pre-

conditional/conditional effects and several different learning settings where parts of the schemas

are known to the agent beforehand. These results comprise the first general theoretical study

of the exploration/exploitation tradeoff for agents that use relational representations.

3.1 Terminology and the Representation

This section lays out the formal terminology for action schemas and introduces two example

domains used throughout this work: the Blocks World and Paint-Polish domains. Both of these

domains are best described relationally because they contain objects and parameterized actions

that act in the same way on different objects in comparable conditions. For instance, picking

up block a off the table is virtually the same as picking up block b off the table. Once one

knows how to pick up a block, one can apply this knowledge to determine what will happen

when picking up any block.

In contrast, representing these dynamics using a propositional structure, even a “general-

ized” one such as a DBN, would require factors for every possible ground literal (all combinations

of On(X, Y) for all blocks X and Y). This number of factors is large, though not exponential

if predicates have constant arity, but the number of parents for each factor will be very large

(certainly not O(1) as the standard assumptions for DBN learning require). For instance, the

factor On(a, b) will depend on every other On(a, X) factor because these need to be consid-

ered to determine the success of the move action. We now describe a more compact, and more

1Portions of this chapter appeared earlier in joint work with Michael Littman, István Szita, and Carlos Diuk
(Walsh & Littman, 2008; Walsh et al., 2009b).
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intuitive, representation for such domains. Specifically, we introduce a class of languages called

relational action schemas composed of relational conditions and effects, whose general form

covers a wide variety of action languages.

3.1.1 Terminology

A relational action schemas can be thought of as a compressed version of the transition function

(T ) used in standard propositional MDPs. But, unlike the traditional MDP formalism, our

schematic domain encodings describe dynamics at a conceptual, rather than a propositional

level (for example, travel(X, Y) rather than travel(paris,rome). As covered in the previous

chapter, a number of action-description languages have been proposed throughout the years,

including STRIPS rules, OOMDPs, and even stronger (axiomatized) action formalisms such as

the situation calculus or FOMDPs. In contrast, and somewhat in deference to this plethora of

languages, in this work we try as best as possible to present results that are language agnostic,

though the bulk of our results will be focussed on a Stochastic STRIPS language.

Because our action schemas form a compact representation of the transition function, it

should be noted that these results do not cover the model-free approaches taken in the RRL

community where relational state descriptions are associated with state or state-action values

(V or Q). Rather, relational action schemas are built to represent the actual dynamics of the

model, for use in a model-based reinforcement learning-setting.

The notion of state in these environments will be dependent on the particular encoding we

consider, but we will generally consider the states to be composed of a set of fluents f ∈ F that

can be true or false at each timestep. For instance, in STRIPS, predicates such as At(a, b) are

the fluents. In this work, we will often use the term literal in place of “fluent” when describing

a part of a formal description rather than a changing part of the state. For instance, we may

describe an action move(X,Y,Z) as affecting the literal On(X, Y), and the instantiation of the

action move(a,b,c) as affecting the ground literal On(a, b).

With this relational representation of a state, we can now turn our attention to defining

the generalized dynamics of action-schema domains. Formally, we start with definitions of a

domain instance.

Definition 7. A domain instance is a 6-tuple 〈F ,F0,A, R, γ, ST 〉 where F is a finite set of

possible grounded fluents (over a set of available objects O), F0 ⊆ F is the subset of fluents true

initially, A is a set of action schemas as defined below, R is a reward function, R : S, aG :7→ ℜ,



44

where S is a state comprised of grounded fluents and aG is a grounded parameterized action as

described below, γ is the discount factor, and ST is a set of terminal states (described using F).

When describing environments, we may refer simply to a domain, with a similar definition,

but without a defined initial or terminal states, and with only ungrounded fluents available

(blocks world without a specific set of blocks). We now describe the dynamics of action schemas

with different restrictions on the conditions and effects encoded in the dynamics. We will

progress from the most simple encoding (unconditional deterministic schemas) to the most

general form (conditional stochastic schemas). A summary of the six conditions considered and

example actions encoded under these restrictions is presented in Table 3.1.

Definition 8. A deterministic unconditional action schema is a pair 〈a, ωa〉 where a is a pa-

rameterized action with variables holding the parameter places and ωa is an effect that describes

the changes in the truth values of the fluent set.

For example, in our Traveling domain examples (Table 3.1), a deterministic unconditional

action schema for the action travel might be a = travel(X,Y), ωa := At(Y), ¬At(X). In cases

where the literals are attribute-value pairs, effects simply represent changes in the values. For

instance, the action moveUp(Object) might result in the effect [ωa := Object.Ycoordinate =

Object.Ycoordinate+1].

We can press beyond these basic deterministic descriptions and consider the case where the

outcomes of the actions can be stochastic. For instance, the action travel(X, Y) may result in

the effect At(Y) with probability .9 and the effect At(X) with probability .1. More formally:

Definition 9. A Stochastic Unconditional action schema is a triple 〈a, Ωa, Πa〉 where a ∈ A is

again a parameterized (with variables) action and Ωa is a set of effects (ωa
i ) whose probability

of occurrence is given by the corresponding pa
i ∈ Πa. Notice |Ωa| = |Πa| = n and

∑n
i=1 pa

i = 1.

Intuitively, when the action a is taken, exactly one of the effects from {Ωa} occurs according

to the probability distribution induced by Πa.

Action schemas may also contain pre-conditions that govern whether the action succeeds or

fails. For instance, in the travel example, travel(X, Y) may result in the distribution of effects

above under the condition HoldingTicket(X,Y), otherwise the action will not have any effect.

More formally:

Definition 10. A Pre-Conditional Stochastic Action Schema is a 4-tuple 〈a, ca, Ωa, Πa〉 where

a is again a parameterized action and Ωa and Πa represent the possible effects and distribution
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of effects if the action succeeds. An action is said to succeed if it is executed in a state whose

literals Fs satisfy ca (the pre-conditions are true). Otherwise the action fails, the agent receives

a “failure signal” and no change is made to the current state.

These actions with pre-conditions can be further generalized to a situation where there are

multiple effect distributions, each corresponding to a different condition. For instance, under the

condition RainAt(X) the distribution of effects for travel(X, Y) could be At(Y) with probability

.7 and At(X) with probability .3, while non-raining situations will result in the distribution

above. While the nature of these conditions will again be a function of the language used, we

can generally describe this situation as being based on a set of conditions Ca governing which

of many effect distributions (Ωa

i
) the current effect is drawn from. More formally:

Definition 11. A Conditional Stochastic Action Schema is a 4-tuple 〈a, Ca,Ωa,Πa〉 . a is

again a parameterized (with variables) action, and Ca is a set of mutually exclusive conditions

based on the set of fluents. For instance, Ca could be a set of conjunctions with variables drawn

from the parameters of a. For each ca
i ∈ Ca, there is a corresponding effect distribution 〈Ωa

i , Πa
i 〉.

We note that the deterministic versions of these schemas involve the same condition structure

but only a single outcome (Ωa
i = {ωa

i }) is linked to each condition. A summary of these different

languages, with example schemas, is presented in Table 3.1. We note that these action schemas

bear close resemblance to many specific languages in the literature. For instance, conditional

stochastic action schemas with Add and Delete lists for effects and a special “noise” effect

would be the same as NID rules (Pasula et al., 2007). Our schemas can also be seen as rules

for defining the dynamics of basic First Order MDPs (FOMDPs) (Sanner & Boutilier, 2009) or

PPDDL rules (Younes et al., 2005), though incorporating the complex (not just conjunction)

conditions and universally quantified effects allowed in those languages are not considered in

the bulk of this thesis.

3.1.2 Linking Action Schemas and general MDPs

In this section, we formalize the link between relational action schemas and the propositional

MDP models that have been the workhorse of model-based reinforcement learning. We show

that the more compact action-schema representation gives an agent far fewer (even exponentially

fewer) parameters of T to learn and discuss different ways the reward function may be structured

in these domains.
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Setting Parameters Example
Deterministic Unconditional 〈a, ωa〉 travel(X,Y): → At(Y), ¬At(X)

Stochastic Unconditional 〈a, Ωa, Πa〉 travel(X,Y): → At(Y), ¬At(X) (0.9),
At(X) (0.1)

Deterministic Pre-conditional 〈a, c, ωa〉 travel(X,Y): HasTicket(X,Y) →
At(Y), ¬At(X)

Deterministic Conditional 〈a, C,Ωa〉 travel(X,Y): RainAt(X) → At(X)
Sunny(X) → At(Y), ¬At(X)

Stochastic Pre-Conditional 〈a, c, Ωa, Πa〉 travel(X,Y): HasTicket(X,Y) →
At(Y), ¬At(X) (0.9),
At(X) (0.1)

Stochastic Conditional 〈a, C,Ωa,Πa〉 travel(X,Y): RainAt(X) →
At(Y), ¬At(X) (0.7),
At(X) (0.3)

Sunny(X) →
At(Y), ¬At(X) (0.9),
At(X) (0.1)

Table 3.1: Six dynamics settings for action schemas and example operators. Boldface indicates
a set of sets (conditional case).

Action schemas as defined above can be thought of as a specific kind of transition-function de-

composition. Such generalizations have been studied in the reinforcement-learning literature for

general state classes (conditions) and outcomes (effects) (Sherstov & Stone, 2005). This previous

work defines the transition function decomposition in the following way (with notational changes

to make the mapping to our formalism easier to see): T (s, a, s′) = Pr[η(s, τ(κ(s), a)) = s′] ,

κ : S 7→ C , τ : C, A 7→ Pr[Ω] , η : S, Ω 7→ S. Intuitively, κ is a “type” function that captures

a general notion of the state (for example, “the floor is slippery”), τ maps types and an action

to a probability distribution over “outcomes” (for example, “agent moves forward 2 units”),

and η maps an effect and the current state to a next state. This formalism was previously

used to define Relocatable Action Models (RAM) (Leffler et al., 2007) and here we show it

can be used to describe an even broader class of models. To map our most general action-

schema definition (the conditional stochastic case) to this formalism, we need only to slightly

modify the definition of κ to be based on the action as well as the state. That is, we have

T (s, a, s′) = Pr[η(s, τ(κ(s, a))) = s′] and κ : S, A 7→ C. With that definition, κ captures the

conditions of each action, τ captures the effect distributions (Ωa and Πa), and η describes a

language dependent semantics of effects. For instance, in STRIPS, η represents the semantics

of general Add and Delete lists.

What remains now is to connect the reward function for domains as described in Definition 7

to the general reward function R(s, a). Ostensibly, this mapping is straightforward since any
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encoding of the reward function based on the fluents of a state and a grounded action is, by

definition, determined by s and a. However, since the state space for a relational domain

can be exponential in the number of objects, learning a reward function that, for instance, is

only positive in a single state (one specific configuration of blocks world) will trivially lead to

exponential sample complexity. If the reward function is not general, then the representation

does not help us sidestep the size of the flat state space. This problem is not unique to relational

representations; the same caveat must be heeded when employing DBNs. In the DBN case, a

number of natural assumptions have been used to enforce structure on the reward function,

leaving it compact enough to learn efficiently. Here, we list (though not exhaustively) some

similarly small reward functions for action schema domains.

• Environments with terminal states and rewards based on actions: Most of the

examples in this work simply attach rewards to each action schema. So, invoking that

particular action results in a given reward (or expected value over rewards), regardless

of the state. Note such schemas only make sense in environments with terminal states

(otherwise there would be no need to learn the dynamics because all states would have

the same value). A similar setup is possible where the rewards depend on whether the

pre-conditions of the action hold, or which condition associated with a conditional action

schema matches the current state. As long as the associated parameter (conditions, ac-

tions, etc.) is learnable with polynomial samples with respect to the domain description,

the reward function will be polynomially learnable.

• Reward based on a goal with existential variables: While goals based on a specific

configuration of the objects (a single state) can require an exponential number of samples

to learn, rewards based on a goal such as ∃X1...XkOn(X1, X2)...On(Xk−1, Xk), (a stack of

k = O(1) blocks in any order) is efficiently learnable. This situation can be seen as a special

case of the “rewards linked to action conditions” case above as one can always define an

action “Done” whose pre-conditions are only satisfied when the goal conditions are met.

We note that later results in this chapter will show that a non-constant size conjunctive

goal (for example, “stack all the blocks”) is not polynomially KWIK-learnable.

• Rewards based on a linear combination of a small number of fluents: The reward

function in a DBN is often assumed to be composed of a linear combination of the factor

values and is solvable efficiently using a linear regression algorithm (Walsh et al., 2009b).

With relational fluents, we can treat each fluent that is “on” in a given state as a 1 and
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the others as 0. If only a small number of these fluents contribute to the reward function,

or if only a small number of literals in each action schema’s scope contribute to R, then

we can learn this mapping using the same linear regression tools. Note that this case

also covers the case where a single fluent might need to be true to produce reward, as we

will see later in a logistics example where a done action produces different reward when

executed on an object that is not yet Finished (the weighting here is simply −1 on the

Finished literal).

Other combinations are surely possible, but the main point is that if the reward function is

compactly described, efficient learning is still possible. For the rest of this work, we assume

that the reward function is provided to the agent ahead of time (which is natural in goal

centered domains), so we will generally ignore issues of reward learning as they can be solved

with similar techniques to the transition-learning component. We do note that the class of

reward functions that is efficiently learnable expands in the next chapter when apprenticeship

learning is considered, similarly to the expansion in the learnability of the transition function.

3.2 Example Language and Benchmark Problems

In this section, we introduce a compact RL domain encoding (Stochastic STRIPS with rewards)

that can be described using the conceptual terminology outlined above. We also introduce

several benchmark problems encoded in this language that will be challenging for different

learning scenarios.

3.2.1 Deterministic STRIPS with Rewards

STRIPS domains (Fikes & Nilsson, 1971) are made up of a set of uniquely named2 objects

O, a set of predicates P , and a set of parameterized actions A. A state s is defined as a

conjunction of positive literals (predicates with parameters filled by members of O). Actions

have pre-conditions (PRE in the example tables) that are conjunctions over P with parameters

filled by the arguments to the action (see Table 3.2). If the current state does not contain all

of the elements of the pre-condition, attempting to invoke the action will result in a reported

“failure signal” and the state will not change. Effects in STRIPS are specified by Add (ADD)

and Delete (DEL) lists, which designate what predicates are added and deleted from the world

2We deal with some of the issues resulting from overlapping names in Chapter 5.
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pickup(X, From): reward = −1
PRE: On(X, From), Clear(X), EmptyHand(), Block(X)
ADD:Inhand(X), Clear(From) DEL: Clear(X), On(X, From), EmptyHand()

putdown(X, To): reward = −1
PRE: Inhand(X), Clear(To), Block(To)
ADD: On(X, To), Clear(X), Emptyhand() DEL: Clear(To), Inhand(X)

putdowntable(X, To): reward = −1
PRE: Inhand(X), Table(To)
ADD: On(X, To), Clear(X), Emptyhand() DEL: Inhand(X)

Table 3.2: Deterministic Blocks World

state when the action occurs, and again variables in these pre-conditions must be linked to the

action parameters.

An example deterministic STRIPS domain is the blocks world example in Table 3.2. Intu-

itively, the agent has 3 actions involving picking up a block (it can only hold one at a time),

and putting the block down on another block (but only if it is at the top of a stack) or on

the table (this last action is needed because a table is always clear, unlike a block). All of the

actions result in a reward of −1, and it is assumed that some goal configuration (which may be

very general, say a stack of at least 3 blocks), indicates the end of an episode and will have a

value of 0. The use of rewards with STRIPS domains, while not part of the core language, has

precedent in probabilistic planning competitions (Younes et al., 2005).

Throughout this work, we will also use more complex or misleading (to the learner) variants

of this simple domain. These include the following mutations.

• Stochastic Blocks World: the operators above are deterministic—each action has only one

possible effect if the pre-conditions are satisfied. But, it is easy to create a stochastic

version of this environment (using a stochastic STRIPS variant described later) by having

each action have a possibility of neither adding or deleting any fluents from the current

state. For instance, pickup might have the outcome above with probability 0.8 and no

effect with probability 0.2. Notice that because the failure signal is unique for when

pre-conditions do not hold, this “do nothing” outcome will never be confused with a

pre-condition failure.

• Blocks world with move(X, From, To) and moveToTable(X, From, To) actions. These

larger-scope operators, which move a block from on top of block “From” to on top of

block (or table) “To” are often used in other encodings of blocks world and are considered

also in parts of this thesis. The main drawback to these extended actions is that the
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pre-condition lists for each action are longer than the encoding above (because the fluents

associated with all 3 blocks need to be considered at once), and the larger arity of the

actions can be detrimental to the learning and planning algorithms used in this thesis.

However, in several cases this encoding is used to illustrate points in this work, in which

case we will explicitly mention that these operators are in play.

• Blocks world with “Dummy” versions of pickup and putdown. This version of the domain

uses the same operators as the stochastic case mentioned above, but adds in two new

actions dummyPickup and dummyPutdown which have the same pre-conditions and effects

as their counterparts above, but with the probabilities reversed. Again, when this domain

is used in examples or experiments, we will explicitly indicate that the “dummy” actions

are available.

3.2.2 Stochastic STRIPS with Rewards

Stochastic STRIPS operators generalize the deterministic representation above by considering

multiple possible action effects specified by 〈 Add, Delete, Prob 〉 tuples as in Table 3.3. Notice

this is a specific grounding of the pre-conditional stochastic action schemas 〈a, ca, Ωa, Πa〉, where

c is the pre-conditions, and each Add/Delete tuple is an effect ωa
i ∈ Ωa with probability pa

i drawn

from Πa.

Table 3.3 illustrates a variant of the classic Paint-Polish domain (Minton, 1988) in the

Stochastic STRIPS setting. Intuitively, the world is comprised of objects that need to be

painted and polished and then marked as finished. But, sometimes the action of painting the

object scratches it, which requires more polishing (and perhaps repainting) before it can be

finished. The environment also has a shortcut action that, with very low probability, paints and

polishes an object in one fell swoop, but usually has no effect.

While environments like Blocks World and Paint-Polish demonstrate the effectiveness and

power of relational representations, they also showcase opposite difficulties in the action-schema

learning problem. In Blocks World, the actions have a fairly large arity (2 to 3 parameters) and

the conditions for successful action execution are very strict, and therefore hard to discover,

but the effects of actions are fairly straightforward to learn. In contrast, Paint-Polish world has

fairly simple conditions, but its stochastic action effects are confusing to learn because often

multiple effects can explain the same state transition. Each of these problems is dealt with in

this chapter.
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paint(X): reward = −1
PRE: none
ADD:Painted(X) DEL: none (0.6)
ADD:Painted(X), Scratched(X) DEL: UnScratched(X) (0.3)
ADD: none DEL: none (0.1)

polish(X): reward = −1
PRE: none
ADD: none DEL: Painted(X) (0.2)
ADD: UnScratched(X) DEL: Scratched(X) (0.2)
ADD: Polished(X), UnScratched(X) DEL: Painted(X), Scratched(X) (0.3)
ADD: Polished(X) DEL: Painted(X) (0.2)
ADD: none DEL: none (0.1)

shortcut(X): reward = −1
PRE: none
ADD: Painted(X), Polished(X) DEL: none (0.05)
ADD: none DEL: none (0.95)

done(X): reward = 0 if action succeeds and object was previously unfinished, else −1
PRE: Painted(X), Polished(X), UnScratched(X)
ADD: Finished(X) DEL: none (1.0)

The goal is reached when all the objects are Finished.

Table 3.3: Stochastic Paint/Polish World

3.2.3 Conditional STRIPS Operators

Finally, we consider a conditional version of Stochastic STRIPS, conforming to the conditional

stochastic action-schema case, where each action has a set of conditions, each of which has its

own distribution over the possible effects. In the STRIPS instantiation of this setting, each

action has a set of conjunctions (over literals with the same scoping assumption as the pre-

conditions from earlier), and the conjunction that matches the current state determines the

distribution over the possible Add/Delete pairs that are invoked. An example of a domain with

such conditions appears in Table 3.4. It is a version of the Paint-Polish domain above, but now

each object can be either metal or wooden, and objects can be turned into metal objects using

the coatMetal action. Metal objects have a far lower chance of scratching then their wooden

counterparts when the paint action is invoked.

3.3 Related Work

Before defining our own learning algorithms, we summarize some other approaches to learning

conditions, effects, and effect distributions. For the most part, the major separation between

our work and these previous attempts is that our algorithms and analyses guarantee PAC-MDP



52

paint(X): reward = −1
c1: Wooden(X)
ADD:Painted(X) DEL: none (0.1)
ADD:Painted(X), Scratched(X) DEL: UnScratched(X) (0.8)
ADD: none DEL: none (0.1)
c2: Metal(X)
ADD:Painted(X) DEL: none (0.8)
ADD:Painted(X), Scratched(X) DEL: UnScratched(X) (0.1)
ADD: none DEL: none (0.1)

polish(X): reward = −1
c1: none
ADD: none DEL: Painted(X) (0.2)
ADD: UnScratched(X) DEL: Scratched(X) (0.2)
ADD: Polished(X), UnScratched(X) DEL: Painted(X), Scratched(X) (0.3)
ADD: Polished(X) DEL: Painted(X) (0.2)
ADD: none DEL: none (0.1)

shortcut(X): reward = −1
c1: none
ADD: Painted(X), Polished(X) DEL: none (0.05)
ADD: none DEL: none (0.95)

coatMetal(X): reward = −1
c1: none
ADD: Metal(X) DEL: Wooden(X) (1.0)

The goal is reached when all the objects are Painted, Polished, and UnScratched.

Table 3.4: Metal Paint/Polish World
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behavior by performing the model learning under the conditions of the KWIK framework. We

also note that most previous work considered only a single representation, while many of our

results will be extendible to multiple languages with common structure.

The problem of learning STRIPS operators with either pre-conditions or full conditional

effects has been considered in a number of previous works. One of the earliest action-schema

learners was EXPO (Gil, 1994), which was given an incomplete STRIPS-like domain description

(missing some pre-conditions or effects of actions) with the rest being filled in through experience

using operator refinement techniques. This application was more proactive than others in that

it would “experiment” on operators, similar to the formalized active learning we present in

this chapter. The OBSERVER system (Wang, 1995) also used a STRIPS-style language to

represent operators and was trained with a mixture of both raw experience and grounded expert

traces. Learning in OBSERVER involved maintaining a version space for the pre-conditions and

effects of operators (a technique we modify in our own investigation) and the language used

allowed for constants and conditions, among other constructs. The TRAIL system (Benson,

1996) used Inductive Logic Programming (ILP) to distill schemas from raw experience and a

teacher. These systems were all deployed in the deterministic setting and did not provide the

sample complexity guarantees that our learning agents have under these conditions. However,

these early systems did demonstrate the insufficiency of using only “raw experience” to learn

unbounded-size conjunctive (pre)-conditions, leading to a reliance on bootstrapping or expert

traces. We will make use of a similar stream of experience in the next chapter.

The main body of work on learning stochastic STRIPS operators was due to Pasula et al.

(2007), which introduced Noisy Indeterministic Deictic (NID) rules, which are similar to

Stochastic STRIPS operators but with the following differences. Their operators were designed

for the full conditional case and actually went beyond the standard STRIPS scoping assump-

tions by allowing for deictic references to objects that were not parameters to the action. Such

references greatly expand the hypothesis space of potential action behavior and are generally

not considered in this thesis, though we do discuss them in Sections 5.8 and 6.2. Another major

difference was that NID rules modeled “noise” effects, which covered low probability transi-

tions to any state (random changes not covered by the other effects). Such dynamics are both

difficult to efficiently model (as we show in Section 3.5.2) and also somewhat philosophically

vexing (since all outcomes in some way could be considered “noise”), so in this work we do not

consider such ill-defined effects. Other than these key differences, NID rules are covered by our
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action-schema terminology. The learning algorithm espoused by this prior work was a heuristic

search algorithm that attempted to maximize the log-likelihood of previously collected samples

of action outcomes. While this algorithm showed empirical success in simulated domains, it did

not provide the theoretical guarantees we seek in the online setting.

The REX algorithm (Lang et al., 2010) used the same NID representation, and actually the

same operator learning algorithm, but guided the collection of samples using various measures

of uncertainty and an E3-inspired (Kearns & Singh, 2002) architecture. While this approach

is closer to our own and their empirical results were very encouraging, no theoretical sample-

complexity results are known for this algorithm.

In recent years, there has been a stronger concentration on learning relational models in

the partially observable setting. Under these conditions, literals may be missing from state

descriptions even though they are true—resulting in a version of open world semantics. This

implicit information complicates both the learning (Shahaf, 2007; Zhuo et al., 2009) and the

planning (Hoffmann et al., 2007) problems. For instance, schema learning with synthetic

items (Holmes & Isbell, 2005) built deterministic operators for noisy and partially observable

domains. The work on Simultaneous Learning and Filtering (SLAF) derived computational

bounds for learning action-schema operators in different languages (including STRIPS) and

under different sources of partial observability (Shahaf, 2007), but sample complexity was not

considered. At the extreme of these approaches is the ARMS and HTN-Learn systems (Yang

et al., 2007; Zhuo et al., 2009), which learn action schemas from plan traces that contain only

initial states, actions, and goals, with no intermediate state information. In both systems, the

data is then translated into a satisfiability problem and a heuristic solver is used to determine

the likely operator definitions. Our work for the most part deals only with the fully observable

scenario.

Another relation language is the Object Oriented MDPs (OOMDP) (Diuk et al., 2008)

model, which mixes attribute-value style fluents with defined STRIPS-style predicates. We

make the connection between our work and OOMDPs more explicit in Section 6.1.

3.4 Action Schema Learning Problems

Throughout this chapter, we consider the complexity of learning different portions of the action

schemas described earlier. This section lays out some intuitive difficulties in this learning process

and defines a number of sub-problems of overall schema learning that we will focus on in different
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parts of this chapter.

3.4.1 Intuitions on the Difficulties of Learning

In the learning setting, an agent will construct a model of schema dynamics based on its own

experience. Such learning can be difficult, even in the relatively benign deterministic setting.

Consider trying to update, for a given literal l, its membership in the pre-condition (“Pre” for

short here), Add, and Delete lists based on an observed state transition 〈s, a, s′〉. Unfortunately,

a single experience may not be enough to pin down l’s role in any of these lists as we see in

the operator update rules below that outline how to update a.PRE (Rule 1) and the effect lists

(Rules 2-5) when an action succeeds.

1. l /∈ s: Fail, l ∈ s: Succeed, or l ∈ s: Fail. None of these situations on their own imply

l ∈ a.Pre or l /∈ a.Pre.

2. If l /∈ s ∧ Succeed Then l /∈ a.Pre.

3. If l /∈ s ∧ l ∈ s′ Then l ∈ a.Add, l /∈ a.Delete.

4. If l ∈ s ∧ l /∈ s′ Then l ∈ a.Delete, l /∈ a.Add.

5. If l /∈ s ∧ l /∈ s′ Then l /∈ a.Add. No information as to whether l ∈ a.Delete

6. If l ∈ s ∧ l ∈ s′ Then l /∈ a.Delete. No information as to whether l ∈ a.Add

Further complications arise with parameterized actions when the same object appears mul-

tiple times in an action’s parameter list. For example, if the learner experiences the action a(b,

b), which adds P(b), it is not clear whether P(X) or P(Y) (or both) should be inserted into

a(X, Y).Add.

We propose avoiding such ambiguity by learning different action-versions, that is, a separate

operator is learned for each pattern of matching parameters. For instance, a(b,b) and a(b,c)

yield a11(X) and a12(X,Y), respectively, where the indexes represent the first occurrence in

the parameter list of each unique identifier. The maximum number of versions for an action

of arity m corresponds to the mth Bell number (Rota, 1964), which is defined recursively as

Bm =
∑m−1

k=0

(
m−1

k

)
Bm. However, because m is considered a constant in our study, learning

the schema for each version independently does not affect the worst-case sample complexity

analyses of the algorithms studied. In practice, the number of action versions that are actually

encountered is typically small. Also in more practical terms, it is possible to share information
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between action versions, for instance if P(X) ∈ a12(X, Y ).Add, then it can be inferred that

P(X) ∈ a11(X).Add. However, such reasoning is beyond the scope of this thesis and is not

necessary for the theoretical contributions we have made. We assume throughout the rest of

this work (except where explicitly considered in Chapter 5) that actions with the same object

in multiple parameter locations are illegal.

Moving to the stochastic setting adds another wrinkle into the learning problem beyond the

difficulties mentioned above. In the stochastic setting, effect probabilities cannot be learned in

this domain simply by counting the number of occurrences of each Add/Delete tuple because in

some states there is ambiguity as to what effect actually occurred. For instance, in Paint-Polish

World (Table 3.3) when an object o1 is already scratched but not painted, if one executes the

Paint(o1) action, and the result is that the object is now scratched and painted, one cannot

tell which of the first two possible effects occurred, though we know ω3 (the “nothing changes”

outcome) did not occur because o1 is now painted.

Finally, when we introduce conditional effects the difficulty can increase because there is no

longer a unique “failure” signal of whether a single conjunction was satisfied for a given action

or not. Instead, the agent must infer which of the (currently being learned) conditions might

have occurred based on the perceived effect (which is complicated by the problems of learning

effects and distributions mentioned above).

3.4.2 Learning Sub-Problems

Just as action schemas have three main parameters (Ca, Ωa, and Πa), learning their dynamics

can also be decomposed into three parts (as illustrated in Figure 3.1): learning the conditions,

learning the effects, and learning the effect distributions. In this chapter, we will consider both

the complete problem and several combinations of sub-problems assuming the other schema

components are given. We will investigate each of these problems using the KWIK framework

for model learning, which allows for very small inaccuracies (ǫ) in the learned model. As such,

it will be helpful to have a notion of an ǫ-accurate predictive model of action schema dynamics,

which we define here for the conditional case (the most specific of those presented earlier).

Definition 12. An ǫ-accurate predictive model of an action schema A for action a in conditional

domain D is any model M̂ (perhaps itself an action schema) that, when given a state s that is

valid in a domain instance of D and composed of ground literals, can make a prediction over

the probability of next states Pr[S′] such that ||Pr[η(S, Ωa
i )]− Pr[S′|M̂ ]|| ≤ ǫ, where Ωa

i is the
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Learn the (Pre)−Conditions

Learn the Effect Distributions

Learn the Effects

CED−Learning

CD−Learning

ED−Learning

D−Learning

ADD: Holding(X), Clear(From)

DEL: On(X, From)

1)

2) Nothing Happens

Pr(2) = .4

Pr(1) = .6

On(X, From), Clear(X),

EmptyHand()

Figure 3.1: The CED-Learning problem and the decompositions considered in this work.
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effect set associated with condition ci such that ci[s] = true and η maps a state and effect set

to a vector of next states, and || · || is an L1 norm over the next-state probability vector.

Intuitively, the only inaccuracy that is allowed is very small inaccuracies in the probability

distributions on next states. Typically (though not necessarily), algorithms that satisfy this

criterion will need to correctly model the conditions and effects (with small inaccuracies in the

probabilities) in the learned model. Achieving such an ǫ-accurate model with high probability

and a polynomial number of ⊥ predictions will be sufficient for guaranteeing polynomial sam-

ple complexity in the KWIK framework, thus guaranteeing us the PAC-MDP behavior of the

corresponding RL agents in these relational domains. More formally, the complete (Condition,

Effects, and Distributions) learning problem is defined as 3:

Definition 13. The Condition, Effect, and Distribution (CED) Learning Problem is, given the

set of literals L, actions A, reward function R, terminal (goal) states SG, accuracy parameters

ǫ and δ, and the ability to execute actions in the environment: for all actions a ∈ A, with

probability (1− δ) output an ǫ-accurate predictive model.

In this chapter, we will analyze this learning problem and several sub-problems, using the

KWIK framework to analyze the model-learning component and PAC-MDP to characterize the

corresponding agent behavior. When the meaning is clear, we will refer to both the model

learning and behavioral aspects as simply the CED-Learning problem. The sub-problems we

consider in addition to the full problem are listed below. Each of the sub-problems, in addition

to helping us solve the larger problem, has applicability in realistic scenarios where background

information (like the possible effects but not their probabilities) are known. Our first sub-

problem entails learning stochastic effects given the conditions (or in the unconditional case):

Definition 14. The Effect and Distribution (ED) Learning Problem has all the inputs of the

CED-Learning problem as well as the true set of conditions Ca for each action a. The agent

must then, for all actions a ∈ A, with probability (1− δ) output an ǫ-accurate predictive model.

Decomposing this problem even further, we can consider an even smaller problem where

the conditions and effects of the schemas are given, but the distributions of these effects must

be learned. This problem can also be thought of as learning full stochastic operators given a

traditional non-deterministic planning problem description (such as those considered in Kuter

et al. (2008)).

3We provide the formal definitions here in the most general case (Conditional Stochastic Action Schemas) as
the definitions are easily relaxed to the more restricted cases.
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Definition 15. The Distribution (D) Learning Problem has all the inputs of the ED-Learning

problem as well as the true set of conditional effects Ωa for each action a. The agent must then,

for all actions a ∈ A, with probability (1− δ) output an ǫ-accurate predictive model.

We also consider a sub-problem of interest to the robotics community where the effects

themselves are given, but the conditions and the effect distributions must be learned. This

occurs, for instance, when one has a robot that is known to sometimes move to its intended

location, but sometimes slips to either side, and one doesn’t know what governs this conditional

behavior or what the probabilities are under different conditions.

Definition 16. The Condition and Distribution (CD) Learning Problem has all the inputs

of the CED-Learning problem, as well as the true set of conditional effects Ωa (but not the

conditions themselves) for each action a. The agent must then, for all actions a ∈ A, with

probability (1− δ) output an ǫ-accurate predictive model.

Both sub-problems in CD-Learning, finding the correct conditions and effect distributions,

are non-trivial to solve. We now begin our investigation with the distribution-learning portion:

given the effects and conditions for an action-schema, can we even learn the distribution over

the effects in the online setting?

3.5 Learning Effect Distributions

In this section, we present a solution to the distribution learning problem (D-Learning) for rela-

tional action schemas. To concentrate on this particular sub-problem, we assume the conditions

Ca and the associated effects Ωa are known. We will relax these assumptions in later sections

when we consider larger sub-problems (like CD-Learning or ED-Learning). Our solution to

the D-Learning problem (KWIK-LR) presented here will serve as a building block for solu-

tions to the more complicated learning problems in the stochastic setting. Also, through this

comparatively easier sub-problem, we will introduce concepts and strategies that will reappear

throughout our investigation of online schema learning. These include: (1) the use of KWIK

learners in action-schema learning, (2) the use and design of optimistic model interpretations

in action schema domains, and (3) constructing full agent algorithms from KWIK learners, a

planner, and these optimistic interpretations.

Below, we formalize the difficulties stemming from effect ambiguity and describe a näıve

algorithm for dealing with this situation. We then show how a linear regression algorithms,
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and specifically a KWIK linear regression algorithm, can be used to solve this problem more

efficiently than the näıve solution, and show how to integrate such an algorithm into a full

learning agent by using different optimistic interpretations of the KWIK learner’s predictions.

3.5.1 Effect Ambiguity and the Partition Algorithm

Learning the probabilities in D-Learning is non-trivial because for a given state-action pair

(s, a), the effects are partitioned into equivalence classes E(s, a) = {{ωi, ωj, ωk}, {ωl, ωm}, ...}

where each e ∈ E(s, a) contains effects that are identical given state s. For instance, consider

the paint action from the Paint-Polish domain (Table 3.3). The possible effects listed in the

operator are that either the object is painted (ω1), the object is painted and scratched (ω2), or

nothing changes (ω3). But, suppose this action was applied to an object that was was already

scratched, but not painted. In that case, there are only 2 possible outcomes of this action: either

the object will be painted and scratched, or still just scratched (and unpainted). The reason

is that the first two effects belong to the same equivalence class (E(s, a) = {{ω1, ω2}, {ω3}}),

because applying either of the first two pairs of Add/Delete lists results in the same next state

(η(s, ω1) = η(s, ω2)).

Consider trying to update the probabilities of the three effects after observing a transi-

tion where the formerly “just scratched” object becomes painted and scratched. The standard

“counting” method (storing the frequency of each effect divided by the total number of obser-

vations of this action) for learning probabilities cannot be used in such a setting because it is

unclear which effect’s (ω1 or ω2) count we should increment. But, notice this sample is not

entirely uninformative. While we cannot tell which of the first two effects occurred, we do know

that the third effect did not occur (since the object came back painted), so something can be

learned from this experience.

Based on this intuition, we can construct a näıve Partition algorithm as shown in Algo-

rithm 7.4 Intuitively, the algorithm simply maintains separate counts (ρ) of outcomes for every

possible pairing of equivalence classes. For instance, in the paint example, the experience used

to predict the probability of the initially scratched object being painted or scratched would be

calculated only from samples where the first two effects mapped to the same state (but the

third effect was different).

4This algorithm (and many others in this chapter) is presented here for the pre-conditional case. In the
conditional case, one simply needs to consider the partitioning given an action and a condition rather than
simply based on the action.
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Algorithm 7 Partition

1: Input: ǫ, δ, η : S, Ω 7→ S
2: Output: On each step, a prediction of the probabilities of each next state.
3: Calculate M = Poly(ǫ, δ, Ω), the number of samples needed to accurately make a prediction

for a class
4: for each s, a do
5: Let E = E(s, a) //set of equivalence classes (a partitioning of effects)
6: if E has never been seen before then
7: ∀e ∈ E, ρ[E][e] = 0 //Initialize counts (ρ)
8: end if
9: if

∑
e∈E ρ[E][e] > M then

10: Ŷ = {ŷi} = ρ[E][e]/
∑

e ρ[E][e], ∀e ∈ E
11: else
12: Ŷ = ⊥
13: end if
14: if Ŷ = ⊥ then
15: Observe s′

16: for e ∈ E do
17: if η(s, ωe) = s′ where ωe is any effect in e then
18: ρ[E][e] += 1
19: end if
20: end for
21: end if
22: end for

Proposition 1. The Partition algorithm has a KWIK bound of O(A
∑Ω

i=2(S2(Ω, i)( i
ǫ2

+

log( i
δ
))), where S2 represents the Stirling number of the second kind (Sharp, 1968) (the number

of i-sized partitions of Ω).

Proof. (sketch) The proposition holds from an application of the “dice learning” KWIK bound

(see Table 2.1 and Li (2009) for more information) on learning a multinomial distribution.

Specifically, this bound is derived by setting M = O( i
ǫ2

log( i
δ
)) when there are i possible out-

comes in a partition. The dice-learning bound itself is derived from applications of Hoeffding’s

inequality and a union bound. We note that the case where i = 1 is not considered because all

the effects are in one partition (with outcome probability 1.0) and this bound is loose because

it uses the dice learning bound when i = 2, a case that can be more tightly bounded using

Hoeffding’s inequality directly.

There are several drawbacks to this approach. First, the KWIK bound is exponential in the

number of effects, and while this number is often small (even O(1)), even in Paint-Polish world

we see it as high as 5 (for the polish action), which makes the algorithm practically infeasible,

though often not all equivalence-class partitions are reachable. Secondly, the Partition algorithm

does not make use of the structure of the probability simplex associated with the domain
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dynamics. Specifically, since the probability of any equivalence class is equal to the sum of

the probabilities of the effects it contains, the probabilities of many partitions can be derived

from known probabilities in other partitions. For example, if there are four effects and the

learner has established that Pr[ω1] = 0.1 and Pr[ω2] = 0.1, then for the equivalence class

{{ω1, ω2}, {ω3, ω4}}, the learner can predict 0.2 and 0.8 as the correct probabilities even though

the individual probabilities of ω3 and ω4 are unknown. In the next few sections, we show how

to use an algorithm (KWIK-LR) that makes use of all this structure and has truly polynomial

sample complexity (even when Ω is of polynomial size in the domain literals). We will use this

superior algorithm in concert with optimistic interpretations (Section 3.5.4) and a full online

agent algorithm (Section 3.5.5) to solve the D-Learning problem.

3.5.2 Viewing D-Learning as Linear Regression

An alternative view of the D-Learning problem is to treat the learning of the individual effect

probabilities (pa
i ∈ Πa) as weights in a linear regression (LR) problem. In this section, we

formalize this view and the construction of inputs and interpretation of outputs from a “black

box” linear regression algorithm under these conditions. The section following this one will show

how to replace this generic LR algorithm with a KWIK algorithm with polynomial sample

complexity. Together, these two pieces give us a more efficient alternative to the näıve and

inefficient Partition algorithm above.

We begin by reviewing some standard online linear regression terminology, using standard

MATLAB-style notation (“,” separating column entries, “;” for rows). We will concentrate on a

basic linear regression problem without measures of uncertainty and without any regularization,

features that are introduced in the next section. Let X := {~x ∈ ℜn | ‖~x‖ ≤ 1}, and let f : X →

ℜ be a linear function with weights θ∗ ∈ ℜn, ‖θ∗‖ ≤ M , i.e. f(~x) := ~xT θ∗. Fix a timestep

t. For each i ∈ {1, . . . , t}, denote the stored samples by ~xi, their (unknown) expected values

by yi := ~xT
t θ∗, and their observed values by zi := ~xT

i θ∗ + ηi, where the noise ηi is assumed

to form a martingale, i.e., E(ηi|η1, . . . , ηi−1) = 0, and bounded: |ηi| ≤ S. Define the matrix

Dt := [~x1, ~x2, . . . , ~xt]
T ∈ ℜt×n and vectors ~yt := [y1; . . . ; yt] ∈ ℜ

t and ~zt := [z1; . . . ; zt] ∈ ℜ
t.

The online linear regression problem is simply for every new query point ~x that arrives, output

yt = ~xT
t θ∗ When Dt is of full rank and has sufficient coverage to make accurate predictions we

can calculate this prediction by ŷ = ~xT θ, where θ is the least-squares solution to the system.

With this machinery in hand, we can now craft a creative abstract solution to the D-Learning
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problem. The “trick” here is to represent each piece of experience in the data matrix with a series

of binary indicator vectors, one for each equivalence class, and then mark the equivalence class

that actually occurred in the output matrix with a 1. Formally, the algorithm for constructing

these entries in Dt and ~yt is presented in Algorithm 8. In words: each equivalence class contains

one or more effects (ωi, ωj ... ∈ Ωa), and an indicator vector ~x is created where xi = 1 if ωi ∈ et

(Line 5), otherwise xi = 0. For instance, in learning the probabilities associated with the paint

action, if the object was already scratched and then came back painted and scratched (effects

ω1 and ω2 are confusable, but not ω3), the new data vectors would be [1, 1, 0] and [0, 0, 1] but

if the action was taken on an object that was not scratched and not painted, there could be no

confusion so in that case 3 vectors would be added: [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Note that for

a given state each equivalence class in E(s, a) induces a unique (and disjoint) ~x. Each of these

is used to update the LR learner (Line 6), with an output (y) of 1 associated with the ~x that

actually happened. The other equivalence class vectors that did not occur are still introduced

into the data matrix, but the corresponding output entry in yt is set to 0.

Algorithm 8 Transition Probability Learner for action a with LR

1: Input: set of effects Ωa and a linear regression algorithm LRa

2: for each current state st do
3: Take action a and observe et ∈ E(st, a)
4: for each equivalence class e ∈ E(st, a) do
5: Construct ~x where xj = 1 if j ∈ e, else 0
6: Update LRa with ~x and y = 1 if e = et, else y = 0
7: end for
8: end for

Intuitively, linear regression is the correct tool for this task because each sample gives us a

noisy indicator of the sum of the individual effect probabilities in the same equivalence class.

For instance, consider 10 samples of the paint action all of which occurred under the partitioning

E(s, a) = {{ω1, ω2}, {ω3}}, and 9 times out of the 10 the first (ambiguous) effect occurred. We

cannot tell anything about Pr(ω1) or Pr(ω2) individually, but we do know their sum is close to

0.9 (and that Pr[ω3] ∼ 0.1). At the highest level, we know that
∑|Ω|

i=1 Pr[ωi] = 1. The partition

algorithm from earlier inherently ignores each of these summation constraints.

The solution to such a linear system is a weight vector containing the frequencies of each

individual effect with respect to y. For instance, in the paint case, any two positive numbers that

sum to 0.9 are valid weights for θ1 and θ2 for now, but as samples are added where these effects

are in different equivalence classes, the weights must respect the proportion of 1’s associated with

each individual effect while not violating the summation constraint. Ultimately, the solution to
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such a linear system is exactly the unknown probability vector. In the case where all effects are

unambiguous, the collected examples for a data matrix where each row of Dt contains only one

1 (essentially on each step of experience, an identity matrix of size |Ω| is appended to the data

matrix), and the single 1 added to zt appears in the row of the effect that actually happened.

In that case, the least-squares solution garners the correct probabilities, since each weight θi

must be proportional to the fraction of 1’s in z in rows where effect ωi has a 1. Finally, we

note that this linear regression technique would be inappropriate in a schema that allowed for

“noise” or “miscellaneous” outcomes such as those used by Pasula et al. (2007). In that work,

conditional stochastic STRIPS operators were allowed to have a “noise” outcome where any

possible change to the state space could occur. While theirs is a useful technique for capturing

miscellaneous real-world dynamics, such an effect would always be a possible explanation for

whatever outcome occurs, hence its associated column in the data matrix would be all 1’s (since

it is always ambiguous). In such a situation, a heuristic scoring function that tries to minimize

the weights on the noise term (as was used in this related work) is likely a better solution.

Finally, we note that a situation where “noise” simply referred to all outcomes except the other

effects would be amenable to our solution, but could pose other problems when actually learning

the effects.

With this intuition and using the algorithm above, we can make a formal connection between

potential KWIK bounds for linear regression and KWIK bounds for the D-Learning problem.

Lemma 2. If linear regression can be KWIK-learned with a sample complexity B(n, ǫ, δ),

then the D-Learning problem can be solved with a KWIK bound of O(AB(Ω, ǫ, δ)), where

Ω = maxa Ωa and A is the number of actions. In the conditional case, the bound is

O(ACB(Ω, ǫ, δ/C)) where C = maxa Ca (the most number of conditions for an action) and

Ω = maxca Ωa
c .

Proof. We concentrate here on the case where the KWIK learner makes a non-⊥ prediction as

we have already assumed the number of ⊥’s can be bounded by B above (we construct such an

algorithm in the next section). In that case, by the properties of the KWIK algorithm, we know

that the solution to any linear system we will create will (with probability 1− δ), be ǫ-accurate.

Specifically, for an input x where a prediction ŷ is made, |ŷ − y| ≤ ǫ.

The proof utilizes the fact that a generic LR algorithm produces θ̂ such that θ̂ = D†z,

where † indicates a pseudoinverse. First, we consider the case where each effect is completely

unambiguous in all situations or any ambiguous effects do not appear separated anywhere (that
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is if ω1 and ω2 are ambiguous, nowhere do they appear alone or with other effects). In that latter

case we can treat them as a single effect, so each |ei(s, a)| = 1. In this unambiguous situation,

each row of D is a unit vector ~eT
i . At timestep t, the number of rows in this unregularized form

is Ω× t, but we will compact it in the next section to remove the factor of t. z contains Ω ∗ t− t

0’s and t 1’s. Suppose t is large enough such that the proportion of 1’s in z for each effect ωi is

within some ǫ1 of pi ∈ Π so that an ǫ-accurate prediction can be made for any xt. For instance,

ǫ1 = ǫ/Ω would satisfy this requirement. Finding a least-squares solution for this system means

calculating θ̂ such that:

θ̂ = D†z

= (DT D)−1DT z

= I ∗ (1/t)c

= Π± ǫ1

where I is an identity matrix, and ci is a count of the number of times a 1 appeared in z when

xi = 1. The last two steps comes from realizing that DT D is simply a diagonal matrix with

entries of t (then inverted) and that DT z is the count of times a 1 appeared in z simultaneously

with a 1 for each xi. That is, each element of θ̂ becomes the frequency of 1’s for that effect

divided by the total number of timesteps, which will be within some ǫ1 of pj to make ǫ-accurate

predictions for the given input. Notice that if the LR algorithm were making predictions for

an effect probability before these frequencies (with high probability) reached ǫ1-closeness to the

true Π, then in the limit (where the frequencies certainly approach Π), it would make inaccurate

predictions on the weight vector, and thus would not be a KWIK algorithm. Also, note that

any query for an equivalence class containing more than one effect (such as 〈ω1, ω3〉) can be

answered from this data matrix by just summing the corresponding θ̂i’s.

Now, let’s fix the effects and consider the case where each row of the data matrix D contains

at most k 1’s (up to k effects are aliased), for 1 ≤ k ≤ |Ω|. Again, it is possible that the

corresponding KWIK algorithm may not be able to make accurate predictions for all inputs,

so we focus here on the case where the algorithm reports an ǫ-accurate output based on its θ̂

weights. The question we must answer is whether the rows with the larger equivalency classes

could cause the least-squares solution to deviate greatly from the true probabilities. But, notice
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that the frequency of a 1 in z corresponding to such a row aliasing ωi...ωj is simply pi+...+pj±ǫ

(at most). Therefore, setting each θ̂i to pi (as was the case for the unambiguous data rows) will

satisfy the KWIK error tolerance for these entries as well. Notice that in some cases (where

not all the singleton probabilities are recoverable because of ambiguity) there will be multiple

solutions (not within the ǫ-threshold of one another) to certain queries xt because the linear

system does not yet have a unique solution, one of which is the true probabilities for these

effects, but (if a prediction is made for vector ~x of k 1’s), all of which sum to the total of the

k true probabilities. For instance, in the extreme case, if all effects are always ambiguous, any

probability vector summing to 1 is a valid θ̂. Notice that if the true probability vector (again

with some ǫ-tolerance) were not a least-squares solution to such a system, then there would

be a different vector of weights θ̂ such that
∑

unique di∈D(di · θ̂i − fi)
2 was minimized where fi

was the frequency of 1’s in z for rows identical to di. But, if the system is actually making

non-⊥ predictions, those frequencies must be in line with the true probabilities, so with high

probability it cannot happen. In cases where the different possible solutions differ by more than

ǫ, it will be incumbent on the KWIK algorithm to report ⊥.

We have thus established that when a KWIK linear regression algorithm makes ǫ-accurate

predictions with high probability, it can be used to predict next state distributions based on

effects, thereby solving the D-Learning problem. We now provide a detailed description of a

KWIK linear regression algorithm that fulfills the requirements of the lemma with only a poly-

nomial (in the number of effects) number of ⊥ predictions, and also makes use of regularization.

3.5.3 Regularized KWIK-LR

Here, we describe a KWIK Linear Regression algorithm (KWIK-LR) that uses a compact rep-

resentation of the data matrix (size Ω2), and therefore makes the algorithm computationally

tractable (as opposed to approaches that continue to increase the size of the data matrix with

each instance). KWIK-LR, like all KWIK algorithms, admits when it is too uncertain to make

a prediction, giving us a basis for performing exploration, which would not be the case with

standard linear regression. Thus, an RL agent using KWIK-LR can learn the probabilities

online and maintain the PAC-MDP guarantee.

Directly solving the linear system described above in the online case is problematic because:

(1) if Dt is rank-deficient the least-squares solution may not be unique and (2) even if we

have a solution, we have no information on its confidence. We can avoid problem (1) by using
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regularization, which certainly distorts the solution, but this gives us a measure of confidence:

if the distortion is large, the predictor should have low confidence, and output ⊥. On the other

hand, if the distortion is low, then ~zt and ~yt must be very similar.

Let At := [I; DT
t ]T . The solution of the system Atθ = [(θ∗)T ; ~yT

t ]T is unique, and equal to

θ∗. However, the right-hand side of this system is unknown, so we use the approximate system

Atθ = [~0T ;~zT
t ]T , which has a solution θ̂ = (AT

t At)
−1AT

t [~0T ;~zT
t ]T . Define Qt := (AT

t At)
−1. If

‖Qt~x‖ (which is directly proportional to the error ||ŷ − y||) is larger than a suitable threshold

α0, our algorithm will output ⊥, otherwise it outputs ŷ, which is guaranteed to be an accurate

(with high probability) prediction. The intuition behind this choice is that in areas of the input

space where high error might be encountered because of insufficient data, the agent requests a

sample by predicting ⊥, and this will help reduce the error in that subspace.

Algorithm 9 describes our method for KWIK-learning (as defined in Section 2.2.2) a linear

model. Notice it avoids the problem of storing At and ~zt, which grow without bound as t→∞.

The quantities Qt = (AT
t At)

−1 and ~wt = AT
t [~0T , ~zT

t ]T are sufficient for calculating the predic-

tions, and can be updated incrementally. The algorithm is KWIK by the following theorem

(proof is presented in Walsh et al. (2009b) and the associated Technical Report):

Theorem 2. Suppose that the observation noise is zero-mean and bounded: for all t,

E[ηt] = 0 and |ηt| ≤ S. Let δ > 0 and ǫ > 0. If Algorithm 9 is executed with

α0 := min
{
c1

ǫ2

n
, c2

ǫ2

log n
δ

, ǫ
2M

}
, for bounded noise M and with suitable constants c1 and c2,

then the number of ⊥’s will be BLR(n, ǫ, δ) =

O

(
max

{
n3

ǫ4
,
n log2 n

δ

ǫ4

})
(3.1)

and with probability at least 1 − δ, for each sample ~xt for which a prediction ŷt is made,

|ŷt − f(~xt)| ≤ ǫ holds.

This result is on par with the sample complexity of previous work on KWIK online linear

regression (Strehl & Littman, 2007), and requires Θ(n2) operations per timestep t, in contrast

to their approach, which stored (and operated on) a matrix with as many rows as samples that

have been collected. With this bound on the number of ⊥ produced by KWIK-LR, we can state

the following theorem.

Theorem 3. The D-Learning problem can be solved with a KWIK bound of O(ABLR(Ω, ǫ, δ/A)

in the pre-conditional case and O(CABLR(Ω, ǫ, δ/CA)) in the conditional case where BLR is
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Algorithm 9 KWIK-LR

1: Input: α0

2: initialize: t := 0, m := 0, Q := I, ~w := ~0
3: repeat
4: observe ~xt

5: if ‖Q~xt‖ < α0 then
6: predict ŷt = ~xT

t Q~w //known state
7: else
8: predict ŷt =⊥ //unknown state
9: end if

10: observe zt

11: Q := Q− (Q~xt)(Q~xt)
T

1+~xT
t Q~xt

, ~w := ~w + ~xtzt

12: t := t + 1
13: until there are no more samples

defined in Equation 3.1 and C and Ω are defined as in Lemma 2.

Proof. (sketch) The theorem holds based on Lemma 2 and the Theorem 2 above, which respec-

tively relate the bound on the D-Learning problem to the bound of KWIK-LR and explicitly

state a polynomial KWIK-LR bound.

3.5.4 Optimistic Interpretations in D-Learning

Using the KWIK learner above, we can KWIK-solve the D-Learning problem and create an

associated PAC-MDP agent in an environment where the effect distributions are unknown using

the KWIK-Rmax template in algorithm 6. This algorithm will insert an Rmax state transition

anywhere the current data matrix cannot be used to make an accurate probability prediction.

But, this optimistic interpretation of the currently learned model is in some ways too optimistic.

Consider the case where an agent is in stochastic blocks world and has a goal of stacking 4 blocks.

The agent may have learned the probabilities for the pickup and putdown actions, but perhaps

may not have learned the probabilities for the putdownTable action. While the probabilities

on the effects (which are either to put the block on the table or do nothing) are unknown, no

good can come from using this action in this situation, no matter what the real probabilities

are. But, using the Rmax heuristic, the agent will essentially think that its goal can be reached

by just executing this action! The problem here is that the background knowledge, the known

pre-conditions and effects, are not being properly leveraged in the optimistic interpretation.

While this behavior still yields polynomial sample complexity bounds in the worst case, there is

a much better solution in the best case that leverages the background knowledge in the problem

without sacrificing the worst case bounds.
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Our solution is the Known-Edge Value Iteration algorithm (Algorithm 10). The algorithm

assumes that the model is represented by means of KWIK learners for each action, though other

architectures are possible. The outer shell of the algorithm remains very much like traditional

Value Iteration, but inside the main loop over states, the transition function is computed for

every possible equivalence class (e) induced by the state-action on every iteration. For equiv-

alence classes (outcomes) where the model reports that the transition probabilities are known,

the reported values are used in conjunction with the effect represented by that class (ωe on

Line 11). On the other hand, for state-action pairs that have effects with known probabilities

K = {ωi, ωj...} and unknown probabilities U = {ωk, ωl...}, the effect in U that leads to the

highest value next state is considered to have probability 1 −
∑

ωi∈K P (ωi) (Lines 15 through

16). Intuitively, at each iteration, for all the transition probabilities that are unknown, the

“edge” (effect) leading to the next state with the highest value (based on the current estimate

of the value function) is given all the probability mass not swallowed up by the known transi-

tions. This change is designed to force Value Iteration to be “Pangloss”, that is it considers the

most optimistic of all models consistent with what has been learned and the known background

information.

This “shifting of probabilities” during Value Iteration is a technique used in the model-

based RL algorithm MBIE (Strehl & Littman, 2005). Like MBIE, Known-Edge value-iteration

converges to an optimistic value function, which facilitates efficient exploration. That is, V̂ (s) ≥

V (s) − ǫ for all states s where V̂ is the calculated value function and V is the environment’s

true value function. To see why this statement is true, consider a state s where the probabilities

have been shifted. In this case, there is some subset of truly reachable states S′ such that

V (s) = maxa R(s, a) + γ
∑

s′∈S′ T (s, a, s′)V (s′). The calculated value function V̂ performs the

summation over the same set of reachable states, but one state s̄′ ∈ S′ has a higher weight

(larger T (s, a, s′)). However, by definition, s̄ has the highest V (s′) of any of the candidates.

So, for all states, V̂ is optimistic. In practice, the behavior resulting from this algorithm can

lead to better decisions than the Rmax heuristic, which ignores the background information

(the known effects). For example, in the aforementioned blocks world example, where an Rmax

style planner attempted to learn a clearly useless putdownOnTable action, the Known-Edge

variant will eschew this choice because the best outcome possible (in the stacking case it is the

“nothing happens” outcome) will end up with probability 1.0 but will have a value worse than

the putDown action, so it will never be explored.
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Algorithm 10 Known-Edge Value Iteration

1: ∀s, V (s) = 0
2: δ =∞
3: while δ > ǫ do
4: δ = 0
5: for s ∈ S do
6: oldV = V (s)
7: for action a ∈ A do
8: knownProb = 0.0
9: ∀e ∈ E(s, a), T (s, a, η(s, ωe)) = 0.0 //Get probabilities for known edges

10: for equivalence class e ∈ E(s, a) where Π(e) 6= ⊥ do
11: T (s, a, η(s, ωe)) = Π(e)
12: knownProb = knownProb + Π(e)
13: end for
14: //Shift the unknown probability mass to an optimistic (but possible by Ωa) outcome.
15: Let eopt = e ∈ E(s, a) s.t. Π(e) = ⊥ and V (η(s, ωe)) ≥ V (η(s, ωe′))∀ωe′Π(e′) = ⊥
16: T (s, a, η(s, ωeopt

) += 1.0− knownProb
17: end for
18: V (s) = maxa R(s, a) + γ

∑
ω∈Ωa T (s, a, η(s, ω))V (η(s, ω))

19: π(s) = argmaxa R(s, a) + γ
∑

ω∈Ωa T (s, a, η(s, ω))V (η(s, ω))
20: if ||oldV − V (s)|| > δ then
21: δ = ||oldV − V (s)||
22: end if
23: end for
24: end while
25: Return π

We note that this algorithm still enumerates the full state space, which may be necessary

for exact planning, and therefore has computation bounds that are exponential in the size of

the action-schema representations (particularly exponential in O). While the exponential run

time does not affect the sample complexity of the associated learning algorithm below, it can,

in practice, introduce intractable computation just like vanilla Value Iteration. The benefit of

Known-Edge VI is instead that it encourages more efficient exploration by the learning agent.

In Chapter 6, we will introduce some alternative planning algorithms whose runtime does not

scale exponentially in the state-space size.

3.5.5 An Efficient Online Agent for D-Learning

We now make use of KWIK-LR and Known-Edge Value Iteration in learning effect probabilities

online when an agent is given the full action-operator specifications, except for the probabilities

(the online D-Learning problem). In the parlance of the planning community, we are turning

a non-deterministic action specification (Kuter et al., 2008) into a stochastic one, with the

probability values acquired through learning. However, we add the additional constraint that
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the learning agent in this setting should be PAC-MDP. Algorithm 11 presents a PAC-MDP

algorithm for this exact situation in the pre-conditional case.

Algorithm 11 Schema Transition Probability Learner

1: Input: S, A (action schemas, sans pi’s), R, α
2: ∀a ∈ A, Instantiate a KWIK-LR learner (Algorithm 9) LRa(α)
3: for each current state st do
4: for each e ∈ E(s, a), s ∈ S and a ∈ A do
5: Construct ~x where xj = 1 if j ∈ e, else 0.

6: Π̂(e) =Prediction of LRa(~x) // can be ⊥
7: end for
8: Perform Known-Edge Value Iteration on {S, A, E, Π̂, R}, to get greedy policy π
9: Perform action at = π(st), observe et ∈ E(st, at)

10: for equivalence classes e ∈ E(st, at) do
11: Construct ~x where xj = 1 if j ∈ e, else 0.
12: Update Lat with ~x and y = 1 if e = et, else y = 0
13: end for
14: end for

The learning portion of the algorithm uses the same basic structure as the generic LR proba-

bility learner (Algorithm 8), but with KWIK-LR as the linear regression component, allowing it

to identify states that imbue equivalence classes with unknown transition probabilities. It then

communicates this awareness of the uncertainty to the Known-Edge Value Iteration algorithm,

which encourages exploration via optimism in the face of uncertainty without trying actions

in states where knowing their true transition probabilities is not beneficial to the agent. This

calculation yields an optimistic action at, which will eventually result in experience indicating

one of the equivalence classes et ∈ E(st, at) actually occurred. After that, the appropriate

KWIK-LR learner is updated with the experience and the process repeats. Again, planning in

the flat state space can require exponential computation time, but learning in this algorithm is

done in a sample efficient manner, so we can formally claim that it is PAC-MDP, as shown in

the following theorem.

Theorem 4. In the online setting, Algorithm 11 is PAC-MDP, given the true conditions and

effects for the action schemas describing the environment’s dynamics.

Proof. (sketch) The proof combines previous results from Theorem 1, Lemma 2, and Theorem

3. Specifically, Theorem 3 establishes the KWIK-learnability of the probability distributions

using KWIK-LR, with help from Lemma 2. Together, these results establish a KWIK bound of

B(ǫ, δ) = O
(
max

{
Ω3

ǫ4
,

Ω log2 Ω
δ

ǫ4

})
, per action (with Ω = Ωa). Using this linear KWIK bound

on learning each probability distribution for the |A| actions (and possibly C conditions for each

action), we end up with a total of O(CAB(ǫ, δ/CA)) ⊥ predictions throughout the learning
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Figure 3.2: D-Learning in Paint-Polish world with 1 object and random start states, averaged
over 1000 runs.

process. Theorem 1 establishes that such a KWIK learner using the KWIK-Rmax architecture

will be PAC-MDP. The only change we have made there is the introduction of Known-Edge

Value Iteration (KEVI). To see why this modification does not change the properties of KWIK-

Rmax, first note that KEVI reduces to standard Value Iteration when all the parameters are

known. In the case where there are unknown transitions, the KEVI “shifting” of probabilities is

the same as that used in the PAC-MDP algorithm MBIE (see Strehl & Littman (2005), which

also details the correctness of this shifting technique). The value function induced is optimistic

as mentioned earlier, so it satisfies the portion of the KWIK-Rmax proof (optimism) responsible

for efficient exploration while leveraging the known effect structure. So, Algorithm 11 given the

conditions and effects of the correct action schemas will be PAC-MDP.

We now present empirical evidence of the efficiency of Algorithm 11 in pre-conditional

Stochastic STRIPS. We use the Stochastic STRIPS Paint-Polish world from Table 3.3 as our

testbed. This specific instantiation has only one object but with random start states constructed

from varying combinations of the Painted, Polished, and Scratched predicates. We empirically

test Algorithm 11 against Partition. Figure 3.2 shows the results for the Paint/Polish domain

averaged over 1000 runs with randomized initial states for each episode (both learners receive

the same initial states). We see that Algorithm 11 learns much faster because it is able to share

information between equivalence partitions though both algorithms eventually converge to the

same (optimal) policy.
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3.6 Learning Pre-conditions and Conditions

With our success above in learning effect distributions, we now turn our attention to the CD-

Learning problem, where the possible effects Ω are given but the distributions over those effects,

and the conditions that govern which distribution is active, need to be learned. This formulation

covers the likely real-world scenario where the effects of an agent’s actions (walking, grasping,

etc.) are well known, but how exactly those outcomes are affected by environmental conditions

are unknown. We consider CD-Learning first in the conjunctive pre-conditional case and then in

the conjunctive conditional case, both with STRIPS operators, though the results of this section

extend to any language covered by our action-schema formalism that has KWIK-learnable

conditions. We begin by showing that large conjunctions are not KWIK-learnable.

3.6.1 The Difficulty of Learning Conjunctive Pre-conditions

As covered earlier, STRIPS operators are composed of a pre-condition in the form of a conjunc-

tion over a subset of the domain fluents (literals) F , and similar effects (Ω) consisting of Add

and Delete lists. The variable arguments to these predicates must match variable parameters of

the action itself. Thus, when actions have their arity bounded by a constant m and predicates

P with arity bounded by a constant n, there are Pmn literals to consider in each of the three

operator lists (Pre-conditions, Add, and Delete). Note that if negated literals are considered in

the pre-conditions the same encoding suffices with only a doubling of the possible predicates.

While this limited number of literals leads to tractable algorithms for learning other portions

of the action schemas (as we will see later), we show that this is not generally true for the pre-

conditions. The crucial problem is the limited feedback provided by the environment when the

pre-conditions of the action do not hold. As stated in Definition 10, if an agent attempts to

execute an action whose pre-conditions do not hold in the current state, the agent receives a

“failure” signal and the state does not change. But, notice this failure signal does not stipulate

what literals or combination of literals are missing from the current state. These negative

examples are thus, highly uninformative. For instance, trying to pickup a block that is under

another block will fail. But, from the learner’s perspective, without positive examples it cannot

tell if it was because the block was not Clear or was not a Table or some other combination of

reasons.

In contrast, positive examples, where actions do succeed, are highly informative, because

they identify a superset of the literals that are part of the pre-condition. Here, we give a
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negative result that, even in the deterministic case, an exponential (in the number of predicates

P , and more generally in the number of literals) KWIK-bound can be reached when learning

pre-conditions, because of overwhelming, uninformative, and unexpected negative examples.

The example domain in the proof is a “combination lock” of D tumblers.

Theorem 5. The CD-Learning problem is not efficiently KWIK-solvable in the pre-conditional

(or conditional) case when conditions may be conjunctions of arbitrary size, even in the deter-

ministic setting. In fact, a lower bound of Ω(2L) ⊥ predictions for environments with L literals

can be established.

Proof. We construct a “combination lock” environment with a single object, lock, and 2D +

1 predicates: Unlocked(X), Zeroi(X), and Onei(X), for i ∈ [1, D] (note, D = P−1
2 in this

environment with P predicates). There are A = 2D + 1 actions, one to set each predicate and

falsify the other for pair i, and one to “open” the lock. More formally, the actions are of the

form a0i, a1i, and open, again with i ∈ [1, D]. The schemas for these actions are:

a0i(X):

PRE: ∅

ADD: Zeroi(X)

DEL: Onei(X)

a1i(X):

PRE: ∅

ADD: Onei(X)

DEL: Zeroi(X)

open(X):

PRE: ∀i ∈ [1, D] Onei(X)

ADD: Unlocked(X)

DEL: ∅

The goal is to reach a state where the grounded fluent Unlocked(lock) is true. As a result,

an agent that is started in an initial state, say with all the Zeroi fluents true, can fail (predicting

⊥ but not opening the lock) in 2D− 1 = 2
P−1

2 − 1 attempts to successfully invoke open (one for

every possible state other than the one corresponding to the true combination). As a concrete
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example, starting from the all Zero state, a KWIK algorithm must predict ⊥ for open’s outcome.

Notice if it makes a non-⊥ prediction, then it could potentially be wrong (if the current state

really was the correct combination) and therefore would fail the KWIK criteria because in this

discrete deterministic setting any incorrect transition prediction leads to a potentially greater

than ǫ error in predicting the next state. The same holds in every successive setting of the lock

(000...01, 000...10, ...) until all but 1 combination has been tried, because at every step, the

algorithm would risk a failure under the KWIK conditions if it claimed the lock would open

when it would not. So, any succession of 2D − 1 unique combination settings where the lock

does not open achieves the lower bound. Each failed plan is met only with a fail message,

refuting only one hypothesis.

This result demonstrates the intractability of KWIK-learning arbitrary length conjunctions,

a known detriment to the KWIK protocol. The result is easily extendible to the conditional

case if no restrictive assumptions (like having only 2 conditions) are made on the number and

size of the conditions. As a result, we are faced with two choices, either limit the size of the

conditions being learned, or change the way the agent and the environment interact so as to

avoid the extremely uninformative negative examples that felled the agent above (all of those

“unlock” failures). For the rest of this chapter, we will follow the first of these alternatives,

assuming that the pre-conditions are defined by conjunctions of constant size (O(1))5. However,

in Chapter 4 we will consider a different learning paradigm (Apprenticeship Learning) where

this size restriction can be relaxed (and the combination lock domain can be efficiently learned).

3.7 Learning Small Pre-conditions

In the case where the conjunctions are of size no greater than a constant k = O(1), we can limit

the number of unexpected negative examples the agent will encounter, leading to an efficient

KWIK algorithm for learning this restricted class of pre-conditions. The “trick” here is that the

hypothesis space for the pre-conditions is only exponential in k, so we can systematically prune

the hypothesis space one by one and make only a polynomial number of ⊥ predictions. For

instance, if the combination lock above had only 3 tumblers, there are only D3 combinations,

where D is the number of digits on each tumbler. When the hypothesis space is enumerable

in this way and the labels are deterministic (zt = yt with no noise, which is the case with

5In the conditional case we will consider this assumption as well as an analogous assumption on the number
of conditions.
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pre-conditions in either the deterministic or stochastic schemas defined earlier) the generic

enumeration algorithm (Algorithm 12) can be used to KWIK-learn any hypothesis class H with

a bound of |H | − 1 (Li et al., 2008).

Algorithm 12 KWIK-Enumeration

1: Given: Hypothesis class H
2: Ĥ = {h ∈ H}
3: for each input xt do
4: Y = {h(xt)} for all h ∈ Ĥ
5: if |Y | = 1 then
6: Predict y ∈ Y
7: else
8: Predict ⊥
9: Observe yt

10: Remove all incorrect hypotheses from Ĥ
11: end if
12: end for

Returning to the case of learning conjunctions as pre-conditions for actions, we can re-write

the enumeration algorithm in the following way to learn k-term pre-conditions.

Algorithm 13 STRIPS-Enumeration

1: Given: Action a of arity m, Predicate set P (max-arity n)
2: Output : for state/action pairs, predict one of {success, failue,⊥}
3: PREa = Enumeration algorithm (Algorithm 12) for all the O((Pmn)k) potential conjunc-

tions for action a.
4: for each input state st and ground action at do
5: Predict Preat(st), observe s′ or failure
6: Update Preat with the observation.
7: end for

Intuitively, the algorithm predicts that an action will fail in a state only if every currently

valid hypothesis says it will, and the same unanimity is required for predicting the action will

succeed. Otherwise, ⊥ will be predicted. In concert with an optimistic interpretation (covered

below), the enumeration algorithm will drive the agent to explore states where it does not know

if the pre-conditions of an action hold (trying various combinations on the lock), but never

retrying disproved conditions, and never exploring to try a new condition if one that is known

to work is already available (if the combination lock is already set to the correct combination and

the agent knows this, it will not try others). The KWIK bound for this STRIPS-Enumeration

algorithm is O(A(Pmn)k), the size of the hypothesis space.

So, we now have a component for learning pre-conditions that are of constant size. Before

combining it with our solution to the D-Learning problem, we must consider how to interpret

such a model to facilitate efficient exploration (using the KWIK-Rmax architecture or instead a
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more clever algorithm like Known-Edge VI). There are several practical considerations for this

design choice, as discussed in the next section.

3.7.1 Optimistic Schemas for CD-Learning

In our solution to the D-Learning problem, we introduced a heuristic optimistic interpretation of

the KWIK learners for the effect distributions that leveraged the inherent background knowledge

(the known effects) to improve the best case behavior of the learner, specifically moving the

probability mass of the unknown effects to the best possible outcome. One could employ a

similar trick näıvely in the CD-Learning case, but we now argue that doing so is not advisable,

though a smarter combination of this heuristic with a KWIK-Rmax style optimism does result

in a more usable interpretation than using only KWIK-Rmax.

The trouble with employing just Known-Edge Value Iteration in the CD-Learning problem

is that the interpretation of every ⊥ that originates from the pre-condition learner (STRIPS-

Enumeration) needs to be interpreted as “this action will succeed here” in order to encourage

the agent to actively explore the pre-condition hypothesis space. As a result, the planner that

uses an optimistic interpretation will end up considering the application of effects and action

parameters that are nonsensical and lead to otherwise unreachable states. For instance, in noisy

blocks world, while an agent is learning the pre-conditions, the background knowledge about

the effects might make it think it could pick up the table or put a block on top of itself. This

assumption leads to an extremely large number of states for the planner to consider and is

usually infeasible.

To combat this explosion without sacrificing the heuristic speed-up we saw in D-Learning

with Known-Edge VI, we will use a combination of the Known-Edge and Rmax techniques.

Specifically, when the planner needs an optimistic interpretation of the model, we will intro-

duce Rmax state transitions anywhere a ⊥ is coming from a learner that is uncertain if the

pre-conditions in a state are sufficient for an action to occur, and will use Known-Edge VI

anytime the uncertainty stems just from the effect distributions being learned. This optimistic

interpretation will keep the planning space relatively small in most practical domains and again

does not sacrifice the worst-case bounds of the näıve Rmax interpretation of general KWIK-

Rmax. This approach is used in the algorithm below for the pre-conditional case where the

pre-condition and distribution learning are easily separable. In the conditional case, these

signals will be more intertwined and so, depending on the implementation of the algorithms,
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standard KWIK-Rmax may be the best solution.

3.7.2 Efficient Pre-conditional CD-Learning

We can now make use of the modularity of KWIK-learning algorithms to combine KWIK-LR

(for learning distributions) and STRIPS-Enumeration (for bounded length conjunctive pre-

conditions) to make an efficient online algorithm for solving the CD-Learning problem for

STRIPS, and more generally for any action-schema language where the pre-conditions are

KWIK-learnable. The online RL algorithm pre-conditional CD-Learning is presented in Al-

gorithm 14 using the mixed optimistic interpretations described above.

Algorithm 14 Pre-conditional CD-OnlineLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Effect set Ωa for each
a ∈ A

2: Initialize a copy of Algorithm 13 (Prea) for each a ∈ A (more generally a KWIK learner
for the pre-condition hypothesis class)

3: Initialize a copy of Algorithm 9 (LRa(Ωa)) for each a ∈ A
4: for each episode do
5: for st = current state do
6: If any of the KWIK learners have changed, construct a model interpreting any Prea ⊥

as an Rmax transition and LRa used to determine transition probabilities
7: Perform Known-Edge Value Iteration (Algorithm 10) on this model
8: Execute the greedy action at

9: Observe {success/failure}, st+1

10: Update Preat(success/failure)
11: Update LRat(st, at, st+1)
12: end for
13: end for

Intuitively, Algorithm 14 maintains the consistent version space over pre-conditions using the

enumerated possibilities in Algorithm 13, and uses Algorithm 9 to maintain the probabilities

of each of the given effects for each action. Just as with Algorithm 11, Known-Edge Value

Iteration is employed in this algorithm, but in an effort to constrain the state space considered

by the planner, Rmax transitions are used for uncertain pre-condition/state pairings. This

construction is again done on a state by state basis, so a plan may be returned that contains an

action to be executed where its pre-conditions actually fail. As we show in the next theorem, this

sort of exploration helps the learner find a consistent model by testing conflicting hypotheses,

ultimately achieving a polynomial sample complexity bound in the CD-Learning problem.

Theorem 6. Algorithm 14 is PAC-MDP as the model learners KWIK-solve the CD-Learning
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problem in the stochastic (or deterministic) pre-conditional case when each action’s pre-

condition is a conjunction of no more than k terms for constant k, or some other KWIK-

learnable hypothesis class.

Proof. (sketch) The proof follows from the KWIK bounds for the component algorithms and

the KWIK-Rmax Theorem. Specifically, there are a bounded number of ⊥ predictions that

can be made by each of the components that will lead to suboptimal behavior. Any of the

BLR(Ω, ǫ, δ/A) (Equation 3.1) such ⊥ predictions by the KWIK-LR component that led to

suboptimal behavior will result in experience for that specific action in a state/equivalence

class were the probability distributions are currently unknown, just as in the D-Learning case.

The other O(APmn) possible ⊥ predictions that result in suboptimal behavior (from Prea)

will result in at least one hypothesis (which incorrectly predicted an action could be executed

from a given state) to be eliminated.

As empirical evidence of the success of this algorithm, we present a comparison of Algo-

rithm 14 against a flat MDP learner and Algorithm 11 for D-Learning, which is given the

pre-conditions of actions. All 3 algorithms were run on stochastic blocks world with 3 blocks

and the “dummy” actions (versions of pickup and putdown with the probabilities of the “noth-

ing happens” outcome reversed from the two standard pickup/putdown actions) included. The

number of blocks is kept low to accommodate the flat MDP learner and because we are still

using exact planning algorithms (a situation dealt with in Section 6.3). Figure 3.3 displays

the results. The KWIK CD-Learner takes around 20 episodes (with maximum of 15 steps

per episode and a goal of stacking the 3 blocks) to learn the pre-conditions, but still greatly

outperforms its flat MDP counterpart (which actually takes several hundred episodes to per-

form consistently well) because it is able to generalize its knowledge about moving blocks from

one situation to another and reaches the same optimal behavior as the D-Learner. Note that

the D-Learner learns much faster because many fewer examples are needed to just learn the

effect distributions than to find the positive examples necessary for pre-condition learning (a

combination-lock like problem, even with the bounded size pre-conditions).

We have shown that under assumptions on the size of conjunctive pre-conditions, we can

efficiently solve the CD-Learning problem. In the next section, we consider the conditional case

for stochastic operators.
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Figure 3.3: Learning pre-conditions and distributions in stochastic blocks world

3.8 Learning Conditions

We now turn our attention to the conditional case, where the effects (or distribution on effects)

are determined by which of the |C| conditions c1...c|C| actually hold in a given state (denoted

as ci[s] = true ). Recall that Definition 11 stipulates that these conditions may not overlap

and must cover the entire reachable state space, so for each state, one and only one condition

will “match” the state. The difficulty of learning conditions without any assumptions on the

size or number of the conditions follows from Theorem 5, for the pre-conditional case with the

following construction. Notice that it requires n conditions because there is no “else” clause in

this construction.

Corollary 1. Without restrictions on the conditions, the CD-Learning problem for conditional

action schemas where conditions are conjunctions over the domain literals is not efficiently

KWIK-solvable. In fact, again a lower bound that is exponential in the number of domain

literals can be achieved.

Proof. We can change the combination-lock example from Theorem 5 into a conditional action

schema by creating one condition for the combination that opens the lock (say One(X1) ∧

One(X2) ∧ One(X3)) and D more conditions of size 1 that cover the possibility that tumbler i

is set wrong. These extra D conditions are needed to represent the “else” behavior inherent to

the pre-conditional case that is not explicitly representable in the conditional case. Notice that

this problem is no more KWIK-solvable than the pre-conditional formulation—an agent is still
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required to try all 2D combinations even though the domain encoding is linear in D.

Despite this result, we can pursue a strategy similar to our approach in the pre-conditional

case; we will work under assumptions about the size, and later the number, of the conditions.

We begin by considering the cases (deterministic and then stochastic) where the sizes of the

individual conditions are bounded by a constant k = O(1). After that, we will also give positive

(though less practical) results under the assumption that the conditions themselves can have

non-constant size, but the number of conditions is restricted to be O(1). Notice such restrictions

do not allow for the construction of the combination lock, where D conditions are required, one

of which is of size D.

Beyond the hardness discussed above, the conditional case presents difficulties for learning

algorithms beyond those seen in the pre-conditional setting. Specifically, there is no longer a

unique failure signal indicating whether or not a specific condition holds. For instance, in a

deterministic version of the metal/wooden Paint-Polish world (where only metal objects can

be painted without scratching), when the paint action is executed on an already scratched

object, we receive no information about which condition actually “matched”. Did the object

become painted because it was wooden (or metal?), or some other condition (like being scratched

already)? Note we cannot just refine a single effect’s associated condition in this case because

both the Painted and Painted ∧ Scratched effects explain the observation. The problem becomes

even more pronounced in the stochastic case where not only can multiple effects seem to have

happened, but any one observation can appear to be from many different effect distributions.

The following sections and algorithms deal with these problems in turn, starting with the

deterministic case.

3.8.1 Learning Small Conditions in the Deterministic Case

In this section, we will work under the assumption that each condition will (like the pre-

conditional results) have to be over only a small number of terms so that we can do a type

of enumeration. For now, we will consider the deterministic variant of CD-Learning (where

the effect distributions do not need to be learned) in order to highlight the challenges and

solutions used in learning the conditions themselves. An example is a deterministic version

of metal/wooden Paint-Polish domain where painting a wooden object causes it to become

painted and scratched, while painting a metal object simply paints it. In this case, the agent

must experiment to determine what conditions are causing the different effects. But, unlike
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the pre-conditional case, we cannot completely decouple the condition-learning piece (Enumer-

ation) from the effects themselves, because there is no unique failure signal. Instead, the effects

themselves are the only clues as to which hypothesis needs to be updated, but unfortunately

these can be ambiguous (as in the painting of a scratched object).

In light of this symbiotic relationship, we will use a slightly more complicated (but still

Enumeration-like) KWIK algorithm called Active Union, which is applicable in deterministic

settings where enumerable conditions govern what other learners should be making predictions.

More specifically, the algorithm will enumerate all the possible conditions (conjunctions of up

to size k), many of which may match a current state, and merge their predictions if possible

(otherwise predicting ⊥). Active Union is a generalization of the enumeration algorithm, where

conditions determine which other learners should be consulted to make a prediction. The

original Union algorithm was first introduced by Li et al. (2008), but was used to combine

predictions from all the component learners, not just a set of “active” components as determined

by the conditions. The original algorithm is inapplicable in our setting as we do not want a

component tied to the condition Metal(X) to make a prediction for a wooden object. This

Active Union algorithm is described here in Algorithm 15.

Algorithm 15 Active Union

1: Given: KWIK Learners L = {KL1...KLn} and general Boolean functions conditions (like
small conjunctions) C = {c1...cn}

2: for each input xt do
3: K̂L = {KLi|ci(xt) = true} for all KLi ∈ L and ci ∈ C

4: Y = {KL(xt)} for all KL ∈ K̂L
5: if |Y | = 1 then
6: Predict y ∈ Y //could still be ⊥.
7: else
8: Predict ⊥
9: end if

10: if ⊥ was predicted then
11: Observe yt

12: for each KLi ∈ K̂L do
13: if KLi(xt) 6= ⊥ and KLi(xt) 6= yt then
14: L = L −KLi

15: C = C − ci

16: else if KLi(xt) = ⊥ then
17: Update KLi with xt and yt

18: end if
19: end for
20: end if
21: end for

Intuitively, Active Union is initialized with a set of component KWIK learners, each of
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which has a corresponding Boolean formula (a condition). For every input xt, those learners

whose conditions are true for xt become “active” learners and each makes a prediction. If these

predictions are all the same, that prediction is made (note that if all the learners predict ⊥, then

that prediction is made). If the learners disagree, ⊥ is predicted. Either way, if ⊥ is predicted

by the overall algorithm, a deterministic label is received (we will cover a stochastic version in

the next section). This label is used to eliminate component learners (and their corresponding

conditions) that are predicting incorrect labels (and no longer admitting ⊥) and is also used to

update learners that still declare uncertainty. We will use this algorithm for the deterministic

conditional CD-Learning problem and later in the deterministic case where the effects also need

to be learned, as well as a variant introduced later for the stochastic case. For this simple

version above, we have the following KWIK result:

Lemma 3. The Active Union algorithm (Algorithm 15) over n components has a KWIK bound

of (n− 1) +
∑n

i=1 Bi(ǫ, δ/n) in the case where the hypothesis class is realizable by the ci parti-

tioning and where ǫ and δ are the desired accuracy and confidence parameters, n is the number

of component learners and Bi is the KWIK bound of component learner KLi.

Proof. (sketch) The proof follows along the same lines as the original Union algorithm (Li, 2009),

which we sketch here. Every time the algorithm makes a ⊥ prediction, either one of the active

component learners has made a ⊥ prediction, or all the components made non-⊥ predictions

but they were not identical. In the latter case, at least one component learner will be eliminated

based on its wrong prediction. This learner cannot be applicable in other conditions because

each ci is static (though a whole ci can be eliminated) and the true ci’s are not allowed to

overlap unless they make the same prediction for a given xt (hence the “realizable” caveat in

the lemma). Thus, only n− 1 ⊥ predictions can come from such cases. The scenario in which

some component learner is predicting ⊥ is covered by the summation over individual bounds

and a union bound is used to ensure the correct probability of failure δ, hence the stricter δ/n

failure probability for the individual components.

We note that the original Union algorithm allowed the outer learner to make a non-⊥

prediction if all of the y ∈ Y were within ǫ of one another, in which case it predicted the median

value of this set. A similar modification is easily done to Active Union with only a slight change

in the worst-case bounds (B(ǫ/2, δ/n) replaces the current B), but we do not make use of such

functionality in this thesis (we use a different algorithm below in the stochastic case where such

continuous-value accuracy is apropos).
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In the deterministic CD-Learning setting, the effects are given, so the individual KWIK

learners whose hypotheses are being combined in ActiveUnion are replaced simply by one static

“learner” for each effect that always predicts that effect. We make O(Ck) copies of each of

these learners and link each one to a possible condition, thus enumerating the cross product

of the small condition/known effects. More formally, a general solution to the conditional

deterministic CD-Learning problem that uses the Active Union algorithm as its backbone is

presented in Algorithm 16.

Algorithm 16 Conditional Deterministic CD-OnlineLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Effect set Ωa for each
a ∈ A

2: Construct static predictors KLa
ω, one for each possible effect of each action.

3: ∀a ∈ A construct condition learners CLa by initializing a copy of Algorithm 15 with C
containing |Ωa| copies of each possible conjunction of size k = O(1) or less and attach each
copy to a different KLa

ω.
4: for each episode do
5: for st = current state do
6: If any of the KWIK learners have changed, construct a model interpreting any CLa ⊥

as an Rmax transition
7: Perform Known-Edge Value Iteration or another ǫ-accurate deterministic planning al-

gorithm.
8: Execute the greedy action at, Observe st+1

9: Update CLat(st, st+1)
10: end for
11: end for

Intuitively, the algorithm considers every possible condition/effect pairing for each action

and the optimistic interpretation of the KWIK Active Union predictions (again using a KWIK-

Rmax interpretation to keep the considered state space close to the actual reachable state

space’s size) drives the agent towards portions of the state space where different conditions can

be experimented with to determine how they correlate to the known effects. This algorithm

has the following property for domains described by conditional deterministic action schemas

where the true conditions do no overlap in any reachable state and the conditions themselves

are conjunctions of at most k = O(1) terms.

Theorem 7. Algorithm 16 is PAC-MDP for domains described by deterministic conditional

action schemas where the conditions are conjunctions of size O(1) or some other polynomially-

enumerable hypothesis class.

Proof. (sketch) The proof follows simply from the KWIK bounds in Lemma 15 and Theorem

1, which connects KWIK learning of a model of PAC-MDP behavior. Each sub-optimal step
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contributes towards eliminating some disagreement between one of the still possible conditions,

which results in the elimination of one of these conditions for an action attached to a single

effect.

3.8.2 Learning Small Conditions in the Stochastic Case

We now present a KWIK algorithm that learns both the conditions and the effect distribu-

tions in the stochastic conditional CD-Learning problem, assuming that each condition is a

conjunction of no more than k = O(1) literals. As with the earlier stochastic pre-conditional

CD-Learning case, the problem is decomposed into learning the conditions and effect distribu-

tions, but as in the deterministic conditional case above, we no longer have explicit feedback as

to which condition was actually active in the last step. The stochastic case introduces a second

obstruction to learning conditions. Not only do ambiguous effects not tell us which condition

(if any) needs to be updated, but now the feedback we do see is stochastic. As an example,

consider the stochastic version of Metal/Wooden paint-Polish world where the object’s surface

composition (metal or wooden) determines the distribution over possible effects, with metal

objects having a lower (but still non-zero) probability of becoming scratched and painted than

their wooden counterparts. In the earlier deterministic case, if an object was unscratched to

begin with, we could tell exactly which condition/effect pairs needed to be eliminated (based

on whether the object came back scratched or not), but in this case, a single piece of experience

is not informative enough to eliminate one of these pairs—if the possible effect distributions in-

volved scratching with probability 0.7 for wooden objects and probability 0.3 for metal objects,

it is still possible to see a metal object get scratched, and unclear what pairing of distributions

(the 0.7 and the 0.3 probabilities would each be predictions for different component learners)

should be eliminated. Furthermore, in the CD-Learning problem these distributions are not

given, and instead need to be learned online, so the architecture from the deterministic case

needs to be changed.

The changes are made below by replacing Active Union with an algorithm called the Active

k-Meteorologist Solver (AKMS), which is essentially a version of Active Union that can handle

noisy observations. We also replace the “static” effect predictors from the deterministic case

with KWIK-LR learners to learn the probability distributions over the given effect sets for each

action.
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The Active k-Meteorologist Solver

The difficulties described above require an algorithm that (1) considers multiple hypotheses

for C and (2) does not commit to any condition set without overwhelming statistical evidence.

We now describe such an algorithm, the Active k-Meteorologist Solver (AKMS). The algorithm

is an extension of the original k-Meteorologist solver (Diuk et al., 2009), with an adaptation

similar to our change to Union above—instead of all component learners making predictions,

each component learner has an associated condition (Boolean formula) and only those learners

whose conditions actually match the current input are consulted. The full algorithm appears

in Algorithm 17.

Conceptually, AKMS is similar to Union in that it considers the predictions of several

component learners and predicts ⊥ when they disagree. But, there are two main differences.

First, AKMS is built for continuous predictions and so when components make predictions that

are close, they can be merged using a median prediction (the same change is possible for Active

Union as discussed earlier). More importantly, AKMS does not eliminate hypotheses that make

a single wrong prediction. Instead, it waits for sufficient statistical evidence to accrue, indicating

that a component is (with high probability) making consistently incorrect predictions.

The conventional metaphor for understanding the meteorologist solver is that of deciding

which weather forecasters in a given location make accurate predictions. That is, each of the

component learners could be, at the most basic level, simply predicting the probability of precip-

itation every day. The algorithm keeps track of pair-wise statistics as to which meteorologist is

more accurate than another. Once enough evidence is collected to show that two meteorologists

are statistically different (line 20) , the further outlier is eliminated. Only when all the remain-

ing meteorologists make predictions within ǫ of one another can a prediction be made with high

confidence. AKMS simply extends this algorithm to the setting where not all the meteorologists

make a prediction at every step. For instance, if one of the meteorologists was out sick on a

given day, we should not ignore the predictions of the others. Notice the conservative approach

of waiting for sufficient statistical evidence to eliminate a component learner is exactly what

is necessary to deal with the noisy signals described above for stochastic conditional schema

learning. Formally, AKMS has the following KWIK bound:

Lemma 4. With m = O( 1
ǫ2

log k
δ
), AKMS (Algorithm 17) has a KWIK bound of O( n

ǫ2
log n

δ
)+

∑n
i=1 Bi(

ǫ
8 , δ

n+1 ) where Bi is the KWIK bound on component learner KLi.
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Algorithm 17 Active k-Meteorologist Solver (AKMS) [Extended from the work of Diuk et al.
(2009)]

1: Given: KWIK Learners L = {KL1...KLn} and general Boolean conditions (like small
conjunctions) C = {C1...Cn}

2: For 1 ≤ i, j ≤ n, countij = 0, ∆ij = 0
3: for each input xt do
4: K̂L = {KLi|Ci(xt) = true} for all KLi ∈ L and Ci ∈ C

5: Y = {KL(xt)} for all KL ∈ K̂L
6: if ∀yi, yj ∈ Y, ||yi − yj|| < ǫ then
7: Y = { the median value of Y }
8: end if
9: if |Y | = 1 then

10: Predict y ∈ Y //could still be ⊥.
11: else
12: Predict ⊥
13: end if
14: if ⊥ was predicted then
15: Observe zt

16: for each KLi, KLj ∈ K̂L do
17: if KLi(xt) 6= ⊥ ∧KLj 6= ⊥ ∧ ||KLi(xt)−KLj(xt)|| ≥

ǫ
2 then

18: countij += 1
19: ∆ij += (KLi(xt)− zt)

2 − (KLj(xt)− zt)
2

20: if countij > m then
21: if ∆ij > 0 then
22: L = L −KLi

23: C = C − Ci

24: else
25: L = L −KLj

26: C = C − Cj

27: end if
28: end if
29: end if
30: if KLi(xt) = ⊥ then
31: Update KLi with xt and yt

32: end if
33: end for
34: end if
35: end for
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Proof. (sketch) The proof follows almost exactly the form as the proof of the original meteorol-

ogist solver (see Diuk et al. (2009) and Li (2009) for details). At a high level, the proof proceeds

by counting the ⊥ predictions from each component learner (the second term in the bound

above) and the number of times ⊥ will be predicted because of differing predictions before the

components that are more consistently wrong are eliminated. The proof hinges on showing that

the component learner(s) that are close to the true hypothesis have the lowest squared error

on average and that, with high probability, only components with larger squared errors will be

eliminated.

The only difference between the AKMS analysis and this result is that now not every compo-

nent learner makes a prediction at each step. However, since only pairwise comparisons are ever

used to eliminate component learners, and since the worst case bounds are derived considering

the case where only one pair-wise disagreement occurs at a time, the worst case bounds are

unchanged.

Learning Small Conditions and Effect Distributions with AKMS

We now incorporate the active k-meteorologist solver into a revised version of Algorithm 16,

now for the stochastic conditional CD-Learning problem. In this setting, we need to consider

the form of the given effects a little more closely, because the effects for a conditional stochastic

action schema are actually a set of effect sets Ωa, with each Ωa
i ∈ Ωa being linked to a different

condition. Two types of background knowledge seem plausible in this situation. We may be

given the set of effect sets Ωa or just told what effects might occur in any condition for that

action (Ωa =
⋃

Ω|Ω ∈ Ωa). Since we can always turn the former form into the latter by

“flattening” the effect sets for each action, we consider here the case where we are only given

this flat set of effects, though we remark on an alternative architecture for the former case. Our

algorithm will be able to deal with potential effects that do not occur under certain conditions

(but are included in the flattened set) because the probability-learning component will set

their likelihood to 0. With this background knowledge, Algorithm 18 efficiently solves the

CD-Learning problem when conditions are guaranteed to be conjunctions of size O(1) by using

KWIK-LR learners (for learning effect distributions) as component learners for the meteorologist

architecture (MET a, which sorts out the correct conditions for each action).

Intuitively, M meteorologist sub-learners are considered for each action, each one for a

pairing of a possible condition with an effect set. Each component is a KWIK-LR learner
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Algorithm 18 Stochastic Conditional CD-OnlineLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Effect sets Ωa for each
a ∈ A

2: Construct M =
∑k

i=0

(
P
k

)
KWIK-LR predictors (Algorithm 9) LRa

i ( ǫ
8 , δ

M
), one for every

possible condition.
3: ∀a ∈ A Construct a meteorologist learner MET a by initializing a copy of Algorithm 17 with

C containing each of the M possible conditions and using the KWIK-LR learners above as
component learners.

4: for each episode do
5: for st = current state do
6: If any of the KWIK learners have changed, construct a model interpreting any MET a

⊥ as an Rmax transition
7: Perform Known-Edge Value Iteration.
8: Execute the greedy action at, Observe st+1

9: Update MET at(st, st+1)
10: end for
11: end for

(Algorithm 9), which keeps a running estimate of the probabilities of each of the possible effects

estimated from data from when the corresponding condition held (because component learners

are only updated when their corresponding conditions are active). When the planner queries

MET a about executing a(o1...om) in st, all of the meteorologists whose condition ci is satisfied

(with substitutions based on o1...om) by st are asked to predict the distribution of possible next

states. Depending on the status of their accompanying KWIK-LR algorithm and the current

state, they either report⊥ or a probability distribution and are combined using the meteorologist

architecture. The agent uses these probability predictions to construct a model, plans with

it, and then performs the recommended action and passes the experience to the appropriate

meteorologists. This real experience activates the purging mechanism (Line 20 of Algorithm 17)

to eliminate conditions whose component learners are making consistently bad predictions about

the probability distributions of effects. In terms of exploration, the algorithm is driven by AKMS

to areas of the state space where the possible conditions are separable (for example, trying to

paint wooden or metal objects) and within those areas, actions whose probability distributions

on effects are not known under these conditions are tested. Formally, we can state that the

algorithm efficiently KWIK-solves the CD-Learning problem in the conditional stochastic setting

when conditions are described by bounded conjunctions or some other enumerable and KWIK-

learnable hypothesis class amenable to the AKMS architecture.

Theorem 8. Algorithm 18 is PAC-MDP and KWIK-solves the CD-Learning problem in the

conditional case when each condition is a conjunction of no more than k = O(1) terms.

Proof. The proof follows from the KWIK bounds on the learning components. Specifically,



90

Figure 3.4: CD-Learning in Metal/Wooden Paint-Polish World with two objects. On the left,
Meteorologist+LR is compared to a learner that does not learn conditions. On the right,
Meteorologist+LR is compared to a Flat MDP learner.

since each KWIK-LR component learner runs with a bound of BLR (Equation 3.1 with ap-

propriate accuracy parameters as per the meteorologist) ⊥ predictions, and using Lemma 4

to bound the number of ⊥ predictions for all the MET a learners, we end up with a total of

O(ALk

ǫ2
log Lk

δ
)+
∑n

i=1 BLR(Ω, ǫ
8 , δ

n+1 ) ⊥ predictions, where L is the number of domain literals

in an action’s scope (Pmn in the STRIPS case). As the optimistic interpretations used have

already been shown to be safe in translating KWIK algorithms to PAC-MDP behavior, the

algorithm performs as required.

As a proof of concept, Figure 3.4 shows the algorithm above being used in the stochastic

metal/wooden paint-polish domain with 2 objects. On the left, Algorithm 18 (MET+KWIK-

LR) is run against a learner that tries to apply KWIK-LR directly without learning the con-

ditions. This learner is unable to learn the benefit of coating the objects with metal and does

not consistently reach optimal behavior. A flat MDP learner is also shown (on the right),

which does not generalize over objects nor concentrating on the small conditions associated

with each action, instead considering every combination of statuses of the two objects as a thor-

oughly independent state. Algorithm 18 performs dramatically better than this unstructured

flat learner.

3.8.3 CD-Learning with a Small Number of Conditions

The positive KWIK results above were all derived under the assumption that the conditions

themselves were small. However, in the conditional setting there is another natural assumption

that yields a KWIK algorithm (although it is less practical due to large constants). Specifically,
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we consider the case where the conditions can be conjunctions over any number of literals,

but the number of conditions is bounded by a constant (|Ca| = k = O(1)). Notice that the

combination-lock example cannot be represented with such a restriction because conditional

action schemas have no “else” block—there is no failure mode in the conditional case the way

there was for the pre-conditional case. However, it is just this lack of expressiveness that will

allow us to enumerate the possible hypotheses for the conditions. We note that such an else

block can be accommodated in CD-Learning if the associated effect is always unique.

Specifically, we can capture all the possible conditions by enumerating the set of decision

trees with k leaves. Each root-to-leaf path in such a tree represents a possible condition, and

each leaf/label pair represents an effect. Generally, the number of decision trees with k (uniquely

labeled) leaves that depend on ν attributes is νk−1(k +1)2k−1 (Pichuka et al., 2007), and in our

case, ν is the number of domain literals L (in STRIPS L = Pmn). Having thus enumerated the

hypothesis space, we can utilize Active Union (Algorithm 15) to KWIK-solve the CD-Learning

problem and induce PAC-MDP behavior as a direct consequence of Theorem 3 (which holds

for any polynomially enumerable space), but now the bound is ALk−1(k + 1)2k−1 = O(AL|C|),

where |C| is the maximum (O(1)) number of conditions. However, the rather large constant

and the somewhat inelegant enumeration of trees calls the practicality of this approach into

question. In Section 4.3.2, we will introduce an algorithm for a different learning paradigm

(apprenticeship learning) that does not suffer from such a constant.

Moving to the stochastic case, we see that learning becomes more difficult because when a

condition matches a state, an effect is chosen from the distribution 〈Ωa
i , Πa

i 〉, so the decision-

tree enumeration needs to be augmented with a distribution learning component (for the effect

distribution), and we can no longer eliminate possible trees based on a single sample. Again,

we can use the template from the “small conditions” case to alleviate both of these troubles.

That is, we can use AKMS (Algorithm 17) here, but instead of just enumerating the conditions,

we again enumerate all decision trees with k leaves. Each of these possible trees is treated

as a meteorologist (in the terminology of AKMS) and again KWIK-LR is used to learn the

distribution associated with each possible condition. While the resulting bound is actually

polynomial, it is again hampered by enormous constants. It is an open question as to whether

a more efficient algorithm is possible without more assumed structure.

This last set of algorithms, which are clearly approaching the edge of tractability, complete

our study of CD-Learning in the online setting. We will return to this problem in the next
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chapter where a more powerful learning paradigm will allow us to drop some of the restrictions

used in this section.

3.9 Learning Effects and their Distributions

We now turn our attention to the ED-Learning problem, where the conditions are given (instead

of having to be learned), but now both the effect distributions (Πa or Πa
c ) and the effects

themselves (Ωa or Ωa) need to be learned. In the original definition of ED-Learning (Definition

14), we did not stipulate the size of the learned action schemas, only that they be accurate.

However, it seems reasonable to require these schemas to be as compact as possible. To ascertain

the tractability of this goal, we consider the ED-Learning problem in the simple case where we

are given a constant k = |Ω| that bounds the number of possible effects under any condition in

the schemas. For instance, if k = 1, the schemas are deterministic.

Our results will progress from the simple deterministic setting to more difficult stochastic

settings, culminating in a KWIK algorithm for general ED-Learning when k = O(1). In all

of these positive results, we give language-specific results for STRIPS because other languages

may not have the same Add and Delete structure. We begin with the deterministic case, where

STRIPS effects are surprisingly easy to KWIK-learn. Along the way, we show that computing

a minimal action schema from incomplete data is NP-Hard, and that “greedy” approaches to

learning effects can get caught in incorrect models, but our final algorithm sidesteps both of

these difficulties by exploiting structure in the stochasticity of a schema and waiting until it has

enough statistical evidence to commit to a specific model. Before considering such complications,

we examine the simple deterministic case.

3.9.1 KWIK-learning Deterministic Effects

Unlike the stochastic setting, deterministic STRIPS effects can be inferred without consid-

ering multiple effects that might be producing the same outcome. In fact, the operator up-

date rules from Section 3.4.1, which stated how to infer the role of a literal in an action’s

effects (for example, seeing a block To being no longer clear after a putdown action means

that Clear(To) is in putdown’s Delete list). We can formally encapsulate these update rules in

KWIK-DetEffectLearn (Algorithm 19) for learning deterministic STRIPS effects for an action6.

6This algorithm can be trivially extended to the conditional case since conditions are given in ED-Learning.
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Algorithm 19 KWIK-DetEffectLearn (STRIPS)

1: Given: Literals L
2: Output : Predict the next state or ⊥
3: ∀l ∈ L, Add[l] := Delete[l] := ⊥
4: for each input state s with objects replaced with variables from a do
5: ŝ = ∅
6: for each Literal l ∈ L do
7: if l ∈ s ∧Delete[l] = ⊥

∨
l /∈ s ∧Add[l] = ⊥ then

8: Predict ⊥
9: BREAK LOOP

10: else if l /∈ s ∧Add[l] = true
∨

l ∈ s ∧Delete[l] = false then
11: ŝ = ŝ ∪ l
12: end if
13: end for
14: if No prediction made yet then
15: Predict ŝ
16: else
17: // ⊥ was predicted
18: Observe s′ (with variable substitution again based on a)
19: for each literal l ∈ L do
20: if l /∈ s ∧ l ∈ s′ then
21: Add[l] = true
22: end if
23: if l /∈ s ∧ l /∈ s′ then
24: Add[l] = false
25: end if
26: if l ∈ s ∧ l /∈ s′ then
27: Delete[l] = true
28: end if
29: if l ∈ s ∧ l ∈ s′ then
30: Delete[l] = false
31: end if
32: end for
33: end if
34: end for
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Intuitively, the algorithm initially lists every literal in the scope of the action as being

unknown in terms of its presence in the Add and Delete lists. Then, for every state given to

the algorithm, it is asked to predict the next state after executing this action. If the Add and

Delete lists contain uncertainty that would affect the next state (Line 7), then ⊥ is predicted,

otherwise s′ is correctly predicted. Note that depending on the state, correct predictions can

still be made even when there is uncertainty in irrelevant parts of the Add and Delete lists (for

example, if Table(X)’s deletion is unknown, but is known not to be added, and is not true in s,

it does not affect the prediction of s′). If ⊥ is predicted, the next state is observed and unknown

parts of the Add and Delete lists are filled in based on the observed changes, or lack thereof. For

instance, consider the algorithm seeing its first state in deterministic Blocks World as having a

on the table, b on the table, and c on b. The algorithm has seen no information thus far, so if

asked to make a prediction for the move(a, table, c) action’s effects, it must predict ⊥. The

algorithm would then get a piece of experience (gathered using the full RL algorithm in the next

section) showing a being moved on top of c. This piece of experience would be used in lines 19

through 30 to update the Add and Delete lists of move(X, From, To) to contain information

such as: Add[On(X,To)] = true ; Add[Table(X)] = false ; Delete[Clear(To)] = true ; and

Delete[Block(X)] = false . In general, each piece of experience after a ⊥ eliminates uncertainty

for at least one literal in either the Add or Delete list. Formally, the algorithm has the following

KWIK bound.

Lemma 5. For deterministic STRIPS domains with P predicates of max-arity n and A actions

of max-arity m, learning the effects of each action using Algorithm 19 has a KWIK bound of

O(APmn)

Proof. The number of literals considered in each action’s scope is Pmn (for A actions of max

arity m and P predicates of max-arity n), which is the number of predicates with unique variable

permutations drawn from the action’s variables. Each ⊥ prediction must occur because either

the Add or Delete list contains a ⊥ prediction for at least one of these literals. So either

l ∈ s ∧ Delete[l] = ⊥ or l /∈ s ∧ Add[l] = ⊥. Either way, the observed s′ will determine

definitively if these should be set to true or false based on the rules in Lines 19 through 30

(since at least one of those must be true for each literal). Thus, each ⊥ prediction removes at

least one bit of uncertainty from the Add or Delete, with a maximum of 2Pmn such ⊥s for each

action.

We note that while this result is specifically for STRIPS domains, any deterministic action
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schema language where the effects are KWIK-learnable will be usable in the next section.

For instance, deterministic OOMDPs with their arithmetic attribute-value changes are KWIK-

learnable (Diuk et al., 2008) when the space of available changes is relatively small. We now

consider how to translate such KWIK-learnable deterministic effect learning algorithms into full

agents for the ED-Learning problem.

3.9.2 Optimistic Interpretations and Deterministic ED-Learning

As with other sub-problems, we have a choice of the optimistic heuristics to guide the learner.

One choice is to simply use the KWIK-Rmax architecture and replace all transitions where the

next state is predicted as ⊥ with an Rmax state. However, this interpretation does not make use

of the partially learned operators. That is, because KWIK-DetEffectLearn keeps track of the

“known-ness” of each literal in each Add and Delete list, we sometimes know partial information

about what literals are added or deleted, though maybe not all of them. In that case, the

optimistic Add/Del heuristic has better best case behavior, if all the rewards and pre-conditions

are based on positive values of literals (as is the case for pre-conditions in traditional STRIPS).

This heuristic constructs “optimistic operators”, where for every potential literal changed by

an action, it is considered to be added if Add[l] = (⊥ ∨ true ) and is considered to be deleted

only if Del[l] = true . Under this heuristic, partially learned operators are thought to add as

many literals as possible given prior evidence, and only delete those that have certainly been

seen to be deleted earlier. STRIPS rules have pre-conditions based on monotone conjunctions,

so if we assume that the reward function is similarly based only on monotone literals (and not

their negation), this heuristic will always lead to higher valued states (since no action will be

wrongly precluded and reward values will only be over-estimated).

Both heuristics have their benefits. As in the CD-Learning setting, the Rmax-style heuristic

prevents us from having to enumerate a large number of states that may not even be reachable.

On the other hand, when enough partial information is known about the Add and Delete lists,

the optimistic-Add/Del heuristic avoids some useless exploration, though the worst case bounds

are the same. One interesting melding of the two is to use the Rmax heuristic early on and then

switch to the more focussed optimistic-Add/Del when most of an operator is learned, hopefully

avoiding the large state-space enumeration. In the following algorithm and our experiments, we

simply use the Rmax heuristic but we have seen empirical benefits to the other approach.
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Our full algorithm for deterministic ED-Learning is presented in Algorithm 20. The algo-

rithm is presented here for the conditional case, as it is the most general, but is easily adapted

to the pre-conditional or unconditional cases by creating only 1 copy of KWIK-DetEffectLearn

for each action. The algorithm works simply by using the KWIK predictions of KWIK-

DetEffectLearn for each action and updating each one with the pre- and post- states of each

action taken, which are of course translated into a variablized form (such as On(X, From) instead

of On(a,b)) by simple substitution based on the action’s variables. Agents using this algorithm

are explicitly drawn towards areas of the state space where it will be able to definitively tell

if a literal is added. For instance, if the agent has not learned whether paint actually paints

an object, it will attempt the action on an object that is unpainted to determine whether the

change actually happens. Formally, we can make the following statement about this algorithm

in the deterministic ED-Learning setting.

Algorithm 20 Deterministic Conditional ED-OnlineLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Conjunctions for
conditions Ca = {c1...cn} for each a ∈ A

2: ∀a ∈ A, ∀c ∈ Ca Construct a copy of KWIK-DetEffectLearn (Algorithm 19) KDEa
c with

Pmn literals (those in scope of a)
3: for each episode do
4: for st = current state do
5: Construct a model interpreting any KDEa

c ⊥ as an Rmax transition (or use optimistic
schemas)

6: Perform Value Iteration using this model
7: Execute the greedy action at, Observe st+1

8: ct = c ∈ Ca such that c(st) = true
9: Update KDEat

ct
(st, st+1)

10: end for
11: end for

Theorem 9. Algorithm 20 is PAC-MDP given conditions in domains encoded in deterministic

STRIPS by KWIK-solving the ED-Learning problem for deterministic STRIPS schemas.

Proof. The theorem follows from Lemma 5 and the KWIK-Rmax theorem because there are a

bounded number of actions taken due to uncertainty in the model. Each such trajectory will

lead to at least one observation that eliminates a ⊥ prediction for at least one literal in the

Add and Del arrays held by KWIK-DetEffectLearn. The total KWIK bound in this case is

O(ACPmn) where C is the maximum number of conditions associated with an action.

A small empirical demonstration of the algorithm is shown in Figure 3.5 for 4-Blocks World.

The graph shows the average reward (over 10 trials) obtained by an agent using Algorithm 20
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Figure 3.5: Learning deterministic effects in blocks world.

versus an agent that uses a flat MDP learner, which is unable to generalize across situations

(not realizing that moving block a has anything to do with moving block b). As expected, the

algorithm using relational action schemas learns all it needs to know about blocks world during

the first episode while the flat MDP learner struggles for many episodes (each episode is capped

at a step limit of 20) to uncover the true model.

3.9.3 Stochastic ED-Learning with “Signaled Effects”

We now begin transitioning to the stochastic ED-Learning problem as posed in noisy blocks

world, or the difficult-to-learn Stochastic STRIPS rule in Table 3.5. Notice that the major

difficulty for stochastic ED-Learning arises from effect ambiguity, which is complicated by the

fact that the effects themselves are being learned. That is, for a given transition, not only may

multiple real effects match this transition (as we saw in the D-Learning case), but because these

effects may be partially learned, we may not be able to discern from a single example which

effect should be updated. For instance, if we have seen A and B added at the same time, and

then observe a transition from A to AB (only B was definitely added, though we can’t tell for

A), was that the same effect, or a different one?

In this section, we first consider the problem without this complication by assuming that an

index number or other unique identifier of the effect that actually occurred is reported along

with the next state, though we get rid of this restriction in the following sections. As an example,
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ω1: Add: B Del: C (p1 = 1/3)
ω2: Add: AB Del: D (p2 = 1/3)
ω3: Add: Del: C (p3 = 1/3)

Table 3.5: A difficult set of Add and Delete lists to learn in the stochastic case (with simple
propositional literals).

consider the noisy blocks world with the modification that if the pickup action actually picks up

a block a 1 is reported (along with the next state showing the block in hand), and if the action

instead resulted in no change, a 2 is reported along with the new state. This indicator will

allow us to KWIK-learn the effects because we are no longer unsure how to “pair” effects from

different samples (deciding how to group literals that were say, added on different timesteps and

might belong to the same effect bin). Note that this extra amount of information also makes

the distribution learning part of the ED-Learning problem easier to solve, though for different

reasons. The new observations do not preclude 2 effects from being able to explain the same

transition, but there can be no ambiguity at any given timestep because the actual effect index

is reported. Hence, KWIK-LR can be replaced by a simple counting algorithm (the “KWIK

dice-learner” from Table 2.1) in this case.

Under these conditions, we can use the following algorithm (Algorithm 21) with component

KWIK learners for learning the effects and the probabilities. Intuitively, it just uses the deter-

ministic effect learning algorithm to learn the Add and Delete lists for each indexed effect, and

uses a simple KWIK dice-learning algorithm to determine the probabilities of each effect-set

multinomial. Formally, it has the following property.

Algorithm 21 Stochastic “Signaled Effect” Conditional ED-OnlineLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Conjunctions for
conditions Ca = {c1...c|Ca|} for each a ∈ A, and a maximum number of effects per condition
|Ω| with unique signals.

2: ∀a ∈ A, ∀c ∈ Ca, w ∈ [1...|Ω|] Construct a copy of KWIK-DetEffectLearn (Algorithm 19)
KDEa

cw with Pmn literals (those in scope of a)
3: ∀a ∈ A, ∀c ∈ Ca Construct a “dice-learner” Da

c to learn the effect probabilities
4: for each episode do
5: for st = current state do
6: If any of the KWIK learners have changed, construct a model interpreting any KDEa

cw⊥
where Da

c (w) 6= 0 or Da
c = ⊥ as an Rmax transition

7: Perform Value Iteration using this model
8: Execute the greedy action at, Observe st+1 and effect index i.
9: ct = c ∈ Ca such that c(st) = true

10: Update KDEat

cti
(st, st+1) and Dat

ct
(i)

11: end for
12: end for
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Theorem 10. Algorithm 21 is PAC-MDP and KWIK-solves the ED-Learning problem in the

“signaled effect” setting where each ω ∈ Ωa
c , has a unique index that is reported whenever that

effect occurs.

Proof. (sketch) The overall KWIK bound for this algorithm is O(CAΩ(Pmn + 1
ǫ2

log Ω
δ
). The

first term comes from the effect learning component and the second from the dice-learning

bound (see Table 2.1). Special consideration has to be given in this case to effects that never

happen because we use the maximal number of effects to set up the learners, but there may be

fewer than this number of effects under a given condition (for example, some conditions may

produce deterministic effects while others have a distribution over 2 or more). This situation is

taken care of in Line 6, which halts exploration due to the effect-learning component if the dice

learner predicts probability 0 for this effect. The PAC-MDP property comes from the KWIK

bound and the application of the KWIK-Rmax architecture.

Unfortunately, most of the problems considered in this thesis, and most in the literature,

do not fit this profile. We now consider the more general case, where such an indicator is not

provided.

3.9.4 Negative Results for ED-Learning: Flawed Approaches

Turning our attention to the case of k = O(1) general stochastic effects, we first describe a

negative result on computing minimal action schemas from incomplete data. We then provide

an example of the hazards of using a “greedy” approach to construct learned effects. These

negative results are tempered in the next section, which shows how to KWIK-learn k stochastic

effects in a non-greedy fashion and without constructing full schemas from incomplete data.

The Intractability of Computing Minimal Effects from Incomplete Data

We start by showing the difficulty of learning stochastic action schema effects in the batch setting

from a log of data (transitions) that does not uniquely induce an action schema. This result will

show that the computation required to infer the minimal effects from a log of experience data

makes the problem NP-Hard. While others (Pasula et al., 2007) have reported similar results,

the proofs are not widely disseminated, so we provide our own here. This result does not

directly imply that we cannot KWIK-learn stochastic effects (in fact we show the opposite for

k = O(1) effects later), but provides good intuition on the difficulty of the problem. Formally,
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the problem we consider here is: given a set of M “experience data points” for an unconditional

Stochastic STRIPS action a, where each piece of data is a tuple 〈s, s′〉 showing the state of the

domain before and after the action, determine whether there is an effect-set Ωa of size k such

that every experience tuple is explained by at least one ω ∈ Ωa (η(s, ω) = s′).

Theorem 11. The ED-Learning problem for Stochastic STRIPS rules in the batch setting, with

a log of M experience tuples for an action, is NP-Hard when the number of effects is larger than

2.

Proof. The proof is by a reduction from graph coloring. We begin by defining some notation.

As per operator update rules 3-6 from Section 3.4.1, every experience tuple indicates one of

four transformations for every literal l in the state description, which we denote with four

symbols (1,0,*,#), standing for (literal was added, literal was deleted, literal was already true

and not deleted, and literal was already false and not added). Thus, given an ordering over the

literals, we can write every experience tuple in terms of these four symbols. For instance, in a

propositional domain instance with literals A,B,C,D, and E, the transition AB → ACE can be

written as *01#1.

The k graph coloring problem, which we do the reduction from, is defined as: given a graph

〈V, E〉 with vertices V and edges 〈vi, vj〉 ∈ E, determine if there is a mapping κ : V 7→ [1...k]

(a “coloring” of the vertices) such that no two adjacent vertices have the same color (formally,

〈vi, vj〉 ∈ E,→ κ(vi) 6= κ(vj)). This problem is known to be NP-Complete (Garey & Johnson,

1990).

The reduction from graph coloring to batch ED-Learning goes as follows. We will construct

a log of M = |V | experience tuples for a domain instance with |V | literals. Each experience

tuple eti has a 1 in position i. All other positions in the tuple are filled with one of two symbols.

If 〈vi, vj〉 ∈ E, then position j is set to #, otherwise it is set to *. The interpretation of each

experience tuple is that literal li definitely is added in this instance, and several other literals

are shown not to be added with it (those that had edges in the graph coloring instance), and

the others may or may not be in the Add list with li that generated this instance (*s).

All that needs to be shown now is that a valid solution to the constructed ED-Learning

problem answers the original graph coloring problem and vice versa. This connection is com-

pleted by interpreting each inferred effect ωi ∈ Ω as a unique color [1...k]. A color ki is assigned

to vertex vj if experience tuple 〈s, s′〉j can be explained by applying ωi to s (η(s, ωi) = s′). If

multiple effects could explain the transition, vj can be assigned any of the corresponding colors.
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This coloring will be consistent because each edge produced a 1/# pairing in experience tuple

j, so no effect that explains this transition can apply to both vertices (because it would have

to both add and not add each of the literals). In the other direction, if we have a solution to

the graph coloring problem, and instances for ED-Learning constructed as described above, we

can simply classify each experience tuple with effect ωi corresponding to the color i ∈ [1...k].

These effects must be valid because each instance has 1 in position i, a # in any position cor-

responding to a neighbor of i, and a ∗ (which doesn’t conflict with any other instance) in all

other positions.

While the previous theorem provides good intuition as to the intractability of learning effects,

it only gives a negative result on the computational complexity of solving the ED-Learning

problem with a specific strategy (constructing minimal effects from insufficient batch data). We

now show that even if this computation is ignored, a greedy approach to learning stochastic

effects (one that considers only a single minimal model) can falter. We will then show that a

more careful algorithm that makes better use of the probabilistic structure and waits to commit

to a model can efficiently solve the ED-Learning problem.

Problems for Greedy Approaches

While the result above shows the intractability of computing the minimal model from data

when there are not enough samples to build probabilities of the effects, one may wonder how

a “greedy” algorithm might fare. That is, consider a procedure that builds a single possible

set of Add and Delete lists from available data (using an NP-oracle to do the graph coloring /

effect inference) and then tries to learn the probability of these lists until evidence showed that

the lists were wrong. Unfortunately, the following example shows such a strategy can lead the

agent into a deadlock situation. The example uses the 3 real effects in Table 3.5 from earlier.

We will use the notation from the proof of Theorem 11, that is the four characters (1,0,*,#),

standing for literal was added (1), literal was deleted (0), literal was already true and not

deleted (*), and literal was already false and not added (#). Suppose the agent has collected

the following samples from that operator and then chooses a “coloring” of them (grouping them

into possible effect sets):
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1 * * # (red)

* 1 * 0 (red)

* 1 # # (blue)

* * 0 * (blue)

1 * # # (green)

* # # * (green)

This experience could induce the following effects (although several interpretations are pos-

sible, they can all be made to fail in similar ways):

ω1: Add: AB Del: D (Scapegoat)

ω2: Add: B Del: C

ω3: Add: A Del: C (Wanted)

Now suppose the agent starts in a state where only B and D are true, and the goal is to

get to a state where A and D are true. Unfortunately, outcomes from BD (assuming there’s

another action for resetting) will always be either “nothing happens” (the first and third real

effects: B is added and C is deleted or just C is deleted), which will be accredited to the second

learned bin, or A is added and D is deleted (blamed on first learned bin, the scapegoat). The

agent may think that the third learned bin (labeled “wanted”) will get it to the goal, but this

outcome will never happen and yet it will never see single-step evidence from this state that

the effects it has created are definitely wrong. Thus, using only a single hypothesis on Add and

Delete lists before sufficient statistical evidence is collected can lead to a deadlock that requires

backtracking. We now introduce an algorithm that avoids the pitfalls by making use of the

special structure of the effect probabilities in the |Ω| = k = O(1) case.

3.9.5 Stochastic ED-Learning with only k Effects

So far, we have a positive result for the minimal ED-Learning problem when |Ω| = 1 (deter-

ministic), and for a benign (signaled effect) version of the stochastic effect case. But now we

consider the case where the number of effects is greater than 1, but still small, specifically

|Ω| = k = O(1). We will introduce an algorithm (KWIK-CorEffect, Algorithm 23) that KWIK-

learns these dynamics, but because of the difficulties encountered in the negative results above,
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Add: B Del: C  (1/3)

Add: AB Del: D  (1/3)

Add: nil Del: C  (1/3)

Actual Operators

A B

�[ �[

A+ B+A- B-

C D

C[ D[

C+ D+C- D-

CEDBN

key Pr[A+=1]

A+ = 1 1/3

key Pr[B+ =1]

A+ =1 1

A+ = 0 1/2

A+ = */# 2/3

key Pr[C- =1]

A+ =1 0

A+ = 0 1

B+ = 1 1/2

B + = 0 1

CPTs for A+, B+, C- and D-

key Pr[D- =1]

A+ =1 1

A+ = 0 0

B+ = 1 1/2

B + = 0 0

C- = 1 1

C - = 0 0

B+=1, 

C-=0

1

B+=1,

C-=1

0

Figure 3.6: Coupled effects represented using a Cross-Edged Dynamic Bayes Net (CEDBN).
Intermediate nodes have CPTs up to k parents. For any given time-step, half the intermediate
nodes are */# (will not affect the next state) and the others have values of 0 or 1. Dependencies
flow down and to the right.
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we will be using a much different internal representation than considered in the rest of this the-

sis. Essentially, because of the intractability of computing and maintaining a single Stochastic

STRIPS model during learning, and because KWIK learners are only tasked with the problem

of making predictions (not particularly outputting a specific model), we now introduce a graph-

ical model for Stochastic STRIPS effects that leverages the probabilistic structure to compactly

represent the valid hypotheses. We will use this model in subsequent sections to KWIK-solve

the ED-Learning problem.

The Cross Edged Dynamic Bayes Net

The model we introduce for representing Stochastic STRIPS effects is a Cross Edged Dynamic

Bayes Net (CEDBN) as illustrated in Figure 3.6 for the (difficult to learn) effects from Table

3.5. The use of similar graphical models for inducing probabilities of next states from relational

operators has precedent in the planning community (Lang & Toussaint, 2009), but here we use

this newly defined structure to make the learning process tractable.

A CEDBN for an action represents a transition with the following structure. Like a standard

DBN, it has nodes for each factor’s value in the state before and after the action executes (the

top and bottom levels in the figure). While these are labeled with propositional factors in our

diagram (for readability), in STRIPS each one of these nodes would correspond to a literal that

is potentially affected by the action (such as On(X, From)), and their values are simply 1 or 0

depending on whether the literal is true or not. However, we will need an extra set of nodes to

capture the dynamics of the Add and Delete lists as well as correlations between the factors.

To see why we need to capture such correlations, notice that in the simple operator in

Figure 3.6, if we know that A is added, then we can guarantee that B is also added (since A

is only added in ω2). These correlations are captured in a CEDBN by introducing 2n (for n

literals) linked intermediate nodes (the middle layer in Figure 3.6), which store the probabilities

(in Conditional Probability Tables (CPTs), described later) for each literal being added or

deleted (the A+ and A− nodes, respectively). The cross-edges within this intermediate layer

encode statistical dependencies between these literals and an ordering (in our example, simply

alphabetical) is placed on these intermediate nodes such that dependencies only flow one way.

For instance, the link between A+ and B+ indicates that there is a statistical correlation (in

this case deterministic) from A being added to B being added. We note that a similar structure

has been used to capture correlations between factors in prior work (Hoey et al., 1999).
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The values permissible for each intermediate node X+ are a 1 (which indicates that literal

was definitely added as X was 0 in the pre-state), or 0 if X was definitely not added (X was 0 in

the pre-state and will remain so). Similar values are allowed for X−. However, we also need to

encode the transitions associated with the ∗ and # markers from the earlier section indicating

the cases where we can’t tell if X was added or deleted. Note that one of 〈X+, X−〉 must have

this ambiguity in every state. Thus, we allow a third value for an intermediate node, labeled

∗/#, indicating this ambiguity and we will later see that nodes with this value can actually be

ignored when making next state predictions (because the probability of adding a literal that

is already true is immaterial). The semantics of the intermediate node values with respect to

the next state literals is simple once their values are known. If the intermediate node is labeled

∗/#, it has no effect on the current value of literal X , but its “sister” node (+ or −) must be

consulted. If it is labeled 1, then the literal X will have its value flipped (either off or on) and

if it has a value of 0, then X will definitely maintain its current value. Since the ∗/# values

are directly observable from the current state of X , the CPTs for X only needs to store the

probability of X+ (similarly X−) having the value 0 or 1, but the number of entries in the CPT

is dependent on the parent nodes (other intermediate literals earlier in the ordering). Note, if

we could compactly capture the CPTs for the values of the intermediate nodes, we would have

the full dynamics of the model.

In a standard DBN, the number of entries (rows) in each node’s CPT is exponential in

the in-degree of the node, because each different parent configuration could induce a differ-

ent distribution. When this in-degree is O(1), this learning is still tractable in the KWIK

setting (Diuk et al., 2009), but a näıve interpretation of a CEDBN does not conform to this

assumption, because a literal at the end of the ordering can have a statistical dependence on all

the other literals (for instance D in the diagram). However, in the next section we show that

only k = O(1) of these edges actually need to be considered at any specific timestep (so only

O(nk) entries are needed) when making a next-state prediction and subsequently bound the

size of sufficient CPTs for this task. To see how this compaction can be done, and as a glimpse

of how this model is useful in KWIK-learning, we first show how a fully instantiated CEDBN

(completely learned, with no ⊥ entries) with polynomial size CPTs can be used to predict a

next state.
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Next State Prediction with CEDBNs

Suppose we are given a current state and an action (with |Ωa| = k = O(1)) that can affect

a set of n literals (as with the scoping of STRIPS actions by their parameters) and asked to

predict a distribution over next states in the unconditional (ED) case. Suppose we also have a

fully instantiated CEDBN as described above. We will now show that CPTs of size O(nk) for

each literal are sufficient for a prediction algorithm to predict the next state distributions using

the corresponding CEDBN. Specifically, the CPTs will have one row for every combination of

“choice” literals that are ordered before it, that is every earlier literal that may have had a

probabilistic prediction (and therefore made us consider at least one extra “effect bin”). The

prediction procedure is laid out in Algorithm 22.

Intuitively, the algorithm starts with only a single effect (that says nothing is added and

deleted) with probability 1.0 and an empty “key”. The algorithm then looks at each intermediate

node for each literal (in the given order) that might be added or deleted, and refines the possible

effects, probabilities, and keys based on some of the intermediate nodes’ CPT entries. If the

intermediate node would not make a difference (line 9) (and isn’t even observable) due to the

current state configuration (A+ is meaningless if A is already true), it sets the node’s value to

∗/# and moves to the next intermediate node. Otherwise, the probability of that intermediate

node having value 1 in each possible effect constructed so far is considered. Notice that the entry

in this node’s CPT is indexed using the key for that effect, not the effect itself. If the effect’s key

deterministically (probability 1.0) asserts the node will have value 1, the corresponding literal

is added to the effect’s Add or Delete list (depending on if it is X+ or X−). For instance, in

the example if an effect has A+ = 1 in its key, then B+ = 1 with probability 1, so it is added

to that effect. However, in that case the key for that effect is not changed, because the keys

are meant to contain only a small amount of information necessary for differentiating this effect

from others, and since the earlier literals deterministically determine this one, putting it in the

key would be redundant.

The other case that needs to be considered is when the intermediate node has a non-zero (but

non-deterministic) probability of taking on value 1. In that case, we have found a “branch” node,

because it splits at least 2 effects that were aliased by the values of the previous intermediate

nodes. For instance, in our example if s[A] = 0, the very first node A+ has a 1/3 chance of

having value 1.0 because there are no other literals in the order before it. Therefore, the initial

(empty) effect has to be split into two cases, one where A is added, and one where it is not.
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Algorithm 22 PredictState(s, L, M)

1: Input : Current state s, Ordered Literals L = [l1...ln], CEDBN M with CPT entries for each
intermediate node l+i for every

(
n
k

)
{0/1} values for intermediate lj where j < i

2: Output : The possible next states (maximum k) and their probabilities
3: ω1 = ∅
4: Ω̂ = {ω1}
5: key(ω1) = []
6: Π[ω1] = 1.0
7: for each intermediate node x = l+ (or l−) ∈ L (in order) do
8: // If its value should be ∗/#, then mark it as such, move on
9: if x = l+ ∧ s[l] = 1

∨
x = l− ∧ s[l] = 0 then

10: Set x to ∗/#.
11: NEXT x //move on to next literal
12: end if
13: //Otherwise, for each effect constructed so far

14: for ωi ∈ Ω̂ do
15: if PrM [X = 1|key(ωi)] = ⊥ then
16: Return ⊥
17: else if PrM [X = 1|key(ωi)] = 1.0 then
18: //if deterministic and 1, place it in the effect, on to the next one
19: Add X (Add or Delete) to ωi

20: else if PrM [X = 1|key(ωi)] > 0.0 then
21: //If non-deterministic, split the two effects, update their keys and probabilities

22: Construct ωj , j = |Ω̂|+ 1 with ωj = ωi

23: Π[ωj ] = Π(ωi)
24: //Effect ωj has X added or deleted, ωi does not
25: Add X (Add or Delete) to ωj

26: //Update the corresponding keys
27: Add X = 0 to key(ωi)
28: Add X = 1 to key(ωj)
29: //Use X ’s CPT entry to update the two “split” effects’ probabilities
30: Π(ωi)*=PrM [X = 0|key(ωi)]
31: Π(ωj)*=PrM [X = 1|key(ωi)]

32: Ω̂
⋃

= ωj

33: end if
34: end for
35: end for
36: S′ = []

37: for each ω ∈ Ω̂ do
38: Add η(L, ω) to S′

39: end for
40: return 〈S′, Π̂〉
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The algorithm accounts for this by “splitting” the effect it was considering into two effects and

using the corresponding intermediate node to change the Add (or Delete) list of the new effects.

Otherwise the two effects are identical for now. It also updates the probabilities of each bin

based on the CPT entries at this node (for values 1 and 0) and updates the keys for both of

these effects by adding in a reference to this intermediate node and its value (0 for one bin, 1 for

the other). In summary, when considering just A+, we would have created two possible effects

(also two different next states): either A is added (next state = {A}), or not (next state = {}).

To see how such partial effects are expanded when considering more than one literal, consider

the two partial effects just described. Suppose s[B] = 0, so we have to consider B+ in both

of the effects created in the first step ({A} and {}). The first partial effect simply corresponds

to the deterministic case for B+ described above, so that effect is expanded to {A, B} but the

key remains simply A+ = 1 and the probability remains 1/3. But the second case (the empty

next state with A+ = 0) can have B+ being 1 or 0, so this effect is again split into {} and

{B}, with keys 〈A+ = 0, B+ = 0〉 and 〈A+ = 0, B+ = 1〉 respectively. The CPT entry for

B+ for the key {} is 1/2, so the original effect’s probability (2/3), is multiplied by 1/2 in both

cases (since 1 − 1/2 = 1/2), and we end up with 3 possible next states ({A, B}, {}, {B}),

each with probability 1/3 . Notice that each of these will induce a deterministic value for the

intermediate nodes corresponding to the deletion of C and D, so we can just add those in to get

the true effects. The splitting of the effects described above is illustrated in Figure 3.7, which

shows the progression of the effects and their keys as a succession of decision trees based on

the non-deterministic intermediate nodes. Notice that the keys of the effects contain only the

non-deterministic intermediate nodes that actually discriminate between effects given all the

earlier intermediate node values. In fact, we can formalize this property in the following lemma.

Lemma 6. Algorithm 22 never creates a key with more than than k − 1 values in it, and each

key maps to an effect or a set of aliased effects, as determined by the given state s.

Proof. We can prove this feature by induction on k′
s = |η(s, Ωa)| for the CEDBN’s action a.

Intuitively, k′
s is the number of discernible effects of an operator from a state s. For k′

s = 1 (all

effects look the same), a deterministic transition is ensured and no intermediate nodes will have

non-deterministic CPT entries (otherwise there would be more than one effect), so only the

initial (empty) key will exist, with size 0. We make the inductive hypothesis that for k′
s = k−1,

each key can have no more than k − 2 values in it, and each key maps to the exact effects

engendered by s and the Add and Delete lists. Now suppose we encounter a state with k′
s = k



109

B (1/3) {} (1/3)

B+=1 B+=0

{} (1.0)

{A} (1/3) {} (2/3)

{} (1.0)

A+=1 A+=0

{AB} (1/3) {} (2/3)

{} (1.0)

A+=1 A+=0

Consider A Consider B

Add: B Del:   (1/3)

Add: AB Del:   (1/3)

Add: nil Del:   (1/3)

A B
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A+ B+A- B- A+ = 1

1/3

B+ =1

A+ =1 1

A+ = 0 1/2

A+ = */# 2/3

CPTs
Schema and CEDBN

Effect Predictions from {}:

Figure 3.7: The predicted effects from a state of {∅} for a simple stochastic STRIPS
schema/CEDBN with different combination of A and B (or nothing) being added. The ef-
fects are shown being constructed as decision trees. Effects themselves are in the leaves, keys
are represented as paths from the root to a leaf, and splits occur anywhere a non-deterministic
CEDBN entry is encountered. If the version of the schemas with C and D being deleted was
used, these literals would appear in the leaves of the final tree (no more leaves are necessary for
3 effects).
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discernible effects (all the true effects lead to unique next states). Since the algorithm creates

keys incrementally, there is some step where we consider literal X and there are k′′ < k′
s keys,

of maximum size k′
s − 2, and where if we ignored literal X and all subsequent literals then by

the inductive hypothesis each of the k′′ keys map exactly to a real effect or are aliased because

of X (otherwise the hypothesis would be invalidated when X was set to ∗/#). But since all k

effects are discernible from s, X will split the remaining aliased effects, and since this is only

a single split on one literal, it can only create a key of max size k − 1. Future literals will be

deterministically placed in effects. Thus, no more keys (or extensions of current keys) will be

created.

Intuitively, the property above can be interpreted as saying that each key is analogous to a

branch in a decision tree of depth no more than k. The correctness of the algorithm with CPTs

of size O(nk) (based on the number of possible keys) for making predictions is shown in the

following lemma.

Lemma 7. CPTs each of size O(nk) (with n literals and k effects) are sufficient for making

correct predictions about next states using Algorithm 22.

Proof. Lemma 6 established that each key can only have up to size k − 1 and since the CPTs

are accessed only by these keys, each one can only reach size
∑k

j=0

(
n

j−1

)
∗ 2, because each key

could induce 2 distributions on literal X (if X causes a branching in the current state for that

key). What is left to be shown is that the algorithm establishes the correct probabilities for

each predicted next state when using these keys.

We do so by showing that each branching literal establishes the correct probability distribu-

tion over the currently constructed effects (ignoring the literals that come after X). Notice first

that at each node/effect pair in the main loops, the CPT entry that matches the key exactly

(not partially) is used to get that literal’s probability of being added/deleted. To see why no

other entry could be correct for the prediction procedure, consider the alternatives.

If a larger key (one that contains more branching literals than the current key) actually

described the effect more precisely, that would be the current key, so we need not worry about

larger keys. Also, two CPT keys of the same size could not have matched the effect, because

they would be identical or a larger key would have been constructed already. Finally, if we used

a smaller key (say replacing 〈A+ = 1, B+ = 1〉 with 〈A+ = 1〉, this key would alias 2 (or more)

effects that were already split, and we would be using the sum of the effects’ probabilities for



111

the current literal. So the smaller key (which is essentially a prediction for higher up in the

tree) would induce the wrong probability distribution.

Now we turn our attention to the literal X in the context established by s and under the

partial effect represented by the key. If the literal’s probability is 1 or 0, then all the effects

aliased by the key agree on its addition/deletion, so there is no need to change the probability.

If it is non-deterministic, then the “split” of the two effects establishes new probabilities because

the probability of the formerly aliased effects is the product of the previous CPT entries, so the

multiplication performed computes a valid probability.

KWIK Learning a CEDBN

We now show that it is possible to KWIK-learn the compact CEDBN used in the state prediction

problem above for each action in the stochastic STRIPS setting with k = O(1) effects. The

algorithm we use to do so is KWIK-CorEffect (KWIK for Correlated Effects) as described in

Algorithm 23.

Intuitively, this algorithm simply uses the earlier prediction algorithm to make next state

predictions for the given action. But now, whenever an intermediate node CPT entry reports

⊥, KWIK-CorEffect updates the model with a sample. However, just executing an action may

not provide information about the specific ⊥ entry that caused this prediction. This deficiency

occurs because executing the action results in one of k effects, not necessarily the effect cor-

responding to the key for the unknown entry. And even if we get the right effect (or aliased

effects), we still need multiple samples to learn the CPT entry. That is the qualitative expla-

nation of the m parameter in the algorithm, and the shifting of extremely low probabilities (to

avoid trying to learn about an effect that has an extremely low chance of occurring). Formally,

we bound the number of ⊥ predictions by establishing a value for m as follows:

Theorem 12. KWIK-CorEffect can KWIK-learn a CEDBN in the ED-Learning setting for a

Stochastic STRIPS action with n literals in its scope with only Õ(nk+2 1
ǫ4

) ⊥ predictions.

Proof. We consider the (worst) case where, at a given timestep, there is only a single ⊥ predic-

tion from the last ordered intermediate node X−, corresponding to two aliased effects (indexed

by a key of maximum size k − 2). This ⊥ corresponds to the probability that literal X will be

deleted given the parent values in the key (corresponding to 2 aliased effects). If we were guar-

anteed that each sample would match this key, then determining this probability (of the node
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Algorithm 23 KWIK-CorEffect for a single action in Stochastic STRIPS

1: Input : Ordered Literals L = [l1...ln] (based on the action’s scope), and k, the number of
effects

2: Output : The possible next states (maximum k) and probabilities, given each input state

3: Construct a CEDBN M̂ with CPT entries for each literal for every combination of k or
fewer literal values chosen from the literals earlier in the ordering

4: Initialize all CPT predictions in M̂ to ⊥
5: Initialize count(X, key) = 0 for all intermediate nodes X ’s CPT entries.
6: for each input state s do
7: Prediction = PredictState(s, L, M̂)
8: if Prediction 6= ⊥ then
9: Predict Prediction

10: else
11: //Update M̂
12: execute the action, observe state s′

13: for each intermediate node X = l+(orl−) ∈ M̂ (in order) do
14: //If its value should be ∗/#, then mark it as such, move on
15: if x = l+ ∧ s[l] = 1

∨
x = l− ∧ s[l] = 0 then

16: Set X to ∗/#.
17: NEXT X
18: end if
19: for each maximum sized key in X ’s CPT that matches 〈s, s′〉 do
20: if PrcM

[X = 1|key] = ⊥ then
21: Update the estimated CPT entry based on s[X ] and s′[X ].
22: count(X, key) += 1.
23: if count(X, key) > m then
24: Use the maximum likelihood estimate for the CPT values with this key, instead

of ⊥
25: if Pr[X = 0|key] ∗ΠX′∈keyPr[X ′|earlier parts of key] < ǫ (or > 1− ǫ) then
26: Set the new CPT entries to 0 (1).
27: end if
28: end if
29: end if
30: end for
31: end for
32: end if
33: end for
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taking values 0 or 1) would be equivalent to learning the probability of a biased coin coming

up heads/tails, for which we would need m = O(n2

ǫ2
log nk

δ
) samples by Hoeffding’s inequality,

with probability of failure δ
nk , and where the n2 term appears because we require accuracy of

ǫ
n

in each node since their CPT entries are multiplied together to make next state predictions.

However, it may be that only a subset of the k effects will match this key. For instance, in our

running example, if we are trying to update node B+’s entry for the key A+ = 1, we need to get

a sample where A is actually added (ω2 must occur). Thus, we need to consider a second point

of failure where we are trying to learn a specific CPT entry but the effect corresponding to its

key is not occurring. However, line 25 guarantees us that the probability of the aliased effects

that correspond to this key is ≥ ǫ. So in the worst case, we need to be able to receive at least

1 sample of an effect with probability ≥ δ′ = δ
2mnk , where the extra 2 is introduced to both

this term and the m term probability since we have doubled the number of failure points. A

loose bound on this quantity is simply the number of samples needed to estimate a probability

distribution on such an effect within an ǫ tolerance (since we will need to see at least one such

sample of it) with probability δ′, or by Hoeffding’s inequality again: O( 1
ǫ2

log 1
δ′

).

So we will set m as described earlier with the caveat that each of the m samples needed

for a CPT entry may actually require another Õ( 1
ǫ2

) real samples to see the effect matching

this key. Finally, we must not try to achieve this count if the key for this entry has extremely

low probability (because further disambiguation will not be helpful). In that case, where an

effect has sufficiently small probability (line 25), the node’s value may be characterized as

deterministic (for instance Pr[X+ = 1|key] = 1.0, when it really should have been 0.99), but

this inaccuracy is acceptable given the ǫ and δ parameters and Definition 12, which requires

only an ǫ-accurate prediction of the next-state distribution. This result gives us the bound on

the number of samples needed to learn one of nk−1 CPT entries for each of the 2n intermediate

nodes. Putting it all together, the algorithm has a loose KWIK bound of Õ(nk+2

ǫ4
) (with the rest

hidden in log terms). PAC-MDP agent behavior follows by combining the KWIK algorithms

for each action and using the KWIK-Rmax architecture (Algorithm 6).

While this result holds for |Ω| = k = O(1), it is an open question as to whether these results

can be extended beyond this number of possible effects. While we saw in Section 3.5 that

D-Learning could be accomplished in the presence of a polynomial (in the number of literals)

number of effects, a similar result does not appear to hold in ED-Learning, because the Bayes

net representation would have exponentially large conditional probability tables.
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3.9.6 Non-minimal Effect Learning Given Possible Effects

The previous theorems give a fairly complete picture of the minimal ED-Learning problem,

where the agent must learn the smallest possible effect list for each condition. However, it

is possible to efficiently learn effects and distributions if we give the agent a relatively small

(polynomial) number of effects that might be possible for each action. That is, we could allow

the agent to learn about a much larger set of effects than the minimal, say by declaring a

constant bound ξ on the size of each individual effect (allowing us to enumerate a polynomial

but likely non-minimal number of effects). In this setting, we can use the KWIK-LR algorithm

from the D-Learning case to learn which effects do not happen, because their individual weights

will be set to 0 through enough experience. More formally, we can state the following extension

of the results from the D-Learning setting.

Corollary 2. Algorithm 11 KWIK-solves the ED-Learning problem when we are given a

polynomial-sized superset of possible effects or each effect is an Add/Delete pair of no more

than ξ terms for constant ξ.

Proof. The more specific case with the ξ bounded effects can be turned into the superset case

by just enumerating every possible effect, a set of size O(Lξ). The proof follows the same form

as Lemma 2 and Theorem 2 from the D-Learning setting, just with the extra effects needing

to be explored enough to set their probabilities to 0, KWIK-LR provides a valid solution with

a polynomial sample complexity of O
(
max

{
Ω3

ǫ4
,

n log2 Ω
δ

ǫ4

})
, where Ω is the size of the given

superset of possible effects.

This concludes our discussion of the individual sub-problems in action-schema learning and

we now summarize the results and show how to bring them together to solve the full CED-

Learning problem.

3.10 The full CED-Learning Problem

In this section we put all the pieces together and describe cases where the full CED-Learning

problem is solvable in the online reinforcement learning setting (KWIK solvable). Table 3.6 sum-

marizes the results for the 4 major learning problems we have covered in this chapter (including

CED-Learning) in each of the 6 domain settings from Section 3.1. Below we explain these

results in more detail, describing how to meld the architectures for the various sub-problems in

different settings. For the cases where pre-conditions need to be learned, we assume here that
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they are small, and note when analogous algorithms can be developed in the conditional case

when the number of conditions is small. The cases where full CED-Learning is tractable in the

online-learning setting include the following:

• Deterministic Unconditional- When there are no conditions, the CED-Learning prob-

lem devolves into the ED-Learning problem, so Algorithm 20 (KWIK-DetEffectLearn)

can be used to solve the unconditional CED-Learning problem.

• Deterministic Pre-conditional- With pre-conditions and deterministic effects, we can

adapt the algorithm for CD-Learning from the stochastic case (Algorithm 14) to one that

learns the conditions and effects by replacing KWIK-LR with KWIK-DetEffectLearn.

Thus, KWIK-Enumeration learns the pre-conditions just as before, but now the effects

themselves are learned by KWIK-DetEffectLearn. Notice the architecture is still a parallel

one. The two KWIK learners operate fairly independently, linked only in the planner,

which can use a KWIK-Rmax heuristic or mix KWIK-Rmax (for unknown pre-conditions)

and Optimistic Add/Delete Lists while learning effects. The total KWIK bound here in

the STRIPS setting is O(A(Pmn)k) where k is the maximum size of any pre-condition.

• Deterministic Conditional- Here, we can adapt the deterministic CD-Learning algo-

rithm for the conditional case (Algorithm 16), that used Active-Union over several static

effect predictors. The change here is to swap out the static effect predictors for copies of

KWIK-DetEffectLearn. Notice unlike the pre-conditional case, the architecture here is a

serial one: A copy of KWIK-DetEffectLearn must be attached to each potential condition

under the Active-Union umbrella. The total KWIK bound here for the case where the

conditions (|ca
i |) are small is A((Lk − 1)+ Lk3L) = O(Lk+1) where L in the STRIPS case

is Pmn. Bounds are also derivable when the number of conditions is known to be small

using the tree-enumeration procedure described earlier.

• Stochastic k-Effect- In this case, we adapt the stochastic CD-Learners, either Algorithm

14 (Enumeration and KWIK-LR) or Algorithm 18 (Meteorologist over many copies of

KWIK-LR), and replace KWIK-LR in both cases with the algorithm for the ED-Learning

setting with k effects (Algorithm 23) which learns both the effects and distributions.

• Stochastic Signaled-Effect- This follows the same form as the Stochastic k-Effect case,

but instead of swapping in Algorithm 23, we swap in the linked versions of KWIK-

DetEffectLearn and CoinFlipping from Algorithm 21 to learn the effects and distributions.
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Setting D-Learning ED-Learning CD-Learning CED-Learning

Deterministic Given DetEffectLearn Given DetEffectLearn
Unconditional

Stochastic KWIK-LR KWIK-CorEffect⋆ KWIK-LR KWIK-CorEffect⋆
Unconditional

Deterministic Given DetEffectLearn Enumeration∗ Enumeration∗ and
Pre-conditional DetEffectLearn

(in parallel)

Deterministic Given DetEffectLearn Enumeration∗ Union∗ and
Conditional DetEffectlearn

(multiple copies)

Stochastic KWIK-LR KWIK-CorEffect⋆ Enumeration∗ and Enumeration∗ and
Pre-Conditional KWIK-LR KWIK-CorEffect⋆

(in parallel) (in parallel)

Stochastic KWIK-LR KWIK-CorEffect⋆ Meteorologist∗ and Meteorologist∗ and
Conditional KWIK-LR KWIK-CorEffect⋆

(multiple copies) (multiple copies)

Table 3.6: The 6 learning settings and their KWIK solutions for the autonomous (online) case.
A ∗ denotes necessary assumptions about the size of conjunctive (pre)-conditions (or other
formulas that are only KWIK-learnable when they are small). A ⋆ indicates the number of
effects must be bounded by a constant k or some other special structure (like signaled effects)
must be known.

• Stochastic with a Superset of Effects- In this case, since the effects are essentially

given, and dealt with using KWIK-LR, we can use the algorithm from the CD-Learning

cases (pre-conditional or conditional) with the larger effect set. The bounds are the same

as the CD-Learning cases, but with the larger Ω.

One important point is that all the situations that involved learning conjunctions (either pre-

conditions or conditions) required an assumption on the size of these conjunctions, specifically

that the number of terms in each conjunction be O(1). While this sufficed for several domains we

considered in this chapter, many were right on the brink of tractability (specifically the Blocks

World domains, which, depending on the encoding, can have 4 or 5 terms in the pre-conditions).

But, the negative result in Theorem 5 shows this is an inherent limitation of the KWIK-learning

paradigm, and likely of online learning itself. One has to try all the combinations on the lock.

In the next chapter, we consider a different learning paradigm, apprenticeship learning, where

these limitations will be absolved and thus larger domains will be learnable in a sample-efficient

manner.
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Chapter 4

Apprenticeship Learning of Action Schemas

The previous chapter presented results on the sample efficiency of learning action schemas in

the online RL setting where an agent’s interaction with its environment is limited to its own

experience. While we were able to derive many positive results in this autonomous setting, there

were necessary limitations concerning the size of the pre-conditions (ca
i ), specifically that the

number of terms in each ca
i was O(1). Even when this size restriction holds, blindly enumerating

all the possible conditions can lead to slow learning in practice. For instance, even the rather

benign Paint-Polish domain, with maximum condition size of 3 (for the Done action) has 53 =

625 possible conditions up to that size. Even worse, many domains may have the size of their

conditions increase linearly with the number of available measurable predicates.

In this chapter, we consider a different RL setting apprenticeship learning where the O(1)

condition size restriction can be relaxed.1 To do so, we will introduce a generalized definition

and protocol for apprenticeship learning, as well as a new model-learning framework, Mistake

Bound Predictor (MBP), which we will show is sufficient for efficient learning in this setting.

We will link MBP to the MB and KWIK frameworks introduced in Section 2.2 and show that

the class of learnable functions in this framework is strictly larger than what can be learned

in either framework individually. With these results in hand, we will analyze versions of the

CD-Learning problem in the apprenticeship setting.

4.1 Apprenticeship Learning: An Alternative Learning Protocol

Evidence in psychology (Shafto & Goodman, 2008) indicates that the availability of teachers

unquestionably increase the speed and efficacy of learning in humans. Yet in the field of rein-

forcement learning (RL), which in many ways tries to mimic the human learning process, almost

all learning agents gain experience solely by interaction with their environment—teachers are

1Portions of this chapter appeared earlier in joint work with Michael Littman, Kaushik Subramanian, and
Carlos Diuk (Walsh & Littman, 2008; Walsh et al., 2010b).
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not in the loop. In this section, we address this disconnect by proposing a generalized protocol

for apprenticeship learning within the reinforcement-learning paradigm.

4.1.1 The Apprenticeship Learning Protocol

In contrast to the autonomous learning framework, we now consider a paradigm where the

agent’s experience is augmented with experience produced by a teacher and the criterion is

to find a policy whose value function is nearly as good as, or better than, the value function

induced by the teacher’s policy. Previous work has used a number of different definitions and

protocols for incorporating teachers into reinforcement learning. These include agents that

attempt to learn behavior without observing rewards (Abbeel & Ng, 2004), agents that receive

a log of teacher traces (including rewards) beforehand (Abbeel & Ng, 2005; Lin, 1991), those that

have access to a teacher performing in each episodic domain instance they encounter (Khardon,

1999b), and those where a trace is actively requested (Walsh & Littman, 2008). Here, we define a

generalized apprenticeship learning setting that is similar to the standard reinforcement learning

protocol, but still adheres to the basic guidelines of these earlier approaches. Formally, we define

the Apprenticeship Learning Protocol for episodic domains where each episode has a length of

at most H = Poly(|M |, |A|, Rmax,
1

1−γ
) in Algorithm 24, where |M | is a measure of environment

complexity, as in the definition of PAC-MDP (Definition 4).

Algorithm 24 The Apprenticeship-Learning Protocol

1: The agent starts with S, A and γ, a time-cap H and has access to episodic environment E
2: The teacher has policy πT .
3: for each new start state s0 from E do
4: t = 0
5: while The episode has not ended and t < H do
6: The agent chooses at.
7: 〈st+1, rt〉 = E.progress(st, at)
8: t = t + 1
9: end while

10: if the teacher believes it has a better policy for that episode then
11: The teacher provides a trace T starting from s0.
12: end if
13: end for

Intuitively, the agent is allowed to interact with the environment, online just as in the

standard RL context. But, unlike standard RL, at the end of an episode, the teacher can

provide the agent with a trace of its own behavior starting from the original start state. The

criteria the teacher uses to decide when to send a trace is left general here, but one specific test

that has many desirable properties, is for the teacher to provide a trace if at any time t in the
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episode, QπT (st, at) < QπT (st, πT (st)) − ǫ. That is, the agent chooses an action that appears

worse than the teacher’s choice in the same state. Traces are of the form:

T = (s0, a0, r0), ...(st, at, rt), ...(sg, rg)

where s0 is the initial state, and sg is a terminal (goal) state or some other state if the H cutoff

is reached. The individual transitions in this trace must adhere to the environment’s dynamics

(the teacher cannot unilaterally pick next states). Notice that the trajectory begins before (or

at) the point where the agent first acted sub-optimally, and may not even contain the state

in which the agent made its mistake. This “single trajectory” approach is both practically

necessary for domains without random access to states, and has characteristics essential for the

trace to facilitate efficient learning.

Since the teacher’s policy may not be optimal, this trace could potentially prescribe behavior

worse than the agent’s policy. We distinguish between these traces and their more helpful

brethren with the following definition of Valid Traces.

Definition 17. A valid trace (with accuracy ǫ) is a trace supplied by a teacher executing

policy πT delivered to an agent who just executed policy πA starting from state s0 such that

V πT (s0)− ǫ > V πA(s0).

Defining valid traces in this way allows agents to outperform their teacher without being

punished for it. With deterministic policies, this definition means that at no time in a valid

trace does the teacher prescribe an action that is much worse than any of the actions the agent

used in that state. Note that when the teacher enacts optimal behavior (πT = π∗) and the agent

acts suboptimally, only valid traces will be provided. But if the teacher is using a suboptimal

policy, it may provide many invalid traces, which the agent must eventually ignore. Either way,

we will show that the number of times a teacher can provide a valid trace in many domains is

bounded.

Specifically, we characterize the efficiency of learning analogous to the way the PAC-MDP

framework (Definition 4) is used to characterize efficient behavior in the autonomous setting.

We define PAC-MDP-Trace learning as follows:

Definition 18. A reinforcement-learning agent is said to be PAC-MDP-Trace if, given ac-

curacy parameters ǫ and δ, and following the protocol outlined in Algorithm 24, the num-

ber of valid traces (with accuracy ǫ) received by the agent over its lifetime is bounded by
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Poly(|M |, |A|, Rmax,
1

1−γ
) with probability 1 − δ, Here, Rmax is the maximum reward in the

environment and where |M | measures the complexity of the MDP’s representation, specifically

the description of T and R.

This definition allows us to characterize the efficiency of an agent based on its behavior.

4.1.2 Related Work

Before going forward, we review a number of other works that have used similar apprenticeship

learning frameworks and those that employed traces in the learning of action schemas. The

idea of integrating a teacher into the learning process has been proposed in several different

forms. In supervised learning, the labels of datapoints can be considered to originate from a

teacher, but these labels are more an indirect communication—they do not necessarily correct

an agent’s mistakes. A more direct channel was proposed in the early computational learning

theory literature, equivalence queries (Angluin, 1988) and later “teaching sequences” (Goldman

& Kearns, 1992). While we produce some results linked to these as part of our study of model

learning, our main concern is with apprenticeship learning in the RL setting.

Within RL, a number of different protocols and complexity measures have been described

for apprenticeship learning. The one used in Algorithm 24 is an extension of the interaction

described by Abbeel & Ng (2005) with the change that teachers no longer have to give all of

their traces up front (making it similar also to the one used by Khardon (1999b)). Several

other areas of RL with access to demonstrations have similarities to our problem setting but

are ultimately different. The field of Inverse Reinforcement Learning (Abbeel & Ng, 2004; Syed

& Shapire, 2007), also sometimes called apprenticeship learning, attempts to learn an agent’s

reward function by observing a sequence of actions (not rewards) taken by a teacher. In contrast

to this interaction, our learners actually see samples of the transitions and rewards collected

by the teacher and use this “experience” in a traditional model-based RL fashion. Recent work

in Imitation Learning (Ratliff et al., 2006) took MDP instances and trajectories and tried to

generalize these behaviors based on assumptions about the linearity of costs with respect to the

feature space. Our results do not rely on any such relation.

The use of apprenticeship learning and traces in relational MDPs, and actions schemas

in general, has many precedents, with a number of systems showcasing the empirical benefit

of traces and teachers without laying out the theoretical foundations and provable separation

from the online case that we do here. One of the earliest action schema learners, EXPO (Gil,
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1994), was bootstrapped by an incomplete STRIPS-like domain description (missing some pre-

conditions or effects of actions) with the rest being filled in through experience. This background

knowledge can be viewed from our perspective as traces given prior to any autonomous explo-

ration, essentially biasing the agent’s model based on the teacher’s experience. The OBSERVER

system (Wang, 1995) also used a STRIPS-style language to represent operators and was trained

with a mixture of both raw experience and grounded expert traces. Another STRIPS-style

schema learner, TRAIL (Benson, 1996), used Inductive Logic Programming (ILP) to distill

schemas from raw experience and a teacher. Early systems in Relational Reinforcement Learn-

ing also recognized the benefits of traces, including one (Driessens & Dzeroski, 2002) that

empirically demonstrated the benefit of traces in several benchmark problems and investigated

the difference between giving an agent optimal traces versus traces of a suboptimal policy. All

of the early systems mentioned above recognized and demonstrated the benefit of experience

beyond simple interaction with the environment (bootstrapping, traces, teachers). Our work

provides a theoretical groundwork for understanding the empirical success of these and other

(Lin, 1991) experiments that provided “trace” data to model learners.

Several recent systems mentioned in the previous chapter, including NID operators (Pasula

et al., 2007) used logged data to create their models, essentially relying on a static corpora of

traces. The ARMS algorithm (Yang et al., 2007) and its extension for HTN operator learning

(Zhuo et al., 2009), learn STRIPS-style action schemas when states are not observed at all

(only initial states, goal states, and action logs are available), using powerful constraint satis-

faction techniques. A similar problem was covered in recent work on Simultaneous Learning and

Filtering (SLAF) (Shahaf, 2007), which learned schemas from traces where changes in fluent

values may not be reported immediately (partial observability). The SLAF research produced

an algorithm and derived computational bounds on the runtime of this algorithm based on the

type of language used (including STRIPS). Our work differs from theirs in that we are consid-

ering learning in fully observable environments and are concerned with the sample complexity

of learning, which is also of critical importance in practical systems.

Finally, we note that prior work (Khardon, 1999b,a) has been done on the sample complexity

of directly learning to enact the same policy as used in traces in relational domains. The solution

in that work produced decision-list style policies and was analyzed in a PAC-style framework,

assuming a distribution over possible worlds (an assumption we do not make here). The result

also differs from our own because it considers partially observable environments, and more
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importantly, our goal is to learn models that allow us to do as well or better than the teacher,

not necessarily to infer what the teacher’s policy actually is.

4.2 Separating Sample Efficiency in the Online and Apprenticeship

Frameworks

In this section, we introduce a class of models where PAC-MDP-Trace behavior can be induced.

We do this by defining a sufficient condition for efficient model learning in the apprenticeship

framework analogous to the use of KWIK in autonomous RL (see Section 2.3). This frame-

work, called Mistake Bound Predictor (MBP) generalizes the class of functions that are KWIK-

learnable and Mistake Bound (MB) learnable. Because of this connection, we now review the

differences between MB and KWIK, specifically on the learning of conjunctions with n terms,

a task that felled KWIK learners in the previous chapter (the combination lock example).

4.2.1 Reviewing KWIK and MB

An extended summary of the KWIK protocol was presented in section 2.2.2 and so far we have

used the fact that in autonomous reinforcement-learning, if T and R are efficiently KWIK-

learnable, then there exists a PAC-MDP reinforcement learning algorithm for that domain.

However, we have seen in the previous chapter that conjunctions of n terms are not KWIK-

learnable (see the combination lock example in Theorem 5). But, in the apprenticeship setting,

learning to open a such a (deterministic) lock is simple: the agent only needs the teacher to

supply a single trace to learn the combination! Thus, there are clearly models that are learnable

in the apprenticeship setting that are not autonomously learnable.

Prior work on learning theory in the apprenticeship setting (Angluin, 1988; Goldman &

Kearns, 1992) has established a link between teachable hypothesis classes (specifically those

used with equivalence queries) and the mistake bound (MB) framework (Littlestone, 1988). We

form a similar connection below, so we offer the following review of the MB learning protocol

(Section 2.2.1) for model learning. MB is essentially the same as the KWIK protocol except

for three changes. (1) In MB, there is no ⊥ prediction. The agent must always predict a

ŷt ∈ {0, 1} and receives a true label when it is wrong. (2) MB is only defined for deterministic

hypothesis classes, so instead of zt, the agent will actually see the true label. (3) Efficiency is

characterized by a polynomial bound on the number of mistakes made, equivalently the number

of labels provided. It follows (Li et al., 2008) that any efficient KWIK-learning algorithm for a
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deterministic hypothesis class can become an efficient algorithm for MB by simply replacing all

⊥ labels with an arbitrary element from Y .

4.2.2 The Mistake-Bound Predictor Framework

We now define a generalization of the KWIK and MB frameworks that we will use for model

learning in the apprenticeship setting.

Definition 19. A mistake-bounded predictor (MBP) is an online learner with accuracy

parameters ǫ and δ that takes a stream of inputs from set X and maps them to outputs from

a set Y . After predicting any ŷt, the learner receives a (perhaps noisy) label zt produced by

an unknown function from a known hypothesis class. An MBP must make no more than a

polynomial (in 1
ǫ
, 1

δ
, and some measure of the complexity of the hypothesis class) number of

mistakes with probability 1 − δ. Here, a mistake occurs if, for input xt, the learner produces ŷt

and ||h∗(xt)− ŷt|| > ǫ, where h∗ is the unknown function to be learned.

This framework has similarities to KWIK and MB. Like KWIK, MBP observations can be

noisy, and like MB, the learner is allowed to make a certain number of mistaken predictions

(though in the MBP case, the agent sees observations whether it is right or wrong). In fact, we

can formalize the relationships with the following propositions.

Proposition 2. Any hypothesis class that is KWIK or MB learnable is MBP learnable.

Proof. A KWIK learner can be used in its standard form, except that whenever it predicts ⊥,

the MBP agent should pick a ŷt ∈ Y arbitrarily. Also, the underlying KWIK learner should not

be shown new labels when it does not predict ⊥, though the “outer” MBP agent does receive

them.

MB learners are defined for deterministic hypothesis classes, so we can assume no noisy

observations exist. In this setting, the MB and MBP protocols line up except that under MBP,

labels are always given but these could be intercepted just as above.

Notice that the connection to MB learners, along with the equivalence of MB and

equivalence-query models (Angluin, 1988), formally links MBP to the traditional computa-

tional learning theory literature. We also note that there has been prior work on online learning

(mistake-bound style) of continuous functions in the regret framework (Kivinen & Warmuth,

1997), and MB learning in the presence of label noise (Auer & Cesa-Bianchi, 1998). These
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learning classes are not designed to provide the general properties of MBP learning we will

exploit below but may have important connections to the MBP class, the investigation of which

is left to future work.

We can combine MBP learners in several ways and still preserve the MBP properties. Here,

we introduce a number of simple combinations that have analogues in the KWIK framework

that have been very helpful in constructing algorithms for a diverse set of RL models.

Proposition 3. The Input-Partition of k MBP learnable classes, that is when “low-level”

MBP-learnable classes C1...Ck with the disjoint input spaces X1 through Xk, respectively and a

“high-level” class C is constructed by mapping an input xt to the proper sub-learner (based on

whether xt ∈ Xj), is MBP learnable.

Proof. Suppose each individual component MBP learner has a bound of Bi(ǫi, δi). Then by

invoking each one with ǫi = ǫ and δi = δ
k

and using a union bound to combine the failure

probabilities of the individual learners, we get a total bound of
∑

i Bi(ǫ,
δ
k
).

Proposition 4. The Union of k MBP learnable classes where “low-level” MBP-learnable

classes C0...Ck with the same input (and possibly output) spaces, but potentially different subsets

of the hypothesis class H represented by each one, is MBP learnable.

Proof. An intuitive algorithm in this case is to simply make the prediction of the learner that has

made the fewest mistakes so far and then give each datapoint to all the learners as experience.

Assuming the class to be learned is realizable by at least one of the components, by definition

this learner can make only B(ǫ, δ) mistaken predictions, but since inputs are chosen adversarially

it is possible for this learner to have to wait for each of the other k−1 learners to make mistakes

one at a time. So, in the worst case, this could be the slowest of the k learners, giving us an

MBP bound of O(k ∗maxiBi(ǫ, δ))

Proposition 5. The Cross-Product of two MBP learnable classes, that is when “low-level”

MBP-learnable classes C0...Ck with disjoint input spaces X0...Xk, respectively and a “high-

level” class C is constructed by breaking up the input xt into parts x1, ...xk, giving each to the

corresponding sublearner, and reporting the set of all the outputs as ŷt is MBP learnable.

Proof. This case is similar to the input-partition case in that each individual component learner

may be responsible for Bi(ǫi, δi) bad predictions where all the other components are making

correct predictions, so again we have to sum the individual mistake bounds and use δ
k

as the
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probability of failure in each one to keep the total probability of failure below δ. However, in

this case we also have to contain the accuracy error (ǫi) of each component in order to bound the

total accuracy ||ŷ − y||1 =
∑

i ||ŷi − yi||. We can do so by introducing a factor α that increases

the accuracy of each component2, giving us a final MBP bound of
∑

i Bi(αǫ, δ
k
).

Beyond these simple combinations, a number of more complex combinations involving spe-

cific configurations of MB and KWIK learners is possible. For instance, the following MB-

partitioned class will be helpful in deriving results in the pre-conditional action schema learn-

ing.

Proposition 6. Consider two “low-level” MBP-learnable classes C0 and C1 with the input

space X and disjoint output sets Y0 and Y1, respectively (that is Y0 ∩ Y1 = ∅). Consider a

“high-level” MB-learnable class C mapping X to {0, 1}. The composition of these classes where

the output of the class C learner is used to select which low-level MBP class to use (if the output

of the high-level learner is i, use class Ci) is MBP-learnable.

Proof. On input x, get a prediction i from the C learner. Then, query the Ci learner and report

its response as the solution. Observe y. Let i ∈ {0, 1} be such that y ∈ Yi, then train the learner

C with (x, i) and Ci with (x, y). By construction, all learners get the appropriate training data

and will individually make a small number of mistakes. The total number of mistakes is then

simply the sum of those made by C, C1, and C2 since each piece of training data always goes

to the right Ci and each piece of data that causes a mistake at the C level is used to train C.

When each component makes accurate predictions, the overall learner is accurate.

As an example of an MB-partitionable class, consider a factored MDP with a reward function

defined as follows. If a predetermined conjunction cR over all n factors is false, then the agent

receives reward Rmin < 0 and otherwise it gets a reward drawn from a distribution over [0, Rmax].

Given that information (but not cR or the distribution), the reward function can be learned

using an MB conjunction learner and a KWIK learner for the distribution when the conjunction

is true, because the cases are always discernible. In contrast, a class where the distribution for

a false conjunction is still Rmin, but a true conjunction induces a reward over [Rmin, Rmax], is

not covered under this case because the outputs sets of the learning problems overlap (making

it unclear how to solve the top-level learner).

2Similar arguments can be made for other common norms.
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4.2.3 Efficient Apprenticeship RL

In this section, we show that if an MDP model is MBP learnable, PAC-MDP-Trace behavior is

guaranteed in the Apprenticeship RL setting. Specifically, we introduce a model-based RL algo-

rithm (MBP-Agent, Algorithm 25) for the apprenticeship setting that uses an MBP learner as a

module for learning the dynamics of the environment within the confines of the apprenticeship

protocol. Notice that because MBP learners never acknowledge uncertainty, our algorithm for

the apprenticeship setting believes whatever its model tells it (which could be mistaken). While

autonomous learners run the risk of failing to explore under such conditions, the MBP-Agent

can instead rely on its teacher to provide experience in more “helpful” parts of the state space,

since its goal is simply to do at least as well as the teacher. Thus, even model learners that

default to pessimistic predictions when little data is available (as we see in later sections), can

be used successfully in the MBP-Agent algorithm. Algorithm 25 has the following property.

Algorithm 25 MBP-Agent

1: The agent knows ǫ, δ, and A and has access to the environment E, teacher T, and a planner
P for the domain.

2: Initialize MBP learners LT (ǫT , δ) and LR(ǫR, δ) //ǫ’s defined below
3: for each episode do
4: s0 = E.startState
5: t = 0
6: while episode not finished do
7: at = P.getPlan(st, LT , LR).
8: 〈rt, st+1〉 = E.executeAct(at)
9: LT .Update(st, at, st+1); LR.Update(st, at, rt)

10: t = t + 1
11: end while
12: if T provides trace T starting from s0 then
13: ∀〈s, a, r, s′〉 ∈ T , LT .Update(s, a, s′), LR.Update(s, a, r)
14: end if
15: end for

Theorem 13. The MBP-Agent is PAC-MDP-Trace for any domain where the transitions and

rewards are polynomially MBP learnable. That is, with proper settings of ǫT and ǫR, the agent

will (with probability 1 − δ) only receive a polynomial number of valid traces (where V πA <

V πT − ǫ).

The heart of the argument is an extension of the standard Explore-Exploit lemma, we call

the Explore-Exploit-Explain Lemma.

Lemma 8. On each trial, we can define a set of known state,action (〈s, a〉) pairs as the ones

where the MBP currently predicts transitions accurately. One of these outcomes occurs: (1)
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The agent will encounter an unknown 〈s, a〉 (explore) with high probability. (2) The agent will

execute a policy πt whose value is better or not much worse than the teacher’s policy πT (exploit).

(3) The teacher’s trace will encounter an unknown 〈s, a〉 (explain) with high probability.

Lemma 8 proves Theorem 13 because MBP can only make a polynomial number of mistakes,

meaning cases (1) and (3) can only happen a polynomial number of times. Below is a sketch of

the lemma’s proof.

Proof. The quantity V πT (s0) is the value, in the real environment, of the teacher’s policy and

V πA(s0) is the value, in the real environment, of the agent’s current policy. Analogously, we can

define UπT (s0) as the value, in the agent’s learned MDP, of the teacher’s policy and UπA(s0),

the value, in the agent’s learned MDP, of the agent’s policy.

First, we note that if our learned MDP model has only small errors in the transition and

reward function, specifically, ǫT = ǫ(1−γ)
2γVmax

and ǫR = ǫ(1−γ)
2 with high probability, then we can

be confident that ||V π −Uπ|| ≤ ǫ because the maximum difference between the value functions

is ǫR+γVmaxǫT

1−γ
by the Simulation lemma (Lemma 1). In the case below, we will demand that

the model be learned within an even tighter accuracy of ǫT = ǫ(1−γ)
4γVmax

and ǫR = ǫ(1−γ)
4 , ensuring

that ||V π − Uπ|| ≤ ǫ
2 . These are the accuracy parameters that will be used to instantiate the

MBP learners.

With this guarantee in hand, by any of several simulation lemmata, such as Lemma 1, if

|UπA(s0) − V πA(s0)| > ǫ
2 , then, with high probability, case (1), explore, will happen. That

is because executing πA in the real environment will produce a sample of V πA(s0) and the

only way it can be different from the agent’s conception of the policy’s value, UπA(s0), is if an

unknown 〈s, a〉 pair is reached with sufficiently high probability.

Next, we consider the case where UπA(s0) and V πA(s0) are within ǫ
2 of one another. If

V πA(s0) ≥ V πT (s0) − ǫ, that means πA is nearly optimal relative to πT , and case (2), exploit,

happens.

Finally, we consider the case where UπA(s0) and V πA(s0) are within ǫ
2 of one another and

V πA(s0) < V πT (s0) − ǫ. Note that UπA(s0) ≥ UπT (s0) (because πA was chosen as optimal).

Chaining inequalities, we have UπT (s0) ≤ UπA(s0) ≤ V πA(s0) + ǫ
2 < V πT (s0) −

ǫ
2 . We’re now

in a position to use a simulation lemma again: since |UπT (s0)−V πT (s0)| >
ǫ
2 , then, with high

probability, case (3), explain, will very likely happen when the teacher generates a trace.

In summary, KWIK-learnable models can be efficiently learned in the autonomous RL case,
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but MB learning is insufficient for exploration. MBP covers both of these classes, and is sufficient

for efficient apprenticeship learning, so models that were autonomously learnable as well as

many models that were formerly intractable (the MB class), are all efficiently learnable in the

apprenticeship setting. As an example, the combination lock described earlier could require

an exponential number of tries using a KWIK learner in the autonomous case, and MB is

insufficient in the autonomous case because it does not keep track of what combinations have

been tried. But in the apprenticeship setting, the MBP-Agent can get the positive examples

it needs (see Section 4.3.1) and will succeed with at most n (essentially one for each irrelevant

tumbler) valid traces.

4.2.4 Apprenticeship Learning of Propositional and Continuous

MDPs

While we soon use the results above to prove the efficient learnability of parts of relational action

schemas in the apprenticeship setting, we briefly discuss results here for some of the proposi-

tional MDP classes to show the generality of this MBP-Agent algorithm. In the autonomous

setting, flat MDPs can be learned with a KWIK bound of Õ(S2A
ǫ2

) (Li et al., 2008). Following

Theorem 13, this gives us a polynomial PAC-MDP-Trace bound, a result that is directly com-

parable to the apprenticeship-leaning result under the earlier protocol described by Abbeel &

Ng (2005).

The same work considered apprenticeship learning of linear dynamics. We note that these

domains are also covered by Theorem 13 as recent results on KWIK Linear Regression (Walsh

et al., 2009b) have shown that such n-dimensional MDPs are again KWIK-learnable with a

bound of Õ(n3

ǫ4
). Thus, our apprenticeship learning algorithm achieves sample complexity results

on par with early apprenticeship learning work and work in the autonomous case.

4.3 Apprenticeship Learning of Action Schemas

In this section, we prove that the apprenticeship setting can be used to learn action schemas

that were not efficiently learnable in the online setting. The crux of this result is the use of

MB algorithms to learn the conjunctions associated with conditions that contain O(n) terms.

We begin by reporting that all of the results of the previous chapter carry forward to the

apprenticeship learning case because MBP subsumes KWIK.
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Corollary 3. All of the positive KWIK-learning results from Chapter 3, including the CD-

Learning problem for action schemas with |Ca| = O(1), are MBP learnable by their respective

KWIK algorithms, and therefore, when combined with Algorithm 25, induce PAC-MDP-Trace

behavior.

While these results show that the theoretical bounds are not hampered by the move to the

apprenticeship setting, we do often see a large empirical speedup from using traces, as they can

often guide the agent to important areas of the state space, along with the need to only do as

well as the teacher. Empirical evidence of this speedup appears in Figure 4.1 if one compares

the autonomous KWIK learners and those using apprenticeship learning.

Having established that nothing is lost when moving from the autonomous setting to the

apprenticeship setting, we now show that larger schemas can be learned in the apprenticeship

learning case. As these results hinge on MB algorithms, we now review two classical MB

algorithms for conjunction learning and k-term DNF that will be instrumental in our algorithms.

4.3.1 Learning Conjunctions in the Apprenticeship Setting

As mentioned earlier, KWIK and MB are separable when learning monotone conjunctions3 over

n literals when the number of literals relevant to the conjunction (LR) can be as many as n.

While we saw that the KWIK-Enumeration (Algorithm 12) could be used to learn conjunctions

of size k = O(1), conjunctions of size O(n) result in an O(2n) hypothesis space, so there can be an

exponential number of ⊥ predictions. This situation arises because negative examples are highly

uninformative. In the combination lock in Theorem 5, the agent has no idea which of the 2n

settings will allow the lock to be unlocked, so it must predict ⊥ at every new combination. Note

though that if it does see this one positive example it will have learned the correct combination.

This asymmetry is not unique to the monotone case and is in fact a staple of learning general

boolean functions.

In contrast, learners in the MB setting can efficiently learn conjunctions of arbitrary size

by exploiting this asymmetry. Specifically, an MB agent for conjunction learning (Kearns &

Vazirani, 1994) is presented in Algorithm 26. The algorithm (MB-Con) essentially maintains a

set of literals lj ∈ LR where lj = 1 for every positive example it has seen before. If every lj ∈ LR

has a value of 1 in xt, the agent correctly predicts true , otherwise it defaults to false . By using

such defaults, which KWIK agents cannot, and by only counting the highly informative positive

3The results extend to the non-monotone setting using the standard method of including all negated literals.
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samples, each of which subtracts at least one literal from LR, polynomial sample efficiency is

achieved.

Algorithm 26 Conjunction Learning (MB-CON )

1: LR = ∅
2: while no mistakes made do
3: Predict false for xt

4: end while
5: LR = {lj ∈ xt|lj = 1}
6: for Input xt do
7: if lj = 1 in xt for all lj ∈ LR then
8: Predict true
9: else

10: Predict false
11: if mistake, xt = true then
12: LR = LR

⋂
{lj ∈ xt|lj = 1}

13: end if
14: end if
15: end for

Another class that is MB learnable is the class of k-term-DNF (disjunctive normal form of

k = O(1) terms). k-term-DNF are of the form (li∧ lj∧ ...)1∨ ...∨(...∧ ...)k, that is, a disjunction

of k conjunctive terms, each of at most size L (the number of literals). This class of functions is

known to be MB learnable (Kearns & Vazirani, 1994) by creating a conjunction of literals with

each literal representing the disjunction of k of the original literals. For instance, with k = 3

we would have lijm = li∨ lj ∨ lm for all possible i, j, m. From there, the MB-Con algorithm can

simply be used to learn the formula. We note that recreating the actual k-term DNF formula

from such a model is NP-Hard (Pitt & Valiant, 1988) computationally, but for our purposes,

making predictions with this different internal model will suffice.

4.3.2 Positive CD-Learning Results with Apprenticeship Learning

Here, we show that the stochastic pre-conditional CD-Learning problem is solvable in the ap-

prenticeship setting for conditions that are conjunctions of L or fewer terms. We later show

how this problem becomes intractable when the full conditional case, but in some special cases,

this problem too is solvable with the aid of a teacher.
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CD-Learning in the Pre-conditional Setting

Our algorithm for the pre-conditional stochastic CD-Learning problem in the apprenticeship

setting is an instantiation of Algorithm 25 using the MB-partitioning combination from Propo-

sition 6 with an MB conjunction learner MB-CON from above for the pre-conditions and a

KWIK-LR learner (Algorithm 9) for the effect probabilities. Algorithm 27 presents this proce-

dure completely filled out with the mechanics of the partitioning and the interaction with the

environment.

Algorithm 27 Pre-conditional Stochastic CD-TraceLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Effect set Ωa for each
a ∈ A, horizon H , Environment E, and teacher T

2: Initialize a copy of Algorithm 9 (KWIK − LRa(Ωa)) for each a ∈ A
3: Initialize a copy of Algorithm 26 (MB-CON a), a pessimistic pre-condition for each action

(Prea)
4: for each episode (s0, G) do
5: t = 0
6: for each step t until st ∈ G or t = H do
7: ∀a Create Action Schema A = {MB-CONa, Ωa,KWIK-LRa}
8: at = Suggestion from Known-Edge VI (Algorithm 10) with A and st

9: 〈st+1, rt, failure 〉 = Env.execute(at)
10: if failure = false then
11: Update KWIK-LRa with 〈st, st+1〉
12: Update MB-CONa with 〈st, 1〉 //positive example
13: end if
14: t = t + 1
15: end for
16: if trace T is given by T then
17: for each 〈s, a, r, s′, failure 〉 ∈ T do
18: if failure = false then
19: Update KWIK-LRa with 〈st, st+1〉
20: Update MB-CONa with 〈st, 1〉 //positive example
21: end if
22: end for
23: end if
24: end for

Unlike the autonomous learners in Chapter 3, this algorithm works by keeping a pessimistic

version of the pre-conditions using the MB conjunction learner and an optimistic version of

the probabilities of effects using the KWIK-LR learner. This combination of pessimism and

optimism is admissible under the MBP framework and guarantees that we get the right kind of

examples to do efficient learning. Specifically, the pre-condition learner is now only trained with

positive examples, which are highly informative, as we saw in the combination lock example.

This is because it defaults to predicting “false” for any state that does not satisfy its current

hypothesis, which is the most specific hypothesis covering the previously seen examples. Thus,
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the agent will execute the best policy it can with actions it knows will execute in different states,

or in the worst case (initially no actions are thought to work anywhere), just act randomly for H

steps. For instance, consider a combination lock-style example with n = 3 tumblers, but where

only the first two tumblers need to be set to 1 for the lock to open. Let’s assume the initial

start state in the first episode has the lock at [0, 0, 1]. The agent will think no combination will

open the lock, and will try H random actions, probably without success. Assuming the teacher

is using an optimal strategy, it would then show the agent something like “set the tumblers to

all 1’s and open it”. Now let’s say the agent is then placed in initial state [0, 0, 0]. The agent’s

hypothesis (based on the previous example) on the pre-conditions will be that every tumbler

needs to be set to 1, so it will do so and open the lock. But the optimal teacher now shows

it a trace that ends in 〈[1, 1, 0], open, Goal〉. The agent will now eliminate One(X3) from its

pre-condition list for the open action, and has now learned the correct pre-condition list. In

general, the algorithm above solves the combination lock problem with at most n− nr traces,

where nr is the number of tumblers that actually need to be set to a specific number. Thus, we

have achieved PAC-MDP-Trace behavior in an environment that was not PAC-MDP learnable

in the autonomous case. Formally, we can now state the following theoretical property for

CD-Learning in the stochastic pre-conditional setting.

Theorem 14. Algorithm 27 solves the CD-Learning problem for stochastic pre-conditional ac-

tion schemas when the pre-conditions are conjunctions of a polynomial size in the domain de-

scription. Therefore, this algorithm is PAC-MDP-Trace learnable if the agent is given the set

of possible effects (Ωa, but not Πa) beforehand.

Proof. Each transition sample is either a “failure” (ca is false ) or a transition that returns a

next state s′ (without a failure signal), so the output spaces are disjoint as required by MB-

partition. We use the conjunction learner forMB-CON a (Algorithm 26) to predict whether the

pre-conditions of a grounding of that action hold. Each trace T received because of a subop-

timal policy (with respect to the teacher) will provide positive examples of the pre-conditions,

updating each MB-CON a so no more than |A|n traces will be needed, where n is the number

of literals within the action’s scope.

The other part of the partition is learning each Πa, which is done separately from the

conjunction learning with a mixture of real experience and trace tuples, using KWIK-LR (Al-

gorithm 9), which, over all the actions, gives us a KWIK bound of Õ( |A||Ω|3

ǫ4
) for this portion of

the learning. Thus, given Ωa, the dynamics are MBP learnable, and the domain can be learned
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Figure 4.1: KWIK autonomous learners and an apprenticeship learners in a noisy 3-blocks
world. The data is averaged over 30 runs and traces are provided after every episode.

by a PAC-MDP-Trace agent.

An Experiment for Pre-conditional CD-Learning

We consider a Stochastic STRIPS noisy-blocks world with “dummy” actions: with probability

0.2, the normal pickup and putdown actions simply have no effect, but there are also two

“extra” pickup/putdown actions that do nothing with probability 0.8. Figure 4.1 shows 4

agents in a 3-blocks version of this domain. The MBP-Agent with an optimal teacher learns

the pre-conditions and to avoid the extra actions from a single trace. The MBP-Agent with a

suboptimal teacher who mixes in the extra actions with probability 0.5 eventually learns the

probabilities and performs optimally in spite of its teacher. Both MBP agents efficiently learn

the pre-conditions. In contrast, a KWIK learner given the pre-conditions achieves similar results

to the suboptimal-trace learner (though for different reasons), and a KWIK learner for both

the pre-conditions and probabilities requires an inordinate amount of exploration to execute the

actions correctly. We recorded similar results with 4-blocks and exploding blocks, although 2

or 3 optimal traces are needed in those domains. We now show how to extend these results to

the full deterministic pre-conditional CED-Learning problem.
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Deterministic Pre-conditional CED-Learning

In the deterministic pre-conditional CED-Learning problem, we do not need to use the KWIK-

LR portion of Algorithm 27 because there are no probabilities to learn. However, we still need to

combine two different MBP learners, because unlike the CD-Learning problem, we now need to

learn the effects (Ωa), not just the pre-conditions (Ca). To do so, we will combine the MB-CON

learner for the pre-conditions with the KWIK-DetEffect learner (Algorithm 19). Again, MB-

Partition will be used to combine the two outputs, as an effect of “failure” with no change in the

current state literals can be predicted when MB-CON predicts false. The complete algorithm

for the pre-conditional deterministic CED-Learning problem is exactly the same as Algorithm

27, but with a Det-EffectLearn KWIK Learner (Algorithm 19) in the place of KWIK-LR.

Intuitively, the algorithm again keeps pessimistic versions of the pre-conditions (the most

specific conjunction covering all positive examples) and an interpretation of the possible effects

(from DetEffectLearn) that considers any ⊥ predictions to either cause no change, or be opti-

mistically (as in the autonomous setting), or even pessimistically filled in. Essentially, with the

teacher in the loop, any interpretation of ⊥ for the effects can be used. In the analysis below,

we consider the first of these interpretations (no change if ⊥ is predicted, which we denote as

Det-EffectLearn−). Formally, we can state the following.

Theorem 15. An MB-Partition combination of MB-CON and Det-EffectLearn− solves the

CED-Learning problem the deterministic pre-conditional STRIPS when the pre-conditions are

conjunctions of a polynomial size in the domain description. Therefore, this algorithm us PAC-

MDP-Trace learnable.

Proof. The use of MB-CON producing a limited number of mistakes was covered in the CD-

Learning result. All that needs to be considered then is the number of mistakes introduced in

predicting Ωa, but this is simply the KWIK bound from Theorem 19, because each trace that

shows a strictly better policy once the pre-conditions are known must show either an action

adding a literal in a case where the learner’s model predicted no change, or the agent will have

encountered a deleted literal it did not anticipate during the episode or after viewing a trace.

Hence, we have an MBP bound for this portion, which combined with the pre-condition learning

portion, gives us an MBP bound of O(APmn), and thus through Theorem 13, the algorithm is

PAC-MDP-Trace.

As an example of this algorithm at work, consider learning the Blocks World schema for
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After first trace

move(B, From, To):
PRE: On(B, From) , Clear(B) , Clear(From) , Clear(To) , Block(B) , Block(To) , Table(From)
ADD: On(B, To)
DEL: On(B, From), Clear(To)

After second trace

move(B, From, To):
PRE: On(B, From) , Clear(B) , Clear(To) , Block(B) , Block(To)
ADD: On(B, To) , Clear(From)
DEL: On(B, From), Clear(To)

Table 4.1: Learned STRIPS action schemas from the blocks world traces in Section 4.3.2.
Variable names are inserted for readability.

the action move(B, From, To) which moves a block from one place (either a block or the

table) to another block. This blocks world is composed of 4 blocks (a,b,c,d), a table (t), four

predicates (On(X, Y), Block(X), Clear(X), Table(X)), and two actions (move(B, From, To) and

moveToTable(B, From, T)). Table 4.1 shows the agent’s model as learned from traces in this

setting, a process we now describe in more detail. In the first episode, s0 has all the blocks on the

table and the goal is to stack three blocks on one another. The pessimistic agent, which initially

thinks every possible pre-condition must hold to actually execute an action, either reports “no

plan” or performs H unhelpful actions, but the teacher responds with the plan: [move(a, t, b),

move(c, t, a)] The agent updates its move schema to reflect the new trace, as seen in the first

schema in Table 4.1.

Next, the agent is presented with the same goal but an initial state where a is on b and c

is on d. Because it has not yet correctly learned the pre-conditions for move (it believes blocks

can only be moved from the table), the agent reports “no plan” or thrashes for H steps, and

receives a trace [move(c, d, a)], which induces the second schema in Table 4.1.

Now, the agent receives the same initial state as the previous trace, but with a goal of ∃ X,

Y On(X, Y), On(Y, d). Because the agent has learned the move action, it produces the plan

[move(a,b,c)]. Further experience could refine the moveToTable schema.

Extending these results to the stochastic case requires replacing the deterministic effect

learning component with the proper stochastic effect learning component (generally KWIK-

CorEffect, Algorithm 23). Indeed, all the KWIK-learning algorithms for learning effects or

distributions port to the apprenticeship setting in the pre-conditional case and link with MB-

Con, allowing us to drop the assumptions on the size of conditions. The results above for the

pre-conditional case used a conjunction learner that relied on a unique failure signal when the
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pre-conditions of an action fail. We now investigate conditional outcomes that do not provide

this signal.

CD-Learning in the Conditional Setting

We now turn to the conditional case, where the apprenticeship results are not as straightforward.

We will show that in general, the CD-Learning problem is likely not MBP learnable, but then

present algorithms that solve the problem in the deterministic setting when the number of

〈ci, ωi〉 pairs is O(1) and discuss complications for such an algorithm in the stochastic case

under similar assumptions.

Deterministic Conditional CD-Learning and Decision Trees

In the conditional case, the positive KWIK results in the autonomous setting assumed the pos-

sible conditions were enumerable, either by bounding the size (|c|) or number (|C|) of conditions

by a constant. But above, we were able to eliminate the constraint on the size of pre-conditions,

so it is natural to wonder if we can do the same relaxation in the conditional case. Unfortu-

nately, the following theorem shows this is not likely. The proof is by reduction from decision

tree learning, where the best known sample complexity bounds are still super-polynomial in the

number of attributes and labels (Hellerstein & Servedio, 2007) and while many special cases

have been shown to be learnable under different complexity measures (for example, Auer et al.

(1995)), the lower bound on the sample complexity remains a significant open question (see

Hellerstein & Servedio (2007) for more discussion).

Theorem 16. If there is no polynomial mistake bound algorithm for decision-tree learning, the

deterministic conditional CD-Learning problem is not MBP learnable without a restriction on

the number of conditions in the operator.

Proof. To perform the reduction, we simply create a unique “effect” for every possible label

in the decision tree and translate all the 〈instance, label〉 pairs into 〈st, ωt〉 pairs to train the

CD-Learner. A solution for the CD-Learning problem is directly translatable into the decision

tree learner since the labels and effects have a one to one mapping.

This reduction is somewhat intuitive because each root-to-leaf path in a decision tree repre-

sents a conjunction (ci), and when we don’t bound the length of the branches (as we did in the

autonomous case) or the number of branches (as we do below), the hypothesis space is (näıvely



137

at least) exponentially large. The reason the relaxation that worked in the pre-conditional

case does not hold in the conditional case is that the problem is no longer negative examples

being uninformative—since there is no “Else” clause in the conditional case, every example is

a positive one. The problem is, we cannot be certain from the state transitions which effect

actually occurred, so we don’t know what condition learner to update. However, we now return

to the case where number of conditions in a schema (|C|) is limited to be k = O(1). This

case had KWIK solutions in Section 3.8.3, but hidden in the bounds were large constants and

enumerations of tree structures that we now attempt to eliminate under the MBP protocol.

Deterministic Conditional CD-Learning with Few Conditions

While the general CD-Learning problem is intractable in the conditional case, we show here

that in the deterministic case with the number of conditions constrained to be k = O(1), PAC-

MDP-Trace behavior can be guaranteed. In general, the MB-CON algorithm cannot be used

to learn the conditions in this case because of ambiguity as to which effect set (i for Ωi) is

responsible for a transition. As an example, consider invoking the paint action in deterministic

Metal/Wooden Paint-Polish. While the agent is learning the conditions and suppose it paints

an object that is already scratched. The outcome observed by the agent (the object is scratched

and painted) does not tell it which of (ω1, ω2) actually occurred, so it is not immediately clear

what ca
i , should be updated.

However, we now show that the problem is solvable using an MB k-term-DNF learner to

learn what conditions do not produce each effect. Specifically, instead of representing the

condition that causes an effect to occur, we learn the conditions that do not cause effect ωi,

which is c1...∨ ci−1 ∨ ci+1 ∨ ..ck. Since each cj is an arbitrarily sized condition, we are learning

a k-term-DNF for each condition not occurring. This algorithm is presented in Algorithm 28.

Intuitively, the algorithm keeps track, for each action, of a k-term DNF formula for the

conditions under which the associated effect does not happen. At each step (or each step in a

trace), we update the condition learner for the effects that absolutely did not occur on that step.

This refines the disjunctive formula representing the cases where that effect does not happen,

which has the effect of making the conditions where the effect does happen more specific (so

the effect will be predicted now for fewer states). The operators mined from such overly general

conditions may predict multiple effects for a given state. For instance, in the beginning of

learning, all the possible effects for an action will be predicted because the condition that says
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Algorithm 28 Conditional Deterministic CD-TraceLearn

1: Given: Action set A of max arity m, Predicate set P of max-arity n, Effect set Ωa, with
|Ωa| = O(1) effects for each a ∈ A, horizon H , Environment E, and teacher T

2: Initialize a copy of MB-k-DNFai for each action a and effect ωi ∈ Ωa.
3: for each episode (s0, G) do
4: t = 0
5: for each step t until st ∈ G or t = H do
6: ∀a Create Action Schema A = {MB-k-DNFa, Ωa,KWIK-LRa}
7: at = planners suggestion using A and st and choosing effects arbitrarily if multiple

conditions match st.
8: 〈st+1, rt〉 = Env.execute(at)
9: Let Ωa

t (Ω̄a
t ) be the set of effects that do (do not) explain 〈st, st+1〉

10: for each ω̄ ∈ Ω̄a
t do

11: Update MB-k-DNFaω with 〈st, 1〉 //positive example
12: end for
13: t = t + 1
14: end for
15: if trace T is given by T then
16: for each 〈s, a, r, s′, failure 〉 ∈ T do
17: Let Ωa (Ω̄a) be the set of effects that do (do not) explain 〈s, s′〉
18: for each ω̄ ∈ Ω̄a do
19: Update MB-k-DNFaω with 〈s, 1〉 //positive example
20: end for
21: end for
22: end if
23: end for

they will not happen is initialized to always false . When this occurs, the planner just picks

one of the effects arbitrarily as the teacher will correct this behavior with a trace of its own if

this leads to a suboptimal plan. Formally, the algorithm has the following property.

Theorem 17. The deterministic conditional CD-Learning problem is PAC-MDP-Trace learn-

able if the number of conditions associated with each action is bounded by k = O(1) using

Algorithm 28.

Proof. Formally, we show that the set of k-term-DNF learners makes a bounded number of

mistakes in predicting next states, which gets us the desired result through Theorem 13. On

every step, a state s is given to each of the k-term DNF learners associated with the current

action a, which are queried as to whether condition ci does not hold. Let L1 be the set of such

learners that reported their effect would not hold (the DNF is true) and L0 that said their effects

would happen. Let the corresponding effect sets be Ω1 and Ω0. One of the effects from Ω0 is

the prediction (chosen by the planner arbitrarily) of the transition. Now the observed transition

〈s, a, s′〉 comes in. One of the following happens: either η(s, ω0) = s′ (correct prediction), in

which case we don’t really need to do an update, or the prediction was wrong. In that case,
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we update every effect learner in li ∈ L0 where η(s, ωi) = s′ (note there has to be at least

one, namely l0). Since each of these has a polynomial mistake bound, these updates can only

happen a polynomial number of times (specifically kLk), for each action, where L is the number

of literals in the domain. Notice that because the condition learners keep the most specific

hypothesis for not matching a state, the learners in L1 that predicted their effects would not

happen will never be wrong—these learners always err on the side of “false” predictions, which

is translated to the L0 set because we are learning a negation.

Notice that this algorithm manages to solve the “small number of conditions” CD-Learning

problem without incurring the large constants seen in Section 3.8.3. It does so by utilizing a

more powerful MB algorithm where before only KWIK-Learners were available. Finally, we note

that this mistake-bound efficient algorithm may require super-polynomial computation time to

actually output the corresponding action schemas, although the predictions (which is all the

MBP-Agent algorithm needs) do not require this computation. Specifically, while k-term-DNF

are MB learnable with a polynomial number of mistakes, turning the internal representation

(using the new clausal literals) into an actual k-term-DNF is NP-Hard (Pitt & Valiant, 1988).

The same holds for producing the actual action schemas (condition/effect pairs) in our case,

though again, producing this exact representation of the dynamics is not necessary in our

algorithms.

Stochastic Conditional CD-Learning

The stochastic CD-Learning problem’s general intractability follows from the negative sample

complexity result in the deterministic case described in Theorem 16. However, there are some

special cases worth considering. First, there is the case where the number of condition/effect-

distributions is bounded by k = O(1). Notice this is different from the problem we just solved

with k-term DNF learners because now when a condition matches a state, an effect is chosen

from the distribution 〈Ωa
i , Πa

i 〉, so the deterministic strategy cannot be exactly used because a

single observed effect is no longer definitive as to what conditions did not occur. Thus, it is not

clear if there is a workable extension of the k-term-DNF approach above. However, the KWIK

approach for this setting (enumerated decision trees, AKMS, and KWIK-LR), is still usable,

though not very practical.

A potentially more useful special case is one where there are again k = O(1) conditions, but

now each condition has one effect in its associated effect list ω∗
i ∈ Ωa

i such that Pr(ω∗
i ) > δ0
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for ci, but for all cj 6= ci, the probability of this effect is 0. In that case a two-stage algorithm

is possible where, in stage 1, the algorithm only uses samples that show one of the indicator

effects (since effects are given for each condition in CD-Learning these are trivial to identify),

and uses MB-Con to learn the associated conditions. If it receives a state that matches only

one condition (stage 2), it uses that to update a KWIK-LR learner to learn the distribution

over the effects.

Conditional CED-Learning

Above, we have derived some positive (and a few negative) learning results in the apprenticeship

learning paradigm for various subproblems from Chapter 3 without the previously necessary

restriction on the size of the conditions. We reiterate that if those size restrictions also held in

the apprenticeship learning setting, the original KWIK algorithms from Chapter 3 could simply

be ported to this new setting since KWIK is a subset of MBP. We complete the picture here

by noting that the hardness of the Conditional CED-Learning problem in the general setting,

even if the schemas are deterministic, follows from Theorem 16, which showed the hardness of

the easier CD-Learning problem.

Special cases do exist (including all the pre-conditional cases) where CED-Learning is possi-

ble with traces and without the condition-size constraints. It is left to future work as to whether

CED-Learning when the number of condition/effect pairs is k = O(1) (even in the deterministic

setting) is one of these. To see the difficulty in this setting, consider the k-Term-DNF learners

used in the deterministic conditional CD-Learning problem. We were able to use learners to

represent which effect didn’t happen because each learner had a known associated effect, so we

could definitively tell which learners should get positive examples of their condition not hap-

pening. But if the effects are being learned as well, it becomes unclear whether the condition

or effect learning portions are to blame.

This chapter has shown methods for relaxing assumptions on the size of pre-conditions (and

sometimes conditions) in the apprenticeship setting. Table 4.2 summarizes some of these results.
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Setting D-Learning ED-Learning CD-Learning CED-Learning

Deterministic Given DetEffectLearn Given DetEffectLearn
Unconditional

Stochastic KWIK-LR KWIK-CorEffect⋆ KWIK-LR KWIK-CorEffect⋆
Unconditional

Deterministic Given DetEffectLearn MB-Con MB-Con and
Pre-conditional DetEffectLearn

(in parallel)

Deterministic Given DetEffectLearn MB-k-term Union∗ and
Conditional DNF learner⋆ DetEffectlearn

(multiple copies) †

Stochastic KWIK-LR KWIK-CorEffect⋆ MB-Con and MB-Con and
Pre-Conditional KWIK-LR KWIK-CorEffect⋆

(in parallel) (in parallel)

Stochastic KWIK-LR KWIK-CorEffect Meteorologist∗ Meteorologist∗ and
Conditional and KWIK-LR KWIK-CorEffect⋆

(multiple copies) (multiple copies)

Table 4.2: The 6 learning settings and their MBP solutions in the Apprenticeship Learning
(trace) setting. A ∗ denotes necessary assumptions about the size of conjunctive (pre)-conditions
(or other formulas that are only KWIK-learnable when they are small). A ⋆ indicates the number
of effects must be bounded by a constant k or some other special structure (like signaled effects)
must be known. In all the pre-conditional cases, assumptions on the size of the conditions are
dropped with apprenticeship learning. Notice that in deterministic conditional-CED-Learning
setting, this assumption is replaced by a different assumption (†) on the number of conditions,
and in the stochastic conditional CD and CED-Learning cases, we are not able to drop the
assumption.
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Chapter 5

Web-Service Task Learning

This chapter is concerned with a particular real-world application of relational models for learn-

ing in a sequential decision making setting.1 Specifically, we consider the web-service task learn-

ing problem. We provide technical definitions of this problem later, but intuitively, the agent

must learn to execute a given sequence of web services, such as looking up flights from two cities

and then calling another service to book the cheapest one. Each service needs to be invoked with

a number of parameters (such as the destination city and trip dates) and certain relations must

hold between the objects encountered in the task. Our investigation centers around the sample

complexity of learning relational models to support this decision making in the apprenticeship

paradigm.

5.1 Web Service Task Learning

“Web Services” (Alonso et al., 2004) is a general term for small pieces of software that can be

accessed programatically (or through a user interface) on the world wide web. The availability

of services has expanded tremendously in the last 10 years both because content providers (like

Amazon.com) have benefited from making their inventory and data available to third parties,

and because of the blossoming of small software programs (like those used on mobile devices),

that interact with the “cloud” of services. The communication process between providers, third-

party software, and services, is illustrated in Figure 5.1. The medium for this communication

is (usually) an XML instance document, a formatted and tagged textual description of some

data, as seen in Figure 5.1.

The learning problem we consider in this chapter, is whether an agent can observe traces of

these XML document instances being passed to and from service providers as part of a larger

task (such as the flight booking mentioned above) and build relational models that will allow

the agent to perform the same task. Since this learning problem is built around real-world

1Most of this chapter appeared in joint work with Michael Littman and Alex Borgida (in submission).
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<Result>

<NumRes> 2 </NumRes>

<Flight>

<Id> 77612 </Id>

<Price> 500 </Price> 

</Flight>

<Flight> 

<Id> 64309 </Id>

<Price> 700 </Price>

</Flight>

<MaxPrice> 700 </MaxPrice>

<MinPrice> 500 </MinPrice>

</Result>

Third -

Party

Software Flight Lookup

BookFlight

Get Vacation

Service Providers

Communication via 

XML document 

instances

XML document 

instance 

Figure 5.1: The interaction between third-party software and web-service providers and an
example XML document used as the communication medium.

data, we encounter a number of challenges that were not considered in earlier chapters. These

include:

• New Objects- Unlike STRIPS environments, where the objects in a domain instance

remain static throughout the agent’s lifetime, in a web service task, new objects are

usually being introduced on every step. For instance, looking up flights to a destination

may create a list of new “flight” objects.

• Non-unique Names- Real world objects may not have unique names, breaking our

earlier assumption that, for instance, two blocks could not both be called b. Indeed, non-

unique names introduce a key learning problem in web-service task learning. For instance,

if we are learning how to use a service for looking up music albums that takes a single

input, and we see it invoked with the name of an artist with a self-titled album (the name

of the band and the album are the same), this doesn’t tell us which of these attributes to

use should we want to look up an album with a title that is not the same as the band’s

name. In such a case, eliminating the ambiguity is essential for learning how to correctly

execute the service.

• States that are not observed as grounded predicates- In this real application, states

will not be described neatly in terms of ground predicates. Rather, we will infer these

predicates (encoding structural and semantic relations) based simply on grounded XML
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documents used for communication to and from the services and the actual relationships

of objects in these instances. These inferred relations will often be highly task dependent.

For instance, learning that the input to a flight-booking service is always the cheapest

flight is the correct behavior for a single task, but may not generalize to all tasks.

• Missing and Listed Objects- Web service outputs (and inputs) may often contain

missing or optional elements and certain objects (such as flights returned from a search)

should be treated as lists, or at least a collection, of similarly typed objects.

These challenges are non-trivial, and encountered specifically because we are working with

real-world data. Because of this, we will be using a much different style of algorithms and

representation in this chapter, though we now provide a key for mapping from this to the

perspective used in the rest of the thesis.

At its core, the web-service task learning problem has all the components of the other

problems posed in this thesis, just in somewhat unfamiliar forms. The new problem still calls for

a relational representation to represent the task and the connections between the objects within

the task. For instance, a relations like PartOf (Trip, StartCity) and Min(Price, FlightPrices)

may encode the start city of a trip and the fact that a minimum-price flight is desired. Indeed,

a relational representation is necessary in this domain class because the task could not be

represented with any kind of usable generality (other than performing the same ground task

over and over) without variables and a relational representation. The new problem is also still

a sequential decision making problem, but since the task actions are given to the learner, one

should think of the decision making portion of the problem as choosing the parameters to the

actions (What city do I look up? Which flight do I book?). This decision has a sequential

component because the choices have to be considered so that they match up with relations that

will hold several actions in the future (we need to pick the flight to the same city where we

will soon book a hotel). Viewed from the traditional RL perspective, each set of objects and

relations that are known at a step is the state and the parameter choices define an action. Finally,

because of the complicated nature of the problem and the large set of possible relations, we use

the apprenticeship-learning protocol to do the learning, since having the agent autonomously

try (for example) every possible string to pass to lookupFlight is not practical, but having

a teacher showing it an example of invoking this service is quite feasible. As in Chapter 4,

the mistake bound predictor framework is used to analyze the theoretical properties of the

algorithms, limiting how many times a teacher may have to step in. In fact, we provide bounds
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in the smaller Mistake Bound (MB) framework, since the class of functions we are learning

is deterministic. This sample complexity measure is of paramount concern in this real-world

setting because collecting traces of users performing the tasks, and especially performing it

under rare conditions, may be quite costly. In this light, the web-service task learning problem

can be viewed as a novel instantiation of the sequential decision making problems considered in

the previous chapters.

5.2 Terminology and Representation

Intuitively, the learning problem we consider is one where an agent must make a sequence of

web-service calls to successfully complete a task, such as using the three services represented

in Figure 5.2 to look up a person’s vacation destination, look up the flights to this location,

and buy the cheapest ticket. Whenever the agent’s model leads to a mistake with respect to

the current task, a teacher steps in and shows it the correct service behavior for that particular

instance. This intuitively simple interaction is formalized in the following section, followed by

a summary of some of the more vexing learning issues considered in this chapter.

5.2.1 Formal Problem Description

Since web services communicate via XML documents, we describe the semantics of services

starting from XML DTDs (schematic descriptions of XML instances) describing their inputs

and outputs, though we note that the eventual inputs to our learning system will be XML

instances, not DTDs. To simplify the presentation, we eliminate element attributes by simply

treating them as child elements. Such DTDs can be represented theoretically using regular

expressions over an alphabet defined by their element names. For instance, the expression for

“Res” in Figure 5.2 would be: (MaxPrice MinPrice Flight+ NumFlights). Though learning

such regular expressions could be intractable, studies have shown (Bex et al., 2006) that the

expressions representing XML elements in 99% of XML DTDs on the web are from a restricted

language, chain regular expressions (CHAREs), where element names can only repeat in a list

and quantifiers are only applied to disjunctions of symbols. In this work, we further assume

services do not have disjunctive elements (none of our real world experiments contained these),

leading to the restricted non-disjunctive CHARE defined below.

Definition 20. CHARE Definitions:
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• A non-disjunctive Chain Regular Expression or non-disjunctive CHARE is a regular ex-

pression with no disjunction (no |, only the +, ∗, and ? qualifiers), where any symbol

may only appear once and where qualifiers can only act on a symbol, not a grouping. For

instance a∗bc+ is a CHARE but a∗ba and (ab)+ are not.

• A non-disjunctive CHARE rule is a DTD element description where the right-hand side

is a non-disjunctive CHARE.

• A non-disjunctive CHARE DTD is a DTD where all the element rules are non-disjunctive

CHARE rules. 2

We represent such DTDs by trees in the following manner, though we note again that in our

setting the tree is learned from document instances.

Definition 21. A non-disjunctive CHARE Structure Tree (henceforth an “XML Structure

Tree” for convenience) is constructed recursively by starting with a node n0, labelled by the root

element, and applying recursively the rule that for every node n with element label A, if the

DTD has specification

<!ELEMENT A (B_1, ..., B_k)>

then children nodes n1, . . . , nk are added to n, with labels B1, . . . , Bk respectively. If any of the

elements Bj is marked as +, ?, or ∗, the corresponding node nj is annotated with +, ?, or ∗

respectively.

As a step towards semantic relations (introduced below) we will represent an XML Structure

Tree as a graph of the following form:

Definition 22. An XML Structure Graph Gstr = {N, E, Λstr} is a labeled directed graph with

the same nodes (complete with annotations), as the corresponding XML Structure Tree, but with

unlabelled edge (x, y) replaced by two edges: (x, y) labelled “part”, and (y, x) labelled “whole”.

These are called structural edges, and Λstr = {part, whole} .

An example of such a graph is the subgraph of Figure 5.2 containing only the solid (struc-

tural) edges (only one of each part/whole combination is shown for clarity). This takes care

of modeling the syntax of the document, but we are also concerned with modeling semantics

based on mathematical relations as defined here.

2We also omit recursion in element definitions in this work.



147

Definition 23. A mathematical relation m ∈ M is a binary relation between two objects o1

and o2 (where zero, one, or both objects can potentially be a grouping of other objects - see the

definition of “object” below).

For the purposes of this chapter,M can be any arbitrary collection of binary relations and

our theoretical analysis provides bounds based on the cardinality of this set. However, to make

our examples more concrete, we take a cue from database theory (Klug, 1982) and import five

basic functions, which we turn into binary relations: min, max, sum, average, and count, along

with an identity relation to check equality of objects. This set seems reasonable since many

web services are simply wrappers around database operations. Throughout the chapter, we

will extend this basicM to model increasingly complex tasks, including relations for modeling

selection of objects in Section 5.4.3 and modeling relationships between dates in Section 5.6.1.

We now introduce semantic edges based on these relations.

Definition 24. A Semantic edge eλm
is a labeled edge between two nodes in a graph n1 and n2

with label λm, where m ∈ M.3

Semantic edges represent task-specific relationships such as “the City2 input to Flight-

Lookup should be filled with a DestCity instance from GetVacation”. Unlike structural

relations, we cannot assume these semantic relations are provided to us directly through the

observed instances (XML documents). However, each XML instance does give us information

about what relations might consistently hold true. To learn these relations, we assume we have

a set of common mathematical relations (M above), all of arity 2, whose semantics are known

and can be easily checked4.

Throughout this chapter, semantic edges are drawn with dashed lines to distinguish them

from structural (solid) edges. A graph with structural and semantic edges is called an SS-graph.

Definition 25. An SS-Graph is a labeled directed graph GSS = 〈N, E, Λ〉 containing the nodes

from an XML structure graph Gstr and has edges E = Estr

⋃
Esem where Estr are the edges

from Gstr while Esem is a set of semantic edges. Similarly, Λ is
⋃

m∈M λm ∪{part/whole}.

We can now formally define a service in terms of its inputs and outputs, though we do not

yet allow for semantic connections between these components.

3Intuitively, this represents that for object o1 (o2) instantiating node n1 (n2) , m(n1, n2) is true.

4The theoretical efficiency results of this chapter generalize to relations of constant arity by building the
corresponding hypergraph.
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Definition 26. A service s is a pair of SS-Graphs 5 〈GI , GO〉, where GI represents the inputs

and GO represents the outputs. Each node in these graphs represents a concept, which in

turn represents either a grounded object or a set of grounded objects. Each node may have an

annotation from the corresponding XML-Structure tree node (such as the “+” on the Flight node

in Figure 5.2) that signifies syntactic properties of the node as described later. The edges in the

graphs represent relations between these concepts.

An example of a service is the FlightLookup box in Figure 5.2, which contains a 4-node

input graph and 7-node output graph. The semantic edges crossing outside of the box are

not part of the service, but are part of the task graph (as defined below). Such a “message

generation” definition of a service follows the descriptions of services often seen in the Web

Service Composition community (Liu et al., 2007). Since there are often semantic relationships

between the inputs and outputs of a service, we define a similar structure that captures these

relationships.

Definition 27. A service transformation is a pair 〈s, Ê〉 where Ê is a set of semantic edges that

link the nodes of GI to GO. We assume that the service’s behavior is deterministic given the

inputs and that the semantic relations encoded in Ê must always hold for any service invocation

(though other relations can hold in any single instantiation). This means that while the full

input/output mapping may not always be predictable, the constraints in Ê will always hold.

An example of such a structure is the BookFlight box in Figure 5.2 where the input graph

(a single node) has a semantic link to the output graph.

The goal of our learning algorithm will be to model a sequence of service transformations,

including relational links between transformations. This target hypothesis is called a Task, T ∗,

and is defined as follows.

Definition 28. A task 〈S,R〉 is a sequence of service names S and a set of relations R between

XML elements of the services in S . S defines a partial ordering �S over the elements ei (or

collections of elements as defined earlier) of the corresponding service transformations. R is a

set of triples 〈e1, e2, m〉 where m ∈ M, e1 �S e2, and m(e1, e2) is true. Notice that in a task,

semantic relations include not only those from each service transformation, but also relations

between elements from different services.

5Equivalently, a service can be defined in terms of XML elements that form its inputs and outputs (Ei and
EO) along with a set of relations (Rs) that must hold within these graphs. However, the equivalent graph
structure is easier to visualize and has a well defined construction from data (Definition 21) so we use this
representation here.
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Intuitively, S represents what is called the “control flow” in process mining (Yaman et al.,

2009)—a sequence of service calls (ignoring the inputs and outputs) necessary to complete

the task (see the top of Figure 5.2). R (representing the dataflow) encompasses relations

between objects in service graphs Gi and Gj , where Gi �S Gj , including relations within (i)

the same graph (a service), (ii) relations between the inputs and outputs of a service (a service

translation), and (iii) those between graphs associated with different services (task specific

relations).

Internally, we will represent a web-service task using a task graph as defined below. The

edges in the task graph include all the structural edges from the individual services, but also

include directed edges (direction in the figures flows downward) for the semantic relationships

between objects. Intuitively, the semantic edges, including those associated with the identity

relation (shown as unlabeled dashed edges), maintain a valid hypothesis over semantic relations

between objects, including which outputs link to which inputs and the semantic relationships

between objects in general.

Definition 29. A Task Graph is a labeled directed SS-Graph representing a task. The annotated

nodes in the graph are all of the SS-Graphs in the service transformations
⋃

〈N,E〉∈s∈R N and

the edges correspond to the union of all the edges in those graphs as well as inter-service (type

iii above) semantic edges corresponding to the semantic relations R in the task T ∗ as defined

above.

We now consider the instantiations of these structures. The figures in this chapter showing

task graphs all show task graph instances because we feel they are easier for readers to follow.

Here we formally define each type of instance and, where necessary, show how the instances are

populated from the original XML documents.

Definition 30. An object is a grounded element (#PCDATA) 6 or a collection of grounded ele-

ments from an XML document entry A. A collection is either a list of entries [a1, a2...] if A re-

peats in the document or a sublist if an element nested above A repeats (denoted 〈a1, a2...〉). Note

that if both cases hold, one can have a sublist of lists (for example, 〈[a1, a2], [a3, a4, a5], [a6]〉).

For example, the Flight+ node in Figure 5.2 has a list associated with it (horizontally tiled

objects in the diagram) while the Price node under it is associated with a sublist (vertically

tiled objects in the diagram).

6For nodes with parts, we hash all the text (including tags) below the elements so that we can check for exact
equivalence between structures. This results in the “Ref” objects in the figures in the chapter.
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Figure 5.2: A task graph instance for an agent looking up a person’s vacation information,
searching for flights, and booking the cheapest one. An XML trace provides the structural
(solid) edges, but not the semantic (dashed) edges, which must be learned. Inputs to services
are shown with bold circles. Objects appear next to their corresponding nodes. When multiple
objects map to the same node, they are grouped either as a list (the horizontal tiling for Flight+)
or as a Sublist (the vertical tiling for Price) based on Definition 30 .



151

Definition 31. An XML Structure Graph Instance is a tuple 〈GStr, I〉 where GStr is an XML

Structure Graph and I maps each node n in GStr = 〈N, EStr〉 to an object o. In our diagrams,

we place instances besides the corresponding nodes. 7

Since this definition associates objects with nodes, we outline the rules for performing this

mapping given an XML document D and non-disjunctive CHARE Tree.

1. If element A is a child of an element which is a list, then the ground instances of A in the

document are put into a “sublist” collection 〈a1, a2...〉. This sublist is associated with the

graph node corresponding to A, but each ai is also parsed based on the next two rules, as

it may contain several (or no) instances of A in a list.

2. If an instance of element A in the document is optional and missing, or if any of A’s parents

through structural edges are optional and missing, an empty object [] is associated with

the corresponding node (or the associated ai if the previous rule was used).

3. If an instance of element A repeat as a list (+ or ∗ - detected as siblings in the document),

these ground instances are put into a list collection [a1, a2...]. If the “sublist” rule above

already partitioned the instances of A, the list is associated with a single ai in the sublist,

resulting in a “sublist” of lists.

Now that we have covered the instantiations of nodes, we turn our attention to edge instances

and their validity.

Definition 32. A semantic edge instance is a semantic edge connecting two instantiated nodes

as defined above. A semantic edge instance is semantically valid if and only if m(o1, o2) is true

for I(n1) = o1 and I(n2) = o2.

Instances of SS-Graphs, service graphs, and task graphs are all obtained by associating with

them an instantiation function I coming from the underlying XML structure graph. That is,

service graph instances still contain all the nodes and edges from the corresponding service

graph, but each node is associated with a number of specific individuals, such as “Chicago”

for the DestCity node in Figure 5.2. We say such graphs are semantically valid if all of their

semantic edge instances are semantically valid.

We are concerned with learning task graphs from traces (task instances) of the task. Traces

do not necessarily contain direct information about the semantic relations; instead they record

7Note that this differs from the standard tree representation of XML documents, because repeated elements
resulting from A+ are recursively collapsed in the structure graph.
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a sequence of service instances that give clues as to these semantic relations. For most web

services, traces can be obtained as sequences of XML documents exchanged by the client and

the service. These can either be collected prior to the learning process or produced by a teacher

when the learner makes a mistake. With the help of the above definitions, we can now define

the task learning problem, which will be our main consideration throughout the rest of this

chapter. Notice that this protocol is a real-world instantiation of the Apprenticeship learning

protocol (Algorithm 24), but now with predictions explicitly built in (which MB and MBP are

amenable to).

Definition 33. Initially, the learner is provided with the names of the services to be called (S

from the task definition), the set of relations to be considered M, and an initial task instance

(trace) T0. The task graph learning problem then occurs in a series of episodes. At the beginning

of each episode, an initial SS-Graph G0 is provided to the agent. The agent must then for each

successive service in S :

1. Provide the instances of the input elements (a semantically valid SS-Graph GI). The rea-

soning behind this input-selection problem once a model has been constructed is discussed

in Section 5.5.

2. Make correct predictions about what semantic relations will hold with respect to the true

(but unknown) Task T ∗ (predicting R ). When possible, this may involve predicting the

actual instantiations of nodes, as in the input-selection problem above, but in this case

the agent may also make a more generic prediction, simply stating the relationship be-

tween two nodes (for example, Node n1 will contain the maximum value from the (not yet

instantiated) list in node n2).

3. Predict the structure of each service instance, including annotations. Specifically, the agent

must identify all possible nodes n and structural edges estruct in the service instance as well

as whether these nodes can be optional, lists, or both. However, the exact instantiations

(the values assigned to each node) do not have to be predicted, except for the inputs as

specified above.

If during an episode, the agent errs in any of these, and if the current task instance refutes the

agent’s prediction, this is counted as a mistake and the agent is provided with the task instance

(trace Tt) showing a full run of the episode and all the instances.
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For instance, in Figure 5.2, the agent is initially given the “Person” structure at the top. The

agent must then make the correct sequence of service calls, also using the correct inputs for each

service from the previous outputs (or as best it can in accordance with the true R from T ∗) and

making correct predictions about the data produced, as outlined above. For instance, an agent

that has learned the task graph in Figure 5.2 can predict that a FlightLookup will produce a

list of at least one Flight (from the annotation + on Flight) and that the MaxPrice node will

contain the maximum value from the Price node. If the agent either makes any mistakes (as

defined above), it receives a trace (task instance T ) as feedback. This feedback can either be a

correct trace for the previous episode (as defined above and considered throughout this work),

but more generally could be any example that will correct the misconceptions that led to the

mistake (for example a stored trace from a similar task).

We consider the efficiency of task learning in the Mistake Bound paradigm.

Definition 34. Efficient Task Learning occurs if the number of mistakes it makes is bounded

by a polynomial function of the input parameters {|GI |, |GO|, |S|, |M|}.8

In practical terms, this constraint ensures we can train agents to perform complex tasks

involving web services with a number of examples that scales polynomially with the size of the

task schematic. This efficiency is crucial for any practical realization of this system as traces of

specific tasks, while not necessarily scarce, certainly will be limited.

5.2.2 Key Learning Problems

While the presence of traces certainly makes the web-service task learning problem easier than

a completely unsupervised approach, a number of non-trivial learning tasks remain. Here, we

provide a sketch of the key challenges in the web-service task-learning problem.

• Ambiguity - A single (or even multiple) traces may not settle all the semantic relations

between objects. For instance, if two lists are visible to a service (A=[1,2,3] and B=[3,4,5,6]

and the service produces “3”: was that max(A), min(B), or length(A)? Further traces are

required to determine the correct pairing (if there is one).

• List Structures - Lists of objects are ubiquitous in web services. Figure 5.2 shows one such

output with the list of possible flights. Detecting and modeling lists, including learning when

8|GI | = maxj |GIj |, and similarly |GO| = maxj |GOj|.
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lists are potentially empty, is an important portion of the overall task-learning problem. While

WSDL documents or other syntactic schemas often indicate which elements may repeat, we

show in this chapter that under very common assumptions, the presence of lists and missing

elements can be learned as well. This makes our learning algorithm more practically robust. It

can construct valid models when WSDL are missing, incorrect, or in the presence of non-web,

proprietary, or in-development services that may not have any such documentation.

• Sublists and Selection - When lists contain non-primitive structures, the parts of the

elements in the list (for example, the Price of a Flight from the flight list in Figure 5.2), form

a sublist as covered in Definition 309. The elements of a sublist are not grouped together in

the original XML document, but, we may need to consider them as a group to learn some

semantic links. Additionally, the dataflow from some nodes may best be expressed in terms

of the grouping induced by a “whole”. For instance, in Figure 5.3, when a Flight is chosen,

its “Stops” list is copied over, so the dataflow should capture the fact that these stops all

belong to the same flight, and if possible, the reason for this selection.

5.3 Simple Task Learning

Before we handle the general form of the learning problem presented in Definition 33 , we

consider a simplified web-service task-learning problem under a number of assumptions. We

assume lists (for example, the Flight list in Figure 5.2) are not nested inside one another and

can never have length 0 (no missing elements). We further assume that any time multiple parts

of an object that came from a list appear in a later SS-Graph, the entire structure (not just a

few parts) will appear in the later graph. For example, the entire Flight object appears in the

output graph of BookFlight , not just the Price and Id. In subsequent sections, we will relax

all of these conditions, but we study this “simple task-learning problem” to convey the basics

of our learning algorithm.

5.3.1 Mapping XML to Structure Graphs

Each input (trace T ) to our learning algorithm comes as a series of XML documents showing

the inputs and outputs of each service instance. If the syntax of each service (what elements are

lists and which ones are optional) is provided through correct WSDL or other documentation,

9In the figures, a horizontal tiling (Flight+) is a list of instances and the vertical tiling (Price and Id) is a
sublist (parts of listed elements).
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translating these instance documents to XML Structure Graph instances can be done using

the procedure outlined in Definitions 21, 22, and 30. However, we consider here the more

general situation where this documentation is not provided, and hence the translation from

XML documents to a task graph instance requires learning the syntax of each service’s inputs

and outputs (XML structure subgraphs of GI and GO). As noted earlier, this syntax (the

XML-structure tree) can be represented using a regular expression for each element of the

document. For instance, the expression for “Res” in Figure 5.2 would be: (MaxPrice MinPrice

Flight+ NumFlights). With only the traces to work from, these forms must be learned from

multiple traces because each trace instance may only provide partial information about whether

an element is a list (singletons and lists of length 1 are often indistinguishable) or optional

(covered later).

In general, learning such regular expressions could be intractable, but studies have

shown (Bex et al., 2006) that the expressions representing XML elements in 99% of XML

DTDs on the web are from a restricted language, chain regular expressions (CHAREs), where

element names cannot repeat unless they are in a list and quantifiers appear only on disjunctions

of symbols. This constraint means when we see two “Flight” elements under a “Res” element,

we can infer it is a list (Flight+ or Flight∗), not a sequence of two Flights. In this work, we

further assume services do not have disjunctive elements (none of our real world experiments

contained these), and therefore quantifiers are only applied to each element.

From that result, translating XML documents to graph nodes and structural edges in an

XML Structure Tree forming the backbone of a Task Graph GT is straightforward, even in the

online-learning case. Each document maps to a specific service 〈GI , GO〉. Each XML element

can be represented by a CHARE (where repeated elements will have a +) and each symbol

in the CHARE becomes a node in the graph. If there is a + on this symbol and the node in

the graph does not yet reflect it, the annotation is added (other quantifiers are considered in

the next section). Part-Whole relations and instances are then copied in from the XML. The

instances of each node are populated from all the corresponding XML elements. Thus, under

the assumptions above, learning the XML-structure trees within the true Task Graph G∗
T is

tractable. The efficiency is discussed in the next section and modifications to the structure

learning when these assumptions are relaxed are discussed in Sections 5.4.1 and 5.4.2. But

now we turn our attention to the goal of learning the full Task Graph with semantic relations

included, not just the syntactic XML-structure tree.
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5.3.2 Learning Simple Task Graphs

Our goal is to construct a model of the syntactic and semantic relation in the true task T ∗

with at most a polynomial number of mistakes. The Task Graph Learning Algorithm (TGLA:

Algorithm 29) does so using the Task Graph (GT ) representation by ruling out possible semantic

relations between elements based on traces. TGLA can be viewed as a specific instantiation of

classical machine learning techniques, specifically version-space learning (Mitchell, 1997), and

its compact representation and attention only to the attributes of each successive instance have

parallels in “learning from infinite attributes” (Blum, 1992).

Algorithm 29 Task Graph Learning Algorithm (TGLA) for Simple Tasks

1: The agent starts with M and an initial trace T0
2: Construct S and �S exactly from T0
3: Extract structure of GI and G0 for every service in T0
4: GT =

⋃
j GIj ∪GOj

5: for Every pair of nodes (ni, nj) ∈ GT where ni � nj and every m ∈M do
6: if m(ni, nj) holds for the instances of those nodes then
7: Construct the corresponding edge 〈ni, nj , λm〉
8: end if
9: end for

10: for each episode do
11: The agent receives an initial set of instances GO0

12: Execute each service in S by choosing inputs and making predictions from the semantic
links throughout the task (in GT )

13: if Trace T received then
14: Eliminate all semantic edges in GT refuted by T
15: Update annotations on list nodes (+).
16: end if
17: end for

Since we are temporarily assuming each XML element appears at least once, the first trace

bootstraps all the nodes in the task graph, though + annotations may still need to be refined, and

there are potentially incorrect semantic links. For instance, if the first trace in our flight-booking

domain had a person whose name and home city were both “Austin”, then both the “Home”

and “Name” nodes in the graph would link (through the identity relation) to the “Name” node

in GetVacation . This will be problematic if the next episode starts with Bob from New York.

Should the agent call GetVacation with “Bob” or “New York”? In the mistake-bound setting

we have considered, when such ambiguity exists the agent can just pick one of the possible

choices. If it is wrong, it will receive a trace and be able the eliminate the incorrect link.

Even with more complicated semantics that require super-polynomial computation to make

predictions (see our overview of reasoning with several different variant of M in Section 5.5),

it only takes one trace with contrary information to remove a link.
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Formally, we can exploit the intuition above to bound the number of mistakes. We begin

with a lemma showing that the true task graph G∗
T , is sufficient for guaranteeing no mistakes

will be made.

Lemma 9. Using the true task graph G∗
T to make predictions and choose inputs in the task

learning problem will not produce any mistakes.

Proof. We consider all the possible sources of a mistake. First, an agent could provide the wrong

inputs to a service. But using G∗
T , the agent knows all the valid semantic links between the

input to the service and the currently known objects produced by other services (the inference

is done globally over the links in the task, not just the current service), so the agent will be able

to evaluate each potential input o′ by checking each semantic edge e = 〈n1, nin, λm〉 leading

into the input node nin (by evaluating m(I(n1), o
′). We note that for complex semantics the

reasoning may require super-polynomial computation, as covered in our discussion of selecting

inputs (Section 5.5). However, this does not affect the sample complexity.

Mistakes can also be made when the agent declares what semantic relations will hold between

elements of the task, but since edges in G∗
T appear if and only if they correspond to relations

in R , this cannot happen.

The only other way to make a mistake is to make an incorrect prediction about the struc-

ture of a service, (in this case predicting a + annotation) but the nodes of G∗
T have the true

annotations of the true XML structure graph for all the services, so such a mistake cannot be

made.

Now we will show that Algorithm 1 converges to the true task graph G∗
T in the realizable

setting with no more than a polynomial (in the relevant quantities) number of mistakes. The

argument simply considers the number of changes made to the task graph as the learning

algorithm generalizes it on every mistake (similar in nature to the conjunction learning algorithm

from the previous chapter).

Proposition 7. SimpleTaskLearn makes O(((|GO | + |GI |)|S|)2|M|) mistakes in the simple

web-service task-learning problem when the target semantics are representable.

Proof. The initial Task Graph (TG0) is constructed from the task instance T0 and then refined

in subsequent episodes. TG0 is made up of the XML structure Tree and semantic edges that

are valid with respect to T0.
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There are at most ((|GO |+ |GI |)|S|)) nodes in the entire task graph which means there are

((|GO|+|GI |)|S|)2 possible unlabeled edges, which is then multiplied by the number of potential

labels, |M| (since |M+ 2| = |Λ|) to give us O(((|GO |+ |GI |)|S|)2|M|) possible semantic edges

represented in T0.

In each episode, the current GT is used (as in Lemma 1) to choose the inputs and make

predictions about what relations hold and what structure will be seen in each subsequent service

instance. If multiple edges leading into a node suggest different semantics (for instance if a “min”

and “max” edge both appear between two nodes), one is picked arbitrarily.

For each of the predictions made based on semantic edges 〈n1, n2, λm〉, one of three cases

applies (where we use m(n1, n2) as shorthand for m(I(n1), I(n2))):

1. The prediction is correct, m(n1, n2) is true, and no other edges 〈n1, n2, λm′〉 for m′ 6= m

were proven invalid. No action needs to be taken.

2. The prediction is correct, m(n1, n2) is true, but another edge 〈n1, n2, λm′〉 for m′ 6= m

has been shown to be invalid with respect to the current task instance. The latter edge is

removed from the graph.

3. The prediction is incorrect, m(n1, n2) is false, resulting in a mistake. This edge, and all

other edges 〈n1, n2, λm′〉 for m′ 6= m that are invalid with respect to the subsequent trace

(task instance) are removed from the graph.

The worst case, in terms of the mistake bound, is that all the graph refinements after T0

occur because of case 3 and that only one refinement happens per task instance. However,

because there are at most O((|GO | + |GI |)|S|)
2|M|) edges in GT to begin with, and because

edges are never added back into the graph once they are removed, only O((|GO |+|GI |)|S|)2|M|)

such mistakes can be made.

All that is left now is to bound the number of mistakes made when predicting the +

annotation (other annotations later in the chapter are dealt with similarly). There are

O(|GO | + |GI |)|S|) nodes, and initially all of those that are not lists in T0 are considered

singletons (no annotations). The algorithm can only make mistakes when predicting these can-

not be lists when in fact they turn out to be lists, at which point their annotation is changed to

+ and never changes back. Since there is evidence that these elements can occur as lists, this

must be the true annotation for the node in the service. This annotation learning introduces

O(|GO |+ |GI |)|S|) mistakes.
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In the realizable case, where G∗
T exists, the edges in TG0 but not G∗

T will be eliminated

and all incorrect annotations will be made (a simple inductive argument shows that the same

mistake is never made twice by the agent), so the algorithm converges to G∗
T and makes at most

O(((|GO |+ |GI |)|S|)2|M|+ (|GO|+ |GI |)|S|)) = O(((|GO |+ |GI |)|S|)2|M|) mistakes.

5.4 Full Task Learning

We now relax the earlier restrictions, allowing nested lists, missing elements, and selection

semantics. Each change, leads to increased complexity for TGLA, though the respective bounds

for all of these extensions remain polynomial. To demonstrate these properties, we introduce

a second “Flight Booking” example in Figure 5.3. This example contains several features that

were formerly prohibited, including nested lists, optional elements, and portions of complex

structures “selected” from earlier services. The complexity of learning such Task Graphs is

considered in the following subsections.

5.4.1 Nested Lists

Allowing nested lists (as with “Stop∗” and “Eatery+” in Figure 5.3) requires a change in the

definition ofM. As a matter of notation, we denote the maximum nesting depth, (which is 3 in

Figure 5.3, but at most max (|GO|, |GI |)), as d in subsequent bounds. Once d > 1, it is possible

for sublists to also contain lists (as with the “Eatery+” node). Hence, the semantic links may

become ambiguous (does “member” mean the node contains a single list from the sublist, or is

it a sublist of members from each list?). This is rectified by creating 2 versions of each relation

m ∈ M: list-m and sublist-m. We use these different forms of the relations (as defined below)

to resolve the ambiguity discussed above, though we note that other changes toM are possible

to achieve the same desired effect. list-m(n1, n2) has the following semantics:

• If n1 has an associated list instance, and m(I(n1), I(n2)) is true, then the edge is valid.

• If n1 has an associated list instance and n2 has a sublist instance of elements e1...en then

if ∀im(I(n1), I(ei)) is true, then the edge is valid. This is to indicate, for instance, that

all the single elements in n2, such as carriers for different flights, which are only grouped

because of shared parent structure in the XML, are members of a list from n1 (perhaps a
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list of acceptable carriers given as input) 10.

• If n1 has an associated sublist of lists l1...ln (as in the “Stops∗” node in Figure 5.3), n2

must be instantiated with a corresponding sublist where for each element e1...en, m(li, ei)

is true for the edge to be valid. This produces a “mapped” version of m as with the

“list-count” edge connected to Stops∗ in Figure 5.3.

If none of those cases hold, the edge is not valid. sublist-m has the same behavior in the first two

cases above (but with sublists in n1 instead of lists), but in the third case, when n1 contains a

sublist sl of lists as in the “Stops∗” node in Figure 5.3, n2 must contain an element e such that

m(sl, e) is true. For instance, “sublist-count” applied to the Stops∗ node in Figure 5.3 would

link to a node containing “3”, the number of lists in the sublist. As a second example from

Figure 5.2, list-count on the Price node would only match another node with the sublist [1,1]

(price looks like it has two lists, each of length 1), while sublist-count will only match Price to

a node containing the single instance 2 (the length of the sublist). This is important for being

able to maintain the list of valid relations since lists of size 1 and singletons are essentially

indistinguishable in the XML documents. For simplicity, where ambiguity does not exist in

our examples, we omit this distinction. This extension only increases |M| by a factor of 2 and

therefore does not affect the bound stated earlier. However, the presence of nested lists gives

rise to several difficulties regarding missing elements and instance selection. We now consider

these problems in detail.

5.4.2 Learning with Missing Elements

Sometimes, the results from services can have missing elements. For instance, the non-stop

flight in Figure 5.3 has an empty Stop list (and corresponding sublists). This structure is

captured in XML Structure tree nodes using the ∗ annotation for potentially empty lists and

the ? annotation for potentially missing singletons. We now add these quantifiers to the possible

annotations of the nodes in the task graph GT the same way we utilized the + annotation on

the Flight node in Figure 5.2. As with +, it is possible that WSDL or other documentation

provides this information before the task-learning problem begins, in which case no learning

about these syntactic forms needs to be done. But we consider here the worst case situation

10Similar relations can be considered when n2 contains a list, but since sublists are “artificially” grouped, the
relation mentioned here seems to occur more frequently
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Figure 5.3: A partially learned task graph instance. Only some Selection edges are shown (for
clarity). SameSelection links can exist between all the parts of SmallFlight. Further learning
(on instances with no 0 or 1 stop flights) could eliminate the extra Selection label ([1,T]) shown
for Eatery+.

where all we have is traces. In that full learning setting, these new annotations are adjusted in

the following ways by TGLA given a trace:

• If a node exists with no annotation or with +, but an instance does not appear in the current

trace, change the annotation to ? or ∗, respectively.

• If the trace contains a new node and it is not in GT , create the new node with annotation ?

or ∗, depending on whether the new node should be a list or not.

• If a node has no annotation or is annotated with ? and the current trace contains a list in

this node, change the annotation to + or ∗, respectively.

Note that once a node has been determined to be optional or a list (or both), its annotation

never goes back. We also need to deal with the semantic edges for these nodes, which might exist

between optional nodes and required nodes (the “list-count” connection between NumStops and

Stop). However, if the optional node has never been seen, we cannot test this relation. Therefore,

we make the following adaptations to SimpleTaskLearn:

• When an optional node first appears in a trace, add in all edges to and from this node not

refuted by current instances. This is the same initialization that formerly happened only with

T0.
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• When edge semantics are tested, we still test every edge, even if one end contains no instances.

The underlying semantics of mλ determine the validity (count([], 0) can be true, but max([],

7) will come back false).

Although nodes and edges may now be initialized in episodes other than the first, the number

of potential edges in the task graph as a whole is still O(|S|(|GI | + |GO|)2), so the resulting

mistake bound for TGLA is on the same order as before.

5.4.3 Selection Relations

We now relax assumption from Section 5.3.2 , which required that any time more than one part of

a “whole” structure in the task graph repeated later in the task, the entire structure reappears.

This assumption does not generally hold for common web service tasks. For instance, when

buying a product on Amazon, after finding an offer, the buyer may need to enter the product

and seller ids in a form, but shouldn’t have to copy in the manufacturer name, country of origin,

or all the other non-essential properties of the product in this purchasing form. To model such

“selection” of parts of a compound object, we introduce a new set of labels for semantic edges

based on templates defined below, but first we cover a more concrete example of this situation.

In Figure 5.2, one of the flights from the Flight+ list in FlightLookup appears exactly

copied in the BookFlight output. Because of this, semantic links emanate from the parts of

the Flight+ node and the Flight+ node itself (note the “member” link between Flight+ and

Flight). From these links, a reasoner could determine that the minimum priced flight should be

chosen and that Id should be fed as input to BookFlight . However, in general (and as we have

seen in our Amazon.com and Google experiments), web services do not repeat the same exact

structure between services. More commonly, a few elements of the larger structure appear after

a member is selected from a list, as seen in Figure 5.3, where the “NumStops” node is omitted in

the BookFlight2 output. This omission prevents not only reasoning about how this flight was

selected, but also modeling the connection between all the parts in the output of BookFlight2 .

They are not just a random collection of the members of sublists from FlightLookup2 , they

have a semantic connection based on a shared “whole” instance. These are stops for a single

(and specific) flight. For instance, if the third flight is chosen, then the BookFlight2 output

should certainly not have a StopId of STL, but just having the “member” link does not assert

this relation.
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To address this issue, we introduce derived semantic relations based on two templates de-

fined below. Labeled edges with these semantics will give us a way of predicting user pref-

erences in selection as well as maintaining groupings of instances based on shared ancestry

in the XML document. Our experiments with tasks comprised of services from Amazon

and Google (see Section 5.6) indicate that modeling such groupings is crucial for captur-

ing the true semantics of tasks. Such preferences could be arbitrarily complex, so we focus

here on a restricted subset of queries conforming to simple XPath11 expressions of the form

node[simplePredicate]/node/node/..., indicating the place (from the nodes) and simple reason-

ing (from the predicate, such as “minimum”) of the selection. We do so as a proof of concept,

to show how the sample complexity changes with these expanded semantics. Learning about

more complex preferences is beyond the scope of this work.

The Selection[nanc, m
′, npref ](n1, n2) template encodes a set of binary relations between

two nodes n1 and n2, (like the two Eatery+ nodes in Figure 5.3) where n2 contains a subset

of n1’s instances, and those instances were all parts of a larger “whole” structure above n1

(for example, eatery lists for all the stops on the same flight). Each relation instantiates the

following:

• nanc the “ancestor” of n1 where the “whole” instance was chosen. (from n1 = Eatery+ that’s

either Stop∗, or Flight+.)

• m′, a semantic relation comparing two objects. For our purposes we assume that m′ ∈

M′
⋃
⊤, whereM′ ⊆M and ⊤ is a wild-card relation explained below.

• npref is a child node in the same service graph (GI or GO) as n1 and is reachable from nanc

by “part” edges without traversing another list node.

Intuitively, Selection edges say that n2 contains a subset of the instances in n1 all of which

descend from a single instance of nanc, picked over others in that node because the corresponding

instance at npref satisfies m′(npref). For instance, the Eateries in the BookFlight2 service (n2)

are a subset of those in the Eatery+ node for FlightLookup2 (n1), and were chosen from a

flight (nanc) based on min (m′) NumStops (npref).

For the purposes of our examples we consider M′ = {min, max}. Because these functions

will not be able to model all preferences, the wild-card ⊤ is used to indicate that some selection

11http://www.w3.org/TR/xpath
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of an instance from a node is being done, but we cannot qualify it with the relations in M′.

Overall, the number of possible instantiations of this template is O(|M′||S|d max (|GO|, |GI |)).

If two nodes in the same service graph (like Id and Eatery+ in BookFlight2 ) have Selection

links with m′ 6= ⊤, then their shared ancestry is easily checked from nanc and npref. But, if

m′ = ⊤, one can’t tell simply from the Selection links if, for instance, Id and StopId are

chosen from the same flight instance. To combat this, we introduce a semantic relation that

encodes such shared ancestry: SameSeletion[nanc](n1, n2). We only consider this relation

between nodes n1 and n2 in the same service graph (GI or GO) where both have Selection

links referencing the same node nanc. Considering both templates, we have expanded Λ from

its original (|M|+ 2) to O(|M| + |M′||S|d max (|GO|, |GI |)), leading to the following result.

Proposition 8. Modifying TGLA (Algorithm 1) with the extended semantics described above

makes O(((|GO |+ |GI |)|S|)2(|M||S|d max (|GO|, |GI |)) mistakes in the web-service task learning

problem when the target semantics are representable with a Task Graph.

Proof. The full proof of this Proposition is similar in form to that of Proposition 7, so here

we simply outline the differences between the two. The full task graph has O((|GO | +

|GI |) ∗ |S|)2 nodes. Selection and SameSelection introduce O(M′|S|d max (|GO|, |GI |)) +

O(|S|max (|GI |, |GO|)) = O(M|S|d max (|GO|, |GI |)) edge labels. Each of these edges can be

checked by simply grouping the instances as per the edge parameters (a polynomial time op-

eration). Thus, the edges can be introduced as each node appears and checked for validity

against each trace just as before. Finally, we recall that d = O(max (|GI |, |GO|)), so the sample

complexity is polynomial in the parameters of the task-learning problem.

5.5 Reasoning with Task Graphs

While the bulk of this chapter concerns the problem of learning a Task Graph model from traces

of users performing a task, for an agent to automatically perform the task itself it must be able

to select the correct inputs for each service based on the objects already encountered in the

task. Note this problem of choosing the inputs for each service in the task is also a requirement

of the online learning problem defined earlier (Definition 33), but here we turn our attention to

the complexity of this reasoning process itself given a Task Graph.

We begin by formally defining the Input-Selection problem, where an agent has a known task

T = 〈S,R〉 comprised of services S = [s1...sm] (see Definitions 28 and 26). The agent also has a
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“maximal Task Graph” GT = {N, E, ΛM} corresponding to T (see Definition 29) (maximal in

the sense that every true task relation in R is represented as an edge in GT ). The agent is also

given an initial SS-Graph Instance corresponding to the initial known objects (for example, the

“Person” structure and objects in Figure 5.2). The agent must now, for each service si, provide

an SS-Graph Instance that is a valid instance of GIi, the input graph for si. Validity refers

here not only to the structural and semantic edges within GIi, but since this is a subgraph in

the larger GT , the objects in the instance of GIi must be valid for some instantiation of GT ,

given that the objects for nodes corresponding to prior services (sj ≺ si) are already set. For

instance, when picking an input to the BookFlight service in Figure 5.2, the one-node GI

does not encode any constraints, but the larger GT (even though part of it would not yet be

instantiated) encodes that this input must be a member of the previous service’s “id” list, and

even more, must correspond to the id of the lowest cost flight. Note that the latter reasoning

requires looking forward to a portion of GT that will not be instantiated until after this service

call, but nevertheless encodes important constraints. After each service call, the agent receives

the output of the service (GOi), and can therefore instantiate that part of GT (bind objects to

nodes), so intuitively the problem is one of deciding the inputs to each service in a task, given

a partially instantiated task-graph.

We note that unlike the learning problems considered earlier, this is purely a computational

task, so the worst-case bounds will be in terms of computation time, not sample complexity. The

complexity of the input-selection problem is highly dependent on the mathematical relations

M behind the set of edge labels in the given task graph. Because of this, a full investigation of

the complexity of reasoning given any combination of constructors is not practical. However,

we provide below a snapshot of twoM’s that show how easily the complexity of input selection

can jump from trivial to intractable depending on slight variations in the allowed semantics.

We begin with the simplest semantics, where M = {=}, that is only equality relations

between objects are considered. This corresponds to a task graph where all the semantic edges

enforce equality between the instances corresponding to each node. This leads to the following

simple result:

Proposition 9. With M = {=}, the input-selection problem for a given service si with corre-

sponding input graph GIi comprised of n nodes with maximum degree δ can be solved in O(nδ)

time.

The result is straightforward—for every node nj in GIi, one can simply check every semantic
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edge and see if the connected node in GT is instantiated. If so, this value is object is copied

into nj . If not, then another link is checked. If no links lead to instantiated nodes, then an

arbitrary object can be used because there are no constraints on previous services (since we

assume GT fully captures task T and we only need to make sure the relationships specified by

T , not any arbitrary relationships that otherwise hold in the instance, are satisfied). Following

longer paths of equality links is not necessary because of the transitivity of equality—any longer

paths that lead to an instantiated node nk means there will also be an edge between nj and nk

because of our “maximal task graph” assumption 12. However, as we have seen, task semantics

usually require far stronger relations than equality, so we now consider a different version ofM

where the input-selection problem becomes intractable.

Proposition 10. The input-selection problem withM = {member, sum, min, count, =} is NP-

Hard.

Proof. The reduction is from the well-known (and NP-Complete) Knapsack problem (Cormen

et al., 2001), where, given a number of items, each with a value vi and cost wi, one must

determine if there is a collection of these items with value greater than or equal to V ∗ that

does not exceed a total cost W ∗. A task graph that encodes this exact problem (and could

be constructed from an arbitrary instance of the knapsack problem) is shown in Figure 5.4.

The member links from the instantiated output nodes to the input of the service encode the

selection of items while the min, count, and sum relations in the output of the Knapsack service

encode the value and cost constraints. The chosen items are stored in a sublist to facilitate the

mapping of the member relation (each element in the sublist must be a member of the original

list). A dummy node is used as an extra part to create the sublist effect.

We provide the preceding results only to give examples in the general landscape and show

that the inference required to use a learned task graph to perform a task may require super-

polynomial computation, depending on the complexity of the semantics. This is actually similar

to the results in the earlier chapters, where action schemas could be learned efficiently but

planning with them involved super-polynomial computation (even STRIPS planning is P-Space

complete (Bylander, 1994)).

12In this case this assumption can actually be relaxed because even with a minimum number of equality edges
the maximal graph can be reconstructed in (amortized) constant time using a unification-style algorithm.
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5.6 Examples with Real Services

We now discuss several experiments where TGLA was applied to tasks comprised of publicly

available web services. We begin with tasks where the services are all from the same provider.

We then discuss a task where services from Google and Amazon are combined and show the

system is able to learn its own homogeneous task graph despite the heterogeneous origins of

the services. Summary results from the experiments, including the maximum number of traces

needed, are reported in Table 5.6. The accompanying graph charts the number of services

where mistakes occurred for seven episodes in the two most complex tasks we studied. The

results are averaged over 100 random orderings of the collected traces. While the total num-

ber of trace requests was generally the same in these runs, the quick descent of the curves

indicates many instances of both tasks and many service calls within these instances can be

completed correctly before all the nuances are learned. The full collection of traces are available

at (http://www.research.rutgers.edu/t̃homaswa/traces.tar.gz).

5.6.1 Examples with Single Providers

Amazon.com offers an extensive web-service library (http://aws.amazon.com/aws), providing

access to its inventory, customer wish-lists, and shopping carts. These services have been studied
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in the Web Service Composition (planning) community, where plans involving multiple Amazon

services were dynamically constructed (Marconi et al., 2007). However, this automation relied

on hand-crafted descriptions of each service. With an eye towards using our learned descriptions

instead, we now present some results in the AWS testbed.

In the “AlbumBuy” experiment, an agent was given an artist and album title (tagged as

“In1” and “In2”, respectively) as well as a search index (“music”) and a quantity to buy. The

agent then had to find the corresponding ASIN (Item Id) and use it to create a shopping

cart with the required number of copies of that item in it. The first trace provided to our

agent involved a self-titled album (Title=“Warren Zevon”, Album=“Warren Zevon”). This

ambiguity resulted in the agent linking both In1 and In2 to both the “Title” and “Artist”

inputs of ItemSearch. In the next episode (In1=“Beatles”, In2=“Abbey Road”), the agent

chose to send these parameters to ItemSearch backwards (for example, “Beatles” to Album),

garnering no results. The agent then received a trace and deduced the correct identity links.

Other semantic relations mined in this task included (1) When ItemSearch returned multiple

items (it matches substrings on titles), the one with the title matching In2 (and Title) should be

added to the cart and (2) the quantity passed to CreateCart should be linked to the requested

quantity in the initial information—a non-trivial relationship since most of the traces requested

only one album copy and many lists returned had a length of 1. 13 The former behavior was

learned with the help of SameSelection relations, which linked the Title and ASIN of the item

put in the cart. Since the Title was also linked back to the original input, the agent could infer

which of the returned items to actually buy (by choosing the ASIN grouped with the matching

title). Note that these behaviors are exactly right and the task would not be correctly executed

without this knowledge. The full GT for this task is illustrated in Figure 5.5.

We also experimented with tasks where agents learned about services for looking through

wish-lists, searching for items (sometimes from earlier wish list searches), creating carts, and

adding more items to a cart. Often the agents inferred rules for choosing items, such as buying

minimum price items. Since exact structures are rarely copied, these rules were represented

with the Selection and SameSelection relations. The mined graphs usually contain dozens of

nodes, and typically fewer than 5 traces are needed before the learner can correctly execute

tasks on arbitrary inputs.

13In other tasks, such links can be helpful. For instance, we ran another experiment where the quantity was
not specified but traces showed it to always be one and the agent correctly learned this information was based
on the “Count” of the ASINs passed to CreateCart.
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In addition to the Amazon experiments, we also trained the system on tasks involving ser-

vices from the Google Data API (http://code.google.com/apis/gdata/). Services in this library

allow users programmatic access and editing capabilities to their email, contacts, spreadsheets,

calendars, and other content. In this setting, we constructed a task for users filling out a form

to receive reimbursements for travel on a per diem basis. Specifically, the traces tracked users

looking up a conference, stored either as a (potentially multi-day) appointment or a series of

appointments, in their Google Calendar. When multiple appointments were used to encode a

multi-day trip, the system identified the min/max dates (selected from a sublist) as the begin-

ning/end of the conference. The “where” field for the appointment was then used to look up

the per diem information from a Google Spreadsheet fashioned from a real US government per

diem spreadsheet 14, and then a form was updated with the traveler’s name, dates, and per

diem information. This task involved several intricate relationships that needed to be learned.

For instance, some of the per diem rates were listed seasonally (for example, searching for the

rate in Las Vegas returns a list of rates and dates, so the system had to pick the correct rate

corresponding to the trip dates). With our selection templates and adding DateBefore and

DateAfter relations to M, we were able to capture this behavior. Table 5.6 reports the maxi-

mum number of traces needed in our experiments and the number of nodes in the graph. The

accompanying graph charts the number of services where prediction mistakes were made per

14http://www.gsa.gov/graphics/ogp/FY09DownloadablePerDiemRates.xls
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Max
Experiment Nodes Services Traces

Needed
Flight Booking 25 4 3

Amazon Album Buy 56 3 3
Google Per-Diem 147 4 5

Birthday Gift 231 6 7

Figure 5.6: Left : Sample results for learning task graphs from several examples discussed in this
chapter. Right : Number of services where mistakes were made (averaged over 100 orderings of
task instances).

episode, averaged over 100 orderings of the task instances. Note many of the task instances can

be executed without error even before all the nuances of the task are learned, and often only

one additional trace is needed after the third episode.

We also trained the system on similar tasks where different information had to be entered

in the final form. For instance, we experimented using traces where appointments were only

encoded using multiple single-day appointments (rather than the mixed approach above) and

the length of the trip had to be entered in the final form, which the system correctly determined

to be the count of the number of calendar entries. These examples demonstrate the flexibility

of our approach—by learning task-dependent semantics of the services, it can adapt to slightly

different uses of the services.

5.6.2 Services with Different Providers

One of the goals of the service-oriented computing movement is to compose tasks with service

calls from different providers. Unfortunately, non-uniformity in web-service descriptions has

made this goal quite difficult from a semantic perspective. There has been work on learning uni-

fied service descriptions from heterogeneous providers in the ontology matching (Liang & Lam,

2008), semantic annotation (Hess & Kushmerick, 2003), and even the machine-learning (Klusch

et al., 2009) communities. However, ontology matching requires semantic service descriptions

(which are often not available, for instance Google and Amazon do not provide these), and

the annotation techniques require an existing domain ontology (uncommon). Furthermore,

the annotation techniques often try to mine universal descriptions from meta-data (web forms,

WSDL files, etc.), rather than instances. In contrast, we have taken a more traditional machine-

learning approach: because we are learning our own semantics based on traces, there is no need

to reconcile mismatched or even missing descriptions.
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To illustrate this point, we performed an experiment using services from both Google and

Amazon. The task involved using the Google Calendar service to find all the birthdays of a

user’s colleagues within a given date range, then using the Google Contacts service to look up

the email address of the person with the earliest birthday. This email address was then sent

to the Amazon ListSearch service to find the user’s Wish List. Then, the Amazon ItemLookup

and CartCreate services were used to purchase the cheapest item on that list. Multiple traces

were needed to learn certain finer points of this behavior, such as picking the earliest birthday,

buying the cheapest gift, and eliminating erroneous date relations (such as relations based on

publication dates). The system’s success in inferring the semantic links in the task, even between

multiple providers, shows that heterogeneity is not as vexing when learning from data, rather

than analyzing sparse and potentially scarce description files. Also, because the Google Contacts

service does not yet support full text indexing (instead returning a list of contacts), the selection

templates were necessary for learning the correct behavior. Table 5.6 and the accompanying

graph illustrate the number of services where mistakes are made on each episode. Notice that

this task is more complex than the earlier Per-diem task, but only takes a few more traces

to learn, with half the services usually learned sufficiently for the experimental task instances

after 3 traces. Also, many runs required fewer than the maximum (7) number of traces as

more informative traces were encountered earlier. Given the complexity of the task, the small

number of traces needed is a strong justification of this apprenticeship learning framework and

our learning algorithm.

5.7 Related Work

Several other works in AI, machine learning, and in the web-service community have considered

problems related to work in this chapter. A previous application (Carman & Knoblock, 2007) of

Inductive Logic Programming (ILP) showed promise in learning web-service descriptions from

examples, based on known descriptions of other services. Unlike their approach, which relied

on heuristic search and “sufficient” data, we have focussed on algorithms that can guarantee

high performance with a limited amount of data. Our earlier work (Walsh & Littman, 2008),

with goals more akin to ours, performed a sample complexity analysis of learning planning

operator descriptions in a restricted language, but did not explicitly consider relations between

operators, and the operators had extremely limited scope. The Task Graph representation itself

bears resemblance to the structure from Simultaneous Learning and Filtering (SLAF) (Shahaf,
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2007). However, unlike SLAFs our task graphs cannot represent arbitrary boolean formulas,

but do have positive sample efficiency results.

A separate track of research focusses on creating web-service descriptions for heterogeneous

sources based on a central ontology. This thread includes acquiring descriptions using text-

mining algorithms on the service’s documentation (Hess & Kushmerick, 2003), and the use of

ontology merging techniques applied to full (but not directly compatible) semantic descriptions

of services (Liang & Lam, 2008; Huang et al., 2006). However, both require an existing domain

ontology and large amounts of service documentation, and even in more adaptive variations

that use service instances (Lerman et al., 2006; Klusch et al., 2009), the focus on universal

descriptions and semantic annotation differs from our goal of mining task specific relations

between concepts directly from relatively (compared to full semantic descriptions) easy to find

collections of XML documents used to communicate to and from the services.

Another area that future iterations of this work can draw upon is the field of workflow

induction (also known as “process mining”) (see van der Aalst & Weijters (2004)). This field

is concerned with inducing models of tasks (but usually only the sequence of calls S , not the

dataflow) that contain loops, conditions, and concurrency, usually representing the task with

a Petri Net (Murata, 1989). Learning such powerful structures is inherently intractable (Petri

Nets can represent Context Free Grammars), and even restricting the form of these nets usually

leads to super polynomial learning times (van der Aalst et al., 2004). However, with certain

restrictions systems from the field of workflow induction (van der Aalst & Weijters, 2004) could

be used to learn these more complex versions of S .

More recent work on Workflow Induction from Traces (WIT) (Yaman et al., 2009) has

moved from just learning the sequence of calls in a workflow (the goal of the previous 2 works)

to also modeling the dataflow. These dual goals are more in line with our own, though in

this chapter we have focused almost exclusively on the latter. The WIT algorithm considers

a larger class of workflows (so-called “witty workflows”) than our work in terms of the service

calls (S ) and employs powerful grammar induction algorithms to extract structures like loops

and concurrency. However, when modeling the dataflow (R ), WIT considers only equality (so

M = {=}), so in that sense they consider a more restricted language. WIT is both a sound and

complete algorithm for learning the more complicated structure (as well as the more restricted

dataflow). Our work has made harsher restrictions to the shape of the workflow to ensure that

only a small number of traces (rather than just a countable amount) are needed to learn the
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task. However, we have considered a far more expressive language for modeling the dataflow

R . Thus, there seems to be a promising future in combining these two algorithms using the

grammar induction (and some heuristics) from WIT to learn complex service call patterns, with

TGLA used to learn a semantically rich dataflow.

5.8 Linking Back to Action Schemas

We now briefly discuss ways to connect the Task Graph representation to the action schemas

used in earlier chapters. The goal of such an effort would be to mine operator descriptions of

individual services from the graph by treating the output nodes as literals added to the current

state and the links to previous services as pre-conditions for executing the service. A number

of planners have been developed in the web-service composition community (Hoffmann et al.,

2007; Liu et al., 2007; Marconi et al., 2007) 15 that could be used with these mined operator

descriptions since they generally cover richer languages than our own.

In the literature, there is no standard language for web-service operators, though many

proposals exist (OWL-S16, WSDL-S17, etc.). Almost all share the idea of input and output pa-

rameters for the service, and pre/post-conditions involving them. These common structures can

be derived from a task graph by treating the output nodes as literals added to the current state

and the links to previous services as pre-conditions for executing the service. Several methods

have been proposed for encoding the creation of new objects in action schemas, including the

use of restricting an operator’s effect-scope to only a set of new objects (Hoffmann et al., 2007),

as well as using exemplars (Liu et al., 2007), or general functions of an action’s parameters

(Walsh & Littman, 2008) to represent new objects. This last approach seems to be the best fit

for task graphs as many of the semantic relations can be represented by less generic functions

(such as using the function “min” in Add: CheapestPrice(min(PriceList))). Also, because task

graphs encode relations between service outputs and objects from previous services that may

not be in the service’s parameter list, deictic references (Pasula et al., 2007) may be required

to expand the scope of operators.

Since GT is built from a single task, schemas built using the guidelines above (such as

the one in Table 5.1) may be heavily biased to the semantics of a single task, but they could

15Interestingly, the last planner listed considered planning with operators derived (by hand) from Amazon
Web-Service descriptions, which served as our real world testbed, so this may be a natural vein for future work.

16http://www.w3.org/Submission/OWL-S/

17http://www.w3.org/Submission/WSDL-S/



174

FlightLookup(City1, City2, Start, End)
PRE: Equal(City1, Home), Equal(City2, DestCity)...
ADD:Result(X), NumRes(Y), Flight(Z), Part(Z, X), Part(Y, X), ListCount(Y, Z)...

Table 5.1: A partial action schema from the FlightLookup service from Figure 5.2

potentially be refined using other tasks. That is, several GT ’s can be merged by dropping edges

that do not appear in all the graphs. Links between nodes within a service (such as the “Count”

relationship between NumRes and Flight+) can easily be resolved in the unified version, but

links to nodes outside of the service (for example, pre-conditions based on the links back, as

in the FlightLookup operator in Table 5.1) are more complicated as they require either a

disjunction or more intimate knowledge of the types of each node. This is where the connection

between input/output nodes and ontologies would be helpful, and hence the combination of this

work with the earlier-mentioned work on learning of service parameter classification, or semi-

automatic schema merging between the XML tags in examples and ontologies, as considered

by Patil et al. (2004) seems advisable. But notice that even without these inter-service links,

service descriptions with limited semantic scope (similar to the scoping restrictions of STRIPS)

can be achieved. Thus, while the representations used in this chapter are certainly different

and more powerful than the basic STRIPS action schemas we have considered earlier, a lossy

translation is possible. In the next chapter, we continue our investigation of more powerful

relational languages, this time more recognizably within the action-schema framework used in

Chapters 3 and 4.
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Chapter 6

Language Extensions, Planning, and Concluding Remarks

This chapter covers a number of extensions and modifications of the representations and algo-

rithms described in this work.1 Specifically, we show that another relational language used in

the RL community is covered by the results in this paper regarding action schema learning.

We futher show how to represent more powerful action schemas composed with Description

Logics, moving us slightly closer to the expressiveness of the Situation Calculus. Finally, we

will discuss a modification to our core learning algorithm that replaces Value Iteration with a

more computationally efficient sample-based planner.

6.1 OOMDPs as Action Schemas

We now discuss a language from related work on reinforcement learning with generalized mod-

els, Object-Oriented MDPs (OOMDPs) (Diuk et al., 2008). We show that this language is

describable using the relational action schemas introduced in Chapter 3 and that the results in

most of the learning cases from the online and apprenticeship settings apply to this different

setting.

6.1.1 Object Oriented MDPs

Object Oriented MDPs (Diuk et al., 2008) are a special type of relational MDP that are used

to describe environments where the dynamics are decomposable based on object attributes and

certain relational predicates are defined over these objects and attributes. This formulation

has proven successful in modeling large MDPs, including factored domains from the literature

and the video game “Pitfall!” (both results can be seen in Diuk et al. (2008)). More formally,

the following defines an OOMDP (using notation intentionally similar to our action schema

1The description-logic section of this chapter developed from discussions with Alex Borgida. Parts of the
approximate-planning section appeared in joint work with Sergiu Goschin and Michael Littman (Walsh et al.,
2010a).
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MoveRight(Obj,Loc): Reward = −1
c1: ClearToRight(Loc) ∧ GoodFooting(Obj, Loc)
ω11 : Obj1.x = min(2 +Obj1.x, 5) (0.8)
ω11 : Obj1.x = min(1 +Obj1.x, 5) (0.1)
ω12 : Obj1.x = Obj1.x (0.1)
c2: ClearToRight(Loc) ∧ WetFloor(Obj, Loc) ∧ Freezing(Loc)
ω21 : Obj1.x = min(1 +Obj1.x, 5) (0.7)
ω22 : Obj1.x = Obj1.x (0.3)
c3: WallToRight(Loc)
ω3 : Obj1.x = Obj1.x (1.0)

Table 6.1: An OOMDP operator for walking right with a limit of x = 5.

definitions):

Definition 35. An Object Oriented MDP (OOMDP) 〈O, Fatt, P,A, R, γ, ST 〉 is an MDP where

the states are comprised of objects o ∈ O, each with attribute-values f ∈ Fatt (for example, the

location of the object as an integer). In every state, a set of predicates Ps ⊆ P over the objects

are true, but each of these is defined by the attribute values of the objects in that predicate

(such as On(W, X) ← W.y = X.Y + 1). The transition function is decomposed schematically

(in A) with conjunctive conditions based on the predicates and effects describing changes in the

attribute values. The rest of the parameters follow the standard episodic MDP definition.

An example of a stochastic OOMDP operator appears in Table 6.1. Notice that attribute

changes are described with mathematical functions (like adding 1 or 2 to the x coordinate

of the object in the example). These general changes to a numerical attribute are not easily

captured in STRIPS without introducing logical functions or greatly expanding the number

of conditions considered. However, like our earlier STRIPS domains, there can be ambiguity

in OOMDPs when determining what effect caused a given transition. For instance, an agent

with GoodFooting and without a wall to its right (condition c1) in Table 6.1, could see its x

coordinate changing from 4 to 5, but cannot tell which of the first two effects occurred, though

it knows the third effect did not happen. Previous work (Diuk et al., 2008) presented an efficient

algorithm for KWIK-learning deterministic effects. Below, we show that stochastic OOMDP

parameters corresponding to the learning problems described earlier (CD-Learning, etc.) can

be efficiently learned under the conditions described for each specific problem.

6.1.2 Connecting OOMDPs to Schema Terminology

Based on the correspondence between our action-schema definitions and the OOMDP language,

we can state the following about OOMDPs.
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Remark 1. The theoretical results reported for general (not STRIPS-specific) action schema

learning in the autonomous and apprenticeship cases are all applicable to domains encoded as

OOMDPs as long as the actions have limited scope (for example, if only objects in an action’s

parameter list can have their attributes and predicates appear in the conditions and effects). Fur-

thermore, some of the theorems stated for Effect learning (ED-Learning) for Stochastic STRIPS

have analogues in the OOMDP case.

Proof. First we show that any OOMDP fits in the action schema formalism. All OOMDP

operators are by definition, describable by a set of objects O with attributes o.ai for each

object, and a set of defined predicates P as above. The parameterized actions each have a set

of conditions Ca (conjunctions over the predicates), and each of those induces a distribution

over effects (Ωa
i , Πa

i ) where each effect ωj ∈ Ωa
i is a mathematical operation performed on the

attribute values of some objects. Extensions of the learning algorithms for dealing with these

changes to these numeric attributes are discussed below.

The translation from here to the stochastic conditional action-schema formalism is fairly

straightforward. The set of objects maps directly for the domain instance, and the set of

literals is made up of all the possible attribute/value pairings as well as all the predicates.

Ca, Ωa, and Πa all map directly from there. Thus any OOMDP environment can be written as

an action schema as defined in Chapter 3.

As for the theoretical results in Chapter 3 and 4, most of the theorems are stated as to

hold for any action schema with enumerable conjunctive conditions (which OOMDPs in the

autonomous case can be assumed to have) or just conjunctive conditions in the apprenticeship

case, which again holds for OOMDPs. Likewise, the effect distribution learning for OOMDPs

(D-Learning) can be done using KWIK-LR since the decomposed transition function is virtually

identical (with only attribute mappings and defined predicates replacing the Add and Delete

lists).

The only algorithms that need to change are those that learn the effects (ED-Learning and

CED-Learning). In Stochastic STRIPS, these algorithms all used either the DetEffectLearn

algorithm (Algorithm 19) or KWIK-CorEffect (Algorithm 23 to learn Add and Delete lists.

OOMDPs do not have Add and Delete lists, instead they have mathematical functions for each

attribute (such as x+ = 2 or y =
√

(7) ∗ z). Learning in the space of all possible possible

functions is intractable, but in the case where the number of possible effects in the hypothesis

space is polynomial in the domain parameters (for instance if we know that all actions add 1,
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2, or 0 to the x or y attributes), we can (case 1) enumerate the possible effects or (case 2)

the possible effects for each literal, and use the meteorologist architecture or correlated effect

learning, respectively. In the former case, this is done by pairing every possible condition and

effect (or effect set) together, each as one of the “meteorologists”. In the latter case, instead

of intermediate nodes like X+, we will have intermediate nodes for each possible effect on that

literal (like X +2), and intermediate effects that do not happen will just end up with probability

0.

6.2 Learning Description Logic Operators

We now consider a class of action schemas based on Description Logics (DLs) (Baader et al.,

2003). These languages use concepts to describe conditions or pre-conditions, and their expres-

sive power lies between the basic relational representations we have used in this thesis (STRIPS

rules) and full first-order logic descriptions (like the Situation Calculus). Planning with oper-

ators in this family has been the focus of a PhD dissertation (Milicic, 2008), but thus far no

work has been done on the learning of these operators from data. We study this expansion in

schema description expressiveness for a number of reasons. First, by incorporating constructors

like universal role restrictions2 (∀ hasPet.Dog) and cardinality constraints (atLeast 3 hasPet),

we can compactly represent concepts beyond those considered in our earlier studies (such as a

pre-condition that says a person must have at least 3 pets, and all her pets need to be dogs).

Using DLs also provides a natural way to incorporate background knowledge (such as prim-

itive concept hierarchies) into action schema learning. Finally, using DL representations and

operations, which are more “object centered”, allows us to naturally expand the scope of the

conditions of our operators beyond an action’s parameter list.

Because we are concerned with learning complex pre-conditions, and we have seen the diffi-

culty of learning even moderately sized conjunctions in the online case, we will investigate DL

action schema learning in the apprenticeship paradigm. Thus, we will ultimately be concerned

with the mistake bound learnability of these schemas. We will also consider the computational

cost of the learning process, as considerably more computation will go into maintaining valid

hypotheses than in the deterministic STRIPS case, where we just added or removed a few

literals from a set of lists.

2Throughout this section we will use standard Description Logic notation with individuals in all capital letters
(instead of boldface), and roles starting with lowercase letters and primitive concepts with uppercase. So were
previously we might have said On(X,Y), Block(Y) we now have X: ∀ on.Block
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Language Constructors Example
AL ⊓,⊤, ∀ Person ⊓ (∀ hasPet.Dog)
ALN ⊓,⊤, ∀,≥,≤ Person ⊓ (∀ hasPet.Dog) ⊓ (≥ 2 hasPet)
EL ⊓,⊤, ∃ Person ⊓ (∃ hasPet.Dog)
ALC ⊓,⊤, ∀,¬ Person ⊓ ¬ (∀ hasPet.Dog)

Table 6.2: Some popular DL constructors

6.2.1 Description Logic Terminology

We begin by describing some basic DL terminology. Description logic concepts are built using a

set of constructors. Table 6.2 lists a few common languages/constructors with example concepts.

Different combinations of these constructors form different languages, which are referred to

using acronyms formed by the symbols for each constructor (see Table 6.2). For instance, the

language ALN supports conjunction, universal quantification, and cardinality restrictions ((∀

hasPet.Dog) ⊓ (atLeast 2 hasPet)).

Description logic systems separate axiomatic background knowledge (Dachshund is sub-

sumed by (⊑) Dog) from facts that are actually true in the current state of the world (like

FIDO:Dachshund). Background information is collected in a T-Box (terminology), which can

be thought of as a set of axioms that we can check for consistency or merge with other T-Boxes.

Facts about the current state of the domain, however, are collected in an A-Box, (assertions),

which is normally interpreted using the open world assumption to reflect a set of possible worlds.

For instance, if an Abox states BOB : ∀hasPet.Dog, BOB may have no dogs at all, or many

different dogs. While it is tempting for us to interpret states as particular Aboxes, doing so will

make learning in the apprenticeship (or just about any other) paradigm very difficult because

an empty Abox can always be used to describe a particular state (since open world semantics

allow an empty Abox to cover any possible state). Without restrictions on these Aboxes, valid

traces could consist of essentially nothing but action invocations, leading to a POMDP learning

problem outside of the scope of this work (but considered by others (Yang et al., 2007; Zhuo

et al., 2009)).

To avoid this partial observability, we will instead make use of a more restricted description

of states as a D-Box (database) D (Franconi et al., 2009). DBox facts are presented in terms

of ground atoms such as hasPet(BOB,FIDO) and have a closed-world semantics—like STRIPS

states. Therefore cardinality constraints and universal/existential restrictions that apply to

any individual can be computed directly from the atomic facts in the DBox. By virtue of
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this, DBoxes have closed world semantics—like STRIPS states, any fact that is not stated or

derivable from the DBox can be assumed to be false (¬(D ⊢ X)→ ¬X).

6.2.2 Some Basic DL Operations

The fundamental operations/judgements in DLs are subsumption (C ⊑ D), which compares

two concepts in terms of generality, and concept membership (b ∈ C). The latter is determined

with respect to an ABox/DBox which provides information about the individual b. (See Baader

et al. (2003) for details.)

We now describe two additional DL operators that will be instrumental for pre-condition

learning with DLs. The first operation we will need is Most Specific Concept (MSC), which maps

an object in a DBox to a concept in the given DL. For instance, given a DBox containing objects

BOB and FIDO, the facts Man(BOB),Dog(FIDO), hasPet(BOB, FIDO), BOB: ∀ hasPet.Dog,

etc.), using the language AL , MSC would produce the following concept for BOB: Man ⊓ ∀

hasPet.Dog. By definition, MSC(b,D1) for D-Box D1 is guaranteed to be subsumed by any

concept C such that b ∈ C holds in D1. By convention, MSC(b,D1) is abbreviated to MSC(b)

whenever the DBox D1 is understood from the context. In some languages, a finite MSC may not

actually exist. For instance, if the relation obeys(FIDO,BOB) was also true, an infinitely long

chain ∀textithasPet.∀obeys.∀hasPet... would be needed to represent the most specific concept

covering Bob. However, often a variant of MSC that only looks at relational links of length

no more than k (MSCk) is often computable (Baader & Küsters, 2006). MSCk(b, D1) is

guaranteed, by definition, to be subsumed by any concept C of quantifier depth at most k such

that b ∈ C in D1. We will make use of this operation in subsequent sections to create concepts

describing relevant parts of each ground state we see during learning.

While MSC will allow us to derive concepts from DBox “states”, we will also need an

operation to produce a generalized concept that covers two existing concepts. This is necessary,

for instance, for realizing (in the presence of a background ontology) that the concept Dog

might be the pre-condition for an action that executed correctly with a parameter that in one

call was a Dachshund, and in another call was a Terrier. The DL operator for computing such

generalized concepts is Least Common Subsumer (LCS). Specifically, LCS(C, D) = L if for

every concept F such that both C ⊑ F and D ⊑ F we are guaranteed L ⊑ F . That is, LCS

computes a concept that subsumes the two input concepts, but does not subsume any other

concept that subsumes both—the most specific generalization. Again, this operation has been
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buyCar(X1, X2): reward = +1
PRE: X1: Adult ⊓ atLeast(2, hasCreditCard) ⊓ ∀ hasCreditCard.ValidCard

X2: Car

ADD: OwnsCar(X1, X2)
DEL:

Table 6.3: A very simple DL Action Schema in ALN for claiming an award for being a good
parent and dog owner. A more complex example (where the pre-conditions require relations
between the parameters that have to hold) appears in Table 6.2.3.

widely studied in many DL languages (Baader et al., 2003).

6.2.3 Learning Pre-conditions with Description Logics

We will now show how to use the operators above to construct an algorithm for learning pre-

conditions in DL Action Schemas (DL Schemas hereafter) An example DL Schema in the lan-

guage ALN appears in Table 6.3. While we deal with a richer example (involving relations

specifically between the parameters) later, the schema in Table 6.3 has examples of each of

the constructors in ALN in the pre-conditions. DL Schemas fit into the family of relational

action schemas defined earlier. That is, whereas STRIPS schemas had conjunctions over sim-

ple relations for pre-conditions, now they are expressed ABox-style assertions about the action

parameter individuals, using a DL language to describe concepts and roles relating individu-

als. However, the effects However, the effects are still just Add and Delete lists of primitive

literals (essentially STRIPS effects), because reasoning with the open-world style effects that

general DL-constructors introduce requires very delicate semantics to avoid undecidability when

planning with these operators (Milicic, 2008)3. DL Schemas have been studied in prior work

(Milicic, 2008) where it has been shown that increasing the complexity of the pre-condition

language from STRIPS (P-Space Complete planning) towards First Order Logic (undecidable),

has a very dramatic effect on the tractability. We will now see that the change in languages

affects the learning process as well.

Figure 6.1 illustrates an algorithmic template (DL-Pre) for learning DL schema pre-

conditions in the apprenticeship paradigm. The algorithm utilizes the MSC and LCS operations

described above, so we assume these operators exist for the language used in the schema, or at

least that LCSk and MSCk do. The algorithm takes each successive DBox instance st from a

trace T and determines if its current hypothesis describes this instance. (It does so by replacing

3For example, what does it mean to Add (≥ 2 hasPet)? This statement may have an infinite number of
possible groundings.
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Figure 6.1: DL-Pre: A general DL learning template for learning pre-conditions from examples
of action executions. This can be used as the subroutine for pre-conditional CD-Learning in
the apprenticeship setting just as MB-Con was for traditional STRIPS.

the schema parameters with the actual parameters, and checking whether the pre-condition

assertions hold in the Dbox st). If it does, the current hypothesis remains the same. If not, we

characterize the actual parameter instances by computing their MSC and then find the LCS

of this concept with the current hypothesis to compute a condition that covers all previously

seen cases. Notice that while the input states are (grounded) DBox instances, the pre-condition

hypotheses are modeled conceptually, that is they are ABoxes.

Put simply, the algorithm always uses the most specific hypothesis that covers the states

where previous successful action invocations have taken place. This is essentially a DL-centered

application of the specific-to-general learning or least general generalization that is popular in

the ILP community where it has yielded several important sample complexity bounds (Cohen,

1995a; Horváth & Turán, 2001). Notice that background ontologies (T-Boxes) can be incor-

porated into this algorithm as part of the LCS and MCS computation and can also be used

to help compute the MSC itself (recursive T-boxes add some leverage for certain languages).

This allows us to, for instance, learn that if an action walk(H, D) has its pre-conditions sat-

isfied when (H=BOB, D=FIDO) with Man(BOB) and Dachsund(FIDO), and also works for

(NANCY, REX) with Woman(NANCY) and Terrier(REX), then the pre-conditions might be

Person(H) and Dog(D). Of course, the complexity of the learning algorithm grows both in terms

of samples needed and computation required due to these more expressive constructs.

DL-Pre can be used in place of the MB-Con subroutine for CD-Learning in Algorithm 27

in the apprenticeship case. Notice that there are many similarities between MB-Con as used to

learn STRIPS pre-conditions and DL-Pre used to learn DL-Schema pre-conditions. For instance,

both move from specific to general concepts, and both work exclusively from positive examples.

When viewed in this manner, one can see the deletion of literals from the pre-condition list done

by MB-Con as a simple version of LCS in a language that only allows primitive relations and
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conjunctions.

The use of MSC (or MSCk) does not have a specific analogue in MB-Con because the rela-

tional descriptions are provided simply as a list in STRIPS, rather than as the more individual-

centered DL concepts. However, special care needs to be taken to preserve relationships between

action parameters if the given DL does not support nominals or the same-as constructor. For

instance, in AL , the STRIPS-style pre-condition relationship On(X, FROM) of pickup, from

X’s perspective would just be X:∀ on.Block, with no indication that it is specifically on the

block referenced in the other parameter, FROM , of pickup.

We resolve this by relabeling in each trace instance all the parameter individuals with uni-

form special names, and introducing corresponding special primitive concept names #X1...#Xm

to represent the property of “being parameter i”. This representation can be seen in Table 6.2.3

where the constraint X1: ∀ hasPet.#X2 has the intended meaning that the single pet of X1

is the same individual as the X2 parameter. This use of primitive concepts to represent nom-

inals (which the variables in our case are analogous to) resembles the non-standard semantics

nominals in practical DL systems like CLASSIC (Borgida et al., 1989) and while it does not

provide the powerful reasoning associated with nominals or same-as, it also does not require

their considerable computational (and in our case sample complexity) overhead. That is, any

MSC operation for a language that can handle primitive concepts can use this approach to

encode restrictions between parameters, such as the relationship between X2 (a dog) and X1

(its owner) in Table 6.2.3. Unfortunately, we note that in some DLs lacking existential restric-

tions (like AL or ALN ), this will only capture functional relations between parameters. For

instance, if a block X1 would need to be on two different blocks, the ∀On(X2) concept would

be dropped from X1’s description.

General Theoretical Properties

The sample complexity of using DL-Pre in the CD-Learning setting, will be highly language

dependent, as well as depending on the nature of the background information (anything from

simple concept hierarchies to cyclic T-boxes). However, in languages without such background

theories, an upper bound on the mistake bound of DL-Pre can be determined from the length of

the longest path in the subsumption lattice, a connection that has been noted in rule learning

as well (Khardon & Arias, 2006).

The other measure we are concerned with is computational complexity. This has two sources
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claimAward(X1, X2): reward = +1
PRE: X1: Adult ⊓ #X1 ⊓ atLeast(1, hasChild) ⊓ ∀ hasChildren.NotAllergic ⊓ atMost(1, hasPet)
⊓ ∀ hasPet.#X2 ⊓ ...
X2: Dog ⊓ ∀ hasCollar.Fancy ...
ADD: AwardWinner(X1)
DEL:

Table 6.4: A partial (some pre-conditions omitted for readability) DL Action Schema in ALN
for claiming an award for being a good parent and dog owner. A full tree representation of the
pre-conditions appears in Figure 6.2.
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Figure 6.2: A concept tree in ALN for the pre-conditions of the actions in Table 6.2.3.

in the overall apprenticeship architecture: planning and updating the learner. As with STRIPS,

the planning component for DL Schemas is worst case intractable (in fact even more so than

STRIPS (Milicic, 2008)), and so we do not deal with that here. However, the computation

required by the learner, which with pre-conditional STRIPS simply involved removing literals

from a list, is now governed by the more costly LCS and MSC operations. We note that

analyzing this computation for only a single iteration with arbitrary concepts and having a

polynomial sample complexity bound is not sufficient to bound the computational complexity

of the full algorithm, because the amount of time required to perform the LCS may actually

grow with each successive iteration, as we see in our second case study (EL ) below.

6.2.4 Case Studies

While above we have laid out a generic algorithm for learning conditions described using de-

scription logics, the complexity of this learning operation is highly dependent on the specific

DL that is used. Here we briefly present some results on the complexity of the above algorithm

in two specific DLs that are widely studied in the literature.
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ALN

ALN allows for constructors representing conjunction (Dog ⊓ Furry), universal restriction on

roles (X: ∀ hasPet.Dog), and cardinality restrictions on the number of role fillers (atLeast 2.

hasPet), (atMost 5. hasChild). Unfortunately, like many languages, a full MSC operation in

ALN (or even just AL ) is not supported for an arbitrary DBox. To see why, consider the very

simple DBox {r(o), p(o, o)}. The most specific concept covering o is (∀p.∀p....r(o)), where the

chain of p repeats infinitely many times.

Algorithm 30 MSCALN (k, o, D)

1: Inputs: depth k and object o
2: Output: The most specific concept (in ALN ) considering objects reachable in DBox D by

traversing no more than k roles. The concept is in normal-form (Cohen & Hirsh, 1994).
3: P o := roles that hold from a in D.
4: if k = 0 then
5: Return (⊓({A|A(o) ∈ D} ⊓{(≥ n.pi|pi ∈ P o, n fillers for role pi on o) } ⊓{(≤ n.pi|pi ∈

P o, n fillers for role pi on o) }
6: end if
7: Ck := MSC(0, o)
8: for Each role p ∈ P o do
9: {o1...om} := objects reachable from o by role p

10: Cx = LCS(MSC(k − 1, o1), ...MSC(k − 1, om))
11: Ck = Ck ⊓ (∀p.Cx)
12: end for
13: Perform normalization on Ck if necessary.
14: Return Ck

Algorithm 31 LCSALN (c1,c2) (Adapted from the work of Cohen & Hirsh (1994))

1: Inputs: Concepts c1 and c2 in ALN , in normal form.
2: Output: The most specific concept that subsumes c1 and c2

3: Construct concept trees TC1 and TC2 by doing the following:
4: Create a root node labeled by the set of all primitive concepts in C //(e.g. Dog ⊓ Brown...)
5: Create a branch (root, p, np) for each top-level role p appearing in C with a restriction.

Label this edge with ∀p, as well ≤ j and gek for the corresponding cardinality restrictions.
6: Recursively create tree rooted at np from the concept E such that there was restriction
∀p.E in C

7: TC = TreeMerge(TC1.root, TC2.root)
8: Return concept C corresponding to TC

One way around this conundrum is to use a finite approximate MSCk discussed for some

languages in earlier work (Baader & Küsters, 2006), and defined for ALN in Algorithm 30.

This algorithm traverses part of the D-Box starting at object o to a maximum depth of k,

collecting all the concepts covering objects encountered at that depth. At each level, an LCS is

performed (Line 10 and discussed more below) on all the concepts from one level below in order

to reconcile all of the nested constraints (for example, hasPet.(≥ 2 hasHouse) and hasPet.(≥ 1
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Algorithm 32 TreeMerge(n1,n2)

1: if n1 or n2 is empty then
2: Return the non-empty node (if both are empty, return either).
3: end if
4: n = empty concept node
5: Cp = n1.primitives ∩ n2.primitives, or ⊤ if n1.primitive ∩ n2.primitive = ∅
6: Add each cp ∈ Cp to n
7: for Each role p from n1 that is also in n2 do
8: For each e1 = (n1, p, n′

1) and e2 = (n2, p, n′
2) that are edges, let n′ = TreeMerge(n′

1,n
′
2)

9: Create branch (n, p, n′) and label it ∀.p
10: Add as labels ≥ j, if j = min(j1, j2) where ≥ j1 and ≥ j2 were the corresponding labels

on e1 and e2 respectively. Similarly for upper bounds, but using max instead of min
11: end for
12: Return n

hasHouse) reconcile to hasPet.(≥ 1 hasHouse)). The end result of this is a concept tree like the

one in Figure 6.2. Notice that primitive concepts label nodes and role names and cardinality

restrictions label edges and that the special primitive concepts for variables in the parameter list

are used as described earlier. The use of a k-approximation of MSC also has the added benefit

of constraining the size of the largest possible concept to be O(PRk) for a language with just

P primitive concepts and R roles (AL ), because the largest concept is just a conjunction of

(up to R) role-chains, each of length k.

The other central operation for DL-Pre is LCS, which has already been described for ALN

in Algorithm 31 (and used in its MSC). The heart of the algorithm is the MergeTree operation

described in Algorithm 32, which recursively goes through the two trees (our current hypothesis

and the concept corresponding to the current instance), finding the least common subsumer of

primitive concepts at each node (by intersection). For the roles, tree branches that match up

from each node are recursively parsed, and if any role does not appear in both concepts from

a given node, it is eliminated. Labels on the edges are refined simply based by updating the

cardinality restrictions to more specific numbers (higher for atMost, lower for atLeast). Notice

also that if there is a background ontology (such as primitive or role hierarchies), they could

easily be incorporated into this procedure. This can be done efficiently in ALN because from

each node, only a single branch is needed for each role (because it has to be a ∀ restriction, which

satisfy the equality (∀p.C ⊓ ∀p.D) = ∀p.(C ⊓D). We will see that the existential restrictions,

which do not collapse as above, lead to difficulties in computing multiple LCS’s later in our

discussion of EL .

On every step of DL-Pre, an MSCk and an LCS operation are performed. The LCSALN

operation will take only O(PRk) time (since it needs to traverse a tree of that size and do
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simple merging at each node) and MSCALN
k operation will take O(PR2k) time (since it may

have to build a tree of size Rk and perform LCS operations at each node). In terms of sample

complexity, any mistaken predictions made while learning ALN pre-conditions will come when

the LCS operator actually refines the hypothesis concept. How many such revisions are possi-

ble? Focusing just on the universal quantifier restrictions and primitive concept labels on each

node, we see that every positive example will make one of the role restrictions more specific

or eliminate one of the primitive concept labels. In the absence of the background ontology

(thereby precluding generalizing Dachshund and Terrier to Dog), each sample will eliminate at

least one role (edge) or primitive concept (node label) from the hypothesis concept. The number

of such items is bounded by O(PRk). Turning our attention to the cardinality restrictions, it

is easy to create a situation where the cardinality of the atLeast restrictions increases infinitely

(on each step (atMost i hasPet) generalizes to (atMost i + 1 hasPet)). However, we note that

the maximum size of any DBox in a trace (|D|) bounds the maximum cardinality restriction,

so this is a loose bound, though by specifying the maximum outdegree of any individual in any

D-Box in a trace as N (thereby capping the number of atLeast or atMost refinements), we can

tighten this simply to N .

In summary, learning pre-conditions in the language ALN from D-Boxes D1,D2... can be

accomplished with no more than O(PRk maxi |D〉| mistakes or with a constraint, N , on the

number of outgoing roles of the same name from any individual, this bound becomes O(NPRk|.

Only polynomial computation time per step, as long as we are willing to restrict the depth of

concepts considered by some constant k (for the MSCk operation). Finally, we note that

this result is likely modifiable for extensions of ALN where PAC learnability results have

been derived (Cohen & Hirsh, 1994) and may be extendible to other languages whose concept

learnability has been studied in the ILP community (Lehmann & Hitzler, 2010).

EL

While this result for ALN is encouraging, we will now see that the concept generalization

step (LCS) is problematic in another simple language, EL . EL allows constructors only for

existential role restrictions (∃ hasPet.Dog) and conjunctions (∃ hasPet.Dog ⊓ ∃ hasPet.Cat).

As this example shows, unlike universal restrictions, a concept can have multiple existential

restrictions for the same role p. The computation of MSC in EL faces the same problems as in

AL , and therefore it is usually approximated using MSCk. Unfortunately, where LCS simply
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performed tree pruning and simple cardinality adjustments onALN concepts, the LCS operator

in EL requires one to consider all combinations of possible existential restrictions on role p. This

was not the case with universal quantification, which essentially stated “all objects reachable

by this role must have the following properties”, so only one (generalized) branch needed to

be maintained in the tree. As noted by Baader & Küsters (2006), while the computation of a

single LCS operation is polynomial, there exist a sequence of n concepts C1, C2, ..., Cn involving

just 2 primitive roles, where the size of successive EL LCS concept (and hence the computation

needed to perform each operation) grows exponentially in n. While their result showed that

essentially the depth of the concept tree could expand exponentially, we can construct a similar

example for the constant-depth trees produced by MSCk whose width increases exponentially

in the number of roles, even with a depth bound of two. This means that the computation

required on each step of the learning process outlined above could grow exponentially over the

entire learning process. Furthermore, this complicates the sample complexity analysis because

generalization does not lead to a monotonically decreasing structure (the concept tree essentially

maintains the same depth but may grow wider on each learning step). For this reason, previous

theoretical analyses of learning EL concepts in the ILP community (Lehmann & Haase, 2009)

have focused simply on convergence and completeness results, and we leave a complete study

of this problem to future work.

6.3 Planning in Large State Spaces

Both the autonomous and apprenticeship learning agents in this work rely on planning algo-

rithms to turn their learned models into actionable policies. Thus far, we have considered only

the sample, and in some cases, the computational complexity of the model-learning components,

but have said little about the planning problem. Unfortunately, the basic flat-MDP planning

algorithms introduced in Section 2.1.3, such as Value Iteration or Linear Programming, all have

computational dependence on the number of states (|S|), which is exponential in the domain

parameters of most of the environments considered in this work.

Below, we consider some alternative planning algorithms from the literature, and one of our

own design, which scale exponentially in the size of the horizon time (dependent on γ), but

whose computation time does not increase with the size of the state space, only with the size

of the compact parameters (|M |). Specifically, we consider a class of tree-based planners that

approximate the value function by drawing samples of the transition and reward functions from
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the (partially) learned model. We show how to integrate such planners into the model-based

reinforcement learning paradigm, specifically with KWIK-Rmax, and show that some of these

planners are able to still guarantee PAC-MDP behavior. Finally, we describe a number of plan-

ners developed for specific relational domains and comment on their adequacy for integration

with our learning framework.

6.3.1 Sample-Based Planners

Sample-based planners are a class of planning algorithms that approximate the value function

for (unlike Value Iteration) only the current state by sampling transitions and rewards from

a model along simulated trajectories. These planners usually only make guarantees about

returning a (possibly stochastic) ǫ-optimal action selection for a given model, and are different

from the original conception of planners for KWIK-Rmax in two ways. First, they require only

a generative model of the environment, not access to the model’s parameters. Nonetheless, they

fit nicely with KWIK learners, which can be directly queried with state/action pairs to make

generative predictions. Second, sample-based planners compute actions stochastically, so their

policies may assign non-zero probability to sub-optimal action, though the policies they induce

over time remain ǫ-optimal. The criteria we will use to test for this compliance is the following

definition, which ensures that the planning algorithm is both accurate and computationally

tractable in our exponentially-sized state spaces.

Definition 36. An efficient state-independent planner is one that, given (possibly gener-

ative) access to an MDP model, returns an action a, such that the planning problem above is

solved ǫ-optimally, and the algorithm’s per-step runtime is independent of |S| in that it is only

polynomially dependent on |M |, and scales no worse than exponentially in the other relevant

quantities ({ 1
ǫ
, 1

δ
, |A|, (1 − γ)}).

To see how an algorithm satisfying this criteria might work, first note that there is a horizon

length H , a function of γ, ǫ and Rmax, such that taking the action that is near-optimal over the

next H steps is still an ǫ-optimal action when considering the infinite sum of rewards (Kearns

et al., 2002). Next, note that the d-horizon value of taking action a from state s can be

written Qd(s, a) = R(s, a) + γ
∑

s′∈S T (s, a, s′)maxa′ Qd−1(s′, a′), where Q1(s, a) = R(s, a).

This computation can be visualized as taking place on a depth H tree with branching factor

|A||S|. Instead of computing a policy or a value function over the entire state space, sample-

based planners estimate the value QH(s, a) for all actions a whenever they need to take an
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action from state s and then choose the action with the largest estimate. Unfortunately, this

insight alone does not provide sufficient help because the |A||S| branching factor still depends

linearly on |S|. But, the randomized Sparse Sampling algorithm (described below) eliminates

this factor.

Sparse Sampling

Sparse Sampling or SS (Kearns et al., 2002) improves on the complexity of Value Iteration (in

terms of |S|) by calculating QH(s, a) based on only a sample of next states. The main result

of the analysis of SS(Kearns et al., 2002) is that the size of this sample can depend on Rmax, γ,

and ǫ instead of |S|. Specifically, the SS approximation of state-action value function can be

written as:

Qd
SS(s, a) = R(s, a) + γ

∑

s′∈(s,a)C

T (s, a, s′)max
a′

Qd−1
SS (s′, a′).

where C is the necessary size (based on the depth in the tree) and each s′ is drawn according

to the distribution s′ ∼ T (s, a, ·). SS traverses the tree structure of state/horizon pairs in a

bottom-up fashion. The estimate for a state at horizon t cannot be created until t + 1 has been

calculated for all reachable states. It does not use intermediate results to focus computation

on more important or relevant parts of the tree. As a result, its running time, both best and

worst case, is Θ((|A|C)H). However, because of its ǫ-accuracy guarantee with high probability

(Kearns et al., 2002), we can make the following statement regarding its use with KWIK R-max:

Proposition 11. SS can be used as a planner in the KWIK-Rmax algorithm by (1) using the

KWIK predictors themselves as the generative model for SS and (2) replacing all ⊥ predictions

with Rmax transitions. Under this usage, all the results in this paper that used an exact planner

hold for PAC-MDP agents in relational worlds.

Proof. (sketch) The crux of the proof is showing the KWIK-Rmax algorithm remains PAC-MDP

with a general planner that satisfies Definition 36. There are a number of technical issues in this

proof because a general planner, and certainly SS, may induce a stochastic policy because every

time SS is called it has a small (δ) probability of returning a suboptimal action. Several lemmas

in the original KWIK-Rmax need to be adjusted in light of this fact, notably those dealing

with the “optimism” and “accuracy” of the modified algorithm. Details of this modification are

covered in Walsh et al. (2010a), but are of a technical nature and not particularly central to

this thesis.
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Sparse Sampling has been used as a planner in at least two other systems that learned

relational action descriptions, the work on NID rules (Pasula et al., 2007) and the MARLIE

system for learning decision trees to represent relational MDP models (Croonenborghs et al.,

2007b), but neither of these works investigated the integration of this planner with a provably

sample-efficient learning algorithm, as we did above. Unfortunately in practice, SS is typically

quite slow because its search of the tree is not focused, a problem addressed by its successor,

UCT.

Upper Confidence for Tree Search

Conceptually, UCT (Kocsis & Szepesvári, 2006) takes a top-down approach (from root to leaf),

guided by a non-stationary search policy. That is, planning proceeds in a series of trials. In

each trial, a search policy is selected and followed from root to leaf and the state-action-reward

sequence is used to update the Q estimates in the tree. Value updates are performed via simple

averaging, so if the optimal policy were used in choosing each trajectory, values would converge

quickly and a running time closer to C, rather than (|A|C)H can be achieved.

But since this optimal policy is not known at the beginning of planning, UCT samples

actions at a state/depth node as determined by v+maxa

√
2 log(nsd)/na, where v is the average

value of action a from this state/depth pair based on previous trials, nsd counts the number

of times state s has been visited at depth d and na is the number of times a was tried there.

This quantity represents the upper tail of the confidence interval for the node’s value, and the

strategy encourages an aggressive search policy that explores until it finds fairly good rewards,

and then only periodically explores for better values. While UCT has performed remarkably

in some very difficult domains including RTS games (Balla & Fern, 2009) and Go (Gelly &

Silver, 2007), it can be shown that its worst case runtime is much worse than exponential

in H (Coquelin & Munos, 2007). Thus, UCT does not satisfy Definition 36 and is therefore

inadequate as a worst-case tractable planner for the KWIK-Rmax algorithm.

Forward Search Sparse Sampling

Forward Search Sparse Sampling (FSSS, Algorithm 33) employs a UCT-like search strategy

without sacrificing the guarantees of SS. Recall that Qd(s, a) is an estimate of the depth d value

for state s and action a. We introduce upper and lower bounds Ud(s) and Ld(s) for states and

Ud(s, a) and Ld(s, a) for state-action pairs and control each top-down trial using the following
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algorithm.

Algorithm 33 FSSS(s, d)

1: if d = 1 (leaf) then
2: Ld(s, a) = Ud(s, a) = R(s, a), ∀a
3: Ld(s) = Ud(s) = maxa R(s, a)
4: else if nsd = 0 then
5: for each a ∈ A do
6: Ld(s, a) = Vmin

7: Ud(s, a) = Vmax

8: for C times do
9: s′ ∼ T (s, a, ·)

10: Ld−1(s′) = Vmin

11: Ud−1(s′) = Vmax

12: Kd(s, a) = Kd(s, a) ∪ {s′}
13: end for
14: end for
15: end if
16: a∗ = argmaxa Ud(s, a)
17: s∗ = maxs′∈Kd(s,a∗)(U

d−1(s′)− Ld−1(s′))
18: FSSS(s∗, d− 1)
19: nsd = nsd + 1
20: Ld(s, a∗) = R(s, a∗) + γ

∑
s′∈Kd(s,a∗) Ld−1(s′)/C

21: Ud(s, a∗) = R(s, a∗) + γ
∑

s′∈Kd(s,a∗) Ud−1(s′)/C

22: Ld(s) = maxa Ld(s, a)
23: Ud(s) = maxa Ud(s, a)

Like UCT, FSSS proceeds in a series of top-down trials, each of which begins with the current

state s and depth H and proceeds down the tree to improve the estimate of the actions at the

root. Like SS, it limits its branching factor to C. Ultimately, it computes precisely the same

value as SS, given the same samples. However, it benefits from a kind of pruning to reduce the

amount of computation needed in many cases.

For instance, when LH(s, a∗) ≥ maxa6=a∗ UH(s, a) for a∗ = argmaxa UH(s, a), no more trials

are needed and a∗ is the best action at the root. The following propositions show that, unlike

UCT, FSSS solves the planning problem in accordance with Definition 36. The proofs are

described in more detail in previous work (Walsh et al., 2010a).

Proposition 12. On termination, the action chosen by FSSS is the same as that chosen by SS

with analogous samples when drawing from a given 〈s, a, d〉.

Proposition 13. The total number of trials of FSSS before termination is bounded by the

number of leaves in the tree.

The proof of this second proposition comes from the intuition that every visited state-action-

depth node becomes closed if its upper and lower bounds match, Ld(s, a) = Ud(s, a). A leaf is
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Figure 6.3: Planners in Paint-Polish world with increasing objects (40 runs). The average
reward of an optimal policy (VI) decreases linearly with the number of objects. Note VI and
SS become intractable.

closed the first time it is visited by a trial, and every trial closes a leaf, because if the search is

not complete, the trial must end at some leaf which was previously open, thus upper bounding

the number of trials before the search ends.

Figure 6.3 shows the three sample-based planners discussed above performing in the Paint-

Polish Stochastic STRIPS domain. Like most relational domains |S| here is exponential in

|O| and here |A| grows linearly in |O|. With increasing |O|, Value Iteration quickly becomes

intractable and SS falters soon after because of its exhaustive search. But, UCT and FSSS can

still provide passable policies. FSSS’s plans also remain more consistent than UCT, staying

closer to the linearly decreasing expected reward of π∗ for increasing O, even with the limited

number of trials (2000) used for these two planners.

6.3.2 Possibilities for Existing Relational Planners

A number of planners have been proposed in the Relational RL community and more broadly

in the planning community for relational action schemas and even for web-service description

languages (Liu et al., 2007; Hoffmann et al., 2007). We provide a brief tour of these algorithms

below, noting where complications arise in integrating them with the KWIK-Rmax framework.

We have already noted the similarity of the Stochastic STRIPS language we used as a testbed

in this work and NID rules from Pasula et al. (2007), so it seems reasonable to investigate

integrating an NID planner into our model-based RL architecture. While the original NID

paper used SS to do planning, recently a more language-specific planner, PRADA (Lang &

Toussaint, 2009) was shown to outperform sample-based planners in several NID benchmarks.

It is tempting to then replace the sample based planners above with PRADA in the KWIK-Rmax



194

algorithm, but this replacement is problematic. The reason is that PRADA uses a Bayesian

inference strategy to plan, and inside this method each sequence of actions is considered to

induce a belief state, a distribution over possible states. These belief states need to be induced

from a set of static NID rules, which is not necessarily what our KWIK learners model during

learning. Our KWIK learners instead solve learning problems in a predictive fashion, and

are not beholden to any model type. PRADA currently does not support planning with such

predictive “models”, unlike the generative sample based planners above. However, while it may

not yet fit well into the KWIK-Rmax architecture, recent work on integrating PRADA with an

E3-inspired architecture and a factored (though heuristic) measure of uncertainty in the REX

algorithm (Lang et al., 2010) has been empirically successful. Also, it may still be of use in the

apprenticeship learning paradigm from Chapter 4 where operators without explicit measures of

uncertainty can be used during learning (because mistakes will be corrected by the teacher).

In summary, while PRADA does not have the formal theoretical guarantees of SS or FSSS, its

empirical success warrants further investigation.

Perhaps a more promising class of planners for integration with the KWIK-Rmax architec-

ture in relational domains are those that extend traditional MDP and fMDP planning algorithms

to first-order MDPs. For instance, relational versions of Value Iteration (Boutilier et al., 2001)

and Approximate Linear Programming (Sanner & Boutilier, 2005) have been developed based on

first-order logic regression, and relational approximate policy iteration has also been proposed

(Fern et al., 2006). These algorithms, which do not rely on explicit belief space representations

and have more recognizable Bellman backups may prove more amenable to use in the KWIK-

Rmax architecture with partially learned models. Another promising extension of traditional

factored MDP planning has come in the form of First Order Decision Diagrams (FODDs) (Wang

et al., 2008; Joshi et al., 2009). FODDs are first order generalization of arithmetic and binary

decision diagrams (ADDs and BDDs), which have enjoyed success in factored MDP planning

(Hoey et al., 1999). They work by creating directed graph structures whose internal nodes act

like decision tree nodes and whose leaves contain values, but they are built from similar rep-

resentations of the transition and reward function and then solved using a value-iteration like

algorithm that includes First-Order regression. In such models, which explicitly make use of the

transition and reward function, it may be possible to insert Vmax transitions when constructing

the model trees and thus make use of these planners in the KWIK-Rmax architecture.



195

6.4 Future Work

This thesis has endeavored to establish the first general sample complexity results for relational

reinforcement learning domains in the online and apprenticeship settings. In Chapters 3 and 4,

we have presented results to this effect in as general a form (language independent) manner as

possible. However, in a number of situations, language dependent results were necessary because

of the nature of the learned components. For instance, the ED-Learning results were presented

essentially just for the Stochastic STRIPS language. With this in mind, the investigation

of more languages in the action schema family could have two theoretical benefits. First,

algorithms developed for these languages could generalize the more language specific results

mentioned above. Second, further investigations may also be helpful in tightening the positive

and negative KWIK and MBP learning results in Chapters 3 and 4. Finally, as we saw in Section

6.2, further research on expanding the constructors used in relational action schemas, between

simple STRIPS and full FOMDP operators, will provide a better roadmap as to the tractability

of these learning algorithms with respect to language expressiveness. One promising avenue for

this is integrating results in the ILP community on learning expressive concepts (Lehmann &

Hitzler, 2010) into the model learning component.

A number of future extensions are also possible in the newly emerging field of apprenticeship

learning, as considered in Chapters 4 and 5. The protocol itself and the theoretical results pose a

number of interesting questions, such as (1) Are there other language classes beyond MBP that

are sufficient for efficient apprenticeship learning? (2) Are there other combinations of MBP

and KWIK or other protocols (such as MB learning in the presence of label noise (Auer & Cesa-

Bianchi, 1998)) that are sufficient for MBP learning? (3) Are changes to the protocol possible

that will bound other important measures, such as the number of times an active optimal

teacher might intervene?, (4) Are there ways to utilize active exploration to experiment with

policies “near” the teacher without potentially investigating the whole (potentially dangerous)

state space, and (5) What if the teacher can be considered to be less adversarial, as is the case

in formal studies of teaching dimension (Goldman & Kearns, 1992).

While those questions remain for the larger apprenticeship learning paradigm, a number of

questions remain regarding its use with relational action schemas. Specifically, we saw that

in many cases, the restrictions from the online case regarding the size of conditions could be

dropped in the presence of a teacher. It is a topic of future research to see whether other

restrictive assumptions or otherwise impractical languages are learnable in the apprenticeship
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setting. Our results here with Task Graphs have shown that this is the case for at least a few

models of interest. Also, given the connection between MB and equivalence queries (which are

helpful in randomized algorithms for learning finite state automata from observations), it is an

open question whether learning relational descriptions from partially observable traces (as done

by Shahaf (2007) and also Zhuo et al. (2009)) can be done efficiently under certain assumptions.

Finally, there are a number of changes that could be made to the core RL investigation of our

work. While this work has almost exclusively focussed on model-based RL algorithms, we have

noted that most classic RRL (Dzeroski et al., 2001) has been done in the model-free paradigm.

One of the benefits of this approach is it does not require an explicit planning step, saving an

immense amount of computation time, but potentially giving that up in sample complexity.

However, recent developments in mainstream RL have established sample efficiency results for

certain model-free algorithms (Strehl et al., 2006), including some KWIK results for model-free

algorithms (Li, 2009). This promising investigation of efficient model-free RRL, with an eye

towards improving the early model-free RRL algorithms, is left to future work.

6.5 Concluding Remarks

In this work we have presented a number of results on the sample complexity of learning

relational models for sequential decision making domains. The types of domains have varied

from simple STRIPS descriptions to complex real world web-service task descriptions and we

have considered two very different channels of experience: online and apprenticeship learning.

The common threads here are relational domains where the ramifications of an agent’s

actions need to be considered for future states, and where learning with limited experience

is important or essential. It is this second property that differentiates our work from much

of the prior work in RRL, action schema learning, and web-service description mining. Our

algorithms are aware that experience is costly, in terms of time (and sometimes money) in most

real world domains. They all either actively explore only parts of the state space that they

need to, or need only a limited amount of guidance from a teacher. In addition, by using more

complex languages and data structures like description logics or task graphs, and incorporating

more complex algorithmic components, such as sample-based planners, we have pushed these

algorithms to the point where they can function in more realistic domains.

It is our hope that these results and algorithms are more the fount of a literature stream,

rather than its delta. That is, the combination of powerful relational representations and
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efficient algorithms makes practical agents possible for a host of new domains and we hope that

this document has laid out the challenges facing practitioners in this new landscape as well

as some vehicles for traversing it. But there’s plenty to explore, and still the chance for high

reward, so I’ll see you out there.
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