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Chapter 1

Introduction

In order to price and hedge financial derivatives, stochastic process models of the dy-

namics of the underlying stocks have been introduced. The Black-Scholes model is

based on the assumption that the stock price process follows a geometric Brownian

motion with constant drift and volatility. It is well known that this model is too simple

to capture the risk-neutral dynamics of many price processes. Dupire [10] significantly

improved the Black-Scholes model by replacing the constant volatility parameter by a

deterministic function of time and the stock price process. By construction, the asset

price process given by Dupire’s local volatility model has the same one-dimensional

marginal distributions as the market price process. Therefore, European-style vanilla

options whose values are determined by the marginal distributions can be priced cor-

rectly. In practice, the local volatility model is widely used to price not only vanilla

options, but also complex options with path dependent payoffs, even though such op-

tions cannot be priced correctly by Dupire’s model.

Dupire’s model is a practical implementation of a famous result of Gyöngy [15].

Given an Itô process, Gyöngy proved the existence of a Markov process with the same

one-dimensional marginal distributions as the given Itô process. The coefficients defined

in Gyöngy’s process are given by Dupire’s local volatility model.

In [8] Brunick generalized Gyöngy’s result under a weaker assumption so that the

prices of path dependent options can be determined exactly. For example, consider a

barrier option whose value depends on the joint distribution of the stock price and its

running maximum; Brunick’s result shows that there exists a two-dimensional Markov

process with the same joint distributions. It gives a model process which is perfectly

calibrated against market data, but simpler than the market process.
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Bentata and Cont [3], [4] extended Gyöngy’s theorem to semimartingales with

jumps. They showed that the flow of marginal distributions of a discontinuous semi-

martingale could be matched by the marginal distributions of a Markov process. The

Markov process was constructed as a solution to a martingale problem. However, their

proof of the main theorem is incomplete. Using this result, they derived a partial

integro-differential equation for call options. This is a generalization of Dupire’s local

volatility formula. We will discuss the details in Section 2.2.3.

Motivated by these results, we present a partial differential equation based proof to

the mimicking theorem of semimartingales in this thesis.

The thesis is organized as follows:

In chapter 2, we review some stochastic process models and mimicking theorems.

The first section is dedicated to volatility models: the Black-Scholes model, stochastic

volatility models, including Heston model and SABR model, Dupire’s local volatility

model, and some jump models, including Merton’s jump diffusion model and Bates’

model. In the second section we introduce the theorems of Gyöngy, Brunick, and

Bentata and Cont.

In chapter 3, we give a new proofs of Gyöngy’s theorem. The proof is based on

a uniqueness result of a parabolic equation. We first derive the partial differential

equation satisfied by the marginal distributions of an Itô process. Then we construct a

Markov process and show that the marginal distributions of this Markov process satisfy

the same partial differential equation. By the uniqueness result in [14], we conclude

that the Markov process has the same marginal distributions as the Itô process.

In chapter 4, we extend the partial differential equation proof of Gyöngy’s theorem

for Itô process to the case of semimartingale processes. We first derive the forward

equation satisfied by the probability density functions of a semimartingale and show

it is obeyed by the probability density functions of the mimicking process. This for-

ward equation is a partial integro-differential equation (PIDE). By analogy with the

construction of fundamental solutions to a partial differential equation, we construct

fundamental solutions of the PIDE using the parametrix method [14]. Through our

construction, we discover the conditions which ensure this equation has fundamental
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solutions. These conditions guarantee the existence of the transition probability density

function for the semimartingales. Then we derive and apply energy estimates to prove

uniqueness of the fundamental solution.

Pseudo-differential operators should be natural tools to study our partial integro-

differential equation. In chapter 5, we recall the relevant theory of pseudo-differential

operators, discuss their relationship with the martingale problem and indicate areas of

further research.

In the last chapter, we apply Brunick’s result and derive a local volatility formula

for single barrier options. The exotic options market is most developed in the foreign

exchange market. This formula allows us to price exotic options in the FX market. And

these prices are consistent with the market prices of single barrier options we observe

in the market.

More ideas for further research

1. In Gyöngy’s theorem, the drift and covariance processes are bounded, and the

covariance process satisfies the uniformly elliptic condition. However, the covari-

ance process in the Heston model is a CIR process which is neither bounded nor

bounded away from zero. So we plan to remove these constraints.

2. We plan to give a numerical illustration of Cont-Bentata’s result using Monte

Carlo simulation.

3. We also plan to give a numerical illustration of Brunick’s result by computation of

up-and-out call prices for 𝑆(0) ∈ [0, 𝑆𝑚𝑎𝑥] using original and mimicking processes,

where mimicking processes are geometric Brownian motion or Heston process.
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Chapter 2

Background

In this chapter, we review some models and theorems. The first section is dedicated to

volatility models: the Black-Scholes model, stochastic volatility models, Dupire’s local

volatility model, and some jump models. In the second section we introduce Gyöngy’s

theorem, Brunick’s theorem, and Bentata and Cont’s result.

2.1 Volatility models

2.1.1 The Black-Scholes model

The Black-Scholes model [5] shows how to price options on a stock. An European call

option gives the right to its owner to buy at time 𝑇 one unit of the stock at the price 𝐾,

where 𝑇 is called date of maturity and a positive number 𝐾 is called strike or exercise

price. The well known Black-Scholes formula gives the price of such an option as a

function of the stock price 𝑆0, the strike price 𝐾, the maturity 𝑇 , the short rate of

interest 𝑟, and the volatility of the stock 𝜎. Only this last parameter is not directly

observable but it can be estimated from historical data. Call options are now actively

traded. The work of Black and Scholes on how to price call options seems irrelevant

as the prices are already known. However, this is not the case. First, there exist more

complex options, often called exotic options, a simple example that we will consider

later is a barrier option. These are not actively traded and therefore need to be priced.

More importantly the work of Black and Scholes shows that ”it is possible to create

a hedged position, consisting of a long position in the stock and a short position in

[calls on the same stock], whose value will not depend on the price of the stock”. In

other words, they provide a method to hedge risk of a portfolio in the future. The



5

replicating portfolios have to be rebalanced continuously in a precise way. The Black-

Scholes pricing is widely used in practice, because it is easy to calculate and provides

an explicit formula of all the variables.

However, prices obtained from the Black-Scholes formula are often differernt from

the market prices. In the model, the underlying asset is assumed to follow a geometric

Brownian motion with constant volatility 𝜎. That is,

𝑑𝑆𝑡 = 𝜇𝑆𝑑𝑡+ 𝜎𝑆𝑑𝑊 (𝑡),

where 𝑊 (𝑡) is a Brownian motion. Given the market price of a call or put option, the

implied volatility is the unique volatility parameter to be put into the Black-Scholes

formula to give the same price as the market price. At a given maturity, options with

different strikes have different implied volatilities. When plotted against strikes, implied

volatilities exhibit a smile or a skew effect. Although volatility is not constant, results

from the Black-Scholes model are helpful in practice. The language of implied volatility

is a useful alternative to market prices. It gives a metric by which option prices can be

compared across different strikes, maturities, underlying, and observation times.

2.1.2 Stochastic volatility models

Stochastic volatility models are useful because they explain in a self-consistent way

why options with different strikes and expirations have different Black-Scholes implied

volatility. Under the assumption that the volatility of the underlying price is a stochastic

process rather than a constant, they have more realistic dynamics for the underlying.

Suppose that the underlying price 𝑆 and its variance 𝑉 satisfy the following SDEs,

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡+
√

𝑉𝑡𝑆𝑡𝑑𝑊1,

𝑑𝑉𝑡 = 𝛼(𝑆𝑡, 𝑉𝑡, 𝑡)𝑑𝑡+ 𝜂𝛽(𝑆𝑡, 𝑉𝑡, 𝑡)
√

𝑉𝑡𝑑𝑊2,

< 𝑑𝑊1, 𝑑𝑊2 >= 𝜌𝑑𝑡,

where 𝜇𝑡 is the instantaneous drift of 𝑆, 𝜂 is the volatility of the volatility process and

𝜌 is the correlation between random stock price returns and changes in 𝑉𝑡, 𝑊1, 𝑊2 are

Brownian motions.
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The stochastic process followed by the stock price is equivalent to the one assumed

in the Black-Scholes model. As 𝜂 approaches 0, the stochastic volatility model becomes

a time-dependent volatility version of the Black-Scholes model. The stochastic process

followed by the variance can be very general. In the Black-Scholes model, there is

only one source of randomness, the stock price, which can be hedged by stocks. In the

stochastic volatility model, random changes in volatility also need to be hedged in order

to construct a risk free portfolio.

The most popular and commonly used stochastic volatility models are the Heston

model and the SABR model.

In the Heston model [16], the volatility follows a square root process, namely a CIR

process

𝑑𝑉𝑡 = 𝜃(𝜔 − 𝑉𝑡)𝑑𝑡+ 𝜂
√

𝑉𝑡𝑑𝑊2, (2.1)

where 𝜔 is the mean long-term volatility, 𝜃 is the speed at which the volatility reverts

to its long-term mean and 𝜂 is the volatility of the volatility process.

the SABR model (stochastic alpha, beta, rho)[22] describes a single forward 𝐹 under

stochastic volatility 𝑉𝑡:

𝑑𝐹𝑡 = 𝑉𝑡𝐹
𝛽
𝑡 𝑑𝑊1,

𝑑𝑉𝑡 = 𝛼𝑉𝑡 𝑑𝑊2,

The initial values 𝐹0 and 𝑉0 are the current forward price and volatility, whereas𝑊1 and

𝑊2 are two correlated Brownian motions with correlation coefficient 𝜌. The constant

parameters 𝛽, 𝛼 are such that 0 ≤ 𝛽 ≤ 1,𝛼 ≥ 0.

Once a particular stochastic volatility model is chosen, it must be calibrated against

existing market data. Calibration is the process of identifying the set of model param-

eters which most likely give the observed data. For instance, in the Heston model, the

set of model parameters {𝜔, 𝜃, 𝜂, 𝜌} can be estimated from historic underlying prices.

Once the calibration has been performed, re-calibration of the model is needed over

time.
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2.1.3 Dupire’s local volatility model

Given the computational complexity of stochastic volatility models and the difficulty

in calibrating parameters to the market prices of vanilla options, people want to find a

simpler way to price exotic options consistently. Since before Breeden and Litzenberger

[7], it was well understood that the risk-neutral probability density function could be

derived from the market prices of European options. Dupire [10] and Derman and

Kani [9] show that under risk neutral measure, there exist a unique diffusion process

consistent with these distributions.

In Dupire ’s local volatility model, the constant volatility is replaced by a determin-

istic function of time and the stock price process, which is known as the local volatility

function. The underlying price 𝑆𝑡 is assumed to follow a stochastic differential equation

𝑑𝑆𝑡 = 𝑟𝑆𝑡 𝑑𝑡+ 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 𝑑𝑊 (𝑡),

where 𝑟 is the instantaneous risk free rate and 𝑊 (𝑡) is a Brownian motion.

The diffusion coefficients 𝜎(𝑡, 𝑆𝑡) are consistent with the market prices for all option

prices on a given underlying. Dupire’s formula shows

𝜎2(𝐾,𝑇 ;𝑆0) =
∂𝐶
∂𝑇 + 𝑟𝐾 ∂𝐶

∂𝐾
1
2𝐾

2 ∂2𝐶
∂𝐾2

.

By construction, European style vanilla options whose values are determined by the

marginal distributions can be priced correctly. In practice, this model is used to de-

termine prices of exotic options which are consistent with observed prices of vanilla

options.

In [11], Dupire showed that the local variance is a conditional expectation of instan-

taneous variance. Assume the stochastic process for stock prices is

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡+
√
𝜎𝑡𝑆𝑡𝑑𝑊 (𝑡),

he derived that

𝜎2(𝐾,𝑇 ;𝑆0) = 𝐸[𝜎∣𝑆𝑇 = 𝐾],

that is, local variance is the expectation of the instantaneous variance conditional on

the final stock price 𝑆𝑇 being equal to the strike price 𝐾. This equation implies that
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Dupire’s local volatility model is in fact a practical implementation of Gyöngy’s theorem

which we will introduce in the next section.

2.1.4 Volatility models with jumps

Diffusion based volatility models cannot explain why the implied volatility skew is so

steep for very short expirations and why short-dated term structure of skew is incon-

sistent with any model. Therefore, jumps are necessary to be modeled. Examples of

such models are Merton’s jump diffusion model [21] and Bates’ jump-diffusion stochas-

tic volatility model [2]. In these models, the dynamics of the underlying is easy to

understand and describe, since the distribution of jump sizes is known. They are easy

to simulate using Monte Carlo method.

Merton’s jump diffusion model

Assume the stock price follow the SDE

𝑑𝑆 = 𝛾𝑆𝑑𝑡+ 𝜎𝑆𝑑𝑊 + (𝐽 − 1)𝑆𝑑𝑞,

where 𝑞 is a Poisson process, 𝑑𝑞 = 1 with probability 𝜆𝑑𝑡, and 𝑑𝑞 = 0 with probability

1− 𝜆𝑑𝑡. The jump size is lognormally distributed with mean log-jump 𝜇 and standard

deviation 𝛿. We can rewrite the SDE as

𝑑𝑆 = 𝜇𝑆𝑑𝑡+ 𝜎𝑆𝑑𝑊 + (𝑒𝛼+𝛿𝑍 − 1)𝑆𝑑𝑞,

with 𝑍 ∼ 𝑁(0, 1). This allows us to get the probability density of 𝑆𝑡

𝑝𝑡(𝑥) = 𝑒−𝜆𝑡
∞∑
𝑘=0

(𝜆𝑡)𝑘 exp− (𝑥−𝛾𝑡−𝑘𝜇)2

2(𝜎2𝑡+𝑘𝛿2)

𝑘!
√

2𝜋(𝜎2𝑡+ 𝑘𝛿2)
.

Prices of European options in this model can be obtained as a series where each term

involves a Black-Scholes formula.

Bates’ model

Bates introduced the jump-diffusion stochastic volatility model by adding proportional

log-normal jumps to the Heston stochastic volatility model. The model has the following
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form

𝑑𝑆𝑡 = 𝜇𝑡𝑆𝑡𝑑𝑡+
√
𝑉𝑡𝑆𝑡𝑑𝑊1 + 𝑑𝐽𝑡

𝑑𝑉𝑡 = 𝜃(𝜔 − 𝑉𝑡)𝑑𝑡+ 𝜂
√

𝑉𝑡𝑑𝑊2,

𝑑𝑊 (𝑡)1 and 𝑑𝑊 𝑡
2 are Brownian motions with correlation 𝜌, and 𝐽𝑡 is a compound

Poisson process with intensity 𝜆 and log-normal distribution of jump sizes such that if

𝑘 is its jump size then ln(1 + 𝑘) ∼ 𝑁(ln(1 + 𝑘) − 1
2𝛿

2, 𝛿2). The no-arbitrage condition

fixes the drift of the risk neutral process, under the risk-neutral probability 𝜇 = 𝑟−𝜆𝑘.

Applying Itô’s lemma, we obtain the equation for the log-price 𝑋(𝑡) = ln𝑆𝑡,

𝑑𝑋(𝑡) = (𝑟 − 𝜆𝑘 − 1

2
𝑉𝑡)𝑑𝑡+

√
𝑉𝑡𝑑𝑊 (𝑡)1 + 𝑑𝐽𝑡,

where 𝑑𝐽𝑡 is a compound Poisson process with intensity 𝜆 and normal distribution of

jump sizes.

Bates’ model can also be viewed as a generalization of the Merton’s jump diffusion

model allowing for stochastic volatility. Although the no arbitrage condition fixes the

drift of the price process, the risk-neutral measure is not unique, because other pa-

rameters of the model, for example, intensity of jumps and parameters of jump size

distribution, can be changed.

2.2 Mimicking theorems

We want to construct simple processes which mimic certain features of the behavior of

more complicated processes.

Since the European option prices are uniquely determined by the marginal distri-

butions of the underlying price processes. In this section, we review some theorems in

which the marginal distributions of a general process are matched by a Markov process.

2.2.1 Gyöngy’s theorem

Dupire derived the local volatility formula using the forward equation. In an earlier

work of Gyöngy [15], he developed a result that is considered as a rigorous proof of the

existence of the local volatility model. He proved the following result.
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Theorem 2.1. (Gyöngy [15, Theorem 4.6]) Let 𝑊 be an 𝑟-dimensional Brownian

motion, and

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊 (𝑡)

be a 𝑑-dimensional Itô process where 𝜇 is a bounded 𝑑-dimensional adapted process, and

𝜎 is a bounded 𝑑 × 𝑟-dimensional adapted process such that 𝜎𝜎𝑇 is uniformly positive

definite. There exist deterministic measurable function �̂� and �̂� such that

�̂�(𝑡,𝑋(𝑡)) = 𝐸[𝜇𝑡∣𝑋(𝑡)] a.s. for each 𝑡,

�̂��̂�𝑇 (𝑡,𝑋(𝑡)) = 𝐸[𝜎𝑡𝜎
𝑇
𝑡 ∣𝑋(𝑡)] a.s. for each 𝑡,

and there exists a weak solution to the stochastic differential equation:

𝑑�̂�𝑡 = �̂�(𝑡, �̂�𝑡)𝑑𝑡+ �̂�(𝑡, �̂�𝑡)𝑑�̂� (𝑡)

such that L (�̂�𝑡) = L (𝑋(𝑡)) for all 𝑡 ∈ ℝ+, where L denotes the law of a random

variable and �̂� (𝑡) denotes another Brownian motion, possibly on another space.

The assumptions on the drift and covariance processes in Gyöngy’s theorem seem

too restrictive for many applications. For example, Atlan [1] computed the conditional

expectations for the Heston model using properties of the Bessel process and then used

Gyöngy’s theorem to ensure the existence of a diffusion with the same marginal distri-

butions. However, the covariance process in the Heston model is a CIR process (2.1)

which is neither bounded nor bounded away from zero, so the conditions of Gyöngy’s

theorem are not satisfied in this application.

Gyöngy’s theorem is only valid for continuous Itô processes. It is important to

extend the result to processes with jumps.

2.2.2 Brunick’s theorem

In practice, the local volatility model is also used to price complex options with path

dependent payoffs. However, the price cannot be uniquely determined by the marginal

distributions of the asset price process. For example, the price of a barrier option would

require knowledge of the joint probability distribution of the asset price process and its
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running maximum. Brunick [8] generalized Gyöngy’s result under a weaker assumption

so that the prices of path dependent options could be determined exactly.

Definition 2.1. ([8, Definition 2.1])

Let 𝑌 : ℝ+×𝐶(ℝ+,ℝ𝑑) → ℝ𝑛 be a predictable process. We say that the path-functional

𝑌 is a measurably updatable statistic if there exists a measurable function

𝜙 : ℝ× ℝ𝑛 × ℝ+ × 𝐶(ℝ+,ℝ𝑑) → ℝ𝑛

such that 𝑌 (𝑡 + 𝑢, 𝑥) = 𝜙(𝑡, 𝑌 (𝑡, 𝑥);𝑢,Δ(𝑡, 𝑥)) for all 𝑥 ∈ 𝐶(ℝ+,ℝ𝑑), where the map

Δ : ℝ+ × 𝐶(ℝ+,ℝ𝐷) → 𝐶(ℝ+,ℝ𝑑) is defined by Δ(𝑡, 𝑥)(𝑢) = 𝑥(𝑡, 𝑢)− 𝑥(𝑡).

A measurably updatable statistic is a functional whose path-dependence can be

summed up by a single vector in ℝ𝑁 . 𝑌 1(𝑡, 𝑥) = 𝑥(𝑡) is an updatable statistic, as

𝑌 1(𝑡 + 𝑢, 𝑥) = 𝑌 1(𝑡, 𝑥) + Δ(𝑡, 𝑥)(𝑢). Let 𝑥∗(𝑡) = sup𝑢≤𝑡 𝑥(𝑢), we see that 𝑌 2(𝑡, 𝑥) =

[𝑥(𝑡), 𝑥∗(𝑡)] ∈ ℝ2 is an updatable statistic as we can write

𝑌 2(𝑡+ 𝑢, 𝑥) = [𝑥(𝑡) + Δ(𝑡, 𝑥)(𝑢),max{𝑥∗(𝑡), sup
𝑣∈[0,𝑢]

𝑥(𝑡) + Δ(𝑡, 𝑥)(𝑣)}].

Theorem 2.2. ([8, Theorem 2.11])

Let 𝑊 be an 𝑟-dimensional Brownian motion, and

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊 (𝑡)

be a 𝑑-dimensional Itô process where 𝜇 is a left-continuous 𝑑-dimensional adapted pro-

cess, and 𝜎 is a left-continuous 𝑑× 𝑟-dimensional adapted process with

𝐸[

∫ 𝑡

0
∣𝜇𝑠∣+ ∣𝜎𝑠𝜎𝑇

𝑠 𝑑𝑠∣𝑑𝑠] ≤ ∞ for all 𝑡.

Also suppose that 𝑌 : ℝ+×𝐶(ℝ+,ℝ𝑑) → ℝ𝑛 is a measurably updatable statistic such that

the maps 𝑥 7→ 𝑌 (𝑡, 𝑥) are continuous for each fixed 𝑡. Then there exist deterministic

measurable function �̂� and �̂� such that

�̂�(𝑡, 𝑌 (𝑡,𝑋)) = 𝐸[𝜇𝑡∣𝑌 (𝑡,𝑋)] a.s. for Lebesgue-a.e. 𝑡,

�̂��̂�𝑇 (𝑡, 𝑌 (𝑡,𝑋)) = 𝐸[𝜎𝑡𝜎
𝑇
𝑡 ∣𝑌 (𝑡,𝑋)] a.s. for Lebesgue-a.e. 𝑡,
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and there exists a weak solution to the SDE:

𝑑�̂�𝑡 = �̂�(𝑡, 𝑌 (𝑡, �̂�))𝑑𝑡+ �̂�(𝑡, 𝑌 (𝑡, �̂�))𝑑�̂� (𝑡)

such that L (𝑌 (𝑡, �̂�)) = L (𝑌 (𝑡,𝑋)) for all 𝑡 ∈ ℝ+, where L denotes the law of a

random variable and �̂� (𝑡) denotes another Brownian motion.

Brunick’s theorem is more general than Gyöngy’s. First, the requirements on 𝜇

and 𝜎 are weaker than the boundedness and uniform ellipticity in Gyögy’s theorem.

Secondly, this theorem implies the existence of a weak solution which preserves the

one-dimensional marginal distribution of path-dependent functionals.

Corollary 2.1. ([8, Corallary 2.16]) Let 𝑊 be an 𝑟-dimensional Brownian motion,

and

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊 (𝑡)

be a 𝑑-dimensional Itô process where 𝜇 is a left-continuous 𝑑-dimensional adapted pro-

cess, and 𝜎 is a left-continuous 𝑑× 𝑟-dimensional adapted process with

𝐸[

∫ 𝑡

0
∣𝜇𝑠∣+ ∣𝜎𝑠𝜎𝑇

𝑠 𝑑𝑠∣𝑑𝑠] ≤ ∞ for all 𝑡.

Then there exist deterministic measurable function �̂� and �̂� such that

�̂�(𝑡,𝑋(𝑡)) = 𝐸[𝜇𝑡∣𝑋(𝑡)] a.s. for Lebesgue-a.e. 𝑡,

�̂��̂�𝑇 (𝑡,𝑋(𝑡)) = 𝐸[𝜎𝑡𝜎
𝑇
𝑡 ∣𝑋(𝑡)] a.s. for Lebesgue-a.e. 𝑡,

and there exists a weak solution to the SDE:

𝑑�̂�𝑡 = �̂�(𝑡, �̂�𝑡)𝑑𝑡+ �̂�(𝑡, �̂�𝑡)𝑑�̂� (𝑡)

such that L (�̂�𝑡) = L (𝑋(𝑡))) for all 𝑡 ∈ ℝ+, where L denotes the law of a random

variable and �̂� (𝑡) denotes another Brownian motion.

This lemma relaxes the requirements on the coefficients of the Itô process in Gyöngy’s

theorem.
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2.2.3 Bentata and Cont’s theorems

Bentata and Cont [3], [4] extended Gyöngy’s theorem to a discontinuous semimartin-

gale. They showed that the flow of marginal distributions of a semimartingale 𝑋 could

be matched by the marginal distributions of a Markov process 𝑌 whose infinitesimal

generator is expresses in terms of the local characteristics of 𝑋. They gave a construc-

tion of the Markov process 𝑌 as the solution to a martingale problem for an integral-

differential operator. They applied these results to derive a partial integro-differential

equation for call options in a general semimartingale model. This generalizes Dupire’s

local volatility formula.

Consider a semimartingale given by the decomposition

𝑋(𝑡) = 𝑋0+

∫ 𝑡

0
𝛽𝑋
𝑠 𝑑𝑠+

∫ 𝑡

0
𝜎𝑋
𝑠 𝑑𝑊 (𝑠)+

∫ 𝑡

0

∫
∥𝑦∥≤1

𝑦𝑀𝑋(𝑑𝑠𝑑𝑦)+

∫ 𝑡

0

∫
∥𝑦∥>1

𝑦𝑀𝑋(𝑑𝑠𝑑𝑦),

where 𝑊 is a ℝ𝑑-valued Brownian motion, 𝑀𝑋 is a positive, integer valued random

measure on [0,∞) × ℝ𝑛 with compensator 𝜇𝑋 , 𝑀𝑥 = 𝑀𝑋 − 𝜇𝑋 is the compensated

measure, 𝛽𝑋
𝑡 and 𝜎𝑋

𝑡 are adapted processes in ℝ𝑛 and 𝑀𝑛×𝑑(ℝ).

Define, for 𝑡 ≥ 0, 𝑧 ∈ ℝ𝑑

𝑎𝑌 (𝑡, 𝑧) = 𝐸[𝜎𝑋
𝑡 (𝜎𝑋

𝑡 )𝑇 ∣𝑋(𝑡−) = 𝑧]

𝑏(𝑥, 𝑡) = 𝐸[𝛽(𝑡)∣𝑋(𝑡−) = 𝑧]

𝑚𝑌 (𝑡, 𝑦, 𝑧) = 𝐸[𝑚𝑋(𝑡, 𝑦)∣𝑋(𝑡−) = 𝑧].

Let 𝑀𝑌 be an integer valued random measure on [0, 𝑇 ]× ℝ𝑑 with compensator

𝑚𝑌 (𝑡, 𝑦, 𝑌 (𝑡−))𝑑𝑦𝑑𝑡, �̃�𝑌 = 𝑀𝑌 − 𝑚𝑦 the associated compensated random measure,

𝜎𝑌 : [0,∞)× ℝ𝑑 7→ 𝑀𝑑×𝑛(ℝ) is a measurable function such that 𝜎𝑌 (𝑡, 𝑧)(𝜎𝑌 (𝑡, 𝑧))𝑇 =

𝑎𝑌 (𝑡, 𝑧).

Theorem 2.3. ([3, Theorem 1])

If the function 𝛽𝑌 , 𝑎𝑌 and 𝑚𝑌 are continuous in (𝑡, 𝑧) on [0, 𝑇 ] × ℝ𝑑, the stochastic
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differential equation

𝑌 (𝑡) =𝑋0 +

∫ 𝑡

0
𝛽𝑌
𝑠 (𝑠, 𝑌 (𝑠))𝑑𝑠+

∫ 𝑡

0
𝜎𝑌
𝑠 (𝑠, 𝑌 (𝑠))𝑑𝑊 (𝑠) +

∫ 𝑡

0

∫
∥𝑦∥≤1

𝑦𝑀𝑌 (𝑑𝑠𝑑𝑦)

+

∫ 𝑡

0

∫
∥𝑦∥>1

𝑦𝑀𝑌 (𝑑𝑠𝑑𝑦),

admits a weak solution (𝑌 (𝑡))𝑡∈[0,𝑇 ] whose marginal distributions mimic those of 𝑋:

𝑌 (𝑡) = 𝑋(𝑡) in distribution for any 𝑡 ∈ [0, 𝑇 ].

In the proof of this theorem, Bentata and Cont showed that, for any 𝐶2 function 𝑓

with compact support

𝐸[𝑓(𝑋(𝑡))] =𝑓(𝑋0) +

∫ 𝑇

0
𝐸[∇𝑓(𝑋(𝑡−)) ⋅ 𝛽𝑌 (𝑡,𝑋(𝑡−))]𝑑𝑡

+
1

2

∫ 𝑇

0
𝐸[tr[∇2𝑓(𝑋(𝑡−))𝑎𝑌 (𝑡,𝑋(𝑡−))]]𝑑𝑡

+

∫ 𝑇

0

∫
ℝ𝑑

𝐸[(𝑓(𝑋(𝑡−) + 𝑦)− 𝑓(𝑋(𝑡−))

− 1{∥𝑦∥≤1}𝑦∇𝑓(𝑋(𝑡−)))𝑚𝑌 (𝑡, 𝑑𝑦,𝑋(𝑡−))]𝑑𝑡.

And it is easy to see that for the mimicking 𝑌 (𝑡), we also have

𝐸[𝑓(𝑌 (𝑡))] =𝑓(𝑋0) +

∫ 𝑇

0
𝐸[∇𝑓(𝑌 (𝑡−)) ⋅ 𝛽𝑌 (𝑡, 𝑌 (𝑡−))]𝑑𝑡

+
1

2

∫ 𝑇

0
𝐸[tr[∇2𝑓(𝑌 (𝑡−))𝑎𝑌 (𝑡, 𝑌 (𝑡−))]]𝑑𝑡

+

∫ 𝑇

0

∫
ℝ𝑑

𝐸[(𝑓(𝑌 (𝑡−) + 𝑦)− 𝑓(𝑌 (𝑡−))

− 1{∥𝑦∥≤1}𝑦∇𝑓(𝑌 (𝑡−)))𝑚𝑌 (𝑡, 𝑑𝑦, 𝑌 (𝑡−))]𝑑𝑡.

In order to show that𝑋(𝑡) and 𝑌 (𝑡) have the same marginal distributions, they asserted

that

𝐸[𝑓(𝑋(𝑡))] = 𝐸[𝑓(𝑌 (𝑡))],

for any 𝑓 ∈ 𝐶2
0 . However, they did not provide the proof of this statement in [3].
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In [3], 𝑌 is constructed as the solution ((𝑌 (𝑡))𝑡∈[0,𝑇 ], 𝑄𝑋0) of the martingale problem

for an integro-differential operator

𝐿𝑓(𝑡, 𝑥) =
𝑑∑

𝑖=1

𝛽𝑌
𝑖 (𝑡, 𝑥)

∂𝑓

∂𝑥𝑖
(𝑡, 𝑥) +

𝑑∑
𝑖,𝑗=1

𝑎𝑌𝑖𝑗(𝑡, 𝑥)
2

2

∂2𝑓

∂𝑥𝑖∂𝑥𝑗
(𝑡, 𝑥)

+

∫
ℝ𝑑

[𝑓(𝑡, 𝑥+ 𝑦)− 𝑓(𝑡, 𝑥)−
𝑑∑

𝑖=1

1{∥𝑦∥≤1}𝑦𝑖
∂𝑓

∂𝑥𝑖
(𝑡, 𝑥)]𝑚𝑌 (𝑡, 𝑦, 𝑥)𝑑𝑦.

For any 𝑓 ∈ 𝐸 ⊂ dom(𝐿),

𝑀𝑓
𝑡 = 𝑓(𝑌 (𝑡))− 𝑓(𝑥)−

∫ 𝑡

0
𝐿𝑓(𝑋(𝑢))𝑑𝑢

is a 𝑄𝑥 martingale.

The uniqueness if 𝑌 (𝑡) is guaranteed by the following theorem.

Theorem 2.4. ([27]) If either

(i) for any 𝑡 ∈ [0, 𝑇 ], 𝑥, 𝑧 ∈ ℝ𝑑, 𝑥𝑇𝑎𝑋𝑡 𝑥 > 0,

(ii) for any 𝛽 > 0, 𝑐 > 0, 𝑚(𝑡, 𝑦, 𝜔) ≥ 𝑐
∣𝑦∣1+𝛽 ,

then 𝑌 is the unique Markov process with infinitesimal generator 𝐿.

Bentata and Cont also derived a Dupire type formula for an asset price 𝑆 whose

dynamics under the pricing measure is a stochastic volatility model with random jumps,

𝑑𝑆𝑇 = 𝑆0

∫ 𝑇

0
𝑟(𝑡)𝑆𝑡−𝑑𝑡+

∫ 𝑇

0
𝑆𝑡−𝛿𝑡𝑑𝑊 (𝑡) +

∫ 𝑇

0

∫ ∞

−∞
𝑆𝑡−(𝑒𝑦 − 1)�̃�(𝑑𝑡𝑑𝑦),

where 𝑟(𝑡) is the discount rate, 𝛿𝑡 the spot volatility process and �̃� is a compensated

random measure with compensator

𝜇(𝜔; 𝑑𝑡𝑑𝑦) = 𝑚(𝜔; 𝑡, 𝑦)𝑑𝑡𝑑𝑦.

Theorem 2.5. ([4, Propostion 3])

Assume 𝑟(𝑡) and 𝛿𝑡 are locally bounded process and that for any 𝑇 > 0, there exists a

constant 0 < 𝑐𝑇 < ∞ such that
∫ 𝑇
0

∫
𝑦>1 𝑒

2𝑦𝑚(⋅; 𝑡, 𝑦)𝑑𝑦 ≤ 𝑐𝑇 ,
∫
(1∧𝑦2)𝑚𝑋(⋅; 𝑡, 𝑦)𝑑𝑦 ≤ 𝑐𝑇 .

Define

𝜎(𝑡, 𝑧) =
√

𝐸[𝛿2𝑡 ∣𝑆𝑡− = 𝑧],

𝜈(𝑡, 𝑦, 𝑧) = 𝐸[𝑚(𝑡, 𝑦)∣𝑆𝑡− = 𝑧].
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The value 𝐶𝑡(𝑇,𝐾) at time 𝑡 of a call option with expiry 𝑇 > 𝑡 and strike 𝐾 > 0 is

given by

𝐶𝑡(𝑇,𝐾) = 𝐸[max(𝑆𝑇 −𝐾, 0)∣ℱ𝑡].

Then the call option price (𝑇,𝐾) 7→ 𝐶𝑡(𝑇,𝐾) as a function of maturity and strike, is

a solution (in the sense of distributions) of the partial integro differential equation on

[𝑡,∞)× (0,∞),

∂𝐶

∂𝑇
=
𝐾2𝜎(𝑇,𝐾)2

2

∂2𝐶

∂𝐾2
− 𝑟𝐾

∂𝐶

∂𝐾

+

∫ ∞

−∞
𝑑𝑦𝑛(𝑇, 𝑦,𝐾)𝑒𝑦

{
𝐶(𝑇,𝐾𝑒−𝑦)− 𝐶(𝑇,𝐾) +𝐾(1− 𝑒−𝑦)

∂𝐶

∂𝐾

}
with initial condition 𝐶(𝑡,𝐾) = (𝑆𝑡 −𝐾)+ for any 𝐾 > 0.

This partial integro-differential equation generalizes the Dupire formula derived in

[10] for continuous process to the case of semimartingales with jumps. It implies that,

any arbitrage free option price across strike and maturity may be parameterized by a

local volatility function 𝜎(𝑡, 𝑆) and a local Levy measure 𝑚(𝑡, 𝑆, 𝑧).

They also gave some examples of stochastic models, including marked point pro-

cesses and time changed Levy processes.

In my thesis, we consider the same mimicking theorem of semimartingales as Bentata

and Cont did. However, my approach is totally different. In [3], Bentata and Cont

concluded that 𝐸[𝑓(𝑋(𝑡))] = 𝐸[𝑓(𝑌 (𝑡))] for any 𝐶2 function 𝑓 , therefore, 𝑋(𝑡) and 𝑌 (𝑡)

have the same marginal distributions. In my proof, I show that 𝑝𝑋(𝑥, 𝑡) and 𝑝𝑌 (𝑥, 𝑡),

the probability density functions of 𝑋(𝑡) and 𝑌 (𝑡), satisfies the same partial integro-

differential equation. And then I prove that this equation has a unique fundamental

solution under some assumptions for the diffusion and variance coefficients.

In [25], Ming Shi extended Gyögy’s theorem to pure jump processes and applied his

results to multi-name credit modeling. He also talked about the mimicking theorem

of semimartingales in Section 3.4 which was a joint work with me. We started with

the function 𝑓(𝑥) = 𝑒−𝑖𝑥𝜉 for 𝑥, 𝜉 ∈ ℝ𝑛. 𝐸[𝑓(𝑋(𝑡))] is the Fourier transform of the

marginal distribution function 𝑝𝑋(𝑥, 𝑡). We then used this fact to derive the forward

equation satisfied by 𝑝𝑋(𝑥, 𝑡).
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In my thesis, I generalize this result by choosing 𝑓 as any 𝐶2 function with compact

support.
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Chapter 3

A Proof of Gyöngy’s Theorem

Gyögy proved his theorem by extending a result of Krylov [20]. We summarize his main

ideas of proof here. Consider the Green measure of an Itô process 𝑋(𝑡) with killing

rate 𝛾(𝑡), which is defined by

𝜇(𝐴) = 𝐸
[ ∫ +∞

0
1𝐴(𝑋(𝑡))𝑒−

∫ 𝑡
0 𝛾(𝑠,𝜔)𝑑𝑠𝑑𝑡

]
,

for every Borel set 𝐴 ⊂ 𝑅𝑛, where 1𝐴 denotes the indicator function of the set 𝐴, 𝛾

is a non-negative 𝔱-adapted stochastic process. Denote the mimicking process by 𝑌 (𝑡),

Gyöngy showed that the Green measure of (𝑡,𝑋(𝑡)) is identical the the Green measure

of (𝑡, 𝑌 (𝑡)). Let 𝛾(𝑡) ≡ 1, then we have

𝐸

[∫ +∞

0
𝑒−𝑡𝑓(𝑡,𝑋(𝑡))𝑑𝑡

]
= 𝐸

[∫ +∞

0
𝑒−𝑡𝑓(𝑡, 𝑌 (𝑡))𝑑𝑡

]
for every bounded non-negative Borel measurable function 𝑓 . Taking 𝑓(𝑡, 𝑥) = 𝑒−𝜆𝑡𝑔(𝑥)

with arbitrary non-negative constant 𝜆 and functions 𝑔 ∈ 𝐶0(ℝ𝑛), we get∫ +∞

0
𝑒−𝜆𝑡𝑒−𝑡𝐸[𝑔(𝑋(𝑡))]𝑑𝑡 =

∫ +∞

0
𝑒−𝜆𝑡𝑒−𝑡𝐸[𝑔(𝑌 (𝑡))]𝑑𝑡,

this gives us

𝐸[𝑔(𝑋(𝑡))] = 𝐸[𝑔(𝑌 (𝑡))].

Hence it follows that the distribution of 𝑋(𝑡) and 𝑌 (𝑡) are same for every 𝑡. However,

the proof that 𝑋(𝑡) and 𝑌 (𝑡) have the same Green measure is quite long and technical.

We present an intuitive proof of Gyöngy’s theorem. The proof is based on the

uniqueness of solutions to a parabolic equation. Assume 𝑋(𝑡) has probability den-

sity functions 𝑝𝑋(𝑥, 𝑡). We first derive the partial differential equation satisfied by the

marginal distributions of an Itô process. Then we construct a Markov process and show
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that the marginal distributions of this Markov process satisfy the same partial differ-

ential equation. By uniqueness of solutions to a parabolic equation [14], we conclude

that the Markov process has the same marginal distributions as the Itô process.

3.1 Uniqueness of a solution to a partial differential equation

In this section, we give a proof of Gyöngy’s theorem using uniqueness of solutions to a

partial differential equation. We shall use the following definition and theorems.

Definition 3.1. (Fundamental solutions of a parabolic equation)[14, Sections 1.1 &

1.6] Suppose 𝑎𝑖𝑗, 𝑏𝑖 and 𝑐 are ℝ-valued functions on Ω. A fundamental solution of

𝐿𝑢 :=
𝑛∑
𝑖,𝑗

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑢

∂𝑥𝑖∂𝑥𝑗
+

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑢

∂𝑥𝑖
+ 𝑐(𝑥, 𝑡)𝑢− ∂𝑢

∂𝑡
= 0 (3.1)

in Ω = �̄� × [𝑇0, 𝑇1] is a ℝ-valued function Γ(𝑥, 𝑡; 𝑦, 𝜏) defined for all (𝑥, 𝑡) ∈ 𝑈 ,

(𝑦, 𝜏) ∈ 𝑈 , 𝑡 > 𝜏 , which satisfies the following conditions:

(i) for fixed (𝑦, 𝜏) ∈ Ω, it satisfies (3.1), as a function of (𝑥, 𝑡), 𝑥 ∈ 𝐷, 𝜏 < 𝑡 < 𝑇 ;

(ii) for every continuous ℝ-valued function 𝑓(𝑥) in �̄� such that [14, Section 1.6, Equa-

tion (6.1)],

∣𝑓(𝑥)∣ ≤ const. exp(ℎ∣𝑥∣2),

if 𝑥 ∈ 𝐷, for some positive constant ℎ. Then

lim
𝑡→𝜏

∫
𝐷
Γ(𝑥, 𝑡; 𝑦, 𝜏)𝑓(𝑦)𝑑𝑦 = 𝑓(𝑥).

The integrals in Definition 3.1 exist only if 4ℎ(𝑡 − 𝜏) < 𝜆, where 𝜆 = 𝜆0 is defined

as in [14, Section 1.2, Equation (2.2)] and the proof of Lemma 4.2 in this thesis. If

ℎ <
𝜆0

4(𝑇1 − 𝑇0)

then the integrals in Definition 3.1 exist for all 𝑇0 ≤ 𝜏 < 𝑡 ≤ 𝑇1 [14, Section 1.6].

Definition 3.2. [14] A function 𝑓(𝑥, 𝑡) is said to be Hölder continuous with exponent

𝛼 if

∣𝑓(𝑥, 𝑡)− 𝑓(𝑥0, 𝑡0)∣ ≤ 𝐶(∣𝑥− 𝑥0∣𝛼 + ∣𝑡− 𝑡0∣𝛼/2)

for any (𝑥, 𝑡), (𝑥0, 𝑡0) ∈ [𝑇0, 𝑇1]× ℝ𝑛 some constant 𝐶 > 0.
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Theorem 3.1. [14, Theorem 1.15]

Assume that 𝐿 is parabolic and the coefficients of 𝐿

𝑎𝑖𝑗 ,
∂𝑎𝑖𝑗
∂𝑥𝑘

,
∂2𝑎𝑖𝑗
∂𝑥𝑘∂𝑥𝑙

, 𝑏𝑖,
∂𝑏𝑖
∂𝑥𝑘

, 𝑐

are bounded, continuous ℝ-valued functions on ℝ𝑛 × [𝑇0, 𝑇1]; they satisfy a uniform

Hölder condition with exponent 𝛼 in 𝑥 ∈ ℝ𝑛. 𝑎𝑖𝑗 satisfies the ellipticity condition.

Then a fundamental solution Γ∗ of 𝐿∗𝑢 = 0 exists and

Γ(𝑥, 𝑡; 𝑦, 𝜏) = Γ∗(𝑦, 𝜏 ;𝑥, 𝑡),

where 𝐿∗ is the formal adjoint of 𝐿,

𝐿∗𝑢 =

𝑛∑
𝑖,𝑗

∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑡)𝑢) +

𝑛∑
𝑖=1

∂

∂𝑥𝑖
(𝑏𝑖(𝑥, 𝑡)𝑢) + 𝑐(𝑥, 𝑡)𝑢+

∂𝑢

∂𝑡

Theorem 3.2. ([13, Theorem 3.4]) The fundamental solution of (3.1) is unique.

Proof. Suppose that Γ(𝑥, 𝑡; 𝑦, 𝜏), Γ̃(𝑥, 𝑡; 𝑦, 𝜏) are two fundamental solutions for 𝐿𝑢 = 0.

Applying [14, Theorem 1.15], we see that

Γ(𝑥, 𝑡; 𝑦, 𝜏) = Γ∗(𝑦, 𝜏 ;𝑥, 𝑡) = Γ̃(𝑥, 𝑡; 𝑦, 𝜏)

for any (𝑥, 𝑡), (𝑦, 𝜏) ∈ [𝑇0, 𝑇1]× ℝ𝑛, 𝑡 > 𝜏 .

And so Γ(𝑥, 𝑡; 𝑦, 𝜏) = Γ̃(𝑥, 𝑡; 𝑦, 𝜏) as desired.

Now we can proceed to give another proof of Gyöngy’s theorem.

Theorem 3.3. Let 𝑊 be an 𝑟-dimensional Brownian motion on a probability space

(Ω,F ,ℙ), and

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊 (𝑡)

be an ℝ𝑛-valued Itô process, 𝜇 is a bounded ℝ𝑛-valued adapted process, and 𝜎 is a

bounded ℝ𝑛×𝑑-valued adapted process such that 𝜎𝜎𝑇 is uniformly positive definite. Then

there exist deterministic measurable function 𝑎(𝑡, 𝑥) and 𝑏(𝑡, 𝑥) such that

𝑏(𝑡, 𝑥) = 𝐸[𝜇𝑡∣𝑋(𝑡) = 𝑥] a.s. for 𝑡 ≥ 0,

𝑎(𝑡, 𝑥)𝑎𝑇 (𝑡, 𝑥) = 𝐸[𝜎𝑡𝜎
𝑇
𝑡 ∣𝑋(𝑡) = 𝑥] a.s. for 𝑡,
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and

𝑎𝑖𝑗 ,
∂𝑎𝑖𝑗
∂𝑥𝑘

,
∂2𝑎𝑖𝑗
∂𝑥𝑘∂𝑥𝑙

, 𝑏𝑖,
∂𝑏𝑖
∂𝑥𝑘

are bounded and Hölder continuous with exponent 𝛼, 0 < 𝛼 < 1. Assume 𝑋(𝑡) has

probability density functions 𝑝𝑋(𝑥, 𝑡). Then there exists a weak solution to the stochastic

differential equation:

𝑑𝑌 (𝑡) = 𝑏(𝑡, 𝑌 (𝑡))𝑑𝑡+ 𝑎(𝑡, 𝑌 (𝑡))𝑑�̂� (𝑡)

such that L (𝑌 (𝑡)) = L (𝑋(𝑡)) for all 𝑡 > 0, where L denotes the law of a ran-

dom variable and �̂� (𝑡) denotes another Brownian motion, on another probability space

(Ω̃, ℱ̃ , ℙ̃).

Proof. For any function 𝑓 ∈ 𝐶2
0 (𝑅

𝑛), Itò formula shows

𝑓(𝑋𝑇 )− 𝑓(𝑥) =

∫ 𝑇

0

𝑛∑
𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)𝑑𝑋(𝑡)

+
1

2

𝑛∑
𝑖,𝑗=1

∫ 𝑇

0

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋𝑡)𝑑[𝑋

𝑖, 𝑋𝑗 ]𝑡

=

∫ 𝑇

0

𝑛∑
𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)(𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊 (𝑡))

+
1

2

𝑛∑
𝑖,𝑗=1

∫ 𝑇

0

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋𝑡)(𝜎(𝑡)𝜎

𝑇 (𝑡))𝑖𝑗𝑑𝑡

Taking expectations on both side, we get

𝐸[𝑓(𝑋𝑇 )] = 𝑓(𝑥) + 𝐸
[ ∫ 𝑇

0

𝑛∑
𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)𝜇𝑡𝑑𝑡

]
+

1

2
𝐸
[ ∫ 𝑇

0

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋𝑡)(𝜎(𝑡)𝜎

𝑇 (𝑡))𝑖𝑗𝑑𝑡
]
,

= 𝑓(𝑥) +

∫ 𝑇

0
𝐸
[ 𝑛∑

𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)𝜇𝑡

]
𝑑𝑡

+
1

2

∫ 𝑇

0

𝑛∑
𝑖,𝑗=1

𝐸
[ ∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑡−))(𝜎(𝑡)𝜎𝑇 (𝑡))𝑗𝑘

]
𝑑𝑡].
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Using iterated conditional expectation and conditioning on 𝑋𝑡 gives

𝐸[𝑓(𝑋𝑇 )] =𝑓(𝑥) +

∫ 𝑇

0
𝐸
[ 𝑛∑

𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)𝐸[𝜇𝑡∣𝑋𝑡]

]
𝑑𝑡

+
1

2

∫ 𝑇

0

𝑛∑
𝑗,𝑘=1

𝐸
[ ∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋𝑡)𝐸[(𝜎(𝑡)𝜎𝑇 (𝑡))𝑖𝑗 ∣𝑋𝑡]]𝑑𝑡

]
=𝑓(𝑥) +

∫ 𝑇

0
𝐸
[ 𝑛∑

𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋𝑡)𝑏(𝑋𝑡, 𝑡) +

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋𝑡)𝑎𝑖𝑗(𝑋𝑡, 𝑡)

]
𝑑𝑡.

Denoting

𝐴𝑓(𝑥) =

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑓

∂𝑥𝑖𝑥𝑗
,

we have

𝐸[𝑓(𝑋𝑇 )] = 𝑓(𝑥) +

∫ 𝑇

0
𝐸
[
𝐴𝑓(𝑋(𝑡))

]
𝑑𝑡. (3.2)

If 𝑋(𝑡) has probability density functions 𝑝𝑋(𝑥, 𝑡) , we can rewrite (3.2) as∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑇 )𝑑𝑥 = 𝑓(𝑥) +

∫ 𝑇

0

∫
ℝ𝑛

𝐴𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (3.3)

Taking derivatives of (3.3) with respect to 𝑇 , we get

∂

∂𝑇

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑇 )𝑑𝑥 =

∫
ℝ𝑛

(
𝐴𝑓(𝑥)

)
𝑝𝑋(𝑥, 𝑇 )𝑑𝑥

=

∫
ℝ𝑛

( 𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑇 )
∂𝑓

∂𝑥𝑖
𝑝𝑋(𝑥, 𝑇 )

+
1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑇 )
∂2𝑓

∂𝑥𝑖𝑥𝑗
𝑝𝑋(𝑥, 𝑇 )

)
𝑑𝑥.

Integrating by parts on the right hand side gives

∂

∂𝑇

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑇 )𝑑𝑥 (3.4)

=

∫
ℝ𝑛

(
−

𝑛∑
𝑖=1

𝑓(𝑥)
∂

∂𝑥𝑖
(𝑏(𝑥, 𝑇 )𝑝𝑋(𝑥, 𝑇 )) +

1

2

𝑛∑
𝑖,𝑗=1

𝑓(𝑥)
∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑇 )𝑝𝑋(𝑥, 𝑇 ))

)
𝑑𝑥

=

∫
ℝ𝑛

𝑓(𝑥)
(
−

𝑛∑
𝑖=1

∂

∂𝑥𝑖
(𝑏(𝑥, 𝑇 )𝑝𝑋(𝑥, 𝑇 )) +

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑇 )𝑝𝑋(𝑥, 𝑇 ))

)
𝑑𝑥

=

∫
ℝ𝑛

𝑓(𝑥)(𝐴∗𝑝𝑋(𝑥, 𝑇 ))𝑑𝑥

where 𝐴∗ is the formal adjoint of 𝐴,

𝐴∗𝑝𝑋(𝑥, 𝑡) := −
𝑛∑

𝑖=1

∂

∂𝑥𝑖
(𝑏(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡)) +

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡)).
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Since (3.4) is true for any 𝐶2
0 function 𝑓 , then 𝑝𝑋(𝑥, 𝑡) is a weak solution of

∂𝑝𝑋
∂𝑡

= 𝐴∗𝑝𝑋(𝑥, 𝑡).

Consider the process 𝑌 (𝑡) defined as the solution to

𝑑𝑌 (𝑡) = 𝑏(𝑡, 𝑌 (𝑡))𝑑𝑡+ 𝑎(𝑡, 𝑌 (𝑡))𝑑�̂� (𝑡).

Itô formula gives

𝐸[𝑓(𝑌𝑇 )] =𝑓(𝑥) +

∫ 𝑇

0
𝐸
[ 𝑛∑

𝑖=1

∂

∂𝑥𝑖
𝑓(𝑌𝑡)𝑏(𝑌𝑡, 𝑡) +

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑌𝑡)𝑎𝑖𝑗(𝑌𝑡, 𝑡)

]
𝑑𝑡.

Let 𝑝𝑌 (𝑥, 𝑡) denotes the probability density functions of 𝑌𝑡, we have∫
ℝ𝑛

𝑓(𝑥)𝑝𝑌 (𝑥, 𝑇 )𝑑𝑥 = 𝑓(𝑥) +

∫ 𝑇

0

∫
ℝ𝑛

𝐴𝑓(𝑥)𝑝𝑌 (𝑥, 𝑡)𝑑𝑥𝑑𝑡. (3.5)

Then we take derivatives with respect to 𝑇 and integrate by parts, we obtain

∂

∂𝑇

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑌 (𝑥, 𝑇 )𝑑𝑥 =

∫
ℝ𝑛

𝑓(𝑥)(𝐴∗𝑝𝑌 (𝑥, 𝑇 ))𝑑𝑥.

Therefore, 𝑝𝑌 (𝑥, 𝑡) is a solution to

∂𝑝𝑌
∂𝑡

= 𝐴∗𝑝𝑌 (𝑥, 𝑡),

in the weak sense, with initial condition 𝑝(𝑥, 0) = 𝛿(𝑥), where 𝛿(𝑥) is the Dirac delta

function.

We now consider an initial value problem

∂𝑢

∂𝑡
= 𝐴∗𝑢(𝑥, 𝑡) (3.6)

𝑢(𝑥, 0) = 𝛿(𝑥).

Since 𝑝𝑋(𝑥, 𝑡), 𝑝𝑌 (𝑥, 𝑡) are solutions of (3.6), it is enough to show that (3.6) has a

unique fundamental solution.

In [14, Section 1.4], a fundamental solution of

𝐿𝑢 := 𝐴∗𝑢− ∂𝑢

∂𝑡
,

is constructed by the parametrix method. By Theorem 3.2, we obtain the uniqueness

of the fundamental solution.
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Chapter 4

Forward Equation for a Semimartingale

In this chapter, we develop the main theorem of this dissertation. We first introduce the

definition of semimartingales and define the Markovian projection of semimartingales.

Then we derive the generator of a semimartingale and the backward equation. When the

semimartingale has a probability density function, we show that this function satisfies

the forward equation, the adjoint of the backward equation. Next we construct a

fundamental solution of the forward equation, through our construction, discover the

conditions which ensure that this equation has fundamental solutions. These conditions

guarantee the existence of the probability density functions for the semimartingale.

Finally, we show that the fundamental solution of the forward equation is unique.

Our existence and uniqueness result implies that the mimicking process has the same

marginal distributions as the original semimartingale.

4.1 Semimartingales and Markovian projection

In this section, we give the definition of a semimartingale and define its Markovian

projection.

Definition 4.1. (Semimartingale, [24, Definition IV.15.1])

A process 𝑋 is a semimartingale on (Ω,ℱ , (𝔽(𝑡))𝑡≥0,ℙ) if it can be written in the form:

𝑋(𝑡) = 𝑋0 +𝑀𝑡 +𝐴𝑡, (4.1)

where 𝑀 is a local martingale null at 0 with càdlàg paths and 𝐴 is an adapted process

with paths of finite variation, and the filtration is right-continuous.

An ℝ𝑛-valued process 𝑋 = (𝑋1, . . . , 𝑋𝑛) is a semimartingale if each of its compo-

nents 𝑋 𝑖 is a semimartingale.
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We emphasize that the decomposition (4.1) need not be unique. Semimartingales

are good integrators, forming the largest class of processes with respect to which the

Itô integral can be defined. The class of semimartingales is quite large, including, for

example, all Itô processes and Lévy processes.

Proposition 4.1. (Itô decomposition for semimartingales, [4, Equation (2)])

On a filtered probability space (Ω,ℱ , (𝔽𝑡)𝑡≥0,ℙ), a semimartingale can be given by the

decomposition

𝑋(𝑡) = 𝑋(0)+

∫ 𝑡

0
𝛽(𝑠)𝑑𝑠+

∫ 𝑡

0
𝜎(𝑠)𝑑𝑊 (𝑠)+

∫ 𝑡

0

∫
∥𝑦∥≤1

𝑦𝑀(𝑑𝑠𝑑𝑦)+

∫ 𝑡

0

∫
∥𝑦∥>1

𝑦𝑀(𝑑𝑠𝑑𝑦),

(4.2)

where 𝑊 is a ℝ𝑑-valued Brownian motion, 𝑀 is a positive, integer valued random

measure on [0,∞)×ℝ𝑛 with compensator 𝜇 , 𝑀 = 𝑀 −𝜇 is the compensated measure,

𝜇 has a density 𝑚(𝑡, 𝜔, 𝑦)𝑑𝑦, 𝛽(𝑡) and 𝜎(𝑡) are adapted processes valued in ℝ𝑛 and

𝑀𝑛×𝑑(ℝ).

Proposition 4.2. (Itô formula for semimartingales, [23, Theorem 71])

Let (𝑋(𝑡))𝑡≥0 be a semimartingale. For any twice continuously differentiable function

𝑓 : ℝ𝑛 → ℝ𝑛,

𝑓(𝑋𝑇 )− 𝑓(𝑋(0)) =

𝑛∑
𝑖=1

∫ 𝑇

0

∂

∂𝑥𝑖
𝑓(𝑋(𝑡−))𝑑𝑋(𝑡)𝑖 +

1

2

𝑛∑
𝑖,𝑗=1

∫ 𝑇

0

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑡−))𝑑[𝑋 𝑖, 𝑋𝑗 ]𝑡

+
∑

0≤𝑡≤𝑇

[
𝑓(𝑋(𝑡−) +△𝑋(𝑡))− 𝑓(𝑋(𝑡−))−

𝑛∑
𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋(𝑡−))△𝑋(𝑡)𝑖

]
We want to construct a stochastic differential equation whose solution mimics the

marginal distributions of a semimartingale. We call the mimicking process a Markovian

projection of a semimartingale.

Gyöngy [15] showed that there exists a Markovian projection of an Itô process.

Brunick [8] generalized Gyöngy’s result under a weaker assumption, and proved that

there exists a Markovian projection of a two-dimensional process. Bentata and Cont [3],

[4] gave the existence of the Markovian projection of a semimartingale. The Markovian

projection is constructed as a solution to a martingale problem.

Here we present a partial differential equation based proof of mimicing theorem.

Consider a semimartingale 𝑋(𝑡) with decomposition (4.2) and further require
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(A1) 𝜎(𝑡)𝜎(𝑡)∗ satisfies the uniformly ellipticity condition for any 0 ≤ 𝑡 ≤ 𝑇 .

That is, there is a constant 𝜆 > 0 such that

𝑛∑
𝑖,𝑗=1

(𝜎(𝑡)𝜎(𝑡)𝑇 )𝑖𝑗𝜉𝑖𝜉𝑗 ≥ 𝜆∣𝜉∣2,

for all 𝜉 ∈ ℝ𝑛 and any 0 ≤ 𝑡 ≤ 𝑇 . Ellipticity thus means that the symmetric

matrix 𝜎(𝑡)𝜎(𝑡)∗ ∈ ℝ𝑛×𝑛 is positive definite, with smallest eigenvalue greater than

or equal to 𝜆 > 0.

(A2) For any 𝑇 > 0, 𝛽(𝑡) and 𝜎(𝑡) are bounded functions of 𝑡 ∈ [0, 𝑇 ].

Suppose the process 𝑋(𝑡) start at 𝑋(𝑡0) = 𝑥0, and the density function of 𝑋(𝑡) is

𝑝𝑋(𝑡0, 𝑥0; 𝑡, ⋅), we denote the density by 𝑝𝑋(𝑡0, 𝑥0; 𝑡, 𝑥) and abbreviate by 𝑝𝑋(𝑡, 𝑥)

Theorem 4.1. (Markovian projection of a semimartingale)

Let 𝑋(𝑡) be a semimartingale starting with 𝑋(𝑡0) = 𝑥0, and 𝑋(𝑡) has a decomposition

𝑋(𝑡) = 𝑋(𝑡0)+

∫ 𝑡

𝑡0

𝛽(𝑠)𝑑𝑠+

∫ 𝑡

𝑡0

𝜎(𝑠)𝑑𝑊 (𝑠)+

∫ 𝑡

𝑡0

∫
∥𝑦∥≤1

𝑦𝑀(𝑑𝑠𝑑𝑦)+

∫ 𝑡

𝑡0

∫
∥𝑦∥>1

𝑦𝑀(𝑑𝑠𝑑𝑦),

where 𝛽(𝑡), 𝜎(𝑡) satisfy (A1) and (A2). Assume 𝑋(𝑡) has probability density functions

𝑝𝑋(𝑡, 𝑥).

Define

𝑎(𝑥, 𝑡) := 𝐸[𝜎(𝑡)𝜎∗(𝑡)∣𝑋(𝑡−) = 𝑥]

𝑏(𝑥, 𝑡) := 𝐸[𝛽(𝑡)∣𝑋(𝑡−) = 𝑥]

𝑛(𝑡, 𝐴, 𝑥) := 𝐸[𝑚(𝑡, 𝐴, ⋅)∣𝑋(𝑡−) = 𝑥],

for all 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛, and any Borel set 𝐴 ⊂ ℝ𝑛. Let 𝑁 be a positive, integer-valued

random measure on [0,∞)×ℝ𝑛 with compensator 𝑛, where 𝑛 has a density 𝜈(𝑡, 𝜔, 𝑥)𝑑𝑥,

and 𝑁 = 𝑁 − 𝜈 is the associated compensated random measure.

We assume that

(i) 𝑎, 𝑏, and 𝐴 → 𝑛(𝑡, 𝐴, 𝑥) are continuous in (𝑡, 𝑥) on [0,∞)×𝑅𝑛,

(ii) there is a constant 𝐾, such that
∫ 𝑛
𝑅 𝑚(𝑡, ⋅, 𝑑𝑦) ≤ 𝐾 < ∞ a.s.

(iii) there is no jump exactly at 𝑡 for any fixed 𝑡 with probability 1.
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(iv) 𝜈 has a compact support.

Define a process 𝑌 (𝑡)

𝑌 (𝑡) = 𝑋(𝑡0) +

∫ 𝑡

𝑡0

𝑏(𝑠, 𝑌 (𝑠))𝑑𝑠+

∫ 𝑡

𝑡0

𝑎
1
2 (𝑠, 𝑌 (𝑠))𝑑𝑊𝑠 +

∫ 𝑡

𝑡0

∫
∥𝑦∥≤1

𝑦𝑁(𝑑𝑠𝑑𝑦)

+

∫ 𝑡

𝑡0

∫
∥𝑦∥>1

𝑦𝑁(𝑑𝑠𝑑𝑦)

where 𝑊𝑡 is an ℝ𝑛-valued Brownian motion. Then 𝑌 (𝑡) is a Markovian projection of

the semimartingale 𝑋(𝑡), 𝑌 (𝑡) and 𝑋(𝑡) have the same marginal distributions for any

0 ≤ 𝑡 ≤ 𝑇 .

4.2 Forward equation

Suppose 𝑋(𝑡) is a semimartingale with generator 𝐴, 𝑌 (𝑡) is the process defined in

Theorem 4.1 with generator 𝐴. We want to show that the density 𝑝𝑋(𝑡0, 𝑥0; 𝑡, 𝑥) of

𝑋(𝑡) and 𝑝𝑌 (𝑡0, 𝑥0; 𝑡, 𝑦) are solutions to the forward equation defined by 𝐴.

Definition 4.2. The generator 𝐴𝑡, 𝑡 ≥ 0 of a (time-inhomogeneous) process (𝑌 (𝑡))𝑡≥0

is defined by

𝐴𝑡0𝑓(𝑥) := lim
𝑡→𝑡0

𝐸𝑥[𝑓(𝑌 (𝑡))]− 𝑓(𝑥)

𝑡
, 𝑥 ∈ ℝ𝑛, 𝑡0 ≥ 0,

where 𝐸𝑥 is the expectation with respect to the probability law for 𝑌 (𝑡) starting at

𝑌 (𝑡0) = 𝑥. The set of functions 𝑓 : ℝ𝑛 → ℝ such that the limit exists at (𝑡0, 𝑥) is

denoted by D𝐴𝑡0
(𝑥), while D𝐴 is the set of functions for which the limit exists for all

𝑥 ∈ ℝ𝑛 and 𝑡0 ≥ 0.

We assume 𝐴 has the property that D𝐴 ⊂ 𝐶∞(𝑅𝑛, 𝑅) is dense, where 𝐶∞(𝑅𝑛, 𝑅) is

the set of continuous functions from 𝑅𝑛 to 𝑅 which vanish at infinity.

If 𝑌 (𝑡) also obeys the conditions

(i) 𝑌 (𝑡) is time-homogeneous;

(ii) (𝐴,D𝐴) satisfies the positive maximum principle;

(iii) 𝑅(𝜆−𝐴) is dense in 𝐶∞(𝑅𝑛, 𝑅) for some 𝜆 > 0;
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then by [18, Theorem 4.5.3], 𝐴 is a generator of a Feller semigroup and 𝑌 (𝑡) is a

time-homogeneous Feller process.

The Courrège theorem [18, Theorem 4.5.21] shows that if𝐴 : 𝐶∞(𝑅𝑛, 𝑅) → 𝐶(𝑅𝑛, 𝑅)

is a linear operator satisfying the positive maximum principle. Then there exist func-

tions 𝑎, 𝑏, 𝑐 : 𝑅𝑛 → 𝑅 and a kernel 𝜇 such that for 𝑢 ∈ 𝐶∞
0 (𝑅𝑛, 𝑅)

𝐴𝑢(𝑥) =
𝑛∑

𝑘,𝑙=1

𝑎𝑘𝑙(𝑥)
∂2𝑢(𝑥)

∂𝑥𝑘∂𝑥𝑙
+

𝑛∑
𝑗=1

𝑏𝑗(𝑥)
∂𝑢(𝑥)

∂𝑥𝑗
+ 𝑐(𝑥)𝑢(𝑥)

+

∫
𝑅𝑛

{𝑢(𝑦)− 𝜒(𝑦 − 𝑥)𝑢(𝑥)−
𝑛∑

𝑗=1

∂𝑢(𝑥)

∂𝑥𝑗
𝜒(𝑦 − 𝑥)(𝑦𝑗 − 𝑥𝑗)× 𝜇(𝑥, 𝑑𝑦),

where 𝜒 ∈ 𝐶∞(𝑅𝑛, 𝑅) with 0 ≤ 𝜒 ≤ 1 and 𝜒∣𝐵1(0) = 1.

The Courrège theorem gives us an example of the structure of 𝐴. Conversely, when

𝐴 has the structure described in the Courrège theorem, then 𝐴 is the generator of a

time-homogeneous Feller process.

Proposition 4.3. Let 𝑋 be a semimartingale with decomposition (4.2) and satisfy the

assumptions in Theorem 4.1. If 𝑓 ∈ 𝐶2
0 (ℝ𝑛), that is 𝑓 is a 𝐶2 function with compact

support on ℝ𝑛, then 𝑓 ∈ D𝐴 and the generator of 𝑌 (𝑡) is

𝐴𝑡𝑓(𝑥) =
𝑛∑

𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑓

∂𝑥𝑖𝑥𝑗

+

∫
ℝ𝑛

(
𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦.

Proof. Since 𝑋 is a semimartingale, with 𝑋(𝑡−) = 𝑥, the Itô formula gives

𝑓(𝑋𝑇 )− 𝑓(𝑥)

=

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝑑𝑋(𝑠) +

1

2

𝑛∑
𝑖,𝑗=1

∫ 𝑇

𝑡

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))𝑑[𝑋𝑖, 𝑋𝑗 ]𝑠

+
∑

0≤𝑠≤𝑇

[𝑓(𝑋(𝑠−) +△𝑋(𝑠))− 𝑓(𝑋(𝑠−))−
𝑛∑

𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋(𝑠−))△𝑋(𝑠)𝑖]

=

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅

[
𝛽(𝑠)𝑑𝑠+ 𝜎(𝑠)𝑑𝑊 (𝑠) +

∫
∥𝑦∥≤1

𝑦𝑀(𝑑𝑠𝑑𝑦) +

∫
∥𝑦∥>1

𝑦𝑀(𝑑𝑠𝑑𝑦)

]

+
1

2

𝑛∑
𝑖,𝑗=1

∫ 𝑇

𝑡

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))𝑑[𝑋𝑖, 𝑋𝑗 ]𝑠

+
∑

0≤𝑡≤𝑇

[
𝑓(𝑋(𝑠−) +△𝑋(𝑠))− 𝑓(𝑋(𝑠−))−

𝑛∑
𝑖=1

∂

∂𝑥𝑖
𝑓(𝑋(𝑠−))△𝑋(𝑠)𝑖

]
.
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Simplifying, we obtain

𝑓(𝑋𝑇 )− 𝑓(𝑥)

=

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝛽(𝑠)𝑑𝑠+

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝜎(𝑠)𝑑𝑊 (𝑠)

+
1

2

∫ 𝑇

𝑡

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))(𝜎(𝑠)𝜎𝑇 (𝑠))𝑖𝑗𝑑𝑠+

∫ 𝑇

𝑡

∫
∥𝑦∥≤1

𝑦 ⋅ ∇𝑓(𝑋(𝑠−))𝑀(𝑑𝑠𝑑𝑦)

+

∫ 𝑇

𝑡

∫
∥𝑦∥>1

𝑦 ⋅ ∇𝑓(𝑋(𝑠−))𝑀(𝑑𝑠𝑑𝑦)

+

∫ 𝑇

𝑡

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝑀(𝑑𝑠𝑑𝑦).

We add the last two terms in the preceding equation and get

𝑓(𝑋𝑇 )− 𝑓(𝑥)

=

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝛽(𝑠)𝑑𝑠+

∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝜎(𝑠)𝑑𝑊 (𝑠)

+
1

2

∫ 𝑇

𝑡

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))(𝜎(𝑠)𝜎𝑇 (𝑠))𝑖𝑗𝑑𝑠+

∫ 𝑇

𝑡

∫
∥𝑦∥≤1

𝑦 ⋅ ∇𝑓(𝑋(𝑠−))𝑀(𝑑𝑠𝑑𝑦)

+

∫ 𝑇

𝑡

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 1∥𝑦∥≤1𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝑀(𝑑𝑠𝑑𝑦).

Let 𝐸𝑥 denote 𝐸[⋅∣𝑋(𝑡−) = 𝑥], when taking expectations involving𝑋 or 𝐸[⋅∣𝑌 (𝑡−) = 𝑥]

when taking expectations involving 𝑌 . Taking expectations on both sides, we obtain

𝐸𝑥[𝑓(𝑋𝑇 )]

=𝑓(𝑥) + 𝐸𝑥

[∫ 𝑇

𝑡
∇𝑓(𝑋(𝑠−)) ⋅ 𝛽(𝑠)𝑑𝑠

]
+

1

2
𝐸𝑥

⎡⎣∫ 𝑇

𝑡

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))(𝜎(𝑠)𝜎𝑇 (𝑠))𝑖𝑗𝑑𝑠

⎤⎦
+ 𝐸𝑥

[∫ 𝑇

𝑡

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 1∥𝑦∥≤1𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝑚(𝑠, 𝑦)𝑑𝑠𝑑𝑦

]
.

We apply Fubini theorem and find that

𝐸𝑥[𝑓(𝑋𝑇 )]

=𝑓(𝑥) +

∫ 𝑇

𝑡
𝐸𝑥[∇𝑓(𝑋(𝑠−)) ⋅ 𝛽(𝑠)]𝑑𝑠

+
1

2

∫ 𝑇

𝑡

𝑛∑
𝑗,𝑘=1

𝐸𝑥

[
∂2

∂𝑥𝑗∂𝑥𝑘
𝑓(𝑋(𝑠−))(𝜎(𝑠)𝜎𝑇 (𝑠))𝑗𝑘

]
𝑑𝑠

+

∫ 𝑇

𝑡
𝐸𝑥[

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 1∥𝑦∥≤1𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝑚(𝑠, 𝑦)]𝑑𝑠𝑑𝑦.
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Using iterated expectations conditioned on 𝑋(𝑠−), we see that

𝐸𝑥[𝑓(𝑋𝑇 )]

=𝑓(𝑥) +

∫ 𝑇

𝑡
𝐸𝑥[∇𝑓(𝑋(𝑠−)) ⋅ 𝐸𝑥[𝛽(𝑠)∣𝑋(𝑠−)]]𝑑𝑠

+
1

2

∫ 𝑇

𝑡

𝑛∑
𝑗,𝑘=1

𝐸𝑥

[
∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))𝐸𝑥[(𝜎(𝑠)𝜎𝑇 (𝑠))𝑖𝑗 ∣𝑋(𝑠−)]

]
𝑑𝑠

+

∫ 𝑇

𝑡
𝐸𝑥[𝐸𝑥[

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))

− 1∥𝑦∥≤1𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝑚(𝑠, 𝑦)𝑑𝑦∣𝑋(𝑠−)]]𝑑𝑠.

Simplifying gives

𝐸𝑥[𝑓(𝑋𝑇 )]

=𝑓(𝑥) +

∫ 𝑇

𝑡
𝐸𝑥[∇𝑓(𝑋(𝑠−)) ⋅ 𝑏(𝑋(𝑠−), 𝑠)]𝑑𝑠

+
1

2

∫ 𝑇

𝑡

𝑛∑
𝑖,𝑗=1

𝐸𝑥[
∂2

∂𝑥𝑖∂𝑥𝑗
𝑓(𝑋(𝑠−))𝑎𝑖𝑗(𝑋(𝑠−), 𝑠)]𝑑𝑠

+

∫ 𝑇

𝑡
𝐸𝑥[

∫
ℝ𝑛

(𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 1∥𝑦∥≤1𝑦 ⋅ ∇𝑓(𝑋(𝑠−)))𝜈(𝑠, 𝑦,𝑋(𝑠−))𝑑𝑦]𝑑𝑠.

Therefore,

𝐸𝑥[𝑓(𝑋𝑇 )] (4.3)

=𝑓(𝑥) + 𝐸𝑥
[ ∫ 𝑇

𝑡

( 𝑛∑
𝑖=1

𝑏𝑖(𝑋(𝑠−), 𝑠)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑎𝑖𝑗(𝑋(𝑠−), 𝑠)

∂2𝑓

∂𝑥𝑖𝑥𝑗

+

∫
ℝ𝑛

(
𝑓(𝑋(𝑠−) + 𝑦)− 𝑓(𝑋(𝑠−))− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑠, 𝑦,𝑋(𝑠−))𝑑𝑦

)
𝑑𝑠
]
.

Similarly, suppose the process 𝑌 (𝑇 ) starts with 𝑌 (𝑡−) = 𝑥, then

𝐸𝑥[𝑓(𝑌𝑇 )]

=𝑓(𝑥) + 𝐸𝑥
[ ∫ 𝑇

𝑡

( 𝑛∑
𝑖=1

𝑏𝑖(𝑌 (𝑠−), 𝑠)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
𝑎𝑖𝑗(𝑌 (𝑠−), 𝑠)

∂2𝑓

∂𝑥𝑖𝑥𝑗

+

∫
ℝ𝑛

(
𝑓(𝑌 (𝑠−) + 𝑦)− 𝑓(𝑌 (𝑠−))− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑠, 𝑦, 𝑌 (𝑠−))𝑑𝑦

)
𝑑𝑠
]
.
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Then, by Definition 4.2, we get

𝐴𝑠𝑓(𝑥) =

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑠)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑠)
∂2𝑓

∂𝑥𝑖𝑥𝑗
(4.4)

+

∫
ℝ𝑛

(𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖
)𝜈(𝑠, 𝑦, 𝑥)𝑑𝑦,

and

𝐸𝑥[𝑓(𝑌 (𝑇 ))] = 𝑓(𝑥) + 𝐸𝑥
[ ∫ 𝑇

𝑡
𝐴𝑠𝑓(𝑌 (𝑠−))𝑑𝑠

]
. (4.5)

And also, by equation (4.3), we have

𝐸𝑥[𝑓(𝑋(𝑇 ))] = 𝑓(𝑥) + 𝐸𝑥
[ ∫ 𝑇

𝑡
𝐴𝑠𝑓(𝑋(𝑠−))𝑑𝑠

]
. (4.6)

Since 𝑌 (𝑡) = 𝑌 (𝑡−) with probability one, we have

lim
𝑇↓𝑡

𝐸𝑥[𝑓(𝑌 (𝑇 ))∣𝑌 (𝑡−) = 𝑥]

𝑇 − 𝑡
= (𝐴𝑡𝑓)(𝑥),

and similarly for 𝑋(𝑡),

lim
𝑇↓𝑡

𝐸𝑥[𝑓(𝑋(𝑇 ))∣𝑋(𝑡−) = 𝑥]

𝑇 − 𝑡
= (𝐴𝑡𝑓)(𝑥),

since 𝑋(𝑡) = 𝑋(𝑡−) with probability one.

Now we can derive the forward equation.

Proposition 4.4. (Forward equation)

Let 𝑋 be a semimartingale with decomposition (4.2) on ℝ𝑛 with generator

𝐴𝑡𝑓(𝑥) =

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑓

∂𝑥𝑖𝑥𝑗

+

∫
ℝ𝑛

(𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖
)𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦,

for 𝑓 ∈ 𝐶2
0 (ℝ𝑛), and assume that the probability measure of 𝑋(𝑡) has a density 𝑝𝑋(𝑥, 𝑡),

i.e.

𝐸[𝑓(𝑋(𝑡))] =

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥, 𝑓 ∈ 𝐶2
0 .
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Then 𝑝𝑋(𝑥, 𝑡) satisfies the forward equation

𝐴𝑡
∗
𝑝 =

∂𝑝

∂𝑡
on ℝ𝑛 × (0,∞),

where 𝐴𝑡
∗
is the formal adjoint of 𝐴𝑡 and is given by

𝐴𝑡
∗
𝑔(𝑥) =

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑡)𝑔)−

𝑛∑
𝑖=1

∂

∂𝑥𝑖
(𝑏𝑖(𝑥, 𝑡)𝑔)

+

∫
ℝ𝑛

(𝑔(𝑥− 𝑦, 𝑡)𝜈(𝑡, 𝑦, 𝑥− 𝑦)− 𝑔(𝑥)𝜈(𝑡, 𝑦, 𝑥)

− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂

∂𝑥𝑖
(𝑔𝜈(𝑡, 𝑦, 𝑥)))𝑑𝑦.

Proof. For 𝑓 ∈ 𝐶2
0 (ℝ𝑛), we have

𝐸[𝑓(𝑋(𝑡))] = 𝑓(𝑋(𝑡0)) + 𝐸
[ ∫ 𝑡

𝑡0

𝐴𝑡𝑓(𝑋(𝑠−))𝑑𝑠
]
.

Since 𝑝𝑋(𝑥, 𝑡) is the probability density function of 𝑋(𝑡), we can rewrite this equation

as ∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥 = 𝑓(𝑋(𝑡0)) +

∫ 𝑡

𝑡0

∫
ℝ𝑛

𝐴𝑡𝑓(𝑥)𝑝(𝑥, 𝑠)𝑑𝑥𝑑𝑠.

Taking derivatives with respect to 𝑡 of both sides of the preceding equation, we get

∂

∂𝑡

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥

=

∫
ℝ𝑛

(
𝐴𝑡𝑓(𝑥)

)
𝑝𝑋(𝑥, 𝑡)𝑑𝑥

=

∫
ℝ𝑛

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑓

∂𝑥𝑖
𝑝𝑋(𝑥, 𝑡) +

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑓

∂𝑥𝑖𝑥𝑗
𝑝𝑋(𝑥, 𝑡)

+ (𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖
)𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦𝑝𝑋(𝑥, 𝑡)𝑑𝑥.

Integrating by parts on the right hand side, we get

∂

∂𝑡

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥

=

∫
ℝ𝑛

(
−

𝑛∑
𝑖=1

𝑓(𝑥)
∂

∂𝑥𝑖
(𝑏(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡)) +

1

2

𝑛∑
𝑖,𝑗=1

𝑓(𝑥)
∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡))

)
𝑑𝑥

+

∫
ℝ𝑛

∫
ℝ𝑛

(
𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑦𝑑𝑥.
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Consider the last integral in the preceding equation. For the first term, we need to

shift 𝑥 by −𝑦, and for the last term, we integrate by parts once,∫
ℝ𝑛

∫
ℝ𝑛

(
𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑦𝑑𝑥

=

∫
ℝ𝑛

∫
ℝ𝑛

(𝑓(𝑥)𝜈(𝑡, 𝑦, 𝑥− 𝑦)𝑝(𝑥− 𝑦, 𝑡)− 𝑓(𝑥)𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡)

+ 𝑓(𝑥)1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂

∂𝑥𝑖
(𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡))𝑑𝑦)𝑑𝑥.

Thus,

∂

∂𝑡

∫
ℝ𝑛

𝑓(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥

=

∫
ℝ𝑛

𝑓(𝑥)

⎛⎝−
𝑛∑

𝑖=1

∂

∂𝑥𝑖
(𝑏𝑖(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡)) +

1

2

𝑛∑
𝑖,𝑗=1

∂2

∂𝑥𝑖∂𝑥𝑗
(𝑎𝑖𝑗(𝑥, 𝑡)𝑝𝑋(𝑥, 𝑡))

⎞⎠ 𝑑𝑥

+

∫
ℝ𝑛

(𝜈(𝑡, 𝑦, 𝑥− 𝑦)𝑝(𝑥− 𝑦, 𝑡)− 𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡)

+ 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂

∂𝑥𝑖
(𝜈(𝑡, 𝑦, 𝑥)𝑝𝑋(𝑥, 𝑡))𝑑𝑦)𝑑𝑥

=

∫
ℝ𝑛

𝑓(𝑥)(𝐴𝑡
∗
𝑝𝑋)(𝑥, 𝑡)𝑑𝑥.

We obtain∫
ℝ𝑛

𝑓(𝑥)
∂

∂𝑡
𝑝𝑋(𝑥, 𝑡)𝑑𝑥 =

∫
ℝ𝑛

(
𝐴𝑡𝑓

)
(𝑥)𝑝𝑋(𝑥, 𝑡)𝑑𝑥 =

∫
ℝ𝑛

𝑓(𝑥)
(
𝐴𝑡

∗
𝑝𝑋

)
(𝑥, 𝑡)𝑑𝑥,

which we can write it in terms of the 𝐿2 inner product,

⟨𝑓, ∂𝑝𝑋
∂𝑡

⟩ = ⟨𝐴𝑡𝑓, 𝑝𝑋⟩ = ⟨𝑓,𝐴𝑡
∗
𝑝𝑋⟩,

where 𝐴𝑡
∗
is the formal adjoint of 𝐴𝑡 and 𝑝𝑋(𝑥, 𝑡) is a solution of

∂𝑝𝑋
∂𝑡

= 𝐴𝑡
∗
𝑝𝑋(𝑥, 𝑡)

in the weak sense as in [12, Section 7.2].

Similarly, 𝑝(𝑦, 𝑡), the density function of the process 𝑌 (𝑡) also satisfies the equation

∂𝑝𝑌
∂𝑡

= 𝐴𝑡
∗
𝑝𝑌 (𝑦, 𝑡)
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4.3 Construction of fundamental solutions

In this section, we will consider the fundamental solutions of the forward equation

defined by the generator 𝐴.

The construction of fundamental solutions of parabolic differential equations is de-

scribed by Friedman in [14, Sections 1.2 & 1.4] in the case of bounded domains 𝑈 ⋐ 𝑅𝑛

and extended to unbounded domains 𝑈 ⊂ 𝑅𝑛 (including 𝑅𝑛) in [14, Section 1.6]. We

follow his approach and construct fundamental solutions of the forward equation we

derived in the previous section, noting that the forward equation is a partial integro-

differential equation. Construction of fundamental solutions of integro-differential op-

erators of this kind have also been described by Garroni and Menaldi [?, Theorem

4.3.6] for bounded domains in 𝑅𝑛 and extended to the case of unbounded domains (in

particular, 𝑅𝑛) by [?, §4.3.3].
Define 𝐿∗ by the expression

𝐿∗ :=
∂

∂𝑡
−𝐴𝑡

∗
.

we simply this expression before we proceed:

𝐿∗𝑝(𝑥, 𝑡) =𝑝𝑡(𝑥, 𝑡) +

𝑛∑
𝑖=1

(𝑏𝑖(𝑥, 𝑡)𝑝(𝑥, 𝑡))𝑥𝑖 −
1

2

𝑛∑
𝑖,𝑗=1

(𝑎𝑖𝑗(𝑥, 𝑡)𝑝(𝑥, 𝑡))𝑥𝑖𝑥𝑗

−
∫
ℝ𝑛

𝑝(𝑥− 𝑦, 𝑡)𝜈(𝑡, 𝑦, 𝑥− 𝑦)− 𝑝(𝑥, 𝑡)𝜈(𝑡, 𝑦, 𝑥)

+ 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖(𝜈(𝑡, 𝑦, 𝑥)𝑝(𝑥, 𝑡))𝑥𝑖𝑑𝑦.

This leads to

𝐿∗𝑝(𝑥, 𝑡) =𝑝𝑡(𝑥, 𝑡)− 1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝑝𝑥𝑖𝑥𝑗 (𝑥, 𝑡)

+
𝑛∑

𝑖=1

(𝑏𝑖(𝑥, 𝑡)− 1

2

𝑛∑
𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝑥𝑗 )𝑝𝑥𝑖(𝑥, 𝑡) +
𝑛∑

𝑖=1

(𝑏𝑖(𝑥, 𝑡)𝑥𝑖 −
1

2

𝑛∑
𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝑥𝑖𝑥𝑗 )𝑝(𝑥, 𝑡)

−
∫
ℝ𝑛

𝑝(𝑥− 𝑦, 𝑡)𝜈(𝑡, 𝑦, 𝑥− 𝑦)𝑑𝑦 + 𝑝(𝑥, 𝑡)

∫
ℝ𝑛

𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦

− 𝑝(𝑥, 𝑡)

∫
ℝ𝑛

1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖𝜈(𝑡, 𝑦, 𝑥)𝑥𝑖𝑑𝑦 − 𝑝𝑥𝑖(𝑥, 𝑡)

∫
ℝ𝑛

1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦.
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Denote

𝐴𝑡𝑖𝑗(𝑥, 𝑡) :=
1

2
𝑎𝑖𝑗(𝑥, 𝑡),

𝐵𝑖(𝑥, 𝑡) :=𝑏𝑖(𝑥, 𝑡)− 1

2

𝑛∑
𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝑥𝑗

∫
ℝ𝑛

1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦,

𝐶(𝑥, 𝑡) :=

𝑛∑
𝑖=1

(𝑏𝑖(𝑥, 𝑡)𝑥𝑖 −
1

2

𝑛∑
𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝑥𝑖𝑥𝑗 )

+

∫
ℝ𝑛

𝜈(𝑡, 𝑦, 𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖𝜈(𝑡, 𝑦, 𝑥)𝑥𝑖𝑑𝑦.

Then,

𝐿∗𝑝(𝑥, 𝑡) =𝑝𝑡(𝑥, 𝑡)−
𝑛∑

𝑖,𝑗=1

𝐴𝑡𝑖𝑗(𝑥, 𝑡)𝑝𝑥𝑖𝑥𝑗 (𝑥, 𝑡) +

𝑛∑
𝑖=1

𝐵𝑖(𝑥, 𝑡)𝑝𝑥𝑖(𝑥, 𝑡)

+ 𝐶(𝑥, 𝑡)𝑝(𝑥, 𝑡)−
∫
ℝ𝑛

𝑝(𝑧, 𝑡)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧,

Consider the equation

𝐿∗𝑝 =0, (4.7)

where the coefficients 𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐶 and 𝑛 are defined on 𝑈𝑇 ≡ �̄� × [0, 𝑇 ]. The domain

𝑈 ⊂ ℝ𝑛 can be unbounded and includes the important case 𝑈 = ℝ𝑛. Throughout this

section we assume:

(A3) 𝐿∗ is parabolic in 𝑈 .

(A4) The coefficients of 𝐿∗ are continuous functions in 𝑈 and, in addition, for all

(𝑥, 𝑡), (𝑥0, 𝑡0) ∈ 𝑈 , there exist constants 0 < 𝑀 , 0 < 𝛼 < 1 such that

∣𝐴𝑖𝑗(𝑥, 𝑡)−𝐴𝑖𝑗(𝑥− 0, 𝑡0)∣ ≤ 𝑀
(∣𝑥− 𝑥0∣𝛼 + ∣𝑡− 𝑡0∣𝛼/2

)
,

∣𝐵𝑖(𝑥, 𝑡)−𝐵𝑖(𝑥− 0, 𝑡0)∣ ≤ 𝑀 ∣𝑥− 𝑥0∣𝛼,

∣𝐶(𝑥, 𝑡)− 𝐶(𝑥− 0, 𝑡0)∣ ≤ 𝑀 ∣𝑥− 𝑥0∣𝛼.

(A5) 𝜈(𝑡, 𝑦, 𝑥) is compactly supported, namely, there exists a constant 𝑀1 such that

𝜈(𝑡, 𝑦, 𝑥) = 0 if ∣𝑥∣ ≥ 𝑀1 or ∣𝑦∣ ≥ 𝑀1.

We define the fundamental solutions of a forward equation follows, by analogy with the

standard definition in [14, Section 1.1] of a fundamental solution for a parabolic partial

differential equation.
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Definition 4.3. (Fundamental solutions of a forward equation)

A fundamental solution of a forward equation 𝐿∗𝑝 = 0 in 𝑈𝑇 is a function 𝑝(𝑥, 𝑡; 𝑦, 𝜏)

defined for all (𝑥, 𝑡), (𝑦, 𝜏) ∈ 𝑈𝑇 , 𝑡 > 𝜏 , which satisfies the following conditions:

(i) For fixed (𝑦, 𝜏) ∈ 𝑈𝑇 , it satisfies, as a function of (𝑥, 𝑡), 𝑥 ∈ 𝑈 , 𝜏 < 𝑡 < 𝑇 , the

equation 𝐿∗𝑝 = 0;

(ii) For every continuous function 𝑓 in �̄� obeying the growth condition in Definition

3.1, if 𝑥 ∈ 𝑈 then

lim
𝑡→𝜏

∫
𝑈
𝑝(𝑥, 𝑡; 𝑦, 𝜏)𝑓(𝑦)𝑑𝑦 = 𝑓(𝑥).

For a Itô process, the operator 𝐿∗ is

𝐿∗𝑝 = 𝑝𝑡 −
𝑛∑

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝑝𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝑝𝑥𝑖 + 𝐶(𝑥, 𝑡)𝑝,

for a semimartingale, the operator 𝐿∗ is

𝐿∗𝑝 = 𝑝𝑡 −
𝑛∑

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝑝𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝑝𝑥𝑖 + 𝐶(𝑥, 𝑡)𝑝−
∫
ℝ𝑛

𝑝(𝑧, 𝑡)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧.

We adapt the parametrix method in [14, Section 1.2] for the construction of funda-

mental solutions of linear second-order parabolic PDEs to the construction of funda-

mental solutions of our linear second-order parabolic PIDE; see also [?, Chapter V] and

[?, Section IV.11]. Existence of fundamental solutions for parabolic PIDEs of the kind

examined in this thesis is also proved in [?], using related methods. The construction of

fundamental solutions for our parabolic PIDE closely mirrors that of parabolic PDEs

due to the assumption on the density defining the integral term.

First we introduce the function 𝐺(𝑥, 𝑡; 𝑦, 𝜏), for 𝑡 > 𝜏 ,

𝐺(𝑥, 𝑡; 𝑦, 𝜏) = 𝐶(𝑦, 𝜏)
1

(𝑡− 𝜏)
𝑛
2

exp

⎡⎣ −1

4(𝑡− 𝜏)

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑦, 𝜏)(𝑥𝑖 − 𝑦𝑖)(𝑥𝑗 − 𝑦𝑗)

⎤⎦ ,

where

𝐶(𝑦, 𝜏) =
1

(2
√
𝜋)𝑛

[det(𝐴𝑖𝑗(𝑦, 𝜏))]
1
2 ,

and 𝐴𝑖𝑗(𝑥, 𝑡) is the inverse matrix to 𝐴𝑖𝑗(𝑥, 𝑡). The function 𝐺 is called the parametrix.
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For each fixed (𝑦, 𝜏), the function 𝐺(𝑥, 𝑡; 𝑦, 𝜏) satisfies the following equation with

“constant coefficients”,

𝐿∗
0𝑝(𝑥, 𝑡) := 𝑝𝑡 −

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑦, 𝜏)𝑝𝑥𝑖𝑥𝑗 = 0,

and also satisfies the following proposition.

Proposition 4.5. ([14, Section 1.2 Theorem 1])

Let 𝑓 be a continuous function in 𝑈𝑇 obeying the growth condition in Definition 3.1.

Then

𝐽(𝑥, 𝑡, 𝜏) :=

∫
𝑈
𝐺(𝑥, 𝑡; 𝑦, 𝜏)𝑓(𝑦, 𝜏)𝑑𝑦

is continuous function in (𝑥, 𝑡, 𝜏), 𝑥 ∈ �̄� , 0 ≤ 𝜏 < 𝑇 and

lim
𝑡→𝜏

𝐽(𝑥, 𝑡, 𝜏) = 𝑓(𝑥, 𝑡),

uniformly with respect to (𝑥, 𝑡), 𝑥 ∈ 𝑆, 0 < 𝑡 ≤ 𝑇 , where 𝑆 is any closed subset of 𝑈 .

From now on, we use 𝑝 to denote the fundamental solutions of the forward equation,

because 𝑝 is traditional for transitional probability density function. It follows from

Proposition 4.5 that property (ii) in Definition 4.3 of the fundamental solution is also

satisfied for 𝐺 = 𝑝.

In order to construct a fundamental solution for 𝐿∗𝑝 = 0, we view 𝐿∗
0 as a first

approximation to 𝐿∗ and we view 𝐺 as the principal part of the fundamental solution

𝐺. We then try to find 𝑝 in the form

𝑝(𝑥, 𝑡; 𝑦, 𝜏) = 𝐺(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑡

𝜏

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎,

where Φ is to be determined by the condition that 𝑝 satisfies the equation ,

0 = 𝐿∗𝑝(𝑥, 𝑡; 𝑦, 𝜏)

= 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) + 𝐿∗
∫ 𝑡

𝜏

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.

We first consider the term 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏). For fixed (𝑦, 𝜏), 𝐿∗
0𝐺(𝑥, 𝑡; 𝑦, 𝜏) = 0, and
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so

𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) = 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏)− 𝐿∗
0𝐺(𝑥, 𝑡; 𝑦, 𝜏) (4.8)

= 𝐺𝑡 −
𝑛∑

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝐺𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝐺𝑥𝑖 + 𝐶(𝑥, 𝑡)𝐺 (4.9)

−
∫
ℝ𝑛

𝐺(𝑡, 𝑧; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 −𝐺𝑡 +

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑦, 𝜏)𝐺𝑥𝑖𝑥𝑗 (4.10)

=−
𝑛∑

𝑖,𝑗=1

(𝐴𝑖𝑗(𝑥, 𝑡)−𝐴𝑖𝑗(𝑦, 𝜏))𝐺𝑥𝑖𝑥𝑗 +

𝑛∑
𝑖=1

𝐵𝑖(𝑥, 𝑡)𝐺𝑥𝑖 + 𝐶(𝑥, 𝑡)𝐺

(4.11)

−
∫
𝑈
𝐺(𝑡, 𝑧; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧. (4.12)

We need the following lemma to calculate

𝐿∗
∫ 𝑡

𝜏

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.

Lemma 4.1. ([14, Section 1.3 Lemma 1 ])

Let 𝑓 be a continuous function in 𝑈 obeying the growth condition in Definition 3.1 and

locally Hölder continuous in 𝑥 ∈ 𝑈 , uniformly with respect to 𝑡, and

𝑉 (𝑥, 𝑡) =

∫ 𝑡

0

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)𝑓(𝜂, 𝜎)𝑑𝜂𝑑𝜎.

Then

∂

∂𝑥𝑖
𝑉 (𝑥, 𝑡) =

∫ 𝑇

0

∫
𝑈

∂

∂𝑥𝑖
𝐺(𝑥, 𝑡; 𝜂, 𝜎)𝑓(𝜂, 𝜎)𝑑𝜂𝑑𝜎,

∂2

∂𝑥𝑖∂𝑥𝑗
𝑉 (𝑥, 𝑡) =

∫ 𝑇

0

∫
𝑈

∂2

∂𝑥𝑖∂𝑥𝑗
𝐺(𝑥, 𝑡; 𝜂, 𝜎)𝑓(𝜂, 𝜎)𝑑𝜂𝑑𝜎,

∂

∂𝑡
𝑉 (𝑥, 𝑡) = 𝑓(𝑥, 𝑡) +

∫ 𝑇

0

∫
𝑈

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝜂, 𝜎)
∂2

∂𝑥𝑖∂𝑥𝑗
𝐺(𝑥, 𝑡; 𝜂, 𝜎)𝑓(𝜂, 𝜎)𝑑𝜂𝑑𝜎.

If Φ is such that Lemma 4.1 applies to 𝑓(𝑥, 𝑡) := Φ(𝑥, 𝑡; 𝑦, 𝜏), then

𝑉 (𝑥, 𝑡) =

∫ 𝑡

𝜏

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.
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Consequently,

𝐿∗𝑉 (𝑥, 𝑡) = 𝑉𝑡 −
𝑛∑

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝑉𝑥𝑖𝑥𝑗 +

𝑛∑
𝑖=1

𝐵𝑖(𝑥, 𝑡)𝑉𝑥𝑖 + 𝐶(𝑥, 𝑡)𝑉

−
∫
ℝ𝑛

𝑉 (𝑡, 𝑧)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧

= Φ(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑇

0

∫
𝑈

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝜂, 𝜎)
∂2

∂𝑥𝑖∂𝑥𝑗
𝐺(𝑥, 𝑡; 𝑦, 𝜏)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎

+

∫ 𝑇

𝜏

∫
𝑈
−

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝐺𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝐺𝑥𝑖 + 𝐶(𝑥, 𝑡)𝐺𝑑𝜂𝑑𝜎

−
∫ 𝑇

𝜏

∫
𝑈

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝜂𝑑𝜎𝑑𝑧.

Therefore,

𝐿∗𝑉 (𝑥, 𝑡) = Φ(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑇

𝜏

∫
𝑈

{
− [

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)−𝐴𝑖𝑗(𝜂, 𝜎)]𝐺𝑥𝑖𝑥𝑗 (4.13)

+
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝐺𝑥𝑖 + 𝐶(𝑥, 𝑡)𝐺𝑑𝜂𝑑𝜎 (4.14)

−
∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧

}
𝑑𝜂𝑑𝜎 (4.15)

= Φ(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑇

𝜏

∫
𝑈
𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎. (4.16)

Combining (4.8) and (4.13) together, we get

0 = 𝐿∗𝑝(𝑥, 𝑡; 𝑦, 𝜏)

= 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) + 𝐿∗𝑉 (𝑥, 𝑡)

= 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) + Φ(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑇

𝜏

∫
𝑈
𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.

Therefore,

−Φ(𝑥, 𝑡; 𝑦, 𝜏) = 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑇

𝜏

∫
𝑈
𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎. (4.17)

Thus, for each fixed (𝑦, 𝜏), the function Φ(𝑥, 𝑡; 𝑦, 𝜏) is a solution of a Volterra integral

equation with singular kernel 𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏).

Before we proceed to prove the existence of the fundamental solution, we give two

useful lemmas. Lemma 4.2 is modeled after [14, Inequality (4.3), Section 1.4], but we

need to evaluate an extra term, namely the integral term∫
𝑈
𝐺(𝑡, 𝑧; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧
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in the PIDE.

Lemma 4.2. Let the notation be as above. Then,

∣𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
(4.18)

where 𝜇, 𝛼 are constants, 1− 𝛼
2 < 𝜇 < 1.

Proof. From the definition of 𝐿∗, we have

𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) =−
𝑛∑

𝑖,𝑗=1

(𝐴𝑖𝑗(𝑥, 𝑡)−𝐴𝑖𝑗(𝑦, 𝜏))𝐺𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝐺𝑥𝑖 + 𝐶(𝑥, 𝑡)𝐺

−
∫
𝑈
𝐺(𝑡, 𝑧; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧,

where

𝐺(𝑥, 𝑡; 𝑦, 𝜏) = 𝐶(𝑦, 𝜏)
1

(𝑡− 𝜏)
𝑛
2

exp

⎡⎣ −1

4(𝑡− 𝜏)

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑦, 𝜏)(𝑥𝑖 − 𝑦𝑖)(𝑥𝑗 − 𝑦𝑗)

⎤⎦ ,

and

𝐶(𝑦, 𝜏) =
1

(2
√
𝜋)𝑛

[det(𝐴𝑖𝑗(𝑦, 𝜏))]
1
2 .

Here (𝐴𝑖𝑗) is the inverse matrix of (𝐴𝑖𝑗) and satisfies the ellipticity condition, that is,

there exists a constant 𝜆 > 0 such that

𝑛∑
𝑖,𝑗=1

𝐴𝑖𝑗(𝑥𝑖 − 𝑦𝑖)(𝑥𝑗 − 𝑦𝑗) ≥ 𝜆∣𝑥− 𝑦∣2.

For fixed (𝑦, 𝜏), if 0 < 𝜈 < 𝑛
2 , then

𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const

(𝑡− 𝜏)
𝑛
2

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
(4.19)

=
const

(𝑡− 𝜏)𝜈
1

∣𝑥− 𝑦∣𝑛−2𝜈

∣𝑥− 𝑦∣𝑛−2𝜈

(𝑡− 𝜏)
𝑛
2
−𝜈

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
≤ const

(𝑡− 𝜏)𝜈
1

∣𝑥− 𝑦∣𝑛−2𝜈
.

The last inequality is true because

∣𝑥− 𝑦∣𝑛−2𝜈

(𝑡− 𝜏)
𝑛
2
−𝜈

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
=

( ∣𝑥− 𝑦∣√
𝑡− 𝜏

)𝑛−2𝜈

exp

[
−𝜆

4
(
∣𝑥− 𝑦∣√
𝑡− 𝜏

)2
]

is bounded as a function of (𝑥, 𝑡; 𝑦, 𝜏) in 𝑈𝑇 × 𝑈𝑇 ∖𝐷𝑇 , where 𝐷𝑇 = {(𝑥, 𝑡; 𝑡, 𝜏) ∈
𝑈𝑇 × 𝑈𝑇 : 𝑥 = 𝑦, 𝑡 = 𝜏} as long as 0 < 𝜈 < 𝑛

2 for any 𝑛 ≥ 1.
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Let 𝜇 := 𝜈 + (1− 𝛼
2 ), then 1− 𝛼

2 < 𝜇 < 1,

𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const

(𝑡− 𝜏)𝜇−(1−𝛼
2
)

1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
,

≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
,

since 1

(𝑡−𝜏)−(1−𝛼
2 ) is bounded as 1− 𝛼/2 > 0.

We assume that 𝐶(𝑥, 𝑡) is bounded as a function of (𝑥, 𝑡) ∈ 𝑈𝑇 , thus

𝐶(𝑥, 𝑡)𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
. (4.20)

Similarly, we can apply this trick to 𝐺𝑥𝑖 and 𝐺𝑥𝑖𝑥𝑗 and get

∂

∂𝑥𝑖
𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const∣𝑥− 𝑦∣

(𝑡− 𝜏)
𝑛
2
+1

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
,

≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
,

∂2

∂𝑥𝑖∂𝑥𝑗
𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const∣𝑥− 𝑦∣2

(𝑡− 𝜏)
𝑛
2
+2

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
,

≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇
.

By assumption (𝐴4), 𝐵(𝑥, 𝑡) is bounded and ∣𝐴𝑖𝑗(𝑥, 𝑡)− 𝐴𝑖𝑗(𝑦, 𝜏)∣ ≤ const∣𝑥− 𝑦∣𝛼, we
get

𝐵(𝑥, 𝑡)
∂

∂𝑥𝑖
𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
, (4.21)

(𝐴𝑖𝑗(𝑥, 𝑡)−𝐴𝑖𝑗(𝑦, 𝜏))
∂2

∂𝑥𝑖∂𝑥𝑗
𝐺(𝑥, 𝑡; 𝑦, 𝜏) ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
. (4.22)

Now we consider the integral∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧.

Because 𝜈 is compactly supported as a function of (𝑥, 𝑧) ∈ ℝ𝑛 ×ℝ𝑛, for ∣𝑥− 𝑦∣ ≤ 2𝑀1

we have ∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 ≤ const

∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝑑𝑧

≤ const

∫
𝑈

1

(𝑡− 𝜏)
𝑛
2

exp[−𝜆∣𝑧 − 𝑦∣2
4(𝑡− 𝜏)

]𝑑𝑧

≤ const,
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where the last estimate follows because the function

1

(𝑡− 𝜏)
𝑛
2

exp

[
−𝜆∣𝑥− 𝑦∣2

4(𝑡− 𝜏)

]
is integrable.

When ∣𝑥− 𝑦∣ > 2𝑀1, by changing the variables 𝑥− 𝑧 and 𝑧, we get∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 = −

∫
𝑈
𝐺(𝑥− 𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑧, 𝑥− 𝑧)𝑑𝑧.

Since 𝜈 is bounded function with compact support, we have∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 ≤ const

∫ 𝑀1

−𝑀1

𝐺(𝑥− 𝑧, 𝑡; 𝑦, 𝜏)𝑑𝑧.

By equation (4.19), we get∫ 𝑀1

−𝑀1

𝐺(𝑥− 𝑧, 𝑡; 𝑦, 𝜏)𝑑𝑧 ≤ const

∫ 𝑀1

−𝑀1

1

(𝑡− 𝜏)
𝑛
2

exp[−𝜆∣𝑥− 𝑦 − 𝑧∣2
4(𝑡− 𝜏)

]𝑑𝑧

Because ∣𝑥− 𝑦∣ > 2𝑀1 and ∣𝑧∣ < 𝑀1, so

∣𝑥− 𝑦 − 𝑧∣ ≥ ∣𝑥− 𝑦∣ − ∣𝑧∣ ≥ ∣𝑥− 𝑦∣ −𝑀1 ≥ ∣𝑥− 𝑦∣ − 1

2
∣𝑥− 𝑦∣ = 1

2
∣𝑥− 𝑦∣,

−∣𝑥− 𝑦 − 𝑧∣2 ≤ 1

4
∣𝑥− 𝑦∣2,

thus ∫ 𝑀1

−𝑀1

1

(𝑡− 𝜏)
𝑛
2

exp[−𝜆∣𝑥− 𝑦 − 𝑧∣2
4(𝑡− 𝜏)

]𝑑𝑧 ≤
∫ 𝑀1

−𝑀1

1

(𝑡− 𝜏)
𝑛
2

exp[−
𝜆
4 ∣𝑥− 𝑦∣2
4(𝑡− 𝜏)

]𝑑𝑧.

Using the same trick applied in equation (4.19), we get

1

(𝑡− 𝜏)
𝑛
2

exp[−
𝜆
2 ∣𝑥− 𝑦∣2
4(𝑡− 𝜏)

] ≤ const
1

(𝑡− 𝜏)
𝑛
2

exp[−
𝜆
2 ∣𝑥− 𝑦∣2
4(𝑡− 𝜏)

].

Therefore, ∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧

also satisfies the inequality∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
, (4.23)

Adding inequalities (4.20), (4.21), (4.22), (4.23) together, we obtain

∣𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
,

when 1− 𝛼
2 < 𝜇 < 1.



43

The following Lemma is based on [14, Lemma 2, Section 1.4] which only holds for

bounded domain. We extend it to the case of an unbounded domain.

Lemma 4.3. Suppose that 𝑈 is a domain in ℝ𝑛, which could be ℝ𝑛, 0 < 𝛼 < 𝑛,

0 < 𝛽 < 𝑛, and 𝛼+ 𝛽 > 𝑛 then for any 𝑥 ∈ 𝑈, 𝑧 ∈ 𝑈, 𝑥 ∕= 𝑧, we have∫
𝑈

1

∣𝑥− 𝑦∣𝛼∣𝑦 − 𝑧∣𝛽 𝑑𝑦 ≤ 𝑐𝑜𝑛𝑠𝑡 ⋅ ∣𝑥− 𝑧∣𝑛−𝛼−𝛽 .

Proof. Let 𝑈1 = {𝑦 ∈ 𝑈 ∣𝑠.𝑡.∣𝑦 − 𝑧∣ < ∣𝑥− 𝑧∣
2

}, 𝑈2 = {𝑦 ∈ 𝑈 ∣𝑠.𝑡.∣𝑦 − 𝑥∣ < ∣𝑥− 𝑧∣
2

} and

𝑈3 = 𝑈∖𝑈1 ∪ 𝑈2.

First, we estimate the integral on 𝑈1:∫
𝑈1

1

∣𝑥− 𝑦∣𝛼∣𝑦 − 𝑧∣𝛽 𝑑𝑦 ≤
∫
𝑈1

2𝛼

∣𝑥− 𝑧∣𝛼∣𝑦 − 𝑧∣𝛽 𝑑𝑦

≤ 𝜔𝑛−1𝑑
2𝛼

∣𝑥− 𝑧∣𝛼
∫ ∣𝑥−𝑧∣

2

0
𝑟𝑛−1−𝛽𝑑𝑟

= 𝑐𝑜𝑛𝑠𝑡 ⋅ ∣𝑥− 𝑧∣𝑛−𝛼−𝛽 .

Similarly, ∫
𝑈2

1

∣𝑥− 𝑦∣𝛼∣𝑦 − 𝑧∣𝛽 𝑑𝑦 ≤ 𝑐𝑜𝑛𝑠𝑡 ⋅ ∣𝑥− 𝑧∣𝑛−𝛼−𝛽 .

Now we estimate 𝐼3 :=
∫
𝑈3

1

∣𝑥− 𝑦∣𝛼∣𝑦 − 𝑧∣𝛽 𝑑𝑦. First we notice

1

∣𝑥− 𝑦∣𝛼∣𝑦 − 𝑧∣𝛽 ≤ 1

∣𝑥− 𝑦∣𝛼+𝛽
+

1

∣𝑧 − 𝑦∣𝛼+𝛽
.

Thus

𝐼3 ≤
∫
𝑈3

[
1

∣𝑥− 𝑦∣𝛼+𝛽
+

1

∣𝑧 − 𝑦∣𝛼+𝛽

]
𝑑𝑦

≤ 2𝜔𝑛−1

∫ ∞

2
∣𝑥−𝑧∣

𝑟𝑛−1−𝛼−𝛽𝑑𝑟

= 𝑐𝑜𝑛𝑠𝑡 ⋅ ∣𝑥− 𝑧∣𝑛−𝛼−𝛽 , for 𝛼+ 𝛽 > 𝑛.

The following result closely follows the construction of Φ in [14, Section 1.4] — see

the proofs of [14, Section 1.4, Theorems 7 & 8]; this is extended to unbounded domains

in [14, Section 1.6] — see the proofs of [14, Section 1.6, Theorems 10 & 11].
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Theorem 4.2. There exists a solution Φ of equation (4.17) of the form

−Φ(𝑥, 𝑡; 𝑦, 𝜏) =

∞∑
𝑘=1

(𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏), (4.24)

where

(𝐿∗𝐺)1 := 𝐿∗𝐺,

(𝐿∗𝐺)𝑘+1(𝑥, 𝑡; 𝑦, 𝜏) :=

∫ 𝑇

𝜏

∫
𝑈
[𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)](𝐿∗𝐺)𝑘(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.

Proof. Using Lemma 4.2 and Lemma 4.3, we get 1

∣(𝐿∗𝐺)2(𝑥, 𝑡; 𝑦, 𝜏)∣ =
∫ 𝑇

𝜏

∫
𝑈
[𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)](𝐿∗𝐺)(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎

≤ const

∫ 𝑇

𝜏

∫
𝑈

1

(𝑡− 𝜎)𝜇
1

∣𝑥− 𝜂∣𝑛+2−2𝜇−𝛼

1

(𝜎 − 𝜏)𝜇
1

∣𝜂 − 𝑦∣𝑛+2−2𝜇−𝛼
𝑑𝜂𝑑𝜎

≤ const

∫ 𝑇

𝜏

1

(𝑡− 𝜎)𝜇
1

(𝜎 − 𝜏)𝜇
𝑑𝜎

∫
𝑈

1

∣𝑥− 𝜂∣𝑛+2−2𝜇−𝛼

1

∣𝜂 − 𝑦∣𝑛+2−2𝜇−𝛼
𝑑𝜂

≤ const
1

(𝑡− 𝜏)2𝜇−1

1

∣𝑥− 𝑦∣𝑛+2(2−2𝜇−𝛼)
,

when 2𝜇 > 1 and 𝑛+ 2(2− 2𝜇− 𝛼) > 0. Since 1− 𝛼
2 < 𝜇 < 1, the singularity of (𝐿𝐺2)

is weaker that that of 𝐿𝐺. Similarly, we can proceed to evaluate (𝐿∗𝐺)3,

∣(𝐿∗𝐺)3(𝑥, 𝑡; 𝑦, 𝜏)∣

=

∫ 𝑇

𝜏

∫
𝑈
[𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎)]2(𝐿

∗𝐺)(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎

≤ const

∫ 𝑇

𝜏

1

(𝑡− 𝜎)2𝜇−1

1

(𝜎 − 𝜏)𝜇
𝑑𝜎

∫
𝑈

1

∣𝑥− 𝜂∣𝑛+2(2−2𝜇−𝛼)

1

∣𝜂 − 𝑦∣𝑛+2−2𝜇−𝛼
𝑑𝜂

≤ const
1

(𝑡− 𝜏)3𝜇−2

1

∣𝑥− 𝑦∣𝑛+3(2−2𝜇−𝛼)
,

when 3𝜇 > 2 and 𝑛+ 3(2− 2𝜇− 𝛼) > 0.

We know after finite steps, we arrive at some 𝑘0 for which 𝑘0𝜇 < 𝑘0 − 1, and

𝑛+ 𝑘0(2− 2𝜇− 𝛼) < 0, thus

∣(𝐿∗𝐺)𝑘0(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ const.

From 𝑘0, we proceed to prove by induction on 𝑚, assume that

∣(𝐿∗𝐺)𝑚+𝑘0(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ 𝐶0
[𝐶(𝑡− 𝜏)1−𝜇]𝑚

Γ(1 + (1− 𝜇)𝑚)
,

1See Remark 4.1 for additional details for the case of unbounded domains 𝑈 ⊂ 𝑅𝑛.
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where 𝐶0, 𝐶 are constants and Γ(𝑡) is the gamma function. For 𝑚 = 0, this follows

from ∣(𝐿∗𝐺)𝑘0(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ const. Assuming now that it holds for some integer 𝑚 ≥ 0,

and using Lemma 4.2 we get

∣(𝐿∗𝐺)𝑚+1+𝑘0(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ const.𝐶0
𝐶𝑚

Γ((1− 𝜇)𝑚+ 1)

∫ 𝑡

𝜏
(𝑡− 𝜎)−𝜇(𝜎 − 𝜏)(1−𝜇)𝑚𝑑𝜎.

Substituting 𝜌 = 𝜎−𝜏
𝑡−𝜏 into the preceding expression and using the formula∫ 1

0
(1− 𝜌)𝑎−1𝜌𝑏−1𝑑𝜌 =

Γ(𝑎)Γ(𝑏)

Γ(𝑎+ 𝑏)
,

we obtain∫ 𝑡

𝜏
(𝑡− 𝜎)−𝜇(𝜎 − 𝜏)(1−𝜇)𝑚𝑑𝜎 =

∫ 1

0
(𝑡− 𝜏)1−𝜇(𝑚+ 1)𝜌1−𝜇𝑚(1− 𝜌)−𝜇𝑑𝜎

= (𝑡− 𝜏)1−𝜇(𝑚+ 1)
Γ(1− 𝜇)Γ(1 +𝑚(1− 𝜇))

Γ(1 + (1− 𝜇)(𝑚+ 1))
.

Thus

∣(𝐿∗𝐺)𝑚+1+𝑘0(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ 𝐶0
[𝐶(𝑡− 𝜏)1−𝜇]𝑚+1

Γ(1 + (1− 𝜇)(𝑚+ 1))
,

and the induction holds for 𝑚+ 1.

It follows that

−Φ(𝑥, 𝑡; 𝑦, 𝜏) =

∞∑
𝑘=1

(𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏)

=

𝑘0∑
𝑘=1

(𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏) +

∞∑
𝑚=1

(𝐿∗𝐺)𝑘0+𝑚(𝑥, 𝑡; 𝑦, 𝜏)

≤ const

(𝑡− 𝜏)𝜇
1

∣𝑥− 𝑦∣𝑛+2−2𝜇−𝛼
,

and the series converges.

From Theorem 4.2, it follows that the series expansion (4.24) for Φ(𝑥, 𝑡; 𝑦, 𝜏) con-

verges and that integral term in (4.17) is equal to

∞∑
𝑘=1

∫ 𝑇

𝜏

∫
𝑈
𝐿∗𝐺(𝑥, 𝑡; 𝜂, 𝜎) ⋅ (𝐿∗𝐺)𝑘(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎.

Therefore,

𝑝(𝑥, 𝑡; 𝑦, 𝜏) = 𝐺(𝑥, 𝑡; 𝑦, 𝜏) +

∫ 𝑡

𝜏

∫
𝑈
𝐺(𝑥, 𝑡; 𝜂, 𝜎)Φ(𝜂, 𝜎; 𝑦, 𝜏)𝑑𝜂𝑑𝜎,
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satisfies (4.7), so property (i) in Definition 4.3 holds. By Proposition 4.5, property

(ii) also holds. Therefore 𝑝(𝑥, 𝑡; 𝑦, 𝜏) is a fundamental solution of (4.7). Compare the

statements and proofs of [14, Section 1.4, Theorem 8] for bounded domains and [14,

Section 1.6, Theorem 10] for unbounded domains.

Remark 4.1. Friedman notes in [14, Section 1.6] that the construction of the fun-

damental solution, 𝑝(𝑥, 𝑡; 𝑦, 𝜏), extends from the case of a bounded domain 𝑈 ⋐ 𝑅𝑛

to an unbounded domain 𝑈 ⊂ 𝑅𝑛 and in particular 𝑈 = 𝑅𝑛. We briefly summarize

one approach to the changes for unbounded domains here and refer the reader to stan-

dard references for further details [?, Chapter V] and [?, Section IV.11]. The estimate

in Lemma 4.2 is replaced [?, Chapter V, Equation (3.19)], [?, Chapter 4, Equation

(11.17)] by the better behaved

∣𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ 𝑐(𝑡− 𝜏)
1
2
(𝛼−𝑛−2) exp

(
−𝐶

∣𝑥− 𝑦∣2
𝑡− 𝜏

)
,

where 𝛼 ∈ (0, 1) is the Hölder constant, as before, and 𝐶, 𝑐 are positive constants;

Lemma 4.3 will not be used. This estimate is standard when no integral term appears

in the definition of 𝐿∗, while the proof of Lemma 4.2 shows that the integral term in

𝐿∗𝐺(𝑥, 𝑡; 𝑦, 𝜏) also obeys this estimate; indeed, the proof of Lemma 4.2 yields∫
𝑈
𝐺(𝑧, 𝑡; 𝑦, 𝜏)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 ≤ 𝑐(𝑡− 𝜏)−

𝑛
2 exp

(
−𝐶

∣𝑥− 𝑦∣2
𝑡− 𝜏

)
≤ 𝑐(𝑡− 𝜏)

1
2
(𝛼−𝑛−2) exp

(
−𝐶

∣𝑥− 𝑦∣2
𝑡− 𝜏

)
,

using 1
2(𝛼− 2) ∈ (−1,−1

2) and 0 ≤ 𝑡− 𝜏 ≤ 𝑇 , and this bound replaces (4.23).

Next, the estimate appearing in the proof of Theorem 4.2 for the term (𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏)

in the infinite series defining Φ(𝑥, 𝑡; 𝑦, 𝜏), obtained by the iterative method of solving

the Volterra integral equation (4.17), is replaced by [?, Chapter V, Equation (3.22)], [?,

Chapter 4, Equation (11.25)]

∣(𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ 𝑐𝑘
( 𝜋
𝐶

)𝑛(𝑘−1)
2 Γ𝑘(𝛼/2)

Γ(𝑘𝛼/2)
(𝑡− 𝜏)−

1
2
(𝑘𝛼−𝑛−2) exp

(
−𝐶

∣𝑥− 𝑦∣2
𝑡− 𝜏

)
,

for 𝑘 ≥ 1, where (𝐿∗𝐺)1 := 𝐿∗𝐺. These estimates for (𝐿∗𝐺)𝑘(𝑥, 𝑡; 𝑦, 𝜏) ensure uniform

convergence of the series in the statement of Theorem 4.2 for 𝑡− 𝜏 > 0 and yields the



47

estimate

∣Φ(𝑥, 𝑡; 𝑦, 𝜏)∣ ≤ 𝑐(𝑡− 𝜏)
1
2
(𝛼−𝑛−2) exp

(
−𝐶

∣𝑥− 𝑦∣2
𝑡− 𝜏

)
,

just as in [?, Chapter 4, Equation (11.26)].

4.4 Existence and uniqueness of weak solutions

In this section, we will show the existence and uniqueness of weak solutions of the

partial integral equation (4.7)

𝐿∗𝑝 = 0.

Let 𝑈 be an open subset of ℝ𝑛, and set 𝑈𝑇 = 𝑈 × (0, 𝑇 ]. 𝑈 can be unbounded in

ℝ𝑛, and the special case 𝑈 = ℝ𝑛 is of particular importance.

Let

𝐴𝑢 = −
𝑛∑

𝑖,𝑗=1

(𝑎𝑖𝑗(𝑥, 𝑡)𝑢𝑥𝑖)𝑥𝑗 +

𝑛∑
𝑖=1

(𝑏𝑖(𝑥, 𝑡)𝑢)𝑥𝑖 + 𝑐(𝑥, 𝑡)𝑢+

∫
𝑈
𝑢(𝑧, 𝑡)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧,

where 𝜈(𝑡, 𝑥, 𝑧) : [0, 𝑇 ]× 𝑈 × 𝑈 7→ ℝ.

We will study the following parabolic equation with initial and boundary conditions

𝑢𝑡 +𝐴𝑢 =𝑓 in 𝑈𝑡 (4.25)

𝑢 =0 on ∂𝑈 × [0, 𝑇 ]

𝑢 =𝑔 on 𝑈 × {𝑡 = 0}

We assume that the coefficients of 𝐿 satisfy the following conditions (A5):

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)𝜉𝑖𝜉𝑗 ≥𝜃∣𝜉∣2 for all (𝑥, 𝑡) ∈ 𝑈𝑇 , 𝜉 ∈ ℝ𝑛 (4.26)

𝑎𝑖𝑗 , 𝑏𝑖, 𝑐 ∈𝐿∞(𝑈𝑇 ) (4.27)

𝜈 ∈𝐿∞(0, 𝑇 ;𝐿2(𝑈 × 𝑈)) (4.28)

𝑓 ∈𝐿2(𝑈𝑇 ) (4.29)

𝑔 ∈𝐿2(𝑈) (4.30)

Remark 4.2. 𝑛 ∈ 𝐿∞(0, 𝑇 ;𝐿2(𝑈 × 𝑈)) means

∥𝜈(𝑡, ⋅, ⋅)∥𝐿2(𝑈×𝑈) :=

∫
𝑈

∫
𝑈
𝜈2(𝑡, 𝑥, 𝑧)𝑑𝑥𝑑𝑧
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is bounded by a finite constant for a.e. 𝑡 ∈ [0, 𝑇 ].

To apply a theorem in [26, Section 3.2], we need the following lemma.

Lemma 4.4. Suppose 𝑎𝑖𝑗, 𝑏𝑖, 𝑐 satisfy (A5). Then there exist positive constants 𝜆 and

𝐶 depending only on the coefficients of 𝐿 such that

(𝐿𝑢, 𝑢) + 𝜆∥𝑢∥𝐿2(𝑈) ≥ 𝐶∥𝑢∥𝐻1
0 (𝑈)

for a.e. 𝑡 ∈ [0, 𝑇 ] and all 𝑢 ∈ 𝐻1(𝑈).

Proof. Since 𝑎𝑖𝑗 satisfies the elipticity condition (4.27), we have∣∣∣ ∫
𝑈
𝑎𝑖𝑗(𝑥, 𝑡)𝑢𝑥𝑖𝑢𝑥𝑗𝑑𝑥

∣∣∣ ≥ 𝜃∥∇𝑢∥2𝐿2(𝑈), (4.31)

for a.e. 𝑡 ∈ [0, 𝑇 ] and some positive constant 𝜃.

Since 𝑏𝑖 ∈ 𝐿∞(𝑈𝑇 ), then for a.e 𝑡 ∈ [0, 𝑇 ] the Cauchy inequality yields∣∣∣ ∫
𝑈
𝑏𝑖(𝑡, 𝑥)𝑢(𝑡, 𝑥)𝑢𝑥𝑖(𝑥)

∣∣∣ ≤ 𝑀∥𝑢∥𝐿2(𝑈)∥𝑢∥𝐻1(𝑈).

Then for any 𝜀 ≥ 0, there exists 𝑀𝜀 > 0 such that∫
𝑈
𝑏𝑖(𝑡, 𝑥)𝑢(𝑡, 𝑥)𝑢𝑥𝑖(𝑥) ≥ −𝑀∥𝑢∥𝐿2(𝑈)∥𝑢∥𝐿2(𝐻1(𝑈)) (4.32)

≥ −𝑀𝜀∥𝑢∥2𝐿2(𝑈) − 𝜀∥𝑢∥2𝐻1(𝑈). (4.33)

Because 𝑐 ∈ 𝐿∞(𝑈𝑇 ), then for a.e 𝑡 ∈ [0, 𝑇 ], there exists a constant 𝑀1 such that∣∣∣ ∫
𝑈
𝑐𝑢2(𝑡, 𝑥)𝑑𝑥

∣∣∣ ≤ 𝑀1∥𝑢∥2𝐿2(𝑈). (4.34)

Since ∫
𝑈×𝑈

𝑛2(𝑡, 𝑥, 𝑧)𝑑𝑥𝑑𝑧
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is bounded by a finite number for a.e. 𝑡 ∈ [0, 𝑇 ], the Cauchy inequality gives∣∣∣ ∫
𝑈

∫
𝑈
𝑢(𝑧)𝑢(𝑥)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑥𝑑𝑧

∣∣∣ (4.35)

≤(

∫
𝑈
𝑢2(𝑥)𝑑𝑥)

1
2 (

∫
𝑈
(

∫
𝑈
𝑢(𝑧)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧)2𝑑𝑥)

1
2

≤∥𝑢∥𝐿2(𝑈)(

∫
𝑢
(

∫
𝑈
𝑢2(𝑧)𝑑𝑧

∫
𝑈
𝜈2(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧)𝑑𝑥)

1
2

=∥𝑢∣2𝐿2(𝑈)

∫
𝑈

∫
𝑈
𝜈2(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑥𝑑𝑧

≤𝑀2∥𝑢∥2𝐿2(𝑈).

for a.e 𝑡 ∈ [0, 𝑇 ] and some constant 𝑀2.

By combining (4.31), (4.32), (4.34) and (4.35), we obtain

< 𝐿𝑢, 𝑢 >𝐿2(𝑈) =

∫
𝑈
{𝑎𝑖𝑗(𝑥, 𝑡)𝑢𝑥𝑖𝑢𝑥𝑗 + 𝑏𝑖(𝑡, 𝑥)𝑢(𝑡, 𝑥)𝑢𝑥𝑖(𝑥) + 𝑐𝑢2}𝑑𝑥

+

∫
𝑈

∫
𝑈
𝑢(𝑧)𝑢(𝑥)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧𝑑𝑥

≥ 𝜃∥∇𝑢∥2𝐿2(𝑈) −𝑀𝜀∥𝑢∥2𝐿2(𝑈) − 𝜀∥𝑢∥2𝐻1(𝑈) −𝑀1∥𝑢∥𝐿2(𝑈) −𝑀2∥𝑢∥2𝐿2(𝑈).

Setting 𝜀 := 𝜃/2, 𝜆 := 𝑀𝜀 +𝑀1 +𝑀2, we obtain

< 𝐿𝑢, 𝑢 >𝐿2(𝑈) +𝜆∥𝑢∥𝐿2(𝑈) ≥ 𝐶∥𝑢∥𝐻1
0 (𝑈),

where 𝐶 := 𝜃/2. This completes the proof.

Let 𝑉 be a separable Hilbert space with dual 𝑉 ′; then 𝐿2(0, 𝑇 ;𝑉 ) is a Hilbert space

with dual 𝐿2(0, 𝑇 ;𝑉 ′). Assume that for each 𝑡 ∈ [0, 𝑇 ] we are given a continuous

bilinear form 𝑎(𝑡; ⋅, ⋅) on 𝑉 or, equivalently, an operator 𝒜(𝑡) ∈ ℒ(𝑉, 𝑉 ′),

𝒜(𝑡)𝑢(𝑣) = 𝑎(𝑡;𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉, 𝑡 ∈ [0, 𝑇 ],

such that for each pair 𝑢, 𝑣 ∈ 𝑉 the function 𝑎(⋅;𝑢, 𝑣) is in 𝐿∞(0, 𝑇 ;ℝ). Assume 𝐻 is

a Hilbert space identified with its dual and that the embedding 𝑉 ↪→ 𝐻 is dense and

continuous;hence 𝐻 ⊂ 𝑉 ′ by restriction. Finally, let 𝑓 ∈ 𝐿2(0, 𝑇 ;𝑉 ′) and 𝑢0 ∈ 𝐻 be

given.

Consider the abstract Cauchy problem

𝑢 ∈ 𝐿2(0, 𝑇 ;𝑉 ) : 𝑢′ +𝐴𝑢 = 𝑓 in 𝐿2(0, 𝑇 ;𝑉 ′), 𝑢(0) = 𝑢0
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where the separable Hilbert spaces 𝑉 ↪→ 𝐻 ↪→ 𝑉 ′, bounded and measurable operators

𝐴(𝑡) : 𝑉 7→ 𝑉 ′, and 𝑓 ∈ 𝐿2(0, 𝑇 ;𝑉 ′), 𝑢0 ∈ 𝐻 are given as above.

Proposition 4.6. [26, Proposition 2.3]

Assume the operators are uniformly coercive: there is a 𝑐 > 0 such that

𝐴(𝑡)𝑣(𝑣) ≥ 𝑐∥𝑣∥2𝑉 , 𝑣 ∈ 𝑉, 𝑡 ∈ [0, 𝑇 ].

Then there exists a unique solution of the Cauchy problem, and it satisfies

∥𝑢∥2𝐿2(0,𝑇 ;𝑉 ) ≤ (1/𝑐)2(∥𝑓∥2𝐿2(0,𝑇 ;𝑉 ′) + ∣𝑢0∣2𝐻).

This result can be extended. 𝑢 ∈ 𝐻 if and only if 𝑣 ∈ 𝐻 where 𝑣(𝑡) = 𝑒−𝜆𝑡𝑢(𝑡),

0 ≤ 𝑡 ≤ 𝑇 and 𝑢 is a solution of the proceeding Cauchy problem exactly when 𝑣 is the

corresponding solution of the problem

𝑣 ∈ 𝐻 : 𝑢′ + (𝐴(⋅) + 𝜆𝐼)𝑣 = 𝑒−𝜆𝑡𝑓(𝑡), 𝑣(0) = 𝑢0.

Corollary 4.1. A sufficient condition for existence by Proposition (4.6) is that there

exist a 𝜆 ∈ ℝ and 𝑐 > 0 such that

𝐴(𝑡)𝑣(𝑣) + 𝜆∣𝑣∣2𝐻 ≥ 𝑐∥𝑣∥2𝑉 , 𝑣 ∈ 𝑉, 𝑡 ∈ [0, 𝑇 ].

Similarly, uniqueness is obtained from such an estimate, even with 𝑐 = 0.

Theorem 4.3. If the coefficients of 𝐴 satisfy (A4) and (A5), then there exists a unique

weak solution of (4.25).

Proof. We choose 𝐻 = 𝐿2(𝑈), 𝑉 = 𝐻1
0 (𝑈) for 𝑈 ⊊ ℝ𝑛 or 𝑉 = 𝐻1(ℝ𝑛) for 𝑈 = ℝ𝑛,

then 𝑉 ′ = 𝐻−1(𝑈). Lemma 4.4 implies

∥𝑢∥2𝐿2(𝑈) + 𝜆∥𝑢∥𝐿2(𝑈) ≥ 𝐶∥𝑢∥𝐻1
0 (𝑈).

We obtain the desired result by Proposition 4.6.
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4.5 Uniqueness of fundamental solutions

Theorem 4.4. There exists a unique solution to (4.7).

Proof. Assume that there exist two fundamental solutions 𝑝(𝑥, 𝑡) and 𝑝(𝑥, 𝑡). Given

any initial condition 𝑔 ∈ 𝐶∞
0 (𝑈), suppose the following parabolic equation with initial

and boundary conditions

𝑢𝑡 + 𝐿𝑢 = 𝑓 in 𝑈𝑇 ,

𝑢 = 0 on ∂𝑈 × [0, 𝑇 ],

𝑢 = 𝑔 on 𝑈 × {𝑡 = 0},

has two solutions which can be expressed in terms of fundamental solutions 𝑝(𝑥, 𝑡) and

𝑝(𝑥, 𝑡)

𝑢(𝑥, 𝑡) =

∫
𝑈
𝑝(𝑥− 𝑧, 𝑡)𝑔(𝑧)𝑑𝑧,

�̃�(𝑥, 𝑡) =

∫
𝑈
𝑝(𝑥− 𝑧, 𝑡)𝑔(𝑧)𝑑𝑧.

According to Theorem 4.3, the functions 𝑢 and �̃� are equal for a.e. 𝑡 ∈ [0, 𝑇 ]. Thus∫
𝑈
(𝑝(𝑥− 𝑧, 𝑡)− 𝑝(𝑥− 𝑧, 𝑡))𝑔(𝑧)𝑑𝑧 = 0 for a.e. (𝑥, 𝑡) ∈ 𝑈𝑇 ,

for every 𝑔 ∈ 𝐶∞
0 (𝑈). This implies

𝑝(𝑥, 𝑡) = 𝑝(𝑥, 𝑡) for a.e. (𝑥, 𝑡) ∈ 𝑈𝑇 .

The partial integro-equation,

𝐿∗𝑝 = 𝑝𝑡 −
𝑛∑

𝑖,𝑗=1

𝐴𝑖𝑗(𝑥, 𝑡)𝑝𝑥𝑖𝑥𝑗 +
𝑛∑

𝑖=1

𝐵𝑖(𝑥, 𝑡)𝑝𝑥𝑖 + 𝐶(𝑥, 𝑡)𝑝−
∫
ℝ𝑛

𝑝(𝑧, 𝑡)𝜈(𝑡, 𝑥− 𝑧, 𝑧)𝑑𝑧 = 0

(4.36)

has a unique fundamental solution. Since the marginal density function 𝑝𝑋(𝑥, 𝑡) of the

semimartingale 𝑋(𝑡) and the the marginal density function 𝑝𝑌 (𝑦, 𝑡) of the mimicking

process 𝑌 (𝑡) both satisfy (4.36), the uniqueness of the fundamental solution of (4.36)

implies that 𝑋(𝑡) and 𝑌 (𝑡) have the same marginal distributions.
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This is an extension of Theorem 3.3 for the case of a semimartingale. It is also

justified in [25, Theorem 3.4.2].
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Chapter 5

Markov Processes and Pseudo-Differential Operators

When we have a partial integro-differential equation, it is natural to investigate it using

pseudo differential operators. However, in the forward equation we derive, the integral

term is
∫
ℝ𝑛 𝑝(𝑧, 𝑡)𝜈(𝑡, 𝑥 − 𝑧, 𝑧)𝑑𝑧 which is not a standard convolution. So we cannot

apply the general theory of pseudo-differential operators.

In this chapter, we review operator semigroups, Feller processes and discuss how

research of pseudo differential operators arises in the martingale problem. To end this

chapter, we indicate an area of further study. We plan to investigate the generator 𝐴 of

a semimartingale 𝑋(𝑡). We first want to show that 𝐴 is a pseudo-differential operator

with a symbol 𝑎(𝑡, 𝑥, 𝜉). In principle we could check that 𝑎(𝑡, 𝑥, 𝜉) satisfies certain

conditions in [6, Theorem 4.2] which should imply the existence of a Markov process

with generator 𝐴. We believe that this could lead to a new proof of the mimicking

theorems, but this appears to be a challenging problem and we leave it for future

research.

5.1 Operator semigroups and Feller processes

In this section, we give a brief introduction to operator semigroups and their gener-

ators from a probabilistic perspective. We outline the relationship between operator

semigroups and Feller processes.

Definition 5.1. (Operator semigroups [18] Definition 4.1.1)

Let (𝑋, ∥ ⋅ ∥𝑋) be a Banach space. Then a one parameter family of bounded linear
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operators (𝑇𝑡)𝑡≥0 ∈ ℒ(𝑋,𝑋) is called an operator semigroup if

𝑇𝑡+𝑠 = 𝑇𝑡 ∘ 𝑇𝑠, for all 𝑠, 𝑡 ≥ 0, (5.1)

𝑇0 = 𝐼.

We call (𝑇𝑡)𝑡≥0 strongly continuous if

lim
𝑡7→0

∥𝑇𝑡𝑢− 𝑢∥𝑋 = 0,

for all 𝑢 ∈ 𝑋.

The semigroup (𝑇𝑡)𝑡≥0 is called a contraction semigroup, if for all 𝑡 ≥ 0,

∥𝑇𝑡∥ ≤ 1

holds, that is, if each of the operators 𝑇𝑡 is a contraction. As usual, ∥𝑇𝑡∥ denotes the

operator norm.

It is easy to see that (5.1) corresponds to the exponential Cauchy functional equation

𝑔(𝑠+ 𝑡) = 𝑔(𝑠)𝑔(𝑡), 𝑔(0) = 1,

where 𝑔(⋅) is a nonnegative function from ℝ to ℝ. The solution to the exponential

Cauchy functional equation is the family of exponential functions 𝑔(𝑡) = 𝑒𝛼𝑡, 𝛼 ∈ ℝ.

However, this family represents all possible solutions only if an additional assumption

of continuity is made. In fact, the assumption that 𝑔(𝑡) is continuous from the right in

the origin is already sufficient to make the functions 𝑔(𝑡) = 𝑒𝛼𝑡 the only solutions. We

now introduce a similar assumption for the operator semigroup defined by (5.1). Now

we want to show that by analogy to the Cauchy equation, an operator semigroup can

be represented in the form 𝑇𝑡 = 𝑒𝑡𝐴 for a suitable operator 𝐴.

Definition 5.2. (Generators of semigroups [18] Definition 4.1.11)

Let (𝑇𝑡)𝑡≥0 be a strongly continuous semigroup of operators on a Banach space (𝑋, ∥ ⋅
∥𝑋). The generator 𝐴 of (𝑇𝑡)𝑡≥0 is defined by

(𝐴𝑢)(𝑥) = lim
𝑡→0+

𝑇𝑡𝑢(𝑥)− 𝑢(𝑥)

𝑡
, (5.2)

with domain

𝐷(𝐴) =
{
𝑢 ∈ 𝑋

∣∣∣ lim
𝑡→0+

𝑇𝑡𝑢(𝑥)− 𝑢(𝑥)

𝑡
exists as strong limits.

}
.
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While the infinitesimal generator 𝐴 is defined as the right-hand derivative of 𝑇𝑡 at

0, the derivative of 𝑇𝑡 at any point can be calculated by

𝑑

𝑑𝑡
(𝑇𝑡𝑢)(𝑥) = lim

ℎ 7→0

((𝑇𝑡+ℎ − 𝑇𝑡)𝑢)𝑥

ℎ
,

and we have the following lemma.

Lemma 5.1. ([18] Lemma 4.1.14) Let (𝑇𝑡)𝑡≥0 be a strongly continuous semigroup of

operators on a Banach space (𝑋, ∥ ⋅ ∥𝑋), and denote by 𝐴 its generator with domain

𝐷(𝐴) ⊂ 𝑋, then

(i) For any 𝑢 ∈ 𝑋 and 𝑡 ≥ 0, it follows that
∫ 𝑡
0 𝑇𝑠𝑢𝑑𝑠 ∈ 𝐷(𝐴) and

𝑇𝑡𝑢− 𝑢 = 𝐴

∫ 𝑡

0
𝑇𝑠𝑢𝑑𝑠.

(ii) For 𝑢 ∈ 𝐷(𝐴) and 𝑡 ≥ 0, we have 𝑇𝑡𝑢 ∈ 𝐷(𝐴), that is, 𝐷(𝐴) is invariant under

𝑇𝑡, and

𝑑

𝑑𝑡
𝑇𝑡𝑢 = 𝐴𝑇𝑡𝑢 = 𝑇𝑡𝐴𝑢.

(iii) For 𝑢 ∈ 𝐷(𝐴) and 𝑡 ≥ 0, we get

𝑇𝑡𝑢− 𝑢 =

∫ 𝑡

0
𝐴𝑇𝑠𝑢𝑑𝑠 =

∫ 𝑡

0
𝑇𝑠𝐴𝑢𝑑𝑠.

The derivative 𝑑
𝑑𝑡𝑇𝑡𝑢 is well defined on the domain𝐷(𝐴) of𝐴 and in fact the equation

𝐷𝑡𝑇𝑡𝑓 = 𝐴𝑇𝑡𝑓 is Kolmogorov’s backward equation and 𝐷𝑡𝑇𝑡𝑓 = 𝑇𝑡𝐴𝑓 is Kolmogorov’s

forward equation.

From a stochastic point of view, operator semigroups start from the study of Markov

processes.

Definition 5.3. Given a Markov process 𝑋, we can define the corresponding family of

operators (𝑇𝑠,𝑡) for 0 ≤ 𝑠 ≤ 𝑡 by

(𝑇𝑠,𝑡𝑓)(𝑥) = 𝐸[𝑓(𝑋(𝑡))∣𝑋(𝑠) = 𝑥], (5.3)

for each 𝑓 ∈ 𝐵𝑏(ℝ𝑛), 𝑥 ∈ ℝ𝑛, where 𝐵𝑏(ℝ𝑛) denotes the space of bounded Borel mea-

surable functions on ℝ𝑛.
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If a Markov process 𝑋(𝑡) is time-homogeneous, we can write 𝑇𝑡−𝑠 = 𝑇𝑠,𝑡.

Theorem 5.1. Let 𝑋(𝑡) be a time-homogeneous Markov process, then the transition

operators (𝑇𝑡)𝑡≥0 form a semigroup.

Proof. We want to show that 𝑇𝑡+𝑠𝑓(𝑥) = 𝑇𝑡𝑇𝑠𝑓(𝑥) holds for any 𝑓 ∈ 𝐵𝑏(ℝ𝑛). We have

𝑇𝑠𝑓(𝑥) = 𝑇0,𝑠𝑓(𝑥) = 𝐸𝑥[𝑓(𝑋(𝑠))] = 𝑔(𝑥).

Then, because of the Markov property of 𝑋, we get

𝑇𝑡(𝑇𝑠𝑓(𝑥)) = 𝑇0,𝑡𝑔(𝑥) = 𝐸𝑥[𝑔(𝑋(𝑡))] = 𝐸𝑥[𝐸𝑋(𝑡)[𝑓(𝑋(𝑠))]]

= 𝐸𝑥[𝐸𝑥[𝑓(𝑋𝑠+𝑡)]] = 𝐸𝑥[𝑓(𝑋𝑠+𝑡)] = 𝑇𝑠+𝑡𝑓(𝑥).

Hence, 𝑇𝑠+𝑡 = 𝑇𝑠𝑇𝑡, (𝑇𝑡)𝑡≥0 form a semigroup.

Example 5.1. (The generator of a compound Poisson process)

Let (𝑋𝑛)𝑛∈ℕ be a sequence of independent and identically-distributed random variables

with distribution function 𝐹 (𝑥) and let 𝑁𝑡 be a Poisson process with intensity 𝜆. Denote

𝑆𝑛 = 𝑋1 + ⋅ ⋅ ⋅+𝑋𝑛. The compound Poisson process 𝑌 is defined by

𝑌 (𝑡) =
∑
𝑛≥1

𝑆𝑛1𝑁𝑡=𝑛.

The transition operator 𝑇𝑡 of 𝑌 is given by

𝑇𝑡 = 𝐸𝑥[𝑓(𝑌 (𝑡))],

where we assume that 𝑔 ∈ 𝐶𝑏(ℝ). To simplify calculations, we define an operator 𝐿 by

𝐿𝑓(𝑥) := 𝐸[𝑓(𝑥+𝑋1)] =

∫
ℝ
𝑓(𝑥+ 𝑦)𝐹 (𝑑𝑦)

and note that

𝐿𝑛𝑓(𝑥) := 𝐸[𝑓(𝑥+𝑋1 + ⋅ ⋅ ⋅+𝑋𝑛)] = 𝐸[𝑓(𝑥+ 𝑆𝑛)].
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Now it holds that

(𝑇𝑡𝑓)(𝑥) = 𝐸𝑥[𝑓(𝑌 (𝑡))] =
∑
𝑛≥0

𝐸[𝑓(𝑥+ 𝑆𝑛)]𝑃 (𝑁𝑡 = 𝑛)

=
∑
𝑛≥0

𝑒−𝜆𝑡 (𝜆𝑡)
𝑛

𝑛!
𝐸[𝑓(𝑥+ 𝑆𝑛)]

=
∑
𝑛≥0

𝑒−𝜆𝑡 (𝜆𝑡)
𝑛

𝑛!
𝐿𝑛𝑓(𝑥)

=
(
𝑒𝜆𝑡(𝐿−𝐼)𝑓𝑓

)
(𝑥),

and the transition semigroup can be written as 𝑒𝑡𝐴 where 𝐴 is given by

𝐴𝑓(𝑥) = 𝜆(𝐿− 𝐼)𝑓(𝑥) = 𝜆

∫
ℝ

(
𝑓(𝑥+ 𝑦)− 𝑓(𝑥)

)
𝐹 (𝑑𝑦).

□

Example 5.2. The generator of a Levy process)

Let (𝑋(𝑡))𝑡≥0 be a Levy process on ℝ𝑛 with characteristic triple (𝐴,𝜇, 𝛾). Then the

generator of 𝑋 is defined for any 𝑢 ∈ 𝐶0(ℝ)

(𝐴𝑢)(𝑥) =
1

2

𝑛∑
𝑗,𝑘=1

𝐴𝑗𝑘
∂2𝑢

∂𝑥𝑗𝑥𝑘
(𝑥) +

𝑛∑
𝑗=1

∂𝑢

∂𝑥𝑗
(𝑥)

=

∫
ℝ𝑛

(𝑓(𝑥+ 𝑦)− 𝑓(𝑥)−
𝑛∑

𝑗=1

𝑦𝑗
∂𝑢

∂𝑥𝑗
(𝑥)1∣𝑦∣≤1)𝜇(𝑑𝑦).

Now we define the Feller process, a type of process that is essentially a Markov

process satisfying some additional mild regularity assumptions.

Definition 5.4. (Feller process [18] Definition 4.1.4) Let (𝑇𝑡)𝑡≥0 be a strongly contin-

uous semigroup of operators on a Banach space (𝐶∞(ℝ𝑛,ℝ), ∥ ⋅ ∥∞) which is positive

preserving, i.e. 𝑢 ≥ 0 yields 𝑇𝑡𝑢 ≥ 0. Then (𝑇𝑡)𝑡≥0 is called a Feller semigroup.

A Markov process 𝑋 with transition semigroup (𝑇𝑡)𝑡≥0 is a Feller process if (𝑇𝑡)𝑡≥0

is a Feller semigroup.

The class of Feller processes includes Lévy processes, Dupire local volatility processes

and affine processes in finance. Feller processes may have nonstationary increments,

while Lévy processes necessarily have stationary increments.
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Recall that the positive maximum principle [12, Thereom 4 in Section 6.4] also holds

for an elliptic second order differential operator

𝐿𝑢 =

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥)𝑢𝑥𝑖𝑥𝑗 +

𝑛∑
𝑖=1

𝑏𝑖(𝑥)𝑢𝑥𝑖 + 𝑐(𝑥)𝑢.

The connection to semigroups is made by fact that generators of Feller processes satisfy

the same maximum principle.

Proposition 5.1. (Maximum principle [18, Theorem 4.5.1])

Let (𝑇𝑡)𝑡≥0 be a Feller semigroup on 𝐶∞(ℝ𝑛,ℝ) with generator (𝐴,𝐷(𝐴)), 𝐷(𝐴) ⊂
𝐶∞(ℝ𝑛,ℝ). Then 𝐴 satisfies the positive maximum principle; that is, for 𝑢 ∈ 𝐷(𝐴) such

that for some 𝑥0 ∈ ℝ𝑛 the fact that 𝑢(𝑥0) = sup𝑥∈ℝ𝑛 𝑢(𝑥) ≥ 0 implies that 𝐴𝑢(𝑥0) ≤ 0.

Proof. Suppose that 𝑢 ∈ 𝐷(𝐴) and that for some 𝑥0 ∈ ℝ𝑛 we have 𝑢(𝑥0) = sup𝑥∈ℝ𝑛 𝑢(𝑥) ≥
0. Since each of the operators 𝑇𝑡, 𝑡 ≥ 0 is positivity preserving we find that

(𝑇𝑡𝑢)(𝑥0) = (𝑇𝑡𝑢
+)(𝑥0)− (𝑇𝑡𝑢

−)(𝑥0) ≤ (𝑇𝑡𝑢
+)(𝑥0) ≤ ∥𝑢+∥∞ = 𝑢(𝑥0)

which implies

𝐴𝑢(𝑥0) = lim
𝑡7→0

𝑇𝑡𝑢(𝑥0)− 𝑢(𝑥0)

𝑡
≤ 0.

□

The fact that generators of a Feller semigroup and elliptic operators satisfy the

positive maximum principle suggests a connection between them. Denote by 𝐶∞
𝑐 (ℝ𝑛)

the class of functions on ℝ𝑛 which are infinitely differentiable and have compact support.

Then we recall the following theorem.

Theorem 5.2. [19] If 𝑋 is a continuous Feller processes on [0, 𝑇 ] with operator 𝐴 and

𝐶∞
𝑐 (ℝ) ⊆ 𝐷(𝐴), then 𝐴 is elliptic.

5.2 Pseudo-differential operators

In the preceding section we have seen that if 𝑋 is a continuous Feller process, its

generator 𝐴 is a second order elliptic differential operator. As an example, consider an

ℝ-valued Lévy process 𝑋 and its transition operator 𝑇𝑡:

𝑇𝑡𝑓(𝑥) = 𝐸[𝑓(𝑋(𝑡))∣𝑋(0) = 𝑥] =

∫
ℝ
𝑓(𝑥+ 𝑦)𝜇𝑡(𝑑𝑦).
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The second equation is true because of independence and stationarity of increments; 𝜇𝑡

is a probability measure. The Fourier transform of 𝜇𝑡 is

𝜇𝑡(𝑢) =

∫
ℝ
𝑒𝑖𝑥𝑢𝜇𝑡(𝑑𝑥) = 𝐸[𝑒𝑖𝑢𝑋(𝑡)∣𝑋(0) = 𝑥] = 𝑒𝑡𝜙(𝑢),

where 𝜙 is the characteristic exponent of the Levy process 𝑋. Using the convolution

theorem, we get

𝑇𝑡𝑓(𝑢) = 𝑓 ∗ 𝜇𝑡(𝑢) = 𝑓(𝑢)𝜇𝑡(𝑢) = 𝑓(𝑢)𝑒𝑡𝜙(𝑢).

The inverse Fourier transform gives

𝑇𝑡𝑓(𝑥) =
1√
2𝜋

∫
ℝ
𝑒−𝑖𝑢𝑥𝑒𝑡𝜙(𝑢)𝑓(𝑢)𝑑𝑢.

The generator 𝐴 of 𝑋 is given by

𝐴𝑓(𝑥) = lim
𝑡→0

𝑇𝑡𝑓(𝑥)− 𝑓(𝑥)

𝑡

=
1√
2𝜋

∫
ℝ
𝑒−𝑖𝑢𝑥 𝑒

𝑡𝜙(𝑢) − 1

𝑡
𝑓(𝑢)𝑑𝑢

=
1√
2𝜋

∫
ℝ
𝑒−𝑖𝑢𝑥𝜙(𝑢)𝑓(𝑢)𝑑𝑢.

In general, operators with such a representation are called pseudo-differential operators.

We give a formal definition, beginning with

Definition 5.5. (Continuous negative definite functions)

A function 𝜙 : ℝ𝑛 → 𝐶 is continuous negative definite if it is continuous and if, for

any choice of 𝑘 ∈ 𝑁 and vectors 𝜉1, . . . , 𝜉𝑘 ∈ ℝ𝑛, the matrix

(𝜙(𝜉𝑗) + 𝜙(𝜉𝑙)− 𝜙(𝜉𝑗 − 𝜉𝑙))𝑗,𝑙=1,...,𝑘

is positive Hermitian, i.e. for all 𝑐1, . . . , 𝑐𝑛 ∈ 𝐶,

𝑚∑
𝑗,𝑙=1

(𝜙(𝜉𝑗) + 𝜙(𝜉𝑙)− 𝜙(𝜉𝑗 − 𝜉𝑙))𝑗,𝑙=1,...,𝑘𝑐𝑗𝑐𝑙 ≥ 0.

Some typical examples of continuous negative definite functions are:

∙ ∣𝜉∣𝛼 for 𝛼 ∈ (0, 2],

∙ 1− 𝑒−𝑖𝑠𝜉 for 𝑠 ≥ 0,



60

∙ log(1 + 𝜉2) + 𝑖 arctan 𝜉.

We now recall

Definition 5.6. (Pseudo-differential operators) [18]

Let (𝐴,𝐷(𝐴)) be an operator with 𝐶∞
0 (ℝ𝑛) ⊂ 𝐷(𝐴). Then 𝐴 is a pseudo-differential

operator if

(𝐴𝑢)(𝑥) = −𝑎(𝑥,𝐷)𝑢(𝑥) (5.4)

= −(2𝜋)−𝑛/2

∫
ℝ𝑛

𝑒𝑖𝑥⋅𝜉𝑎(𝑥, 𝜉)�̂�(𝜉)𝑑𝜉,

for 𝑢 ∈ 𝐶∞
0 (ℝ𝑛).

�̂�(𝜉) = (2𝜋)−𝑛/2

∫
ℝ𝑛

𝑒−𝑖𝑥⋅𝜉𝑢(𝑥)𝑑𝑥

is the Fourier transform of 𝑢. The symbol 𝑎(𝑥, 𝜉) : ℝ𝑛 × ℝ𝑛 → ℂ is locally bounded

in (𝑥, 𝜉), 𝑎(⋅, 𝜉) is measurable for every 𝜉, and 𝑎(𝑥, ⋅) is a continuous negative definite

function for every 𝑥.

Time-inhomogeneous processes

Definition 5.7. The family of generators of 𝑋 is defined by

𝐴𝑠𝑢 = lim
ℎ→0+

𝑇𝑠−ℎ,𝑠𝑢− 𝑢

ℎ
, (5.5)

for all 𝑠 > 0, 𝑓 ∈ 𝐷(𝐴𝑠), where 𝐷(𝐴𝑠) denotes the domain of 𝐴𝑠.

Definition 5.8. Let (𝐴𝑠)𝑠>0 be a family of operators with 𝐶∞
0 (ℝ𝑛) ⊂ 𝐷(𝐴𝑠). Then 𝐴𝑠

is a pseudo-differential operator for all 𝑠 > 0 if

(𝐴𝑠𝑢)(𝑥) = −𝑎(𝑠, 𝑥,𝐷)𝑢(𝑥) (5.6)

= −(2𝜋)−𝑛/2

∫
ℝ𝑛

𝑒𝑖𝑥⋅𝜉𝑎(𝑠, 𝑥, 𝜉)�̂�(𝜉)𝑑𝜉,

for 𝑢 ∈ 𝐶∞
0 (ℝ𝑛), �̂�(𝜉) = (2𝜋)−𝑛/2

∫
ℝ𝑛 𝑒

−𝑖𝑥⋅𝜉𝑢(𝑥)𝑑𝑥, is the Fourier transform of 𝑢. The

symbol 𝑎(𝑠, 𝑥, 𝜉) : ℝ+×ℝ𝑛×ℝ𝑛 → 𝐶 is locally bounded in (𝑥, 𝜉), 𝑎(𝑠, ⋅, 𝜉) is measurable

for every 𝜉, 𝑠, and 𝑎(𝑠, 𝑥, ⋅) is a continuous negative definite function for every (𝑠, 𝑥).
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5.3 Construction of a Markov process using a symbol

Time-homogeneous case

In [17], Hoh showed that if a symbol of a pseudo-differential operator satisfies certain

conditions, then one can construct a unique Markov process whose generator has that

symbol.

Let (𝐸, 𝑑) be a separable metric spaceand let 𝐷𝐸 denote the space of all cadlag

paths with values in 𝐸,

𝐷𝐸 := {𝜔 : [0,∞) → 𝐸,𝜔 is right continuous, lim
𝑠→𝑡

𝜔(𝑠) exists for all 𝑡 > 0},

let 𝑀(𝐷𝐸) denote the set of probability measures on 𝐷𝐸 .

Definition 5.9. [17] Let 𝐴 be a linear operator with domain 𝐷(𝐴). A probability

measure 𝑃 ∈ 𝑀(𝐷𝐸) is called a solution of the martingale problem for the operator 𝐴

if for every 𝜙 ∈ 𝐷(𝐴), the process

𝜙(𝑋(𝑡))−
∫ 𝑡

0
𝐴𝜙(𝑋(𝑠))𝑑𝑠

is a martingale under ℙ with respect to the filtration 𝔽 = {F ()𝑡≥0.

If for every probability measure 𝜇 ∈ 𝑀(𝐷𝐸), there is a unique solution 𝑃𝜇 of the

martingale problem for 𝐴 with initial distribution

𝑃𝜇 ∘𝑋(0)−1 = 𝜇,

then the martingale problem for A is called well posed.

We assume that 𝜙 : ℝ𝑛 → ℝ is a continuous negative definite reference function for

some 𝑟 > 0, and 𝑐 > 0. Define 𝜆(𝜉) = (1 + 𝜙(𝜉))1/2, 𝜉 ∈ ℝ𝑛.

Theorem 5.3. ([17])

Let 𝑎 : ℝ𝑛 × ℝ𝑛 → ℝ be a continuous negative definite symbol such that 𝑎(𝑥, 0) = 0 for

all 𝑥 ∈ ℝ𝑛. Let 𝑀 be the smallest integer such that

𝑀 > (
𝑛

𝑟
∨ 2) + 𝑛

and suppose that
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(i) 𝑎(𝑥, 𝜉) is (2𝑀 + 1 − 𝑛) times continuous differentiable with respect to 𝑥 and for

all 𝛽 ∈ ℕ, ∣𝛽∣ ≤ 2𝑀 + 1− 𝑛,

∣∂𝛽
𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝑐𝜆2(𝜉) (5.7)

holds for all 𝑥 ∈ ℝ𝑛, 𝜉 ∈ ℝ𝑛.

(ii) For some strictly positive function 𝛾 : ℝ𝑛 → ℝ+,

𝑎(𝑥, 𝜉) ≥ 𝛾(𝑥) ⋅ 𝜆2(𝜉), (5.8)

for all 𝑥 ∈ ℝ𝑛, ∣𝜉∣ ≥ 1. Then the martingale problem for the operator −𝑎(𝑥,𝐷)

with domain 𝐶∞
0 (ℝ𝑛) is well-posed.

We illustrate theorem 5.3 with some examples. Let the continuous negative definite

reference function 𝜙(𝜉) be 𝜉2, then 𝜆(𝜉) = (1 + 𝜉2)1/2.

Examples:

1. Brownian motion 𝑊 (𝑡), the symbol of its generator is

𝑎(𝑥, 𝜉) =
1

2
𝜉2.

2. Geometric Brownian motion 𝑋(𝑡), 𝑑𝑋(𝑡) = 𝜇𝑋(𝑡)𝑑𝑡 + 𝜎𝑋(𝑡)𝑑𝑊 (𝑡), the symbol

of its generator is

𝑎(𝑥, 𝜉) =
1

2
𝜎2𝑥2𝜉2 − 𝜇𝑥𝜉.

3. CIR process 𝑋(𝑡), 𝑑𝑋(𝑡) = 𝜃(𝜇 − 𝑋(𝑡))𝑑𝑡 − 𝜎
√

𝑋(𝑡)𝑑𝑊 (𝑡), the symbol of its

generator is

𝑎(𝑥, 𝜉) =
1

2
𝜎2𝑥𝜉2 + 𝜃(𝜇− 𝑥)𝜉.

4. Levy process 𝑋(𝑡) with Levy triplet (𝜎, 𝜇, 𝛾), the symbol of its generator is

𝑎(𝑥, 𝜉) = 𝑐(𝑥)− 𝑖𝛾𝜉 +
1

2
𝜎2𝜉2 +

∫
ℝ
(1− 𝑒𝑖𝑦𝜉 +

𝑖𝑦𝜉

1 + 𝑦2
)𝜈(𝑑𝑦).

5. A continuous diffusion process 𝑋(𝑡), 𝑑𝑋(𝑡) = 𝜎(𝑋(𝑡))𝑑𝑊 (𝑡) where 𝜎(𝑋(𝑡)) ia an

adapted process, the symbol of its generator is

𝑎(𝑥, 𝜉) =
1

2
𝜎(𝑥)2𝜉2.
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In order to satisfy (5.7), when 𝑀 = 3, 𝑛 = 1, 𝜎(𝑥) needs to be 6 times continuous

differentiable with respect to 𝑥. If 𝛾(𝑥) = 1
4𝜎(𝑥)

2, then (5.8) holds for all ∣𝜉∣ ≥ 1.

Time-inhomogeneous case

Bottcher showed that we could construct a time-inhomogeneous Markov process using

pseudo-differential operators.

Definition 5.10. ([6]) A continuous negative definite function 𝜙 : ℝ𝑛 → ℝ belongs to

the class Λ if for all 𝛼 ∈ 𝑁𝑛
0 there exists constants 𝑐𝛼 ≥ 0 such that

∣∂𝛼
𝜉 (1 + 𝜙(𝜉))∣ ≤ 𝑐𝛼(1 + 𝜙(𝜉))2−(∣𝛼∧2∣)/2.

Definition 5.11. ([6]) Let 𝑚 ∈ ℕ, 𝑗 ∈ 0, 1, 2 and 𝜙 ∈ Λ. A function 𝑎 : ℝ+×ℝ𝑛×ℝ𝑛 →
ℂ is in the class 𝑆𝜙,𝑚

𝑗 if for all 𝛼, 𝛽 ∈ 𝑁𝑛
0 and for any compact 𝐾 ⊂ ℝ+ there are

constants 𝑐𝛼,𝛽,𝐾 ≥ 0 such that

∣∂𝛼
𝜉 ∂

𝛽
𝑥𝑎(𝑡, 𝑥, 𝜉)∣ ≤ 𝑐𝛼,𝛽,𝐾(1 + 𝜙(𝜉))𝑚−(∣𝛼∣∧𝑗)/2

holds for all 𝑡 ∈ 𝐾, 𝑥 ∈ ℝ𝑛 and 𝜉 ∈ ℝ𝑛. Here 𝑚 ∈ ℝ is called the order of the symbol.

Furthermore, the notation 𝑎 ∈ (𝑡− 𝑠)𝑆𝜙,𝑚
𝑗 is used if, for 𝑠 ≤ 𝑡,

∣∂𝛼
𝜉 ∂

𝛽
𝑥𝑎(𝑠, 𝑡, 𝑥, 𝜉)∣ ≤ (𝑡− 𝑠)𝑐𝛼,𝛽(1 + 𝜙(𝜉))𝑚−(∣𝛼∣∧𝑗)/2

holds, where the constants 𝑐𝛼,𝛽 are independent of 𝑠 and 𝑡.

We now recall

Theorem 5.4. ([6, Theorem 4.2])

Suppose 𝜙 ∈ Λ is a negative definite function, and there exist 𝑐0 > 0, 𝑟0 > 0 such that

𝜙(𝜉) ≥ 𝑐0∣𝜉∣𝑟0 for all 𝜉 large. If a pseudo-differential operator with symbol 𝑎(𝑠, 𝑥, 𝜉)

satisfies the following conditions,

∙ 𝑎(⋅, 𝑥, 𝜉) is a continuous function for all 𝑥 ∈ ℝ𝑛, 𝜉 ∈ ℝ𝑛,

∙ 𝑎(𝑡, 𝑥, ⋅) is continuous negative definite for all 𝑡 ∈ ℝ+, 𝑥 ∈ ℝ𝑛,

∙ 𝑎(𝑡, 𝑥, 0) = 0 holds for all 𝑡 and 𝑥,
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∙ 𝑎 ∈ 𝑆𝜙,𝑚
2 is elliptic, that is, there exist 𝑅 > 0, 𝑐 > 0, for any 𝑥, ∣𝜉∣ ≥ 𝑅,

ℜ𝑎(𝑡, 𝑥, 𝜉) ≥ 𝑐(1 + 𝜙(𝜉))𝑚/2 holds uniformly in 𝑡 on compact sets,

then 𝑎(𝑠, 𝑥, 𝜉) defines a family of operators 𝑇𝑠,𝑡 on 𝐶∞ such that

(a) 𝑇𝑠,𝑡 is a linear operator,

(b) 𝑇𝑠,𝑡 is a contraction,

(c) 𝑇𝑠,𝑡 is positivity preserving,

(d) 𝑇𝑡,𝑡 = 𝐼,

(e) 𝑇𝑠,𝑡 = 𝑇𝑠,𝜏𝑇𝜏,𝑡 for 𝑠 ≤ 𝜏 ≤ 𝑡,

(f) 𝑇𝑠,𝑡1 = 1, that is, lim𝑘→∞ 𝑇𝑠,𝑡𝑢𝑘 = 1 holds for 𝑢𝑘 ∈ 𝐶∞ with 𝑢𝑘 → 1.

Theorem 5.4 has the following important corollary:

Corollary 5.1. ([6, Corallary 4.3]) The operator given in Theorem 5.4 defines a

Markov process.

Example:

1. Dupire local volatility model 𝑑𝑆𝑡 = 𝜇𝑆𝑡 𝑑𝑡+ 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 𝑑𝑊 (𝑡)

𝑎(𝑡, 𝑥, 𝜉) =
1

2
𝜎(𝑡, 𝑥)2𝑥2𝜉2 − 𝜇𝑥𝜉

2. A time-inhomogeneous Markov process in ℝ𝑛 with generator

𝐴𝑡𝑢(𝑡, 𝑥) =
∑
𝑖,𝑗

𝑎𝑖𝑗(𝑡, 𝑥)
∂2𝑢(𝑡, 𝑥)

∂𝑥𝑖∂𝑥𝑗
+

𝑛∑
𝑖=1

𝑏𝑖(𝑡, 𝑥)
∂𝑢(𝑡, 𝑥)

∂𝑥𝑖
+ 𝑐(𝑡, 𝑥)𝑢(𝑡, 𝑥)

+

∫
ℝ𝑛∖{0}

(
𝑢(𝑡, 𝑥+ 𝑦)− 𝑢(𝑡, 𝑥)− < 𝑦,∇𝑢(𝑡, 𝑥) >

1 + ∣𝑦∣2
)
𝜇(𝑡, 𝑥, 𝑑𝑦)

𝑎(𝑡, 𝑥, 𝜉) =
1

2
𝜉𝑇 (𝑎𝑖𝑗(𝑡,𝑥))𝑖𝑗𝜉 − 𝑏(𝑡, 𝑥) ⋅ 𝜉 + 𝑐(𝑡, 𝑥)

+

∫
ℝ𝑛∖{0}

(
1− 𝑒𝑖𝑦⋅𝜉 +

𝑖𝑦 ⋅ 𝜉
1 + ∣𝑦∣2

)
𝜇(𝑡, 𝑥, 𝑑𝑦).
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Future research plan

Suppose there is a semimartingale 𝑋(𝑡) with decomposition (4.2)

𝑋(𝑡) = 𝑋(0)+

∫ 𝑡

0
𝛽(𝑠)𝑑𝑠+

∫ 𝑡

0
𝜎(𝑠)𝑑𝑊 (𝑠)+

∫ 𝑡

0

∫
∥𝑦∥≤1

𝑦𝑀(𝑑𝑠𝑑𝑦)+

∫ 𝑡

0

∫
∥𝑦∥>1

𝑦𝑀(𝑑𝑠𝑑𝑦).

In section 4.2, we derive the generator 𝐴 of 𝑋,

𝐴𝑓(𝑥) =

𝑛∑
𝑖=1

𝑏𝑖(𝑥, 𝑡)
∂𝑓

∂𝑥𝑖
+

1

2

𝑛∑
𝑖,𝑗=1

𝑎𝑖𝑗(𝑥, 𝑡)
∂2𝑓

∂𝑥𝑖𝑥𝑗

+

∫
ℝ𝑛

(
𝑓(𝑥+ 𝑦)− 𝑓(𝑥)− 1∥𝑦∥≤1

𝑛∑
𝑖=1

𝑦𝑖
∂𝑓

∂𝑥𝑖

)
𝜈(𝑡, 𝑦, 𝑥)𝑑𝑦.

We plan to show that 𝐴 is a pseudodifferential operator with symbol 𝑎(𝑡, 𝑥, 𝜉) as defined

in Definition 5.8. We would like to discover what are the requirements for the coefficients

𝑎𝑖𝑗 , 𝑏𝑖, 𝑐, 𝑛 in the generator 𝐴, such that 𝑎(𝑡, 𝑥, 𝜉) satisfies the conditions in Theorem

5.4. If we had this result, we could conclude that there exists a unique Markov process

𝑌 (𝑡) which mimics 𝑋(𝑡) for all 0 ≤ 𝑡 ≤ 𝑇 .
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Chapter 6

Application of Brunick’s Theorem to Barrier Options

6.1 Introduction

In practice, the local volatility model is used to price both vanilla options with path-

independent payoffs and complex options with path-dependent payoffs. However, the

price of an option with a path-dependent payoff cannot be uniquely determined by the

marginal distributions of the asset price process. For example, the price of a barrier

option would require knowledge of the joint probability distribution of the asset price

process and its running maximum. Brunick [8] generalizes Gyöngy’s result under a

weaker assumption so that the prices of path-dependent options can be determined

exactly.

Definition 6.1. ([8, Definition 2.1])

Let 𝑌 : ℝ+×𝐶(ℝ+,ℝ𝑑) → ℝ𝑛 be a predictable process. We say that the path-functional

𝑌 is a measurably updatable statistic if there exists a measurable function

𝜙 : ℝ× ℝ𝑛 × ℝ+ × 𝐶(ℝ+,ℝ𝑑) → ℝ𝑛

such that 𝑌 (𝑡 + 𝑢, 𝑥) = 𝜙(𝑡, 𝑌 (𝑡, 𝑥);𝑢,Δ(𝑡, 𝑥)) for all 𝑥 ∈ 𝐶(ℝ+,ℝ𝑑), where the map

Δ : ℝ+ × 𝐶(ℝ+,ℝ𝐷) → 𝐶(ℝ+,ℝ𝑑) is defined by Δ(𝑡, 𝑥)(𝑢) = 𝑥(𝑡, 𝑢)− 𝑥(𝑡).

A measurably updatable statistic is a functional whose path-dependence can be

summed up by a single vector in ℝ𝑁 . 𝑌 1(𝑡, 𝑥) = 𝑥(𝑡) is an updatable statistic, as

𝑌 1(𝑡 + 𝑢, 𝑥) = 𝑌 1(𝑡, 𝑥) + Δ(𝑡, 𝑥)(𝑢). Let 𝑥∗(𝑡) = sup𝑢≤𝑡 𝑥(𝑢), we see that 𝑌 2(𝑡, 𝑥) =

[𝑥(𝑡), 𝑥∗(𝑡)] ∈ ℝ2 is an updatable statistic as we can write

𝑌 2(𝑡+ 𝑢, 𝑥) = [𝑥(𝑡) + Δ(𝑡, 𝑥)(𝑢),max{𝑥∗(𝑡), sup
𝑣∈[0,𝑢]

𝑥(𝑡) + Δ(𝑡, 𝑥)(𝑣)}].

We first recall Brunick’s extension of Gy¨ngy’s theorem.
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Theorem 6.1. ([8, Theorem 2.11])

Let 𝑊 be an 𝑟-dimensional Brownian motion, and

𝑑𝑋(𝑡) = 𝜇𝑡𝑑𝑡+ 𝜎(𝑡)𝑑𝑊 (𝑡) (6.1)

be a 𝑑-dimensional Itô process where 𝜇 is a left-continuous 𝑑-dimensional adapted pro-

cess, and 𝜎 is a left-continuous 𝑑× 𝑟-dimensional adapted process with

𝐸[

∫ 𝑡

0
∣𝜇𝑠∣+ ∣𝜎(𝑠)𝜎(𝑠)𝑇𝑑𝑠∣𝑑𝑠] ≤ ∞ for all 𝑡.

Also suppose that 𝑌 : ℝ+×𝐶(ℝ+,ℝ𝑑) → ℝ𝑛 is a measurably updatable statistic such that

the maps 𝑥 7→ 𝑌 (𝑡, 𝑥) are continuous for each fixed 𝑡. Then there exist deterministic

measurable functions �̂� and �̂� such that

�̂�(𝑡, 𝑌 (𝑡,𝑋)) = 𝐸[𝜇𝑡∣𝑌 (𝑡,𝑋)] a.s. for Lebesgue-a.e. 𝑡,

�̂��̂�𝑇 (𝑡, 𝑌 (𝑡,𝑋)) = 𝐸[𝜎(𝑡)𝜎(𝑡)𝑇 ∣𝑌 (𝑡,𝑋)] a.s. for Lebesgue-a.e. 𝑡,

and there exists a weak solution to the SDE:

𝑑�̂�𝑡 = �̂�(𝑡, 𝑌 (𝑡, �̂�))𝑑𝑡+ �̂�(𝑡, 𝑌 (𝑡, �̂�))𝑑�̂� (𝑡)

such that L (𝑌 (𝑡, �̂�)) = L (𝑌 (𝑡,𝑋)) for all 𝑡 ∈ ℝ+, where L denotes the law of a

random variable and �̂� (𝑡) denotes another Brownian motion.

Brunick’s theorem is more general than Gyöngy’s. First, the requirements of 𝜇

and 𝜎 are weaker than the boundedness and uniform ellipticity in Gyöngy’s theorem.

Secondly, this theorem gives the existence of a weak solution which preserves the one-

dimensional marginal distribution of path-dependent functional.

6.2 Application to up-and-out calls

We can apply Brunick’s theorem to construct a 2-dimensional Markov process explicitly

which mimicks the joint marginal density of an Itô process and its running maximum

(or minimum).

For example, consider an up-and-out European call. The payoff of this option is

(𝑆(𝑇 )−𝐾)+1{𝑆∗(𝑇 )≤𝐵},
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where 𝑆∗(𝑇 ) = sup0≤𝑢≤𝑇 𝑆(𝑢) is the running maximum of 𝑆(𝑡). The stock price, 𝑆(𝑡),

follows the SDE

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡+ 𝜎(𝑡)𝑆(𝑡)𝑑𝑊 (𝑡),

where 𝜎(𝑡) is any adapted stochastic process, where 𝑟 is the constant interest rate and

{𝑊 (𝑡)}𝑡≥0 is Brownian motion on a probability space (Ω,ℱ ,𝔽,ℚ). Our goal is to find

an analytic formula for

�̂�(𝑡, 𝑥, 𝑦) := 𝐸[𝜎(𝑡)∣𝑆(𝑡) = 𝑥, 𝑆∗(𝑡) = 𝑦].

We apply this result to the problem of pricing single barrier options. Theorem ( )

tells us that there exists a measurable, deterministic function �̂� such that

�̂�(𝑡, 𝑥, 𝑦) = 𝐸[𝜎(𝑡)∣𝑆(𝑡) = 𝑥, 𝑆∗(𝑡) = 𝑦],

and there exists a weak solution to the SDE

𝑑𝑆(𝑡) = 𝑟𝑆(𝑡)𝑑𝑡+ �̂�(𝑡, 𝑆(𝑡), 𝑆∗(𝑡))𝑆(𝑡)𝑑�̂� (𝑡),

where (𝑆(𝑡), 𝑆∗(𝑡)) has the same joint distribution as (𝑆(𝑡), 𝑆∗
𝑡 ).

The risk-neutral pricing formula tells us that the price of an up-and-out call option

with strike 𝐾, maturity 𝑇 and barrier 𝐵 is given by

𝐶(𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

∫
ℝ

∫
ℝ
(𝑆(𝑇 )−𝐾)+1{𝑆∗(𝑇 )≤𝐵}𝜙(𝑇, 𝑆(𝑇 ), 𝑆∗(𝑇 ))𝑑𝑆(𝑇 )𝑑𝑆∗(𝑇 )

= 𝑒−𝑟𝑇

∫ ∞

𝐾

∫ 𝐵

−∞
(𝑆(𝑇 )−𝐾)𝜙(𝑇, 𝑆(𝑇 ), 𝑆∗(𝑇 ))𝑑𝑆(𝑇 )𝑑𝑆∗(𝑇 ),

where 𝜙(𝑇, 𝑆(𝑇 ), 𝑆∗(𝑇 )) is the joint distribution of (𝑆(𝑇 ), 𝑆∗(𝑇 )). We differentiate both

sides with respect to 𝐵 and get

∂

∂𝐵
𝐶(𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

∫ ∞

𝐾
(𝑆(𝑇 )−𝐾)𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ). (6.2)

We differentiate both sides with respect to 𝐾 and get

∂2

∂𝐵∂𝐾
𝐶(𝑇,𝐾,𝐵) = −𝑒−𝑟𝑇

∫ +∞

𝐾
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ). (6.3)
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Again, we can differentiate both sides with respect to 𝐾 and get

∂3

∂𝐵∂𝐾2
𝐶(𝑇,𝐾,𝐵) = −𝑒−𝑟𝑇𝜙(𝑇,𝐾,𝐵). (6.4)

Hence, the joint transition density function can be represented as a derivative of the

up-and-out call option price.

Next we apply the Itô-Tanaka’s formula [24, Theorem 43.3] to the function (𝑆(𝑡)−
𝐾)+1{𝑆∗(𝑇 )≤𝐵}, we get

(𝑆(𝑇 )−𝐾)+1{𝑆∗(𝑇 )≤𝐵} =
[
(𝑆0 −𝐾)+ +

∫ 𝑇

0
1[𝐾,∞)(𝑆𝑢)𝑑𝑆𝑢 +

1

2
𝐿𝐾
𝑇

]
1{𝑆∗(𝑇 )≤𝐵}(6.5)

=
[
(𝑆0 −𝐾)+ +

∫ 𝑇

0
1[𝐾,∞)(𝑆𝑢)𝑆𝑢(𝑟𝑑𝑢 (6.6)

+�̂�(𝑢, 𝑆𝑢, 𝑆
∗
𝑢)𝑑𝑊 (𝑢)) +

1

2
𝐿𝐾
𝑇

]
1{𝑆∗(𝑇 )≤𝐵}

where 𝐿𝐾
𝑇 is the local time of

ℎ𝑎𝑡𝑆(𝑇 ) at 𝐾. By the definition of local time,

𝐿𝐾
𝑇 = lim

𝜀↓0
1

2𝜀

∫ 𝑇

0
1(𝐾−𝜀,𝐾+𝜀)(𝑆𝑢)𝑑 < 𝑆, 𝑆 >𝑢

= lim
𝜀↓0

1

2𝜀

∫ 𝑇

0
1(𝐾−𝜀,𝐾+𝜀)(𝑆𝑢)�̂�

2(𝑢, 𝑆𝑢, 𝑆
∗
𝑢)𝑆

2
𝑢𝑑𝑢.

Taking expectations of (6.5) we get

𝐶(𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇𝐸[(𝑆(𝑇 )−𝐾)+1{𝑆∗(𝑇 )≤𝐵}]

= 𝑒−𝑟𝑇𝐸[(𝑆(𝑇 )−𝐾)+1{𝑆(𝑇 )∗≤𝐵}]

= 𝑒−𝑟𝑇 {(𝑆0 −𝐾)+𝐸[1{𝑆(𝑇 )∗≤𝐵}] + 𝐸[

∫ 𝑇

0
𝑟1[𝐾,∞)(𝑆𝑢)𝑆𝑢1{𝑆(𝑇 )∗≤𝐵}𝑑𝑢]

+
1

2
𝐸[lim

𝜀↓0
1

2𝜀

∫ 𝑇

0
1(𝐾−𝜀,𝐾+𝜀)(𝑆𝑢)�̂�

2(𝑢, 𝑆𝑢, 𝑆
∗
𝑢)𝑆

2
𝑢𝑑𝑢1{𝑆(𝑇 )∗≤𝐵}]}

= 𝑒−𝑟𝑇 {(𝑆0 −𝐾)+𝐸[1{𝑆(𝑇 )∗≤𝐵}] + 𝑟

∫ 𝐵

0

∫ ∞

𝐾

∫ 𝑇

0
𝑆𝑢𝜙(𝑢, 𝑆𝑢, 𝑆

∗
𝑢)𝑑𝑢𝑑𝑆𝑢𝑑𝑆

∗
𝑢

+
1

2

∫ ∞

0

∫ 𝐵

0
[lim
𝜀↓0

1

2𝜀

∫ 𝑇

0
1(𝐾−𝜀,𝐾+𝜀)(𝑆𝑢)�̂�

2(𝑢, 𝑆𝑢, 𝑆
∗
𝑢)𝑆

2
𝑢𝑑𝑢]

𝜙(𝑢, 𝑆𝑢, 𝑆
∗
𝑢)𝑑𝑆𝑢𝑑𝑆

∗
𝑢}

= 𝑒−𝑟𝑇 {(𝑆0 −𝐾)+𝑃 (𝑆(𝑇 )∗ ≤ 𝐵) + 𝑟

∫ 𝐵

0

∫ ∞

𝐾

∫ 𝑇

0
𝑆𝑢𝜙(𝑢, 𝑆𝑢, 𝑆

∗
𝑢)𝑑𝑢𝑑𝑆𝑢𝑑𝑆

∗
𝑢

+
1

2

∫ 𝐵

0

∫ 𝑇

0
�̂�2(𝑢,𝐾, 𝑆∗

𝑢)𝐾
2𝜙(𝑢,𝐾, 𝑆∗

𝑢)]𝑑𝑢𝑑𝑆
∗
𝑢},
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where 𝜙(𝑢, 𝑆𝑢, 𝑆
∗
𝑢) is the joint density of (𝑆𝑢, 𝑆

∗
𝑢).

Taking derivatives with respect to 𝐵 gives

∂

∂𝐵
𝐶(𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

{
(𝑆0 −𝐾)+𝜙𝑆(𝑇 )∗(𝐵) + 𝑟

∫ ∞

𝐾

∫ 𝑇

0
𝑆𝑢𝜙(𝑢, 𝑆𝑢, 𝐵)𝑑𝑢𝑑𝑆𝑢

+
1

2

∫ 𝑇

0
�̂�2(𝑢,𝐾,𝐵)𝐾2𝜙(𝑢,𝐾,𝐵)𝑑𝑢

}
,

and by taking derivatives with respect to 𝑇 we obtain

∂2

∂𝐵∂𝑇
𝐶(𝑇,𝐾,𝐵) = −𝑟

∂

∂𝐵
𝐶(𝑇,𝐾,𝐵) + 𝑒−𝑟𝑇

{
(𝑆0 −𝐾)+

∂

∂𝑇
𝜙𝑆(𝑡)∗(𝐵)

+𝑟

∫ ∞

𝐾
𝑆(𝑇 )𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ) +

1

2
�̂�2(𝑇,𝐾,𝐵)𝐾2𝜙(𝑇,𝐾,𝐵)

}
= −𝑟

∂

∂𝐵
𝐶(𝑇,𝐾,𝐵) + 𝑒−𝑟𝑇

{
(𝑆0 −𝐾)+

∂

∂𝑇
𝜙𝑆(𝑡)∗(𝐵)

+
1

2
�̂�2(𝑇,𝐾,𝐵)𝐾2𝜙(𝑇,𝐾,𝐵) + 𝑟

∫ ∞

𝐾
𝐾𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 )

+𝑟

∫ ∞

𝐾
(𝑆(𝑇 )−𝐾)𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 )

}
,

where 𝜙𝑆∗(𝑡)(𝐵) is the marginal distribution of 𝑆∗(𝑡). Combining (6.2), (6.3) and (6.4)

yields

𝑟𝐾
∂2

∂𝐵∂𝐾
𝐶(𝑇,𝐾,𝐵) +

∂2

∂𝐵∂𝑇
𝐶(𝑇,𝐾,𝐵)

= 𝑒−𝑟𝑇 (𝑆0 −𝐾)+
∂

∂𝑇
𝜙𝑆(𝑇 )∗(𝐵)− 1

2
�̂�2(𝑇,𝐾,𝐵)𝐾2 ∂3

∂𝐵∂𝐾2
𝐶(𝑇,𝐾,𝐵),

where �̂�(𝑇,𝐾,𝐵) is the local volatility of up-and-out call, 𝐶(𝑇,𝐾,𝐵) is the price of an

up-and-out call.

Consider the density 𝜙𝑆(𝑇 )∗(𝐵):

𝜙𝑆(𝑇 )∗(𝐵) =

∫ ∞

0
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 )

=

∫ 𝐾

0
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ) +

∫ ∞

𝐾
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ).

From (6.3), we have∫ +∞

𝐾
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ) = −𝑒𝑟𝑇

∂2

∂𝐵∂𝐾
𝐶(𝑇,𝐾,𝐵).

We can derive a similar formula for
∫𝐾
0 𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ) by differentiating the up-

and-out put option price.
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The up-and-out put with strike 𝐾, maturity 𝑇 and barrier 𝐵 is given by

𝑃 (𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

∫
ℝ

∫
ℝ
(𝐾 − 𝑆(𝑇 ))+1{𝑆∗(𝑇 )≤𝐵}𝜙(𝑇, 𝑆(𝑇 ), 𝑆∗(𝑇 ))𝑑𝑆(𝑇 )𝑑𝑆∗

𝑇(6.7)

= 𝑒−𝑟𝑇

∫ 𝐾

0

∫ 𝐵

−∞
(𝐾 − 𝑆(𝑇 ))𝜙(𝑇, 𝑆(𝑇 ), 𝑆∗(𝑇 ))𝑑𝑆(𝑇 )𝑑𝑆∗

𝑇 .

We differentiate (6.6) with respect to 𝐵 to get

∂

∂𝐵
𝑃 (𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

∫ 𝐾

0
(𝐾 − 𝑆(𝑇 ))𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ).

Differentiating the preceding expression with respect to 𝐾 yields

∂2

∂𝐵∂𝐾
𝑃 (𝑇,𝐾,𝐵) = 𝑒−𝑟𝑇

∫ 𝐾

0
𝜙(𝑇, 𝑆(𝑇 ), 𝐵)𝑑𝑆(𝑇 ).

Therefore,

𝜙𝑆∗(𝑇 )(𝐵) = 𝑒𝑟𝑇
{

∂2

∂𝐵∂𝐾
𝑃 (𝑇,𝐾,𝐵)− ∂2

∂𝐵∂𝐾
𝐶(𝑇,𝐾,𝐵)

}
,

and

∂

∂𝑇
𝜙𝑆∗(𝑇 )(𝐵) = 𝑟𝜙𝑆(𝑇 )∗(𝐵) + 𝑒𝑟𝑇

{
∂3

∂𝐵∂𝐾∂𝑇
𝑃 (𝑇,𝐾,𝐵)− ∂3

∂𝐵∂𝐾∂𝑇
𝐶(𝑇,𝐾,𝐵)

}
.

Substituting the preceding expression into (6.7), we obtain

𝑟𝐾
∂2

∂𝐵∂𝐾
𝐶(𝑇,𝐾,𝐵) +

∂2

∂𝐵∂𝑇
𝐶(𝑇,𝐾,𝐵)

= (𝑆0 −𝐾)+
{

∂3

∂𝐵∂𝐾∂𝑇
𝑃 (𝑇,𝐾,𝐵)− ∂3

∂𝐵∂𝐾∂𝑇
𝐶(𝑇,𝐾,𝐵) + 𝑒−𝑟𝑇 𝑟𝜙𝑆(𝑇 )∗(𝐵)

}
−1

2
�̂�2(𝑇,𝐾,𝐵)𝐾2 ∂3

∂𝐵∂𝐾2
𝐶(𝑇,𝐾,𝐵),

Solving this equation for �̂�(𝑇,𝐾,𝐵) yields

�̂�2(𝑇,𝐾,𝐵) =
1

1
2𝐾

2 ∂3

∂𝐵∂𝐾2𝐶

{
(𝑆0 −𝐾)+

[
(

∂3

∂𝐵∂𝐾∂𝑇
𝑃 − ∂3

∂𝐵∂𝐾∂𝑇
𝐶) + 𝑟(

∂2

∂𝐵∂𝐾
𝑃

− ∂2

∂𝐵∂𝐾
𝐶)
]− 𝑟𝐾

∂2

∂𝐵∂𝐾
𝐶 − ∂2

∂𝐵∂𝑇
𝐶

}
.

This is an analogue of Dupire local volatility for barrier option.
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