ASIP DATA-PLANE PROCESSOR FOR
MULTI-STANDARD WIRELESS PROTOCOL
PROCESSING

BY MOHIT GOPAL WANI

A thesis submitted to the
Graduate School|[New Brunswick
Rutgers, The State University of New Jersey
in partial ful llment of the requirements
for the degree of
Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of
Prof. Predrag Spasojevt

and approved by

New Brunswick, New Jersey

October, 2010

c 2010
Mohit Gopal Wani
ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

ASIP Data-plane Processor for Multi-Standard Wireless
Protocol Processing

by Mohit Gopal Wani

Thesis Director: Prof. Predrag Spasojevc

Evolving Multi-Protocol Multi-Band Software De ned Radio (SDR) devices aim at sup-
porting multiple protocols seamlessly and e ciently. The d esign of such radios necessi-
tates exibility in physical layer processing, exibility in routing packets through pro-
cessing engines and exibility in radio frequency receptio/transmission. This disserta-
tion addresses an e cient implementation of exible physical layer processing (PHY) for
Interleaving, De-Interleaving and linear Minimum Mean Square Error (MMSE) detec-
tion in Multiple Input Multiple Output (MIMO) receivers through Application Specic
Instruction Set Processors (ASIPs). The thesis de nes and develops a WINLAB cog-
nitive radio (WiNC2R) compatible data-plane ASIP architec ture along with suitable
hardware-software partitioning of the Processing Engine uit.

Given the requirement of very signi cant design time and the lack of the exibil-
ity after design, dedicated ASIC for PHY may not be a viable ogion although it has
the best performance among all available options. The softare application running
on general purpose processor cannot satisfy the throughputequirements of the wire-
less standards. ASIPs provide a better trade-o between exbility and performance,
with the advantage of considerably lower design time than A$SCs. We design an e -

cient multi-standard (802.11a, 802.16e/m) supporting Interleaver/De-Interleaver ASIP,

satisfying the throughput requirements for all the modulation-schemes/data-rates in
both of the standards. It can be programmed to scale for suppiing future wireless
standards (that use Block Interleaving/De-Interleaving). We also study viability of a
exible MIMO MMSE detector ASIP supporting variable Mg (Number of receiving
antennas) * Mt (Number of transmitting antennas) operations. We have anajzed the
implementation of an hardware-centric algorithm for MIMO d etection on an ASIP and
also improved its performance with the help of techniques sth as xed point imple-
mentation, Single Instruction Multiple Data (SIMD) and Ver y Long Instruction Word
(VLIW). Analysis of the design performance results for MIMO ASIP indicates the lim-
itations of hardware-implementation-speci ¢ algorithms on ASIP. We also provide the
account of design decisions such as custom ports, memory @rfaces and registers that
are added to the data-plane processor ASIPs in order to subgtite them for dedicated

hardware engines in the WINC2R platform.

Acknowledgements

First, | would like to thank my advisors Prof. Zoran Miljani ¢ and Prof. Predrag
Spasojevt for their continuous support, vision, guidane and encouragement in the
development of this thesis work. | am indebted to them for thér con dence about
my work in this challenging area in the intersection of communication processing and
computer architecture elds. They gave me complete freedomn my work, although 1
had to literally start without any substantial background i n both of the areas. Many
thanks to them for clarifying my concepts from time to time and for the care they
provided throughout the period.

| am thankful to Jerry Redington (Tensilica, Inc.) for his pa tient support. The thesis
was not possible without getting the insights of computer achitecture from Jerry. |
was lucky to have him as someone whom | can approach for any kildoubt on Tensilica
architecture. | would also like to thank Khanh Le for all those brainstorming sessions
and lively discussions that helped me getting better in undestanding the hardware
design. | truly appreciate his readiness to help anytime, bt related to this project or
otherwise. Thanks to Ivan Seskar for providing help wheneverequested for.

It was an enjoyable experience to work with WINLAB mates: Akshay, Onkar, Mad-
hura, Prashant and VLSI-lab mates: Wen and Raghuveer. | thark them for their
friendship and support. Special thanks to Chandru for providing daily rides to WIN-
LAB and helping me numerous times during my entire stay at Rutgers.

Most importantly, | would like to thank my parents, Mrs. Lata Wani and Mr.
Gopal Wani, my brother Mr. Milind Wani and sister Mrs. Meghan a Amritkar, for
always supporting me in all my pursuits academic, personal ootherwise. My every

success, big or small, is owed to their love, support and saicres.

Table of Contents

Abstract ;o oc oo n sy ii
Acknowledgements S S A S A S R S S SR S S R 1Y/
Listof Tables : : ;oo
Listof Figures : ;@ oo nn s
1. Introduction S S A R R R 1
1.1. Software Dened Radio 2
1.2. Implementation of Software Dened Radio. 3
1.3. WINC2R Architecture 5
2. Data-Plane Processor : : : :: @@ iiiiiioiioiouoioioiouoiiioioios 8
2.1. Introduction. e e 8
2.1.1. DataPlane 8

2.1.2. ControlPlane 9

2.1.3. ASIP as a Data Plane Processor 10

2.1.3.1. ASIPs and Other Microprocessors 12

2.1.3.2. Advantages of ASIPs 13

2.1.3.3. Place of Data Plane Processors in Programmable Raxl

Platforms 14

2.2. Tensilica Xtensa ASIP architecture 14
2.2.1. Why Tensilica Processor? 1

2.3. Congurability 18
2.4. The ASIP DesignCycle 19

3. Processing Engine @ ;i n o s n s 22

3.1.
3.2.

Virtual Flow Description. 24
Integration of ASIP based PE into WINC2R platform 25

3.2.1. Designing ASIP Processor for dedicated PE frameworkMethod-

ology e 26

3.2.2. Communicating with the outside logic 27

3.2.21. Importwires e 27

3.22.2. Interrupts.o 28

3.2.2.3. ExportStates 30

3.224. QUEUES i i e 30

3.2.3. Memories 32

3.3. Software application ow 33

4. ASIP for Multi-Standard Interleaving and De-Interleaving oo 36
4.1. PHY description e 36
4.2. Interleaving algorithm 37
4.2.1. Algorithm Improvement 41

4.3. De-Interleaving algorithm 45
4.3.1. Algorithm Improvement 46

4.4. Costbenetanalysis 49
44.1. Conclusion 54

5. ASIP for MIMO MMSE Detection R < 1
5.1. MIMO systems introduction 55
5.2. MIMO MMSE detection requirements and algorithm 56
5.3. Implementation on ASIP 58

5.4.

5.3.1. Complexity analysis and Performance improvement aalysis . . . 68
5.3.2. CostAnalysis 70

Conclusion 71

Vi

6. Conclusion and Future Work Ll llulunuuuououououuouuio

6.1. Future work e

Glossary :

References

Vii

List of Tables

3.1. Control Options for Interrupt/Polling facilitator mo dule

5.1. Complexity Analysis of MIMO MMSE detection using Burg's algorithm

viii

58

1.1.
2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
3.1.
3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
4.1.
4.2.
4.3.
4.4,
4.5.
4.6.
4.7.

List of Figures

WINC2R top level SoCview
Control-Plane vs. Data-Plane
Classi cation of Microprocessors v v ei v ..
Data Plane Processors in WiINC2R Layered Radio Architeture
Processor Design Space - Baseline Options
How a custom instruction is added in ASIP
ASIP design algorithm
Functional Unit Architecture
Processing Engine Architecture oL,
Tensilica ASIP Interface
Interrupt and Polling facilitator Module
Output Queue DataFormat
Custom ports declaration in TIE
Instructions for accessing customports
Memory map for Tensilica ASIP based functional units.
Software owonthe ASIP
ASIPs in WINC2R SoC e
802.11a Transmitter Block Diagram
802.11n Transmitter Block Diagram
802.16e/m Transmitter Block Diagram
WiFi (802.11a) and WiMax (802.16e/m) Details
Interleaving: Bit Shu ing in the Register Matrix
A custom instruction removing bottleneck in the interleaving algorithm

Interleaving application performance gain (in multiple times)

4.8. Interleaving application: Performance improvement ¢ Matrix Writing

function and Matrix shu ing (processing) function 44
4.9. Custom instructions' impact on the CPI (Interleaving application) . .. 45
4.10. Custom instruction for lling registers row-wise 47
4.11. After processing, rearrangement of bits for readinguat 48
4.12. De-Interleaving application performance gain (in mdtiple times) 49

4.13. De-Interleaving application: Performance improvenent of Matrix writing
function and Matrix shu ing (processing) function 50

4.14. Custom instructions's impact on the CPI (De-Interleaving application) . 51

4.15. A snippet of custom instruction lling the register matrix 52
4.16. Snippet of instruction scheduling through TIE. 53
4.17. Comparison of custom hardware additioncases 53
4.18. ASIP performance in MIPS 54
51. MIMO System e 55
5.2. VLIW logical layer e 64
5.3. Snapshot of instructions on 3 issue VLIW processor 65
5.4. SIMD implementation using state registers 66
5.6. MIMO Application Performance (4x4 Matrix) 76
5.7. Gain in MIMO Application Performance (4x4 Matrix) 76
5.8. MIMO Application Performance (2x2 Matrix) 77
5.9. Gain in MIMO Application Performance (2x2 Matrix) 77
5.10. 4x4 MIMO MMSE ASIP area trend-details 78
5.11. Flexible MIMO MMSE ASIP area analysis 78

Chapter 1

Introduction

This section brie y provides overview of the idea of Cognitive Radio (CR) and in general
Software De ned Radio (SDR) devices, requirements and trends in their architectues.
We also discuss about WIiNLAB Network Centric Cognitive Radio (WiNC2R) platform
architecture with detailed view of the Virtual Flow Pipelining concept.

The objective of cognitive radio is to solve spectrum scarty problem by means
of dynamic spectrum access. A Cognitive Radio (CR) is requied to constantly sense
its environment and dynamically recon gure its own parameters so as to communi-
cate reliably and e ciently. It should be able to alter its tr ansmission rate, power,
frequency, modulation scheme and any combination of theseot support wireless stan-
dards throughput requirements. The switching between the aailable channels across
di erent standards should be transparent to the user and fastenough to have no data
loss [1].

The main features of Cognitive Radios are listed below [2].

Spectrum Sensing: A CR scans a wide spectrum and determinedguencies being

used as well as determines its own transmission charactetiss

Policy and con guration: A CR is subject to certain policies in each of the en-
vironment which it should adhere to and has con guration setting pertaining to

each of the policy.

Modular architecture: CR should have modular level architecture within which

they can direct the ow of data dynamically

Application oriented pro les: CRs can Create/maintain app lication speci ¢ (ex-

ample: long distance, moving with high speed etc.) pro les ad incorporate those

transparent to the user

Adaptive algorithms: CRs switch operating algorithms to improve their e ciency

of a network collectively.

Distributed collaboration: CRs share their knowledge of ogerating environment
and application requirements, to determine policies for ofimal network resources

utilization.

Security: The security of the data won't be compromised whie CRs entering or

leaving network.
Cognitive radios are estimated to be useful in number of apptations such as:

Spectrum sensing and frequency adaptive abilities are usaff where guaranteed

communication links are a necessity

Flexibility to support various communication technologies is big advantage for

military applications

Multiple Networks supporting ability can serve as a bridge between two devices/

networks based on di erent communication standards

CRs can create separate user pro les which suite applicatias in speci ¢ environ-

ments and hence useful for providing location dependent seices

CR is always a secondary user if the spectrum is licensed evémough it can sense
a free portion of spectrum and tune to it. This feature avoids priority con icts

and leads to e cient network utilization.

1.1 Software De ned Radio

Software De ned Radio (SDR) is a technology that enables recon gurable system for
wireless networks. SDR de nes a combination of hardware andoftware technologies on
which the radios operating functions are implemented [3]. ©gnitive Radio sits above

the SDR and lets it determine which mode of operation and paraneters to choose [4].

1.2 Implementation of Software De ned Radio

There are several requirements that are identi ed for a SDR achitecture as de ned in

[5]:

SDR platforms usually consists of a combination of di erent processing devices
such asField Programmable Gate Arrays (FPGA), Digital Signal Processors(DSPs),
General Purpose Processors (GPPs), programmable System d@hip (SoC) or
other application speci ¢ programmable processors. The us of these technolo-
gies allows new wireless features and capabilities to be add to existing radio
systems without requiring new hardware. Thus a component mdel de ning se-
mantics of components, the interfaces and the protocols fomanaging information

exchange is necessary.

The ows should be developed independent of the platform sine there may be
several platform under di erent application requirements. This independence also

assumes a common operational environment from the platforms.

Launching of an application requires nding, loading, and instantiating each in-
dividual component on the appropriate device of the platfom, connecting the
components (virtually) and performing any initialization tasks necessary to have
application running properly. There should be a module/processor for launching

the application.

The applications should be stored in some kind of memory. Here, there should

be a way to store, organize and access memory.

There should be a communication mechanisn{transport layer) to exchange in-

formation and data across di erent nodes in the platform.

A mechanism (manager) is needed to manage and keep track of all the hardware

and software resources and provide interface with the user.

There should be a way to interact with the heterogeneous hardiare components

to con gure them and facilitate control/data information e xchange.

The validation of platform's capacity and available resources(capacity model) is

required for each application to be supported
The exibility of:

{ Per packet selection that is required in computationally intensive PHY pro-

cessing
{ Interoperability

{ Support of new protocols that are in development and will emege with the

completely new applications domain

Traditional SDR platforms consist of General Purpose Procssors and DSP Proces-
sors which are inadequate for future high data-rate commurgations in terms of pro-
cessing speed and energy e ciency. The advances in VLSI tectology has directed the
future development of SDR platforms towards Multi-Proces®or System-on-Chip (MP-
SoC) based platforms consisting of several heterogeneousogessors tailored for di er-
ent processing tasks. A number of MPSoC based architecturesave been proposed till
date. [6] proposes MPSoC where number of processing elemeriGPP/ DSP/ ASIC/
recon gurable hardware units are inter-connected to the Néwork-on-Chip (NoC). Both
the Programs running on each of the processing elements as las ows between them
are dynamically con gured at run-time. [7] describes a degin paradigm for extensible
SDR architecture for including support for newer protocols But it cannot dynamically
(per packet seamless) support multiple protocols. [8] hasekcribed an SDR architecture
where four processing engines (2-LIW processor with 32 bitIS 1D ALU and local mem-
ory), a global memory and one Control processor (ARM) is conected to a central bus.
The powerful PEs o er performance for compute-intensive taks (WCDMA, 2MHz).
However the architecture is not enough for supporting highe data-rates required in
WiFi and WiMax standards. [9] describes ne grain processimg recon gurable FPGA-
like fabrics connected through arrays. These are dicult to program for achieving
throughput.

The processing complexity of wireless protocol experiensethe Compound Annual

Growth Rate (CAGR) of 78, while the SOC performance is increasing at CAGRof 22

[10]. This necessitates novel network centric architectue solutions that will su ce new

processing paradigms. WINC2R is one of such solutions [1].

1.3 WINC2R Architecture

Winlab Network Centric Cognitive Radio (WiINC2R)[1] is a pro grammable MPSoC
(based on hardware assisted virtualization) SDR platform. It is aimed at providing
a high performance platform for experimentation with various adaptive wireless net-
work protocols ranging from simple etiquettes to more compéx ad-hoc collaboration.
It is designed for exible processing of both Physical and MAC/network layers with
sustained bit rates of 10 MBpS and higher with adaptability to variety of network
interference conditions and protocol conditions. This is gep towards an architecture
that will be scalable to adapt to future throughput increases, modi cations of radio
and higher layers and complexity requirements of portable ad xed devices.

WInC2R is based on the concept ofVirtual Flow Pipelining (VFP) [10] where the
underlying PHY resources are hidden from the higher networKayers. It consists of mul-
tiple clusters, each made up of several heterogeneol®ocessing EnginegASIPs, RTL
modules and Software entities running on GPP) connected vidierarchical AMBA AXI
bus. Each cluster has a VFP local-function module, while thecentralized VFP Con-
troller is connected to the central AXI bus along with a global contrd memory structure
called asGlobal Task Table (GTT). Figure 1.1 shows the top level SoC architectural

view. The key features of platform are:

Virtualization technique [10] is introduced to provide common interface to higher

layers which will hide the necessary details for resource servations and sharing.

Dynamic sharing of bandwidth is observed in IP packet based wrld by following

Service Level Agreement (SLA) Parameters.

The allocations of the 'resources-share' to the ow create lhe virtual ow consist-

ing of the sequence of the processing steps on the requiredgmessing modules.

Resource scheduler takes care of full ow latency requirentés of wireless protocol

Processing Engine
{Hardware logic or Tensilica
' ASIP)

— e e e e e
bt

Cluster#

v 1

T e S A o =
I 6 customized propriety buses for =] VFP |
Tnferface with custom intra-cluster control messaging | controll |

buses for VFP control sz | y Y 7 Y y ¥ e

i .,
mestadind T ¥ ¥ ¥ 4+ :
L 4 O Lol B P FU#N
il i

B 1 Local I [T.:}c (Mod) ikt (IFFT) :
Local Contro |]
Data | Func. | |
1
|

Processor
Core

¢

Interconnect for Inter-cluster data transfers and control messaging (AX] AMBA baszed)

T3

I

Cluster#
1

-Cluster#
3

vy

Clusterd#
16

Figure 1.1: WINC2R top level SoC view

Source: Onkar Sarode. WiInC2R architecture document (Centr
www.svn.winlab.rutgers.edu/cognitive, March 2010

processing

alized _UCM _arch.vsd),

The virtualization layer handles hardware resources to maage communication

bandwidth with responsibility for SLA reinforcement among sessions and pro-

tecting each of them.

Each session treats its share of the physical bandwidth as aeparate channel.

Virtual Flow consists of a set of functions and their scheduling requireents asso-

ciated with a higher protocol entity (application, session, IP or MAC address). VFP

functions are executed as tasks, where task can run on poteally multi functional

hardware engines or software programmable CPUs. VFP contiter is responsible for

selecting each step of the task function and its associatedgsameters on each of the

processing engines. The sequencing is enforced by orderjinfginction (or thread on

CPU) selection and synchronization between processing utd. The data ow paths

can be con gured during the setup and initialization and also during the actual op-

eration. WINC2R provides a backbone architecture with a unform interface to all

modules, which supports plug-and-play ability. WINC2R also supports run time re-
con gurability inside the modules currently implemented.

The thesis focuses on designing the Application Speci ¢ Insuction Set Processors
(ASIPs) to be plugged as data-plane processors in VFP basedrpgrammable frame-
work of WINC2R platform. Chapter 2 presents a detailed accoumt of data-plane pro-
cessors. We will analyze the features of several processatssign choices. Chapter 3
presents the architectural customizations of the ASIP for porting into the WINC2R
platform. It also gives the account of architectural decisbns and hardware-software
partitioning. Chapter 4 includes the design and performane improvement achieved
through Instruction Set Architecture (ISA) extensions for the processing engines of
Interleaving/De-Interleaving. Chapter 5 illustrates the analysis of implementation of
hardware-centric algorithm for MIMO MMSE detection. Chapt er 5 also gives details
about the steps involved in the algorithm improvement, with the use of VLIW/ SIMD
techniques and other processor customizations. Chapter 6ompletes the thesis work

by providing conclusion and future work.

Chapter 2

Data-Plane Processor

This section provides the background of concepts: data-plae processing and Applica-
tion Speci ¢ Instruction Set Processors. We also discuss th trade-o s of using ASIPs

as data-plane processors, with the comparison of options sh as general purpose RISC
processors and dedicated ASIC implementations. This alsmcludes general discussion

about processor design and ASIP design aspects.

2.1 Introduction

Multi-core System on Chips (SoCs) have become prominent inhe high performance
real-time systems. The decision about the right kinds of pr@essors to be put in to
this multi-processor chip is based on the concept of preserecof two planes in the
design: Control plane and Data plane. In a typical SoC, contol plane manages the
user interface, the system synchronization, and few more fuctions while the data plane
processing manages compute intensive tasks [11]. A tighténtegration of these planes
is necessary for achieving optimal performance. Figure 2.8hows the clear distinction

between these planes.

2.1.1 Data Plane

In networking or communications systems, the data plane proesses each packet as it
passes through the system [12]. Data-plane tasks may incledconverting packets from
one protocol to another, encrypting or decrypting data, It ering unwanted packets, pri-
oritizing packets, routing them to their next destination and computational processing
of the physical layer. In short, all the data-intensive opeiations are carried out by data

plane. Data plane typically uses specialized CPUs (lackingcaches and with limited

-+

[}
i i
: : Baseband PHY i
; ideo
: Data E Processing (RTL/ Pracessing
' Plane i ASIP) Protocol
: E R Processing ey
: i | MACiControl (RTL/ g
~omesnmmé ASIP} .
:'L'm‘“"""‘i
1 CPU running main
: Control E application Mwen Gy
i Plane |
1 P

Figure 2.1: Control-Plane vs. Data-Plane

Source: http://www.tensilica.com

memory size) or Application Speci c Integrated Circuits (A SIC) or dedicated FPGA
processing unit. A small local memory holds instructions, imiting the available code
space, often to several thousand instructions. These eng#s may include special in-
structions to extract and manipulate elds of arbitrary bit length, as these operations
are useful in some packet protocols. Short pipelines can beleantageous in data-plane
processing. Clock rates are often modest (1GHz or less) to mimize power dissipation.

They may include accelerators to 0 oad speci ¢ tasks.

2.1.2 Control Plane

The control plane handles packets that require extra procesing, user interface, higher
levels of protocol stacks, system synchronization and allther non-data intensive appli-
cations [11]. Moreover control plane handles the tasks of e¢oguring data-plane layer
and managing the data- ow. The control plane typically uses standard General Pur-
pose Processors (GPP) since they are easily programmable. o6trol plane software
is designed assuming it will be running on a general purposerpcessor. It has fewer
computations and more conditional branches than typical aplications. Hence, it will
perform better with short pipeline (small branch prediction penalty).

The control plane and data plane can share the same memory spa to reduce cost and
eliminate the latency in moving the data across memories. D&-plane processors archi-

tecture and analysis is the focus of this research thesis. Thdata-plane engines can be

10

organized in two ways [12]. In a parallel model, one CPU is dégnated as the master,
receiving all packets and assigning them to engines as neatleThe data-plane engines
can be arranged in a pipeline. For example, the rst engine cold classify packets, the
second could perform ltering, the third could perform encapsulations, and the fourth
could perform tra c management. It also ensures proper ordeaing and deterministic

latency.

2.1.3 ASIP as a Data Plane Processor

System developers are working to signi cantly reduce the reource levels required to
develop systems by making it easier to design the chips in ths® systems and also to
make SOCs su ciently exible so that every new system design does not require a
new SOC design. Hence, the data plane processor design isifaga very strong push
towards higher exibility and computational requirements with power consumption
constraints. The algorithmic requirements are increasingat far higher rate than that of
architectural improvements to support it [13]. The important characteristics of ASIPs

from an algorithmic perspective are:
1. Highly regular computation intensive operations;
2. Considerable I/O /memory accesses;
3. Complicated controlling in less computationally intensive tasks.

The limits on the general purpose processor performance due instruction level par-
allelism and power consumption in the compute intensive apfications (that require
exibility also) have given rise to an interesting idea. The idea is to take a general
purpose processor and improve its performance by moving afh executed sequences
(functions) into a special hardware execution units requiing only one instruction to
implement such a function. The result is Application Speci ¢ Instruction-set Proces-
sors (ASIPs) which can perform speci ¢ tasks as e ciently aspossible [14]. ASIP design
is a promising technique to meet the performance and cost gds of high-performance

systems. In recent years, ASIPs have become popular becausieey simultaneously

11

o er high performance and short design cycles. In contrast too -the-shelf processor
cores, ASIPs include dedicated functional units and ISA cutomizations that speed up
execution of the 'hot spots' in a given application. Whereas they cannot o er the same
performance as ASICs due to limitations imposed by micro argitectural constraints
and the tighter control exerted for the data movement in the processors. Dedicated
hardware is also cheaper in terms of cost and power as compar¢o ASIPs.

The programmability of ASIPs enables a larger volume, as mdiple related ap-
plications, as well as di erent generations of an applicatimmn can be mapped onto the
same ASIP. A programmable solution also provides a much lowerisk as well as a pre-
dictable and shorter time-to-market solution since writing and debugging software is
cheaper than designing, debugging and manufacturing workig hardware [15]. ASIPs
allow designers to extend the base processor with custom itreictions, memaories, ports
and even VLIW/SIMD extensions, making possible the best peformance possible with
processor-centric implementation. Given the high custongation in ASIPs, they have
essentially created a class for 'Data-plane Units' (DPUS).

Hardwired RTL design has many attractive characteristics: small area, low power,
and high throughput. With the advent of multi million-gate S OCs, RTLs have become
di cult to design and have issues such as slow veri cation, and poor scalability for
increasingly complex problems. ASIP is a design methodolggthat retains most of
RTLs bene ts while reducing design time and risk. ASIPs can mplement data-path

operations that closely match those of RTL functions. The functional equivalents of

RTL logic blocks are implemented using application-specic processors by adding exe
cution units to the processors existing integer pipeline, dditional registers and register
les to the processors state, additional 1/0O ports, and other functions as needed by the
speci ¢ application.

Due to the high degree of specialization, there will be dedi&ted processors for dif-
ferent application domains like digital video, wireless conmunication, multimedia, etc.
Quantitative analysis has been done in [16], that shows engy e ciency measured in
mega-operations/instructions per mW (MOpS/mW) for di eren t architectures running

the same benchmark along-with area required for each of therehitectures. It shows

12

that there is roughly one order in magnitude of energy e ciency between a RISC em-
bedded processor, a domain specic DSP, and an ASIP optimizk for this particular
benchmark. Also proved is a fact that in terms of architectural choices of exibility

and e ciency, ASIP provides a best compromise between exillity and performance.

2.1.3.1 ASIPs and Other Microprocessors
The microprocessors can be classi ed [17] on the basis of:

1. The Hardware (ISA) micro architecture:

Reduced Instruction Set Computer (RISC)
Complex Instruction Set Computer (CISC)
Very Large Instruction Word (VLIW)

Superscalar

2. Characteristics of the Application Areas

General Purpose Processor (GPP)/ Micro-controller
Special purpose processor (SPP)

{ Application Speci c Integrated Circuit (ASIC)
{ Application Speci c Instruction Set Processor (ASIP)

{ Digital Signal Processor (DSP)

The classi cation of Microprocessors is also shown in the Fjure 2.2.

The specialized nature of individual embedded applicatios creates two issues for
general-purpose processors in data-intensive embedded@jzations [18]. First, there is
a poor match between the critical functions needed by many eilmedded applications and
a xed-ISA processor's basic integer instruction set and rgister le. As a result of this
mismatch, these critical embedded applications often regine an unacceptable number of
computation cycles when run on general-purpose processorSecond, narrowly focused,
low-cost embedded devices cannot take full advantage of a geral-purpose processor's

broad capabilities. Consequently, expensive silicon reswces built into the processor

13

Microprocessors

General Purpose Application
Processors Specific
Processors
General \ o
Microcontrollers Microprocessors Digital Signal ASIC_ (_Applucatnon
(RISC, CISC, Processors Specific Integrated
Superscalar) Circuit)

ASIP (Application
Specific Instruction
Set Processor)

Figure 2.2: Classi cation of Microprocessors

Original concept: Daniel K astner. Lecture on Embedded systems. 2002-2003

are wasted in these applications because they are not needég the speci c embedded
tasks assigned to the processor.

An ASIP sits between the high e ciency of an ASIC and the low cost of a GPP
and provides a good balance of hardware and software to meetquirements such as
exibility, performance, fast time to market and power consumption.
2.1.3.2 Advantages of ASIPs
The bene ts of ASIPs are [13]:

Non permanent customization and application development &er fabrication
Time to market considering evolving requirements and new aplications/ideas

Economies of scale

Flexible 1/0 and Interface functionality required for embe dded systems

14

Supports re nement and co-design of hardware and softwareas well as behavior

and architecture

All important metrics including Power-Delay-Area perspective are considered con-

tinuously in the design phase

These ASIP advantages do not come free but with certain disagantages such as

2.1.3.3 Place of Data Plane Processors in Programmable Radio Platforms

New Multiprocessor System-on-Chip (MPSoC) based platforrs are being de ned at the
architecture - micro-architecture boundary which are inevtable for complex communi-
cation systems of the future. The goals are how to simultaneasly optimize exibility,
cost , energy and performance. System-on-Chip developmethtas fostered platform as
well as communication based design [13]. These platformsie to be component-based
and aim at providing a range of choices from custom structure to fully programmable
solutions at various cost-benet ratios. There are two types of platforms: Software
platforms and Hardware platforms. Software platforms run the application on gen-
eral processor and o er maximum exibility while the Hardwar e platforms are limited
in terms of exibility but much faster in processing. In these platforms, application-
architectural exploration is focal part of implementation methodology.

WINC2R [1] is such a programmable platform where ASIPs/ASICs are used as
data-plane processors providing an additional degree of é&edom in functional process-
ing. Data-plane processors are essentially multi-standar protocol processing engines
in WINC2R SoC platform. Figure 2.3 shows the data plane procesors in WiNC2R
architecture.

We have designed the data-plane processors for WiNC2R plaifm using Tensilica

XtensarR ASIPs. The next section gives details of the Xtensa ASIP archiecture.

2.2 Tensilica Xtensa ASIP architecture

The Xtensa architecture is highly exible due to con gurabi lity. The following aspects

of the processor can be con gured at the build time:

15

(Application Software and Cognition Engine) | 4

Control Plane

Radio
Architecture
Layers

TR
/ X Interconnect T

ASIC/ ASIPas A T |
Data Plane ~————n |PE FE «es |PE
Processors -

Processing Layer

Figure 2.3: Data Plane Processors in WINC2R Layered Radio Achitecture

Base source: Onkar Sarode. Scalable VFP-SoC architecture p oster at WINLAB-IAB,
Dec.2009. Modi ed here to show control plane, data-plane an d place of ASICs/ASIPs

Core micro-architecture

Core instructions (Width, oating point instructions, DSP instructions)
Co-processors

Memory system

{ Caches
{ Processor interface

{ Local memories
Exceptions and Interrupts
Test and debug

The basic architecture can be pruned or augmented dependingn the data processing
performance requirement of the application. The native praeessor pipeline is ve stage
(or seven stage) pipelined architecture. The ve stage pipkne has stages:

I: Instruction fetch

R: Register read

16

E: Execute
M: Memory write
W: Register write-back
The core pipeline is augmented or additional pipeline is addd through the Tensilica
Instruction Extension (TIE) language de ned instructions , optimizing the target algo-
rithm's performance.

Extensive architecture exploration and re nement processis needed to realize an
optimal architecture for a given set of applications. Spectally following aspects in the

design space are to be taken into consideration [16].

1. Instruction Set: The degree of parallelism in the applicéion code that can be
explored by the instruction-set using VLIW (Very Long Instr uction-Word) in-
structions as well as the de nition of special purpose instuctions to accelerate

speci ¢ portions of the application code while reducing pover consumption.

2. The processor micro-architecture: This includes de niions of instruction and

data pipelines, bypassing logic as well as the memory subdgsn to reduce data

and instruction access latencies.

3. Implementation of the Processor: A reasonable estimatefan power consumption,
clock frequency and gate count can be gathered after a syntlsés run with the
target technology. The design decisions would need to be raited if any of the

parameters are out of the speci cation range.

4. System impact on the processor's performance: The systermehavior and in-
teraction with the processor has an immediate impact on the ptimal processor
micro-architecture. For ex. If the shared memory is going tobe shared by a
number of processors, it would be wise to have su cient datacache included in

the architecture.

For Tensilica xtensa processors, the baseline processor gign-space is illustrated in

Figure 2.4.

17

Pipeline length,

Performance Execution units
Co-processors
(Vectra-LX, Floating R
Point) Need for IF R:agt:i Exe
additional
VLIW registers |
Load/ . : A :
P
aiite Mulitiply | Shift . Specific speed/size?
Bus type/
speed
Frequency support Cache Size/type/
associativity/
Target
m application Interrupts Memory/
| Area | requirements architecture Bus

Figure 2.4: Processor Design Space - Baseline Options

Original concept: Heinrich Meyr. System-on-Chip for Commu nications: The Dawn of
ASIPs and the Dusk of ASICs, IEEE Workshop on Signal Processi ng Systems (SIPS),
Seoul, Korea, 2003. (Modi ed here with respect to Tensilica Xtensa context)

2.2.1 Why Tensilica Processor?
Following points are precisely the reason for choosing Terlgca processors.

Processors are modi able through

{ Instruction Sets

Can simultaneously issue 24 bit and 16 bit instructions. If etended for
VLIW, it can issue 32 bit TIE instructions along with basic 16 and 24

bit instructions

{ Processor I/O ports - to exactly match extensive computational application

needs

Local and system interfaces

Designer de ned I/O interfaces

Possibility for multi-processor design

{ Availability of Single and Double precision oating point ¢ o-processors

{ Availability of DSP speci c Vectra processor

18

De ning scheduling of extended instructions is possible
Provided tools for design environment for:

{ Multi-Processor System-on-Chip (MPSoC) architecture

{ Exploration of design space for Cache and memory parametersuch as lo-

cality, associativity etc.

{ Simultaneous power analysis for variety of con gurations

Tensilica Instruction Extension (TIE) language is similar to Verilog HDL and

hence easier to learn if Verilog is familiar

Multi Issue VLIW technology: The base LX3 processor can be cogured as

3-issue VLIW (Flexible Length Instructions (FLIX)) proces sor

Since any set of DSP operations can be encapsulated into cush instructions, cus-
tomized Xtensa LX cores are capable of outperforming most DBs and general-purpose
processors on most of DSP applications [19]. Custom instriions target a specic
application. An Xtensa LX may be more area-e cient than a pro cessor core that at-
tempts to perform well on a wide range of applications but is aly used for one speci c

application.

2.3 Con gurability

There are several approaches to a con gurable processor dgs [19]:

Manually inserting instructions (hand-coded RTL) into the RTL description of

the processor

{ Cannot guarantee operational correctness of the manuallyniserted instruc-

tions

{ Associated software tools will not know about manually inseted instruc-
tions and hence they cannot exploit the instructions. Hence ASIC rmware
developers have to write assembly function calls and subrdines to exploit

such instructions.

19

Use specialized language to de ne the custom processor extg&ons

{ Facilitates the high-level speci cation of new data-path functions in the form
of new processor instructions, registers, register les,/D ports, and FIFO

gqueue interfaces.

{ A con gurable processor can implement wide, parallel, and omplex data-
path operations that closely match those used in custom RTL fardware.
The equivalent data-paths are implemented by augmenting ttke base proces-
sor's integer pipeline with additional execution units, registers, and other

functions developed by the chip architect for a target applcation.

The later option is widely used nowadays. The customized coguration is architected

through:

Selecting from standard con guration options, such as bus wdths, interfaces,
memories, and pre-con gured execution units (oating-point units, DSPs, etc)

[19].

Adding new registers, register les, and custom task-spect instructions that
support specialized data types and operations. If a customnistruction is added
to the xtensa processor, the execution logic and register ds are added in the data-
path as can be seen from Figure 2.5. In this gure, the blue pat denotes the base
pipeline of the processor whereas the orange portion denatéhe custom data-path

created due to addition of custom instructions and supplimetary register les.

Using programs that automatically analyze the C code and detrmine the best

processor con guration and ISA (instruction-set architecture) extensions

2.4 The ASIP Design Cycle

Here onwards, the terminology 'ASIP' will be used interchargeably with 'Tensilica
Xtensa LX2/LX3' processor. The Figure 2.6 illustrates the design methodology for

the ASIP design. The decisions such as whether to have SIMD/\/IW or only manual

20

Instruction : Memory Register
Fetch Hugintor seapns Rnanun Read/Write write
Inst. nst. | [Re9-|ra= OP |-
PC Memory ™ > file |/ 1 3 S Regfile
- ry Dec- +ACC- | == A E Update
ode I ol S | —-»
ess I = u |
| u L !
1 T |!
1| op [~ :
New :: I
Instruction| 1 l‘
Register :I-D- I
T ! z : New
] New . o NEW e Regfile
I~ ~ o]
F™ Regfile Exec- ™| Update
| - ution
| Unit New
I g::; . State
~~ =™ Update

Figure 2.5: How a custom instruction is added in ASIP

Source: Tensilica Xtensa LX2 product documentation

instructions to be inserted etc. depend completely on the kid of application to be
executed and power/area/frequency budget of the SoC. Once Uilt, the processor can
be co-simulated with external RTL logic and SystemC simulaion models to gauge
the performance of the complete SoC. The con guring of basé@le processor has been
explained earlier in Figure 2.4 on Page 17. When the potentiacustom instructions
are decided, the register le and functions that can be calld from custom instructions,
also need to be considered. Moreover depending on the memolyad/store operation

frequency more custom/user registers may be included.

Develop Application in C/C++

Y

Configure Processor
considering factors like
memery sizes, interrupts

Y

Add TIE (only for customized
interfaces at this stage) and
build the configuration

v

Profile and Analyze the
application to identify the ‘Hot
Spots’

Identify potential TIE
instructions

Implement TIE instructions,
Recompile source with new
instructions (options such as
SIMD and VYLIW can be
implemented also in this stage)

Run cycle accurate functional
simulation

Functionality Correct?

Profile and
Analyze

Acceptable
performance

Acceptable
Hardware cost

Build Processor

Figure 2.6: ASIP design algorithm

21

22

Chapter 3

Processing Engine

In this section, we discuss about the Processing Engine prest in WiNC2R architecture.
We also discuss issues that were handled in the transition ém dedicated hardware
processing engine architecture to ASIP-based architectw, the account of decisions
made and strategy adopted to have an e cient transition.

The WINC2R platform is a cluster-based System-on-Chip (SoQ architecture where
each cluster contains a group of Functional Units (FUs) conmcted by low hierarchy
AMBA-AXI bus. Each of the FU is responsible for certain step in protocol processing
and is speci c for that step. As shown in Figure 1.1 the clustes are connected through
centralized AMB-AXI bus. FUs are autonomous units of the SoCengaged by event
driven mechanisms. The recon gurability of the data- ow is achieved using two memory
structures: Global Task-descriptor Table (GTT) and Task-Descriptor (TD) table [20]
[21]. GTT is connected to central AMBA AXI bus while TD table i s present in each
of the FU respectively. Both of these tables are con gured bythe software for setting
up the ows. The processing in FU can be divided into two parts data processing
and control processing. The data processing includes the oo radio signal processing
functionality while the control processing is to achieve exibility in the ow. FUs are

implemented in:

1. Register Transfer Logic (RTL) using hardware description languages: VHDL and

Verilog
2. Application Speci c Instruction Set Processors (ASIPS)
3. C functions called through DPI interface in System Verilog logic block

The Processing Engine (PE) forms the core computing block iside a FU. Alongside

23

the PE (Figure 3.1), there are other hardware blocks such as DIA Engine, the Input
and Output Bu ers, the Open Core Protocol-Intellectual Prop erty (OCP-IP) master

and modules for communicating with the VFP controller.

VEP VFP-C to FU
- Communication [* Output OCP |u
- -
Modules Processing [MB“ffE" Master
7y Engine emory AXI
Bus
-
A
Input : OCP
Bus;fer - DMA Engine = Master [
Memory

Figure 3.1: Functional Unit Architecture

The architecture of the processing engine is shown in the Fige 3.2 [22]. The
Processing Unit (PU) is the actual algorithm processing block.

The Command ProcessofCP) module maps the command received from VFP con-
troller into appropriate action signals that is sent to processing unit. Each command
has a corresponding Action signal which is active high for oa clock cycle. The user
provides a Command Table, where each entry has a correspordj Action signal. CP
also sets other modules in the preparation for the command pcessing.

The Field Delimiter Generator (FDG) resides between processing unit and the input
bu er. The FDG fetches the data from input bu er depending on th e address and size
information provided by the PU. The FDG with the help of special signaling from PU
facilitates non-sequential memory access as well.

The Task Spawn ProcessorTSP fetches the corresponding output pointer to the
bu er region requested by PU for writing into the output bu er. Once the pointers are
fetched, it communicates with the PU to send data to be written to the output bu er.

The Register MAP called RMAP maintains the output bu er partition pointer sets.

It also maintains control/status information related to th e CP, FDG and TSP modules.

The input bu er and output bu er store the data to be processed and data after

24

Processing Engine

Command VFP
Processor >

A

A
f

Frame
<> Delimiter > N
Generator Buffer
Unit > >
‘ Local
Bus

Register Map

I
|
I
I
T
|
Processing |- f
|
I
|
I
|
I

Task-Spawn — >
Processor | ouT
Buffer
4 » J

Figure 3.2: Processing Engine Architecture

Source: Khanh Le. WINC2R platform programming interface do cument,
www.svn.winlab.rutgers.edu/cognitive, 2008

processing.

3.1 Virtual Flow Description

The PE gets command from the VFP controller. Upon receiving avalid command
(data or control), PU initiates a fetch cycle by rst requesting a pointer fetch cycle
followed by a data/parameter fetch cycle [23]. If Context information is available,
then PU shall complete Context information fetch operation prior to initiating a data
fetch cycle. and Control Word from the Input Bu er. The control word contains the
parameters pertaining to the processing. For example, in tk case ofModulator PE,
the control word gives details of the modulation scheme andhe standard for which the
modulation is to be performed. After the processing is donePU signals done signal to
the CP and writes data to the output bu er using TSP module. It a Iso sends signals
of next task vectors indicating the bu er information to the n ext PE (consumer for the
current PE). The NextTaskStatusbits indicate the location of the processed data in the

output bu er. Depending on the ow and type of processing, the output data may be

25

stored at more than one location. TheNextTaskRequestsignal indicates the VFP Task
Termination (TT) block how the output data at locations indicated by stat us bits is
to be processed. The TT processing includes transferring & data to next FU/FUs in

the data ow. The NT Request tells the TT to which FU the data is to be sent.

3.2 Integration of ASIP based PE into WINC2R platform

The most important issue while designing SDR based devices i exibility along with

e ciency. The RTL design is certainly not exible to add newe r standards/protocols
on ad-hoc basis due to huge design time. Naturally to satisfythe programmability
requirement and also maintain a comparable performance, A® was considered as a
logical alternative. The design migrating from RTL to rmwa re control has following

implications [18]:

1. Flexibility: The block's function can be changed or newerfunctions can be added

through rmware.

2. Sophisticated and low-cost software development methaican be used to develop

and debug most of the chip features

3. Faster system modeling is possible with the help of higheabstract description

and simulation ability

4. Control and Data processing is now integrated into the praessor, which is easier

to manage

5. Design productivity increases due to processor-based Sdesign approach, since
it sharply reduces risks of fatal logic bugs and permits graeful recovery when a

bug is discovered

For WINC2R PHY layer functions, ASIP is handled at SoC architecture level and
programming model is maintained same as hardware based Pressing Engines. To
augment the platform with processor-centric PEs, we had to eal with mainly the

following issues:

26

An optimal combination of partitioned hardware and software is required. Some

of the functionality for supporting hardware in PE can be moved to software;

Communication with the other Processing Engines should beransparent to them

and without hampering the performance;

Memory organization: An optimal instruction and data memory size should be

chosen so as to accommodate all current and future applicatn needs;

Possibility of general enhancement to Xtensa architecturefor one PHY function

proving useful for other PHY function;
Strategies to achieve an optimal context switching betweerdi erent tasks;

Analysis of achievable throughput on ASIP implementation. For example in the
case of MIMO MMSE detection PE as explained in chapter 5, we hd to sacri ce
precision accuracy since the throughput with oating point implementation was

outside acceptable rate.

3.2.1 Designing ASIP Processor for dedicated PE framework: Method-
ology

The CP module as explained in the earlier section, is respoitsde for interfacing with the
VFP controller, setting up other modules present in PE for data processing and mapping
the data/control command (sent by VFP) to action signals (sent to PU). The processor
(with the help of custom ports to be added) and programmable nterrupt/exception
architecture would be able to communicate e ciently with th e VFP controller. Setting
up other modules can also be done in synchronization when theommand from VFP
comes. The mapping of the command to action signals can be eiently done in
software. Hence, it is reasonable to remove the CP unit comptely.

The FDG can also be scrapped completely since the ASIP to be $tituted in-
herently has load and store unit which can handle data fetching from the input bu er

memory. Similar to FDG, TSP module should also be removed sice the processor is

27

capable of storing the processed data into output bu er memoy due to presence of

inherent load-store unit.

3.2.2 Communicating with the outside logic

The ASIP base version does not have any custom ports but only eneral Processor
Interface (PIF) and interrupts/exceptions structure de ned at the ti me of the con gu-
ration. The input bu er and output bu er can be connected to a bu s where the ASIP
is connected through PIF. With this type of connection, the processor has to go to
the bus every time it wants to fetch the data or send the data. Moreover this scheme
won't work if it has to send pulse to the outside RTL logic. In that case, there is no
guarantee that the outside RTL logic would receive the respase in the de nite estimate
of time, due to possible contention on the bus as well as set jorities of incoming and
outgoing data-signals to use the communication resourcesAll these issues have hin-
dered the inclusion of a general purpose processor in the dafplane of computationally

intensive/real-time systems.

3.2.2.1 Import wires

The inclusion of custom ports for communicating with the external RTL logic is the
only way to solve the above mentioned issues. Xtensa architture allows the addition
of custom ports the processor interface. To use the externgborts, they need to be
de nedin the Tensilica Instruction Extension (TIE) language [24] asOperations(custom
instructions) and should be compiled with the desired procssor con guration before
start building the con guration. Before describing the details of the interfaces and how
the data is used in the pipeline, we recall the stages in the Stage pipelined processor
as described in section 2.1.3.3 on Page 14.

The import_wire construct de nes an input to the ASIP that can be read by designer-
de ned instructions [24]. The import _wire is typically to read the status of some external
logic, device, or another processor in a system. The name ohé import_wire can be
included in the state-interface-list of an operation. The name of the import_wire then

becomes a valid variable name inside the operation or semaiatbody that can appear on

28

the right side of any assignment in a C/C++ application. The i nstruction reading the
import _wire can use the data in the 'E stage' of the pipeline. Since th data is registered
before use in any of the instructions, the instruction sematic and the external logic
that drives this port have no timing contention in a cycle. Declaring an import_wire
adds a new input port named TIE_.< name> to the Xtensa processor. We have added
the input interfaces from the VFP controller as import _wires in the processor, shown

in Figure 3.3. The detall interface architecture can be four in [25].

o
Memaory
1 Enable Processor
memo|
Command Local Intada?;
VFP slgnals DRAM (stack, heap,
Controller Interface interrupt
Interface vectors etc.)
Control
Output
a—— Tensilica ASIP Maitic
Output (g— ry
FIFO Queue
Interface) OutData |Interface Local Input
DRAM Buffer
Interface : f‘:f:‘
InBound LR
— and
il L I Instruction
PIF oca
Interface IRAM nstruction >, RAM
Interface {¢ interface

Figure 3.3: Tensilica ASIP Interface

3.2.2.2 Interrupts

An interrupt is de ned for the control command. If the processor is in the midst of the
data-processing and gets a control command interrupt, it ha to stop data execution,
store the existing register state (along with Program Counter) and jump to the interrupt

routine. Once the interrupt processing is done, the interrpt register is cleared and
program jumps back. We have provided the facility to have boh Data as well as
Control command valid signals to be de ned as either Import wire(s) or Interrupts.

This is a very useful scheme since the processor can poll fané command valid signal

when there is nothing to process for it (before getting the déa-command). But when

29

it starts processing it can not poll without hampering the performance; and hence
the control command comes as an interrupt although its cosiker to implement. The
mapping of either or both of the command valid signals on eitler interrupt or just
a import_wire is achieved with the help of intr_poll_facilitator block [25]. The Figure
3.4 shows the interrupt facilitator block, while Table 3.1 refers to the programmability

feature of the module.

Written through
software

RMAP_IPF [1:0]
! 1
h Interrupt

s Import_wire
Tensilica _mp o w*

P|n:cefssor | Virtual Flow
nterface | _ Controller
I =5 Interface
- 1
Interrupt{ -
| L Logic for
I M| A respective | Command
| u|T signal | Signal
1 X|c generation I
Command | o |
I I
I I
| - |
: = |
|

Clear latch

Figure 3.4: Interrupt and Polling facilitator Module

Table 3.1: Control Options for Interrupt/Polling facilita tor module

Case Description RMAP Bits
[1:0]
Control-command as interrupt and Data-command polling 00
Control-command as interrupt and Data-command as interrupt 01
Control command as polling and Data-command as interrupt 10
Control command as polling and Data command as polling 11

30

3.2.2.3 Export States

A state de nes a construct to create registers where the values aret@ed prior to the
instruction execution [24]. An instruction can also assigna value to a state, which is
then updated with this new value after the execution of the instruction. Instructions
that provide a well-de ned, but general purpose way to read ad write states, are
automatically created by the TIE compiler when a state is dedared with the optional
argument add.read write. When a state is de ned with export keyword, it is made
primary output of the processor. The externally visible value on the port changes only
when the architectural value of the state changes. The exactycle in which the port is
updated (with the value of a recent write to the state) is implementation dependent. To
avoid synchronization problems with the outside logic, bag instruction EXTW helps
ensuring that all externally visible actions from earlier instructions from the processor
prior to the EXTW instruction are executed before the pipeline can proceed to the
next instruction. All the signals going to VFP are de ned as export states, as shown

in Figure 3.3 on Page 28.

3.2.2.4 Queues

Once the ASIP nishes data-processing, it has to write the piocessed data into the
output bu er. In order to reduce the time taken by the ASIP for t his operation, there
should be no waiting time for the processor to carry out this @eration. To achieve this,
we have segregated output bu er from the ASIP by a synchronousFirst-In First-Out
(FIFO) bu er. The ASIP is connected to the FIFO by a custom inte rface calledQueue
The data port TIE _<name> is the output of the Xtensa processor that is connected to
the data input of the queue and has the same name and width as i ed in the queue
declaration. Like any operand input to the processor, a qued read request is issued
in E stage and used in the M stage of the pipeline. For output qeue data must be
available in M stage and sent to the output queue in W stage. Tle width of the queue
interface for the ASIP is kept at 34 bit. The lower 32 bits are used for the data, and

the upper 2 bits are used for controlling purposes indicatiig either start of the burst

31

or intermediate data (data word continual) or end of the burst. Figure 3.5 depicts the
output word format to be sent to the queue. The rst word will b e a control word
indicating the information such as region (control/data), size of the data to be written
and the address where the data should be written. The controlword is followed by the

required data.

33 32 31-30 29-14 13-0
Control Frame
011
Format
01: Control region Size Address
10: Data region information || information of
(Output buffer) of the Data the Data

33 32 31-0
Data Frame Format
(Intermediate data |0 |0
frame)
Intermediate data Data

frame indicator

33 32 31-0

Data Frame Format
(Last data frame) |10

11 !

Last data frame
Indicator

Data

Figure 3.5: Output Queue Data Format

The Figure 3.6 shows the snippet of declaration of ports throgh TIE, whereas
Figure 3.7 shows the snippet of instructions to access TIE cstom ports.

There is a logic module calledObufto_Memory_Writer [25], that reads the data
from the FIFO and writes it to the output bu er memory. The form at of the Queue
data has been made such that the design of the this module is a venytraightforward

state-machine. The presence of a synchronous FIFO and the ndware logic for reading

32

import wire wirelInFlowConPtr 16

import wire wireNextTaskick 1

state NextTaskRegV 16 16'h0 add read write export
state CmdDecErr 1 1'b0 add read write export
gqueue CJutd 34 put

Figure 3.6: Custom ports declaration in TIE

operation xi PFead wireNextTaskick {out AR NextTaskickIn! {in wireNextTaskick}
i

| assign NextTaskickIn = {31'b0, wireNextTaskick[0]}:;

i

operation xi Write Crdick {in imml warCmdickp {out Cmdick)

{

| agssign Cmdick = wvarCmdick[0]

H

Figure 3.7: Instructions for accessing custom ports

FIFO and writing to the output bu er, makes the processor spend maximum time on
the data-processing and minimum on the data transfer. The irlusion of the queue

interface was one of the key decisions in the design of the ABI

3.2.3 Memories

The Xtensa ASIP is aHarvard Architecture [26] based processor and hence the instruc-
tion memory and data memory are stored in di erent locations. (Give details about
the memory access cycles needed to access data, single powlti-port memories ad-
vantages/options in xtensa, modes of adressing (registendirect/direct)).

Considering future application requirements, the Instrudion RAM (IRAM) was
decided to be of 128 KB size. While the Data RAM (DRAM) was decded to be of
256 KB size but divided into 2 separate RAMs and connected to e processor through
separate data memory interfaces [25]. The rst data memory DPRAMO) bu er contains
all the Stack, Heap, Reset Vectors and literals present in tle program. The other data
memory (DRAM1) bu er serves as an input bu er to the processor. The DRAML1 is
further divided into two equal portions 64 KB each. One regim will be PE RMAP
region and the other will be the region for storing the data to be processed. The PE

RMAP region is further split into common RMAP region and the R MAP speci cally

33

pertaining to the respective PE which is substituted by Processor-centric solution, PU-
RMAP. The Output bu er memory is not visible to the processor and hence it won't
be writing to it directly but via the queue interface to the FI FO. The top level memory

partition is shown in Figure 3.8.

Physical Memory View

Processpr 1- 2 Instruction RAM 0x00000

Memory View - 128K

.
0x1FFFC
/ Stack 0x20000
IRAMO L/ 16K 0x23FFC
128K 4 Heap 0x24000
e i 0x27FFC
/

/ Interrupts and Exception Vectors 0x28000
4K 0x28FFC
Reset 0x29000
sz‘;ﬂo 1K 0x293FC
Text, .bss, .rowdata 0x29400
O 91K Ox3FFFC
- e PE Rmap 0x40000
64K 0x4FFFC
B PE Ibuf 0x50000

64K
128K 0x5FFFC
i PE Obuf 0x60000
1 64K OXBFFFC
0x70000

Reserved for future use

64K

Ox7FFFC

Figure 3.8: Memory map for Tensilica ASIP based functional units

There is no requirement of data-cache in the ASIP as the load &ndled will be
real time data which is updated in the input bu er continuously. However there is
Instruction cache of size 1KB (2 way set-associative). Thigs the minimal size possible
and no change in the performance was observed with the sizeds associativity was

changed.

3.3 Software application ow

In order to maintain modularity in the software and make it easily extensible, the func-
tions are designed such that replacing few speci c function are needed to change the

kind of PHY application rather than change entire program ow consisting of almost

34

similar functions of communicating with VFP and reading processing parameters. Fig-
ure 3.9 shows the application algorithm. FunctionF, Function_M and Function_G are
functions that are application speci c. Rest of the functions are common for all ASIPs

to be substituted as respective PEs in the WINC2R platform.

Main
Start the |

execution

Read the input
buffer {control/

Y data) <
Initiate Stack {Function_M)
Pointers,
Register y
interrrupt handler
Data Processing

and Write output to
Y queue
Read VFP (Function G)

@— Controller

Communication

Processing

Y
Done?

Determine processing
parameters, allocate space
(Function_F)

Exit / Jump to A

Figure 3.9: Software ow on the ASIP

The custom instructions extensions le that is used for ASIP ISA extension, should
be included as an header le in the C application in order to m&e compiler understand
the instructions used in the C application and map it accordingly. If more than one
les are used (which is a case many times due to modular desigapproach), all those
les also should be included as separate header les in the gpication. The Figure 3.10
shows ASIPs (Interleaving/De-Interleaving, MIMO MMSE det ection) in the WINC2R

SoC architecture view.

35

Cluster
Control messaging within cluster Virtual
(6 customized propriety buses) o | (e
No T 1 Pipelining
% = A (VFP)
s FUEN Controller
W1l Fug2 . o 5
- I . Mem
-~ L v -
<Da|a communication within cluster (AX| bus)>
A
g) A —
" TCluster |
2
Interconnect for communication across clusters (AXI AMBA based)
Cluster# Cluster# Cluster#
1 3 L 16

Figure 3.10: ASIPs in WINC2R SoC

Concept: Onkar Sarode. Scalable VFP SoC architecture, Winl ab-IAB meet, Dec. 2009.
Modi ed here to include ASIPs of Interleaving/Delntelreav ing and MIMO-MMSE detection

36

Chapter 4

ASIP for Multi-Standard Interleaving and De-Interleaving

In this section, we describe the design of the ASIP. We also deribe the performance
vs. cost trade o analysis of the ASIP for multi-standard (Cu rrently 802.11a, 802.11n
[27] and 802.16e/m [28] standards) Interleaving and De-Intrleaving operations of the
PHY layer. The ASIP design methodology was highlighted in Fgure 2.6 on Page 21.
Accordingly the rst step was to study and implement the algorithm on the Xtensa

base processor.

4.1 PHY description

802.11a is IEEE standard for wireless communication. It wasadopted rstin 1997 and
then revised in 1999. IEEE de nes a MAC sublayer, MAC managenent protocols and

services, and three physical (PHY) layers. The goals of thetandard are:
Deliver services same as found in wired networks
Guaranteed high throughput
Provide very reliable data delivery
Provide continuous network connection

The transmitter block digram for 802.11a is shown in the Figue 4.1.

For 802.11n, the only di erence is that there will be multiple streams to be operated
upon simultaneously. These can be handled by having a procssr each stream. The
transmitter for 802.11n is shown in the Figure 4.2. Similarly, the 802.16e/m transmitter

is also shown in Figure 4.3.

37

Convolutional

—m Scrambler
i Encoder

= Interleaver

Upsampling
DAC

level)

level)

Cyclic _
L Filtering |« Prefix (word |« IFFT (word | _ | Mapper (bit

Figure 4.1: 802.11a Transmitter Block Diagram

4.2 Interleaving algorithm

Interleaving is used in digital data transmission technolay to protect the transmission

against burst errors. The interleaving operation is data-ntensive operation, hence the

processing time increases with the size of the data. The intéeaving algorithm [27] [28]

is described below :

Lets assume:

k is the index of the bit to be coded before the rst permutation;

i is the index after the rst and before the second permutation;

j is the index after the second permutation, just prior to modulation mapping;

Nceps is the number of coded bits per symbol;
Ngpsc is the number of bits per sub-carrier;
Then, the rst permutation is de ned by the rule:
i =(Ncgps 16) (k mod 16)+b(k 16)c

fork=0;1;:::;Ncgps 1

and the second permutation is,

j=s b (i s)c+(i+ Ncgps b (16 i=Ncgps)c)mods

(4.1)

(4.2)

38

- —»| IFFT T

—=! Interleaver = QAM Mapper

FEC Encoder

Scrambler
Encoder Parser
Spatial Mapping

Stream Parser

—p= Interleaver - QAM Mapper » —»| IFFT

+_
FEC Encoder
—>

Figure 4.2: 802.11n Transmitter Block Diagram

Source: http://www.wirelessnetdesignline.com, PHY laye r tutorial

fori=0;1;:::;Ncgps 1
where,

s= max(Ngpsc 21) (4.3)

As shown in Equations 4.1 and 4.2, each bit index of the symbadk permuted twice and
the nal address is derived. In simple words, the algorithm @n be visualized with the

help of a matrix where each element of the matrix contains a liof the OFDM symbol

[29].

Number of bits per OFDM symbol depends on the standard (WiFi /WiMax) and
modulation scheme used (BPSK/QPSK/16-QAM/64-QAM) as shown in Figure

4.4
Matrix has number of rows from 3 to 96 and 16 columns
Bits are lled row-wise

The rst permutation just transposes this matrix. This is a s pecial kind of trans-

posing because the number of rows and columns before transging remains same as

39

Y

Randomiser RS Encoder CcC Encoder___ Puncturer
(bit level) (block level) (bit level) (bit level)

Y

Interleaver
Upsampling (block level)
DAC
A rl
Cyclic - :
Filtering |- Prefix (word [IFFT (word | Pilot Insert a Mapper (bit
level) level) (Word level) level)

Figure 4.3: 802.16e/m Transmitter Block Diagram

Number of Coded Number of Coded
Scheme Bits per Symbol Bits Sub-Carrier
(NCBPS) (N.BPSC)
48 1

WiFi BPSK
QPsK 96 2
16-QAM 192 4
64-QAM 288 6

WiMax BPSK 256 1
QPsK 512 2
16-QAM 1024 4
64-QAM 1536 6

Figure 4.4: WiFi (802.11a) and WiMax (802.16e/m) Details

Source: |IEEE 802.11a and 802.16e/m standards [27], [28]

number of rows after transposing. The bits are thus spread damn-wise. After this
operation, the second permutation interchanges bits amongt rows of the respective
columns. This interchanging is dependent on the standard ad modulation scheme.
The bits are read row-wise after the two permutations. The déails of bit shuing

are also shown in Figure 4.5. Naturally, instead on working a bit indices, it is more

e cient to work on a matrix containing the block of bits in the memory.

Instead of normal bit level addressing , this is byte/word level addressing, resulting

in much faster algorithm

A complete row can be written in one cycle and complete columrcan be read in

one cycle

40

Standard Modulation Bit Shuffling Method
Scheme

WiFi and WiMax BPSK No Shuffling
WiFi and WiMax QPSK No Shuffling

WiFi and WiMax 16 QAM If Column number mod 2 = 0: No shuffling ;
If Column numbermod 2 = 1:
15t row bit => 2™ row
27 row bit => 1 row

(Respectivelyin each pair of rows in a column starting
from 0% row)

WiFi and WiMax 64 QAM If Column number mod 3 = 0: No shuffling

If Column numbermod 3 =1:

1%t row bit => 2™ row

2" row bit => 3" row

3" row bit => 1%t row

(Respectivelyin the group of 3 rows ina column
starting from 0™ row)

If Column Number mod 3 = 2:

1%t row bit => 3" row

27 row bit=> 15 row

39 row bit => 2™ row

(Respectivelyin the group of 3 rows ina column
starting from 0™ row)

Figure 4.5: Interleaving: Bit Shu ing in the Register Matri X

Intra-row permutations and Intra-column permutations giv e possibility to di er-

ent interleaving schemes

Addressing is taken care of by the processor completely (sipter to implement

with processor than HDL)

The software implementation of this algorithm in C is very ine cient as C cannot
handle bits, rather it can handle character (8 bit wide) / int eger (32 bit wide). The
pro le analysis of the C application without custom instruc tions also indicated that the
main bottleneck in the processing is the way the bit-matrix is written into a processor

memory. For lling each element of the matrix (a bit):

1. a LOAD instruction loads the value from input bu er's index ed address into the

register of the processor

2. since this is a 32 bit wide number, boolean AND instructionis carried out to

mask the other bits with zeros and result is stored in say al rgister

41

3. The data corresponding to the address location of the coasponding matrix ele-

ment's row is loaded using LOAD into a register say a2
4. al and a2 registers are ORred bit-wise

5. the result is stored back into the address of matrix elemet's row using STORE

instruction

These instruction sequences are repeated for each vertienbrizontal index combination

of the matrix.

4.2.1 Algorithm Improvement

The solution to this problem would be to have a register matrix inside the ASIP (not
in the memories) and have custom instructions reading the loal memory and writing
it to that matrix. Once the matrix is written, the permutatio n can be done depending
on the protocol. Another custom instruction will read the custom register le and send
the data to the queue interface so that it could be written to the FIFO and then to
the output bu er memory. The rst permutation of the algorith m is altogether avoided
if the matrix is written column-wise instead of row-wise. This observation is used
for writing the custom instructions. Hence, the Tensilica Instruction Extension (TIE)

language is used to add:

1. An architecturally visible register le to be a place for storing data-matrix. This
consists of 16 registers each of 32 bit width. This is optimalsize to serve the
requirements for all standard and modulation scheme combiation with the ex-
ceptions of WiMax-16 QAM and WiMax-64 QAM cases. In these cass, the data
is operated in size of chunks (Chunk size = 16 (Number of stateegisters) 32
(Bit-Width of each registers)) and register le is written b ack again to reutilize

for processing the remaining chunks of the data;
2. Instruction to read the memory and Il the register matrix word-wise;

3. Instruction to read the matrix column(word at a time) and w rite to the output

queue;

42

4. Instruction to decode standard, modulation scheme infomation from the control

word;
5. Instructions for writing to custom port queues;
6. Instruction to perform inter-row (same column) permutations.
Some other custom instructions are added in support of the gorithm:

1. Instruction to move lower rows data to upper rows for making it available for

reading

If only a single row (16-bits) are remaining to be written to output queue,

the Os are appended (at MSB position) to form a word

2. Instruction to determine the wireless standard and moduétion scheme from the

control word

The Figure 4.6 shows how the TIE instruction is removing the lottleneck of the pro-

cessing.
- o~
¥ + +
Custom state registers Tl QS
15 14 13 2 1 o 2 2 =
A |
| — -
| | |
| | |
il Bl B B
' ol| 8|l &
s2bit| | AR E 222
width | | | E g. E
£El| E
IRAR 5§58
| | | = E|=
| | |
anana B
sl 5l &
- — = ﬂ LR
v e e, i |-

One cycle needed to fill a register

Figure 4.6: A custom instruction removing bottleneck in the interleaving algorithm

43

Cycles taken in the custom case =16 (Number of cycle to read a memory word)+
16 (Number of cycles to store value from processor register toustom register) +

15 (cycles for incrementing the address pointer)

Cycles taken in the standard case =16 32 (Number of cycles to access load
memory word + Number of cycles of boolean AND masking operatin + Number of
cycles to load the word from matrix location + Number of cycles for ORring the
result with the current matrix word + Number of cycles for sto ring the values

in to the matrix in the memory) As can be seen from above analyis, the sharp gain
in the performance is possible due to presence of custom TIEhstructions. The Fig-
ure 4.7 shows the gain in the performance of the complete intkeaving operation in

multiple times that of the application running on the standard processor. Thus, in

Figure 4.7: Interleaving application performance gain (inmultiple times)

Observed through cycle-accurate simulation

order to support data throughput of 54 MBPS for 802.11a, the required frequency at
which processor need to operate is less than 30 MHz. Such lowérequency is not
imaginable if custom instructions would not have been added The code size without
custom instruction comes out to be 1348 Bytes and with custominstruction is 1888
bytes, an increase of 40%. With compiler optimization featwes such as vectorization

and inter-procedural optimization, the cycle count is further reduced by 10% to 15%.

44

The code size is also reduced by 13% to amount 1640 Bytes in easf custom TIE in-
cluded application. The code size is with compiler optimizéion in normal application
is 1196 Bytes. The graph in Figure 4.8 shows that the gain in witing the matrix block
is at least 32 times that of standard case as also is visible imstructions count analysis
done in the previous part of this subsection. It also shows tk gain in the processing
function of the (in this algorithm, processing is nothing but shu ing of data-bits in the
register matrix). The gain is not the correct re ection in th e processing operation as
such, since the processing here also includes writing the rtrix to the queue output,

which takes multiple cycles.

Figure 4.8: Interleaving application: Performance improvement of Matrix Writing func-
tion and Matrix shu ing (processing) function

Observed through cycle-accurate simulation

The addition of custom TIE instructions however does aect the Cycles per In-
struction (CPI) parameter of the processor. As compared to lase ISA instructions, the
custom instructions are mostly multi-cycle operations. Hence, the total CPI does get
a ected due to the presence of custom instructions, as also sible in graph 4.9. The

increment in CPI is only about 10-15%.

45

Figure 4.9: Custom instructions' impact on the CPI (Interle aving application)
4.3 De-Interleaving algorithm

De-interleaving is just the opposite process of algorithm.Similar to the case of inter-
leaving, the algorithm operates on bits equal toN¢cgps of the respective standard's

modulation scheme. The Deinterleaving algorithm is explaned below: Lets assume:
j is the index of the original received bit before the rst permutation;
i is the index after the rst and before the second permutation;
k is the index after the second permutation;
Nceps is the number of coded bits per symbol;
Ngpsc is the number of bits per sub-carrier;
Then, The rst permutation is de ned by the rule:
i=s bj sct(j+bl6 j NcepsC);j =0;1:::;Ncagps 1 (4.4)

k=16 i (NCBPS l) b (16 i NCBps)C;i =0:;1;:::;NcBeps 1 (4.5)

where;s = max(Ngpsc 2;1) (4.6)

46

As shown in Equations 4.4 and 4.5, each bit (on the basis of iténdex) of the symbol
is permuted twice and the original index of the bit is derived In the same way as
Interleaving, this algorithm can also be visualized with the help of a matrix where each

element of the matrix contains a bit of the OFDM symbol [29].

Number of bits per OFDM symbol depends on the standard (WiFi /WiMax) and
modulation scheme used (BPSK/QPSK/16-QAM/64-QAM) as shown in Figure
4.4 on Page 39

Matrix has number of rows from 3 to 96 and 16 columns
Bits are lled column-wise and read row wise.

To avoid the rst permutation, the matrix is lled row-wise. Then inter-row (same-
column) permutations are done. These permutations are exdly opposite to that of
interleaving processing and hence are executed exactly resse to those shown in Figure
4.5. After this step, the words (each of 32 bit-width) are real row-wise and written to
the output queue interface. The software implementation onthe base processor is very
ine cient since the bit handling is highly ine cient throug h 'C' using base ISA of a

standard RISC processor.

4.3.1 Algorithm Improvement

Since we have the pre-customized processor (designed fotérieaving application) as
a base processor, we have a custom state register matrix alable for use for the de-
interleaving application. Also, we want to avoid the rst pe rmutation of transposing
the matrix. Considering these factors, following custom irstructions are added through

TIE:

1. Reading memory and putting it into state register matrix. For writing row-wise
as shown in Figure 4.10, all state registers have to be the ing operand of the
custom instruction. One memory word is used for Iling two rows of the matrix
registers. The lower 16 bits go into rst row and upper 16 bits go into the row

below. This scheme follows for writing each pair of rows frontop to bottom;

47

2. Instruction for bit shu ing (inter-row fashion);

Figure 4.10: Custom instruction for lling registers row-w ise

3. Instruction for bit rearrangement. In case the bits do not Il 32 rows, the bits need
to be arranged such that they occupy respective words columnvise. See Figure
4.11. This rearrangement of bits facilitates reading out ofbit-matrix column by

column.

4. Instruction for reading column-wise (shared with the interleaving case)

With addition of these instructions, the performance gain dtained is shown in
Figure 4.12. The gain is observed in multiple times that of the performance of the
application running on a standard RISC processor. Thus, in oder to support data
throughput of 54 MBPS for 802.11a, the required frequency atwhich processor need
to operate is under 30 MHz. Such lower frequency would not hay been imaginable if
custom instructions would not have been added. The lower frguency results in lower

power and hence considerable lower cost of operation. Sindbe register matrix is

48

Figure 4.11: After processing, rearrangement of bits for rading out

written 2 bit-indexes at a time for each of the register, thisoperation is quite expensive
as compared lling one register at a time as in the case of intdeaving. The performance
gain in this function compared without custom instructions, is depicted in the graph
in Figure 4.13. The performance is improved by 10% to 15% morby using aggressive
compiler otimization which includes automatic vectorization (wherever possible) and
interprocedural optimization. However the lesser perfornance gain in matrix writing
function is compensated by huge performance gain obtainedhishu ing operation. This
is possible since the shuing is now intra-column and inter-row fashion, and hence
within respective state registers. The code size without cstom instructions was 1372
Bytes and rose to 1916 Bytes (39.65% incremenet). With comjgr optimization, in the
case of application without custom instructions, the code &e remains almost constant
(1364 Bytes), whereas the code size for application with cdem instructions, the code
size increases by 19.65% to reach size of 2296 Bytes.

Similar to the case of interleaving, the Cycles per Instructon (CPI) count does
get a ected with the use of custom instructions. The graph in Figure 4.14 shows the

comparison of CPIs in both cases.

49

Figure 4.12: De-Interleaving application performance gai (in multiple times)

Observed through cycle-accurate simulation

4.4 Cost benet analysis

The addition of custom instructions does however add a condierable amount of area to
the base processor. The addition of custom ports needs addin on custom instructions
to access those ports. If they are declared architecturallyisible, the XCC compiler
automatically generates RUR< port-name > as the read instruction and WUR.< port-
name > instruction.

The TIE instructions add considerable area. Since, most of he TIE instructions
added for interleaving are for data shu ing inside the state registers, there is very little
chance of sharing the hardware required across the instrugns. The Figure 4.15 shows
a snippet of TIE instruction for lling matrix register (cor responding to de-interleaving
application).

Once the instructions are de ned and the corresponding harévare is generated,
several implementations of instructions were carried out b see if they result in overall
lower area. For example, in case of interleaving, initiallythere were separate instructions

to Il each of the register columns. This combination is che&ed against the combination

50

Figure 4.13: De-Interleaving application: Performance inprovement of Matrix writing
function and Matrix shu ing (processing) function

Observed through cycle-accurate simulation

where there is a single instruction but with MUXes at the inputs to route appropriate
data to appropriate column of the register-matrix. The areain the later case was found
to be 20% lesser than that of the earlier case. However de nig a complex instruction
with lots of muxing does not always help in reduction the area This was observed in
the case of rearrangement instructions in the de-interleaing processing. Initially, there
were seperate instructions per standard and modulation saéime combination to carry
out rearrangement of bits (rearrangement for WiFi BPSK is explained in Figure 4.11 on
Page 48). All rearrangement instructions were combined nex to check the possibility
of hardware area reduction. But in this case, the area was irdct increasing due to the
complex decoding and muxing involved in the combined instrgtion. Hence, the earlier
option of having separate instructions for each standard- nedulation scheme pair was
chosen.

Once the optimal instructions are de ned, 'scheduling' is de ned for some of the

custom instructions. Every Custom instruction de ned thro ugh TIE has an implicit

51

Figure 4.14: Custom instructions's impact on the CPI (De-Interleaving application)

schedule according to which the reading of the operands andaing of the operation
results into state-registers, queues and register le takeplace. Schedule is de ned in
terms of the pipeline stage depth. The state registers archéctural copy is only updated
at the Register Write (RW) stage of the pipeline, even if the implicit schedule de nes
the write at earlier stage than RW stage. Hence if the state rgister is written in earlier
stage than RW stage, multiple (non-architectural) copies d the register are generated
for each stage till RW stage, where the true architectural c@y is written. Hence for
reducing area of the TIE instruction with state-register writing operation, generation of
non-architectural copies should be avoided [30]. This is dmeved by de ning schedule
for writing state registers in the RW stage. In a similar fashion, the operands should be
read as close as to RW stage, to avoid generating multiple cags of the same till 'de ne'
stage. Figure 4.16 shows a schedule construct de ned for mak Iling instruction seen
in Figure 4.15 on Page 52.

The comparison of areas in all of the three case discussed aloviz. with only
custom ports, with normal TIE, and TIE with scheduling is shown in the Figure 4.17.

On a base processor of area of 65000 gates, the graph in thisuge shows that:

1. With custom ports, 12.12% gate addition is observed over aseline processor

52

Figure 4.15: A snippet of custom instruction lling the regi ster matrix

2. With custom TIE instructions without scheduling de ned, 87.32% gate addition

is observed over base processor + custom ports gates area.

3. With custom TIE instructions with scheduling de ned, 70. 91% gate addition is

observed over base processor + custom ports gate area.

At 65 nm, the gate density'is 854 Kgate/mm?. Hence, the additional hardware
gate area (added for ISA customization) is calculated to be @605 mm2. . We can
get an approximate comparison between ASIP and ASIC-like ilpplementation of multi-
standard interleaving, if we compare custom processor aregbaseline processor + logic
added for custom ports + logic added for custom instructiong to that of area required

for custom instruction logic (assumming it will be roughly same as dedicated hardware

implementation).

1Source: TSMC 65nm technology data-sheet, www.tsmc.com

53

Figure 4.16: Snippet of instruction scheduling through TIE

Figure 4.17: Comparison of custom hardware addition cases

Estimate given by Tensilica Xtensa Processor Generator too |

The area of baseline processor + custom ports logic + customnistructions logic
= 65000 + 51683 + 7879 = 124562gates:
The area of added custom instructions = 51683 + 7879 = 595623 ates:
Rough estimate of the area overhead required for customizad ASIP (with respect
to a dedicated hardware) for multi-standard Interleaving and De-Interleaving
=109:13%

The Figure 4.18 shows the resultant performance measure inetms of Million In-
structions Per Second (MIPS) count. The performance is calglated for processor run-
ning at 547 MHz frequency (as estimated by Tensilica Xtensa Pocessor Generator

tooal).

54

Figure 4.18: ASIP performance in MIPS

441 Conclusion

The ASIP designed here satis es the data-throughput requiement of all of the standard-
modulation scheme combinations in both 802.11a, 802.11n @n802.16e/m standards.
The operating frequency can be kept as low as 30 MHz for the regred throughput level.

The custom hardware addition over baseline processor (witltustom ports) amounts to

be 70.91%.

55

Chapter 5
ASIP for MIMO MMSE Detection

In this section, we describe the performance vs. cost trade analysis of the ASIP
for linear Minimum Mean Square Error (MMSE) detection in Multiple Input Multiple
Output (MIMO) OFDM systems. The ASIP is exible to support number of receiving
antennas (Mgr) and number of transmitting antennae (M 1) MIMO system. Accordingly
the rst step was to study and identify the algorithm to be imp lemented through ASIP

hardware ad software.

5.1 MIMO systems introduction

MIMO transmission is a technology that is able to increase tke spectral e ciency by
transmitting 2 or more data streams on one radio channel, wih the use of multiple
antennas at the transmitter. The receiver also has multipleantennas, normally more
than the number of transmitting antennas. This also helps inbetter quality of service
and high data transmission rate. The high rate is achieved byransmitting multiple data

streams in parallel in the same frequency band and without icreasing the bandwidth of

the system. The conceptual diagram of MIMO system is shown irFigure 5.1. The most

Figure 5.1: MIMO System

56

prominent disadvantage of MIMO systems is the complexity ofthe receiver design. Itis
guite challenging to design an e cient hardware for MIMO det ection that could su ce
to the requirements of the high data throughout as per requiements of the standards

such as 802.11n and 802.16e/m.

5.2 MIMO MMSE detection requirements and algorithm

We consider a packet based linear MMSE detection in MIMO OFDMsystem, with Mg
as the number of receiving antennas and+ as the number of transmitting antennas.

Consider:
K: the number of tones to be processed
Mg: the number of receiving antennas
M+t : the number of transmitting antennas

s[k:t]: Mt dimensional signal vector transmitted at time index t on the k" tone

of the OFDM symbol.

The time varying channel impulse response between thg" (j = 1;2;::::M7) transmit
antenna and the ith (i = 1;2,:::;MR) receive antenna is denoted as;; (;t). The

composite MIMO channel response is given by with

2 3
hya(st) hpa(t) him, (5t)
ha.1(;t) ha.2(;t) ham. (1)
H =
hMR;l(;t) hMR;Z(;t) hMR;MT(;t)

If the signal s[k,t] is Mt dimensional signal vector transmitted at time index t on the
K th tome of the OFDM signal, then the corresponding received ector y[k;t] is given
by y[k;t] = H[K]s[k;t] + n[k;t]

where n[k;t] models the white noise. If the channel matrices are known, lte linear
MMSE estimator for each tone will be:

Glk] = (H"[KIH K]+ Mt 21) *H"[K]

57

The algorithm as highlighted in [31] depicts an approach to aoid the tedious matrix
inversion arithmetic. For the sake of clarity, we again desdbe the same algorithm

highlighted in [31] briey over here on Page 57. The detectim is a matrix-vector

Algorithm 1 Algorithm for computing the MMSE estimator [31]

PO = (=M 2)1
for j =1to Mg do
g= P 1)|_|J.H
S=1+ H;0
Se = blog,Sc; Sy, = 25¢=S

g= SmQ

PO = pli D ggH2o Se
end for

G = pPMrIYH

multiplication given by:

stk;t] = Glkly[K] (5.1)

The sizes of the matricesMr and Mt are enlisted below:

P: Mt Mt

He: Mg M7
HE: Mt Mg
g Mr 1

g Mt 1

y: Mg 1

G: Mt Mg

Each of the element in the above matrix is a complex number. Tl Table 5.1 gives

the analysis of numerical computations required for the algrithm. As indicated in the

Table 5.1
Total number of multiplications =N 20M1Mg+ M12+4M1%MRg + Mg ;
Total number of additions =8NMRrMT+NM1+2NMgr+ N(4M+ 1)(MTMR)+

N(@Mg 1)(M1)+ NM12Mg;
Total number of divisions = NMRg
we have chosen this algorithm for the ASIP implementation, $nce it is one of the latest

work on hardware centric algorithm for MIMO MMSE detection and it can satisfy the

58

Table 5.1: Complexity Analysis of MIMO MMSE detection using Burg's algorithm

Operation Number of times Total number Commands
in one iteration of iterations
Multiplication Mt M+t N Initial calculation
of P matrix
Multiplication AIM T N Mg Calculation of
Addition 2M1 + Mt N Mg ¢ matrix
Addition Mt Mg N Calculation of
H_conjg matrix
Multiplication AIM T N Mg Calculation of
Addition 2Mt + M+ N Mg Hj o]
Addition 1 N Mg Calculation of S
Multiplication 2 N Mg Calculation of Se
Division 1 N Mg St
Addition 1 N Mg
Multiplication 2M 1 N Mg Calculation of g
Addition Mt N Calculation of §_conjg
Multiplication 6M 1 N Mg Calculation of
g gconjg 2 S¢
Addition M2 NM r Calculation of P
Multiplication AIM T N Mt Mg | Calculation of
Addition 2MTt + M1 + (M 1) N M Mgr | G matrix
Multiplication AMR N T Calculation of
Addition 2Mr + MR +(MRr 1) N Mt 4 matrix

throughput requirements of 802.11n if used at 500 MHz and sebf 4 processors are

used.

5.3

The inclusion of custom ports such as state wires, import wies and queue interfaces

Implementation on ASIP

are already explained in chapter 3. Steps in the implementabn:

1. Normal C implementation on a Standard RISC processor

2. Improvements through use of speci ¢ co-processors sucls&loating point unit,

concurrency features of the algorithm, intra-procedural gtimization

3. Improvements through custom instructions for carrying cut complex number ma-

nipulations and parallelizing them using VLIW technique

59

4. Advanced optimization through vectorizing the data through use of custom user

registers and writing custom instructions to implement SIMD technique

The C implementation of the algorithm is a straightforward, since each of the steps
in the algorithm is clearly de ned in terms of resultant outp ut and processing done
on the input. After testing several combinations of base corgurations, the oating
point co-processor along with 32 bit multiplier were found to be necessary for e cient
performance. The computational intensity is present due tomatrix multiplications
of complex elements involved in the algorithm therein. Thiswas also veri ed when
pro ling of the application was carried out. The assembly pro ling also re ected heavy
presence of load-store operations. In order to improve pesfmance at this step, 2 steps

were taken:
1. 2 load store units are added to the processor
2. 2 issue VLIW scheme is de ned (with oating point operations in both slots too)

Corresponding code snippet is shown in Listing 5.1.

Listing 5.1: Snippet of TIE code for complex humber multiply-add operation

proto complex64.madd finout complex64 a, in complex64 b,
in complex64 o fxtfloat x1, xtfloat x2,

xtfloat yl1, xtfloat y2, xtfloat z1, xtfloat z2 ¢

MUL.S x1, b >x, c >X;
MUL.S x2, b >y, c >y;
SUB.S z1,x1, x2;
ADD.S a >x, a >x,z1;
MUL.S y1, b >x, ¢ >y;
MUL.S y2, b >y, c >X;
ADD.S z2, yl,y2;
ADD.S a >y, a >y,z2;
g

60

This resulted in improved performance due to parallelizingof several instructions
execution. For details of the performance gain refer to Figue 5.5. Although the above
technique helped in improving the performance, the improvenent was not very high
and hence it was decided that xed point implementation shoud be carried out.

The basic task of converting an algorithm to xed point arith metic is that of de-
termining the word-length, accuracy, and range required fo each of the arithmetic
operations involved in the algorithm. Any two of the word-length, accuracy and range
determine the third. Since we know that the dynamic range forthe input vector matrix
and channel matrix is of the range from 0 to 20 dB, hence they hee been assigned
Q10.22 format. Q10.22 format indicates that 10 bits will represent integer value of the
fraction while 22 bits will represent the decimal fraction. The elements of P matrix are
of range 0 to 40 dB, hence they are represented in Q12:20 formaThe word length
has been kept 32 bit as of now, but this can be reduced to 16 bit idth making simple
changes in custom instruction le. The 16 bit implementation is also evaluated to com-
pare gate area with the 32 bit implementation. The area compason results are shown
in the performance analysis section.

With xed point implementation, it was made possible to de n e custom register
le (that is not visible architecturally) where each regist er will be of width equal to
maximum size of Mg or Mt (Size of one complex number). For example, we have
de ned complex number of width 64 bit (32 bit for real part and 32 bit for imaginary
part). So, the register le is de ned to be of 64 *4 = 256 bit wid e. The data-type that
is going to be occupied in this register le also needs to be deed along with custom
Prototypes sections. Prototype sections show the C/C++ compiler, debwgger, and the
RTOS how to use the ctypes associated with designer-de nedegister les and perform
register allocation. They are also used for describing instiction aliases, idioms, and

type conversions. There are several uses of prototypes [24lich as:

1. Specifying the load instruction sequence to load data of aesigner-de ned ctype

from memory into a register le

2. Specifying the store instruction sequence to store datafa designer-de ned ctype

61

from a register le to memory

3. Specifying the move instruction sequence to copy data of designer-de ned ctype

from one register to another register
4. Describing instruction aliases, idioms

5. Data-type conversion
The prototypes to be explicitly de ned:

If the width of an user register le is greater than the data memory access width

of the Xtensa processor

If a ctype is de ned whose width is less than the width of the asociated register

le

If a ctype is de ned whose alignment is less than the width of he associated

register le

With these de nitions, new custom instructions with operands as the custom register
data-type are written. To clarify the idea more, the code snppet is shown in Listing
5.2. The register le SCR contains 64 bit wide registers and corresponding ctype
singlecomp64is de ned. Corresponding proto sections are also de ned (nbshown in

the snippet).

62

Listing 5.2: Snippet of TIE code for custom register le operations

regfile SCR 64 4 scr

ctype singlecomp64 64 64 SCR

regfile FIR 128 8 fir

regfile SDR 256 8 fcr

ctype fourintl28 128 128 FIR

immediate_range imm4 0 60 4

ctype fourcomp256 256 128 SDR

immediate_range imm8 0 120 8

operation madd_c64.c¢256.i128.321022 fout SCR a,
in SDR b, in FIR cg fg

wire [31:0] fl= mult_compr (b[31:0], c[31:0]);

wire [31:0] f2 = mult_compr(b[63:32],c[31:0]);

wire [31:0] gl= mult_.compr (b[95:64], c[63:32]);
wire [31:0] g2 = mult_.compr(b[127:96],c[63:32]);
wire [31:0] hl= mult_compr (b[159:128],c[95:64]);
wire [31:0] h2 = mult_compr(b[191:160],c[95:64]);
wire [31:0] il= mult_compr (b[223:192], c[127:96]);
wire [31:0] i2 = mult_compr(b[255:224],¢c[127:96]);
wire [32:0] finall

TIEaddn(il, hl, g1, f1);
wire [32:0] final2

TIEaddn(i2, h2, g2, f2);
assign a=ffinal2[31:0], finall[31:0]g;

As can be seen in the snippet, 8 multiplications can be done irparallel, since
separate copy of the function: mult_compr is generated for each of the eight operations.
Similarly, the 2 additions in the nal step are also done in parallel. However, for this
instruction to execute as anticipated, there is need to de re schedulewhere each of the

internal results timings are speci ed in terms on pipeline depth (refer to Listing 5.3).

63

Listing 5.3: Snippet of TIE code for custom register le operations

schedule schmadd_c64.c256.i128f madd_c64.c256.i1128.321022g

def f1 1; def f2 1;

def gl 1; def g2 1;

def hl 1; def h2 1;

def i1 1; def i2 1,;

def finall 2; def final2 2;
def a 3;

The function mult _.compr is an user de ned function and is notslot_shared meaning,
if the instruction is issued in simultaneously in two or more slots in case of VLIW
implementation, separate copies of the function-hardwarewill be generated for each
of the slot. If it slot.shared multiple slots share the function-hardware, and in turn
puts restriction of not simultaneously issuing the instruction via multiple slots. If the
function is de ned to be in shared mode, then there is only one copy of the function
that exists in the processor data-path. So, all the sub-opeations in the instructions
have to be scheduled such that only one of them happens in a ptcular pipeline stage.
This deteriorates the performance of the instruction drasically. For example if the
multiplier shown in Listing 5.2 is in shared mode, then the caresponding stage when
'a' is available will be '10' (with non-shared TIEaddn function). The TIEaddn function
cannot be in shared mode anyway, since it is a custom functical hardware supplied by
Tensilica, Inc. for it to be put in shared mode, another user finction can be de ned
which just calls TIEaddn function and in turn this user funct ion can be put in shared
or slot_shared mode.

The above implementation set the performance at around 45 thes (as compared
to implementation on Standard RISC processor). The furtherimprovement is achieved
through using 3 issue VLIW technique. VLIW implementation i ncludes de ning multi-

ple pipelines, where several instructions can be executed parallel. Multiple operations

64

can be speci ed through multiple slots. Number of instructions issued at a time de-
pends on the number of slots de ned in the scheme. Figure 5.2hews the conceptual
diagram of VLIW scheme with 3 slots, while Figure 5.3 shows a mapshot of prole

dis-assembly of the application running on 3 issue VLIW proessor. As seen in that

gure:

1. Not all slots (3 in this case) are used in every cycle

2. Custom TIE instruction (mult _c256.c256i32_222200) is not issued along with any
other instruction since it is not included in any of the slots, when VLIW scheme

was speci ed though TIE.

Figure 5.2: VLIW logical layer

The VLIW scheme is a way to achieve Intruction Level Paralleism (ILP) and is an
alternative to Superscalarscheme. In Supescalar processors, resolving data-dependg
and managing resource con icts is handled at hardware levelwhereas in VLIW-based
processors, it is done at compiler level (during compile tire). Hence, the e ciency
of a VLIW implementation, to a large extent, also depends on he compiler e ciency
in nding out parallelism in the instructions. VLIW instruc tions are just like RISC
instructions, only di erence is they specify multiple operations. They look similar
if multiple RISC instructions are joined together. The instructions are issued into
respective slots by the compiler by examining larger instriection windows in the software.

Thus the complexity of superscalar executions is moved fronmardware to software.

65

Figure 5.3: Snapshot of instructions on 3 issue VLIW process

We rst tried with parallelizing the load-operations (2 loa d-store units were included
in the base con guration to support) and then ALU operations, branch operations and
move operations. We did not include custom TIE instructions in multiple slots to avoid
generation of huge hardware to support the same (each slot Wihave separate copy of
the instruction hardware, no slot shared functions). This has raised the performance
gain to reach 58 times compared to that of the application ruming on a standard RISC
processor.

The application pro le dis-assembly re ected the presenceof huge number of load
store operations. This indicated that if the data forwarding from one custom instruc-
tion to another can be made somehow without going through stee-load cycles of the
memory, further performance speedup is possible. To achievthis, the register le and
corresponding de ned 'c' data-types were removed. In placef that, new user registers
(architecturally visible registers) are added. These regiters can be used as operands in
any of the TIE operations. Moreover, the compiler does not cee about the de nition

of data-types since it does not need to perform a register allcation for these register

66

variables. It is the designer who manages the data across tke les called asState Reg-
isters in Tensilica terminology, as also were used in the case of iatleaving application
described in chapter 4. Figure 5.4 shows a 16 way SIMD multiptation and an 8 way
SIMD addition scheme implemented to achieve 4x4 complex nuivers (row x column)

multiplication.

Figure 5.4: SIMD implementation using state registers

Similar to this scheme, an instruction for a complex vector ow-register (consisting
of 4 complex numbers) and other matrix's 4 columns (each cornsting of 4 integers) is
also implemented using 16 multipliers selectively across 2ycles. Again the Schedule
construct is used for specifying a pipeline stage at which th operands will be used and
at which the results will be produced. The multipliers here were kept in slot_shared
mode in order to keep hardware area and power in a reasonablerlit. E cient use of
state registers and custom instructions with proper schedling led to performance gain
of over 130 times as compared to the standard RISC implement@n. The Listing 5.4

shows a top level snippet of the core algorithm's implementgon.

67

Listing 5.4. Snippet of 4x4 MIMO MMSE C-application

. Fill P matrix (1 custom instruction)

for (j =0; j < Mr; j+4)

. Calculation of g_hat (2 custom instructions)

. Calculation of S (1 custom instruction)

.log calculation of S (14 standard operations)
. g_hat Calculation (1 custom instruction)
.Sm_hat fixed point conversion (1 operation)

. g_tilde Calculation (1 custom instruction)

. Conjugation of g_hat (1 custom instruction)

. Calculation of P Matrix (1 custom instruction)

. Calculation of G (1 custom instruction 4 times)
. Reading Input vector and putting in state register
matrix (2 custom instructions and 1 operation)

... Calculation of S_hat (1 custom instruction 4 times)

Further improvement in the performance was possible if we cold implement matrix
- matrix (4x4 - 4x1) multi-vector multiplication in one cycl e. But even with shared
functions, the area in this case shoots to nearly 50% over thearlier case, with marginal
10% gain in performance.

The main algorithm loop has 'log' function, which is implemented with combination
of shift and compare instructions. This operation is quite @stly, since it is executed in
serial order (no SIMD parallelization is possible across thse operations) andN Mg
times overall. The division operation also takes considetale cycles (roughly 7000).
Hence, as a nal step, an integer divider is included in the bae con guration keeping
the custom instructions and the 'C' application unchanged. This lead to gain of 180 as
compared to 130 without its presence. However the operatinfrequency drops from 500

MHz to 313 MHz and the base processor area increases by 3000&tas. The details of

68

all the customizations carried out, corresponding perfornance improvement and area
increments for MIMO 4x4 application (Mg = 4 and Mt = 4) case, are depicted in
Figure 5.5. The performance of simulations and resulting ga in performance are
shown in Figures 5.6 and 5.7. For satisfying the data througput requirement, the
number of cycles should be in the limit of 2000 cycles [32]. Tén simulation results
re ect an below par performance of the chosen algorithm overASIP. This algorithm
uses matrix inversion lemma, which iterates for each row oftte matrix. If this inversion
procedure is done with more e cient matrix inversion algorithm and using SIMD and
VLIW techniques, it is possible to have ASIP satisfy the throughput requirements of

802.11a standard, as was also shown in [33].

5.3.1 Complexity analysis and Performance improvement ana lysis

Complexity analysis as shown in Table 5.1 is used for calcutang complexity for 4x4

MMSE application.

Total number of multiplications =52 (20 16+ 16+ 256+ 8)=31200
Total number of divisions =(52 4)=208
Total number of additions =52 8 16)+(b2 4)+(2 8)+52 15 16)+

(52 15 4)+(52 16 4)=26208
The following analysis is based on the custom instruction, 81D/VLIW techniques and

scheduling as designed in [34] and corresponding C applidah developed in [35].

No. of serial multiplication operations =52 4 (2 1+2+1+1)+52 (4 2+4) =
2080

No. of serial oating point multiplication operation =52 4 2+1=417
No. of serial addition operations =52 ([@4+4)+52 4 (2+1+1+2)+52

4+1+4 3)=2548
No. of cycles required for divisions =208 (No. of cycles for 1 division.}
Pipelined multiplier are used by TIEmul functions by default. They have lesser gate

count than iterative multiplier and takes minimum 2 cycles t o execute without lowering

!Number of cycles required for carrying out an integer divisi on is dependent on the size of the
quotient, since the division is carried out by divider in a re -iterative manner.

69

down the frequency. For converting oating point to xed poi nt representation, oating
point multiplication has to be performed. Apart from these multiplications mentioned,
there are 2 more integer multiplications that are executed diring the application run.
One of them is while writing the output data size to the output queue and other one is
for converting oating point value of 1 =(Mt 2) to a xed point representation. Apart
from the multiplications, additions and divisions, many of the custom instructions have

muxing and other logic operations, which also consume prossor cycles and area.

A similar approach was adopted for 2x2 Mg =2 and Mt = 2) MIMO application.
The only di erence with respect to 4x4 application, is the way the SIMD scheme is
utilized across operations. Since the 2x2 application has atrix that has only 2 complex
numbers per row, the maximum number of parallel multiplications required is 8. Since,
most of the instructions de ned for 4x4 application operate on respective complex
numbers independently, same instructions are usable for Zx application and in turn
all combination of Mg and Mt (1,2,3,4). The few instructions those are exclusive for

2x2 application are:

Instruction to read two complex numbers (instead of four in case of 4x4) and store

it into the state register

prototypes for the compiler to load,store and move data coresponding to two-

complex-numbers-vector.
Instruction for detection operation (calculating S matrix in the algorithm 1).

Inclusion of this hardware to the hardware for 4x4 applicaton merely adds 18000
gates, making it to reach 490351 gates. The performance relési and gain (compared
with standard RISC implementation) for 2x2 application are shown in Figures 5.8 and
5.9.Complexity analysis as shown in Table 5.1 is used for callating complexity for 2x2
MMSE application:

Total number of multiplications =52 (20 4+4+32+2)=6136;

Total number of divisions =(52 4)=208;

Total number of additions =052 8 4)+(5B2 2)+(52 4)+(B2 7 4)+(b2

70

7 2)+(B2 4 2)=4576:
The following analysis is based on the custom instructions SIMD/VLIW techniques
and scheduling schemes as designed in [36] and corresporgli@ application developed

in [37].

No. of serial multiplication operations =52 2 (1+1+1+1)+52 (1+1 2)=
572,

No. of serial oating point multiplication operations =52 2 2=208;

No. of serial addition operation =52 2 2+52 2 (1+2+1+2)=52 (1+

1+2 2)=1144;

No. of Cycles for division operation =102 (No. of cycles for 1 divisiorf):

As explained earlier, there are many muxing and logical opetions in the application
that also consume processor cycles. The number of serial ntigllications in 2x2 appli-
cation is nearly one fourth of that in 4x4 application, whereas, the number of additions
is one half. Interestingly, the number of cycles required fo 2x2 application execution
is over one half of the cycles required for 4x4 application. Tis suggests dominant
hampering of performance due to presence of addition operi@ns as well as division
operations, nullifying the advantage gained due to the presnce of only quarter of serial

multiplications.

5.3.2 Cost Analysis

The implementation of TIE is costly if:

1. A custom reg le is de ned. The instruction having operands as the data-types

de ned for these custom register les add a considerable a@to the base processor;

2. A custom registers usingStates are de ned. Again, the instructions with these

registers as operands are costly in terms of hardware;

3. VLIW scheme is implemented. VLIW scheme demands wider irsuction fetch

width, multi-port register les and essentially multiple d ata-paths. All of this

2Number of cycles required for carrying out an integer divisi on is dependent on the size of the
quotient, since the division is carried out in re-iterative manner.

71

increase the area of the processor in many folds. However, YW does not require

any change in the application that will run on VLIW processor;

4. SIMD scheme is implemented. SIMD demands presence of mipgte number of
execution units such as multipliers, adders in a single datgpath. SIMD requires
wider width register (de ned by user) and instruction speci cally handling the
data for parallel processing. This is as costly as VLIW, howeer much more
e cient, many times. SIMD requires changes in software applcation also and

hence is di cult to implement (design time increase which also increases cost).

The graph in Figure 5.10 shows the area of base processor afpmwith custom area
added for all the simulation cases we discussed earlier anddhlighted in Figure 5.5.
The addition of VLIW and SIMD scheme shows many-fold incremats in the area, as is
clearly visible. Similar trend can also be observed for 2x2 MMO MMSE ASIP. Next we
combined the ASIP hardware for 4x4 and 2x2 application, so tlat now it can support
combinations of Mr (1,2,3,4) and Mt (1,2,3,4). The graph in Figure 5.11 shows the
hardware required for optimal implementation of ASIP for 2x2 MIMO MMSE appli-
cation, ASIP for 4x4 MIMO MMSE application, ASIP for MIMO MMS E application
for exible number of Mt and Mg and ASIP with exible MIMO MMSE application
with reduced precision (16 bit) processing respectively. Tie reduced precision has huge
impact on custom area since, all the register le widths are educed by half. The in-
structions using these registers also use much lesser hardee due to lesser wide muxes,
multipliers, adders and decoding logic. This also gives us aotivation for future shift

towards 16 bit precision ASIP implementation.

5.4 Conclusion

As performance analysis indicate, the throughput requirenent for 4x4 MIMO MMSE
application is not satis ed through this implementation. H owever, if a new matrix
inversion algorithm used, a considerable performance immpvement can be acheieved
in order to achieve the goal of satisfying the throughput reqiirement. For 2x2 MIMO

MMSE application, the current implementation can satisfy the throughput with 6 and

72

12 sub-carriers. Again, for higher number of sub-carrierswe have to use more e cient

matrix inversion algorithm.

Figure 5.5: MIMO processor con guration and customization details (1/3)

73

Figure 5.5: MIMO processor con guration and customization details (2/3)

74

Figure 5.5: MIMO processor con guration and customization details (3/3)

75

Figure 5.6: MIMO Application Performance (4x4 Matrix)

Observed through cycle-accurate simulation

Figure 5.7: Gain in MIMO Application Performance (4x4 Matri x)

Observed through cycle-accurate simulation

76

Figure 5.8: MIMO Application Performance (2x2 Matrix)

Observed through cycle-accurate simulation

Figure 5.9: Gain in MIMO Application Performance (2x2 Matri x)

Observed through cycle-accurate simulation

77

Figure 5.10: 4x4 MIMO MMSE ASIP area trend-details

Estimate given by Tensilica Xtensa Processor Generator too

Figure 5.11: Flexible MIMO MMSE ASIP area analysis

Estimate given by Tensilica Xtensa Processor Generator too

78

79

Chapter 6

Conclusion and Future Work

The ASIP architecture has been proposed that can be substitted for functional pro-
cessing unit in programmable radio platform such as WINC2R.The contributions of

this work are:
Proposed design of the ASIP compliant with VFP-SoC framewok;

Proposed Systematic framework and architecture for ASIP cmpliant with VFP-

SoC framework. This is achieved through using FIFO-like-inerface for moving
data to output memory, custom ports for communicating with t he VFP controller
and ISA extensions for the ports access, local data memory ilization for storing

system control/application-data information;

Designed Data-throughput compliant ASIP for Multi-Standa rd Interleaving/ De-
Interleaving, along with analysis of custom hardware additon along with cost

trade o consideration
{ Ranging from 5x to 35x from WiFi-BPSK to WiMax-64QAM,;

Customizable application ow for various multi-standard P HY/MAC processing

scenarios

Analysis of hardware-centric algorithm's implementation in ASIP (including cus-
tomization of base ISA, xed point implementation, SIMD and VLIW implemen-
tations along with corresponding software application deelopment) for exible

(variable number of receiving and transmitting antennas)MIMO MMSE detection

{ 180x improvement in the performance vs baseline RISC

80

6.1 Future work
The future work includes:

Integrate Interleaver/De-Interleaver processor into WiNC2R platform
Verify the interrupt /polling supporting scheme into the in tegrated chip
Find out the context switching delays in the processor

Find out more e cient algorithm for implementing MIMO MMSE d etection on
ASIP. This also includes maintaining exibility of the proc essor to support pro-

cessing for multiple number of transmitting/receiving antennas

Investigate additional PHY functions suitable for ASIP

ASIC
ASIP

BPSC

CBPS
CP

CPI
CR

DSP

EX / EXE

FDG

FLIX
FU

GPP
GTT

81

Glossary

Application Speci c Integrated Circuit

Application Speci c Instruction-set Processor

Bits Per Sub-Carrier

Coded Bits Per Symbol

Command Processor block in the WINC2R
Processing Engine

Cycles Per Instruction

Cognitive Radio

Digital Signal Processor

Execute stage in a processor pipeline

Field Delimiter Generator block in the
WINC2R Processing Engine

Flexible Length Instruction Extensions

Functional Unit

General Purpose Processor

Global Task Table

Instruction Fetch stage in a processor pipeline

ISA

MIPS

MMSE

MPSoC

PE

RISC

RMAP

RTL

SDR

SIMD

SoC

TIE

TSP

Verilog
VFP
VLIW

WINC2R

Instruction Set Architecture

Million Instructions Per Second
Minimum Mean Square Error

Multi-Processor System-on-Chip

Processing Engine

Reduced Instruction Set Computer
Register Map

Register Transfer Logic

Software De ned Radio
Single Instruction Multiple Data

System on Chip

Tensilica Instruction Extension language
(used for adding custom instructions to the
Tensilica Xtensa base-line ISA)

Task Spawn Processor block in the WINC2R

Processing Engine
Hardware description language
Virtual Flow Pipeline

Very Long Instruction Word

Winlab Network Centric Cognitive Radio

82

83

References

[1] Zoran Miljanc, Ivan Seskar, Khanh Le, and Dipankar Raychaudhuri. The WIN-
LAB Network Centric Cognitive Radio Hardware Platform: WiN C2R. Mob. Netw.
Appl., 13(5):533{541, 2008.

[2] Joe Evans, Gary Minden, and Ed Knightly. Technical docunment on cognitive radio
networks. Discussion papers, U.Kansas, Rice University, &otember 2006.

[3] Wireless Innovation Forum. What is Software De ned Radio. online, 2009.

[4] R.W. Thomas, L.A. DaSilva, and A.B. MacKenzie. Cognitive networks. In IEEE
International Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), 2005, pages 352 {360, 8-11 2005.

[5] Carlos R. Aguayo Gonalez, Carl B. Dietrich, and Je rey H. Reed. Understanding
the Software Communications Architecture. Comm. Mag., 47(9):50{57, 2009.

[6] Qiwei Zhang, Ande B. J.Kokkeler, and Gerard J. M. Smit. Cognitive Radio

Design on an MPSoC Recon gurable Platform. Mob. Netw. Appl., 13(5):424{430,
2008.

[7] Muhammad Imran Anwar, Seppo Virtanen, and Jouni Isoaho. A Software De ned
Approach for Common Baseband Processing.Journal of System Archititecture,
54(8):769{786, 2008.

[8] Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge,
Chaitali Chakrabarti, and Krisztian Flautner. SODA: A Low- Power Architecture
for Software Radio. In ISCA '06: Proceedings of the 33rd annual international
symposium on Computer Architecture pages 89{101, Washington, DC, USA, 2006.
IEEE Computer Society.

[9] R. Baines and D. Pulley. Software De ned Baseband Procesng for 3G Base Sta-
tions. In 4th International Conference on 3G Mobile Communication Techrologies
pages 123{127, 2003.

[10] Zoran Miljant and Predrag Spasojevc. Resource Vittualization with Pro-
grammable Radio Processing Platform. InWICON '08: Proceedings of the 4th
Annual International Conference on Wireless Internet, pages 1{7, Brussels, Bel-
gium, 2008. Institute for Computer Sciences, Social-Infamatics and Telecommu-
nications Engineering.

[11] Martin Grant. New Trends in Heterogenous Multi-core SOCs. Online, 2009.

[12] Lynley Gwennap. Single-Chip Control/Data Plane Processors: Trends, Features,
Deployment. Technical report, The Linley Group, 2008.

84

[13] Jan Rabaey. Silicon Arhitectures for Wireless Systems 1. Hotchips Tutorials at
Berkeley Wireless Research Center, University of Califoria, Berkeley, 2001.

[14] Andreas C. Doering and Silvio Dragone. Coupling a Genat Purpose Processor
to an Application Speci ¢ Instruction Set Processor. US Patent:US 2008/0098202
Al, April 2008.

[15] Kurt Keutzer, Sharad Malik, and A. Richard Newton. From ASIC to ASIP: The
Next Design Discontinuity. In ICCD'02: Proceedings of the 2002 IEEE Inter-
national Conference on Computer Design: VLSI in Computers and Processors
page 84, Washington, DC, USA, 2002. IEEE Computer Society.

[16] Heinrich Meyr. System-on-Chip for Communications: The Dawn of ASIPs and the
Dusk of ASICs. In IEEE Workshop on Signal Processing Systems (SIPS)pages
4{5, 2003. Seoul, Korea.

[17] Daniel Kastner. Compilation for Embedded Processors European Summer School
on Embedded Systems, MRTC Report no 119/2004, 2003.

[18] Tensilica Inc. Xtensa LX3 Microprocessor Data Book. Tasilica Inc. LX3 product
documentation, 2009.

[19] Tensilica Inc. The What, Why, and How of Con gurable Pro cessors. Tensilica Inc.
White Paper, 2008.

[20] Shalini Jain. Hardware and Software for WINC2R Cognitve Radio Platform.
Master's thesis, Rutgers University, October 2008.

[21] Sumit Satarkar. Performance Analysis of the WINC2R Plaform. Master's thesis,
Rutgers University, October 2009.

[22] Khanh Le and Tejaswy Hari. PE.if_spec.doc. WINC2R Architecture Speci cation
Document, March 2010.

[23] S. Satarkar K. Le, S. Jain and T. Hari. WINC2R Platform Fu nctional Unit Archi-
tecture. Architecture Speci cation Document, October 2008.

[24] Tensilica Inc. Tensilica Instruction Extension (TIE) Language Reference Manual.
The Xtensa LX3 documentation, 2009.

[25] Mohit Wani. ten _ProcessorCentricPE_Architecture.vsd. WINC2R Architecture
Speci cation Document, www.svn.winlab.rutgers.edu/cognitive, August 2009.

[26] John Hennessy and David Patterson.Computer Architecture: A Quantitative Ap-
proach. Morgan Kau mann, 2003.

[27] IEEE standards board. IEEE Std 802.11a-1999(R2003) IEEE, Piscataway, NJ,
USA, June 2003.

[28] IEEE standards board. IEEE Standard 802.16-2004 IEEE, Piscataway, NJ, USA,
October 2004.

85

[29] Eric Dell and Dake Liu. A Hardware Architecture for a Multi Mode Block Inter-
leaver. In IEEE International Conference on Circuits and Systems for Commurni-
cations, 2004.

[30] Tensilica Inc. Area E cient TIE Generation Using the Sc hedule Construct. Ten-
silica application note, February 2009.

[31] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W.Fichtner. Algorithm
and VLSI Architecture for Linear MMSE Detection in MIMO-OFD M Systems. In
Proc. IEEE Int. Symp. on Circuits and Systems, 2006.

[32] Orthogonal Frequency Division Multiplexing. Wikipedia.

[33] Atif Raza Jafri, Amer Baghdadi, and Michel Jezequel. Raid Prototyping of
ASIP-based Flexible MMSE-IC Linear Equalizer. IEEE International Workshop
on Rapid System Prototyping 0:130{133, 2009.

[34] Mohit Wani. MIMO _Fourth _FixedPoint_SIMD _nf_s44.tie. =~ Custom Tie in-
structions le for 4x4 MIMO MMSE detection, WINC2R project o n
www.svn.winlab.rutgers.edu/cognitive, June 2010.

[35] Mohit Wani. tenPE _MIMO _FixedPoint _SIMD _5_s44.c. C Applica-
tion for 2x2 MIMO MMSE detection on ASIP, WINC2R project on
www.svn.winlab.rutgers.edu/cognitive, June 2010.

[36] Mohit Wani. MIMO _Fourth _FixedPoint_SIMD _nf_s22.tie. = Custom Tie in-
structions le for 2x2 MIMO MMSE detection, WINC2R project o n
www.svn.winlab.rutgers.edu/cognitive, June 2010.

[37] Mohit Wani. tenPE _MIMO _FixedPoint _SIMD _5_s22.c. C Applica-
tion for 2x2 MIMO MMSE detection on ASIP, WINC2R project on
www.svn.winlab.rutgers.edu/cognitive, June 2010.

