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ABSTRACT OF THE DISSERTATION

Problems on the geometric function theory in several

complex variables and complex geometry

by Yuan Yuan

Dissertation Director: Prof. Xiaojun Huang(advisor) and Prof. Jian

Song(co-advisor)

The thesis consists of two parts. In the first part, we study the rigidity for the local

holomorphic isometric embeddings. On the one hand, we prove the total geodesy for

the local holomorphic conformal embedding from the unit ball of complex dimension

at least 2 to the product of unit balls and hence the rigidity for the local holomorphic

isometry is the natural corollary. Before obtaining the total geodesy, the algebraic

extension theorem is derived following the idea in [MN] by considering the sphere bundle

of the source and target domains. When conformal factors are not constant, we twist

the sphere bundle to gain the pseudoconvexity. Then the algebraicity follows from

the algebraicity theorem of Huang in the CR geometry. Different from the argument

in the earlier works, the total geodesy of each factor does not directly follow from

the properness because the codimension is arbitrary. By analyzing the real analytic

subvariety carefully, we conclude that the factor is either a proper holomorphic rational

map or a constant map. Lastly the total geodesy follows from a linearity criterion of

Huang. On the other hand, we also derive the total geodesy for the local holomorphic

isometries from the projective space to the product of projective spaces.

In the second part, we give a proof for the convergence of a modified Kähler-Ricci

ii



flow. The flow is defined by Zhang on Kähler manifolds while the Kähler class along

the evolution is varying. When the limit cohomology class is semi-positive, big and

integer, the convergence of the flow is conjectured by Zhang and we confirm it by

using the monotonicity of some energy functional. When the limit class is Kähler,

the convergence is proven by Zhang and we give an alternative proof by also using

the energy functional. As a corollary, the convergence provides the solution to the

degenerate Monge-Ampère equation on the Calabi-Yau manifold. Meanwhile we take

the opportunity to describe the Kähler-Ricci flow on singular varieties.
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Chapter 1

Introduction

1.1 Rigidity for local holomorphic isometric embeddings

Various rigidity problems in Several Complex Variables and Complex Geometry are

among the basic problems in the subject. The understanding of these problems is not

only important for the subject itself, but also plays a critical role in the application to

many other research fields of mathematics.

The study of the topic will be focused on the rigidity problem for the local holomor-

phic isometric embeddings between Hermitian symmetric spaces. This type of problems

is initialled in a celebrated paper of Calabi, who first studied the global extension and

Borel type rigidity of a local holomorphic isometric embedding between Kähler man-

ifolds with real analytic metrics [Ca]. Afterwards, there appeared quite a few papers

along these lines of research (see [Um], for instance). In 2004, motivated from the

problems in Arithmetic Algebraic Geometry, Clozel-Ullmo [CU] took up the problem

again by considering the rigidity of local holomorphic isometries from a bounded sym-

metric domain into its product with respect to their Bergman metrics. More precisely,

by reducing the problem to the rigidity problem for local holomorphic isometries, they

proved the algebraic correspondence between such quotients of bounded symmetric do-

mains preserving Bergman metric has to be modular correspondence in the case of (i)

unit disc in the complex plane and (ii) bounded symmetric domains of rank at least 2.

More recently, Mok carried out a systematic study of this problem in a very general

setting. Many deep results have been obtained by Mok and Mok-Ng. (See [Mo1] [Mo3]

[MN] [Ng1-3] and the references therein). For instance, Mok proved the total geodesy

for the local holomorphic isometry between bounded symmetric domains D and Ω when

either (i) rank(D) ≥ 2 or (2) D = Bn and Ω = (Bn)p for n ≥ 2.
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In the second chapter, we prove the rigidity for local holomorphic conformal em-

beddings between the unit ball and the product of unit balls and as a corollary, obtain

the rigidity for local holomorphic isometric embeddings between such domains. This

theorem appears in [YZ]. (See chapter 2 for relevant notations)

Theorem 1.1.1 Let

F = (F1, . . . , Fm) : (U ⊂ Bn, λ(z, z̄)ds2
n)→ (BN1×· · ·×BNm ,⊕mj=1λj(z, z̄)ds

2
Nj ) (1.1.1)

be a local holomorphic conformal embedding in the sense that

λ(z, z̄)ds2
n =

m∑
j=1

λj(z, z̄)F ∗j (ds2
Nj ).

Assume that n ≥ 2 and λ(z, z̄), λj(z, z̄) are positive Nash algebraic functions. We then

have, for each j with 1 ≤ j ≤ m, that either Fj is a constant map or Fj extends to a

totally geodesic holomorphic embedding from (Bn, ds2
n) into (BNj , ds2

Nj
).

When λ(z, z̄), λj(z, z̄) are constants, the result is due to Calabi when m = 1 [Ca],

due to Mok [Mo1] [Mo3] when N1 = · · · = Nm, and due to Ng [Ng1] [Ng3] when m = 2

and N1, N2 < 2n. The novelty of our result is that the factor in the target manifold

can be any BN .

Our proof of Theorem 1.1.1 is based on the algebraic extension theorem. In the case

of the conformal embedding, it does not follow from [Mo2] directly. Following [MN],

we try to use the unit sphere bundle of the corresponding domain and reduce the alge-

braicity to the mapping problem in CR geometry. However, since the pseudoconvexity

is totally lost, we need to twist the sphere bundle to gain the positivity.

To obtain the total geodesy, different from the case considered in [Mo1] [Ng1], the

properness of a factor of F does not imply the linearity of that factor, for the classical

linearity theorem does not hold anymore for proper rational mappings from Bn into

BN with N > 2n − 2. To make up this, we carried out a careful study on the precise

boundary behavior of the Bergman metric pulled back by proper holomorphic maps.

It turns out that the difference of the pull-back Bergman metric of the target space

with the source Bergman metric is smooth up to the boundary and the values on
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the boundary are closely related to the boundary CR invariants inherited from the

map. Another ingredient in our argument is a careful analysis for the (multiple-valued)

holomorphic continuation of the local holomorphic map. The key for this part is to

analyze the real analytic subvariety where the pull-back of the Bergman metric blows up.

In our proof of Theorem 1.1.1, a major step is to prove that a non-constant component

Fj of F must be proper from Bn into BNj , using the multiple-valued holomorphic

continuation technique. This then reduces the proof of Theorem 1.1.1 to the case

when all components are proper. Unfortunately, due to the non-constancy for the

conformal factors λj(z, z̄) and λ(z, z̄), it is not immediate that each component must

also be conformal (and thus must have conformal factor constant) with respect to the

normalized Bergman metric. However, we observe that the blowing-up rate for the

Bergman metric of Bn with n ≥ 2 in the complex normal direction is twice of that

along the complex tangential direction, when approaching the boundary. From this,

we will be able to derive an equation connecting the CR invariants associated from the

map at the boundary of the ball. Lastly, a linearity criterion of Huang in [Hu1] can be

applied to simultaneously conclude the linearity of all components.

Notice that Theorem 1.1.1 fails when n = 1 by Mok [Mo1] and later by Ng [Ng1].

By the previous work of Mok, we have a good understanding for the case when the rank

of source domain is at least 2. Hence, our result provides a fairly complete picture for

such a problem for the non-compact model in the rank one case.

When manifolds are compact Hermitian symmetric spaces, the rigidity property is

unknown even in the case of projective spaces. The following question is the nature

starting problem of the compact case:

Question 1.1.1 Let

F : (U ⊂ Pn, ωn)→ (PN1 × · · · × PNp ,⊕pl=1λlωNl)

be a local holomorphic isometric imbedding with respect to Fubini-Study metrics. How

to classify F?

The global extension of the map F above has been established by Calabi and Mok

[Ca] [Mo3] for some partial cases. Also, we know that the linearity for F fails even when
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p = 1, for the Veronese imbedding from (Pn, 2ωn) into (P
n(n+3)

2 , ωn(n+3)
2

) is an isometry

and of degree 2. However, it is generally believed that a non-constant component of F

is equivalent to the Veronese imbedding of some integer isometric constant.

In chapter 2, we study such problems. More precisely, we prove the following theo-

rem. (See chapter 2 for relevant notations.)

Theorem 1.1.2 Let λl ∈ Q and let

F = (F1, · · · , Fp) : (U ⊂ Pn, ωn)→ (PN1 × · · · × PNp ,⊕pl=1λlωNl)

be a local holomorphic isometric imbedding with respect to Fubini-Study metrics, i.e.

ωn =
∑
l

λlF
∗
l ωNl .

Let {κ1, · · · , κp} ∈ (Z+)p satisfy

(i) Nl ≥Mn,κl for 1 ≤ l ≤ p,

(ii)
∑p

l=1 κlλl = 1.

Then the possibility of {κ1, · · · , κp} gives the classification of F = (F1, · · · , Fp). In par-

ticular, Fl is equivalent to Veronese embedding Vn,κl with isometric constant κl modular

Isom(PNl , ωNl) and Fl is a constant map if κl = 0.

1.2 The Kähler-Ricci flow

The Ricci flow was introduced by Richard Hamilton [H] on Riemannian manifolds to

study the deformation of metrics. Its analogue in Kähler geometry, the Käher-Ricci

flow, has been intensively studied in recent years. It turns out to be a powerful method

for studying canonical metrics on Kähler manifolds. (See, for instance, the papers [Cao]

[CT] [Pe] [PS] [PSSW] [ST1] [ST2] [TZhu] and the references therein.)

In a recent paper [Z3], a modified Kähler-Ricci flow was defined by Zhang by allowing

the cohomology class to vary artificially. Consider the following Monge-Ampère flow

(see Chapter 3 for relevant notations):
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
∂
∂tϕ = log (ωt+

√
−1∂∂ϕ)n

Ω ,

ϕ(0, ·) = 0.

(1.2.1)

Then the evolution for the corresponding Kähler metric is given by:


∂
∂t ω̃t = −Ric(ω̃t) +Ric(Ω)− e−tχ,

ω̃t(0, ·) = ω0.

(1.2.2)

As pointed out by Zhang, the motivation is to apply the geometric flow technique

to study the complex Monge-Ampère equation:

(ω∞ +
√
−1∂∂ψ)n = Ω. (1.2.3)

This equation has already been intensively studied very recently by using the pluri-

potential theory developed by Bedford-Taylor, Demailly, Ko lodziej et al. When Ω is a

smooth volume form and [ω∞] is Kähler, the equation is solved by Yau in his solution to

the celebrated Calabi conjecture using the continuity method [Y1]. When Ω is Lp with

respect to another smooth reference volume form and [ω∞] is Kähler, the continuous

solution is obtained by Ko lodziej [K1]. Later on, the bounded solution is obtained in

[Z2] and [EGZ] independently, generalizing Ko lodziej’s theorem to the case when [ω∞]

is big and semi-positive, and Ω is also Lp. On the other hand, as an interesting question,

equation (1.2.3) is also studied on symplectic manifolds by Weinkove [We].

In the case of the unnormalized Kähler-Ricci flow, the evolution for the cohomology

class of the metric is in the direction of the canonical class of the manifold. While in the

case of (1.2.2), one can try to deform any initial metric class to an arbitrary desirable

limit class. In particular, on Calabi-Yau manifolds, the flow (1.2.2) converges to a Ricci

flat metric, if Ω is a Calabi-Yau volume form, with the initial metric also Ricci flat in

a different cohomology class [Z3].

The existence and convergence of the solution are proved by Zhang [Z3] for the

above flow in the case when [ω∞] is Kähler, which corresponds to the case considered



6

by Cao in the classical Kähler-Ricci flow [Cao]. When [ω∞] is big, (1.2.2) may produce

singularities at finite time T < +∞. In this case, the local C∞ convergence of the flow

away from a proper analytic subvariety of X was obtained in [Z3] under the further

assumption that [ωT ] is semi-positive. When [ω∞] is semi-positive and big, Zhang also

obtained the long time existence of the solution as well as important estimates and

conjectured the convergence even in this more general setting. In Chapter 3, we give a

proof to this conjecture.

Theorem 1.2.1 Let X be a Kähler manifold with a Kähler metric ω0. Suppose that

[ω∞] ∈ H1,1(X,C)∩H2(X,Z) is semi-positive and big. Then along the modified Kähler-

Ricci flow (1.2.2), ω̃t converges weakly in the sense of currents and converges locally

in C∞-norm away from a proper analytic subvariety of X to the unique solution of the

degenerate Monge-Ampère equation (1.2.3).

Corollary 1.2.1 When X is a Calabi-Yau manifold and Ω is a Calabi-Yau volume

form, ω̃t converges to a singular Calabi-Yau metric.

Singular Calabi-Yau metrics are already obtained in [EGZ] on normal Calabi-Yau

Kähler spaces, and obtained by Song-Tian [ST2] and Tosatti [To] independently in the

degenerate class on algebraic Calabi-Yau manifolds. The uniqueness of the solution

to the equation (1.2.3) in the degenerate case when [ω∞] is semi-positive and big has

been studied in [EGZ] [Z2] [DZ] etc. In particular, a stability theorem is proved in [DZ]

which immediately implies the uniqueness. In [To], Tosatti studied the deformation for

a family of Ricci flat Kähler metrics, whose cohomology classes are approaching a big

and nef class. Here our deformation (equation (1.2.2)) gives different paths connecting

non-singular and singular Calabi-Yau metrics.

The Kähler-Ricci flow on singular algebraic varieties is defined by Song-Tian [ST3] to

study the singularities and surgeries. Starting with the singular and degenerate initial

data on general algebraic varieties, the existence and uniqueness of the Kähler-Ricci

flow is derived in [ST3]. We then prove the convergence of the Kähler-Ricci flow on

projective Calabi-Yau varieties. As a corollary, we also obtain the singular Calabi-Yau

metric on such varieties. This result appears in [SY].
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Theorem 1.2.2 Let X ⊂ PN be a projective Calabi-Yau variety with log terminal

singularities. Let ω0 be the Kähler metric equivalent to the pull-back of the Fubini-

Study metric on PN . Then the unnormalized weak Kähler-Ricci flow


∂
∂tω = −Ric(ω),

ω(0, ·) = ω0 on X

(1.2.4)

has a unique weak solution ω(t, ·) on [0,∞) × X, where ω(t, ·) ∈ C∞([0,∞) × Xreg)

and ω(t, ·) admits a bounded local potenial. Furthermore, ω(t, ·) converges to the unique

singular Ricci-flat Kähler metric ωCY ∈ [ω0] in the sense of currents on X and in

C∞-topology on Xreg = X \Xsing.
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Chapter 2

Rigidity for local holomorphic isometric embeddings

2.1 Rigidity for local holomorphic conformal embeddings from the

unit ball into the product of unit balls

2.1.1 Main results

Write Bn := {z ∈ Cn : |z| < 1} for the unit ball in Cn. Denote by ds2
n the normalized

Bergman metric on Bn defined as follows:

ds2
n =

∑
j,k≤n

1
(1− |z|2)2

(
(1− |z|2)δjk + z̄jzk

)
dzj ⊗ dz̄k. (2.1.1)

Let U ⊂ Bn be a connected open subset and consider a holomorphic conformal embed-

ding

F = (F1, . . . , Fm) : (U ⊂ Bn, λ(z, z̄)ds2
n)→ (BN1×· · ·×BNm ,⊕mj=1λj(z, z̄)ds

2
Nj ) (2.1.2)

in the sense that λ(z, z̄)ds2
n =

∑m
j=1 λj(z, z̄)F

∗
j (ds2

Nj
). Here λj(z, z̄) > 0, λ(z, z̄) > 0 are

assumed to be positive-valued smooth Nash algebraic functions over Cn. Moreover, for

each j with 1 ≤ j ≤ m, ds2
Nj

denotes the corresponding normalized Bergman metric of

BNj and Fj is a holomorphic map from U to BNj . We write Fj = (fj,1, . . . , fj,l, . . . , fj,Nj ),

where fj,l is the l-th component of Fj . In this section, we prove the following rigidity

theorem:

Theorem 2.1.1 Suppose n ≥ 2. Under the above notation and assumption, we then

have, for each j with 1 ≤ j ≤ m, that either Fj is a constant map or Fj extends to a

totally geodesic holomorphic embedding from (Bn, ds2
n) into (BNj , ds2

Nj
). Moreover, we

have the following identity ∑
Fj is not a constant

λj(z, z̄) = λ(z, z̄).



9

In particular, when λj(z, z̄), λ(z, z̄) are positive constant functions, we have the

following rigidity result for local isometric embeddings:

Corollary 2.1.1 Let

F = (F1, . . . , Fm) : (U ⊂ Bn, λds2
n)→ (BN1 × · · · × BNm ,⊕mj=1λjds

2
Nj ) (2.1.3)

be a local holomorphic isometric embedding in the sense that λds2
n =

∑m
j=1 λjF

∗
j (ds2

Nj
).

Assume that n ≥ 2 and λ, λj are positive constants. We then have, for each j with 1 ≤

j ≤ m, that either Fj is a constant map or Fj extends to a totally geodesic holomorphic

embedding from (Bn, ds2
n) into (BNj , ds2

Nj
). Moreover, we have the following identity

∑
Fj is not a constant

λj = λ.

Recall that a function h(z, z̄) is called a Nash algebraic function over Cn if it is either

constant or if there is an irreducible polynomial P (z, ξ,X) in (z, ξ,X) ∈ Cn × Cn × C

with P (z, z̄, h(z, z̄)) ≡ 0 over Cn. We mention that a holomorphic map from Bn into BN

is a totally geodesic embedding with respect to the normalized Bergman metric if and

only if there are a (holomorphic) automorphism σ ∈ Aut(Bn) and an automorphism

τ ∈ Aut(BN ) such that τ ◦ F ◦ σ(z) ≡ (z, 0).

2.1.2 Bergman metric and proper rational maps

Let Bn and ds2
n be the unit ball and its normalized Bergman metric, respectively, as

defined before. Denote by Hn ⊂ Cn the Siegel upper half space. Namely, Hn =

{(z, w) ∈ Cn−1 × C : =w − |z|2 > 0}. Here, for m-tuples a, b, we write dot product

a · b =
∑m

j=1 ajbj and |z|2 = z · z̄. Recall the following Cayley transformation

ρn(z, w) =
(

2z
1− iw

,
1 + iw

1− iw

)
. (2.1.4)

Then ρn biholomorphically maps Hn to Bn, and biholomorphically maps ∂Hn, the

Heisenberg hypersurface, to ∂Bn\{(0, 1)}. Applying the Cayley transformation, one
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can compute the normalized Bergman metric on Hn as follows:

ds2
Hn =

∑
j,k<n

δjk(=w − |z|2) + z̄jzk
(=w − |z|2)2

dzj ⊗ dz̄k +
dw ⊗ dw̄

4(=w − |z|2)2

+
∑
j<n

z̄jdzj ⊗ dw̄
2i(=w − |z|2)2

−
∑
j<n

zjdw ⊗ dz̄j
2i(=w − |z|2)2

(2.1.5)

One can easily check that

Lj =
∂

∂zj
+ 2iz̄j

∂

∂w
, j = 1, . . . , n− 1.

Lj =
∂

∂z̄j
− 2izj

∂

∂w̄
, j = 1, . . . , n− 1.

T = 2(
∂

∂w
+

∂

∂w̄
)

span the complexified tangent vector bundle of ∂Hn. (See, for instance, [BER], [Hu2],

[Hu3] [HJX].)

Let F be a rational proper holomorphic map from Hn to HN . By a result of

Cima-Suffridge [CS], F is holomorphic in a neighborhood of ∂Hn. Assign the weight

of w to be 2 and that of z 1. Denote by owt(k) terms with weighted degree higher

than k and by P (k) a function of weighted degree k. For p0 = (z0, w0) ∈ ∂Hn, write

σ0
p0

: (z, w) → (z + z0, w + w0 + 2iz · z̄0) for the standard Heisenberg translation. The

following normalization lemma will be used here:

Lemma 2.1.1 [Hu2-3] For any p ∈ ∂Hn, there is an element τ ∈ Aut(HN+1) such

that the map F ∗∗p = ((f∗∗p )1(z), cdots, (f∗∗p )n−1(z), φ∗∗p , g
∗∗
p ) = (f∗∗p , φ

∗∗
p , g

∗∗
p ) = τ ◦F ◦σ0

p

takes the following normal form:

f∗∗p (z, w) = z +
i

2
a(1)(z)w + owt(3),

φ∗∗p (z, w) = φ(2)(z) + owt(2),

g∗∗p (z, w) = w + owt(4)

with

(z̄ · a(1)(z))|z|2 = |φ(2)(z)|2. (2.1.6)

In particular, write (f∗∗p )l(z) = zj + i
2

∑n−1
k=1 alkzkw + owt(3). Then, (alk)1≤l,k≤n−1

is an (n− 1)× (n− 1) semi-positive Hermitian metrix. We next present the following

key lemma for our proof of Theorem 2.1.1:
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Lemma 2.1.2 Let F be a proper rational map from Bn to BN . Then

X := ds2
n − F ∗(ds2

N ), (2.1.7)

is a semi-positive real analytic symmetric (1,1)-tensor over Bn, that extends also to a

real analytic (1,1)-tensor in a small neighborhood of ∂Bn in Cn.

Proof of lemma 2.1.2: Our original proof of Lemma 2.1 was largely simplified

by Ng [Ng4] and Mok [Mo4] by considering the potential − log(1 − ‖F (z)‖2) of the

pull-back metric F ∗(ds2
N ) as follows: Since 1−‖F (z)‖2 vanishes identically on ∂Bn and

since 1− ‖z‖2 is a defining equation for ∂Bn, one obtains

1− ‖F (z)‖2 = (1− ‖z‖2)ϕ(z)

for a real analytic function ϕ(z).

Since ρ := ‖F (z)‖2 − 1 is subharmonic over Bn and has maximum value 0 on the

boundary, applying the classical Hopf lemma, we conclude that ϕ(z) can not vanish at

any boundary point of Bn. Apparently, ϕ(z) can not vanish inside Bn. Therefore,

X =
√
−1∂∂̄ logϕ(z) is real analytic on an open neighborhood of Bn. The semi-

positivity of X over Bn is an easy consequence of the Schwarz lemma. 2

Applying the Cayley transformation (and also a rotation transformation when han-

dling the regularity near (0, 1)), we have the following corollary:

Corollary 2.1.2 Let F be a rational proper holomorphic map from Hn to HN . Then

X := ds2
Hn − F ∗(ds2

HN ), (2.1.8)

is a semi-positive real analytic symmetric (1,1)-tensor over Hn, that extends also to a

real analytic (1,1)-tensor in a small neighborhood of ∂Hn in Cn.

The boundary value of X is an intrinsic CR invariant associated with the equivalence

class of the map F . Next, we compute X in the normal coordinates at the boundary

point.
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Write t = =w − |z|2 and H = =g − |f̃ |2 . Write o(k) for terms whose degrees with

respect to t are higher than k. For a real analytic function h in (z, w), we use hz, hw

to denote the derivatives of h with respect to z, w. By replacing w by u + i(t + |z|2),

H can also be regarded as an analytic function on z, z̄, u, t. The following lemma gives

an asymptotic behavior of H with respect to t:

Lemma 2.1.3 H(z, z̄, u, t) = (gw − 2if̃w · ¯̃
f)|t=0t − (2|f̃w|2)|t=0t

2 + 1
3(−1

2gw3 + 3if̃w ·

f̃w2 + if̃w3 · ¯̃
f)|t=0t

3 + o(3).

Proof of Lemma 2.1.3: Notice that H = H(z, z̄, u + i(t + |z|2), u − i(t + |z|2)).

Since F is proper, H, as a function of t with parameters {z, u}, can be written as

P1t+ P2t
2 + P3t

3 + o(3), where P1, P2, P3 are analytic in (z, z̄, u). Then

P1 =
∂H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))

∂t

∣∣∣∣
t=0

= iHw − iHw̄

∣∣∣∣
t=0

=
1
2

(gw + gw) + i(f̃ · f̃w − ¯̃
f · f̃w)

∣∣∣∣
t=0

,

(2.1.9)

P2 =
1
2
∂2H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))

∂t2

∣∣∣∣
t=0

=
1
2

(−Hw2 + 2Hww̄ −Hw̄w̄)
∣∣∣∣
t=0

=
1
2

(
i

2
gw2 −

i

2
gw2 − 2|f̃w|2 + f̃w2 · ¯̃

f + f̃ · f̃w2)
∣∣∣∣
t=0

,

(2.1.10)

and

P3 =
1
6
∂3H(z, z̄, u+ i(t+ |z|2), u− i(t+ |z|2))

∂t3

∣∣∣∣
t=0

=
1
6

(−iHw3 + 3iHw2w̄ − 3iHw̄2w + iHw̄3)
∣∣∣∣
t=0

=
1
6

(−1
2
gw3 −

1
2
gw3 + if̃w3 · ¯̃

f − if̃ · f̃w3 − 3if̃w2 · f̃w + 3if̃w · f̃w2)
∣∣∣∣
t=0

.

(2.1.11)
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On the other hand, applying T, T 2, T 3 to the defining equation g− ḡ = 2if̃ · ¯̃
f , we have

gw − gw − 2i(f̃w · ¯̃
f + f̃ · f̃w) = 0, (2.1.12)

gw2 − gw2 − 2i(f̃w2 · ¯̃
f + f̃w2 · f̃ + 2|f̃w|2) = 0, (2.1.13)

gw3 − gw3 − 2i(f̃w3 · f̃ + f̃w3 · f̃ + 3f̃w2 · f̃w + 3f̃w · f̃w2) = 0. (2.1.14)

over =w = |z|2.

Substituting (2.1.12), (2.1.13) and (2.1.14) into (2.1.9), (2.1.10) and (2.1.11), we get

P1 = gw − 2if̃w · ¯̃
f

∣∣∣∣
t=0

,

P2 = −2|f̃w|2
∣∣∣∣
t=0

,

P3 =
1
3

(−1
2
gw3 + 3if̃w · f̃w2 + if̃w3 · ¯̃

f)
∣∣∣∣
t=0

. 2

(2.1.15)

We remark that by the Hopf Lemma, it follows easily that P1 6= 0 along ∂Hn.

We next write X = Xjkdzj ⊗ dz̄k +Xjndzj ⊗ dw̄+Xnjdw⊗ dz̄j +Xnndw⊗ dw̄. By

making use of Lemma 2.1.1, we shall compute in the next proposition the values of X

at the origin. The proposition might be of independent interest, as the CR invariants

in the study of proper holomorphic maps between Siegel upper half spaces are related

to the CR geometry of the graph of the map.

Proposition 2.1.1 Assume that F = (f̃ , g) = (f1, . . . , fN−1, g) : Hn → HN is a proper

rational holomorphic map, that satisfies the normalization (at the origin) stated in

Lemma 2.1.1. Then

Xjk(0) = −2i(fk)zjw(0) = akj ,

Xjn(0) = Xnj(0) =
3i
4

(fj)w2(0) +
1
8
gzjw2(0),

Xnn(0) =
1
6
gw3(0).

Proof of Proposition 2.1.1: Along the direction of dzj⊗dz̄k, collecting the coefficient
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of t2 in the Taylor expansion of H2X with respect to t, we get

P 2
1Xjk(0) =

[
(2P1P2δjk + (P 2

2 + 2P1P3)z̄jzk)−
1
2
{

2iP1(f̃wzj · f̃zk − f̃zj · f̃wzk)

+ 2P2f̃zj · f̃zk − (f̃w2 · f̃zj )(f̃ · f̃zk) + 2(f̃w · f̃zj )(f̃w · f̃zk)

+ 2(f̃w · f̃wzj )(f̃ · f̃zk)− 2(f̃w · f̃zj )(f̃ · f̃zkw)− ( ¯̃
f · f̃zj )(f̃w2 · f̃zk)

− 2( ¯̃
f · f̃zjw)(f̃w · f̃zk) + 2( ¯̃

f · f̃zj )(f̃w · f̃zkw)− (f̃zjw2 · ¯̃
f)(f̃ · f̃zk)

+ 2( ¯̃
f · f̃zjw)(f̃ · f̃zkw)− ( ¯̃

f · f̃zj )(f̃ · f̃zkw2)− 1
4
gzjw2gzk +

1
2
gzjwgzkw

− 1
4
gzjgzkw2 +

i

2
(f̃w2 · f̃zj )ḡzk − i(f̃w · f̃wzj )gzk + i(f̃w · f̃zj )gzkw

+
i

2
( ¯̃
f · f̃zjw2)gzk − i(

¯̃
f · f̃zjw)gzkw +

i

2
( ¯̃
f · f̃zj )gzkw2 −

i

2
(f̃w2 · f̃zk)gzj

− i(f̃w · f̃zk)gzjw + i(f̃w · f̃zkw)gzj −
i

2
(f̃ · f̃zk)gzjw2 + i(f̃ · f̃zkw)gzjw

− i

2
(f̃ · f̃zkw2)gzj

}]∣∣∣∣
t=0

.

Letting (z, w) = 0 and applying the normalization condition as stated in Lemma 2.1.1,

we have

Xjk(0) =
∂a

(1)
k (z)
∂zj

= akj .

Similarly, considering the coefficient of t2 along dzj ⊗ dw̄ and dw⊗ dw̄, respectively, we

have

P 2
1Xjn(0) =

[
(−iP1P3 −

i

2
P 2

2 )z̄j −
1
2
{2iP1(f̃wzj · f̃w − f̃zj · f̃w2) + 2P2f̃zj · f̃w

− (f̃w2 · f̃zj )(f̃ · f̃w) + 2(f̃w · f̃zj )(f̃w · f̃w) + 2(f̃w · f̃wzj )(f̃ · f̃w)

− 2(f̃w · f̃zj )(f̃ · f̃w2)− ( ¯̃
f · f̃zj )(f̃w2 · f̃w)− 2( ¯̃

f · f̃zjw)(f̃w · f̃w)

+ 2( ¯̃
f · f̃zj )(f̃w · f̃w2)− (f̃zjw2 · ¯̃

f)(f̃ · f̃w) + 2( ¯̃
f · f̃zjw)(f̃ · f̃w2)− ( ¯̃

f · f̃zj )(f̃ · f̃w3)

− 1
4
gzjw2gw +

1
2
gzjwgw2 −

1
4
gzjgw3 +

i

2
(f̃w2 · f̃zj )gw − i(f̃w · f̃wzj )gw + i(f̃w · f̃zj )gw2

+
i

2
( ¯̃
f · f̃zjw2)gw − i( ¯̃

f · f̃zjw)gw2 +
i

2
( ¯̃
f · f̃zj )gw3 −

i

2
(f̃w2 · f̃w)gzj − i(f̃w · f̃w)gzjw

+ i(f̃w · f̃w2)gzj −
i

2
(f̃ · f̃w)gzjw2 + i(f̃ · f̃w2)gzjw −

i

2
(f̃ · f̃w3)gzj}

]∣∣∣∣
t=0

and
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P 2
1Xnn(0) =

[
1
4

(2P1P3 + P 2
2 )− 1

2
{2iP1(f̃w2 · f̃w − f̃w · f̃w2) + 2P2f̃w · f̃w

− (f̃w2 · f̃w)(f̃ · f̃w) + 2(f̃w · f̃w)(f̃w · f̃w) + 2(f̃w · f̃w2)(f̃ · f̃w)

− 2(f̃w · f̃w)(f̃ · f̃w2)− ( ¯̃
f · f̃w)(f̃w2 · f̃w)− 2( ¯̃

f · f̃w2)(f̃w · f̃w)

+ 2( ¯̃
f · f̃w)(f̃w · f̃w2)− (f̃w3 · ¯̃

f)(f̃ · f̃w) + 2( ¯̃
f · f̃w2)(f̃ · f̃w2)

− ( ¯̃
f · f̃w)(f̃ · f̃w3)− 1

4
gw3gw +

1
2
gw2gw2 −

1
4
gwgw3

+
i

2
(f̃w2 · f̃w)ḡw − i(f̃w · f̃w2)gw + i(f̃w · f̃w)gw2 +

i

2
( ¯̃
f · f̃w3)gw

− i( ¯̃
f · f̃w2)gw2 +

i

2
( ¯̃
f · f̃w)gw3 −

i

2
(f̃w2 · f̃w)gw − i(f̃w · f̃w)gw2

+ i(f̃w · f̃w2)gw −
i

2
(f̃ · f̃w)gw3 + i(f̃ · f̃w2)gw2 −

i

2
(f̃ · f̃w3)gw}

]∣∣∣∣
t=0

.

Let (z, w) = 0. It follows that

Xjn(0) =
3i
4

(fj)w2(0) +
1
8
gzjw2(0),

Xnn(0) =
1
6
gw3(0),

for gw3(0) = gw3(0) by (2.1.14). 2

Making use of the computation in Proposition 2.5, we give a proof of Theorem 2.1.1

in the case when each component extends as a proper holomorphic map. Indeed, we

prove a slightly more general result than what we need later as following:

Proposition 2.1.2 Let

F = (F1, . . . , Fm) : (Bn, λ(z, z̄)ds2
n)→ (BN1 × · · · × BNm ,⊕mj=1λj(z, z̄)ds

2
Nj )

be a conformal embedding. Here for each j, λ(z, z̄), λj(z, z̄) are positive real-valued C2-

smooth functions over Bn, and Fj is a proper rational map from Bn into BNj for each j.

Then λ(z, z̄) ≡
∑m

j=1 λj(z, z̄) over Bn, and for any j, Fj is a totally geodesic embedding

from Bn to BNj .

Proof of Proposition 2.1.2: After applying the Cayley transformation and con-

sidering
(
(ρN1)−1, · · · , (ρNm)−1

)
◦ F ◦ ρn instead of F , we can assume, without loss of
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generality, that

F = (F1, . . . , Fm) : (Hn, λ(Z, Z̄)ds2
Hn)→ (HN1 × · · · ×HNm ,⊕mj=1λj(Z, Z̄)ds2

HNj )

is a conformal map with each Fj a proper rational map from Hn into HNj , respectively.

Here we write Z = (z, w). Moreover, we can assume, without loss of generality, that

each component Fj of F satisfies the normalization condition as in Lemma 2.1. Since

F is conformal, we have

λ(Z, Z̄)ds2
Hn =

m∑
j=1

λj(Z, Z̄)F ∗j (ds2
HNj )

or

(λ(Z, Z̄)−
m∑
j=1

λj(Z, Z̄))ds2
Hn +

m∑
j=1

λj(Z, Z̄)X(Fj) = 0. (2.1.16)

Here, we write X(Fj) = ds2
Hn − F ∗j (ds2

HNj
). Collecting the coefficient of dw ⊗ dw̄, one

has
λ(Z, Z̄)−

∑m
j=1 λj(Z, Z̄)

4(=w − |z|2)2
+

m∑
j=1

λj(Z, Z̄)(X(Fj))nn = 0. (2.1.17)

Since X(Fj) is smooth up to ∂Hn, we see that λ(Z, Z̄) −
∑m

j=1 λj(Z, Z̄) = O(t2) as

Z = (z, w) ∈ Hn → 0, where t = =w − |z|2. However, since the dzl ⊗ dz̄k-component

of ds2
Hn blows up at the rate of o( 1

t2
) as (z, w)(∈ Hn) → 0, collecting the coefficients

of the dzl ⊗ dz̄k-component in (2.1.16) and then letting (z, w)(∈ Hn)→ 0, we conclude

that, for any 1 ≤ l, k ≤ n− 1,

m∑
j=1

λj(0)(X(Fj))kl(0) = 0.

By Proposition 2.5, we have
∑m

j=1 λj(0)ajlk(0) = 0, where ajkl is associated with Fj in the

expansion of Fj at 0 as in Lemma 2.1. Since the matrix (ajkl)1≤l,k≤n−1 is a semi-positive

matrix and since λj(0) > 0, it follows immediately that ajkk = 0 for each 1 ≤ k ≤ n− 1.

By the semi-positivity of (ajkl)1≤l,k≤n−1, we conclude that ajlk = 0 for all j, k, l. Namely,

Fj = (z, w) +Owt(3) for each j.

Next, for each p ∈ ∂Hn, let τj ∈ Aut(HN ) be such that (Fj)∗∗p = τj ◦ Fj ◦ σ0
p

has the normalization as in Lemma 2.1.1. Let τ = (τ1, · · · , τm). Notice that F ∗∗p :=
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((F1)∗∗p , · · · , (Fm)∗∗p ) = τ ◦ F ◦ σ0
p is still a conformal map satisfing the condition as

in the proposition. Applying the just presented argument to F ∗∗p , we conclude that

(Fj)∗∗p = (z, w) + Owt(3). By Theorem 4.2 of [Hu2], this implies that Fj = (Z, 0).

Namely, Fj is a totally geodesic embedding. In particular, we have X(Fj) ≡ 0. This

also implies that λ(z, z̄) ≡
∑m

j=1 λj(z, z̄) over Bn. The proof of Proposition 2.1.2 is

complete. 2

2.1.3 Algebraic extension

In this section, we prove the algebraicity of the local holomorphic conformal embedding.

As in the theorem, we let U ⊂ Bn be a connected open subset. Let

F = (F1, . . . , Fm) : (U ⊂ Bn, λ(z, z̄)ds2
n)→ (BN1 × · · · × BNm ,⊕mj=1λj(z, z̄)ds

2
Nj )

be a holomorphic conformal embedding. Here λj(z, z̄), λ(z, z̄) > 0 are smooth Nash

algebraic functions, and ds2
n and ds2

Nj
are the Bergman metrics of Bn and BNj , respec-

tively. We further assume without loss of generality that none of the F ′js is a constant

map. Our proof uses the same method employed in the paper of Mok-Ng [MN]. Namely,

we use the Grauert tube technique to reduce the problem to the algebraicity problem

for CR mappings. However, different from the consideration in [MN], the Grauert tube

constructed by using the unit sphere bundle over BN1 × · · · × BNm with respect to the

metric ⊕mj=1λj(z, z̄)ds
2
Nj

may have complicated geometry and may not even be pseudo-

convex anymore in general. To overcome the difficulty, we bend the target hypersurface

to make it sufficiently positively curved along the tangential direction of the source

domain. For the convenience of the reader, we give the proof when m = 2 for the sim-

plicity of our notation. The argument for general m is exactly the same as for m = 2

and is skipped.

Let K > 0 be a large constant to be determined. Consider S1 ⊂ TU and S2 ⊂

U × TBN1 × TBN2 as follows:

S1 :=
{

(t, ζ) ∈ TU : (1 +K‖t‖2)λ(t, t̄)ds2
n(t)(ζ, ζ) = 1

}
, (2.1.18)
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S2 := {(t, z, ξ, w, η) ∈ U × TBN1 × TBN2 :

(1 +K‖t‖2)[λ1(t, t̄)ds2
N1

(z)(ξ, ξ) + λ2(t, t̄)ds2
N2

(w)(η, η)] = 1}.
(2.1.19)

The defining functions ρ1, ρ2 of S1, S2 are, respectively, as follows:

ρ1 = (1 +K‖t‖2)λ(t, t̄)ds2
n(t)(ζ, ζ)− 1,

ρ2 = (1 +K‖t‖2)[λ1(t, t̄)ds2
N1

(z)(ξ, ξ) + λ2(t, t̄)ds2
N2

(w)(η, η)]− 1.

Then one can easily check that the map (id, F1, dF1, F2, dF2) maps S1 to S2 according

to the metric equation

λ(t, t̄)ds2
n = λ1(t, t̄)F ∗1 (ds2

N1
) + λ2(t, t̄)F ∗2 (ds2

N2
).

Lemma 2.1.4 S1, S2 are both real algebraic hypersurfaces. Moreover for K sufficiently

large, S1 is smoothly strongly pseudoconvex. For any ξ 6= 0, η 6= 0, (0, 0, ξ, 0, η) ∈ S2 is

a smooth strongly pseudoconvex point when K is sufficiently large, where K depends on

the choice of ξ and η.

Proof It follows immediately from defining functions that S1, S2 are smooth real al-

gebraic hypersurfaces. We show the strong pseudoconvexity of S2 at (0, 0, ξ, 0, η) as

follows: (The strong pseudoconvexity of S1 follows from the same computation.)

By applying ∂∂̄ to ρ2 at (0, 0, ξ, 0, η), we have the following Hessian matrix

A 0 D1 0 D2

0 B1 0 0 0

D̄1 0 C1 0 0

0 0 0 B2 0

D̄2 0 0 0 C2


(2.1.20)

where

(A1)titj̄ (0, 0, ξ, 0, η) = ∂ti∂tj̄ρ2(0, 0, ξ, 0, η)

= K(λ1(0)|ξ|2 + λ2(0)|η|2)δij̄ + ∂ti∂tj̄λ1(0)|ξ|2 + ∂ti∂tj̄λ2(0)|η|2

≥ δK(|ξ|2 + |η|2)δij̄ ,

(2.1.21)
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(B1)zkzl̄(0, 0, ξ, 0, η) = ∂zk∂zl̄ρ2(0, 0, ξ, 0, η) = −λ1(0)Rzkzl̄µν̄(0)ξµξν̄ ≥ δ|ξ|2δkl̄,

(2.1.22)

(C1)ξkξl̄ = λ1(0)δkl̄ ≥ δδkl̄, (2.1.23)

(D1)tiξl̄ = ∂tiλ1(0)ξl (2.1.24)

for some δ > 0 and other matrices are similar.

Let

(e, r, r′, s, s′) = (e1, · · · , en, r1, · · · , rN1 , r
′
1, · · · , r′N1

, s1, · · · , sN2 , s
′
1, · · · , s′N2

) 6= 0.

It holds that

[
e r r′ s s′

]


A 0 D1 0 D2

0 B1 0 0 0

D̄1 0 C1 0 0

0 0 0 B2 0

D̄2 0 0 0 C2





ēt

r̄t

r̄′t

s̄t

s̄′t


≥ δK(|ξ|2 + |η|2)|e|2 + δ(|ξ|2|r|2 + |η|2|s|2) + δ(|r′|2 + |s′|2)

− 2

∣∣∣∣∣∣
∑
i,l

ei∂tiλ1(0)ξlr̄′l

∣∣∣∣∣∣− 2

∣∣∣∣∣∣
∑
i,l

ei∂tiλ2(0)ηls̄′l

∣∣∣∣∣∣
≥ (δK −M)(|η|2 + |ξ|2)|e|2 + δ(|ξ|2|r|2 + |η|2|s|2) + (δ − ε)|r′|2 + (δ − ε)|s′|2

> 0.

(2.1.25)

Here the second inequality holds as

∣∣∣∣∣∣
∑
i,l

ei∂tiλ1(0)ξlr̄′l

∣∣∣∣∣∣ ≤M1|e||ξ · r| ≤M1|e||ξ||r| ≤
M

2
|e|2|ξ|2 +

ε

2
|r|2

by the standard Cauchy-Schwarz inequality. Here M = M2
1
ε and the last strict inequality

holds as ξ 6= 0 and η 6= 0 by letting ε < δ and raising K sufficiently large. 2

Theorem 2.1.2 Under the assumption of Theorem 2.1.1, F is Nash algebraic.
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Proof Without loss of generality, one can arrange that F (0) = 0 by composing elements

from Aut(Bn) and Aut(BN1) × Aut(BN2). Furthermore, since F1, F2 are not constant

maps, we can further assume that dF1|0 6≡ 0 and dF2|0 6≡ 0. Therefore, there exists

0 6= ζ ∈ T0Bn, such that dF1(ζ) 6= 0 and dF2(ζ) 6= 0. After scaling, we assume that

(0, ζ) ∈ S1. Notice that both the fiber of S1 over 0 ∈ U and the fiber of S2 over

(0, 0) ∈ U × (BN1 ×BN2) are independent of the choice of K. Now the theorem follows

from the algebracity theorem of Huang [Hu1] and Lemma 2.1.4 applied to the map

(id, F1, dF1, F2, dF2) from S1 into S2. 2

2.1.4 Proof of Theorem 2.1.1

In this section, we give a proof of Theorem 2.1.1. As in the theorem, we let U ⊂ Bn be

a connected open subset. Let

F = (F1, . . . , Fm) : (U ⊂ Bn, λ(z, z̄)ds2
n)→ (BN1 × · · · × BNm ,⊕mj=1λj(z, z̄)ds

2
Nj )

be a holomorphic conformal embedding. Here λj(z, z̄), λ(z, z̄) > 0 are smooth Nash

algebraic functions, and ds2
n and ds2

Nj
are the Bergman metrics of Bn and BNj , respec-

tively. Fj is a holomorphic map from U to BNj for each j. For the proof of Theorem

2.1.1, we can assume without loss of generality that none of the F ′js is a constant map.

Following the idea in [MN], we already showed that F extends to an algebraic map

over Cn. Namely, for each (non-constant) component fj,l of Fj , there is an irreducible

polynomial Pj,l(z,X) = aj,l(z)Xmjl + . . . in (z,X) ∈ Cn × C of degree mjl ≥ 1 in X

such that Pj,l(z, fj,l) ≡ 0 for z ∈ U .

We will proceed to show that, for each j, Fj extends to a proper rational map from

Bn into BNj . For this purpose, we let Rj,l(z) be the resultant of Pj,l in X and let

Ej,l =
{
Rj,l ≡ 0, aj,l ≡ 0

}
, E = ∪Ej,l. Then E defines a proper complex analytic

variety in Cn. For any continuous curve γ : [0, 1] → Cn \ E where γ(0) ∈ U , F can be

continued holomorphically along γ to get a germ of holomorphic map at γ(1). Also,

if γ1 is homotopic to γ2 in Cn \ E, γ1(0) = γ2(0) ∈ U and γ1(1) = γ2(1), then the

continuations of F along γ1 and γ2 are the same at γ1(1) = γ2(1). Now let p0 ∈ U and

p1 ∈ ∂Bn \ E. Let γ(t) be a smooth simple curve connecting p0 to p1 and γ(t) /∈ ∂Bn
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for t ∈ (0, 1). Then each Fj defines a holomorphic map in a connected neighborhood

Vγ of γ by continuing along γ the initial germ of Fj at p0. (We can also assume that

Vγ ∩ Bn is connected.) Let

Sγ =
{
p ∈ Vγ : ‖Fj(p)‖ = 1 for some j}.

Then Sγ is a real analytic (proper) subvarieties of Vγ . We first claim

Claim 1 When Vγ is sufficiently close to γ, dim(Sγ ∩ Bn) ≤ 2n− 2.

Proof of Claim 1: Seeking a contradiction, suppose not. Assume that t0 ∈ (0, 1] is

the first point such that for a certain j, and the local variety defined by ‖Fj(z)‖2 = 1

near p∗ = γ(t0) has real dimension 2n − 1 at p∗. Since any real analytic subset of

codimension two of a connected open set does not affect the connectivity, by slightly

changing γ without changing its homotopy type and terminal points, we can assume

that γ(t) 6∈ Sγ for any t < t0. Hence, p∗ also lies on the boundary of the connected

component V̂ of (Vγ ∩Bn)\Sγ , that contains γ(t) for t < t0. Then a certain small open

piece Σ of Sγ ∩Bn containing p∗ lies in the boundary of V̂ . Now, for any p ∈ Σ, letting

q(∈ V̂ )→ p, we have along {q},

λ(z, z̄)ds2
n =

∑
j

λj(z, z̄)F ∗j (ds2
Nj ).

Suppose that j] is such that ‖Fj](p)‖ = 1 and ‖Fj(z)‖ < 1 for any j, p ∈ Σ and z ∈ V̂ .

Since p ∈ Σ ⊂ Bn, ds2
n|p <∞, we must have

limq→pF
∗
j](ds

2
N
j]

)|q <∞.

On the other hand,

F ∗j](ds
2
N
j]

) =

∑
l,k{δlk(1− ‖Fj]‖2) + f̄j],lfj],k}dfj],l ⊗ df j],k

(1− ‖Fj]‖2)2
.

For any vector v ∈ Cn with ‖v‖ = 1,

F ∗j](ds
2
N
j]

)(v, v)(q) =
‖
∑

ξ

∂f
j],l

∂zξ
(q)vξ‖2

(1− ‖Fj](q)‖2)
+
|
∑

l,ξ fj],l(q)
∂f
j],l

∂zξ
(q)vξ|2

(1− ‖Fj](q)‖2)2
. (2.1.26)
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Letting q → p, since 1− ‖Fj](q)‖2 → 0+, we get

∥∥∑
ξ

∂fj],l(p)
∂zξ

vξ
∥∥2 = 0

for any v = (v1, . . . , vξ, . . . , vn) with ‖v‖ = 1. Thus

∂fj],l(p)
∂zξ

= 0, for l = 1, . . . , Nj] .

Hence, we see dFj] = 0 in a certain open subset of Σ. Since any open subset of Σ is a

uniqueness set for holomorphic functions, we see Fj] ≡ const. This is a contradiction.

2

Now, since dim(Sγ∩Bn) ≤ 2n−2, we can always slightly change γ without changing

the homotopy type of γ in Vγ \E and end points of γ so that γ(t) /∈ Sγ for any t ∈ (0, 1).

Since λ(z, z̄)ds2
n =

∑
λj(z, z̄)F ∗j (ds2

Nj
) in (Vγ ∩ Bn) \ Sγ and since ds2

n blows up when

q ∈ Vγ ∩ Bn approaches to ∂Bn, we see that for each q ∈ Vγ ∩ ∂Bn, ‖Fjq(q)‖ = 1 for

some jq. Hence, we can assume without loss of generality, that there is a j0 ≥ 1 such

that each of the F1, . . . , Fj0 maps a certain open piece of ∂Bn into ∂BN1 , . . . , ∂BNj0 , but

for j > j0,

dim{q ∈ ∂Bn ∩ Vγ : ‖Fj(q)‖ = 1} ≤ 2n− 2.

By the Hopf lemma, we must have Nj ≥ n for j ≤ j0. By the result of Forstneric [Fo]

and Cima-Suffridge [CS], Fj extends to a rational proper holomorphic map from Bn

into BNj for j ≤ j0. Now, we must have

λ(z, z̄)ds2
n −

j0∑
j=1

λj(z, z̄)F ∗j (ds2
Nj ) =

m∑
j=j0+1

λj(z, z̄)F ∗j (ds2
Nj )

in (Vγ ∩Bn) \Sγ , that is connected by Claim 1. Let q ∈ (Vγ ∩Bn) \Sγ → p ∈ ∂Bn ∩Vγ .

Notice

(λ(z, z̄)−
j0∑
j=1

λj(z, z̄))ds2
n

∣∣∣∣
q

+
j0∑
j=1

λj(z, z̄)(ds2
n − F ∗j (ds2

Nj ))
∣∣∣∣
q

=
m∑

j=j0+1

λj(z, z̄)F ∗j (ds2
Nj )
∣∣∣∣
q

.

By Lemma 2.2, Xj := ds2
n − F ∗j (ds2

Nj
) is smooth up to ∂Bn for j ≤ j0. We also see,

by the choice of j0 and Claim 1, that for a generic point in ∂Bn ∩ Vγ , F ∗j (ds2
Nj

) is real

analytic in a small neighborhood of p for j ≥ j0 + 1. Thus by considering the normal
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component as before in the above equation, we see that λ(z, z̄) −
∑j0

j=1 λj(z, z̄) has

double vanishing order in an open set of the unit sphere. Since λ(z, z̄)−
∑j0

j=1 λj(z, z̄)

is real analytic over Cn, we obtain

λ(z, z̄)−
j0∑
j=1

λj(z, z̄) = (1− |z|2)2ψ(z, z̄). (2.1.27)

Here ψ is a certain real analytic function over Cn. Next, write

Y = (λ(z, z̄)−
j0∑
j=1

λj(z, z̄))ds2
n.

Then Y extends real analytically to Cn. Write X =
∑j0

1 λj(z, z̄)Xj . From what we

argued above, we easily see that there is a certain small neighborhood O of q ∈ ∂Bn in

Cn such that (1): we can holomorphically continue the initial germ of F in U through

a certain simple curve γ with γ(t) ∈ Bn for t ∈ (0, 1) to get a holomorpic map, still

denoted by F , over O; (2): ‖Fj‖ < 1 for j > j0 and ‖Fj(z)‖ > 1 for j ≤ j0 over O \ Bn;

and (3):

X =
j0∑
j=1

λj(z, z̄)(ds2
n − F ∗j (ds2

Nj )) =
j0∑
j=1

λj(z, z̄)Xj =
m∑

j=j0+1

λj(z, z̄)F ∗j (ds2
Nj )− Y.

(2.1.28)

We mention that we are able to make |Fj | < 1 for any z ∈ O and j > j0 in the above

due to the fact that Vγ ∩ Bn \ Sγ , as defined before, is connected.

Now, let P be the union of the poles of F1, . . . , Fj0 . Fix a certain p∗ ∈ O∩ ∂Bn and

let Ẽ = E ∪ P. Then for any γ : [0, 1] → (Cn \ Bn) \ Ẽ with γ(0) = p∗, Fj extends

holomorphically to a small neighborhood Uγ of γ that contracts to γ. Still denote the

holomorphic continuation of Fj (from the initial germ of Fj at p∗ ∈ O) over Uγ by Fj .

If for some t ∈ (0, 1), ‖Fj(γ(t))‖ = 1, then we similarly have

Claim 2 Shrinking Uγ if necessary, we then have

dim
{
p ∈ Uγ : ‖Fj(p)‖ = 1 for some j

}
≤ 2n− 2.

Proof of the Claim 2: Still seek for a contradiction, if we suppose not. Define Sγ in

a similar way. Without loss of generality, we assume that t0 ∈ (0, 1) is the first point
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such that for a certain jt0 , the local variety defined by ‖Fjt0 (z)‖2 = 1 near γ(t0) has

real dimension 2n− 1 at γ(t0). Then, as before, we have

X =
j0∑
j=1

λj(z, z̄)(ds2
n − F ∗j (ds2

Nj )) =
m∑

j=j0+1

λj(z, z̄)F ∗j (ds2
Nj )− Y (2.1.29)

in a connected component W of Uγ \Sγ that contains γ(t) for t << 1 with γ(t0) ∈ ∂W .

Now, for any qj(∈ W ) → p ∈ ∂W near p0 = γ(t0) and v ∈ Cn with ‖v‖ = 1, we have

the following:

j0∑
j=1

λj(z, z̄)
(‖∑ξ

∂fj,l
∂zξ

(q)vξ‖2

(1− ‖Fj(q)‖2)
+
|
∑

l,ξ fj,l(q)
∂fj,l
∂zξ

(q)vξ|2

(1− ‖Fj(q)‖2)2

)

=
m∑

j=j0+1

λj(z, z̄)
(‖∑ξ

∂fj,l
∂zξ

(q)vξ‖2

(1− ‖Fj(q)‖2)
+
|
∑

l,ξ fj,l(q)
∂fj,l
∂zξ

(q)vξ|2

(1− ‖Fj(q)‖2)2

)
− Y (v, v).

(2.1.30)

Now, if p0 is not a point of codimension one for any local variety defined by ‖Fj(z)‖2 = 1

near p0 for j ≤ j0, then it has to be a codimension one point for a certain local variety

Sj′ defined by ‖Fj′(z)‖2 = 1 near p0 for j′ > j0. Let J be the collection of all such

j′. Let S0 be a small open piece of the boundary of W near p0. Then for a generic

p ∈ S0, the left hand side of (2.1.30) remains bounded as q → p ∈ S0. For a term

in the right hand side with index j ∈ J , if S0 ∩ Sj contains an open neigborhood of

∂W near p0, then it approaches to +∞ for a generic p unless Fj = constant as argued

before. The other terms on the right hand side remain bounded as q → p for a generic

p. This is a contradiction to the assumption that none of the Fj for j > j0 is constant.

Hence, we can assume that p0 is a point of codimension one for a local variety defined by

‖Fj(z)‖2 = 1 near p0 for a certain j ≤ j0. Let J be the set of indices such that for j′ ∈ J ,

we have j′ ≤ j0 and Sj′ := {‖Fj′‖ = 1} is a local real analytic variety of codimension

one near p0. For j > j0, since ‖Fj(z)‖ < 1 for z(∈ Uγ) ≈ p0 and since t0 is the first

point we have some j∗ with ‖Fj∗‖ = 1 defining a variety of real codimension one, we see

that ‖Fj(z)‖ < 1 for z(∈W ) ≈ p0. Define S0 similarly, as an open piece of ∂W . Hence,

as q(∈ W ) → p ∈ S0, the right hand side of (2.1.30) remains to be non-negative. On

the other hand, in the left hand side of (2.1.30) , for any j′ ∈ J with Sj′ ∩S0 containing

an open piece of ∂W near p0, if the numerator |
∑

l,ξ fj′,l(q)
∂fj′,l
∂zξ

(q)vξ|2 of the last term

does not go to 0 for some vectors v, then the term with index j′ on the left hand side
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would go to −∞ for a generic p ∈ S0. If this happens to such j′, the left hand side

would approach to −∞. Notice that all other terms on the right hand side remain

bounded as q → p ∈ S0 for a generic p. This is impossible. Therefore we must have

for some j′ ∈ J that |
∑

l fj′,l(q)
∂fj′,l
∂zξ

(q)|2 =
∂

∑
l |fj′,l|2
∂zξ

(q) =
∂‖Fj′‖2
∂zξ

(q) → 0 and thus
∂‖Fj′‖2
∂zξ

(p) = 0 for all ξ and p ∈ Sj′ . This immediately gives the equality d(‖Fj′‖2) = 0

along Sj′ . Assume, without loss of generality, that p0 is also a smooth point of Sj′ .

If Sj′ has no complex hypersurface passing through p0, by a result of Trepreau [Tr],

the union of the image of local holomoprphic disks attached to Sj′ passing through p0

fills in an open subset. Since Fj′ is not constant, there is a small holomorphic disk

smooth up to the boundary φ(τ) : B1 → Cn such that φ(∂B1) ⊂ Sj′ , φ(1) = p0 and Fj′

is not constant along φ. Since ∂BNj′ does not contain any non-trival complex curves,

r = (‖Fj′‖2−1)◦φ 6≡ 0. Applying the maximum principle and then the Hopf lemma to

the subharmonic function r = (‖Fj′‖2−1)◦φ, we see that the outward normal derivative

of r at τ = 1 is positive. This contradicts the fact that d(‖Fj′‖2) = 0 along Sj′ . We

can argue the same way for points p ∈ Sj′ near p0 to conclude that for any p ∈ Sj′ near

p0, there is a complex hypersurface contained in Sj′ passing through p. Namely, Sj′ is

Levi flat, foliated by a family of smooth complex hypersurfaces denoted by Yη with real

parameter η near p0. Let Z be a holomorphic vector field along Yη. We then easily see

that 0 = ZZ(‖Fj′‖2 − 1) =
∑Nj′

k=1 |Z(fj′,k)|2. Thus, we see that Fj′ is constant along

each Yη. Hence, Fj′ can not be a local embedding at each point of Sj′ . On the other

hand, noticing that Fj′ is a proper holomorphic map from Bn into BN ′ , Fj′ is a local

embedding near ∂Bn. Hence, the set of points where Fj′ is not a local embedding can

be at most of complex codimension one (and thus real codimension two). This is a

contradiction. This proves Claim 2.

Hence, we see that E = {p ∈ (Cn\Bn)\Ẽ : some branch, obtained by the holomorphic

continuation through curves described before, of Fj for some j maps p to ∂BNj} is a

real analytic variety of real dimension at most 2n− 2. Now, for any p ∈ (Cn \ Bn) \ Ẽ,

any curve γ : [0, 1] → (Cn \ Bn) \ Ẽ with γ(0) = p∗ ∈ O ∩ ∂Bn and γ(1) = p, we can

homotopically change γ in (Cn \ Bn) \ Ẽ (but without changing the terminal points)

such that γ(t) /∈ E for t ∈ (0, 1). Now, the holomorphic continuation of the initial germ
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of Fj from p∗ never cuts ∂BNj along γ(t) (0 < t < 1). We thus see that ‖Fj(p)‖ ≤ 1 for

j > j0.

Let {(fj,l)k;p}
njl
k=1 be all possible (distinct) germs of holomorphic functions that we

can get at p by the holomorphic continuation, along curves described above in (Cn\Bn)\

Ẽ, of fj,l. Let σjl,τ be the fundamental symmetric function of {(fj,l)k;p}
njl
k=1 of degree

τ . Then σjl,τ well defines a holomorphic function over (Cn \Bn). ‖σjl,τ‖ is bounded in

(Cn \Bn)\ Ẽ. By the Riemann removable singularity theorem, σjl,τ is holomorphic over

(Cn \ Bn). By the Hartogs lemma, σjl,τ extends to a bounded holomorphic function

over Cn. Hence, by the Liouville theorem, σjl,τ ≡ const. This forces (fj,l)k and thus

Fj for j > j0 to be constant. We obtain a contradiction. This proves that each Fj

extends to a proper rational map from Bn into BNj . Together with Proposition 2.1.2,

we complete the proof of the main Theorem. 2

We conclude the section with a remark: The regularity of λj , λ can be reduced to

be only real analytic in the complement of a certain real codimension two subset. This

is obvious from our proof for Theorem 2.1.1.

2.2 Rigidity for local holomorphic isometric embeddings from the pro-

jective space into the product of projective spaces

In this section, we try to attack the classification problem 1.1.1. Let
{

[z0, · · · , zn]
}

be

the homogeneous coordinate of Pn and ωn be the Fubini-Study metric. Let U0 := {z0 6=

0} be one coordinate chart of Pn, and the coordinate is given by xi = zi
z0

. Then on U0,

the Fubini-Study metric can be written as:

ωn =
√
−1∂∂ log

(
1 +

n∑
i=1

|xi|2
)
.

Calabi proved the local rigidity and global extension theorem for the local holomor-

phic embedding from a Kähler manifold into the projective space equipped with the

Fubini-Study metric. We are going to apply them in the proof of our theorems.
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Theorem 2.2.1 [Ca] If M is a Kähler manifold and assume that an open set G ⊂

M admits a holomorphic isometric embedding into (PN , ωN ), then the embedding is

uniquely determined modular the group of isometries Isom(PN , ωN ).

Theorem 2.2.2 [Ca] Let M is a simply connected Kähler manifold and let f : G ⊂

M → PN be an holomorphic isometric embedding with respect to the Fubini-Study metric

ωN . Then there exists a global mapping F : M → PN extending f .

Definition 2.2.1 Let f, g : M → Pn are holomorphic maps. f, g are called equivalent

if f, g are equivalent up to the group of isometries of Pn. More precisely, there exists

σ ∈ Isom(Pn, ωn), such that f = σ ◦ g.

From now on, we consider our classification question 1.1.1. Let λl > 0 be a positive

constant and let

F = (F1, · · · , Fp) : (U ⊂ Pn, ωn)→ (PN1 × · · · × PNp ,⊕pl=1λlωNl)

be a local holomorphic isometric imbedding with respect to Fubini-Study metrics, i.e.

ωn =
∑
l

λlF
∗
l ωNl .

First, we prove the global extension theorem in a special case.

Theorem 2.2.3 Under the above assumption and further assuming λl ∈ Q+, F̃ extends

F to Pn as a holomorphic isometry, i.e. there exists a holomorphic map

F̃ = (F̃1, · · · , F̃p) : Pn → PN1 × · · · × PNp

such that

F̃
∣∣
U

= F and ωn =
∑
l

λlF̃
∗
l ωNl .

Proof For simplicity, we give the proof for p = 2. By multiplying the common denom-

inators of λl, still denoted by λl, we assume that

F = (F1, F2) : U ⊂ Pn → PN1 × PN2

with
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λωn = λ1F
∗
1ωN1 + λ2F

∗
2ωN2

where λ, λi are positive integers. Then one has the following diagram:

U ⊂ Pn
F
- PN1 × PN2

PN

s

?

∩

G

-

where G = s ◦ F and s is the Segre embedding, which is a holomorphic isometry from

the product of projective spaces into the bigger projective space.

s : PN1 × PN2 −→ PN

[Z] , [W ] 7−→ [ZIW J ]

where

[Z] = [Z0, · · · , ZN1 ], [W ] = [W0, · · · ,WN2 ], |I| = λ1, |J | = λ2,

and

N = (N1 + 1)λ1(N2 + 1)λ2 − 1.

For s is an isometric embedding, i.e.

s∗ωN = λ1ωN1 ⊕ λ2ωN2 ,

one obtains a local holomorphic isometric embedding G between projective spaces

G∗ωN = λωn.

By Theorem 2.2.2, G extends to the ambient space Pn, denoted by G̃. Since the image

of s is an algebraic subvariety in PN , G̃(Pn) ⊂ Image(s). Furthermore, s is invertible.

Let F̃ = s−1 ◦ G̃. Then F̃ extends F . 2

Before classifying local holomorphic isometries from the projective space to the prod-

uct of projective spaces, we give examples of holomorphic isometries between projective

spaces.
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Example 2.2.1 We start with the Veronese embedding with isometric constant 2.

vn,2 : Pn - P
(n+1)(n+2)

2
−1

[z] ⊂ - [
√

2 cos
(π

4
δij
)
zizj ]

One can check that
n∑

i,j=0

|
√

2 cos
(π

4
δij
)
zizj |2 =

( n∑
i=0

|zi|2
)2
,

yielding

v∗n,2

(
ω (n+1)(n+2)

2

)
= 2ωn

by taking
√
−1∂∂ log. Let

Mn,2 =
(n+ 1)(n+ 2)

2
− 1.

One can check that Mn,2 is the smallest dimension of the projective space admitting

holomorphic isometry from Pn with isometric constant 2. Suppose that we have another

holomorphic embedding f : Pn → PN with

f∗ωN = 2ωn and N ≥Mn,2.

Then f is equivalent to (vn,2, 0, · · · , 0) by Theorem 2.2.1.

Similarly, one can also cook up the Veronese embedding vn,κ with any integer iso-

metric constant κ. Define Mn,κ to be the smallest dimension of the projective space

admitting holomorphic isometry from Pn with isometric constant κ and we have the

same rigidity property as above.

The following theorem gives the classification of the local holomorphic isometric

embedding when λl ∈ Q.

Theorem 2.2.4 We suppose the assumption in Theorem 2.2.3. Let {κ1, · · · , κp} ∈

(Z+)p satisfy

(i) Nl ≥Mn,κl for 1 ≤ l ≤ q,

(ii)
∑p

l=1 κlλl = 1.
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Then the possibility of {κ1, · · · , κp} gives the classification of F = (F1, · · · , Fp). In

particular, Fl is equivalent to the Veronese embedding Vn,κl with isometric constant κl

and Fl is a constant map if κl = 0.

Proof Recall that z = [z0, · · · , zn], w = [w0, · · · , wNl ] are the homogenous coordinates

for Pn and PNl respectively. We use the coordinates xi = zi
z0

on U0 ⊂ Pn and let

V0,l = {w0 6= 0} be a coordinate chart on PNl .

By Theorem 2.2.3, we know that Fl = (fl,0, · · · , fl,Nl) are all homogenous polyno-

mials of z mapping Pn into PNl . By composing with Isom(PNl , ωNl), we can assume

that Fl([1, 0, · · · , 0]) = [1, 0, · · · , 0]. Hence Fl maps some open subset of U0 into V0,l.

Let

rl,ql(x) =
fl,ql(z)
fl,0(z)

be a rational function in x for 1 ≤ ql ≤ Nl and write Fl = (rl,1(x), · · · , rl,Nl(x)). As Fl

is an isometric embedding, we have

√
−1∂∂ log(1 +

n∑
i=1

|xi|2) =
∑
l

λl
√
−1∂∂ log(1 +

Nl∑
ql=1

|rl,ql(x)|2).

Getting rid of
√
−1∂∂, one has:

log(1 +
n∑
i=1

|xi|2) =
∑
l

λl log(1 +
Nl∑
ql=1

|rl,ql(x)|2) + Reh(x)

for some holomorphic function h(x).

Comparing the Taylor expansion of two sides, when rl,ql(0) = 0, the other two

quantities do not have the pure holomorphic and anti-holomorphic terms like xα, x̄α

except for Reh, implying that h = 0. Therefore,

1 +
n∑
i=1

|xi|2 =
∏
l

(1 +
Nl∑
ql=1

|rl,ql(x)|2)λl .

Note that the right hand side approaches∞ when x approaches any pole of rl,ql(x),

while the left hand is bounded, implying that rl,ql(x) is actually a polynomial. By

polarization (replacing x̄i by yi), it follows that:
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1 +
n∑
i=1

xiyi =
∏
l

(1 +
Nl∑
ql=1

rl,ql(x)r̄l,ql(y))λl .

Since 1+
∑n

i=1 xiyi is irreducible, and C[x, y] is a unique factorization domain, it follows

that

1 +
Nl∑
ql=1

rl,ql(x)r̄l,ql(y) = (1 +
n∑
i=1

xiyi)κl

for the possible integer κl satisfying condition (i) and (ii). This implies

1 +
Nl∑
ql=1

|rl,ql(x)|2 = (1 +
n∑
i=1

|xi|2)κl ,

meaning that Fl is an isometry from Pn to PNl with isometric constant κl. By Theorem

2.2.1, Fl is equivalent to the Veronese embedding Vn,κl .

If κl = 0, i.e.

1 +
Nl∑
ql=1

|rl,ql(x)|2 = 1,

it follows that rl,ql(x) ≡ 0, implying that Fl is a constant map. 2
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Chapter 3

On the modified Kähler-Ricci flow

3.1 Preliminaries

Let X be a closed Kähler manifold of complex dimension n with a Kähler metric ω0,

and let ω∞ be a real, smooth, closed (1, 1)-form with [ω∞]n = 1. Let Ω be a smooth

volume form on X such that
∫
X Ω = 1. Set χ = ω0 − ω∞, ωt = ω∞ + e−tχ. Let

ϕ : [0,∞)×X → R be a smooth function such that ω̃t = ωt +
√
−1∂∂ϕ > 0. Consider

the following Monge-Ampère flow:


∂
∂tϕ = log (ωt+

√
−1∂∂ϕ)n

Ω ,

ϕ(0, ·) = 0.

(3.1.1)

Then the evolution for the corresponding Kähler metric is given by:


∂
∂t ω̃t = −Ric(ω̃t) +Ric(Ω)− e−tχ,

ω̃t(0, ·) = ω0.

(3.1.2)

We will give some definitions before stating our theorem.

Definition 3.1.1 [γ] ∈ H1,1(X,C) is semi-positive if there exists γ′ ∈ [γ] such that

γ′ ≥ 0, and is big if [γ]n :=
∫
X γ

n > 0.

Definition 3.1.2 A closed, positive (1, 1)-current ω is called a singular Calabi-Yau

metric on X if ω is a smooth Kähler metric away from an analytic subvariety E ⊂ X

and satisfies Ric(ω) = 0 away from E.
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Definition 3.1.3 A volume form Ω is called a Calabi-Yau volume form if

Ric(Ω) := −
√
−1∂∂ log Ω = 0.

Theorem 3.1.1 Let X be a Kähler manifold with a Kähler metric ω0. Suppose that

[ω∞] ∈ H1,1(X,C)∩H2(X,Z) is semi-positive and big. Then along the modified Kähler-

Ricci flow (3.1.2), ω̃t converges weakly in the sense of currents and converges locally

in C∞-norm away from a proper analytic subvariety of X to the unique solution of the

degenerate Monge-Ampère equation (ω∞ +
√
−1∂∂ψ)n = Ω.

Corollary 3.1.1 When X is a Calabi-Yau manifold and Ω is a Calabi-Yau volume

form, ω̃t converges to a singular Calabi-Yau metric.

As [ω∞] ∈ H1,1(X,C) ∩ H2(X,Z), there exists a line bundle L over X such that

ω∞ ∈ c1(L). Moreover, L is big when [ω∞] is semi-positive and big [De]. Hence X

is Moishezon. Furthermore, X is algebraic, for it is Kähler. Therefore, by applying

Kodaira lemma, we see that for any small positive number ε ∈ Q, there exists an

effective divisor E on X, such that [L]− ε[E] > 0. Therefore, there exists a hermitian

metric hE on E such that ω∞ − εRic(hE), denoted by ωE , is strictly positive for any ε

small. Let S be the defining section of the effective divisor E.

We now define some notations for the convenience of our later discussions. Let ∇̃, ∆̃

and ∂
∂t − ∆̃ be the gradient operator, the Laplacian and the heat operator with respect

to the metric ω̃t respectively. Let Vt = [ω̃t]n with Vt uniformly bounded and V0 = 1.

Write ϕ̇ = ∂ϕ
∂t for simplicity.

Before proving the theorem, we would like to sketch the standard uniform estimates

of ϕ and recall some crucial estimates due to Zhang.

First of all, by the standard computation as in [Z3], the uniform upper bound of

∂
∂tϕ is deduced from the maximum principle. Secondly, by the result of [Z2] [EGZ],

generalizing the theorem of Ko lodziej [K1] to the degenerate case, we have the C0-

estimate ‖u‖C0(X) ≤ C independent of t where u = ϕ −
∫
X ϕΩ. Then to estimate

∂
∂tϕ locally, we will calculate ( ∂∂t − ∆̃)[ϕ̇+A(u− ε log ‖S‖2hE )], and then the maximum

principle yields ∂
∂tϕ ≥ −C + α log ‖S‖2hE for C,α > 0.
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Next, we follow the standard second order estimate as in [Y1] [Cao] [Si] [Ts]. Calcu-

lating ( ∂∂t − ∆̃)[log trωE+e−tχω̃t−A(u− ε log ‖S‖2hE )] and applying maximum principle,

we have: |∆ωEϕ| ≤ C. Then by using Schauder estimates and third order estimate as

in [Z3], we can obtain the local uniform estimate: For any k ≥ 0,K ⊂⊂ X \ E, there

exists Ck,K > 0, such that:

‖u‖Ck([0,+∞)×K) ≤ Ck,K . (3.1.3)

In [Z3], Zhang proved the following theorem by comparing (3.1.1) with the Kähler-

Ricci flow (3.1.4). We include the detail of the proof here for the sake of completeness.

This uniform lower bound appears to be crucial in the proof of the convergence.

Theorem 3.1.2 ([Z3]) There exists C > 0 such that ∂
∂tϕ ≥ −C holds uniformly along

(3.1.1) or (3.1.2).

We derive a calculus lemma here for later application.

Lemma 3.1.1 Let f(t) ∈ C1([0,+∞)) be a non-negative function. If
∫ +∞

0 f(t)dt <

+∞ and ∂f
∂t is uniformly bounded, then f(t)→ 0 as t→ +∞.

Proof We prove this calculus lemma by contradiction. Suppose that there exist a

sequence ti → +∞ and δ > 0, such that f(ti) > δ. Since ∂f
∂t is uniformly bounded,

there exist a sequence of connected, non-overlapping intervals Ii containing ti with fixed

length l, such that f(t) ≥ δ
2 over Ii. Then

∫
∪iIi f(t)dt ≥

∑
i l
δ
2 → +∞, contradicting

with
∫ +∞

0 f(t)dt < +∞. 2

Let ω̂t = ωt +
√
−1∂∂φ and ∆̂ be the Laplacian operator with respect to the metric

ω̂t. Consider the Monge-Ampère flow, as well as its corresponding evolution of metrics:


∂
∂tφ = log (ωt+

√
−1∂∂φ)n

Ω − φ,

φ(0, ·) = 0.

(3.1.4)
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
∂
∂t ω̂t = −Ric(ω̂t) +Ric(Ω)− ω̂t + ω∞,

ω̂t(0, ·) = ω0.

(3.1.5)

The following theorem is proved in [Z1] and we sketch Zhang’s argument here.

Theorem 3.1.3 There exists C > 0, such that ∂
∂tφ ≥ −C uniformly along (3.1.4).

Proof The standard computation shows:

(
∂

∂t
− ∆̂)(

∂φ

∂t
+
∂2φ

∂t2
) ≤ −(

∂φ

∂t
+
∂2φ

∂t2
).

Then the maximum principle yields:

∂

∂t
(φ+

∂φ

∂t
) ≤ C1e

−t,

which further implies:
∂

∂t
φ ≤ C2e

− t
2 .

Hence φ + ∂φ
∂t and φ are essentially decreasing along the flow, for example: ∂

∂t(φ +

φ̇ + C1e
−t) ≤ 0 and φ is uniformly bounded from above. As one also has the uni-

form estimate of φ that φ is uniformly bounded in Ck([0,∞) × K)-norm for any

k ≥ 0 and K ⊂⊂ X \ E, one can conclude that ∂φ
∂t → 0 pointwisely away from E

by applying Lemma 3.1.1 to C2e
− t

2 − ∂φ
∂t . Suppose that φ∞ is the limit of φ. Then

φ∞ ∈ PSH(X,ω∞) and φ∞ is also the pointwise limit of φ+ ∂φ
∂t away from E. By the

uniform estimate of φ once more, one knows that φ converges to φ∞ in C∞(K) for any

K ⊂⊂ X \ E. Then the convergence of (3.1.4) is obtained [TZha] in the sense that

eφ∞Ω = (ω∞ +
√
−1∂∂φ∞)n ← eφ+φ̇Ω = (ωt +

√
−1∂∂φ)n

in Ck(K)-norm for any k ≥ 0,K ⊂⊂ X \ E as t → +∞. Furthermore, by [K1],

φ(t, ·) ∈ L∞(X) for 0 ≤ t < ∞. In addition, (ω∞ +
√
−1∂∂φ∞)n does not charge any

pluri-polar set, in particular, the effective divisor E, as φ∞ is the decreasing limit of

φ(t, ·) + 2C2e
− t

2 . Therefore,
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eφ∞Ω = (ω∞ +
√
−1∂∂φ∞)n

holds in the sense of currents on X. On the other hand, from the pluri-potential theory

[Z2] [EGZ], we know that −C3 ≤ φ∞ − supX φ∞ ≤ C3 for C3 > 0 as ‖eφ∞‖Lp(Ω) < C4

for any p > 0 and supX φ∞ 6= −∞. By the essentially decreasing property, it follows

that away from E:

φ+ φ̇+ C1e
−t ≥ φ∞ ≥ −C3 + sup

X
φ∞ ≥ −C5.

Hence the uniform lower bound of φ̇ is obtained as φ is uniformly bounded from above

and φ̇ is smooth on X.

2

We are now ready to give Zhang’s proof to Theorem 3.1.2.

Proof of Theorem 3.1.2:

Notice that ϕ, φ are solutions to equation (3.1.1) and (3.1.4) respectively. Fix T0 > 0.

Let κ(t, ·) = (1− e−T0)ϕ̇+ u− φ(t+ T0) with κ(0, ·) ≥ −C1. Then:

∂

∂t
κ(t, ·) = ∆̃((1− e−T0)ϕ̇+ u) + u̇− φ̇(t+ T0)− n+ trω̃tωt+T0

= ∆̃((1− e−T0)ϕ̇+ u− φ(t+ T0)) + u̇− φ̇(t+ T0)− n+ trω̃tω̂t+T0

≥ ∆̃((1− e−T0)ϕ̇+ u− φ(t+ T0)) + ϕ̇− C2 + n(
C3

eϕ̇
)

1
n ,

where the fact: u̇ ≥ ϕ̇− C,−C ≤ ∂
∂tφ ≤ C and ω̂t ≥ C3Ω are used.

Suppose that κ(t, ·) achieves minimum at (t0, p0) with t0 > 0. Then the maximum

principle yields ϕ̇(t0, p0) ≥ −C4. Hence ϕ̇ is bounded from below. Suppose that κ(t, ·)

achieves minimum at t = 0. Then the theorem follows trivially. 2
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3.2 Proof of Theorem 3.1.1

Inspired from the Mabuchi K-energy in the study on the convergence of the Kähler-

Ricci flow on Fano manifolds, we similarly define an energy functional as follows:

ν(ϕ) =
∫
X

log
(ωt +

√
−1∂∂ϕ)n

Ω
(ωt +

√
−1∂∂ϕ)n.

Next, we will give some properties of ν(ϕ) and then a key lemma for the proof of

the main theorem.

Proposition 3.2.1 ν(ϕ) is well-defined and there exists C > 0, such that −C < ν(ϕ) <

C along (3.1.2).

Proof It is easy to see that ν(ϕ) is well-defined. If we rewrite

ν(ϕ) =
∫
X
ϕ̇ω̃nt ,

then ν(ϕ) is uniformly bounded from above and below by the uniform upper and lower

bound of ϕ̇. Here, we derive the uniform lower bound by Jensen’s inequality without

using Theorem 3.1.2:

ν(ϕ) = −Vt
∫
X

log
Ω
ω̃nt

ω̃nt
Vt
≥ −Vt log

∫
X

Ω
Vt
≥ −C,

as Vt is uniformly bounded. 2

Proposition 3.2.2 There exists constant C > 0 such that for all t > 0 along the flow

(3.1.2):
∂

∂t
ν(ϕ) ≤ −

∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t + Ce−t. (3.2.1)
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Proof Along the flow (3.1.2), we have:

∂

∂t
ν(ϕ) =

∫
X

∆̃ϕ̇ω̃nt − e−t
∫
X
trω̃tχω̃

n
t − ne−t

∫
X
ϕ̇χ ∧ ω̃n−1

t + n

∫
X
ϕ̇
√
−1∂∂ϕ̇ ∧ ω̃n−1

t

= −
∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t − ne−t

∫
X
χ ∧ ω̃n−1

t − ne−t
∫
X
ϕ̇χ ∧ ω̃n−1

t

= −
∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t − n[χ][ωt]n−1e−t − ne−t

∫
X
ϕ̇(ω0 − ω∞) ∧ ω̃n−1

t

≤ −
∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t + n[χ][ωt]n−1e−t + Ce−t

∫
X

(ω0 + ω∞) ∧ ωn−1
t

= −
∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t + [nχ+ Cω0 + Cω∞][ωt]n−1e−t

≤ −
∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t + C ′e−t.

Notice that we used the evolution of ϕ̇ and integration by parts in the first two equalities

and the uniform bound of ϕ̇ in the first inequality and the last inequality holds since

ωt is uniformly bounded. 2

Lemma 3.2.1 On each K ⊂⊂ X \ E, ‖∇ω∞ϕ̇(t)‖2ω∞ → 0 uniformly as t→ +∞.

Proof Integrating (3.2.1) from 0 to T , we have:

−C ≤ ν(ϕ)(T )− ν(ϕ)(0) ≤ −
∫ T

0

∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t dt+ C

for some constant C > 0. It follows that

∫ +∞

0

∫
X
‖∇̃ϕ̇‖2ω̃tω̃

n
t dt ≤ 2C,

by letting T → +∞. Hence, (3.1.3) and Lemma 3.1.1 imply that for any compact set

K ′ ⊂ X \ E,

∫
K′
‖∇̃ϕ̇(t, ·)‖2ω̃tω̃

n
t → 0. (3.2.2)

Now, assume that there exists δ > 0, zj ∈ K and tj →∞ such that ‖∇ω∞ϕ̇(tj , zj)‖2ω∞
> δ. It follows from (3.1.3) that ‖∇̃ϕ̇(tj , z)‖2ω̃tj >

δ
2 for z ∈ B(zj , r) ⊂ K ′, K ⊂ K ′ ⊂⊂

X \ E and r > 0. This contradicts with (3.2.2).

2
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Proof of Theorem 3.1.1:

First of all, we want to show that for any K ⊂⊂ X\E, u(t)→ ψ in C∞(K). Exhaust

X\E by compact sets Ki with Ki ⊂ Ki+1 and ∪iKi = X\E. As ‖u‖Ck(Ki) ≤ Ck,i, after

passing to a subsequence tij , we know u(tij ) → ψ in C∞(Ki) topology. By picking up

the diagonal subsequence of u(tij ), we know ψ ∈ L∞(X)∩C∞(X\E)∩PSH(X\E,ω∞).

Furthermore, ψ can be extended over the pluri-polar set E as a bounded function in

PSH(X,ω∞). Taking gradient of (3.1.1), by Lemma 3.2.1, we have on Ki as tij → +∞,

∇ω∞ϕ̇ = ∇ω∞ log
(ωt +

√
−1∂∂ϕ)n

Ω
→ 0 = ∇ω∞ log

(ω∞ +
√
−1∂∂ψ)n

Ω
.

Hence, we know log (ω∞+
√
−1∂∂ψ)n

Ω = constant on X \ E . Then the constant can

only be 0 as ψ is a bounded pluri-subharmonic function and
∫
X ω

n
∞ =

∫
X Ω, which

means that ψ solves the degenerate Monge-Amperè equation (1.2.3) globally in the

sense of currents and strongly on X \ E. Furthermore, we notice
∫
X ψΩ = 0 as ψ is

bounded.

Suppose u(t) 9 ψ in C∞(K) for some compact set K ⊂ X \ E, which means

that there exist δ > 0, l ≥ 0, K ′ ⊂⊂ X \ E, and a subsequence u(sj) such that

‖u(sj)− ψ‖Cl(K′) > δ. While u(sj) are bounded in Ck(K) for any compact set K and

k ≥ 0, from the above argument, we know that by passing to a subsequence, u(sj)

converges to ψ′ in C∞(K) for any K ⊂⊂ X \E, where ψ′ is also a solution to equation

(1.2.3) under the normalization
∫
X ψ

′Ω = 0, which has to be ψ by the uniqueness of

the solution to (1.2.3). This is a contradiction. It thus follows that u(t)→ ψ in Lp(X)

for any p > 0.

Notice that u(t), ψ are uniformly bounded. Integrating by part, we easily deduce

that ω̃t = ωt +
√
−1∂∂u→ ω∞ +

√
−1∂∂ψ weakly in the sense of currents. The proof

of the theorem is complete.

2

Remark 3.2.1 Unlike the canonical Kähler-Ricci flow, it is not clear if the scalar cur-

vature s(ω̃t) is uniformly bounded from below along the flow (3.1.2). However applying
√
−1∂∂ to (3.1.1), we have
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s(ω̃t) = −∆̃ϕ̇+ trω̃tRic(Ω).

It follows that there exists constant C > 0, such that:

−C ≤
∫
X
s(ω̃t)ω̃nt = n

∫
X
Ric(Ω) ∧ ωnt = nc1(X) · [ωt]n−1 ≤ C.

It would be very interesting to investigate the behavior of the scalar curvature along

this modified Kähler-Ricci flow.

3.3 Remarks on non-degenerate case

In the case when [ω∞] is Kähler, the convergence of (3.1.2) has already been proven

by Zhang in [Z3] by modifying Cao’s argument in [Cao]. However, by using the func-

tional ν(ϕ) defined in the previous section, we will have an alternative proof to the

convergence, without using Li-Yau’s Harnack inequality. We will sketch the proof in

this section. We believe that this point of view is well-known to experts.

Firstly, under the same normalization u = ϕ −
∫
X ϕΩ, we will have the following

uniform estimates ([Z3]): for any integer k ≥ 0, there exists Ck > 0, such that

‖u‖Ck([0,+∞)×X) ≤ Ck.

Secondly, following the convergence argument as in the previous section, we will

obtain the C∞ convergence of ω̃t along (3.1.1). More precisely, u → ψ in C∞-norm

with ψ solving (1.2.3) as a strong solution. In particular, ϕ̇ → 0 in C∞-norm as

t → +∞. Let ω̃∞ = ω∞ +
√
−1∂∂ψ be the limit metric. Furthermore, we have the

bounded geometry along (3.1.2) for 0 ≤ t ≤ +∞:

1
C
ω̃∞ ≤ ω̃t ≤ Cω̃∞. (3.3.1)

Finally, we need to prove the exponential convergence: ‖ω̃t − ω̃∞‖Ck(X) ≤ Cke
−αt

and ‖u(t) − ψ‖Ck(X) ≤ Cke
−αt, for some Ck, α > 0. Then it is sufficient to prove: for

any integer k ≥ 0, there exists ck > 0, such that
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‖Dkϕ̇‖2ω0
≤ cke−αt.

Essentially, by following the proof of Proposition 10.2 in the case of holomorphic

vector fields η(X) = 0 in [CT], we can also prove the following proposition.

Proposition 3.3.1 Let c(t) =
∫
X

∂ϕ
∂t ω̃

n
t . There exists α > 0 and c′k > 0 for any integer

k ≥ 0, such that ∫
X
‖Dk(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t ≤ c′ke−αt.

Immediately, we have this corollary

Corollary 3.3.1 There exists C > 0, such that

−Ce−t ≤ c(t) ≤ Ce−αt + Ce−t ∀ t >> 1.

Proof Calculate

ċ(t) =
∫
X

∂ϕ̇

∂t
ω̃nt +

∫
X
ϕ̇∆̃ϕ̇ω̃nt − ne−t

∫
X
ϕ̇χ ∧ ω̃n−1

t

= −
∫
X
‖∇ϕ̇‖2ω̃tω̃

n
t − ne−t

∫
X
χ ∧ ω̃n−1

t − ne−t
∫
X
ϕ̇χ ∧ ω̃n−1

t .

Hence,

−
∫
X
‖∇ϕ̇‖2ω̃tω̃

n
t − Ce−t ≤ ċ(t) ≤ Ce−t.

Integrating from t to +∞ and using Proposition 3.3.1,

−Ce−t ≤ c(t) ≤ Ce−αt + Ce−t.

2

Proof of Proposition 3.3.1:

Let κ(t) =
∫
X(∂ϕ∂t − c(t))

2ω̃nt . Then



42

κ̇(t) = 2
∫
X

(ϕ̇− c(t))(∂ϕ̇
∂t
− ċ(t))ω̃nt +

∫
X

(ϕ̇− c(t))2∆̃ϕ̇ω̃nt

−ne−t
∫
X

(ϕ̇− c(t))2χ ∧ ω̃n−1
t

= 2
∫
X

(ϕ̇− c(t))∆̃ϕ̇ω̃nt − 2
∫
X

(ϕ̇− c(t))(e−ttrω̃tχ+ ċ(t))ω̃nt

+
∫
X

(ϕ̇− c(t))2∆̃ϕ̇ω̃nt − ne−t
∫
X
χ ∧ ω̃n−1

t

≤ −2
∫
X

(1 + (ϕ̇− c(t))(1− V (t)))‖∇(ϕ̇− c(t))‖2ω̃tω̃
n
t + Ce−t.

We make use of the expression of ċ(t) and the uniform estimate (3.1.3) in the last

inequality. Since ϕ̇ and c(t) approach 0 uniformly as t→ +∞, we have:

κ̇(t) ≤ −2(1− ε)
∫
X
‖∇(ϕ̇− c(t))‖2ω̃tω̃

n
t + Ce−t ≤ −ακ(t) + Ce−t

with 0 < ε << 1 and 0 < α < inf{1, 2(1 − ε)λ∞}, where λ∞ is the first eigenvalue of

metric ω̃∞. Let κ̃(t) = κ(t) +Ae−t. Therefore, by choosing A sufficiently large,

∂κ̃(t)
∂t

= κ̇(t)−Ae−t ≤ −ακ(t) + (C −A)e−t

≤ −ακ̃(t) + (−A+ C + αA)e−t

≤ −ακ̃(t).

Solving this ODE, we get: κ̃(t) ≤ κ̃(0)e−αt. Therefore, we have:

κ(t) ≤ κ̃(t) ≤ κ̃(0)e−αt.

Let κk(t) =
∫
X ‖D

k(∂ϕ∂t − c(t))‖
2
ω̃t
ω̃nt . Then
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∂

∂t
κk(t) =

∫
X
‖Dk(

∂ϕ

∂t
− c(t))‖2ω̃t(

√
−1∂∂ϕ̇− e−tχ) ∧ ω̃n−1

t

+
∫
X

∂

∂t
‖Dk(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t

≤ C(k)
∫
X
‖Dk(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t + C ′(k)e−t

−2
∫
X
‖Dk+1(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t

≤ C(k)
[
ε

∫
X
‖Dk+1(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t + C(ε)

∫
X

(
∂ϕ

∂t
− c(t))2ω̃nt

]
−2
∫
X
‖Dk+1(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t + C ′(k)e−t

= C(k)C(ε)
∫
X

(
∂ϕ

∂t
− c(t))2ω̃nt + C ′(k)e−t

−(2− εC(k))
∫
X
‖Dk+1(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t

≤ C(k)C(ε)
∫
X

(
∂ϕ

∂t
− c(t))2ω̃nt + C ′(k)e−t

≤ C ′′(k)e−αt.

In the first inequality, we use integration by parts and the uniform estimate (3.1.3). In

the second inequality, we use the interpolation inequality and choose ε sufficiently small

to guarantee the third inequality. Integrating from t to∞ and using limt→+∞ κk(t) = 0,

we have:

κk(t) ≤ Cke−αt.

2

Now we are in position to prove the exponential convergence.

Theorem 3.3.1 For any integer k ≥ 0, ∂ϕ
∂t convergences exponentially to 0 in Ck-

norm. More precisely, there exists α > 0 and ck > 0 such that for any t >> 1,

‖Dkϕ̇‖2ω0
≤ cke−αt.

Proof As 1
C ω̃∞ ≤ ω̃t ≤ Cω̃∞, the Sobolev constants of ω̃t are uniformly bounded.

Therefore it follows from Sobolev inequality that:
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‖Dk(ϕ̇− c(t))‖2ω̃t ≤ dk
∫
X
‖Dk′(

∂ϕ

∂t
− c(t))‖2ω̃tω̃

n
t ≤ dkCk′e−αt = C ′ke

−αt.

Hence when k 6= 0,

‖Dkϕ̇‖2ω0
≤ C‖Dk(ϕ̇− c(t))‖2ω̃t ≤ cke

−αt.

In the case of k = 0, Sobolev inequality yields:

| ∂ϕ
∂t
− c(t) |≤ C

( ∫
X
‖Dl(

∂ϕ

∂t
− c(t))‖2ω̃nt

) 1
2 ≤ C ′e−αt,

for some l > 0. Hence

| ∂ϕ
∂t
|≤| ∂ϕ

∂t
− c(t) | + | c(t) |≤ ce−αt,

where we use Corollary (3.3.1). 2
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[ST1] Song, J. and Tian, G. The Kähler-Ricci flow on surfaces of positive Kodaira
dimension, Invent. Math. 170 (2007), no. 3, 609–653.

[ST2] Song, J. and Tian, G. Canonical measures and Kähler-Ricci flow,
ArXiv:0802.2570.

[ST3] Song, J. and Tian, G. The Kähler-Ricci flow through singularities,
ArXiv:0909.4898.

[SY] Song, J. and Yuan, Y. The Kähler-Ricci flow on Calabi-Yau varieties, Preprint.

[T1] Tian, G. Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130
(1997), no. 1, 1–37.

[T2] Tian, G. Canonical metrics in Kähler geometry, Lectures in Mathematics, ETH
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