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ABSTRACT OF THE DISSERTATION

Optimal Desigrand Equivalencyf Accelerated Life Testg Plars

By YADA ZHU
DissertatiorDirector:

ProfessorElsayed A. Elsayed

Accelerated Life Testing (ALT) is an efficient approach to obtain failure observations by
subjecting the test units to stresses severer than design stresses and utilize the test data to

predict reliability at normal operating conditions.

ALT plansundermultiple stresseseeds to be designéa resemble the normal operating
conditions and obtairuseful failure observationdor accurate reliability prediction
However, to date there idtle research into the theory of planniAg T for reliability
prediction with multiple stresses. Multiple stresses can result in a large number ef stress
level combinations which presents a challenge for implementation. We propose an
approach for the desigof ALT plans with multiple stresses using Latin hypercube
design(LHD) anddemonstrate the proposed method with examples based on actual test
The obtained optimal test plans are compared with those baded erctorial design.

The comparison shows$at ALT based on LHD not only increases the accuracy of

reliability prediction significantly but also reduces the test duration dramatically.



ALT under Typel and Typell censoring ha been extensively investigated. We
generalize the one stage censoring nulti-stage progressive censoring, where the
surviving test units are removediatermediate stagesther than the final termination of
the test This procedure further minimizethe test time andost We also combine the
progressive censoring scheméhacompeting risk when test units experience different

failure modes to investigate general, practical and optimal ALT plans.

ALT is usually conducted under constatitessesvhich need a long time at low stress
levels to yield sufficient failure data. &y stress loadings, such as stéesgs obtain

failure times faster than constasitesgsbut the accuracy of reliability predictions based

on such loadings has not yet been investigated. We develop test plans under different
stress applications suclinat the reliability prediction achieves equivalent statistical
precision to that ofthe constanistress The research shows indeed theme such
equivalent plans that reduce the test time, minimize the cost and result in the same

accuracy of reliability pedictions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Work

The significant increase in the introduction of new prodaaot$the significant reduction

in time from product design to manufactur
expectation for high reliability, have prompted industry tor&o its product test
duration in order to asss the produc reliability beforerelease In many cases,
Accelerated Life TestingALT) is one of the most commapproacheshat meet such
requirements The accuracyof the statistical inference obtained using ALT data has a
profound effect on the reliability estimates and the subseqieergions regarding system
configuration, warranties and preventive maintenance scheiig®ut an optimal test

plan, it is likely that a sequence of expensive and -toresuming tests result in
inaccurate reliability estimates anchproper final product design requirements. i$h
might also cause delays in product release or the termination of the entire product

developmen{Elsayedget al, 2007)

Most of the research on ALplanningis focused on single stress applicati@ptimal

test phns in terms o$tress applicationsestunit allocation to stress levedsdcensoring
time areusually formulated asonlinear optimization problemsiowever, for products
designed to operate without failure for years, it is difficult to obtain suffidalure time

data in a short timasingonly a singlestress. Therefore, reliability testing using multiple



stresses is commonly used in practicedercome such a difficultfgscobamand Meeker,
1995) For instance, ceramic capacitors are tested samedusly under higher than
design temperature and voltagéelen 1959, Minford, 1982, Mogilevsky and Shrin,
1988,Klinger, 1991) Semiconductor electronic components and outdoor optical products
are tested at higher than operating humidity and temper@®eck, 1986, Lam, 2007)
Printed circuit boards are also tested at higher than openabitege, humidityand

temperaturgLuValle, et al, 1986,Ghazikhanian2005)

Il n many situations, product 0s simulthneoustye pends
For outdoor products, multiple stresses represent a realistic field situation. For example,
environments can cause rapid deterioration in the dielectric strength of lead zirconate
titanates (PTZ) actuatof®ritchard,et al, 2001, Actuator, 2004) The deterioration rate
increases by the use of high electrical field strengths required to achieve high mechanical
output. However the PTZ actuators are deployed widely in devices that must work
reliably for many yearat multiple stresse®ften n inaccessible location&ipscombet

al., 2009) Lipscombet al. (2009) evaluate the possible effect of accelerated stresses:
temperature, humidity and electrical field on the reliability of PZT actuators. They place
dry samples iran environmental chamband fix two of the stressesghile varying the

third in a range of valuesvhich is not a systematic amdficient approachTo date there

is little researclhthat deals withthe theory of planning ALT for reliability prediction

undermultiple stresses.



Typel and Typell one-stage rightensoringare the most common censoring schemes in
reliability experiments and extensively studied by many researchers including Lawless
(1982), Nelson (1990) Meeker and Escobar (1998)jowever, in many situationthe
suviving test units are removeat multiple stagebefore the final termination point of

the experiment in order to reduce the test time and cost, save some of the surviving items
for other tests, or to free up testing facilities for other experimentatleconventional
Typel and Typell censoring schemesdo not providethese featuresProgressive
censoring could provide most of these featuredowever, existingresearchon
progressivecensoringis mainly based on an exponential failure time distributimm
extreme value distributioand a single cause offailure. In manyengineeringsituations

units may fail due toone of severapossiblefailure modes(competing risk e.g.the
tensile strength of certain materials depends on two or more types of (Rassual,
2007), diodes may fail either open short(Elsayed, 1995 cylinder liners present two
dominant failure modes: wedegradatiorand thermal cracking (Bocchedt al, 2009)
Thesemotivate us to investigate ALT under more general censoriftties@swhile
consideing the effects of competing risk with practical field conditiors, multiple

stresses.

Current research on ALT plans has been focused on the design of optimum testing plans
for a given stress loading. For instance, the conssirégss ALT plans have been
investigatedby Nelson and Kielpinski (1976), Maxirt al (1977), Meeker and Hahn
(1977),Nelson and Meeker (1978), Meeker (1984), Nelson (1990), Meeker (1994), and

Yang (1994) The st@-stress ALT plans have been studmdMiller and Nelson (1983),



Bai et al (1989), Bai and Chun (1991), Khamis and Higgins (1996), Xiong (1998),
Xiong and Milliken (1999), and Xiong and Ji (200#hile the rampstress ALT plans
have been considerdyy Bai et al (1992), Bai and Chun (1993), Bat al. (1993), and
Park andYum (1998) The wide range of stress applications, stress levels and
corresponding test durations give risethe investigaion of the equivalency between

testing plans.

Interestingy, because of wide range of polymer based advanced composite materials that
are used in certified aircraft applications as well as the large variability of properties
among these composites and within the same batch of a composite material the
manufactures and the Federal Aviation Administration develop a procedure to assess
equivalence between different polymer based composites. The procedure utilizes
essentially small data sets to generate test condition statistics such as population
variability and coresponding basis values to pool results for a specific failure mode
across all environments. The statistics from the test are compared and assessment of the
Aequi val encyo is then made b a s(Eohblimenal,t he
2002) Clearly, the term equivalency here refers to basic statistics about samples from
populations but it does not provide information on reliability prediction or other time

dependent characteristics.

A brief literature review shows that fundamental reslean the equivalency of test plans
has not yet been investigated in the reliability engineeriedd. Without the

understanding of such equivalency, it is difficult for a test engineer to determine the best

me



experimental settings before conducting actdall. Meanwhile, accuratereliability
prediction at normabperatingconditions using the ALT results also regsia@propriate
ALT models. Complicated stress profiles create challenges in the development of

regression analysis models that rekttess e#ctsto the lifetime

1.2 Problem Definition

Motivated by above discussiome studythree ALT planningrelated problemsn this

dissertation

i. Planning ALT under multiple stresses

Il n many situations, productodos | ife depends
For example,outdoorproductsusually operat@eindermultiple stressewnhich representa

realistic field situationHowever, the challenge planningALT with multiple stresses is

the redudion of the number of stredsvel combinationgexperimentsin a test When

test units are subjected to two stresses and two levels forséads there are four
combinations withHull FactorialDesign (FFD) When the numberof stresses and levels

of each stress increasel-D can lead to a large number of strsgel combinations,

which makes it impractical tmvestigate ormplement.

In this dissertationve present an approach for the design of ALT with multiple stes
using LHD. We review the literature on LHD aneést plans for ALT under multiple
stressesWe ddermine optimal ALT plans with respect tbet varianceoptimality, D-

optimality and a multobjective criterion whiclttombines the Ebptimality and a spaee



filling measure. Wehencompare the optimal ALT plans based on LHD with those based
on FFD in terms of the varianaptimality and the Boptimality under different
censoring situationdVe developanalgorithm toefficiently obtain optimal solutiondVe

validate the performance of the algorithm by simulation

ii. DesignALT under progressive censoringscheme
In order b developALT undera general scheme, ve®nsider theprogressive censoring
and competing riskvhen test units are subjectraultiple stressedNe assumeach unit
exhibitsmultiple independent failure modes. A unit fails when any of the potential failure
modes occurs. Thefetime distribution of each failure mode followsn independent
Weibull distribution witha common shap@arameterThe observed failure time is the
minimum ofall the failure timesUnder the progressive Type&ensoring scheme artlde
test condition ofmultiple stresseswe construct the likelihood functiofor MLE and
develop the expression of Fisher inf@ation matrix.We determine optimum test plans
under the following criteria:
1. Minimization of the asymptotic variance of the mean time to first failure in a
group of units.
2. Minimization of asymptotic variance of the quantile failure at normal operating
conditions
3. D-optimality criterionthat maximizes the determinant of the Fisher information
matrix.
The first one is a new criterion that we firstly proposed for design of ALT plan. In

addition to above three criteriagvalso investigate the design of ALTaps under muki



objective optimizationWe obtain optimal test plan subject to progressive censoring and
competing risk under both single and multiple stresses for different objectives. We also
conduct sensitivity study to indentify unknown parameters #tatuld be initially

estimated wittspecialcare.

iii. Designof equivalent ALT plans

In ALT, constantstressis widely used due to the ease of conducting the test and the
existence of acceptable reliability prediction modélswever, constarstresstesting

takesa long time at low stress levels to yield sufficient failures that can be used in
providing accurate estimate of reliabilitharacteristicsDue to time orcostconstraint,

there is an increasinigiterest inchoosng time-varying stress loaihgs, e.g.stepstress

(simple or multiple),rampstress,sinusoidaicyclic stressor combinationsEach stress
loading has some advantages and drawbacks. This has raised many practical questions
such as: Can accelerating test plans involving differeasstioadings be designed such

that they are equivalent? What are the measures of equivalency? Can such test plans and
their equivalency beeaVeloped for multiple stresse3ime-varying stresgsalso create

challenges to relate the life of test undshestress

In this dissertation we propos@ approach for the desigr equivalent tests involving
different stress applications. We define the measure of equivalency for reliability
prediction To quantify life-stress relationshipinder generaltime-varying stresseswe
devebp a model based on thevell known cumulative exposureassumption We

formulateequivalent test plansndertime-varying stres®sto the baseline constastress



based on the proposed measure of equivaléMeypresent exampled equivalent test
plans under constastress, stegtress and ramgtress. We conduclaboratory

experiments using light bulbs walidate the equivalenayf test plans

1.3 Organization of the Dissertation

Theremainder of thelissertatioris organized as followsChapter 2 provides r@view of

the current literature of accelerated life testimgth multiple stressesand design of
experiment withLatin hypercubeThen we presentan approach for the design ALT

with multiple stresses usy LHD. In chapter 3, wepresent a detailed reviewndhe
competing risk problerand planning ALTunder different censoringlsemesFollowing

that we present the design of ALT plans under progressive censoring for units subject to
competing risk.In chager 4,we presenthedesign ofequivalent ALT plans.In Chapter

5, we present the experimensatup andresults for the validation of the proposed model
and equivalency of test plan€hapter 6 concliesthis dissertatiorand discusses the

futureresearch.



CHAPTER 2

ALT WITH MULTIPLE STRESSES

Accurate reliability prediction depends on both the ALT model and the test plan. In this
chapter, we begin with a review of the widely used ALT models and the current research
on test plans with single sgs and multiple stresses. We also provide a review on the
LHD. Following this, we present the assumption of this work and propose an approach to
reduce the stredsvel combinations using LHD. We then construct the likelihood
function and develop the Fishinformation matrix for Maximum Likelihood Estimate
(MLE) of unknown parameters. We present and formulate three optimization criteria to
determine optimal test plans. An algorithm is developed to evaluate the formulation
which contains both continuousdadiscrete decisiomariables Finally, examples based

on a real test are given demonstratand validate the proposed method.

2.1 Literature Review

2.1.1 ALT Models

ALT modelsquantify the relationship between the failure tithazard rate or reliability)
and a set of explanatory variablgs$resses in accelerated life testing aré&/e briefly

present the most commonly used ALT models.
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2.1.1.1 Accelerated Failure Time Models

Given a vector of covariates (stresses)Accelerated Failure TimgAFT) model
represents the distribution of the lifetime as a function oik. For example, the AFT

model based on Weibull lifetime distribution with scale pararrgterd shape parameter

uis obtained as:

dot a1l é ot dﬂ
f(ta, J="s 6eXPé e out O (5.1)
aga - 6 C & g

ALT models for which eithet) or i depend orx may be consideredsince U or i are

positivevalues, convenient specifications are

ax)= exp(b'x) (5.2)

d(x) = exp(ox) (5.3)

whereb ando are vectors of regressiaoefficientsof the saméengthasx.

A Weibull mode| that proves useful in amy situationshas onlyU depending orx

(Lawless, 1982), so that the reliability functionTok given by

¢a ¢ B0 S& "53
R(t|x)=expé 5 U ®B &——— 071t 0 5.4
()= 00 2§ *P¢ Fop(o) 80 o9
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The factorexp(b'x) is called an acceleration factor which relates the effect of a change in

the covariateThe loglifetime Y =log(T)in this case has the reliability function

R(y|x)= expg -exw

oy¢ (5.5)
é ¢ S

&2R

where rm{x) =loga(x)ands = &. This is also called aextremevalue locatiorscale

model. The extensions to other AFT models, suaxpsnentiallog-normal, loglogistic,
gamma and inverse Gaussian are also important and widely used (Lawless, 1982) for

reliability prediction.

Advantages of the parametric models include simplicity, the availabilitikefihood-
based inference procedure, and ease of use for description, comparison, prediction, or

decision (Lawless, 1982).

2112 Coxbd6s Proportional Hazards Model
The most widely used model describing the influence of covariates dmataed rate
functioni s t he propor ti o rs@ddelintoodueed oyCox(1PA2Fhe or Co »

model is described as:

Let / (t;x) be the hazard rate at tim€for a unit with a vector of stressgs The basic

PH model is
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16X = f()c(bx) (5.6)
where
/,(t) an arbitrary baseline hazard rate;
c(b'x) a known function

Becausdhehazard rate functior (t;x) must be positive, a common feasible function for
c(bx)is

c(b'x) =exp( ) :exﬁ bx
GiL

which results in

I({tx)= 4(t)expl x) = o/(t)eXFgégl Xp (5.7)
Gi=t

The main assumption of the PH model is that the ratio of two hazard rates under two

stress levelx, and x, is constant over time. In other words:

I(tx) _ ht)exp®x,) b
16X, hexpx,) P bk %)l (5.8)

j=

This implies that the hazard rates are proportiaméhé applied stress levels.
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Without the specification of the form of baseline hazard rate fundtjgr) , the

coefficients ofthe covariate® could beobtainedbased on a partial or conditional

likelihoodr at her than a full |l i kel i hood approach
reliability estimation with failure data for which the proportional hazards assumption

does not even hold exactly.

2.1.2 ALT TestPlans

In order to increase thaccuracyof reliability prediction at normal operating conditions
usingaccelerated life testingesults a carefully designed ALT plan is required.eftest

plan is designed to minimize a specified criterion, usually the variance of a reliability
related estimatesuch as reliability function, mean time to failure and a percentile of
failure time, under specific time and cost constraiits. review the work on the design

of ALT plans for both cases wheimgle ormultiple stresses are used

2.1.2.1 ALT Plans undeiSingle Stress

Constanistress test plans consigf of several stress levelsethe mostcommonly used

ALT plans due to ease of implementation aheéir acceptable reliability prediction
models Each stress levels allocated a proportion of the total mber of test units.
Earlier work by Nelson and Meeker (1978) propose optimal statistical plans for censtant
stress ALTs which include only two stress levels. Such plans lack robustness since the
assumed lifestress relationship is difficult, if not impakke, to validate. Meeker and

Hahn (1985) propose a compromise plan with 4:2:1 allocation ratio for low, middle, and
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high stress levels and provide the optimal low level stress by assuming the middle stress
to be the average of the high and the low stlegsls. In recent years, by considering
other test constraints and allowing poonstant shape parameter of the failure time
distribution, Meeter and Meeker (1994) advocate the use of the compromised ALT plan
for three stress levels without optimizingetmiddle stress level and allocation of test
units. Yang (1994) proposes an optimulesign of 4level constanstressALT plans

with various censoring times. The test plans derived are proven to be more robust than

the 3level bestcompromise test plans.

On the other hand, a commarniterion ofinterestin the existing work on constasdtress

ALT plans isthe estimate percentiles of the life distribution at specified design stress
Mannet al. (1974) consider linear estimation with order statistics tonedé a percentile

of an extreme value (or Weibull) distribution at design stress and obtain optimal plans for
failure data with censored observatiohelson and Kielpinski (1976) obtain optimum
plans and best traditional plans (traditional plans use lggg@dced levels of stress with
equal allocation of test units to each stress level) for the median of normal and lognormal
distributions. Their model assumes that the normal distribution location paranfatso

the mean) is a linear function of stress and the scale paramésdso the standard
deviation) does not depend on stress. They also assume simultaneous testing of all test
units and censoring at a pspecified timeNelson and Meeker (1978) pride similar
optimum test plans to estimate percentiles of Weibull and smallest exisduee

distributions at a specified design stress when test units are overstressed. They assume
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that the smallest extremalue location parametem(also the 0.632 peeatile) is a linear

function of stress and that the scale parameterconstant.

Other optimization criteria for constastress ALT plan are also widely investigated
Martz and Waterman (1977) use Bayesian methods for determining the optimal $sst stre
for a single test unit to estimate the survival probability at a design stress. Meeker and
Hahn (185) consider the optimum allocation of test units to overstress conditions when
it is desired to estimate the survival probability at a specified timelesign conditions.

The optimal criterion is to minimize the large sample variance under a logistic model
assumptionOnar and Padget (2002) determine optimum accelerated test plans using the
D-optimality criterion and assugran inverseGaussian model. Ngt al. (2006) develop
anoptimal ALT plan based on the-@ptimality criterionwith complete dataln practice,

the constanstress ALB need a long time athe low stress levels tmbtain all or
sufficient failure data. This has prompted the applicatioimte-varying stresssin ALT

such as steptressandramp-stress.

Under stepstress, the test units are fisibjectedo a lower stress level for some time;
thenthe stress is increased to a higher level and held constant for another amount of time;
the steps are repeated until all units fail or the predetermined test time has ekpired.
model the effects of time dependent stress on lifetiviiéer and Nelson(1983) presentl
cumulative exposure modelhich assumes that the remaining life of a test unit depends
only on thefiexposure it hasexperienceand does not remember how #gosurevas

accumulatedthis is a major drawback of the modelheyobtain optinal test plans that
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minimize the asymptotic variance of MLE of the mean life at the design stresst &ai
(1989) extend the results to the case where a prescribed censoring time is involved. Bai
and Chun(1991) obtain the optimal simple stegtress ALTwith competing causes of
failure. Khamis and Higging1998) present 3step stegstress plans assuming a linear or
quadratic relationship between the life and the stress. Xib®@8) addresses the effect

of the statistical inferences on the parametera simple steystress ALT model with
Type-ll censoring. Xiong and Milliker{1999) study the statistical models in stsfpess

ALT when the stress change times are random. Xiong a(@D04) studythe optimal

design of a simple stegiress test plan involvg grouped and censored data.

2.1.2.2 ALT Plans undeMultiple Stresses

Most of theresearch on ALTplanningis focused orsingle stressapplication Optimal

test plans in terms aftress applications, test unit allocation to stress levels and censoring

time are usuallyformulated asonlinear optimization problems. However, for products
designed to operate without failure for yedirss difficult to obtain sufficient failure time

datain a short timeusingonly a singlestress Meanwhile, h many situatios pr oduct 0 S
life depends on several stresses operating simultaneduasbjate there is little research

into the theory of planning ALT for reliability prediction with multiple stresses.

Nelson(1990)describes a simulatieibased method for planning ALWith two factors:
voltage stress (volts/mm) and insulation thickness (mm). The voltage stress is the only
acceleration factoand thickness is an ordinary experimental factibhre dfect of the

latter on the insulation life is of interest to engineers. Motat ed by Nel sonc¢
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Escobar and Meekéi995)extend the previous work on theompromise plan method

to designALT with two types ofstresses. More recently, Xu and £2007) apply the
compromise plan method tgsingtwo stepstresses. Though th@@oaclesin Escobar

and Meekel(1995)and Xu and Fei (2007)areinteresting angbracticalfor the design of

test plans under two types of stressess difficult to extendthesemethod to three or

more stresses due to the difficulty of obtaining unique optimal solutidtesnatively,
Parkand Yum(1996) and Elsayed and Zhan{2009) design ALT plans with factorial
designarrangementassuming that the failure times follosxponential digtbution and

the proportional odds model, respectively. They consider the case when test units are
subjected to two stresses and two levels for each stress. When the number of stresses and
levels of each stress incregseomplete factorial design can leada large number of

stresslevel combinations which makes it impractical to implement.

2.1.3 Latin Hypercube Design

A thorough literaturereview irdicates thatprevious work on design of ALT plan is
limited to single stressThe great challenge to performi@dd.T with multiple stresses is
the reduction of stredsvel combinations, i.e. the number of required experiméras
address this issugje proposea newapproacho designALT experimens with multiple

stresses based on LHD

An LHD with n experimeng and k factors, denoted by LHD 1{, k), is an n3 k matrix
X :[xl,xz,... ,xn]T, where each row/ =gx,, % ,....,X, represents an experiment and

each column represents a factor given by a permutation of its normalized levels
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{1, 2,... ,n} . In thisdissertation stresses, factors and variables @sedinterchangeable;

and runs, experiments and experiment points are also interchangeable. One of the main
features of using LHD is that the strdegel combinations cahe dramatically reduced

as shown laterConsider a test witlk factors andn levels for each factor. The Full
Factorial Design (FFD) requireﬁ experiments, buan LHD needs only experiments
Consequently the overall testing time is significantlyeduced. Though Fractional
Factorial design(FFd) can facilitate the reduction of the number of experiments, the
selection of appropriate fraction and allocation of test prgsent achallenge. On the
other hand, a desirable property of BHD is that when ann-experiment design is
projected onto any factor, there ardifferent levels for that factor. For cases where one

of the purposes of executing the experiment is to evaluate the effect of explanatory
factors on reliability, the optimal LHD givesdhest opportunity to investigate the true

behavior of the response across the range of the f¢tuae and Cui, 2007)

Table 2.1 gives two examples of LHD. In general, maxperimentLHD can be

generated using a random permutation{bf..,n} for each factor. Each permutation

leads to a different LHDFor k factors, there can b@!)* LHDs.



19

Table 2.1 LHD (5, 3) and LHD (6, 4)

n=5k=3 n=6,k=4
1334

112
2562

253
3216

325
4153

431
544 5441
6625

A random generated LHD may possesxlesired properties anghay act poorly in
estimation and predictiofror example, consider an extreme case irufg@.1. For such

an LHD, spurious correlation is introduced among the independent variables. As a result,
it is impossible to distinguish between the effects of the two variables based on a test with
such design. Specially, when the unexplored area is large ffedat ef the ordinary
experimental factor on reliability in the unexplored region cannot be assessed. Therefore,
it is more appropriate to spread the design points as evenly as possible within the design
space defined by the lowest and highest levels ci saess. There has been some work

in the literature to improve the spaftiing property.

- -

Figure 2.1 A two factor LHDthe extreme case
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2.1.3.1 MaximinDistanceCriterion and 1, Criterion
A design is called a maximin distance design (Jehml, 1990) if it maximizes the
minimum intersite distanceFor two experiment points (i.e. two rows in the design

matrix X) s andt, the intersite distance of ordey (g-norm distance) is defined as:

d(st)=1a|s -t°

ek
) (5.9)
[ =1

<o

where k is the number of factorgandq? 1.g9=1, q=2, andq= ®©corresponds to

rectangular, Euclidean, and infinity distance, respectiviigtris and Mitchell (1995)

proposed an intuitively appealing extension of the maximin raistecriterion. For a

given design, by sorting all the intsited distance, a distance I{g,, d,,...,d,)and an
index list(J;, J,,..., J;) can be obtained, whedgvalues are distinct distance values with

d, <d, <.. 4, Jiisthe number of pairs of sites in the design separatet] bys the

number of distinct distance values. A design is calleg-aptimal design if it minimizes:

o s p
a.. p O

f, :ga Jd? g (5.10)
i=1 -

where p is a positive integerThe 7, criterion is a variant of the maximin intesite

distance criterion.
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2.1.3.2 Entropy Criterion

Shannon(1948) used entropy to quantify tliemount of informatio&x the lower the
entropy, the more precise the knowledge is. Minimizing the posterior entropy is
equivalent to find a set of design points on which we have the least knowledgs.
been furtheshown that the entropy criterion is equivalent to minimizing the following

(Koehler and Owen, 1996):

-log|R |,

whereR is the correlation matrix of the experimental design maXrix[x,,X.,... ,xn]T,

whoseelements are:

N 5, . . )
R; ‘engﬁq Dy %1 61 & n6¢lt ¢
=1 -

whered; (I = 1¢ k) are correlation coefficients.

2.1.3.3 Centered L Discrepancy Citerion
The L, discrepancy is a measure of the difference between the empirical cumulative
distribution function of an experimental design and the uniform cumulative distribution

function. In otherwords, thel, discrepancy is a measure of aamformity of a design.
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AmongL, discrepancyl., discrepancy is used most frequently since it capxXpegessed
analytically and is much easier wompute (John et al, 1990). Hickernell (1998)

proposed three formulas &f discrepancy, among which the centeted discrepancy

(CL,) seems the most interesting.

o

DX 1 1
403+=1x 05| =% 057
; C 2 2

. A 1 1 1 [
O+l -051 by 051 J1x %1,

A design is called uniform design if it minimizes the centérediscrepancy (Fanegt al,

2000).

In this dissertation, we use the maximin irée distance criterion. Based on LHD, we

develop optimal ALT plans under multiple stresses as follows.

2.2 The Lifetime Distribution

Assumptions
1. We considerk(i N, k 22) constanistresseor ALT plans

2. N} units randomly chosen fronN, are allocated to stre$ésvel combination

X| =X 1, %0 %, » Whered p, =1andp, (0< p <) is the fraction of units
=1

allocated to stredgvel combinatior.
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3. Under Typel censoring,the test is continued until all test units fail whena
given censoringime d is reached. Under Typié censoring, the test is continued
until a specifiechumber of failures is reached.

4. The lifetimeT of a unit follows a Weibull distributiowith scale parametesand

shape  parameter & with  probability density function  @df):
. = gt e ! 4] i
f(ta, = /& expg {t/ ) agt € at both the normal operating

conditions and the test conditio®e also assume that the shape paranaeter

constantwhile the scale parametdy dependson a vector ofstresgs through
Ina(x)= Abx) =b Hxb b ---+ X, whereb is a vectorof regression

coefficients. This assumption is a special case of thésJek{dmodel.

5. The lifetimes of test units are statistically independent.

Due to the difficulty in extrapolation from a model with interactions among multiple
factors, experimental factor definitions should be chosen such that the statistical
interactions among the factors are minimi¢gedcobar and Meeker, 1995, 2008)some
casesa sliding level technique can be used to avoid potential interactions. For example,
Nelson (1990) uses the factors of insulation thickness and voltage stress (volts/mm)
instead of thickness and volts which would result in a strong interadioother
situations physical or chemicalcharacteristicsmight suggest ALT models with
interaction terms such as the generalized Eyring mdBé&ayed, 1996) In this
dissertationwe limit our discussion to linear IHstress relationship without interactions.
However,the methodology for finding optimal plans can be extended to nonlinear life

stress relationships.
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Stress normalization

We choose the stress levels for each strggsuging Eq. (2.11) as

X =X {I })X'*n:f,l =..n, (5.11)

wherex_ andxy are the lowest andighest testing levels othe stress, respectively. The

x for | =1,...,n form ann-term arithmetic sequenaehich can always be transformed to
{1....n} using linear operation The normalized model parameter§ &nd C), and

censoring time are then used in the computation.

On the other hand, the number of stress levels (experimeatgcts the predictioand
estimationaccuracy of the reliability characteristidn planning singlestress ALT, it is
sufficient to use three or four levels in gendiascobar and Meeker, 1993jor ALT
withk(kO 2) stresses,tleastk+] evelg tpreendh stress inromgler ®
ensure good properties of the Fisher informatiwatrix. This will be interpreted in Sec.

2.3.In practices, simulation can be performed to evaluate the value of

2.3 Likelihood Estimate
Using the logarithmic transformation ®fandinverse transformatiosi= /", we obtain

the distribution forY =In(T) with pdfas
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fo(y;m(bx), 9= Sexpgy - (im)) '1sexp((y {oxp) }')gs -y <(5.12)

LetY = m{bx) +sZ, Eq. .12 can be written with respect fbas,

fz(z)=exp(z-exr(z)), - mz<

which is the smallest extrem®&alue distribution. The log likelihood of a single

observation in thé" (I =1,..n) experiment of an ALTs,

L(b,s)=1(z)[z -exp(z) M(s) (1 I(-z)) exd | X,

where x =gn( f) - (/fszx,) g is the standardized log censoring tiroé the I

experimentd is the censoring timeq is thel™ row of the LHD (n, K) that specifies the

stresslevel combinationand | (z ) is an indicator function defined by

g1 if z ¢x (failure)
%0 otherwise

Under the regularly conditiofMeeker and Escobar, 199&he elements of thexpected

Fisher information matrix for an observationzatire the negative-expectations of the



second prtial derivatives of the lodikelihood with respect to

parameters:

where

1
P

X0

AX)= =1 exp( exp( X,

B(x) =1y exp(7 - ex(7)) z exibz) dz - 3, e,

26

theinknown model

CO)=Y( A+ .exp(z -ex(7)) Z ep( 9 dzr X, €.
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Let F, be the Fisher information matrix af observation in thé" experiment Thetotal

Fisher information matrix foN s-independent observationsis= N§ p,F . Due to the
=1

invariantcharacteristic, wetudy (s /N ) &F

gaA()P aXuA( X A & A )x p &)
e|=l I E | 1=

é 0 n, n..

é aXf_IA(X.) 2 a)SJXJA(l)’ﬂ P o dI)IX
é 1=1 | 4 I E

é (5.13)
€ B

: AxAx) P ax,B( K, .
2 =1 | &

e n
gsymmetrlc acx)p

For the case without censorin@?/N)CF is given by(2.14). That is Eq. (2.13) with

2
A(x), B(x), C(x)replaced bytheir limits asx- =, viz, 1, 1o ,'%+(g 1)°,

respectively, where and” are theE u | e r 6 s and aroukart canstant, respectively
We observe from Eq. (2.14) that the Fisher information matrix is dependeiat wioitel
parametersln addition, whenk =3 and n =2, a test using three stresses and each with

two levels, Eq. (2.14) becomes5a 5 matrix, Eg. (2.15). The possible LHDs include

11 11 1 2 1
, , and
2 2 2 2 2 1 2

284, or 3&4) in Eq. (2.15). Thus the Fisher information matrix is singular. If each stress

jwhich result in two identical rows (2&3,
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has three Meels, there is high chance that the Fisher information matrix is singular.

Therefore, we recommerkd+1levels for ak factor design.

e . n.

é 1 ax,p - ax, P (1' g)

é 1=1 | 3

é " n. n..

& axp .. ayx, p (1-9) a .»

é 1=1 | 3 | E

é (5.19)

¢ : ;

¢ axp (1-9) &x.m

g =1 | 3

B 2

% tri P i(1- g)?

Symmetric 5 +(1- 9) 0
e 2 2. 2.,
6 1 a X0 ax, p & P (1- 9)
é =1 | 3 | E
é.z 2, 2. 2 . 2.
éad X,/ axfl P &% P a%: P (1' g) B
é|:1 | 2 | E | 1= | 1=
e.2 2, 2. 2 .. 2.
éad X, ax, X, p af,l P & % P (1' g) W (5'15)
é|:l | 2 | = | 1= | 1=
e.2 2, 2 2, 2.
A%l AN P 8 XX%. axp (-9 éu.»p
él:l | 2 =1 | 2 | E
é

2

2 2 2 2
é(-9) (L-¥Exm (1 -)den (19 &n S+ g
e I=1 [ I E u

Let d=(by, b+, b )'.be the vector of model parameters after normalization and

g(d) be a realalued function, such as the quantile life, reliability function or hazard

function d specified time andtressconditionx . Let E:(EO % EkbE,)':and g(&) be
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estimates otf and g(d), respectively. Using the delta meth{deeker and Escobar,
1998) the asymptotic variance cg‘(&) denoted b)Asvar(g(g)), can be approximated

by

Asvar(g(g)):gﬂ@ ‘g% %f)

where Egpresents the asymptotic varianm@variance matrix which is the inverse of the

Fisher information matrix evaluated at tH&E of E

2.4 Optimal ALT Plan Formulation

We propose an optimal design of ALT plans based on the LHDs. Téudtgean a
significant reduction of the stressvel combinations for ALT with multiple stresses.
Consider a test with three accelerated stressssa minimum of three leveldor each
stress. As a result, theFD requires3’=27 experiments but the LHBequiresthree
experiments. To reduce the singularity of the Fisher information matrix, more levels for
each stress are desired. When the stress levelsuaifer each stress, theFD and LHD
require 4 = 64 andfour experimentsrespectively. Clearly,sathe number of stress level
increases, the required experimentsHBD and LHDincrease exponentiallgnd linearly,
respectively If all the experiments hathe samecensoring timethe totakesttime based
on LHD is significantly shorter than that ketson FFDas illustrated by thexamplesn

Sec. 2.6.2
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In practice, LHD can be randomly generated but such LHD may have undesired
properties andnay act poorly in estimation and predictiqive et al, 2000) In this

section, we investigate threateria for the design of the optimal plan in terms of stress

level combination matrix<" and unit allocationp, (I =1,...,n -1) under different

censoring situations.

2.4.1 Variance Optimality

The main objective of an ALT experiment isdbtain accurate reliability estimates with
minimum varianceat normal operating conditions. In this section, we design an optimal
test plan that minimizes the asymptotic variance of the logarithm of quéaitilee at

design stresses (normal operating conditions). The MLE of thg"lagiantilefailure at

design constardtresses,, is given by

=k +Bo, + B, hE

whereh=Ing 4n(1 «) is the g" quantileof the smallest extremealue distribution.
Whenh equals), ﬁcorresponds to the mean of the log lifetime distributior aWith
the delta method, the asymptotic varianc&p‘s given by,

- T

Asvar(ﬁ)=g1 . % N BB 186, %, h,
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Whereggis the inverse of Eq.2(13 evaluated at th&dLE E=(EO % EbE)E. We

now formulate the optimization problem under different censoring situations. Let

2 ( pe I,0<1) ,forl E... nbe theproportion ofunits allocaedto each experimerand

p, be the specified lower boundmf.

UnderTypel censoring
Given the censoring time of each experimﬂg@ltzl,m ,n), the optimizatiomproblem is

formulated as,

Min Asvar(ﬁ)

st. p¢ p4l E..n

ap-=1
=1

The above formulation can be extended to the case without censoringh&heansoring

timeis set to infinity (3 = ©), i.e. the test is terminatachenall the units fail.

UnderTypell censoring
Supposen (I=1,-,n) be the minimumnumber of failuresto be observedn the I

experimentlUnderType-ll censoring, the optimization problem is formulates)
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Min Asvar( ¥ )

st. p¢ p4l Ex..n,
ap =1
1=1
NoY(®=n,1 %..,n (5.16)

No 2n,l 4,..,n

where Y() is the cumulative failure distribution oZ. From (2.16), we obtain
X :In( -In(l R /N p))l 1=.,n which is the upper integration limit &{x ) and

C(x). This results in the Fisher information matrix given in Eq. (2.13).

The decision variablei; above formulations are the® k LHD matrix X* that specifies
the stresdevel combinations, and thgoportion of testinit allocatiorp, (I =1,...,n :I) :

Theseformulations can be numericallyevaluatedby providing initial values or the

model parameters.

Unit allocation

In above formulations,p, (I =1....n ]) are decision variables. To reduce the
computational effort, we introduce an alternative method for unit allocation. Under single
stress ALT, usually more test units are allocated to lower stress levels than higher stress

levels, eg. the widely used 4:2:1 rule. When the relative impact of each stress on the

lifetime is known, then we use the following unit allocation
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W/ X W X, e WX
chﬁ )ﬁ Wz a)Flz +W +é3(kl(
=1 | 2 | E

p, = (5.17)

k
whereg w =1,0 ¢w & fori 17. kare weights reflecting the relative effect of each
i=1

stress on lifetimeEq. (217) is a monotonically decreasing function of stress levels of
eaxh factor. On the other hand, wese equal allocation of the test units to each

experiment, i.ep, =1/nforl 4,...,nwhenno information on the relativeffect of each

factor isknown

2.4.2 D-optimality

The volume of the asymptotic joint confidence region of the model parameters is

proportional to the square root of the determinanSo&*. A larger value of the
determinant of the Fisher information matrix corresponds to a highergogcision of
the estimates ob and 0. Therefore, we choosB-optimality which maximizes the

determinant of the Fisher information matrix as the second criterion. Due to the invariant

characteristic, we investigate the determinaifisfN ) CF , whichis given by Eq.2.13).

The optimization problemsnderdifferent censoring situations are formulated as follows.

UnderTypel censoring

Given the censoring time of eaekperiment/; (1 =1, ,n),
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Max Det((s Z/N)GEE;)

st. p¢ psl E..n

ap-=1
1=1

WhereDet(o) presents the determinant of the matrix. The above formulation also can be

extended to the case without censoring wihencensoring timéy, = «.

UnderTypell censoring

Givenn (I =1.--,n), the required number of failures for eaotperiment

Max Det((sz/N)C"I%E)
st. p¢ p4l E..n,
épl =1,

1=1

NoY(®=n,1 %..,n

Np 2n,l 4,..,n

Initial estimate of the model parametare required to evaluate tfi@mulationsunder

Typel and Typell censoring, whereas thfermulation for the case without censoring

does not depend on the model parameters.
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2.4.3 Multi-objective Optimality

Although the reliability of a product might be affected by numerous factors, usually few
are dominated. Oftentimes, the few important factors contain both accelerating variables
and ordinary explanatory variables, such as thalatisn thicknesseexample (Nelson,
1990) ALTs are often designed not only to estimate unknown parameters but also
investigate the effect ahe ordinary experimental factors. Suppose tkaaind x, are
accelerating variables and is an ordinary experinmtal factor or x; is anaccelerating

variableandx, andx; areordinary experimental factarConsider the model,

mbx)= b +h d

where thebb s ar e Uonrkeduce whe .variance of the estimate of unknown
parametersD-optimality without censoring ian appropriatehoice as the determintof

the Fisher informatiormatrix is independent fothe model parameter8deanwhile, to
investigate the effect ardinaryexperimental factors, the experimental points of a LHD
shoul be spread as evenly as possiblee maximin intessite distance criterion defined

by Eg. (2.10)an be written as a scalaalued function

Qo

f =99 —
p :1d
¢

b 4

1-0D: O: 0%
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wherep is a positive numbeid; is defined by Eq. (2.9)The maximin intessite design

minimizesi,, So it is also called /7p,-optimal design

However, it is shown that LHDs with-optimality may not achieve maximum minimum

inter-site distances. For instance, considaxperiment and-3tress LHB3. We plot the

inter-site distance criteriovf,;lagainst the determinants of the Fisher information matrix

in Figure 2.2. We observe that the data points are highly scattered indicating that
optimization in terms of one criterion magtriead to optimization of the second criterion.
The problem is worse with more strdegel combinations. Therefore, we propose
combining the 2, criterion andthe D-optimality as a multiobjective optimization
problem.In order tocombine 7, criterion with the Doptimality which maximizes the

determinant of the Fisher information magrixe usd- A :]/fp instead
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o
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% 250 @ @00 i
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Inter-site Distance ($,-Criterion)

Figure 2.2 D-optimality vs. distance measure
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2.4.3.1 Upper and Lower Bounds &fptimization Criterion

The D-optimality andF ; are two different criteria and their magnitudes are also

different In order to consider an optimization function that combines both criteria,
normalization is required based on the empand lower bounds of each. This is achieved

as follows.

Sinceb6s are unknown and investigation of t

lifetime is one of the purposes of the test, we assume that the test units are equally

allocated to each strefsvel combination g, =n*) for simplicity. Thus the information
matrix F, :(nsz/N) © is givenby Eqg. @.19. The associated upper and lower bounds

are derived as discussed below.

ax l';axz,l X (1-9) & (5.18)

@~ (D~ (D~ D~ D~ D~ D~ (D~ (D~ (D~ D~ D Dy (%(D*
=
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PROPOSITION 1For a three factor Latin hypercube desigdD(n,3), the determinant

of Fisher information matrix of MLE based on the smallest extreaige model is,
0¢ Det(F(X),) ¢De,,
where Dej denotes the upper bound and is given by
Det, =n*(n -1)°(n 3)3(rp2 2n g1 ));/10368;1

The proof is given in Appendik.

k
For rectangular distanced(s, t) =a ‘sj -g‘) criterion, Joseph and Hur{@008) derive
j=1

the upper and lower boundsfgf In thisdissertationwe derive upper and lower bounds

of F, =Y/ for generalj-norm distance whergO 1 .

Consicer an LHD with n experimeng and k factors, denoted byHD(n k) . Let

d,d,,...< drg) be the intessite distances among timeexperiment points defined by Eqg.

2.9
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LEMMA 1. ForanLHD(nk), t he a v power gfgnomnfinterpite slistance is

a constant given by

2 (n- 1)
dd —__i=l 2
d n(n- 1) ad

For the caseq = 2 (Euclidean distance)d” = kn( n 4)/6.

p

— an
PROPOSITION 2For anLHD(n,k),F,, ¢ F ¢ F, whereF :(dq)]/q/% 6
(;‘, =

s (n-1) ‘3"
andF g%kp/q@p 9

ant (n- i (-
When g =2, theiF a/ n 1/6/292 8 , andr ‘aﬁ k(:;zclb)p 8

Proof of lemma 1 and proposition 2 are given in Apperli

]

2.4.3.2 Multi-objectiveFormulation
Using the upper andower bounds obtained above, the mobjective criteron

considering both thB-optimality and the intesite distance is formulated as,

det(F, (X))

Min -w Det, w [0,] (5.19)

1w

p,U - p,L
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wherewisapres peci fi ed wei ght 1r ef | ectforthegritetiohe t e s |

andX is an3 3LHD matrix.

2.5 Optimization of the Test Plan

The design matriX contains permutations of integer values but the unit allocatian

continuous Therefore, th@ptimization criteria presented in S@c4 are very difficult to
evaluate bythe classical analysis of function approach such as gradient search. In general,
the generation of optimal LHD starts from a random LHD, then by swapping the order of
two factor levels in a column of the matrix a new design is generated and evaluated.
Since tle generation othe design matrixX is a discrete problem, genempecobabilistic
mewheuristt might be utilized to obtain optimum solution in relatively short
computational time. For instance, the threshold accepting heuristic is used to find optimal
LHDs in terms of theJ-type desigr{Winker and Fang, 1998bhe stochastic evolutionary
algorithm is used to evaluate th®, criterion, entropy criterion, and centeréd
discrepancy criterion for optimal LHD, and the simulated annealing (SA) algorithm is
used by Morris and Mitche(|1995)to find optimal LHDs according to tha, criterion

and by Joseph and Hun@008) to find orthogonal LHDs.However, searching for
optimal unit allocationp, (I =1,...,n ]) requires searching in a continuous space.
Therefore, we propose a mixed algorithm to evaluate the criteria of vartgoticnality
and D-optimality when optimal unit allocation is a decision variable. Since the

convergence of a standard SA is already establidhetly and Mees, 1986)ve use SA

to evaluate the objective functions and call a nonlinear optimization dlgoimincon

(seeMatlab) to search the new best(l =1...,n -1) at each iteration. Regarding the


http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Metaheuristic
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multi-objective criterion, we propose lodified SA algorithm which significantly
improves thecomputationalefficiency. All the MSA relatedparameters are set at the

same valas as thseused in a standaislA.

Without loss of generality, the first column of a desikns fixed as{l,z,... n} The

mixed algorithm begins with a random permutation of the remaining columns and

P (I =1,...,n ]) and proceeds through examination of a sequence of designs and
P (I =1,...,n ]) values. Each new design is generated as a perturbation of the preceding

one which is formed by interchanging two randomly chosen elements withimdamly
chosen column (excluding the first column) of the design matrix. Given the perturbed

matrix Xyy, SA callsfminconto evaluate the same objective function and finds the best

p,(1=1....n -1) values associated Witiy,. If the perturbedmatrix Xy, and the
corresponding besp, (I =1,...,n ]) values lead to an improvement of the objective

function, they are then adopted as the new current desigp, éhél,...,n ]) values

which are then used fdine next perturbation and corresponding besalues. Otherwise,

replacement of current desighand p, (I =1...,n ]) values are made with probability

expl- € WX, ] - (W (where t is the annealing temperatu@ndW(+) is the
e y

objective functioi The step of usingminconis not neede@vhenthe | values are given,

e.g. by Eq.2.17).
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For the multiobjective optimality, we modify the SA algorithm such that the chosen
elements to swap are based defined probabilities.For ann3 3LHD, since the first
column is fixed al,2...,n} , the permutation of remaining two factors needobe

determined. From the proof of proposition 1 we observe that the permutation of the

second factor and itial factor affects the elementg =g x,x, anda, =g X, X, of Fs.
=1 1=1
The maximumdet(F, (X)) is obtained whera, =a, =n(n 3)°/4 for an n-experiment

design. Suppose after some iterasjom, =gQ X, X, :n( n 1)2/4 , then swaping

1=1
elements of the second factor may not increase the determinant any more (Note the first
factor is fixed). According to this observation, we propose to select the column to perturb

base on the comparison ﬁ n(n {L)Z/A‘ and‘az- n(n {L)Z/A‘. That is, at each

s, we ool o(n 4[4 . ol 44, s, (8, 7)o
each rowi =1,2,... h, whered, , is theg-norm intersite distance between the points

and j. The second column is chosen to swap with probabipty given by

a-n(n 4/4/a

i=1,2

a fn J)—zr/zr,d gli ). The third column is chosen with

probability - p,. Clearly, the selection of the column is not random and is based on the

probability values calculated above. Within the selected column, elénsectiosen with

probabilityF? . /@ Fr; (Joseph and Hung, 2008p swap with another randomly
i=1

sdected element in the same column. This generates a new Hgsigh the objective

function evaluated at the new design is smaller than that of the current Hetbign the
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new design replaces the current design; otherwise, iageplthe current design with

probabilityexp{- e WX, ) - (W) E}

2.6 Examples

In this section, we demonstrate the application of LHD for finding optimal ALT plans
based on mactualtest. Then we compare the optimal ALT plans based on LHD with
those obtainedbased onFFD andvalidate the performance of tHdSA algorithm.
Lipscomb et al. (2009) conduct tests to study the effect Relative Himidity (RH),
temperaturg(Temp) and electrical fieldkilo Voltage per millimeter) on reliabilityf

PTZ actuatos by varying each accelerated stress independently. In their study, the range
of Tempis 3585 €, RH is 60-90%, andthe applied electrical field is 0.32.2 kV/mm.

In the following examples, we adopt the stresses and associated values that Ligscomb
al. (2009) use in their study. However, our objective is to develop optimal ALT plans
based on LHD by simultaneously applying multiple stresses to predict reliability at

normal operating conditions.

Suppose due tme constraint only five experiments cae conducted in an ALT. Using
three stresses and five experiments,camstructan LHD (5, 3). Letthe RH(%), Temp
(€©), and electrical field strength(kV/mm) be the first, second and third stress,
respectively. We use E{R.11)to choose five equally sged values (60, 67.5, 75, 82.5,
and 90) from the range &®H (60-90%) and normalize them as (1, 2, 3, 4, and 5).
Similarly, we choose 0.31, 0.7825, 1.255, 1.7275, and 2.2 from the ratigeetdctrical

field strength (0.32.2 kV/mm). The maximum and mimum Temp values are firstly
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converted toscaledKelvin using 1000( Temp- 273%. From the range of scaled

Kelvin Temp(28-32), we use E(2.11)to select five equally spaced values (28, 29, 30,
31, and 32) and normalize them as (1, 2, 3, 4, and 5). The results of stress normalization

are summarized in TablR2 We assume the design stresses are 30%, 20€, 0.2 kV/mm.

Using the same linear opemati to normalize each testing stress Ievel{;L,as,E}, the

corresponding design stress is normalized3s7, 0.7672. According to the relative
effects of each stress and the mean life of the PTZ actuators under different conditions

provided by the tests in Lipscomdt al (2009) we estimate the model parameters and

normalize them a[sb,s]T =[5.23, -0.485,0.427, -0.8,0¢ .

Table 2.2 Testing and normalized stress levels

Stress LHD 1 2 3 4 5
I Relative Humidity (%) 60 | 67.5| 75 | 825| 90
I Temp (€) 35 | 45 | 55 | 70 | 85
I Electrical Field (kv/mm)| 0.31 |0.7824 1.255|1.7275 2.2

2.6.1 Optimal ALT Plans

Usually the lower quantil@ilure is of interestwhen one chooses tlasymptoticvariance
optimality. Thus in this example, we minimize the asymptotic variancMbEk of q =

0.1 log quantilefailure at design stresses. The lower boundh® proportion ofunits

allocated to each experiment s =0.015of the total test units. We terminate the test
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when all units failcensoring times, =10 time-units is reached undefype-| censoring,

or n =15 failures are observed und@&ype-ll censoring. With the formulation ahe

variance optimality given in Se@.4, we search the optimal plans with the algorithm
presented in Se@.5. The results are shown in Tablg.2For the case of no censoring,

thed; / n is represented by infinity.

Under each censoring situation, steidy all three unit allocation methods given in Sec.
2.4 When", is determined by Eq2(17), the weightswv, w,, andws corresponding to

applied field(kV/mm), Temp, and RH are® 39, and 19, respectively. Under allases

the minimum Asvar is achieveathen p, (I =1,...,n -1) valuesare decision variable

UnderTypel censoring and no censoring, when the units are allocated according to Eq.
(2.17), the achieved asymptotic variances are slightly smétien those umg equal
allocation of test units. However, undgype-ll censoringwhen the units are allocated

equally, the asymptotic variance is smaller than that using Eq. (2.17)

The Doptimality is evaluated with the same constraints as the variance optimality. The
obtained optimal ALT plans are presented in Tab#ke The optimal plans unddiype-li
censoring and no censoring do not depend on the model parameters and desem stres

In other words, they are optimal plans regardless of the model parameters and stress

conditions as long as they are subject to the same constrains 2¥asi®ws that under

all cases the maximum determinant iachievedwhen p, (I =1....,n -1 values are

decision variablg the obtainedleterminats arecomparable when the usitrre allocated

equally to each experimeat based on Eq. (2.17)
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Normalized Factor Levels

Censoring | Experiment RH Temp | kv/imm d/n Values Vethod Asvar
I 1 5 1 10 0.0150
Il 2 3 4 10 0.4704 Decision
11 3 4 3 10 0.0889 variables 39.43
\Y 4 2 2 10 0.0944
\Y 5 1 5 10 0.3313
I 1 3 4 10 0.3041
Il 2 5 1 10 0.1995
Typel 11 3 2 2 10 0.1784 | Eq.@.17 | 54.56
\Y 4 4 3 10 0.1135
\Y 5 1 5 10 0.2044
I 1 2 4 10 0.2
Il 2 3 1 10 0.2 Equal
11 3 4 2 10 0.2 allocation 59.50
\Y 4 5 3 10 0.2
V 5 1 5 10 0.2
I 1 5 2 15 0.0976
Il 2 4 3 15 0.1266 Decision
11 3 1 4 15 0.0999 variable 50.77
\Y 4 3 1 15 0.2814
\Y 5 2 5 15 0.3945
I 1 3 1 15 0.3406
Il 2 4 4 15 0.1703
Typell 1T 3 5 3 15 0.1265 | Eq.@.17) | 67.48
I\ 4 2 2 15 0.1582
\Y 5 1 5 15 0.2044
| 1 5 2 15 0.2
Il 2 4 3 15 0.2 Equal
11 3 1 4 15 0.2 allocation 62.50
\Y 4 3 1 15 0.2
V 5 2 5 15 0.2
I 1 5 2 b 0.6467
Il 2 1 1 b 0.015 Decision
11 3 4 4 b 0.015 variables 11.94
\Y 4 2 5 b 0.0238
\Y 5 3 3 b 0.2996
| 1 4 1 b 0.3285
Il 2 3 4 b 0.1825
No 1T 3 5 3 5} 0.1265 | Eq.@.17) | 18.84
\Y 4 2 5 b 0.1436
\Y 5 1 2 b 0.2190
I 1 4 1 b 0.2
Il 2 3 5 b 0.2 Equal
11 3 5 2 b 0.2 allocation 23.38
\Y 4 2 3 b 0.2
\Y 5 1 4 b 0.2




Table 2.4 Optimal ALT plans based on-Bptimality

a7

NormalizedFactor levels

Censoring| Experiment RH Temp | Kv/mm d/n Values Method Det
| 1 2 5 10 0.2518
Il 2 4 1 10 0.0500 Decision
11 3 3 2 10 0.1889 variables 0.576
I\ 4 1 3 10 0.2664
\% 5 5 4 10 0.2426
| 1 2 5 10 0.3260
Il 2 4 2 10 0.1825
Typel I 3 3 1 10 0.1784 | Eq.@.17) | 0.252
I\ 4 1 3 10 0.2230
V 5 5 4 10 0.090
| 1 2 5 10 0.2
Il 2 4 2 10 0.2
i 3 3 1 10 0.2 a"'f)g:f}'on 0.318
\Y 4 1 3 10 0.2
V 5 5 4 10 0.2
| 1 3 5 15 0.0760
Il 2 5 1 15 0.0760 Decision
11 3 1 2 15 0.0852 variables 0.132
[\ 4 2 3 15 0.6811
\% 5 4 4 15 0.0817
| 1 3 5 15 0.3017
Il 2 4 1 15 0.2068
Typell 1T 3 2 2 15 0.1784 | Eq.@.17 | 0.103
I\ 4 1 3 15 0.2230
\% 5 5 4 15 0.0900
| 1 4 5 15 0.2
Il 2 1 2 15 0.2 Equal
11 3 5 1 15 0.2 allocation 0.104
\Y 4 2 3 15 0.2
\Y 5 3 4 15 0.2
| 1 5 4 b 0.2462
Il 2 1 2 b 0.2463 Decision
11 3 3 3 b 0.0150 variables 22.106
[\ 4 4 1 b 0.2462
\% 5 2 5 b 0.2463
| 1 5 4 b 0.2847
Il 2 2 1 b 0.2433
No I 3 1 5 [5) 0.2368 | Eqg.(.17) | 13.825
\Y 4 3 3 b 0.1257
\% 5 4 2 b 0.1095
| 1 3 5 b 0.2
Il 2 5 1 b 0.2 Equal
11 3 1 2 b 0.2 allocation 12.896
\Y 4 2 3 b 0.2
\% 5 4 4 b 0.2
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The multiobjective criterion considers both, criterion andD-optimality. For the

f,(F ) criterion,Morris and Mitchell(1995)show that the value gf has effects on the

optimal solution. For a small problem, eng=5,k =3, p as small as 5 is sufficient and a

large problem(defined by large values af and k) requires a much larger value pf

Therefore, in this example we Ipt=5. We consider both the rectangular and the
Euclidean intessite distance, i.eq =1, 2. With the derived upper limit of the determinant
of Fs, and the upper and lower limits ai, we haveDet, = 4.315¢ +00«;
F,u =3.7857and F , =2.2620whenq=1; F , =2.4437and F ,, =1.306C when

g =2. For the multiobjective, we set =0.5; the tests are termitead when all units fail

and the units are equally allocated to the five experiments. Using the MSA, we obtain

optimal ALT plans as showin Table2.5.

Table 2.5 Optimal ALT plans based on mulbjectiveoptimality

(5,2) (5,2)

(p,q) |Experiment aq/n’
RH | Temp | kV/mm| RH | Temp| kV/mm
I 1 4 2 1 4 2 b 0.2
Il 2 3 5 2 1 3 b 0.2
LHD (5,3) 11 3 2 1 3 5 4 b 0.2
v 4 1 4 4 2 5 b 0.2
\ 5 5 3 5 3 1 b 0.2
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2.6.2 ALT Plans based on LHD vs. FD

We compare ALT plans based on FE3= 27 experimenjswith those based on LHD (5,
3) using the sameoptimality criteria. We use the test stress levelsd corresponding
normalizedstress levelsas shownin Table 2.6. As a result, the normalized model
pamameters, design stresses and stress ranges are theasajivenin Sec.2.6.1 We

utilize the stress levels (1, 3, 5) of LHD in the FRNe consider the caseshen

P (I =1,...,n ]) valuesare to be determineds well aswhen they are assignedueal

values underType| censoring and no censoring

The comparison based on the variance optimality is shown in Rablé&nder Type|
censoring, the asymptotvariance of log quantiléailure at design stresses based on

LHD is 18.35% lower than the asymptotic variance obtained frdekFD when

p, (1 =1...,n) valuesare decision variables. When(l =1,... n) valuesare set equally,

the achieved objective function value from LHD is 40.18%er than thé=FDé&. Similar
rediction in the objective function is obtained under no censoring. In addition, the total
time and/or number of experiments required by LHD is 81.48%esghat required by
FFD. Obviously, ALT with multiple stresses using LHD not only achieves higher
predsion of reliability prediction but also requires less time/experiments than thiag of

FFD.
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Table 2.6 Test and normalized stress levels

LHD 1 3 5

Electrical Field Strength(kV/mm) | 0.31 | 1.255| 2.2
Temp (€) 35 55 85

RH (%) 60 75 90

Table 2.7 Comparison based on the variance optimality

Min Asvar @=0.1) at| LHD FFD Asvar | Total time| Number of
design stresses (5 exp.)| (27 exp.)| Red (%) | red (%) | exp. Red(%)

'\/‘a‘?;‘gijg” 39.43 | 48.29 | 18.35
Typel 81.48
“1:1/n 59.50 99.38 40.13
"1 - decision 81.48
. 11.94 14.75 19.05
No variables
censoring N

“1:1n 23.38 26.71 12.47

The comparison based dd-optimality is shown in Tabl€.8 When p, (I :l,...,n)

values are decision variables, the obtained maximum determinants of the Fisher
information matrix from LHD are larger than thadatainedfrom FFD under botiAype-|
censoring and no censoring. The difference is significant. Asudtr&LT with multiple
stresses using LHD provides higher joint precision of parameters estimate than that of
using FFD.In contrast when test units are equally allocated to each experiment,-the D
optimality values obtained from FFD are larger than thiosen LHD. However, the

difference ignsignificant.
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Table 2.8 Comparison based on-@ptimality

LHD FFD Det. Total time Number of

MaxDet (Fishe) | 5oy )| (27 exp.)| Incr. (%) | red ) | exp. Red(%)

-decision| o6 | 50115 | 4909
Typel variables 81.48
11N 0.318 | 0.6399 | -20.60
", : decision 81.48
No b | 22:108| 2.072 967
censonnt - qm 12.90 | 31.19 | -58.64

2.6.3 Performance of the MSA

An MSA is developed in Se@.5to improve the efficiency othe search algorithm for

theoptimal LHD plans. In this section we validate the performance of the algorithm.

All the LHDs can be enumeratéal an 53 3design. Among the enumerations, the design
that resultsn theminimum value of the mukobjective formulation wheq = 1, 2 is the
sameasthat obtained fronthe MSA. This shows that for a small problem, the solution

from usingMSA converges to the true optimal

Now consider larger problem&HD(10, 3) andLHD (25, 3). Letp=15, w=0.5, and

consider the two cases=1,2. For the same initial LHD and setting of SA aldgaomit

parameters, we evaluate the molijective formulation by MSA and SA. At the 500

iteration, we stop both algorithms and record their objective function values. We choose
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another initial LHD and run the two algorithms and record their objective timetilues
at 500" iteration. This simulation is repeated 100 times. The results are piotiégure
2.3. The diagonal line is a collection of equivalent objective function values. We see that
most of the data points are below the line, which verthes MSA converges fasténan

SA algorithm
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Figure 2.3 Objective function values from MSA vs. SA

The simulations are repeatddr anotherl00 times and extended to the 150tratiors
and 3008 iteratiors. The MSA ouperformsSA in more than 85 out of 100 times as
shown inTable2.9. Moreover,largern values result inmoresignificant improvemeistof
MSA over SA. For instance, foy = 1, atthe 500" iteratiors, when n = 10, MSA
outperforms SA ir85.1%of the time. Howeverwhenn = 25, MSA outperforms SA in

98% of the time In addition to the percentage of smaller objective fiamcvalues from
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MSA, we recordhe minimum, maximum and average achieved objective function values
of the 200 times sinmlation from the two algorithms and summarikem inTables2.10

to 2.13. In each combinatiorthe SMA always provides smaller minimum, maximum and
average bjective function values. These results validate slgmificant improvement

obtaineausing theM SA.

Table 2.9 MSA outperformsSA

LHD(10, 3) LHD(25, 3)

Iteration #
q=1| g=2 | q=1 | g=2

500 85.1% | 90.2% 98% 95%

1500 88.3% 91% 98.5% | 96.7%

3000 92% 92.5% | 99.3% 98%

Table 2.10 LHD (10, 3), (o, ) = (15,1)

Min Max Mean
lteration #
MSA SA MSA SA MSA SA
500 -.8899 | -.8818 | -.8511 | -.8324 | -.8697 | -.8571
1500 -.8909 | -.8823 | -.8579 | -.8480 | -.8766 | -.8645
3000 -.8909 | -.8844 | -.8667 | -.8565 | -.8796 | -.8685




Table 2.11LHD (10,3), (o, g) = (15, 2)

Min Max Mean
lteration #
MSA SA MSA SA MSA SA
500 -.8843 | -.8741 | -.8493 | -.8273 | -.8673 | -.8529
1500 -.8891 | -.8794 | -.8557 | -.8375 | -.8731 | -.8606
3000 -.8950 | -.8825 | -.8654 | -.8484 | -.8756 | -.8657
Table 2.12 LHD (25, 3), (p, ) = (15,1)
Min Max Mean
Iteration #
MSA SA MSA SA MSA SA
500 -.8436 | -.8304 | -.8244 | -.8066 | -.8331 | -.8190
1500 -.8455 | -.8304 | -.8262 | -.8098 | -.8366 | -.8215
3000 -.8455 | -.8342 | -.8278 | -.8165 | -.8380 | -.8234
Table 2.13LHD (25, 3), f, q) = (15, 2)
Min Max Mean
lteration #
MSA SA MSA SA MSA SA
500 -.8500 | -.8412 | -.8298 | -.8100 | -.8395 | -.8261
1500 -.8500 | -.8423 | -.8355 | -.8112 | -.8424 | -.8287
3000 -.8519 | -.8437 | -.8360 | -.8245 | -.8433 | -.8318

55
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2.7 Summary

In thischapterwe present an approach for the design of ALT plans mviitiiple stresses
using LHD. The lifetime ofa test unit followsa Weibull distribution.The applied stresses
affect only the scale parameter of the Weibull distribution throu@ghgarithmic linear
model. We develop the Fisher information matrix for MUEtlte unknown parameters.
We propose a muHbbjectiveoptimizationcriterion which maximizes the determinant of
the Fisher information matrix of MLE as well as the maximum minimum -giter
distance between design points. We also formulate optimal f@s$ pinimizing the
asymptoticvarianceof log quantilefailure and maximizing the determinant of the Fisher
information matrix.The proposed approach results in efficient and practical ALT test
plans. Moreover, these test plaare significantly better than thosbtainedbased on
FFD in terms of the asymptotic variance of reliability prediction and parameter estimates
and total test timéNe developSA basedalgorithms toefficiently determine the optimal

test plansThe effeciveness of the algorithm is validated d#gimulation study.



57

CHAPTER 3

PROGRESSIVE CENSORING ALT PLANS

One of the purposes of conductiagceleratedife testing is to obtain failure time data,

order toassess the reliability of products or material at noropa&ratingconditions A
typical ALT can be terminated before the failure of all units under K&steover, units

may experience different failure modes during the test as the case when testing circu
boards where failures occur due solder joints or device failugest bf the previous

research on ALT focuses @me failure mode

In this chapter, we investigate ALT under a general censoring scheme considering
multiple failure modes. We begin with the review of commonly used censoring schemes
in accelerated life testing, likelihood inference with censored data and research on design
of ALT plans under different censoring schemes. Therbredly discuss failures under
competing risk and related workVe then present the assumpsarf this work and
describe the censoring procedufeamely, progressive censoringgonstruct the
likelihood function and develop the Fisher information matrix for ME&lowing this,

we proposgediscuss the motivatioand develom new test plan criterignrmean time of

first failure. Then we formulate optimal ALT plans with respect to four optimization
criteria: minimization ofasymptoticvariance of mean time of first failure and quantile
failure, D-optimality, and multiobjectiveoptimization. These formulations are applicable

to tests under both single stress and multiple stresses. Finally, numerioglexaased

on parameters from real tests are preser8edsitivitystudy is conducted to identithe
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parametersf the modethat should be initially estimated with special cak conclude

this chapter with a summary.

3.1 Literature Review

3.1.1 Censoring

Censoing arises in a life test whenever the experimenter does not observe the lifetimes of
all test units. In ALT, the most widely used censoring scheme is-Tgprsoring, which
is often calledfitime censoring. Under Typel censoring, a test unitis removed from
test at a prespecified censoring ti@e> O if it does not fail aC;. Thefailure timeT; can

be observed if and only i, ¢ C .

Extensivework on planning ALT is based on Tybeensoring(Nelson, 1990, Meeker

and Esobar, 1998, Lawless, 1982, 2Q0Barly discussions of asymptotic properties are
given by Bartholomew (1957, 1963). Chernoff (1962) gieptimum plansfor the
estimdion of the failure rateof exponentidly distributed failure timesat design stress
level. The formulation of the likelihood function under censoring is investigateddxy
(1975), Kalbfleisch and MacKay (1978) and Kalbfleisch and Prentice (18889ker
(1984) presents a comparison of ALT plans for Weibull and lognodisatibutions

under Typel censoring. Baiet al (1992) obtain an optimal stegiress test plan that
minimizes the asymptotic variance of the MLE of the mean life at the design stress under

Type-l censoring.
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Type-ll censoring(or fifailure censoring) is commonly used in ALT Under Type-ll
censoring, the test is terminated omgeedeterminedailures have been observed out of

then units under tesfThe totaltesttime t is random. Thidas limited the use afype-

Il censoringin practice.

Early discussions of asymptotic properties for TYpeensoring are givein Halperin
(1952). For the exponential distribution, Yum and Kim (1990) investigate reliability
sampling plans based on the accelerated life testing-ITyeasorirg is assumed at each
overstressed leveLater, Hsieh (1994) extends their work such that the total number of
failures is minimized. Solan (1968), Schneider (1989) and Kwon (1996) develop
reliability sampling plansat the use conditio@ssuming that the itare times follow
Weibull distribution whileBai et al (1993) develop reliability sampling plans based on
accelerated test conditions. Menzefricke (1998usses sample size planning AT s
whenType-ll censoringis applied at each constasttess levelMore recently, Watkins

and John (2008) consider ALWith Typell censoring regimeapplied at one of the

constanistress levels.

However, in many situations, surviving test umitay be removed before the termiitan
time of the tesin order tosave some units for other testswhen the number of teshits

is limited and cost per unit is higfthis is also desirable when a compromise between
reduced time of experimentation and the observation of at least streene lifetimes is
sought (Balakrishnan and Aggarwala, 2000). The traditional -Typad Typell

censoring schemes do not provide such features. This leads to the investigation of
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progressive censoring which is a generalization of Jlype Typell censomg as

explained below

Suppose thah units are placed on a tesimultaneously At the first prespecified time
point U, ry surviving units are randomly removed from the test. Then at the second
prespecified time point}, r, surviving units are randagy removed from the testhis
process continuasntil the prespecified time poittd is reachedr whenall the units fail.

The rié&s are fixed with the provision that there are surviving units at time

t,i=12,... s -1 Sometimes;G are random, which is referred to as random progressive

censoring. Whenr,=r, =. rz, 0, the progressive censoring becomes the

S

conventionallype-| censoring.

Likewise, the conventionallypell censoring can beshown to a special case of
progressivecensoring.Under this censoring scheme,units are placed on test at time
zero. Immediately following the first failure; surviving units are removed from the test
at random. Then immediately following the second failtrsprviving units are removed
from the test at randonthe test is terminated and all of the remaining units are removed

afterthe m™ failure isobserved

Statistical inference under progressive censoring is initiated by Cohen (I96S3).
Srivastava (196) develops the Fisher information matrix thie maximum likelihood

estimate with changing failure rate under exponential distribution. Mann (1971) and
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Thomas and Wilson (1972) discuss linear estimation of parametepogressive

censored datassuming &Veibull failure time distribution

Current work on progressive censoriadocused on threareasreliability sampling plan,

ALT under stepstress anémpiricalmethod. Detailed reviews are provided as follows.

Reliability sampling plan

Balasooriyaet al (2000) and Balasooriya and Balakrishnan (2000) study reliability
sampling plans that to determine the acceptability of a product with respect to its lifetime
under Weibull and lognormal distributignrespectively. They consider the pregsive

Type-1l censoring witha predeterminedumber of removals,,r,, ... at each stage.

Ng et al. (2004) compute the expected Fisher information matrix based on progressively
Typell censored samples from a Weibull distributiamd use EM algorithm to perform

the calculatiorfor the missing informationGiven the number of units available for test
and the number of failures allowed, they determine dptmal progressive Typl

censoring plant,r,,...r,) that resuls in optimal estimation omodelparametersThree

optimality criteria are considered: minimizing the tra€¢he variancecovariance matrix
of the MLEs, minimizing the determinant of the variaicosariance matrix of the MLEs,
and maximizing the tracefdhe Fisher information matrix. The results are used to

determine the minimum sample sizéor reliability acceptance test.
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In addition, Balasooriya and Low (2004) investigate reliability sampling plans for
Weibull lifetimesundercompeting risk. Thegssume each cause of failure has a different
set of parameters. The joint estimation of the parameters reduces to the estimation of
parameters of a single lifetime distribution whisimplifies the estimation of the
parameters. Theglso construct the likthood function and derive the expected Fisher

informationmatrix.

The acceleration conditiortd the test plarsuch as stresspplication unit allocation and

censoring timarenot investigated in any of the work on reliability sampling plan.

ALT unde stepstress

Conducting simplestepstress ALT in combination with progressive censoring has been
investigated by several investigatofd. each level of the stegtress,t is assumd that

the failure time is exponentially distributedlhe assumption of a constant hazard rate
under exponential distribution is very restrictive, so the nisdabplicability is fairly

limited (Lawless, 1982). In additionnvestigatorsassume inspection is conducted
intermittently(z,2¢,....i¢,...s }, i.e. only record of whether a test unit fails in an
interval instead othe exact failure timeare obtained The grouped observation may

dramatically impact the accuracy and precision of parameter eseseiallywhen the

sample size is small. Goumdbal. (2004) and Wetal. (2006) obtain ptimal ALT plans

based on predetermingg,,...r.. They determine the optimal inspection interlddy

minimizing the asymptotic variance of the MLE of log mean lifetime arngpiimality.

Wu et al (2008) treat the number oémovalsat each stage as a unifdyndistributed
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randomvariable They determine the optimal inspection interidby minimizing the

asymptotic variance of the MLE of log mean lifetime and[?:, and Eoptimality.

Empirical me¢hod

Researchers have utilized empirical cumulative distribution functions for reliability
analysis and modelin@btaining such an empirical functiemder progressive censoring

is not straight forwardPatel and Tsao (2009) derive clodgedn expressions for the
nonparametric estimate of failure probabilities under progressive-lTggeasoring. They
also develop a simpkgorithmthat not only produces these estimates but also provides a
clearandintuitive justification for the estimates. However, nonparametric msthace

limitationsfor time and stress levektrapolations

3.1.2 Multiple Failure Modes

Oftentimes a unit can experience multiple failure madesthefailure timeT = rrl]ihn'l} is

theminimumof theh latent failure times correspondinghdailure modes. Suckcenario

in statistical and reliabilityiteratureis referred to asicompeting risk. In reality, there
aremanycomponents and products that experiesar@peting rik failures. For example,
Nelson (1990) states that ClassH insulation can fail due to turn, phase, and ground
failures; assemblies of ball bearings can fail due to failure of the race or the ball. Cylinder
liners present wear and thermal cracking falunodes (Bocchettiet al, 2009).
Therefore, statistical inference and reliability analysis considering competing risk have

been extensively studied.
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The early work for ML analyses of competing risk data are given by Cox (1959),
Moeschberger and David (1971), Herman diadell (1971), and Nelson (1982). David
and Moeschberger (1971) present detailshefcompeting risk theory and parametric
estimate m#hods including the construction of general likelihood function and likelihood
functions under specific distributions and the development of Fish information matrix.
The recenwork by Crowder (2001providesa comprehensive review of the theory and
method of competing riskOther work relevant tALT plan and ALT data analysis

whenconsideringcompeting risks described below

Klein and Basu (1981, 1982) present the analysis of ALT data when more than one
failure mode ispresent The latent failure time are assumed to be independent and
described as a serigsgstem with Weibull component failure timbavinga common or
different shape parameteiBhe authors obtain MLEstimates of thenodel parameters

with data from Typd, -1l and progressive censag. Similarly, Ishioka and Nonaka
(1991) discuss the analysis of ALT data when test units are subject to two failure modes.
More recently, Bunea and Mazzuchi (2006) present a Bayesian framework for the

analysis of ALT data with possible multiple failure des.

Bai and Chun (1991) present optimum ALT plans with single, simplesstegs for
products subject to competing risk. The lifetime distribution of each failure mode is
assumed to be independexponentiabistribution with a meaexpressed a& loglinear

function of the stress. The optimum plans for tisbep and failurestep ALTs are



65

obtainedin order tominimize the sum over all failure causes of asymptotic variances of

the MLE of the log mean lives at design stress.

Bai and Bai (2002) model fare time in ALTs as a mixture of two Weibull distributions
with the log of the scale parameter written as a linear function of stress. AatggNthm

for MLE is presented.

Zhao and Elsayed (2004) consider ALT under TFilpeensoring with two competing
failure modes: degradation and hard failure. Tegradatiorprocess is described by a
Brownian motion and the hard failure is modeled by a Weibull distribution. They
constructthe likelihood function for parameteestimate and conduct experiments to

validate theeestimats.

Pascual (2007) preseatmethod for ALT planning when multiple failure modes are
dependent on only one accelerated factor under-Tgpasoring. The kent failure times
are assumed to be independent Weibull distribstwith known but common shape
parameter. The optimal plans are achieved by minimizings$limptoticvarianceof the
MLE of failure quantile and hazard function given conditiors, and maximizing the
determinant of the Fisher information matrix of MLE. They also perfeansitivity

analysis of optimal plans to misspecification of the shape parameter.
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In summary, the competing risk theory and methods have been investigated by many
authas under traditional Typé& -1l censoring schemes. However, the application of

multiple stresses under progressive censoring has not been studied.

3.2 Assumptions and Censoring Procedure

3.2.1 Assumptions

Suppose that eadlestunit experience h statistically independent potential failure modes.

A unit fails when any of thk failure modes occurs.

Let the random variabl& be the lifetime of a unit whe@ (i =1, 2,...h) were the only

risk presentWe assumehat T; follows an indepenént Weibull distribution witha

common shape parameterThepdfof T; is:

Lt/ @)= /g eng{t/ )agt o i 1=2.h (6.1)

Supposethat the scale parametdl of the i™ failure mode isa log-linear function of

stresses:

In(a)= mMb X =6 +o4 ..+ %o i L.hk 1 (6.2)
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whereb; ¢ for i =1,...h,y =l...k are unknown parameteessociatedvith risk i and

stressv . This is a special case of the PH model. In the following derivationis used

to representr(bx) for simplicity.

Let s = /*, then the log failure timey, =In(T) is the smallest extremealue

distribution withpdf:

1 eoa - m 0 |é-
fi(yi;ni71 S)IEGXpéﬂ;y—s geprEE?m (6.3)

andcumudative density functionqdf):

ay - m

Fi(yi;/7i7, 5):1 -expé ex%e—g 3 ' (6.4)

NNt

where mis the location parameter of the extrewadue distribution corresponding to

failure modd, andl is the common scale parameter of lhextremevalue distributions.

Let Z = ae—aYi ~ , thepdfandcdfof Y; can be rewritten in terms df as:
' s

fi (Z;mi 5) = expgz 'eXF( Z) g - Bz< (6.5)

F(z:m 9=1 -expg exiz) (66)
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Consider the situatiowhen failure times and failure causes of test units are observed

continuously.The failure timeT of a testunit is the smallest of ite potential failure
times: T =min{T,,... T}, i.e. Y =minYand Z = min Z . Therefore, the log failure time

has cumulativedfin terms ofY as

A h 3

F(y;m,... ms)=1 C_)gl F(y: m)sg 1=ex4r§ a_ ex%}y‘;—”‘7 E (6.7)
andin terms ofZ as
2 5 N
F(zm,... ms)=1 (_)gl F(z; 1 gl=ex-|c§ a_ exp z) (6.8)

3.2.2 Stress Normalization

Without loss of generality, wefirst normalize the stredgevels Let S denote the single
accelerated stress. L& and S, denote the normal operating strédssign stresdgvel

and highest testing stress level that can be used in the ALT experiment, respectively.

Then stresSis normalizedas

(6.9)
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As a result, the normal operating str&sand highest testingtressSy becomex, =0
andx, =1, respectively; and ¢ x d. If multiple stresses are applied in an ALT, the

levels of each stress are calculated by (2dL1)first andthen linearized to fornthe n-

term arithméic sequencgl, ...,n} .

3.2.3 Censoring Procedure

In this dissertation we study a progressitemsoring procedure as shownFigure 3.1

The procedure begins by placiNgunits undertest at time zerandfractiors of survival
units r,(u=1...s 1) are removed at predetermined timeg (u=1...s -l
correspondingly. The test is terminatedaagiven time(J andthe remaining surviving
units are removed. Suppokg is the number of units on testz‘ggtl(u =1,...s), N, is the

number of failures duringl{1, §) andR; is the number ofemoved unitsat time (. N,

R,, andl, are random variables with values pending th#come ofthe test(Note

RJ = ru(lu _Nu))

Number of Removals R R, R, R,

Number of Failures Ny Ny N, N,
£\ N 7N 7N

| 1

Units on Test Ii(N) I, Iy I, I,

1
Time 0 T Ta Tu—1 Tut

Figure 3.1 Progressive censoring
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From the property of conditional expectatemdby induction we have

uzl

E[1,]=NF(n,,)O(1 1,) (6.10)
[N = NgF(n) -F(2) D1 1) (611
E[R]= NF(#,) nué:(l -r) 6.12)

whereh, =In( ¢).

3.3 Maximum Likelihood Estimate
Based on the assumptions and censoring procedure discussed in Sec. 8@y we

develop the expected Fisher information matrixtf@maximum likelihood estimate.

Supposethat atotal of m units fail due to theé" failure modeuntil time {in a given

experimentand we observthe following failure times

Vij, 1=1,2,6 ,h,andj=1, 2,6 ,m,

where y;; denotes thg™ failure time due to thé™ failure mode.We constructthe

likelihood function under Typé progressive censoring with competing failure moutes
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an analogous manner as that in Moeschberger and David (Dgitg)that the last stage

s, before the termination of the test there BréN . units and there areR, surviving units

at the termination time

; é,Jl m. ho gh,\sl,_\ R, h (1 N)
L" O Ofi(w)) Gily,) § OB(y)™ = &Xy)" ™ (6.13)
2i=1 j 2 I E i 1ls 1= i1 =
e i Y]
The log likelihood functiors,
., hme ay. - m . Ya-{n 20
L~ & aé-In(s) &17 5 &Xp—ae— 0o
moe Tex €S 0F (6.14)
h s1 h - 7
-a aR eXpae— o é.' )exp—%é—'
i=lu# (o4 TiE (;5

The elements of thexpected Fisher information matrix of ML&te obtained by taking

the second order derivative of Eq. (3.14) with respect toprameteiof risk g and the

common scale parametir

w1 p 1
==k = 6.1
wi sum s 619
2 1 0 1,)™y-m &y -m?o
L _ 1k —a a- eXPge- o}
W7 bs S HmM s S ¢ (6.16)
1 h- g & p- 1 h,m & h
-— = ex v . N s Yex v
szule’ S Pee ngs y spge s
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o 2@ 1) 1M h8y-m B Ya-@ 6
oo 2B A Saaa — om0
ps H =1 ot B 1€ - c - (617)
hos1 ah,- mod- . o ", . B Cm B, he
-—a aR.exp oO—g? 0z al, N eXpD—ﬁg
i=lu % - -~ E - ]

Since the expectations of the first order derivatives is. £8.15)(3.17) equal zeros at

MLE, then the expectations of E5(3.15)}(3.17) are

E? o= E[m] (6.18)
& Wi g s

~ ~ exp
Wy ps g 5% 8 ¢
(6.19)
15t h a p- ﬂf) m a #h
+—3E u e +— E . N ‘exp —p—"
$2u:1 [Rj] XPge 25[3 S] S p e S
e Wl o1 .0 1 h em nay .-m Ya - @
E¢ - ? U= gd E[m] *2 aeé a a—J dexp e |
e S i=1 P4 8] B 1€ ¢ 5 |
h s1 - m 6
13 aE[RJ]ae— oé)(p —ae—f 0 (6.20)
i=lu % -

2

.- ah,- ma a- 7
+=— A E[l, N]ge=—" @xp 5
sziazl[S S]g S gap c s
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Evaluation of Eqs.3.18)(3.20) requiresthe expectation afn, for i =1,...,h. Since the

total number of failuresvith failure modei equals the sum dhe failures due to mode

over all the intervalshen

A0 (yim JOF(y: m)ey

s s ’ 1=1
Elml=4 Hm] =5 X
ml=4 €lm] =& ] o
by Eq. (3.10)
s Ul D N
E[m] =& NO(t -5)n, t(yim § OF(y: »)dy
u=1 g-1 | %
i
ah, - m oo
expg (1 48) exge®—" &)
ul 1- ¢ 2 -
a2 NA (1L 1+a
_ua='1N91(1 rg) Tia (6.21)
h 2 .
wherea=§ expaa? 1"
I=1 c S
Am o o ] _ ~
Evaluation of Eq. (3.19) requires the determinationEe" i nzexpi% . v 8,

g1 S C =
E[R]and E[I,- N]. The last two can be obtainé@m Ecp. (3.10}(3.12). Now we

calculatethefirst expectation
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ém - o ~ s rri‘J‘ - (o} - ~
Eed 2 Lopem— 7 o HE @ et g
i=1 ¢ S Hux & S ¢ ° )
20 QY- M 8 YA -1 . P A =
g"JT &P %T & m O R (y 5 om )y
s vt + - I=1
=4 E[I - ] 6.22
21 [U] Fz([ul) ( )
SN L 8Y,-m 0 Ya-m .. P I _
=aNO(L )R =" &xp e &y im 9 OF (v, m)dy
ust r=l g S - ¢S - |2
- o emay-mB  y-m
Similarly, to evaluate Eq. (20) we obtainEé€gq g~ ®©Xp —ae— Which is
gjzl(; ) - C S

calculatel asfollows

eém ngy -m 6  Yya-m 28,
E&Y ' — @Xp—ae—ﬁs 'Elroe\E & g
- c WE ] + -

6.23)

éj:lu;(;
h s ul A\, - Z - N _

=4 ano(t -rg)ﬁ”ge)%—m X yasm iy, m. 9 OF (y ;.\ m)dy
u=lut r=1 “iC - c - II?

Consider a test plan: N units are available and iexperimentd, for V=1,...n, pg
t are tested underk(k2 1) stresses

proportion of test units withp, +... #p,

simultaneously
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where x|, represents one of the stresslevel combinationsfor a test with multiple
stresseg k2 1) or one of then stress leveldor a test with single stress(k =1). Also,

(=8 yrosl ool o, are the fractiors of survival units removed at time

U=¢ - Ly L, inexperimend(under stress, ) for ’=1,...n.

Replacing N, x" , r=[r,...,r,,....r.;] and U=[¢t,,..., ¢..., Jiin the general

expressionsEgs. (3.18)(3.20) by x|, I&pv, r, and U, for V=1,...n, we obtain Eg.

(3.18)(3.20) under all tha experiments of test plan.

Letd represent the unknown parametfts,, f,..., ..., wob nwlt, n. . Since

m(x,)= B + &, + Pl

using the chainule, wehave

e 1 X1 X
2 (V=g 6P i@ 2, Ko XX
g wil) § 2
g>ymmetric X,
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where |, represents theterm of the Fisher information matrix associated with

experimentd with respect to risk. Since theh failure modes ares-independent, the

interaction terrawith respect to riskandi®(i" , i) are zero.

Similarly, we have

b s e wLi(¢Y 2. T
(V) =E é—F=— glux, ... X,
A0 E ) w E

where |/ *represents thimteraction term of the Fisher information matrix assodiatith

experimengwith respect to riskandcommon parameter.

e pL(a V) . . . . .
LetI;°(d; ) =E¢ ————" . Now we have the Fisher information matrix associated
e M

with experimengof test plar :

elp(dy) o 0 1y{d )y

¢ : 0
)= € : :
AEn=e AT
gSymmetric 15°(d V)

As the test units are-independent, the total Fisher information matrix of test plan

becomes
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| (d:X) =8 p) (V) (6.24)

If G(d) is a function ofd, thenG( )is the ML estimator ofG(d) with asymptotic
variance

Asvar€G(d) ;X &M ul £Q 6.2
wlx 2500 i £ 29

under test plan.

3.4 Optimal ALT Plan Criteria and Formulation
From the above Fisher information matrix we can nidetermine the optimal plans
subject to different optimalitgriteria. In this section, we propose and devedapew test
plan criteron, minimization ofthe asymptotic variance of mean timé fost failure. We
determine optimum test plans under fibkowing criteria:
1. Variance optimality:
a. Minimization of the asymptotic variance of the mean tirhdirst failure

in a group of units.

b. Minimization of asymptotic variance of the quantile failure at normal

operating conditions
2. D-optimality that maximizeshe determinant of the Fisher information matrix.
3. Multi-objective optimality

The motivation for implementing each criterion is discussed as well.
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3.4.1 Variance Optimality

Early failures may significantly increase the warranty cbsereforeaccurateestimation
of lower quantilefailure at normal operating conditionsing accelerated life testing
important However, the problem of early failures is exacerbated under certain situations

such as units that are used in aerosgmicationsor devicesimplanted into humans

because of safety and potential risk. The time of the first failure in a grobip usfits
representshe extreme case of lower life quantildhereforewe propose to determine the
optimal test plan with respect to the minimum asymptotic variance of MLE of the mean
time of the first failure in a group dfl units at normal operating conditienThe second
criterionunder variance dpnality we investigates the minimum asymptotic variance of

thelower quantile failure at normal operating condigon

3.4.1.1 Mean Tmeof First Failure

To determine the optimal test plan based on the criterion of minimum asymptotic
variance of MLE of the man time of first failurein a group of N units at normal

operating conditios) we derive the analytic expression of the time of first failureNor

units as follows.

As assumed in Sec. 31ke failure tine of a single unit follows a Weibutbmpeting risk

model. Thecdf, Eq.(3.7), at normal operating condition is given by

F(tIx,)=1 expi t%a exgg b‘;(D

‘Q (6.26)
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From Eq.(3.26) we obtainthe probability that a single unit fails in the time interval [

t+dt]:
dF(tlx,) 1.2 & .. .0 & bx, 4B 8. x
f(t]x =ts exp t¥°3 exp —-2 eXpge 2 ¢
(o)== 7 e 8 o T fpd e 5 «
wherexy =[L, Xy 1,---, X, »---, %, ] FEPresents the normal operating condiidsiow we

dF(t .
introduce the probability% that the first failure in a group &funits occurs in

[t, t+dt] at normal operating conditien

dF (t|x ~ o N-1
(dl o) :Nf(t|xD)(ﬁ f(t |xD)dt)
:ﬂth eh expé bixp mxp |§t1/s hanp & %, 627
S €iz1 ? s ﬁ € iz ¢ S

o , , N-1 ~
The term(ﬁf (t |xD)dt) in Eq. (3.27) is the probability thali - 1 units fail in

[t,O] . N'is a combinatorial factor ganthe number of choices tthoosethe unit which

fails in [t, t+dt].

To verify that Eq. (3.27) is the true failure tirpef of the first failure in a group ol

units we perform simulation as follows. We chooSe=20, s =0.5,h=2, and for
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simplicity b, = 0which is equivalent to Weibull distribution with scale parameterl.

We plot Eqg. (3.27) from time zero to one time unit, shown as the dashed line in Figure

3.2.

To generate the first failure time fod = 20, wesolve failure time from Eq. (3.26),

S.

t=805In(1 F()) ¢

where F (())is the cumulative distribution function of the failure time.

F(())can be simulated bgenerating.andom numbers frora unit uniform distribution.

Since the group size I =20, we generate 2F (C)) values and solve the corresponding

We choose the minimutras the first failure time of the 20 units. This process is repeated
10° times to create the distribution. THestributionis normalized to the total number of
generated failure times and is divided by the histogram bin widkie obtained
histogram shows the normalized probability density function of the first failureitime
group of N =20units. As shown in Figure 3.2, the dashed line matches the histogram

well. Hence, Eq. (3.27) correctly describes the failure fpdkof the first failure in a

group of N units

UsingEq. (3.27), we calculate the mean time of first failiifeas
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Figure 3.2 Verification of Eq. (3.27) by simulation
Eq. (3.28) is a function of unknown parameter

d=(bg, Boeors Bros ol nisl s B . We denote it byG(d) = E[t], therefore we

have
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Hence the asymptotic variancetbé MLE ofthe mean time of first failure in a group of

N units at normal operating conditisis given by

aod ) o

d
Uew, ™" wp s

fo S8 9,

Asvar€G (d); X
e ( ) élc“b

€

Under progressive Typecensoring andhe given assumptions, the variance optimality

of mean time of first failuréor thetest plare is formulated as

Min AsvargG (a’) X (6.32)

st.  0<p, 4, V=1,..n

h

A Egm:x, § MENF,

i=1
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whereMENFyis the specified Minimum Expected Number of Failures at test condjtion

3.4.1.2 Quantile Failure

In this section we develop the expressiontleé quantile failure at normal operating
conditiors andthe corresponding asymptotic variance and the formulatiaptrhal test
plan based on the second optimality criterion which minimizes the asymptotic variance of

MLE of lower quantile failure at normal operating condigon

Let t, (x,) be theq" quantile failure at normal operating conditipthen from Eq. (3.26)

we solve

(6.39)

wherexy, = gl,X,1,... %, »--:%, represents the normal operating condiidp(x, ) is

T

a function of parameter§b,,, &,.... ... o h1. 0. . H . Now we take the

derivatives of t, (xD) with respect to the parameters,
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. & bx, 0
H.t (X ) tq (XD)prw D 9
0L =Xy, ——s ‘?b T v D1k (6.34)
ubu/ é_exp% iXD 8
i=1 G -
a Beé e a’babx ~Xp & X,
utq(xD)zg -In(1 q o Ing In(1 q) EL,_lgees x Es (639
us =" a bx, 807 é . Bx, wo " b X3 .
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Theasymptotic variance of the MLE, (a’;xD) at normal operating conditisiis given by

Asvar & (d:x.):X 2£ ;
8 (%) Ue o, v us

3| (a; >)'13

eut, (&;XD) m (Ef;xD) ﬂ.(a;xD) fg
U
u

Sufq(&;xD) fh(a’;xD) f¢(€f;xD) Tﬁ
g Wb, e Hs H

Under progressive Typkecensoring, the variance optimality of quantile failure based on

test plame is formulated as

Min  Asvar§q (ctxo ); (6.36)

st. O<p, 4, V=1..n

h

a Egm;x, g MENF,

i=1
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The optimal test plans in terms of stress levels (sti@asl combination for multiple
stresses) and unit allocation to each stress level can be determined by $wdving
formulation (3.32) and (3.36for given initial values of the parameters, progressive

censoringscheduler ,and U, for V=1,...,n and the normal operating conditgn

3.4.2 D-Optimality

D-optimality maximizes the determinant of the Fisher information matrix which results in
minimum volume of the Waltlype joint confidence region fahe unknown parameters.
D-optimality is a suitable criterionvhen the purpose of an ALT is tobtain more
accurateestimate of the model parameters. Based on the Fisher information matrix

developed in Sec. 3.3, the optimal test plan based-optiality is formulated as

Max det§ (ctX) (6.37)

st. O<p, 4, V=1..n

h

) Egm;x, g MENF,
=1

Optimal test plans in terms of stress levels and unit allocation to each stress level are
determined by solving (3.37pr given initial values of the parameters, progressive

censoringscheduler ,and U, for V=1,...n.
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3.4.3 Multi-objectiveOptimization

Under progressive censoring, some of the surviving test units can be remdiféetextit

stages before the final termination time of the tAst.a result, the test duration can be
furtherreduced ad the removed test units can be used for other tepisrposesOn the

other hand, Tang and Yang (2002yealedhat, for multiple levels constastress ALT,

there are many possible testing plans which are nearly statistically optimal. Th
motivates us to develop testing plans under mobljective which not only obtain optimal
statistical precision but also meet otpeacticalconstraints, e.g. time and cost. The total
cost is affected by the fixed investmentfacilities, overhead, stress applioas, test
duration and the number of test units, etc. The fixed investment has no effect on the
optimization. The cost related to overhead, stress applications and test dumiffaculs

to estimate and may depend on the specific situation. Therefore, we investigate the total

number of failuresnstead

In this dissertation, we propose two formulations for ralbjective optimization under

progressive censoringn both formulatios, we consider the objective of statistical

precisionf, (()) which can be the asymptotic variance of mean time of first failure, mean

time to failure and quantile failure, or the determinant of the Fisher information
(variancecovariane) matrix. To simplify the presentation, we illustrate the formulation
based oma 3-level single stress test. The extension to nairesslevels and multiple
stresses is straight forward. Under the given assumption and test, p@timal multt

objectivetest plans are formulated as follows.
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Formulation1:

Min {f&gEX( W &, dgx W (6.39)
st. 0<p, 4, V=1,2,3
U= - Lyrn £,gV=123

_ Xt X
=1 S8
X =L % 5

where f, (Qis the objective function of the number of failures. For examfjéQcan be

the total number of failures, failures due to a particular failure mode, or failures under a

specific stress level over the entire test duration or the test duration of a particular stress
level. W=gx, 1, ... r,, ‘presentthe decision variabled),are the given times to

remove surviving test units which can be equally, increasingly or decreasingly spaced.

Formulation2:

Min {LgX( vy &, dgk W (6.39)
s.t. 0< p, 4, V=123
FV=8 ool gl P V=1,2,3

+
XZ_X3X1

=1
% =5 2
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where f, (Qis the objective function of test duration awdl=gx, f,, ... £, are

18-1
decision variablesf, (Qcan be the total test duration if the experiments under different

stress levelsare conducted sequentially, or the test durationaunckertain stress level.

t, ... tg, canfollow certain relationship, for example,

(z‘mﬂ-t L(,) =r,/( Ly, -z"uu), r 0V 1,Z3,u 0,=s

r, is the given fraction of surviving units to remove, which can be a constant, decreasing

or increasing function of the number of periods.

To evaluate above formulations, we can use rolifective Genetic Algorithm to obtain

the Pareto front.

3.5 Examples

In this section wepresent examples tdemonstratethe application of the proposed
approachfor the design of ALT plans under competing risk aprbgressiveType |
censoring. The optimal test plans are obtained under both single stress and multiple

stresses.

3.5.1 Optimal Test Plas under Single Stress

Parameters
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Nelson (1990), page 393, presedata from ALTs of the Cladd insulation system of
motorettes at temperature 280 220C, 240C, and 26€C. Threepotentialfailure modes,
Turn, Phase, and Ground that occur on separated parts of the system are monitored. For
each observation, the failure and/or censored time and corresponding failure mode are
recorded. The objective of the life tests is to check if the mddietime at normal

operating conditiomf 18C°C is20,000hours under a lognormal Arrhenius model.

Pascual (2007) investigate ALT planning with independent Weibull competing risk with
known shape parameter undengle stress and Typecensoring. Nelsods data(1990)

from ALTs of the Clas#1 insulation system are used in his study, where only the Turn
and Ground failure modes are considered. Planning valu¢sefarodel parameters are

obtained (b,=2.607¢, b,= 2.1461, b,,=3.131%, and b,, = 1.279€) using ML

methods, the-independent Weibuwrrhenius competing risk mode (same as Eq. (3.2))
with specified shape parameter=0.5and number of failure modés=2. In this

dissertation, we use the same parameter values as Pascual (2007).

Single objective tegtlans

Using the optimizationcriteria presented in Sec. 3.4, we determine optsimgjle stress

test plans with two and three stress levels. In allcties, we specify, =[0.2,0.2,],
andU,=[6,8,10], V 4, 2,...,n for simplicity. Due to the invariance property tifie

Fisher information matrixjiven inEq. (3.24), we set the total number of test Uits1.

With respect to the variance criterion of megme of first failure, we set the group size
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N = 20 units. We investigate the lower life guantibp= 0.01for the varianceptimality

criterion of quantile failure.

For thesinglestress test with two levels, we set the high stress levgl=gk. Thus the
search for the optimal test planlimited to thedetermiration of the low stress level
0<x, <1 andthe associated unillocation0< p, <1. We requireMENF; = 0.3, i.e. the

minimum expectechumber of failure at thstress levek; is 30% of the units allocated to

that condition.

For the test with three levels, we set the high stressxewdl and the medium stress

levelx, :LZXS' The decision variable is the low stress &k <1. Under such three

equallyspaced stress levelse 4:2:1 rule is often used for unit allocation (Meekad
4 2 1

Hahn, 1985). Therefore, we s@t:? P, = and p, = The MENF; at stress level

X1 is also 30% of the units allocated to the stress level.

The obtained optimal single stress plan witlo tlevels and three levels are shown in
Table 3.1 and Table 3.2, respectivalye observe that the obtained values of-kivess

level (x1) under all scenarios are close to the normal operating condigenQ). This is
highly desirable as it reduces thetent of stress extrapolatiotWe also observe that the
two-stresdevel plans achieve better objective values relative to the corresponding three

stresdlevel plans. This implies that the prediction precision obtained fromstress
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level tests is ratively higher than that under thrsesslevel testdor the givenmodel

and test plaparameters

Table 3.1 Optimd test plans fotwo stress levels

. Unit Obj. Fun. Value
Obj. Fun. Stress Level Allocation ( Na_lzl)

_ o x = 0.0489 | p,= 0.9334

Min Asvargc;(d;x) 18.3251
X = 1 p= 0.0666
_ o x = 0.0489 | pi= 0.4331

Min Asvar o:(dx, ) X 25.6451
© X = 1 2= 0.5669
e x = 0.1082 | pi= 0.4538

Max det§ (d;x) 1.5319€04
X =1 P2= 0.5462

Table 3.2 Optimal 4:2:1 test plans

Obj. Fun. Stress Level Allctjcr;;[ion Obj. (Fr%r: 1\)/ alue

x; = 0.0489 pL= 4/7

Min AsvaréG(d:X) X, = 0.5244 p= 217 23.1308
X3 =1 ps= 1/7
x; = 0.0610 p1= 4/7

Min Asvagf_01(6r;x,3);x X, = 0.5305 po= 217 27.0114
X3 = 1 pa= 1/7
x = 0.0707 pL= 417

Max detdl (d;X) X, = 0.5353 po= 217 5.4896€05

X3 =1 ps= 1/7
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In design of ALT plas, initial estimates of unknown model parameters must be provided
so as to derive a locally optimal test plan. Sometimes the optimality in terms of statistical
precision cannot be achieved as planned due to the ipd@ estimates of the
parametersWe perform a sensitivity study to identify the parameters which must be

estimated withspecial care. We increase and decreade values of the parameters

2b,, b, B P by 5% sequentiallyand investigate the corresponding effect on

optimal test plas presented in Table 3.1 and Table 3.2. The results associated with the
optimal 4:2:1 plans and-&resslevel plans are summarized in Table 3.3 and Table 3.4,

respectively, wheré+o andfto indicates 5% increase and 5% decrease, respectively.

We observe thaf , inverse of the shape parameter of the Weibull distribution, is the

most sensitive parametdfor the varianceoptimality, b,, is more sensitive relative to
86, 4. A .On thecontrary, for the Boptimality 5, is not so sensitive as it is for the

variance optimality. In general, the sensitivityfoih terms of quantile failure is less than
that of mean time of first failure. Theason is that mean time of first failure is the most
extreme caseAlso, the sensitivity ob in terms of mean time of first failure is less than
that of D-optimality. In addition, parameters are less sensitive for 4:2:1 plans than those
for two-stresslevel plans.This implies that prediction obtained from thi&teesslevel

test is more robust than that from tstvesslevel testfor the given parameters
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Table 3.3 Percent change the objective functiomue to5% change in thparameters

optimal 4:2:1 plans

Objective Function

Parameter and Objective Function Values (%)

blO
(2.6078)

bll
(-2.1461)

bZO
(3.1315)

bZl
(-1.2796)

S
(0.5)

+ -

+ -

+ -

+ -

+ -

Min AsvargG (a’; X)

7.48| 6.98

A4 | 17

3.58| 3.59

28 | .29

25.7|37.7

Min
Asvargfm(a; X5 ) ;X

4.2214.09

33| .36

1.66|1.71

A1) .11

22.7129.4

Max detgl (a;x)

4.85| 6.96

11.6|12.8

10.3| 11.3

9.98| 8.94

19.0|17.4

Table 3.4 Percent change in the objective functéhre to5% change in thparameters

optimal 2level plans

Parameter and Objective Function Values (%)

Objective Function by by, by, by, S
(2.6078) | (-2.1461) | (3.1315) | (-1.2796) | (0.5)
+ - + - + - + - + -
Min Asvarge(a;x) 7.93|7.41| 09| .04 |433|431] 31| 34309 48
Min
Asvargf.01(a;xD);x 424|411 03| .02 |171]1.77| .06 | .07 | 23.1]30.3
Max det§] (8;x) 8.49|9.67| 16.4| 19.1| 10.4| 11.5| 13.2| 11.7| 21.2| 18.9
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Multi-objectiveoptimaltest plans

In this section, we present examples to illustrate the application of theabjattive
optimization to determine optimal test planBor unit allocation to streskevels, we

follow the 4:2:1 rule, that isp, = g P, :g , and p, :% for equally spacgthreestress

level test. Fosimplicity, we set],=Uandr =r, for V=1,2,3. In other words, we use

the same progressive censoring schedule under different stress levels. The initial estimate

of the unknown model parameters is the same as previous examples.

To developexamples based dheformulatiors (3.38) and3.39), we use mukbbjective

Genetic Algorithmgamultiobjfunction which is built in Matlab and plot the Pareto front.

In all the cases, we set the maximum number of iterations as 3000, population size as 100,
and theParetofraction as 0.7. The largehe population size, the smoother the Pareto
front, but the longer the time is needed for computation. ¥gaducted some
experimentation for thgamultiobj parameter setting and then chose these values. For

other parameters of the algorithm, we use thefaalt values.

For formulation (3.38), we consider three periods, §&3. We Iinvestigate the

objectives of the determintof the Fisher information matrix and the total number of

failure over all the periods and stress levels. wegst , SO the total number of failures
equals the total fraction of failure which can be calculated using Eq. (3.21¢fdilee we

have formulation (3.38) written as
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Min r det{ I &f; X M@éE[m] Ef;g(X)V\é

2

st. p==,p =%

P

~N A
~lii~

U=[6 8 10]

_ XX
=1, x, =21
X, X, 5

whereW =[x 1, rz]' . As the test is terminated at the end of tHe@riod, r, =1.

After evaluation of above formulation, we obtain #eeto front as shown in Figure 3.3.
We observe that the statistical precision, determinant of the Fisher information, matrix
monotonically increases with thecrease of theotal fraction of failure. The increasing
rate is very small when the tot@hction of failure is more than 0.7. Each point on the
Pareto frontassociates with not only the values of the two objective functions, but also

the values ofx, r, andr,. For example,point A in Figure 3.3 represents a test plan that

achievesl® objective value 6.3438e05 (D-optimality) and 2™ objective value0.6931

(total ratio of failurg. The corresponding three normalized stress levels from low to high
are 0.0025, 0.5013 and 1. The fraction of test units allocated to low, medium and high
stress levels is 4/7, 2/7 and 1/7, respectively. Under each stress level, 0.1216, 0.1016 and
1 fraction of surviving test units are removed at tfle &' and 18 time unit, respectively.

These parameters obptimal testplan associated with poi# are summarized in Table

3.5.
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In addition, with the value ofx, r,,r, andJ we also can obtain the fraction of failure

under different stress levels and the fraction of failure due to failure mMmaked orEq.

(3.11) andeq. (3.21), respectively.

Table 3.5 Optimal test plarjpoint A) on Pareto front

Det. (f,) Total ratio of failure (f,) Stress levels

6.3438e05 0.6931 x =1[0.0025, 0.5013, 1]

Unit allocation Censoring time Ratio to remove

p=[4/7, 217, 1/7] U=16, 8, 10] r =[0.1216, 0.1016, 1]

FPareto front
0?4 T T T T I | I T

®
0.73 i

=
“a
)
T
Mt
»
=
I
o
=
1

= 5
! !

Total fraction of failure

i i i i i i
6.8 8.5 -f.2 =50 =58 =53 -5 4.7 -4.4 -4.1
- Det (Fish) 210

Figure 3.3 Pareto front fokJ=[6 8 10]
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We keepall parametershe same as above formulation kg [ 2 3 4] and compute
anotherParetofront, as shown in Figure 3.4. We observe that under shorter test duration,
both the total fraction of failure and the statistical precision decrease. By plotting series
of Paretofronts under differenl] we can have clear idea about the relationship of
statistical precision, test duration and tdtaktion of failure. Thisfacilitates the choice

of appropriate progressive censoring schedule, fraction of units to remove asitetest
levels in order to obtain optimal parameter estimatioms well as meepractical
constraints on time and cos®imilarly, each point on the Pareto front represents an
optimal test plan. The optimal test plan parameters associategouitiB in Figure 3.4

is given in Table 3.6.

Table 3.6 Optimal test plan (point B) on Pareto front

Det. f,) Total T, (f,) Stress levels
1.8916e06 0.4446 x=1[0.2033, 0.6016, 1]
Unit allocation Censoring time Ratio to remove
p=[4/7, 217, 1/7] U=[2, 3, 4] r =[0.1012, 0.1018, 1]
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Pareto front
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035 1 i i 1 ! | | i
-2.2 -2 -1.8 -1.6 -14 -1.2 -1 0.8 0.4 -0.4
-Det (Fish) a1n”

Figure 3.4 Pareto front fo=[2 3 4]

For formulation (3.39), we also consider three periods andrsg0.4 0.2 1],

-

(ta- §) 05 (¢ 0pu 12, @, and NF=1. For single stress ALT, the

experiments under different stress levels can be conducted either sequentially or
simultaneouslyIn either case, the test duration under the lowest stress level has the most
crucial impact a the precision of statistical prediction. Therefore, we choose the test
duration under the stress lewglas the objective as well as the determinant of the Fisher

information matrix. The formulation (3.39) is written as
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Min {-det1 &t X Wge, dig (x) |
4 2 1
st BT7R TR g
r=[0.4 0.2 1]
4 6
tl:? é" 2[‘_7 3
+
=1, % 20X

whereW =[x ¢, ] .

After evaluation of above formulation, we obtain fareto front as shown in Figure 3.5.
We observe that the statistical precision, determinant of the Fisher information matrix
monotonically increases with the test duration. Each point oRateto front present not
only the values of the two objective fttions but alsox, 7, and £. Similarly, with the
values ofx, #,, {andr, we can obtain the fraction of failure under different stress levels

and the fraction of failure due to failure made
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Fareto front
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Figure 3.5 Pareto frontfor=[ .4 .2 1]

We keep all parameters the same as above formulation but change the fraction of removal
to r=[0.2 0.2 1], r=[0.2 0.4 1] andr =[0 0 1], and compute the corresponding
Pareto front, as shown in Figure 3.6. Under the same test duration, we obtain the best
statistical precision when=[0 0 1], which is the extreme case of progressive Tlype
censoring, Typé censoring.In other words, we do not remove any unit#til the final
termination of the test. In this case, we have more information relative to other cases after
the first period. Under the same time duration, we achieve the worst statistical precision
whenr =[0.4 0.2 1. This implies that the more the units are removed at the earlier

stages, the worse the prediction is. The statistical precision undf.2 0.2 1],

r =[0.2 0.4 1Jare very close. Thus the impact of the units rematetie later stagds
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insignificant under the given censoring time schedule. On the other hand, test duration for
the same level of statistical precision is the shortest whef®@ 0 1Jand longest when

r =[0.4 0.2 1], respectively.Similarly, the series of Pareto front in Figure 3.6 can
facilitate the choice of appropriate fraction of units to remove and censoring time at the
lowest stress levels in order to obtaptimal parameter estimation as well as meet

practicalconstraints on time and coSthe parameters of the optimal test plan associated

with pointsC andD are given in Table 3.7 and Table 3.8, respectively.

Table 3.7 Optimal test plan (poin€) on Pareto front

Det. )

Total T, (f,)

Stress levels

1.2640e04

12.08

x = [0.0761, 0.5381, 1]

Unit allocation

Censoring time

Ratio to remove

p=[4/7, 217, 17]

U=1[6.9, 10.35,12]

r =[O, O, 1]

Table 3.8 Optimal test plan (poirD) on Pareto front

Det. )

Total T, (f,)

Stress levels

3.2545e04

27.16

x = [0.0023, 0.5012, 1]

Unit allocation

Censoring time

Ratio to remove

p=[4/7, 217, UT7]

U=[15.52, 23.28, 27.16

r=[0.4, 0.2, 1]
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FPareto front

oY
[ 3]
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+ r=[.2.21

.................................... O ce[2.47 [

Test time at the lowest stress level

i
-4.5 -4 -3.5 -3 -2.5 -
- Det (Fish) _—

Figure 3.6 Pareto fronts for different

3.5.2 Optimal Test Plan undeMultiple Stresses

We extend the example of optimal test plan withitiple stresses presented in Sec. 2.6 to

multiple failure modes. We assume the parameters associated with the second failure
mode areb, =[5.1, -0.469,0.411, -0.§. We use the same values %, r,U,N andq

as in the example of the single stress test. Bpecified MENF at each stresevel
combination ighefraction 0.01%imes the number of units under téate determinethe
optimal test plans based on the formulation given in Sec.u8idg the SA based

algorithm presented in Sec. abd theresults are shown in Table93.
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Table 3.9 shows that the achieved objective of the minimum asymptotic variance of mean
time of firstfailure is 5.1408e+05. Correspondingly, 0.3862150, 0.1049, 0.0150 and
0.2780 fractios of the test unitaireallocated to the stredsvel combination 0f60% RH,

70 °C, 1.7275 kV/mm], [67.5%RH, 48C, 0.7825 kV/mm], [75%RH, 83C, 1.255
kV/mm], [825%RH, 55°C, 0.31 kV/mm] and [90%RH, 3%, 2.2 kV/mm], respectively.
The objective value of the optimal test plan for theninimum asymptoticvariance of
guantilefailure at normal operating conditions8.4995e+06nd the correspondingst
planhas0.3423, 0.1852,0.0890, 0.0150 and 0.3685 frastdrithe test units allocated to
the stresdevel combination of60% RH, 70°C, 1.7275 kV/mm], [67.5%RH, 48C,
0.7825 kV/mm], [75%RH, 85C, 1.255 kv/mm], [82.5%RH, 55C, 0.31 kV/mm] and
[90%RH, 35°C, 22 kV/mm], respectivelyThe objective value of the optimal test plan
that maximizeshe determinanbf the Fisher information matrix is 0.0034. Based on this
test plan, 0.2505, 0.0150, 0.2393, 0.2304 and 0.2648 fraatibthe test units are
allocated tahe stresgevel combination 0f60% RH,55 €, 2.2kV/mm], [67.5%RH,70

°C, 031 kv/mm], [75%RH, 35 °C, 0.7825kV/mm], [82.5%RH,85 °C, 1.255kV/mm]

and [90%R, 45 °C, 1.7275kV/mm], respectively.

Table 3.9 Optimal test plans with multiple stresses

Obi. Fun XStressLe:(/eI Combina)t(igons Unit Obj. Fun.
) . 1 ) : n.
(RH%) (OC) (kV/mm) Allocation | Value ([‘E—l)
1 4 4
[ (60%) | (70°C) |(1.7275 kv/mm] ©-3%%8
Min AsvarS(dx) | 2 2 2 02150 | 5-1408e+05
(67.5%)| (45°C) |(0.7825 kV/mm]
3 5 3 0.1049
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(75%) | (85°C) [ (1.255 kV/mm)
(82%5%) (553°C) (0.31 &V/mm) 0.0150
(93%) (351°C) (2.2 k?//mm) 0.2782
(63%) (704°C) (1.7275?1 kvimm] 03423
Min (6725%) (4520C) (0.78252kV/mm 0.1852
Asvargfm(&;xD);X (75%) | (85°C) | (1.255 kV/mm) 0.0890 | 8.4995e+06
(82%5%) (553°C) (0.31 i-V/mm) 0.0150
(93%) (351°C) (2.2 kE\)//mm) 0.3685
(63%) (SSSOC) (2.2 k?//mm) 0.2505
(67-25%) (704°C) (0.31 &V/mm) 0.0150
Ve detg ) (72%) (35100) (0.78252kV/mm 02393 | 0.0034
(82.6%)| (85C) | (1255 kvimm), 02304
(93%) (45200) (1.72754 kv/imm] 0-2648
3.6 Summary

This chapter presentgpproachesor planning ALT under progressive Tybeensoring

and multiple failure mode#\ unit is consideredailed when any of the multiple failure
modes occurs. &h failure mode is assumed to hareindependent/eibull distribuion

with different unknown scale parameters and a common unknown shape parameter.
Under progressive censoringpeoportionof the survival unitsis removed from the test

at multiple stagebeforethe final termination of the test under different stresels.
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We develop Fisher information matrix fibre maximum likelihood estimate. We propose
and develom new optimization gterion for thedesign of test plans, that is, minzation

of theasymptotic variance of MLE of mean time of first failunedernormal operating
conditions.This criterion isuseful incircumstancesvhere early failures arextremely
crucial In addition, we also develop optimal test plans in termghefasymptotic
varianceof quantile failure D-optimality and multiobjective optimization The multi
objective criterion providesa practicalguidelineto seek test plathatnot onlyachieves

statisticaloptimality but alsomeettime andor cost constraints.

This is also thdirst suchwork for the design ofmultiple stresse®A\LT plan under
progressive censorirgnd competing riskTo illustrate the optimakstplan formulations,
we present numerical examples basedheparameters from real tests under both single
stress and multiple stresses. We also perform the sensitivdy sbuidentify model

parameters which should betially estimated witrspecialcare.
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CHAPTER 4

DESIGN OF EQUIVALENT ALT PLANS

4.1 Introduction

Accelerated life testing isonductedunder severeconditions than the normal operating
conditionsin order toobtain failure time data of test units a much shorter time than
testing at normal operating conditioriBypical ALT plans require the determination of
stress types, stress levels, allocation of test units to the stressaedelgration @ the

test. ALT is usuallyconducted under constasiresses during the entire test duration.
practice, the constastress tests need a long time at low stress levels to yield sufficient
failure data.This has prompted industry to considgher stressoadings, such astep
stress (simple or multiplejamp-stresssinusoidalcyclic stresor their combinationsas
shown in Figure 4.1These streskadings have been widely utilized in ALT experiments.
For instancestaticfatigue tests and cychfatigue tests (Matthewson and Yuce, 1994)
have been frequently performed on optical fibers to study their reliability; dietectric
breakdown ofthermal oxides (Elsayedet al 2006) have been studied under elevated
constant electrical fields and temperatyrasd the lifetime of ceramic components
subject to slow crack growth due to stress corrosion have been investigated under cyclic

stress by NASA (Choi and Salem, 1997).

Each stressoading hasdothadvantages and drawback®mplicated stress profilesay
yield failures in a much shorter time than consttngss tests but the statistical inference

from the datamight be more difficult to make.ln other words, the accuracy of the
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reliability prediction might beaffected This has aised many practical quésts such as:
Can accelerad tesing plans involving different stress loadings be designed such that

they are equivalent®/hat are the measures of equivalency?

AN AN AN AN T e P PN
AV \J N Tme o — J |

Wi Wi W2 W;

(a) sinusoidal-cyclic-stress (b) multiple-step-stress

Amp y %_ Amp o
re N V\ /ANSWANEL
\/ \/ \ Time

(c) ramp-step-stress (d) triangular-cyclic-stress

Figure 4.1 Varioustypesof stress loading

Literature review shows thatirent research oplanningALT has been focued on the
design of optimum testing plans for given striesgling For instance, the constastiress

ALT plans have been investigatbg Nelson and Kielpinski (1976), Maxiet al. (1977),
Meeker and Hahn (1977), Nelson and Meeker (1978), Meeker (1984), Nelson (1990) and
Yang (1994) The stepstress ALT plans have been studdMiller and Nelson (1983),

Bai et al (1989), Bai and Chun (1991), Khamis and Higgins (1996), Xiong8)199
Xiong and Milliken (1999), and Xiong and Ji (2004) whilee rampstress ALT plans

have been consideréy Baiet al (1992) and Park and Yum (1998)
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The wide range of stress applications, stress levels and corresponding test durations give
rise to the investigaton of the equivalency between test plans. However, fundamental
research on the equivalency of test plans has not yet been addressed in the reliability
engineering field. Without understanding of such equivalency, it is difficult for

practitioners to determine the best experimental settings before conducting actual ALT.

In this chaptey we present definitions of equivateiest planspropose an approadbr

the design of equivalent ALT plarend apply the method to design efjuivalent test
plans under single constastress, stegtress and ramgtress. The numerical results
show that it is feasible to design equivalent and yet economical and efficient ALT plans
having the same accuracy of reliability predictidve also develop a model bdsen the

well known cumulative exposure assumpti@ninvestigatethe life-stress relationship

under general timgarying stresse®.g. ramgstress.

4.2 Definition of Equivalent ALT Plans

In design of ALT plans estimateof one or morereliability characteristics, such as the
model parameters, hazard rate and the mean time to failure at certain ceratigion
common. Accordingly, differendptimization criteria might beonsideredFor instance,

if estimate of the model parameters is the main con&eoptimality which maximizes
the determinant of the Fisher information matrix@sideredan appropriate criterion
When estimateof the quantilefailure at normal operating conditigris the major task
thenthe varianceoptimality that minimizes thasymptotic variance of quantifailure at

normal operating conditiais commonly usedvieanwhile different methods, e.g. MLE
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or Bayesiarestimatorcan be usefbr estimation Howevereach method has its inherent
statistical propertiesnd efficiendes. In light of this, we discuss equivalent test plans
with respect tothe same reliabilitycharacteristics andptimization criterion and
determine equivalent test plansing the samenference procedureFour possible

definitionsof equivalencyarepresented as:

Definition 1

Two or more test plans are equivalénthe absolutedifference ofthe objectives for
reliability prediction is less thand( & 0) while meeting given the same set of

constraints on the number of test ungspected number of failures mrtal test time

Definition 2
Two or moretestplans aresquivalentif they achieve the same objective for reliability

prediction while meeting the given constraints on the number of test units, expected

number of failuresr total test time within a margi{ & 0).

Definition 3
For the same reliability properties and inference procedure, two or more ALT plans are

equivalent if they generate the same values of the same optimization criterion.

Definition 4
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Two or more ALT plans are equivalent if the difference between the estimated times to

failure and the respective confidence intervals by the plans at normal operating conditions

are withind( & 0), whered'is anacceptable level of deviation.

4.3 Approach for Determining Optimal Equivalent ALT Plans
According to above definitions, the equivalent test plans are not unique. In this section,
we discussan approachfor determining optimal equivalent ALPplans based on

Definitions 1 and 2

The first stepof the approachs to obtain @ optimal baseline test plainceconstant
stress testare the most commonly conducted accelerated lifengest industry and their
statistical inference has been extensively investigatedpnapose to use an optimal

constaristress plan as a baseline.

Supposean optimal baseline test plan can be determined from the following general

formulation,

Min fg(x) (7.2)
st.Lb¢x Wb

C(x)¢o

Ceq( ¥ =0
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wherefB(x) Is the objective functior(e.g. the asymptotic variance of mean time to

failure) andx is its decision variablevhich can beexpressed asither a vector or acalay

Lb andUb are thecorresponding lower and upper bounds.o€ (x) ¢ 0 and Ceq( ¥ =0

arethepossibleinequalityand equality constraints, respectively. .

The second step is to determine tbguivalent test plan based @rfinitions 1 and 2

using formulatios (4.2) and (4.3), respectivellformulation (4.2) is given as follows

Min P, (y) (7.2)
s.t.|fy (X)- fe(y)| ¢ d
P,(¥)- R(y) &
Lb'¢y @b’
C'(y)¢o

Ceq(y=0

Wheref , (x) andf_(y) are the base and equivalent objective functions respectively
andy is the decisiovariable of the equivalent test plaR (())represents the constrairft o
the total number of test units, expected number of failures desttame. If P, (y) is the

total number of test ursit P, (y)can be le censoring time under Typecensoring or

expected number of failures undgme-ll censoring and vice vers@ihe ideas to set the

alloweddifferencebetweerobjective valuesas a constraint as well as seek other merits.



112

Similarly, based oefinition 2, the optimal equivalent test plan can be determined as,

Min P, (y) (7.3)

We now demonstrate these methodsiétermine an optimatquivalent stefstress test
plan andan optimal equivalentampstress test plato the constarstress test plan

(basdine test plan)

4.4 Equivalent Test Plan Formulations

According to the definitions of equivalent ALT plans given in Sec, %@ use the
minimum asymptoticvarianceof quantile failure (e.g. q = 0.01) at normal operating
condition as th@bjectivefor determining the optimal baselinestplanand equivalency
of test plansWithout loss of generality, the stress is noafized using Eq. (3.9) to the

range of[0,1]. In addition thefollowing assumptionareconsidered
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Assumpbns
1. A singlestresds used inthe ALT plan
2. The lifetimes ofeachtest unit are statistically independent.

3. The failure time follows exponential distribution with hazard rate function
h(t)=/, /0.

4. The appliedstressaffects the lifetime of a test unthroughPH model

According to the proportional hazard assumption, the hazard funafitme test units

under test stresais given by

h(t;2) =/ exp( &)

whereb is the coefficient thateflects the effect of thdrgss

Therefore we have reliability function under stress

R(tz)=e "t opg /texp( &) (7.4)

and failure time distribution function

f(t;z) =/ expg - texp( 2 (7.5)
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4.4.1 Optimal Baseline Consint-stress ALT Plan
The optimum baseline constasttess ALT plan islesignedunder Typel censoringwith
a predetermined censoring timé Three stress levels are used as shown in Figure 4.2.

The high stresslevel is chosen to be the highestluez, =1. The medium level

+
z, :@is the midway between the low leved, and the high leved, . Thevalue

of the low stress levels a decision variableThe allocationof test unitsto the low,
medium and high stress levelsllows the 4:2:1rule. This unequal allocation is a
compromise that extrapolates reasonably wedl results in optimum design of test plans
under constarstresdoading(Meeker and Hahn, 1985)he optimal test plan in terms of

the low stress lev@l<z <4 is obtained such that the Mlof g = 0.01quantilefailure at
the normal operatingcondition z, =0 is minimized The totalnumber ofavailable test

units is Ng. The expected number of failures at the low stress level is required to be
greaterthanor equal toNg p., wherep, is afraction ofthe testunits allocated to the low

stress level

Figure 4.2 Constaristress test
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Fisherinformationmatrix

Under Typel censoring and the assumddilure time model under stressthe log

likelihood function of arobservatiorat stress leve, (k= L, M, H) is

L(/.b:z)={In( ) bz -texp( zd} [=- 1]-t ep( z) (7.6)
where| is an indicator function defined by

I _EL if ter (failure)
%O otherwise

By taking the second derivative of the log likelihood function with respect to the
unknown parameters and tagf the negative expectation, we can obtain the elements of

the Fisher information matrix.et F, be the Fisher information matrix of obseieat

corresponding to stress lewgl( k= L M, H) which is given by

e_e uw o e |2

¢Ee = 0 B ¢~

6 6 W™ g It
«=NePeg | .

- e W g _é& | @

CE ¢ u Ee U

EeWphrg & B

where
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e.£2 g_—.i o -

Eg 7 U 12{1 expg / -exp( 2p) }E
e uw o .

Ee — oZ{l expg / -&xp(b

€ w U { Pg ( Zk)}E
E§- “‘/t ngé{ll expg / -exp( zb) }g

The total information matrix is given By = § F,.
k=L,M,H

Let t, (2, ) be theg™ quantilefailure time at normal operating conditios, then from Eq.

(4.4) we solve

The asymptoticvarianceof the MLEfc](f,E;zD)at normal operating conditiors is

given by
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Asvar& (/ﬁ,ﬁ;zD) ag“tq(f’B’ZD)’ @( / bZD) g,;; 3
€ Ue W f i
(7.7)
gufq(ig,zD)’ i(7.0:2) TE
g W 4 L
where
Hy(/.5iz) __in(2- q) 79
W / exp( lzD)
and
ut}(/A,E ZD) z,In(1- q) 7.9

Min  f,(X)=Asvargf, (/ b:2,) (7.10)

NP g- R(t;2) o N p

where the decision variable is the low stress leselz .



118

4.4.2 Equivalent Stepstress ALT Plan

Step-stress(shown in Figure 4.3is often used in life testingn order to shorten the test
duration. However, as the strdesel changes at a given time, the lifetime distribution
under a stetress needs to be related to that under a constant siit@ss.is

accomplished using the cumulative exposassumptiordesribed below

ZH

Zr

1 Tz

Figure 4.3 Simplestep-stress test

4.4.2.1 Cumulative ExposurAssumption

According to he cumulative exposurassumption:l) the remaining life of a test unit
depends only ocurrent cumulative fractioof damageand the current stress regardless
how the fraction is accumulated. 2) If held at the current stress, survivors fail according
to the cumulative distribution for that stress, but starting at the previously cumulative

damage.
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These assumptions form a joint cumulatdamageunction by horizontally shifting the

individual cumulativedamagefunction at the time that stress level chan@éss can be

explained by Figure 4.4. wheYe(t; z, ) denotes thedf of damageime for units tested at

constanistressz,, s= L, H.

e, z) , F16,2(0))

1L Zy 1k

A

Zi

v
v

Figure 4.4 Cumulative exposure assumption

From Eqg. (4.4) and Eq. (4.5) we have

Y (t;z) =1 expg /texp( &)

Y (t;z,) =1 expg /texp( 4,)

Suppose from time zero the test runs under stress Zevat time { the stress level is

increasedo z;. According to the cumulative exposure assumptions, at fmibe test
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units have an equivalent starting titdander stress leve}; which is the solution to the

following equation

Y(ez,)=Y+132) (7.10)

That is,

e=t expg fx  -%)
Thereafter, the test units fail under stress layébllowing cdf
Y(tz,)= Xt & ewz,) 1 =pg (t-+, e)expf b,) gt

In summary based on the cumulative exposure assumptioedhef units subjected to

simple stepstressas shown in Figure 4i8 given by

_BY (tz), !
v (t 2(1) Y (t-r, £2,) t 7
(7.12)
_p1- expegltep( 4,) g b
11-eg /(t- { e)en( %) gt

The correspondingdfis given by
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g/expg 2, - tex( z0 g t <,

| (7.13
i/ expgbz, - At- ,#e)exd z4H gt 2,

(o, 2(9)

4.4.2.2 Fisher InformationMatrix

Under simple step stress a test unit may either fail at stress [gvbefore the stress
changing time(] or does not fail by tim&] and continusto run either to failure or to
censoring time3} at stress levedy. Accordingly, we defindollowing indicator functions

to describe such a failure pattern:

D:

1 iftc¢z,, failure observed before timg
L=t ¢) F _ ,
{0 ift>¢,, otherwise

el iftc¢s,, failure observed before timg
L=t @) 7 . .
i0 ift>¢,, otherwise
wheret, ¢ {£.

Then the log likelihood of a single observatismiven by
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L(/, sz,zH)zlz{Illngf (t,z) (2 -1,)In fgt,zH)} g
L) IngR(r,- f€27,) g
=1,l,@n(/)+ &, - texp( zh g+
(7.14)

(1-1)1,8n(/) +&, -(t- , teyexp( 2z, g

(1-1,)/ (¢ - .t &)exp(bx,)

The Fisher information matrix @f single observatios given by

eEepLzzE e |’
e —> U € 4
F_égli/zu ew b
k™ é 2 N 2
é %)

Gp Mmoot Vg
geWpg & by

where he elements of the Fisher information matrix are the negative expectations of the

second derivative of the log likelihood function with respect to unknown paragneters

ngﬁ L emgrte edem( 2hl
T 2 .

Eg Ly % (2 Fewr / ten( %) g
é WO ¢

X, expg/ (t, - e)exp( zp)
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A 2
o .
E%— hL 3=Z—L£1 expg / -texp( ) }g z,+ etxp( z b -expt ;)) b

zH{expg/ texd zp) gexp g4 t+efexp(bz,) }
/

N

The total information matrix is given By =§ F, , whereNsis the total number of the
k=1

test units.

4.4.2.3 Optimal Equivalent Steptress Test Plan
According toDefinition 1 and the approach faleterminingoptimal equivalent test plan,
we presentwo formulations for determininghe optimal equivalertest plan undestep

stress

Formulationl
The objective igo minimize the censoring tim8 under stegstresstestusing the same

number of test units dkat of the baseline teglan

Min ¢, (y) (7.19)
st [fg(X)- f.(y)|¢d

N.- N

S B

=)

O0<z 4,z ,=1,¢<1
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NY (1:2) 2p N,

where f_(Y) :Asvargfq(f b ;zD) , the decision variables are the low stress lavahd

Z

, . e .
time to change the stress level represented by=¢ - . In all the following

1

formulations for equivalent stegiress test plante decision variables are expresssd

N (D
N
)

o

In formulation (4.15), the consiint ‘fB(x)- fs(y)‘d:a’maintains that the absolute

differencebetweerthe values of thebjective functions igess than or equaxba’( d O).
The constrain N_- N, = ensure that thetotal number of test unitsinderstepstress

equas that of the baseline testikewise, the constraini.Y (¢,;z ) 2p N, ensures

minimum expected number of failures at the low stress l@veerstepstressis greater
than or equato a fraction of the total test units. &lu an optimal equivalent test plan
intends to reduce the test time as well as obtain equivalesuracyof reliability

predictionas that of the constastress test plan

Formulation2
The objective isd minimize thetotal number oftest units under steftresgestusing the

samecensoring timas that of the baseline test.
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Min N, (y) (7.16)
st [fy(x)- f(y)|¢d
t,- £0,t,< ¢
0<z 4,2z, =1

NY (752) 2PN,

whereUis the censoring time of the baseline fgan.

According to Definition 2 we propose two formulations for determining optimal

equivalent steystress test plan as follows.

Formulation1
Min £, () (717)
s.t. fg(x)- f(y) D
INg- Ng| @
O<z 4,6z, =1¢<1

NY (1:2) 2p N,

Formulation2
Min N,(y) (7.18)

s.t. fg(x)- f(y) D
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-t o
O<z 4,2z, =1¢t<1

NY (£52) 2PN,

4.4.3 Equivalent Rampstress ALT Plan

Ramp-stress as shown in Figure 4.5 is a type of the stress loadings that can further reduce
the test time than stegiress. However, the Ifstress relationship is difficult to model, if

not impossible. To obtain optimal equivalent rastgess test plangeneralize PH
modelsfor thelifetime of a test unit under timearying stresses are developed in the next

section.

z(1)y

Zp

A 4

Figure 4.5 Rampstress loadingk is the rate of increase in stress per unit time)

4.4.3.1 Generalized PH Model

A rampstress can be approximated by a stpss ashown inFigure 4.6.
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~Y

Figure 4.6 Approximation of ramgstress using stegtress

Under stepstress, the cumulative exposure asstimnpcan be applied to relate the
cumulative failures under different stress levels as discussed in Sec.4.4.2.1. Since
cumulative hazard rate imonotonically depenént on the cumulative failure, the

cumulative exposure assumptithrenapplies tahe cumulative hazard rate.

Let H (t;z ) represent the cumulative hazard function at stress #&vel, (t) and h(t)

be thebaseline cumulative hazard function and hazard function, respectivedymas
that the stepstressis applied at time zero ashown in Figure 4.6. Based on the

cumulative exposure assumption, at the first stiessl changing timé, we have

H(tsz)=H( #+ Bz +D=H( .78 3)

whereDz =z, -z, Dt is the timeshift if from time zero the stredsvel z is applied
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At time Ul;, the stress level iacreasedrom z_; to z, sowe have

H(t.;z )=H( 5,40 +.. Bz, D) H(, . tb..++t Pz) (719

Using Taylor expansioaf Eq. (4.19 we have

H(z; .. X
M (Z ?‘ Lo, MX; 2, 0
l.[t z=a}Dg 41 7=
Xty -
Using the PH assumptiome obtain
- a il 0 i
pH (2;x) Hoaé+ & D gexp( k) H, t 28 D
Dti'l = it = ¢ = - = ph G2
. UH(Zz; a il 0 a' i
P ( ))‘ ha+a Dt ep(bz) h t 8D
Mz z=i_—_1DtJ C j=1 = ci=t =
Thus we have
a it
Hoaé+a Dt
Dt,= bR, —5—
a It
hat+a D
¢ =

If stressz(t)is differentiable, thethe total time shift is
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Hence, he cumulative hazard function under thverying stresz(t) is given by

H (t.z(1)) = Hy (t + (1)) exp( bz(1)) (7.20)

Under rampstress,

Ho (2 +t ()
ho((z‘ +1 )))

t ()= ok d ¢ (7.21)

wherek is thenormalizedramprate.

If stressz(t) is differentiableuntil time T where there is a junipez, then

H (T,z(T))= HO(T + +DtT)eprgz(T)+ Il)u

where

Dt = Hy €H, (T # )exp( @) T- 1 -

If there areg jumps associated witt(t) at timedT,, (m=1..., g), then
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H(2(0) =Hozs € a0, Sxognz()

m=1

and

Dt =Hy &Ho (T, +; Jexp( 6@) Ty f, -
Let the applied ramgptressz(t) be
z(t)=kt k 20 (7.22)
wherek is the normalized rampate such thab=1z, ¢z(t) ¢ 1.

Then given the baselifezardfunctionh, (t)=/, / >0, using Eq. (£1), weobtain

t(t) :igl -exp( bkt) gt
bk
Therefore the cumulative hazard function under raitngss is

H g, 2(1) aﬁ e@(bki) -1 (7.23)
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From the cumulative hazard function Eq. (423), we obtain the cumulative failure

function

Y g.z(t) gl exp‘.iéﬁ 1gep(bkt) : (7.24)
i

\

and the failure density function

f g, z(t) g/exp. ht + /& e &) g | (7.25)
i bk :

Al

4.4.3.2 The Fisher Information Matrix

The log likelihoodfunction for an observation under a rarsfpesss given by

By ke B e( &) /
L(7, bz(t))—l%ln( ) + kit e “g(i I)—tkgl exp( kg (726

where

el if t ¢ ¢ (failure)
TO otherwise

andlkis the censoring time of the rarbgst.
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The Fider information matrix of MLE corresponding to a single observation is given by

tes e e g

I:kzgélllu é\ﬂbﬂ
S
g e puy &

wherethe elements of the Fisher information matrix are the negative expectation of the

second derivative of the log likelihood function with respect to unknown parameters.

ﬂ
=—1 ex — (1 expbk

él1- exp(bkt) texd &t) G
i 5 + g
i & b y

exp.—gl exp{ bk I)uxu &l- exp( bk ) g;(r kb exf k )

Eg- |1L22 lﬂj'?l kt®exp( &t) 2 tbxp;( kip 2/ gl- e)g(p( &t) %t .
e Wb u ¥ g b b kb ?
exp. gl exp( bk 3g “?/k Fexp( kb) 12 edplt k) 2/g-exp( & )rg

b b kb

Y
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SupposeNr units are available for the rangress test. The total information matrix is

NR
givenbyF. =8 F, .

k=1

4.4.3.3 Optimal Equivalent Ramptress Test Plan

We proposevto formulations for equivalent ramgtresgestplanbased orbefinition 1.

Formulationl
The objective isd minimize the censoring time under equivalent ramgtress using the

same number of test units as that of the baseline test.

Min ¢ (y)

s.t.|fs (X)- fa(y)|¢ d (7.27)
Ny- N =
kek,, ky @

NRY (20 2(t:)) 2 Mg

where fR(y):Asvargfq(f,E ;zD) , the decision variable is theormalizedramprate

y = k. In the following formulations for equivalent rarsgress test plan, afl= k.
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The constraintf, (x)- f,(y)| ¢ densures tht theabsolutedifferencebetween the values

of the objective functions is WithM( ad O) . The constrainN_ - N, 9 ensursthat the

total number of test units equals that of the baseline Té&t constraink 7, ¢ 1 ensures
that the highest test stress ist goeater than or equaébd the maximum allowed stress

level z; whose normalized value is N.Y (z‘ Rl z(z‘R)) 2 M, ensuresninimum expected

number of failuresinderramp-stresss greater than or equtd p fraction of the total test

units. In addition, we specify an upper bound for rduep-rate k ¢ k, in order to avoid

differentfailure modes other thahose occurtadesign stress.

Formulation 2is similar to Formulation 1, but the objectiveti®® minimum number of

total test unitsNy (y) and the constrairdf N, - N = is replaced by - £0.

According to Definition 2 we propose two formulations for determining optimal

equivalent ramystress test plans.

Formulationl

Min ¢ () (7.28)
s.t. fg(x)- fo(y) @

INg- Ng| @

kek, kp, @

NRY (70 2(1:)) 2 M,
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Formulation 2is also similar to Formulation 1, but the objective is the minimum number

of total test unitsN (y) and the constraint g, - N,| @is replaced by - 7| @.

In the next section, weresent examples btain equivalent test plans underglestep

stress and ramstress.

4.5 Numerical Examples

Suppose the baseline accelerated life testing is to be carried out at three -caiisigat

levels for MOS devices in order to estimate its 1% quantile failure at normal operating
conditionszp = 2V. The test needs to be completed in 300 hotins. totalnumber of

units available for testing is 200. To avoid the inducing of failure modes different from
the expected at the design stress level, it has been determined, through engineering
judgment, that thdaighestvoltage level should not exceed = 5V. Thestress level is
normalized to the range of [0, 1] using Eq. (3.9). The required minimum number of

failures for the low stress level is 30% of test units allocated to that level.

Some experiments are conducted to obtain a set of initial values of #regqtars for the
PH model. These values are then normalized a$.0015, b =6... The decision
variable is the low stress level. The optimal value of thalecision variable is
determined by solving the nonlinear optimization problem with nonlineastrains as
well as linear and boundary constraints, formulation (4.10). We use Matlab nonlinear

constraint solverfmincon to solve this optimization problem. The optimum normalized
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low stress level is 0.1139 which is equivalentzio= 2.3417V. Thecorresponding

asymptotic variance ofo% failure time atdesignstress is 0.8082, as shown in Table 4.1.

A simple stepvoltage testas shown in Figure 4.3s conducted for the same MOS
devices usng the same number of test units and censoring tid)eaé is used inhe
constartvoltage test. We investigate optimal test plan with respect to the same objective
function as that of the constaviltage test. The decisiorariablesare the low voltage

level z_ and voltage changing timg. The optimum vales of the decision variables are

determined from following formulation.

Min fs(x):Asvargf01(f,l3 2, = ()

s.t. N, =200
t,=300,t,< ¢
0<z 4,z =1

where” = 0.1 is the required minimum fraction of failures of ttest units beforethe

stress level is increasedhe obtained results are given in Table 4.1.

A ramp-voltage test as shown in Figure 4.5 is also conducted. ptmauwm ramprate is

determined from following optimization problem.
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Min  fo(X) :Asvargfm(f,ﬁ 2, = ()
st. N, =200
¢, =300
k¢0.0L 0k, & °:

NRY (¢,;:z) 20.1N;
The optimum solution for abovampvoltage test is presented in Table 4.1.

From Table 4.1 we observe that for the same objective function, initial estimate of
unknown model parameters, censoring time and total number of test units, thesamp
achieves significantly smaller asymptovariance of the quantile failure prediction at
normal conditions than that of the stefpess test, and the steppess test achieves
significantly smaller asymptotic variance of quantile failure prediction at normal
conditions than that of the constastress testThis providesthe possibilityto investigate
equivalentstepvoltage and rampoltage test plans thachieve the same objective

values as that of constawltage tesbut usingless test duration or number of test units

Since constantstress tests are the most commonly conducted accelerated life tests in
industly and their statistical inference has been extensively investigated, we set the
constanvoltage test plan as the baseline. The first objective is to minimize the test

duration under stepoltage and rampoltage tests while achieng an equivalent
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objective function values to that of the baseline. The efficiency of equivalent plan is

measured by the percentage of reduction in the test time.

Table 4.1 Optimal test plans

/ =0.0015 b=6. U=03=0=300hrs Np=Ns=Ng=200
Test Min Asvargf01(f b ;ZD) Optimal decision value
Constanvoltage 0.8082 Z, =0.1139 (2.3417V)
Stepvoltage 0.4826 Z, =0.1472 (2.4416V)J = 295 hrs
Rampvoltage 0.2245 K =0.0033 (0.0099V/ hr)

To obtain the equivalent test plans for minimum censoring time we follow the
formulations (4.15) and4(27) for equivalent stepoltage test plan and ranyoltagetest
plan, respectively. The allowed absolute difference between the objective function is less

or equal to 0.01, i.ed =0.01 =1%. We use the same number of test units to that of the
baseline test planNg = N, =N; 200). We setthe upper bound of the ranmpte as
0.01V/hr. Then by evaluation of the formulations (4.15) aA@7( using nonlinear

constraint solve fmincon built in Matlab, we obtain equivalent test plans parameters as

shown in Table 4.2.

We observe that the stepltage test significantly reduces the test time. The time

reduction relative to the baseline test plan is 63.33% while the difference between the
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objective functions is less than 1%. The ravoftage test plan further reduces the test
time. The time redttion relative to the baseline test plan is 85.6% while the difference
between the objective functions is less th&®@. This shows that it is feasible to design

equivalent and yet efficient ALT plans having the same accuracy of reliability prediction.

Table 4.2 Equivalent test plans (minimum censoring time)

Test plan Baseline constant Equivalent step Equivalent ramp-
parameters voltage test voltage test voltage test
: 0.8012 0.8044
Obj. values 0.8082 (d=0.0087 =0.879) | d=0.0047 =0.479
Test time (hrs) 300 110 43.2
Test time B 0 0
reduction 63.33% 85.6%
Total nu_mber of 200 200 200
units

When the cost per unit is high, itegtremdy important to reduce the number of test units
used in accelerated life testing. Therefore, the second objective is to minimize the total
number of test units under stepltage test and rarmpoltage test whileachieving
equivalent objective functiorvalues to that of the baselintest The efficiency of

equivalent plan is measured by the percentage of reduction in the number of test units.

To obtain the equivalent test plans for minimum number of test units wevfalhd

evaluate the formulatiori4.16) for stepvoltage test planSimilarly, we follow and
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evaluateformulation (4.27)with the objectivefunction replaced bthe minimum number

of total test unitsN, (y) and the constraint ™,- N =0 replaced byr,- & 0for the

equivalentrampvoltage test plan. The achievedjuivalenttest plan parameters are

presented in Table 4.3.

We observe that the stepltage test again significantly reduces the required number of
test units. The reductiorelative to the baseline test plan is 40.5% while the difference
between the objective functions is less than 0.5%. The-karitpge test plan also further
reduces the required number of test units. The reduction relative to the baseline test plan
is 72% while the difference between the objective functions is less tlanThis
confirmsthatwe candesign equivalent and yetonomicalALT plans having the same

accuracy of reliability prediction.

Table 4.3 Equivalent test plans (minimum number of test units)

Test plan Baseline constant
parameters voltage test Stepvoltage test | Ramp-voltage test
Obj. values 0.8082 0.8111 0.8017

d=0.0036 =0.36% | d=0.0086 =0.86%

Censoring time

(hrs) 300 300 300
Total number of

units 200 119 56
Number of test B 40 5% 7204

units reduction
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4.6 Summary

In this chapter, we investigate the equivalency of ALT plans involving different stress
loadings. We propose four definitions of equivalency in ordefetign equivalent ALT
plan.Based on the definitianl and 2we determine optimal equivalent ALT plans under
the stepstress and the rangiress to the baseline constatress AT plan. The objective

is to shorten the test duration or reduce the numbgrsd units withouny significant
errors in reliability predictionaNumerical examples demonstrate the feasibility of such
equivalent ALT plans undeatifferent stress loadingsThis has significanpractical and
economicalimpacst as itenables reliability practitioners to choose the appropriate ALT

plan to accommodate restrictioolresource and duration of the test.
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CHAPTER 5

EXPERIMENTAL VALIDATION

The objective of this chaptés to validatethe general PHnodelfor time-varying stress
developed in Chapter 4nd theequivalentALT plans by conducting accelerated life
testing experimentsin the Quality and Reliability Engineering Laboratory of the

Industrialand Systemg&ngineering Department.

5.1 Experimental Samples

Each experimental set has a board that contains up to 32 menligtit bulbsas shown

in Figure 5.1The set is placed in a temperature and humidity chamber where humidity is
held constantThe design worikg conditions of this light bulb are:

voltage: 2 Volts,

current: 0.06 amps.

The Ight bulbsmay fail due toone of four modesbreakage of the glass bulkealing
failure, thermal shockf the bulb filamenand long term failuref the filament The most
common failure mode ahe lightbulbsis thermal shock. When the switch is turned on,
full current suddenlyflows to the filament at the speed of light. This sudden, massive
vibration causes the filament to wildly bouncausingfatigue behavior of the filament

which results in breakage of the filamehbng Term Failure occurs when the filament
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eventually becoms so fatigued that its electrical resistance increases to the point that

currentwill not flow. We study and monitor the long term failumethis dissertation

Figure 5.1 Samples of the miniature lightilbs(Zhang, 2006)

5.2 Experiments Setup

In order to continuously monitor the failure timestedt unitsand to control the applied
stressesan automatic accelerated life testing environment is desagmgidown in Figure
5.2.LabJack U3 is a connectblock which interfaces directly to personal computer (PC)
via USB. It retrieves the information of the current statustbetest unitsand the testing
environmentThe SCB68 is a shielded I/O connector block with 68 screw terminals for
easy signal connéon to LabJack U3 The SCB68 features a general breadboard area

for custom circuitry and sockets for interchanging electrical comporteats. light bulb



