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ABSTRACT OF THE DISSERTATION 
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By YADA ZHU  

Dissertation Director: 

Professor  Elsayed A. Elsayed 

 

 

 

 

Accelerated Life Testing (ALT) is an efficient approach to obtain failure observations by 

subjecting the test units to stresses severer than design stresses and utilize the test data to 

predict reliability at normal operating conditions. 

 

ALT plans under multiple stresses needs to be designed to resemble the normal operating 

conditions and obtain useful failure observations for accurate reliability prediction. 

However, to date there is little research into the theory of planning ALT for reliability 

prediction with multiple stresses. Multiple stresses can result in a large number of stress-

level combinations which presents a challenge for implementation. We propose an 

approach for the design of ALT plans with multiple stresses using Latin hypercube 

design (LHD) and demonstrate the proposed method with examples based on actual tests. 

The obtained optimal test plans are compared with those based on full factorial design. 

The comparison shows that ALT based on LHD not only increases the accuracy of 

reliability prediction significantly but also reduces the test duration dramatically. 
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ALT under Type-I and Type-II censoring has been extensively investigated. We 

generalize the one stage censoring to multi-stage progressive censoring, where the 

surviving test units are removed at intermediate stages other than the final termination of 

the test. This procedure further minimizes the test time and cost. We also combine the 

progressive censoring scheme with competing risk when test units experience different 

failure modes to investigate general, practical and optimal ALT plans. 

 

ALT is usually conducted under constant-stresses which need a long time at low stress 

levels to yield sufficient failure data. Many stress loadings, such as step-stresses obtain 

failure times faster than constant-stresses but the accuracy of reliability predictions based 

on such loadings has not yet been investigated. We develop test plans under different 

stress applications such that the reliability prediction achieves equivalent statistical 

precision to that of the constant-stress. The research shows indeed there are such 

equivalent plans that reduce the test time, minimize the cost and result in the same 

accuracy of reliability predictions.  
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1 CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation of the Work 

 

The significant increase in the introduction of new products and the significant reduction 

in time from product design to manufacturing, as well as the increasing customer’s 

expectation for high reliability, have prompted industry to shorten its product test 

duration in order to assess the product’s reliability before release. In many cases, 

Accelerated Life Testing (ALT) is one of the most common approaches that meet such 

requirements. The accuracy of the statistical inference obtained using ALT data has a 

profound effect on the reliability estimates and the subsequent decisions regarding system 

configuration, warranties and preventive maintenance schedules. Without an optimal test 

plan, it is likely that a sequence of expensive and time-consuming tests result in 

inaccurate reliability estimates and improper final product design requirements. This 

might also cause delays in product release or the termination of the entire product 

development (Elsayed, et al., 2007). 

 

Most of the research on ALT planning is focused on single stress application. Optimal 

test plans in terms of stress applications, test unit allocation to stress levels and censoring 

time are usually formulated as nonlinear optimization problems. However, for products 

designed to operate without failure for years, it is difficult to obtain sufficient failure time 

data in a short time using only a single-stress. Therefore, reliability testing using multiple 
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stresses is commonly used in practice to overcome such a difficulty (Escobar and Meeker, 

1995). For instance, ceramic capacitors are tested simultaneously under higher than 

design temperature and voltage (Zelen, 1959, Minford, 1982, Mogilevsky and Shrin, 

1988, Klinger, 1991), Semiconductor electronic components and outdoor optical products 

are tested at higher than operating humidity and temperature (Peck, 1986, Lam, 2007). 

Printed circuit boards are also tested at higher than operating voltage, humidity and 

temperature (LuValle, et al., 1986, Ghazikhanian, 2005).  

 

In many situations, product’s life depends on several stresses operating simultaneously. 

For outdoor products, multiple stresses represent a realistic field situation. For example, 

environments can cause rapid deterioration in the dielectric strength of lead zirconate 

titanates (PTZ) actuators (Pritchard, et al, 2001, Actuator, 2004). The deterioration rate 

increases by the use of high electrical field strengths required to achieve high mechanical 

output. However the PTZ actuators are deployed widely in devices that must work 

reliably for many years at multiple stresses, often in inaccessible locations (Lipscomb et 

al., 2009). Lipscomb et al. (2009) evaluate the possible effect of accelerated stresses: 

temperature, humidity and electrical field on the reliability of PZT actuators. They place 

dry samples in an environmental chamber and fix two of the stresses while varying the 

third in a range of values, which is not a systematic and efficient approach. To date there 

is little research that deals with the theory of planning ALT for reliability prediction 

under multiple stresses. 
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Type-I and Type-II one-stage right censoring are the most common censoring schemes in 

reliability experiments and extensively studied by many researchers including Lawless 

(1982), Nelson (1990), Meeker and Escobar (1998). However, in many situations the 

surviving test units are removed at multiple stages before the final termination point of 

the experiment in order to reduce the test time and cost, save some of the surviving items 

for other tests, or to free up testing facilities for other experimentation. The conventional 

Type-I and Type-II censoring schemes do not provide these features. Progressive 

censoring could provide most of these features. However, existing research on 

progressive censoring is mainly based on an exponential failure time distribution or 

extreme value distribution and a single cause of failure. In many engineering situations, 

units may fail due to one of several possible failure modes (competing risk), e.g. the 

tensile strength of certain materials depends on two or more types of flows (Pascual, 

2007), diodes may fail either open or short (Elsayed, 1996), cylinder liners present two 

dominant failure modes: wear degradation and thermal cracking (Bocchetti et al., 2009). 

These motivate us to investigate ALT under more general censoring schemes while 

considering the effects of competing risk with a practical field conditions, multiple 

stresses.     

 

Current research on ALT plans has been focused on the design of optimum testing plans 

for a given stress loading. For instance, the constant-stress ALT plans have been 

investigated by Nelson and Kielpinski (1976), Maxim et al. (1977), Meeker and Hahn 

(1977), Nelson and Meeker (1978), Meeker (1984), Nelson (1990), Meeker (1994), and 

Yang (1994). The step-stress ALT plans have been studied by Miller and Nelson (1983), 
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Bai et al. (1989), Bai and Chun (1991), Khamis and Higgins (1996), Xiong (1998), 

Xiong and Milliken (1999), and Xiong and Ji (2004), while the ramp-stress ALT plans 

have been considered by Bai et al. (1992), Bai and Chun (1993), Bai et al. (1993), and 

Park and Yum (1998). The wide range of stress applications, stress levels and 

corresponding test durations give rise to the investigation of the equivalency between 

testing plans.  

 

Interestingly, because of wide range of polymer based advanced composite materials that 

are used in certified aircraft applications as well as the large variability of properties 

among these composites and within the same batch of a composite material the 

manufacturers and the Federal Aviation Administration develop a procedure to assess 

equivalence between different polymer based composites. The procedure utilizes 

essentially small data sets to generate test condition statistics such as population 

variability and corresponding basis values to pool results for a specific failure mode 

across all environments. The statistics from the test are compared and assessment of the 

“equivalency” is then made based on the mean and variance of the data, (Tomblin et al., 

2002).  Clearly, the term equivalency here refers to basic statistics about samples from 

populations but it does not provide information on reliability prediction or other time-

dependent characteristics.  

 

A brief literature review shows that fundamental research on the equivalency of test plans 

has not yet been investigated in the reliability engineering field. Without the 

understanding of such equivalency, it is difficult for a test engineer to determine the best 



5 

 

 

experimental settings before conducting actual ALT. Meanwhile, accurate reliability 

prediction at normal operating conditions using the ALT results also requires appropriate 

ALT models. Complicated stress profiles create challenges in the development of 

regression analysis models that relate stress effects to the lifetime.  

 

1.2 Problem Definition 

 

Motivated by above discussion, we study three ALT planning related problems in this 

dissertation:   

 

i. Planning ALT under multiple stresses 

In many situations, product’s life depends on several stresses operating simultaneously. 

For example, outdoor products usually operate under multiple stresses which represent a 

realistic field situation. However, the challenge of planning ALT with multiple stresses is 

the reduction of the number of stress-level combinations (experiments) in a test. When 

test units are subjected to two stresses and two levels for each stress, there are four 

combinations with Full Factorial Design (FFD).  When the numbers of stresses and levels 

of each stress increase, FFD can lead to a large number of stress-level combinations, 

which makes it impractical to investigate or implement.    

  

In this dissertation we present an approach for the design of ALT with multiple stresses 

using LHD. We review the literature on LHD and test plans for ALT under multiple 

stresses. We determine optimal ALT plans with respect to the variance-optimality, D-

optimality and a multi-objective criterion which combines the D-optimality and a space-
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filling measure. We then compare the optimal ALT plans based on LHD with those based 

on FFD in terms of the variance-optimality and the D-optimality under different 

censoring situations. We develop an algorithm to efficiently obtain optimal solutions. We 

validate the performance of the algorithm by simulation. 

    

ii. Design ALT under progressive censoring scheme     

In order to develop ALT under a general scheme, we consider the progressive censoring 

and competing risk when test units are subject to multiple stresses. We assume each unit 

exhibits multiple independent failure modes. A unit fails when any of the potential failure 

modes occurs. The lifetime distribution of each failure mode follows an independent 

Weibull distribution with a common shape parameter. The observed failure time is the 

minimum of all the failure times. Under the progressive Type-I censoring scheme and the 

test condition of multiple stresses, we construct the likelihood function for MLE and 

develop the expression of Fisher information matrix. We determine optimum test plans 

under the following criteria: 

1. Minimization of the asymptotic variance of the mean time to first failure in a 

group of units. 

2. Minimization of asymptotic variance of the quantile failure at normal operating 

conditions. 

3. D-optimality criterion that maximizes the determinant of the Fisher information 

matrix. 

The first one is a new criterion that we firstly proposed for design of ALT plan. In 

addition to above three criteria, we also investigate the design of ALT plans under multi-
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objective optimization. We obtain optimal test plan subject to progressive censoring and 

competing risk under both single and multiple stresses for different objectives. We also 

conduct sensitivity study to indentify unknown parameters that should be initially 

estimated with special care.  

 

iii. Design of equivalent ALT plans  

In ALT, constant-stress is widely used due to the ease of conducting the test and the 

existence of acceptable reliability prediction models. However, constant-stress testing 

takes a long time at low stress levels to yield sufficient failures that can be used in 

providing accurate estimate of reliability characteristics. Due to time or cost constraint, 

there is an increasing interest in choosing time-varying stress loadings, e.g. step-stress 

(simple or multiple), ramp-stress, sinusoidal-cyclic stress or combinations. Each stress 

loading has some advantages and drawbacks. This has raised many practical questions 

such as: Can accelerating test plans involving different stress loadings be designed such 

that they are equivalent? What are the measures of equivalency? Can such test plans and 

their equivalency be developed for multiple stresses? Time-varying stresses also create 

challenges to relate the life of test units to the stress.  

 

In this dissertation we propose an approach for the design of equivalent tests involving 

different stress applications. We define the measure of equivalency for reliability 

prediction. To quantify life-stress relationship under general time-varying stresses, we 

develop a model based on the well known cumulative exposure assumption. We 

formulate equivalent test plans under time-varying stresses to the baseline constant-stress 
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based on the proposed measure of equivalency. We present examples of equivalent test 

plans under constant-stress, step-stress and ramp-stress. We conduct laboratory 

experiments using light bulbs to validate the equivalency of test plans.   

 

1.3 Organization of the Dissertation   

 

The remainder of the dissertation is organized as follows.  Chapter 2 provides a review of 

the current literature of accelerated life testing with multiple stresses, and design of 

experiment with Latin hypercube. Then we present an approach for the design of ALT 

with multiple stresses using LHD. In chapter 3, we present a detailed review on the 

competing risk problem and planning ALT under different censoring schemes. Following 

that we present the design of ALT plans under progressive censoring for units subject to 

competing risk.  In chapter 4, we present the design of equivalent ALT plans.  In Chapter 

5, we present the experimental set-up and results for the validation of the proposed model 

and equivalency of test plans. Chapter 6 concludes this dissertation and discusses the 

future research. 
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2 CHAPTER 2  

ALT WITH MULTIPLE STRESSES  

 

Accurate reliability prediction depends on both the ALT model and the test plan. In this 

chapter, we begin with a review of the widely used ALT models and the current research 

on test plans with single stress and multiple stresses. We also provide a review on the 

LHD. Following this, we present the assumption of this work and propose an approach to 

reduce the stress-level combinations using LHD. We then construct the likelihood 

function and develop the Fisher information matrix for Maximum Likelihood Estimate 

(MLE) of unknown parameters. We present and formulate three optimization criteria to 

determine optimal test plans. An algorithm is developed to evaluate the formulation 

which contains both continuous and discrete decision variables. Finally, examples based 

on a real test are given to demonstrate and validate the proposed method.  

 

2.1 Literature Review 

2.1.1 ALT Models 

ALT models quantify the relationship between the failure time (hazard rate or reliability) 

and a set of explanatory variables (stresses in accelerated life testing area).  We briefly 

present the most commonly used ALT models. 
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2.1.1.1 Accelerated Failure Time Models 

Given a vector of covariates (stresses) x, Accelerated Failure Time (AFT) model 

represents the distribution of the lifetime T as a function of x. For example, the AFT 

model based on Weibull lifetime distribution with scale parameter α and shape parameter 

δ is obtained as: 

 

1

( ; ) exp, , 0
t t

f t t

 


 
  

   
    



 
 
    

   (5.1) 

 

ALT models for which either α or δ depend on x may be considered. Since α or δ are 

positive-values, convenient specifications are 

   

  '( ) exp  βx x  (5.2) 

 

  '( ) exp  γx x  (5.3) 

where β and γ are vectors of regression coefficients of the same length as x.  

 

A Weibull model, that proves useful in many situations, has only α depending on x 

(Lawless, 1982), so that the reliability function of T is given by 

 

  
 '

| exp ex
(

0
e

p ,
) xp

t t
R t t






                      
x β x

x  (5.4) 
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The factor  '
exp β x is called an acceleration factor which relates the effect of a change in 

the covariate. The log-lifetime  logY T in this case has the reliability function 

 

  
 

| exp exp ,
y

R y y




  
       

   

x
x  (5.5) 

 

where   log ( ) x x and 
1   . This is also called an extreme value location-scale 

model. The extensions to other AFT models, such as exponential, log-normal, log-logistic, 

gamma and inverse Gaussian are also important and widely used (Lawless, 1982) for 

reliability prediction.  

 

Advantages of the parametric models include simplicity, the availability of likelihood-

based inference procedure, and ease of use for description, comparison, prediction, or 

decision (Lawless, 1982). 

 

2.1.1.2 Cox’s Proportional Hazards Model 

The most widely used model describing the influence of covariates on the hazard rate 

function is the proportional hazards (PH) or Cox’s model introduced by Cox (1972).  The 

model is described as: 

 

Let ( ; )t x  be the hazard rate at time t  for a unit with a vector of stresses x.  The basic 

PH model is 
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'

0( ; ) ( ) ( )t t c x x      (5.6) 

where 

0 ( )t  an arbitrary baseline hazard rate; 

'( )c x  a known function 

 

Because the hazard rate function ( ; )t x  must be positive, a common feasible function for 

'( )c x is  

                                   
' '

1

( ) exp( ) exp
k

j j

j

c x


 
   

 
x x  , 

which results in 

'

0 0

1

( ; ) ( )exp( ) ( )exp
k

j j

j

t t t x   


 
   

 
x x    (5.7) 

 

The main assumption of the PH model is that the ratio of two hazard rates under two 

stress levels 1x  and 2x  is constant over time.  In other words: 

 

                       

'

1 0 1

1 2'
12 0 2

( ; ) ( )exp( )
exp[ ( )]

( ; ) ( )exp( )

k

j j j

j

t t
x x

t t

 


  

  
x x

x x




   (5.8) 

 

This implies that the hazard rates are proportional to the applied stress levels. 
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Without the specification of the form of baseline hazard rate function 0 ( )t , the 

coefficients of the covariates   could be obtained based on a partial or conditional 

likelihood rather than a full likelihood approach. The PH model usually produces “good” 

reliability estimation with failure data for which the proportional hazards assumption 

does not even hold exactly. 

 

2.1.2 ALT Test Plans 

In order to increase the accuracy of reliability prediction at normal operating conditions 

using accelerated life testing results, a carefully designed ALT plan is required. The test 

plan is designed to minimize a specified criterion, usually the variance of a reliability-

related estimate, such as reliability function, mean time to failure and a percentile of 

failure time, under specific time and cost constraints. We review the work on the design 

of ALT plans for both cases when single or multiple stresses are used. 

 

2.1.2.1  ALT Plans under Single Stress 

Constant-stress test plans consisting of several stress levels are the most commonly used 

ALT plans due to ease of implementation and their acceptable reliability prediction 

models. Each stress level is allocated a proportion of the total number of test units.  

Earlier work by Nelson and Meeker (1978) propose optimal statistical plans for constant-

stress ALTs which include only two stress levels. Such plans lack robustness since the 

assumed life-stress relationship is difficult, if not impossible, to validate.  Meeker and 

Hahn (1985) propose a compromise plan with 4:2:1 allocation ratio for low, middle, and 
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high stress levels and provide the optimal low level stress by assuming the middle stress 

to be the average of the high and the low stress levels. In recent years, by considering 

other test constraints and allowing non-constant shape parameter of the failure time 

distribution,  Meeter and Meeker (1994) advocate the use of the compromised ALT plan 

for three stress levels without optimizing the middle stress level and allocation of test 

units. Yang (1994) proposes an optimum design of 4-level constant-stress ALT plans 

with various censoring times. The test plans derived are proven to be more robust than 

the 3-level best-compromise test plans. 

 

On the other hand, a common criterion of interest in the existing work on constant-stress 

ALT plans is the estimate percentiles of the life distribution at specified design stress. 

Mann et al. (1974) consider linear estimation with order statistics to estimate a percentile 

of an extreme value (or Weibull) distribution at design stress and obtain optimal plans for 

failure data with censored observations. Nelson and Kielpinski (1976) obtain optimum 

plans and best traditional plans (traditional plans use equally spaced levels of stress with 

equal allocation of test units to each stress level) for the median of normal and lognormal 

distributions. Their model assumes that the normal distribution location parameter  (also 

the mean) is a linear function of stress and the scale parameter  (also the standard 

deviation) does not depend on stress.  They also assume simultaneous testing of all test 

units and censoring at a pre-specified time. Nelson and Meeker (1978) provide similar 

optimum test plans to estimate percentiles of Weibull and smallest extreme-value 

distributions at a specified design stress when test units are overstressed.  They assume 
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that the smallest extreme-value location parameter  (also the 0.632 percentile) is a linear 

function of stress and that the scale parameter  is constant.  

 

Other optimization criteria for constant-stress ALT plan are also widely investigated. 

Martz and Waterman (1977) use Bayesian methods for determining the optimal test stress 

for a single test unit to estimate the survival probability at a design stress. Meeker and 

Hahn (1985) consider the optimum allocation of test units to overstress conditions when 

it is desired to estimate the survival probability at a specified time and design conditions.  

The optimal criterion is to minimize the large sample variance under a logistic model 

assumption. Onar and Padget (2002) determine optimum accelerated test plans using the 

D-optimality criterion and assume an inverse Gaussian model. Ng et al. (2006) develop 

an optimal ALT plan based on the A-optimality criterion with complete data. In practice, 

the constant-stress ALTs need a long time at the low stress levels to obtain all or 

sufficient failure data. This has prompted the application of time-varying stresses in ALT 

such as step-stress and ramp-stress.   

 

Under step-stress, the test units are first subjected to a lower stress level for some time; 

then the stress is increased to a higher level and held constant for another amount of time; 

the steps are repeated until all units fail or the predetermined test time has expired. To 

model the effects of time dependent stress on lifetime, Miller and Nelson (1983) present a 

cumulative exposure model which assumes that the remaining life of a test unit depends 

only on the “exposure” it has experienced and does not remember how the exposure was 

accumulated (this is a major drawback of the model). They obtain optimal test plans that 
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minimize the asymptotic variance of MLE of the mean life at the design stress. Bai et al. 

(1989) extend the results to the case where a prescribed censoring time is involved. Bai 

and Chun (1991) obtain the optimal simple step-stress ALT with competing causes of 

failure. Khamis and Higgins (1998) present 3-step step-stress plans assuming a linear or 

quadratic relationship between the life and the stress. Xiong (1998) addresses the effect 

of the statistical inferences on the parameters of a simple step-stress ALT model with 

Type-II censoring. Xiong and Milliken (1999) study the statistical models in step-stress 

ALT when the stress change times are random. Xiong and Ji (2004) study the optimal 

design of a simple step-stress test plan involving grouped and censored data.  

 

2.1.2.2  ALT Plans under Multiple Stresses 

Most of the research on ALT planning is focused on single stress application. Optimal 

test plans in terms of stress applications, test unit allocation to stress levels and censoring 

time are usually formulated as nonlinear optimization problems. However, for products 

designed to operate without failure for years, it is difficult to obtain sufficient failure time 

data in a short time using only a single-stress. Meanwhile, in many situations product’s 

life depends on several stresses operating simultaneously. To date there is little research 

into the theory of planning ALT for reliability prediction with multiple stresses.  

 

Nelson (1990) describes a simulation-based method for planning ALT with two factors: 

voltage stress (volts/mm) and insulation thickness (mm). The voltage stress is the only 

acceleration factor and thickness is an ordinary experimental factor; the effect of the 

latter on the insulation life is of interest to engineers. Motivated by Nelson’s work, 
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Escobar and Meeker (1995) extend their previous work on the compromise plan method 

to design ALT with two types of stresses. More recently, Xu and Fei (2007) apply the 

compromise plan method to using two step-stresses. Though the approaches in Escobar 

and Meeker (1995) and Xu and Fei (2007) are interesting and practical for the design of 

test plans under two types of stresses, it is difficult to extend these methods to three or 

more stresses due to the difficulty of obtaining unique optimal solutions. Alternatively, 

Park and Yum (1996) and Elsayed and Zhang (2009) design ALT plans with factorial 

design arrangements assuming that the failure times follow exponential distribution and 

the proportional odds model, respectively. They consider the case when test units are 

subjected to two stresses and two levels for each stress. When the number of stresses and 

levels of each stress increases, complete factorial design can lead to a large number of 

stress-level combinations which makes it impractical to implement. 

  

2.1.3 Latin Hypercube Design 

A thorough literature review indicates that previous work on design of ALT plan is 

limited to single stress. The great challenge to performing ALT with multiple stresses is 

the reduction of stress-level combinations, i.e. the number of required experiments. To 

address this issue, we propose a new approach to design ALT experiments with multiple 

stresses based on LHD. 

 

An LHD with n experiments and k factors, denoted by LHD (n, k), is an n k matrix

 1 2, , ,
T

nX x x x , where each row ,1 ,2 ,, , ,T

l l l l kx x x   x represents an experiment and 

each column represents a factor given by a permutation of its normalized levels
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 1, 2, , n . In this dissertation, stresses, factors and variables are used interchangeable; 

and runs, experiments and experiment points are also interchangeable. One of the main 

features of using LHD is that the stress-level combinations can be dramatically reduced 

as shown later. Consider a test with k factors and n levels for each factor. The Full–

Factorial Design (FFD) requires n
k
 experiments, but an LHD needs only n experiments. 

Consequently, the overall testing time is significantly reduced. Though Fractional 

Factorial design (FFd) can facilitate the reduction of the number of experiments, the 

selection of appropriate fraction and allocation of test units present a challenge. On the 

other hand, a desirable property of an LHD is that when an n-experiment design is 

projected onto any factor, there are n different levels for that factor. For cases where one 

of the purposes of executing the experiment is to evaluate the effect of explanatory 

factors on reliability, the optimal LHD gives the best opportunity to investigate the true 

behavior of the response across the range of the factors (Zhao and Cui, 2007).  

 

Table 2.1 gives two examples of LHD. In general, an n-experiment LHD can be 

generated using a random permutation of  1, ,n for each factor. Each permutation 

leads to a different LHD. For k factors, there can be  !
k

n LHDs.  
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Table 2.1 LHD (5, 3) and LHD (6, 4) 

n = 5, k = 3 n = 6, k = 4 

1 1 2 

2 5 3 

3 2 5 

4 3 1 

5 4 4 

1 3 3 4 

2 5 6 2 

3 2 1 6 

4 1 5 3 

5 4 4 1 

6 6 2 5 

 

 

A random generated LHD may possess undesired properties and may act poorly in 

estimation and prediction. For example, consider an extreme case in Figure 2.1. For such 

an LHD, spurious correlation is introduced among the independent variables. As a result, 

it is impossible to distinguish between the effects of the two variables based on a test with 

such design. Specially, when the unexplored area is large, the effect of the ordinary 

experimental factor on reliability in the unexplored region cannot be assessed. Therefore, 

it is more appropriate to spread the design points as evenly as possible within the design 

space defined by the lowest and highest levels of each stress. There has been some work 

in the literature to improve the space-filling property.   

 

 

Figure 2.1 A two factor LHD-the extreme case 
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2.1.3.1 Maximin Distance Criterion and ϕp Criterion 

A design is called a maximin distance design (John et al., 1990) if it maximizes the 

minimum inter-site distance. For two experiment points (i.e. two rows in the design 

matrix X) s and t, the inter-site distance of order q (q-norm distance) is defined as: 

 

 

1

1

,

q
k

q

j j

j

d s t


 
  
 
s t     (5.9) 

 

where k is the number of factors, and 1q  . 1q  , 2q  , and q  corresponds to 

rectangular, Euclidean, and infinity distance, respectively. Morris and Mitchell (1995) 

proposed an intuitively appealing extension of the maximin distance criterion. For a 

given design, by sorting all the inter-sited distance, a distance list  1 2, , , sd d d and an 

index list  1 2, , , sJ J J can be obtained, where di values are distinct distance values with 

1 2 sd d d   , Ji is the number of pairs of sites in the design separated by di, s is the 

number of distinct distance values. A design is called a ϕp-optimal design if it minimizes: 

 

1

1

p
s

p

p i i

i

J d 



 
  
 
     (5.10) 

 

where p is a positive integer. The ϕp criterion is a variant of the maximin inter-site 

distance criterion.  
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2.1.3.2 Entropy Criterion 

Shannon (1948) used entropy to quantify the “amount of information”: the lower the 

entropy, the more precise the knowledge is. Minimizing the posterior entropy is 

equivalent to find a set of design points on which we have the least knowledge. It has 

been further shown that the entropy criterion is equivalent to minimizing the following 

(Koehler and Owen, 1996): 

 

log | | R , 

 

where R is the correlation matrix of the experimental design matrix  1 2, , ,
T

nX x x x , 

whose elements are: 

 

1

exp | | ,1 , ;1 2
k

l li

t

i j

l

j lR x x i j n t


 
      

 
 , 

 

where θj (l = 1,…,k) are correlation coefficients.  

 

2.1.3.3 Centered L2 Discrepancy Criterion 

The Lp discrepancy is a measure of the difference between the empirical cumulative 

distribution function of an experimental design and the uniform cumulative distribution 

function. In other words, the Lp discrepancy is a measure of non-uniformity of a design. 
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Among Lp discrepancy, L2 discrepancy is used most frequently since it can be expressed 

analytically and is much easier to compute (John et al., 1990). Hickernell (1998) 

proposed three formulas of L2 discrepancy, among which the centered L2 –discrepancy 

(CL2) seems the most interesting. 
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A design is called uniform design if it minimizes the centered L2 discrepancy (Fang et al., 

2000). 

 

In this dissertation, we use the maximin inter-site distance criterion. Based on LHD, we 

develop optimal ALT plans under multiple stresses as follows.  

 

2.2 The Lifetime Distribution 

Assumptions 

1. We consider  , 2k k  constant-stresses for ALT plans. 

2. Nπl units, randomly chosen from N, are allocated to stress-level combination

,1 ,2 ,, , ,T

l l l l kx x x   x , where 
1

1
n

l

l




  and  0 1l l    is the fraction of units 

allocated to stress-level combination l. 
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3. Under Type-I censoring, the test is continued until all test units fail or when a 

given censoring time η is reached. Under Type-II censoring, the test is continued 

until a specified number of failures is reached. 

4. The lifetime T of a unit follows a Weibull distribution with scale parameter α and 

shape parameter λ with probability density function (pdf):

   
1

; , exp , 0f t t t t
    
    

 
 at both the normal operating 

conditions and the test conditions. We also assume that the shape parameter λ is 

constant while the scale parameter α depends on a vector of stresses through

    0 1 1 2 2ln k kx x x          x βx , where β is a vector of regression 

coefficients. This assumption is a special case of the Cox’s PH model. 

5. The lifetimes of test units are statistically independent. 

 

Due to the difficulty in extrapolation from a model with interactions among multiple 

factors, experimental factor definitions should be chosen such that the statistical 

interactions among the factors are minimized (Escobar and Meeker, 1995, 2006). In some 

cases, a sliding level technique can be used to avoid potential interactions. For example, 

Nelson (1990) uses the factors of insulation thickness and voltage stress (volts/mm) 

instead of thickness and volts which would result in a strong interaction. In other 

situations, physical or chemical characteristics might suggest ALT models with 

interaction terms such as the generalized Eyring model (Elsayed, 1996). In this 

dissertation, we limit our discussion to linear life-stress relationship without interactions. 

However, the methodology for finding optimal plans can be extended to nonlinear life-

stress relationships. 
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Stress normalization 

We choose the stress levels for each stress type using Eq. (2.11) as 

 

  1 , 1, ,
1

H L
l L

x x
x x l l n

n


   


,    (5.11) 

 

where xL and xH are the lowest and highest testing levels of  the stress, respectively. The 

xl for 1, ,l n  form an n-term arithmetic sequence which can always be transformed to 

 1, ,n  using linear operation. The normalized model parameters ( β and ζ), and 

censoring time are then used in the computation. 

 

On the other hand, the number of stress levels (experiments) n affects the prediction and 

estimation accuracy of the reliability characteristic.  In planning single-stress ALT, it is 

sufficient to use three or four levels in general (Escobar and Meeker, 1995). For ALT 

with k (k ≥ 2) stresses, we suggest using at least k+1 levels for each stress in order to 

ensure good properties of the Fisher information matrix. This will be interpreted in Sec. 

2.3. In practices, simulation can be performed to evaluate the value of n. 

 

2.3 Likelihood Estimate 

Using the logarithmic transformation of T and inverse transformation
1   , we obtain 

the distribution for  lnY T  with pdf as: 
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         1 1 1; , exp exp ,Yf y y y y                 
βx βx βx (5.12) 

 

Let  Y Z  βx , Eq. (2.12) can be written with respect to Z as,  

 

    exp exp ,Zf z z z z      , 

 

which is the smallest extreme-value distribution. The log likelihood of a single 

observation in the  1,...thl l n experiment of an ALT is, 

 

         , exp( ) ln( ) 1 exp      l l l l lL I z z z I zβ , 

 

where     1ln T

l l l      
 

β x  is the standardized log censoring time of the l
th

 

experiment, ηl is the censoring time, xl is the l
th

 row of the LHD (n, k) that specifies the 

stress-level combination, and  lI z  is an indicator function defined by 

  

 
 1 if failure

0 otherwise

l l

l

z
I z

 
 
  

 

Under the regularly condition (Meeker and Escobar, 1998), the elements of the expected 

Fisher information matrix for an observation at ξl are the negative s-expectations of the 
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second partial derivatives of the log likelihood with respect to the unknown model 

parameters:  

 

 
2

, ,

2
, , 0,...,

l i l j

l

i j

x xL
E A i j k

  

   
      
     

, 

 

 
2

,

2
, 0,...,

l i

l

i

xL
E B i k
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2

2 2

1
l

L
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, 

 

where 

  ,0 1lx  , 

 

 ( 1( ) ) exp( exp( ))l l lA       , 

 

     exp exp exp( ) ( )
l

l

l l l l l l l lz z zB ez dz


  


  , 

 

     2 2( ) ) exp exp e( (p )x
l

l

l l l l l l l l lC z z z z dz e


   


    . 
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Let Fl be the Fisher information matrix of an observation in the l
th

 experiment. The total 

Fisher information matrix for N s-independent observations is
1

n

l l

l

F N F


  . Due to the 

invariant characteristic, we study  2 N F  : 

 

       

     

   

 

1,

,

1, ,

1 1 1 1

2

1, , 1,
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,

1 1

1
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l

k l

n n n n

l l l l l k l l l l l
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n n n
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 (5.13) 

 

For the case without censoring,  2 N F   is given by (2.14). That is Eq. (2.13) with

 lA  ,  lB  ,  lC  replaced by their limits as   , viz, 1, 1-γ,  
2

2
1

6


  , 

respectively, where γ and π are the Euler’s constant and circular constant, respectively. 

We observe from Eq. (2.14) that the Fisher information matrix is dependent of the model 

parameters. In addition, when 3k   and 2n  , a test using three stresses and each with 

two levels, Eq. (2.14) becomes a 5 5  matrix, Eq. (2.15). The possible LHDs include

1 1 1

2 2 2
, 

1 1 2

2 2 1
, 

1 2 1

2 1 2
 and 

1 2 2

2 1 1
which result in two identical rows (2&3, 

2&4, or 3&4) in Eq. (2.15). Thus the Fisher information matrix is singular. If each stress 
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has three levels, there is high chance that the Fisher information matrix is singular. 

Therefore, we recommend 1k  levels for a k factor design. 
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 (5.15) 

 

Let  
'

0 1, , , ,k   θ be the vector of model parameters after normalization and 

 g θ be a real-valued function, such as the quantile life, reliability function or hazard 

function at specified time and stress condition x . Let  
'

0 1
ˆ ˆ ˆ ˆ ˆ, , , , ,k   θ and  ˆg θ be 



29 

 

 

estimates of θ and  g θ , respectively. Using the delta method (Meeker and Escobar, 

1998), the asymptotic variance of  ˆg θ , denoted by   ˆAsvar g θ , can be approximated 

by  

 

  
   

ˆ

ˆ ˆ
ˆ ˆAsvar

ˆ ˆ

T

g g
g

    
    
    
   

θ

θ θ
θ

θ θ
, 

 

where ˆ̂θ
presents the asymptotic variance-covariance matrix which is the inverse of the 

Fisher information matrix evaluated at the MLE of θ̂ .  

 

2.4 Optimal ALT Plan Formulation 

We propose an optimal design of ALT plans based on the LHDs. This results in a 

significant reduction of the stress-level combinations for ALT with multiple stresses. 

Consider a test with three accelerated stresses with a minimum of three levels for each 

stress. As a result, the FFD requires 3
3
=27 experiments but the LHD requires three 

experiments. To reduce the singularity of the Fisher information matrix, more levels for 

each stress are desired. When the stress levels are four for each stress, the FFD and LHD 

require 4
3
 = 64 and four experiments, respectively. Clearly, as the number of stress level 

increases, the required experiments for FFD and LHD increase exponentially and linearly, 

respectively. If all the experiments have the same censoring time, the total test time based 

on LHD is significantly shorter than that based on FFD as illustrated by the examples in 

Sec. 2.6.2.  
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In practice, LHD can be randomly generated but such LHD may have undesired 

properties and may act poorly in estimation and prediction (Ye et al., 2000). In this 

section, we investigate three criteria for the design of the optimal plan in terms of stress-

level combination matrix *
X and unit allocation  1, , 1l l n   under different 

censoring situations. 

 

2.4.1  Variance Optimality 

The main objective of an ALT experiment is to obtain accurate reliability estimates with 

minimum variance at normal operating conditions. In this section, we design an optimal 

test plan that minimizes the asymptotic variance of the logarithm of quantile failure at 

design stresses (normal operating conditions). The MLE of the log q
th

 quantile failure at 

design constant-stresses
Dx  is given by 

 

0 1 ,1 ,
ˆ ˆ ˆˆ ˆ

q D k D ky x x h        , 

 

where  ln ln 1h q     is the q
th

 quantile of the smallest extreme-value distribution. 

When h equals γ, ˆ
qy corresponds to the mean of the log lifetime distribution at Dx .With 

the delta method, the asymptotic variance of ˆ
qy is given by, 

 

  ˆ,1 , ,1 ,
ˆˆAsvar 1 1

T

q D D k D D ky x x h x x h       θ
, 
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where ˆ̂θ
is the inverse of Eq. (2.13) evaluated at the MLE  

'

0 1
ˆ ˆ ˆ ˆ ˆ, , , , ,k   θ . We 

now formulate the optimization problem under different censoring situations. Let 

 * 1 , for 1, ,    l l l l n be the proportion of units allocated to each experiment and 

*

l be the specified lower bound of
l . 

 

Under Type-I censoring 

Given the censoring time of each experiment  1, ,l l n  , the optimization problem is 

formulated as, 

 

Min    ˆAsvar qy  

s.t.  * 1, 1, ,l l l n     

1

1l

n

l





 

 

The above formulation can be extended to the case without censoring when the censoring 

time is set to infinity (
l   ), i.e. the test is terminated when all the units fail. 

 

Under Type-II censoring 

Suppose  * 1, ,ln l n  be the minimum number of failures to be observed in the l
th

 

experiment. Under Type-II censoring, the optimization problem is formulated as, 
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Min    ˆAsvar qy  

s.t.  * 1, 1, ,l l l n    , 

1

1l

n

l




  

  *, 1, ,l l lN n l n       (5.16)  

*, 1, ,l lN n l n    

 

where   is the cumulative failure distribution of Z. From (2.16), we obtain

  *ln ln 1 , 1, ,l l ln N l n      which is the upper integration limit of  lB  and 

 lC  . This results in the Fisher information matrix given in Eq. (2.13).   

 

The decision variables in above formulations are the n k LHD matrix X* that specifies 

the stress-level combinations, and the proportion of test unit allocation  1, , 1  l l n . 

These formulations can be numerically evaluated by providing initial values for the 

model parameters. 

 

Unit allocation 

In above formulations,  1, , 1  l l n are decision variables. To reduce the 

computational effort, we introduce an alternative method for unit allocation. Under single 

stress ALT, usually more test units are allocated to lower stress levels than higher stress 

levels, e.g. the widely used 4:2:1 rule. When the relative impact of each stress on the 

lifetime is known, then we use the following unit allocation:  
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1 ,1 2 ,2 ,

1 1 1

1 ,1 2 ,2 ,

1 1 1

l l k l k

l n n n

l l k l k

l l l

w x w x w x

w x w x w x


  

  

  


       
   (5.17) 

 

where 
1

1, 0 1, for 1, ,
k

i i

i

w w i k


    are weights reflecting the relative effect of each 

stress on lifetime. Eq. (2.17) is a monotonically decreasing function of stress levels of 

each factor. On the other hand, we use equal allocation of the test units to each 

experiment, i.e. 1 for 1, ,l n l n   when no information on the relative effect of each 

factor is known.    

  

2.4.2  D-optimality 

The volume of the asymptotic joint confidence region of the model parameters is 

proportional to the square root of the determinant of 1F   . A larger value of the 

determinant of the Fisher information matrix corresponds to a higher joint precision of 

the estimates of β and ζ. Therefore, we choose D-optimality which maximizes the 

determinant of the Fisher information matrix as the second criterion. Due to the invariant 

characteristic, we investigate the determinant of  2 N F  , which is given by Eq. (2.13). 

The optimization problems under different censoring situations are formulated as follows. 

 

Under Type-I censoring 

Given the censoring time of each experiment  1, ,l l n  ,  
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Max    2

ˆ ˆ,

ˆDet N F


 
β

 

s.t.  * , 1, ,l l l n     

1

1l

n

l





 

 

where  Det presents the determinant of the matrix. The above formulation also can be 

extended to the case without censoring when the censoring time 
l   . 

 

Under Type-II censoring 

Given  * 1, ,ln l n , the required number of failures for each experiment, 

 

Max    2

ˆ ˆ,

ˆDet N F
 

   

s.t.  * 1, 1, ,l l l n    , 

1

1l

n

l




 , 

  *, 1, ,l l lN n l n     

*, 1, ,l lN n l n    

 

Initial estimate of the model parameters are required to evaluate the formulations under 

Type-I and Type-II censoring, whereas the formulation for the case without censoring 

does not depend on the model parameters. 
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2.4.3  Multi-objective Optimality 

Although the reliability of a product might be affected by numerous factors, usually few 

are dominated. Oftentimes, the few important factors contain both accelerating variables 

and ordinary explanatory variables, such as the insulation thickness example (Nelson, 

1990). ALTs are often designed not only to estimate unknown parameters but also 

investigate the effect of the ordinary experimental factors. Suppose that x1 and x2 are 

accelerating variables and x3 is an ordinary experimental factor, or x1 is an accelerating 

variable and x2 and x3 are ordinary experimental factors. Consider the model, 

 

  0 1 1 2 2 3 3x x x       βx , 

 

where the β’s are unknown. To reduce the variance of the estimate of unknown 

parameters, D-optimality without censoring is an appropriate choice as the determinant of 

the Fisher information matrix is independent of the model parameters. Meanwhile, to 

investigate the effect of ordinary experimental factors, the experimental points of a LHD 

should be spread as evenly as possible. The maximin inter-site distance criterion defined 

by Eq. (2.10) can be written as a scalar-valued function,  
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where p is a positive number, di is defined by Eq. (2.9). The maximin inter-site design 

minimizes ϕp, so it is also called a ϕp-optimal design.  

 

However, it is shown that LHDs with D-optimality may not achieve maximum minimum 

inter-site distances. For instance, consider 5-experiment and 3-stress LHDs. We plot the 

inter-site distance criterion 
1

p


against the determinants of the Fisher information matrix 

in Figure 2.2. We observe that the data points are highly scattered indicating that 

optimization in terms of one criterion may not lead to optimization of the second criterion. 

The problem is worse with more stress-level combinations. Therefore, we propose 

combining the ϕp criterion and the D-optimality as a multi-objective optimization 

problem. In order to combine ϕp criterion with the D-optimality which maximizes the 

determinant of the Fisher information matrix, we use 1p p  instead. 

 

 

Figure 2.2 D-optimality vs. distance measure 
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2.4.3.1 Upper and Lower Bounds of Optimization Criterion 

The D-optimality and p  are two different criteria and their magnitudes are also 

different. In order to consider an optimization function that combines both criteria, 

normalization is required based on the upper and lower bounds of each. This is achieved 

as follows. 

 

Since β’s are unknown and investigation of the effect of the explanatory variables on 

lifetime is one of the purposes of the test, we assume that the test units are equally 

allocated to each stress-level combination ( 1

l n  ) for simplicity. Thus the information 

matrix  2

sF n N F   is given by Eq. (2.18). The associated upper and lower bounds 

are derived as discussed below.   
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PROPOSITION 1. For a three factor Latin hypercube design  ,3LHD n , the determinant 

of Fisher information matrix of MLE based on the smallest extreme-value model is, 

 

  0 Det DetUs
F X , 

 

where DetU denotes the upper bound and is given by 

 

      
3 34 2

UDet 1 1 2 1 10368, 1n n n n n n        . 

 

The proof is given in Appendix 1. 

 

For rectangular distance (  
1

,
k

j j

j

d s t


 s t ) criterion, Joseph and Hung (2008) derive 

the upper and lower bounds of p . In this dissertation, we derive upper and lower bounds 

of 1p p  for general q-norm distance where q≥1.  

 

Consider an LHD with n experiments and k factors, denoted by  LHD ,n k . Let

 1 2
2

, ,
n

d d d be the inter-site distances among the n experiment points defined by Eq. 

(2.9).  
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LEMMA 1.  For an  ,LHD n k , the average of q’s power of q-norm inter-site distance is 

a constant given by 
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For the case 2q  (Euclidean distance),  2 1 6d kn n  . 

 

PROPOSITION 2. For an  ,LHD n k , , ,p L p p U     , where  
1
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Proofs of lemma 1 and proposition 2 are given in Appendix 2.  

 

2.4.3.2 Multi-objective Formulation 

Using the upper and lower bounds obtained above, the multi-objective criterion 

considering both the D-optimality and the inter-site distance is formulated as, 

 

Min 
  

 
 

 ,

, ,

det
1 , 0,1

s p p L

U p U p L

F
w w w

Det

 
   

 

X X
  (5.19) 
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where w is a pre-specified weight reflecting the test designers’ preference for the criterion, 

and X is a 3n LHD matrix.  

 

2.5 Optimization of the Test Plan 

The design matrix X contains permutations of integer values but the unit allocation 
l  is 

continuous. Therefore, the optimization criteria presented in Sec. 2.4 are very difficult to 

evaluate by the classical analysis of function approach such as gradient search. In general, 

the generation of optimal LHD starts from a random LHD, then by swapping the order of 

two factor levels in a column of the matrix a new design is generated and evaluated. 

Since the generation of the design matrix X is a discrete problem, generic probabilistic 

metaheuristic might be utilized to obtain optimum solution in relatively short 

computational time. For instance, the threshold accepting heuristic is used to find optimal 

LHDs in terms of the U-type design (Winker and Fang, 1998), the stochastic evolutionary 

algorithm is used to evaluate the ϕp criterion, entropy criterion, and centered L2 

discrepancy criterion for optimal LHD, and the simulated annealing (SA) algorithm is 

used by Morris and Mitchell (1995) to find optimal LHDs according to the ϕp criterion 

and by Joseph and Hung (2008) to find orthogonal LHDs. However, searching for 

optimal unit allocation  1, , 1l l n   requires searching in a continuous space. 

Therefore, we propose a mixed algorithm to evaluate the criteria of variance optimality 

and D-optimality when optimal unit allocation is a decision variable. Since the 

convergence of a standard SA is already established (Lundy and Mees, 1986), we use SA 

to evaluate the objective functions and call a nonlinear optimization algorithm fmincon 

(see Matlab) to search the new best  1, , 1l l n    at each iteration. Regarding the 

http://en.wikipedia.org/wiki/Probabilistic_algorithm
http://en.wikipedia.org/wiki/Metaheuristic
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multi-objective criterion, we propose a Modified SA algorithm which significantly 

improves the computational efficiency. All the MSA related parameters are set at the 

same values as those used in a standard SA. 

 

Without loss of generality, the first column of a design X is fixed as 
'

1, 2, , n . The 

mixed algorithm begins with a random permutation of the remaining columns and

 1, , 1l l n   , and proceeds through examination of a sequence of designs and 

 1, , 1l l n   values. Each new design is generated as a perturbation of the preceding 

one which is formed by interchanging two randomly chosen elements within a randomly 

chosen column (excluding the first column) of the design matrix. Given the perturbed 

matrix Xtry, SA calls fmincon to evaluate the same objective function and finds the best 

 1, , 1l l n   values associated with Xtry. If the perturbed matrix Xtry and the 

corresponding best  1, , 1l l n   values lead to an improvement of the objective 

function, they are then adopted as the new current design and  1, , 1l l n   values 

which are then used for the next perturbation and corresponding best πl values. Otherwise, 

replacement of current design X and  1, , 1l l n    values are made with probability

    exp try t   
 

X X  (where t is the annealing temperature and   is the 

objective function). The step of using fmincon is not needed when the πl values are given, 

e.g. by Eq. (2.17). 
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For the multi-objective optimality, we modify the SA algorithm such that the chosen 

elements to swap are based on defined probabilities. For an 3n LHD, since the first 

column is fixed as  
'

1, 2, , n , the permutation of remaining two factors need to be 

determined. From the proof of proposition 1 we observe that the permutation of the 

second factor and third factor affects the elements 
1 1, 2,

1

n

l l

l

a x x


 and 
2 1, 3,

1

n

l l

l

a x x


 of Fs. 

The maximum   det sF X  is obtained when  
2

1 2 1 4a a n n    for an n-experiment 

design. Suppose after some iterations,  
2

1 1, 2,

1

1 4
n

l l

l

a x x n n


   , then swapping 

elements of the second factor may not increase the determinant any more (Note the first 

factor is fixed). According to this observation, we propose to select the column to perturb 

base on the comparison of  
2

1 1 4a n n  and  
2

2 1 4a n n  . That is, at each 

iteration, we compute  
2

1 1 4a n n  ,  
2

2 1 4a n n  , and  
1

, ,1
p

p

p i i jj i
d 


   for 

each row 1,2, ,i n , where ,i jd is the q-norm inter-site distance between the points i 

and j. The second column is chosen to swap with probability p2 given by 

    
2 2

1

1,2

1 4 1 4 , 1,i

i

a n n a n n
 




      . The third column is chosen with 

probability 1- p2. Clearly, the selection of the column is not random and is based on the 

probability values calculated above. Within the selected column, element i is chosen with 

probability
, ,

1

n
p p

p i p i

i

  (Joseph and Hung, 2008) to swap with another randomly 

selected element in the same column. This generates a new design tryX . If the objective 

function evaluated at the new design is smaller than that of the current design X then the 
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new design replaces the current design; otherwise, it replaces the current design with 

probability     exp try t   
 

X X . 

 

2.6 Examples 

In this section, we demonstrate the application of LHD for finding optimal ALT plans 

based on an actual test. Then we compare the optimal ALT plans based on LHD with 

those obtained based on FFD and validate the performance of the MSA algorithm. 

Lipscomb et al. (2009) conduct tests to study the effect of Relative Humidity (RH), 

temperature (Temp) and electrical field (kilo Voltage per millimeter) on reliability of 

PTZ actuators by varying each accelerated stress independently. In their study, the range 

of Temp is 35-85 ºC, RH is 60-90%, and the applied electrical field is 0.31-2.2 kV/mm. 

In the following examples, we adopt the stresses and associated values that Lipscomb et 

al. (2009) use in their study. However, our objective is to develop optimal ALT plans 

based on LHD by simultaneously applying multiple stresses to predict reliability at 

normal operating conditions.  

 

Suppose due to time constraint only five experiments can be conducted in an ALT. Using 

three stresses and five experiments, we construct an LHD (5, 3). Let the RH (%), Temp 

(ºC), and electrical field strength (kV/mm) be the first, second and third stress, 

respectively. We use Eq. (2.11) to choose five equally spaced values (60, 67.5, 75, 82.5, 

and 90) from the range of RH (60-90%) and normalize them as (1, 2, 3, 4, and 5). 

Similarly, we choose 0.31, 0.7825, 1.255, 1.7275, and 2.2 from the range of the electrical 

field strength (0.31-2.2 kV/mm). The maximum and minimum Temp values are firstly 
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converted to scaled Kelvin using  10000 Temp 273.5 . From the range of scaled 

Kelvin Temp (28-32), we use Eq. (2.11) to select five equally spaced values (28, 29, 30, 

31, and 32) and normalize them as (1, 2, 3, 4, and 5). The results of stress normalization 

are summarized in Table 2.2. We assume the design stresses are 30%, 20ºC, 0.2 kV/mm. 

Using the same linear operation to normalize each testing stress levels as 1, ,5 , the 

corresponding design stress is normalized as -3, 7, 0.7672. According to the relative 

effects of each stress and the mean life of the PTZ actuators under different conditions 

provided by the tests in Lipscomb et al. (2009), we estimate the model parameters and 

normalize them as , [5.23, 0.485, 0.427, 0.8, 0.8]
T T   β  .   

 

 

Table 2.2 Testing and normalized stress levels 

Stress LHD 1 2 3 4 5 

I Relative Humidity (%) 60 67.5 75 82.5 90 

II Temp (°C) 35 45 55 70 85 

III Electrical Field (kV/mm) 0.31 0.7825 1.255 1.7275 2.2 

 

 

2.6.1  Optimal ALT Plans 

Usually the lower quantile failure is of interest when one chooses the asymptotic variance 

optimality. Thus, in this example, we minimize the asymptotic variance of MLE of q = 

0.1 log quantile failure at design stresses. The lower bound of the proportion of units 

allocated to each experiment is * 0.015l  of the total test units. We terminate the test 
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when all units fail, censoring time 10l   time-units is reached under Type-I censoring, 

or * 15ln   failures are observed under Type-II censoring. With the formulation of the 

variance optimality given in Sec. 2.4, we search the optimal plans with the algorithm 

presented in Sec. 2.5. The results are shown in Table 2.3. For the case of no censoring, 

the ηl / nl
* 
is represented by infinity. 

 

Under each censoring situation, we study all three unit allocation methods given in Sec. 

2.4. When πl is determined by Eq. (2.17), the weights w1, w2, and w3 corresponding to 

applied field (kV/mm), Temp, and RH are 5/9, 3/9, and 1/9, respectively. Under all cases, 

the minimum Asvar is achieved when  1, , 1l l n    values are decision variables. 

Under Type-I censoring and no censoring, when the units are allocated according to Eq. 

(2.17), the achieved asymptotic variances are slightly smaller than those using equal 

allocation of test units. However, under Type-II censoring when the units are allocated 

equally, the asymptotic variance is smaller than that using Eq. (2.17).  

 

The D-optimality is evaluated with the same constraints as the variance optimality. The 

obtained optimal ALT plans are presented in Table 2.4. The optimal plans under Type-II 

censoring and no censoring do not depend on the model parameters and design stresses. 

In other words, they are optimal plans regardless of the model parameters and stress 

conditions as long as they are subject to the same constrains. Table 2.4 shows that under 

all cases, the maximum determinant is achieved when  1, , 1l l n    values are 

decision variables; the obtained determinants are comparable when the units are allocated 

equally to each experiment or based on Eq. (2.17). 
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Table 2.3 Optimal ALT plans based on variance optimality 

Censoring Experiment l 
Normalized Factor Levels 

ηl / nl
* πl Asvar 

RH Temp kV/mm Values Method 

Type-I 

I 1 5 1 10 0.0150 

Decision 

variables 
39.43 

II 2 3 4 10 0.4704 

III 3 4 3 10 0.0889 

IV 4 2 2 10 0.0944 

V 5 1 5 10 0.3313 

I 1 3 4 10 0.3041 

Eq. (2.17) 54.56 

II 2 5 1 10 0.1995 

III 3 2 2 10 0.1784 

IV 4 4 3 10 0.1135 

V 5 1 5 10 0.2044 

I 1 2 4 10 0.2 

Equal 

allocation 
59.50 

II 2 3 1 10 0.2 

III 3 4 2 10 0.2 

IV 4 5 3 10 0.2 

V 5 1 5 10 0.2 

Type-II 

I 1 5 2 15 0.0976 

Decision 

variable2 
50.77 

II 2 4 3 15 0.1266 

III 3 1 4 15 0.0999 

IV 4 3 1 15 0.2814 

V 5 2 5 15 0.3945 

I 1 3 1 15 0.3406 

Eq. (2.17) 67.48 

II 2 4 4 15 0.1703 

III 3 5 3 15 0.1265 

IV 4 2 2 15 0.1582 

V 5 1 5 15 0.2044 

I 1 5 2 15 0.2 

Equal 

allocation 
62.50 

II 2 4 3 15 0.2 

III 3 1 4 15 0.2 

IV 4 3 1 15 0.2 

V 5 2 5 15 0.2 

No 

I 1 5 2 ∞ 0.6467 

Decision 

variables 
11.94 

II 2 1 1 ∞ 0.015 

III 3 4 4 ∞ 0.015 

IV 4 2 5 ∞ 0.0238 

V 5 3 3 ∞ 0.2996 

I 1 4 1 ∞ 0.3285 

Eq. (2.17) 18.84 

II 2 3 4 ∞ 0.1825 

III 3 5 3 ∞ 0.1265 

IV 4 2 5 ∞ 0.1436 

V 5 1 2 ∞ 0.2190 

I 1 4 1 ∞ 0.2 

Equal 

allocation 
23.38 

II 2 3 5 ∞ 0.2 

III 3 5 2 ∞ 0.2 

IV 4 2 3 ∞ 0.2 

V 5 1 4 ∞ 0.2 
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Table 2.4 Optimal ALT plans based on D-optimality 

Censoring Experiment l 
Normalized Factor levels 

ηl / nl
* πl Det

 

RH Temp kV/mm Values Method 

Type-I 

I 1 2 5 10 0.2518 

Decision 

variables 
0.576 

II 2 4 1 10 0.0500 

III 3 3 2 10 0.1889 

IV 4 1 3 10 0.2664 

V 5 5 4 10 0.2426 

I 1 2 5 10 0.3260 

Eq. (2.17) 0.252 

II 2 4 2 10 0.1825 

III 3 3 1 10 0.1784 

IV 4 1 3 10 0.2230 

V 5 5 4 10 0.090 

I 1 2 5 10 0.2 

Equal 

allocation 

0.318 

 

II 2 4 2 10 0.2 

III 3 3 1 10 0.2 

IV 4 1 3 10 0.2 

V 5 5 4 10 0.2 

Type-II 

I 1 3 5 15 0.0760 

Decision 

variables 
0.132 

II 2 5 1 15 0.0760 

III 3 1 2 15 0.0852 

IV 4 2 3 15 0.6811 

V 5 4 4 15 0.0817 

I 1 3 5 15 0.3017 

Eq. (2.17) 0.103 

II 2 4 1 15 0.2068 

III 3 2 2 15 0.1784 

IV 4 1 3 15 0.2230 

V 5 5 4 15 0.0900 

I 1 4 5 15 0.2 

Equal 

allocation 
0.104 

II 2 1 2 15 0.2 

III 3 5 1 15 0.2 

IV 4 2 3 15 0.2 

V 5 3 4 15 0.2 

No 

I 1 5 4 ∞ 0.2462 

Decision 

variables 
22.106 

II 2 1 2 ∞ 0.2463 

III 3 3 3 ∞ 0.0150 

IV 4 4 1 ∞ 0.2462 

V 5 2 5 ∞ 0.2463 

I 1 5 4 ∞ 0.2847 

Eq. (2.17) 13.825 

II 2 2 1 ∞ 0.2433 

III 3 1 5 ∞ 0.2368 

IV 4 3 3 ∞ 0.1257 

V 5 4 2 ∞ 0.1095 

I 1 3 5 ∞ 0.2 

Equal 

allocation 
12.896 

II 2 5 1 ∞ 0.2 

III 3 1 2 ∞ 0.2 

IV 4 2 3 ∞ 0.2 

V 5 4 4 ∞ 0.2 
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The multi-objective criterion considers both Φp criterion and D-optimality. For the 

 1

p p 
  criterion, Morris and Mitchell (1995) show that the value of p has effects on the 

optimal solution. For a small problem, e.g. 5, 3n k  , p as small as 5 is sufficient and a 

large problem (defined by large values of n and k) requires a much larger value of p. 

Therefore, in this example we let 5p  . We consider both the rectangular and the 

Euclidean inter-site distance, i.e. 1, 2q  . With the derived upper limit of the determinant 

of Fs, and the upper and lower limits of Φp, we have Det 4.3157 004U e  ; 

, 3.7857p U  and , 2.2620p L  when 1q  ; , 2.4437p U  and , 1.3060p L   when

2q  . For the multi-objective, we set 0.5w  ; the tests are terminated when all units fail 

and the units are equally allocated to the five experiments. Using the MSA, we obtain 

optimal ALT plans as shown in Table 2.5. 

 

 

Table 2.5 Optimal ALT plans based on multi-objective optimality 

(p,q) Experiment l 
(5,1) (5,2) 

ηl / nl
*
 πl 

RH Temp kV/mm RH Temp kV/mm 

LHD (5,3) 

I 1 4 2 1 4 2 ∞ 0.2 

II 2 3 5 2 1 3 ∞ 0.2 

III 3 2 1 3 5 4 ∞ 0.2 

IV 4 1 4 4 2 5 ∞ 0.2 

V 5 5 3 5 3 1 ∞ 0.2 
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2.6.2 ALT Plans based on LHD vs. FFD 

We compare ALT plans based on FFD (3
3 

= 27 experiments) with those based on LHD (5, 

3) using the same optimality criteria. We use the test stress levels and corresponding 

normalized stress levels as shown in Table 2.6. As a result, the normalized model 

parameters, design stresses and stress ranges are the same as given in Sec. 2.6.1. We 

utilize the stress levels (1, 3, 5) of LHD in the FFD. We consider the cases when  

 1, , 1l l n    values are to be determined as well as when they are assigned equal 

values under Type-I censoring and no censoring.   

 

The comparison based on the variance optimality is shown in Table 2.7. Under Type-I 

censoring, the asymptotic variance of log quantile failure at design stresses based on 

LHD is 18.35% lower than the asymptotic variance obtained from FFD when 

 1, ,l l n   values are decision variables. When  1, ,l l n  values are set equally, 

the achieved objective function value from LHD is 40.13% lower than the FFD’s. Similar 

reduction in the objective function is obtained under no censoring. In addition, the total 

time and/or number of experiments required by LHD is 81.48% less than that required by 

FFD. Obviously, ALT with multiple stresses using LHD not only achieves higher 

precision of reliability prediction but also requires less time/experiments than that of the 

FFD. 
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Table 2.6 Test and normalized stress levels 

LHD 1 3 5 

Electrical Field Strength(kV/mm) 0.31 1.255 2.2 

Temp (°C) 35 55 85 

RH (%) 60 75 90 

 

 

Table 2.7 Comparison based on the variance optimality 

Min Asvar (q = 0.1) at 

design stresses 

LHD 

(5 exp.) 

FFD 

(27 exp.) 

Asvar 

Red. (%) 

Total time 

red. (%) 

Number of  

exp. Red. (%) 

Type-I 

πl : decision 

variables 
39.43 48.29 18.35 

81.48 

81.48 

πl : 1/n 59.50 99.38 40.13 

No 

censoring 

πl : decision 

variables 
11.94 14.75 19.05 

-- 

πl : 1/n 23.38 26.71 12.47 

 

 

The comparison based on D-optimality is shown in Table 2.8. When  1, ,l l n 

values are decision variables, the obtained maximum determinants of the Fisher 

information matrix from LHD are larger than those obtained from FFD under both Type-I 

censoring and no censoring. The difference is significant. As a result, ALT with multiple 

stresses using LHD provides higher joint precision of parameters estimate than that of 

using FFD. In contrast, when test units are equally allocated to each experiment, the D-

optimality values obtained from FFD are larger than those from LHD. However, the 

difference is insignificant. 
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Table 2.8 Comparison based on D-optimality 

Max Det. (Fisher) 
LHD 

(5 exp.) 

FFD 

(27 exp.) 

Det. 

Incr. (%) 

Total time 

red. (%) 

Number of 

exp. Red. (%) 

Type-I 

πl : decision 

variables 
0.576 0.0115 4909 

81.48 

81.48 
πl : 1/n 0.318 0.6399 -20.60 

No 

censoring 

πl : decision 

variables 
22.106 2.072 967 

-- 

πl : 1/n 12.90 31.19 -58.64 

 

 

2.6.3 Performance of the MSA 

An MSA is developed in Sec. 2.5 to improve the efficiency of the search algorithm for 

the optimal LHD plans. In this section we validate the performance of the algorithm.  

 

All the LHDs can be enumerated for an 5 3 design. Among the enumerations, the design 

that results in the minimum value of the multi-objective formulation when q = 1, 2 is the 

same as that obtained from the MSA. This shows that for a small problem, the solution 

from using MSA converges to the true optimal.  

 

Now consider larger problems, LHD(10, 3)  and  LHD 25, 3 . Let 15p  , 0.5w  , and 

consider the two cases 1,2q  . For the same initial LHD and setting of SA algorithm 

parameters, we evaluate the multi-objective formulation by MSA and SA. At the 500
th

 

iteration, we stop both algorithms and record their objective function values. We choose 
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another initial LHD and run the two algorithms and record their objective function values 

at 500
th

 iteration. This simulation is repeated 100 times. The results are plotted in Figure 

2.3. The diagonal line is a collection of equivalent objective function values. We see that 

most of the data points are below the line, which verifies that MSA converges faster than 

SA algorithm. 

 

 

(a) q = 1, LHD(10, 3) 

 

(b) q = 2, LHD(10, 3) 
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(c) q = 1, LHD(25, 3) 

 

 (d) q = 2, LHD(25, 3) 

Figure 2.3 Objective function values from MSA vs. SA 

 

 

The simulations are repeated for another 100 times and extended to the 1500
th

 iterations 

and 3000
th

 iterations. The MSA outperforms SA in more than 85 out of 100 times as 

shown in Table 2.9. Moreover, larger n values result in more significant improvements of 

MSA over SA. For instance, for q = 1, at the 500
th

 iterations, when n = 10, MSA 

outperforms SA in 85.1% of the time. However, when n = 25, MSA outperforms SA in 

98% of the time. In addition to the percentage of smaller objective function values from 
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MSA, we record the minimum, maximum and average achieved objective function values 

of the 200 times simulation from the two algorithms and summarize them in Tables 2.10 

to 2.13. In each combination, the SMA always provides smaller minimum, maximum and 

average objective function values. These results validate the significant improvement 

obtained using the MSA. 

 

Table 2.9 MSA outperforms SA 

Iteration # 
LHD(10, 3) LHD(25, 3) 

q = 1 q = 2 q = 1 q = 2 

500 85.1% 90.2% 98% 95% 

1500 88.3% 91% 98.5% 96.7% 

3000 92% 92.5% 99.3% 98% 

 

 

 

Table 2.10 LHD (10, 3), (p, q) = (15, 1) 

Iteration # 
Min Max Mean 

MSA SA MSA SA MSA SA 

500 -.8899 -.8818 -.8511 -.8324 -.8697 -.8571 

1500 -.8909 -.8823 -.8579 -.8480 -.8766 -.8645 

3000 -.8909 -.8844 -.8667 -.8565 -.8796 -.8685 
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Table 2.11 LHD (10, 3), (p, q) = (15, 2) 

Iteration # 
Min Max Mean 

MSA SA MSA SA MSA SA 

500 -.8843 -.8741 -.8493 -.8273 -.8673 -.8529 

1500 -.8891 -.8794 -.8557 -.8375 -.8731 -.8606 

3000 -.8950 -.8825 -.8654 -.8484 -.8756 -.8657 

 

 

Table 2.12 LHD (25, 3), (p, q) = (15, 1) 

Iteration # 
Min Max Mean 

MSA SA MSA SA MSA SA 

500 -.8436 -.8304 -.8244 -.8066 -.8331 -.8190 

1500 -.8455 -.8304 -.8262 -.8098 -.8366 -.8215 

3000 -.8455 -.8342 -.8278 -.8165 -.8380 -.8234 

 

 

 

Table 2.13 LHD (25, 3), (p, q) = (15, 2) 

Iteration # 
Min Max Mean 

MSA SA MSA SA MSA SA 

500 -.8500 -.8412 -.8298 -.8100 -.8395 -.8261 

1500 -.8500 -.8423 -.8355 -.8112 -.8424 -.8287 

3000 -.8519 -.8437 -.8360 -.8245 -.8433 -.8318 
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2.7 Summary 

In this chapter, we present an approach for the design of ALT plans with multiple stresses 

using LHD. The lifetime of a test unit follows a Weibull distribution. The applied stresses 

affect only the scale parameter of the Weibull distribution through a logarithmic linear 

model. We develop the Fisher information matrix for MLE of the unknown parameters. 

We propose a multi-objective optimization criterion which maximizes the determinant of 

the Fisher information matrix of MLE as well as the maximum minimum inter-site 

distance between design points. We also formulate optimal test plans minimizing the 

asymptotic variance of log quantile failure and maximizing the determinant of the Fisher 

information matrix. The proposed approach results in efficient and practical ALT test 

plans.  Moreover, these test plans are significantly better than those obtained based on 

FFD in terms of the asymptotic variance of reliability prediction and parameter estimates 

and total test time. We develop SA based algorithms to efficiently determine the optimal 

test plans. The effectiveness of the algorithm is validated by a simulation study. 
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3 CHAPTER 3  

PROGRESSIVE CENSORING ALT PLANS  

 

One of the purposes of conducting accelerated life testing is to obtain failure time data, in 

order to assess the reliability of products or material at normal operating conditions. A 

typical ALT can be terminated before the failure of all units under test. Moreover, units 

may experience different failure modes during the test as the case when testing circuit 

boards where failures occur due solder joints or device failure. Most of the previous 

research on ALT focuses on one failure mode.  

 

In this chapter, we investigate ALT under a general censoring scheme considering 

multiple failure modes. We begin with the review of commonly used censoring schemes 

in accelerated life testing, likelihood inference with censored data and research on design 

of ALT plans under different censoring schemes. Then we briefly discuss failures under 

competing risk and related work. We then present the assumptions of this work and 

describe the censoring procedure (namely, progressive censoring), construct the 

likelihood function and develop the Fisher information matrix for MLE. Following this, 

we propose, discuss the motivation and develop a new test plan criterion; mean time of 

first failure. Then we formulate optimal ALT plans with respect to four optimization 

criteria: minimization of asymptotic variance of mean time of first failure and quantile 

failure, D-optimality, and multi-objective optimization. These formulations are applicable 

to tests under both single stress and multiple stresses. Finally, numerical examples based 

on parameters from real tests are presented. Sensitivity study is conducted to identify the 
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parameters of the model that should be initially estimated with special care. We conclude 

this chapter with a summary.     

  

3.1 Literature Review 

3.1.1 Censoring 

Censoring arises in a life test whenever the experimenter does not observe the lifetimes of 

all test units. In ALT, the most widely used censoring scheme is Type-I censoring, which 

is often called “time censoring”. Under Type-I censoring, a test unit i is removed from 

test at a prespecified censoring time Ci > 0 if it does not fail at Ci. The failure time Ti can 

be observed if and only if 
i iT C .  

 

Extensive work on planning ALT is based on Type-I censoring (Nelson, 1990, Meeker 

and Escobar, 1998, Lawless, 1982, 2003). Early discussions of asymptotic properties are 

given by Bartholomew (1957, 1963). Chernoff (1962) gives optimum plans for the 

estimation of the failure rate of exponentially distributed failure times at design stress 

level. The formulation of the likelihood function under censoring is investigated by Cox 

(1975), Kalbfleisch and MacKay (1978) and Kalbfleisch and Prentice (1980). Meeker 

(1984) presents a comparison of ALT plans for Weibull and lognormal distributions 

under Type-I censoring. Bai et al. (1992) obtain an optimal step-stress test plan that 

minimizes the asymptotic variance of the MLE of the mean life at the design stress under 

Type-I censoring.  
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Type-II censoring (or “failure censoring”) is commonly used in ALT. Under Type-II 

censoring, the test is terminated once r predetermined failures have been observed out of 

the n units under test. The total test time 
 r

t  is random. This has limited the use of Type-

II censoring in practice.  

 

Early discussions of asymptotic properties for Type-II censoring are given in Halperin 

(1952). For the exponential distribution, Yum and Kim (1990) investigate reliability 

sampling plans based on the accelerated life testing. Type-II censoring is assumed at each 

overstressed level. Later, Hsieh (1994) extends their work such that the total number of 

failures is minimized. Solan (1968), Schneider (1989) and Kwon (1996) develop 

reliability sampling plans at the use condition assuming that the failure times follow 

Weibull distribution while Bai et al. (1993) develop reliability sampling plans based on 

accelerated test conditions. Menzefricke (1992) discusses sample size planning for ALTs 

when Type-II censoring is applied at each constant-stress level. More recently, Watkins 

and John (2008) consider ALT with Type-II censoring regime applied at one of the 

constant-stress levels.  

 

However, in many situations, surviving test units may be removed before the termination 

time of the test in order to save some units for other tests or when the number of test units 

is limited and cost per unit is high. This is also desirable when a compromise between 

reduced time of experimentation and the observation of at least some extreme lifetimes is 

sought (Balakrishnan and Aggarwala, 2000). The traditional Type-I and Type-II 

censoring schemes do not provide such features. This leads to the investigation of 
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progressive censoring which is a generalization of Type-I or Type-II censoring as 

explained below.  

 

Suppose that n units are placed on a test simultaneously. At the first prespecified time 

point η1, r1 surviving units are randomly removed from the test. Then at the second 

prespecified time point η2, r2 surviving units are randomly removed from the test. This 

process continues until the prespecified time point ηs is reached or when all the units fail. 

The ri’s are fixed with the provision that there are ri surviving units at time

, 1,2, , 1i i s   . Sometimes ri’s are random, which is referred to as random progressive 

censoring. When
1 2 1... 0sr r r     , the progressive censoring becomes the 

conventional Type-I censoring.  

   

Likewise, the conventional Type-II censoring can be shown to a special case of 

progressive censoring. Under this censoring scheme, n units are placed on test at time 

zero. Immediately following the first failure, r1 surviving units are removed from the test 

at random. Then immediately following the second failure, r2 surviving units are removed 

from the test at random. The test is terminated and all of the remaining units are removed 

after the m
th

 failure is observed. 

 

Statistical inference under progressive censoring is initiated by Cohen (1963). Then 

Srivastava (1967) develops the Fisher information matrix of the maximum likelihood 

estimate with changing failure rate under exponential distribution. Mann (1971) and 
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Thomas and Wilson (1972) discuss linear estimation of parameters of progressive 

censored data assuming a Weibull failure time distribution.   

 

Current work on progressive censoring is focused on three areas: reliability sampling plan, 

ALT under step-stress and empirical methods. Detailed reviews are provided as follows.  

 

Reliability sampling plan 

Balasooriya et al. (2000) and Balasooriya and Balakrishnan (2000) study reliability 

sampling plans that to determine the acceptability of a product with respect to its lifetime 

under Weibull and lognormal distributions, respectively. They consider the progressive 

Type-II censoring with a predetermined number of removals 
1 2, ,..., sr r r at each stage. 

 

Ng et al. (2004) compute the expected Fisher information matrix based on progressively 

Type-II censored samples from a Weibull distribution and use EM algorithm to perform 

the calculation for the missing information. Given the number of units available for test 

and the number of failures allowed, they determine the optimal progressive Type-II 

censoring plan ( 1 2, ,..., sr r r ) that results in optimal estimation of model parameters. Three 

optimality criteria are considered: minimizing the trace of the variance-covariance matrix 

of the MLEs, minimizing the determinant of the variance-covariance matrix of the MLEs, 

and maximizing the trace of the Fisher information matrix. The results are used to 

determine the minimum sample size n for reliability acceptance test.  
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In addition, Balasooriya and Low (2004) investigate reliability sampling plans for 

Weibull lifetimes under competing risk. They assume each cause of failure has a different 

set of parameters. The joint estimation of the parameters reduces to the estimation of 

parameters of a single lifetime distribution which simplifies the estimation of the 

parameters. They also construct the likelihood function and derive the expected Fisher 

information matrix.  

 

The acceleration conditions of the test plan such as stress application, unit allocation and 

censoring time are not investigated in any of the work on reliability sampling plan. 

 

ALT under step-stress 

Conducting simple step-stress ALT in combination with progressive censoring has been 

investigated by several investigators. At each level of the step-stress, it is assumed that 

the failure time is exponentially distributed. The assumption of a constant hazard rate 

under exponential distribution is very restrictive, so the model’s applicability is fairly 

limited (Lawless, 1982). In addition, investigators assume inspection is conducted 

intermittently  ,...,2 , ,...,i s   , i.e. only records of whether a test unit fails in an 

interval instead of the exact failure time are obtained. The grouped observation may 

dramatically impact the accuracy and precision of parameter estimate especially when the 

sample size is small. Gouno et al. (2004) and Wu et al. (2006) obtain optimal ALT plans 

based on predetermined 1 2, ,..., sr r r . They determine the optimal inspection interval η by 

minimizing the asymptotic variance of the MLE of log mean lifetime and D-optimality.  

Wu et al. (2008) treat the number of removals at each stage as a uniformly distributed 
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random variable. They determine the optimal inspection interval η by minimizing the 

asymptotic variance of the MLE of log mean lifetime and A-, D-, and E-optimality.  

 

Empirical method 

Researchers have utilized empirical cumulative distribution functions for reliability 

analysis and modeling. Obtaining such an empirical function under progressive censoring 

is not straight forward. Patel and Tsao (2009) derive closed-form expressions for the 

nonparametric estimate of failure probabilities under progressive Type-I censoring. They 

also develop a simple algorithm that not only produces these estimates but also provides a 

clear and intuitive justification for the estimates. However, nonparametric methods have 

limitations for time and stress level extrapolations.   

    

3.1.2 Multiple Failure Modes 

Oftentimes a unit can experience multiple failure modes and the failure time min
i

i
h

T T


  is 

the minimum of the h latent failure times corresponding to h failure modes. Such scenario 

in statistical and reliability literature is referred to as “competing risk”. In reality, there 

are many components and products that experience competing risk failures.  For example, 

Nelson (1990) states that a Class-H insulation can fail due to turn, phase, and ground 

failures; assemblies of ball bearings can fail due to failure of the race or the ball. Cylinder 

liners present wear and thermal cracking failure modes (Bocchetti, et al., 2009). 

Therefore, statistical inference and reliability analysis considering competing risk have 

been extensively studied. 
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The early work for ML analyses of competing risk data are given by Cox (1959), 

Moeschberger and David (1971), Herman and Tatell (1971), and Nelson (1982). David 

and Moeschberger (1971) present details of the competing risk theory and parametric 

estimate methods including the construction of general likelihood function and likelihood 

functions under specific distributions and the development of Fish information matrix. 

The recent work by Crowder (2001) provides a comprehensive review of the theory and 

methods of competing risk. Other work relevant to ALT plan and ALT data analysis 

when considering competing risk is described below. 

 

Klein and Basu (1981, 1982) present the analysis of ALT data when more than one 

failure mode is present. The latent failure times are assumed to be independent and 

described as a series-system with Weibull component failure times having a common or 

different shape parameters. The authors obtain MLE estimates of the model parameters 

with data from Type-I, -II and progressive censoring. Similarly, Ishioka and Nonaka 

(1991) discuss the analysis of ALT data when test units are subject to two failure modes. 

More recently, Bunea and Mazzuchi (2006) present a Bayesian framework for the 

analysis of ALT data with possible multiple failure modes. 

 

Bai and Chun (1991) present optimum ALT plans with single, simple step-stress for 

products subject to competing risk. The lifetime distribution of each failure mode is 

assumed to be independent exponential distribution with a mean expressed as a log-linear 

function of the stress. The optimum plans for time-step and failure-step ALTs are 
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obtained in order to minimize the sum over all failure causes of asymptotic variances of 

the MLE of the log mean lives at design stress.  

 

Bai and Bai (2002) model failure time in ALTs as a mixture of two Weibull distributions 

with the log of the scale parameter written as a linear function of stress. An EM algorithm 

for MLE is presented. 

 

Zhao and Elsayed (2004) consider ALT under Type-II censoring with two competing 

failure modes: degradation and hard failure. The degradation process is described by a 

Brownian motion and the hard failure is modeled by a Weibull distribution. They 

construct the likelihood function for parameters estimate and conduct experiments to 

validate these estimates.  

 

Pascual (2007) present a method for ALT planning when multiple failure modes are 

dependent on only one accelerated factor under Type-I censoring. The latent failure times 

are assumed to be independent Weibull distributions with known but common shape 

parameter. The optimal plans are achieved by minimizing the asymptotic variance of the 

MLE of failure quantile and hazard function at given conditions, and maximizing the 

determinant of the Fisher information matrix of MLE. They also perform sensitivity 

analysis of optimal plans to misspecification of the shape parameter.   
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In summary, the competing risk theory and methods have been investigated by many 

authors under traditional Type-I, -II censoring schemes. However, the application of 

multiple stresses under progressive censoring has not been studied.   

 

3.2 Assumptions and Censoring Procedure 

3.2.1 Assumptions 

Suppose that each test unit experiences h statistically independent potential failure modes. 

A unit fails when any of the h failure modes occurs.  

 

Let the random variable Ti be the lifetime of a unit when  1, 2,iC i h were the only 

risk present. We assume that Ti follows an independent Weibull distribution with a 

common shape parameter λ. The pdf of Ti is: 

 

   
1

; , exp , 0, 1, 2,i i i i i i i if t t t t i h
    
     

 
  (6.1) 

 

Suppose that the scale parameter αi of the i
th

 failure mode is a log-linear function of 

stresses: 

 

    0 1 1ln , 1, , 1i i i i ik kx x i h k          βx   (6.2) 
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where βi,  for 1, , 1,i h k  are unknown parameters associated with risk i and 

stress  . This is a special case of the PH model. In the following derivations, 
i  is used 

to represent  i βx for simplicity.  

 

Let
1   , then the log failure time  lni iY T  is the smallest extreme-value 

distribution with pdf: 

 

 
1

; , exp expi i i i
i i i

y y
f y

 
 

  

     
     

    
   (6.3) 

 

and cumulative density function (cdf): 

 

 ; , 1 exp exp i i
i i i

y
F y


 



  
     

  
   (6.4) 

 

where i is the location parameter of the extreme-value distribution corresponding to 

failure mode i, and ζ is the common scale parameter of the h extreme-value distributions. 

Let i i
i

Y
Z





 
  
 

, the pdf and cdf of Yi can be rewritten in terms of Zi as : 

 

   ; , exp exp ,i i i i i if z z z z              (6.5) 

 

   ; , 1 exp expi i i iF z z           (6.6) 
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Consider the situation when failure times and failure causes of test units are observed 

continuously. The failure time T of a test unit is the smallest of its h potential failure 

times:  1min , hT T T , i.e. min i
i

Y Y and min i
i

Z Z . Therefore, the log failure time 

has cumulative cdf in terms of Y as:  

 

   1

11

; , , 1 1 ; , 1 exp exp
h h

i i
h i i i

ii

y
F y F y


   






  
          

  
   (6.7) 

 

and in terms of Z as: 

 

     1

11

; , , 1 1 ; , 1 exp exp
h h

h i i i i

ii

F z F z z   


 
        

 


 

 (6.8) 

 

3.2.2 Stress Normalization 

Without loss of generality, we first normalize the stress levels. Let S denote the single 

accelerated stress. Let SD and SH denote the normal operating stress (design stress) level 

and highest testing stress level that can be used in the ALT experiment, respectively. 

Then stress S is normalized as 

 

 D

H D

S S

S S
x 




 (6.9) 
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As a result, the normal operating stress SD and highest testing stress SH become 0Dx  

and 1Hx , respectively; and 0 1x  . If multiple stresses are applied in an ALT, the n 

levels of each stress are calculated by Eq. (2.11) first and then linearized to form the n-

term arithmetic sequence  1,...,n .  

 

3.2.3 Censoring Procedure 

In this dissertation we study a progressive censoring procedure as shown in Figure 3.1. 

The procedure begins by placing N units under test at time zero and fractions of survival 

units  1, 1ur u s   are removed at predetermined times  1, 1u u s    

correspondingly. The test is terminated at a given time ηs and the remaining surviving 

units are removed. Suppose Iu-1 is the number of units on test at  1 1,  u u s , Nu is the 

number of failures during (ηu-1, ηu) and Ru is the number of removed units at time ηu. Nu, 

Ru, and Iu are random variables with values pending the outcome of the test (Note 

 u u u uR r I N  ). 

 

 

Figure 3.1  Progressive censoring 
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From the property of conditional expectation and by induction we have  

 

     
1

1

1
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u
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       (6.10) 
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u

u u uE N N F F r     (6.11) 
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u

u u uE R NF r r      (6.12) 

 

where  lnu u  . 

 

3.3 Maximum Likelihood Estimate 

Based on the assumptions and censoring procedure discussed in Sec. 3.2, we now 

develop the expected Fisher information matrix for the maximum likelihood estimate.  

 

Suppose that a total of mi units fail due to the i
th

 failure mode until time ηs in a given 

experiment and we observe the following failure times 

 

yi,j,  i = 1, 2, …, h, and j = 1, 2, …, mi, 

 

where yi,j denotes the j
th

 failure time due to the i
th

 failure mode. We construct the 

likelihood function under Type-I progressive censoring with competing failure modes in 
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an analogous manner as that in Moeschberger and David (1971). Note that the last stage: 

s; before the termination of the test there are ,s sI N units and there are 
sR surviving units 

at the termination time: 

 

       
 

1

, ,

1 1 1 1 1 1

i
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mh h h s h
R I N
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  (6.13) 

 

The log likelihood function is,  
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    (6.14) 

 

The elements of the expected Fisher information matrix of MLE are obtained by taking 

the second order derivative of Eq. (3.14) with respect to the parameter of risk υ and the 

common scale parameter ζ: 
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Since the expectations of the first order derivatives in Eqs. (3.15)-(3.17) equal zeros at 

MLE, then the  expectations of Eqs. (3.15)-(3.17) are 
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Evaluation of Eqs. (3.18)-(3.20) requires  the expectation of mi , for 1, ,i h . Since the 

total number of failures with failure mode i equals the sum of the failures due to mode i 

over all the intervals, then  
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1

exp
h
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Evaluation of Eq. (3.19) requires the determination of 
1

exp
im

ij ij

j

y y
E

  

 

   
  

  
 , 

 uE R and  s sE I N .  The last two can be obtained from Eqs. (3.10)-(3.12). Now we 

calculate the first expectation: 
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Similarly, to evaluate Eq. (3.20) we obtain 
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Consider a test plan Ξ: N̂ units are available and in experiment ς, for 1, n  , pς 

proportion of test units with 1 ... 1np p    are tested under ( )1k k   stresses 

simultaneously, 

 

,1 ,2 ,[ , , . ], 1, ,     T

kx x x nx
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where 
T

x represents one of the n stress-level combinations for a  test with multiple 

stresses ( 1k  ) or one of the n stress levels for a test with single stress ( 1k ). Also, 

,1 , , 1, , , ,u sr r r    
   r  are the fractions of survival units removed at times 

,1 , ,, , , ,u s        τ in experiment ς (under stress
T

x ) for 1, n  .  

 

Replacing N, T
x ,  1 1, , , ,u sr r r r  and  1, , , ,u s  τ in the general 

expressions Eqs. (3.18)-(3.20) by 
T

x , N̂p , r  and τ for 1, n  , we obtain Eqs. 

(3.18)-(3.20) under all the n experiments of test plan Ξ. 

 

Let θ represent the unknown parameters  10 11 1 , 0 1 ,, , , , , , ,
T

k h h hk       . Since 

 

  0 1 1i i i ik kx x        x  

 

using the chain rule, we have 
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where 
, iI 


represents the term of the Fisher information matrix associated with 

experiment ς with respect to risk i. Since the h failure modes are s-independent, the 

interaction terms with respect to risk i and i
’
 (

'i i ) are zero. 

 

Similarly, we have 
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where 
, lI 


represents the interaction term of the Fisher information matrix associated with 

experiment ς with respect to risk i and common parameter ζ.  
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θ . Now we have the Fisher information matrix associated 

with experiment ς of test plan Ξ:   
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As the test units are s-independent, the total Fisher information matrix of test plan Ξ 

becomes 
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If  G θ  is a function of θ, then  G θ is the ML estimator of  G θ  with asymptotic 

variance 
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under test plan Ξ. 

 

3.4 Optimal ALT Plan Criteria and Formulation 

From the above Fisher information matrix we can now determine the optimal plans 

subject to different optimality criteria. In this section, we propose and develop a new test 

plan criterion, minimization of the asymptotic variance of mean time of first failure. We 

determine optimum test plans under the following criteria: 

1. Variance optimality:  

a. Minimization of the asymptotic variance of the mean time of first failure 

in a group of units. 

b. Minimization of asymptotic variance of the quantile failure at normal 

operating conditions. 

2. D-optimality that maximizes the determinant of the Fisher information matrix. 

3. Multi-objective optimality 

The motivation for implementing each criterion is discussed as well. 
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3.4.1 Variance Optimality 

Early failures may significantly increase the warranty cost. Therefore accurate estimation 

of lower quantile failure at normal operating condition using accelerated life testing is 

important. However, the problem of early failures is exacerbated under certain situations 

such as units that are used in aerospace applications or devices implanted into humans 

because of safety and potential risk. The time of the first failure in a group of N  units 

represents the extreme case of lower life quantile. Therefore, we propose to determine the 

optimal test plan with respect to the minimum asymptotic variance of MLE of the mean 

time of the first failure in a group of N  units at normal operating conditions. The second 

criterion under variance optimality we investigate is the minimum asymptotic variance of 

the lower quantile failure at normal operating conditions.   

 

3.4.1.1 Mean Time of First Failure 

To determine the optimal test plan based on the criterion of minimum asymptotic 

variance of MLE of the mean time of first failure in a group of N  units at normal 

operating conditions, we derive the analytic expression of the time of first failure for N  

units as follows. 

 

As assumed in Sec. 3.2, the failure time of a single unit follows a Weibull competing risk 

model. The cdf, Eq. (3.7), at normal operating condition is given by 

 

   1

1

| 1 exp exp
h

i D
D

i

F t t 



  
     

  


β x
x  (6.26) 
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From Eq. (3.26), we obtain the probability that a single unit fails in the time interval [t, 

t+dt]:  
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1

1 1

| 1
| exp exp exp

h h
D i D i D
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i i

dF t
f t t t

dt




  



 

     
         

     
 

x β x β x
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where 
,1 , ,[1, , , , ., ]T

D D D D kx x xx  represents the normal operating conditions. Now we 

introduce the probability 
 | DdF t

dt

x
 that the first failure in a group of N units occurs in 

[t, t+dt] at normal operating conditions: 

 

 
    

1
' '

1

1

1 1

|
| |
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D D
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h h
i D i D
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dF t
Nf t f t dt
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x
x x

β x β x
  (6.27) 

 

The term   
1

' '|
N

D
t

f t dt




 x  in Eq. (3.27) is the probability that 1N   units fail in

 ,t  . N is a combinatorial factor given the number of choices to choose the unit which 

fails in [t, t+dt].  

 

To verify that Eq. (3.27) is the true failure time pdf of the first failure in a group of N

units, we perform simulation as follows. We choose 20N , 0.5  , 2h , and for 
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simplicity iβ 0 which is equivalent to Weibull distribution with scale parameter 1  . 

We plot Eq. (3.27) from time zero to one time unit, shown as the dashed line in Figure 

3.2.  

 

To generate the first failure time for 20N , we solve failure time t from Eq. (3.26), 

 

   0.5ln 1


     t F  

 

where  F is the cumulative distribution function of the failure time. 

 

 F can be simulated by generating random numbers from a unit uniform distribution. 

Since the group size is 20N , we generate 20  F  values and solve the corresponding t. 

We choose the minimum t as the first failure time of the 20 units. This process is repeated 

10
5
 times to create the distribution. The distribution is normalized to the total number of 

generated failure times and is divided by the histogram bin width. The obtained 

histogram shows the normalized probability density function of the first failure time in a 

group of 20N units. As shown in Figure 3.2, the dashed line matches the histogram 

well. Hence, Eq. (3.27) correctly describes the failure time pdf of the first failure in a 

group of N units.      

 

Using Eq. (3.27), we calculate the mean time of first failure (t1) as 
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Figure 3.2 Verification of Eq. (3.27) by simulation 

 

 

Eq. (3.28) is a function of unknown parameter

 10 11 1 0 1, ,..., ,..., , ,..., ,
T

k h h hk      θ . We denote it by  1( ) G E tθ , therefore we 

have 
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Hence the asymptotic variance of the MLE of the mean time of first failure in a group of 

N  units at normal operating conditions is given by 
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Under progressive Type-I censoring and the given assumptions, the variance optimality 

of mean time of first failure for the test plan Ξ is formulated as 

 

Min     Asvar ;G 
 

θ     (6.32) 

s.t.  0 1, 1,..., np     

1

;
h

i

i

E m MENF 
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where MENFς is the specified Minimum Expected Number of Failures at test condition ς.  

 

3.4.1.2 Quantile Failure  

In this section we develop the expression of the quantile failure at normal operating 

conditions and the corresponding asymptotic variance and the formulation of optimal test 

plan based on the second optimality criterion which minimizes the asymptotic variance of 

MLE of lower quantile failure at normal operating conditions. 

 

Let  q Dt x be the q
th

 quantile failure at normal operating conditions, then from Eq. (3.26) 

we solve 
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 (6.33) 

 

where ,1 , ,,...1, ,.. ,, .T

D D D D kx x x
   x  represents the normal operating conditions.  q Dt x is 

a function of parameters  10 11 1 0 1,...,, ,..., , ,..., ,
T

k h h hk       . Now we take the 

derivatives of  q Dt x  with respect to the parameters, 
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The asymptotic variance of the MLE  ;q Dt θ x at normal operating conditions is given by 
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Under progressive Type-I censoring, the variance optimality of quantile failure based on 

test plan Ξ is formulated as 

 

Min     Asvar ; ;q Dt 
 

θ x     (6.36) 

s.t.  0 1, 1,..., np     
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The optimal test plans in terms of stress levels (stress-level combination for multiple 

stresses) and unit allocation to each stress level can be determined by solving the 

formulation (3.32) and (3.36) for given initial values of the parameters, progressive 

censoring schedule r and τ for 1,..., n   and the normal operating conditions.  

 

3.4.2  D-Optimality 

D-optimality maximizes the determinant of the Fisher information matrix which results in 

minimum volume of the Wald-type joint confidence region for the unknown parameters. 

D-optimality is a suitable criterion when the purpose of an ALT is to obtain more 

accurate estimates of the model parameters. Based on the Fisher information matrix 

developed in Sec. 3.3, the optimal test plan based on D-optimality is formulated as 

 

Max  ;det  
 
I θ     (6.37) 

s.t.  0 1, 1,..., np     

1

;
h

i

i

E m MENF 



    x  

 

Optimal test plans in terms of stress levels and unit allocation to each stress level are 

determined by solving (3.37) for given initial values of the parameters, progressive 

censoring schedule r and τ for 1,..., n  . 
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3.4.3 Multi-objective Optimization 

Under progressive censoring, some of the surviving test units can be removed at different 

stages before the final termination time of the test. As a result, the test duration can be 

further reduced and the removed test units can be used for other tests or purposes. On the 

other hand, Tang and Yang (2002) revealed that, for multiple levels constant-stress ALT, 

there are many possible testing plans which are nearly statistically optimal. This 

motivates us to develop testing plans under multi-objective which not only obtain optimal 

statistical precision but also meet other practical constraints, e.g. time and cost. The total 

cost is affected by the fixed investment in facilities, overhead, stress applications, test 

duration and the number of test units, etc. The fixed investment has no effect on the 

optimization. The cost related to overhead, stress applications and test duration is difficult 

to estimate and may depend on the specific situation. Therefore, we investigate the total 

number of failures instead.      

 

In this dissertation, we propose two formulations for multi-objective optimization under 

progressive censoring. In both formulations, we consider the objective of statistical 

precision  1 f , which can be the asymptotic variance of mean time of first failure, mean 

time to failure and quantile failure, or the determinant of the Fisher information 

(variance-covariance) matrix. To simplify the presentation, we illustrate the formulation 

based on a 3-level single stress test. The extension to more stress levels and multiple 

stresses is straight forward. Under the given assumption and test plan Ξ, optimal multi-

objective test plans are formulated as follows.   
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Formulation 1: 

 

      21Min ; , ;         f fθ θ  (6.38) 

s.t.    1,2,30 1,   p
 

,1 , ,, , , , 1, 2 3, ,          u sτ
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3 11,
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where  2 f is the objective function of the number of failures. For example,  2 f can be 

the total number of failures, failures due to a particular failure mode, or failures under a 

specific stress level over the entire test duration or the test duration of a particular stress 

level. 1

'

1 1, ,  
    sx r r present the decision variables. τ are the given times to 

remove surviving test units which can be equally, increasingly or decreasingly spaced. 

   

Formulation 2: 

 

     21Min ; , ;         f fθ θ  (6.39) 

s.t.    1, 2,30 1,   p
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 where  2 f is the objective function of test duration and 1

'

1 1, ,   
    sx  are 

decision variables.  2 f can be the total test duration if the experiments under different 

stress levels are conducted sequentially, or the test duration under certain stress level. 

, 1,1   s  can follow certain relationship, for example, 

 

   , 1 , , , 1 , 0, 1, 2,3, 0, , 1              u u u u u s  

 

r is the given fraction of surviving units to remove, which can be a constant, decreasing 

or increasing function of the number of periods.  

 

To evaluate above formulations, we can use multi-objective Genetic Algorithm to obtain 

the Pareto front.   

 

3.5 Examples 

In this section we present examples to demonstrate the application of the proposed 

approach for the design of ALT plans under competing risk and progressive Type-I 

censoring. The optimal test plans are obtained under both single stress and multiple 

stresses.  

 

3.5.1 Optimal Test Plans under Single Stress 

Parameters 
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Nelson (1990), page 393, presents data from ALTs of the Class-H insulation system of 

motorettes at temperature 190ºC, 220ºC, 240ºC, and 260ºC. Three potential failure modes, 

Turn, Phase, and Ground that occur on separated parts of the system are monitored. For 

each observation, the failure and/or censored time and corresponding failure mode are 

recorded. The objective of the life tests is to check if the median lifetime at normal 

operating condition of 180ºC is 20,000 hours under a lognormal Arrhenius model.  

 

Pascual (2007) investigate ALT planning with independent Weibull competing risk with 

known shape parameter under single stress and Type-I censoring. Nelson’s data (1990) 

from ALTs of the Class-H insulation system are used in his study, where only the Turn 

and Ground failure modes are considered. Planning values for the model parameters are 

obtained ( 10 2.6078  , 11 2.1461   , 20 3.1315  , and 21 1.2796   ) using ML 

methods, the s-independent Weibull-Arrhenius competing risk mode (same as Eq. (3.2)) 

with specified shape parameter 0.5  and number of failure modes 2h  . In this 

dissertation, we use the same parameter values as Pascual (2007). 

 

Single objective test plans 

Using the optimization criteria presented in Sec. 3.4, we determine optimal single stress 

test plans with two and three stress levels. In all the cases, we specify  0.2,0.2,1 r , 

and  ,6,8,1 1 20 , , , n  τ  for simplicity. Due to the invariance property of the 

Fisher information matrix given in Eq. (3.24), we set the total number of test units ˆ 1N . 

With respect to the variance criterion of mean time of first failure, we set the group size 
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N = 20 units. We investigate the lower life quantile 0.01q  for the variance optimality 

criterion of quantile failure.    

 

For the single stress test with two levels, we set the high stress level as 2 1x  . Thus the 

search for the optimal test plan is limited to the determination of the low stress level 

10 1x   and the associated unit allocation 10 1 p . We require MENF1 = 0.3, i.e. the 

minimum expected number of failure at the stress level x1 is 30% of the units allocated to 

that condition.  

 

For the test with three levels, we set the high stress level 3 1x   and the medium stress 

level 1 3
2

2

x
x

x
 . The decision variable is the low stress level 10 1x  . Under such three 

equally-spaced stress levels the 4:2:1 rule is often used for unit allocation (Meeker and 

Hahn, 1985). Therefore, we set
1

4

7
p  , 

2

2

7
p  , and 

3

1

7
p  . The MENF1 at stress level 

x1 is also 30% of the units allocated to the stress level.  

 

The obtained optimal single stress plan with two levels and three levels are shown in 

Table 3.1 and Table 3.2, respectively. We observe that the obtained values of low-stress 

level (x1) under all scenarios are close to the normal operating condition (xD = 0). This is 

highly desirable as it reduces the extent of stress extrapolation.  We also observe that the 

two-stress-level plans achieve better objective values relative to the corresponding three-

stress-level plans. This implies that the prediction precision obtained from two-stress-
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level tests is relatively higher than that under three-stress-level tests for the given model 

and test plan parameters.  

  

 

Table 3.1 Optimal test plans for two stress levels 

Obj. Fun. Stress Level 
Unit 

Allocation 

Obj. Fun. Value 

( ˆ 1N  ) 

Min   Asvar ;G 
 

θ  
x1  =  0.0489 p1 =  0.9334 

18.3251 
x2  =  1 p2 =  0.0666 

Min  .01Asva ;r ;Dt 
 

θ x  
x1  =  0.0489 p1 =  0.4331 

25.6451 
x2  =  1 p2 =  0.5669 

Max  ;det  
 
I θ  

x1  =  0.1082 p1 =  0.4538 
1.5319e-04 

x2  =  1 p2 =  0.5462 

 

 

Table 3.2 Optimal 4:2:1 test plans 

Obj. Fun. Stress Level 
Unit 

Allocation 

Obj. Fun. Value 

( ˆ 1N  ) 

Min   Asvar ;G 
 

θ  

x1  =  0.0489 p1 =  4/7 

23.1308 x2  =  0.5244 p2 =  2/7 

x3  =  1 p3 =  1/7 

Min  .01Asva ;r ;Dt 
 

θ x  

x1  =  0.0610 p1 =  4/7 

27.0114 x2  =  0.5305 p2 =  2/7 

x3  =  1 p3 =  1/7 

Max  ;det  
 
I θ  

x1  =  0.0707 p1 =  4/7 

5.4896e-05 x2  =  0.5353 p2 =  2/7 

x3  =  1 p3 =  1/7 
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In design of ALT plans, initial estimates of unknown model parameters must be provided 

so as to derive a locally optimal test plan. Sometimes the optimality in terms of statistical 

precision cannot be achieved as planned due to the poor initial estimates of the 

parameters. We perform a sensitivity study to identify the parameters which must be 

estimated with special care. We increase and decrease the values of the parameters

10 11 20 21, , , ,     
   by 5% sequentially and investigate the corresponding effect on 

optimal test plans presented in Table 3.1 and Table 3.2. The results associated with the 

optimal 4:2:1 plans and 2-stress-level plans are summarized in Table 3.3 and Table 3.4, 

respectively, where “+” and “-” indicates 5% increase and 5% decrease, respectively. 

 

We observe that  , inverse of the shape parameter of the Weibull distribution, is the 

most sensitive parameter. For the variance optimality, 
10  is more sensitive relative to 

11 20 21, ,   
  . On the contrary, for the D-optimality

10  is not so sensitive as it is for the 

variance optimality. In general, the sensitivity of β in terms of quantile failure is less than 

that of mean time of first failure. The reason is that mean time of first failure is the most 

extreme case. Also, the sensitivity of β in terms of mean time of first failure is less than 

that of D-optimality. In addition, parameters are less sensitive for 4:2:1 plans than those 

for two-stress-level plans. This implies that prediction obtained from three-stress-level 

test is more robust than that from two-stress-level test for the given parameters.              
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Table 3.3 Percent change in the objective function due to 5% change in the parameters--

optimal 4:2:1 plans 

Objective Function 

Parameter and Objective Function Values (%) 

10  

(2.6078) 
11  

(-2.1461) 
20  

(3.1315) 
21  

(-1.2796) 

  

(0.5) 

+ - + - + - + - + - 

Min  Asvar ;G 
 

θ  7.48 6.98 .14 .17 3.58 3.59 .28 .29 25.7 37.7 

Min

 .01A ; ;svar Dxt 
 

θ  
4.22 4.09 .33 .36 1.66 1.71 .11 .11 22.7 29.4 

Max  ;det  
 
I θ  4.85 6.96 11.6 12.8 10.3 11.3 9.98 8.94 19.0 17.4 

 

 

Table 3.4 Percent change in the objective function due to 5% change in the parameters--

optimal 2-level plans  

Objective Function 

Parameter and Objective Function Values (%) 

10  

(2.6078) 
11  

(-2.1461) 
20  

(3.1315) 
21  

(-1.2796) 

  

(0.5) 

+ - + - + - + - + - 

Min  Asvar ;G 
 

θ  7.93 7.41 .09 .04 4.33 4.31 .31 .34 30.9 48 

Min

 .01A ; ;svar Dxt 
 

θ  
4.24 4.11 .03 .02 1.71 1.77 .06 .07 23.1 30.3 

Max  ;det  
 
I θ  8.49 9.67 16.4 19.1 10.4 11.5 13.2 11.7 21.2 18.9 

 

 

 



94 

 

 

Multi-objective optimal test plans 

In this section, we present examples to illustrate the application of the multi-objective 

optimization to determine optimal test plans. For unit allocation to stress levels, we 

follow the 4:2:1 rule, that is, 
1

4

7
p , 

2

2

7
p , and 

3

1

7
p  for equally spaced three-stress-

level test.  For simplicity, we set  τ τ  and , for 1,2,3  r r . In other words, we use 

the same progressive censoring schedule under different stress levels. The initial estimate 

of the unknown model parameters is the same as previous examples.  

 

To develop examples based on the formulations (3.38) and (3.39), we use multi-objective 

Genetic Algorithm gamultiobj function which is built in Matlab and plot the Pareto front. 

In all the cases, we set the maximum number of iterations as 3000, population size as 100, 

and the Pareto fraction as 0.7. The larger the population size, the smoother the Pareto 

front, but the longer the time is needed for computation. We conducted some 

experimentation for the gamultiobj parameter setting and then chose these values. For 

other parameters of the algorithm, we use their default values.   

 

For formulation (3.38), we consider three periods, i.e. 3s . We investigate the 

objectives of the determinant of the Fisher information matrix and the total number of 

failure over all the periods and stress levels. We set ˆ 1N   , so the total number of failures 

equals the total fraction of failure which can be calculated using Eq. (3.21). Therefore, we 

have formulation (3.38) written as 
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I E mθ θ  
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4 2 1
, ,
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  p p p

 

[6 8 10]τ
 

 
23

3 11,
2


 

x x
x x  

 

where  1

'

1 2x r r   . As the test is terminated at the end of the 3
rd

 period, 
3 1r  .  

 

After evaluation of above formulation, we obtain the Pareto front as shown in Figure 3.3. 

We observe that the statistical precision, determinant of the Fisher information matrix, 

monotonically increases with the increase of the total fraction of failure. The increasing 

rate is very small when the total fraction of failure is more than 0.7. Each point on the 

Pareto front associates with not only the values of the two objective functions, but also 

the values of 1 1 2, andx r r . For example, point A in Figure 3.3 represents a test plan that 

achieves 1
st
 objective value  6.3438e-05 (D-optimality) and 2

nd
 objective value 0.6931 

(total ratio of failure). The corresponding three normalized stress levels from low to high 

are 0.0025, 0.5013 and 1. The fraction of test units allocated to low, medium and high 

stress levels is 4/7, 2/7 and 1/7, respectively.  Under each stress level, 0.1216, 0.1016 and 

1 fraction of surviving test units are removed at the 6
th

, 8
th

 and 10
th

 time unit, respectively. 

These parameters of optimal test plan associated with point A are summarized in Table 

3.5.   
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In addition, with the value of 
1 1 2, ,x r r  and τ, we also can obtain the fraction of failure 

under different stress levels and the fraction of failure due to failure mode i based on Eq. 

(3.11) and Eq. (3.21), respectively.     

  

Table 3.5 Optimal test plan (point A) on Pareto front 

Det. (f
1
)  Total ratio of failure (f

2
)  Stress levels  

6.3438e-05  0.6931  x = [0.0025,  0.5013,  1]  

Unit allocation  Censoring time  Ratio to remove  

p = [4/7,  2/7,  1/7]  η  = [6,  8,  10]  r =[0.1216,  0.1016,  1]  

       

 

Figure 3.3 Pareto front for τ = [ 6  8  10 ] 

A 
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We keep all parameters the same as above formulation but τ = [ 2  3  4 ] and compute 

another Pareto front, as shown in Figure 3.4. We observe that under shorter test duration, 

both the total fraction of failure and the statistical precision decrease. By plotting series 

of Pareto fronts under different τ, we can have clear idea about the relationship of 

statistical precision, test duration and total fraction of failure. This facilitates the choice 

of appropriate progressive censoring schedule, fraction of units to remove and test stress 

levels in order to obtain optimal parameter estimation as well as meet practical 

constraints on time and cost. Similarly, each point on the Pareto front represents an 

optimal test plan. The optimal test plan parameters associated with point B in Figure 3.4 

is given in Table 3.6.   

 

 

Table 3.6 Optimal test plan (point B) on Pareto front 

Det. (f
1
)  Total T

L
 (f

2
)  Stress levels  

1.8916e-06  0.4446  x = [0.2033,  0.6016,  1]  

Unit allocation  Censoring time  Ratio to remove  

p = [4/7,  2/7,  1/7]  η =[2,  3,  4]  r =[0.1012,  0.1018,  1]  
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Figure 3.4 Pareto front for τ = [ 2  3  4 ] 

 

For formulation (3.39), we also consider three periods and set [0.4 0.2 1]r , 

   1 1 00.5 , 1,2, 0         u

u

u u u u , and ˆ 1N  . For single stress ALT, the 

experiments under different stress levels can be conducted either sequentially or 

simultaneously. In either case, the test duration under the lowest stress level has the most 

crucial impact on the precision of statistical prediction. Therefore, we choose the test 

duration under the stress level x1 as the objective as well as the determinant of the Fisher 

information matrix. The formulation (3.39) is written as  

 

 

B 



99 

 

 

      3Min det ; , ;          I θ θ  

s.t.    
31 2

4 2 1
, ,

7 7 7
  p p p

 

[0.4 0.2 1]r  

 
1 3 2 3

4 6
,

7 7
      

23
3 11,

2


 

x x
x x  

 

where  1

'

1 2   x . 

 

After evaluation of above formulation, we obtain the Pareto front as shown in Figure 3.5.  

We observe that the statistical precision, determinant of the Fisher information matrix 

monotonically increases with the test duration. Each point on the Pareto front present not 

only the values of the two objective functions but also 1 1 2, and x . Similarly, with the 

values of 1 1 2, , x  and r, we can obtain the fraction of failure under different stress levels 

and the fraction of failure due to failure mode i.  
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Figure 3.5 Pareto front for r = [ .4  .2  1 ] 

 

 

We keep all parameters the same as above formulation but change the fraction of removal 

to [0.2 0.2 1]r , [0.2 0.4 1]r  and [0 0 1]r , and compute the corresponding 

Pareto front, as shown in Figure 3.6. Under the same test duration, we obtain the best 

statistical precision when [0 0 1]r , which is the extreme case of progressive Type-I 

censoring, Type-I censoring. In other words, we do not remove any units until the final 

termination of the test. In this case, we have more information relative to other cases after 

the first period. Under the same time duration, we achieve the worst statistical precision 

when [0.4 0.2 1]r . This implies that the more the units are removed at the earlier 

stages, the worse the prediction is. The statistical precision under [0.2 0.2 1]r , 

[0.2 0.4 1]r are very close. Thus the impact of the units removed at the later stages is 
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insignificant under the given censoring time schedule. On the other hand, test duration for 

the same level of statistical precision is the shortest when [0 0 1]r and longest when 

[0.4 0.2 1]r , respectively. Similarly, the series of Pareto front in Figure 3.6 can 

facilitate the choice of appropriate fraction of units to remove and censoring time at the 

lowest stress levels in order to obtain optimal parameter estimation as well as meet 

practical constraints on time and cost. The parameters of the optimal test plan associated 

with points C and D are given in Table 3.7 and Table 3.8, respectively. 

 

Table 3.7 Optimal test plan (point C) on Pareto front 

Det. (f
1
)  Total T

L
 (f

2
)  Stress levels  

1.2640e-04  12.08  x = [0.0761,  0.5381,  1]  

Unit allocation  Censoring time  Ratio to remove  

p = [4/7,  2/7,  1/7]  η  = [6.9,  10.35,  12]  r =[0,  0,  1]  

 

 

Table 3.8 Optimal test plan (point D) on Pareto front 

Det. (f
1
)  Total T

L
 (f

2
)  Stress levels  

3.2545e-04  27.16  x = [0.0023,  0.5012,  1]  

Unit allocation  Censoring time  Ratio to remove  

p = [4/7,  2/7,  1/7]  η =[15.52, 23.28, 27.16]  r =[0.4,  0.2,  1]  
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Figure 3.6 Pareto fronts for different r 

 

3.5.2 Optimal Test Plan under Multiple Stresses 

We extend the example of optimal test plan with multiple stresses presented in Sec. 2.6 to 

multiple failure modes. We assume the parameters associated with the second failure 

mode are  2 5.1, 0.469,0.411, 0.65  β . We use the same values of N̂ , r , τ , N  and q 

as in the example of the single stress test. The specified MENF at each stress-level 

combination is the fraction 0.015 times the number of units under test. We determine the 

optimal test plans based on the formulation given in Sec. 3.4 using the SA based 

algorithm presented in Sec. 2.5 and the results are shown in Table 3.9.   

 

C 

D 
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Table 3.9 shows that the achieved objective of the minimum asymptotic variance of mean 

time of first failure is 5.1408e+05. Correspondingly, 0.3868, 0.2150, 0.1049, 0.0150 and 

0.2780 fractions of the test units are allocated to the stress-level combination of [60% RH, 

70 ºC, 1.7275 kV/mm], [67.5%RH, 45 ºC, 0.7825 kV/mm], [75%RH, 85 ºC, 1.255 

kV/mm], [82.5%RH, 55 ºC, 0.31 kV/mm] and [90%RH, 35 ºC, 2.2 kV/mm], respectively. 

The objective value of the optimal test plan for the minimum asymptotic variance of 

quantile failure at normal operating conditions is 8.4995e+06 and the corresponding test 

plan has 0.3423, 0.1852,0.0890, 0.0150 and 0.3685 fractions of the test units allocated to 

the stress-level combination of [60% RH, 70 ºC, 1.7275 kV/mm], [67.5%RH, 45 ºC, 

0.7825 kV/mm], [75%RH, 85 ºC, 1.255 kV/mm], [82.5%RH, 55 ºC, 0.31 kV/mm] and 

[90%RH, 35 ºC, 2.2 kV/mm], respectively. The objective value of the optimal test plan 

that maximizes the determinant of the Fisher information matrix is 0.0034. Based on this 

test plan, 0.2505, 0.0150, 0.2393, 0.2304 and 0.2648 fractions of the test units are 

allocated to the stress-level combination of [60% RH, 55 ºC, 2.2 kV/mm], [67.5%RH, 70 

ºC, 0.31 kV/mm], [75%RH, 35 ºC, 0.7825 kV/mm], [82.5%RH, 85 ºC, 1.255 kV/mm] 

and [90%RH, 45 ºC, 1.7275 kV/mm], respectively.       

 

 

Table 3.9 Optimal test plans with multiple stresses 

Obj. Fun. 

Stress-Level Combinations 
Unit 

Allocation 

Obj. Fun. 

Value ( ˆ 1N  ) 
x1 

(RH%) 

x2 

(ºC) 

x3 

(kV/mm) 

Min  Asvar ;G 
 

θ  

1 

(60%) 
4 

(70 ºC) 
4 

(1.7275 kV/mm) 
0.3868 

5.1408e+05 2 

(67.5%) 
2 

(45 ºC) 
2 

(0.7825 kV/mm) 
0.2150 

3 5 3 0.1049 
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(75%) (85 ºC) (1.255 kV/mm) 

4 

(82.5%) 
3 

(55 ºC) 
1 

(0.31 kV/mm) 
0.0150 

5 

(90%) 
1 

(35 ºC) 
5 

(2.2 kV/mm) 
0.2782 

Min

 .01A ; ;svar Dxt 
 

θ  

1 

(60%) 
4 

(70 ºC) 
4 

(1.7275 kV/mm) 
0.3423 

8.4995e+06 

2 

(67.5%) 
2 

(45 ºC) 
2 

(0.7825 kV/mm) 
0.1852 

3 

(75%) 
5 

(85 ºC) 
3 

(1.255 kV/mm) 
0.0890 

4 

(82.5%) 
3 

(55 ºC) 
1 

(0.31 kV/mm) 
0.0150 

5 

(90%) 
1 

(35 ºC) 
5 

(2.2 kV/mm) 
0.3685 

Max  ;det  
 
I θ  

1 

(60%) 
3 

(55 ºC) 
5 

(2.2 kV/mm) 
0.2505 

0.0034 

2 

(67.5%) 
4 

(70 ºC) 
1 

(0.31 kV/mm) 
0.0150 

3 

(75%) 
1 

(35 ºC) 
2 

(0.7825 kV/mm) 
0.2393 

4 

(82.5%) 
5 

(85 ºC) 
3 

(1.255 kV/mm) 
0.2304 

5 

(90%) 
2 

(45 ºC) 
4 

(1.7275 kV/mm) 
0.2648 

 

 

3.6 Summary 

This chapter presents approaches for planning ALT under progressive Type-I censoring 

and multiple failure modes. A unit is considered failed when any of the multiple failure 

modes occurs. Each failure mode is assumed to have an independent Weibull distribution 

with different unknown scale parameters and a common unknown shape parameter. 

Under progressive censoring, a proportion of the survival units is removed from the test 

at multiple stages before the final termination of the test under different stress levels.  
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We develop Fisher information matrix for the maximum likelihood estimate. We propose 

and develop a new optimization criterion for the design of test plans, that is, minimization 

of the asymptotic variance of MLE of mean time of first failure under normal operating 

conditions. This criterion is useful in circumstances where early failures are extremely 

crucial. In addition, we also develop optimal test plans in terms of the asymptotic 

variance of quantile failure, D-optimality and multi-objective optimization. The multi-

objective criterion provides a practical guideline to seek test plan that not only achieves 

statistical optimality but also meet time and/or cost constraints. 

 

This is also the first such work for the design of multiple stresses ALT plan under 

progressive censoring and competing risk. To illustrate the optimal test plan formulations, 

we present numerical examples based on the parameters from real tests under both single 

stress and multiple stresses. We also perform the sensitivity study to identify model 

parameters which should be initially estimated with special care.     

 

.   
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4 CHAPTER 4  

DESIGN OF EQUIVALENT ALT PLANS 

 

4.1 Introduction 

Accelerated life testing is conducted under severer conditions than the normal operating 

conditions in order to obtain failure time data of test units in a much shorter time than 

testing at normal operating conditions. Typical ALT plans require the determination of 

stress types, stress levels, allocation of test units to the stress levels and duration of the 

test. ALT is usually conducted under constant-stresses during the entire test duration. In 

practice, the constant-stress tests need a long time at low stress levels to yield sufficient 

failure data. This has prompted industry to consider other stress loadings, such as step-

stress (simple or multiple), ramp-stress, sinusoidal-cyclic stress or their combinations, as 

shown in Figure 4.1. These stress-loadings have been widely utilized in ALT experiments. 

For instance, static-fatigue tests and cyclic-fatigue tests (Matthewson and Yuce, 1994) 

have been frequently performed on optical fibers to study their reliability; dielectric-

breakdown of thermal oxides (Elsayed, et al. 2006) have been studied under elevated 

constant electrical fields and temperatures; and the lifetime of ceramic components 

subject to slow crack growth due to stress corrosion have been investigated under cyclic 

stress by NASA (Choi and Salem, 1997).   

 

Each stress-loading has both advantages and drawbacks. Complicated stress profiles may 

yield failures in a much shorter time than constant-stress tests but the statistical inference 

from the data might be more difficult to make. In other words, the accuracy of the 
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reliability prediction might be affected. This has raised many practical questions such as: 

Can accelerated testing plans involving different stress loadings be designed such that 

they are equivalent? What are the measures of equivalency? 

 

 

Figure 4.1 Various types of stress loadings 

 

Literature review shows that current research on planning ALT has been focused on the 

design of optimum testing plans for given stress loading. For instance, the constant-stress 

ALT plans have been investigated by Nelson and Kielpinski (1976), Maxim et al. (1977), 

Meeker and Hahn (1977), Nelson and Meeker (1978), Meeker (1984), Nelson (1990) and 

Yang (1994). The step-stress ALT plans have been studied by Miller and Nelson (1983), 

Bai et al. (1989), Bai and Chun (1991), Khamis and Higgins (1996), Xiong (1998), 

Xiong and Milliken (1999), and Xiong and Ji (2004) while the ramp-stress ALT plans 

have been considered by Bai et al. (1992) and Park and Yum (1998).  
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The wide range of stress applications, stress levels and corresponding test durations give 

rise to the investigation of the equivalency between test plans. However, fundamental 

research on the equivalency of test plans has not yet been addressed in the reliability 

engineering field. Without understanding of such equivalency, it is difficult for 

practitioners to determine the best experimental settings before conducting actual ALT.  

 

In this chapter, we present definitions of equivalent test plans, propose an approach for 

the design of equivalent ALT plans and apply the method to design of equivalent test 

plans under single constant-stress, step-stress and ramp-stress. The numerical results 

show that it is feasible to design equivalent and yet economical and efficient ALT plans 

having the same accuracy of reliability prediction. We also develop a model based on the 

well known cumulative exposure assumption to investigate the life-stress relationship 

under general time-varying stresses, e.g. ramp-stress.    

 

4.2 Definition of Equivalent ALT Plans 

In design of ALT plans, estimate of one or more reliability characteristics, such as the 

model parameters, hazard rate and the mean time to failure at certain conditions are 

common. Accordingly, different optimization criteria might be considered. For instance, 

if estimate of the model parameters is the main concern, D-optimality which maximizes 

the determinant of the Fisher information matrix is considered an appropriate criterion. 

When estimate of the quantile failure at normal operating conditions is the major task 

then the variance optimality that minimizes the asymptotic variance of quantile failure at 

normal operating conditions is commonly used. Meanwhile, different methods, e.g. MLE 
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or Bayesian estimator can be used for estimation. However each method has its inherent 

statistical properties and efficiencies. In light of this, we discuss equivalent test plans 

with respect to the same reliability characteristics and optimization criterion and 

determine equivalent test plans using the same inference procedure. Four possible 

definitions of equivalency are presented as: 

 

Definition 1  

Two or more test plans are equivalent if the absolute difference of the objectives for 

reliability prediction is less than  0    while meeting given the same set of 

constraints on the number of test units, expected number of failures or total test time. 

 

Definition 2 

Two or more test plans are equivalent if they achieve the same objective for reliability 

prediction while meeting the given constraints on the number of test units, expected 

number of failures or total test time within a margin  0   . 

 

Definition 3  

For the same reliability properties and inference procedure, two or more ALT plans are 

equivalent if they generate the same values of the same optimization criterion. 

 

Definition 4  
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Two or more ALT plans are equivalent if the difference between the estimated times to 

failure and the respective confidence intervals by the plans at normal operating conditions 

are within  0   , where  is an acceptable level of deviation. 

 

4.3 Approach for Determining Optimal Equivalent ALT Plans 

According to above definitions, the equivalent test plans are not unique. In this section, 

we discuss an approach for determining optimal equivalent ALT plans based on 

Definitions 1 and 2.  

 

The first step of the approach is to obtain an optimal baseline test plan. Since constant-

stress tests are the most commonly conducted accelerated life testing in industry and their 

statistical inference has been extensively investigated, we propose to use an optimal 

constant-stress plan as a baseline.  

 

Suppose an optimal baseline test plan can be determined from the following general 

formulation, 

 

Min  Bf x      (7.1) 

s.t. Lb x Ub   

  0C x   

  0Ceq x   
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where  Bf x  is the objective function (e.g. the asymptotic variance of mean time to 

failure) and x is its  decision variable which can be expressed as either a vector or a scalar, 

Lb and Ub are the corresponding lower and upper bounds of x.   0C x   and   0Ceq x 

are the possible  inequality and equality constraints, respectively. .  

 

The second step is to determine the equivalent test plan based on Definitions 1 and 2 

using formulations (4.2) and (4.3), respectively. Formulation (4.2) is given as follows, 

  

Min ( )i y      (7.2) 

s.t.   ( )  B Ef yfx
 

( ) ( ) 0j jx y    

' 'y bLb U   

  0'C y   

'( ) 0Ceq y   

 

Where    and ( )B Eff x y  are the base and equivalent objective functions respectively  

and y is the decision variable of the equivalent test plan,    represents the constraint of 

the total number of test units, expected number of failures or the test time. If  j y is the 

total number of test units,  i y can be the censoring time under Type-I censoring or 

expected number of failures under Type-II censoring and vice versa. The idea is to set the 

allowed difference between objective values as a constraint as well as seek other merits.  
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Similarly, based on Definition 2, the optimal equivalent test plan can be determined as, 

 

Min   i y      (7.3) 

s.t.     0B Ex ff y 
 

      j jx y  

' yb UL b   

  0'C y   

  0'Ceq y   

 

We now demonstrate these methods to determine an optimal equivalent step-stress test 

plan and an optimal equivalent ramp-stress test plan to the constant-stress test plan 

(baseline test plan).       

 

4.4 Equivalent Test Plan Formulations 

According to the definitions of equivalent ALT plans given in Sec. 4.3, we use the 

minimum asymptotic variance of quantile failure (e.g. q = 0.01) at normal operating 

condition as the objective for determining the optimal baseline test plan and equivalency 

of test plans. Without loss of generality, the stress is normalized using Eq. (3.9) to the 

range of [0,1] . In addition, the following assumptions are considered. 
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Assumptions 

1. A single stress is used in the ALT plan.  

2. The lifetimes of each test unit are statistically independent. 

3. The failure time follows exponential distribution with a hazard rate function 

 0 , 0  h t . 

4. The applied stress affects the lifetime of a test unit through PH model.  

 

According to the proportional hazard assumption, the hazard function of the test units 

under test stress z is given by 

   xp; eh t z z   

 

where β is the coefficient that reflects the effect of the stress. 

 

Therefore we have reliability function under stress z  

 

       ;
; e ex expp

H t z
R t tz z 


      (7.4) 

 

and failure time distribution function  

 

    exp; expt z z zf t       (7.5) 
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4.4.1 Optimal Baseline Constant-stress ALT Plan 

The optimum baseline constant-stress ALT plan is designed under Type-I censoring with 

a predetermined censoring time η. Three stress levels are used as shown in Figure 4.2. 

The high stress level is chosen to be the highest value 1Hz . The medium level 

 
2




L H

M

z z
z is the midway between the low level 

Lz  and the high level
Hz . The value 

of the low stress level is a decision variable. The allocation of test units to the low, 

medium and high stress levels follows the 4:2:1 rule. This unequal allocation is a 

compromise that extrapolates reasonably well and results in optimum design of test plans 

under constant-stress loading (Meeker and Hahn, 1985). The optimal test plan in terms of 

the low stress level 0 1 Lz  is obtained such that the MLE of q = 0.01 quantile failure at 

the normal operating condition 0Dz  is minimized. The total number of available test 

units is NB. The expected number of failures at the low stress level is required to be 

greater than or equal to NB pL, where pL is a fraction of the test units allocated to the low 

stress level.  

 

 

Figure 4.2 Constant-stress test 
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Fisher information matrix 

Under Type-I censoring and the assumed failure time model under stress, the log 

likelihood function of an observation at stress level  , ,kz k L M H  is 

 

          exp e, ; l p1 xnk k k ktL z I z Iz z             (7.6) 

 

where I is an indicator function defined by 

 

 1 if failure

0 otherwise

t
I

 
 


 

 

By taking the second derivative of the log likelihood function with respect to the 

unknown parameters and taking the negative expectation, we can obtain the elements of 

the Fisher information matrix. Let Fk be the Fisher information matrix of observations 

corresponding to stress level  , ,kz k L M H  which is given by 

 

2 2

2

2 2

2

Bk k

L L
E E

F N p
L L

E E







 

     
     
      


    
    

         

 

where  
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2

22

1
1 ex expp kE z

L
 

 

 
        

 

 

  
2

2

2
1 exp exp k

L
E z z




 
        

 

 

  
2

1 expexp k

L z
E  

  

 
         

z  

 

The total information matrix is given by
, ,

B k

k L M H

F F


  .  

 

Let  q Dt z be the q
th

 quantile failure time at normal operating conditions zD, then from Eq. 

(4.4) we solve 

 

 
 

 

ln 1

exp
q D

D

q
t z

z 





 

 

The asymptotic variance of the MLE  , ;q Dt z  at normal operating conditions zD is 

given by 
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1, ; , ;
Asvar , ; ,

, ; , ;
,

q D q D

q D B

T

q D q D

t z t z
t z F

t z t z

 




 




 



 


  

     
    

 

  
 

  
 

       (7.7) 

 

where 

   

 2

, ; ln 1

exp D

q D

z

t z q

  

 



     (7.8) 

and 

   

 

, ; ln 1

exp

Dq

D

Dt z z q

z







 

 



     (7.9) 

 

Optimal baseline test plan is obtained by solving the following optimization problem 

 

Min     =Asvar , ;B q Df x t z  
 

    (7.10) 

s.t.  0 1 Lz  

1 2 4
, ,

7 7 7
  H M Lp p p  

 1 ;    L LB B LN p R z N p
 

 

where the decision variable is the low stress level  Lx z .  
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4.4.2 Equivalent Step-stress ALT Plan 

Step-stress (shown in Figure 4.3) is often used in life testing in order to shorten the test 

duration. However, as the stress-level changes at a given time, the lifetime distribution 

under a step-stress needs to be related to that under a constant stress. This is 

accomplished using the cumulative exposure assumption described below.  

  

 

 
Figure 4.3 Simple step-stress test 

 

 

4.4.2.1 Cumulative Exposure Assumption 

According to the cumulative exposure assumption: 1) the remaining life of a test unit 

depends only on current cumulative fraction of damage and the current stress regardless 

how the fraction is accumulated. 2) If held at the current stress, survivors fail according 

to the cumulative distribution for that stress, but starting at the previously cumulative 

damage.  
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These assumptions form a joint cumulative damage function by horizontally shifting the 

individual cumulative damage function at the time that stress level changes. This can be 

explained by Figure 4.4. where  ; st z denotes the cdf of damage time for units tested at 

constant-stress , ,sz s L H .  

 

 

Figure 4.4  Cumulative exposure assumption 

 

From Eq. (4.4) and Eq. (4.5) we have 

 

   ; e p xx p1 e LL t zt z         

 

   ; e p xx p1 eH Ht zt z         

 

Suppose from time zero the test runs under stress level zL. At time η1 the stress level is 

increased to zH. According to the cumulative exposure assumptions, at time η1, the test 
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units have an equivalent starting time ε under stress level zH which is the solution to the 

following equation 

 

   1; ;  H Lz z      (7.11) 

 

That is, 

 1 1exp     L Hx x  

 

Thereafter, the test units fail under stress level zH following cdf 

 

       1 1 1; ; 1 e exp ,xpH H Hz zt tz t t                 

 

In summary, based on the cumulative exposure assumption the cdf of units subjected to 

simple step-stress as shown in Figure 4.3 is given by 

 

  
 

 

 

   

1

1 1

1

1 1

ex

; ,
,

; ,

1 exp ,

1 e

p

exxp ,p

L

H

L

H

t z t
t z t

t z t

t

t

t

t z

z



 

  

   





 
  

   

      
 

    

   (7.12) 

 

The corresponding pdf is given by  
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1
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,

L

H H
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t
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  (7.13) 

 

 

4.4.2.2 Fisher Information Matrix  

Under simple step stress a test unit may either fail at stress level zL before the stress 

changing time η1 or does not fail by time η1 and continues to run either to failure or to 

censoring time η2 at stress level zH. Accordingly, we define following indicator functions 

to describe such a failure pattern: 

 

1 1

1 1 1

1

1 if ,  failure observed before time 
( )

0 if , otherwise    

t
I I t

t

 





   


 

 

2 2

2 2 2

2

1 if ,  failure observed before time 
( )

0 if ,  otherwise    

t
I I t

t

 





   


 

 

where 1 2  . 

 

Then the log likelihood of a single observation is given by 
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The Fisher information matrix of a single observation is given by  

 

2 2

2

2

2 2
k

L L
E E

F
L L

E E

  



     
     
      


    
    

       

 

 

where the elements of the Fisher information matrix are the negative expectations of the 

second derivative of the log likelihood function with respect to unknown parameters,  
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The total information matrix is given by
1


sN

s k

k

F F , where Ns is the total number of the 

test units. 

 

4.4.2.3 Optimal Equivalent Step-stress Test Plan 

According to Definition 1 and the approach for determining optimal equivalent test plan, 

we present two formulations for determining the optimal equivalent test plan under step-

stress. 

 

 Formulation 1 

The objective is to minimize the censoring time η2 under step-stress test using the same 

number of test units as that of the baseline test plan. 

  

Min    2 y      (7.15) 

s.t.     ( )  sBf yfx  

0BsN N   

0 1 Lz , 1Hz , 1 2   
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   1;  s L sN z N  

 

where  ( ) Asvar , ;s q Dy tf z 
 

, the decision variables are the low stress level zL and 

time to change the stress level η1 represented by
1

 
  
 

Lz
y . In all the following 

formulations for equivalent step-stress test plans the decision variables are expressed as

1

 
  
 

Lz
y .  

 

In formulation (4.15), the constraint   ( )  sBf yfx maintains that the absolute 

difference between the values of the objective functions is less than or equal to  0   . 

The constraint 0BsN N   ensures that the total number of test units under step-stress 

equals that of the baseline test. Likewise, the constraint  1;  s L sN z N  ensures 

minimum expected number of failures at the low stress level under step-stress is greater 

than or equal to a fraction of the total test units. Such an optimal equivalent test plan 

intends to reduce the test time as well as obtain equivalent accuracy of reliability 

prediction as that of the constant-stress test plan. 

 

Formulation 2    

The objective is to minimize the total number of test units under step-stress test using the 

same censoring time as that of the baseline test. 
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Min    sN y      (7.16) 

s.t.     ( )  sBf yfx  

2 0   ,
1 2   

0 1 Lz , 1Hz  

   1;  s L sN z N  

 

where η is the censoring time of the baseline test plan. 

 

According to Definition 2 we propose two formulations for determining optimal 

equivalent step-stress test plan as follows. 

 

Formulation 1 

Min  2 y      (7.17) 

s.t.   ( 0)sB ff x y   

BsN N  
 

0 1 Lz , 1Hz , 1 2   

   1;  s L sN z N  

 

 Formulation 2 

Min  sN y      (7.18) 

s.t.   ( 0)sB ff x y   
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  s  

0 1 Lz , 1Hz ,
1 2   

   1;  s L sN z N
 

 

4.4.3 Equivalent Ramp-stress ALT Plan 

Ramp-stress as shown in Figure 4.5 is a type of the stress loadings that can further reduce 

the test time than step-stress. However, the life-stress relationship is difficult to model, if 

not impossible. To obtain optimal equivalent ramp-stress test plan, generalized PH 

models for the lifetime of a test unit under time-varying stresses are developed in the next 

section.    

  

 

Figure 4.5 Ramp-stress loading (k is the rate of increase in stress per unit time) 

 

4.4.3.1 Generalized PH Model 

A ramp-stress can be approximated by a step-stress as shown in Figure 4.6.  
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Figure 4.6 Approximation of ramp-stress using step-stress 

 

Under step-stress, the cumulative exposure assumption can be applied to relate the 

cumulative failures under different stress levels as discussed in Sec.4.4.2.1. Since 

cumulative hazard rate is monotonically dependent on the cumulative failure, the 

cumulative exposure assumption then applies to the cumulative hazard rate.    

 

Let  ; sH t z represent the cumulative hazard function at stress level zs,  0H t and  0h t  

be the baseline cumulative hazard function and hazard function, respectively. Assume 

that the step-stress is applied at time zero as shown in Figure 4.6. Based on the 

cumulative exposure assumption, at the first stress-level changing time η1, we have 

 

     1 1 1 1 1 1 1 21; ; ;       H t z H tH z z z  

 

where 1 2 1zz z   , 1t is the time shift if from time zero the stress-level z2 is applied.  
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At time ηi-1, the stress level is increased from zi-1 to zi, so we have 

 

     1 1 1 1 1 1 11 1 1; ; ;                   i i i ii ii i iH t t z tH z tz zH  (7.19) 

 

Using Taylor expansion of Eq. (4.19) we have 
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Using the PH assumption we obtain 
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If stress  z t is differentiable, then the total time shift is 
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Hence, the cumulative hazard function under time-varying stress  z t is given by 

 

        *

0, exp  H t z t H t t t z t     (7.20) 

 

Under ramp-stress,  

 
  
   

0*

*0

0

* 
 

 


 




t H t
t t d

h t
k     (7.21) 

 

where k is the normalized ramp-rate.  

 

If stress  z t is differentiable until time T where there is a jumpz , then 

 

       *

0, exp        T Tt z T zH T z T H T t  

 

where  

   1 * *

0 0 exp       
 TT Tt H H T t T tz  

 

 

If there are g jumps associated with  z t  at times  1, ,mT m g , then  
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0
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TH t z t t z tH t t

 

 

and  

   1 * *

0 0 exp       
 

 
mm mm T m TTt H H T t T tz  

 

Let the applied ramp-stress  z t be 

 

  , 0 z t kt k      (7.22) 

 

where k is the normalized ramp-rate such that  0 1   D Hz z t z .  

 

Then given the baseline hazard function  0 , 0  h t , using Eq. (4.21), we obtain 

 

    * 1
1 exp 


     kt

k
t t t  

 

Therefore the cumulative hazard function under ramp-stress is 

 

   , exp 1





       H t z t kt
k

   (7.23) 
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From the cumulative hazard function Eq. (4.23), we obtain the cumulative failure 

function 

 

   1 exp 1 ex, p





 
          

 
t z tt k

k
   (7.24) 

 

and the failure density function  

 

 
 1 exp

ex, p
 

 


         
  

t z
kt

k
tf kt    (7.25) 

 

 

4.4.3.2  The Fisher Information Matrix 

The log likelihood function for an observation under a ramp-stress is given by  

 

    
 

   , ; ln
1 p

exp
ex

1 1
  

     
 

 
  

        
 




 
R

kt
kt k

k k
L z t I I  (7.26) 

 

where 

 1 if failure

0 otherwise

Rt
I

 
 
  

 

and ηR is the censoring time of the ramp-test.   
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The Fisher information matrix of MLE corresponding to a single observation is given by 
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where the elements of the Fisher information matrix are the negative expectation of the 

second derivative of the log likelihood function with respect to unknown parameters.  

 

  2 2

2 1
1 exp 1 exp


 

  

    
       
     

k
L

E
k

 

 

   

 
   

2

2

0 2

1 exp exp

e
1 exp exp

1 expxp

kt kt

k k

tL
E I d

k

k

k

k
k

t
  

   

     
 

 

    

  
     
    

 
 







 

 

     

 
     

2

2 2 3

2

2 3

2

0

2exp 2

2exp 2
ex

1 expexp

1 expexp
1 expp

kL tkt kt t kt

kk

E I dt
k

k

k k
k

k

     

   

        
 

   

    
      
    

 

  



  
 

   
 












 

  



133 

 

 

Suppose NR units are available for the ramp-stress test. The total information matrix is 

given by
1

RN

R k

k

F F


 . 

 

4.4.3.3 Optimal Equivalent Ramp-stress Test Plan 

We propose two formulations for equivalent ramp-stress test plan based on Definition 1. 

 

Formulation 1 

The objective is to minimize the censoring time ηR under equivalent ramp-stress using the 

same number of test units as that of the baseline test. 

 

Min  R y  

s.t.   ( )  RBf yfx    (7.27) 

0RN N   

, 1RUk k k   

  ;   R R RRN z N  

 

where  ( ) Asvar , ;R q Dy tf z 
 

, the decision variable is the normalized ramp-rate

y k . In the following formulations for equivalent ramp-stress test plan, all y k .  
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The constraint   ( )  RBf yfx ensures that the absolute difference between the values 

of the objective functions is within  0   . The constraint 0BsN N   ensures that the 

total number of test units equals that of the baseline test. The constraint 1Rk   ensures 

that the highest test stress is not greater than or equal to the maximum allowed stress 

level zH whose normalized value is 1.   ;   R R RRN z N  ensures minimum expected 

number of failures under ramp-stress is greater than or equal to  fraction of the total test 

units. In addition, we specify an upper bound for the ramp-rate 
Uk k  in order to avoid 

different failure modes other than those occur at design stress.   

 

Formulation 2 is similar to Formulation 1, but the objective is the minimum number of 

total test units  RN y  and the constraint of 0RN N   is replaced by 0R   .  

 

According to Definition 2 we propose two formulations for determining optimal 

equivalent ramp-stress test plans. 

 

Formulation 1 

Min   R y      (7.28) 

s.t.   ( 0) RBf yfx  

BRN N  
 

, 1RUk k k   

  ;   R R RRN z N  
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Formulation 2 is also similar to Formulation 1, but the objective is the minimum number 

of total test units  RN y  and the constraint of 
BRN N   is replaced by   s

.  

 

In the next section, we present examples to obtain equivalent test plans under single step-

stress and ramp-stress. 

 

4.5 Numerical Examples 

Suppose the baseline accelerated life testing is to be carried out at three constant-voltage 

levels for MOS devices in order to estimate its 1% quantile failure at normal operating 

conditions zD = 2V. The test needs to be completed in 300 hours. The total number of 

units available for testing is 200. To avoid the inducing of failure modes different from 

the expected at the design stress level, it has been determined, through engineering 

judgment, that the highest voltage level should not exceed zH = 5V. The stress level is 

normalized to the range of [0, 1] using Eq. (3.9). The required minimum number of 

failures for the low stress level is 30% of test units allocated to that level.  

 

Some experiments are conducted to obtain a set of initial values of the parameters for the 

PH model. These values are then normalized as 0.0015, 6.2   . The decision 

variable is the low stress level zL. The optimal value of the decision variable is 

determined by solving the nonlinear optimization problem with nonlinear constrains as 

well as linear and boundary constraints, formulation (4.10). We use Matlab nonlinear 

constraint solver, fmincon, to solve this optimization problem. The optimum normalized 
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low stress level is 0.1139 which is equivalent to zL = 2.3417V. The corresponding 

asymptotic variance of 1% failure time at design stress is 0.8082, as shown in Table 4.1.  

 

A simple step-voltage test, as shown in Figure 4.3, is conducted for the same MOS 

devices, using the same number of test units and censoring time (η2) as is used in the 

constant-voltage test. We investigate optimal test plan with respect to the same objective 

function as that of the constant-voltage test. The decision variables are the low voltage 

level zL and voltage changing time η1. The optimum values of the decision variables are 

determined from following formulation. 

 

Min     .01=Asvar , ; 0s Df x t z 
 

 

 
s.t.   200sN   

2 300  , 1 2   

0 1 Lz , 1Hz  

   1; 0.1s L sN z N 
 

 

where π = 0.1 is the required minimum fraction of failures of the test units before the 

stress level is increased.  The obtained results are given in Table 4.1. 

 

A ramp-voltage test as shown in Figure 4.5 is also conducted. The optimum ramp-rate is 

determined from following optimization problem. 
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Min     .01=Asvar , ; 0R Df x t z 
 

 

 
s.t.  200RN   

300R   

0.01, 0 1R Hk k z     

 1; 0.1R L RN z N 
 

 

 

The optimum solution for above ramp-voltage test is presented in Table 4.1. 

  

From Table 4.1 we observe that for the same objective function, initial estimate of 

unknown model parameters, censoring time and total number of test units, the ramp-test 

achieves significantly smaller asymptotic variance of the quantile failure prediction at 

normal conditions than that of the step-stress test, and the step-stress test achieves 

significantly smaller asymptotic variance of quantile failure prediction at normal 

conditions than that of the constant-stress test. This provides the possibility to investigate 

equivalent step-voltage and ramp-voltage test plans that achieve the same objective 

values as that of constant-voltage test but using less test duration or number of test units.  

 

Since constant-stress tests are the most commonly conducted accelerated life tests in 

industry and their statistical inference has been extensively investigated, we set the 

constant-voltage test plan as the baseline. The first objective is to minimize the test 

duration under step-voltage and ramp-voltage tests while achieving an equivalent 
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objective function values to that of the baseline. The efficiency of equivalent plan is 

measured by the percentage of reduction in the test time.     

 

 

Table 4.1 Optimal test plans 

0.0015 6.2         η = η2 = ηR = 300 hrs     NB = Ns = NR = 200 

Test Min   .01Asvar , ; Dt z  
 

 Optimal decision value 

Constant-voltage 0.8082 ZL = 0.1139 (2.3417V) 

Step-voltage 0.4826 ZL = 0.1472 (2.4416V), τ1 = 295 hrs  

Ramp-voltage 0.2245 K = 0.0033 (0.0099V/ hr) 

 

 

To obtain the equivalent test plans for minimum censoring time we follow the 

formulations (4.15) and (4.27) for equivalent step-voltage test plan and ramp-voltage test 

plan, respectively. The allowed absolute difference between the objective function is less 

or equal to 0.01, i.e. 0.01 1%   . We use the same number of test units to that of the 

baseline test plan ( 200S R BN N N   ). We set the upper bound of the ramp-rate as 

0.01V/hr. Then by evaluation of the formulations (4.15) and (4.27) using nonlinear 

constraint solver, fmincon, built in Matlab, we obtain equivalent test plans parameters as 

shown in Table 4.2.  

 

We observe that the step-voltage test significantly reduces the test time. The time 

reduction relative to the baseline test plan is 63.33% while the difference between the 
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objective functions is less than 1%. The ramp-voltage test plan further reduces the test 

time. The time reduction relative to the baseline test plan is 85.6% while the difference 

between the objective functions is less than 0.5%. . This shows that it is feasible to design 

equivalent and yet efficient ALT plans having the same accuracy of reliability prediction.     

 

 

Table 4.2 Equivalent test plans (minimum censoring time) 

Test plan 

parameters 

Baseline constant-

voltage test 

Equivalent step-

voltage test 

Equivalent ramp-

voltage test 

Obj. values 0.8082 
0.8012  

( 0.0087 0.87%   ) 

0.8044 

0.0047 0.47%    

Test time (hrs) 300 110 43.2 

Test time 

reduction 
-- 63.33% 85.6% 

Total number of 

units 
200 200 200 

 

 

When the cost per unit is high, it is extremely important to reduce the number of test units 

used in accelerated life testing. Therefore, the second objective is to minimize the total 

number of test units under step-voltage test and ramp-voltage test while achieving 

equivalent objective function values to that of the baseline test. The efficiency of 

equivalent plan is measured by the percentage of reduction in the number of test units.  

 

To obtain the equivalent test plans for minimum number of test units we follow and 

evaluate the formulation (4.16) for step-voltage test plan. Similarly, we follow and 
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evaluate formulation (4.27) with the objective function replaced by the minimum number 

of total test units  RN y  and the constraint of 0RN N   replaced by 0R   for the 

equivalent ramp-voltage test plan. The achieved equivalent test plan parameters are 

presented in Table 4.3.  

 

We observe that the step-voltage test again significantly reduces the required number of 

test units. The reduction relative to the baseline test plan is 40.5% while the difference 

between the objective functions is less than 0.5%. The ramp-voltage test plan also further 

reduces the required number of test units. The reduction relative to the baseline test plan 

is 72% while the difference between the objective functions is less than 1%. This 

confirms that we can design equivalent and yet economical ALT plans having the same 

accuracy of reliability prediction.  

 

 

Table 4.3 Equivalent test plans (minimum number of test units) 

Test plan 

parameters 

Baseline constant-

voltage test 
Step-voltage test Ramp-voltage test 

Obj. values 0.8082 
0.8111 

0.0036 0.36%    

0.8017 

0.0086 0.86%    

Censoring time 

(hrs) 
300 300 300 

Total number of 

units 
200 119 56 

Number of test 

units reduction 
-- 40.5% 72% 
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4.6 Summary  

In this chapter, we investigate the equivalency of ALT plans involving different stress 

loadings. We propose four definitions of equivalency in order to design equivalent ALT 

plan. Based on the definitions 1 and 2, we determine optimal equivalent ALT plans under 

the step-stress and the ramp-stress to the baseline constant-stress ALT plan. The objective 

is to shorten the test duration or reduce the number of test units without any significant 

errors in reliability predictions. Numerical examples demonstrate the feasibility of such 

equivalent ALT plans under different stress loadings. This has significant practical and 

economical impacts as it enables reliability practitioners to choose the appropriate ALT 

plan to accommodate restrictions of resource and duration of the test.  
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5 CHAPTER 5 

EXPERIMENTAL VALIDATION 

 

The objective of this chapter is to validate the general PH model for time-varying stress 

developed in Chapter 4 and the equivalent ALT plans by conducting accelerated life 

testing experiments in the Quality and Reliability Engineering Laboratory of the 

Industrial and Systems Engineering Department. 

 

5.1 Experimental Samples 

Each experimental set has a board that contains up to 32 miniature light bulbs as shown 

in Figure 5.1. The set is placed in a temperature and humidity chamber where humidity is 

held constant. The design working conditions of this light bulb are:  

voltage: 2 Volts,  

current: 0.06 amps.  

 

The light bulbs may fail due to one of four modes: breakage of the glass bulb, sealing 

failure, thermal shock of the bulb filament and long term failure of the filament. The most 

common failure mode of the light bulbs is thermal shock. When the switch is turned on, 

full current suddenly flows to the filament at the speed of light. This sudden, massive 

vibration causes the filament to wildly bounce causing fatigue behavior of the filament 

which results in breakage of the filament. Long Term Failure occurs when the filament 
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eventually becomes so fatigued that its electrical resistance increases to the point that 

current will not flow. We study and monitor the long term failure in this dissertation.  

 

 

Figure 5.1 Samples of the miniature light bulbs (Zhang, 2006) 

 

 

5.2 Experiments Setup 

In order to continuously monitor the failure times of test units and to control the applied 

stresses, an automatic accelerated life testing environment is designed as shown in Figure 

5.2. LabJack U3 is a connector block which interfaces directly to personal computer (PC) 

via USB. It retrieves the information of the current status of the test units and the testing 

environment. The SCB-68 is a shielded I/O connector block with 68 screw terminals for 

easy signal connection to LabJack U3. The SCB-68 features a general breadboard area 

for custom circuitry and sockets for interchanging electrical components. Each light bulb 
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is connected in series with a resistor and the bulb-resistor sets are in parallel. To monitor 

the status of the light bulbs, Voltage across the resistor is measured.  

  

 

Figure 5.2 The layout of the accelerated life testing equipment 

 

 

Figure 5.3 shows the programmable power supply, which is used to provide different 

voltage loadings.  Under step-stress environment the BK Precision LabView GUI (Figure 

5.4) controls the voltage of the power supply which increases by the step over the time 

interval. Under the ramp-stress environment, the power supply approximates the step-

voltage to be close to a linear relationship.  

 



145 

 

 

 

Figure 5.3 The programmable power supply 

 

 

Figure 5.4 The LabView power supply control interface 

 

 

National Instruments LabView software is used to develop the application for the 

continuous monitoring of the status of the test units. The failure time data are 

automatically saved as a spreadsheet file by LabView application. Figure 5.5 shows the 
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graphical user interface of the programmed LabView application. It shows the start date 

and time of the record, and the current status of the units being monitored.  

 

 

 

Figure 5.5 The LabView data collection interface 

 

 

5.3 Test Conditions 

To validate the general PH model for time-varying stresses, experiments on the light 

bulbs are conducted under two different voltage ramp-rates, 0.015V/hr and 0.01V/hr, 

starting from 2V at each condition. The working status of the light bulbs is continuously 

monitored and recorded by the LabView application. 

 

To validate the equivalency of test plans under different stress loadings, experiments 

under constant-voltage, step-voltage and ramp-voltage are conducted. Under constant-
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voltage, we apply 2.2V and 2.46V for 160.13hr (47 samples) and 130.47hr (22 samples), 

respectively. Under step-voltage, we apply 2.25V on 64 samples for 96hr and then 

increase the voltage to 2.44V. We stop the step-voltage test at 140hr. As for the ramp-

voltage test, we use the data from previous experiment under the condition: 0.015V/hr 

starting from 2V. 

   

5.4 Analysis of the Experimental Results 

The test begins with up to 32 miniature light bulbs being tested at each of the specified 

experimental conditions as stated in Sec. 5.3. Table 5.1 presents the lifetime (in hours) 

data from the ramp-voltage experiment. Each lifetime has a status indicator under the 

column labeled “Failure”. A value of 1 when failure occurs, otherwise the lifetime is a 

censoring time.     

 

We maximize the likelihood function (4.26) and estimate the normalized model 

parameters 
ˆ
  and 

ˆ
 . The estimates under two different ramp-rates are close. The 

absolute difference is 3.24% and 6.24% for  
ˆ
  and 

ˆ
 , respectively. Then we calculate 

the estimation of the model parameters ̂ and ̂ based on following normalization 

relationship: 

 
H D

k
k

z z



 (5.1) 

 

  
ˆˆ ˆ

H D

k
z z

k


     (5.2) 



148 

 

 

 

  ˆ ˆ ˆexp Dz    (5.3) 

 

where k is  the stress level (in volts) increasing rate, 3.5Hz V  and 2Dz V is the highest 

testing voltage and designed normal operating voltage, respectively.  

 

Table 5.2 shows that the estimates of ̂  are significantly different, but ̂  are close. This 

implies that ̂  might be a sensitive parameter. To obtain a better estimate, more samples 

are needed or more sets of experiment need be conducted. We also predict the mean time 

to failure (MTTF) under 2Dz V . The prediction from ramp tests under two different 

ramp-rates is close. The difference is 3.32%. In general, the result validates the 

effectiveness of the general PH model.  

 

The lifetime data from constant-voltage test and step-voltage tests are given in Table 5.3 

and Table 5.4, respectively. To estimate the normalized model parameters 
ˆ
  and 

ˆ
 , we 

maximize the likelihood function (4.6) and (4.16) for the constant-voltage and step-

voltage, respectively. We calculate the estimation of ̂ and ̂ using Eqs. (5.2) and (5.3). 

Similarly, we also predict the MTTF under 2Dz V for tests under both the constant-

voltage and the step-voltage. The results are presented in Tables 5.5 to 5.7.          
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Table 5.1 Lifetime data from ramp-voltage tests 

Ramp-rate 1 (2V+0.015V/hr) Ramp-rate 2 (2V+0.01V/hr) 

No. Time Failure No. Time Failure No. Time Failure No. Time Failure 

1 19.03 1 32 11.83 1 1 13.57 1 32 14.51 1 

2 23.28 1 33 14.50 1 2 19.92 1 33 15.61 1 

3 23.50 1 34 14.83 1 3 23.3 1 34 15.85 1 

4 26.50 1 35 17.73 1 4 27.81 1 35 17.73 1 

5 27.42 1 36 19.35 1 5 31.16 1 36 19.65 1 

6 28.32 1 37 25.50 1 6 31.56 1 37 21.05 1 

7 28.62 1 38 26.15 1 7 34.00 1 38 21.20 1 

8 30.62 1 39 27.45 1 8 46.26 1 39 24.21 1 

9 34.42 1 40 27.61 1 9 46.41 1 40 24.85 1 

10 35.30 1 41 28.05 1 10 50.60 1 41 31.18 1 

11 35.48 1 42 30.96 1 11 56.76 1 42 35.08 1 

12 38.30 1 43 31.00 1 12 56.85 1 43 42.06 1 

13 40.52 1 44 34.81 1 13 60.13 1 44 47.88 1 

14 43.83 1 45 36.03 1 14 65.00 1 45 54.21 1 

15 43.00 1 46 43.08 1 15 65.86 1 46 54.55 1 

16 43.00 1 47 45.63 1 16 66.20 1 47 55.85 1 

17 43.12 1 48 46.03 1 17 66.40 1 48 56.43 1 

18 44.43 1 49 46.33 1 18 66.80 1 49 58.86 1 

19 45.32 1 50 49.26 1 19 66.93 1 50 60.60 1 

20 47.58 1 51 49.86 1 20 68.25 1 51 62.48 1 

21 47.65 1 52 50.66 1 21 70.23 1 52 62.81 1 

22 49.65 1 53 50.93 1 22 72.33 1 53 63.41 1 

23 51.42 1 54 51.03 1 23 72.60 1 54 63.76 1 

24 51.27 1 55 51.73 1 24 75.43 1 55 64.18 1 

25 53.25 1 56 51.95 1 25 75.85 1 56 66.15 1 

26 54.25 1 57 52.36 1 26 76.20 1 57 66.41 1 

27 55.47 1 58 54.78 1 27 77.78 1 58 69.91 1 

28 56.83 1 59 55.58 1 28 79.13 1 59 71.73 1 

29 56.17 1 60 55.83 1 29 80.65 1 60 72.46 1 

30 8.85 1 61 57.13 1 30 82.65 1 61 73.78 1 

31 11.31 1    31 90.33 1 62 78.91 1 
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Table 5.2 Parameter estimation from ramp-voltage tests 

Ramp-rates (k) ˆ
  

ˆ
  ̂  ̂  MTTF  

2V+0.015V/hr 

( 0.01k  ) 
1.85e-03 8.6251 1.87e-08 5.75 541 

2V+0.01V/hr 

( 1 150k  ) 
1.91e-03 8.0683 4.05e-08 5.38 523 

Difference (%) 3.24 6.34 116 6.43 3.32 

 

 

Table 5.3 Lifetime data from constant-voltage tests 

Voltage: 2.2V Voltage: 2.46V 

No. Time Failure No. Time Failure No. Time Failure 

1 3.74 1 25 136.85 1 1 3.48 1 

2 11.68 1 26 160.13 0 2 4.84 1 

3 12.40 1 27 160.13 0 3 8.63 1 

4 14.58 1 28 160.13 0 4 8.91 1 

5 16.38 1 29 160.13 0 5 9.33 1 

6 34.28 1 30 160.13 0 6 19.16 1 

7 35.61 1 31 160.13 0 7 19.64 1 

8 35.65 1 32 160.13 0 8 20.40 1 

9 35.66 1 33 160.13 0 9 27.19 1 

10 36.69 1 34 160.13 0 10 28.23 1 

11 37.41 1 35 160.13 0 11 40.64 1 

12 47.88 1 36 160.13 0 12 41.96 1 

13 49.89 1 37 160.13 0 13 49.19 1 

14 52.96 1 38 160.13 0 14 51.51 1 

15 56.77 1 39 160.13 0 15 55.75 1 

16 62.41 1 40 160.13 0 16 71.59 1 

17 64.97 1 41 160.13 0 17 75.04 1 

18 66.42 1 42 160.13 0 18 92.18 1 

19 68.34 1 43 160.13 0 19 102.33 1 

20 72.01 1 44 160.13 0 20 103.05 1 

21 102.31 1 45 160.13 0 21 120.36 1 
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22 111.25 1 46 160.13 0 22 130.47 0 

23 113.79 1 47 160.13 0    

24 114.37 1       

 

 

Table 5.4 Lifetime data from step-voltage test 

Step-voltage test  [2.25, 2.44] (V), [96, 140] (hr) 

No. Time Failure No. Time Failure No. Time Failure No. Time Failure 

1 12.07 1 17 91.22 1 33 14.00 1 49 94.38 1 

2 19.50 1 18 102.10 1 34 17.95 1 50 97.71 2 

3 22.10 1 19 105.10 2 35 24.00 1 51 101.53 2 

4 23.11 1 20 109.20 2 36 26.46 1 52 105.11 2 

5 24.00 1 21 114.40 2 37 26.58 1 53 112.11 2 

6 25.10 1 22 117.90 2 38 28.06 1 54 119.58 2 

7 26.90 1 23 121.90 2 39 34.00 1 55 120.20 2 

8 36.64 1 24 122.50 2 40 36.13 1 56 126.95 2 

9 44.10 1 25 123.60 2 41 40.85 1 57 129.25 2 

10 46.30 1 26 126.50 2 42 41.11 1 58 136.31 2 

11 54.00 1 27 130.10 2 43 42.63 1 59 140 0 

12 58.09 1 28 140 0 44 52.51 1 60 140 0 

13 64.17 1 29 140 0 45 62.68 1 61 140 0 

14 72.25 1 30 140 0 46 73.13 1 62 140 0 

15 86.90 1 31 140 0 47 83.63 1 63 140 0 

16 90.09 1 32 140 0 48 91.56 1 64 140 0 

 

 

Tables 5.5. to 5.7 show that the parameter estimates are very close under constant, step-

voltage, and ramp-voltage, with the exception of ̂ . The reliability prediction, MTTF, is 

also very close under different stress loadings. On the other hand, all of the test units 

under ramp-voltage fail within 91 hours. In other word, the ramp-voltage test requires 
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less than 91 hours. However the step-voltage test requires at least 140 hours to obtain 

similar accuracy for reliability prediction and parameter estimation. However, the 

constant-voltage test needs longer time, 161 hours. The time reduction between step-

voltage and constant-voltage is about 12.57%. The time reduction between ramp-voltage 

and constant-voltage is even more, 43.59%. The time reduction between ramp-voltage 

and step-voltage is about 35.48%. These results confirm that it is feasible to design ALT 

under step-stress and ramp-stress to obtain approximately the same accuracy of reliability 

prediction as that of constant-stress while using shorter time.  

 

Table 5.5 Parameter estimation from step-voltage and constant-voltage tests 

Test ˆ
  

ˆ
  ̂  ̂  MTTF  Test duration 

Step-voltage 

[2.25, 2.44] (V) 

[96, 140] (hr) 

1.78e-03 8.6490 1.74e-08 5.77 561 140 (hr) 

Constant-voltage 1.68e-03 8.1602 3.16e-08 5.44 597 160.13(hr) 

Difference (%) 5.95 5.99 44.94 6.07 6.03 12.57 

 

 

Table 5.6 Parameter estimation from ramp-voltage and constant-voltage tests 

Test ˆ
  

ˆ
  ̂  ̂  MTTF  Test duration 

Ramp-voltage 

(2V+0.015V/hr) 
1.85e-03 8.6251 1.87e-08 5.75 541 57.13(hr) 

Constant-voltage 1.68e-03 8.1602 3.16e-08 5.44 597 160.13(hr) 

Difference (%) 10.12 5.70 40.82 5.70 9.38 64.32 
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Table 5.7 Parameter estimation from ram-voltage and step-voltage tests 

Test ˆ
  

ˆ
  ̂  ̂  MTTF  Test duration 

Ramp-voltage 

(2V+0.015V/hr) 
1.85e-03 8.6251 1.87e-08 5.75 541 57.13(hr) 

Step-voltage 

[2.25, 2.44] (V) 

[96, 140] (hr) 

1.78e-03 8.649 1.74e-08 5.77 561 140 (hr) 

Difference (%) 3.78 0.3 21.39 0.34 3.70 59.19 
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6 CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

 

In this dissertation we investigate several topics in design of accelerated life testing plans, 

including optimal ALT plans under multiple stresses, optimal ALT plans subject to 

competing risk and progressive censoring, and equivalent ALT plans. We summarize the 

main conclusions of these topics and future research areas.  

 

6.1 Conclusions 

In Chapter 2, we present an approach for the design of ALT plans with multiple stresses 

using LHD. The proposed approach results in efficient and practical ALT test plans 

which not only achieve significantly smaller asymptotic variance of reliability prediction 

but also require considerably less test time compared to those based on traditional FFD. 

We also develop an SA based algorithm to determine the optimal test plans based on the 

proposed approach. Simulation study shows that the algorithm is effective and efficient. 

 

In Chapter 3, we present approaches for planning ALT under progressive censoring and 

competing risk for both single and multiple stresses in terms of different objectives. The 

proposed approaches result in optimal, general and practical test plans. The procedure 

further reduces the test time as well as saves surviving items for other purposes. We also 

propose and develop a new optimization criterion for the design of test plans, that is, 

minimization of the asymptotic variance of mean time of first failure. This is a valuable 

criterion for situations that early failure has significant safety and economic impacts. 
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In Chapter 4, we define and develop equivalent ALT plans involving different stress 

loadings. We obtain equivalent step-stress and ramp-stress ALT plans to the constant-

stress plan, which considerably shorten the test duration and reduce the number of test 

units while maintaining the same accuracy of reliability predictions. This has noteworthy 

practical and economical impacts as it enables reliability practitioners to choose the 

appropriate test plan to accommodate restrictions of resources and test time.  

 

In Chapter 5, we describe the experiment setup for validation of the work in Chapter 4. 

The results confirm our hypothesis and validate the feasibility of the development of 

equivalent ALT plans.  

 

6.2 Future Work 

The current work can be extended as follows. For the optimal ALT plan under multiple 

stresses, we assume that the scale parameter of the Weibull lifetime distribution depends
 

on the stresses through a log linear relationship 

 

    0 1 1 2 2ln k kx x x          x βx  

 

This can be extended to a more general case to include higher order and interaction terms. 

Optimal ALT plans based on a nonlinear model could be designed to accommodate other 

applications.  
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Moreover, single, simple step-stress is widely utilized in ALT due to its shorter test 

duration than that of constant-stress. However, efficient and effective application of 

multiple, simple step-stresses is a challenging issue. Figure 6.1 shows two different 

applications of simple step-stress under multiple stresses. Methodology to design of 

optimal ALT plans under multiple step-stresses need be developed.  

 

 
Figure 6.1 Simple multiple step-stresses 

 

 

 

Under Type-I progressive censoring, surviving test units are removed at multiple stages 

before the final termination of the test. The multiple stages are time based. However in 

some situations it is more appropriate to determine the removal of surviving test units 

based on the number of observed failures. This is called Type-II progressive censoring. 

On the other hand, we assume the competing failure modes are independent. In many 

engineering application, the competing failure modes are dependent. These optimal ALT 

plans under Type-I progressive censoring and dependent failure modes are logical 

extension of the current work.  
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 ALT can be used to obtain not only failure observations but also test unit’s degradation 

information. Definition of equivalency can be extended to accelerated degradation tests. 

New approaches to determine optimal equivalent accelerated degradation test plans based 

on the definition of equivalency need be investigated.  

 

In addition, equivalent test plans under a multi-stress multi-step test where the stress 

levels can be changed in different time and sequences is also an interesting and 

challenging problem. Figure 6.2 illustrates two experimental settings out of thousands of 

choices. Different stress change methods result in different cumulative damage to the test 

units. To obtain equivalent reliability prediction accuracy, each one may require different 

test duration and number of test units. Equivalent ALT plans under such a scenario can 

further refine the current work. 

 

 

Figure 6.2 Multi-stress multi-step tests 
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7 APPENDIX 1 

PROOF OF PROPOSITION 1  

 

Fisher information matrix given by Eq. (2.18) is a positive semi-definite symmetric 

matrix, so its determinant is always larger than or equal to zero.  

 

Now consider the upper bound of the determinant of Eq. (2.18). For a three factor

 ,3LHD n , since each column (presents a factor) is a permutation of the normalized 

stress-values 1,2, ,n , the sum over all stress-values is given by 

 

 ,

1

1 2, 1,2,3
n

i l

l

x n n i


   ; 

 

And the sum over all the quadric stress-values is given by 

 

  
,

2

1

1 2 1 6, 1,2,3
i l

n

l

x n n n i


    . 

 

Let 
1 1, 2,

1

n

l l

l

a x x


 , 
2 1, 3,

1

n

l l

l

a x x


 , and 
3 2, 3,

1

n

l l

l

a x x


 denote the sum of the cross product 

of stress-values between factor one and two, factor one and factor three, and factor two 

and factor three, respectively.  Then matrix Eq. (2.18) can be written as 

 



159 

 

 

     
 

    
 

 

    
 

 

    
 

 

   
 

 
 

 
 

 

1 2

1 3

2 3

2
2

1 1 1
1

2 2 2

1 1 2 1 1
1

2 6 2

1 1 2 1 1
1 ,

2 6 2

1 1 2 1 1
1

2 6 2

1 1 1
1 1 1 1 1

2 2 2 6










    

   
 

 
    

 
 
    

  
 
    

 
 
     

       
  

s

n n n n n n
n n

n n n n n n n
a a

n n n n n n n
a aF

n n n n n n n
a a

n n n n n n
n n

 

 

Since 

 

     
 

    
 

 

    
 

 

    
 

 

   
 

 
 

 
 

 

1 2

2 3

1 3

2
2

1 1 1
1

2 2 2

1 1 2 1 1
1

2 6 2

1 1 2 1 1
1 .

2 6 2

1 1 2 1 1
1

2 6 2

1 1 1
1 1 1 1 1

2 2 2 6










    

   
 

 
    

 
 
    

   
 
    

 
 
     

       
  

s

n n n n n n
n n

n n n n n n n
a a

n n n n n n n
a aF

n n n n n n n
a a

n n n n n n
n n

 



160 

 

 

By the property of matrix row operation we obtain 
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This shows by exchanging a1 and a2, the determinant of the matrix does not change. The 

same results hold for exchanging a2 and a3, and exchanging a1 and a3. Therefore, a2, a2, 

and a3 are pairwise symmetric. 

 

By solving the partial differential equations Det( )sF  a 0 , the solutions in terms of 

 1 2 3, ,a a aa that associate with the extreme values of  Det sF  are obtained as shown, 
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2

2

1 4
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1 2 1 6

1 2 1 6

1 2 1 6
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5
a . 

 

The corresponding extreme values are, 

 

        
3 34 2Det 1 1 2 1 10368 0sF n n n n n          1

a   (A1.1) 

 

       Det Det Det Det 0s s s sF F F F                 2 3 4 5
a a a a   (A1.2) 

 

In order to show that Eq. (A1.1) is the upper bound of   Det sF X  we show it is larger 

than any other extreme determinant value and larger than the determinant values when a1, 

a2, and a3 are at extreme values (boundary condition). The first condition is met 

according to Eq. (A1.2).  

 

On the other hand, by definition, we know 

 

     1 2 1 2 1

6 6

n n n n n n   
 a  . 

 

Consider the case 

 

  
1

1 2 1

6

n n n
a
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2 3

1 2 1 2 1
,

6 6

n n n n n n
a a

   
  . 

 

The corresponding determinant is a function of a2 and a3 and we call it Eq. (A1.3). Let Eq. 

(A1.1) minus Eq. (A1.3), after some algebra, we obtain the following expression 

 

         
2 22 2 2 2 2

3 21 1 144 2 1 10368n n n n a a n n        
  

  (A1.4) 

 

Obviously, (A1.4) is strictly larger than zero. Similarly, consider the case 

 

  1 1 2 6a n n n   , 

 

     
2 3

1 2 1 2 1
,

6 6

n n n n n n
a a

   
  . 

 

After some algebra, we get exactly the same expression as Eq. (A1.4), which is strictly 

larger than zero.  

 

Since a1, a2, and a3 are pairwise symmetric, the above results hold for a2 and a3. This 

verifies the second condition for (A1.1) to be the upper bound of   Det sF X . 
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8 APPENDIX 2  

PROOF OF LEMMA 1 AND PROPOSITION 2  

 

Proof of lemma 1 

Consider the sum of q

id . By definition of q-norm inter-site distance, we have 
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Since each column is a permutation of  1,2, ,n , we have 
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we obtain 
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For the Euclidean distance, 

 

 
 

2 1
22 2 2

1 2 1

1 12

n

n i

i

i i j

d k i j kn n


  

     . 

 

Therefore,  

 

   

 

1

2

1

1

2

, 1
2 1

n
qn

q q i
i

i

k n i i
n

d d q
n n







 
 

   
 


 , 

 

and 

 

   2 2 2 1 12 1 6
2

n
d kn n kn n

 
    

 
. 

 

Proof of proposition 2 
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To show 
 

1
1

,

1

p
n

p L p q p
i

n i

k i





 
   

 
 is the lower bound of p , a lemma from Joseph and 

Hung (2008) is needed:  

 

For a set of positive values  1 2, ,j j jmd d d  and its ordered sequence 

     1 2j j j m
d d d    for 1,2, , ,j k then     

1 1

1 1
1 1

m m
k k

ji j ij j
i i

d d
 

 
 

    . 

 

Since different LHDs have different inter-site distances values, by above lemma we 

obtain 
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When all the k factors are arranged in the same increasing sequence, from (A2.1), we 

know there are  1n of the q

id ’s are k,  2n of the q

id ’s are 2q k , …, and one is 

 1
q

n k .  Thus we have 
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This proves 
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Now consider the upper bound of 1p p  . This is equivalent to find the lower bound 

of p . From lemma 1, we know that

 2

1 2

n

q q

i

i

n
d d



 
  
 

 . Therefore, we can formulate the 

problem of finding lower bound of p  as a constraint optimization problem.  
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Using the Lagrange multiplier method, the constraint optimization problem can be 

rewritten as 

 

Min  

   
1

2 2

1 1

1

2

p
n n

q q

ip
i ii

n
d d

d


 

   
            
    

   

  . 

 



167 

 

 

From 0
id





, we have 

1 p q

id
q

 . As 0q  , and 0p q  , then 0  , 0id  . 

 

Since all the partial derivatives with respect to di are equal and 0id  , the optimal 

solution is obtained when 
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