

2010

Harsh Yadav

ALL RIGHTS RESERVED

MANIFOLD: A MULTIMODAL GENERIC USER INTERFACE

by

HARSH YADAV

A Thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Dr. Ivan Marsic

and approved by

New Brunswick, New Jersey

October, 2010

ii

ABSTRACT OF THE THESIS

Manifold: A Multimodal Generic User Interface

By HARSH YADAV

Thesis Director:

Dr. Ivan Marsic

A User Interface (UI) is generally tightly coupled to the business logic of the

application, and a great deal of modification is required to model it to separate the

application logic. Manifold is an answer to such an issue. It offers a generic user interface

framework where different application designers could develop separate application logic

using the same Manifold front-end. Manifold employs the Model-View-Controller

(MVC) design pattern to achieve its generic nature by providing separation of concerns

between the UI and the application domain. The event frame concept incorporated on

Manifold allows translation of user events to operations on application data via a central

Controller object. The Controller object connects the Manifold front-end to the back-end

application domain. This approach highly expedites the development of new features on

the user interface, which remains decoupled from the rest of the application. It also

allows building different applications on different servers and visualizing them on the

Manifold UI.

iii

This thesis focuses on the enhancement of the Manifold framework both from the

UI- and application-development perspective. New features based on industry standards

are incorporated and the shortcomings present in the previous versions are eliminated to

enhance the user-experience with Manifold. The flexibility of the Manifold framework

allows development of applications with separate application logic and attaches them

directly with the Manifold UI.

The thesis developed applications and algorithms to visualize Manifold objects as

fields in a relational database. The relational database approach allows saving the UI

objects into a hierarchical data structure, rather than saving them as such on the file

system. This provides added benefits of persistent information about objects, allowing

data-analysis to be performed on them at various steps. This approach allowed extending

the use of Manifold to areas such as text-, pattern- and speech recognition. Text

recognition allows user to generate graphical objects (“glyphs”) on Manifold by typing in

plain text data. Pattern recognition allows providing users with visual feedback if a

collection of graphics in Manifold could be recognized as a particular pattern class.

Speech Recognition allows the user to issue commands to the Manifold UI to perform

specific tasks, which otherwise require manual manipulation.

The newly developed features are analyzed for their structural and code

complexity with direct repercussions to their re-use in future designs and performance

optimization obtained by employing the best software engineering practices. The new

features are evaluated with respect to their performance in the Manifold framework.

iv

Acknowledgement and/or Dedication

I am particularly grateful to my supervisor, Professor Ivan Marsic who despite of

his busy schedules always offered prompt, wise and constructive feedback and displayed

high professionalism and graciousness to remain dedicated to the research. Professor

Marsic’s plethora of knowledge, insight and untiring work ethic had always motivated

me and will continue to be a source of inspiration to me.

 A special thanks to my brother, Tarun Yadav, for his unfailing support and

constructive criticism for both in my personal and professional front.

 The long, hard process of completing a thesis would have been completely

impossible without the support of many friends and colleagues at Rutgers.

 This thesis would not have been possible without the excellent architecture and

calm environment at the Centre for Advanced Information Processing (CAIP).

v

Table of Contents

Abstract ii

Acknowledgements iv

List of Tables xi

List of Illustrations xii

CHAPTER 1 .. 1

INTRODUCTION

... 1

1.1 MANIFOLD CORE FRAMEWORK ... 3

1.1.1 Model ... 5

1.1.2 Controller .. 6

1.1.3 View .. 6

1.2 MANIFOLD USER INTERFACE ... 7

1.3 BRIEF INTRODUCTION TO MY WORK .. 8

1.3.1 Developing Backend Applications ... 9

1.3.2 New Features and Enhancements .. 9

1.3.3 Multimodal Interaction Techniques ... 10

1.3.4 Glyphs and Tools .. 12

1.3.5 Menu Bar ... 12

1.3.6 Property Editors .. 13

1.4 THESIS ORGANIZATION .. 13

CHAPTER 2 ... 15

MANIFOLD CORE FRAMEWORK

.. 15

vi

2.1 INTRODUCTION ... 15

2.2 MODEL ... 16

2.2.1 Manifold Glyph Design .. 18

2.3 VIEW ... 19

2.4 CONTROLLER ... 20

2.4.1 Manipulator .. 21

2.4.2 Controller Communication ... 22

CHAPTER 3 ... 24

DEVELOPING BACKEND APPLICATIONS

.. 24

3.1 INTRODUCTION ... 24

3.2 COMMUNICATION PROTOCOLS .. 25

3.2.1 Information Exchange: Formats ... 26

3.2.2 Information Exchange: Medium .. 28

3.3 EXAMPLE APPLICATION: PATTERN RECOGNITION ... 29

3.3.1 Introduction: Pattern Recognition .. 30

3.3.2 Design: Pattern Recognition ... 32

3.3.3 Data Flow in Pattern Recognition System ... 34

3.3.3.1 Unknown Object for Pattern Recognition System .. 35

3.3.3.2 Feature Analysis: Parameter Extraction .. 38

3.3.3.3 Feature Analysis: Feature Extraction ... 39

3.3.3.4 Pattern Classification ... 41

3.3.3.5 Rendering on Manifold ... 44

CHAPTER 4 ... 47

vii

ENHANCEMENTS AND MULTIMODAL INTERACTION TECHNIQUES

.. 47

4.1 INTRODUCTION ... 47

4.2 NEW FEATURES AND ENHANCEMENTS ... 48

4.2.1 Editing Multiple Glyphs ... 48

4.2.2 Poly Glyph .. 50

4.2.3 Glyph Selection ... 51

4.2.4 Manifold Configuration ... 52

4.2.5 Correcting Bounding Shapes .. 54

4.3 MULTIMODAL INTERACTION TECHNIQUES ... 54

4.3.1 Text Recognition ... 55

4.3.1.1 Design: Text Recognition .. 56

4.3.1.2 Implementation: Text Recognition .. 58

4.3.1.3 Rendering Text Recognition Output on Manifold .. 63

4.3.2 Speech Recognition ... 63

4.3.2.1 Speech Recognition Application in Manifold ... 64

CHAPTER 5 ... 66

GLYPHS AND TOOLS

.. 66

5.1 INTRODUCTION: TOOLS, MANIPULATORS AND CONTROLLER .. 66

5.2 GLYPHS AND VIEWERS .. 68

5.3 PREVIOUSLY NON-FUNCTIONAL GLYPHS AND TOOLS ... 70

5.3.1 Text Glyph .. 70

5.3.2 Zoomer .. 73

5.4 NEW GLYPHS AND TOOLS ... 76

viii

5.4.1 Image Glyph ... 76

5.4.2 Grouper ... 78

5.4.2.1 Design: Grouper Tool ... 80

5.4.2.2 Interpreting Grouped Glyphs .. 84

5.4.3 Un-Grouper ... 85

5.4.4 Pinner .. 86

CHAPTER 6 ... 88

MENU BAR

.. 88

6.1 INTRODUCTION ... 89

6.2 DESIGN: MENU BAR .. 90

6.3 FILE MENU ... 93

6.3.1 New Workspace Menu Item .. 93

6.3.2 Open Document Menu Item ... 94

6.3.3 Save Selection(s) Menu Item ... 96

6.3.4 Save Document Menu Item .. 102

6.4 EDIT MENU ... 103

6.4.1 Select All Menu Item .. 104

6.4.2 Select None Menu Item ... 105

6.5 VIEW MENU .. 105

6.5.1 Full Screen Menu Item ... 105

6.5.2 Minimize Menu Item ... 106

6.5.3 Map Viewer Menu Item .. 106

6.5.3.1 Design: Map Viewer ... 109

6.6 INSERT MENU ... 113

ix

6.6.1 Geometric Figure Menu... 114

6.6.1.1 Rectangle Menu Item .. 114

6.6.1.2 Ellipse Menu Item ... 116

6.6.1.3 Line Menu Item ... 116

6.6.2 Image Menu Item ... 116

6.6.3 Custom Glyph Menu Item ... 117

6.6.4 Smart Art Menu Item .. 121

CHAPTER 7 ... 123

PROPERTY EDITORS

.. 123

7.1 INTRODUCTION ... 123

7.2 DESIGN: PROPERTY EDITOR ... 126

7.3 NEW PROPERTY EDITORS ... 127

7.3.1 Text Editor .. 127

7.3.2 Font Editor .. 129

7.3.3 Image Editor ... 133

CHAPTER 8 ... 136

COMPLEXITY AND PERFORMANCE

.. 136

8.1 DESIGN COMPLEXITY ... 136

8.1.1 Structural Analysis ... 137

8.1.2 Excessive Structural Complexity ... 141

8.1.3 Code Analysis.. 144

8.2 PERFORMANCE .. 154

x

8.2.1 Application Loading Time .. 154

8.2.2 Performance: Glyph Saving ... 157

8.2.3 Performance: Saved Glyph Retrieval .. 158

8.2.4 Performance: Grouper Tool ... 158

8.2.5 Performance: Custom Glyph Insertion ... 160

CHAPTER 9 ... 161

DISCUSSION AND FUTURE WORK

.. 161

9.1 FUTURE WORK ... 164

9.1.1 New Workspace .. 164

9.1.2 Keyboard Listeners .. 165

9.1.3 New Features ... 165

9.1.3.1 Undo/Redo Features ... 165

9.1.3.2 New Glyph Types ... 167

REFERENCES

.. 169

xi

Lists of tables

Table 1: Manifold classes in the Glyph Inheritance hierarchy ... 17

Table 2: SQL stored procedures for the process of pattern recognition 44

Table 3: SQL stored procedures for the process of text recognition 62

Table 4: Manifold Tools and their Functionality .. 68

Table 5: Manifold Glyphs and their Representation on the Viewer 69

Table 6: Changes made in Manifold classes to support Grouper tool. 85

Table 7: New Manifold classes for implementing a functional Menu Bar 91

Table 8: Manifold classes used to layout the Map Viewer ... 110

Table 9: Current Manifold Structure Statistics Summary ... 139

Table 10: Top 5 Manifold classes and packages in terms of LOC 146

Table 11: Code Complexity Metrics ... 146

Table 12: High Code Complexity methods in package manifold 149

Table 13: High Code Complexity methods in package manifold.swing 150

Table 14: High Code Complexity methods in package manifold.swing.editors 150

Table 15: High Code Complexity methods in package manifold.impl2D 151

Table 16: High Code Complexity methods in package manifold.impl2D.glyphs 152

Table 17: High Code Complexity methods in package manifold.impl2D.tools 152

Table 18: Comparison of current vs. previous version of Manifold 155

Table 19: Method Call Hierarchy for Save Glyph Menu Item 157

Table 20: Method Call Hierarchy for Insert Menu Item ... 158

Table 21: Method Call Hierarchy for Grouper Tool ... 159

Table 22: Method Call Hierarchy for Custom Glyph Insertion 160

xii

List of illustrations

Figure 1: Manifold User Interface Abstraction and the MVC design pattern ([4]) 4

Figure 2 Manifold User Interface ... 7

Figure 3: Manifold (high-level) architecture .. 16

Figure 4: Composite Design Pattern ... 17

Figure 5: Manifold UI Interaction with other applications. Notice same protocols are used

for interacting with multimodal interaction techniques as for other backend applications

... 26

Figure 6: A conventional pattern recognition system ... 31

Figure 7: Database diagram for Manifold Pattern Recognition .. 32

Figure 8: Data flow in pattern recognition system .. 34

Figure 9: Higher Level data flow between Manifold and Pattern recognition system 35

Figure 10: User trying to visualize a pattern via a number of glyphs (unknown object for

Pattern Recognition system) on Manifold. ... 37

Figure 11: Parameter x(1) ... 38

Figure 12: Parameter x(2) ... 38

Figure 13: Parameter x(3) ... 39

Figure 14: Parameter x(4) ... 39

Figure 15: (a) Glyph’s prototype as represented in its local coordinate system. (b) Glyph

transformed in the global coordinate system: positioned at (3, 5), width scaled to 6 and

height to 4, and rotated by θ = 30° = π/6. ... 40

Figure 16: Feature vector y (with dimensionality m ≤ p) ... 41

Figure 17: JSON object send to Manifold over the communication channel 43

xiii

Figure 18: Pattern simple switch is classified, but not matched (red color of ellipse) 46

Figure 19: Circuit is complete (line connects two rectangles), and the pattern is matched

(yellow color of ellipse) .. 46

Figure 20: Visualization of a battery-bulb pattern on Manifold 46

Figure 21: A battery bulb pattern classified and matched successfully (as all circuit

elements are well connected). ... 46

Figure 22: Empty Property Viewer on selection of multiple glyphs in previous versions of

Manifold .. 49

Figure 23: Editing properties of multiple glyphs in current Manifold version (Fill Color

property being edited here) ... 49

Figure 24: The Manifold Configuration Wizard, welcome text 53

Figure 25: The Manifold Configuration Wizard, selecting an XML file 53

Figure 26: The Manifold Configuration Wizard, configuring application with selected

XML files .. 54

Figure 27: Database schema for Text Recognition ... 57

Figure 28: Flow chart depicting the entire process of Text recognition 59

Figure 29: Word tokens generated as a result of preprocessing. Notice it doesn’t contain

any noise words. .. 62

Figure 30: Bigrams from the preprocessed output. ... 62

Figure 31: Final Glyph Profile that can be passed on to Manifold 62

Figure 32: The main input and outputs of a Tool/Manipulator component 66

Figure 33: Original Glyph without applying the Zoomer Tool .. 75

xiv

Figure 34: Zoomed In Glyph as a result of applying the Zoomer Tool to glyph in Figure

33... 75

Figure 35: Use Case Diagram for Grouper ... 80

Figure 36: UML Sequence Diagram showing the grasp, manipulate, effect cycle of

Grouper Tool ... 83

Figure 37: Five glyphs drawn independently on the Manifold Viewer. 84

Figure 38: The glyphs from Figure 37 after grouping. ... 84

Figure 39: The independent glyphs can now be treated as a single smart art (a smiley

here). Notice the connectors become visible when you scroll over the object. 84

Figure 40: A pinned glyph of type rectangle .. 87

Figure 41: Glyph’s translation being disabled at the pinned connector 87

Figure 42: The pinned glyph could still be rotated at the pinned connector 87

Figure 43: XML definition of Manifold Menu Bar .. 90

Figure 44: Composition of Menu Bar: (a) The screen rendering; (b) The UML class

diagram ... 92

Figure 45: Output when the user clicks on the Open Document Menu item 95

Figure 46: Database diagram showing the table relationship to save glyphs (leaf- or poly

glyphs) or document. .. 100

Figure 47: A JOptionPane [18] appears when the user presses the Save Selection(s) menu

item. .. 101

Figure 48: New entry created in table Glyph. Notice the parentGlyphId is NULL as this is

not a poly-glyph. ... 101

xv

Figure 49: New entry created in table GlyphProfile. Notice the glyph properties and

transform (tx, ty, theta, xs, ys) stored as text attributes in the table. 101

Figure 50: The Manifold Map Viewer displaying a graph connecting various locations on

the map using Manifold glyphs. .. 109

Figure 51: Composition of Map Viewer: (a) The screen rendering; (b) The UML class

diagram ... 111

Figure 52: Sequence Diagram showing ViewerMapImpl<init> and

ViewerMapImpl.actionPerformmed cycles .. 112

Figure 53: The Manifold Insert Menu .. 113

Figure 54: List of saved glyphs of type “rectangle” retrieved from the database, along

with its profile (properties and transform). ... 115

Figure 55: Manifold Custom Glyph. The user enters input in a JOptionPane. 118

Figure 56: A new glyph gets created and drawn on the Manifold viewer as a result of

Text Recognition ... 119

Figure 57: Manifold interaction with the remote server through SOAP web service 120

Figure 58: Example of a property editing dialog box. Property editors allow editing the

property values. [4] ... 124

Figure 59: Composition of a property editor dialog box: (a) The screen rendering; (b) The

UML class diagram [4] ... 125

Figure 60: The Text Editor. When the user presses the return (enter) key, the new text is

rendered on the Text glyph. .. 129

Figure 61: The Font Editor. Notice the new font size and style that gets rendered on the

Text glyph. .. 133

xvi

Figure 62: Image Editor: When the user clicks on the button, a file browser appears

where the user can select the new Image. ... 135

Figure 63: New image being rendered as a result of user’s new selection from the file

browser. ... 135

Figure 64: Manifold Core Structure .. 137

Figure 65: The “onion” structure of Manifold packages .. 138

Figure 66: Package level Architecture of Manifold (The arrows specifies use, for e.g.

manifold uses util)... 138

Figure 67: Statistics of the connectivity of all the classes in the current Manifold

implementation. .. 140

Figure 68: Pie Chart showing Tangles in Manifold design .. 141

Figure 69: Fat vs. non-Fat methods in Manifold .. 143

Figure 70: Pie Chart showing the contributors to the Structural Level Complexity of

Manifold .. 144

Figure 71: Methods with different levels of complexity in package manifold 147

Figure 72: Methods with different levels of complexity in package manifold.swing 147

Figure 73: Methods with different levels of complexity in package

manifold.swing.editors .. 147

Figure 74: Methods with different levels of complexity in package manifold.impl2D.. 147

Figure 75: Methods with different levels of complexity in package

manifold.impl2D.menuItems .. 148

Figure 76: Methods with different levels of complexity in package

manifold.impl2D.glyphs ... 148

xvii

Figure 77: Methods with different levels of complexity in package manifold.impl2D.tools

... 148

Figure 78: Methods with different levels of complexity in package manifold.data 148

Figure 79: Comparison of Links vs. Fat method in Manifold. Notice that the core classes

are not fat. ... 153

Figure 80: Comparison of loading times of two versions of Manifold 156

1

Chapter 1

Introduction

The study of the relationship between humans and computers has quickly become

one of the most dynamic and significant fields of technical investigation. Interdisciplinary

by definition, Human-Computer Interaction (HCI) impacts nearly every area of our lives.

HCI arose as a field from intertwined roots in computer graphics, operating systems,

human factors, ergonomics, industrial engineering, cognitive psychology, and the

systems part of computer science [1]. Today, the sales of computers are more tied to the

quality of the interfaces than in the past.

With the gradual evolution of standardized interface architecture from hardware

support of mice to shared window systems to "application management layers",

researchers and designers have begun to develop specification techniques for user

interfaces and testing techniques for the practical production of interfaces. Graphical

User Interfaces (GUI) [3] and HCI are largely affected by certain forces that also affect

the nature of future computing. These forces include:

• Decreasing hardware costs leading to larger memories and faster systems.

• Miniaturization of hardware leading to portability.

• Reduction in power requirements leading to portability.

• New display technologies leading to the packaging of computational devices in

new forms.

2

• Assimilation of computation into the environment (e.g., VCRs, microwave ovens,

televisions).

• Specialized hardware leading to new functions (e.g., rapid text search).

• Increased development of network communication and distributed computing.

• Increasingly widespread use of computers, especially by people who are outside

of the computing profession.

• Increasing innovation in input techniques (e.g., voice, gesture, text, pen),

combined with lowering cost, leading to rapid computerization by people

previously left out of the "computer revolution".

• Wider social concerns leading to improved access to computers by currently

disadvantaged groups (e.g., young children, the physically/visually disabled, etc.).

This thesis mainly focuses on GUI’s, and increasing innovation in input

techniques (voice, text) on the Manifold Framework [4]. Manifold’s focus is on

conversational human-computer interaction, which may include, but is not limited to,

manual gestures, spoken language, etc. A User Interface (UI) [2] acts as a liaison

between the high-level and low-level language formats, as understood by human beings

and computers respectively. However, a UI is generally highly coupled to its particular

application domain and a great deal of work is required to remold it to a different

application [4]. Manifold is an answer to such a problem to develop an “application-

independent generic user interface”, such that the same UI could be easily “detached” and

“attached” to different applications, running parallel with respect to each other. The first

version of Manifold appeared in [5] and was also based on the work [6, 76].

3

There has been certain amount of work been done in the area in developing

similar applications. Unidraw [58] provided a C++ framework for custom graphical

editing applications. Girders [88] utilizes MVC functionality for a multi-tiered software

application communicating through SOAP web services. Strandz [89] provides middle

layer that connects a Java Swing UI with Data Objects (MVC). It provides application

development that is easy to modify and resilient to changes to the user interface (UI)

toolkit or database access software they use.

The idea behind Manifold’s development is to provide different developers to

work on different modules independently:

• Interaction Developer could define new physical manipulations.

• Visualization Developer could define new UI elements (e.g. glyphs).

• Multi-modality Developer could introduce use of exotic input devices with

existing manipulations.

• Application Developer could specify business logic independent of UI.

In order to understand the current work, it is critical to understand the architecture

of Manifold. This introduction provides an overview of the Manifold framework. The

chapters that follow will provide a serious, detailed explanation of these problems and the

solutions employed.

1.1 Manifold Core Framework

The design of Manifold has been done keeping in mind some of the best software

engineering practices. Some of these include design patterns; reduced code dependency,

4

separation of application and domain logic, etc. The reader is advised to read the

Manifold text [4] for a better understanding of the framework. Here I would be covering

a thorough, but brief overview of the core Manifold framework.

Controller

View

Input
Device
Events

Event
Interpreter

Event
Interpreter

Domain
Model
Action

Domain
Model

Domain
Model

Model
Visualizer

Model
Visualizer

Notification
About the

Effects of the
Action

Visual Feedback
of the Altered

Model
User

User Interface Model

Figure 1: Manifold User Interface Abstraction and the MVC design pattern ([4])

The core functionality of Manifold is defined by the Model View Controller

(MVC) design pattern [8, 57]. MVC provides Manifold the capability to be developed in

modules with minimum coupling between them. It allows the separation of the

application and the domain logic, as highlighted in Figure 1.

The user actions are interpreted by the Controller and are passed on to the Model

for manipulation, which responds back by providing visual notifications to the user

through the Viewer. The Viewer implements the Observer design pattern [8] by reading

the subject state upon being notified about the state changes.

5

1.1.1 Model

The domain model reads the input device events to process these commands and

perform the required action. These two steps are abstracted as the lower and upper arms

in Figure 1, respectively.

The elements of the domain model are visualized through a Glyph which is a

visual representation corresponding to a model data element in a domain model. The

name "glyph" is borrowed from typography to connote simple, lightweight objects with

an instance-specific appearance [56]. The key purpose of Glyph is to implement the

Composite design pattern [8], so to be able to hierarchically compose Glyphs into more

complex figures.

The reader should keep in mind that glyphs represent merely a visual appearance

of the underlying elements of the domain model. The actual implementation of Manifold

may be built using a graphics toolkit that already has an equivalent of Glyph, in which

case it does not need to use this class (due to these reasons Manifold classes are not

dependent on this class). The container of glyphs uses the tree data structure through

which it becomes easier to manipulate actions like Add, Delete, and Modify. For further

understanding of the glyphs including the glyph design, state caching, shadow glyphs,

dynamics and visualization, rendering and their implementation in Manifold, see Chapter

2, section 2.2.1.

6

1.1.2 Controller

The Controller is responsible for encapsulating the semantics of user interaction

with the application. The user handling of input device(s) generates interaction events,

which need to be translated to the domain model. These input events may come from

focusable devices such as keyboard or voice, and positional devices, such as the mouse or

pen. For example, the user’s activity of depressing and dragging the mouse around the

workspace has different meaning, depending on the currently selected tool. Examples are

rotation of a graphical figure, resizing, translation, etc. The selected tool “knows” which

one of these is currently in effect. The design espoused here is inspired by Unidraw [58]

and Fresco [59]. To further understand the working of Controller in Manifold, the reader

must refer to Chapter 2, section 2.4.

The earlier versions of Manifold considered events from only positional devices.

A major contribution of my work includes manipulation of events for text and voice,

which is discussed in Chapter 4.

1.1.3 View

The View is responsible for mapping graphics onto a device. A view typically has

a one to one correspondence with the display surface and knows how to render to it. A

view attaches to a model and renders its contents to the display surface. It also redraws

the affected part as soon as a change in the model occurs. There can be multiple

viewports onto the same model and each of these viewports can render the contents of the

model to a different display surface. An application of implementing these multiple

7

viewports is discussed in Chapter 6, section 6.5.3, where two different viewers, a map

and a glyph, interchangeably support different events to fulfill the domain specific

requirements.

1.2 Manifold User Interface

Figure 2 Manifold User Interface

Figure 2 shows the Manifold User Interface in its current implementation. It has

the following main components that will be discussed in detail throughout the text:

• Workspace defines the area where the user can create and modify the properties of the

glyphs such as translation, rotation, and appearance.

8

• Tree Viewer provides the ability to view the existing glyphs in a tree format. The tree

is arranged on the basis of the order in which the nodes of the tree (Glyphs) were

created in the workspace. Each time a glyph is created in the workspace, a node will

be automatically added to the tree in the Tree Viewer. Similarly, deletion of a glyph in

the workspace will automatically result in deletion of a node from the Tree Viewer.

• Tool Box provides the user a set of tools to perform manipulations on the glyph

objects including their creation, deletion, rotation, zooming, grouping, un-grouping,

pinning, linking, and selecting. Chapter 5 elaborates various tools and their

functionalities.

• Menu Bar provides File, Edit, View and Insert menus to perform actions with respect

to glyphs (saving, inserting, etc.) and the workspace (open new, change the viewer).

Chapter 6 discusses the implementation of these menus in detail.

• Property Viewer allows the user to edit certain attributes of the glyphs created in the

workspace via a set of property editors. The property editors in the Property Viewer

are visible when a glyph is created or an existing glyph is selected. Chapter 7

discusses the Property Viewer in detail.

1.3 Brief Introduction to my work

My work on Manifold can be categorically identified into the following specific

areas:

9

1.3.1 Developing Backend Applications

To utilize the generic nature of Manifold, it was necessary to lay down the

grounds for developing example backend applications that application programmers

could develop and visualize them on Manifold. Manifold simply provides a visual

feedback to the user by initiating a separate backend application to perform semantic

processing of data, where the semantics are application specific. This has been explained

by developing a simple example pattern recognition application.

Pattern Recognition that includes identifying a particular pattern (like simple

switch), and generate appropriate output on the Manifold framework. For instance, if a

user draws two rectangles connected by a line and an ellipse alongside it, it would have

no meaning to Manifold, but for the user it could mean a simple switch-bulb connection,

and the bulb (ellipse) should lighten (become yellow) when the wire (the line) connects

the two boxes (rectangles) (Chapter 3, section 3.3).

The highly de-coupled nature of these techniques with Manifold shows its generic

nature. The corresponding details and how Manifold uses them without being coupled

with them had been provided in Chapter 3. The reader is advised to go through the same

to appreciate the generic nature of Manifold.

1.3.2 New Features and Enhancements

With the availability of a large number of user-interface tools, there was a need to

enhance some of the features in Manifold, which were envisioned in the previous

versions. These are listed as below:

10

• Allowing editing of multiple glyphs with a single mouse click, by grouping the

property editors common to multiple selected glyphs (Chapter 4, section 4.2.1).

• Implementation of Poly-Glyph feature based on the Composite Design Pattern [8]

in Manifold by altering the parent-child properties (implemented as a part of the

Grouper tool) (Chapter 4, section 4.2.2).

• Allow selection of Line2D (line and linker) glyphs that are rendered differently

as compared to the rectangular glyphs by drawing a selection box around them on

the Manifold viewer (Chapter 4, section 4.2.3).

• Allowing configuration of Manifold before running it, by providing a Wizard [11]

to select the necessary XML [12] files to configure Manifold as per user

requirement which could enhance the speed by limiting the functionality as per

the needs of different users (Chapter 4, section 4.2.4).

• Correcting bounding shapes for text and image glyph, as the highlighter (a

shadow glyph) was drawn separately from the main glyph in the earlier versions

(the bounding shape and highlighter were misplaced and it was necessary that

both of them coincide, as highlighter allows manipulation of underlying glyph by

shadowing it) (Chapter 4, section 4.2.5).

To have an in-depth analysis of these features and enhancements, and why it was

necessary to implement them, the reader is advised to read Chapter 4.

1.3.3 Multimodal Interaction Techniques

The growth and enhancement of Human Computer Interaction (HCI), makes it

pertinent to include new interaction techniques in any modern user-interface. Doing so

11

become even more important if you are developing a generic user interface, where

different users have to work in different environments with different requirements.

Majority of my work had been on developing these techniques with respect to the

Manifold framework. Some of the techniques that I had worked on in this respect are:

• Text Recognition that includes parsing a raw junk of text to provide a meaningful

interpretation to Manifold, allowing it to take necessary action. For instance if you

input a raw text that has certain accompanying action (For e.g. “Draw a rectangle

of height 25 and width 50 with rotation of 45 degree”), it could be understood by

Manifold (and the corresponding rectangle be drawn on Manifold viewer space)

(Chapter 4, section 4.3.1).

• Speech Recognition that utilizes the speech recognition techniques to provide

input to Manifold. For instance if a user speaks “Draw a rectangle of height 25

and width 50 with rotation of 45 degree”, the spoken input could be understood

by Manifold (and as a result the rectangle is drawn on the viewer) (Chapter 4,

section 4.3.2).

These applications do not form a part of Manifold, but are available as utility

applications that could be attached with Manifold as per the choice of an application

programmer. All these techniques had been implemented on a remote server with

separate application logic, and had been used in Manifold by interacting through a set of

communication protocols as discussed in Chapter 3, section 3.2.

12

1.3.4 Glyphs and Tools

One of my tasks was to implement some of the non-functional and anticipated

glyphs and tools from the earlier versions of Manifold. These were essential in improving

and enhancing the core functionality of the Manifold framework that could make it at par

with the modern GUI tools available, adhering to its “generic nature”. To enumerate,

these tools were Zoomer (allows zooming in and out of canvas and glyph; Chapter 5,

section 5.3.2), Grouper (allows grouping a number of selected glyphs to a single smart-

art, Chapter 6, section 6.6.4; Chapter 5, section 5.4.2), Un-Grouper (allows splitting the

grouped smart-art into independent glyphs from which it was generated; Chapter 5,

section 5.4.3), Connector viz. Pin and Slot (allows connecting two glyphs with different

connection semantics). The previously anticipated glyphs were Text (allows writing text

on the Manifold workspace; Chapter 5, section 5.3.1) and Image (allows rendering of

images on the Manifold workspace; Chapter 5, section 5.4.1). These glyphs and tools

along with their implementation are discussed in details in Chapter 5.

1.3.5 Menu Bar

A menu bar is a horizontal strip where a list of available computer menus is

housed for a certain program. A menu provides a space-saving way to let the user choose

one of several options.

Since Manifold is a GUI there was a need to incorporate a functional menu bar

that could allow the users to “interact” with the application in a better and useful way.

Similar to other GUI applications like MS PowerPoint [9] and Adobe Photoshop [10], the

13

most common menu items anticipated for Manifold were File, Edit, View, and Insert. The

File menu allows the user to open/save a document, save selection(s). The Edit menu

allows the user to pass actions like undo/redo, make or clear selections to the application

domain. The view menu allows the user to change the layout of the workspace like

making it full screen, minimizing, opening a map viewer. Finally, the insert menu allows

the user to insert objects and images on the workspace. These menus were anticipated in

the previous versions of Manifold, however were non-functional. To make the interaction

with Manifold user friendly and easy, I worked on making some of these menu items

functional. The Manifold menu bar is discussed in detail in Chapter 6.

1.3.6 Property Editors

The addition of new glyphs demanded new property editors pertaining to each

glyph. For example, Font (face, style, size) and Text editors were required for the Text

Glyph; Image editor was added to the Image Glyph. These property editors were

incorporated within the Property Viewer of the Manifold. These editors and their

implementation are discussed in details in Chapter 7.

1.4 Thesis Organization

This thesis is mainly concerned with enhancing the Manifold Framework. It is

organized as follows:

14

Chapter 1: This chapter gives an overview of Manifold, its architecture and the

high level overview of its components. It also covers in brief the overview of my work,

and the improvements/features added to Manifold framework.

Chapter 2: This chapter gives a detailed architectural overview of the core

Manifold framework and design.

Chapter 3: This chapter describes how the development of example backend

applications could be carried out to visualize them on the Manifold UI (generic nature).

Chapter 4: This chapter discusses certain new features and enhancement to some

previously implemented features in Manifold. It also discusses the development of

multimodal interaction techniques viz. Text and Speech Recognition for using Manifold.

Chapter 5: This chapter gives a detailed explanation of my work to implement

new tools and glyphs for the Manifold UI.

Chapter 6: This chapter gives a detailed explanation on the implementation of the

Manifold menu bar and the corresponding menus and menu items.

Chapter 7: This chapter describes the addition of new property editors in Manifold

UI.

Chapter 8: This chapter provides the complexity and performance analysis of

Manifold’s code and design.

Chapter 9: This chapter concludes the whole thesis and proposes future work.

15

Chapter 2

Manifold Core Framework

Chapter 1 discussed the basic overview of the Manifold architecture that uses the

MVC design pattern at its core. Manifold employs some of the best software engineering

practices in order to provide a sleek and intuitive user interface. The development of the

Manifold framework has been iterative and incremental where each version provided

newer features and improvements over the older. This had been possible due to a highly

stable and concrete Manifold core. Thus, in order to better understand my work, it is

important that one understands the Manifold core architecture. This chapter describes

certain critical aspects of the architecture and provides a “somewhat” in depth analysis of

the topics that would be needed in understanding my work. The reader is highly advised

to first read the documentation provided by Dr. Ivan Marsic [4] and then refer to the

current description while going through different parts of this text for increased clarity.

2.1 Introduction

Manifold employs Sun Microsystems Java (TM) Technology [63] as its primary

coding language to design the interface and its underlying application. This makes the

system platform independent and highly stable to work on. The core framework uses the

MVC design pattern as discussed in Chapter 1. This can be visualized at a high level in

Figure 3.

16

Figure 3: Manifold (high-level) architecture

The MVC design pattern provides a highly de-coupled sequence of flow by

accepting the user events from an input device on the UI, interpreting these events using

the Controller, and providing the visual feedback by determining how the content would

be altered as a result of the interpreted events in the Model. The benefits of the Model-

View-Controller (MVC) design pattern were first discussed in [61] and the reader should

also check [62].

2.2 Model

As discussed in Chapter 1, section 1.1, Manifold uses glyphs to visualize the

elements of the domain model that implements the Composite design pattern [8] to build

a complex hierarchy of glyphs. The UML diagram in Figure 4 shows this poly-glyph

implemented through the Composite design pattern in Manifold.

17

Figure 4: Composite Design Pattern

Table 1 summarizes the glyph inheritance hierarchy and their functionality in the

current Manifold version.

Table 1: Manifold classes in the Glyph Inheritance hierarchy

Package Class Functionality

manifold Glyph An abstract base class for all
the glyphs. Glyph is a visual
representation
corresponding to a model
data element in a domain
model. It visualizes the
model's state changes.

manifold.impl2D Glyph2D An abstract base two-
dimensional glyph
implementation that

18

implements some things
common to both leaf (which
have visual appearance, i.e.,
they can be rendered) and
inner glyphs (a composite,
i.e. a container for a group
of glyphs).

manifold.impl2D GeometricFigure Leaf glyph represented via a
simple geometric shape.
This is the base class to be
extended by the specific
geometric figures. Notices
that a leaf glyph has no
children, so all composite-
specific methods are defunct
in this class.

manifold.impl2D TransformGroup Non-leaf (inner) glyph
implementation used in
construction of the
hierarchical scene graphs.
This is the composite
version of the base Glyph
(sometimes also called poly-
glyph).

manifold.impl2D.glyphs Defines all the implemented
glyphs. See Chapter 5,
section 5.2 for a detailed
explanation of all the
implemented glyphs.

2.2.1 Manifold Glyph Design

There are a few noteworthy properties of Manifold glyph’s that is worth

discussing here. These properties provide the semantics of how the glyphs are treated by

the underlying domain model.

• Glyphs help the Tools/Manipulators (discussed in Chapter 5, section 5.1) to

construct the manipulation event frames, to be sent to the domain. This includes

simulation of interactive behaviors.

19

• They help in managing the structured graphics

• Glyphs are basically hollow, without any state. Their actual state is defined by the

corresponding objects in the application domain. Glyph only mirrors what the

application domain object notifies it.

• Glyphs cache their state information to improve performance. This is especially

needed if the domain is located across the network. The look-up table represents

the glyph’s attributes as a set of 〈property, value〉 pairs.

• Glyphs provide shadowing to other glyphs. They are not “real” in the sense that

the rest of the framework simply does not know about them. They are normally

structurally invisible, meaning that they cannot be addressed and messaged to.

They can be used to perform input handling or filtering, to decorate figures with

shadows, borders, or bevels, and to perform layout alignment such as centering.

Examples are Highlighter (manifold.impl2D.glyphs.Highlighter),

Connectors (manifold.impl2D.glyphs.Connectors).

2.3 View

The View is responsible for mapping graphics onto a device. A view typically has

a one to one correspondence with the display surface and knows how to render to it. A

view attaches to a model and renders its contents to the display surface. A Glyph listens

(indirectly, via the parent Viewer) for changes of its underlying model. Upon receiving a

change notification, it re-computes its own appearance, but it cannot redisplay itself

because the actual display depends on how this glyph relates to others. An external class

20

must redraw other glyphs affected/damaged by this glyph’s changed appearance. This is

the role for the Viewer (package manifold). Viewer combines the View-Controller

parts of the Model-View-Controller design pattern. All the communication between the

View-Controller and Model is channeled through the Viewer.

The underlying GUI environment is specified by Java Swing, and captures the

events from input device(s) and delivers them to the Viewer, since they happen within the

viewer's window. The Viewer must then determine to which glyph(s) the event is

directed to and dispatch the event to the target glyph(s). It is a good idea to keep the

viewer implementation independent of the input device(s). We do this by

Viewer2DImpl and ViewerMouseListener (package manifold.swing).

The frame rate is controlled by the class Display (package manifold) that

runs in a separate thread. Extreme care should be taken on how the frame rate should be

controlled. Answering each glyphs redraw request individually can be a resource

consuming process (in terms of extra threads and memory). Manifold solves this by

recording individual requests, but the actual redraw takes place only when the Display

invokes Viewer.redraw() which in turn is controlled by the Controller (package

manifold), standing as the gateway between the domain and the presentation.

2.4 Controller

Controller is a single object acting as a gateway between the presentation and

domain modules of the system. Conversely, in the MVC design pattern, Controller is a

21

component of the pattern, usually implemented as a set of cooperating objects working

together on the input interpretation task.

A Controller accepts input from the user and instructs the model and view to

perform actions based on that input. In effect, the Controller is responsible for mapping

end-user action to application response. For example, if the user clicks the mouse button

or chooses a menu item, the controller is responsible for determining how the application

should respond. This parsing of input device events is performed by the Manipulator

(package manifold) abstract class to which is implemented as an inner class of

different Manifold tools (encapsulating the semantics of user interaction with application)

to define the grasp, manipulate, effect cycle for the particular tool.

2.4.1 Manipulator

Manipulator encapsulates a Tool’s manipulation behavior and is responsible for

providing visual feedback during a manipulation sequence. Typical visual feedback is

achieved by redrawing a rubber band using the XOR technique. A new Manipulator

object is instantiated the moment the user starts a new interaction cycle and is disposed of

at the end of the interaction cycle. An example of "interaction cycle" is:

1) User depresses a mouse button;

2) Drags the mouse across the workspace; and,

3) Releases the mouse button.

A Manipulator generates Frames, which "parse" input device events and convert

them into the actions to be performed on the domain model. The recipient of a frame is

22

usually the Controller object. Frames are a concept from Artificial Intelligence,

introduced by Marvin Minsky of MIT [64].

Most of these user-generated events are directed at the glyphs shown in the

workspace, i.e., the viewer associated with the tool that created this manipulator. When

an input event occurs, manipulator specialized in glyph manipulation has to first

determine the glyph to which the event is actually directed to. The process of finding the

relevant glyph is performed by the class manifold.Traversal (pick() operation)

of the scene graph contained in the associated viewer.

2.4.2 Controller Communication

The controller implementation must specify a well-known list of the verbs that

will be used in the event frames (see EventFrame package manifold) generated by

the manipulators. The vocabulary is application-dependant and both manipulators and the

application domain must know the meaning of these verbs. To be more precise, the

manipulators must know how to parse the input events into the verbs (and other slots of

the event frame). Application domain knows what action(s) to take in response to

particular event frames. Of course, there is no need for manipulators to know neither

what those actions are nor what their meaning is.

In our example implementation, the following verbs are defined in

manifold.ControllerImpl:

public static final String ADD_NODE = "add";
public static final String DELETE_NODE = "delete";
public static final String SET_PROPERTIES = "setProperties";
public static final String PROPERTY_QUERY = "propertyQuery";

23

In short, the domain module may not be “aware” of the user, but the user is keenly

aware of the domain (via the presentation). Therefore, the domain designer may need to

take into account the impact of design decisions on the efficiency/effectiveness of

interaction. It is noteworthy that the event frames do not contain explicit information

about the current operating mode of the user activity. For example, regardless of whether

the operation is rotation or scaling or translation, the event frame only contains the glyph

identity and its new transformation attribute.

24

Chapter 3

Developing Backend Applications

A User Interface (UI) is generally tightly coupled to the business logic of the

application, and a great deal of modification is required to model it to separate the

application logic. Manifold is an answer to such an issue. It offers a generic user interface

framework where different application designers could develop separate application logic

using the same Manifold front-end. The only need being the presence of a proper

communication channel between Manifold and the backend applications (the domain

model).

3.1 Introduction

In this chapter I will be emphasizing on the generic nature of Manifold, and how I

used it to create a separate example backend application fronted by the Manifold

interface that constituted a major portion of my thesis. This chapter provides a practical

introduction to developing applications on Manifold by elaborating the framework for

constructing a backend application. I will be considering the area of Pattern Recognition

[46]. It must be noted that this does not represent a facility provided with Manifold, but

how different application programmers could come up with different semantics to

develop powerful applications and then visualize them on Manifold using a set of

communication protocols. Also, this application does not appear with the Manifold

distribution package. Manifold simply provides a visual feedback to the user by initiating

25

a separate backend application to perform semantic processing of data, where the

semantics are application specific. In summary, applicability of direct manipulation does

not depend on the spatial nature of the underlying data. All that matters is that the

developer can come up with a spatial representation of the domain.

3.2 Communication Protocols

Consider a scenario, where you have an electric system, where in you use a

manual switch to operate the electric devices and turn them on/off. Now, you don’t

always want to manually operate the switch, rather it would be highly convenient if you

could just pass in a trigger to operate the switch from your computer, sitting in the

comfort of your room. This could be done by developing your own system including the

user interface and application logic to manipulate the switch; however it would be a time

and resource consuming process. Thus, it would be a nice idea just to define your

application logic and attach it directly to a direct manipulation device that could be used

to visualize your application semantics. Manifold as a generic user interface provides this

capability.

In order to make any backend application interact with the Manifold UI, a set of

protocols have been defined. These protocols were also used by us in developing

applications for the Manifold framework itself viz. text and speech recognition which

provided it multimodal capabilities, as will be discussed in Chapter 4, section 4.3. This

section would discuss such protocols necessary to begin developing applications that

could run on Manifold front-end. If you are interested in developing applications or using

26

your previously developed applications that could be visualized on the Manifold UI, this

section would be highly beneficial. The key idea here is how information exchange

should occur between Manifold and backend applications without the need to modify the

business logic of Manifold or the application. Figure 5 shows high level information

exchange between Manifold user interface and other applications over a set of

communication protocols. The next few sections would discuss these protocols in detail.

Figure 5: Manifold UI Interaction with other applications. Notice same protocols are used for interacting with
multimodal interaction techniques as for other backend applications

3.2.1 Information Exchange: Formats

The first and the foremost requirement for developing backend applications that

could run on Manifold frontend is that there should be a level of understanding between

27

them on the grounds of data format being interchanged. Manifold’s controller acts as a

single gateway between the presentation and domain modules of the system. It takes

input from the user and instructs the model and view to perform actions based on that

input. These end user actions could be transferred to the backend application logic in one

of the following formats:

• Simple plain text input (as used by the Text Recognition application, Chapter 4,

section 4.3.1).

• Manifold EventFrame (property-value pairs) constructed from the event-frame

interpretation (these could be transferred by using a glyph’s cached state, used by

Pattern Recognition, as will be discussed in section 3.3).

• Speech input to the application (as used by the speech recognition application,

Chapter 4, section 4.3.2)

By using these inputs, the application can perform any semantic processing on the

input raw data and provide Manifold back with the information to be visualized on its

viewer. The main requirement is that the information being transferred back to Manifold

must be in the format that Manifold could understand and the controller could

consequently instruct the viewer to perform the necessary action. Thus the information

being transferred back to Manifold must be in form of event-frame (property-value pairs),

which it understands and can parse easily without any modification. This information can

be in the following formats:

• A JSON [50] object which forms an unordered collection of name/value pairs. Its

external form is a string wrapped in curly braces with colons between the names

and values, and commas between the values and names. This is used by the

28

Pattern Recognition application (section 3.3). It is helpful in representing

hierarchical data, and can be easily interpreted on Manifold client (as Java

provides interpretation libraries for JSON).

• A comma separated string to hold the event-frame (property-value slot) in a <key,

value> respectively. This is used by the Text Recognition application (Chapter 4,

section 4.3.1). This is mainly helpful if you are dealing with non- hierarchical

data.

A Manifold EventFrame mainly comprises of following parts:

• Action verb (ADD/DELETE node)

• Node properties (node id, node type)

• Glyph’s graphical attributes (color, width)

An example EventFrame can be:

{verb=setProperties, nodeType=rectangle, nodeId=node-4, line.width=5.0,

line.color=java.awt.Color[r=0,g=0,b=0]}

3.2.2 Information Exchange: Medium

Having discussed the formats of information exchange, now we will discuss the

medium that carries this information over a communication channel between separate

servers holding Manifold and backend applications.

The communication mediums that could be used for this purpose are:

• SOAP [13]: Simple Object Access Protocol is a protocol specification for

exchanging structured information in the implementation of Web Services in

computer networks, relying on XML [12] for its message format. The web service

29

is responsible for taking in input from Manifold, passing it to a remote application

server, and returning back the result in the form of comma separated string

property-value pairs that could be understood by the controller to transfer the

necessary actions to the viewer. This will be used for the purpose of text

recognition for the generation of custom glyphs (Chapter 6, section 6.6.3).

• JSON-RPC [87]: A remote procedure call encoded in JSON, allowing bi-

directional communication between the service and the client. A JSON invocation

can be carried on an HTTP request where the content-type is application/json.

This process is mainly used by the Pattern Recognition application, as will be

discussed in detail in the next section.

Using the above methodologies for information format and transfer, backend

applications could be attached with Manifold, accepting and passing information to the

controller that can interpret and visualize the user input and domain model information

on the viewer.

3.3 Example Application: Pattern Recognition

Manifold is a graphical user interface that allows drawing graphics (glyphs) on its

viewer. It could be used by a large variety of users, who could use it to draw glyphs that

are specific to their area of interest. An electrical engineer can use multiple glyphs to

draw an electrical circuit. For example, a “simpleSwitch” may consist of a bulb (an

ellipse type glyph), two boxes (rectangle type glyphs) i.e. circuit elements, and a wire

(line type glyph) connecting the two boxes. When the wire joins the circuit elements the

30

circuit is complete and the bulb lights up. These semantics may not form any meaning for

Manifold, however for the user they may be important and should be dealt with

accordingly. The user might want the bulb to light automatically (become yellow) if the

wire connects the two boxes i.e. when the circuit is complete. For this purpose there must

be some logic developed that could identify the current pattern of the glyphs present on

the Manifold viewer and instruct Manifold to perform some action in return (make the

ellipse glyph yellow).

This idea can be accomplished through the process of Pattern Recognition.

According to [41], Pattern Recognition is "the act of taking in raw data and taking an

action based on the category of the pattern". The following sections discusses the process

of Pattern recognition and how it was developed for recognizing simple glyph patterns on

Manifold, using separate application logic.

3.3.1 Introduction: Pattern Recognition

In order to provide a better Human Computer Interaction mechanism it is

necessary to build highly intelligent machine that can do things like human beings. The

motivation for this comes from the practical need to find more efficient ways to

accomplish intellectual tasks that may include realization, evaluation and interpretation of

information that may come from various raw data sources. The ability to perceive

information and process it is intrinsic to human beings. However, developing algorithms

to explain the intrinsic mechanisms of perception and to exploit its mathematical aspects

is a difficult task.

31

The aim of Pattern Recognition is to classify patterns of data, either using

knowledge already gained or by statistical information within the pattern. Pattern

recognition is a very important field of computer science and extends its uses to areas

such as healthcare, security, etc. It deals with mathematical and technical aspects of

classifying different objects through their observable information, such as closeness of

two images.

Conventional pattern recognition systems have mainly two components viz.

feature analysis and pattern classification. Feature analysis includes the steps of

parameter extraction and feature extraction. Parameter extraction step includes extracting

relevant information for pattern classification from the input data in the form of a

parameter vector. Feature extraction is a special form of dimensionality reduction to

provide relevant information from the input data, where the parameter vector is

transformed into a feature vector having a reduced representation instead of a full size

input. Figure 6 shows the data flow during the process of pattern recognition.

Figure 6: A conventional pattern recognition system

32

 The development of the pattern recognition system, for identifying patterns

generated on the Manifold viewer, mainly consists of above discussed steps, with a little

modification and implementation differences (mainly for performance purposes), as will

be discussed in the next sections. [45, 46] explains Pattern Recognition in detail.

3.3.2 Design: Pattern Recognition

The design of pattern recognition model for Manifold comprises of a relational

database model. Figure 7 shows the schema with respect to the tables used in pattern

recognition.

Figure 7: Database diagram for Manifold Pattern Recognition

33

 The schema contains the following tables:

• GlyphType: Stores a list of Manifold glyph types viz. Rectangle, Ellipse, Line,

Image, Text, etc.

• Property: Stores the name of properties that can be supported by Manifold

glyphs.

• GlyphJnProperty: Specifies a many-to-many relationship between a glyph

type and property (as different glyph types can have same properties).

• Pattern: Stores various pattern names (classes) like “simple switch”, “battery

bulb” that could be identified by the underlying recognizer.

• PatternJnGlyphType: Specifies a many-to-many relationship between

Pattern and a GlyphType, with the corresponding counts that a pattern can

have for a particular glyph type (that is multiple patterns can have multiple glyph

types with multiple counts and vice versa). For e.g. a “simple switch” pattern

contains two rectangles, one ellipse and one line.

• PatternAction: Provides a mapping between Pattern, a GlyphType, and

glyph Property. It specifies the necessary action to be taken by the underlying

application on a glyph’s property present in the pattern, in case the pattern match

is successful or unsuccessful. For e.g. when a “simple switch” pattern is matched,

the bulb (ellipse) should be lightened (fill color property should become yellow).

Having discussed the design of the pattern recognition model, it would become

easier to understand the data flow in the Manifold Pattern recognition system.

34

3.3.3 Data Flow in Pattern Recognition System

Data flow in a typical pattern recognition system is shown in Figure 8.

 The first stage includes processing the collected information of an object, x(t) by a

parameter extractor. Information relevant to pattern classification is extracted from x(t) in

the form of a p-dimensional parameter vector x. x is then transformed to a feature vector y

by a feature extractor which reduces the dimensionality of the input data vector and

makes the input data suitable for pattern classifier. The feature vector has a

dimensionality of m (m<=p). The feature vector is assigned to one of the K classes, Ω1,

Ω2, Ω3, …, Ωk, by the classifier based on a certain type of classification criteria.

Figure 8: Data flow in pattern recognition system

In this thesis, I extend the process of classification further to exact pattern

matching, where after a pattern class has been identified by the recognizer, restrictions

are imposed on the class, to match it with certain criteria for that particular class, and take

35

the necessary action if those criterions are matched. Figure 9 outlines a higher level data

flow between Manifold and the Pattern recognition application.

Figure 9: Higher Level data flow between Manifold and Pattern recognition system

The next four sub-sections will discuss the above outlined process in context with

Manifold.

3.3.3.1 Unknown Object for Pattern Recognition System

The process of pattern recognition starts with gathering the unknown raw data and

passing it to the recognition system. This raw data, in the current context, comes from the

Manifold application. Manifold as a graphical editor understand the terminology of

glyphs, their properties and values as specified by the EventFrame (package

manifold) and understood by the underlying model. When we draw glyphs on

Manifold, they belong to classes like rectangle, line, ellipse, etc., which independently do

not provide any meaningful information. However, if these glyphs are arranged in certain

36

pattern, they could be used to provide certain visual feedback to the user, depending on

the pattern. For example, when these glyphs are arranged so that they form a simple

switch circuit, as interpreted by the user, to Manifold they are still glyphs. Thus, in order

to provide visual feedback to the user, Manifold would initiate a separate backend

application to perform semantic processing of data, where the semantics are application

specific. This back-end logic would provide these patterns form meaningful

representation on the viewer.

A user could select multiple glyphs using the Manifold’s Selector (package

manifold.impl2D.tools) tool, by drawing a rubber-band object around them. It

creates a SelectorManipulator (refer to Chapter 5, section 5.1 for more details on

tools and manipulators). In the method effect()of the SelectorManipulator,

the selected glyphs are passed to a function called

glyphPositionRecogniser(Glyph[]). This method gets the cached state and

the transform matrix of all the selected glyphs, which forms the raw data (obtained using

object serialization in Java (TM)), and passes it to the Pattern Recognizer (that resides on

a separate server) over the communication protocols, in form of text. Example of certain

cached state raw data (information pertaining to different glyphs separated by pipes i.e.

‘|’) could be:

@cachedState = '{line.width=5.0, nodeType=rectangle,
transform=[D@8edb84,
source=manifold.impl2D.tools.Creator$CreatorManipulator@edf1de,
line.color=java.awt.Color[r=0,g=0,b=0], verb=setProperties,
nodeId=node-4} |{line.width=5.0, nodeType=rectangle,
transform=[D@1a2264c,
source=manifold.impl2D.tools.Creator$CreatorManipulator@804a77,
line.color=java.awt.Color[r=0,g=0,b=0], verb=setProperties,
nodeId=node-5} |{line.width=5.0, nodeType=line, transform=[D@1202f4d,
source=manifold.impl2D.tools.Selector$SelectorManipulator@196f8,
line.color=java.awt.Color[r=0,g=0,b=0], verb=setProperties,

37

nodeId=node-6} |{line.width=5.0, nodeType=ellipse,
fill.color=java.awt.Color[r=255,g=0,b=0], transform=[D@b749a5,
source=manifold.impl2D.tools.Selector$SelectorManipulator@5e832b,
line.color=java.awt.Color[r=0,g=0,b=0], verb=setProperties,
nodeId=node-7}'
,@transform = 'tx=800.5, ty=302.5, theta=0.0, xs=83.0, ys=41.0
|tx=1014.5, ty=300.0, theta=0.0, xs=71.0, ys=36.0
|tx=912.5000000000001, ty=295.0, theta=0.0, xs=191.00000000000003,
ys=8.526512829120879E-14 |tx=903.5, ty=149.0, theta=0.0, xs=61.0,
ys=40.0'

These glyphs form the unknown object and the text utterance containing their

cached states and transform matrix, forms the raw data for the recognizer. It should be

noted here that no modifications were done to Manifold; the existing information was

gathered and passed on to separate server side logic. Figure 10 shows a “simple switch”

circuit that shows how these unknown objects looked on Manifold.

Figure 10: User trying to visualize a pattern via a number of glyphs (unknown object for Pattern Recognition
system) on Manifold.

After the raw data has been collected, it is passed on to the Feature Analysis

stage, where Parameter and Feature extraction takes place.

38

3.3.3.2 Feature Analysis: Parameter Extraction

A glyph’s feature in Manifold is specified by the property-value pairs of its

various editable attributes. The raw data collected in form of the cached state and

transform text utterances needs to be parsed and tokenized so that important features

could be extracted from it. The first step in this process is parameter extraction. The

process of parameter extraction is used to extract important information from the input

data in the form of a p-dimensional parameter vector x. This process extracts the

information related to various glyphs from the raw data. The raw data, from the previous

section, when passed on to this stage, generates the parameter vector x.

The figures (Figure 11, Figure 12, Figure 13 and Figure 14) show the parameter

vectors generated as a result of the parameter extraction stage. These parameters contain

the property-values pairs of a glyphs editable attributes (color, type, etc.) and its

transform (width, height, rotation and location), as evident from these figures. However,

it should be noted here that the dimensionality of these parameter vectors is very high and

needs to be reduced for the sake of less computational cost and system complexity. Due

to these reasons we employ the important step of feature extraction that outputs a feature

vector (containing the geometric coordinates of a glyph that can be used to perform any

kind of geometric computations) as explained next.

Figure 11: Parameter x(1)

Figure 12: Parameter x(2)

39

T (Linear Transformation Matrix)

Figure 13: Parameter x(3)

Figure 14: Parameter x(4)

3.3.3.3 Feature Analysis: Feature Extraction

Feature extraction step does transformation on the parameter vector x to a feature

vector y, which has a dimensionality (m ≤ p). I follow the process of independent feature

extraction [47, 48], by projecting the original parameter vectors onto a new feature space

through a linear transformation matrix.

x (Parameter vector) y (Feature vector)

The linear transformation matrix that we consider here, transforms the parameter

values tx, ty, xs, and ys (representing the x-translation, y-translation, x-scale, and y-scale

respectively of a glyph in the Manifold viewer space), to the four point geometric

40

coordinate system ({x1, y1}, {x2, y2}, {x3, y3}, {x4, y4}). Figure 15 shows a glyph’s

local coordinates and its corresponding transformation matrix as represented in Manifold.

For further detail on the transformation matrix and Manifold’s coordinate space, the

reader is advised to refer [4], Chapter 4.

(−0.5, 0)

(0, −0.5)

(0, 0.5)
(0.5, 0)

(−0.5, 0)

(0, −0.5)

(0, 0.5)
(0.5, 0)

[tx, ty, θ, sx, sy] = [3, 5, 0.52, 6, 4]

Transformation matrix:

π/6

(a) (b)

Glyph in its local
coordinate system: 0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

30°

(3, 5)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

30°

(3, 5)

Figure 15: (a) Glyph’s prototype as represented in its local coordinate system. (b) Glyph transformed in the
global coordinate system: positioned at (3, 5), width scaled to 6 and height to 4, and rotated by θ = 30° = π/6.

The resulting feature vector that contains the geometric coordinates of a glyph can

be used to perform any kind of geometric computations, such as finding intersection

points, checking whether a point lies in a plane, points of intersection of two glyphs, etc.

This would allow the pattern recognition application, separated from Manifold, to

compute the relative positions of glyphs with respect to each other as well their position

on Manifold workspace, which makes pattern classification and similarity matching

41

possible, as discussed next in section 3.3.3.4. Figure 16 shows the feature vector y

generated from the parameter vector x, as obtained in previous section.

Figure 16: Feature vector y (with dimensionality m ≤ p)

 After generating the feature vector, the next step is classification.

3.3.3.4 Pattern Classification

The objective of pattern classification is to assign an input feature vector to one of

K existing classes based on a classification measure. Classification measures include

distance (Mahalanobis or Euclidean), likelihood and Bayesian a posteriori probability.

The decision boundaries generated by these methods are generally linear and fall in the

category of linear classification methods. Support Vector Machine (SVM) [49] on the

other hand has a high computational flexibility and creates non-linear decision

boundaries. Since, in our current implementation, all the calculations are performed with

respect to determining the glyph transformations and 2-D geometric analysis that have

low computational complexity, we will adopt the linear classification methods.

A Pattern is a quantitative or structural description of an object or some other

entity of interest, arranged in the form of a feature vector as:

 [x1]

 X = [x2]

 [xn]

42

where x1, x2, ……, xn are features. For example, a “simple switch” pattern may consist of

a bulb, two boxes (circuit elements), and a wire connecting the circuit elements. When

the wire joins the two boxes, the circuit is complete and the bulb lights up.

 Class or pattern class is a set of patterns that share some common properties.

The feature vectors of the same type of objects will naturally form one set. In the current

context we will deal with only class of type electrical circuits, as they share common

properties such as wires, battery, bulb, etc, and we can use Manifold glyphs to interpret

them. Within this class we will use patterns like simple switch and battery bulb, to

recognize and match them correctly.

A classifier creates a series of functions, apply them on the input vector, and

output a value, based on which it assigns the input vector to one of the classes. In context

to our current discussion on pattern recognition in Manifold, these functions could be

measurement of Euclidean distance between two objects, and determining whether a

point lies in a plane.

 In the section 3.3.3.3 we discussed how the recognizer built the feature vector,

from the raw data. The next step is determining whether the objects present in this feature

vector, can be classified into a pattern or not. For this purpose, the database table

Pattern is used which specifies the name of various patterns within the electrical circuit

class. The relationship between various glyphs from the feature vector and this pattern

name is developed through the table PatternJnGlyphType that specifies the objects

(glyphs here) that should be present in a pattern and their corresponding count for that

pattern. For example, a “simpleSwitch” pattern may consist of two rectangles (two circuit

elements), a line (wire), and an ellipse (a bulb). If all the glyphs are present with their

43

respective count in the feature vector, we could say that there is a possibility of a

particular pattern from the objects present in the feature vector, and a particular pattern

has been classified.

 The classification of a pattern doesn’t necessary determine the completeness. For

instance, a “simpleSwitch” pattern may be present in the feature vector, but may not be

complete (the wire might not be connecting the two circuit elements or there might be

some other circuit fault). For this purpose, we apply a series of geometric functions on

the identified glyphs feature vector that determines their relative position on the Manifold

viewer space using the geometric coordinates obtained in the feature vector. For the

“simpleSwitch” pattern, the two rectangles must be connected by a line (to complete the

circuit). On the basis of successful or unsuccessful pattern matching, a corresponding

action is generated. This action is stored in the table PatternAction which provides the

successful and unsuccessful actions, and the corresponding property name, and property

value that should be send to Manifold. For example, if there is a success in the

“simpleSwitch” pattern, the ellipse should be filled with color YELLOW and RED

otherwise.

 The final step is to assemble these key-value pair and pass them onto Manifold as

a JSON [50] object, where it can be parsed easily, and the action could be rendered on the

Manifold viewer space. An example JSON object for the above discussed pattern could

be:

Figure 17: JSON object send to Manifold over the communication channel

44

Table 2 shows the SQL stored procedures used in the process of Pattern

Recognition along with their respective functionalities.

Table 2: SQL stored procedures for the process of pattern recognition

Stored Procedure Name Function
RECOGNISER_GLYPH_POSITION Main procedure that parses the

input text utterance containing
glyph cached states and
transforms to generate
parameter and feature vectors,
and calls other procedures for
pattern classification,
matching and action
generation.

RECOGNISER_CHECK_LINE_INETERSECTS Checks whether two lines
given their geometric
coordinated intersect in a 2-D
plane.

RECOGNISER_CHECK_POINT_IN_PLANE Checks whether a given point
lies in a 2-D plane.

RECOGNISER_GENERATE_PATTERN_ACTION Generates a pattern action
(property-value pair)
depending on whether pattern
recognition has been
successful or not.

3.3.3.5 Rendering on Manifold

The JSON object contains all the necessary information that Manifold can

understand and directly render the information to the Viewer. If the JSON object is null,

or any of its properties are null that are required by Manifold, then no action occurs.

 The code stub to parse the JSON object lies in the class Selector.java

(package manifold.impl2D.tools):

try {
JSONObject outer = new JSONObject(ji); // the outer objet from a
//string input ji
if (outer != null) {

// Parse the name/value pairs

45

success_ = outer.getString("success");
matchedPattern_ = outer.getString("matchedPattern");
propertyName = outer.getString("propertyName");
propertyValue = outer.getString("propertyValue");
actionNodeId = outer.getString("actionNodeId");

System.out.println(matchedPattern_);

if (actionNodeId != null || !actionNodeId.isEmpty()) {

performAction(actionNodeId, propertyName,
propertyValue);

}

}
} catch (Exception e) {

System.out.println(e.toString());
}

 The parsed values are passed to the method performAction(String,

String, String) in the same class which sends the EventFrame to the controller

to render the specific action on the viewer. The code stub for this is:

// Make an event frame to request the application domain
// for property change.
Hashtable slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.SOURCE, this);
slots_.put(EventFrame.NODE_ID, actionNodeId);
slots_.put(propertyName, pValue);
viewer.getController().sendAsyncEvent(

new EventFrame(slots_));

 Here, the backend application notifies the controller of the property change, and

the corresponding node Id, property name, and property value, retrieved from JSON

object are send to it, which are then rendered on the viewer. Figure 18 and Figure 19

shows the interaction and output on Manifold.

The process discussed above could be extended for more complicated pattern

recognition and matching. The developer has to define his new semantics, and the above

discussed architecture could be used for any kind of visual pattern recognition on

46

Manifold. This could become even more interesting if new glyphs of type wire, resistor,

battery, etc. are defined on Manifold. The possibilities are endless, however, Manifold

architecture is flexible enough to implement new glyphs and features and develop

applications that could understand and manipulate these glyphs.

Figure 18: Pattern simple switch is classified, but not
matched (red color of ellipse)

 Figure 19: Circuit is complete (line connects two
rectangles), and the pattern is matched (yellow color
of ellipse)

 To give an example of a more complicated pattern, a battery bulb pattern is shown

in Figure 20 and Figure 21.

Figure 20: Visualization of a battery-bulb pattern on Manifold

Figure 21: A battery bulb pattern
classified and matched successfully
(as all circuit elements are well
connected).

47

Chapter 4

Enhancements and Multimodal Interaction Techniques

With the availability of a large number of user-interface tools, there was a need to

add features in Manifold, and enhance the existing ones which were envisioned in the

previous versions. These were discussed in brief in Chapter 1, section 1.3.2. There was

also a need to provide user with multiple modes of interfacing with the Manifold

framework making it a multimodal [6] user interface.

In this chapter I will be discussing some of the enhancements that were made to

Manifold, and how they were carried out. I will also be discussing the areas of Text

Recognition (also referred to as Text Parsing) [79], and Speech Recognition [42, 43]

along with their implementation in the Manifold framework to make it an efficient

interface for direct manipulation and multimodal interaction which plays an important

role in HCI [1].

4.1 Introduction

Manifold is a GUI that operates on glyphs. In order to make its functioning fast

and smooth, it was required to improve its functionality from different perspectives. This

was done by eliminating some of the shortcomings from the previous versions of

Manifold. Since Manifold is a work in progress, it was necessary to improve the

functionalities related with the way how glyphs are selected, and their properties edited.

48

It was also necessary to provide user specific configuration of Manifold, so that different

users could run different features, by including/removing features at run-time.

Also, in order to provide the users multiple ways of accomplishing a single task,

and increase Manifold’s capabilities of being a multimodal UI than just being a direct

manipulation interface, new interaction techniques like text and speech were attached

with Manifold. As discussed in Chapter 1, Human Computer Interaction plays an

important role in designing any graphical editor or a user interface. As people start to use

their PCs more, they start to identify ways in which they want to use peripherals for

different tasks. Task specialization has led to a variety of keyboard and mice on the

market; but, there are emerging more exotic interface technologies. We discuss the same

in this chapter.

4.2 New Features and Enhancements

This section discusses some of the new features and enhancements that were

added to provide a better user experience with the Manifold UI.

4.2.1 Editing Multiple Glyphs

The Property Viewer will be discussed in detail in Chapter 7, and how it uses

Property Editors to edit different properties of different glyphs. Editing properties of

multiple glyphs at the same time could be highly valuable to the user, especially in

scenarios where different glyphs have to be provided with same properties. For e.g. the

49

user might want to fill different glyphs with the same color at once, which otherwise

would require him/her “n” steps to change the fill color property of “n” glyphs.

 In the previous versions of Manifold, multiple glyphs could be selected by

drawing a selection box around them; however, their properties could not be edited, all at

once. Figure 22 shows the Property Viewer on selection of multiple glyphs from previous

version of Manifold.

To allow editing properties of multiple selected glyphs, all at once, some

modifications were required to be made in the class PropertiesViewer.java

(package manifold.swing). This class holds the panel containing all the property

editors for the currently selected glyph, if any. Once a glyph is selected, the editor panel

(manifold.swing.PropertyEditorsPanel.java) corresponding to this glyph

type (with all editable properties is located in the lookup-table, a HashMap). The panel

is added as a child component to this panel and displayed. If no glyph is selected, this

panel is empty or (preferably) hidden.

Figure 22: Empty Property Viewer on
selection of multiple glyphs in previous
versions of Manifold

Figure 23: Editing properties of multiple glyphs in current
Manifold version (Fill Color property being edited here)

50

In the previous version of Manifold, the identifier for the currently selected glyph

was a String field. To make it accept multiple glyphs, it was changed to accept a

String array of glyph nodeId’s. This identifier is set in the method

selectionsChange(SelectionsEvent), see

manifold.SelectionsListener.java, which is called on a listener object to

notify about changes to the list of selected glyphs in the viewer(s). The parameter

specifies the event carrying information about the selections change. The method is

modified such that it gets all the selected glyphs and then adds common Property

Editor(s) to the Property Viewer, by looping through the selected glyphs and taking a

union of the property-editors for all the selected glyphs. To avoid missing property-

editors that were not common to two glyph types, we took the union of property-editors

rather than intersection. For e.g. Font Editor is used only for Text glyph type, but Color

Editor is used for both Text and Rectangle glyph types.

To support multiple glyphs’ property editing, changes were also made to the

classes in the package manifold.swing.editors. This was done so as to allow

making event frames to allow editing properties of multiple glyphs and sending request to

the application domain for the property change of all the glyphs. Following these

modifications, it was possible to edit properties of multiple glyphs at once (Figure 23).

4.2.2 Poly Glyph

Handling multiple glyphs become even more important if we want to treat a

selection of glyphs as a single object. This promotes the implementation of Poly-Glyph,

51

based on the Composite Design Pattern [8], feature in Manifold by altering the parent-

child properties. The poly-glyph is implemented in class TransformGroup belonging

to package manifold.impl2D and is created using the Grouper tool. The reader is

advised to read Chapter 5, section 5.4.2 for an in-depth understanding of this feature.

4.2.3 Glyph Selection

In the previous version of Manifold, it was not possible to select glyphs of type

“line” i.e. Line (manifold.impl2D.glyphs.Line.java) and Link

(manifold.impl2D.glyphs.Link.java), by drawing a selection box around

them. This behavior was due to the fact that the Selector tool was made to pick shapes of

type Rectangle2D only (see method

gatherSelectionsAndCleanUp(InputDeviceEvent, Viewer) in class

manifold.impl2D.tools.Selector.java). As a result when a selection box

was drawn around glyphs of type “line”, they were not picked as they had a bounding

shape of type Line2D. This was done in method

getBoundingShape(boolean) of class Line.java. The code stub from the

previous version was:

public Shape getBoundingShape(boolean transformed_) {
if (transformed_) {

return shape;
 } else { // return the prototype

return new Line2D.Double(
GeometricFigure.POINT_1.getX(), 0.0d,
GeometricFigure.POINT_2.getX(), 0.0d

);
}

}

52

To remove this behavior and allow selection of Line2D (line and linker) by

drawing a selection box around them on the Manifold viewer, the bounding shape of the

Line glyph was modified to return Rectangle2D as its bounding shape. The modified

code stub is:

public Shape getBoundingShape(boolean transformed_) {
if (transformed_) {

return shape;
 } else { // return the prototype

return new Rectangle2D.Double(
GeometricFigure.POINT_1.getX(),GeometricFigure.POINT_1.getY(),
GeometricFigure.POINT_2.getX() - GeometricFigure.POINT_1.getX(),
GeometricFigure.POINT_2.getY() - GeometricFigure.POINT_1.getY()
);

 }
}

 By correcting the bounding shape, it was possible to select “line” glyph types by

drawing selection box around them.

4.2.4 Manifold Configuration

Configuring the features of an application is very important from system

resources/performance perspective. Hence it becomes essential in allowing configuration

of Manifold before running it, by providing a Wizard [11] to select the necessary XML

[12] files to configure it.

The Manifold configuration wizard is implemented in package

manifold.swing.wizard (see [11] for example implementation), and allows

selection of user configured/distributed XML files as per user requirement which

enhances the application speed by limiting the functionality as per their needs. For e.g.

the user could select custom configured XML files (“draw2D.xml”, “editors.xml”,

53

“glyphs.xml”, “menuItems.xml”, and “tools.xml”) as per their need. Figure 24, Figure 25,

and Figure 26 shows the Manifold configuration wizard at various steps.

Figure 24: The Manifold Configuration Wizard, welcome text

Figure 25: The Manifold Configuration Wizard, selecting an XML file

54

Figure 26: The Manifold Configuration Wizard, configuring application with selected XML files

4.2.5 Correcting Bounding Shapes

In the previous Manifold versions, the bounding shape and the highlighter

(shadow glyph) of a glyph were misplaced with respect to each other. It was necessary

that both of them coincide, as highlighter allows manipulation of underlying glyph by

shadowing it. Hence, the bounding shapes for text and image glyph were corrected in the

respective draw() methods of the classes Text.java and Picture.java (package

manifold.impl2D.glyphs), to make the highlighter coincide with them.

4.3 Multimodal Interaction Techniques

This section discusses some of the new interaction techniques viz. speech and text

that were created as separate applications and then attached (using predefined protocols)

with the generic Manifold framework as discussed in Chapter 3, section 3.2.

55

4.3.1 Text Recognition

Text Recognition [79] may be defined as the process of parsing an input (a

command) from the user and simplify it to something that the software can understand, to

generate some visual (and non-visual) feedback. It is very intuitive to let a framework do

work for you by just writing “what to do”, instead of manipulating different commands

separately. Consider for example, if you want to draw a graphic on a user interface, the

user interface provides you tools to create the graphic, change its appearance, position

etc. In order to accomplish these steps, you have to provide various commands to the user

interface, either by manipulating through mouse, or writing text commands (as in MS

DOS). This is time consuming and manipulating all steps manually and making the

graphics of correct shape, size, and at a certain location may be a painstaking process.

Now, consider another scenario, where you can just type in what you want to do, all at

once. For e.g. if you just type in “Draw graphics X at location x, y with property Y”, the

user interface should be intelligent enough to understand the text, parse the text, consider

into account synonyms of all words you typed in, and render the graphic on the interface

with all the properties you provided (removing wrong values and considering only

permissible values for that graphic object).

 In this section I will be considering such a scenario, and how I utilized the generic

nature of Manifold to render glyphs on its viewer, by parsing a simple (but meaningful)

line of text. Manifold understands only properties and what values they can have for a

certain glyph. Hence, if we provide certain input text to Manifold, separate server side

logic has to be developed, in order to provide it property specific values that it can

56

understand (without any manipulation on Manifold itself). This nature of Manifold,

would allow developers to develop different applications and attach them to its UI.

 The need for the development of the process of Text Recognition will be

discussed in Chapter 6, section 6.6.3, where the Custom Glyph menu item is described.

The interface on Manifold and the communication with a separate application server were

also discussed in the same section. The reader is advised to read the same to understand

how the process interaction was carried on Manifold.

4.3.1.1 Design: Text Recognition

For the process of Text Recognition we present a database model that would

allow recognizing a text pattern and consequently render graphics (glyphs) on the

Manifold viewer.

Figure 27 shows the database model with specifications of the tables used for text

recognition.

A general description of the tables is as follows:

• Noise: Stores all the noise words that can be possibly present in an input text

utterance, and should be removed before manipulation. Example noise words

could be “a”, “the”, etc. For more details on noise words, see [44].

• Word: Stores all the distinct words that have been passed into the input text,

after removing the noise words. It stores a word only once i.e. if not already

present.

• GlyphType: Stores a list of Manifold glyph types viz. Rectangle, Ellipse, Line,

Image, Text, etc.

57

Figure 27: Database schema for Text Recognition

• GlyphTypeSynonym: Stores the synonym for glyph type names i.e. many-to-

one relationship (a glyph type can be referred by many different names). For e.g.

ellipse may be referred as oval, line may be referred as a segment, etc.

• Property: Stores the name of properties that can be supported by Manifold

glyphs.

• GlyphJnProperty: Specifies a many-to-many relationship between a glyph

type and property (as different glyphs can have same properties).

58

• PropertySynonym: Stores all the possible names by which a property can be

called with (example width and breadth specifies the same property).

• PermissibleValue: Stores the type of values that are permissible for a

particular property (for example fill.color can contain properties of type

color; width, height should be of type numeric, etc.).

The next section describes the algorithm I built for the purpose of text recognition

to meaningful values through parsing and cleaning, using the above model.

4.3.1.2 Implementation: Text Recognition

 The flow chart in Figure 28 shows the basic steps in the process involved in Text

recognition. The formal algorithm (pseudo code) is (the description follows):

Algorithm Text Recognition

Input: Text word utterance (inputUtterance)

Output: Glyph Profile (property-value pairs)

for each word in inputUtterance
if the word is not a Noise word

then Store the word and its position from the utterance in a Word-Position
table

 Extract the glyph type (present as one of the words)

if the glyph type is not null
then generate a Bigram Table from Word-Position Table (words with position
difference = 1)

for each bigram in Bigram Table
if a bigram forms a proper property-value pair (considering property-name
synonyms and permissible values for the properties)

then Store it as a part of the final Glyph Profile

return Glyph Profile

59

Figure 28: Flow chart depicting the entire process of Text recognition

60

 When a user enters a word utterance (an input text string that contains actions that

should be performed so that a particular glyph gets rendered on the Manifold viewer), it

is passed on to separate server side logic through a SOAP web service as discussed in

Chapter 6, section 6.6.3. The first step in the process is to do word preprocessing (lexical

analysis [79]), to extract meaningful data (tokens) from the word utterance. For this

purpose we start by cleaning the text, which is accomplished by splitting the sentence

into words, removing the noise words by comparing them against the Noise table and

storing the words themselves in the Word table (only if they do not exist in the table).

We then store the word (wordId of the stored word from the Word table) and its

corresponding position in the text in a temporary table. For e.g. the preprocessed output

for a word utterance “Draw a rectangle of width 45 and height 50 with fill_color red and

rotation of 45 degree” is shown in Figure 29. Here all the noise words like “a”, “of”,

“and”, and “with” are removed from the input utterance. The regular expression used

here to split the input character stream in a set of meaningful symbols is defined by

empty spaces so that we could obtain words from a sentence. It should be noted here that

we also extract the glyph type name (or its synonym) in this process of lexical analysis

only.

After data preprocessing, the next step is to retrieve the words with close

proximity that are permissible and have meaningful information associated with them.

Proximity here means two or more separately matching term occurrences are within a

specified distance, where distance is the number of intermediate words or characters. By

limiting the proximity to “two”, the property value pairs can be matched while the

scattered words that are spread across the sentence can be avoided. For e.g. in the

61

sentence, “Draw a rectangle of width 45 and height 50 with fill_color red and rotation of

45 degree”, ‘width’ and ‘45’ occur next to each other as a property-value pair. We make

use of bigrams (group of two words) for this purpose that help provide the conditional

probability of a word given the preceding word, when the relation of the conditional

probability is applied:

P(Wn | Wn-1) = P(Wn-1, Wn) ÷ P(Wn - 1)

That is, the probability P() of a word Wn given the preceding word Wn − 1 is equal to the

probability of their bigram, or the co-occurrence of the two words P(Wn − 1,Wn), divided

by the probability of the preceding word.

This allows storing the preprocessed output in form of all possible bigrams

formed (which is calculated using the word position difference of 1). The bigrams

formed, by the output shown in Figure 29, are shown in Figure 30.

The next stage is syntactic analysis [79] that checks whether the bigrams form an

allowable expression so as to extract the glyph specific properties and their values. This

is done by comparing each row and corresponding column value against the glyph

specific properties (rectangle here) from the Property table. We also check the possible

property name synonyms by comparing them against the PropertySynonym table.

After identifying a property, we check whether its value is permissible for the given

glyph type by comparing the values against the table PermissibleValue. Finally, the

glyph profile is generated containing the property value pairs that can be identified by

Manifold. The glyph profile for the above input text is shown in Figure 31.

62

Figure 29: Word tokens generated as a result of
preprocessing. Notice it doesn’t contain any noise
words.

Figure 30: Bigrams from the preprocessed output.

Figure 31: Final Glyph Profile that can be passed on to Manifold

This result contains all the properties and values as understood by Manifold, and

can be directly passed on to it for glyph rendering purposes. Table 3 shows a list of SQL

stored procedures that participate in the process of Text Recognition. It is noteworthy

here that the process of text recognition explained above could also have been carried out

using other programming languages like Java or Python which have very nice library for

regular expressions for working with strings.

Table 3: SQL stored procedures for the process of text recognition

Stored Procedure Name Function
RECOGNISER_GENERATE_GLYPH_PROFILE Accepts word utterance and

performs word
preprocessing and bigram
generation.

RECOGNISER_SPLIT_WORDS Inserts distinct words in the
table Word and returns the

63

inserted word’s id.
RECOGNISER_CHECK_PERMISSIBLE_VALUES Verifies that a given

property value is permissible
for the given glyph type. For
example the height and
width should always be
numeric.

4.3.1.3 Rendering Text Recognition Output on Manifold

In order to decouple the feature of text recognition from Manifold, its complete

logic is separated from Manifold. The text parsing and manipulation was done using SQL

Server, and was called through a SOAP Web service written in C#.NET. The front end

was implemented as a menu item (custom glyph menu item in Insert menu). For more

details on this interaction with Manifold, the reader is advised to see Chapter 6, section

6.6.3.

4.3.2 Speech Recognition

A speech interface can be used to directly issue commands to the domain.

However, it could be used in a direct manipulation mode, such as commanding: “Pick up

the object X and start moving it north-east … keep going …keep going … turn to the right

… stop.”

Although there has been a great effort invested in trying to incorporate speech in

human-computer interfaces, speech continues to play a minor role in HCI, and not

because speech recognition is still imperfect. This may appear surprising, given that

speech and language play the central role in human communication. Some challenges of

speech-based interfaces are considered in [73, 74]. The greatest problem, in my opinion,

64

is that the computer is very unintelligent. All programs, despite their apparent

complexity, have relatively simple knowledge and intelligence. Moreover, there is no

knowledge sharing across different programs—all programs work independently—the

only sharing is via the clipboard!

Because of this, humans still operate the computer, like a tool, rather than

communicating to it like another intelligent being.

4.3.2.1 Speech Recognition Application in Manifold

In exploring the area of Speech recognition on Manifold, the main idea was to

render glyphs on the Manifold Viewer by speaking in what has to be drawn. The creation

of custom glyphs (through text recognition, section 4.3.1) by typing in what we need to

generate is discussed in Chapter 6, section 6.6.3. Glyph generation through speech

recognition was a direct derivative of this process.

We use Sphinx-4 [75] for the purpose of speech recognition. The integration of

Sphinx in Manifold allowed transforming spoken words to text sentences which then

could be passed on the Text Recognition application logic, as discussed in section 4.3.1,

to perform proper manipulation and output a glyph profile which then could be rendered

on Manifold. The main idea here is to pass whatever a user speaks to a backend

application using a set of communication protocols as discussed in Chapter 3, section 3.2,

since only the backend application could understand the meaning of semantic objects

(Manifold doesn’t know these and cannot understand them). Manifold just shows what

it’s told by the backend application, and the speech module directly speaks to a backend

Sphinx application (not to Manifold).

65

This application of speech recognition is still in its naivety. However, after laying

down the integration of Sphinx with Manifold, it could be extended in the future versions

to build a more sophisticated application, where different user spoken actions could

directly be mapped onto Manifold for direct manipulation of objects. For example,

something similar to ViewerMouseListener.java (package manifold.swing)

could be implemented to provide a listener to spoken words, independent of the Manifold

viewer.

66

Chapter 5
Glyphs and Tools

The earlier versions of Manifold User Interface Framework anticipated certain

glyphs and tools. These glyphs and tools though non-functional or non-implemented in

the previous versions were essential in improving and enhancing the core functionality of

the Manifold framework that could make it at par with the modern GUI tools available.

To enumerate, these glyphs were Text, Picture (Image), Pin; and tools were Zoomer,

Pinner, Grouper and Un-Grouper.

5.1 Introduction: Tools, Manipulators and
Controller

The Tools and associated Manipulators provided in the current application can be

taken out and replaced with other Tools/Manipulators in different application contexts.

Figure 32 summarizes the key characteristics of this tandem.

 Tool

Manipulator
grasp(InputDevEvent)
manipulate(InputDevEvent)
effect(InputDevEvent)

sendAsynchEvent(MEvent)

manip := createManipulator(Viewer)

Figure 32: The main input and outputs of a Tool/Manipulator component

67

The developer must follow the manifold.Tool and

manifold.Manipulator interfaces and implement their desired functionality for the

grasp-manipulate-effect manipulation cycle.

The tools normally know very little or nothing about the glyphs they operate

upon. For example, the Creator tool does not import any Glyph interface at all.

Deletor imports Glyph to handle the list of glyphs scheduled for erasure. Both

Selector and Rotator imports Glyph2D to access the glyph’s transformation and

TransformGroup to obtain the picking traversal service. Selector also uses the

handle-movement simulation service. Obviously, this is a very basic knowledge and a

broad range of spatial glyphs can be manipulated by the existing tools/manipulators. We

believe that this demonstrates high degree of decoupling between the tools and objects

(glyphs) on which they operate.

The implementation of the Controller interface (package manifold) is also

related with tools/manipulators as discussed in Chapter 2, section 2.4. This is because the

controller knows the action verbs of the event frames that the current application domain

supports. The manipulator sets those verbs when creating the event frames for the

domain. It is noteworthy here that the Controller is associated with the application

domain only for the action verbs (add node, delete note, property query, and set

properties), and not with the verbs that are used to describe the graphical attributes (see

EventFrame.java in the package manifold). This minimal dependency of the

Controller on the “application domain" was necessary for maintaining the core-

functionality.

68

 The tools are implemented in the package manifold.impl2D.tools. Table

4 below shows the Manifold tools and their functionalities.

Table 4: Manifold Tools and their Functionality

Tool Name Functionality
Creator Allows creation of new glyphs.

(See manifold.impl2D.tools.Creator.java)
Deletor Allows deletion of selected glyphs.

(See manifold.impl2D.tools.Deletor.java)
Grouper Allows grouping of multiple glyphs as a single poly-glyph (see

manifold.impl2D.tools.Grouper.java, section 5.4.2)
Linker Allows connecting of two glyphs by a linker line.

(See manifold.impl2D.tools.Linker.java)
Pinner Allows pinning a glyph to disable its translation at the pinned connector.

(See manifold.impl2D.tools.Pinner.java, section 5.4.4)
Rotator Allows rotation of a glyph by moving one of its handles in the desired

direction.
(See manifold.impl2D.tools.Rotator.java)

Selector Allows selection of a single glyph by clicking, or multiple glyphs by
drawing selection box around them. Also allows manipulating glyph
transformation by manipulating their handles.
(See manifold.impl2D.tools.Selector.java)

UnGrouper Allows un-grouping of a poly-glyph to independent glyph objects.
(See manifold.impl2D.tools.UnGrouper.java, section 5.4.3)

Zoomer Allows zooming-in/out a glyph/canvas by pressing and moving a mouse
cursor up and down.
(see manifold.impl2D.tools.Zoomer.java, section 5.3.2)

5.2 Glyphs and Viewers

We believe that it is relatively easy to extend the “vocabulary” of glyphs that can

be placed within the viewer canvas. Our glyphs pursue middle ground between what

Bederson et al. [7] call polylithic and monolithic approaches to structured graphics. We

introduce “shadow glyphs” that can be composed with visual glyphs to provide additional

appearance or functionality. Although not entirely independent as nodes in polylithic

69

approaches, the shadow glyphs nonetheless provide separation of concerns and structured

graphics aspects.

Glyphs know nothing about the tools/manipulators that operate on them.

Generally, glyphs have minimal coupling with the rest of the Manifold framework.

Glyphs are tightly coupled with the Viewer (package manifold) in which they will be

displayed, and the viewer may provide “layout management” for them.

The glyphs are implemented in the package manifold.impl2D.glyphs.

Table 5 below shows the manifold glyphs and what they represent.

Table 5: Manifold Glyphs and their Representation on the Viewer

Glyph
Name

Representation

Connector Connector glyph that allows rendering glyphs like Pin, Slot, etc.
(see manifold.impl2D.glyphs.Connector.java)

Connectors Shadow glyph that manages the glyph's connectors. Connectors are
optional.
(see manifold.impl2D.glyphs.Connectors.java)

Grid Grid figure, to be shown as a background of a glyph viewer. This glyph
belongs to a category called shadow glyphs. Such glyph's only purpose is
to shadow its parent glyph. As such, it should not be used for purposes
other than the viewer background, and should not be possible to
manipulate.
(see manifold.impl2D.glyphs.Grid.java)

Highlighter Highlights the glyph to let it distinguish itself graphically, for example,
when it is selected. Draws the bounding box, with the handles for
interaction, when a glyph is selected. The default color for both handles
and the bounding box is blue. This glyph belongs to a category called
shadow glyphs. Notice that the parent glyph does not keep shadow glyphs
on its list of child glyphs.
(see manifold.impl2D.glyphs.Highlighter.java)

Line Line geometric figure (leaf glyph). As with other Geometric Figure’s, we
assume that the Line’s shape is always centered on the origin (0, 0) of its
local coordinate system. The endpoints of the prototype line segment are
derived from Point2D GeometricFigure to have a horizontal line
segment.
(see manifold.impl2D.glyphs.Line.java)

Link Link joins two connectors, which may be on the same glyph or on

70

different glyphs.
(see manifold.impl2D.glyphs.Link.java)

Picture Picture/Image (leaf glyph) is used to render image graphics on the
Manifold viewer space. Notice that this is a leaf glyph, but does not
derive from manifold.impl2D.GeometricFigure.
(see manifold.impl2D.glyphs.Picture.java, section 5.4.1)

Pin Leaf glyph, to pin another glyph at one of its connectors in order to limit
its translation/rotation.
(see manifold.impl2D.glyphs.Pin.java, section 5.4.4)

Rectangular Rectangular geometric figure (leaf glyph), derivative of
java.awt.geom.RectangularShape, such as:
java.awt.geom.Ellipse2D, java.awt.geom.Rectangle2D.
We assume that the shape is always centered on the origin (0, 0) of its
local coordinate system. If translated, that will be represented in the
glyph's transformation.
(see manifold.impl2D.glyphs.Rectangular.java)

Text Text (leaf glyph) to render text on the Manifold viewer. Notice that this
is a leaf glyph, but does not derive from
manifold.impl2D.GeometricFigure.
(see manifold.impl2D.glyphs.Text.java, section 5.3.1)

5.3 Previously Non-Functional Glyphs and Tools

Though included in the earlier versions of the Manifold, certain features like Text

Glyph and Zoomer tool were non-functional. The text glyph just displayed the text

“default text” and had an empty Property Viewer (discussed in Chapter 7) containing no

Property Editor’s. The Zoomer, although being included in the UI, didn’t function. My

first task was to get these glyphs and tools up and running.

5.3.1 Text Glyph

The package manifold.impl2D.glyphs is responsible for rendering the

appropriate glyph on the UI. Text is a leaf glyph but does not derive from

manifold.impl2D.GeometricFigure because unlike GeomtericFigures

71

like Rectangle2D and Line2D, its shape cannot be transformed by selecting the

connectors. The java class for drawing the text glyph on the work space is Text.java

which inherits manifold.impl2D.Glyph2D.java. To render the user defined text

on the Viewer, it was necessary to modify this class to support new property editors (font

editor and text editor, which are discussed in detail in Chapter 7) and the event frame (to

support new verbs). By including these new property editors and new verbs in the event

frame, it became possible to render the text glyph as an editable glyph allowing changing

properties like font size, face, and style. The new Event Frame verbs that were added to

the class EventFrame.java (package manifold) were:

• public static final String TEXT_FONT = "text.font";

It was used to read the font state including the font size, face, and style, which

were changed using the font editor

(manifold.swing.editors.FontEditor.java, section 7.3.2).

• public static final String TEXT_COLOR = "text.color";

It was used to read the font color state that was changed using the color editor

(manifold.swing.editors.ColorEditor.java).

• public static final String TEXT_TEXT = "text.text";

It was used to read the text state that was changed using the text editor

(manifold.swing.editors.TextEditor.java, section 7.3.1).

The reason behind the text glyph not functioning properly was that a static text

was defined in the XML file “tools.xml” (see the manifold package and source code

for more details on this file) without any editors specified in “editors.xml” to modify this

text. The code stub from “tools.xml” to render the default text is:

72

<void method="put">
<string>text</string>
<string>default text…</string>

</void>

As a result every time the user drew the text glyph this static text was rendered.

To display the appropriate text with different styles and text (which were changed

in the corresponding text editors), the cached property of the glyph was read in the

Text.java class. After adding the text editors with this glyph (see Chapter 7), the

modified code stub from “editors.xml” file for Text glyph looked like this:

<!-- ********* Text Editor Panel ********* -->
<void method="put">

<string>text</string>
<object class="manifold.swing.PropertyEditorsPanel">

 <void method="add">
<object
class="manifold.swing.editors.FontEditor">

 <void property="propertyName">
 <string>text.font</string>
 </void>
 </object>
 </void>
 <void method="add">

<object
class="manifold.swing.editors.TextEditor">

 <void property="propertyName">
 <string>text.text</string>
 </void>
 </object>
 </void>
 </object>
</void>

The rendering of glyph with new properties on the work-space was done by

comparing the old states with the new states, only if the two states differ. The code stub

(in the draw() method of Text.java class) that was added to implement this new

feature is,

// Get the cached property from the editor and the one defined in XML.
String text_ = (String) cachedState.get(TEXT);
String textText_ = (String) cachedState.get(EventFrame.TEXT_TEXT);

73

//If new text has been set using the Text Editor, do update
if (textText_ != null && !textText_.isEmpty()) {

text_ = textText_;
}

// Check if the glyph's font should be edited
Font textFont_ = (Font) cachedState.get(EventFrame.TEXT_FONT);
if (textFont_ != null) {

graphics_.setFont(textFont_);
}

// Check if the glyph's color should be changed
Color textColor_ = (Color) cachedState.get(EventFrame.TEXT_COLOR);
if (textColor_ != null) {

graphics_.setColor(textColor_);
}

Here the glyph’s cached state is queried to read the new values (updated

previously through the corresponding glyph property editors) belonging to the text glyph,

and these new values are added to the glyph. The method draw() recursively traverses

the scene graph to render and display the glyph in the viewer. The method takes

Traversal (package manifold) type parameter having the current state of the

traversal. Traversal implements the Visitor design pattern [8] for visiting a collection

of glyphs. A traversal is passed to a glyph’s traverse operation and maintains common

information as well as the stack of information associated with each level of the traversal

(see [4], section 4.3).

5.3.2 Zoomer

The Zoomer tool is responsible for zooming in/out the Manifold canvas. The user

can zoom by clicking anywhere on the canvas and dragging down or up to zoom out and

zoom in respectively. Zoomer provides only a visual feedback without changing glyphs

actual dimensions (including the background Grid which acts as a shadow glyph). This is

74

different from glyph scaling where we change a glyph’s transformation matrix to

accommodate new scaling components.

The tool is implemented in the manifold.impl2D.tools package in the

Zoomer.java class, and was included in the earlier versions of the Manifold, however

was non-functional.

The Zoomer.java class extends to the class BaseTool.java, package

manifold.swing. The class creates a ZoomerManipulator that converts the user

interaction with the input device(s) to actions on the domain model (see Manipulator

Chapter 2, section 2.4.1).

The main functioning of the Zoomer tool is in the method manipulate()

which carries out the manipulation of the Manifold viewer. This method is typically

called many times during a single interaction cycle. It also animates the manipulation in

the viewer, so to provide direct visual feedback to the user, so the user feels confidence in

what she/he is doing. It takes a parameter of type event object encapsulating the

information received from the input device. This will typically be somewhat "processed"

event, rather than a "raw" input device event.

The code stub that manipulates an event from the Zoomer tool is shown below:

//Get the JDesktopPane from the Grid glyph that acts as Manifold Viewer
viewerDesktopPane = ((Viewer2DImpl) currentGlyph.getViewer());
//Retrieve the JDesktopPane’s (Manifold Viewer) graphics context
Graphics g = viewerDesktopPane.getGraphics();
Graphics2D g2 = (Graphics2D) g;

if ((currPointRel_.getX() < lastPointRel.getX() && currPointRel_.getY()
> lastPointRel.getY()) || (currPointRel_.getX() > lastPointRel.getX()
&& currPointRel_.getY() > lastPointRel.getY())) {

//If mouse drag down then zoom out
 if (zoomOutD > 0) {
 zoomOutD -= 0.1;
 }

75

 g2.scale(zoomOutD, zoomOutD);

 viewerDesktopPane.paint(g2);
 viewerDesktopPane.validate();
} else if ((currPointRel_.getX() < lastPointRel.getX() &&
currPointRel_.getY() < lastPointRel.getY()) || (currPointRel_.getX() >
lastPointRel.getX() && currPointRel_.getY() < lastPointRel.getY())) {

//If mouse drag up then zoom in
 if (zoomInD < 2) {
 zoomInD += 0.1;
 }
 g2.scale(zoomInD, zoomInD);
 viewerDesktopPane.paint(g2);
 viewerDesktopPane.validate();
} else {

//Do Nothing
}

Here, zoomOutD and zoomInD (variables of type double, both initially set to

1, as we keep the minimum and maximum scaling to 0 and 1 respectively to avoid

negative or too much scaling) are decrease or increased respectively depending on

whether the user drags mouse down or up relative to the current screen point (the point of

mouse click). This is followed by scaling the entire Manifold Viewer’s (a

JDesktopPane [77]) graphic context. This provides a blown in or out effect to

simulate the zoom effect as shown in Figure 33 and Figure 34.

Figure 33: Original Glyph without applying the
Zoomer Tool

Figure 34: Zoomed In Glyph as a result of applying
the Zoomer Tool to glyph in Figure 33

76

5.4 New Glyphs and Tools

After fixing the issues with the non-functional glyphs and tools, the idea was to

implement more, new and better tools and glyphs, which could put Manifold at par with

the modern user interfaces. Some of these ideas were taken from Microsoft Power-Point

[9], however their implementation and concept has been different considering the fact

that Manifold is implemented as a generic user interface. These new tools and glyphs

have been implemented as separate classes independent of the previously implemented

tools and glyphs.

5.4.1 Image Glyph

One of glyphs that were anticipated in the previous versions was the

Picture/Image Glyph, where you can render any image/graphics on the Viewer space

either retrieved from the database or the file system. This would allow rendering objects

other than of type Line2D or Rectangle2D that earlier Manifold versions

implemented.

The Picture/Image glyph, like other glyph types that Manifold support, resides in

the manifold.impl2D.glyphs package. It is implemented as a separate class

Picture.java. The Image is a leaf glyph; however it does not derive from the

manifold.impl2D.GeometricFigure because unlike GeomtericFigures

like Rectangle2D and Line2D, its shape cannot be transformed by selecting the

connectors.

77

The idea behind this glyph was to render an image in any size and apply

transforms on it by just mouse click and dragging just like other glyphs (The idea was

taken from Adobe Illustrator [14]).

The image was rendered, using the method draw(), as discussed previously, that

takes parameter of type Traversal. Initially the image path is specified in the

constructor Picture() of the class Picture.java that sets the default image by

calling the function getImagesFromDb()(calls a SQL stored procedure that returns

the name of the default images that are set in the database) , explained next, which

provides the names of the image(s) (the database table Image stores the name of the

images that can be rendered on the Manifold viewer space. This name is combined with

the file path that contains the physical location of the images on the system) to render as

default on the viewer. The image(s) is set as a BufferedImage, which is a subclass of

java.awt.image [15]. The BufferedImage [16] subclass describes

an Image with an accessible buffer of image data.

The image is rendered on the viewer by using drawImage() method of

Graphics [17] which is set in the draw() method of Picture.java. The image is

changed using the Image Editor (see Chapter 7, section 7.3.3 for more details), by

reading the cached state described by the new event frame verb IMAGE_SOURCE, set as

(in EventFrame.java, package manifold):

//Event frame verb for image source
public static final String IMAGE_SOURCE = "img.source";

 The code stub from method draw() for changing the new image read from the

ImageEditor is:

http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Image.html�

78

// Check if the glyph's image file is changed.
File file_ = (File) cachedState.get(EventFrame.IMAGE_SOURCE);
if (file_ != null) {

try {
img = ImageIO.read(new File(file_.toString()));

 } catch (IOException e) {
 }
}

Here, the glyph’s cached state is queried and the new image is read from the file if

the cached state is not null.

5.4.2 Grouper

Grouper allows you to take different elements (graphics, charts, essentially

anything but text) and attach them to each other. This means you can work with multiple

objects as if they were one. You can move a grouped object as one thing. You can even

resize a grouped object and all elements within the group are resized together and

proportionally. In general, you perform any action on a grouped object that you can do on

an individual element. It does not affect the physical placement of the objects relative to

each other.

 To understand the usefulness of the Grouper tool, think of a scenario where you

would like to draw different objects on the graphical editor, and then give common

attributes to all of them. For example if you would like to draw a graph, at a point you

would not like to manipulate different nodes individually, but the whole-graph as a single

smart-art, giving it a specific width, height, location on the user interface. If this is done

individually on each of the items of the graph, it will require you to manipulate them ‘n’

(the number of independent components in the graph) number of times, which will be

highly inefficient and in-elegant.

79

The idea of Grouper has been incorporated from Microsoft PowerPoint [9], and

allows you to work faster. For example, you can manipulate multiple objects at a time,

through the manipulation of a single object, and can change attributes like color, shape,

size, translation, etc. You can also ungroup a group of objects at any time (using

UnGrouper tool described in section 5.4.3), and regroup them later.

 Manifold as a graphical editor didn’t have this functionality in its earlier versions.

However, with the addition of menus like Insert Smart Art (see Chapter 6, section 6.6.4

for more detail), the Grouper tool made a big sense. The scenarios in which this tool

could be used extend to different applications that can run on Manifold. For instance,

drawing smart-art (objects created by drawing glyphs separately and then grouping them

to make a single art, like a smiley face). The Grouper tool would allow you to develop

such graphics, that could be saved using the Save menu item (see Chapter 6, section

6.3.3), and retrieved later to fulfill these purposes. The need for such objects compelled

us to develop the Grouper tool for Manifold user interface that would allow the user to

forget the worries about performing similar operations on multiple graphics separately.

Design Issue 5.1: The current implementation of Grouper doesn’t allow grouping of

Text/Picture glyph type. This is because these glyph types do not derive from

manifold.impl2D.GeometricFigure and the current Selector

implementation requires the bounding shape as Rectangle2D to be selected by

drawing a selection box around glyphs. It should be extended in the future versions to

select arbitrary shapes as well.

80

5.4.2.1 Design: Grouper Tool

Grouper tool is implemented as a java class Grouper.java belonging to the

package manifold.impl2D.tools.

Figure 35: Use Case Diagram for Grouper

 The development of this tool had certain requirements namely,

• User should be able to select multiple glyphs.

• It should only work if multiple glyphs are selected, as grouping a single glyph

does not make any sense.

• The user should be able to get a visual feedback if the glyphs are grouped.

• And finally, the user should be able to perform manipulations like moving,

scaling, deleting, changing properties/attributes of the grouped glyphs as a single

entity.

81

The use-case diagram in Figure 35 shows these requirements in more detail (the

current implementation doesn’t support rotate functionality). In order to confer with these

requirements, the design of the Grouper tool has to be a little complex, and yet flexible,

so that minimal or no change should occur in other Manifold classes.

 The motivation behind developing this tool comes from the Composite design

pattern [8], which allows building a complex object out of elemental objects and itself

like a tree structure such that all the objects could be treated as a single instance of an

object. The resultant object in context with Manifold is a poly-glyph, which means a

glyph that can have child glyphs. The poly-glyph is implemented in class

TransformGroup.java belonging to package manifold.impl2D.

 The Grouper tool extends to the Selector tool

(manifold.impl2D.tools.Selector.java) and creates a

GrouperManipulator. The grasp(event_) method creates a Grouper glyph of

type rectangle when a selection is made around the glyphs to be grouped with the same

coordinates as that of the selection box (the transform matrix is set according to the

mouse coordinates). This happens only if the current selection mode is

PICK_RECTANGLE (see Selector.java). This grouper glyph would allow the

manipulation of all the underlined selected glyphs as one object. In other words all the

selected glyphs would be a part of this grouper glyph. The manipulate(event_)

method adds this grouper glyph node to the domain.

The actual grouping happens in the effect(event_) method which gathers

all the selected glyphs, and sets the current selections to all the underlying glyphs. If there

is only one underlying glyph, it forces the grouper glyph to be deleted (as grouping only a

82

single glyph would be same as manipulating it independently). If number of selections is

greater than one (two including the grouper glyph), all the selected glyphs are added as

children to the grouper glyph using the method addChild(Glyph), that adds the

argument glyph as a child to the calling glyph (see Glyph.java). The code stub that

does this is:

//Make a poly-glyph (see Composite Design Pattern), if number of
//selections (including the grouper) is greater than 2
if (glyphs_.length > 2) {

//The grouper glyph is the last glyph of the selections (n-1)th
final Glyph grouperGlyph = glyphs_[glyphs_.length - 1];

for (int i_ = 0; i_ < glyphs_.length - 1; i_++) {

grouperGlyph.addChild(glyphs_[i_]);
}

Glyph[] childGlyphs_ = new Glyph[0];
childGlyphs_ = grouperGlyph.getChildren();
//Set the minimum bounding shape for the grouper glyph
setMinimumBoundingShape(grouperGlyph, childGlyphs_);

}

It then calls the method setMinimumBoundingShape(grouperGlyph,

childGlyphs_), taking arguments as the grouper glyph itself, and all its child glyphs.

It then sets the minimum bounding shape of the grouper glyph so that it just envelopes all

the child glyphs.

Design Issue 5.2: The implementation of Grouper as a tool instead of making it a

menu item (like in Microsoft PowerPoint [9]) was done since the current version of

Manifold doesn’t allow multiple selections by pressing the control key (as keyboard

actions are still not supported). The only way to select multiple glyphs is to draw a

rectangular bounding box around the glyphs that requires the grasp, manipulate, effect

cycle supported only by tools. The current design choice is also helpful in a way as it

83

allows the user to group closely located glyphs quickly. To allow implementation of

Grouper as a menu item to allow selections of arbitrary glyphs, keyboard actions

should be implemented in the future versions. It should be noted here that in the

current implementation the selection box should completely cover the underlying glyph

to add it to the current selections.

The sequence diagram in Figure 36 shows the grasp, manipulate, and effect cycle

of the Grouper tool.

Figure 36: UML Sequence Diagram showing the grasp, manipulate, effect cycle of Grouper Tool

84

Figure 37, Figure 38, and Figure 39 explains the entire process of grouping.

Figure 37: Five glyphs drawn
independently on the Manifold Viewer.

Figure 38: The glyphs from Figure 37 after grouping.

Figure 39: The independent glyphs can now be treated as a single smart art (a smiley here). Notice the
connectors become visible when you scroll over the object.

5.4.2.2 Interpreting Grouped Glyphs

Once the glyphs have been grouped, the job is only half done, as there is a need to

tell other Manifold classes that manipulate on glyphs, to behave accordingly with the

grouped glyphs as well. One of these classes is the Selector tool, in which the Selector

85

Manipulator has to be instructed to manipulate on the grouper glyph so that the

corresponding effects are transferred on to the child glyphs as well. Similar changes have

to be made in the Deletor tool as well, where if a grouper glyph is selected to be deleted,

all the child glyphs should also be deleted.

The classes and the respective changes that have to be incorporated to understand

the Grouper glyph are shown in Table 6.

Table 6: Changes made in Manifold classes to support Grouper tool.

Class Modification
Selector The manipulate(Object) method belonging to the

SelectorManipulator inner-class has been modified to
transfer the manipulations like “scaling” and “translation” to the
child glyphs when it occurs on the grouper glyph.

GeometricFigure The draw(Traversal) method has been modified to make
the grouper glyph invisible by forcing its scaling and translation
matrix to be a null matrix. This is done by reading the
EventFrame GROUPER_GLYPH. If it is not null, it implies
that the current glyph is a Grouper glyph, and it should be made
invisible.
Another change in the same class has been made on how the
Grouper glyph is saved. The reader is advised to see Chapter 6,
section 6.3.3 for details on how this is accomplished.

Deletor To incorporate deleting grouped glyphs, the current scene graph
is made parent of the child glyphs i.e. the current parent of the
grouper glyph, followed by deleting the individual glyphs one by
one.

5.4.3 Un-Grouper

The Un-Grouper tool performs the opposite actions of the Grouper tool. It

separates individual children glyphs from the poly-glyph. The Un-Grouper tool is

implemented in the java class UnGrouper.java (package

manifold.impl2D.tools) and extends to Selector.java. It creates an

86

UnGrouperManipulator (a java inner-class) that extends to the

SelectorManipulator (Selector.java) and redefines only what happens in the

manipulate(event_) and effect(event_) manipulation cycles. The

manipulate(event_) enforces the selection of only type PICK_POINT (a single

click). When the user clicks on the Grouper glyph, it gathers all the children of the

composite glyph and removes them from the parent Grouper glyph. It then sets the parent

of all the children glyph to the current scene graph (the parent of the main Grouper

glyph). Finally it sends a delete action verb to the ControllerImpl (package

manifold) to delete the Grouper glyph that invisibly encircled the children glyphs

before. It should be noted here that if the underlying glyph that needs to be ungrouped, is

not a Grouper (poly-glyph) then it won’t perform any action on the glyph.

5.4.4 Pinner

The Pinner tool is used to “pin” a glyph at one of its connectors to restrain its

translation with respect to the pinned connectors only. In other words Pinner is used to

force zero degrees of freedom to a glyph at one of its connectors (a shadow glyph that

maintain glyph’s connectors). The pinned glyph can still be rotated or scaled at the

location where it is pinned with the center point of transformation being the glyph’s

bounding box. The Pinner tool is implemented in the java class Pinner.java (package

manifold.impl2D.tools) and extends to BaseTool.java (package

manifold.swing). It creates a PinnerManipulator (a java subclass) that

extends to the Manipulator (package manifold) and defines only what happens in

87

the grasp(event_) and effect(event_) manipulation cycles. The

grasp(event_) gets the current connector under the mouse position and draws a Pin

glyph at the particular connector. The Pin glyph specifies the semantics to reduce the

degree of freedom of the underlying glyph at the pinned connector (see

manifold.impl2D.glyphs.Pin.java).

Figure 40, Figure 41 and Figure 42 shows the working of the Pinner tool.

Figure 40: A pinned glyph of type rectangle

Figure 41: Glyph’s translation being disabled at the
pinned connector

Figure 42: The pinned glyph could still be rotated at the pinned connector

88

Chapter 6
Menu Bar

A menu bar is a horizontal strip where a list of available computer menus is

housed for a certain program. A menu provides a space-saving way to let the user choose

one of several options.

Nearly all programs have a menu bar as part of their user interface. It includes

menu items and options specific to the particular program. Most menu bars have the

standard File, Edit, and View menus listed first. The File menu includes options such as

Save and Open File..., the Edit menu has items such as Undo, Copy, Paste, and Select

All, while in the View menu you'll find viewing options such as changing the layout of

open windows (view full screen, minimize window). Programs, such as Microsoft Word

[9], also include menu options such as Insert, Format, and Font which you will most

likely not find in a Web browser's menu bar. But a Web browser may contain menu

options such as History and Bookmarks, which you will not find in a word processing

program.

Many items located within the menu bar often have keyboard shortcuts that

enable you to choose menu options by just pressing a key combination. The menu items

available with menu bar can each fire a Command or open a cascaded menu. The menu

bar is a fundamental part of the graphical user interface (GUI), so it is worth your time to

get familiar with it. You may even discover features you did not know about before.

89

6.1 Introduction

The Manifold menu bar is very similar to the menu bar of other available GUI’s.

It has options (menu items) to perform the above discussed operations in context of

glyphs. The menus available in the Manifold menu bar are:

• File: Contains the following menu items-

o New Workspace – allows opening a new (empty) workspace.

o Open Document – allows opening a previously saved Manifold document.

o Save Selection(s) – allows saving the glyph selection(s) into a database.

o Save Document – allows saving the entire document into a database.

• Edit: Contains the following menu items-

o Undo – allows undoing the last performed action.

o Redo – allows redoing the last performed action.

o Select All – allows selecting all glyphs currently present in the Manifold

viewer.

o Select None – allows removing the current selections.

• View: Contains the following menu items-

o Full Screen – allows viewing the Manifold viewer in full screen.

o Minimize – allows minimizing the Manifold workspace (similar to the

minimize button at top right of the Manifold workspace).

o Map Viewer – allows opening Manifold with a map viewer.

• Insert: Contains the following menu items-

90

o Geometric Figure – a cascaded menu that contains the following menu

items-

 Rectangle – allows inserting previously saved glyphs of type

rectangle.

 Ellipse – allows inserting previously saved glyphs of type ellipse.

 Line – allows inserting previously saved glyphs of type line.

o Image – allows inserting new images from the file system.

o Custom Glyph – allows inserting a custom glyph by typing into a

command box what has to be drawn.

o Smart Art – allows inserting a previously saved smart art (a collection of

glyphs that were grouped by using the Grouper tool, section 5.4.2).

6.2 Design: Menu Bar

Figure 43: XML definition of Manifold Menu Bar

91

The menu bar is defined in the file “menuItems.xml” provided with the packaged

source code. This XML file provides the list of menu and the corresponding menu items

present in the Manifold menu bar. A code stub from this file that draws the file menu is

shown in Figure 43.

The implementation of menu items required addition of some new classes that

were added to the Manifold source package. These classes are described in Table 7.

Table 7: New Manifold classes for implementing a functional Menu Bar

Class Name Functionality
manifold.MenuItem.java Describes the interface for menu items.
manifold.MenuItemsModel
.java

It manages a collection of menu items used for
performing glyph related operations like
Insert/Save on the Manifold Viewer or actions like
View Full screen etc.

manifold.swing.BaseMenu
Item.java

Java Swing specific base class for specifying
JMenuItem [21] through the menu-bar. For e.g.
inserting clip-art objects. It contains the method
setViewerForRendering() that sets the
viewer for rendering purposes. It retrieves the
hierarchy of the menu-item to get its root pane,
from where it gets the content pane of Manifold,
which is the main workspace for drawing
purposes. This is done as we want to render the
graphics on the Manifold viewer (see
Viewer2DImpl.java).

manifold.SavedItem An interface that defines the items that are saved
into the database. This class can be implemented,
for example to retrieve saved glyphs from the
persistence. The functionality could be increased
in future to retrieve saved tools/property editors,
etc.

manifold.swing.TableSav
edGlyphs.java

Concrete class that is used to retrieve saved glyphs
from the database.

manifold.swing.TableSav
edDocuments.java

Concrete class that is used to retrieve saved
document and all the glyphs belonging to it from
the database.

manifold.swing.TableMod
el.java

Java Swing specific class that provides an Abstract
Table Model for a JTable [24], such that it

92

allows selecting a particular row. When clicked
on, it gathers all the columns with their values.

manifold.swing.TableSel
ectionListener.java

Implements a selection listener for a JTable.
When a user clicks on a particular row on the
JTable, it retrieves the selected property-value
pairs from various columns. It then calls the
renderSelectedItemOnViewer() of class
TableSavedGlyphs.java method to render
the selected object on to the Manifold viewer
space.

Figure 44: Composition of Menu Bar: (a) The screen rendering; (b) The UML class diagram

Figure 44 shows the current menu bar implementation. All the menu items are

implemented in separate classes belonging to the package

manifold.impl2D.menuItems. The classes extends to BaseMenuItem (package

manifold.swing), and implements interface ActionListener. It is added to the

ActionListener via the addActionListener() method in the constructor of

93

the class. When an action event occurs, the object’s actionPerformed() method is

invoked that performs menu item specific operations that would be discussed in detail in

the next few sections for each menu item.

6.3 File Menu

A file menu is a common drop-down menu that includes commands for file

operations, such as Open, Save, and Print. The Manifold File Menu contains four menu

items, as discussed in section 6.1, which are New Workspace, Open Document, Save

Selection(s), and Save Document.

6.3.1 New Workspace Menu Item

The New Workspace menu item is used to open a new instance of the Manifold

workspace as a part of the single Manifold process. New workspace menu item is

implemented in class manifold.impl2D.menuItems.NewWorkspace.java.

The actionPerformed() method calls the method openNewInstance() having

the following code stub:

private void openNewInstance() {
 try {
 XMLDecoder dec_ = new XMLDecoder(
 new BufferedInputStream(
 new FileInputStream(xmlFileDraw2D)));
 // Read all the root-level elements in the XML document.
 try {
 while (true) {
 Object result_ = dec_.readObject();
 }
 } catch (ArrayIndexOutOfBoundsException aiobex_) {
 // Ignore -- no more objects to read!
 // (This is the only way to detect the last element.)
 }
 dec_.close();

94

 } catch (Exception ex_) {
Debug.exception("manifold.util.Application", "main", ex_,
null);

 }
}

Here, the “draw2D.xml” file path is specified to the XMLDecoder [51] object,

which instantiates the Manifold classes as specified in the XML file and opens a new

workspace (without affecting the current workspace, which also remains open).

Design Issue 6.1: The new workspace runs as a part of the single application process

thread (Main). Hence when the user closes a workspace, the entire process is

terminated, and all the open workspaces are closed. In future versions a more effective

way to open a new workspace, like tabs (as the one used in modern web browsers),

should be thought about.

6.3.2 Open Document Menu Item

The Open Document menu item allows opening a previously saved workspace

document (discussed next in sections 6.3.3, 6.3.4) so that all the glyphs belonging to that

document could be directly rendered on Manifold viewer. The actionPerformed()

method has the following code stub:

//calls the base class method to set the viewer for rendering of
//document glyphs
 setViewerForRendering();

//Populate JTable with all the saved documents
TableSavedDocuments tableSavedDocuments = new
TableSavedDocuments(ITEM_TYPE, viewer);
tableSavedDocuments.getSavedItemFromDatabase();

tableSavedDocuments.addTableToPopUp(this.getParent().getParent(), TOP,
TOP);

95

 Here, as soon as the user clicks the Open Document menu item, the viewer is set

by calling the base class (BaseMenuItem.java) method

setViewerForRendering(). This is followed by setting the current item type to

“document”. The “document” item type and the current viewer are then passed to the

class manifold.swing.TableSavedDocuments.java whose method

getSavedItemsFromDatabase()gets all the previously saved documents from the

database by calling a SQL stored procedure GET_DOCUMENT. This procedure

accepts one parameter, the documentId and outputs a SQL ResultSet which is then

displayed in a JTable [24] using the method addTableToPopUp(). The JTable [24]

is drawn, with a custom table model [25] and with a custom

ListSelectionListener [25]. This is used so that the user can click on any row

of the table to select a particular glyph, from the retrieved glyphs. Table Model is

implemented in the class TableModel.java (package manifold.swing), and the

ListSelectionListener is implemented in the class

TableSelectionListener.java (package manifold.swing). Figure 45

shows the output table when the user clicks on the Open Document menu item.

Figure 45: Output when the user clicks on the Open Document Menu item

96

When the user selects one of the rows from the table, the document (and all the

glyphs that were saved as a part of it) corresponding to the selection is rendered on the

Manifold viewer. This is done by calling the method

getAllGlyphsInDocument(documentId) by the class

TableSelectionListener that gets all the glyphs belonging to the passed

document id and renders them on the Manifold viewer. The rendering process would

become clear in section 6.6 when we discuss the Insert menu.

6.3.3 Save Selection(s) Menu Item

The most complex menu item available in the Manifold menu bar is the Save

Selection(s) that allows saving any glyph(s) as a clip-art directly into a remote server

database with separate application logic so that they can be retrieved and re-rendered on

the Viewer using the Insert menu. This menu item can save all possible glyph kinds viz.

leaf glyphs (rectangle, ellipse, etc.) and poly-glyphs (glyphs having children) selected on

the Manifold viewer. However, when the user wants to retrieve them back, they appear as

their specific types (geometric figures viz. rectangle, ellipse, etc. or smart-art for poly-

glyphs) as explained in the Insert Menu (section 6.6).

SaveSelection(s) menu item is implemented in the class

manifold.impl2D.menuItems.SaveGlyph.java. The

actionPerformed() method has the following code stub:

//invoke the base class method to set the viewer for rendering of
//clip-Art
setViewerForRendering();

//get the current selection(s) i.e the selected glyphs on the viewer
this.currentNodeId = viewer.getSelectionsModel().getSelections();

97

String typedGlyphName = (String) JOptionPane.showInputDialog(
 this,
 "Type in the glyph name",
 "Glyph Name",
 JOptionPane.PLAIN_MESSAGE,
 null,
 null,
 "");

 if (!typedGlyphName.isEmpty() && typedGlyphName != null) {
 Hashtable slots_ = null;
 for (int i = 0; i < currentNodeId.length; i++) {
 slots_ = new Hashtable();

slots_.put(EventFrame.VERB,
ControllerImpl.SET_PROPERTIES);

 slots_.put(EventFrame.NODE_ID, currentNodeId[i]);
 slots_.put(EventFrame.SAVE_GLYPH, typedGlyphName);

viewer.getController().sendAsyncEvent(new
EventFrame(slots_));

 }
 }

Here, as soon as the user presses the Save Selection(s) button (a JMenuItem),

the viewer is set by invoking the base class (BaseMenuItem.java) method

setViewerForRendering(). The node id’s of the selected glyphs from the viewer

are then stored in a string array currentNodeId and a JOptionPane [18] dialog is

made visible, to allow the user to enter the glyph name. When the user enters the glyph

name and presses the “OK” button on the dialog, the glyph(s) name, if not empty, is

added to the EventFrame. This allows the draw() method (see

manifold.impl2D.GeometricFigure.java) of the selected glyph(s) to query

the event frame and get the glyph name to save the selected glyphs by calling the method

saveGlyph(), if the glyph name is not null. The code stub to do this is:

// Check if the glyph should be saved.
String saveGlyphState_

= (String) cachedState.get(EventFrame.SAVE_GLYPH);
if (saveGlyphState_ != null) {
 saveGlyph(saveGlyphState_);
}

98

 In the saveGlyph() method, the glyph’s cachedState and transform are

passed to a SQL stored procedure. The name of the stored procedure is selected based on

whether the current glyph is a grouper glyph (i.e. it contains child glyphs, a poly-glyph)

or an individual leaf glyph. The code stub to do this is:

Hashtable currentNodeProperties = this.getCachedState();
String cacheProps_ = currentNodeProperties.toString();
String transform_ = this.getTransform().toString();

String storedProcedureName = "";
//If the saved glyph is a grouper glyph, save the child glyphs as a
//single object
if (isGrouper(currentNodeProperties)) {

if (this.getChildren().length > 0) {
Glyph[] childrenGLyphs = null;
childrenGLyphs = this.getChildren(); //Get all the child of
//this poly-glyph

for (int i_ = 0; i_ < childrenGLyphs.length; i_++) {

Glyph2D testGlyph = null;
testGlyph = (Glyph2D) childrenGLyphs[i_];

cacheProps_ +=
 " |" + testGlyph.getCachedState().toString();

transform_ +=

 " |" + testGlyph.getTransform().toString();
}

}

 storedProcedureName =

 "{call INSERT_GROUPER_CLIP_ART(?,?,?,?,?,?)}";
} else { // if it is a leaf-glyph

storedProcedureName = "{call INSERT_CLIP_ART(?,?,?,?,?,?)}";
}

Here, the stored procedures INSERT_GROUPER_CLIP_ART or

INSERT_CLIP_ART are called depending on the condition whether the current glyph

is a grouper glyph or not (the isGrouper() method retrieves the event frame

GROUPER_GLYPH from the glyph’s cached state to know whether it is a poly-glyph or

not). The stored procedures takes in four input parameters as cachedState,

99

transform, glyphName and documentId (used to save glyph as a part of a

document, section 6.3.4), and outputs success and the inserted glyph’s id, if the save

glyph was a success. The INSERT_GROUPER_CLIP_ART calls the

INSERT_CLIP_ART procedure for each of the child glyphs present in the poly-glyph.

The main steps of this stored procedure can be enumerated as:

• Parse the input cached states and transform.

• Retrieve meaningful glyph properties and the corresponding values from these

text utterances provided by the cached state.

• Store the glyph name, along with its type in the table Glyph. Also store

document id if the current glyph is saved as a part of a document (using the Save

Document menu item, section 6.3.2), NULL otherwise.

• Store the glyph profile i.e. the property values in the table GlyphProfile.

• If save is successful return “true”, else “false”.

These steps could be understood better with the database diagram shown in Figure

46. The database diagram shows the following tables:

• GlyphType: Stores a list of Manifold glyph types viz. Rectangle, Ellipse, Line,

Image, Text, etc. It could support new glyph types in future just by inserting a

new row with the new glyph type name.

• Document: Stores a document name (discussed in section 6.3.4).

• Glyph: Stores the name, type and parent (of the child glyphs belonging to a

Grouper glyph) of the saved glyph. It also relates to a document if it was saved as

a part of it, otherwise the documentId field is NULL.

100

Figure 46: Database diagram showing the table relationship to save glyphs (leaf- or poly glyphs) or
document.

• Property: Stores the name of properties that can be supported by Manifold

glyphs.

• GlyphJnProperty: Specifies a many-to-many relationship between a glyph

type and property (as different glyphs can have same properties).

• GlyphProfile: Stores the glyph profile i.e. the saved glyph along with its entire

property-value pair. It also stores the parent of the glyphs if they belong to a

Grouper glyph. This makes it possible to render the glyph again on the viewer

when called by the Insert menu (see section 6.6).

Figure 47 shows the actions after the user clicks the Save Selection(s) menu item.

When the user enters the glyph name and presses “OK” on the JOptionPane [18], the

corresponding entries are saved in the database tables, through the process discussed

above. Figure 48 and Figure 49 shows the database table with new entries.

101

Figure 47: A JOptionPane [18] appears when the user presses the Save Selection(s) menu item.

Figure 48: New entry created in table Glyph. Notice the parentGlyphId is NULL as this is not a poly-glyph.

Figure 49: New entry created in table GlyphProfile. Notice the glyph properties and transform (tx, ty, theta,
xs, ys) stored as text attributes in the table.

To appreciate how the glyphs are stored as text fields inside the database, the

reader should see the stored procedures INSERT_CLIP_ART and

INSERT_GROUPER_CLIP_ART provided with the source package that implements

the process discussed above.

102

Design Issue 6.2: At an early implementation stage, the save feature was implemented

as a Property Editor, instead as a Menu Item. However, it was being argued that

(conferring to the standards of all the modern GUI tools available) since it doesn’t

modify any of a glyph’s properties, it should be implemented as a menu item. It should

be noted here that an EventFrame value “SAVE_GLYPH” is set to store the glyph’s

name (so that it can be read for saving, as discussed next). This value is cleared from

the cached state as soon as the glyph saving process is completed.

Design Issue 6.3: The Save Selection(s) menu item stores a glyph’s properties and

transform in database tables as fields, instead of saving it as a geometric object (as

done in conventional GUI’s) in the database or on the file system. This was done as

there was an increase in performance when dealing with saving strings rather than

objects. Also this would allow saving space, as text requires less space than an object

when saving.

6.3.4 Save Document Menu Item

The Save Document menu item is used to save the current workspace document

so that all the glyphs in it could be retrieved at a later stage without the need to redraw all

the glyphs that we want to use from a previously built Manifold document.

Save Document menu item is implemented in the class

manifold.impl2D.menuItems.SaveDocument.java. The

actionPerformed() method calls a function saveDocument(String) that

103

accepts the document name (by which it could be retrieved using the Open Document

menu item, as shown in Figure 45) as the argument and saves it in the database table

Document (refer to the database diagram in Figure 46). It calls the stored procedure

SAVE_DOCUMENT that takes in one input parameter as documentName, and

outputs documentId (the inserted document’s id in database table Document). If a

document is saved using the same name again, then the stored procedure deletes the

previously saved glyphs (and their profiles) of the current document, before saving the

new glyphs.

To tell the application domain that the currently present glyphs on the viewer

form a part of a document, the SAVE_DOCUMENT EventFrame is set, which can then

be read by the draw() method of a glyph to know whether a glyph should be saved as a

part of the document. The draw() method recursively traverses the scene graph through

which a glyph’s cached state could be queried at any point.

Design Issue 6.4: The Save Document saves all the glyph types except Text and Image

as the current implementation doesn’t support saving of these glyph types. The current

application logic to save glyphs could be easily extended to non-geometric figures like

text and image in the future versions to support their saving/retrieval as well.

6.4 Edit Menu

An edit menu is a common drop-down menu that includes commands for

changing (editing) the contents of documents, such as Cut, Copy, and Paste. The

Manifold Edit Menu contains four menu items as discussed in section 4.1 above which

104

are Undo (non-functional in current version), Redo (non-functional in current version),

Select All and Select None.

6.4.1 Select All Menu Item

The Select All menu item allows the selection of all the glyphs present on the

Manifold viewer. It is implemented in the class

manifold.impl2D.menuItems.SelectAll.java. The

actionPerformed() method has the following code stub:

public void actionPerformed(ActionEvent e) {
//invoke the base class method to set the viewer.
setViewerForRendering();

//set the current selection(s) i.e the glyphs on the viewer
Glyph[] allGLyphs = viewer.getSceneGraph().getChildren();
String[] selections = new String[allGLyphs.length-1];

//start from 1, ignoring the shadow glyph Grid that is the
//background
for(int i=1;i<allGLyphs.length;i++){

selections[i-1] = allGLyphs[i].getId();
}
viewer.getSelectionsModel().setSelections(this, selections);

}

Here, as soon as the user clicks Select All (a JMenuItem [21]), the viewer is set

by invoking the base class (BaseMenuItem.java) method

setViewerForRendering(). This is followed by querying the scene graph of the

viewer to provide the list of all glyphs present on the viewer space. This allows setting

the SelectionsModel (package manifold) selections by passing the node id of all

the glyphs present on the viewer. It should be noted that the background Grid (package

105

manifold.impl2D.glyphs) is a shadow glyph and acts as a as a background of a

glyph viewer. Hence, it is not added to the list of the selections.

6.4.2 Select None Menu Item

The Select None menu item allows de-selecting all the currently selected glyphs

present on the Manifold viewer. It is implemented in the class

manifold.impl2D.menuItems.SelectNone.java. The

actionPerformed() method gets the glyphs present on the viewer and sets their

selected property to false (see method

manifold.Glyph.java#setSelected(boolean)).

6.5 View Menu

A view menu is a common drop-down menu that includes commands for viewing

options such as changing the layout of the open windows like full screen, minimize,

restore, web layout, etc. The Manifold View Menu contains three menu items as

discussed in section 6.1 which are Full Screen, Minimize, and Map Viewer.

6.5.1 Full Screen Menu Item

The Full Screen menu item allows maximizing the Manifold window. It is

implemented in the class manifold.impl2D.menuItems.FullScreen.java.

The actionPerformed() method calls the method maximizeWindow() that

106

allows setting the Manifold’s JFrame [23] property setExtendedState() to

MAXIMIZED_BOTH (state used to maximize the frame horizontal and vertical).

6.5.2 Minimize Menu Item

The working of minimize menu item (belonging to the class

manifold.impl2D.menuItems.Minimize.java) is similar to that of Full

Screen menu item discussed above in section 6.5.1, with the only difference being that

the JFrame’s [23] property setExtendedState()is set to ICONIFIED (state used

to iconify i.e. minimize the frame).

6.5.3 Map Viewer Menu Item

Since the early days of navigation, maps have played a vital part of commerce,

military, and other day to day requirements. From visualizing geographically to

searching, maps have always been an integral part of the human civilization. Many

websites now provide all sorts of interesting data that can be searched, indexed, and

visualized geographically.

To expand the features of Manifold, so that it could be used in map applications, a

new kind of visual map feature was required to be added. Map Viewer is a special type of

viewer that can be used to draw graphics with respect to locations on a map on the

Manifold viewer space. It acts as a placeholder for a map and the Manifold glyph viewer,

supporting input device events for both of them interchangeably. This means that a user

could manipulate glyphs (just like as on a normal Manifold viewer) and simultaneously

107

visualize them on a map (which works independently and supports its own input device

events). It can also be attached with a back-end database that specifies information about

a particular location which could be visualized on Manifold. The importance of such a

kind of editor comes in the cases, when the user wants to save a particular glyph to

specify certain location parameters. For example, the user could create a bar/pie chart

using Manifold, and then group it as a single object using the Grouper tool discussed in

Chapter 5, section 5.4.2, and subsequently save this object. This object can then be

attached to a particular location on the map, and when the user wants to search about that

location at a later time, the object could be directly rendered. In case the information has

changed during this time the user can modify the object and save it again.

The Map Viewer could also prove to be very efficient in cross functional planning

and execution. It can be used for interactive visualizations and collaborative decision

support if a number of user share the same Manifold workspace hosted on a central

server, like the commanders and the officers on the battlefield. This feature can allow you

to get into other people’s head and let them get into yours in real-time collaboration

environment. The users could easily zoom into various levels of the map using

information at various levels, giving them a better understanding of situations and

possible outcomes.

 There are a large number of software and applications available today for the

process of real-time collaboration and planning on a map. However, doing so in context

of Manifold gave an important advantage of how highly demanding and efficient

applications can easily be built on Manifold and yet be highly portable and light-

weighted in terms of application resources. The regular Manifold glyphs can be overlaid

108

and manipulated on the map viewer just like the normal Manifold viewer, providing

interactive visualizations like construction of graphs. This can be done using the

following main features of glyph manipulation on Manifold:

• Draw nodes and edges (using the Manifold Creator tool).

• Editors to color nodes and edges (using the Manifold Property Editors).

• Dragging and dropping of nodes and edges (using the Manifold Selector tool).

• Labeling of nodes under user control (using the Manifold Text glyph).

• Interactive pan/zoom and rotate functionality (using the Manifold Zoomer/Rotator

tools).

Figure 50 illustrates one such possible interaction of the Map Viewer built on the

top of Manifold and utilizing its pre-existing features to draw graph components that

connects various cities in the US. The nodes could be colored differently and the edges

can be provided with different stroke types to represent various kinds of possible links

between the cities.

This is only one such visual representation of what could be accomplished with

the Map Viewer, and depending on the requirements and needs it could be extended to

support multiple scenarios like visualizing 3-D components, etc. The application

developers only need to specify new 3-D glyph types and 3-D map tiles to fit the tandem.

At this time I will leave it to the application developers on how they want to utilize and

develop their applications in front of Manifold framework, the only key feature being the

generic nature of Manifold.

109

Figure 50: The Manifold Map Viewer displaying a graph connecting various locations on the map using
Manifold glyphs.

6.5.3.1 Design: Map Viewer

The Map Viewer is implemented as a menu item in the class

manifold.impl2D.menuItems.MapViewer.java. The

actionPerformed() method opens a new workspace (as done in the New Workspace

menu item, section 6.3.1) by instantiating Manifold classes defined in the file

“draw2DMap.xml”.

 The “draw2DMap.xml” file redefines the way the content pane of the application

should be laid out. There are 3 main classes that were added to the package

manifold.swing in order to provide the functionalities of the Map Viewer as

110

discussed in the previous section. These classes and their functionalities are defined in

Table 8.

Table 8: Manifold classes used to layout the Map Viewer

Class Name Functionality
ViewerMapImpl This class defines the new content pane (extends to

JPanel [28]) of the application instance that supports
the Map Viewer. It acts as a placeholder for the map (a
JXMapKit [52]) and the Manifold glyph viewer
(MapOverlayGlyphViewer). It supports the
mouse events for both the map and the glyph viewer
(manifold.swing.ViewerMouseListener)
that can both register themselves in order to receive
event notifications. This allows direct manipulation so
the user can manipulate the glyphs using different
tools and receive real-time visual feedback about how
his/her activity affects the glyph's appearance with
respect to the map. It uses a JToggleButton [54]
to switch between the two types of mouse events.

MapOverlayGlyphViewer This acts as a viewer for the Manifold glyphs and
extends to manifold.swing.Viewer2DImpl
(same as the main Manifold glyph viewer).

MapLayoutManager This is the basic layout manager, doesn't do much, but
size all the components (JXMapKit and
MapOverlayGlyphViewer) to fill whole parent
layer (currently a JLayeredPane [53])

Figure 51 shows the various components of the Manifold Map Viewer. The main

component is the JXMapViewer [52] which is an open source (LGPL) Swing

component created by the developers at SwingLabs [55]. At its core,

the JXMapViewer is a special JPanel that knows how to load map tiles from an

image server. It supports mouse events that are used to pan and zoom the map viewer’s

surface. The JXMapViewer’s API provides details of how to convert coordinates to

pixels, cache tiles, and stitch them together on screen.

http://www.swinglabs.org/�

111

Figure 51: Composition of Map Viewer: (a) The screen rendering; (b) The UML class diagram

The main challenge in implementing the map viewer was to capture the events

both with respect to Manifold glyphs as well as the one supported by the JXMapKit. To

overcome this issue, there was a need to introduce a new placeholder that could

accommodate both Manifold viewer and the JXMapKit’s map viewer. This was done by

adding a new class ViewerMapImpl.java, belonging to package

manifold.swing, which provides an interactive map, and allows direct manipulations

on it. This map is added to a JLayeredPane [53] and handles the map's mouse events.

On top of the JLayeredPane another viewer is added that supports direct

manipulation of graphical elements (glyphs) rendered within it. Direct manipulation

means the user can manipulate the glyphs using different tools and receive real-time

visual feedback about how his/her activity affects the glyph's appearance with respect to

the map. This can be a very important feature in the situations when you would like to

112

draw glyphs at specific locations on the map, with both the glyph and map listening to

different mouse events at the same time. A listener interested in mouse events for glyph

manipulation, manifold.swing.ViewerMouseListener, registers itself in order

to receive event notifications. As a result the map viewer was made capable to support

different event types, which could be controlled using a JToggleButton [54] as

shown in Figure 51. Figure 52 shows the sequence diagram representing this tandem.

Figure 52: Sequence Diagram showing ViewerMapImpl<init> and ViewerMapImpl.actionPerformmed cycles

113

6.6 Insert Menu

An insert menu is a common drop-down menu that includes commands for

inserting objects, such as Picture, Smart Art, and Clip Art. Insert is an important menu in

any graphical editor, as it allows user to draw pre-defined (and pre-saved)

images/graphics directly, without the need to draw them from the scratch, which saves a

lot of time and improves the performance of the GUI as well. For instance when the users

works on glyphs on Manifold, at some point they want to save the current state of the

glyph (leaf or poly-glyph) and come back later to work on it again. Saving glyphs has

already been discussed in section 6.3.3.

Figure 53: The Manifold Insert Menu

The Manifold Insert menu contains three menu items as discussed in section 4.1

which are Image, Custom Glyph and Smart Art. It also contains a cascaded menu,

Geometric Figure that contains three menu items which are Rectangle, Ellipse and Line.

Figure 53 shows the Manifold Insert Menu. It is noteworthy to mention here that the

Insert Menu lists individual glyphs that were saved before using the Save Selection(s)

menu item (section 6.3.3), and not the glyphs that were saved as a result of saving the

entire document (section 6.3.4).

114

6.6.1 Geometric Figure Menu

The geometric figure menu is a cascaded menu inside the Insert Menu. It allows

inserting the previously saved geometric figures (leaf glyphs) on the Manifold viewer

space. The three types of geometric figures are Rectangle, Ellipse and Line (which are

three glyph types in Manifold). Inserting a previously saved leaf-glyph could save a lot of

time in comparison to creating it from scratch and providing it properties like fill color,

line color, stroke, size, etc.

6.6.1.1 Rectangle Menu Item

The Rectangle menu item allows inserting previously saved glyphs of type

Rectangle on the Manifold viewer space. It is implemented in the class

manifold.impl2D.menuItems.ClipArtRectangle.java. The

actionPerformed() method has the following code stub:

//calls the base class method to set the viewer for rendering of
//clip-Art
setViewerForRendering();

//Populate JTable with all the saved glyphs of type rectangle.
TableSavedGlyphs tableSavedGlyphs = new TableSavedGlyphs(CLIP_ART_TYPE,
viewer);

tableSavedGlyphs.getSavedItemFromDatabase();
tableSavedGlyphs.addTableToPopUp(this.getParent().getParent(), TOP,
TOP);

 Here, as soon as soon as the user clicks the Rectangle menu item, the viewer is set

by calling the base class (BaseMenuItem.java) method

setViewerForRendering(). This is followed by setting the current clip art type to

“rectangle”. The “rectangle” clip art type and the current viewer are then passed to the

115

class manifold.swing.TableSavedGlyphs.java whose method

getSavedItemsFromDatabase()gets all the previously saved glyphs of type

“rectangle” from the database by calling a SQL stored procedure GET_CLIP_ART.

This procedure accepts two parameters, the clipArtType and the parentGlyphId

(used for inserting smart art, i.e. the grouped objects, discussed in section 6.6.4) and

outputs a SQL ResultSet which is then displayed in a JTable [24] using the method

addTableToPopUp() (as discussed in section 6.3.2). Figure 54 shows the output table

when the user clicks on the Rectangle menu item.

Figure 54: List of saved glyphs of type “rectangle” retrieved from the database, along with its profile
(properties and transform).

When the user selects one of the rows from the table, the glyph corresponding to

the selection is rendered on the Manifold viewer. This is done by calling the method

renderSavedItemOnViewer() by the TableSelectionListener that

creates a new node of type “rectangle” and passes the property-value pair (retrieved from

the glyph profile in the table) to the Controller and consequently the new glyph is

rendered on the viewer.

116

6.6.1.2 Ellipse Menu Item

The working of Ellipse menu item is similar to that of the Rectangle menu item as

discussed in section 6.6.1.1, with the only difference being that the CLIP_ART_TYPE

is set to “ellipse”. This menu item is implemented in class ClipArtEllipse.java.

6.6.1.3 Line Menu Item

The working of Line menu item is similar to that of the Rectangle and Ellipse

menu item as discussed in section 6.6.1.1 and 6.6.1.2 respectively, with the only

difference being that the CLIP_ART_TYPE is set to “line”. This menu item is

implemented in class ClipArtLine.java.

6.6.2 Image Menu Item

The Image menu item allows inserting images present on the file system on the

Manifold viewer. It is implemented in the class ClipArtImage.java. The

actionPerformed() method has the following code stub:

//set the viewer for rendering of clip-Art
setViewerForRendering();

JFileChooser chooser = new JFileChooser();
// Note: source for ExampleFileFilter can be found in FileChooserDemo,
// under the demo/jfc directory in the Java 2 SDK, Standard Edition.
int returnVal = chooser.showDialog(this, "Select an Image");

if (returnVal == JFileChooser.APPROVE_OPTION) {

File file_ = chooser.getSelectedFile();
createImageGlyph(file_);

}

117

Here, as soon as soon as the user clicks the Image menu item, the viewer is set by

calling the base class (BaseMenuItem.java) method

setViewerForRendering(). This is followed by calling the method

createImageGlyph(File) that sends EventFrame actions to the domain model

to generate glyph of type image and renders the image being selected from the

JFileChooser [40].

6.6.3 Custom Glyph Menu Item

The Custom Glyph menu item is used to insert a user specified glyph on the

Manifold viewer space. Here by custom glyph I mean that the user could type in what he

wants to draw, and the corresponding text will be converted into a glyph and rendered on

the Manifold Viewer. For example the user could write “Draw a rectangle with width 50

and height 45 with a rotation of 45 degree”. The custom glyph type converts this input

text utterance into meaningful commands that Manifold could understand, and

consequently the specified glyph is drawn on the Viewer. This, however, is true only for

leaf-glyph types (rectangle, ellipse, line) in the current version and could be extended in

future easily to include poly-glyphs as well. This process forms a part of Text

Recognition that was discussed in detail in Chapter 4, section 4.3.1. The user is advised to

refer to the same for an in-depth analysis of this process.

The Custom Glyph is implemented as a menu item just like Rectangle/Ellipse

menu items. The only difference is that it doesn’t display the already saved glyphs with

their profiles in a table for selection purposes, rather it asks for a user input to render the

118

glyph. It is implemented in the class ClipArCustomGlyph.java. The

actionPerformed() method has the following code stub:

//call the base class method to set the viewer for rendering of
//clip-Art
setViewerForRendering();

//Take input from the user in a JOptionPane
String typedGlyphText = (String) JOptionPane.showInputDialog(
 this,
 "Type in what would you like to generate",
 "Glyph Text",
 JOptionPane.PLAIN_MESSAGE,
 null,
 null,
 "");

if (typedGlyphText != null) {

this.fromWebService = true;
textRecogniserWebServie(typedGlyphText);

}

Figure 55: Manifold Custom Glyph. The user enters input in a JOptionPane.

 Here, as soon as the user clicks the custom glyph menu item, a JOptionPane [18]

is shown to take the input from the user, and if the typed text is not empty, it calls the

method textRecogniserWebService(String), which takes a string input and

passes it to the SOAP [13] web service. The call to the web service is implemented

119

through an inner class BasicWebServiceClient. See Chapter 3, section 3.2 for a

thorough discussion on protocols used for information exchange between Manifold and

backend applications.

Figure 55 shows this process where the user enters text, “Draw a rectangle of

width 80 and height 100 with rotation 45” to generate a rectangle.

Figure 56: A new glyph gets created and drawn on the Manifold viewer as a result of Text Recognition

 When the user clicks “OK” on the input dialog, the SOAP web service outputs the

following property value pair to Manifold:

“GlyphName=rectangle;nodeType=rectangle;line.width=NULL;line.color=NULL;line.str

oke=NULL;fill.color=NULL;tx=NULL;ty=NULL;theta=45;xs=80;ys=100”

As a result the corresponding glyph (if text is properly recognized, see details in Chapter

4, section 4.3.1) is created on the Manifold viewer. Figure 56 shows this.

The web service is responsible for taking in input from Manifold, passing it to a

remote application server, and returning back Manifold the result (the Glyph profile). The

generation of Glyph profile through the process of Text Recognition was discussed in

detail in Chapter 4, section 4.3.1. Figure 57 shows the interaction of Manifold with the

web service and the remote application server.

120

Figure 57: Manifold interaction with the remote server through SOAP web service

Custom glyph provides a convenient way of drawing graphical objects for the

users who prefer to obtain results in single step, rather than going through various stages,

like modifying different glyph properties independently through various property editors.

Observation 6.1: It is noteworthy here that the process of applying transforms in

succession is “cumulative”, but not “commutative”. In other words, applying

translation and rotation, for example, causes the output graphic to be translated and

also rotated. However, depending on your parameters, you might not get the same

results if you switch the order of translating and rotating. Care must be taken when

applying these transforms on the glyphs in succession.

121

Design Issue 6.5: The current implementation of Manifold as a two-dimensional

graphical editor doesn’t provide property editors for editing glyph properties like

translation, scaling, and rotation. The future versions should implement these. When

implemented, the usefulness of the custom glyph menu item could be argued in terms of

gain in speed or convenience. However, I would argue that it would still remain an

easy resort for performing multiple tasks in a single step, especially for the users who

prefer typing.

Design Issue 6.6: If the Manifold viewer is zoomed in or out, and the user wants to

create a glyph using the custom glyph menu item, the viewer gets reset to its original

view for rendering the new glyph. A possible alternative could be to draw the new

glyph on the zoomed workspace without altering the zoom effect, previously executed

by the user.

6.6.4 Smart Art Menu Item

We define a smart-art as a collection of glyphs created by drawing glyphs

separately and then grouping them to make a single art, like a smiley face. Different

objects in the art could be manipulated individually at any point by un-grouping (Chapter

5, section 5.4.3) them and then grouping them again to form the modified art. Thus, the

Smart Art menu item is used to insert the previously saved poly-glyphs, providing an

easy and effective way to manipulate grouped glyphs at a later stage without the need to

draw them from scratch again.

122

The working of Smart Art menu item is similar to that of the Rectangle, Ellipse

and Line menu items as discussed in section 6.6.1.1, 6.6.1.2, and 6.6.1.3 respectively,

with the only difference being that the CLIP_ART_TYPE is set to “grouper”. This menu

item is implemented in class ClipArtSmartArt.java. When the class

TableSavedGlyphs.java is invoked by passing the CLIP_ART_TYPE as

“grouper”, it draws child glyphs, one at a time, on the Manifold viewer and adds them to

the parent glyph to be rendered as a smart-art (a grouped/composite object) on Manifold.

This is done by the method renderChildGlyphOnViewer(int) that draws all the

glyphs that are child to the grouper glyph (the parent), which are set by calling the

method setGrouperChildren(int parentId). The method calls the stored

procedure GET_CLIP_ART that takes two parameter, clipArtType and

parentGlyphId. The clipArtType here is “grouper” as discussed above and the

parentGlyphId is the id (the field from the SQL table and not the nodeId from

Manifold) of the grouper glyph created. This stored procedure returns all the child glyph

profiles for the current parent grouper glyph, which are added to the parent by the method

renderChildGlyphOnViewer(int).

123

Chapter 7
Property Editors

As discussed in Chapter 1, the design of Manifold contains Property Viewer

which is used to display editable properties (attributes) of the glyphs in the workspace in

the form of property editors. In the earlier versions of Manifold, Property Viewer

displays only the editable properties of single selected glyph at a time. In Chapter 4, I

described, how I changed this to display the common editable properties of multiple

selected glyphs that would allow modifying the properties of multiple glyphs at a time. In

other words, the property viewer again queries all the selected leaf glyphs to determine

the common properties. Such complex features may look fancy, but the important

question is what value they present to the user (Chapter 4).

In this chapter I will discuss the addition of new property editors with respect to

the new glyphs (as discussed in Chapter 5), and few modifications to the old property

editors as well.

7.1 Introduction

When computer needs specific information, it initiates a dialog with the user.

“Dialog”, as understood in graphical user interface design, is a conversational vignette in

a limited domain, on a well defined topic, with a goal of extracting specific information

from the user. The computer knows in advance what to ask and the full range of options it

can expect from the user as an answer.

124

Property Viewer displays the properties for editing of the selected glyphs. Each

property has a different editor, depending on the property’s data type, as illustrated in

Figure 58. Similarly, when a new glyph is created on the workspace using the Creator

tools, its properties are automatically displayed on the Property Viewer panel. This is

because when a new glyph is being created, it becomes the currently selected glyph.

Figure 58: Example of a property editing dialog box. Property editors allow editing the property values. [4]

There is only one property viewer instantiated per application. Every time a new

glyph is selected, the old editors are emptied from the viewer, and the new set of editors

are loaded.

The composition of the current manifold.swing.PropertiesViewer

implementation is shown in Figure 59. The glyph-specific property editors are contained

in the PropertyEditorsPanel (package manifold.swing), which is specific

to different glyph types and is re-loaded every time a new glyph is selected.

PropertyEditorsPanel contains multiple property editors, which are subclasses of

javax.swing.JComponent [27].

125

 PropertiesViewer

CancelApply

PropertiesViewer {JPanel}

JInternalFrame

PropertyEditorsPanel {JPanel}

PropertyEditor {JComponent}GridLayout

JPanel

JLabel

*

contentPane

*

Property editor

Property label

Property editors panel

Property editor panel

(a) (b)

Viewer panel

Figure 59: Composition of a property editor dialog box: (a) The screen rendering; (b) The UML class
diagram [4]

The PropertyEditorsPanel is a subclass of javax.swing.JPanel

[28]. Within the PropertyEditorsPanel are a set of smaller JPanel’s with a

Grid Layout of 1x2 as shown in Figure 59. Each of this subset (1x2) JPanels hold the

editable properties of a selected glyph. The left box (i.e. {1, 1}) contains a

javax.swing.JLabel [29] which displays the name of the editable property and

right box (i.e. {1, 2}) contains the editable properties which are

javax.swing.JComponent’s.

A PropertyEditorsPanel containing various editable properties and their

label is specific to a particular glyph. Hence, each glyph has one such

PropertyEditorsPanel containing all its editable properties in it. These panels

and their corresponding glyph names are held in a Hashtable [30] created via an XML

126

file “editors.xml”. The “editors.xml” file also lists the editable properties to be included

in the PropertyEditorsPanel for a particular glyph type.

Once the PropertyEditorsPanel is created, its contents are displayed via a

protected method buildLUT() in manifold.swing.PropertiesViewer.

buildLUT() builds a look up table containing these editable properties. Furthermore, it

de-couples the PropertyEditorsPanel to obtain the JComponent (i.e. the

editable properties) and assigns them to a generic interface

manifold.ProperyEditor. Through the PropertyEditor interface the

properties are subsequently altered.

7.2 Design: Property Editor

Property editors are used to edit the properties/attributes of a selected glyph. Each

of these properties is represented by a JComponent [27]. These components belong to the

package manifold.swing.editors, where each of these editors is implemented in

a different class. These classes implements the PropertyEditor interface (package

manifold), ActionListener [31]/ChangeListener[32]; and extend a

javax.swing object like JPanel, JButton [34], etc.

 An editor can belong to multiple glyphs. In order to tell the application what

property editors should be rendered on the Property Viewer, an XML file “editors.xml”

(provided with the Manifold package) is configured accordingly. This allows sharing of a

single property editor with multiple glyphs, by configuring just the XML file. For

127

example, consider the code stub below for the glyph of type “rectangle”, defined in the

“editors.xml”, to render various property editors.

<!-- ********* Rectangle Editor Panel ********* -->
<void method="put">

<string>rectangle</string>
<object class="manifold.swing.PropertyEditorsPanel">

<void method="add">
<object
class="manifold.swing.editors.FillColorEditor">

 <void property="propertyName">
 <string>fill.color</string>
 </void>
 </object>
 </void>

</object>
</void>

Here, The Fill Color Editor is defined for the glyph of type “rectangle”, so that

whenever a rectangle glyph type is drawn on the Manifold viewer, this editor gets

rendered on the Property Viewer.

7.3 New Property Editors

I worked on the implementation of the following new property editors:

• Text Editor: allows changing text of the Text glyph type.

• Font Editor: allows changing font of the Text glyph type.

• Image Editor: allows importing a new image for the Image glyph type.

7.3.1 Text Editor

Text Editor provides the user an option to edit the text of a Text glyph type. This

editor is implemented in the class TextEditor.java belonging to package

128

manifold.swing.editors. This class extends to a JPanel that acts as a

placeholder for a JTextField [33], and implements manifold.PropertyEditor

and java.awt.event.ActionListener to read the change in the text when the

return (enter) key is pressed from the keyboard. The action event is read and processed in

the method actionPerformed(ActionEvent event_), that reads the new text

when return key is pressed from the JTextField that registers the object created using

the addActionListener() method in the constructor of the class. The code stub for

the actionPerformed() method is defined as:

textFieldText_ = textBox.getText();//Read text in a String field

// Make an event frame to request the application domain
// for property change.
Hashtable slots_ = null;
for (int i = 0; i < currentNodeId.length; i++) {

slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId[i]);
slots_.put(propertyName, textFieldText_);
propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

}

In the above code stub, the text entered in the JTextField (variable name,

textBox), is read in a String variable textFieldText_. The following steps

generate an EventFrame (package manifold) and send it to the Controller. An

EventFrame contains information about the interpretations of the user’s event which

has been transcribed to a form that the application can understand. In this case, the

property name (text.text) and the entered text are sent to the controller via the

EventFrame. The values specified in the EventFrame are stored in the

cachedState hash table if they do not exist or are updated if they exist. Addition of

129

the text editor and rendering the new text of the glyph required some changes in the

draw() method of the class Text.java (package manifold.impl2D.glyphs),

which were explained in the Chapter 5, section 5.3.1.

The default text of the Text glyph is provided in the file “tools.xml”, distributed

with the manifold source packages. A code stub from the file that renders the default text

when the Text Glyph is drawn for the first time is shown below:

<void method="put">
<string>text.text</string>
<string>Your Text Here</string>

</void>

Figure 60 shows the working of the Text Editor that allows user to change the text

of the Text glyph.

Figure 60: The Text Editor. When the user presses the return (enter) key, the new text is rendered on the
Text glyph.

7.3.2 Font Editor

In order to provide the Text glyph with more features like changing the font

properties (the style, the size and the face), a new editor called Font Editor was

implemented. This feature was important to allow decorating the text of the Text Glyph.

The three main important properties of a text’s font are:

• The choice of Font type (font face) like “Courier”, “Arial”, “Times New

Roman”, etc.

130

• The choice of font style like “bold”, “italic”.

• The choice of “increasing” or “decreasing” the font size.

The idea behind implementing the font editor was to allow changing these three

important properties of text font belonging to the Text glyph. It should be noted that there

could also be other font properties like underlining, shading, etc. which are not

implemented in the current Manifold version.

 The class manifold.swing.editors.FontEditor defines the code

necessary to implement Font Editor. The class implements three interfaces

manifold.PropertyEditor, java.awt.event.ActionListener, and

javax.swing.event.ChangeListener; and extends javax.swing.JPanel.

The JPanel is used to hold three JComponents, two JComboBox [35] and one

JSpinner [36]. A JComboBox combines a button and a drop down list allowing the

user to chose a value from the drop-down list, which appears at the user's request. Here,

one of the JComboBox conatins a list of font style names ("Plain", "Bold", "Italic" and

“Bold Italic”). The other JComboBox contains a list of font faces, which are read from

the java.awt.GraphicsEnvironment [37]. A JSpinner provides a single line

input field that lets the user select a number or an object value from an ordered sequence.

Spinners typically provide a pair of tiny arrow buttons for stepping through the elements

of the sequence (the keyboard up/down arrow keys also cycle through the elements). The

user may also be allowed to type a (legal) value directly into the spinner. Here, the

JSpinner is used to allow changing the size of the font using a

javax.swing.SpinnerNumberModel [38].

131

 The two JComboBox are added to the ActionListener via the

addActionListener() method, and the JSpinner is added to the

ChangeListener via the method addChangeListener(), in the constructor of

the FontEditor.java class. This is because the application has to process an action

event when a user clicks the JComboBox and a change event when the user clicks on the

JSpinner. When an action event occurs, the objects actionPerformed() method

is invoked that has the following code stub:

fontChoice = (String)fontsComboBox.getSelectedItem();
styleChoice = stylesComboBox.getSelectedIndex();

font_ = new Font(fontChoice, styleChoice, sizeChoice);

// Make an event frame to request the application domain
// for property change.
Hashtable slots_ = null;
for(int i=0;i<currentNodeId.length;i++) {

slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId[i]);
slots_.put(propertyName, font_);
propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

}

Here, the font face and the font style are read from the two JComboBox, and the

new font is added to the EventFrame, as discussed in the previous section.

Similarly, when a change event occurs, the objects stateChanged() method

is invoked that has the following code stub:

try {
String size = sizesSpinner.getModel().getValue().toString();
sizeChoice = Integer.parseInt(size);

font_ = new Font(fontChoice, styleChoice, sizeChoice);

// Make an event frame to request the application domain
// for property change.

132

Hashtable slots_ = null;
for (int i = 0; i < currentNodeId.length; i++) {

slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId[i]);
slots_.put(propertyName, font_);
propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

}
} catch (NumberFormatException nfe) {

System.out.println(nfe.toString());
}

Here, the new font size (an integer) is read from the JSpinner, and the new font

is added to the EventFrame. The method is in a try-catch block, to catch an exception

of type NumberFormatException [39].

Design Issue 7.1: A new Hashtable object is created for editing properties of each

selected glyph. This might lead to performance issues. A better approach to handle this

must be thought about. One such approach was discussed in [78], which claimed

performance improvement by eliminating the use of Hashtable’s and using comma-

separated string fields to hold the property-value pairs. Another work-around could be,

developing a new EventFrame type that could handle multiple glyphs properties within a

single HashTable.

Similar to the Text Editor (as discussed in section 7.3.1), rendering the new font

properties of the glyph required some changes in the draw() method of the class

Text.java (package manifold.impl2D.glyphs), which was explained in

Chapter 5, section 5.3.1.

133

The default font of the Text Glyph is provided in the file “tools.xml” (distributed

with Manifold source packages). A code stub from the file that renders the default font

when the Text Glyph is drawn for the first time is shown below:

<void method="put">
<string>text.font</string>
<object class="java.awt.Font">
<string>Dialog</string>
<int>0</int>
<int>12</int>
</object>

</void>

Figure 61: The Font Editor. Notice the new font size and style that gets rendered on the Text glyph.

Figure 61 shows the working of the Font Editor that allows user to change the

font properties of the Text glyph type.

Design Issue 7.2: The text and font editors are implemented separately rather than

being a part of the same editor modifying different properties of the Text glyph type.

This design choice was made mainly to keep editors for different glyph properties (text

and font here) separate from each other which also provided implementation clarity at

the class and code level.

7.3.3 Image Editor

The Image glyph was discussed in Chapter 5, section 5.4.1, where the user can

render an image on the Manifold viewer space. Two methods of rendering the image

134

were also discussed one from the File Browser, and the other from the database. The

Image Editor allows importing new images, selected from the file system, for the Image

glyph. However, it doesn’t allow changing the image pixels, such as in Photoshop [10].

 The class manifold.swing.editors.ImageEditor defines the code

necessary to implement the Image Editor. The class implements two interfaces

manifold.PropertyEditor and java.awt.event.ActionListener; and

extends javax.swing.JButton. The JButton is added to the ActionListener

via the addActionListener() method in the constructor of the class

ImageEditor.java. This is because the application has to process an action event

when a user clicks the JButton. When an action event occurs, the objects

actionPerformed() method is invoked that has the following code stub:

JFileChooser chooser = new JFileChooser();

int returnVal = chooser.showDialog(this, "Select an Image");

if(returnVal == JFileChooser.APPROVE_OPTION) {
File file_ = chooser.getSelectedFile();
// Make an event frame to request the application domain
// for property change.
Hashtable slots_ = null;
for(int i=0;i<currentNodeId.length;i++) {

slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.SET_PROPERTIES);
slots_.put(EventFrame.NODE_ID, currentNodeId[i]);
slots_.put(propertyName, file_);
propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

}

}

Here, a JFileChooser [40] dialog allows the user to select a new image from

the file system, whose value is read and passed on to the application domain for a

135

property change request, and subsequently the new image is rendered in the draw()

method of the class manifold.impl2D.glyphs.Picture.java that was

discussed in Chapter 5, section 5.4.1

Figure 62: Image Editor: When the user clicks on the button, a file browser appears where the user can
select the new Image.

Figure 62 shows the working of the Image Editor that allows user to change the

image of the Picture/Image glyph type. Figure 63 shows the new image that gets rendered

as an action output of user.

Figure 63: New image being rendered as a result of user’s new selection from the file browser.

136

Chapter 8

Complexity and Performance

Code is complex, but it doesn’t have to be overly complex. Keeping the code and

design to manageable levels is one of the key challenges in software development today.

However, code complexity alone cannot affect the performance of software. If a complex

code is well sequestered and has an efficient architecture (the interdependency among

various software components), it could be effectively managed and lead to improved

performance.

This chapter discusses the design and structural complexity of the current

Manifold version and then studies the performance of the newly incorporated features.

8.1 Design Complexity

The designs usually start elegant, but as the number of classes grows, the

complexity inevitably creeps in. It is an important issue about any software product.

There are a few quantitative measures of software complexity [69, 70], and this section

discusses them for Manifold, in terms of its stability, quantitative and deterministic

evaluation of its structure, its dependency structure (helpful in refactoring components).

Also, I will discuss some of the architectural problems inherent in Manifold’s design.

137

8.1.1 Structural Analysis

Figure 64 shows the core structure of Manifold. Manifold has an “onion”

structure (as shown in Figure 65), where the developer can start using at any layer of the

onion.

Figure 64: Manifold Core Structure

If you choose to start with the core interfaces only (the package manifold), you

are only using the high level design. The package manifold.impl2D offers basic

two-dimensional geometry functions. Instead of this, you could build on top of the core

interfaces and implement an equivalent package to be used on small devices. The

138

package manifold.swing offers layout and controls implemented using the Java

Swing GUI toolkit. Package manifold.data provides the semantics to connect to a

database, and could be modified to attach any database system with Manifold. Figure 66

shows this relationship with package manifold being core and different levels (and

areas) of implementation on it.

Figure 65: The “onion” structure of Manifold
packages

Figure 66: Package level Architecture of Manifold
(The arrows specifies use, for e.g. manifold uses util)

The current implementation offers a simple two-dimensional drawing editor with

a constant effort of having minimum coupling at class and package level (refer to section

8.1.2). However, there were certain relationships that were inherent for the

implementation of Manifold (core packages). The following sections would discuss some

of the structural and code analysis of Manifold.

Manifold currently has a total of 127 objects (classes, interfaces and packages),

forming a total of 809 relationships (not including Java library classes) i.e. extends,

implements, uses (method argument or returned from the method), and contains

139

relationships. A typical object in this system immediately depends on 6.37 objects. On

average, the modification of one object potentially affects 16.3 other objects. The overall

stability [81] of the system is calculated to be 87% (calculated as a function of the

average number of affected objects). 100% stability specifies that all the objects are

completely decoupled from other objects.

Stability = (1 - average number of affected objects/total number of objects) * 100

 => (1 – 16.3/127) * 100 = 87% (for Manifold)

The key statistics of Manifold has been specified in Table 9. The calculations

were based on formulas and metrics specified in [81].

Table 9: Current Manifold Structure Statistics Summary

Property Value
Number of Objects (classes, interfaces and packages) 127
Number of packages 13
Number of Relationships i.e. extends, implements, uses (method argument
or returned from the method), and contains relationships.

809

Maximum Dependencies (classes that depends on one class) 31
Minimum Dependencies (classes that depends on one class) 0
Average Dependencies (classes on which this class depends on) 6.37
Maximum Dependents (classes on which this class depends on) 71
Minimum Dependents (classes on which this class depends on) 0
Average Dependents (classes on which this class depends on) 6.37
Relationship to Object Ratio 6.37
Number of objects affected by modification of one object 16.3

The chart in Figure 67 plots the number of classes having different counts of

dependencies (input links) and dependents (output links) to other Manifold classes. Only

the connections to Manifold classes are shown; the connections to Java classes are not

shown. As expected, most of the classes have very few links and vice versa: very few

140

classes have many links. This characteristic was observed for very large software

packages, as well [86].

Figure 67: Statistics of the connectivity of all the classes in the current Manifold implementation.

The classes with maximum dependencies are MapOverlayGlyphViewer and

Viewer2DImpl (both belonging to package manifold.swing), as these mainly act

as the background viewer of the Manifold application and are responsible for rendering

all the graphics on the canvas. The class with the maximum dependents is Viewer

(package manifold) as it is used by all the classes that require any screen rendering.

Obviously, these are central classes, so it is to be expected that they should have greater

connectivity than any others.

The current design is arguably lightweight and simple even with a feature-laden

interface than the previous versions. See [4], section 8.1 for a similar comparison for an

earlier, lighter and simpler Manifold version.

141

8.1.2 Excessive Structural Complexity

The excessive structural complexity [70] is a set of thresholds for “Fat” and

“Tangles” at different levels of composition. Fat indicates “too much stuff” in one place

and is measurable at every level of composition viz. design, package, class and method.

Cyclomatic Complexity [69] is used to measure fat at the method level and the number of

dependencies in the child dependency graph is used at other levels. Tangles define the

cyclic dependencies between packages. Both Fat and Tangles are measured as a

percentage by which the given threshold is exceeded.

Using the above definitions and metrics and threshold levels, as defined in [83],

we performed the structural analysis of Manifold and the following results were obtained.

• Design Level Tangles (High level packages that contains sub-packages),

Threshold = 0 [83]:

o manifold.impl2D (8%)

o manifold (7%)

Figure 68: Pie Chart showing Tangles in Manifold design

142

This is shown in Figure 68. This value is calculated as the number of

dependencies that go bottom-up (interdependencies) as a percentage of all the

dependencies on the child graph of the package. These two packages represent the

core of Manifold (model and controller), and hence there is a level of

communication that is inherent for their functioning. This contributes 89% to

Excessive Structural Complexity.

• Total Fat, design level, Threshold = 120 [83]: No items exceed the threshold for

Fat at the design level (0 of 4). The value is calculated as the number of

dependencies in the child graph of the item, i.e. the dependency graph of the sub-

packages of the measured package.

• Total Fat, leaf package, Threshold = 120 [83]: No items (leaf packages) exceed

the threshold for Fat at the leaf package level (0 of 13). The value is calculated as

the number of dependencies in the child graph of the item, i.e. the dependency

graph of the classes in the measured package.

• Total Fat, class level, Threshold = 120 [83]: No items (classes) exceed the

threshold for Fat at the class level (0 of 127 total classes). The value is calculated

as the number of dependencies in the child graph of the item, i.e. the dependency

graph of the methods and fields in the class.

• Total Fat, methods, Threshold = 15 [83]: (2 of 980 total methods)

o manifold.swing.TableSavedGlyphs.createGlyphProper

ties(Hashtable, AffineTransform, Object[][], int,

String):Hashtable

143

o manifold.swing.TableSavedDocuments.createGlyphPro

perties(Hashtable, AffineTransform, Object[][],

int, String):Hashtable

Figure 69 distribution of fat vs. non-fat methods in Manifold source packages.

The value is calculated as the Cyclomatic Complexity [69] (McCabe’s metric) of

the method (see section 8.1.3 for details on why these methods are fat). This

contributes 11% to Excessive Structural Complexity.

Figure 69: Fat vs. non-Fat methods in Manifold

The entire structural level complexity is summarized in the pie- chart shown in

Figure 70 which shows that the main contributors to structural complexity are 2 high-

level packages (manifold and manifold.impl2D) and 2 methods viz.

manifold.swing.TableSavedGlyphs.createGlyphProperties and

manifold.swing.TableSavedDocuments.createGlyphProperties.

144

Figure 70: Pie Chart showing the contributors to the Structural Level Complexity of Manifold

8.1.3 Code Analysis

As discussed above, if the structure (design level fat and tangles) of an application

is better, then it can overshadow complex code (difficult re-usability). However, there is a

broad line between complex code and fat code (high cyclomatic complexity). The

complexity of code essentially determines its reuse (by the same or different

programmers) and testing. Though these seem trivial, most of the time such jobs can

become non-trivial due to the complexity of the code. One way to overcome this is to

provide sufficient documentation with the code, so that it becomes easy to understand at a

later stage. This however, would make the code somewhat easy to understand, and not

less complex. It thus becomes essential to analyze the code complexity in terms of

various pre-defined metrics.

Code complexity metrics are directly related to the maintainability and testability

of the code [84]. The more complex a code is the less maintainable and testable it is. If

145

the code is object oriented, the complexity metrics also have a direct bearing on the

extensibility and modularity of the code. Maintenance metrics can be subdivided into

formatting metrics and logical metrics [84]. Formatting metrics deals with aspects such

as indentation conventions, code comment guidelines, naming conventions, white space

usage etc. Logical metrics give you information about aspects directly associated with

program logic and code flow - these are things such as the number of paths through a

program, depth of conditional statements and blocks, the number of parameters to

functions etc. One such logical metric is the cyclomatic complexity of the code.

Cyclomatic complexity [69] gives the number of paths that may be taken when a

program is executed. Methods with a high cyclomatic complexity tend to be more

difficult to understand and maintain. Some of the tokens (in Java) responsible for the

program taking different paths during execution are [85]:

• while & do while statements.

• if statements.

• for statements.

• Ternary Operators & Logical Operators.

• switch case statements.

• return, throw, throws, catch statement.

Before analyzing the cyclomatic complexity of various Manifold classes, let us

look at summary of Manifold classes and packages in terms of the top four classes and

packages having the highest number of lines of codes. This is shown in Table 10.

146

Table 10: Top 5 Manifold classes and packages in terms of LOC

Classes Lines of Code
Class Name Lines of Code

Selector 646
TableSavedGlyphs 608
TableSavedDocuments 527
Viewer2DImpl 516
Package Lines of Code

Package Name Lines of Code
manifold 21364
manifold.impl2D 9253
manifold.swing 8348
manifold.tools 2892
Total (Non-comment Non Blank LOC) ~11K

Table 11 defines metrics for dividing methods into three levels according to their

cyclomatic complexity [82].

Table 11: Code Complexity Metrics

Metric CC Count Legend
High Complexity 7 Red
Moderate Complexity 4 Yellow
Low Complexity 0 Green
Interfaces N/A Grey (Interface)
Classes N/A Vertical Bars (Horizontal Axis)
Methods N/A Rectangular Blocks (Vertical Axis)

Now, using the information from Table 11, let us consider different Manifold

packages (figures 56-63) and look into the methods with high complexity and the reason

for the same. These results were obtained using open-source software package CyVis

[82].

147

Figure 71: Methods with different levels of complexity
in package manifold

Figure 72: Methods with different levels of
complexity in package manifold.swing

Figure 73: Methods with different levels of complexity
in package manifold.swing.editors

Figure 74: Methods with different levels of
complexity in package manifold.impl2D

148

Figure 75: Methods with different levels of complexity
in package manifold.impl2D.menuItems

Figure 76: Methods with different levels of
complexity in package manifold.impl2D.glyphs

Figure 77: Methods with different levels of complexity
in package manifold.impl2D.tools

Figure 78: Methods with different levels of
complexity in package manifold.data

149

• Package: manifold

Figure 71 shows classes and methods in package manifold.

Table 12 shows the methods with high cyclomatic complexity (CC) in

package manifold.

Table 12: High Code Complexity methods in package manifold

Class Name Method Name CC Reason
ControllerImpl sendAsyncEvent 9 If-else blocks to handle

different event frames and
report errors of any
unaccounted frame.

Display run 9 Provides synchronized access to
viewers and runs forever as a
separate thread to control the
frame-rate.

Display removeViewer 8 Synchronized method to
remove a given viewer from
receiving periodic notifications.

The high complexity of sendAsyncEvent (ControllerImpl) is

inherent due to the fact that for handling ‘n’ event frames we need to have ‘n’

conditional blocks.

• Pakage: manifold.swing

Figure 72 shows classes and methods in package manifold.swing.

Table 13 shows the methods with high cyclomatic complexity in package

manifold.swing.

The high complexity of method createGlyphProperties() is

inherent due to the fact that for handling ‘n’ property-value pairs, we need to have

‘n’ conditional blocks.

150

Table 13: High Code Complexity methods in package manifold.swing

Class Name Method Name CC Reason
TableSavedGlyphs createGlyphProperties 26 If-else blocks to

create a glyph’s
property-value pairs
as a Hashtable.

TableSavedGlyphs setGrouperChildren 9 Try-catch block to
read data from
database.

TableSavedGlyphs getSavedItemFromDatab
ase

9 Try-catch block to
read data from
database.

TableSavedDocume
nts

createGlyphProperties 26 If-else blocks to
create a glyph’s
property-value pairs
as a Hashtable.

TableSavedDocume
nts

getAllGlyphsInDocumen
t

9 Try-catch block to
read data from
database.

TableSavedDocume
nts

getSavedItemFromDatab
ase

9 Try-catch block to
read data from
database.

• Package: manifold.swing.editors

Figure 73 shows classes and methods in package

manifold.swing.editors.

Table 14 shows the methods with high cyclomatic complexity in package

manifold.swing.editors.

Table 14: High Code Complexity methods in package manifold.swing.editors

Class Name Method Name Cyclomatic
Complexity

Reason

StrokeEditor actionPerformed 9 If-else blocks to deal with 6
different types of strokes.

151

• Package: manifold.impl2D

Figure 74 shows classes and methods in package manifold.impl2D.

Table 15 shows the methods with high cyclomatic complexity in package

manifold.impl2D.

Table 15: High Code Complexity methods in package manifold.impl2D

Class Name Method Name CC Reason
Transform2D constructor 8 Nested if-else blocks to

compose component
transformations.

Transform2D extractComponents5 7 Geometric calculations for
decomposing the given
transformation into the
constituent components of
"pure"
translation/rotation/scale.

Transform2D createInverse 7 Overrides AffineTransform
method createInverse() to
handle zero-scaling and
infinite values, and throws
exception.

GeometricFigure draw 9 Geometric calculations from
6-element to 5-element
transform matrix.

GeometricFigure saveGlyph 9 Interacts with database to
save a glyph using try-catch
blocks.

• Pakage: manifold.impl2D.menuItems

Figure 75 shows classes and methods in package

manifold.impl2D.menuItems.

 This package does not contain any methods with high cyclomatic complexity.

152

• Package: manifold.impl2D.glyphs

Figure 76 shows classes and methods in package

manifold.impl2D.glyphs. Table 16 shows the methods with high

cyclomatic complexity in package manifold.impl2D.glyphs.

Table 16: High Code Complexity methods in package manifold.impl2D.glyphs

Class
Name

Method Name CC Reason

Picture draw 8 Large method for image rendering and
controls its geometric interpretation on
Manifold (more lines, and if-else blocks).

Picture getImagesFromDb 7 Interact with database in try-catch blocks
to read names of images persisted.

Grid draw 12 Large method for drawing Grid
(background of workspace) and controls its
geometric interpretation on Manifold
(more lines, and if-else blocks).

Line translateAndSca
leShape

9 If-else blocks to control geometric
translation and shape of Line glyph type.

Text draw 9 Large method for rendering text glyph and
controls its geometric interpretation on
Manifold (more lines, and if-else blocks).

• Package: manifold.impl2D.tools

Figure 77 shows classes and methods in package manifold.impl2D.tools.

Table 17 shows the methods with high cyclomatic complexity in package

manifold.impl2D.tools.

Table 17: High Code Complexity methods in package manifold.impl2D.tools

Class Name Method Name CC Reason
Linker drawSelectionBox 7 Ternary and Logical operators for

drawing rubber-band object for multiple
glyph selections.

Selector drawSelectionBox 7 Ternary and Logical operators for
drawing rubber-band object for multiple
glyph selections.

153

• Package: manifold.data

Figure 78 shows classes and methods in package manifold.data. This

package does not contain any methods with high cyclomatic complexity.

Having discussed different methods in Manifold with high cyclomatic

complexity, I would like to point out here is that most of these methods deal with the

communication with database (that requires try-catch blocks) and dealing with the

geometric transformations of a glyph. The classes that form Manifold core had very few

highly-complex methods, making Manifold core considerable light-weight. Figure 79

shows this characteristic representing the relationship between input and output links and

the number of fat methods for main Manifold classes. Core Manifold classes like

Viewer and Controller has higher number of links, but do not have any fat

methods.

Figure 79: Comparison of Links vs. Fat method in Manifold. Notice that the core classes are not fat.

154

 The average cyclomatic complexity of Manifold was calculated as

1.6204954954954955, making the overall code of the application of very low complexity.

8.2 Performance

This section will explain some of the performance measurement experiments

conducted on the newly incorporated features in Manifold as a part of the current thesis.

These experiments describe the time take to complete one full interaction cycle. A

description of the interaction cycle and the results has been provided in the following

sections. All the performance measurement experiments were conducted on the machine

with following configurations:

• Processor: Intel (R) Core (TM)2 Duo

• Speed: CPU T9300 @ 2.50GHz 2.50 GHz

• RAM: 3.5GB

• Operating System: Microsoft Windows 7 Professional (32-bit)

• Java: Java Development Kit (JDK) 1.6

• Platform: NetBeans IDE, Version 6.7.1

8.2.1 Application Loading Time

The loading time of an application determines the amount of time a user has to

wait to work with the application. It is determined by the number of features an

application provides. More features shouldn’t necessary mean more loading time. In this

155

section we will discuss the comparison between the loading time of the current and the

previous version of Manifold.

The main statistics highlighting the differences between the two versions is shown

in Table 18.

Table 18: Comparison of current vs. previous version of Manifold

Property Previous
Version

Current
Version

Increase (Current
- Previous)

Objects (classes, interfaces and packages) 62 127 65
Number of Packages 7 13 6
Number of Relationships i.e. extends,
implements, uses (method argument or
returned from the method), and contains
relationships.

421 809 388

Maximum Dependencies (classes that
depends on one class)

31 31 0

Minimum Dependencies (classes that
depends on one class)

0 0 0

Average Dependencies (classes that
depends on one class)

6.79 6.37 (0.42)

Maximum Dependents (classes on which
this class depends on)

42 71 29

Minimum Dependents (classes on which
this class depends on)

1 0 (1)

Average Dependents (classes on which this
class depends on)

6.79 6.37 (0.42)

Relationship to Object Ratio 6.79 6.37 (0.42)
Number of objects affected by modification
of one object

17 16.3 (0.7)

System Stability (calculated as a function
of the average number of affected objects)

72% 87% 15%

As accepted, the total number of objects and packages increased as a result of

incorporating new features. However, the average number of dependencies remained

almost the same, which resulted in an increase in the system stability, as there was an

increase in the number of relationships with constant dependency factor. This shows that

156

Manifold’s design is highly scalable. As the number of classes increases, the system

stability also increases.

Now, let us see how these two versions compared in terms of their loading time.

This is shown in Figure 80 over a set of five runs.

Figure 80: Comparison of loading times of two versions of Manifold

As the figure depicts, there was an increase in the application loading time in the

current version. However, I would argue that this increase was not necessarily due to

addition of more objects, rather was because of certain new features that required

communication with the database (and with web-services, as discussed in the text). These

required additional time for parsing the WSDL client specification and creation of Java

source files, at the time of loading (using JAX-WS [71]). This increase in loading time

was mainly because of multiple-server connections over a network, and would reduce if

we run it as a stand-alone application (without using the features which requires this extra

connectivity).

157

Design Issue 8.1: The loading time of the application can be decreased by running the

database and other network connections in separate threads. This would allow the user

to start using the workspace while connections are being established.

8.2.2 Performance: Glyph Saving

Now let us consider the performance of saving a glyph. The method call hierarchy

is shown in Table 19. The first step’s invocation time is the summation of the sub-steps.

Table 19: Method Call Hierarchy for Save Glyph Menu Item

 Method Name Invocation
Count

Invocation
Time

1 manifold.impl2D.menuItems.SaveGlyph.
actionPerformed

1 1 s 2.161
ms

1.1 manifold.swing.Viewer2DImpl.paintCom
ponent

1 0.829 ms

1.2 manifold.swing.BaseMenuItem.setViewe
rForRendering

1 0.237 ms

1.3 manifold.swing.Viewer2DImpl.getSelec
tionsModel

1 0.4 ms

1.4 manifold.SelectionsModel.getSelectio
ns

1 0.11 ms

1.5 manifold.swing.Viewer2DImpl.getContr
oller

1 0.7 ms

1.6 manifold.EventFrame.<init> 1 0.37 ms
1.7 manifold.ControllerImpl.sendAsyncEve

nt
1 0.209 ms

This represents a full cycle of saving of a single glyph of type rectangle in the

database.

158

8.2.3 Performance: Saved Glyph Retrieval

Now let us consider the performance of retrieving a saved glyph. The method call

hierarchy is shown in Table 20. The first step’s invocation time is the summation of the

sub-steps.

Table 20: Method Call Hierarchy for Insert Menu Item

 Method Name Invocation
Count

Invocation
Time

1 manifold.impl2D.menuItems.ClipArtRec
tangle.actionPerformed

1 577.460 ms

1.1 manifold.swing.BaseMenuItem.setViewe
rForRendering

1 0.31 ms

1.2 manifold.swing.TableSavedGlyphs.<ini
t>, i.e. constructor

1.3 manifold.swing.TableSavedGlyphs.getS
avedItemFromDatabase

1 475.290 ms

1.4 manifold.swing.TableSavedGlyphs.addT
ableToPopUp

1 87.493 ms

This represents a full cycle of inserting a single glyph of type rectangle (as saved

in previous section) retrieved from the database. The database in these sample runs was

located locally on the same machine as the running application, and due to information

transfer between two different servers step 1.3 took more time than the others.

8.2.4 Performance: Grouper Tool

Now let us consider the performance of Grouper tool. The method call hierarchy

is shown in Table 21.

This represents a full cycle of grouping two glyphs of type rectangle. Some steps

like 3.3 takes more time than the other as it represents the step of continuous

159

manipulation by the user where he/she depresses the mouse button and drags it along the

Manifold viewer to draw a selection box on the screen.

Table 21: Method Call Hierarchy for Grouper Tool

 Method Name Invocation
Count

Invocation
Time

1 manifold.impl2D.tools.Grouper$Groupe
rManipulator.<init>, i.e. constructor

1 0.239 ms

2 manifold.impl2D.tools.Grouper$Groupe

rManipulator.grasp
1 0.888 ms

3 manifold.impl2D.tools.Grouper$Groupe

rManipulator.manipulate
16 82.469 ms

3.1 manifold.impl2D.InputDeviceEvent.get
Point

16 0.55 ms

3.2 manifold.impl2D.InputDeviceEvent.get
ScreenPoint

16 0.28 ms

3.3 manifold.impl2D.tools.Selector.drawS
electionBox

32 76.701 ms

3.4 manifold.impl2D.glyphs.Rectangular.c
lone

1 0.55 ms

3.5 manifold.impl2D.Glyph2D.setProperty 75 0.450 ms
3.6 manifold.impl2D.Glyph2D.setCachedSta

te
1 0.48 ms

3.7 manifold.impl2D.Glyph2D.setSelected 1 0.3 ms
3.8 manifold.impl2D.TransformGroup.addCh

ild
1 0.9 ms

4 manifold.impl2D.tools.Grouper$Groupe

rManipulator.effect
1 5.579 ms

4.1 manifold.impl2D.InputDeviceEvent.get
Point

1 0.1 ms

4.2 manifold.impl2D.tools.Selector.gathe
rSelectionsAndCleanUp

1 2.103 ms

4.3 manifold.impl2D.Glyph2D.setSelected 4 0.6 ms
4.4 manifold.impl2D.GeometricFigure.addC

hild
2 0.17 ms

4.5 manifold.impl2D.GeometricFigure.getC
hildren

1 0.10 ms

4.6 manifold.impl2D.tools.Grouper$Groupe
rManipulator.
setMinimumBoundingShape

1 0.153 ms

160

8.2.5 Performance: Custom Glyph Insertion

Now let us consider the performance of retrieving a saved glyph. The method call

hierarchy is shown in Table 22.

Table 22: Method Call Hierarchy for Custom Glyph Insertion

 Method Name Invocation
Count

Invocation
Time

1 manifold.impl2D.menuItems.ClipArtCus
tomGlyph
.actionPerformed

1 3 s 848.477
ms

1.1 manifold.swing.BaseMenuItem.setViewe
rForRendering

1 0.285 ms

1.2 manifold.impl2D.menuItems.ClipArtCus
tomGlyph
.textRecogniserWebService

1 394.671 ms

1.3 manifold.swing.Viewer2DImpl.paintCom
ponent

1 1.133 ms

This represents a full cycle of inserting a custom glyph on Manifold viewer by

sending the raw text, “Draw a rectangle of height 20 and width 40 with tx 400 and ty 500

and rotation 45 degree”. Step 1.2 takes more time than the other as it involves

information transfer between two different servers (Manifold and text recognition),

located on the same machine for our example run.

161

Chapter 9

Discussion and Future Work

In this thesis, we have discussed the Manifold framework that was developed for

creating applications for different domains by providing programming abstractions that

are common across domains. Manifold defines four basic abstractions viz. components

that encapsulate behavior and appearance of objects, tools supports direct manipulation of

components, commands define operations on the components, and external

representations define the presentation models for the UI. Manifold is implemented as a

library of Java (TM) classes that provides platform independent implementation of the

framework and substantially reducing the time and effort for developing various

applications. This helps in creating applications with performance and utility as compared

with from-scratch counterparts.

We discussed how separate backend applications could be developed and then

attached to Manifold frontend using a set of communication protocols. It greatly

demonstrated how Manifold can be used to build practical applications by specifying

different application semantics on different backend servers and combine them with the

frontend Manifold framework (without any modifications to Manifold).

We also discussed how different user interaction techniques could be used on the

Manifold framework and how we could extend them for the purpose of Text and Speech

recognition.

162

We discussed the design and implementation issues with the previous versions of

Manifold and tried to solve some of them. We also discussed the implementation of new

features and enhancing the old ones like tools, glyphs and new property editors. A

complete functional Menu bar was developed for Manifold that provided functionalities

like inserting, saving, etc. of glyphs on the Manifold workspace.

The Manifold framework provides a natural growth path to the complete fully-

functional systems, such as the PowerPoint graphical editor. Another example application

that is suitable to build on the Manifold is decision collaboration systems. We

implemented this by developing a Map Viewer which could use the pre-existing

Manifold features on the top of a map. This can be proved to be very efficient in cross

functional planning and execution. It can be used for interactive visualizations and

collaborative decision support if a number of user share the same Manifold workspace

hosted on a central server, like the commanders and the officers on the battlefield.

Finally, we analyzed Manifold’s code and structure in terms of its design and

code complexity. We discussed the issues that were inherent in Manifold’s design, and

looked at the high complexity methods and the reasons for the same. We also calculated

the excessive structural complexity [83] of Manifold’s code and structure. All the newly

added features were compared in terms of their performance for a complete interaction

cycle. The results showed that Manifold offers a light weight core that allows easy

development and leads to increased performance for its various features. The increase in

system stability proved that Manifold has a highly scalable design.

The discussed features were only made possible due to the “generic nature” of

Manifold core that allowed us to implement new classes and simply “plug” them into the

163

core framework without any modification to the framework itself. This is very intuitive in

nature and provides an application developer a simplified implementation of various

functionality left to his/her imagination. The framework provides reusable functionality

in the form of predefined components, commands, and tools. Debugging time was greatly

reduced because less code was written to perform major tasks. Our experience is that

developing applications on Manifold and providing it with new features is mainly a

matter of choosing, designing, and implementing the required components. Hence,

significantly less time is spent defining new commands.

In short, the Manifold framework presented here provides a domain-independent

implementation of a presentation module. It is meaningful to state that this UI design acts

as a translator and interpreter from the language of human (gestures) to the language of

computers. It translates the user’s pointing gestures into action frames that are delivered

to the underlying application domain. The conversational metaphor is exploited

throughout the framework.

We have tried to incorporate new features in to Manifold to improve upon its

limited functionality from the earlier versions. But what makes the application exciting is

that any developer can add as many new features as he/she desires and the type of these

features can be left to his/her imagination, such is the design of Manifold. A platform has

been created that only has to be enhanced to make it a more suitable application

according to one’s need. This can be done by developing newer features. While features

are one part, the other part would be to enhance the performance of the application in

various ways. The next few sections describe the scope of future work that can be done

on Manifold to enhance its features and performance.

164

9.1 Future Work

The new features come into act mainly because of certain design issues that were

found during the current work and could not be addressed at that point. Throughout the

text we have tried to point out these issues and the first step in the future work would be

to address those issues.

9.1.1 New Workspace

In the current implementation we have provided a way to open new workspaces,

however, the new workspaces opened, are a part of the main thread, and as soon as the

user closes any of the workspace, the main thread gets terminated resulting in the closing

of all the opened workspaces (Design Issue 6.1). This could be addressed in the future

versions where different workspaces should be part of a separate thread, running

differently from the main application itself.

Also, laying out multiple workspaces could be addressed by providing

functionalities such as opening them in different tabs, as supported by most of the

modern day browsers. One such way to do in Java is using the Tabbed Panes [65]. The

application could be put in the tabbed pane, and consequently new workspaces could be

opened in new tabs, providing them with mouse and keyboard listeners and with custom

components like close buttons on the tabs (that would close only the selected tab that’s

running in a separate thread).

165

9.1.2 Keyboard Listeners

Manifold currently doesn’t support keyboard events for some of its components.

Keyboard events would be very helpful in improving the existing features on Manifold.

These could include but are not limited to:

• Selecting multiple glyphs by pressing the Ctrl/Command key (Design Issue 5.2).

This would provide the functionality of grouping arbitrary glyphs, not just the

one’s selected by drawing the rubber-band object.

• Glyph scaling by using ‘Ctrl’ + ‘+’ to increase the size and ‘Ctrl’ + ‘-’ to decrease

the size.

• Activating tools/property editors by using keyboard mnemonics (similar to the

menu items).

9.1.3 New Features

Although developing new features are left to the creativity and domain usefulness

of the application that will use Manifold. But we think that the following features would

be good to improve the overall functionality of Manifold.

9.1.3.1 Undo/Redo Features

The undo and redo features allows the user to undo/redo the last performed action.

These become even more important when one is using a graphical editor where

continuous manipulation is performed on the underlying objects, and the user may want

166

to revert back or forth on the last performed manipulation. Implementing the undo and

redo commands can be done by:

• Remembering the undoable edits

• Implementing the undo/redo commands

This looks very intuitive, however the way it should be implemented on Manifold

would require keeping them separate from the application logic. We know that

Manifold’s Controller supports two way communications from the presentation module

to the domain module. It provides support for event frame verbs to support the

communication and provides how Manifold communicates with the outside world.

The way I envision this feature to be implemented is through the Controller itself.

When the user performs an action commands like add node, delete node, and set

properties, these commands are send to the Controller which interprets these actions and

fires necessary events to provide the visual feedback to the user. Now when, the user

performs an action, if the developer wants that the particular action should support

undo/redo commands, then he may create another action verb for the Controller that may

look like:

public static final String UNDO_ACTION = "undoAction";

The application logic may look like:

Hashtable slots_ = null;
slots_ = new Hashtable();
slots_.put(EventFrame.VERB, ControllerImpl.UNDO_ACTION);
slots_.put(EventFrame.NODE_ID, nodeId);

//editedSlot is the slot that has been edited
//it will contain the cached state of the glyph
//after performing certain actions
slots_.put(EventFrame.EDITED, editedSlot);
propertiesViewer.getController().sendAsyncEvent(new
EventFrame(slots_));

167

Here, when a user performs certain action on a glyph, an undoable event is also

sent to the Controller, meaning that the current action is possible to be reverted back to.

Now at the Controller only what is required is to maintain a mapping of the current node

id and the associated events that occurred on it. What I mean is that there should be

implementation of the following kind:

protected UndoManager undo = new UndoManager();
undo.addEdit(e.getEdit());
undoAction.updateUndoState();
redoAction.updateRedoState();

Here, when the Controller detects an undoable event, it creates an undo manager

class that could contain methods like adding the current slot to the mapping, and updating

the current undo/redo states. Keeping a mapping of these states, it would be possible to

query the mapping table at any point and get the corresponding glyph state at a particular

level of the mapping. One such implementation using the Command design pattern is

discussed at [66].

9.1.3.2 New Glyph Types

Manifold supports geometric glyph types like Line and Rectangle. We think it

would be a nice idea to implement more geometric glyph types such as Arc, Quadric

Curve, Cubic Curve, and Arbitrary shapes (these would be very beneficial for the Map

Viewer where visualized objects could be arbitrary). These are discussed at [67, 68] and

would be relatively easy to implement as all the necessary classes have already been laid

out, and these new classes would simply extend to GeometricFigure (package

168

manifold.impl2D) and would implement the type related geometric semantics by

overriding the draw() method.

169

References

1. HCI: Human Computer Interaction, Online at:
http://www.hci.iastate.edu/

2. Wikipedia: User Interface, Online at:
http://en.wikipedia.org/wiki/User_interface

3. Wikipedia: Graphical User Interface, Online at:
http://en.wikipedia.org/wiki/Graphical_user_interface

4. I. Marsic, Manifold User Interface Framework, Technical Report, Rutgers University,
NJ, 2005.

5. I. Marsic, An architecture for heterogeneous groupware application, Proceedings of
the 23rd IEEE/ACM International Conference on Software Engineering (ICSE 2001),
Toronto, Canada, pp. 475-484, May, 2001.

6. F.Flippo, A.Krebs and I.Marsic, A framework for rapid development of multimodal

interfaces, Proceedings of the 5th International Conference on Multimodal Interfaces
(ICMI 2003), Vancouver, B.C., Canada, pp. 109-116, November 2003.

7. B. B. Bederson, J. Grosjean, and J. Meyer, “Toolkit design for interactive structured
graphics,” IEEE Transactions on Software Engineering, vol. 30, no. 8, pp. 535-546,
August 2004.

8. Java Camp: Java Design Patterns, Online at:
http://www.javacamp.org/designPattern/

9. Microsoft Office Online: PowerPoint, Online at:
http://office.microsoft.com/en-us/powerpoint/default.aspx

10. Adobe: Adobe Photoshop, Online at:
http://www.adobe.com/products/photoshop/family/

11. R. Eckstein, “Creating Wizard Dialogs with Java Swing,” Copyright 1994-2005 Sun
Microsystems, Inc., February 10, 2005. Online at:
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html

http://www.hci.iastate.edu/�
http://en.wikipedia.org/wiki/User_interface�
http://en.wikipedia.org/wiki/Graphical_user_interface�
http://www.javacamp.org/designPattern/�
http://office.microsoft.com/en-us/powerpoint/default.aspx�
http://www.adobe.com/products/photoshop/family/�
http://java.sun.com/developer/technicalArticles/GUI/swing/wizard/index.html�

170

12. W3Schools, Introduction to XML, Online at:
http://www.w3schools.com/xml/xml_whatis.asp

13. W3Schools, SOAP Introduction, Online at:
http://www.w3schools.com/soap/soap_intro.asp

14. Adobe: Adobe Illustrator, Online at:
http://www.adobe.com/products/illustrator/

15. Sun Java Documentation: Image (Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Image.html

16. Sun Java Documentation: BufferedImage (Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/BufferedImage.html

17. Sun Java Documentation: Graphics(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Graphics.html

18. Sun Java Documentation: JOptionPane(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JOptionPane.html

19. Sun Java Documentation: JMenuBar(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenuBar.html

20. Sun Java Documentation: JMenu(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenu.html

21. Sun Java Documentation: JMenuItem(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenuItem.html

22. The Java Tutorials: How to Use Menus, Online at:
http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html

23. Sun Java Documentation: JFrame(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JFrame.html

24. Sun Java Documentation: JTable(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JTable.html

25. The Java Tutorials: How to use Tables, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/components/table.html

26. Sun Java Documentation: TableModelListener(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/event/TableModelListener.html

http://www.w3schools.com/xml/xml_whatis.asp�
http://www.w3schools.com/soap/soap_intro.asp�
http://www.adobe.com/products/illustrator/�
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Image.html�
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/image/BufferedImage.html�
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/Graphics.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JOptionPane.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenuBar.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenu.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JMenuItem.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/menu.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JFrame.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JTable.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/table.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/event/TableModelListener.html�

171

27. Sun Java Documentation: JComponent(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JComponent.html

28. Sun Java Documentation: JPanel(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JPanel.html

29. Sun Java Documentation: JLabel(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JLabel.html

30. Sun Java Documentation: Hashtable(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Hashtable.html

31. The Java Tutorials: How to write an Action Listener, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/events/actionlistener.html

32. The Java Tutorials: How to write a Change Listener, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/events/changelistener.html

33. Sun Java Documentation: JTextField(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JTextField.html

34. Sun Java Documentation: JButton(Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JButton.html

35. The Java Tutorials: How to use Combo Boxes, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/components/combobox.html

36. The Java Tutorials: How to use Spinners, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/components/spinner.html

37. Sun Java Documentation: GraphicsEnvironment(Java 2 Platform SE v1.4.2), Online

at:
http://72.5.124.55/j2se/1.4.2/docs/api/java/awt/GraphicsEnvironment.html

38. Sun Java Documentation: SpinnerNumberModel(Java 2 Platform SE v1.4.2), Online
at:
http://72.5.124.55/j2se/1.4.2/docs/api/javax/swing/SpinnerNumberModel.html

39. Sun Java Documentation: NumberFormatException(Java 2 Platform SE v1.4.2),
Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/NumberFormatException.html

40. The Java Tutorials: How to use File Choosers, Online At:
http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html

41. Wikipedia: Pattern Recognition, Online at:

http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JComponent.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JPanel.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JLabel.html�
http://java.sun.com/j2se/1.4.2/docs/api/java/util/Hashtable.html�
http://java.sun.com/docs/books/tutorial/uiswing/events/actionlistener.html�
http://java.sun.com/docs/books/tutorial/uiswing/events/changelistener.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JTextField.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JButton.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/combobox.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/spinner.html�
http://72.5.124.55/j2se/1.4.2/docs/api/java/awt/GraphicsEnvironment.html�
http://72.5.124.55/j2se/1.4.2/docs/api/javax/swing/SpinnerNumberModel.html�
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/NumberFormatException.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html�

172

http://en.wikipedia.org/wiki/Pattern_recognition

42. Wikipedia: Speech Recognition, Online at:
http://en.wikipedia.org/wiki/Speech_recognition

43. Java Speech API Programmer’s Guide: Speech Recognition, Online at:
http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-
guide/Recognition.html

44. MSDN Documentation: Noise Words, Online at:
http://msdn.microsoft.com/en-us/library/ms693206(VS.85).aspx

45. H.C. Andrews, Introduction to Mathematical Techniques in Pattern Recognition,
Wiley-Interscience, a Division of John Wiley & Sons Inc., New York, 1972.

46. S. Theodoridis, K. Koutroumbas, Pattern Recognition, Third Edition, Elsevier (USA),
2006

47. N.A. Campbell, “Shrunken Estimators in Discriminant and Canonical Variate

Analysis”, Applied Statistics, Vol. 29, No. 1, pp. 5-14, 1980

48. R.P.W. Dubi and E.Backer, “Discriminant analysis in a non-probabilistic context
based on fuzzy labels”, in Pattern Recognition and Artificial Intelligence, Edited by
Gelsema, E.S. and Kanal, L.N., Elsevier Science Publishers B.V., pp 229-235, 1988.

49. T. Joachims, “Making large-scale SVM learning practical”, in Scholkopf, B., Burges,
C.J.C. and Smola, A.J., editors, Advances in Kernel Methods – Support Vector
Learning, MIT Press, Cambridge, USA, 1998.

50. JSON (Java Script Object Notation): JSON in Java, Online at:

http://www.json.org/java/

51. Sun Java Documentation: XMLDecoder (Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/beans/XMLDecoder.html

52. Java.net: Building Maps into Your Swing Application with the JXMapViewer, Online
at:
http://today.java.net/pub/a/today/2007/10/30/building-maps-into-swing-app-with-
jxmapviewer.html.

53. The Java Tutorials: How to Use Layered Panes, Online at:
http://java.sun.com/docs/books/tutorial/uiswing/components/layeredpane.html

54. Sun Java Documentation: JToggleButton (Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JToggleButton.html

http://en.wikipedia.org/wiki/Pattern_recognition�
http://en.wikipedia.org/wiki/Speech_recognition�
http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-guide/Recognition.html�
http://java.sun.com/products/java-media/speech/forDevelopers/jsapi-guide/Recognition.html�
http://msdn.microsoft.com/en-us/library/ms693206(VS.85).aspx�
http://www.json.org/java/�
http://java.sun.com/j2se/1.4.2/docs/api/java/beans/XMLDecoder.html�
http://today.java.net/pub/a/today/2007/10/30/building-maps-into-swing-app-with-jxmapviewer.html�
http://today.java.net/pub/a/today/2007/10/30/building-maps-into-swing-app-with-jxmapviewer.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/layeredpane.html�
http://java.sun.com/j2se/1.4.2/docs/api/javax/swing/JToggleButton.html�

173

55. Swing Labs: Java Desktop Technology, Online at:
http://swinglabs.org/

56. Wikipedia: Glyph, Online at:
http://en.wikipedia.org/wiki/Glyph

57. E. Gamma et al, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley Longman, Inc, Reading, MA, 1995.

58. J.M., Vlissides, UniDraw: A framework for building domain-specific graphical
editors. [ed.] T. Lewis. Object-Oriented Application Frameworks. Greenwich, CT :
Manning Publications, Co., 10, pp. 239-290, 1995.

59. S. Churchill, Structured graphics in Fresco, C++ Report, pp. 61-68. 3, March/April
1995.

60. Java.net: Mapping Mashups with the JXMapViewer, Online at:
http://today.java.net/pub/a/today/2007/11/13/mapping-mashups-with-
jxmapviewer.html

61. G. Krasner and S. Pope, “A cookbook for using the model-view-controller user
interface paradignm in Smalltalk-80”, Journal of Object-Oriented Programming,
vol.1, no.3, pp.26-49, August/September 1988.

62. C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd edition, Prentice Hall PTR,
Upper Saddle River, NJ, 2005.

63. Sun Developer Network (SDN): Developer Resources for Java Technology, Online

at:
http://java.sun.com/

64. MIT-AI Laboratory Memo 306, June 1974: FRAMES, A Framework for
Representing Knowlegde, Online at:
http://web.media.mit.edu/~minsky/papers/Frames/frames.html

65. The Java Tutorials: How to Use Tabbed Panes, Online at:
http://java.sun.com/docs/books/tutorial/uiswing/components/tabbedpane.html

66. JAVAWORLD: Add an undo.redo function to your Java apps with Swing, Online at:
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-undoredo.html

67. The Java Tutorials: Drawing Geometric Primitives, Online at:
http://java.sun.com/docs/books/tutorial/2d/geometry/primitives.html

http://swinglabs.org/�
http://en.wikipedia.org/wiki/Glyph�
http://today.java.net/pub/a/today/2007/11/13/mapping-mashups-with-jxmapviewer.html�
http://today.java.net/pub/a/today/2007/11/13/mapping-mashups-with-jxmapviewer.html�
http://java.sun.com/�
http://web.media.mit.edu/~minsky/papers/Frames/frames.html�
http://java.sun.com/docs/books/tutorial/uiswing/components/tabbedpane.html�
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-undoredo.html�
http://java.sun.com/docs/books/tutorial/2d/geometry/primitives.html�

174

68. The Java Tutorials: Drawing Arbitrary Shapes, Online at:
http://java.sun.com/docs/books/tutorial/2d/geometry/arbitrary.html

69. Wikipedia: Cyclomatic Complexity, Online at:
http://en.wikipedia.org/wiki/Cyclomatic_complexity

70. Sangwan R.S., Vercellone-Smith P, Laplante P.A., “Structural Epochs in the
Complexity of Software over Time”, Software, IEEE, vol.25, issue.4, pp.66-73, 2008.

71. Java.net, JAX-WS Reference Implementation, Online at:
https://jax-ws.dev.java.net/

72. Sun Java Documentation: AffineTransform (Java 2 Platform SE v1.4.2), Online at:
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/geom/AffineTransform.html

73. B. Shneiderman, “The limits of speech recognition,” Communications of the ACM,
vol. 43, no.9, pp. 63-65, September 2000.

74. B. Shneiderman, Leonardo’s Laptop: Human Needs and the New Computing
Technologies, The MIT Press, Cambridge, MA, 2002.

75. Sphix-4: A speech recogniser written entirely in the Java(TM) programming
language, Online at:
http://cmusphinx.sourceforge.net/sphinx4/

76. A. Shaikh, S. Juth, A. Medl, I. Marsic, C. Kulikowski, and J. Flanagan, “An
architecture for multimodal information fusion,” Proceedings of the ACM Workshop
on Perceptual User Interfaces (PUI '97), pp. 91-93, Banff, Alberta, Canada, October
1997.

77. Sun Java Documentation: JDesktopPane (Java 2 Platform SE v1.4.2), Online at:
http://download.oracle.com/javase/1.4.2/docs/api/javax/swing/JDesktopPane.html

78. Sidhanti, R. 2009. Enhancements of the generic Manifold user interface, New Jersey.
Masters Thesis, Rutgers University, New Brunswick. 43 p.

79. Wikipedia: Parsing, Online at:
http://en.wikipedia.org/wiki/Parsing

80. Python Programming Language – Official Website, Online at:
http://www.python.org/

81. alphaWorks: Structural Analysis for Java, Online at:
http://www.alphaworks.ibm.com/tech/sa4j

http://java.sun.com/docs/books/tutorial/2d/geometry/arbitrary.html�
http://en.wikipedia.org/wiki/Cyclomatic_complexity�
https://jax-ws.dev.java.net/�
http://java.sun.com/j2se/1.4.2/docs/api/java/awt/geom/AffineTransform.html�
http://cmusphinx.sourceforge.net/sphinx4/�
http://download.oracle.com/javase/1.4.2/docs/api/javax/swing/JDesktopPane.html�
http://en.wikipedia.org/wiki/Parsing�
http://www.python.org/�
http://www.alphaworks.ibm.com/tech/sa4j�

175

82. CyVis: Software Complexity Visualizer, Online at:
http://cyvis.sourceforge.net/

83. Headway Software: XS – A measure of Structural Over-Complexity
http://www.headwaysoftware.com/products/structure101/XS-
MeasurementFramework.pdf

84. Spike Developer Zone: Measuring Code Complexity Metrics, Online at:
http://developer.spikesource.com/wiki/index.php/Measuring_Code_Complexity_Metr
ics

85. CyVis: What is Cyclomatic Complexity, Online at:
http://cyvis.sourceforge.net/cyclomatic_complexity.html

86. S. Valverde, R. Ferrer Cancho, and R. V. Solé, “Scale-free networks from optimal
design,” Europhysics Letters, vol. 60, no. 4, pp. 512-517, November 2002. Online at:
http://www.santafe.edu/media/workingpapers/02-04-019.pdf

87. Wikipedia: JSON-RPC, Online at:
http://en.wikipedia.org/wiki/JSON-RPC

88. SourceForge: Girders, Online at:
http://sourceforge.net/projects/girders/

89. SourceForge: Strandz, Online at:
http://sourceforge.net/projects/strandz/

http://cyvis.sourceforge.net/�
http://www.headwaysoftware.com/products/structure101/XS-MeasurementFramework.pdf�
http://www.headwaysoftware.com/products/structure101/XS-MeasurementFramework.pdf�
http://developer.spikesource.com/wiki/index.php/Measuring_Code_Complexity_Metrics�
http://developer.spikesource.com/wiki/index.php/Measuring_Code_Complexity_Metrics�
http://cyvis.sourceforge.net/cyclomatic_complexity.html�
http://www.santafe.edu/media/workingpapers/02-04-019.pdf�
http://en.wikipedia.org/wiki/JSON-RPC�
http://sourceforge.net/projects/girders/�
http://sourceforge.net/projects/strandz/�

	Introduction
	Manifold Core Framework
	Model
	Controller
	View

	Manifold User Interface
	Brief Introduction to my work
	Developing Backend Applications
	New Features and Enhancements
	Multimodal Interaction Techniques
	Glyphs and Tools
	Menu Bar
	Property Editors

	Thesis Organization

	Manifold Core Framework
	Introduction
	Model
	Manifold Glyph Design

	View
	Controller
	Manipulator
	Controller Communication

	Developing Backend Applications
	Introduction
	Communication Protocols
	Information Exchange: Formats
	Information Exchange: Medium

	Example Application: Pattern Recognition
	Introduction: Pattern Recognition
	Design: Pattern Recognition
	Data Flow in Pattern Recognition System
	Unknown Object for Pattern Recognition System
	Feature Analysis: Parameter Extraction
	Feature Analysis: Feature Extraction
	Pattern Classification
	Rendering on Manifold

	Enhancements and Multimodal Interaction Techniques
	Introduction
	New Features and Enhancements
	Editing Multiple Glyphs
	Poly Glyph
	Glyph Selection
	Manifold Configuration
	Correcting Bounding Shapes

	Multimodal Interaction Techniques
	Text Recognition
	Design: Text Recognition
	Implementation: Text Recognition
	Rendering Text Recognition Output on Manifold
	Speech Recognition
	Speech Recognition Application in Manifold

	Glyphs and Tools
	Introduction: Tools, Manipulators and Controller
	Glyphs and Viewers
	Previously Non-Functional Glyphs and Tools
	Text Glyph
	Zoomer

	New Glyphs and Tools
	Image Glyph
	Grouper
	Design: Grouper Tool
	Interpreting Grouped Glyphs
	Un-Grouper
	Pinner

	Menu Bar
	Introduction
	Design: Menu Bar
	File Menu
	New Workspace Menu Item
	Open Document Menu Item
	Save Selection(s) Menu Item
	Save Document Menu Item

	Edit Menu
	Select All Menu Item
	Select None Menu Item

	View Menu
	Full Screen Menu Item
	Minimize Menu Item
	Map Viewer Menu Item
	Design: Map Viewer

	Insert Menu
	Geometric Figure Menu
	Rectangle Menu Item
	Ellipse Menu Item
	Line Menu Item
	Image Menu Item
	Custom Glyph Menu Item
	Smart Art Menu Item

	Property Editors
	Introduction
	Design: Property Editor
	New Property Editors
	Text Editor
	Font Editor
	Image Editor

	Complexity and Performance
	Design Complexity
	Structural Analysis
	Excessive Structural Complexity
	Code Analysis

	Performance
	Application Loading Time
	Performance: Glyph Saving
	Performance: Saved Glyph Retrieval
	Performance: Grouper Tool
	Performance: Custom Glyph Insertion

	Discussion and Future Work
	Future Work
	New Workspace
	Keyboard Listeners
	New Features
	Undo/Redo Features
	New Glyph Types

	References

