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Travel behavior lies at the core of analysis and evaluation of transportation related 

measures aiming to improve urban mobility, environmental quality and a wide variety of 

social objectives. A better understanding of travel behavior will improve travel demand 

forecasting and the assessment of emerging transport policies, and will improve our 

means to increase road safety. 

The day-to-day models reflect the travelers’ learning and forecasting mechanisms. 

These models predict travelers’ choices for any given day based on their experienced 

choices in the previous days. Day-to-day approaches allow the use of wide range of 

behavioral rules, and levels of aggregation, and capture the heterogeneity in users’ 

learning and adaptation processes, and behavioral characteristics.  
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This thesis aims to develop a novel framework to model the interdependence 

between travelers’ choice decisions, learning and adaptation behavior and the day-to-day 

update mechanism of traffic flows. The novelty of this thesis is that the proposed 

approach combines traveler heterogeneity and rationality in a single framework to predict 

travelers’ day-to-day departure time and route decisions, and develops a novel day-to-day 

dynamic traffic assignment approach. The empirical results obtained from real 

transportation network, New Jersey Turnpike, confirm that the proposed day-to-day 

learning and dynamic traffic assignment framework model can successfully capture the 

significant learning dynamics, demonstrating the possibility of developing a 

psychological framework (i.e., learning models) as a viable approach to represent travel 

behavior. 

The other contributions of this thesis include a novel route choice set generation 

approach based on stochastic integer programming approach. The proposed methodology 

takes into account travel time variability and reliability in the transportation network. The 

path relevance criteria are directly incorporated into the optimization model by 

minimizing mean travel time, travel time variability and path overlap. Unlike previous 

approaches in the literature, proposed methodology eliminates the filtering step from the 

choice set generation and generates paths sets at desired dissimilarity level while 

minimizing the travel time and variability of these paths. Several case studies show the 

applicability of the proposed methodology on real transportation networks.  
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CHAPTER 1. I�TRODUCTIO� 

1.1 Background 

Demand for highway travel in the Unites States continues to increase as 

population grows, especially in metropolitan areas. The Texas Transportation Institute 

estimated that, in 2005, 4.2 billion vehicle hours of delay were experienced throughout 

the country, resulting in 2.9 gallons in wasted fuel and a congestion cost of $78.2 billion 

(Schrank and Lomax, 2007). Many trips are delayed both because of the excess demand 

of travel changing from day-to-day, week-to-week, or season-to-season, and by events 

that are irregular, but frequent. Crashes, vehicle breakdowns, improperly timed traffic 

signals, special events, work zones, and adverse weather conditions are some of the 

factors that cause variety of congestion problems. 

In the last years, travel has increased 105 percent in big metropolitan areas while 

road capacity on freeways and major streets has grown by only 45 percent (Schrank and 

Lomax, 2007). Moreover, in many urban areas, land scarcity and environmental 

constraints limit construction of new roads or expansion of existing ones even if funds 

were available. 

As a result, the importance of better management of the road network to 

efficiently utilize existing capacity is increasing. Addressing the congestion problem can 

provide substantial benefits and improvements in many sectors of society and the 

economy.  
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The decades of transportation research and practice have emphasized that 

effectiveness of any congestion management policy is predicated on the ability to elicit 

behavioral responses from the users of the transportation system. Understanding and 

modeling travel behavior in a variety of situations is crucial for successful management 

of transportation systems.  

Travel behavior lies at the core of analysis and evaluation of transportation related 

measures aiming to improve urban mobility, environmental quality and a wide variety of 

social objectives. A better understanding of travel behavior will improve travel demand 

forecasting and the assessment of emerging transport policies, and will improve our 

means to increase road safety. 

Modeling traveler behavior can be distinguished according to following 

dimensions: static versus dynamic, deterministic versus stochastic, and equilibrium based 

versus non-equilibrium based.  

Static type models assume steady state network conditions. Link volumes are 

time-invariant, the time to traverse a link depends only on the number of vehicles on that 

link, and the vehicle queues are stacked vertically and do not traverse to the upstream 

links in the networks. In contrast, dynamic models consider the influence of what has 

happened in the previous period on what happens in the current period, and the influence 

on what will happen in the next period of time.  

In deterministic models, travelers are assumed to be rational, exploring each 

alternative’s relevant attributes and trading off the utilities derived from them. The 

decision strategy serves to generate a choice from a choice set for the alternative that 
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provides the individual with the maximum utility (minimum travel time). The stochastic 

models, on the other hand, are based on imperfect or perceived knowledge, and random 

utility component is introduced to the modeling process. Kahneman and Tversky (1979) 

found that people do not necessarily maximize expected utility, but have a perception of 

probability of a certain outcome and the value of that outcome. Moreover, Trevesky and 

Kahneman (1981) showed that people exhibit risk behavior which is dependent on the 

way the decision is framed.  

Each travel behavior model is based on either equilibrium or non-equilibrium 

state. In equilibrium transport models, flows are pushed towards the equilibrium by route 

or departure time switching. As defined by Wardrop (1952) at equilibrium no traveler can 

experience a lower travel time by unilaterally changing routes. Each traveler minimizes 

his/her own travel time or cost. Wardrop’s principle states that all travelers are assigned 

to a shortest path between their corresponding O-D’s and that travel times and volumes 

are consistent with each other everywhere on the network.  

Classical equilibrium approaches assume rigid behavioral tendencies; categorize 

drivers into homogeneous classes via user equilibrium, system optimal or stochastic user-

equilibrium. Moreover, these models assume that the driver behavior classes are known 

deterministically a priori. The estimation of equilibrium is typically achieved through the 

solution of some optimization, or variational inequality problem, which makes the 

approach restrictive in terms of generalizations.  

Moreover, most route choice models in equilibrium approach assume that 

travelers choose the shortest route. However, travelers may “adopt some idea of 
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alternative perception and mental map that can reduce hundreds of possible alternatives 

to a limited number of real potentially available path alternatives that are actually faced 

by travelers” (Ridwan, 2003)  

In any event, realistic travel choice models should first identify relevant route 

choice sets available to travelers, and be able to integrate behavioral characteristics of the 

travelers into the models. This integration is one of the challenges in future travel 

behavior modeling. Unfortunately, with equilibrium approach, it is difficult to capture the 

heterogeneity in users’ behavioral characteristics. 

Non-equilibrium models (day-to-day models) aim to solve situations not in 

equilibrium. The behavioral dynamics in these models is based on the underlying belief, 

where the behavior on a given day is affected by the behavior on previous days.  

In the context of day-to-day dynamics it is highly expected that drivers’ 

knowledge and perception of the network performance will vary depending on their past 

experiences and personal attributes. Thus, assumptions on drivers’ perception in 

equilibrium network models are restrictive and unrealistic.  

In reality, the decision making process of traveler choice is a dynamic process. A 

learning process is central to the traveler’s cognition, as the information acquired through 

earlier travel experience affect the future decisions. Moreover, the characteristics of the 

traveler, subjective interpretation of the traffic information (if available), trip 

characteristics (time of day, trip purpose, etc), and uncertain traffic conditions have an 

importance in the traveler’s final decision. Repeated choices make the drivers better 
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aware of the travel options, inducing them to consider a destination, choose a route or try 

a new transportation mode. 

1.2 Motivation 

Day-to-day modeling becomes crucial while investigating the potential behavioral 

responses of travelers to major disturbances which have recently occurred in the 

transportation system. Some of these disturbances are: 

1. Introduction of congestion pricing 

2. Change in the implementation structure of an existing congestion pricing strategy 

3. Construction of new roads or other network components such as, major new 

interchanges / intersections 

4. Long term closure of roads due to a major change in the system  

 

Transportation networks of the New York (NY) and New Jersey (NJ) 

Metropolitan Area has experienced several major changes in the last few years. NJ 

Turnpike, a 148-mile toll road, is one of the major freeways in the State of NJ, which has 

experienced several significant policy changes during the last decade: 

• Starting from September 2000, E-ZPass technology (a form of electronic toll 

collection system) was introduced to the facility 

• In September 2000, New Jersey Turnpike Authority (NJTA) implemented the first 

stage of the time-of-day pricing application and increased the toll levels for cash 

users and peak E-ZPass users, while E-ZPass off-peak users continued to pay the 
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same toll amounts as in 1991. As part of this program, different toll levels were 

charged to users depending on time-of-day and vehicle type; such that, E-ZPass 

users started to pay discounted tolls during off-peak hours. Peak hour tolls are 

effective on weekdays from 7:00 to 9:00 a.m. and from 4:30 to 6:30 p.m., and on 

weekends, peak-hour tolls were effective throughout the day. 

• In January 2003, toll levels for each time period and vehicle type were increased 

as the second stage of the NJ Turnpike time-of-day pricing program.  

• In January 2006, discounts for E-ZPass peak users were eliminated, and E-ZPass 

peak users started to pay the same amount of toll as the cash users. 

• After nearly three years of construction, NJTA opened the $250 million Exit 15X 

on the Eastern Spur (just south of EXIT 16E) on December 1, 2005. The new 

interchange serves the new Secaucus Junction rail transfer station. The Turnpike 

Authority contributed an additional $84 million to develop the $450 million 

adjacent Allied Junction, which will have 3.5 million square feet of combined 

commercial and residential development, as well as up to 2,600 new parking 

spaces when the development is completed. Upon full development, Exit 15X is 

expected to handle 40,000 vehicles per day. 

 

Due to a major change in the transportation system, like the examples mentioned 

above, the network which was at equilibrium (slow-moving system) would be disrupted. 

Until, a new long-term equilibrium is reached, the users of the transportation system 

would adapt themselves to the newly imposed conditions. Thus, a transient period would 
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occur where the travelers learn the prevailing conditions of the disturbed transportation 

system (fast-moving system). These intermediate stages are important for evaluation of 

the transportation system, because the transportation system is expected to be in a 

disequilibrium state due to travelers’ gradual response to these unforeseen disruptions. 

The day-to-day models reflect the travelers’ learning and forecasting mechanisms. 

These models predict travelers’ choices for any given day based on their experienced 

choices in the previous days. Day-to-day approaches allow the use of wide range of 

behavioral rules, and levels of aggregation. 

Current day-to-day modeling approaches studied in the transportation area mainly 

focus on slow moving-systems, i.e. the systems with no disruptions. These methodologies 

usually aim to understand travel behavior learning under Advanced Traveler Information 

Systems (ATIS), and/ or travel time reliability. Moreover, instead of finding the learning 

parameters optimally, these studies impose constant values for the travelers’ behavior 

updating mechanism. Finally, most of these studies validate their models using either 

laboratory experiments or stated preference travel surveys.  

However, none of these studies investigated the travel behavior changes in 

response to real-world disruptions in the context of real transportation systems. 

Understanding travelers’ behavioral responses to the major system changes would help 

both researchers and policy makers in identifying expected impacts of future 

transportation management strategies. 

Thus, it is crucial to study the day-to-day dynamics of the transportation system; 

i.e. the variations occurring, day after day, on the flows and on the network performances 
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as a result of variations in the demand and/or supply, in order to provide both the 

researcher and the planner with more concrete and accurate answers.   

1.3 Problem Definition and Contributions 

This thesis aims to develop a framework to model the interdependence between 

travelers’ choice decisions, learning and adaptation behavior and the day-to-day update 

mechanism of traffic flows. The following flow chart summarizes the methodological 

steps considered in the proposed day-to-day modeling approach (Figure 1-1). 
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Figure 1-1 Flow chart for modeling the day-to-day learning dynamics 

 

Major contributions of this thesis are: 

1. Provide an analytical formulation for the path set selection to  minimize ad-hoc nature 

of current path selection procedures adopted in the literature. 

2. Propose SLA based learning model first proposed by Ozbay et al. (2001, 2002) by 

designing an agent-based learning system via Bayesian Inference theory. 
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3. Introduce novel estimation techniques to better capture user heterogenity and estimate 

the optimal learning parameters in a non-stationary environment. 

4. Use real-world case studies and scenarios to understand the strengths and weaknesses 

of the Bayesian-SLA based learning model and propose ways to improve it.  

5. Incorporate the proposed day-to-day learning framework into a network dynamic 

traffic assignment formulation to demonstrate user and network interaction. 

The above contributions will enable the transportation community to better 

understand following aspects of traffic modeling problems: 

1. Modeling travelers day-to-day behavior when disruptions are imposed to the system. 

2. Modeling travelers’ departure-time and route choice behavior on a given day; i.e. 

route choice set generation, the variables (other than travel time)  affecting travelers’ 

dynamic travel choice behavior  

3. Modeling travelers’ mechanism to update their perceptions based on their experience 

with the transportation system; i.e. the criteria involved in travelers’ day-to-day 

learning behavior 

4. Analyze the convergence propoerties required for the system to reach to the new 

slow-moving system (long-term equilibrium). 

1.3.1 Application Area 

The proposed day-to-day learning model will be estimated and tested using the 

empirical data obtained from NJ Turnpike. The system disruptions included in the 

estimation process are: 
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1. Toll increase in January 2003 

2. Elimination of discounts for peak-period E-ZPass users in January 2006 

3. Opening of exit location 15X in December 2005.  

 

NJ Turnpike is a 148 mile-toll road extending from the Delaware Memorial Bridge 

in the South of New Jersey to George Washington Bridge in New York City. A schematic 

of the NJ Turnpike and the surrounding transportation network is shown in Figure 1-2.  

 

 

Figure 1-2 Map of NJ Turnpike (Ozbay et al., 2005) 

 

Since its completion in 1952, NJ Turnpike has played a key role in facilitating the 

economic development of the State of New Jersey, its neighboring municipalities, and the 

entire mid-Atlantic region.  
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Currently, the road has 28 interchanges, commonly referred to as exits, with an 

average daily traffic that exceeds 700,000 vehicles. To minimize queuing delays, NJ 

Turnpike has minimal number of toll plazas over its 148 miles and the toll plazas are 

located at the exits. The interchanges connect to NJ’s major highways and vast 

transportation network, institutions, and economic hubs. 

While testing and validating the proposed day-to-day learning framework two 

types of datasets are considered.  

First dataset covers the traffic data which include real world vehicle-by-vehicle 

traffic and travel time data observed from passenger cars with toll tags. The traffic data 

available for NJ Turnpike include vehicle-by-vehicle information regarding O-D 

locations, tolls paid and observed travel times of each E-ZPass vehicle, for each time-of-

day and day of the week from October 2002 to March 2003 and from December 2005 to 

December 2006. Since exit location 15X have been operating since December 1, 2005, 

the vehicle-by-vehicle data for this specific exit are not available before December 2005. 

The travel time data include mean and standard deviations of the travel times observed 

for the corresponding time period. During estimation process, weekends and holidays 

were excluded from the database. For each month approximately 15 days were 

considered. Preliminary analysis of the response of travelers to disturbed conditions (toll 

increase on January 2003) can be found in a study by Ozbay et al. (2006). The results of 

this analysis revealed that travelers do not choose their travel choices solely based on toll 

differentials, but travelers’ individual preferences affect their travel behavior.   
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The second dataset covers the individual travel survey data which were used to 

estimate the utility functions and to provide information regarding users’ departure time 

choices and their socio-economic characteristics. The survey was conducted by the 

Eagleton Institute of Rutgers University (Ozbay et al. 2005). The data set contains 513 

observations, 483 (94.2%) of which are current regular users residing in NJ. The survey 

participants were asked in detail about their most recent trips in the am and pm peaks. 

The questions include origin, destination, toll, departure time, desired/actual arrival time 

of each trip, as well as the socio-economic characteristics such as; income, education, 

employment, age and gender. 

1.4 Thesis Outline 

The main consideration in this thesis is to provide a day-to-day learning 

framework to understand the travelers’ learning and adaptation behavior to the 

disruptions in the transportation system.  

Chapter 2 reviews the available methodologies used to model traveler (commuter) 

behavior. The literature review chapter is divided into three main categories: (a) route 

choice set generation methods; (b) static/dynamic, deterministic/stochastic network 

loading (traffic assignment) methods; and (c) day-to-day learning methods.  

Chapter 3 presents a novel path choice set generation approach based on 

mathematical programming approach. Specifically a stochastic integer programming 

model is proposed, where the relevant route choice set is determined via minimizing 

travel time, travel time variability, and path overlap. 
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Chapter 4 introduces a new novel day-to-day learning framework to model 

travelers’ departure time and route choice behavior under non-equilibrium network 

conditions due to major disturbances, such as changes in the congestion pricing policies, 

and building of new road sections. An agent-based learning system via Bayesian-SLA is 

designed which can learn the best possible actions and model travelers’ day-to-day travel 

choices in a non-stationary stochastic environment. The developed learning framework 

reflects travelers’ perception about the system and their response to the experienced 

traffic conditions. Then the proposed day-to-day learning framework was tested and 

verified using extensive vehicle-by-vehicle real traffic data obtained from NJ Turnpike, 

to understand the traveler responses to real changes in the transportation system. In 

particular, two different major disruptions are considered; January 2003 toll increase and 

December 2005 15X Interchange installation. 

Chapter 5 develops a day-to-day dynamic traffic assignment methodology to 

capture dynamic traffic flow evolution and network-level interactions of driver departure 

time and route choice decisions. The approach uses microscopic simulation to model the 

behavior of drivers on the demand side, and uses macroscopic simulation to obtain 

system variables such as link travel time, volume and density. Bayesian-SLA framework 

developed in Chapter 4 is used to model day-to-day update mechanism of the 

transportation network.  

Chapter 6 summarizes the conclusions and future work.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews the available methodologies related to modeling travel 

behavior. The literature review chapter is divided into three main categories: (a) path 

choice set generation methods; (b) static/dynamic, deterministic/stochastic network 

loading (traffic assignment) methods; and (c) day-to-day learning methods. 

2.1 Path Choice Set Generation Approaches 

Identification of fully or partially disjoint paths between origin and destination 

(OD) pairs has been at the heart of general network problems for decades. In most of the 

transportation related problems, such as traffic assignment, route choice, vehicle 

dispatching, or advanced traveler information systems, the initial step is to generate a 

relevant path choice set.  In fact, correctness and accuracy of travel demand estimates and 

predictions depend on the quality of the adopted choice sets (Swait and Ben-Akiva, 1985, 

1987; VanderWaerden et al., 2004). However, in dense networks, the universal set of all 

available path sets between an OD pair is usually very large (Bovy, 2007).  

To correctly predict path flows, the adopted method to generate a path subset 

should consider all relevant alternatives which may attract travelers. The generated set 

should exclude unrealistic paths that no traveler would ever consider, and highly similar 

paths that no traveler would ever differentiate between (Prato and Bekhor, 2006). 

Moreover, most of the time travelers have limited awareness about all the alternatives, 

and will not always consider all known alternatives to be actual travel options due to 

several constraints influenced by their travel preferences and travel experiences. Bliemer 
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and Bovy (2008) defined the relevant path sets as the paths that would be chosen by most 

of the travelers due to their characteristics, such as travel time, distance, or cost. The 

authors investigated the impact of path choice set size and composition on the prediction 

quality of route choice models, and emphasized that it is crucial to create path choice sets 

consisting of relevant alternatives only, excluding the irrelevant paths that may cause 

problems due to path overlap. 

Several different approaches to generate path sets have been adopted in the 

literature. Generation approaches can be a deterministic or a randomization method. 

While most of these approaches propose heuristics, there are some studies in the literature 

which develop mathematical programming models to tackle with path set generation. The 

proposed approaches can be grouped in five categories: 

1. Labeling algorithms 

2. K-Shortest path algorithms 

3. Branch-and-bound algorithms 

4. Randomization methods 

5. Mathematical programming models 

Figure 2-1 summarizes the studies proposing different methods to generate route 

choice sets. 
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Figure 2-1 Summary of different route-choice set generation algorithms 

2.1.1 Labeling Algorithms 

The largest group of deterministic generation methods is based on labeling 

algorithms. In this approach, shortest paths are successively generated by changing one or 

more of the input variables such as the search criterion, link attributes, and constraints. 

The generation function is the path search criterion (travel time, distance, etc.), which is 

strongly preference driven. This approach was first proposed by Ben-Akiva et al. (1984). 

More recently, Dial (2000) generalized the labeling method by constructing a set of 
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efficient paths by minimizing a linear combination of label costs. These methods generate 

a selective set, such that not all potentially relevant routes are generated. Thus, the 

generated choice sets highly depend on the objective function chosen by the analyst.  

2.1.2 K-Shortest Path Algorithms 

K-shortest path algorithms are generalizations of shortest path algorithms to 

generate path sets. Several different approaches to generate path sets via exact k-shortest 

path algorithms have been adopted in the literature including computer science, 

operations research and engineering (Dreyfus, 1969; Shier, 1979; Ziliaskopoulos, 1994). 

These algorithms are generally extensions of the label-setting and label-correcting 

approaches used to determine a single shortest path, such as Dijkstra’s Algorithm. The 

best result known to-date is an algorithm by Yen (1971, 1972) (generalized by Lawler 

(1972) to provide a uniform framework for solving additional problems). Eppstein (1998) 

provides an excellent review of the different algorithms to find k-shortest paths. More 

recently, Katoh et al. (1982), Hershberger and Suri (2001), Van der Zijp and Fiorenzo-

Catalano (2005) and Hershberger et al. (2007) computationally improved Yen’s 

algorithm.   

In the transportation field, under the assumption of deterministic user equilibrium 

Bar-Gera (2006) and Bar-Gera and Boyce (2007) presented a method to identify the 

universal path choice set in a user-equilibrium traffic assignment solution. However, 

under stochastic conditions finding the path choice set is still a challenging research 

problem. Other approaches implemented to generate path sets can be based on 

deterministic or randomization methods. While most of these approaches are heuristic, 
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there are some studies in the literature which develop mathematical programming models 

to generate path sets. 

Heuristic solutions for k-shortest path algorithms are very common and can be 

categorized into two groups. The first group is based on the link-elimination techniques, 

where all or some of the links of the “shortest” path between a given origin and 

destination pair on the network are removed to identify more paths. A review of this 

approach and inclusion of constraints such as overlap and detour can be found in Van der 

Zijp and Fiorenzo-Catalano (2005). Azevedo et al. (1993) described an algorithm where 

all the links on the shortest path are removed to find the next shortest path. One major 

drawback of removing all links is related to disconnecting centroid connectors and major 

junctions, which would result in a disconnected network and thus possible failure to find 

other paths between certain OD pairs. A variant to this approach is to eliminate individual 

links or a combination of links from the shortest path instead of removing all the links 

along the shortest path. Recently, Ozbay et al. (2007) proposed an algorithm based on 

constrained link elimination approach. In particular, after finding the first shortest path, 

several arcs on this path are eliminated randomly, and the next shortest path which 

satisfies the disjointness rate and travel time criteria is generated. This procedure is 

repeated until the desired number of paths is generated between each OD pair. However, 

even this approach does not guarantee network continuity. Thus, there are not any 

established methodologies in the literature to determine links to be removed from the 

original shortest path to increase the probability of finding paths between the selected OD 

pairs. The second group covers the link-penalty techniques, where instead of removing 
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the links along the shortest path; impedance on these links is increased. De la Barra et al. 

(1993) illustrated this approach by increasing the link impedances of the shortest path to 

calculate the next best path. Later, Park and Rilett (1997) modified this approach by not 

increasing the impedance of links within a certain distance from the origin or the 

destination. Scott et al. (1997) proposed an optimization problem to determine the rate of 

increase of the shortest path link impedances to generate the next shortest path that 

overlaps with the original shortest path by no more than a given number of links.  

One major drawback of the k-shortest path algorithms, even though the overlap 

rate between the next generated path and the first shortest path is controlled, there is no 

guarantee that the generated path will not be very similar to the paths other than the first 

shortest path. Moreover, since these methods are based on heuristic approaches, they do 

not guarantee optimality. Finally, in order to find k acceptable paths, the shortest path 

algorithm has to be run at least k times, increasing the complexity of these approaches 

compared with mathematical programming models.  

2.1.3 Branch-and-Bound Algorithms 

Branch-and-bound technique is another deterministic approach for generating an 

exhaustive master set of paths given a set of constraints. The generation function builds a 

tree between the origin and the destination of a trip by processing sequences of links 

according to a branching rule. Each sequence of links connecting the origin and the 

destination, and satisfying all the constraints is included in the choice set as a feasible 

alternative. In the transportation field, Friedrich et al. (2001) applied branch-and-bound 

technique in transit networks. Later, Hoogeboorn-Lanser (2005) used the same procedure 
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in multi-modal networks, while Prato and Bekhor (2006) adapted it in the route choice 

modeling by incorporating several constraints into the original algorithm. Inclusion of 

these constraints increased the complexity of the algorithm resulting in 40 hours of 

estimation time to generate path sets in a network with 419 nodes and 1 427 links. 

2.1.4 Randomization Methods 

Randomization methods develop heuristics by randomly selecting cost parameters 

and simulating large number of path decisions. Link properties of the network at hand are 

randomized around their measured values. Then, by successively generating new shortest 

paths, alternative paths are produced. Impedances are drawn from different probability 

distributions of these link properties whose parameters are determined based on the 

measured values. The selected probability distributions can be Gaussian, Gumbel, 

Poisson, etc. Ramming (2002) provides an overview of randomization based models. 

Fiorenzo-Catalano and Van der Zijpp (2001) implemented the Monte Carlo technique by 

gradually increasing the variance of the random components in the model to keep the new 

path finding frequency at constant rate. Later, Bovy and Fiorenzo-Catalano (2007) 

developed a doubly stochastic choice set generation approach. In this approach not only 

the link properties, but also the parameters of the generating function of travelers are 

simultaneously randomized, as well. Bekhor et al. (2006) developed randomization 

methods to generate path sets and compare the results with labeling and link-penalty 

methods. The authors stated that the randomization approach had a computational time 

close to those experienced by link elimination approaches, however the network coverage 

was observed to be less compared with labeling and link-penalty approaches. A typical 
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property of this approach, like the labeling methods, even with different cost values the 

same path may be found several times as the best one.   

Link elimination/penalty, labeling algorithms and simulation methods first 

generate an exhaustive base path set, called the master set. Then this master set is further 

filtered in order to establish relevant choice sets that will be used in the analysis. Thus, 

further constraints such as maximum detour, logical sequence of links by road type, or 

maximum overlap, etc. are applied to the master set. Prato et al. (2006), Bovy et al. 

(2007) and Fiorenzo-Catalano, S. (2007) developed filtering processes to remove the 

largely overlapping routes from the master set. The results showed that via filtering 

around 50% of the routes in the master set were removed due to these additional 

constraints.  

2.1.5 Mathematical Programming Methods 

Path set generation via integer programming has been studied by several 

researchers in the literature. Most of these studies focus on finding only one shortest path 

under additional constraints (e.g. capacity, travel time). A review of these studies can be 

found in Pallottino et al. (1998) and Santos et al. (2007). Since additional constraints 

result in an NP-hard, or NP-complete problem, several approaches are proposed to relax 

the constraint set, such as Lagrangian relaxation. Sherali et al. (1998) extended the 

original shortest path formulation to find the shortest pair of fully disjoint paths. In this 

formulation first a shortest path for an OD pair is found, then the arcs in the first shortest 

pair are flipped, and the second shortest path is found via binary integer programming. 

One major situation that can arise in this approach is that splitting of the initial shortest 
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path solution may eliminate the accessibility of some nodes, and might fail to identify a 

feasible solution to problem. Moreover, with this approach at most two paths can be 

generated for each OD pair.  

2.2 Traffic Assignment Approaches 

The dominant approach followed to capture the interaction between traveler 

choice and the network performance has been to solve an equilibrium assignment 

problem that can be any combination of static/dynamic and deterministic/stochastic 

models. Traffic assignment is concerned with the selection of routes between origins and 

destinations in transportation networks. The basic problem in traffic assignment is to find 

the link flows given the origin-destination (O-D) trip rates, the networks, and the link 

performance functions.  

In this approach, the only state of interest is the fixed point in which the system is 

at equilibrium, where individual travelers have no incentive to change their decisions. 

Travelers are assumed to be rational, exploring each alternative’s relevant attributes and 

trading off the utilities derived from them. The decision strategy serves to generate a 

choice from a choice set for the alternative that provides the individual with the 

maximum utility. 

Traffic assignment models can be classified into several major categories: static 

or dynamic, and deterministic or stochastic. Static assignment models assume that traffic 

is in a steady state, link volumes are time-invariant, the time to traverse a link depends 

only on the number of vehicles on that link, and that the vehicle queues are stacked 

vertically and do not traverse to the upstream links in the networks.  
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There are two different approaches for determining steady-state flows. The 

system optimal (SO) approach, which minimizes the total system travel time over the 

planning horizon, and the user equilibrium (UE) approach, which seeks user path 

assignments that satisfy the Wardropian UE condition. Since the focus in this thesis user 

equilibrium only studies related the UE is provided.  

Figure 2-2 summarizes the different models developed in traffic assignment and 

solution methods designed to solve these models. Similarly, Figure 2-3 and Figure 2-4 

depict the historical timeline of static and dynamic traffic assignment models.  
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Figure 2-2 Traffic assignment models 
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Figure 2-3 Historical timeline for Static Traffic Assignment 
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Figure 2-4 Historical timeline for Dynamic Traffic Assignment 
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2.3 Static Traffic Assignment 

2.3.1 Deterministic User Equilibrium 

The solution of the user equilibrium problem is based on the behavioral 

assumption that each traveler on the path that minimizes the travel time from origin to 

destination. This choice rule implies that at equilibrium the travel times on all used paths 

connecting any given O-D pair will be equal, and the travel time on all of these used 

paths will be less than or equal to the travel time on any of the unused paths (Sheffi, 

1985). This point is defined as the user-equilibrium (Wardrop, 1952); i.e. no traveler can 

experience a lower travel time by unilaterally changing routes. Each traveler minimizes 

his/her own travel time or cost. Wardrop’s principle states that all travelers are assigned 

to a shortest path between their corresponding O-D’s and that travel times and volumes 

are consistent with each other everywhere on the network. Later, Beckmann et al. (1956) 

formulated the UE problem as a mathematical program, and proved the equivalency, 

existence and uniqueness of the solution.  

The mathematical programming formulation of the UE problem can be presented 

as (Beckman et al., 1956): 

            min ���� = ∑ 
 ���������                              (2.1.a) 

subject to 

    ∑ ���� = ����               ∀�, �        (2.1.b) 

          ���� ≥ 0                 ∀�, �, �        (2.1.c) 

The definitional constraints 

    �� = ∑ ∑ ∑ ������,������    ∀         (2.1.d) 
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where; 

r: Origin index � ∈ ℛ 

s: Destination index � ∈ # 

a: Link index  ∈ $ 

k: Path index � ∈ %�� 

��: Flow on link a 

���: Trip rate between origin r and destination s 

����: Flow on path k connecting origin r and destination s 

��,��� = &1 (� )(*�   (�  + �� ,� + �ℎ � .,**/.�(*0 1 − 3 + (� � − �0 ,�ℎ/�(�/                                                                                          4 
���. �: Link performance (travel time function) on link a 

 

In this formulation, the objective function is the sum of integrals of the link 

performance functions. First constraint (2.1.b) represents the set of flow conservation 

constraints, stating that the flow on all paths connecting each O-D pair has to be equal to 

the O-D trip rate. The nonnegativity condition in equation (2.1.c) ensures that the solution 

of the program will be physically meaningful. And the definitional constraint (2.1.d) 

means that the flow on each link is the sum of the flows on all paths going through that 

link.   

For illustration purposes, consider the network depicted in Figure 2-5. This 

network includes two paths connecting origin r and destination s. The link performance 

functions for the two links are given by: 
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               �6 = 2 + �6                                  (2.2.a) 

    �9 = 1 + 2�9                  (2.2.b) 

 

The O-D flow, q, is 5 units of flow: 

     �6 + �9 = 5                    (2.2.c) 

 

 

Figure 2-5 User equilibrium example network 

 

    

The problem can be formulated mathematically as follows: 

min ���� = ; �2 + ���<

�
+ ; �1 + 2���=>?@�<

�
 

subject to 

�6 + �9 = 5 

�6, �9 ≥ 0 

This problem attains its minimum at �6∗ = 3 and �9∗ = 2. 
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2.3.2 Solution Approaches to Static User Equilibrium Problem 

Solution algorithms to user equilibrium problem can be categorized as link-based, 

path-based, and origin based.  

Link-based algorithms include heuristic and optimization approaches. Heuristic 

approaches include capacity restraint methods and incremental assignment techniques. In 

all these algorithms, the key step is the network loading mechanism; i.e. assignment of 

the O-D trip rates to the network for specific link travel times. The network loading 

mechanism used in all the algorithms assigns each O-D flow to the shortest travel time 

path connecting the corresponding O-D pair; i.e. all-or-nothing assignment. This 

assignment method does not recognize the dependence between flows and travel time; 

thus ignores the equilibrium problem all together (Sheffi, 1985).  

2.3.3 Link-based Approaches 

2.3.3.1 Capacity Restraint Method 

This method involves a repetitive all-or-nothing assignment in which the travel 

times resulting from the previous assignment are used in the current iteration. The initial 

algorithm does not converge. To remedy this situation, first instead of using the travel 

time obtained in the previous iteration for the new loading, a combination of the last two 

travel times obtained is used. Next, if the desired convergence is not obtained, the 

algorithm is terminated after a given number of iterations �. The steps of the capacity 

restraint algorithm are as follows: 
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Step 0: Initialization. Perform an all-or-nothing assignment based on ��� = ��� �. 

Obtain C���D. Set n=1. 

Step 1: Update. Set E�F = �����F@6�,   ∀  

Step 2: Smoothing. Set  ��F = 0.75��F@6 + E�F,   ∀  

Step 3: �etwork Loading. Perform all-or-nothing assignment based on travel 

times C��FD. This yields C��FD. 

Step 4: Stopping rule. If n=�, go to step 5. Otherwise, set n=n+1 and go to Step 

1. 

Step 5: Averaging. Set ��∗ = 6
H ∑ ��F@6IF>�    ∀  and stop. C��∗ D are the link flows at 

equilibrium.  

2.3.3.2 Incremental Assignment Method 

Incremental assignment method loads a portion of the O-D matrix at each 

iteration. The travel times are then updated and an additional portion of the O-D matrix is 

assigned onto the network. The main steps of the algorithm are as follows: 

Step 0: Preliminaries. Divide each O-D entry into � equal portions, i.e. ���F =
���/K. Set n=1 and  ��� = 0, ∀ . 

Step 1: Update. Set ��F = �����F@6�,   ∀  

Step 2: Incremental loading. Perform all-or-nothing assignment based on C��FD, 

but using only the trip rates ���F  for each O-D pair. This yields a flow pattern C�FD 

Step 3: Flow summation. ��F = ��F@6 + �F, ∀  



33 

 

 

 

Step 4: Stopping rule. If n=�, stop, the current set of link flows is the solution; 

otherwise, n=n+1 and go to Step 1. 

 

In conclusion, these heuristic methods either do not converge or produce a set of 

flows that is not in agreement with the UE criterion. Next subsection provides a way of 

solving the UE problem via convex combinations method 

2.3.3.3 Convex Combinations Method 

The Frank-Wolfe (FW) algorithm, also known as the convex combinations 

algorithm was originally developed by Frank and Wolfe (1956) as a procedure for 

solving quadratic programming problems with linear constraints. At each step the 

objective function is linearized and then a step is taken in a direction that reduces the 

objective while maintaining feasibility.  

The steps of the FW algorithm are as follows: 

Step 0: Initialization. Perform all-or-nothing assignment based on ��� = ��� � ∀ . 

Obtain C��6D. Set n=1. 

Step 1: Update. ��F = �����F�,   ∀  

Step 2: Direction finding. Perform all-or-nothing assignment based on C��FD. This 

yields a set of auxiliary flows CL�FD 

Step 3: Line search. Find MF that solves 

min�NON6 P ; �������QRO�S�Q@��Q�
T�

 

Step 4: Move. Set ��FR6 = ��F + MF�L�F − ��F�, ∀  
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Step 5: Convergence test. If the convergence criterion is met, stop the current set 

of link flows is the solution; otherwise, n=n+1 and go to Step 1. 

Different convergence criteria are proposed in the literature. Some of these 

criteria are: 

    ∑ UVWXQ @VWXQY<U
VWXQ�� ≤ [                   (2.3.a) 

    
\]∑ ��Q^<@��Q� _=

∑ ��Q� ≤ [′                     (2.3.b) 

where; 

a��F : Minimum path travel time between O-D pair r-s at the nth iteration. 

In solving the UE program over a large network via FW algorithm, each iteration 

requires a significant computational cost, due to time required to calculate shortest paths 

in the direction-finding step. Moreover, the convergence speed of this method is very 

slow. Many algorithms have been proposed to accelerate the speed of the search direction 

(LeBlanc et al., 1955; Fukushima, 1984; Lee et al., 2001), and to accelerate the step-size 

(Anders et al., 1985; Gao et al., 2004).  

All these algorithms can conveniently and efficiently solve the mathematical 

problem. However, these methods provide only link traffic flows. In order to obtain the 

route flows, one has to solve the equations associating all route flows with the link flows 

produced by them.   
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2.3.4 Path-based and Origin-based Approaches 

Path-based approaches aim to determine the route traffic flows directly. The main 

path-based algorithms are disaggregated simplicial decomposition algorithm (Larsson et 

al., 1992), gradient projection algorithm (Bertsekas et al., 1976; Jayakrishnan et al., 

1994), O-D based Frank-Wolfe algorithm (Chen et al., 2002), and conjugate gradient 

projection algorithm (Lee et al., 2003). The main drawback of these algorithms is that, 

subset of concerned routes has to be stored at each iteration. At the worst case the size of 

this subset will contain all possible routes of the network at hand.   

Origin-based algorithm proposed by Bar-Gera (2002) can provide both link and 

route traffic flows for the UE traffic assignment. However, similar to path-based 

approaches this algorithm is computationally expensive. In particular, it requires to 

enumerate all the routes in the subnetwork, and to determine the last common nodes of all 

routes. Hence there is no efficient algorithm to find the last common nodes of all routes 

of the network. 

2.4 Deterministic User Equilibrium Extensions 

The formulation of the UE problem summarized in previous section assumes that 

the demand between O-D pairs is fixed and known. However, in reality the demand may 

be influenced by the level of service on the network; e.g. congestion level (Sheffi, 1985). 

In order to consider variable demand, the fixed trip rate ��� between any O-D pair 

r-s can be assumed to be a function of travel time between r and s. Then;  
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    ��� = 3���a���     ∀�, �                         (2.4) 

where; 

3���. �: The demand function between r and s.  

 

Typically, the demand function would include O-D specific parameters, such as 

population size, income distribution, vehicle ownership, employment levels, or levels of 

service for different modes. In the following formulations it is assumed that 3���. � is 

inversely proportional with travel time.  

A straightforward change in the representation of the network can make it 

possible for the solution of the UE problem via FW convex combinations algorithm. This 

modification is defined as the zero-cost overflow formulation (Murchland, 1970; Dantzig 

et al., 1976). 

Consider the network depicted in Figure 2-6. The figure shows the modified 

network in which every O-D pair is augmented to include a “virtual” destination node r’ 

and a “zero-cost overflow link rr’ leading directly from the origin to the new virtual 

destination node.  
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Figure 2-6 The zero-cost overflow network representation 

 

 The performance curves for these new links are: 

                                                   ���b = −3��@6�. �   ∀�, �                    (2.5a) 

   ���b = 0  ∀�, �                       (2.5b) 

 

Assume now that a fixed number of trips �c�� as to be assigned between each O-D 

pair of the modified network. Then, the equivalent mathematical model for the UE 

problem with variable demand would be: 

     min ��d, e� = ∑ 
 ��������� +  ∑ 
 ���b����XWf��� + ∑ 
 ���b����WWf���b   (2.6a) 

subject to 

    ∑ ���� + ���b = �c���               ∀�, �                  (2.6b) 

          ���� ≥ 0                 ∀�, �, �          (2.6c) 

                                         ���b ≥ 0                 ∀�, �       (2.6d) 

 

In this formulation, ���b = −3��@6�. �,  ���b = ���, and ���b = 0. The excess 

demand, ���b = �c�� − ��� overflows onto the virtual link rr’. Consequently the problem 
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provided above is identical to the original UE formulation with fixed demand. Thus 

problem (2.6) can easily be solved via original FW convex combinations algorithm.  

Dafermos (1971, 1972) introduced the concept of multi user classes into traffic 

assignment. The author proposed that all classes should be assigned to the network in 

such a way that at equilibrium no one in any class would improve his/ her travel cost by 

unilaterally changing his/her route. This proposition is an extension to Wardrop’s single 

class UE principle. Later, Wynter (1995) proposed extensions and improvements to the 

theory of multiclass UE.  

UE with asymmetric cost-flow functions and elastic demand has been first 

formulated as a variational inequality (VI) problem by Smith (1979) and Dafermos 

(1980). 

The UE definition implies that travelers have full information about all possible 

routes, they consistently make the correct decisions regarding route choice, and all 

individuals are identical in their behavior (Sheffi, 1985). These assumptions can be 

relaxed by making a distinction between travel time that the travelers perceive and the 

actual travel time. The perceived travel time can be defined as a random variable 

distributed across the population of travelers. UE is then reached when no travelers 

believe that his/her travel time can be improved by unilaterally changing routes. This 

equilibrium point is defined as the stochastic user equilibrium (SUE) condition. Next 

section provides a detailed literature review of SUE models.  
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2.5 Stochastic User Equilibrium 

The deterministic traffic assignment assumes that travelers choose the minimum 

cost or travel time path from their origin to destination. Moreover, this approach assumes 

that travelers have full information about all possible routes, they consistently make the 

correct decisions regarding route choice, and all individuals are identical in their behavior 

(Sheffi, 1985). Stochastic user equilibrium (SUE) relaxes these assumptions by including 

a random component in travelers’ perception of travel time.  

SUE approach, first proposed by Daganzo and Sheffi (1977) generalizes the all-

or-nothing network loading mechanism via discrete choice models. To apply these 

models, the probability distribution function of the perceived travel time on each path has 

to be known to calculate the path choice probability. This requires determination of route 

choice sets connecting the O-D pairs. The review of different approaches and proposed 

model for the route choice set generation will be explained in the preceding sections. 

Depending on the followed route choice model, different SUE problem can be 

generated. In the literature, the most common models are logit and probit-based SUE 

solutions.  

2.5.1 Logit –based SUE formulation  

Logit based SUE modeling was first proposed by Fisk (1980). Summary of 

different logit-based algorithms can be found in a study by Mather (1998). 

In logit-based SUE formulation the utility of the k
th path between origin r and 

destination s, g���is: 
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    g��� = −h.��� + [���                         (2.7) 

where; 

.���: Measured travel cost  

h: Positive parameter  

[���: Random error term 

The probability of route choice is represented by; 

                                                           i��� = jYklmWX

∑ jYklnWX
n

   ∀�, ∀�, �                      (2.8) 

Logit based SUE can be formulated mathematically as follows (Fisk, 1980):  

 

        min o��� = 6
p  ∑ ∑ ����),0������,� + ∑ 
 ���������            (2.9a) 

subject to 

          ∑ ���� = ����               ∀�, �                    (2.9b) 

    ���� ≥ 0                 ∀�, �, �                       (2.9c) 

     �� = ∑ ∑ ������,�����,�    ∀                       (2.9d) 

 

An equivalent formulation is presented by Sheffi (1985): 

 

         min o��� = − ∑ ���qrmin�Cs���Dt�� ∑ ��������� − ∑ 
 ���������       (2.10) 

 

For the logit model, the satisfaction function becomes: 

   qrmin�Cs���Dt = − 6
p )* ∑ exp �−hs�����         (2.11) 
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For h < ∞ the objective function Z is strictly convex, hence equilibrium route 

flows are unique. The parameter h may be interpreted as a measure of travelers’ 

sensitivity to the route travel times, or the degree of information that is available to a 

traveler. In the limit when h → ∞ the UE solution is obtained. 

Since the number of routes is very large in general, most of the algorithms 

proposed for this problem have mainly been based on generating the optimal link flows 

instead of optimal route flows; i.e. paths are generated implicitly.  

Dial (1971) proposed a logit route choice model, where choice probabilities are 

not assigned to all paths connecting each O-D pair, but to a subset called “reasonable” 

paths. Dial’s method does not require path enumeration; instead it operates on the set of 

efficient paths which include only those links taking travelers away from their origins and 

to their destinations. However, in congested networks, since the efficiency of a path 

would depend on the level of service, stability problems with the iterative SUE 

assignment might rise (Bell, 1995). 

Recently, Russo et al. (2003) proposed an implicit algorithm through a 

specification of C-Logit choice model (Cascetta et al., 1996) based on the Dial structure 

(Dial, 1971). The modified algorithm avoids the IIA problem associated with logit 

models, by simulating the overlapping effect among alternative paths, and eliminates the 

explicit path enumeration.  

With the methodological improvements in route choice set generation models, 

path-based approaches, i.e. explicit path enumeration techniques were started to gain 

interest. In the Method of Successive Averages (MSA) (Wilde, 1964; Fisk, 1980; Sheffi 



42 

 

 

 

1985) link performance costs are simulated iteratively, and the resulting shortest route 

flows are weighted with the current flow solution. Since in MSA, efficient paths alter 

from iteration to iteration, it is not possible to guarantee convergence via this method. 

Cascetta et al. (1996, 1997) incorporated the labeling algorithm proposed by Ben-

Akiva et al. (1984) in solving the SUE problem. The authors proposed a C-logit 

formulation 

Later Bell et al. (1993) proposed an iterative balancing procedure embedded in 

the route generation scheme. Similarly, Huang (1995) developed the set of paths in a 

preliminary phase, where the paths found via Dial’s approach are combined with the ones 

obtained through standard UE. Larsson and Patriksson (1992) proposed a disaggregate 

simplicial decomposition algorithm to find the optimal route flows in SUE. Later, 

Damberg et al. (1996) improved this algorithm. The proposed approach approximately 

solves the SUE problem, given a subset of the complete set of routes. The summary of 

the steps of the proposed algorithm is as follows: 

Step 0: Initialization. Compute initial set of routes for all O-D pairs r-s, and the 

initial route flows C��D. Set n=0. 

Step 1: Restricted master problem phase. Set i=0, and �{| = �F. Repeat 

1. Compute route costs �.����| = .���]�{|_  ∀�, ∀�, � 

2. Compute the auxiliary route flow �| according to the formula 

}����~| = ���
/@p]�mWX_�

∑ /@p]�nWX_�
�

  ∀�, ∀�, �    

3. Terminate if �| = �{| 
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4. Solve the line search problem 

5. �| = arg min�∈r�,6t o��� ≝ or�{| + ���| − �{|�t 
               

Let the new point be  �{|R6 = �{| + �|��| − �{|�, i=i+1, and � = �{| be the output 

Step 2: Column generation phase. Generate a set of routes and augment the sets. 

Terminate if no new routes are found. 

Let �FR6 = � , n=n+1, and go to Step 1.  

 

Bekhor et al. (2005) developed a path-based SUE algorithm using disaggregate 

simplicial decomposition algorithm and gradient projection on the linear manifold of 

active constraints. 

Moreover, Mussone et al. (2005) proposed a deterministic UE algorithm based on 

Ant Colony Optimization, and compared with the original FW algorithm. Later, 

D’Acierno et al. (2006) improved this approach via introducing stochasticity. The authors 

showed that the proposed algorithm has an MSA framework, with less computation times 

and same accuracy as the traditional MSA algorithms.  

2.5.2 Probit –based SUE formulation  

The main drawbacks of logit-based formulation are its inability to take account of 

overlapping or correlated paths, and inability to account for perception variance with 

respect to trips of different lengths. Probit-based methods, on the other hand, do not 

suffer from these kinds of weaknesses. However, since these models cannot be 
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represented in a closed form formulation, they require Monte Carlo techniques or of 

complete path enumeration and numerical integration of multivariate Normal distribution 

(Daganzo, 1979). A summary of this methodology can be found in Maher et al. (1997). 

Recently, Connors et al. (2007) provides an SUE formulation for multiple user classes 

and variable demand via probit model. 

2.5.3 Extended Logit-based SUE formulation 

With the recent improvements in logit models, several modifications and 

generalizations have been proposed to relax the IID assumption in the logit model. These 

extended logit models include C-logit (Cascetta et al., 1996), path-size logit (Ben-Akiva 

and Bierlaire, 1999; Ramming, 2002; Frejinger and Bierlaire; 2007), cross-nested logit 

(Prashker and Bekhor, 1998; Vovsha and Bekhor, 1998; Bierlaire, 2006), paired 

combinatorial logit (Bekhor and Prashker, 1999; Gliebe et al., 1999; Prashker and 

Bekhor, 2000), generalized nested logit (Bekhor and Prashker, 2001), logit kernel 

(Bekhor et al., 2002; Paag et al., 2004), and link-based path-multilevel Logit (Marzano 

and Papola, 2004). 

2.5.4 SUE formulation – Extensions 

The SUE models described in the previous section assume travelers with 

homogeneous characteristics with fixed demand. Thus, inclusion of multiple user classes 

(MUC) and elastic demand are two important improvements to the original SUE solution. 

MUC considers heterogeneous population of travelers, where travelers within 

each user class have homogeneous properties. Each user class is then modeled in 
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equilibrium. MUC framework was first proposed by Daganzo (1982, 1983). The author 

considered M user classes, each with its O-D matrix and network costs. The standardized 

link flow �� is obtained as: 

 

                                               �� = ∑ M�����                      (2.12) 

 

The parameter M� in the above equation refers to the coefficient to standardize 

the flow of vehicles of the user class m, and ��� is the flow on link a for user class m. 

similarly the cost on link a for user class m, .��, is defined as: 

 

                                              .�� = .��� + ��������                (2.13) 

 

In this formulation, .��� is the fixed part of the cost, �� is the user class specific 

coefficient, and ������ is an increasing function common to all user classes. Daganzo 

(1982) showed the minimum of MUC SUE problem is unique, and solved the equilibrium 

problem via MSA in the probit case. Later, several researches used this formulation to 

formulate the impacts of traveler information on the SUE problem (Van Vuren et al., 

1991; Maher et al., 1996). 

Elastic demand, which allows the O-D trips to vary with the network conditions, 

has been studied via bi-level programming approach. In this approach, two separate 

objective functions are considered; one for SUE and one for elastic demand (Maher and 

Hughes, 1998). The authors proposed feasible descent direction algorithms that move 
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iteratively along separate search directions for the network flows and the demand. Later, 

Maher et al. (1999) proposed a Balance Demand Algorithm which uses a single search 

direction, and showed that when demand and flow is balanced, the model reduces to 

regular SUE problem. In this formulation the link flows are represented as: 

 

                                  �� = ∑ M�� ∑ ����].����_��� i���� ].����_   ∀        (2.14) 

 

2.5.5 Travel Time Reliability 

In SUE problem, the aim is to minimize the perceived travel time of the travelers. 

In this approach, network uncertainty is ignored, all users are assumed to be risk neutral, 

and mean travel times are considered in the route choice. In reality, travel times are 

distributed probabilistically. These variations in the network travel times can be due to 

differences in driver reactions under different conditions, accidents in the network, or 

differences in the delays experienced by different vehicles. Thus, variability in travel time 

introduces uncertainty to the transportation system, which prevents travelers to know 

their exact arrival to their destination. Asakura and Kashiwadani (1991) defines the travel 

time reliability as the probability that a traveler can arrive at the destination within a 

given travel time threshold. This uncertainty in travel time can be included as risk to the 

traveler making the trip. Depending on the interpretation of risk, travelers can be risk 

averse or risk seeking. Risk averse travelers, among travel time distributions with equal 

expectations, often choose the route with smaller variability. On the other hand, risk 

seeking travelers, among travel time distributions with equal expectations, often choose 
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the route with the larger variability. Travel time variability can be divided into two 

categories: 

 

1. Non-recurrent variability: This kind of variability occurs due to changes in the 

capacity which resulted from incident. 

2. Recurrent variability: This kind of variability is generated from the fluctuations in 

the demand. Travel demand varies between times of day, days of the week, and 

seasons of the year. 

 

Recent empirical studies found that travelers are not only interested in saving 

travel time but also in reducing the travel time variability (Abdel-Aty et al., 1996; Ghosh, 

2001; Kazimi et al., 2000; Lam and Small, 2001; Katsikopoulos et al., 2002). The earliest 

theoretical contribution to travel time variability was by Gaver (1968). The author 

incorporated travel time variability into the utility maximization, and found that travelers 

select a “slack” time by departing earlier than they would with no travel time variability.  

The impact of travel time reliability on the network performance was evaluated 

via stochastic traffic assignment by several studies, as well (Mirchandani and Soroush 

1987; Lo and Tung, 2000; Yin and Ieda, 2001; Gordon et al., 2001, Watling 2002; Chen 

et al., 2002; Chen et al., 2003; Lo and Tung, 2003; Clark and Watling, 2005).  

In the past years, capacity changes and network reliability due to non-recurrent 

congestion have been investigated by many researchers. In recent years, Chen et al. 

(2002) proposed the capacity reliability as the probability that the network capacity can 
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accommodate a certain traffic demand. Lo and Tung (2003) developed a probabilistic 

user equilibrium (PUE) model to account for travel time reliability due to capacity 

changes. 

On the other hand, travel time variability due to demand variations, have been 

received very little attention (Shao et al., 2006).  

Mirchandani and Soroush (1987) introduced probabilistic travel times and 

variable perceptions into the traffic equilibrium via following formulation: 

 

                                 s��� = qr�������t = −h 
 �������+�������������                         (2.15) 

 

In this formulation s��� = qr�������t is the expected utility for traveling on route 

k between r and s. ������� utility function describing the risk preference of the traveler on 

route k. ���� is the random travel time on route k. Similarly, +�������� is the probability 

density function for route k.   

Mirchandani and Soroush (1987) assume that each traveler has a variable 

perception error [|~K��| , �|� with �|~K�0, E� and �|~��M, ��. This perception error 

allows each traveler to experience different travel times for a given set of flows.  

In terms of departure time Small (1982) developed a specific utility model for the 

scheduling choicer: 

 

                        ��s���� =  M6���� + M9�3q��� + MI�3���� + MH3����                 (2.16) 
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In this formulation utility, U, is a function of travel time, ����, schedule delay-

early, �3q��� , schedule delay-late, �3����, and a fixed penalty for arriving late, 3����. 

With empirical estimates, Small (1982) found that travelers prefer to arrive early than 

arriving late. Thus, M9 > M6 > MI.  

Later, Noland and Small (1995), extended the theory and proposed a simple 

expected utility model: 

 

         qr��s����t =  M6q������ + M9q��3q���� + MIq��3����� + MHi����      (2.17) 

 

In the above equation, qr��s����t is the expected utility, as a function of expected 

travel time q������, expected schedule delay-early, q��3q����, expected schedule delay-

late, q��3�����, and probability of arriving late to the destination, i����.  

The calculation of the model parameters in the above equations depend on the 

selection of the travel time distributions. Giuliano (1989) determined log-normally 

distributed delays for incidents in the transportation system.  

Noland and Small (1995), decomposed travel time into free flow travel time, 

�������, extra delay due to recurrent congestion, �������, and mean travel time due to non-

recurrent congestion, b: 

 

.,�� =  M6 }]��_�
�� + ������� + �~ + � &M9)* �O�R��O=RO��

��O=@O<∆� � − O��O=@O<∆�
O�R��O=RO�� − M6∆� +

MH�i�����∗                                    (2.18) 
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 ∆ is the change in the profile of the recurrent congestion, and �i�����∗ is the 

optimal probability of arriving late: 

 

   �i�����∗ = ��O=@O<∆�
O�R��O=RO��                        (2.19) 

 

Later Bates et al. (2000) added additional terms to the model of Noland and Small 

(1995); adherence to schedule early, ��q���, and adherence to schedule late, ������.  

 

qr��s����t =
 M6q������ + M9q��3q���� + MIq��3����� + MHi���� + M?q �]��q����_�

��� +
M q �]�������_�

��� +  M¡i����             (2.20) 

 

where �� is the departure time, and i���� is the probability of not adhering to schedule.  

Tatineti et al. (1997) and Chen et al. (2003) used an exponential functional form 

to describe the risk averse and risk prone traveler behavior:  

   ¢(��  �/��/   ������� =  6�/�=£m − 1�                          (2.21a) 

   ¢(�� +�,*/  ������� = �6�1 − /�=£m�                           (2.21b) 

 

where  6,  9, �6, and �9 are the positive parameters to be estimated. Using the 

exponential form risk behavior function utility associated with a route can be estimated 

by summing the link utilities on a given route.  
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 Recently, Clark and Watling (2005) proposed an analytical model to estimate the 

probability distribution of the total network travel time under day-to-day variations in 

travel demand. However, the authors focused mostly on total network travel time 

distribution and paid little attention to the travelers’ route choice problems under demand 

variations.  

Shao et al. (2006) defined a reliability-based stochastic user equilibrium (RSUE) 

model. This formulation deduces travel time reliability from daily demand variations 

including travelers’ perception errors in their route choice decisions. The problem was 

then solved via Variational Inequality (VI) model formulation.  

In order to illustrate the idea behind RSUE, a two-link simple network with one 

O-D pair is considered (Figure 2-7). The travel time functions of these two links are 

provided in Figure 2-7. 

 

Figure 2-7 Example network for RSUE problem 

 

The O-D travel demand is assumed to be random and follow a normal distribution 

(Asakura and Kashiwadani, 1991; Chen et al., 2003):  
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                            ¤~K }�, ]¥¦_9~ = K�275, �137.5�9�                             (2.22) 

 

where � is the mean travel demand, and ]¥¦_9
 is the variance of the demand.  

Assuming that route flows follow the same type of distribution as the travel 

demand, coefficient of variation of the route flow is equal to that of the O-D demand, and 

route flows are mutually independent, the route flows can be formulated as: 

                          g6~K�§6, �¥6̈�9� = K�§6, �.� × §6�9�                                            (2.23a) 

                        g9~K }§9, ]¥9̈_9~ = K�§9, �.� × §9�9�                (2.23b) 

 

where .� = ¥¦ �⁄ , §6 and §9 are mean route flows, ¥6̈ and ¥9̈  

Similarly, the travel time distributions become normal with the following specific 

forms: 

                          �6~K��6, �¥�6�9� = K }2 + ¨<
H�� , ��«×¨<�

H�� ~                           (2.24a) 

    �9~K��9, �¥�9�9� = K }0.5 + ¨=
6�� , ��«×¨=�

6�� ~                             (2.24b) 

 

where �6 and �9 are the mean travel times, ¥�6 and ¥�9 are the standard deviations of the 

route travel times. 

Due to travel time variability, the travelers could not know the exact time of 

arrival to the destination point. Thus, they include a safety margin (��) to their travel time 

(Hall, 1983). Then the traveler would try to minimize their effective travel time, i.e. 



53 

 

 

 

summation of mean travel time and safety margin �.� = �� + ���, by choosing a route 

with travel time not less than the desired confidence level, ¬: 

                                       min�m .� = �� + ��                            (2.25a) 

subject to 

 
 6
√9® °̄m /�+ ±− ��@�m�=

9] °̄m_= ² �� ≥ ¬ = 0.95�mR�m�                           (2.25b) 

 

where; 

 �� = ¥��´@6�0.95�                                                              

 .� = �� + ¥��´@6�0.95�    

       

Assuming that travelers’ perception errors of route effective travel time follow 

IID Gumbel distributions with mean zero and route standard deviation, the route flows 

becomes: 

    §� = � j�µ�@p�m�
j�µ�@p�<�Rj�µ�@p�=�                             (2.26) 

 

2.6 Dynamic Traffic Assignment 

Conventional static traffic assignment models assume a fixed point steady-state 

equilibrium condition, where individual travelers have no incentive to change their 

decisions. Travelers are assumed to choose the alternative that maximizes their utility. 

Unfortunately, in reality traffic is a dynamic process, and these models fail to capture the 
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dynamic nature of the traffic. Thus, in the past years, the traffic assignment models 

started to progress from static to dynamic. Dynamic models can successfully represent 

the time-varying nature of the congestion during different times of the day, help to 

understand travelers’ responses to time-varying transportation system policies (e.g. 

congestion pricing) including departure-time choice, pre-trip route choice, and en-route 

response to traffic information. 

The commonly adopted approach for dynamic travel choice is the dynamic 

extension of Wardrop’s (1952) principle called the Dynamic user optimal (DUO), or its 

stochastic extension stochastic dynamic user optimal (SDUO) (Ran and Boyce, 1996) 

  DUO with multiple origins and destinations is a nonlinear programming problem 

with nonlinear constraints. Dynamic traffic assignment (DTA) is not a solution algorithm 

for DUO, but was designed to produce assignments that approximate the optimality 

conditions of DUO. 

Fixed-demand DTA model consists of route choice model, and dynamic network 

loading model. Dynamic network loading provides the propagation of the route flows 

through the network, On the other hand, in the elastic-demand case, departure time choice 

needs to be modeled, as well.  

Capturing the actual traffic behavior is one of the most crucial requirements of 

DTA models. Past efforts have focused on the following requirements of the traffic 

behavior: 

1. Flow propagation 

2. Flow conservation 
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3. First-in-first-out (FIFO) 

4. Causality 

5. Queue Spillback 

 

A comprehensive overview of these requirements is provided in Mun (2001) and 

Carey (2004). Following section gives detailed description of these requirements. 

2.7 Traffic Flow Requirements for DTA 

2.7.1 Flow Propagation 

In static traffic assignment, flow is assumed to be constant along each route 

between an origin and destination. Thus, flow propagation is guaranteed implicitly. On 

the other hand, in DTA flow should propagate through a link consistent with speed of the 

vehicles; i.e. the minimum time taken for a vehicle to traverse a link should not be less 

than the free flow travel time. The flow propagation can be mathematically represented as 

follows: 

   q��� = �]E���_                                   (2.27) 

 

In this formulation E��� refers to the link exit time for a vehicle that entered at 

time t, q��� is the accumulated inflow at time t, and �]E���_ accumulated outflow at time 

E���. The inflow, u(.), and outflow, v(.), rates can be determined by differentiating the 

above equation with respect to entry time t: 

                                           a��� = �]E���_E¶���                               (2.28) 
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2.7.2 Flow Conservation 

Flow conservation guarantees that no traveler leaves the network before reaching 

to their destination, or outflow rate from a link never exceeds the inflow rate to that link. 

Mathematically,  

                                          q��� = ���� + ����                                  (2.29) 

 

The outflow rate can be calculated using the flow propagation eqn-2.28: 

    0]E���_ = V���
·¶ ���                              (2.30) 

2.7.3 FIFO Rule 

In static assignment, it is assumed the time taken to traverse a link is the same for 

all vehicles. Thus, automatically FIFO rule is satisfied. On the other hand, in DTA time 

varying traffic demand is considered. Hence, a vehicle entered to a link earlier than others 

is expected to leave that link before those travelers. FIFO rule has been studied by many 

researchers in the past (Jayakrishnan et al., 1995; Astarita, 1996; Heydecker and Addison, 

1998; Tong and Wong, 2000; Huand and Lam, 2002; Carey et al., 2003; Szeto and Lo, 

2004). The FIFO rule is equivalent to satisfying the constraint E¶��� ≥ 0. 

2.7.4 Causality  

Causality means that a traveler’s speed and travel time is affected from the speed 

of the travelers ahead, but is independent of the any traveler entering to the network in 

the future (Friesz et al., 1993; Heydecker and Addison, 1998; Carey et al., 2003).  
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2.7.5 Queue Spillback 

Queue spillback refers to the end of queue spilling backwards in the network 

(Daganzo, 1994, 1995; Tong and Wong, 2000; Kuwahara and Akamatsu, 2001; Szeto and 

Lo, 2004; Ziliaskopoulos et al., 2004) 

2.8 Approaches to DTA 

The current approaches to dynamic network modeling include analytical and 

simulation models. Analytical models provide a sound mathematical structure and 

solution algorithms (Bliemer, 2001).  

Analytical approaches to DTA model can be divided into three categories: 

1. Mathematical programming 

2. Optimal control theory 

3. Variational inequality theory 

 

2.8.1 Analytical DTA 

2.8.1.1 Mathematical Programming 

In the past years, many formulations and solution algorithms have been proposed 

to solve DTA models via mathematical programming approach. Although existing DUO 

traffic assignment models vary in details, the basic models usually extend the static UE 

assignment by including the time dimension along with a set of additional constraints.  

Merchant and Nemhauser (1978a, 1978b) proposed the first models to formulate 

DTA problem via mathematical programming approach. Their formulation was 
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developed for deterministic networks with fixed-demand and single origin and 

destination, system optimum (SO) case. The proposed model was a discrete-time, 

nonlinear non-convex optimization model which was solved by a piecewise linearization.  

Carey (1986, 1987, 1992) proved that Merchant and Nemhauser’s model satisfies 

the optimality conditions, reformulated the model as a convex non-linear model, and 

introduced multiple destinations. However, even the proposed extensions could not 

handle the non-convexity resulting from FIFO requirements. Similarly, Birge and Ho 

(1993) extended the original SO dynamic model proposed by Merchant and Nemhauser. 

The authors developed a multi-stage non-convex stochastic mathematical programming 

model assuming finite number of scenarios of random realizations. Recently; 

Ziliaskopoulos (2000) developed SO-DTA model via cell-transmission (Daganzo, 1994). 

Even though the proposed model is not suitable for real-world applications, it provides 

some insights on the properties of the DTA model.  

Earliest efforts to model DTA via UE approach was by Janson (1991). The 

proposed approach described the equilibrium in terms of experienced travel times, and 

formulated the problem as a non-linear mixed integer bi-level programming model. This 

model can be summarized in a continuous time mathematical model: 

 

                                  min ���� = 
 ∑ 
 ������������
¸>���                            (2.31a) 

subject to 

    ∑ ������� = �������            ∀�, �, ∀�              (2.31b) 

          ������� ≥ 0                 ∀�, �, �, ∀�                 (2.31c) 
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  ����� = 
 ∑ ∑ ∑ ������,��� ���������    ∀ , ∀�                   (2.31d) 

 

where ����� is the time-varying link flow, ������ is the demand for travel between O-D 

pair r-s at time t, and ��,��� ��� is 1 if traffic on route k departing at time s is present on link 

a at time t, and 0 otherwise.  

The upper level of the model solved a multi-interval, time-varying demand traffic 

assignment, while the lower level determined the reachability of each node in each time 

interval. These two sub-problems were solved interdependently until the convergence 

was satisfied. The solution to Janson’s method, also known as the predictive-user 

equilibrium, suffers from serious violation of traffic flow requirements, such as FIFO 

rule. This type of mathematical formulation has been adopted in many studies including 

Jayakrishnan et al. (1995), and Ron and Boyce (1996). However, Lin and Lo (2000) 

showed that this type of generalization might not converge or approximate the UE 

defined for the static case, and might violate the FIFO rule. 

Wu et al. (1998) formulated the continuous dynamic network loading problem as 

a system of functional equations. Based on the proposed system, authors showed that 

FIFO rule was respected under reasonable assumption. The finite dimensional system of 

equations was developed to approximate the model as an optimization problem. A similar 

mathematical formulation was proposed by Xu et al. (1999), where the continuous 

dynamic network problem with nonlinear travel delays was formulated via mathematical 

model. 
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Recently Han (2003) and Lim and Heydecker (2005) proposed a logit-based 

dynamic SUE model. In the solution algorithm, using Dial’s (1971) concept of reasonable 

path, the authors eliminated the unreasonable paths. Moreover, it the algorithm allowed 

for the cost of travel at a certain time to be affected by the flows that enter the network 

from other origins at later times.  

The substantial research on DTA via mathematical programming approach still 

suffers from mathematical limitations of non-convexity due to FIFO requirement.  

2.8.2 Optimal Control  

Optimal control theory was first proposed by Friesz et al. (1989) to model 

dynamic traffic networks. The authors discussed link-based optimal control formulations 

for both SO and UE objectives for the single destination case. Wie et al. (1989, 1990) 

extended this formulation and included multi-destinations and elastic-time varying travel 

demand.  

Ran et al. (1993) proposed a convex model for instantaneous DUO problem via 

optimal control theory. Recognizing the inability of usual cost functions to account for 

dynamic queuing, the authors splitted the link travel cost into moving and queuing 

components. 

Although this approach provides an explicit representation of outflows and link 

flows, it does not always satisfy FIFO requirement. Moreover, the strong assumptions 

based on instantaneous travel time formulation usually result in unrealistic behavioral 

processes. 
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Because of these limitations of optimal control theory, in recent years, VI 

formulation has gained increasing attention among researchers. Compared with 

mathematical programming and optimal control theory models provide a more attractive 

approach to formulate dynamic traffic assignment. 

2.8.3 Variational Inequality 

VI supplies a general framework for several classes of DTA formulation such as 

optimization, fixed point, and complementarity. Nagurney (1998) and Chen (1999) 

provide a detailed description of VI, and explain various equilibrium problems. 

Based on the requirements of DTA, the constraint set for a typical VI formulation 

can be summarized as follows:  

1. Relationship between link status and link flow variables: The number of vehicles 

on a link a at time t can be calculated via inflow and outflow rates on that 

particular link: 

   
¹��mWX

¹� = a���� ��� − ����� ���      ∀ , �, �, �                (2.32) 

where: 

����� : Number of vehicles on link a at time t 

a���: Inflow rate of link a on route k between O-D pair r-s at time t 

����� ���: Outflow rate link a on route k between O-D pair r-s at time t 
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Similarly, the cumulative number of travelers arriving at destination s from origin 

r on route k at time t, q������, can be used to calculate the arrival flow rate at destination s 

from origin r on route k at time t: 

  
¹ºmWX

¹� = /������       ∀�, �, � ≠ �                    (2.33) 

 

2. Flow conservation constraints: The flow conservation requirement states that the 

departure flow rate from origin r toward destination s at time t, ������ is equal to 

the sum of all inflow rates to all paths k and links a corresponding to that O-D 

pair: 

   ������ = ∑ ∑ a���� �����                        (2.34) 

 

Similarly, the sum of inflow rate to the set of links outgoing from node j, ¼�½�, is 

equal to the sum of outflow rate from the set of links incoming to the same node j, ��½�: 

 

 ∑ ����� ����∈¾�¿� = ∑ a���� ����∈À�¿�                      (2.35) 

                ∑ ∑ ����� ����� = /������                    (2.36) 

 

3. Flow propagation constraints: The flow propagation constraint ensures that the 

flow on link a at time t due to flow on route k between O-D pair r-s, ����� , is equal 

to: 

  ����� = ∑ C����� r� + E����t − ����� ���D + Cq���r� + E����t − q������D�∈�Á                  (2.37) 

                       ∀ ∈ ¼�½�; ½ ≠ �; �, �, � 
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In this formulation �Á  refers to the subroute from node j to destination s, and E���� 

is the actual travel time over link a for flows entering link a at time t.  

4. Definitional Constraints: 

     ∑ a���� ��� = a�������    ∀                         (2.38)     

 ∑ ����� ��� = �����    ∀ ���                             (2.39) 

     ∑ ����� ��� = �����    ∀ ���                        (2.40) 

 

5. Nonnegativity Constraints:  

     ����� ���, ����� ���, a���� ��� ≥ 0  ∀ , �, �, �               (2.41) 

                 /���, q���  ≥ 0  ∀�, �, �    
6. Boundary Constraint: 

q����0� = 0     ∀�, �, �                     (2.42a)  

����� �0� = 0     ∀ , �, �, �                        (2.42b) 

 

2.8.3.1 Model Formulation 

The models developed to solve DUO problem via VI formulation are either link-

based or route-based. Route-based discrete-time VI formulation was first proposed by 

Wie et al. (1995) for simultaneous route/departure time problem. The authors showed that 

the solution existed under certain regularity conditions. The problem was solved exit flow 

functions instead of exit time functions as proposed by Friesz et al. (1993). Since the 

formulation is route-based it required complete path enumeration. 
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In route-based models, the complementary inequality in DUO can be written 

mathematically as follows (Beckmann et al., 1956): 

 

 ������� = Ã> 0 ⇒ s������ = s��∗ ���
= 0 ⇒ s������ ≥ s��∗ ���4     ∀�, ∀��, ∀�           (2.43) 

 

where ������� is the instantaneous flow entering route k at time t, s������ is the cost 

incurred on route k starting at time t, and s��∗ ��� is the minimum travel cost from origin r 

to destination s starting at time t. Smith (1979) transformed this complementary 

inequality into VI form with demand feasible route flow vectors. This formulation can 

accommodate both separable and non-separable cost functions, and was first adopted by 

Friesz et al. (1993): 

                  ������� ≥ 0       ∀��,     ∀�                                                  (2.44a) 

             ∑ �������� = ���  ∀��,     ∀�                            (2.44b) 

 

Ran and Boyce (1996) showed that solving in a route-based DUO route choice 

state is in equilibrium if and only if it satisfies the following VI formulation: 

 


 ∑ ∑ Å���∗���� r������� − ����∗���t����£
� ≥ 0         (2.45) 

where: 

Å���∗���: Route travel time for path k between r and s at optimal conditions 

 



65 

 

 

 

The route travel time for each path was calculated via following recursive 

formulation (Ran and Boyce, 1996): 

Å��|��� = Å���|@6���� + E��� + Å���|@6��    ∀�, �, (; ( = 1,2, … �;  = �( − 1, (�  (2.46) 

 

According to Ran and Boyce (1996) at equilibrium the following conditions are 

satisfied: 

 

  Å���∗��� − Ç����� ≥ 0      ∀�, �, �                   (2.47) 

          ����∗���rÅ���∗��� − Ç�����t = 0     ∀�, �, �                     (2.48) 

                                             ����∗ ≥ 0      ∀�, �, �                         (2.49) 

 

In this formulation Ç����� is the functional of all link flow variables at time t, and 

can be computed as min� Å������.  

Heydecker and Verlander, (1999) expressed the traffic assignment at time t as a 

column vector of route inflows È��� ∈ 3���, and showed that the assignment would be in 

equilibrium if and only if: 

 −rÉ − È���t£ . Ê��� ≤ 0     ∀É ∈ 3���                      (2.50) 

 

where s��� is the column vector of travelers’ route flows departing at time t, and 3��� is 

the set of route inflows. The time varying costs can be calculated using the route in flows 

f, time at which traffic entered at route k arrives to link a, E�����, and link-route incidence 

matrix � as: 
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         s���� = ∑ .�rE�����t����         (2.51) 

 

The authors showed that the VI in eqn-44 can be solved as a forward dynamic 

programming model. For any È���, the left-hand side of eqn-44 would be zero when 

É = È���. Thus, at equilibrium, the left-hand side will be zero. Then, the equilibrium 

solution can be obtained by solving the equivalent minimization problem (Heydecker and 

Verlander, 1999): 

   �∗��� = Arg min�∈Ì��� ��È�                  (2.52) 

where;    

���� = min�∈Ì��� −rÉ − Èt£ . Ê���                               

 

In recent years, Lam et al. (2002) proposed a flow swapping method to obtain 

travelers’ route/ departure time on congested road networks with queues. The DUO was 

expressed as a discrete-time, finite dimensional VI formulation, and was converted to an 

equivalent “zero-extreme value” minimization problem. The generalized disutility 

considered in travelers’ decision making process included schedule delay penalty of 

arrival, utility of performing non-work activity and the cost of travel time. Using link 

travel time functions Jang et al. (2005) developed a discrete time route-based VI dynamic 

flow model was developed, and determined time-dependent network states. VI 

formulation was formed based on alternative cost mapping derived from a route 

swapping heuristic approach. Garcia et al. (2005) developed a multi-modal assignment 

model for the case of asymmetric costs. The authors formulated the assignment as a VI 
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problem in the space of the hyper-path flows and then solved by the disaggregate 

simplicial decomposition algorithm. 

Recently, Han and Heydecker, (2006) formulated the route-based VI formulation 

in a mathematical programming model for both discrete- and continuous time. Based on 

the VI formulations provided in Heydecker and Verlander (1999), the authors showed 

that the optimization models could be solved via forward dynamic programming 

approach. Provided that, the objective function given in eqn-46 will be exactly zero in 

equilibrium state, the DUO problem over time was presented in the form of dynamic 

programming model as follows: 

     
 �]È���_���                            (2.53a) 

subject to    

 È��� ∈ 3���  ∀�               (2.53b) 

 

The flows È��� assigned to each route influence the future travel cost from the 

same origin but not past ones. Thus, optimal solution at time t can be found without 

knowledge of the inflows at future times. Then, the optimal solution of the above 

dynamic programming flow can be found by solving the individual problem in eqn-2.52, 

iteratively in increasing order of time. The proper DUO solution can be obtained by 

calculating the flow pattern that minimizes the objective function in eqn-2.52 for each 

instant sequentially from the earliest time to the latest one.  



68 

 

 

 

In the case of a discrete time formulation, the flows È��� can be identified as the 

route inflows during the time interval r�, � + ∆��4. Thus, in discrete time, route inflows 

È��� ∈ 3��� are in equilibrium when: 

   −rÉ − È���t£ . Ê�� + ∆�� ≤ 0     ∀É ∈ 3���                          (2.54) 

 

The discrete time DUO problem for the single origin s case can be mathematically 

formulated as follows (Han and Heydecker, 2006, 107): 

 

  minj,� ���� = ∑ 
 .�rE��∗ �� + ∆��tE¶��∗ ����/j�j>��                    (2.55a) 

subject to                       /� = ∑ ∑ �����/E¶��∗ ����  ¹    ∀                     (2.55b) 

                       ∑ �� = ������    ∀��                    (2.55c) 

                           �� ≥ 0     ∀�, ∀�        (2.55d) 

 

Link-based VI formulation was first proposed by Friesz et al. (1993). The author 

formulated a continuous-time VI model to solve the departure time/ route choice by 

equilibrating the experienced travel times. The proposed model uses link-based 

performance functions, penalty functions for early/late arrivals, travel demands, desired 

arrival times, and all possible paths between O-D pairs. The route cost was formed as a 

combination of travel cost determined by the link-based performance function and the 

penalty of early/late arrival. Since the proposed formulation was a continuous-time 

infinite dimensional VI problem, the solution required solution of a complex system of 

simultaneous integral equations. Later, Ran and Boyce (1996) proposed a link-based 
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discrete-time VI formulation with fixed departure time. The authors included a queuing 

delay component to partially alleviate the traffic realism issues arising in the context of 

analytical models. Ran et al. (1996) extended this model for simultaneous departure 

time/route choice problem. Chen and Hsueh (1998) showed that for link-based VI 

formulation, the travel time on a link could be represented as a function of solely link 

inflow, and proposed a solution algorithm based on nested diagonalization procedure. 

However, the method was still very expensive to implement on real world. Lo and Szeto 

(2002) developed a cell-based VI formulation using Daganzo’s cell transmission model. 

To solve the VI formulation, the authors employed an alternating direction method 

proposed by Han and Lo (2002) for co-coercive VI problems. Bliemer and Bovy (2003) 

extended the single user-class macroscopic DTA model by including multiple user-

classes. To deal with different asymmetries due to interaction between user classes, link-

based (quasi) VI approach was considered. The assignment problem was solved via 

nested modified projection method. Friesz et al. (2006) considered infinite dimensional 

VI formulation for DUO. The authors showed how the theory of optimal control and the 

infinite dimensional VIs are combined to create a simple and effective fixed point 

algorithm for calculating DUO network flows. Jeihani et al. (2007) proposed a 

modification of the convex-simplex method for determining DUO. The proposed method 

disposed with the line search step, and controlled the subset of travelers to be re-routed at 

each step while updating the link travel times after each assignment.  
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2.8.4 Extensions to Analytical DTA Model 

Extensions to analytical DTA model cover inclusions of MUC, and travel time 

reliability to the modeling process. 

Inclusion of MUC users to DTA problem was first proposed by Lo et al. (1996) 

and Ran et al. (1996). In these studies, travelers were categorized into three user classes; 

travelers who follow predetermined routes, travelers who follow a stochastic DUO 

assignment and travelers who follow DUO assignment. The problem was formulated via 

route-based continuous time VI formulation, and solved based on a combination of 

relaxation procedure, F-W algorithm and MSA. In this solution, time-space network 

expansion was a required step of the solution process. Later, Ran et al. (2002) developed 

an improved continuous time VI formulation, and eliminated the time-space network 

expansion step. Ran and Boyce (1996) stratified travelers based on route diversion 

willingness, income, age and driving behavior. Like the previous studies, link travel times 

were calculated for all travelers, not for individual classes. Bliemer and Bovy (2003) 

extended the single user-class macroscopic DTA model by including multiple user-

classes. The authors proposed link-based (quasi) VI approach was considered. For 

simplicity, only route choice was modeled dropping the departure time choice.  

Inclusion of travel time reliability to stochastic DTA models was proposed by 

Boyce et al. (1999) and Ran et al. (1996). Boyce et al. (1999) considered stochastic route 

travel times ignoring the traveler perception error, while Ran et al. (1996) considered the 

traveler perception error ignoring the stochastic route travel times. Later, Liu et al. (2002) 

included both stochastic travel times and perception errors in DTA model, and 
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formulated the problem via continuous time VI formulation. Travelers’ risk taking 

behavior was represented by exponential disutility function (Tatineni et al., 1997). To 

solve the VI formulation, first continuous time problem was converted to discrete-time 

VI model. Then, this discrete-time VI problem was solved by using a combination of 

relaxation, stochastic network loading, and MSA techniques.  

2.8.5 Simulation-based DTA 

Simulation-based DTA models develop a traffic simulator to imitate the complex 

traffic flow dynamics. In this approach, constraints such as traffic propagation, flow 

conservation, spatio-temporal interactions, link-path incidence relationships and 

vehicular movements are addressed through simulation instead of analytical evaluation. 

Due to their flexibility to develop realistic traffic modeling, simulation-based approaches 

have gained interest in the past years. 

Most of the DTA micro-simulators represent the driver behavior regarding car 

following, gap acceptance and lane choice. These are microsimulation models such as 

CORSIM (http://www.fhwa-tsis.com/corsim_page.htm), INTEGRATION (Van Aerde, 

1999), AIMSUN (Barcelo´ et al., 1994) (http://www.tss-bcn.com), VISSIM 

(http://www.ptv.de), PARAMICS (http://www.quadstone.com) and DRACULA 

(http://www.its.leeds.ac.uk/software/dracula/). MITSIM (Yang, 1997) 

(http://web.mit.edu/its/products.html) is an academic research model that has been used 

in several studies in Boston, Stockholm and elsewhere. 
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Micro-simulation models use large number of heuristic rules added to the basic 

car-following theory. Moreover their application is limited to relatively small size 

networks. 

In order to handle larger size networks and to reduce computational times 

mesoscopic approaches introduced to traffic simulation. Most microscopic simulators and 

some mesoscopic simulators use a fixed-time step approach, where the simulation period 

is divided into small time intervals. After each interval, all vehicles in the network are 

moved and new position of each vehicle is calculated.  

One of the first examples of this type of simulator was CONTRAM developed by 

Leonard et al., (1989). Ghali and Smith (1992) and Smith (1994) addressed UE and SO 

DTA problem and implemented their solutions using CONTRAM (Leonard et al., 1989; 

Taylor, 1996). Other major developments in mesoscopic simulators are DYNASMART 

(Jayakrishnan et al., 1994; Mahmassani et al., 2001; Mahmassani, 2001), DynaMIT (Ben-

Akiva et al. 1998), TRANSIMS (Nagel and Schrekenberg (1992), and mesoscopic 

simulation model based on cell transmission (Ziliaskopoulos and Waller 2000). The 

software, DynaMIT, consists of a demand and supply simulator. Demand simulator 

predicts the O-D demand using Kalman Filter method, while supply simulator is 

mesoscopic, which determines the flow patterns based on demand, and moves the 

vehicles in packets.  

Simulators based on macroscopic traffic flow theory were first developed during 

1950s (Lighthill and Whitham, 1955; Richards, 1956). These simulators describe the 

evolution of traffic over time and space using a set of differential equations. Macroscopic 
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traffic simulators include METACOR (Papageourgiou, 1990; Diakaki and Papageorgiou, 

1996) and METANET (Messmer, 2000a; Messmer, 2000b). The route choice in 

METANET was achieved by splitting proportions at the nodes of the network. The 

number of arcs originating at a given node was limited to two, and the network-loading 

method was based on a second order (p.d.e.) traffic flow model. 

Mahmassani and Peeta (1993, 1995) and Peeta and Mahmassani (1995) developed 

DTA models using DYNASMART. The developed deterministic DTA model assumed 

complete a priori knowledge of O-D demands, and single class of users. Mahmassani et 

al. (1993) extended this formulation by including multiple classes in terms of information 

availability. 

Barcelo and Casas (2002) described a heuristic approach to solve DTA problem. 

The path flow rates were determined based on stochastic route choice model, while 

network loading was done by microscopic simulation using AIMSUN. Mirchandani et al. 

(2003) proposed an iterative simulation model in CORSIM, where travelers’ experience 

in a period was used as input to MSA to provide traffic assignment for the next period. 

Mahut et al. (2004) calibrated and application of microscopic simulation-based DTA 

model, where path flows were reassigned using MSA (Mahut, 2000) and Florian et al. 

(2001). O-D matrix was created from trip generation/distribution model and a matrix 

adjustment algorithm. Path choices were modeled as a decision variable, where each 

traveler tried to minimize his/her travel time. At each step first the time-dependent paths 

flows were determined based on the previous path travel times, and then the actual travel 

times were calculated given the path flow sets. Liu et al. (2005) proposed a hybrid DTA 
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model. The authors combined DUO technique with micro-simulator Paramics. The time 

dependent path flows were generated by analytical DUO model using VI methodology, 

whereas the link and path travel times were simulated. The convergence was assured via 

MSA method. Similarly, Florian et al. (2007) described a simulation-based, iterative 

DTA model. Time dependent flows were determined via MSA method, and path travel 

times were calculated using the space-time queuing approach by Mahut (2000).  

In all these models MSA approach was used to ensure convergence of the DTA 

model. Recently, Sbayti et al. (2007) developed a methodology to improve the 

performance of MSA heuristic for UE and SO DTA problems on large networks. In this 

approach local information made available in the results of vehicle based simulation 

models were used to provide the mapping between path assignment and experienced 

travel cost.  

2.8.6 Extensions to Simulation-based DTA  

A few studies in the literature have proposed simulation-based models to analyze 

value pricing applications. Using DYNASMART Abdelghany et al. (2000) and Murray et 

al. (2000) evaluated the impacts of different pricing programs. Kwon et al. (2000) 

combined analytical DTA model with PARAMICS to study road pricing. More recently, 

de Palma et al. (2005) used METROPOLIS simulator to investigate congestion pricing on 

road networks. However, in all these models constant value of time (VOT) was 

considered, and user heterogeneity was ignored. Lee et al. (2007) relaxed the constant 

VOT assumption, and investigated the drivers’ behavior in the presence of high 

occupancy toll lane value pricing system. The proposed DTA model was implemented in 
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TRANSIMS on a large transportation network. Lu et al. (2007) developed a bi-criterion 

DUO model to capture travelers’ route choices in response to time-varying toll charges. 

The authors considered heterogeneous travelers with different VOT preferences. After 

formulating an infinite dimensional VI formulation, a simulation-based heuristic 

approach was developed to find route flows.  

2.9 Day-to-Day Learning Approach 

As described in the previous section, the dominant approach followed to capture 

the interaction between travel choice and network performance has been to solve an 

equilibrium problem obtained from static/dynamic, deterministic/stochastic traffic 

assignment models. In this approach, the only state of interest is the fixed point in which 

the system is at equilibrium and individual travelers have no incentive to change their 

decisions. Travelers are assumed to be rational, exploring each alternative’s relevant 

attributes and trading off the utilities derived from them. The decision strategy serves to 

generate a choice from a choice set for the alternative that provides the individual with 

the maximum utility. When choices are made under uncertainty, this utility is usually 

defined through maximum expected utility (Von Neumann and Morgenstern, 1947). 

However, Kahneman and Tversky (1979) found that people do not necessarily maximize 

expected utility, but have a perception of probability of a certain outcome and the value 

of that outcome. Moreover, Trevesky and Kahneman (1981) showed that people exhibit 

risk behavior which is dependent on the way the decision is framed.  

Classical equilibrium approach assumes rigid behavioral tendencies. It categorizes 

driver behavior into homogeneous classes via UE, SO, or SUE. Moreover, these models 
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assume that the driver behavior classes are known deterministically a priori. The 

estimation of equilibrium is typically achieved through the solution of some optimization, 

or VI problem, which makes the approach restrictive in terms of generalizations. With 

this approach, it is also difficult to capture the heterogeneity in users’ behavior, learning 

and adaptation processes, and behavioral characteristics.  

Thus, classical equilibrium approach needs to be improved to represent day-to-

day and within-day dynamics. In day-to-day modeling, behavioral approaches are 

integrated into the equilibrium paradigm, where the sequences of states that occur as the 

system reaches to equilibrium are linked through a learning model based on travelers’ 

past experiences. These intermediate stages are important for evaluation of the 

transportation system, because the transportation system is often in disequilibrium due to 

travelers’ gradual response to non-standard conditions. The day-to-day models reflect 

travelers’ learning and forecasting mechanisms. These models predict travelers’ choices 

for any given day based on their experienced choices in the previous days. Day-to-day 

approaches allow the use of wide range of behavioral rules, and levels of aggregation.  

The fundamental difference between classical equilibrium approach and day-to-

day approach lies in the underlying hypothesis. In traditional approach, market is 

assumed to be in equilibrium, where users are rational and have perfect knowledge about 

the system, whereas in day-to-day approach, the behavioral dynamics is based on the 

underlying belief, where the behavior on a given day is affected by the behavior on 

previous days.  
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The day-to-day modeling of driver travel choice requires incorporating travelers’ 

decisions which are made according to their perceptions of travel choices, their 

experience with the system, perceptions of traffic information provided (if available), and 

the impact of any perception change in the travel choice.  

This section provides detailed description of day-to-day learning models and their 

application to traffic assignment. 

2.9.1 Day-to-Day Route Choice Models 

Travelers’ current route-choice decisions are influenced from past experiences 

with the transportation system. Thus travelers’ route-choice behavior may be represented 

by an iterative process, in which the travelers update their choices based on previous 

experiences.  

Horowitz (1984) described a simple route-choice dynamic model in order to treat 

decisions over time. The author assumed that in each time period t the route-choice 

decisions were based on the average of measured travel utilities in previous time period. 

The route-choice model was formulated as follows: 

 

  �Í���� = ∑ �,��� − 1�������@6�>6 + [��    � = 1, … . . Î               (2.56) 

 

In the above formulation �Í���� is the perceived utility of route k at time period t, 

�,��� − 1� is a nonnegative weight describing the relative influences of recent and past 

route performances on current utility, ����� is the measured utility of route k, and [�� is a 
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random error variable whose probability distribution is independent of t. For each route k 

and time period t, the following equality should hold: 

 

  ∑ �,��� − 1��@6�>6 = 1        ∀� = 1, … . �                      (2.57) 

 

Based on the above utility function the probability of choosing route k in time 

period t can be formulated via multinomial logit model: 

 

  +���� = jÏ ∑ ÐW,m�°Y<�Ñm�W�°Y<WÒ<
∑ jÏ ∑ ÐW,Ó�°Y<�ÑÓ�W�°Y<WÒ<ÔÓÒ<

                        (2.58) 

 

Under myopic adjustment approach, Mahmassani and Chang (1986) updated the 

travel time estimate by driver i, E|,�, based on the following equation: 

 

              E|,� = �|,�@6∗ +  |�|,�@6� q|,�@6∗ + �|�|,�@6� q|,�@6∗                     (2.59) 

 

In the above formulation, �|,�@6∗  is the experienced trip travel time by driver i on 

day (t-1), q|,�@6∗  is the schedule delay, �|,�@6�  is a binary variable with value -1 for early 

arrival, and 0 otherwise, �|,�@6�  is also a binary variable with value 1 for late arrival, and 0 

otherwise, and  | and �| are nonnegative weight parameters for early and late arrival. 

Similarly, Ben-Akiva et al. (1991) proposed a model where perceived travel time 

of users were updated based on the weighted average of historically perceived travel time 

and the time provided by ATIS. Iida et al. (1992) conducted a laboratory experiment to 
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analyze route-choice behavior and dynamic adjustment over time. The focus of these 

dynamic network models is on the final state of the network assuming equilibrium or 

steady state conditions. Such restrictions prevent realistic and detailed modeling of 

dynamic driver behavior. Friesz et al. (1994) proposed a tatonnement adjustment process 

model to estimate the day-to-day adjustment processes of network flows. The authors 

showed that when traffic information was incomplete, it took around 260 time units for 

the traffic assignment model to converge SUE conditions. On the other hand when 

perfect information was available, the convergence to SUE condition was much faster.  

Dynamic learning models aiming to update travelers’ perception from one day to 

the next based on the experience with the system can be categorized into three types: 

 

1. Bayesian learning models 

2. Reinforcement learning models 

3. Stochastic automata models 

 

The studies related to the above learning models are summarized in the following 

flow chart, shown in Figure 2-8. Next sections provide detailed description of these 

methodologies and summarize the studies performing these approaches 
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Figure 2-8 Summary of different learning models 

 

2.9.2 Bayesian Learning Approach 

In Bayesian learning (BL) approach, travelers’ route choice is described as an 

iterative process. At each step the travelers form a belief about routes’ expected travel 

times based on the historical frequencies of travel times. Then they choose the route 
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which minimizes their expected (or random) utility, given their beliefs. The update 

mechanism in this approach is based on Bayes theorem. 

March (1996) proposed different learning models to explain risk aversion in 

lotteries. In the first model, the average return model, the probability of choosing a 

strategy is calculated based on the average outcomes obtained from selecting that 

strategy. In particular, if strategy k was chosen in time period n and a payoff of x was 

obtained, then the propensity to choose strategy j is updated as follows: 

 

         �¿�* + 1� = Õ�¿�*� + ��*�   (� ½ = �
�¿�*�                 (� ½ ≠ � 4                     (2.60) 

 

Then the probability of choosing strategy k, in time period n,  +��*�, becomes: 

 

   +��*� = ¦m�F� �m�F�⁄
∑ ¦Ó�F� �Ó�F�ÖÔÓÒ<

                             (2.61) 

 

where .��*� is the number of time strategy n was selected in the past.  

 

In the second model, the weighted return model, the probability of each strategy 

to be chosen was represented as a function of weighted past responses. 

 

        �¿�* + 1� = Õ�1 − ×�. �¿�*� + ×. ��*�   (� ½ = �
�¿�*�                 (� ½ ≠ � 4                       (2.62) 
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where × is the rate of learning and forgetting. Based on this update mechanism, the 

probability of choosing strategy k, in time period n is: 

 

         +��*� = ¦m�F�
∑ ¦Ó�F�ÔÓÒ<

                                       (2.63) 

 

Later, Fudenberg and Levine (1998) used random utility theory to model the 

learning process. The authors proposed that the effectiveness of each strategy is 

remembered and determined the probability to choose each strategy. The propensity to 

choose strategy j: 

 

�¿�* + 1� = Õ�¿�*� + Ø��*� − �¿�*�Ù.¿�*�   (� ½ = �
�¿�*�                                            (� ½ ≠ � 4                (2.64) 

 

Then, the probability of choosing strategy k in time period n is: 

 

      +��*� = j�</Ú�Ûm�Q�
∑ j∑ �</Ú�ÛÓ�Q�°Y<WÒ<ÔÓÒ<

                   (2.65) 

 

In terms of day-to-day learning in transportation, Jha et al. (1998) proposed a 

framework, where travelers update their perceptions under real time information in two 

stages based on Bayes rule. In the first stage, pre-trip beliefs are updated based on 

historical perceptions and real time information. In the second stage post-trip beliefs are 

updated based on pre-trip beliefs and perceived experienced travel time on the current 

day. The model is formulated for single O-D network: 
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1. Pre-trip update mechanism:  

�+�,�|,F = �(�,�F + [9,�,�|,F
                       (2.66) 

 

where �(�,�F  and �+�,�|,F
 are the travel time information provided by ATIS, and perceived 

travel time by individual i for path k and departure time interval r, on day n, respectively. 

And [9,�,�|,F
 is normally distributed perception error as a function of traveler’s past 

experience with traffic information.  

The updated best estimate, E�,�9,|,F
, was given by the following Bayesian 

formulation (Ang and Tang, 1975): 

 

E�,�9,|,F = qØ��,�9,|,FÙ = �µm,W�,Q .Ü��}£m,W<,�,Q~R£m,W<,�,Q.Ü��}�µm,W�,Q ~
Ü��}£m,W<,�,Q~RÜ��}�µm,W�,Q ~                  (2.67) 

 

where ��,�6,|,F
 is the mean perceived travel time, and ��,�9,|,F is the updated distribution of 

��,�6,|,F
 in light of information. The updated variance of ��,�9,|,F

 was formulated as: 

 

       g �]��,�9,|,�_ = Ü��}£m,W<,�,Q~.Ü��}�µm,W�,Q ~
Ü��}£m,W<,�,Q~RÜ��}�µm,W�,Q ~                  (2.68) 

 

And the updated mean travel time was given by: 

 

��,�9,|,F = E�,�9,|,F + [I,�,�|,F
                     (2.69) 
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2. Post-trip update mechanism: 

 ���,�|,F = �/�,�|,F + [H,�,�|,F
                     (2.70) 

 

where ���,�|,F
 and �/�,�|,F

 are the experienced travel time as perceived by individual i, and 

experienced travel time, respectively. Then the best estimate, E�,�I,|,F
, and the updated 

variance of ��,�I,|,�
 was given by: 

 

E�,�I,|,F = ��m,W�,Q .Ü��}£m,W=,�,Q~R£m,W<,�,Q.Ü��}��m,W�,Q ~
Ü��}£m,W=,�,Q~RÜ��}��m,W�,Q ~         (2.71) 

g �]��,�I,|,F_ = Ü��}£m,W=,�,Q~.Ü��}��m,W�,Q ~
Ü��}£m,W=,�,Q~RÜ��}��m,W�,Q ~                              (2.72) 

 

And the updated mean travel time was given by: 

 

��,�I,|,F = E�,�I,|,F + [?,�,�|,F
                     (2.73) 

 

3. Route and departure time choice model 

 

While performing choice model, Jha et al. (1998) assumed a nested structure, 

where the traveler first chooses his/her departure time, then based on the departure time 

he/she selects the route: 

i�,�|,F = jÏWÝW�,Q∗

∑ jÏWÝW�,Q∗WÒÞ�,Q^<
WÒÞ�,Q

. jÏmÝm,W�,Q

∑ jÏmÝm,W�,Q
m

                     (2.74) 
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where g�,�|,F
 is the utility as a function of perceived travel time, anticipated early/late 

arrival.  

Recently, Chen and Mahmassani (2004) proposed a BL framework for updating 

perceived mean travel time and variance in the presence of experience of information. 

Unlike Jha et al. (1998) assuming that individuals consider all the new information in 

their decision making mechanism, Chen and Mahmassani (2004) proposed a selective 

updating process.  

In this formulation it was assumed that, depending on the outcome of a choice for 

any given day, the traveler accepts the perceived travel time or not. The acceptability or 

tolerance was defined as the difference between the current and the best travel time: 

 

�|,F = Ã1  (� ��|,F − ��,�j��|,F ≥ ∆|��|,F
0                           ,�ℎ/�(�/ 4                                  (2.75) 

 

where  ��|,F
 is the perceived travel time for path k on day t for individual i, ��,�j��|,F

 is the 

perceived best travel time on day n.  

Then using the same Bayesian update mechanism (Jha et al., 1998), the authors 

calculated the mean and variance of the perceived travel time: 

 

          E�|,F = �jm�,Q.Ü��}£m�,Q~R}∑ £m�,QQ ~.Ü��}�jm�,Q~
ß.Ü��}£m�,Q~RÜ��}�jm�,Q~                     (2.76) 

g �]E�|,F_ = Ü��}£m�,Q~.Ü��}�jm�,Q~
ß.Ü��}£m�,Q~RÜ��}�jm�,Q~                              (2.77) 

 



86 

 

 

 

where �/�|,F
 is the experienced perceived travel time, ��|,F

 is prior updated travel time, E�|,F
 

is the posterior mean updated travel time, and � is the number of experienced travel times 

in sample.  

The authors performed a sensitivity analysis in order to investigate the impacts of 

different number of days between updates on the convergence. The results found that as 

the number of days between updates increased, the number of days until convergence 

decreased initially and then increased, and the number of updates required for 

convergence decreased. These trends are a consequence of Bayesian updating as 

expressed through Equations 2.76 and 2.77. As the number of days between updating 

increases, users are obtaining a larger sample of experienced travel times. 

2.9.3 Reinforcement Learning Models 

Reinforcement learning (RL) models include types of learning where repetition of 

the relationship between stimulus and response patterns leads to memory (Bogers et al., 

2007). RL is a form of trial-and-error learning, where an agent starts interacting with the 

environment with a random action, and receives rewards when this action leads to 

successful performance. As the agent explores the environment and finds actions to high 

reward, its behavior changes (Sutton and Barto, 1998). RL system is slower than other 

approaches, since it requires a detailed model for the relationship between the 

environment, available actions, and the rewards that accrue over a period of time (Sutton 

and Barto, 1998).  
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Erev and Roth (1998) and Erev et al. (1999) studied Reinforcement Learning 

(RL) models. The model specifications can be summarized as follows (Avineri et al., 

2005): 

 

1. Initial propensities: the traveler has an initial propensity, ���1� to choose a route k 

on day 1 

2. Average  updating:  The propensity to choose route k on day n+1 is given by: 

���* + 1� = ���1� ß�6�
àm�F�Rß�6� + �gq��*� àm�F�

àm�F�Rß�6�                  (2.78) 

 

In the above formulation, K�1� is the “strength of initial propensities”, and s��*� 

is the number of times route k is selected, and �gq��*� is the average payoff obtained 

from choosing route k at first n days.  

3. Exponential response rule: The probability +��*� of choosing route k in day n is 

given by: 

   +��*� = jÚÛm�Q�/á�Q�
∑ j∑ âÚÛÓ�Q�/á�Q�°Y<WÒ<ÔÓÒ<

                 (2.79) 

 

In this formulation ��*� is the standard deviation of the payoffs that the traveler 

has experienced up to travel n, and estimated as follows: 

 

 ��* + 1� = ��*�ãb�*� + |���� − �|�1 − ãb�*��         (2.80) 

where; 
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ãb�*� = FR�ß�6�
FR�ß�6�R6  

��* + 1� = ��*�ãb�*� + ��1 − ãb�*��  

 

For simplicity, the authors assumed that (Erev et al., 1999) uniform initial 

propensities equal to the expected payoff from random route choice, A(1). 

Another RL model was proposed by Miyagi (2005) under complete and 

incomplete route information. In incomplete information, it was assumed that the 

travelers do not know the travel time of the routes that they have not chosen, and in 

complete information it was assumed that travelers were informed about the travel times 

of the unselected routes after the selection was made. Under these assumptions 

propensity of route k for traveler i on day n+1 was formulated as: 

 ��,|�* + 1� = �1 − M|FR6���,|�*� + M|FR6Ç�,|�*�                 (2.81) 

 

where M|FR6 user specific update parameter, and Ç�,|�*� is the payoff from path k on day 

n. 

Under incomplete information Ç�,|�*� was calculated as: 

 

Ç�,|�*� = Õ E�,|F +�,|F                         (� + �ℎ � (� �ℎ/ Î (ÎaÎ a�()(�L + �ℎ
�Ç�,|�* − 1�             ,�ℎ/�(�/                                                        4   (2.82) 

 

where � is the weakening rate. 

Similarly, when complete information was available, the payoff was calculated as: 
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Ç�,|�*� = ÕE�,|F +�,|F                         (� + �ℎ � (� �ℎ/ Î (ÎaÎ a�()(�L + �ℎ
�E�,|F +�,|F                      ,�ℎ/�(�/                                                      4    (2.83) 

 

Kim et al. (2005) proposed an inductive learning process to formulate the day-to-

day dynamic traffic assignment model.  In this approach the concept of route preference 

was introduced as follows: 

 

               ��,|�* + 1� = ��,|�*� + �]�/�|,F, E�,|F _                  (2.84) 

 

where �]�/�|,F, E�,|F _ is a function of difference between expected and experienced travel 

time. The expected travel time was calculated as the weighted sum of experienced travel 

times up to day n. This preference function took the value of the product of travel time 

difference and the value of driver’s sensitivity, when the travel time difference was 

greater than the indifference band, and zero otherwise.  

Based on this inductive learning formulation, on each day, travelers select the best 

route depending on their travel time expectation and preference: 

Traveler i's route choice on day n: arg min� ��,|�*�. �/�|,F
           (2.85) 

 

This routine was repeated every day, until convergence was reached. The 

convergence criterion was set as the state where more than 99% of the travelers do not 

change their route for the predefined number of days (5 days). 
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A similar RL model was proposed by Selten et al. (2007) with a two route choice 

scenario. 18 subjects were requested to choose two roads. Two different types of 

feedbacks were given to the subjects: (a) only experienced travel time, and (b) travel time 

information on both roads. The propensity of each road was calculated as the sum of all 

previous propensities, and the probability of selecting a road was the ration of each road’s 

propensity. The study results showed at after 2000 periods, which was unusually long, the 

mean number of travelers on both roads were very near to the equilibrium.  

2.9.4 Stimulus-Response Formulation 

Several researchers proposed stimulus-response formula to represent the 

interacted day-to-day network dynamics under the assumption of a learning and adaptive 

behavioral process (Cho et al., 2004, 2005). The basic equation of this model is of the 

form: 

  ¢/�+,*�/�� + �� = �/*�(�(�(�L × ��(Îa)a����                 (2.86) 

 

In the day-to-day learning process, the stimuli was described as the discrepancy 

between experienced travel time and predicted (expected) travel time, and resulted in the 

path flow diversion in the next day, denoted as the response. Sensitivity was the tendency 

to adaption of predicted travel time based on the corresponding stimuli. A general model 

to specify the network dynamics on a day-to-day basis was specified as:  

i �ℎ �), �(�/��(,*  � � L �� + �� = å }�/*�(�(�(�Lµ, �/�+/�(/*./� �� �/) �(Î/ −
+�/�(.�/� �� �/) �(Î/  � � L ����_                      (2.87) 
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i�/�(.�/� �� �/) �(Î/  �½a��Î/*�  � � L �� + �� =
å]�/*�(�(�(�Ļ , � .�a ) �aÎ ,� + �ℎ �),� − +�/�(.�/� �� �/) �/Î *�����_(2.88) 

 

where F(.) and G(.) are functional. �/*�(�(�(�Lµ and �/*�(�(�(�Ļ  of path flow 

dynamics and predicted travel time evolutions, respectively. Based on this formulation, 

quasi-user equilibrium was derived from steady state network dynamics. This specific 

equilibrium point was defined as the situation when all users feel indifferent between the 

experienced path travel time and the predicted O-D travel time.  

2.9.5 Markov Learning Models 

Cascetta (1989) and Cascetta and Cantarella (1991) attempted to describe it as a 

Markov chain and showed that the system converged to one stochastic distribution. In 

this model, day-to-day evolution of the traffic flow was represented, where each 

traveler’s route choice was stochastically dependent on network flows and costs during 

the finite past. This specific structure of Markov models allowing learning mechanism 

has attracted many researchers in the past (Cantarella and Cascetta, 1995; Hazelton and 

Polak, 1997; Watling, 1999; Duong and Hazelton, 2001; Hazelton, 2002; Watling and 

Hazelton, 2003; Yang and Liu, 2007). 

De Palma and Marchal (2002) modeled day-to-day learning as an Order-1 

exponential Markov process. The following rule was considered: 

 

  �æ,�FR6��� = �1 − ç��æ,�F ��� + ç�è,�F ���                        (2.89) 



92 

 

 

 

where; 

H: Historical information 

a: Index of the link 

t: Time of day 

S: Value of computed travel time in the simulation or the experienced travel time 

 

 Unfortunately, de Palma and Marchal (2002) did not test this model empirically. 

Later, Bogers et al. (2007) proposed a similar order-1 exponential Markov learning 

model, and tested the proposed model using a traffic simulator. The authors used the 

following travel time perception updating rule: 

         i���,|FR6 = �1 − ç�i���,|F + ç���,|F ��,|F + çi���,|F ]1 − ��,|F _               (2.90) 

 

In the above formulation, i���,|F  and ���,|F  are respectively the perceived and 

experienced travel times by individual i, on path k on day n. If the individual travels on 

route k on day n, then ��,|F  becomes one, otherwise it is zero.  

Recently, Lim et al. (2007) proposed a one-dependent Markov Chain model to 

analyze the sudden changes on the road networks. Pre-trip traffic information was 

provided in advance for travelers (agents) prior to the beginning of trips, and the effects 

of the information were assessed. The steps of the model can be summarized as follows: 

 

1. Compute the average travel cost, .�, as the weighted sum of experienced costs on 

previous days: 
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   .�F = ∑ �.�F@�¹@6�>6                         (2.91) 

 

2. Compute the route choice probability of travelers: 

        +��*� = jYklm�Q�
∑ jYklÓ�Q�ÔÓÒ<

                    (2.92) 

 

3. Compute the transition probability, +|¿, by one-dependent Markov chain: 

                                  +|¿ = Ì!
¿!�Ì@¿�! �+|�¿�1 − +|�Ì@¿                   (2.93) 

where D is the total travel demand 

 

4. Calculate the stationary distribution ÇF recursively from: 

       ÇFR6 = ÇF+                         (2.94) 

 

5. Compute the average path flow matrix åF: 

                                 åF = �ÇF        , � = 1, … . . 3                    (2.95) 

 

6. Compute the link-flow matrix �Fbased on the  link-route incidence matrix, A: 

                                 �F = �åF                      (2.96) 

 

7. If  �FR6 = �F stop, otherwise, n=n+1 

 



94 

 

 

 

2.9.6 Fuzzy-Logic (Rule-based) Approaches 

Fuzzy logic based day-to-day modeling approach combines qualitative and 

quantitative information, and considers a rule-based route choice modeling. Several fuzzy 

logic models have been proposed for driver route decisions under information (Pang et 

al., 1999; Peeta and Yu, 2002). 

In this approach, concepts like inertia (propensity to remain on the current path), 

compliance (tendency to choose the path recommended by the information system), 

delusion (biased perception about a travel choice), freezing (habit), bounded rationality, 

and perception of traffic information become meaningful.  

Srinivasan and Mahmassani (2000) examined inertia and compliance based on 

nested multinomial probit models.  

Nakayama et al. (1999), proposed a formulation using Genetic Algorithms, and 

calculated the weights in the Horowitz’s (1984) travel time formulation endogenously. 

The results of the microscopic simulation analysis indicated that network flow does not 

necessarily converge to UE and may reach “deluded equilibrium,” which was caused by a 

driver’s false perception of travel time. The model formulation in this did not necessarily 

have psychological bases, and represented only a limited variety of cognitive processes 

underlying route choice behavior. Nakayama et al. (2000, 2001) developed an inductive 

rule-based model to examine delusion and freezing under traffic information. Four 

different rules were included in the route choice model: no switching (driver continued to 

travel on the same route), random switching (driver switched routes purely randomly), 

experienced based (driver evaluated the alternative routes based on the experience, and 
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chose the best one), and rational (driver evaluated the alternative routes rationally and 

chose the best one). The general form of the experience based rule was: 

  ��,|�* + 1� = ��,|�«ê�*�� + ��,|]��,|��� − ��,|�|F_                              (2.97) 

 

In the above formulation, ��,|�* + 1� is the expected travel time on path k on day 

n+1for traveler i, ��,|�«ê�*� is the average experienced travel time on the most recent m 

days, ��,| is the risk parameter, and ��,|���  and ��,|�|F are the maximum and minimum 

travel times experienced by the traveler. Based on this rule-based system, the traveler 

behavior was explored through Monte Carlo simulation without adoption of the 

assumptions underlying network equilibrium. Based on the estimation results, the authors 

concluded that a driver supplied with limited or incorrect information on a route might 

form a delusion, i.e., a biased perception of that route. If this delusion continued over 

time, the driver might develop the habit of excluding that route from consideration, 

resulting in a habit called freezing. 

Olaru and Smith (2005) modeled the impacts of travel time variability on travelers 

re-scheduling of daily activities based on fuzzy logic rules. The fuzzy model is used to 

handle the imprecision of the data which is unstructured. The developed model is tested 

via travel diary data collected for academics and students from ten universities in 

Bucharest in 1998. 

Liu and Huang (2007) proposed a similar rule-based day-to-day traffic assignment 

model and compared the results with SUE conditions. The expected travel time on day 

n+1 was calculated as the weighted average of experienced and actual travel time on day 
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n. The simulation results showed that, when information about routes that were not 

chosen, was not available to the traveler, the system started to reach to SUE conditions 

after 1400 days. On the other hand, when this information was available to the traveler, 

convergence to SUE was much faster.  

Peeta and Yu (2005) formulated the en-route traveler route-choice behavior via 

fuzzy logic approach. A hybrid model was proposed to combine logit-based route choice 

with qualitative if-then rules. The qualitative information was transformed into fuzzy 

variables via center of sums method defuzzification (Tsoukalas and Uhrig, 1997). Then 

these variables were included in the utility function along with the quantitative variables.  

Peeta and Yu (2006) proposed a behavior-based consistency seeking model to 

investigate the traffic systems under information provision. Heterogeneous driver classes 

were elicited from surveys, and fuzzy logic based if-then rules were used to model 

various driver behavior classes. The authors used DYNASMART to perform the traffic 

simulation. 

2.9.7 Bounded Rationality 

Hu and Mahmassani (1997) proposed a simulation-assignment approach to 

investigate real-time dynamics in terms of en-route switching decisions and day-to-day 

evolution of the traffic system under real-time information provision. Route and 

departure time selection were based on the driver’s scheduled delays experienced on the 

previous day. En-route switching was assumed to be based on boundedly rational 

behavior under information provision. Later, Mahmassani and Liu (1999) extended this 

work by using an interactive dynamic traveler simulator to generate data through 
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laboratory experiments. They developed a multinomial probit framework to model driver 

departure time and route choices. Recently, Jou et al. (2005) investigated the route 

switching behavior on freeways in response to different types of real-time traffic 

information. The authors designed the experiments based on stated preference surveys. 

Travel time and travel cost were included in the bounded rationality framework, and 

through the variance–covariance matrix, the correlation of travelers’ node-to-node route 

switching was studied. 

2.9.8 Stochastic Learning Automata 

Stochastic Learning Automata (SLA) mimics drivers’ day-to-day learning by 

updating travelers’ choice probabilities based on their experience with the system. The 

main advantage of the SLA over RL models is that in SLA theory, no specific 

relationship between the environment and actions is required. In fact, in SLA the 

environment is treated as an unknown random media in which an automaton operates, 

and the response of the environment to a specific action rather than the environment itself 

is considered. In simple terms, SLA approach is an inductive inference mechanism that 

updates the probabilities of its actions occurring in a stochastic environment to improve a 

certain performance index. This process is naturally closely related to BL, in which the 

distribution function of a parameter is updated at each instant on the basis of new 

information. However, in BL updating takes place according to Bayes’ rule, while it is 

more general in SLA (Narendra and Thathachar, 1989). SLA is first proposed to model 

the day-to-day learning behavior of drivers by (Ozbay et al., 2001) and (Ozbay et al., 

2002).  
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Ozbay et al. (2001) calibrated the SLA model using an Internet-based route 

choice traffic simulator. The simulator composed of one O-D pair and two routes. The 

travelers were assumed to be rational users trying to minimize their travel times. 

Moreover, the authors (Ozbay et al., 2001) assumed constant reward and punishment 

parameters and via trial-and-error approach determine the values of these parameters. 

This model was specific to route choice behavior. Later, Ozbay et al. (2002) improved 

this methodology by introducing departure time choice into the learning framework first 

proposed by Ozbay et al. (2001). 

2.9.9 Summary 

This section has focused on the detailed description of traffic assignment 

methodologies, and provided a comprehensive literature review of static and dynamic 

traffic assignment methodologies and day-to-day approaches.  

The approach to solve traffic assignment problem in the literature was mostly 

based on the notion of equilibrium. The earlier approaches to this problem involved 

assignment of O-D flows to the network links such that the travel time on all used paths 

for any O-D pair equals the minimum travel time between the O-D pair. This type of 

deterministic approach assumes that travelers choose the least cost or minimum travel 

time path from their origin to destination. Moreover, it presumes that all travelers have 

perfect knowledge regarding the transportation network, and that they make consistently 

correct decisions.  

Stochastic traffic assignment models relax some of the assumptions of 

deterministic approaches, and introduce random utility maximization methodology into 
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the traffic assignment. In particular, SUE approach assumes that each traveler tries to 

minimize his/her perceived travel time, generalizes the all-or-nothing network loading 

mechanism via discrete choice models.  

Conventional static traffic assignment models a fixed point steady-state 

equilibrium condition is assumed, where individual travelers have no incentive to change 

their decisions. Travelers assume to choose the alternative that maximizes their utility. 

Unfortunately, in reality traffic is a dynamic process, and these models fail to capture the 

dynamic nature of the traffic. Thus, in the past years, traffic assignment models started to 

progress from static to dynamic. Dynamic models can successfully represent the time-

varying nature of the congestion during different times of the day, help to understand 

travelers’ responses to time-varying transportation system policies (e.g. congestion 

pricing) including departure-time choice, pre-trip route choice, and en-route response to 

traffic information.  

Even though, DTA models provide some insight in terms of modeling traveler 

behavior, it assumes rigid behavioral tendencies; categorizes drivers into homogeneous 

classes via UE. Moreover, these models assume that the driver behavior classes are 

known deterministically a priori. The estimation of equilibrium is typically achieved 

through the solution of some optimization, or VI problem, which makes the approach 

restrictive in terms of generalizations. With this approach, it is difficult to capture the 

heterogeneity in users’ behavior, learning and adaptation processes, and behavioral 

characteristics.  
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In reality, the decision making process of driver choice is a dynamic process. A 

learning process is central to the driver’s cognition as the information acquired through 

earlier travel experience affect the future decisions. Moreover, the characteristics of the 

driver, subjective interpretation of the traffic information (if available), trip 

characteristics (time of day, trip purpose, etc), and uncertain traffic conditions have an 

importance in the driver’s final decision. Repeated choices make the drivers better aware 

of the travel options, inducing them to consider a destination, choose a route or try a new 

transportation mode. 
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CHAPTER 3. ROUTE CHOICE GE�ERATIO� 

The route set generation approach proposed in this thesis provides an alternative 

to the algorithms mentioned Section 2.1. The proposed approach develops a stochastic 

integer programming model to generate k partially disjoint paths. Unlike previous 

approaches, in this thesis the relevant route choice set is determined via minimizing travel 

time, travel time variability, and route overlap. The several advantages of the proposed 

approach can be summarized as follows: 

1. The proposed mathematical programming model, limits the number of paths using 

each link by a user defined overlap constraint set. In particular, the links on the 

network are labeled based on their functional characteristics. Since road type 

criterion covers important characteristics of each link such as speed, travel time, 

capacity, and accessibility; generating path overlap set via this criterion allows us 

take into account several crucial parameters at once. Based on these label-

constraints, the set of overlapping links is determined. 

2. The proposed mathematical programming model is an exact method to determine 

probabilistic k-PDP. The generated paths are not only disjoint with the “first” 

shortest path but they can be completely or partially disjoint with respect to each 

other as well. Instead of first generating a master set then applying various filters 

to this set to generate a final feasible path set, constraints considered in filtering 

the paths are explicitly incorporated into the optimization problem. This approach 
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eliminates the filtering process altogether from the set generation resulting in 

reduced computational costs. 

3. Unlike most of the previous models which can compute paths from only one 

origin to all destinations, the proposed model can simultaneously compute the 

paths between multiple OD pairs; which improves the computational costs.  

4. Finally, the proposed model includes stochasticity of travel times via travel time 

variability and network reliability components. Variability of travel times is 

necessary when trying to generate paths that are considered by travelers who do 

not only consider travel times but also variability of travel times. In fact, there is 

increasing evidence based on the recent research studies, travelers associate a high 

value to travel time variability (Noland and Polak, 2002; Brownstone and Small, 

2005). Thus, a path generation method that considers travel time variability while 

generation path choice set is highly desirable. 

 

Next section provides the details of the stochastic integer programming model 

proposed to indentify k partially disjoint paths in a network. The proposed mathematical 

model is compared with the existing mathematical models. After, the proposed model is 

applied to a real network. Finally, in the last section conclusions and discussions are 

provided. 
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3.1 Model Formulation 

The fundamental problem we consider in this chapter is to find k partially disjoint 

directed paths between multiple origin and destination nodes. Unlike other studies that 

developed heuristic algorithms to find k-PDP, this chapter formulates this problem via 

stochastic integer programming approach. The proposed approach considers probabilistic 

travel times and network reliability while finding the desired number of paths.  

First, we will briefly describe the existing mathematical formulations to find one 

and two shortest paths. Then, we will propose the mathematical formulation to find k-

PDP, and finally we will extend this formulation to introduce stochastic travel times and 

network reliability.  

Let � = �ë, �� be a directed graph, where M is the set of nodes C1,2, … ÎD, and A 

is the set of links whose size is equal to the total number of links, a. Each link �(, ½� ∈ � 

has a nonnegative cost .|¿. Moreover, suppose that we have a designated pair of origin 

and destination nodes o and d, respectively. A path from node o to node d is shortest if 

there is no path from o to d of shorter length. 

In the following formulations å��(� and ¢��(� denote respectively, the forward 

and reverse stars of node i. That is, å��(� refers to the set of links exiting node i, and 

¢��(� refers to the set of links entering node i, ∀( ∈ ë. Moreover, �|¿ is equal to 1 if link 

�(, ½� ∈ � is used in the shortest path and 0 otherwise.  

Finding the single shortest path is formulated via binary integer programming 

where the objective function minimizes the cost of the path, and the constraints 

guarantees the path flow balance. Sherali et al. (1998) extended this formulation to find 
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the shortest pair of fully disjoint paths. In this formulation the objective function 

minimizes the cost of two paths, while constraint sets ensure path flow balance and path 

disjointness. Sherali et al. (1998) simplified this formulation for a special case. In this 

formulation, first a shortest path from an origin to a destination is found via original 

shortest path problem formulation, then the links in the first shortest path are reversed, 

and the second shortest path is found via binary integer programming problem. One 

major problem that can arise in this formulation is that splitting initial shortest path 

solution from the network may eliminate the accessibility of some nodes and might fail to 

identify a feasible solution to the problem. Apart from the connectivity issues faced in 

these approaches, none of these models consider more than two completely disjoint paths, 

or partially disjoint paths. Furthermore, the travel time variability and network reliability 

issues are not considered in the aforementioned approaches, while determining the 

possible paths. 

To overcome these issues, first we propose the following mathematical model to 

determine k-PDP.   

(P-1)    
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                    (3.1f) 

                { } ( ) �nkhAjix nnh

ij ,...2,1        ,....2,1       ,      0,1, =∀=∀∈∀∈                     (3.1g) 

 

where, 

n = Index for the OD pair (n=1,2,…�) 

� = Total number of OD pairs 

,F = Origin node for OD pair n 

�F= Destination node for OD pair n 

�F = Total number of partially disjoint paths for OD pair n 

h = Path index, ℎ = 1,2, … �F 

�|¿= Travel time of arc (i, j) 

( )
 

    

  otherwise           0

pair  OD and path by  used is link  if            1
,









=

nhi,j

x nh

ij  

nC = Set of zone connectors (i, j) from the origin and to the destination nodes for OD pair 

n 

3F = Set of links (i, j) which can be used by at most one path (user defined) for OD pair 

n 

�F= Set of links (i, j) which can be overlapped by ns �Fpaths, where  nn ks ≤  �F ≤ �F 

(user defined) for OD pair n 
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 In this formulation the deterministic objective function (3.1a) aims to 

simultaneously minimize the total travel time of all k-PDP for a set of OD pairs, while 

constraint (3.1b) guarantees the network flow balance. Constraints (3.1c) and (3.1d) 

ensure that the zone connectors (i, j) connecting the zones (origins and destinations) to 

the real network can be overlapped by all possible k-PDP. Similarly, constraint (3.1e) 

ensures that the links (i, j) in set nD  can be used by at most one path. The remaining set 

of links �(, ½� ∈ �Fcan be overlapped by up to ns  paths. This condition is satisfied via 

constraint (3.1f). Finally, constraint (3.1g) is the binary variable constraint. 

 The optimization model presented in problem (P-1) can be formulated in a more 

compact form as shown in problem (P-2). In this formulation, previous constraint (3.1b) 

is represented in a vector form in constraint (3.2a) where matrix ìí represents the node-

to-arc incidence matrix, and vector n
b  which takes value of 1 and -1 for the origin and 

destination nodes, and takes value of zero elsewhere. Similarly, constraints (3.1c), (3.1d) 

and (3.1e) are combined together in constraint (3.2b), where vector îí takes value of 

�Ffor links exiting origin node and  entering destination node, takes value of ns for 

overlapping links, and takes value of 1 for non-overlapping links.  

 (P-2)                ∑∑
= =

�

n

k

h

n

1 1

     min nh,T
xt                                          (3.2a)       

subject to 

  ,...�,nkh n 21     ,....2,1     =∀=∀= nnh,n
bxZ                 (3.2b) 

  ,...�,n

nk

h

21        =∀≤∑
=

 dx
n

1

nh,                   (3.2c) 

    ,...�,nkhbinary n 21     ,....2,1    =∀=∀−nh,
x                                  (3.2d) 

 

where, 
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ï = Travel time vector 

dð,í = The a-dimensional binary decision vector which takes value 1 if link (i, j) is in the 

optimal problem, and 0 otherwise. 

( )
∑

∈

=
Aji

nh

ijij xt
,

,nh,Txt  

Next, we extend problem (P-2) to incorporate random travel times and path travel 

time reliability where link travel times are obtained from a probability distribution 

function. The proposed model is formulated as follows: 

 

(P-3)              Î(* ∑ ∑ ï£dð,í��>6ßF>6                          (3.3a) 

subject to 

                       ìídð,í = ñí∀ℎ = 1,2, … �F∀* = 1,2, … K                            (3.3b) 

                       ∑ dð,í ≤ îí��>6 ∀* = 1,2, … K                             (3.3c) 

            dð,í − �(* �L∀ℎ = 1,2, … �F∀* = 1,2, … K                                                  (3.3d) 

 
where; 

t = Random vector of travel time vector with a continuous probability distribution 

( )
∑

∈

=
Aji

nh

ijij xt
,

,nh,Txt  

 

In this formulation the probabilistic objective function (3.3a) aims to minimize the 

nondeterministic travel time for all k-PDP with the same set of constraints developed in 

problem (P-2).  
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3.1.1 From Stochastic �L-IP to Deterministic �L-IP 

The proposed Stochastic NL-IP problem is a highly complex mathematical model. 

In this section, via a novel transformation we obtain its equivalent deterministic convex 

NL-IP model which can be solved in polynomial time.  

The problem of how to deal with random objective function can be tackled in 

several ways. One possibility is to introduce a new constraint and a new objective 

function so that the stochastic programming problem becomes as follows (Kataoka, 1963) 

(In the following formulations, in order to simplify the transformation of the proposed 

mathematical model, index for the OD pair is omitted): 

 (P-4)                      ∑
=

k

1

       min
h

hg                     (3.4a) 

                               ìdð = ñ∀ℎ = 1,2, … �                                                                  (3.4b) 

                                       dx
1

h∑
=

≤
nk

h

∑ dð ≤ î��>6                           (3.4c) 

       ( ) ,...k,hg h 21   P h =∀≥≤ ρhT
xt                        (3.4d) 

            ,....2,1    khbinary =∀−h
x dð − �(* �L∀ℎ = 1,2, … �            (3.4e) 

 

where;   

0� = Deterministic variable for path h 

hρ = Reliability of path h 
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In this new optimization problem (P-4), the objective function is deterministic and 

minimizes the total travel time of k-PDP. The additional constraint (3.4d) ensures that 

travel time on each path is minimized at a certain level of path reliability ¬�. Unlike the 

other deterministic constraints, this constraint is a probabilistic constraint with a 

continuous distribution. 

If it is assumed that the probabilistic constraint (3.4d) has a normal distribution, 

i.e. travel time of each link (i, j) is independent random variables that are normally 

distributed with mean �|¿ and standard deviation ¥|¿, }K]�|¿ , ¥|¿_~constraint (3.4d) can 

be rewritten as follows (Prekopa, 1995):  

i ±ò]ï@ó_ôd
õdÞöd ÷� ≤ òø@]óôd_

õdôöd ÷�² ≥ ¬�ℎ = 1,2, … �                (3.5a) 

   ´ ±òê@]óôd_
õdôöd ÷�² ≥ ¬�ℎ = 1,2, … �                      (3.5b) 

0� − �óôd�� ≥ ´@6�¬��]√dôöd_�ℎ = 1,2, … �                  (3.5c) 

�óôd�� + ´@6�¬��]√dôöd_� ≤ 0�ℎ = 1,2, … �                             (3.5d) 

where; 

ó = The n – dimensional vector for mean travel time = 

ùú
úú
úû

...óüý... þ�
��
��
 

´@6�. �= Inverse of the standard normal distribution, �(0,1). 
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ö = The nxn diagonal matrix such that each diagonal entry is equal to the variance of the 

corresponding link (i, j). 

Thus, our probabilistic programming problem can be formulated in the following 

manner: 

(P-5)                      ∑
=

k

1

       min
h

hg                      (3.6a) 

                               ìdð = ñ∀ℎ = 1,2, … �                                                                  (3.6b) 

                                       dx
1

h∑
=

≤
nk

h

∑ dð ≤ î��>6                (3.6c) 

       ( ) ( )( ) kh g h
h

hh
,...2,1    1 =∀≤Φ+ − Ωxxxµ TT ρ                    (3.6d) 

            ,....2,1    khbinary =∀−h
x dð − �(* �L∀ℎ = 1,2, … �            (3.6e) 

 

Problem (P-5) is a stochastic NL-IP problem with a nonlinear travel time 

constraint (3.6d). This constraint limits the path travel time between a specific OD pair at 

a lower bound given by an exponential function. The very existence of transportation 

problems indicates that the travel time hg  will not be more than the minimum required 

time; thus, constraint (3.6d) is a binding constraint. Mathematically, 

( ) ( )( ) kh g h
h

hh
,...2,1    1 =∀=Φ+ − Ωxxxµ TT ρ                                                      (3.7) 

 

Then, the equality constraint (3.7) can be included into the objective function of 

the problem (P-5) and the stochastic optimization problem can be rewritten in such a way 

that both the objective function and the probabilistic constraint with continuous 
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distribution are transformed to their equivalent deterministic forms. We are left with an 

optimization problem with nonlinear objective function and two sets of linear constraints:  

 

(P-6)              ( ) ( ) ( )∑∑
= =

−Φ+
N

1

k

1h

,,,1,
       min

n

nhnhnhnh
Ωxxxµ

TT ρ                 (3.8a) 

           �a�½/.��, 

                               ìdð = ñ∀ℎ = 1,2, … �                                                                  (3.8b) 

                                       dx
1

h∑
=

≤
nk

h

∑ dð ≤ î��>6                (3.8c) 

            ,....2,1    khbinary =∀−h
x dð − �(* �L∀ℎ = 1,2, … �            (3.8d) 

 

Note that, the objective function (3.8a) in problem (P-6) is the weighted sum of 

mean path travel times ���£dð,í and their standard deviations ( ) nhnh ,,
Ωxx

T
for each OD 

pair set. If �¬�,F� ≥ 1/2, then ( ) 0,1 ≥Φ − nhρ , and the objective function becomes convex 

(Prekopa, 1995). Since the constraint set is linear, i.e. convex constraint set, the resulting 

deterministic nonlinear integer programming problem is a convex NL-IP.  

 When the variance of each link (i, j) is set to zero, the objective function omits 

the travel time variability, where only the mean total path travel times are minimized  

]∑ ∑ óôdð,í��>6ßF>6 _with respect to constraints (3.8b)-(3.8d). 

The basic structure of the resulting deterministic NL-IP model is: 

(P-7)          

( ) ( )
( ) 0      subject to

       min
2/1

≥

+=

xg

Bxxxcxf
TT

                        

(3.9) 
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where the objective function is a convex nonlinear function with positive semi-definite 

matrix B and linear constraint set g(x). Even though primal of this convex NL-IP problem 

involves non-differentiability of the terms in the objective function, dual of this problem, 

which is again a convex programming problem (nonlinearity is in the constraints in the 

dual formulation) can easily be solved (Sinha 1966). Thus, even though the original 

stochastic programming model is highly complex, after the theoretical transformation 

applied to the stochastic programming model, we obtain a nicely structured convex NL-

IP model which can be solved in polynomial time. Next section focuses on the solution 

algorithm. 

3.1.2 Solution Algorithm 

In order to solve the proposed NL-IP problem KNITRO 6.0 solver is used. 

KNITRO is an optimization package developed for solving nonlinear optimization 

problems. It is designed for large-scale applications, but it is also effective on small and 

medium scale problems.  

The basic form of the constrained nonlinear programming models is as follows:  

   (P-8)                   

( )
( )
( )

                         

             0                    

0     

                     min

≤

=

xg

xhtosubject

xf
x

                                                        

(3.10) 

 

where  RRf n →:  is a nonlinear objective function, mn RRg →:  is the vector of 

inequality constraints, and tn RRh →:  is the vector of equality constraints.  
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In order to solve the NL-IP problem, first branch-and-bound approach is 

employed to build a tree where each node is associated with a relaxation of problem P-8. 

Each node has a set of upper and lower bounds for variable x. Resulting nonlinear 

programming relaxation is solved via interior-point algorithm.  

The algorithm implemented in this chapter is based on interior-point (or barrier) 

method proposed by Byrd et al. (1996). The algorithm incorporates the interior-point 

methods with line search and Newton approaches. Here, we provide a brief description of 

the interior-point algorithm. A more detailed explanation of the algorithm can be found in 

Byrd et al. (2006). 

In the interior-point algorithm used in this chapter, each barrier sub-problem is 

formulated in the form of:  

 (P-9)        

( ) ( )

( )
( )

                         

             0                    

0     

ln                     min
1

=−

=

− ∑
=

slxg

xhtosubject

slxf
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i

i
x

µ

                                                 

(3.11) 

where sl is the vector of slack variables and 0>µ  is the barrier parameter. The interior-

point method consists of finding solutions of the barrier problem for a sequence of 

positive barrier parameters { }µ  that converges to zero.  

The Karush Kuhn Tucker (KKT) conditions for the above problem can be written 
as: 
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(3.12) 

where ( )T
e 1,...,1= , ( )mslsldiagS ,...,1= , hA and gA are the Jacobian matrices 

corresponding to the equality and inequality constraint vectors respectively, and hλ and 

gλ represent vectors of Lagrange multipliers. In the line search approach, Newton’s 

method is applied to the above problem given in eqn-3.12, backtracking if necessary so 

that the variables sl remain positive, and so that the merit function is sufficiently reduced.  

To control the quality of the steps, the interior point algorithm makes use of the 

non-differentiable merit function: 

( ) ( ) ( ) ( )
22

1

log, slxgxhslxfslx
m

i

i −++−= ∑
=

υυµφυ                                     

           

(3.13) 

 

where 0>υ . A step is acceptable only if it provides a sufficient decrease in υφ .  

In this algorithm in each iteration, line search step is computed using direct linear 

algebra as described in Waltz et al. (2003). In particular, applying Newton’s method to 

the above problem line search step is conducted: 
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(3.14) 

 
where L denotes the Lagrangian  
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(3.15) 

 
then the step d obtained from eqn-3.14 can be guaranteed to be a descent direction for the 

merit function (eqn-3.13). In this case the scalars max

slα and max

zα are computed as: 

 

( ] ( ){ }
( ] ( ){ }gg

slsl
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(3.16) 

 

with 995.0=τ . If ( )maxmax ,min
gsl λαα is not too small, the line search algorithm computes 

the step lengths: 
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(3.17) 

 

where .α are the step lengths. 

 
If in the resulting solution, some integer variables take non-integer values (e.g. xi 

with value ix̂ ), the algorithm then selects one of these integer variables and branches on 

it. Branching generates two new NL-P problems by adding simple bounds [ ]ii xx ˆ≤ and 

[ ] 1ˆ +≥ ii xx , respectively to the NL-P relaxation.  One of the two new NL-P problems is 

selected and solved next. If the integer variables take non-integer values then branching is 

repeated, thus generating a branch-and-bound tree whose nodes correspond to NL-P 

problems and where an edge indicates the addition of a branching bound. If one of the 

following conditions are satisfied the corresponding node is abandoned: (1) an infeasible 

node is detected (then the whole subtree at this node is infeasible); (2) an integer feasible 

node is detected; (3) a lower bound on the NL-P solution of a node is greater or equal 
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than the current upper bound. Once a node has been explored the algorithm backtracks to 

another node which has not been explored until all nodes are explored. 

The main steps of the interior-point algorithm are given below (Byrd et al. (2006): 

 

 

3.1.3 Simple Example  

To illustrate the impacts of travel time variability on the shortest path selection, 

the proposed optimization model is implemented using the example network shown in 

Figure 3-1. For each link (i, j) travel times are assumed to be normally distributed. Mean 

and standard deviation of each link travel time are shown in the parenthesis above the 

corresponding link.  
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Figure 3-1 Example network with stochastic travel times 

 

First, the k-PDP is found in deterministic case via problem (P-2). For simplicity, 

� is set to 1. � = C�1, 3�, �5, 7�D, k is set to three, and s is set to two. The solution of the 

optimization problem yields to the following set of paths: 

 

 �6 = C��, 1�, �1,2�, �2,6�, �6,7�, �7, ��D (Travel time = 16 units) 

 �9 = C��, 1�, �1,4�, �4,5�, �5,7�, �7, ��D (Travel time = 17 units) 

 �I = C��, 1�, �1,3�, �3,5�, �5,7�, �7, ��D (Travel time = 19 units) 

 

Next, stochasticity introduced into the mathematical model, ¬ is set to 0.9 for 

each path.  The k-PDP is found in stochastic case via solving problem (P-5). 

After inserting the corresponding values into the problem (P-5), the optimization 

model is solved in CPLEX. The solution yields to the following paths:  

 

�6 = C��, 1�, �1,4�, �4,5�, �5,7�, �7, ��D (Travel time including variability = 18.34 units) 

�9 = C��, 1�, �1,3�, �3,5�, �5,7�, �7, ��D (Travel time including variability = 20.49 units) 
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�I = C��, 1�, �1,3�, �3,6�, �6,7�, �7, ��D (Travel time including variability = 20.39 units) 

 

The results show that when travel time variability is introduced into the objective 

function; both mean and variance of path travel time are minimized simultaneously, 

allowing us to obtain set of paths with the least travel time and variability.  

Note that, while solving probabilistic k-PDP problem above, set S is formed 

visually. However, in a very large network, set of rules are required to generate this set. 

Next section provides the details of the selection of set S for large transportation 

networks. 

3.2 Disjointness Rate 

The mathematical formulation presented in problem (P-6) finds the probabilistic 

k-PDP between a set of OD pairs, while ensuring that zone connectors always remain 

connected to the real network, and a pre-determined percentage of each path is disjoint 

from each other.  

One of the key elements of this formulation lies in the determination of the size 

and elements of the overlapping link set �F. This step is crucial in the creation of relevant 

path choice sets. The generated set should exclude highly similar paths that no traveler 

would ever differentiate between. Depending on the desired level of disjointness the 

modeler can modify the number of links in the overlapping link set �F. In particular, if 

the modeler requires a high level of disjointness rate, the magnitude of ns can be set to a 

number smaller than �F. In the extreme case, when �F is set to 1, the almost fully disjoint 
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paths are determined, where only the zone connectors are overlapped among different 

paths. Moreover, links (i, j) to be included in the overlap set �Fcan be specified 

depending on the type of a specific application and scenario. For instance, a particular 

section of the network may have a major crossing, which most of the paths have to cover. 

Then, the modeler may wish to include these links in the set �F.  

Alternatively, during certain periods of the day, some road sections may 

experience recurring bottlenecks, and the transportation modeler may wish to generate 

paths which circumvent these bottlenecks. Then it would be desirable to prevent these 

links to be shared by certain paths, thus include them in set 3F.  

In a small network, it is straight-forward to determine the size and elements of the 

set �F. On the other hand, in large and very dense networks, manually creating this set 

can be tricky. The proposed model allows the modeler to form a user defined overlap 

constraint set. We determine the size and the elements of the set �Fbased on functional 

characteristics of the links. Since road type criterion covers important characteristics of 

each link such as speed, travel time, accessibility, generating path overlap set via this 

criterion allows us take into account several crucial parameters at once. Categories 

(labels) considered in the estimation process are expressway, freeway, principal arterial, 

major/minor arterial, local roads, and zone connectors. Based on these label-constraints, 

the set of overlapping links are determined. 

To determine the size of set �F, initially the first shortest path between the O-D 

pair n is determined. Then the ordered list of links are stored in the shortest path set, �i6F, 
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where the size of set �i6F denotes the total number of links ( )nM  along this path. Then, 

disjointness rate is set to be a percentage of ëF.  

Similarly, links (i, j) to be included in the set �F are determined via label-

constraints. In particular, each link in the first shortest path is labeled according to their 

functional characteristics and stored in the label set, �6F. Depending on the purpose of the 

path generation problem, the links which can be overlapped among different paths are 

included in the set �F.   

3.3 Sensitivity Analysis 

In this section the proposed model is tested using several different networks using 

KNITRO 6.0 solver. The test networks include Sioux-Falls Network, a small-size 

network, and Northern New Jersey network, a large transportation network.  

3.3.1 Sioux-Falls �etwork 

The first test network is selected from “Transportation Network Test Problems” 

database generated by Bar-Gera (2007).  The network for Sioux-Falls has 24 nodes and 

76 links. The origin node is selected as node 1, and destination node is selected as node 

20, and k is set to be 4. Unfortunately, this database does not provide any information 

regarding the link labels. Thus, for the sake of illustration, all the outgoing links from 

node 1, and all the incoming links to node 20 are assumed to be zone connectors. 

First, set of paths are found in the deterministic case via solving problem (P-2). 

While generating k-PDP, initially, the first shortest path is found. Figure 3-2-a highlights 

the links belonging to the first shortest path. The mean travel time of this path is 22 units. 
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Next, based on the link information for the first shortest path, sets C, S and D are 

determined. As mentioned before, set C consists of all the outgoing and incoming links 

from and to the origin and destination nodes, respectively. Hence, 

s = C�1,2�, �1,3�, �18,20�, �19,20�,. Moreover, since link label information is not 

available in this formulation, the second and third links are included in the set � =
C�2,6�, �6,8�D, and all other links are included in set D. Figure 3-2-b illustrates the new 

set of paths generated by the model. Total elapsed time to generate these paths is 

recorded as one second. 

Next, travel time variability and network reliability properties are included into 

the model via problem (P-6). Unfortunately, the database for the Sioux-Falls does not 

provide any information regarding the network reliability or the travel time variability. 

Thus, for the sake of illustration, a random number between zero and twice the link travel 

time are assigned as the variance of each link’s travel time. Furthermore, ρ  is set to 0.9 

for each path, k is set to four, and s is set to two.  Using these assumptions, initially, the 

first shortest path is found. The model successfully generates four different partially 

disjoint shortest paths between node 1 and 20. Total computational time required to 

generate these paths is recorded as one second. Figure 3-2-c highlights the probabilistic k-

PDP generated using the proposed model. The results of the optimization problem 

indicate that when the variability of the link travel time is considered, paths are selected 

based on the combination of minimum travel time and variability. For instance, candidate 

path composed of links C�1,3�, �3,12�, �12,13�, �13,24�, has not been selected as a 

legitimate path, even though total travel time (24 units) is lower compared with path 2x  
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(26 units), due to the high travel time variability on links ( ) ( ){ }20,21,21,24 . Thus, path 2x  

with lower weighted sum of mean travel time and variance is selected by the proposed 

model. Similarly, paths �H and candidate path 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }20,22,22,15,15,14,14,11,11,4,4,3,3,1  both have the same travel time. 

However, due to high travel time variability of links C�4,11�, �11,14�D, this candidate 

path is not included in the final path set. 
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Figure 3-2 K-shortest path problem results 
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3.3.2 �orthern �ew Jersey �etwork 

Next, the proposed stochastic integer programming model is tested on a large real 

network. The Northern New Jersey network, shown in Figure 3-3 consists of 5 418 

nodes, 1 451 of which are zonal nodes and a total of 15 387 links. The input data required 

for the path set generation process are obtained from TP+, transportation planning 

software. These input data include: (1) loaded travel time of each link resulting from the 

assignment of separate OD demand matrices for am peak, pm peak and off-peak periods; 

(3) Node and link ID’s, (4) highway and residential area type; (5) length, number of 

lanes, capacity and free flow travel time of each link.  

 
Figure 3-3 Map of Northern New Jersey 
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Using the link and node information provided for this network, proposed path set 

generation model is applied for different OD pairs. To observe the impacts of network 

reliability, for each case the mathematical model is solved both including and excluding 

travel time variability. Since, the database does not provide any information regarding 

link travel time variability, a random number between zero and twice the link travel time 

is assigned as the standard deviation of each link’s travel time. While generating the path 

set for each OD pair, the links in the first shortest path labeled as freeways or 

expressways are included in set D. For illustration purposes disjointness rate constraint is 

chosen as 0.5, i.e. each pair of generated relevant paths will not share more than 50% 

arcs.  

The overall disjointness rate is calculated as the lowest disjoint rate among all the 

paths between an O-D pair, and calculated using the following formulation 

  �(�½,(*�/�� � �/ �(, ½� =  min|,¿ }ßV��j� T� FTFT«j���µµ|Fê �|F�� �j�¸jjF µ���� | �F¹ ¿
£T��� FV��j� T� �|F�� TF µ��� | ~        

(3.18) 

 

Figure 3-4, Figure 3-5, and Figure 3-6 illustrate the path sets for sample OD pairs 

in Bergen, Middlesex and Monmouth Counties, respectively. In each figure, figure-a 

illustrates the set of paths excluding travel time variability. Similarly, figure-b presents 

the set of paths including travel time variability. Total elapsed time to generate different 

path sets ranges between 26 and 33 seconds depending on the network size and the type 

of the optimization model employed (Table 3.1). As the network size increases the time 

to find the optimal path set increases, as well. Similarly, the time required to solve the 
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nonlinear integer model is slightly higher compared with the time required to solve the 

linear integer model. As expected, in each case, inclusion of variability results in longer 

trips with links that have lower travel time variances (Table 3.1).  Overall, the mean 

travel time of each path set increase by 10% when network reliability is considered. 

Moreover, overall disjointness rate of each path with the shortest path is at least 60%. 

Similarly, overall disjointness rate among all paths ranges between 70% and 88%. 

 

Figure 3-4 Path set – Bergen County (a) Excluding variability, (b) Including variability 
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Figure 3-5 Path set – Middlesex County (a) Excluding variability, (b) Including 

variability 

 

 
Figure 3-6 Path set – Monmouth County (a) Including variability, (b) Excluding 

variability 
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Table 3.1 Travel time and disjoint rate information for selected OD pairs 

Path # 

Bergen County O-D pair 63-

136 

Middlesex County O-D pair 

591-734 

Monmouth County O-D pair 

742-882 

Time 

inc. var. 

Disj. 

rate 

Time 

exc var 

Disj. 

rate 

Time 

inc.  

var. 

Disj. 

rate 

Time 

exc. var. 

Disj. 

rate 

Time 

inc. var. 

Disj. 

rate 

Time 

exc. 

var. 

Disj. 

Rate 

1 58 0.82 54 0.75 83 0.75 77 0.73 72 0.73 71 0.6 

2 62 0.93 55 0.9 88 0.95 78 0.74 73 0.73 68 0.75 

3 67 0.91 65 0.8 99 0.75 89 0.73 82 0.77 75 0.85 

4 73 0.82 68 0.75 100 0.95 87 0.82 89 0.77 83 0.6 

5 82 0.9 70 0.9 - - - - - - - - 

Mean 68 0.88 62 0.82 92 0.85 83 0.76 79 0.75 74 0.7 

Std dev 9.45 0.05 7.44 0.08 8.36 0.12 6.25 0.04 7.9 0.02 6.69 0.12 

CPU 

time 
33  sec 3 sec 28 sec 3 sec 26 sec 3 sec 

 

3.4 Computational Performance 

In evaluating different path set generation approaches, computational 

performance of the proposed approach needs to be evaluated. For this purpose, random 

OD pairs are generated from Northern New Jersey network and computational 

performance experiments are conducted. For each OD pair, total number of paths, 

average travel time per path, and disjointness rate values are calculated. A total of 75 

different OD pairs are analyzed.  Summary of results, shown in Table 3.2, exhibits 

similar computational performance with and without travel time variability. Including 

travel time variability leads to slightly higher travel times, while both approaches find the 

same number of total paths between different OD pairs. The average travel time per OD 

pair ranges between 17.20 minutes to 118.5 minutes with a standard deviation of 22.41 
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minutes. Furthermore, the minimum disjointness rate between every pair of paths ranges 

between 55% and 88%. 

 

Table 3.2 Travel time and disjoint rate information for selected OD pairs 

Statistics 
# of 

paths 

Travel Time (min) Disjointness Rate 

with 

variation 

 without 

variation 

with 

variation 

 without 

variation 

Total 404 - - - - 

Avg/ OD pair 5.39 69.49 67.32 0.68 0.66 

Std 1 24.56 22.41 0.1 0.08 

Max 7 124.53 118.5 0.88 0.85 

Min 3 17.2 17.2 0.55 0.55 

 

3.5 Comparison with Existing Methods 

This section compares our proposed methodology with the existing approaches in 

the literature. In order to perform a proper comparison with the existing methodologies, 

the parameters of these methods were adjusted. In particular, zone connectors were not 

removed in order to increase the probability of finding more paths. Moreover, since none 

of the above algorithms consider travel time variability, while comparing these 

approaches with the proposed methodology, only the results obtained without the travel 

time variability are considered. 

As mentioned in the introduction section, while calculating the path sets applying 

the above algorithms, first the master choice set needs to be generated. Then, this master 

set is further filtered according to desired disjointness rates among the paths. In order to 
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investigate the significance of disjointness rate on the number of paths generated, two 

different types of filtering are applied. In the first filtering process, for each OD pair the 

paths with disjoint rates are less than 0.1 are eliminated, and no constraint is imposed on 

the travel time of the paths. This process allows us to eliminate all the paths that are 

exactly (or almost) the same, and the paths that share at least 90% of their links. In the 

second filtering process, for each OD pair, the paths with disjoint rates that are less than 

0.5 and paths that have travel times that are double of the first shortest path, are 

eliminated. This process allows us to generate relevant path choice sets, and compare 

their results with ours.  

The model specifications and assumptions imposed to the comparison algorithms 

are as follows: 

A1. Labeling approach (Ben-Akiva et al., 1984): The shortest paths with respect to 

path attributes such as minimum travel time, distance, and free flow travel time; 

and maximum freeway, arterials, and expressway paths are calculated. The cost 

functions required for maximizing freeways, arterials and expressways are taken 

from Ben-Akiva et al. (1984). 

A2.  Link elimination approach (Azevedo et al., 1993): A modified version of the 

original formulation by Azevedo et al. (1993) is applied by repeating for 15 

iterations of the following steps: (a) Compute the first shortest path by minimizing 

travel time, (b) Eliminate all the links on the shortest path except the zone 

connectors, (c) Recalculate the next shortest path.  
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A3. Link penalty approach (De la Barra et al., 1993): The original formulation 

proposed by De la Barra et al. (1993) is applied. The following steps are repeated 

for 15 iterations: (a) Compute the first shortest path by minimizing travel time, (b) 

Increase the travel time of all the links on the shortest path except the zone 

connectors by 40%, (c) Calculate the next shortest path. 

A4. Randomization approach (Ramming, 2002): Shortest paths are computed by 

drawing impedances from normal distribution. The mean parameter of the normal 

distribution is taken as the link travel time, and variance is taken as the twice of 

the mean link travel time. A total of 16 draws are extracted. 

A5. Doubly stochastic approach (Bovy and Fiorenzo-Catalano, 2007): In this 

approach the cost function in the form of  h ∗ �� �/) �(Î/  is used. The 

parameter h is normally distributed with mean 1 and standard deviation 0.4 (Bovy 

and Fiorenzo-Catalano, 2007). Similarly, link travel times are normally 

distributed, where mean is the link travel time, and variance is the twice of the 

mean link travel time. 

 

Table 3.3 summarizes the results when disjointness rate is set to 0.1, and no 

constraint is imposed on the travel time of the paths. Each method except the 

randomization approach on average generates three to four paths between each OD pair. 

The highest number of paths generated by these methods is seven, while the least number 

of paths is one, which is the first shortest path. The highest number of paths is generated 

via doubly stochastic approach (A5) followed by link penalty (A3) and link elimination 
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(A2) approaches. The least number of paths are generated by the simulation approach 

(A4). Furthermore, the highest disjointness rate is obtained from link elimination 

approach (A2) followed by link penalty (A3). This result is expected, since to calculate 

the next shortest path all the links in the previous path except the zone connectors are 

removed from the network. The most similar paths are generated by the simulation 

approach (A4) followed by doubly stochastic (A5) and labeling (A1) approaches. 

Provided that randomization approaches only change the magnitude of the link travel 

time, and the link attributes in the labeling approach are highly correlated, the paths 

generated via these methods are likely to be similar to each other.  

 

Table 3.3 Path set generation results, disjointness rate = 0.1 

Method 

Paths Travel Time Disjointness Rate 

Total 
Avg/ OD 

pair 
Std Max Min 

Avg/ 

OD pair 
Std Max Min 

Avg/ OD 

pair 
Std Max Min 

Labeling 258 3.48 1.14 6 1 60.82 21.03 105.46 15.9 0.22 0.18 0.92 - 

Link 

Elimination 
265 3.58 1.03 5 1 72.32 20.3 117.4 21.9 0.896 0.12 0.96 - 

Link Penalty 308 4.16 1.25 5 1 72.28 22.01 118.53 17.2 0.386 0.21 0.8 - 

Simulation 170 2.29 1.51 7 1 53.75 17.78 93.44 14.8 0.13 0.15 0.75 - 

Doubly 

Stochastic 
348 4.71 2.35 7 1 64.04 21.71 138.34 18.8 0.18 0.09 0.52 - 

 

 

When the disjointness rate criterion is increased and travel time constraint is 

imposed, almost 50% of the generated paths are eliminated except for link elimination 

approach (Table 3.4). Compared with the proposed k-PDP generation model, link 
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elimination and the proposed approach generate the closest set of paths. However, even 

this method provides 35% less number of paths. Among all approaches, proposed k-PDP 

method performs the fastest followed by labeling, link penalty and link elimination 

approaches. Randomization methods, on the other hand, require more additional time to 

generate paths. 

Table 3.4 Path set generation results, disjointness rate = 0.5 

Method 
k-

PDP 
Labeling 

Link 

Elimination 

Link 

Penalty 
Simulation 

Doubly 

Stochastic 

Paths 

Total 404 134 265 172 84 118 

Avg/ 

OD 

pair 

5.39 1.81 3.58 2.32 1.135 1.6 

Std 1 1.28 1.03 0.74 0.38 1.8 

Max 7 6 5 3 3 14 

Min 3 1 1 1 1 1 

Travel Time 

(min) 

Avg/ 

OD 

pair 

67.32 62.6 72.32 72.28 53.75 64.04 

Std 22.41 21.28 20.3 22.01 17.78 21.71 

Max 118.5 110.3 117.4 118.5 93.44 138.3 

Min 17.2 16.5 21.9 17.2 14.8 18.8 

Disjointness 

Rate 

Avg/ 

OD 

pair 

0.66 0.63 0.91 0.62 0.66 0.5 

Std 0.08 0.13 0.06 0.09 0.11 0.1 

Max 0.85 0.92 0.96 0.8 0.88 0.81 

Min 0.55 - - - - - 

Computation 

Time (sec) 

Total 215.25 410.84 678.61 574.91 2524.1 2648 

Avg/ 

OD 

pair 

2.87 5.29 9.17 7.77 34.11 35.8 

Std 1.96 2.19 4.81 3.91 9.06 7.82 

Max 6.42 10.95 19.84 14.65 63.47 56.2 

Min 2.11 1.02 0.99 0.71 19.57 22.8 
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Figure 3-7 illustrates the distribution of cumulative number of paths among 

different approaches. The number of unique paths generated by the proposed k-PDP 

methodology is distinctively high compared with all the previous approaches. Overall 

results of computational experiments show a superior performance of the proposed 

methodology over previous approaches provided by Ben-Akiva et al. (1984), Azevedo et 

al. (1993), De la Barra et al. (1993), Ramming (2002) and Bovy and Fiorenzo-Catalano 

(2007).  

 

Figure 3-7 Cumulative number of paths 

 

3.6 Conclusions and Discussions 

Identification of path choice sets is crucial in transportation related problems such 

as traffic assignment, route choice, vehicle dispatching, or advanced traveler information 
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systems. Correctness and accuracy of travel demand estimates and predictions depend on 

the quality of the adopted choice sets (Swait and Ben-Akiva, 1985, 1987; 

VanderWaerden et al., 2004). 

The generated paths in the choice set should include all relevant paths, while 

excluding unrealistic paths that no traveler would ever consider, and highly similar paths 

that no traveler could differentiate between. 

In this chapter a mathematical programming model is proposed to optimally 

generate probabilistic k- partially disjoint paths between different origin and destination 

pairs. In particular this approach proposes a stochastic nonlinear integer programming 

model that takes into account travel time variability and network reliability of the 

transportation network, while limiting the links overlapped among different paths. Then, 

via a novel transformation we obtain its equivalent deterministic convex nonlinear integer 

programming model which can be solved in polynomial time. 

The path relevance criteria are directly incorporated into the optimization model 

by minimizing mean travel time, travel time variability and path overlap. Unlike most of 

the previous models which can compute paths from only one origin to all destinations, 

the proposed model can simultaneously compute the paths between multiple OD pairs; 

which improves the computational costs. 

Unlike previous approaches in the literature, proposed methodology is not based 

on heuristics, eliminates the need for the filtering step from the choice set generation and 

generates path sets at a desired dissimilarity level while minimizing the travel time and 

variability of these paths. Dissimilarity among different paths is determined via user 

defined constraints defined according to functional types of the links. Dissimilarity 
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constraint imposed into the optimization model generates paths that are not only disjoint 

with respect to the first shortest path but among each other as well.  

Several computational experiments using small and large real-life networks 

(Sioux-Falls and Northern New Jersey Networks) show that when network reliability is 

included in the mathematical model, weighted sum of path travel time and its standard 

deviation is minimized and slightly longer trips with less variability are generated. Case 

studies confirm the applicability of the proposed methodology on real transportation 

networks. 

Computational experiments also show that proposed probabilistic k- partially 

disjoint paths model performs better than previous approaches for the test cases presented 

in this chapter. The overlap rate of the generated path sets among different origin and 

destination pairs are significantly lower compared with the existing methodologies. The 

developed stochastic nonlinear integer programming formulation for determining 

probabilistic k-partially disjoint paths can be an important tool for researchers who wish 

to generate path choice sets that also take into account probabilistic distribution of link 

travel times. 
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CHAPTER 4. DAY-TO-DAY LEAR�I�G 

In this chapter, a new methodology is proposed to understand travelers’ day-to-

day learning behavior under steady-state conditions and when changes are imposed into 

the transportation system. 

This thesis introduces a new novel day-to-day learning framework to model 

travelers’ departure time and route choice behavior under non-equilibrium network 

conditions due to major disturbances, such as changes in the congestion pricing policies, 

and building of new road sections. An agent-based learning system via Bayesian-SLA is 

designed which can learn the best possible actions and model travelers’ day-to-day travel 

choices in a non-stationary stochastic environment. In the proposed approach, each 

traveler maintains a choice probability profile for the available alternatives, and updates 

his/her probability profile based on previous travel choices, exhibiting a tendency to 

search for satisfying choices rather than the best behavior. Thus, bounded rationality is 

included into the probability profile, where travelers learn selectively. This reflects 

travelers’ capability in predicting future traffic conditions and their inertia in changing 

behavior. To overcome unrealistic assumption of identical traveler attributes, the 

proposed approach introduces user heterogeneity into day-to-day learning modeling via 

Bayesian inference approach, and assumes that learning parameters follow probabilistic 

distributions across the population. The estimated learning parameters reflect travelers’ 

perception about the system and their response to the experienced traffic conditions.  

The novelty of this work is that the proposed learning approach combines traveler 

heterogeneity and rationality in a single framework to predict travelers’ day-to-day 
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departure time and route decisions. Moreover, for the first time in the transportation 

science, based on Bayesian framework and Bounded Rationality approach, this learning 

model estimates distribution of the optimal learning parameters. Imposing probability 

distributions to the learning parameters allows us to investigate the differences across the 

individuals rather than the differences between classes of users. Moreover, the proposed 

day-to-day learning model is applied to real world data, which allows us to investigate 

the evaluation, convergence, and stability of dynamic systems.   

We believe that the proposed work will give both practitioners and researchers an 

insight on how to understand traveler choice mechanism, and model the impacts of 

various changes in the transportation system on the day-to-day adaptation of travelers. 

4.1 Day-to-Day Learning Model 

In this chapter, commuters’ day-to-day learning behavior on the basis of 

experienced travel choices and user-specific characteristics is modeled via Bayesian-SLA 

theory. In SLA, automaton attempts a solution to the problem without any information on 

the optimal action. One action is selected at random, response from the environment is 

observed, action probabilities are updated based on that response, and the procedure is 

repeated. Stochastic automaton acting as described to improve its performance is called a 

learning automaton (Narendra and Thathachar 1989). The objective in the design of the 

automaton is to determine how the choice of the action at any stage should be guided by 

past actions and responses.  

Learning automata is concerned with the analysis and synthesis of the automata 

which operate in random environments. In this section we describe the random 
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environment, structure and characteristics of the automata, and the mathematical tools 

that are applicable to the analysis of such systems. 

4.2 Environment 

In SLA, environment, in our case the transportation system, is defined as a large 

class of unknown random media in which an automaton (traveler) can operate. 

Mathematically, an environment is represented by a tripleCM, ., hD, where M represents a 

finite action/input set (travel choice in our model), h represents an output set (utility 

experienced from a choice), and c is a set of penalty probabilities, where each element .| 

corresponds to one action M| of the set M. The action M�*� of the automaton is then 

applied to the environment at time t=n. Consequently, .| represents the probability that 

the action M| will result in a penalty output. The elements of c are defined as: 

 i��h�*� = 1|M�*� = M|� = .|               �( = 1,2, … ��                 (4.1) 

 

Several models are defined by the response set of the environment. Models, in 

which the output can take only, 0 or 1, are referred to as P-models. In this case, response 

value of 1 corresponds to an “unfavorable” (failure) response, while output of 0 means 

the action is “favorable.” The focus of this chapter is P-models. 

4.3  The Stochastic Automaton 

The automaton takes in a sequence of inputs and puts out a sequence of actions. 

Mathematically, the automaton can be represented by a quintuple &Φ,α, h, å�. �,��. �� 

(Figure 4-1) (Narendra and Thathachar, 1989): 
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• Φ is asset of internal states 

• α is a set of actions (or outputs of the automaton) 

• h is a set of responses (or inputs from the environment) 

• å�. �:Φ × β → Φ is a stochastic function that maps the current state and input into 

the next state 

• ��. �:Φ × β →  α is a function that maps the current state and input into the 

current output 

 

 
Figure 4-1 The automaton and the environment (Narendra and Thathachar, 1989) 

 

4.4 Behavior Updating Mechanism  

An automaton generates a sequence of actions on the basis of its interaction with 

the environment. Each action results in a favorable or unfavorable response. In this 

chapter, whether a choice is favorable or unfavorable is determined via experienced 

utility value and deviation from desired arrival time of the selected choice. Moreover, it is 

assumed that travelers exhibit a tendency to search for satisfying choices rather than the 

best behavior; thus they do not have the cognitive ability to process all the information 

simultaneously and are happy with a good solution. To incorporate this kind of behavior, 
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bounded rationality (BR) approach (Simon 1955) is included in the behavior updating 

mechanism. Various assumptions considered in this chapter while applying BR in 

departure time choices are:  

 

• Based on former choices, a traveler has personal experiences. From these 

experiences, s/he can learn about the characteristics of the actions. Information about 

the actions not chosen by the traveler can only be updated, if s/he has chosen them in 

the past. 

• To account for BR, we use indifference bands. As long as the outcome of the travel 

choice falls within the indifference bands, the travelers will not update their choice. In 

calculating the indifference bands, ±10% confidence intervals are used. 

 

The utility values employed in the behavior updating mechanism are estimated 

via Hierarchical Bayesian Mixed Logit (HB-ML) models. Next section provides the 

details of this framework.  

4.4.1 Hierarchical Bayesian Mixed Logit Model  

One of the important contributions of this chapter is the introduction of the 

population heterogeneity through the use of HB-ML models. This is especially important 

in the case of a learning model where different users have different learning behavior that 

can be represented through varying the coefficients of the model.  

Most discrete choice models are based on random utility theory (Ortuzar and 

Willumsen, 2001). Suppose a sample of � independent decision makers are observed, 
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and let the L* be the observed choice of decision maker n, where � = CL6, … , LßD is the 

set of observed choices for the entire sample. The utility that person n obtains from 

alternative j can be represented by: 

 

    �*½ = ∑ �½��*½��>6 + [*½                (4.2) 

        

where �F¿ is the utility associated with alternative j for individual n, �F¿� is the value of 

the attribute k of alternative j for individual n,  �¿� is the parameter associated with this 

attribute, and [F¿ is a stochastic component that reflects everything that the modeler 

cannot measure or observe.  

The parameters �¿� are usually considered constant for all individuals although 

they can vary across alternatives. If we allow for random variations in the taste 

parameters ��F� and use the same distribution for the error terms ][F¿_, we get a mixed 

logit (ML) random parameters model, in which utility of alternative j is given by the 

following expression (Train, 2003): 

 

    �*½ = �*�*½ + [*½                     (4.3) 

 

where [*½~�aÎ�/)�0, ¥9� and ���F�~K,�Î )���F|�, Σ�, and � is the vector of means 

for the k explanatory variables, Σ is the � × �  variance-covariance matrix.   

This model can be further be extended by imposing hyper-parameters on 

parameters � and Σ via Bayesian approach, and we obtain Hierarchical Bayesian Mixed 

Logit (HB-ML) model. With recent developments in statistics, Bayesian procedures have 

become powerful techniques for estimating discrete choice models. From Bayesian point 
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of view, logit model is based on the posterior distribution of unknowns of interest instead 

of maximum likelihood estimation. The Bayesian framework avoids two of the most 

important difficulties associated with classical approaches. First, unlike probit and some 

mixed logit models which require maximization of the simulated likelihood function, 

Bayesian procedures do not require maximization of any function. Second, desirable 

estimation properties, such as consistency and efficiency, can be attained under more 

relaxed conditions with Bayesian procedures than classical ones (Train, 2003). 

In HB-ML, coefficients of the utility function are assumed to vary in the 

population rather than being fixed at the same value for each person. Thus, unlike the 

classical approach, in Bayesian statistics, parameters are treated as random variables, and 

prior knowledge about parameter vector �F (such as coefficients of the logit model) is 

represented by a prior distribution, ���F�. The prior distribution can either be based on 

previous empirical work, or researcher’s subjective beliefs. For instance, while it is 

difficult to impose even simple non-negativity constraints (e.g. negativity constraint of 

travel time or travel cost coefficients) on standard discrete choice model estimators, in 

case of the Bayesian estimators, the specified prior distribution quantifies all the previous 

knowledge on the model parameters by prior distribution ���F� (Andrews, 1999). In fact, 

Poirier (1988) claims that the subjective Bayesian approach is the only approach 

consistent with the usual rational model adopted by economists and transportation 

researchers to explain consumers’ choices under uncertainty.  

As mentioned above, while estimating HB-ML model, the researcher imposes 

priors on parameters � and Σ. The elicitation of any available prior information and its 

formulation into a prior distribution are usually difficult for the multi-parameter case, as 
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in multinomial regression models. Different types of noninformative and informative 

prior distributions have been proposed for Bayesian binary regression models in the 

literature. Some of these priors are improper uniform prior, Jeffreys prior, hierarchical 

prior structures, Laplace priors, and empirical Bayes approaches (Ibrahim and Laud, 

1991; Bedrick et al., 1996). In this study, to specify the values of distribution for � and Σ, 

normal distribution with large variance is assumed for �, and inverted Wishart (IW) 

distribution with m degrees of freedom and inverse scale matrix �, the m- dimensional 

identity matrix is assumed for the prior distribution of Σ. In general, these parameters are 

called the hyper-parameters: 

���|��, ��� = K,�Î )��|��, ��� = 6
�9®�m/=

6
|è�|</= /�+ &− 6

9 �� − ���£��@6�� − ����    (4.4)  

��Σ|�, Î� = �ã�Σ|�, Î� = |�|Ô/=|�|Y�Ô^m^<�/=��� ]@����j]��Y<_/9_
9Ôm/=�m��/9�        (4.5)  

 

where; 

�� = k-dimensional mean vector 

��= kxk dimensional large covariance matrix 

m =degree of freedom 

� = Positive definite mxm dimensional inverse scale matrix (assumed to be Identity 

matrix) 

Γ��. �= Multivariate gamma function 

 

Given the parameter vector �, the probability of traveler n’s observed choices, 

conditional on � is represented by: 
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    i�LF|�� = j�Þ�QÓ�Q
∑ j�Þ�QÓÓ

          (4.6) 

Then, the probability not conditional on � is the integral of i�LF|�� over all �, 

depending on the prior distribution: 

  i�LF|�, Σ� = 
 i�LF|�� ´��|�, Σ���            (4.7) 

 

where ´��|�, Σ� is the normal density with mean � and variance Σ. This i�LF|�, Σ� is the 

HB-ML probability function. This probability is the behavioral model that relates the 

explanatory variables and parameters to the outcome. There is a precise relationship 

between prior and the posterior distribution linked through the likelihood function. Let 

���|�� be the likelihood function of the observed data, formulated as: 

 

   ���|�� = ∏ i]L*|�*_F                           (4.8) 

 

Then, based on Bayes’ rule, the posterior distribution of the parameter vector, 

���|��, is represented as:   

   ���|�� = ���|�� ��|�,��

���|��¹�                         (4.9) 

 

The posterior distribution summarizes the knowledge about the unknown 

parameter, �, given the information contained in the data (represented by the likelihood 

function) and the prior information. Since ���� = 
 ���|���� is the normalizing 

constant independent of parameter �, which assures that the posterior distribution 

integrates to 1, equation (8) can be stated in a more concise way, such that the posterior 
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distribution is proportional to the multiplication of the prior distribution and the 

likelihood function: 

 ���, Σ, �F ∀*|��~∏ i�LF|�F�´��F|�, Σ�F ������Σ�                  (4.10) 

 

where ���� is K,�Î )��|��, ���, with large variance and ��Σ� is �ã�Σ|�, Î�. 

Unfortunately, the above posterior distribution is a complex multidimensional 

function with no closed form function. We thus require computation methods to integrate 

the posterior distribution via sampling methods such as modern Bayesian Markov Chain 

Monte Carlo (MCMC) algorithms. In this study, using Random Walk Metropolis (RWM) 

algorithm we produce MCMC samplers to estimate HB-ML model for the travel choice 

at PANYNJ and NJ Turnpike facilities. Based on the prior information and likelihood 

function, RWM algorithm approximates the asymptotic normal distribution: 

                   ���|��~|�|<
=exp C6

9 �� − �!�£��� − �!�D                        (4.11)        

  

The RWM proposal distribution is centered at the current value of � and has 

variance-covariance matrix � = ��¼�@6 + s@6�@6�. In this formulation T is the diagonal 

positive definite matrix of the RWM tuning parameter (set to a constant value such that 

the acceptance probability,α , is between 0.2 and 0.5), and C is the large sample 

variance-covariance matrix of the maximum likelihood estimates. The Metropolis class 

of algorithms is a general-purpose approach to producing Markov chain samplers. The 

main idea behind the Metropolis approach is to generate a Markov chain with the 

posterior, as its invariant distribution by appropriate modifications to a related Markov 
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Chain that is relatively easy to simulate from (Rossi, 2005). In this study RWM algorithm 

is used to obtain all unknown parameters. The goal of the RWM algorithm is to construct 

a MCMC sampler that has a specified equilibrium distribution Ç. The summary of the 

steps RWM algorithm is as follows: 

1. Define a Markov Chain as follows. Start with ��  

2. Draw a candidate value  o = � + [ (where [~K,�Î )�0, �9�) 

3. Compute  M = Î(* }1, ®�"�
®���~ 

4. With probability M, accept the candidate and set �6 = o, otherwise set �6 = �� 

5. Repeat as necessary  

 

The main advantage of Metropolis algorithms over Gibbs sampler is that, Gibbs 

sampler is useful for models built up from hierarchies of relatively standard distributions. 

However, there are many problems for which the conditional distributions are not of a 

known form that is easy to simulate from (Rossi, 2005). For this reason, it is useful to 

have a more general-purpose tool, such as Metropolis algorithms.  

4.5 Reinforcement Schemes 

In stochastic systems, after determining whether an observed action is favorable 

or not, probability values for each action are updated at every state using a reinforcement 

scheme. In general terms a reinforcement scheme can be represented as (Narendra and 

Thathachar 1989): 

  +�* + 1� = �r+�*�, M�*�, h�*�t                                (4.12) 

 



148 

 

 

where T is mapping. If +�* + 1� is a linear function of +�*�, the reinforcement scheme is 

said to be linear, otherwise it is termed nonlinear. Since this chapter utilizes a linear 

reinforcement scheme with multi-actions, the update process of action probabilities in a 

linear environment is discussed in detail. This kind of learning scheme is called linear 

reward-penalty learning scheme and denoted by �#@$%.  

For an r-action learning automaton, the linear reinforcement scheme is given as 

(Narendra and Thathachar 1989):  

         �� M�*� = M| , 
h�*� = 0 ⇒ Ã+¿�* + 1� = �1 −  �. +¿�*�   ∀½ ≠ (

+|�* + 1� = +|�*� +  . r1 − +|�*�t 4                                  (4.13)  

 h�*� = 1 ⇒ Õ+¿�* + 1� = �
�@6 + �1 − ��. +¿�*� ∀½ ≠ (

+|�* + 1� = �1 − ��. +|�*� 4 

 

where 0<a<1 is the reward parameter, and 0<b<1 is the penalty parameter of the 

reinforcement scheme.  

The concepts associated with the convergence of SLA require sophisticated 

mathematical tools, and the nature of convergence depends on the kind of reinforcement 

scheme employed (Narendra and Thathachar 1989). The multi-action automaton using 

linear reward-penalty scheme�#@$%, is expedient for all initial action probabilities and in 

all stationary random environments, i.e. the automaton will behave better than the pure 

chance automaton. The details of the derivation for the expedient criterion can be found 

in Narendra and Thathachar (1989).  
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In previous studies, learning parameters (a, b) were estimated via trial and error 

approach (Narendra and Thathachar 1989, Ozbay et al. 2001, Ozbay et al. 2002, Ozbay 

and Yanmaz-Tuzel, 2006). This study, on the other hand, utilizes Bayesian Inference 

theory, and estimates the posterior distribution of these parameters. Next section provides 

the details of the estimation process.  

4.6 Posterior Distribution of Learning Parameters 

In this chapter, learning parameters (a, b) are estimated via Bayesian Inference 

approach. In particular, given the likelihood of the observations and the prior information 

regarding parameters (a, b), joint posterior distribution of the learning parameters are 

estimated. Unlike maximum likelihood analysis, the aim of a Bayesian analysis is not to 

provide so-called point estimates of the model parameters; the result of the analysis is the 

posterior probability distribution itself. With this approach, it is possible to introduce user 

heterogeneity into the estimation process, and to investigate distribution of the learning 

parameters among different users. The proposed likelihood function of the observations is 

estimated via following equation: 

 

+�3| , �� = &&& +�|�*�
�

|>6

ß

F>6


�>6

 

+�3| , �� = &&& ÃØ+�|�* − 1� +  ]1 − +�|�* − 1�_ÙOm��F@6�]6@pm�F@6�_ ∙4�

|>6

ß

F>6


�>6

 

                                         r�1 −  �+�|�* − 1�t]6@Om��F@6�_]6@pm�F@6�_ ∙ 
                                         r�1 − ��+�|�* − 1�tOm��F@6�pm�F@6� ∙                  (4.14) 
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                                         4� �
�@6 + �1 − ��+�|�* − 1��]6@Om��F@6�_pm�F@6�( 

 

where; 

+�3| , ��: Likelihood function of the observations D given learning parameters (a, b) 

k: index for users (K: total number of users) 

n: index for days (�: total number of days) 

i: index for choices (r: total number of choices) 

+�|�* − 1�: probability of selecting choice i for user k on day (n-1) 

M�|�* − 1� = & 1            if user � selects choice ( on day �* − 1�  0           otherwise                                                         4 

h��* − 1� = &0            if user � experiences a favorable action on day �* − 1�1          otherwise                                                                                     4 
 

Similarly, the prior distribution of the learning parameters (a, b) can be 

represented by +� , ��. In this chapter, Dirichlet, Normal and Uniform distributions are 

tested as prior distributions. For illustration purposes Normal prior distribution of +� � 

and +��� is provided here. In this case, functional form of joint prior distribution is as 

follows: 

 

 +� , �� = 3(�(.ℎ)/�� , �|M�, M�� = ��O�RO6���O����O6�  O�@6�O6@6                (4.15) 

  +� , �� = 6
9®|7|</= /�+ &− 6

9 �d − ó�£7@8�d − ó��      (4.16) 
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� , �� = �� , �|��, L�, �� , L�� = Õ 6
�S�@����S6@�6�              �� ≤  ≤ L�⋀ �� ≤ � ≤ L� 
0                                     ,�ℎ/� (�/                               

4   
(4.17) 

 

where; 

M�, M� = Hyper-parameters for a and b 

Γ�. � = Gamma distribution 

ó = ������ 

7 = :¥�9 0
0 ¥�9

; 
x= (a, b) 

��, L�= Lower and upper limits for learning parameter a 

�� , L�= Lower and upper limits for learning parameter b 

 

Finally, the posterior distribution of the learning parameters given the 

observations, +� , �|3�, can be calculated using Bayes’ theorem: 

                                    +� , �|3� = µ�Ì|�,��µ��,��
< µ�Ì|�,��µ��,���,6

                                              (4.18a)    

                                    +� , �|3� = µ�Ì|�,��µ��,��
µ�Ì�                                                     (4.18b) 

 

Since +�3� is independent of (a, b) the posterior distribution of the learning 

parameters will be proportional to the multiplication of the likelihood function and the 

prior distributions of the learning parameters: 
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              +� , �|3�~+�3| , ��+� , ��                              (4.19)  

 

   Posterior distribution of the learning parameters is very complex 

multidimensional function which requires integrating.  Thus, in order to obtain the mean 

and variance of the parameters (a, b) Metropolis-Hastings (M-H) algorithm is used. The 

Metropolis-Hastings algorithm is a rejection sampling algorithm used to generate a 

sequence of samples from a probability distribution that is difficult to sample from 

directly. The details of the algorithm can be found in Gelman et al. (2003).  Since 

inference of the posterior distribution of (a, b) is based on the simulation of the posterior 

distribution by construction of a MCMC via M-H algorithm, the chain needs to be 

monitored and tested for convergence. To ensure MCMC convergence, Heidelberger and 

Welch (1983) first test diagnostic was employed. This diagnostic compares the observed 

sequence of MCMC samples to a hypothetical stationary distribution, using the Cramer-

von-Mises statistic. The test iteratively discards the first 10% of the chain until the null 

hypothesis is not rejected (i.e. the chain is stationary), or until 50% of the original chain 

remains. If the null hypothesis is rejected each time, the stationarity test fails. For those 

samples which pass the stationarity test, a second test which calculates a (1− M)×100% 

confidence interval on the sample mean is executed. The half-width of this interval is 

compared to the mean over the same interval; if the ratio of the mean to the half-width is 

larger than some threshold, the test fails. In the final estimation only the parameters 

which have passed both tests are included. Given these specifications, next section 

focuses on the empirical testing of the proposed model. 
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4.7 Calibration and Validation of the Learning Parameters 

Calibration and validation are important processes in the development and 

application of day-to-day DTA models. These processes are developed to ensure that the 

models accurately replicate the observed traffic condition and driver behavior. 

Model calibration is a process whereby the values of model parameters are 

adjusted so as to match the simulated model outputs with observations from the study 

site. It is usually formulated as an optimization problem to determine the best set of 

model parameter values in order to minimize the discrepancies between the observed and 

simulated values (Toledo, 2003). The calibration process is then to modify the values of 

the model parameters C�D, so to find the best set of values which minimizes F. The 

proposed objective function F minimizes the difference between observed and simulated 

volumes: 

  min å = ∑ ∑ :}¦QX�Ô@¦Q=6X
¦Q=6X ~9;F�       (4.20)      

        

where; 

�F�|�: Simulated link flows in day n 

�FT��: Observed link flows in day n 

 

After determining the optimal set of parameters from the calibration process, a 

validation process is performed in order to determine whether the simulation model 

replicates the real system.  Mean standard errors (MSE) are calculated for each day the 

validation process: 
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                   ë�q = 6�∑ |¦nX�Ô@¦n=6X|
¦n=6X��>6       (4.21) 

4.8 Applications 

The proposed Bayesian-SLA framework is tested on two different case studies. 

The first case study focuses on the impacts of January 2003 toll increase on the day-to-

day departure time choice behavior of NJ Turnpike travelers. The second case study 

focuses on the impacts of December 2005 15X Interchange installation, on the day-to-day 

departure time and route choice behavior of NJ Turnpike travelers. 

4.8.1 Case Study 1: �J Turnpike Toll Increase 

The first case study focuses on the impacts of January 2003 toll increase on the 

day-to-day departure time choice behavior of NJ Turnpike travelers. In January 2003 NJ 

Turnpike Authority has increased the toll levels on NJ Turnpike by 5-10% for E-ZPass 

users, and by 17% for cash users. Table 4.1 summarizes the changes in the toll levels for 

interchanges between 1 and 18E. 

Table 4.1 Toll levels at NJ Turnpike 

Toll 

Passenger Cars Tractor Trailers 

1991 
Sept. 

2000 

Jan. 

2003 

Jan. 

2006 
1991 

Sep.  

2000 

Jan. 

2003 

Jan.  

2006 

Cash all 

day  

70 % 
($4.60) 

20%   
($5.50) 

17% 
($6.45) 

0% 
($6.45) 

100 % 
($18.20) 

13% 
($20.55) 

13% 
($23.20) 

0% 
($23.20) 

E-ZPass 

peak 
- 

8%    
($4.95) 

10% 
($5.45) 

18% 
($6.45) 

- 
8%  

($19.65) 
8% 

($21.20) 
10% 

($23.20) 

E-ZPass 

off peak  
- 

0%    
($4.60) 

5 % 
(%4.85) 

5 % 
(%4.85) 

- 
8%  

($19.65) 
8% 

($21.20) 
0% 

($21.20) 

E-ZPass 

(weekend) 
- 

8%    
($4.95) 

10 % 
($5.45) 

18 % 
($6.45) 

- 
8 % 

($19.65) 
8 % 

($21.20) 
10 % 

($23.20) 
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The proposed Bayesian-SLA model is tested via two road sections from Exit 15E 

and Exit 18E and from Exit 15W to 18W located between Newark and George 

Washington Bridge along the NJ Turnpike. The main reason to select these road sections 

is that NJ Turnpike road sections from an exit to another exit include both the demand 

between these two exits and the demand from that particular exits to other exits located 

further away. Thus, any change in the latter demand will affect the traffic conditions in 

the selected road section. To minimize these outside effects we select  road sections 

isolated from the other portions of NJ Turnpike, i.e., more than 90% of the traffic 

observed on these section is due to the demand between these particular exits.  

   While training and testing the proposed learning model two types of datasets 

were considered. First dataset covers the traffic data which include real world vehicle-by-

vehicle traffic and travel time data observed from passenger cars with toll tags. The 

traffic data contain the counts for each 1 hour time interval from 6:00 am to 10:00 am 

from January 2003 to March-2003, three months after the toll increase at NJ Turnpike 

(Ozbay et al., 2005). The travel time data include mean and standard deviations of the 

travel times observed for the corresponding time period.  During estimation process, 

weekends and holidays were excluded from the database. For each month approximately 

15 days were considered. Preliminary analysis of the response of travelers to disturbed 

conditions (toll increase on January, 2003) can be found in a study by Ozbay et al. 

(2006). The results of this analysis revealed that travelers do not choose their travel 

choices solely based on toll differentials, but travelers’ individual preferences affect their 

travel behavior.    
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The second dataset covers the individual travel survey which was used to estimate 

the utility functions and to provide information regarding users’ departure time choices 

and their socio-economic characteristics. The surveys were conducted by the Eagleton 

Institute of Rutgers University (Ozbay et al., 2005). The data set contains 513 

observations, 483 (94.2%) of which are current regular users residing in NJ. The survey 

participants were asked in detail about their most recent trips in the am and pm peaks. 

The questions include origin, destination, toll, departure time, desired/actual arrival time 

of each trip, as well as the socio-economic characteristics such as; income, education, 

employment, age and gender. 

4.8.1.1 HB-ML Model Estimation 

Utility function of each choice is estimated via revealed-preference traveler 

surveys conducted as a part of the Evaluation Study of NJ Turnpike Authority’s Time-of-

day Pricing Initiative (Ozbay et al. 2005).  

 For the proposed model, an input set X composed of the explanatory variables is 

considered. Output set D = {d1, d2, d3} includes actions composed of three choices (1: 

pre-peak from 6:00 am to 7:00 am, 2: peak from 7:00 am to 9:00 am, and 3: post-peak 

from 9:00 am to 10:00 am). Using the explanatory variables obtained from traveler 

survey, a user-specific utility function is derived for each choice based on the proposed 

Bayesian framework. Summary of the explanatory variables along with the choice set is 

provided in Table 4.2. Estimation process is conducted via statistical software “R” 

(www.r-project.org/).  
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Table 4.3Table 4.3 shows the mean and standard deviation of the coefficients for 

each utility function. Each parameter follows a normal distribution, with the mean and 

standard deviations provided in Table 4.3. 

Table 4.2 Definition of variables 

Variable Description 

Choice Variables 

E-ZPass pre-peak Respondents traveling at pre-peak periods 

E-ZPass peak Respondents traveling at peak periods 

E-ZPass post-peak Respondents traveling at post-peak periods 

Explanatory Variables 

Time  Travel time, in hours 

Toll Toll paid per occupancy, in dollars 

Early Amount of early arrival time, in minutes 

Late Amount of late arrival time, in minutes  

Dep. Time (Departure time) – (Desired arrival time), in min 

Income Income level, in $10,000  

Age Age 

Female 1 if female, 0 otherwise 

Education 1, if user has at least bachelor degree,0 otherwise 

Employment 1, if user is manager or professional,0 otherwise 

 

Table 4.3 HB-ML estimation results 

  E-ZPass pre-peak E-ZPass peak E-ZPass post-peak 

  Mean SD Mean SD Mean SD 

Constant -3.621 0.122 -4.251 0.160 -4.025 0.110 

DepTime -0.069 0.045 -0.083 0.029 -0.082 0.025 

tr time -1.861 0.691 -1.853 0.350 -1.960 0.220 

Toll -0.673 0.112 -0.680 0.121 -0.650 0.150 

Early -0.086 0.019 -0.105 0.028 -0.109 0.023 

Income 0.235 0.033 0.242 0.012 0.238 0.013 

Late -0.125 0.041 -0.114 0.035 -0.118 0.047 

income*tr time -0.218 0.051 -0.198 0.064 -0.215 0.054 

income*toll -0.217 0.025 -0.218 0.011 -0.282 0.026 

toll*tr time -0.895 0.055 -0.713 0.035 -0.887 0.089 

Education 0.712 0.062 1.241 0.055 0.520 0.085 

Age 0.088 0.055 0.112 0.036 0.098 0.039 

Employment 0.667 0.219 0.861 0.025 0.620 0.063 

Gender 0.751 0.123 0.951 0.062 0.439 0.050 
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4.8.1.2 Estimation of the Learning Parameters 

Estimation process updates the action probabilities +�* + 1� at the end of each 

day n based on �#@$% scheme, such that at the end of the estimation process, the 

difference between the observed and the calculated +¿�K� values at day � (last day of the 

calibration period) is minimized. Unlike previous SLA models in the literature (Ozbay et 

al. 2001, Ozbay et al. 2002, Ozbay and Yanmaz-Tuzel 2006), we combine Bayesian 

approach with SLA theory and estimate Bayesian posterior probability distributions for 

reward and penalty parameters. For the normal distribution case, joint prior distribution 

for the learning parameters is selected as:  

 

                       K }ó = �0.020.02� ,7 = �0.006 00 0.006�~                (4.22) 

 

In order to determine the joint posterior distribution which represents the traveler 

behavior the best, mean standard deviations (MSD) for each day were calculated as the 

percent difference between observed traffic values and the assigned traffic volumes using 

the converged learning parameters. The parameters which minimize the MSD value were 

selected. Figure 4-2 provides the samples from joint posterior distribution of the 

converged learning parameters (a, b). The samples are obtained from Metropolis- 

Hastings algorithm with 10, 000 iterations coded in Matlab. The sensitivity analysis 

revealed that Normal prior distribution resulted in lowest mean MSD at a value of 0.07. 

These results show that the proposed Bayesian-SLA model can successfully mimic NJ 

Turnpike travelers’ day-to-day travel behavior. 
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Figure 4-3 shows the histogram of the each learning parameter. The estimation 

process resulted in Beta distribution for the posterior distribution of each parameter. 

Since beta distribution always lies within [0, 1], the constraints on the learning 

parameters will be satisfied at all times. Mean values for the parameters (a, b) are (0.062, 

0.0067), and standard deviations are (0.0046, 0.0021), respectively.  

     

                  +� � = 6
¾�9.9>,6.¡I�

��@�.��I�<.=?��.6� @���.@�
6.�I�.�=                (4.23a) 

       +��� = 6
¾�H>.I?,H.¡?�

��R�.�H6�<.=?��.�66@���.@�
�.�?9A�.<                       (4.23b) 

where; 

B(.): Beta distribution. 

                     

 

Figure 4-2 Samples from joint posterior distribution 
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Figure 4-3 Histograms for the posterior distributions of the learning parameters 

 

Mean values of the reward and penalty parameters estimated for NJ Turnpike 

users are different than the ones in other disciplines. These relatively different values can 

be due to the fact that NJ Turnpike commuters are familiar with the system, thus can 

adapt themselves to the changes in the system rather quickly. This is in fact an expected 

behavior for NJ Turnpike users since most of the E-ZPass users are frequent users of NJ 

Turnpike and are familiar with the daily traffic conditions. 

4.8.2 Case Study 2: �J Turnpike 15X Interchange Installation 

The second case study focuses on the impacts of December 2005 15X Interchange 

installation, on the day-to-day departure time and route choice behavior of NJ Turnpike 

travelers. 

After nearly three years of construction, NJ Turnpike Authority (NJTA) opened 

the $250 million Interchange 15X on the Eastern Spur (just south of Interchange 16E) on 

December 1, 2005. The new interchange serves the new Secaucus Junction rail transfer 

station. The Turnpike Authority contributed an additional $84 million to develop the 

$450 million adjacent Allied Junction, which will have 3.5 million square feet of 

combined commercial and residential development, as well as up to 2,600 new parking 
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spaces when the development is completed. Upon full development, Interchange 15X is 

expected to handle 40,000 vehicles per day. 

The proposed Bayesian-SLA model is applied to the road sections from 

Interchanges 11 (Garden State Parkway) and 14 (Jersey City – Holland Tunnel) to 

Interchanges 15X (Secaucus Junction and 16E (Lincoln Tunnel). Before opening of 

Interchange 15X, the only alternative traveling to Lincoln Tunnel area was to travel 

through Interchange 16E. However, since December 2005, Interchange 15X became a 

viable alternative for these travelers (Figure 4-4).  

 

  Figure 4-4 Schematic view of possible alternatives 

 

On average, the travel time from Interchanges 11 and 14 to Interchange 15X is 

15-25 percent lower compared with the travel time to Interchange 16E. On the other 

hand, the traffic volume between Interchanges 11-14 and Interchange 15X is much lower 

compared with the traffic volume between Interchanges 11-14 and Interchange 16E 

(Figure 4-5). On December 2005, only 3 percent of the travelers prefer to use Interchange 

15X, while on December 2006, one year later, this value increases up to almost 20 
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percent. This preliminary analysis indicates that habit has a strong influence on travelers’ 

route and departure time choice. In particular, instead of searching new alternatives 

travelers might prefer to reuse past solutions to make their behavior easier and less risky.  

 

Figure 4-5  Demand comparison for Interchanges 15X and 16E 

 

While training and testing the proposed learning model traffic and travel time data 

which include real world vehicle-by-vehicle traffic and travel time data observed from 

passenger cars with toll tags were considered. The traffic data contain the counts for each 

1 hour time interval from 6:00 am to 10:00 am from December 2005 to December 2006. 

The travel time data include mean and standard deviations of the travel times observed 

for the corresponding time period. During estimation process, weekends and holidays 
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were excluded from the database. For each month approximately 15 days were 

considered.    

4.8.2.1 Day-to-Day Learning Model 

4.8.2.1.1 Travel Choice 

After the construction of Interchange 15X, travelers exiting from Interchange 16E 

started choose both departure time and destination (either interchange 16E or 15X). The 

viable options for travelers making simultaneous destination and departure time choice 

are composed of 6 choices. D = {d1,d2,d3,d4,d5,d6} includes actions composed of six 

choices (1: pre-peak Interchange 16E, 2: peak Interchange 16E, 3: post-peak Interchange 

16E, 4: pre-peak Interchange 15X, 5: peak Interchange 15X, 6: post-peak Interchange 

15X). 

In the developed day-to-day learning framework, each traveler holds a probability 

profile for each departure time period and destination (route) choice. On day n=1 it is 

assumed that the probability profile represents a random variation around the observed 

departure time period (peak vs. off peak) and destination frequency on day n=0: 

 +�,|T,¹�* = 1� = ]a�T,¹_ ∗ +|T,¹�* = 0�    ∀(, ½  *� ∀�                            (4.24) 

where; 

o: Origin index  (i = 1, 2, ….27) 

d: Destination index (j = 16E, 15X) 

k: Individual traveler index (k = 1, 2,….�n) 

n: Day index 

i: Travel choice index (i = 1,2,…6) 
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+�,|T,¹�* = 1�: Probability of selecting choice i at day n=1 for individual k traveling from 

origin o to destination d  

a�T,¹
: Random variation for individual k traveling from origin o to destination d (uniform 

distribution with limits [0.9, 1.1]*+|T,¹�* = 0�) 

+|T,¹�* = 0�:  Observed frequency of choice i from origin o to destination d 

 

Depending on the individual probability profiles Monte Carlo simulation is used 

to generate discrete choices, and travel demand at each departure time period and 

interchange is generated.  

After each traveler makes a choice, s/he experiences a travel cost and early/late 

arrival amount. The travel cost function, s�,|�*�, considered in this chapter includes, 

travel time, ���,|�*�, travel time variability, �� ��,|�*�, departure time, ���,|�*�, early 

arrival amount, / �,|�*�, late arrival amount, ) �,|�*�, inertia effect on choice i for driver 

k, ��,| (takes value of 1 if choice i is the current route; 0 otherwise); where  �.. are the 

coefficient for each corresponding variable (to simplify the notation, origin and 

destination indices are omitted).  

s�,|�*� = ������,|�*� + ��«���� ��,|�*� + �¹����,|�*� + �j�/ �,|�*� + ���) �,|�*� + �B��,| +
[�,| (4.25) 

 

Travel time variable considered in the above formulation is the total travel time 

which is represented as the sum of travel time on NJ Turnpike and travel time outside NJ 

Turnpike. Note that, travel time experienced on NJ Turnpike is obtained from the 
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vehicle-by-vehicle travel time data, whereas the remaining travel time is obtained from 

traveler surveys. Similarly, information regarding users’ departure times and desired 

arrival times are obtained from travel surveys, as well. Accordingly ���,| is defined as the 

difference between desired arrival time and departure time to travel on choice i, and  

/ �,|�*� and ) �,|�*�  parameters are defined as the difference between actual arrival 

time and desired arrival time to the destination. 

4.8.2.1.2 Behavior Updating Mechanism  

After each traveler makes a choice, a response from the transportation system is 

observed, i.e. experienced cost (from equation 4.23) and deviation from the desired 

arrival time (from traveler surveys). Depending on the experienced cost and deviation 

from the desired arrival time, this response may be favorable or unfavorable. In this 

mechanism favorable actions are rewarded, while unfavorable actions are punished.  

While determining the whether an action is favorable or not, it is assumed that 

travelers exhibit a tendency to search for satisfying choices rather than the best behavior; 

thus they do not have the cognitive ability to process all the information simultaneously 

and are happy with a good solution. To incorporate this kind of behavior, bounded 

rationality (BR) approach (Simon, 1955) is included in the behavior updating mechanism. 

In particular, the travelers will switch routes and/or departure times if the difference 

between experienced costs on the selected choice and the travel cost on the best choice 

that day. If the difference is acceptable (��,|�*� = 1�, selected choice is marked as 

favorable (h�*� = 0) and the traveler increases the probability to select the current 

choice for the next day. On the other hand, if the difference is not acceptable (��,|�*� =
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0�, selected choice is marked as unfavorable (h�*� = 1) and the traveler decreases the 

probability to select the current choice, and increases the probability to select the other 

choices on the next day. The mechanism for the indifference threshold can be formulated 

as follows: 

  ��,|�*� = Ã 1           (� s�,|�*� − s�,�j���*� ≥ ∆�s�,|�*�, ℎ/�/ 0 ≤ ∆�≤ 1          
0           ,�ℎ/�(�/                                                                                              4 (4.26)  

 

where ��,|�*� is a binary variable that takes value of 1 if the difference between the cost 

of the current choice i, s�,|�*�, and the cost of the best choice, s�,�j���*� is acceptable 

for individual k on day n, and 0 otherwise; ∆� is the acceptability threshold. Behaviorally, 

small ∆� value indicates less tolerance of small cost differences compared with large ∆� 

value. If ∆� takes zero value, traveler is intolerant of any difference in travel cost, and 

would switch for even the smallest cost difference. The acceptability threshold ∆� reflects 

individual attitudes and preferences, and thus should vary across the population (Chen 

and Mahmassani, 2004). In this study, a normally distributed acceptability threshold with 

mean �∆m  and standard deviation ¥∆m is assumed.  

4.8.2.2       Estimation of the Learning Parameters 

Estimation process updates the action probabilities +�* + 1� at the end of each 

day n based on �#@$% scheme, such that at the end of the estimation process, the 

difference between the observed and the calculated +¿�K� values at day � (last day of the 

calibration period) is minimized. Unlike previous SLA models in the literature (Ozbay et 

al. 2001, Ozbay et al. 2002, Ozbay and Yanmaz-Tuzel 2006), we combine Bayesian 
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approach with SLA theory and estimate Bayesian posterior probability distributions for 

reward and penalty parameters.  

In order to determine the joint posterior distribution which represents the traveler 

behavior the best, mean standard deviations (MSD) for each day were calculated as the 

percent difference between observed traffic values and the assigned traffic volumes using 

the converged learning parameters. The parameters which minimize the MSD value were 

selected. Figure 4-6 provides the samples from joint posterior distribution of the 

converged learning parameters (a, b). The samples are obtained from Metropolis- 

Hastings algorithm with 10, 000 iterations coded in Matlab. The sensitivity analysis 

revealed that Normal prior distribution resulted in lowest mean MSD at a value of 0.12. 

These results show that the proposed Bayesian-SLA model can successfully mimic NJ 

Turnpike travelers’ day-to-day travel behavior. 

Figure 4-7 shows the histogram of the each learning parameter. The estimation 

process resulted in Beta distribution for the posterior distribution of each parameter. 

Since beta distribution always lies within [0, 1], the constraints on the learning 

parameters will be satisfied at all times. Mean values for the parameters (a, b) are (0.029, 

0.0029), and standard deviations are (0.011, 0.00093), respectively.  

 +� � = 6
¾�?. H>,?.¡ H�

��R�.��¡ ��.C�?��.�  @���.@C�
�.�¡I <�.�<�                        (4.27a)

 +��� = 6
¾�H¡.? ,I?.6D�

��R�.�� >��C.AC��.�6�6@����.<E
�.�6¡E<.@�                                  (4.27b) 

where; 

B(.): Beta distribution. 
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Figure 4-6  Samples from joint posterior distribution 

 

 

Figure 4-7   Histograms for the posterior distributions of the learning parameters 

 

Mean values of the reward and penalty parameters estimated for NJ Turnpike 

users are different than the ones in other disciplines. These lower learning parameters 

indicate  that even though the travel time from Interchanges 11 and 14 to Interchange 
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15X is lower compared with the travel time to Interchange 16E, high percentage of 

travelers put higher utility to Interchange 16E continue to use this choice. These results 

confirm the strong effect of habitual behavior on traveler choice, consistent with the 

preliminary analysis findings. 

4.9 Conclusions 

This chapter focuses on behavioral mechanisms for updating route and departure 

time choices in light of new route inclusions to the transportation system. The proposed 

model extends the existing SLA theory by using it in a Bayesian framework and bounded 

rationality (BR), while considering the impacts of habitual behavior. 

1. Day-to-day learning behavior is modeled based on Bayesian-SLA theory, where each 

user updates his/her choice based on the rewards/punishments received due to 

selected actions in previous days. A linear reward-penalty reinforcement scheme is 

considered to represent day-to-day behavior of NJ Turnpike users as a response 

inclusion of a new Interchange.  

2. The original SLA model proposed by Ozbay et al. (2001, 2002) considered only 

travel times with some random perception error, and assumed the same 

reward/penalty parameters for each user. In this chapter, via Bayesian Inference 

theory we introduced user heterogeneity into the SLA modeling process.  

3.Instead of using just travel times, utility functions were introduced into the learning 

model. These functions were estimated via BRC models, considering a wide variety 

of explanatory variables, including travel time, toll, departure time, early/late arrival, 

income, education, employment, age, and gender. 
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4.  In order to account for travelers’ resistance to switch routes, concept of habitual 

behavior (inertia) is included in the proposed model, such that the travelers switch to 

the new route only if it has significantly less cost. 

5. Finally, learning parameters were modeled as probability distributions rather than 

deterministic values, and Bayesian posterior distributions are estimated.  

 
To the best of our knowledge, this is the first attempt to dynamically model the 

variations in perception in a day-to-day travel choice model. The estimation process 

conducted via Bayesian Inference approach resulted in Beta distribution for the posterior 

distribution of both of the learning parameters. Mean values for the learning parameters 

(a, b) of the first case study are (0.062, 0.0067), and standard deviations are (0.0046, 

0.0021). Mean values for the parameters (a, b) for the second case study are (0.029, 

0.0029), and standard deviations are (0.011, 0.00093), respectively. These results show 

that learning parameters are not the constant among different users of the transportation 

system; rather they exhibit variations in perception among the population.  

This chapter has attempted to gain insights into commuters’ learning behavior in 

uncertain and dynamic environments, when a new alternative is provided to travelers. 

The empirical results obtained from real transportation network, NJ Turnpike, confirm 

the strong effect of habitual behavior on traveler choice. The proposed Bayesian-SLA 

model can successfully capture the significant learning dynamics, demonstrating the 

possibility of developing a psychological framework (i.e., learning models) as a viable 

approach to represent travel behavior.  

The present framework does not incorporate traffic assignment into the modeling 

process; rather it uses observed travel times to model the learning behavior. Integrating 
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the proposed day-to-day update mechanism into dynamic traffic assignment would 

demonstrate the possibility of developing a psychological framework (i.e., learning 

models) as an alternative to represent traveler behavior. Next chapter proposes a novel 

day-to-day dynamic traffic assignment framework which integrates driver learning 

behavior into the modeling process. 
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CHAPTER 5.  DAY-TO-DAY DY�AMIC TRAFFIC 

ASSIG�ME�T 

This chapter presents a new dynamic traffic assignment framework to examine 

the day-to-day evolution of travel patterns in a traffic network when major disturbances 

are introduced into the transportation system. Differences among travelers and days are 

explicitly modeled within this framework. The dynamic traffic flow evolution and 

network-level interactions of driver departure time and route choice decisions are 

captured within the traffic flow simulator. Proposed approach uses a microscopic 

simulation to model the behavior of drivers on the demand side while using a 

macroscopic traffic simulation model to update system variables such as link travel time, 

volume and density. Bayesian-SLA framework developed in the previous chapter is used 

to model day-to-day update mechanism of travelers’ learning and adaptation to the 

changes in the transportation network. 

5.1 Introduction 

Modeling of traffic flows and travel times on congested road networks is crucial 

for predicting, controlling or managing congestion, and analyzing the need for 

infrastructure provision or improvement. Dynamic traffic assignment (DTA) refers to the 

assignment process that incorporates the traffic flow dynamics varying over time. The 

problem of predicting these dynamics for a road network is referred to as the DTA 

problem. DTA approach is useful to analyze how congestion forms and dissipates under 

time-varying conditions. Currently, many analytical models and simulation-based models 
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are under development in attempt to understand the evolution of traffic congestion over a 

given time period.  

The most common approach employed to capture the interaction between travel 

choice and network performance has been to solve an equilibrium DTA problem where a 

time-dependent yet pre-determined trip matrix for the design period to be evaluated is 

assigned onto a network. Under equilibrium conditions the travel choice is assumed to be 

governed by the Wardrop principle which states that all used routes have equal and 

minimum travel time costs. At this equilibrium point no user can decrease his/her travel 

time cost by switching to another choice since travel costs on all the used routes are 

equal. 

These approaches assume that network conditions from day-to-day and within 

different periods of a day are in steady-state, predicate rigid behavioral tendencies a 

priori, and try to attain either UE or SO (Peeta and Yu, 2006). Moreover, travelers are 

assumed to be rational, exploring each alternative’s relevant attributes and trading off the 

utilities derived from them. The decision strategy serves to generate a choice from a 

choice set for the alternative that provides the individual with the maximum utility. The 

question of whether equilibrium actually takes place or is a mathematical construct is a 

very old question (Peeta and Ziliaskopoulos, 2001). Horowitz (1984) showed that day-to-

day link and path flow dynamics may oscillate around SUE, or may even converge to 

some non-equilibrium point other than SUE. Chang and Mahmassani (1988) and Friesz et 

al. (1994) performed experiments for modeling transition of disequilibria from one state 

to another. The results lead to the conclusion that a day-to-day adjustment process can 

lead to an equilibrium state under fixed supply and demand conditions. However, the fact 
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that there are always changes in supply, demand, and traffic propagation, in combination 

with the stochasticity of all the involved parameters and drivers’ day-to-day 

disequilibrium route choice behavior, makes the notion of a unique equilibrium highly 

questionable (Peeta and Ziliaskopoulos, 2001). In addition there is strong evidence that by 

ignoring most sources of day-to-day and within-day variabilities, conventional 

equilibrium models tend to over-estimate network performance and therefore to produce 

biased results (Mutale, 1992). Moreover, these models exclude driver learning (based on 

past experiences and personal characteristics) which can significantly affect traveler 

choice behavior on a specific day. In reality, the natural mechanism of traveler choice is 

based on traveler’s behavioral tendencies, past experiences, and the traffic conditions 

encountered (Peeta and Yu, 2006). This issue implies the need for day-to-day modeling 

of users' learning mechanism through a day-to-day traffic assignment model. 

Dynamic day-to-day learning models can successfully integrate travelers’ learning 

behavior into the modeling process and represent the time-varying nature of the 

congestion during different times of the day and among different days. These models 

become more crucial in understanding travelers’ responses to time-varying transportation 

system policies (e.g. congestion pricing) including departure-time choice, pre-trip route 

choice, and en-route response to traffic information. 

Day-to-day DTA models aim to model traveler’s day-to-day learning and 

adaptation behavior and provide insight on how the traffic flow pattern evolves over time. 

In day-to-day modeling, behavioral approaches are integrated into the equilibrium 

paradigm, where the sequences of states that occur as the system reaches to equilibrium 

are linked through a learning model based on travelers’ past experiences. These 
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intermediate stages are important for evaluation of the transportation system, because the 

transportation system is often in disequilibrium due to travelers’ gradual response to 

continuously changing conditions. These models predict travelers’ choices for any given 

day based on his/her experienced choices in the previous days. Day-to-day approaches 

also allow the use of wide range of behavioral rules, and levels of aggregation. Day-to-

day models thus reflect the travelers’ learning and forecasting mechanisms. 

Several studies have focused on modeling drivers’ day-to-day route choice 

behavior adjustment (Smith, 1984; Cascetta, 1989; Smith, 1993; Friesz et al., 1994; 

Zhang and Nagurney, 1996; Hu and Mahmassani, 1997; Mahmassani et al., 2001; 

Mahmassani, 2001; Sandholm, 2001; Hazelton, 2002; Huang and Lam, 2002; Peeta and 

Yang, 2003; Yang, 2005; Peeta and Yu, 2006). An extensive review of these models can 

be found in Yang and Zhang (2009). Moreover, several simulation tools have been 

proposed to model day-to-day learning behavior of travelers including DYNASMART 

which is based on a mesoscopic simulator that treats traffic individually but moves them 

according to macroscopic flow principles (Jayakrishnan et al., 1994; Hu and 

Mahmassani, 1997; Mahmassani et al., 2001; Mahmassani, 2001) and DRACULA (Liu et 

al., 1995; Liu et al., 2006) which is based on a microscopic simulator both on demand 

and supply levels. 

This chapter presents a new DTA framework to examine the day-to-day evolution 

of travel patterns in a transportation network when major disturbances are introduced into 

the transportation system. Proposed day-to-day DTA framework combines three main 

sub-models. The first sub-model namely, demand model represents the day-to-day 

variability in total demand. It takes the observed total demand values within the analysis 
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period and simulates for each traveler the preferred departure time choice and route to be 

taken. This information is then passed to the traffic simulator, the second sub-model, 

which calculates macroscopic flow conditions for each simulation interval. At the end of 

the day (the analysis period), a learning model, the third sub-model, stores the 

experienced travel history, and updates each individual’s probability profile based on this 

experience.  

The developed day-to-day DTA model is tested using the NJ Turnpike network. 

The case study investigates the impacts of the addition of a new interchange (15X) on the 

Eastern Spur (just south of EXIT 16E) on day-to-day departure-time and route choice 

behavior of NJ Turnpike travelers, and the impacts of toll structure change on day-to-day 

departure-time behavior of the travelers. Next section presents the details of the day-to-

day DTA framework, and the results of the application. 

5.2 Data Sources 

In order to test and verify the proposed day-to-day DTA model, the vehicle-by-

vehicle database between December 2005 and December 2006 is considered. This 

database includes the observed trips and travel times between each interchange after two 

major disruptions imposed to NJ Turnpike network.   

The first major disruption is the installation of 15X Interchange. After nearly 

three years of construction, NJ Turnpike Authority opened the $250 million Interchange 

15X on the Eastern Spur (just south of EXIT 16E) on December 1, 2005. The new 

interchange serves the new Secaucus Junction rail transfer station. Before opening of 

Interchange 15X, the only alternative traveling to Lincoln Tunnel area was to travel 
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through Interchange 16E. However, since December 2005, Interchange 15X became a 

viable alternative for these travelers (Figure 4-4).  

The second major disruption was imposed one month later. In January 2006, NJ 

Turnpike Authority eliminated the E-ZPass peak period discounts and E-ZPass peak 

users started to pay the same amount of toll as the cash users. In this new toll structure, 

toll amounts were increased by around 18% and 5% for E-ZPass peak and off-peak users, 

respectively; while cash tolls were kept the same.  

5.3 Evolution of Day-to-Day Traffic  

Consider a transportation network [M; L; S] with nodes m, (m=1,2,…M), links l, 

(l=1,2,….L) and OD pairs s = (i, j) (s=1,2,…..S). We consider a time period [0, T] for 

departures; and a termination time T’ at which all traffic is assumed to have been served. 

The demand functions for each OD pair are time-dependent, given by �����, � ∈ �, and 

give rise to path flows ℎµ��� The experienced travel time for a path p which carries a 

flow generated at time t is Eµ��, ℎ�.  

As with conventional simulation models, we start with the concept of demand and 

supply submodels which interact with each other. Demand side is modeled via 

microscopic simulation to describe individual decisions, and supply side is modeled via 

macroscopic simulation to depict movement of vehicles and both sub models evolve over 

time from one day to another. In other words, the demand side predicts the level of 

demand at each time period for the day n, and the supply model determines the resulting 

travel conditions. The travel costs experienced by the travelers are then re-input to the 

demand model for the next day. Thus, there is no pre-determined requirement for the 
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process to converge to a stable “equilibrium” state. In fact, the transportation system 

never reaches to a single state but continuously changes and evolves from one day to the 

next as the travelers learn about the system and react to changes within the system.  The 

general form of the day-to-day dynamic traffic assignment simulator is as follows: 

1. Initialization: For each traveler in the network set individual characteristics, and 

an initial departure time choice probability profile. Set day counter n = 0 

2. OD demand generation: Increment day counter n = n+1. Select the total am 

peak demand for each origin-destination pair. 

3. Departure time and/or route choice: For each individual traveling on day n 

select a departure time period (pre-peak, peak or post-peak) and/or route 

(interchange 15X or interchange 16E), based on their choices, travel costs, and 

arrival time to their destinations on previous days. 

4. Loading: Load the O-D matrix on day n depending on departure time and/or 

route choice of each individual.  

5. Supply: For each time interval calculate travel time, traffic flow, speed and 

density variables. 

6. Individual Travel Experience: For each traveler calculate experienced travel 

cost and determine whether the selected action is favorable or unfavorable.  

7. Learning: Update the probability profile of each traveler using the learning 

parameters. In particular, increase the probability of selecting favorable actions, 

and decrease the probability of selecting unfavorable actions for the next day. 

Return to step 2. 
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The overall structure of the day-to-day DTA framework is presented in Figure 

5-1. Our objective is to determine the probability distribution of individual day-to-day 

states as proposed and discussed in (Cascetta (1989), Cantarella and Cascetta (1995), 

Watling (1996), Hazelton and Watling (2004), Liu et al. (2006), and Peeta and Yu 

(2006). 

 

Figure 5-1    Flow chart of the day-to-day dynamic traffic assignment framework 
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5.4 Traffic Demand 

The proposed traffic simulator performs a day-to-day DTA for the time period 

between 6 am and 10 am. Each traveler within this period has three travel choices: pre-

peak (6-7am), peak (7-9 am) and post-peak (9-10 am). The demand that enters to the 

transportation network during this time period is obtained from observed O-D trip 

matrices.  

5.5 Travel Choice 

On any given day, each driver traveling from origin i to destination j maintains a 

probability profile for the available alternatives and updates his/her probability profile 

based on previous travel choices, exhibiting a tendency to search for satisfying choice 

rather than the best behavior.  

Annual and daily traffic trends observed at NJ Turnpike indicate that traffic 

demand continues to increase and shows similar behavior before and after the 

implemetation of time-of-day pricing (Ozbay et al., 2006). Based on the results of the 

same study by Ozbay et al. (2006), it can be safely assumed that majority of the NJ 

Turnpike users make departure time choices (between peak and off-peak periods), or 

route choice between interchanges 15X and 16E. This is in fact an expected outcome 

since NJ Turnpike is practically the only alternative for a large number of trips to various 

important employment centers in and outside the state including New York City. NJ has 

an excellent rail system, but it does not provide a viable alternative to most of the NJ 

Turnpike users who reside far from train and who want to travel at peak periods can shift 

to peak hours. 
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Thus in this chapter two different choice mechanisms are considered. Travelers 

exiting from interchanges 16E or 15X make both route (which interchange to take) and 

departure time (which period to travel) choice. Next sections provide in depth description 

of both choice models.  

5.5.1 Departure Time Choice 

For the departure time choice model, an input set X composed of the explanatory 

variables is considered. Output set D = {d1, d2, d3} includes actions composed of three 

choices (1: pre-peak from 6:00 am to 7:00 am, 2: peak from 7:00 am to 9:00 am, and 3: 

post-peak from 9:00 am to 10:00 am).  

Each traveler has a probability profile for each departure time choice. On day n=1 

it is assumed that the probability profile represents a random variation around the 

observed departure time frequency on day n=0: 

  +|,¿�,F>6��� = ]a|,¿� _ ∗ +|,¿F>����    ∀(, ½  *� ∀�            (5.1) 

where; 

i: Origin index  (i = 1, 2, ….27) 

j: Destination index (j = 1, 2, ….27) 

k: Individual traveler index (k = 1, 2,….�n) 

n: Day index 

r: Travel choice index (1: pre-peak, 2: peak, 3: post-peak) 

+|,¿�,F>6���: Probability of selecting departure time period r at day n=1 for individual k 

traveling from origin i to destination j  

a|,¿� : Random variation for individual k traveling from origin i to destination j  
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+|,¿F>����:  Observed frequency of departure time period r from origin i to destination j 

 

Depending on the individual probability profiles Monte Carlo simulation is used 

to generate discrete choices, and travel demand at each departure time period is also 

generated.  

5.5.2 Route Choice: 

Before the opening of Interchange 15X, the travelers exiting through Interchange 

16E were making only departure time choice. However, after the opening of 15X, this 

exit became a viable option for 16E travelers. Thus, these travelers were making both 

departure time and route (interchange 16E or 15X) after December 2005, opening of 

interchange 15X. 

The viable options for travelers making simultaneous route and departure time 

choice consist of 6 choices. D = {d1, d2, d3, d4, d5, d6} includes actions composed of six 

choices (1: pre-peak Interchange 16E, 2: peak Interchange 16E, 3: post-peak Interchange 

16E, 4: pre-peak Interchange 15X, 5: peak Interchange 15X, 6: post-peak Interchange 

15X). 

Similar to departure time choice model, each traveler has a probability profile for 

each departure time choice. On day n=1 it is assumed that the probability profile 

represents a random variation around the observed departure time frequency on day n=0: 

  +|,¿�,F>6��� = ]a|,¿� _ ∗ +|,¿F>����    ∀(, ½  *� ∀�        (5.2)        

where; 

i: Origin index  (i = 1, 2, ….27) 
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j: Destination index (j = 16E, 15X) 

k: Individual traveler index (k = 1, 2,….�n) 

n: Day index 

r: Travel choice index (r = 1,2,…6) 

+|,¿�,F>6���: Probability of selecting choice r at day n=1 for individual k traveling from 

origin i to destination j  

a|,¿� : Random variation for individual k traveling from origin i to destination j  

+|,¿F>����:  Observed frequency of choice r from origin i to destination j 

Depending on the individual probability profiles Monte Carlo simulation is used 

to generate discrete choices, and travel demand at each departure time period and 

interchange is generated.  

5.6 Traffic Loading 

Generated travel demand at each departure time period is loaded to the 

transportation network. The traffic loading (supply) model is a mesoscopic simulation of 

vehicle movement on the network. The model uses a small time step so that congestion 

details can be accurately modeled. During each small time interval, vehicles keep their 

variables constant (position, and speed). At time each interval, the vehicle variables are 

computed for all vehicles and the simulation proceeds to the next time step. The major 

steps of the traffic simulation on day n are as follows: 

1. Initialization: Set simulation clock t=0, generate vehicle macro-particles by 

distributing travel demand at each departure time period equally within each time 

interval 
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2. Vehicle movement: Load the macro-particles to the transportation network 

3. Simulation Results: Store aggregate measures of traffic volume, travel time, 

speed, density for each link and O-D pair 

4. Termination: If all drivers have finished their journey, terminate the day; 

otherwise increment the simulation clock and return to step 2. 

 

The traffic simulation algorithm satisfies the following constraints: 

1. Flow conservation: The flow conservation require that for any given time instant, 

the flow entering to any node, together with the demand generated at that node, 

must all exit from this node to the next link unless the node is a destination. 

Mathematically, this constraint can be expressed as: 

∑ ×�¿����∈À�|� = �|¿��� + ∑ ��¿����∈¾�|�                                                 (5.3) 

 

In the above equation ×�¿��� denotes the inflow rate to link l to destination j at 

time instant t, �|¿��� denotes the travel demand from node i to destination j at time t, and 

��¿��� is the exit flow rate from link l to destination j at time t. Moreover, ��(� is the set 

of links whose starting nodes are i, and ¼�(� is the set of links whose ending nodes are i. 

Then, total flow on link l is the sum of vehicles entering to link l from previous 

link and demand generated at link l minus the number of vehicles exiting link l: 

     ℎ�|¿��� = ×�|¿��� − ��|¿��� + ��|¿���    ∀) ∈ �,   ∀�(, ½� ∈ �                (5.4) 

 

Then total flow on link l at time t, ℎ����: 
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∑ ℎ�|¿����|,¿� = ℎ����                       (5.5) 

where; 

ℎ�|¿���: Number of vehicles on link l between OD pair �(, ½� at time t. 

×�|¿���: Number of vehicles entering to link l at time t 

��|¿���: Number of vehicles exiting to link l at time t 

��|¿���: Demand generated at link l between OD pair �(, ½� at time t. 

 

2. FIFO constraint: FIFO condition states that a traffic stream generated at time t” 

cannot overtake another stream that has started earlier at time t �� < �"�. In order 

to satisfy FIFO condition when path costs are additive, certain conditions must be 

satisfied by the link cost functions. The FIFO condition may be stated as: 

 

  �" > � ⇒ �" + E���"� > � + E����                        (5.6)      

          

At each time interval, link travel time function, E��, is linked to instantaneous 

inflow ×��, link volume ℎ��, density ��� and speed g��, and other link parameters iGH��such as 

length and capacity: 

                              E�� = �]×��, ℎ��, ���, g��; iGH��_                            (5.7) 

 

This mesoscopic description can also be seen as a cellular automata description 

where each link and node corresponds to a unique cell. Congestion occurs on link cells, 

and route decisions occur in node cells. Inside any given link, there is no underlying 
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representation of the vehicles, except the fact that they follow FIFO rule. The vehicle 

interaction is described only by travel time functionE��. This approach implies vertical 

queuing since there is no restriction imposed on ×�� or ℎ��. 

Travel time at each time interval and link is calculated based on well-known 

speed-concentration relationship. The speed-flow relationships are: 

���R6 = ��� + } 6In Δ�K~ �×��R6 − ���R6 + ���R6�                                                 (5.8) 

g�� = ]g� − gT_ }1 − �n°�=~O + gT                                                                          (5.9) 

          �E��� = L�n
Ün°                                                                (5.10) 

where 

l = Index for links (l = 1,2,…27) 

���R6 = Concentration on link l at time interval t+1 

��= Number of lanes 

Δ�K = Length of link l 

g��= Mean speed at link l during t-th time step 

g�= Free flow speed (Assumed to be 70 mph) 

gT = Minimum speed on the facility (Assumed to be 5 mph) 

�T = Maximum concentration (assumed to be capacity*Δ�K*5, capacity = 2000 

veh/hr/lane) 

�E���= Travel time at link l during ���  time step 

M = a parameter to be calibrated 

���R6: Demand generated at link l at time t+1. 
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Note that, the travel time equation formulated above is an average travel time for 

each simulation time interval. In order to evaluate individual perceived travel times a 

random error was added to the aggregate travel times: 

                �E��,|,¿,�� = �E��� + �E��� ∗ ]a|,¿� _                                                (5.11) 

 

The observed travel times for NJ Turnpike include the link travel times, as 

estimated in eqn-5.10, and service and waiting times at the exit toll plazas. To model the 

toll plaza delays at each interchange, we have used a macroscopic toll plaza delay model 

developed by Lin (2001). Even though, this model is a relatively simple formulation, it 

has been validated by Ozmen-Ertekin et al. (2008) that macroscopic model results are 

comparable (within average error of 2.6% to 6.4%) with the PARAMICS microscopic 

model for the NJ Turnpike toll plazas.  

According to this macroscopic model the total delay experienced at toll plazas by 

each vehicle can be expressed as follows:  

 � = �¹ + �| + �µ + �� + �¦                                (5.12) 

where; 

�¹: deceleration delay (s/veh) 

�|: incremental delay (s/veh) 

�µ: service time (s/veh) 

��: acceleration delay (s/veh) 

�¦: initial queue delay (s/veh) 

 Deceleration delay is the extra travel time incurred while drivers decelerate before 

reaching a toll booth (Lin, 2001): 
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  �¹ = �Ü@Ü6�=
9¹Ü            (5.13) 

where, 

V: Speed of the approaching vehicle (m/s) (set to 30 mph (13.3 m/s), Ozbay et al. (2006))  

d: Deceleration rate (m/s2) (set to 4.87 m/ s2, Ozbay et al. (2006)) 

Vb: Speed at toll booth (m/s) (set to 12 mph (5.36 m/s), Ozbay et al. (2006)) 

 

 Acceleration delay depends on the free flow speed and the acceleration 

characteristics of vehicles (Lin, 2001): 

 �� = �Ü@Ü6�=
9�Ü             (5.14) 

where, 

a: Acceleration rate (m/s2) (set to 2.71 m/ s2, Ozbay et al. (2006)) 

Incremental delay experienced by each vehicle refers to the random variations in 

toll processing times and vehicle arrivals (Lin, 2001): 

                �| = 900TN�X− 1� + \�X− 1�9 + HPQ.R.ST       (5.15) 

 

where, 

T: Analysis period (h) (4 hours) 

X: Volume-to-capacity ratio 

C: Capacity (veh/lane/hour) (set to 1,150 veh/hr, Ozbay et al. (2006)) 

�: number of toll lanes 

 

Similarly, initial queue delay can be formulated as (Lin, 2001): 
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  �¦ = 6D��U6�6RV��
�£              (5.16) 

where, 

¤�: Total number of vehicles present at toll lanes at beginning of T (veh) (set to 5 

veh/lane, Ozbay et al. (2006)) 

C: Toll lane group capacity (vph) (set to 1,150 veh/hr, Ozbay et al. (2006)) 

t: Duration of oversaturation within T (h) 

u: Delay parameter  

 

Service time for toll plazas was estimated as 3 seconds in a study by Ozbay et al. 

(2006) focusing on toll plaza service times for NJ Turnpike.   

5.7 Travel Experience 

At the end of each day n the following measures are calculated: 

a. Travel choice r at day n  for each individual k traveling from origin i to 

destination j 

b. Travel time  for each individual k traveling from origin i to destination j 

c. Utility of each individual k traveling from origin i to destination j 

d. Early/ late arrival amount for each individual k traveling from origin i to 

destination j 

e. Travel choice with maximum utility 

f. Favorable/ unfavorable actions 

After determining the performance measures for each traveler, depending on the 

experienced utility and deviation from the desired arrival time, whether the action is 
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favorable or not is determined. Next sections describe the utility value calculation for 

departure time and route choice, and classification of favorable and unfavorable actions 

5.7.1 Utility Functions 

Using the explanatory variables obtained from traveler survey, a user-specific 

utility function is derived for each departure time choice based on the proposed Bayesian 

framework. Eqn 5.7 shows the mean and standard deviation of the coefficients for each 

utility function. Each parameter, h.., follows a normal distribution, with mean, �p.., and 

standard deviation values, ¥p.., provided in Table 4.3. Thus, parameters of the utility 

function for each traveler are different. This departure time choice model considers 

travelers’ trip characteristics (travel time, toll), desired arrival time characteristics 

(departure time, early / late arrival amount) and socio economic characteristics (income, 

education, age, employment, gender).  

 

��,F� = h�����,F� + h¹����,F� + hj�/ �,F� + h��) �,F� + �h�T���,))��,F� + �h|F(*.,Î/��,F� +
�h|F��(*.,Î/ ∗ ����,F� + �h|F�T��(*.,Î/ ∗ �,))��,F� + �h���T���� ∗ �,))��,F� + �hj¹/���,F +
�hêjF0/*�/���,F + �hj�µ/Î+��,F + �h 0/*�/���,F + [�,F                       (5.17) 

where; 

h..~K,�Î )]�p.. , ¥p.._ 

 

The travel utility function  for route choice, ��,F� , includes travel time, ���,F� , 

departure time, ���,F� , early arrival amount, / �,F� , late arrival amount, ) �,F� , inertia effect 
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on choice r for driver k, ��� (takes value of 1 if choice r is the current choice ; 0 

otherwise); where  h.. are the coefficient for each corresponding variable.  

 

��,F� = h�����,F� + h¹����,F� + hj�/ �,F� + h��) �,F� + �h�T���,))��,F� + hB��� + [�,F   (5.18) 

 

5.7.2 Favorable vs. Unfavorable Actions 

After calculating the experienced travel utility value and early/late arrival amount 

associated with each individual travel choice; whether the selected choice is favorable or 

not is determined. In particular, it is assumed that travelers exhibit a tendency to search 

for satisfying choices rather than the best behavior; thus they do not have the cognitive 

ability to process all the information simultaneously and are happy with a good solution. 

To incorporate this kind of behavior, bounded rationality (BR) approach (first introduced 

by Simon 1955 and used in many studies in transportation field including Chen and 

Mahmassani (2004)) is included in the behavior updating mechanism. In particular, the 

travelers will switch routes and/or departure times if the difference between experienced 

costs on the selected choice and the travel cost on the best choice that day. If the 

difference is acceptable the traveler increases the probability to select the current choice 

for the next day, otherwise decrease the probability to select the current choice, and 

increases the probability to select the best choice of that day. The mechanism for the 

indifference threshold can be formulated as follows:  

             ��,F = Ã1           (� ��,F� − ��j��,F ≥ ∆���,F� , ℎ/�/ 0 ≤ ∆�≤ 1            
0          ,�ℎ/�(�/                                                                          4  (5.19) 
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where ��,F is a binary variable that takes value of 1 if the difference between the utility of 

the current choice r, ��,F� , and the utility of the best choice, ��j��,F is acceptable for 

individual k on day n, and 0 otherwise; ∆� is the acceptability threshold. Behaviorally, 

small ∆� value indicates less tolerance of small cost differences compared with large ∆� 

value. If ∆� takes zero value, traveler is intolerant of any difference in travel cost, and 

would switch for even the smallest cost difference. The acceptability threshold ∆� reflects 

individual attitudes and preferences, and thus should vary across the population (Chen 

and Mahmassani, 2004). In this study, a normally distributed acceptability threshold with 

mean �∆m  and standard deviation ¥∆m  is assumed (Chen and Mahmassani, 2004). 

5.8 Learning Model 

In this chapter, commuters’ day-to-day learning behavior on the basis of 

experienced travel choices and user-specific characteristics is modeled via Bayesian-SLA 

theory. Specifically, each user updates his/her choice based on the rewards/punishments 

received due to selected actions in the previous days. At the end of each day, favorable 

actions are rewarded, while unfavorable actions are punished. Whether an action is 

favorable or not is determined using bounded rationality approach via indifference bands 

calculated around the traveler’s experienced cost function value and deviation from 

desired arrival time. After determining favorable and unfavorable actions, a linear 

reward-penalty reinforcement scheme is considered to update day-to-day learning 

behavior of NJ Turnpike users, and to investigate commuters’ response to new route 

inclusion while selecting their departure times and routes. 
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As discussed in Chapter 4, the learning parameters for departure time choice 

follow Beta distribution. Mean values for the parameters (a, b) are (0.062, 0.0067), and 

standard deviations are (0.0046, 0.0021), respectively.  

                      +� � = 6
¾�9.9>,6.¡I�

��@�.��I�<.=?��.6� @���.@�
6.�I�.�=                                             (5.20a)      

         +��� = 6
¾�H>.I?,H.¡?�

��R�.�H6�<.=?��.�66@���.@�
�.�?9A�.<                                              (5.20b) 

where; 

B(.): Beta distribution. 

 

Similarly, the learning parameters for departure time and route choice follow Beta 

distribution. Mean values for the parameters (a, b) are (0.029, 0.0029), and standard 

deviations are (0.011, 0.00093), respectively.  

         +� � = 6
¾�?. H>,?.¡ H�

��R�.��¡ ��.C�?��.�  @���.@C�
�.�¡I <�.�<�                                    (5.21a) 

              +��� = 6
¾�H¡.? ,I?.6D�

��R�.�� >��C.AC��.�6�6@����.<E
�.�6¡E<.@�                                   (5.21b) 

5.9 Calibration and Validation 

Calibration and validation are important processes in the development and 

application of day-to-day DTA models. These processes are to ensure that the models 

accurately replicate the observed traffic condition and driver behavior. 

Model calibration is a process whereby the values of model parameters are 

adjusted so as to match the simulated model outputs with observations from the study 

site. It is usually formulated as an optimization problem to determine the best set of 

model parameter values in order to minimize the discrepancies between the observed and 
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simulated values (Toledo, 2003). The calibration process is then to modify the values of 

the model parameters {β}, so to find the best set of values which minimizes F.  The 

proposed objective function F minimizes the difference between observed and simulated 

link volumes and travel times: 

  min å = ∑ ∑ :ò¦°X�Ô@¦°=6X
¦°=6X ÷9 + ò��°X�Ô@��°=6X

��°=6X ÷9;�p     (5.22)  

where; 

h: Set of parameters to be calibrated 

t: Time interval (one hour) 

���|�: Simulated link flows in t 

��T��: Observed link flows in t 

����|�: Simulated link travel time in t 

���T��: Observed link travel time in t 

 

Figure 5-2 illustrates the solution algorithm for the calibration process. It is an 

iterative procedure to try to match the simulated results with those observed from the 

study site.  
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Figure 5-2 Flowchart for the calibration process 

5.9.1 Model Validation 

After determining the optimal set of parameters from the calibration process, a 

validation process is performed in order to determine whether the simulation model 
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successfully replicates the real system.  Two different measures were considered in the 

validation process: 

1. Root mean square error (RMSE) 

2. Mean percentage error (MPE) 

The formulations of these measures are as follows: 

 

¢ë�q = V 6
ß∗£ ∑ ∑ ò¦°,nX�Ô@¦°,n=6X

¦°,n=6X ÷9ß�>6£�>6                     (5.23)  

ëiq = 6
ß∗£ ∑ ∑ |¦°,nX�Ô@¦°,n=6X|

¦°,n=6Xß�>6£�>6                      (5.24) 

 

where ��,��|� and ��,�T�� are the simulated and observed measurements for link l during 

aggregated time period t, �c is the sample mean, ¥ is the sample standard deviation, � is 

the total number of links and T is the total number of time periods (equal to three). RMSE 

measure penalizes large errors at a higher rate than small errors, while MPE indicates the 

existence of systematic under or over-prediction in the simulated variables (Toledo, 

2003).  

5.10 Applications 

This section analyzes the effectiveness of the proposed day-to-day DTA 

framework in evaluating the impacts of major disruption on day-to-day traffic flows of 

real transportation networks.  
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5.10.1 �J Turnpike Road �etwork 

As mentioned before, NJ Turnpike network is composed of 27 interchanges. 

Figure 5-2 depicts the NJ Turnpike network and the location of each interchange. Next 

section provides the detailed results of the calibration and validation of the day-to-day 

DTA framework applied to NJ Turnpike 
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Figure 5-3 NJ Turnpike network (NJTA, 2007) 
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5.10.2 Analysis Results 

This section provides results of the validation process.  In particular, after 

determining the optimal set of parameters from the calibration process, a validation 

process is performed in order to determine whether the simulation model replicates the 

real system.  

Two different measures were considered in the validation process namely, root 

mean square error (RMSE), and mean percentage error (MPE) performance measures are 

calculated for the entire analysis period from December 2005 to December 2006. Figure 

5-4 and Figure 5-5 summarize the MPE and RMSE plots, respectively for traffic volume 

calculations. The proposed day-to-day DTA assignment framework has a good 

performance with MPE values ranging around 0.107, and RMSE values ranging around 

0.235 between December 2005 and December 2006. Similarly, Figure 5-6 and Figure 5-7 

summarize the MPE and RMSE plots, respectively for travel time calculations. These 

results are fairly consistent regardless of network congestion levels, and the simulation 

model and the real system show fairly good agreement. The relative magnitude of errors 

is similar to well expected day-to-day DTA simulation softwares, such as DynaMIT, 

developed for FHWA. (Antoniou, 2004; Park et al., 2008) and AIMSUN (Barceló 

and Casas, 2005). Both softwares obtained RMSE values between 0.2 and 0.3 when the 

DTA on real transportation networks was calibrated with observed day-to-day traffic and 

travel time data. 
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 Figure 5-4 Mean percentage error for traffic volume  

 

Figure 5-5 Root mean square error for traffic volume 

 

Figure 5-6 Mean percentage error for travel time 
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Figure 5-7 Root mean square error for travel time 

Figure 5-8 shows the comparison of estimated and observed hourly link volumes 

during peak period on March 9, 2006. Congestion levels show a similar trend for both 

estimated and observed traffic volumes. Highest congestion levels are observed between 

links between Exit 11 and Exit 12, and between Exit 9 and Exit 10. Similarly, Figure 5-9 

shows the vehicle flow trajectory at each 5 min interval from 6 am to 11 am for links 1-2, 

8-8A and 9-10. Since the link between exit locations 1 and 2 are the starting link of the 

network, the vehicle trajectory shows a similar trend during pre-peak (6-7 am), peak (7-9 

am) and post-peak (9-10 am) hours. Thus, discharge rates are mode stable compared with 

other links. On the other hand, the intermediate links experience several increase in the 

vehicle flow trajectory. Since travelers who entered the network from earlier exit 

locations experience the congestion levels on the previous links, their arrival rate to these 

particular links (8-8A and 9-10) varies. Thus, vehicle flow trajectory shows significant 

variability and fluctuates more compared with previous links. Moreover, since the 

demand during peak hours is higher compared with other periods, around 7 am and 8 am 

we observe sharp increases in the volume levels. As the travelers exit to their 

destinations, the flow levels start to diminish until all the vehicles are discharged from the 

network. 
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Figure 5-8 Estimated and observed traffic volumes for the peak period  
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Figure 5-9  Simulated vehicle flow trajectory 

 

Figure 5-10, Figure 5-11, and Figure 5-12 show the evolution of day-to-day traffic 

volume exiting from Interchange 15X from December 2005 and December 2006, for pre-

peak, peak and post-peak periods, respectively. The day-to-day traffic volume analysis 

result exhibit an increasing trend hourly volumes for pre-peak, peak and post-peak 

periods. The highest traffic volume levels are observed during peak periods followed by 

pre-peak and post-peak periods. Moreover, the comparison between estimated and 

observed traffic volumes shows that the proposed day-to-day learning framework can 

successfully capture the increasing trend for Interchange 16E traffic behavior. Similarly, 

Figure 5-13, Figure 5-14, Figure 5-15 show the evolution of day-to-day traffic volume 

exiting from Interchange 16E from December 2005 and December 2006, for pre-peak, 

peak and post-peak periods, respectively. Unlike Interchange 15X, traffic volume levels 
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exiting from Interchange 16E exhibit a decreasing trend for pre-peak peak and post-peak 

periods. The highest traffic volume levels are observed during pre-peak periods followed 

by peak and post-peak periods. Moreover, the comparison between estimated and 

observed traffic volumes shows that the proposed day-to-day learning framework can 

successfully capture the increasing trend for Interchange 15X traffic behavior. 

 

Figure 5-10  Volume comparison for Exit 15X, pre-peak period 
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Figure 5-11  Volume comparison for Exit 15X, peak period 

 

Figure 5-12  Volume comparison for Exit 15X, post-peak period 
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Figure 5-13  Volume comparison for Exit 16E, pre-peak period 

 

Figure 5-14  Volume comparison for Exit 16E, peak period 
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Figure 5-15  Volume comparison for Exit 16E, post-peak period 

 

A similar analysis is conducted to investigate the evolution of day-to-day path 

travel times between Exit 1 and Exit 18E, the longest trip at NJ Turnpike, and between 

Exit 11 and Exit 16E, a shorter trip at NJ Turnpike. Table 5.1 summarizes the mean and 

standard deviation of travel times for these particular links during pre-peak, peak and 

post-peak periods. Similarly, Figure 5-16, Figure 5-17 and Figure 5-18 show the 

evolution of travel time between exits 1 and 18E, exits 11 and 16E and exits 9 and 14 

from December 2005 and December 2006, respectively. The summary statistics show 

that mean travel time levels for the proposed day-to-day learning model and the observed 

travel time levels are very similar.  

On the other hand standard deviation levels are slightly higher for observed travel 

time values. The reason for higher standard deviation values can be due to several 
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reasons. Given that traffic flow counts were matching quite well, it seems that these 

differences were in part due to supply parameters. Moreover, the observed travel time 

information for each interchange includes travel time on the NJ Turnpike, and waiting 

time and service time at the exit toll plaza. Since the exact toll plaza delays are not 

available, to calculate the waiting time and service time at the toll plazas we have used a 

travel delay formulation proposed by Lin (2001) and later validated by Ozmen-Ertekin et 

al. (2008) on NJ Turnpike toll plazas, which have affected the estimation results. Lastly, 

the proposed framework does not consider accidents or different adverse weather 

conditions that are likely to affect demand and traffic. Instead this framework aims to 

model the changes in the traffic volume levels for a typical day at NJ Turnpike due to 

major disturbances in the system. However, as seen from the plots of the path travel times 

during different periods, on several days the travel time levels are more than twice of the 

regular travel time levels. This observation indicates that an unusual event has happened 

on that particular day, increasing the standard deviation levels for the path travel time of 

the interchanges. On the other hand, the estimated traffic flow values excluding the 

spikes are comparable to the observed values during the calibration process. In order to 

incorporate these unexpected trends in the traffic flows, within-day dynamics should be 

included in the modeling process. Via this approach, traffic irregularities caused by 

accidents and other minor disturbances can be modeled.  
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Table 5.1 Travel time statistics 

Path Statistics 
Pre-peak Peak Post-peak 

Est. Obs. Est. Obs. Est. Obs. 

1-18E 
Mean (min) 130.26 128.94 123.26 125.17 116.32 113.37 

St. dev (min) 16.49 23.61 12.645 17.79 9.47 14.81 

11-16E 
Mean (min) 22.39 20.79 24.18 26.07 28.23 27.557 

St. dev (min) 1.12 1.44 2.96 3.93 3.63 5.499 

9-14 
Mean (min) 22.26 24.41 26.26 27.89 27.92 29.43 

St. dev (min) 2.44 4.81 3.11 4.12 4.55 6.51 

 

 

 

Figure 5-16  Travel time comparison for Exit 1-18E, peak period 
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Figure 5-17  Travel time comparison for Exit 11-16E, peak period 

 

Figure 5-18  Travel time comparison for Exit 9-14, peak period 
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5.11 Convergence Properties 

One major issue while investigating the day-to-day impacts of policy implications 

is to understand how long it takes for the transportation system to converge to a new 

steady state. This information is crucial in terms of understanding travelers’ behavioral 

responses to the major system changes that would help both researchers and policy 

makers in identifying expected impacts of future transportation management strategies. 

To this extent, this section focuses on the overall system changes in terms of 

departure time and route choice after January 2006 toll structure change and December 

2005 Interchange 15X installation, respectively. For each major disturbance, changes in 

the average traffic volume during peak and peak shoulder (pre-peak and post-peak) 

periods were analyzed. To evaluate the performance of day-to-day DTA framework in 

terms of predicting traveler departure time and route choice behavior, simulated and 

observed traffic volumes were compared. In order to reduce the impacts of seasonal 

changes each monthly average volume is normalized. 

Figure 5-19 and Figure 5-20 summarize the behavioral changes (simulated and 

observed) after January 2006 toll structure change for peak and peak shoulder periods, 

respectively. Analysis results reveal that day-to-day DTA framework can successfully 

capture the trends in peak and peak shoulder periods after the disturbance. Furthermore, 

the observed and simulated traffic volume results show that February 2006 is the 

transient period where the travelers learn the prevailing conditions of the disturbed 

transportation system (fast-moving system). In this period, a rapid decrease for peak 

period and rapid increase for peak shoulder periods is observed. After February 2006, 

experienced and simulated traffic conditions exhibit a more steady state until November 
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2006. Between November 2006 and December 2006 the change in the traffic conditions 

exhibits an increased rate. This trend may be explained due to winter conditions and 

increased leisure trips due to holiday season. Since travelers are familiar with the 

transportation system this short transient period and rapid changes in this period is 

expected, and supported by larger learning parameters. Travelers being aware of the 

structure of the whole transportation system can adapt themselves to the new conditions 

and exhibit faster learning behavior. 

 

Figure 5-19 Simulated vs. observed departure time choice, peak period 
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Figure 5-20 Simulated vs. observed departure time choice, peak shoulder 

 

A similar analysis is conducted to investigate the impacts of Interchange 15X 

installation. To determine the duration of the transient period and understand the 

convergence behavior to the new equilibrium, traveler choice behavior is analyzed by 

observing the changes in average traffic volume exiting interchanges 15X and 16E during 

am period in the northbound direction. 

Figure 5-21 and Figure 5-22 summarize the behavioral changes (simulated and 

observed) at Interchange 15X and Interchange 16E, respectively. Analysis results reveal 

that day-to-day DTA framework can successfully capture the trends in demand at 

interchanges 15X and 16E after March 2006. Furthermore, the observed and simulated 

traffic volume results show that the transient period after this major disturbance is much 

longer compared with January 2006 toll structure change. In fact, by September 2006, we 
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observe that the demand for Interchange 15X is still increasing at a positive rate. Within 

this transit period, instead of a rapid change we observe slower responses from the 

travelers. As pointed out in the previous chapter, travelers of NJ Turnpike exhibit 

resistance to change their behavior resulting in slower learning and adapting rates to the 

new conditions. This type of behavioral pattern causes a longer transient period where no 

rapid changes in the demand is observed. After September 2006, the transient period 

diminishes and transportation system starts to reach to a new steady state.  In particular, 

the demand for Interchange 15X still continuous to increase, however rate of increase 

diminishes resulting in reduced fluctuations in traffic flow conditions. 

 

Figure 5-21 Simulated vs. observed route choice, Interchange 15X 
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Figure 5-22 Simulated vs. observed route choice, Interchange 16E 

 

The overall convergence properties of observed and simulated traffic conditions 

reveal that, when the travelers are familiar with the form of the disturbance imposed to 

the system, such as changes in an existing pricing application, the transient period is 

rather short and we observe rapid changes and fast learning rates during this period. On 

the other hand, when the disturbance is more significant, such as an infrastructural 

change in the transportation system, the transient period becomes longer, and we observe 

lower learning rates where travelers are hesitant to make drastic behavioral changes.    
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5.12 Sensitivity Analysis 

In this section several sensitivity analyses are conducted to investigate the impacts 

of changes in the model specifications on the validity of the proposed day-to-day DTA 

framework. In particular, the following changes are considered: 

1. Initial probability profile: in order to see the impacts of initial probability profile 

on the convergence and validity of the proposed model, instead of using observed 

frequency values as the initial probability profile, we start with equal initial 

probability profile, i.e. 

   +|,¿�,F>6��� = ]a|,¿� _ ∗ 6
�     ∀(, ½, ∀�  *� ∀�      (5.25)  

       

2. Learning component: In order to see the impacts of learning component on the 

performance of the proposed model, learning component is removed from the 

proposed framework, and initial frequency values are used for daily probability 

profile: 

                         +|,¿�,���� = ]a|,¿� _ ∗ +|,¿�,F>6���    Î = 1,2, … K     ∀(, ½  ∀�  *� ∀�   (5.26) 

 

Figure 5-23 and Figure 5-24 show the trend in MPE and RMSE values for traffic 

volume when equal initial probability profile is considered for each individual. As 

expected, for the first couple of weeks very high MPE and RMSE values are observed. 

However, as the travelers learn the system the error values start to diminish. After two 

months (21 days) the MPE and RMSE values start to follow the same trend with the 

proposed framework.  Similarly, Figure 5-25 and Figure 5-26 show the trend in MPE and 
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RMSE values for travel time when equal initial probability profile is considered for each 

individual. The trend in the MPE and RMSE values are similar to the analysis results of 

the traffic volume, except the fact that error values are slightly lower for travel time.  

 

Figure 5-23 Mean percentage error for traffic volume, equal initial probability 

 

 

Figure 5-24 Root mean square error for traffic volume, equal initial probability 
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Figure 5-25 Mean percentage error for travel time, equal initial probability 

 

 

Figure 5-26 Root mean square error for travel time, equal initial probability 

 

The second sensitivity analysis is conducted in order to observe the impacts of the 

learning component on the performance of the proposed model. Figure 5-27 and Figure 

5-28 show the trend in MPE and RMSE values for traffic volume when learning 

component is excluded from the simulation model. Figure 5-29 and Figure 5-30 show the 
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trend in MPE and RMSE values for travel time when learning component is excluded 

from the simulation model.  

When learning component is removed from the day-to-day DTA framework, it is 

observed that both MPE and RMSE values increase compared with the error values 

calculated when day-to-day learning behavior of individuals is included into the model. 

Since the initial probability profile was assumed to be the observed frequency values, the 

estimated error values are smaller during first 10 days. However, as the transportation 

system evolves from day-to-day and drivers learn the new system conditions the error 

values start to increase. Moreover, neither MPE nor RMSE values show any tractable 

trend. 

This sensitivity analysis confirms that proposed day-to-day learning framework is 

a crucial component of the DTA framework, particularly while investigating the traveler 

behavior during the transient period after a major disruption. Ignoring the impacts of 

travel experiences and travelers’ learning behavior on the evolution of traffic conditions 

results in lower prediction capabilities, and failure to capture the day-to-day evolution of 

travel trends.  
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Figure 5-27 Mean percentage error for traffic volume, no learning component 

 

Figure 5-28 Root mean square error for traffic volume, no learning component 
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Figure 5-29 Mean percentage error for travel time, no learning component 

 

Figure 5-30 Root mean square error for travel time, no learning component 

5.13 Conclusions and Discussions 

This chapter presented a new DTA framework to examine the day-to-day evolution 

of travel patterns in a traffic network when major disturbances are introduced into the 

transportation system. The dynamic traffic flow evolution and network-level interactions 

of driver departure time and route choice decisions are captured via a traffic flow 

simulator. The approach uses microscopic simulation to model the behavior of drivers on 

the demand side, and uses macroscopic simulation to obtain system variables such as link 



222 

 

 

travel time, volume and density. Bayesian-SLA framework developed in the previous 

chapter is used to model day-to-day update mechanism of the transportation network.  

The proposed model has been tested and verified on NJ Turnpike. In particular, two 

major disruptions were considered. The first major disruption is the installation of 15X 

Interchange on December 2005. The second major disruption was imposed one month 

later. In January 2006, NJ Turnpike Authority eliminated the E-ZPass peak period 

discounts and E-ZPass peak users started to pay the same amount of toll as the cash users.  

The calibration and validation results have shown that the proposed day-to-day 

dynamic traffic assignment framework can successfully capture day-to-day update of 

traffic flow after the imposed disruptions. The proposed day-to-day DTA assignment 

framework performed reasonably well with MPE values ranging around 0.107, and 

RMSE values ranging around 0.235 between December 2005 and December 2006 for 

traffic. Similarly, the MPE values range around 0.118 and RMSE values range around 

0.257 between December 2005 and December 2006 for travel time. These results are 

fairly consistent regardless of network congestion levels, and the relative magnitude of 

errors is similar to the ones observed in other studies (Antoniou, 2004; Barceló 

and Casas, 2005; Park et al., 2008).  

The overall convergence properties of observed and simulated traffic conditions 

reveal that, when the travelers are familiar with the form of the disturbance imposed to 

the system, such as changes in an existing pricing application, the transient period is 

rather short and we observe rapid changes and fast learning rates during this period. On 

the other hand, when the disturbance is more significant, such as an infrastructural 
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change in the transportation system, the transient period becomes longer, and we observe 

lower learning rates where travelers are hesitant to make drastic behavioral changes. 

Next, day-to-day learning component is removed from the DTA framework in 

order to investigate the impacts of traveler learning behavior on capturing the day-to-day 

evolution of the travel trends. The sensitivity analysis confirmed that proposed day-to-

day learning framework is a crucial component of the DTA framework, particularly while 

investigating the traveler behavior during the transient period after a major disruption. 

Ignoring the impacts of travel experiences and travelers’ learning behavior on the 

evolution of traffic conditions resulted in lower prediction capabilities, and failure to 

capture the day-to-day evolution of travel trends.  
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CHAPTER 6.  CO�CLUSIO�S A�D FUTURE WORK 

This thesis has proposed a novel framework to model the interdependence 

between travelers’ choice decisions, learning and adaptation behavior and the day-to-day 

update mechanism of traffic flows. The day-to-day models predict travelers’ choices at 

any given day based on their experienced choices in the previous days. Day-to-day 

approaches allow the use of wide range of behavioral rules, and levels of aggregation, 

and capture the heterogeneity in users’ learning and adaptation processes, and behavioral 

characteristics.  

We introduce a new novel day-to-day learning framework to model travelers’ 

departure time and route choice behavior under non-equilibrium network conditions due 

to major disturbances, such as changes in the congestion pricing policies, and building of 

new road sections. An agent-based learning system via Bayesian-SLA is designed which 

can learn the best possible actions and model travelers’ day-to-day travel choices in a 

non-stationary stochastic environment. The developed learning framework reflects 

travelers’ perception about the system and their response to the experienced traffic 

conditions.  

Next, the proposed day-to-day learning framework is integrated into dynamic 

traffic assignment problem to capture the dynamic traffic flow evolution and network-

level interactions of driver departure time and route choice decisions. The approach uses 

microscopic simulation to model the behavior of drivers on the demand side, and uses 

macroscopic simulation to obtain system variables such as link travel time, volume and 

density.  
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The novelty of this thesis is that the proposed approach combines traveler 

heterogeneity and rationality in a single framework to predict travelers’ day-to-day 

departure time and route decisions, and develops a novel day-to-day dynamic traffic 

assignment approach.  

In order to test the performance of the proposed day-to-day learning framework, 

and to understand the traveler responses to real changes in the transportation system two 

different major disruptions imposed on NJ Turnpike were investigated. The empirical 

results obtained from real transportation network, NJ Turnpike, confirm the strong effect 

of habitual behavior on traveler choice. The proposed Bayesian-SLA model can 

successfully capture the significant learning dynamics, demonstrating the possibility of 

developing a psychological framework (i.e., learning models) as a viable approach to 

represent travel behavior.  

The overall convergence properties of observed and simulated traffic conditions 

reveal that, when travelers are familiar with the form of the disturbance imposed to the 

system, such as changes in an existing pricing application, the transient period is rather 

short and we observe rapid changes and fast learning rates during this period. On the 

other hand, when the disturbance is more significant, such as an infrastructural change in 

the transportation system, the transient period becomes longer, and we observe lower 

learning rates where travelers are hesitant to make drastic behavioral changes. 

Several sensitivity analyses conducted to investigate the impacts of traveler 

learning behavior on capturing the day-to-day evolution of the travel trends confirmed 

that proposed day-to-day learning framework is a crucial component of the DTA 

framework, particularly while investigating the traveler behavior during the transient 
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period after a major disruption. Ignoring the impacts of travel experiences and travelers’ 

learning behavior results in lower prediction capabilities, and failure to capture the day-

to-day evolution of travel trends.  

The overall results of this thesis have shown that, major changes in the 

transportation system disrupts the network equilibrium and causes a dynamic 

disequilibrium transient state where travelers adjust their choices to adapt the prevailing 

conditions of the disturbed transportation system. In this dynamic traffic network 

disequilibrium state, travelers exhibit a learning process where experiences in a previous 

day affect their expectations and decisions in subsequent days. Travelers’ familiarity or 

unfamiliarity with the newly imposed network conditions affect the evolution of the 

network conditions from day to day as travelers continually adjust their behavior based 

on prior experiences and a new steady state (equilibrium) flows are approached as a result 

of this learning period.   

Unlike traditional equilibrium analysis, which only pays attention to the final 

“steady-state” while ignoring how travelers dynamically adjust their behavior and how 

traffic flow evolves over “days”, disequilibrium approach developed in this thesis, 

focuses on how travelers respond to changes in the transportation system, day-to-day 

evolution of the traffic flows and the convergence properties of the disrupted 

transportation system. This type of day-to-day learning approach is of great importance in 

transportation network analysis, both for a better understanding of the properties of the 

standard traffic equilibrium model, and for practical reasons related to the monitoring and 

management of traffic flows. 
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6.1 Future Research Directions 

For future research on day-to-day learning topic, several directions should be 

worth of attempts.  

This thesis focuses on day-to-day dynamic and within-day static transportation 

networks and does not consider the impacts of within-day dynamics on travelers’ day-to-

day travel choice. An interesting research direction would be to extend the methodology 

proposed in this thesis to within-day dynamic context to capture more realistic traffic 

flow dynamics. 

Moreover, this thesis aims to model day-to-day travel choice behavior as a result 

of experienced choices. With recent advances in intelligent transportation systems, route 

guidance and pre-trip information offer promising system efficiency. Another future 

research direction is to model the effects of route departure time switching dynamics 

under advanced traveler information systems on travelers’ day-to-day choice behavior.  

The proposed day-to-day learning framework is a trip-based model aiming to 

predict travelers’ day-to-day departure time and route choice. However, with recent 

advances in transportation field, activity-based models have gained attention from 

researchers. Unlike, trip-based models, activity-based models consider the linkage among 

trips. Travel demand is a derived demand on the basis of travel behaviors where travelers 

arrange their travel to perform their activities. Thus, to fully understand and predict the 

travel demand, it is crucial to understand what drives people to travel, i.e. why, where and 

when activities are engaged in, and how activity engagement is related to the spatial and 

institutional organization of a transportation system. To this, extent including the trip 



228 

 

 

chains via activity models would be an important improvement to the proposed day-to-

day learning model.  
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