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Emergency evacuations are low-probability-high-consequence events that have attracted 

the attention of researchers since 1960s. An evacuation process can be triggered by 

various natural (hurricane, flood, tsunami etc.) and man-made (industrial accidents, 

terrorist attack etc.) events. Regardless of the threat, the nature of the evacuation process 

involves a very high utilization of the transportation network and searching for 

plans/strategies to move large number of people to a safe place in the shortest possible 

time. Researchers from different disciplines approach to the evacuation problem from 

different perspectives. Two major components of any evacuation event are estimation of 

the evacuation demand and traffic analysis to make planning inferences about the 

evacuation performance measures such as clearance time. Although related studies and 

real-life practices show a significant uncertainty regarding the evacuation demand due to 

the unpredictability of human behavior and changing roadway as a result of disaster 

impacts, the state-of-the-practice does not consider this type of randomness. This 
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dissertation aims to address this important gap by proposing a dynamic traffic assignment 

formulation with probabilistic constraints that takes into account uncertainties in demand 

and roadway capacities. The proposed model uses a cell transmission model based 

system optimal dynamic traffic assignment formulation. The demand and roadway 

capacities are assumed to follow a discrete random distribution and the p-level efficient 

points approach [115] is employed to solve the proposed model. Two numerical 

examples regarding the use of the model are provided. The numerical examples also 

discuss the implications using individual chance constraints vs. joint chance constraints 

which provide different interpretations for the reliability of the results. Overall, the 

proposed formulation generates evacuation time performance measures that can be 

interpreted within reliability measures rather than single deterministic point estimates that 

would not be necessarily observed during a real life test, mainly due to high level of 

uncertainty created by human behavior and capacity impacts of the disaster. 
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CHAPTER 1. INTRODUCTION 

Evacuation is defined as ―mass physical movements of people, of a temporary 

nature, that collectively emerge in coping with community threats, damages, or 

disruptions‖ by E. L. Quarantelli [36]. There has been extensive research on evacuation, 

mostly motivated by the threats that are the main concerns during the time of the 

research. For instance, the number of nuclear power plant evacuation studies in U.S. 

increased considerably after the Three Mile Island nuclear power plant disaster near 

Middletown, Pennsylvania, on March 28, 1979. Recent interest in emergency response 

for man-made disasters can also be attributed to concerns about terrorism. If the 

worldwide research is investigated, one can find additions such as tsunami and 

earthquake related evacuation studies. Nevertheless, the hurricane evacuation stands as 

the most popular research area in the U.S. because of its regular and frequent occurrence. 

 

 
Figure 1.1 Evacuation Modeling Components 

 

Evacuation 

Demand 

Traffic 

Assignment 

Shelter 

Management 

Human Behavior 

Roadway 

Conditions 

Humanitarian 

Inventory 

Legal Regulations 



2 

 

 

 

Although the evacuation process is strongly affected by the nature of the threat, 

underlying mechanism is the same for all disasters and can be illustrated with some main 

components that are in connection with each other as shown in Figure 1.1. Each 

component is affected by the nature of the threat. For instance, the demand profile is 

expected to be different for a no-notice event (e.g. nuclear power plant explosion) 

compared to an advance-notice event (e.g. hurricane). The number of people to be 

evacuated may turn out to be same for different disasters, but their timing to hit the road 

can be different. One would expect evacuation of all affected public at once in a no-

notice event whereas the evacuees will be loaded onto transportation network within a 

longer period (e.g. few days for hurricanes) in an advance-notice event. Likewise, the 

traffic network may be affected and lose capacity during hurricane evacuation because of 

flood, whereas no such impact is anticipated for nuclear power plant evacuation. As these 

points stand as direct impacts of the threat, the secondary impacts are coupled effects of 

capacity reduction and variation in demand profile which, in turn, adjust the clearance 

time of the network.  

1.1 Problem Statement 

Historically, the network traffic is modeled as flows between source and sink 

nodes (which are basically the origins and destinations for all trips) within certain defined 

costs (mostly travel time) incurred while traversing each link in the network. The 

mathematical formulations also include constraints that bound the maximum link flows 

by the link capacities and maintain the conservation of the number of users in the system 

to ensure the physical correctness of the model outcomes. In terms of the time structure, 
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the model can be static, which refers to calculation the flows for single period instance 

for the aggregate demand at the source nodes; or dynamic, in which the traffic flow is 

constantly updated at -preferably- smaller time intervals using time dependent link 

congestion and number of vehicles in source nodes. Nevertheless, regardless of the time 

structure of the model, the basic flow model components are: 

1. The network topology 

2. The number of vehicles at the sources (origins) to be loaded onto the network 

to travel to the sink nodes (destinations) 

3. The link costs and capacities 

These components also constitute the base of evacuation models; however the 

demand and travel patterns during evacuation are different than normal, non-emergency 

conditions (e.g. peak/off-peak travel patterns). Evacuation planning studies use some 

specific demand models developed for evacuation conditions. Furthermore, evacuation 

networks are composed mostly of one-way links, which connects the origins to few 

selected destinations (e.g. shelters) instead of employing 2-way links to account for 

traffic flow in both directions. In other words, although the underlying approach is 

similar, evacuation modeling differs from modeling of daily (or better say, non-

emergency) traffic patterns with the use of evacuation specific network topology and 

demand profiles. 
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1.1.1 Sources of Uncertainty 

Similar to other problems in transportation modeling area, evacuation modeling is 

also subject to uncertainties. The sources of uncertainty are numerous and mostly not 

easy to quantify or control. As shown in the simple sketch of the evacuation modeling in 

Figure 1.1, the human behavior (which is inherently probabilistic) plays an important role 

throughout the evacuation process. Human behavior can affect various stages of the 

analysis such as decision for the timing of evacuation, route choice, driving behavior, 

compliance with official notices etc. However the stochastic nature of evacuation 

modeling is not confined only to human behavior. The limited predictability of variation 

in the severity of the disaster (e.g. the intensity and track of a hurricane, or the timing of 

any disaster occurrence), the impacts of disasters on infrastructure (e.g. flood on network 

links during a hurricane, collapse of a bridge after an earthquake, long term blackout after 

a nuclear power plant explosion etc.) are just few factors to name few among many 

others. For instance, roadway capacity problems experienced in recent hurricane 

evacuation (Katrina, Rita) has turned attention of researchers more to the capacity 

degradations during disasters. Although such uncertainties in evacuation planning are 

mentioned in the literature, the researchers mostly ignore probabilistic considerations in 

the model formulations. On the other hand, the evacuation practices have proven these 

uncertainties to be a real problem that is in need of an urgent consideration, rather than 

just an  academic interest. Hence, this study aims to analyze further the major 

uncertainties involved in evacuation modeling and come up with more realistic models 

that incorporate probabilistic factors into the evacuation modeling.    
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1.2 Dissertation Objectives 

Current study approaches the evacuation problem from a planning perspective and 

aims to quantify evacuation performance measures for disaster scenarios by employing a 

probabilistic analysis approach. These performance measures can be possible severe 

bottleneck points, average travel or the clearance times. Clearance time is the time that all 

evacuees exit the evacuation zone and reach to safety and used as an important indicator 

that determines the required duration for the completion of an evacuation. 

The flow and congestion in a road network are mainly driven by two factors: The 

number of vehicles at a certain time on certain routes and the available link capacities 

that determine how efficiently the existing users in these routes can be accommodated. 

During emergency conditions resulting in mass evacuation, the number of vehicles in the 

network is generally much higher compared to non-emergency conditions. Moreover, 

link capacities are prone to the risk of degradation due to disaster related disruptions. 

These unexpected changes in evacuation demand levels and capacity may result in 

significant differences in terms of the predictions of a model. Reliability of transportation 

planning model predictions is important because the predictions are used to make long-

term planning decisions. If these predictions are not accurate then infrastructure 

investments based on the predictions might not generate desired outcome.  This will have 

an adverse effect on the congestion, economy and environment. On the other hand, in 

evacuation planning, people's lives are at stake, hence the accounting for the uncertainty 

becomes even more important compared with usual planning studies.   
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Current study, with its stochastic formulation, provides predictions of evacuation 

performance measures in terms of a reliability levels. In other words, the outcomes of the 

model can be interpreted to represent the probabilistic performance of the studied 

network in a future disaster within a certain level of reliability measure. For instance, a 

model result pointing out to certain hours of clearance time for an emergency evacuation 

case can be used by the planner to hold true as an upper bound  in a real evacuation 

situation with a certain level of reliability. This kind of probabilistic approach allows the 

determination of the reliability of the uncertain model outcomes instead of providing 

deterministic results, which will more likely prove erroneous in reality due to the highly 

probabilistic nature of the problem. 

1.3 Methodology 

In this dissertation, cell transmission model (CTM) based deterministic system 

optimal dynamic traffic assignment (SO DTA) formulation proposed by Ziliaskopoulos 

[178] is used as the base model. For the proposed objective of the study, demand and 

roadway capacities are assumed to be random variables and the deterministic SO DTA 

model is extended by adding probabilistic demand and capacity constraints.  System 

optimality refers to assigning flows in the network so that total travel time for all 

evacuees is minimized. In term of probability distributions, the evacuee demand is 

estimated at certain time intervals with the help of available demand models. In the 

proposed model, the estimated value is assumed to be the mean of a random variable with 

a probability distribution. Hence, the probabilistic model accounts for deviation from the 

estimated value within some pre-specified time intervals. On the capacity side, it is 
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assumed that the link capacity reduction probabilities in the network are known in 

advance.  

1.4 Scope of Dissertation 

Hurricane evacuations are the most studied type of disasters in the evacuation 

modeling literature.  This is the main reason for the lack of information about the demand 

profiles or roadway capacity changes for disasters other than hurricanes. There are 

several evacuation demand models proposed for hurricane evacuations, mostly based on 

empirical survey data. For other disaster types, behavioral response curves (S-curves) are 

the most frequently used demand profile, however lack of empirical data makes it 

difficult to justify the use S-curves for all disasters. On the other hand, there are several 

evacuation demand models proposed for hurricane evacuations and computerized tools 

like SLOSH (Sea, Lake and Overland Surges from Hurricanes) exists to help making 

inferences about the road capacities. Provided that disaster specific demand profiles and 

roadway capacity probabilities can be determined, formulation proposed in this 

dissertation can be used for other disaster types without loss of generality.   

The outline of the dissertation is as follows. First a literature review on human 

evacuation behavior and estimation of evacuation demand is provided. Selected demand 

generation models are studied to assess the impacts of demand uncertainty coupled with 

capacity reduction scenarios. Then dynamic traffic assignment and evacuation-specific 

models are discussed in terms of how the uncertainties related to demand and capacity are 

handled. An in depth numerical study of the existing evacuation demand models is 

concluded by the analysis of the implications of these findings on the dissertation 
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objectives. The system optimal dynamic traffic assignment model with probabilistic 

demand and capacity constraints are formulated and discussed in detail along with a 

specialized solution methodology. A detailed discussion regarding the interpretation of 

model results is then presented. Two numerical examples are provided for illustration of 

the proposed model’s use. Finally, the conclusions and future research directions are 

discussed.  

CHAPTER 2. LITERATURE REVIEW 

Main goal of this study is to provide a probabilistic model for preventive 

evacuation, which was called as ―tactical evacuation‖ in 1950s [110]. Preventive 

evacuation can be defined as to remove the public out of the area they may return soon. 

In this literature review, first, general information about evacuation will be presented. 

Second, behavioral models for the evacuees, how and when they chose to evacuate and 

how they chose their routes and destinations will be discussed with the help of relevant 

literature.  

2.1 Evacuation 

Evacuation is defined as ―mass physical movements of people, of a contemporary 

nature, that collectively emerge in coping with community threats, damages, or 

disruptions‖ by E. L. Quarantelli [36] and referred as a round trip by Church and Cova 

[27]. Perry et.al. [110] goes one step forward of this definition and they define 2 factors 

to have major impact on nature and conduct of evacuation; time between the evacuation 
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and disaster impact, and amount of time that the evacuees will spend away from their 

places. They also define subtypes as preventive, protective, rescue and reconstructive. 

Preventive and protective types are mentioned to be prior to disaster where protective 

requires evacuees to be away from their locations longer. Rescue and reconstructive types 

are post-disaster actions where rescue involve short term recovery operations such as 

moving the victims away from the disaster impact area. Reconstructive evacuation is for 

extreme cases where people are moved for a long time period to permit rehabilitation of 

an area, which has become uninhabitable. Wolshon et. al.[166] define categorization for 

hurricane evacuation regarding the official warning actions, with 3 categories: 

 

1 Voluntary: Targeted towards populations that are not projected to experience serious 

storm surge or extreme winds. People may remain if they want and no special traffic 

control or transportation measures are taken. 

2 Recommended: Issued when a storm has a high probability of endangering people 

living in at-risk areas. Similar to voluntary, people are free to chose not to evacuate 

and no traffic control measures are taken.  

3 Mandatory: Issued for the populations that are estimated to experience serious storm 

surge and extreme winds. Extensive control measures are taken to avoid in-bound 

traffic to coastal areas. As discussed later in detail, timing of mandatory evacuation 

order is a challenging subject since a false warning may cause economical and 

psychological effects. 



10 

 

 

One of the earliest work in evacuation area is Lewis’[73] study. He asks 3 critical 

questions to be answered by the emergency planners: 

1 What is the clearance time required to get the hurricane-vulnerable population to 

safe shelter? 

2 Which roads should be selected? 

3 What measures can be used to improve the efficiency of the critical roadway 

segments? 

Lewis also mentions some subjects to be studied: 

1 Evacuation travel patterns; trip purposes e.g. shelters, friends, shopping and 

supply gathering trips etc 

2 Estimation of travel demand; evacuation zones and people’s evacuation behavior 

(to be determined by pre or post evacuation behavioral studies) 

3 Calculation of clearance times; time required by evacuees to secure their homes 

and prepare to leave (mobilization time), time spent along the road network 

(travel time), waiting time because of congestion (queuing delaying time).  

4 Development of traffic control measures; the operations that are performed by 

officials to fully utilize the road network 

As mentioned by Lewis too, evacuation process is heavily dependent of behavior 

of people under threat which is necessary information for traffic assignment. There are 

many factors addressed in the literature to have effect on the evacuation behavior. 

Although different studies may give different factors as significant, some studies succeed 
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to determine the evacuation demand consistent with real-life data. However, there is no 

guarantee that a model that is developed with a certain regional data will be valid in other 

regions, or more formally, transferable. Figure 2.1 gives a general framework for the 

evacuation decision mechanism.  

 

 
Figure 2.1 A General Model of Evacuation Behavior [139] 

 

Behavioral studies are incorporated in transportation analysis for further analysis 

of: 

 The specification of disaster scenarios (a separate transport analysis is conducted 

for each scenario); 

 Definition of evacuation transport zones; 

 The determination of demographic characteristics such as the size of the 

population at risk and characteristics of the evacuation population for each zone; 

 Updating traffic conditions as they become known; 

 Simulating changes in the links (roads) resulting from extreme weather conditions 

and fires and floods; 
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 Identifying roads and streets expected to be heavily used in an evacuation as well 

as their characteristics; 

 Estimating the number of trips expected (this depends heavily on the outcome of 

the  behavioral analysis) and trip productions and attractions are calculated for 

each zone; 

 Distributing trips among the evacuation transport zones. In some instances, 

gravity  models are used to show the effects of distance between pairs of 

production and  attraction zones and the population size of likely attraction zones; 

 Assigning trips to the road network connecting the zones; and 

 Calculating clearance times for each scenario [5, 11,12] 

Following list of information is necessary to conduct the transportation analysis; 

 An accurate description of the transport network/infrastructure; 

 Size and makeup of the evacuation population including the location of 

subpopulations such as hospitals and schools; 

 An accurate description of the spatial distribution of population by time of day 

and type of activity; 

 Shape, size and rate of growth of the evacuation area;  

 An accurate representation of vehicle utilization during an emergency. For 

instance, it is assumed that the number of household vehicles used during a night 

time evacuation is lower than the number of household vehicles used during a day 

time evacuation. Thus, it is expected that vehicle occupancy rates during night 

time evacuations will be higher than day time vehicle occupancy rates. This is an 

area that requires further investigation; 
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 An accurate representation of the timing of people’s response to an emergency; 

 An accurate representation of evacuee route and destination selection behavior; 

 An accurate representation of traffic management controls that may be included 

within the evacuation plan; and 

 An accurate representation of any non-evacuation based protective actions [5] 

Most of the factors summarized above are very hard to measure or represent, and 

lack of any data may result in significant reduction of the model’s ability to represent the 

reality.  

2.2 Evacuation Behavior Studies  

Behavioral models for the evacuees, how and when they chose to evacuate and 

how they chose their routes and destinations have received the attention of researchers for 

a long time. This is an interdisciplinary research question where studies from various 

fields such as engineering, psychology, planning all contribute. The results of building 

evacuation studies are mainly used for the architectural design of the structures or other 

infrastructure. However, when it comes to the subject of mass evacuation, these studies 

are addressed for emergency planning rather than using them in the preliminary design of 

the roads, highways etc.  Most of the studies focus on sociological and psychological 

aspects, and elaborate on the preparedness for disaster or post-disaster actions. Limited 

number of studies found in the literature focus on the actual evacuee behavior during the 

disaster conditions because there is not enough actual evacuation data available. Evacuee 

behavior is mostly estimated using surveys conducted under non-disaster conditions. 

These surveys are assumed to determine the possible evacuation behavior in the future 
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and the findings are used for emergency demand analysis. Unfortunately, there is a heavy 

bias towards hurricane evacuation regarding the possible behavioral studies and demand 

models. The following section will also suffer from this bias. Nevertheless, it is possible, 

although with certain limitations, to make analogies for different disaster types, hence the 

behavioral studies for hurricane evacuation may still give an idea about the complexity of 

the human behavior under disaster conditions.  

2.2.1 Factors Affecting Evacuation Demand 

Some of the first evacuation studies were conducted for hurricane evacuation in 

the 1970s [6,151]. However, after the meltdown accident at Three Mile Island in 

Pennsylvania on March 8, 1979, the focus of evacuation modeling shifted toward the 

study of nuclear power plant evacuations [54,60,152]. These studies typically estimated 

the number of evacuating vehicles by determining the total number of people/households 

expected to evacuate and assigning a vehicle for each household or assuming a certain 

number of people would evacuate in a single vehicle. Then highway network traffic was 

analyzed with the estimated number of vehicles. A general travel demand forecasting 

process for hurricane evacuations was first described by Lewis [73]. He approached the 

problem by using the traditional urban travel demand forecasting methodology. Most of 

the post-hurricane surveys and behavioral studies were also conducted during the late 

eighties [28,58,110,113,122].  

A behavior model should be able to reflect the following [5,11]:  

 How many people will evacuate (evacuation participation rate), 

 When evacuees will leave, 
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 What the rate of public shelter usage will be, 

 How many evacuees will leave the area, and 

 How many of the available vehicles will be used. 

To clarify the points stated above, an individual decision process must determine (5,139):  

 Whether to evacuate, 

 When to evacuate, 

 What to take, 

 How to travel, 

 What route to travel, 

 Where to go, and 

 When to return. 

Baker [10] summarized the results of surveys conducted after 12 hurricanes from 

1961 to 1989 in almost every coastal state from Texas through Massachusetts and 

identified the five most important variables in hurricane evacuation [10]: 

 Risk level (hazardousness) of the area, 

 Actions by public authorities, 

 Housing, 

 Prior perception of personal risk, and 

 Storm-specific threat factor. 

Most researchers in this area agree that these are some of the major factors that 

affect evacuation behavior. Baker especially mentioned that many ―intuitively obvious‖ 

variables are ―notoriously poor‖ at predicting whether people will evacuate and stated 

that it is almost impossible to completely model people’s evacuation decision process. 



16 

 

 

However, he cited some basic factors that can be used as a starting point. Feeling safe, 

although it is very difficult to explain how people feel, is identified as a major factor in 

evacuation decision making. People who feel safe where they are tend not to evacuate.  

Whitehead et al. [160] studied hurricane evacuation behavior with data obtained 

from telephone surveys conducted among North Carolina coastal residents. A logit model 

was introduced to estimate the evacuation destination. This work was stated to be the first 

study to model the effect of the intensity of the storm for evacuation behavior as well as 

the destination patterns. It is found that information about more severe storm intensity 

also increases the tendency for evacuation.  

Baker mentioned the expectation of damage rather than the scale of the storm to 

be a good predictor, giving as an example studies of Hurricane Eloise in which people 

who believed winds would overturn their autos or water would damage their homes were 

more likely to evacuate [10]. This statement relates more to the ―perceived risk‖, which 

coincides with the old literature stating that perceived risk plays an important role in 

deciding to evacuate. This finding also agrees with Dow and Cutter [37], which is why 

mobile home residents tend to evacuate more with increased perceived risk. However, 

this perceived risk is not very clear as households rely on perceived risk from flooding 

but not from wind in making evacuation decisions [160]. 

Baker also pointed out that people in high-risk areas tend to evacuate more. 

However, the reason for their actions is not clear because the evacuation action can be 

due to evacuee perception of high risk or to public officials’ greater efforts to evacuate 

residents of an area. An official evacuation notice is mentioned as an important factor 

affecting the decision because official notices are more likely to convince people that a 
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threat exists; in addition, the legal penalty for noncompliance may affect people’s 

decisions. Evacuation decisions can be made under a legal notice without a high 

perceived risk. Residents are also more likely to respond if a notice comes in a more 

personalized way [10].  

An evacuation ―shadow‖ is another issue in which evacuation from high-risk and 

moderate-risk areas influences response in nearby areas where evacuation is not 

necessarily needed. However, any notice to stay for low-risk areas is legally risky and 

ethically uncertain because the unnecessary departure of evacuees may result in longer 

clearance times for regions where people need to leave a high-risk area quickly; on the 

other hand, casualties among people who obeyed a ―not evacuate‖ order may raise 

liability concerns and emergency management responsibility conflicts [10]. Gladwin and 

Peacock [45] mentioned that people who live in multiunit buildings are more likely to 

evacuate than those who live in single family dwellings and stay to protect their property. 

Besides protecting property, Baker cited two other reasons for not evacuating: 

inconvenience or the effort associated with evacuating such as gathering belongings and 

arranging for a place to stay, and neighbors’ decision not to evacuate impeding the 

subjects from leaving [10].  

Whitehead et al. [160] also found that people with prior storm experience are 

more likely to evacuate if pet ownership restricts evacuation, because pets may not be 

allowed in shelters or other possible destination points [10, 160]. On the contrary Riad et 

al. [124] found that prior evacuation experience significantly predicts future evacuation 

behavior rather than prior disaster experience, because people who evacuated before 

know what to do and how to act.  
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―Crying wolf‖ syndrome is an issue that basically makes people reluctant to 

evacuate because of a false warning in the past [38,162,10]. However, there is no clear 

evidence that people will be reluctant to evacuate after experiencing a false alarm. After a 

false alarm in Panama City, few people declared that they would be less likely to 

evacuate in the future [10].  

Whitehead [162] approached evacuation alarm from an economic perspective and 

stated that the anticipated opportunity cost for false evacuation is overestimated. 

Although time of day is not proven to be a significant deterrent to evacuation, people 

would prefer to evacuate in the daytime. However, Baker mentioned very successful late-

night evacuations from Hurricane Eloise in northwest Florida and Hurricane Elena in the 

Tampa Bay area [10].  

These types of conflicts are more common in work trying to relate demographic 

factors to evacuation behavior. Different studies present different conclusions regarding 

the demographic factors that affect evacuation behavior. Even surveys done at the same 

region for different hurricanes cite different factors as being significant for evacuation 

[161].  

Riad and Norris [123] investigated evacuation intentions in four categories: risk 

perception, preparedness, social influence, and resources. They used a survey conducted 

during a hurricane warning and after the threat disappeared. In addition to their findings 

in common with other studies, they mentioned some interesting cultural issues. Their 

study showed that, although having children in the household was not a factor for 

deciding to evacuate, having a male child related to perceiving more risk. They cited 

some cross-cultural studies done in India and China about the importance of having male 
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child and a possible tendency to protect the male child. They also found that people who 

are more attached to their cities (Savannah in their case) are less likely to evacuate and 

people who are less attached to the community have a greater tendency to evacuate. 

Baker discussed this residence issue from two perspectives: either newcomers to a city do 

not appreciate the potential of hurricanes and do not know what to do, so they are less 

likely to evacuate; or they are less experienced about hurricanes and leave the area before 

the more experienced dwellers. However, no conclusion was drawn because there was no 

data to verify either possibility [10].  

Table 2.1 summarizes the factors stated to affect evacuation behavior and 

demand, including the studies that cited these factors. 

 

Table 2.1 Significant factors found to affect evacuation behavior and demand 

Significant Factors Studies 

Age 1 

Gender 1, 161 

Education 167; 161 

Income 1, 167 

Past experience 45, 161, 167 

Flood risk 10,42,43, 161, 160 

Personal risk perception 1, 10, 42, 45, 37,167, 161 

Mobile housing 10,42, 167; 161  

Length of residence 1, 45 

Dissemination of orders 10, 42, 45 

False alarms 38, 45 

Pet ownership 160, 161 

Presence of elderly or child 38, 45, 124 

Storm properties (e.g., intensity, speed) 10, 42,160 
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Time of day 42 

Race, cultural issues 45, 167, 161 

 

Impacts of various evacuation scenarios can only be estimated by using realistic 

time-dependent demand generation models. Table 2.1, in this sense, shows the variety 

and diversity of factors that are supposed to form the basis for a demand model. 

However, unlike traffic assignment models employed to study various evacuation 

strategies, demand generation has not attracted much attention of the researchers. This is 

mainly due to the complex nature of evacuation behavior and evacuees’ decision process, 

which is simply hard to model. The next section provides a review of the evacuation 

demand models that are proposed to capture the complex evacuation decision process.  

2.2.1.1 Review of the Demand Generation and Loading Models  

A widely used estimation method for time-dependent demand is the two-staged 

method used in evacuation decision support software packages. In the first stage, the 

number of households in pre-specified regions expected to evacuate is estimated by using 

participation rates. These rates are determined by the speed and type of the hurricane, 

type of housing, and proportion of the population that is transient. Multiplying these rates 

by the population in pre-specified areas gives the total number of evacuees in the area. At 

the second stage, the time when the calculated evacuee number will be loaded on the 

network is estimated [165]. Loading is typically done using a so-called response or 

mobilization curve that estimates the proportion of the total evacuation demand that starts 

evacuating in each time period. These curves are represented by mathematical functions 

and formulized to reproduce past evacuation behavior. 
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The most popular loading model is the sigmoid curve (S-curve or behavioral 

response curve). The S-curve represents the cumulative percentage of evacuees at every 

time period. It is commonly used in practice (Comprehensive Hurricane Data 

Preparedness Study Web Site [28] and studies therein). S-curve parameters can be 

adjusted to mimic different behavioral responses. However, they still do not fully reflect 

reality because they introduce a time-independent continuous process, whereas it is 

widely accepted that time of day affects evacuation decisions and rates. Moreover, S-

curves do not allow for investigation of specific decision-making processes in households 

and produce aggregate results (43). Nevertheless, S-curves are frequently mentioned in 

the literature and are used in evacuation software packages, such as MASSVAC [55].  

Another approach for loading transportation networks under evacuation 

conditions uses the planner’s knowledge and judgment to estimate departure time. 

Mobilization time is the time from issuing an evacuation order to the time of departure. 

Tweedie et al. [147] determined mobilization time parameters based on the information 

obtained from experts in the Civil Defense Office of Oklahoma. A specific amount of 

time for which given percentages of the evacuating population could normally be 

expected to be mobilized is determined according to expert knowledge. Tweedie et al.’s 

approach suggests a loading function with Rayleigh distribution that has only one 

independent parameter—namely, maximum mobilization time. This is assumed to be the 

time after which all the evacuees are assumed to leave the danger area. It has an S-like 

shape, like S-curves, but a proposed original loading scheme assumes total mobilization 

time to be 1800 minutes. 
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Since the dependent variable is discrete (evacuate or not), logistic regression 

models can also be used as alternative trip-generation models [165]. There have been 

attempts to model the demand with ANNs. Mei [89] conducted a detailed analysis of 

logistic regression and ANN models for hurricane trip generation and investigated three 

ANN models—namely, back-propagation neural network (BPNN), probabilistic neural 

network (PNN), and learning vector quantizer (LVQ). The models developed in Mei’s 

study are also compared with a cross-classification type model developed by consultants 

to estimate trip generation in Southern Louisiana (PBS&J). Overall, BPNN and logistic 

regression models are put forward to perform better than the other two models.  

In another study [165], a feed forward neural network (FFNN) is analyzed, and 

although no clear preference was stated, neural network models are reported to perform 

marginally better than the logistic model.  

Fu (43) compares four approaches for hurricane evacuation demand—namely, 

Cox proportional hazard models and piecewise exponential models and a sequential logit 

model (SLM). SLM, which successfully captures the evacuation behavior parameters 

presented by Baker [10], is stated to perform best among those. Moreover, this model is 

stated to be transferable to a certain degree; that is, the model can be applied to different 

situations in terms of hurricane characteristics and geographic locations with some 

limitations [43]. Transferability of SLM and the statistical packages supporting robust 

estimation of logit models are additional incentives [43] for using SLM.  

Table 2.2 shows a selection of models specifically developed for evacuation with 

corresponding demand loading scheme that is employed. It can be seen that, although 

there are sophisticated evacuation demand models being developed, the available 
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software packages do not incorporate these demand/loading models. Moreover, some 

models do not use dynamic loading, which is proven by real data and observation to be 

the actual case, and assign static loading.  

 

Table 2.2 Evacuation-specific software packages  
MODEL DEVELOPER INCORPORATED DEMAND MODEL 

NETVAC 

(NETVAC1) 
Sheffi et.al. [130] 

Employs time varying user-defined O-D Tables [43, 

89] 

DYNEV 

(I-DYNEV) 
KLD & Associates [68] 

Employs static traffic assignment. No dynamic loading 

is used. Traffic conditions are assumed to remain at a 

fixed level throughout the simulation period [24] 

CLEAR Moeller et.al. [93] 

Employs static assignment. No dynamic loading is 

used. Traffic conditions are assumed to remain at a 

fixed level throughout the simulation period [24] 

TEDDS, 

MASSVAC 

Hobeika et.al. [54] 

Hobeika and Kim [53], 

Hobeika [52] 

S-curve 

TEVACS 
Anthony F. Han [49] 

 

Dynamic loading incorporating public transit is 

incorporated for large cities in Taiwan 

 

REMS, 

 OREMS 

ORNL, 

Tufekci & Kisko [98] 

Does not estimate the timing of people’s response to 

the perceived emergency by location or estimate the 

number of evacuees. Total number of evacuees and 

timing information are used as an input to the program. 

[165, 94] 

ETIS  PBS&J [112] S-curve 

HURREVAC 

FEMA,  

Army Corps of Engineers 

[28] 

Evacuee loading is an input to the program (S-curve for 

USACE and FEMA HES) 

 

2.2.2 Analysis of Evacuation Demand Models  

In this section, a deterministic analysis which is conducted for structuring the 

basis for the proposed stochastic approach is presented. The analysis aims to investigate 
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the differences in evacuation model outcomes with respect to the employed demand 

profile. First, most widely accepted evacuation demand models are analyzed in terms of 

their mathematical structure and parameters they use. Then the network-wide analysis of 

demand model choice and capacity reductions are presented. For the sensitivity analysis 

and network-wide assignment, three selected models—namely, S-curve, Rayleigh 

distribution, and sequential logit— are selected. These models represent different types of 

approaches that can be used with different information about the region and people’s 

experiences. The general difficulty in acquiring hurricane evacuation data makes it easy 

to use an S-curve for the analysis. Rayleigh distribution approximation for evacuation 

demand proposed by Tweedie et al. [147] is selected for comparison purposes because it 

relies mainly on expert judgment. The main reason behind the selection of the two 

methods is that they do not need extensive data for calibration. The only model among 

those selected that relies heavily on real data is the SLM proposed by Fu [43]. This model 

is selected to make it possible to compare a more detailed model with other relatively 

simple, easy to use models.  

2.2.2.1 Rayleigh Distribution Approach 

Tweedie et. al. [147] used Rayleigh distribution to represent evacuation loading 

onto the network. The formula is: 

 







1800

exp1
2ttF                (1) 

 

In this approach, the only parameter to be investigated is the maximum 

mobilization time (1800 minutes) when all the people are assumed to be evacuated. This 

number which is determined with the help of the Civil Defense Office of Oklahoma, may 
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not be valid for other locations and evacuation conditions. The evacuation curves 

according to different maximum evacuation times are given in Figure 2.2. An important 

point is that these curves give time-dependent evacuation rates of total demand, which is 

determined exogenous to the model.  

 

Figure 2.2 Cumulative and percentage loading graphs for Rayleigh distribution approach 

with changing maximum mobilization times 

 

As shown in Figure 2.2, as the maximum evacuation time increases, the evacuee 

departure curves become closer to each other. It takes 460, 650, 790, and 920 minutes to 

complete 90% evacuation for maximum evacuation times of 900, 1800, 2700, and 3600 

minutes, respectively. This means that the difference in loading pattern is more 

significant when the total evacuation period is shorter. Although the loading decay 

(assumed as loading rate < 0.0001) occurs at 620, 840, 1020, and 1150 minutes, 

maximum loading times are at 220
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mobilization times of 900, 1800, 2700, and 3600 minutes, respectively. Thus, it can be 

concluded that the time of maximum loading does not vary in the same order as 

maximum mobilization time parameter.   

2.2.2.2 S-Curves (Behavioral Response Curves) 

Following the recent state-of-the-practice (studies listed in Comprehensive 

Hurricane Data Preparedness Study Web Site [28]) behavioral response curves (S-curves) 

were chosen to be further analyzed as an evacuation loading model. However, it would be 

appropriate to mention the drawbacks of S-curves as stated by Fu [43]:  

 An S-curve usually covers a shorter period of evacuation. However, actual evacuation 

may take several days. 

 An S-curve cannot be used to evaluate the official evacuation order timing or the 

nature of the evacuation order (mandatory/voluntary).  

 S-curves do not capture the time-of-day variation.  

 Level of total demand (participation rate) must be predicted to start using the curves. 

 Selection of a response curve is subjective, reflecting the perception of the analyst 

only.  

 For hurricane evacuations, S-curves cannot capture hurricane characteristics, such as 

hurricane speed, intensity, track, etc. 

On the other hand, behavioral response curves are popular, because they  

 are mathematically simple to use and implement, 

 require considerably less site-specific data, 
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 claimed to reproduce realistic evacuation behavior with the loading rate and half 

loading time constants determined based on past evacuation data, and  

 are extensively mentioned in the literature regardless of the disaster/evacuation type 

and are used in a number of official studies. Thus, they are considered to be a credible 

modeling approach that is widely used by other studies. 

A sigmoid curve, or S-curve, that can be mathematically expressed using the 

equation given by Radwan et al.
 
[118]. S-Curve is used in some of the well-known 

evacuation software packages such as TEDSS and MASSVAC. The general S-curve 

formula is as follows: 

 

    )(exp1
1

Ht
tP




                   (1) 

 

where,  

P(t): cumulative percentage of total trips generated at time t.  

: a parameter representing the response of the public to the disaster that alters 

the slope of the cumulative traffic-loading curve.  

H: half loading time; the time when half the vehicles in the system have been 

loaded onto the highway network. To be more specific, H defines the midpoint of the 

loading curve and can be varied by the user according to disaster characteristics. These 

curves are shown in Figure 2.3 and Figure 2.4. 



28 

 

 

 
Figure 2.3 Sigmoid curves with half loading time = 12 hours and varying response rate 

parameters 

 

In Figure 2.3, different S-curves with varying   parameters are shown. All curves 

intersect at half loading time, which was kept fixed for all the curves. As the   parameter 

increases, the response is more concentrated near the half loading time (Figure 2.4). A 

low value of   produces more homogeneous loading percentages. The time it takes for 

90% evacuation of all the demand, with a half loading time equal to 12 hours, is 13.8, 

13.2, 12.9, and 12.7 hours for   values of 0.2, 0.3, 0.4, and 0.5, respectively. This is an 

expected result since the   value determines the response rate and, as it increases, the 

time to reach high loading percentages gets lower and curves become closer. 
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Figure 2.4 Percent evacuations with half loading time = 12 hours and varying response 

rate parameters 

 

The half loading time for S-curves is an important factor because it determines the 

time when maximum loading will occur (see Figure 2.4). Figure 2.5 basically shows that 

half loading time shifts the S-curve in the horizontal direction. It also changes the time of 

maximum loading onto the network. Briefly, the half loading time parameter changes the 

timing of the evacuation without changing the behavior of the evacuees. 
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Figure 2.5 S-curves with fixed response rate and varying half loading times 

2.2.2.3 Sequential Logit Model 

A sensitivity analysis for evacuation probabilities used in SLM was conducted by 

Fu [43]. In the model, each random utility function   
  (utility of household not to 

evacuate at time i, c = continue) and   
  (utility of household to evacuate at time i, s = 

stop) are assumed to be composed of a systematic component    , which represents the 

explanatory variables, and an error term, i.e.,        . Also, the utility differences 

  
    

 are assumed to be independently logistically distributed. Then the probability of 

a household to evacuate at time i given that it has not evacuated earlier can be expressed 

as (Fu, 2004):  

        
    

     
                                                           (2) 

       

where  

 

                                                          
                                            

 

where  dist: a function of distance to the storm at time t 
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            TOD: time of the day, periods used—night, morning, afternoon.  

 speed: forward speed of the hurricane at time t 

 orderper: 1 if perceived evacuation order, 0 otherwise 

 flood: 1 if the residence is likely to be flooded, 0 otherwise 

 mobile: 1 if a mobile home, 0 otherwise 

 

Two coefficients, 1.4512 and 2.0244, are used for morning and afternoon, 

respectively. For night, since TOD = 0, the utility function is not affected. These 

coefficients basically state that people are more likely to evacuate in the afternoon, 

morning, and night, in decreasing order respectively. 

Signs of the variables are consistent with intuitive expectations as increasing 

distance will decrease the probability of evacuation, and an increase in all other variables 

increases the probability of evacuation. Among all variables, TOD has the largest 

absolute value, and it affects evacuation considerably. ―Mobile‖ and ―flood‖ are the next 

two important parameters according to their impact on the utility function. From the data 

set used for model estimation, the values of dist range from 0 to 7 and have a ratio of 270 

between two extreme values, making dist the most influential variable in the model [42]. 

One point that needs to be discussed in SLM is that high-risk households tend to 

leave their houses first. Fu [43] stated that high-risk households tend to live near water or 

low-lying areas and therefore probably have longer evacuation distances, so their early 

departure is reasonable. However, one would expect people to wait to make their final 

evacuation decisions until they are sure about the hurricane’s path and its intensity; they 
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may decide to stay to protect their houses.  The latter points were not incorporated into 

this model but are stated in the literature [11]. 

Besides the facts stated by Fu [43], for this study, the evacuation percentage 

output of SLM was estimated by Monte Carlo simulation along for comparison with 

participation rates in the literature. For this purpose, artificial samples were generated 

with alternating attributes for evacuation order, flood risk, and housing type. Each sample 

was assumed to be subject to the same hurricane characteristics. The simulation results 

can be seen in Figure 2.6.  

 
Figure 2.6 Evacuation curves of households with different attributes 

 

As shown in Figure 2.6, SLM gives about a 90% participation rate for mobile 

households with flood risk that received an evacuation order. According to behavioral 

studies conducted by the U.S. Federal Emergency Management Agency and the U.S. 

Army Corps of Engineers (Comprehensive Hurricane Data Preparedness Study Web Site 

[28] and studies therein), relatively higher participation rates for high-risk households are 



33 

 

 

reasonable. However, for low-risk households without an evacuation order, the 

participation rate predicted by the model is about 25%. This is assumed to be 10%–15% 

at most in behavioral studies. Although the model estimate is higher than the assumption, 

it still gives a value that is on the safe side. It should also be noted that these participation 

rates are assumptions, so it may be misleading to decide about a model’s accuracy relying 

only on another model’s assumptions. Nevertheless, the discrepancy between actual 

practice and theoretical model outcomes is worth mentioning.  

Since the evacuation is assumed to last for 3 days, the beginning period is also 

analyzed if it has an effect on evacuation behavior. The participation rate did not change 

(around 1%–3%) in the case of starting the evacuation in the morning or afternoon. The 

most diverse evacuation numbers (12%–16%) between different starting periods are 

obtained for two extreme cases: high-risk (mobile home, flood risk, received evacuation 

order) and low-risk (not a mobile home, no flood risk, no evacuation order received) 

houses.   

For Cape May County, which is used as a case study in the next section, the 

difference of 12%–16% is equal to a difference of roughly 5000–7000 households of a 

total of 42,148 households (U.S. Census). This is equal to 11,000–16,000 people 

according to U.S. Census statistics. Overall, it can be said that SLM is sensitive to the 

starting period of evacuation, especially for extreme cases, such as high- and low-risk 

households.  

For further comparison, S-curves with different loading parameters are used to 

estimate the evacuation demand for Cape May County, and compared with curve 

produced by SLM. Below are some important facts about Cape May County (U.S. 
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Census, Cape May County Planning Department) that are used in the Monte Carlo 

simulation.    

 Number of housing units = 93,541  Used as total number of houses in the area in 

the simulation 

 Number of mobile houses = 2807  Used to determine the percentage of mobile 

houses together with total number of houses 

 Number of households = 42,148  Total number households to be evacuated 

 Water area = 365.09 mi
2 
 Used to determine households with flood risk 

 Total area = 620.28 mi
2
 

The following assumptions were made for the demand simulation under 

evacuation conditions: 

 Total number of evacuations is equal to 42,148 households, where there are a total of 

93,541 housing units. 

 Houses are evenly distributed in the county, so the proportion of mobile homes to the 

total number of houses applies to the whole county. Likewise, water area over the 

total area represents the proportion of households exposed to flood risk. 

 All attributes are assigned independently, because no joint statistics such as mobile 

home and flood risk are present.   
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Figure 2.7 Different evacuation loading patterns generated for Cape May County 

 

Figure 2.7 shows predicted evacuation patterns for Cape May obtained using 

various S-curves and SLM. The participation rate was predicted by the SLM to be 42% 

for the whole county. Four different response curves were generated. S-curves 1 and 2 

represent three-day-long loading scenarios, where S-curve 3 is the commonly employed 

S-curve with a short loading duration. S-curve 4 is also a three-day-long loading curve 

where each daily part resembles S-curve 3. Thus S-curve 4 is the reproduction of S-curve 

3, assuming equally divided participation rates for each day. For S-curves 1 and 2, 

parameters are chosen as 002.01   and 004.02  , with 8H hours for both curves. For 

each daily loading pattern, parameters of S-curves 3 and 4 are 04.0 , 12H  and 

01.0 , 9H , respectively. Although parameters are adjusted to replicate long 

evacuation times, S-curve 1 and S-curve 2 shown in Figure 2.7 do not produce curves 

similar to SLM curves. S-curve 1 achieves an evacuation pattern closer to that of SLM 

than S-curve 2 but it does not reach 100% at the end of the evacuation period. Also, it 
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underestimates the first half of the evacuation percentages, whereas it overestimates the 

second half compared with SLM. Quick loading S-curve 3 shows a distinctively different 

behavior compared with the first two curves, because it loads all the evacuees onto the 

network in less than one day. Curve 4 incorporates some kind of a time-of-day 

dependency. The comparison of S-Curves and SLM curve shows us that the available 

demand models may not necessarily produce similar curves for the same area, although 

both models claim to represent the reality. 

2.3 Evacuation Planning Models 

Evacuation networks are basically the same roadwork that is used by the public 

on a daily basis. However the networks that are used in evacuation studies do not 

necessarily include all roads but analyze major roadways which are chosen by 

transportation planners to be used during evacuation. This kind of ―macro simulation‖ 

approach is almost inevitable from a planning perspective due to the large scale of mass 

evacuation. Nonetheless, micro simulation can still be used to analyze in a finer scale for 

smaller networks. Both macro and micro approach types have pros and cons. As 

discussed by Lindell and Prater [78], microscopic models simulate the behavior of 

individual vehicles as they merge, turn, and respond to traffic signals. For this purpose 

detailed data such as number of lanes, shoulder width, and traffic control devices are 

required for the analysis. Macroscopic models simulate vehicle flows along links from 

one node to another, which represent the origin and demand regions rather than single 

points, and vehicle flows can be analyzed with less information than is required for 

microsimulation. Microscopic models can model bottlenecks within emergency planning 
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response areas (ERPAs), whereas macroscopic models can model such phenomena only 

between ERPAs [133]. On the other hand, macroscopic models can be computed with a 

shorter run time. As mentioned by Lindell et al. [79] it is more important to have a quick 

and approximate model as an evacuation decision support system. Thus, it can be said 

that microsimulation is not suitable for large networks because of run time and extensive 

data detail requirements. Microsimulation models also need to be calibrated with actual 

data; however, such calibration data exist for a limited number of regions. On the other 

hand, macrosimulation cannot give output as detailed as a microsimulation model since 

network traffic conditions are simplified and interaction between evacuees cannot be 

modeled in macrosimulation models. 

2.4 Evacuation Modeling Software Packages 

There are numerous software packages developed specifically for evacuation 

modeling besides the traffic simulation and analysis tools employed for evacuation 

modeling. Some evacuation-specific software packages are Mass Evacuation 

(MASSVAC), Network Emergency Evacuation (NETVAC), Oak Ridge Evacuation 

Modeling System (OREMS), Dynamic Network Evacuation (DYNEV), and Evacuation 

Traffic Information System (ETIS). A historical sketch of evacuation software packages 

can be found in Figure 2.8.  
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Figure 2.8 Chronological representation of simulation models [144]  

 

General use transportation software packages such as PARAMICS [26,29,22], 

NETSIM [151,50], VISSIM [88], CORSIM [134,142,163,67], DYNASMART [70,71], 

VISTA [145,23] are used in evacuation modeling of the complete evacuation process or 

analysis of evacuation policies such as contraflow. ARENA [119], which is a general 
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simulation software is also employed in evacuation modeling. Since those software 

packages are not specifically designed for evacuation modeling, they do not include 

demand generation models suitable for evacuation modeling. On the other hand, the main 

issue of vis-a-vis evacuation-specific models turns out to be the determination of 

participation rates through the geographical and demographics of the evacuation area. 

The loading rate is mostly oversimplified or no dynamic loading of demand is employed. 

Loading rate has not received sufficient attention in the past and mostly traffic 

assignment and/or determination of the O-D pairs (or solely level of demand) are 

emphasized. Information regarding the scale (e.g. micro-macro) and employed demand 

models on selected evacuation-specific software packages are presented in Table 2.3. 
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Table 2.3 A Selection of Evacuation-Specific Software Packages 

MODEL DEVELOPER BRIEF INFO APPLIED REGIONS 

NETVAC 

(NETVAC1) 
Sheffi et al. [130] 

 Macroscopic evacuation model 

developed for regions near nuclear 

power plants  

 The first evacuation package with 

dynamic assignment capability 

 Insensitive to evacuees’ behavior 

 Structured in a descriptive mode 

rather than design and planning mode 

 A deterministic model rather than 

a probabilistic and dynamic 

simulation model.  

 Time-varying O-D tables are 

required as input [43,89] 

- 

DYNEV 

(I-DYNEV) 

KLD & Associates 

[68] 

 Macroscopic evacuation model for 

sites near nuclear power plant  

 Improved version I-DYNEV 

 Employs static assignment 

 Has been used to determine the 

impacts of alternative traffic controls 

such as traffic signals, stop signs, and 

yield signs  

 It has also been used to analyze 

network capacity and evacuation 

demand  

 Does consider modal-split in its 

data processing, but only bus as a 

means of evacuation for those without 

access to private vehicles 

 Cannot deal with time-varying 

Seabrook Nuclear Power Plant 

in New Hampshire 
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flows. It is assumed that traffic 

conditions in the network remain at a 

fixed level through the simulation 

period. [94, 116, 26] 

EVACUATION 

PLANING 

PACKAGE 

PRC Voorhees [114] 

 Dynamic and probabilistic model  

 Human behavior is taken into 

account for determining the loading 

and response rate of evacuees [127] 

- 

CLEAR NRC [93] 

 A microsimulation tool with static 

assignment 

 Like DYNEV, cannot deal with 

time-varying flows [127,24] 

- 

TEDDS, 

MASSVAC 
Hobeika et al. [53, 51] 

 TEDSS, a macrosimulation tool, 

was originally developed for power 

plants and is based on computer 

simulation model MASSVAC 

 TEDSS has a knowledge-based 

system called the data base module 

that stores evacuation expert rules, 

disaster-related information, and area 

and transportation network 

characteristics 

 Employs quasi-dynamic traffic 

assignment 

 The simulation module of TEDSS 

is an event-type simulation designed 

to load evacuees onto the highway 

network, to determine their best 

Virginia Beach Hurricane/Flood 

Transportation Evacuation 

Study [51] 
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evacuation routes, to calculate 

network clearance time (evacuation 

time), and to identify highway links 

that experience traffic bottlenecks. 

 Newer version of MASSVAC is 

introduced with improved traffic 

assignment schemes [53] 

TEVACS 
Anthony F. Han [49] 

 

 Developed to analyze large-scale 

evacuation (specifically for large 

cities in Taiwan)  

 Incorporates all modes (public 

transit, motorcycles, and bikes) into 

the model by converting each mode 

into a universal unit called the PCU or 

passenger car unit [49] 

Developed for large cities in 

Taiwan [49] 

 

REMS, 

OREMS 

ORNL, 

Tufekci & Kisko [143] 

 Based on a FORTRAN program, 

ESIM (Evacuation SIMulation), 

which combines the trip distribution 

and traffic assignment submodel with 

a detailed traffic flow simulation 

submodel 

 Allows for conducting extensive 

analysis such as traffic management 

and control, operational assessment 

via its extensive data input structure  

 Has a dynamic nature in which 

evacuation analysis can be tracked at 

user-specified time intervals 

 Includes human behavior and 

weather information as inputs. It is 

also capable of modeling contraflow 

 North Carolina DOT 

 Maryland DOT 

 Tennessee DOT 

 Oregon DOT 

 Nuclear Regulatory 

Commission  
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operations.  

 Does not estimate the timing of 

people’s response to the perceived 

emergency by location, estimate 

traffic control settings and parameters, 

estimate the number of evacuees and 

evacuating vehicles by location, or 

determine the EPZ. This information 

must be determined ahead of time and 

used as input to the software package 

[165,94]. 

ETIS  PBS&J [111,112] 

 Macroscopic model using static 

assignment and operates within a GIS 

environment. Participation rates are 

determined by the category and speed 

of the hurricane, tourist occupancy, 

and type of housing. 

 The model is proprietary and was 

developed specifically for the 

southeastern U.S., including Florida, 

Georgia, South Carolina, and North 

Carolina. 

 Incorporates human behavior and 

weather conditions as input. 

 Capable of modeling contraflow 

operations and using real-time 

information. 

 Based on assumptions regarding 

old data, thus not appropriate for 

regions lacking historical data. 

 No modal split is considered [165, 

 Originally had been 

applied to North Carolina, 

South Carolina, Georgia, 

and Florida.  

 Its application has 

recently been introduced to 

Alabama, Mississippi, 

Louisiana, and Texas [116]. 
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94]. 

HURREVAC 

FEMA,  

Army Corps of 

Engineers [28] 

 Specifically for hurricane 

evacuation and developed on behalf 

of FEMA by the U.S. Army Corps of 

Engineers.  

 Operational tool, assisting 

decision makers in advance of and 

during an evacuation.  

 Draws information from a wide 

variety of sources, such as National 

Hurricane Center.  

 Estimates the time required to 

evacuate an area [116]. 

Developed for FEMA by the 

U.S. Army Corps of Engineers 

for use by emergency managers 

in hurricane-prone states (Texas 

to Maine), in Puerto Rico, and 

the Virgin Islands [28]. 
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2.5 Traffic Assignment and Uncertainty  

The studies on traffic assignment can be broadly categorized as static or dynamic 

based on time dependency of the network attributes. Static traffic assignment (STA) is 

the first problem that is studied by the transportation research community. After 

Merchant and Nemhauser's seminal work [92], dynamic traffic assignment attracted 

interest among researchers due to its theoretically sound approach for modeling dynamic 

real life traffic patterns. Although the two main components of traffic assignment 

problem, number of users (demand) and the link capacities (supply) exhibit a stochastic 

nature, the general practice is towards assuming fixed demand and capacity during the 

analysis. The randomness can be introduced to the model via users' perception of travel 

times on each path besides assuming the assigned demand to be a random variable, or 

treating roadway capacities as random. At this point, we have the second main 

categorical split in traffic assignment literature: user equilibrium (UE) vs. system optimal 

(SO).  

STA has a better established solution method compared to DTA from both UE 

and SO perspectives. UE formulations are based on perfect user knowledge regarding the 

link travel times at all possible routes between the OD pairs in the network. 

Straightforward way of incorporating uncertainty to the model is to introduce user travel 

time perception as a random variable (for early works, please see 32, 34, 128). On the 

demand side, uncertainty can be introduced by assuming demand as a random variable 

while keeping the network attributes and user perception fixed. Then the problem 

becomes simply assigning different level of demands on the same network and obtaining 
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the optimal flows. On the capacity side, uncertainty considerations start receiving more 

attention from the research community following the works on transportation network 

reliability [20,19,8,83,46,56,39]. In early transportation reliability studies [20,19,8,56,39] 

the performance measures were calculated based on extensive numerical simulations 

which result in computationally challenging tasks to extend the methodology for larger 

networks [84]. In the follow up works [83,46,84,72], chance constraint programming 

approach is employed to obtain a deterministic equivalent of the probabilistic capacity 

constraint,            where    and   represents the link flow and link capacity 

respectively, and    is assumed to follow a probability distribution. In the constraint,   

represents the probability value that the assigned flows would not exceed the capacity. 

Via taking the inverse CDF of the random variable    deterministic equivalent for the 

flow constraint is obtained. Then, the flow inequality is plugged into travel time equation 

(conventionally, BPR function) for the traffic assignment.  

 

There are not many studies in the literature regarding SO-STA with uncertain 

demand or capacity. The problem of uncertain demand and capacity in SO setup does not 

possess any additional challenge for the approaches used for its UE counterpart. The 

demand and capacity uncertainties can be treated in the same manner as done for UE 

assignment, e.g. using capacity randomness to determine the distribution of link travel 

times, or performing assignment with different demand levels to extract the flow pattern 

changes. One of the few SO-STA papers [86] study SSO (Stochastic Social Optimum - 

they use the name "social optimum" instead of system optimal) traffic assignment 

problem is formulated to complement the well-known UE, SO and SUE problems and the 
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relationships and similarities are investigated. As their results show, there are strong 

connections between stochastic UE and stochastic SO in terms of formulation and 

interpretation of model outcomes. Other SO-STA study known to the authors is a recent 

paper [150] on using SO-STA with recourse for analyzing the impacts of information on 

routing patterns while network conditions are subject to change. However, the recourse 

formulation they offer is different than the conventional SO-STA, hence a simple analogy 

with the previously published uncertainty studies in UE-STA is not possible. 

In stochastic DTA models, the literature mainly focus on demand uncertainty and 

the implementation area is network design problem (NDP). First attempts for 

incorporating demand uncertainty [66,14,126,158] are performed through running the 

deterministic model with a large number of randomly generated demand patterns, and to 

infer some rules and principles from the results. Waller and Ziliaskopoulos [156] provide 

two stochastic programming approaches for modeling demand uncertainty in NDP. First 

one is individual chance constraints (ICC). The second approach is the two-stage 

stochastic programming problem with recourse (SLP2). They use a cell transmission 

model (CTM) based system optimal dynamic traffic assignment (SO DTA) formulation 

[178] as the underlying traffic assignment model. Ukkusuri et. al. [149] provide CTM 

based user equilibrium (UE) DTA formulation for NDP problem using ICC and SLP2 to 

incorporate demand uncertainty into their formulation. In addition to the two-stage bi-

level stochastic programming formulation for NDP, Karoonsoontawong and Waller [65] 

propose robust bi-level NDP formulation. Yao et. al [171] also take robust optimization 

approach based on the SO DTA formulation for modeling the demand uncertainty during 

evacuation, again using a CTM based SO DTA model. Waller and Ziliaskopoulos [159] 
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provide CTM based SO DTA formulation with individual chance constraints to model 

demand uncertainty and discuss possible real-world implementations rather than focusing 

on NDP. Although the capacity uncertainty is mentioned in the literature as an important 

variable, the number of DTA studies modeling the stochastic capacity is considerably 

less. General solution idea is to generate random samples or capacity scenarios to analyze 

with the deterministic models. Peeta and Zhou [109] study demand and capacity 

uncertainty related with incidents in a DTA setup for use in the context of on-line route 

guidance. Their approach incorporates capacity reductions due to incidents as scenarios 

where the stochasticity is a result of the probabilistic occurrence of an incident. The 

solution of the traffic network assignment is calculated for the mean O-D demand and the 

results are used to update the on-line routing information calculated via using several O-

D demand realizations. Hence, the provided methodology is a scenario analysis in terms 

of incident induced capacity reductions rather than probabilistic treatment of the capacity. 

First study that provides an analytical treatment of link capacity in the context of dynamic 

traffic assignment models is given in Yazici and Ozbay [172]. In [172]  the capacity 

randomness due to flooding during hurricane evacuation is incorporated into CTM based 

SO DTA model by formulating probabilistic capacity constraints and the impacts of 

capacity uncertainty on favorable shelter locations are analyzed. Besides being first 

analytical attempt on capacity uncertainty, their approach uses joint chance constraints 

(JCC) (also called joint probability constraints) in addition to individual chance 

constraints (ICC) approach which is used extensively for modeling demand uncertainty. 

Another branch of studies tackle the uncertainty by employing robust optimization 

techniques [65,171]. However, as discussed in Chen et. al. [21], robust optimization 
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provides ―safe‖ approximations to chance constraints. They also discuss that robust 

optimization (RO) techniques are more successful while approximating the ICC, however 

unsatisfactory for approximation of JCC, and propose formulations that leads to better 

approximations for the JCC programming. However, in general, RO methodologies are 

proposed for the cases in which the solution of the stochastic program is intractable and 

RO provides approximations for the solution of the stochastic problem. 

 

2.5.1 Dynamic Traffic Assignment in Evacuation Modeling 

Barrett et. al.[12] analyze the components of a dynamic traffic management 

model for evacuation and summarize the model objectives for both the evacuees and 

system perspectives as in Table 2.4. They further propose model architecture for planning 

purposes (Figure 2.9) and real time operational purposes (Figure 2.10). Although Table 

2.4, Figure 2.9 and Figure 2.10 are designed for hurricane evacuation, the objectives and 

methodologies can analogously be applied to different disaster and threat conditions. 

Regarding the scope of the current study, Figure 2.9 provides a better basis to discuss the 

proposed model use compared to Figure 2.10. 
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Table 2.4 Evacuation Model Objectives 
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Figure 2.9 Model architecture for planning purposes [12] 

 

Table 2.4 and Figure 2.9 provide a nice illustration for the basis of the current 

study. First, as the main contribution of the proposed formulation, road network data and 

evacuation demand is assumed to be probabilistic. By probabilistic assignment, the 

proposed loops for the roadway data in Figure 2.9 are unnecessary since the analysis 

results are based on probability distribution of the roadway data covering several possible 

cases at once. Current work also uses system optimal assignment where the destination 

Stochastic  

Deterministic 

Components 

Employed 

Assignment Type 
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choice is imposed on the evacuees according to the system optimal performance. 

Although this can be a strong assumption for daily trip assignments, it does not come up 

to be as restrictive for disaster conditions, assuming that the evacuation process will be 

controlled by the legal authorities. More, user equilibrium assignments inherently 

assumes a-priori knowledge of travel times on alternative routes for the possible 

destinations. However, such knowledge hardly exist for emergency evacuation for which 

the evacuees will have very limited – if any – prior experience regarding the travel 

patterns. Following the overall practice in the literature, current work mainly focuses on 

car-based evacuation. Evacuation staging is a phenomenon in which the evacuation 

departures are assumed to be controlled by the authorities to maintain the optimal 

clearance time for the evacuated area. Evacuation staging stands as a more theoretical and 

academic area rather than practical because of the hardness of real life implementations 

as well as the insufficient legal regulations that allows authorities to impose such plans, 

hence, not considered in the current study’s scope. 
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Figure 2.10 Model architecture for real time operational purposes [12] 
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CHAPTER 3.  IMPACTS OF THE DEMAND MODEL 

SELECTION AND CAPACITY REDUCTION ON 

EVACUATION PERFORMANCE MEASURES 

The analysis in previous chapter shows that demand models may produce 

distinctive curves for the same study area (See Figure 2.7). Even when the same model is 

used, such as S-curve, change in model parameters result in different loading curves. 

Besides the decision of ―the most realistic‖ curve, there is another concern of whether the 

predicted demand values are going to be realized exactly in real life. The final outcome of 

different demand models and possible variations cannot be fully understood by just 

studying the shape of loading curves. The total time needed to evacuate people from a 

danger area is one of the most important outcomes of these models. For example, two 

models with different loading curves but resulting in the same clearance times will have 

no difference as far as the transportation modeler is concerned. On the other hand, two 

different loading scenarios giving inconsistent results in terms of average delays can 

point to important theoretical problems related to these models in terms of failure to 

represent real-life conditions. Thus, there might be a need to use a new or improved 

demand model. Another approach may be assuming an inherent error in these models due 

to the complexity of the problem at hand, and offer a probabilistic approach. 

Nevertheless, before proposing such probabilistic formulations, the impact of demand 

curve variations on the evacuation performance measures should be investigated.  

For analyzing the impacts of different demand curve patterns, CTM based SO 

DTA model is used for simplified Cape May County, NJ, evacuation network (Figure 
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3.2). SO-DTA formulation minimizes the total time that the cells are occupied and, in this 

setup, the final clearance time can be considered as the time when there are no occupied 

cells. Assuming that evacuees are not safe until they reach their destination, the algorithm 

minimizes the time those evacuees are considered to be unsafe. Thus, average travel time, 

as a period of time spent outside the shelter, corresponds to a risk exposure measure for 

the problem and is also used to evaluate the evacuation performance. Besides analysis of 

demand models, the impact of capacity reductions is also studied. The details of CTM 

based SO DTA model will be discussed in detail in following sections as the base model 

for the proposed probabilistic approach, but for time being, only the network-wide 

analysis results for different loading curves along with network capacity reductions are 

presented.   

Two scenarios were investigated with the three demand models described 

previously: 

1 Base scenario: The empty network is loaded with constant capacities. 

2 Reduced capacity scenario: The network is loaded with reduced link capacities 

to investigate the sensitivity of different loading schemes due to capacity losses. 

Both flow and physical cell capacities are assumed to decrease continuously from 

the beginning until the end of the analysis, which can be considered the time of 

the hurricane landfall. 
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Figure 3.1 Cape May evacuation network [95] 

 

 
Figure 3.2 Simplified multi-origin multi-destination cell representation of Cape May 

evacuation network 

 

Clearance and average travel times obtained for different demand models are 

summarized in Table 3.1. Results of a similar analysis conducted for behavioral response 
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curves are given in Table 3.2. The SO-DTA formulation does not force vehicles to move 

forward if there is not enough time for all the loaded vehicles to leave the network. Since 

there is a heavy computational burden for every time step added to the analysis, the 

analysis period was limited to 48 hours and average travel times were not computed for 

scenarios that require more than 48 hours of clearance time and simply stated as ―CT>48‖ 

(Table 3.1). 

Table 3.1 SO-DTA clearance times and average travel times (hours) for selected 

demand curves  

Clearance and 

Average 

Travel Times 

(hours) 

Base Scenario 
Reduced Capacity 

(30%) 

Reduced Capacity 

(50%) 

Low 

P.R 

High 

P.R 

Low 

P.R 

High 

P.R 

Low 

P.R. 

High 

P.R 

Sequential 

Logit Model 

CT=28.5 

ATT=1.9 

CT=45 

ATT=11.1 

CT=31 

ATT=2.2 

CT>48 

(-) 

CT=33 

ATT=2.6 

CT>48 

(-) 

S-Curve 

(rapid response) 

CT=22 

ATT=4 

CT=40 

ATT=17.9 

CT=23.5 

ATT=4.2 

CT=46 

ATT=19.7 

CT=25 

ATT=4.5 

CT>48 

(-) 

S-Curve 

(slow response) 

CT=25.5 

ATT=1.7 

CT=39.5 

ATT=9 

CT=27 

ATT=1.9 

CT=44.5 

ATT= 10.4 

CT=28.5 

ATT= 2.1 

CT>48 

(-) 

Tweedie’s 

Approach 

CT=19 

ATT=4.5 

CT=38 

ATT=19.2 

CT=20 

ATT=4.6 

CT=42 

ATT=20.6 

CT=21 

ATT=4.8 

CT>48 

(-) 

ATT: Average Travel Time, CT: Clearance Time, PR: Participation Rate 

 

Table 3.2 SO-DTA clearance times and average travel times (hours) for S-curves 

with changing parameters  

 

Half Loading Time, H [hr] 

Base Scenario Reduced Capacity(25%) 

Response Rate 
  

6 9 12 6 9 12 

0.1 
CT=21 

ATT=5.5 

CT=23.5 

ATT=5.5 

CT=26 

ATT=5.5 

CT=22.5 

ATT=6.25 

CT=26.5 

ATT=6.5 

CT=29.5 

ATT=6.75 

0.3 
CT=23 

ATT=8.5 

CT=26 

ATT=8.5 

CT=29 

ATT=8.5 

CT=26.5 

ATT=9.75 

CT=30 

ATT=10 

CT=34 

ATT=10.25 

0.5 
CT=24 

ATT=9.5 

CT=27 

ATT=9.5 

CT=30 

ATT=9.5 

CT=27 

ATT=10.5 

CT=31 

ATT=11 

CT=35 

ATT=11.25 

ATT: Average Travel Time, CT: Clearance Time 

 

Some important observations in Table 3.1 and Table 3.2 based on the clearance 

time results are summarized below. 
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 An increase in participation rate (P.R) (Table 3.1) increases the clearance time for the 

curves with shorter loading periods more than the ones with longer loading periods 

(depicted by a lower α value). Quick loading S-curve and Tweedie’s models double 

the clearance time with doubled P.R. For the clearance times for the other two 

models, a minimum increase of 55% is observed.  

 For high participation rates, the overall clearance times are close for all loading 

models (Table 3.1). However, for low P.R, the clearance times differ considerably. 

This is mainly because when the system is not congested, the clearance time depends 

on the loading timing of the vehicles rather than on the network capacity. For 

networks operating at capacity, the clearance times become more dependent on 

network characteristics.  

 Clearance times are directly affected by the half loading time. Half loading time shifts 

the clearance times almost in a linear fashion, e.g., for each 3 hour increment for H, 

the order of change in clearance time is almost the same for all scenarios.  

 The difference in clearance times gets closer as the response rate increases. This 

means that slow-medium-quick response curves do not provide linear scales for 

predicting network clearance times (Table 3.2). 

 A capacity decrease increases the clearance times, as expected. The order of increase 

depends partly on the response rate but mainly on the half loading time. The larger 

the half loading time, the more the system is affected by the capacity decrease since 

the reduction is assumed to occur and remain unchanged during the evacuation 

period.  
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The findings presented above point out some important issues related to the aim 

of this dissertation. It is shown that variations in demand curve, either in the shape of the 

curve or the level of demand values (dictated by the assumed participation rate) within 

the same curve, result in significantly changes for clearance and average travel times. 

More importantly, these changes do not show a consistent pattern that can be forecasted 

by using the input demand profile. Likewise, the capacity changes affect the evacuation 

performance measures considerably, which reveals that using deterministic, constant 

roadway capacity values may result in erroneous estimations for the clearance and 

average travel time. The analyzed demand models are finely tuned, state-of-the-art 

models, but they provide demand curves with varying level and timing pointing out the 

uncertainty in the estimation process.  

3.1 Implications of Literature Review and Network-wide Analysis 

Findings on the Current Study 

The literature review shows that the evacuation demand is based on many factors, 

mostly being hard to quantify, such as risk perception. The uncertainty due to the 

complexity of the evacuee decision process can also be identified from the proposed 

demand models in the literature. It can be said that the state-of-the-practice demand 

models also suffer from the uncertainty.  Outcomes of different models may show distinct 

variations for the same study region. It was shown in network wide analysis that the 

variations in demand estimation result in considerable change in clearance and average 

travel time results. While treating the demand profiles obtained from a model as is, there 

is a significant possibility that the model predictions will be off the target. Likewise, the 
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not accounting for capacity reductions during an evacuation study may change the 

planning outcomes of the analysis. The demand profiles and the link capacities have a 

probabilistic nature and their divergence from deterministic estimations result in 

significant differences in evacuation performance measure. Hence there is need for 

models that will treat the problem from probabilistic perspective and will give results 

based on the uncertain nature of the problem. In other words, the findings of the literature 

review reinforce the need for the probabilistic approach that is employed in the current 

study. 

CHAPTER 4. MATHEMATICAL MODEL 

Regarding the proposed formulation in the current dissertation, Cell Transmission 

Model (CTM) proposed by Daganzo [30,31] and System Optimal Dynamic Traffic 

Assignment (SO DTA) formulation by Ziliaskopoulos [178] requires special attention. 

The cell transmission model is an innovative transformation of the differential equations 

of Lighthill and Whitham’s [75] and Richards’[106] hydrodynamic model to simple 

difference equations by assuming a piecewise linear relationship between flow and 

density at the cell level (Figure 4.1). The model accurately describes traffic propagation 

on street networks and captures traffic phenomena, such as disturbance propagation and 

creation of shockwaves on freeways, and it can be easily adapted to account for traffic 

signal control and ramp metering devices. It should also be noted that, although the 

model assumes a piecewise linear relationship at the cell level, it captures reasonably well 

the non-linearities between speed density and travel time density at the link level. 
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Moreover, the computational requirements of the model are adjustable, depending on the 

discretization interval and the required accuracy.  

 
Figure 4.1 The equation of the state of the cell transmission model [31] 

 

Although Daganzo in his second paper of CTM [31] explicitly points out the 

applicability of his model for evacuation modeling, almost 10 years pass for an 

evacuation application study to appear in which Tuydes and Ziliaskopoulos [146, and 

follow-up study 145] uses CTM to evaluate optimal contraflow operations. On the other 

hand, the recent evacuation applications do not appear solely using CTM, but employs 

the SO DTA model based on CTM. Liu et. al. [82,81,80] use CTM based SO DTA model 

for evacuation analysis for staged evacuation and two level optimization schemes in 

large-scale networks. Ozbay et.al. [104] and Ozbay & Yazici [103] employ SO DTA for 

evaluating the network-wide impact of evacuation demand model choice on clearance 

and average travel times. Shen et. al. [131] propose a computationally more efficient 

methodology while using CTM based SO DTA in evacuation applications. Chiu and 

Zheng [25] also base their model on CTM SO DTA model and they define ―simultaneous 
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mobilization destination, traffic assignment, and departure schedule for multi-priority 

groups‖ (SMDTS-MPG) for real-time emergency response in no-notice disasters. 

Kalafatas and Peeta [64] provide a strategic planning perspective similar to current 

study's objectives. They provide analysis in terms of the budget for contraflow 

operations, the total number of evacuees, and spatial distribution of origin-destinations in 

evacuation network. While doing so, reduced flow capacities are also considered that 

representing the decrease due to the evacuation operations. Although the popularity of 

CTM SO DTA model is increasing in evacuation modeling area, all the studies provide 

deterministic improvements or applications, and almost none undertakes a stochastic 

approach to the formulation. Yazici and Ozbay [172] approach the problem from 

stochastic programming perspective and study the impact of roadway capacity reduction 

probabilities. They analyze the changes in clearance and average travel time changes in 

case of probabilistic roadway capacities, and the spatial shelter utilization is discussed in 

terms of shelter management. 

In this chapter, the proposed mathematical formulation for probabilistic analysis 

of evacuation problem is presented. First, CTM based SO DTA model is given for the 

completeness of the presented stochastic extension proposed in the dissertation. Then the 

stochastic SO DTA formulation with probabilistic demand and capacity constraints is 

provided along with some stochastic programming basics.  
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4.1 Cell Transmission Model and System Optimal Dynamic Traffic 

Assignment  

Original single-destination LP formulation with detailed explanations can be 

found in [178]. Briefly, the objective of the SODTA problem is to minimize the total 

travel time in the network, i.e., the travel time experienced by all users of the network. At 

any time interval t, the travel time experienced by the users of cell i equals to ,  

being the number of vehicles in cell i time t. According to the CTM, these users have to 

stay in this cell for the duration of the time interval. The travel time experienced by all 

users of the network during time interval t is , because no users are stored at the 

cell connectors. is the set of all cells except the sink cells, because the sink cells do 

not contribute to the total system travel time. Thus, the total system travel time during the 

whole assignment period T is 

                                                                                                     (3) 

 

The SODTA objective is to minimize the function (1), or, 

                                                                               (4) 

because  was assumed to be one time unit since  can take any positive value without 

affecting the solution of the LP. The LP problem with complete set of constraints are 

given below (Equations 5-24) 
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Subject to: 

Conservation for all cells except source (R) and sink cells (S):                                      

                                 (6) 

 

Flow inequality constraints for source (R) and ordinary cells (O): 

                                                        (7) 

                                                                             (8) 

                                                        (9) 

                                                          (10) 

 

Flow inequality constraints for sink (S) cells: 

                                                                            (11) 

                                                                                    (12) 

 

Flow inequality constraints for diverging (D): 

                                                                              (13) 

                                                                    (14) 

                                                                           (15) 

                                                                                           (16) 

 

Flow inequality constraints for merging (M) cells: 

                                                                                 (17) 

                                                                                         (18) 

                                                                                   (19) 

                                                                 (20) 
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Mass balance for source cells (R):                                                 

                               (21) 

 

Initial conditions and non-negativity constraints: 

                                                                                                       (22) 

                                                                                            (23) 

                                                                                        (24) 

where; 

: link flow 

: maximum flow 

: density 

: jam density 

: link free flow speed 

: backward propagation speed 

: set of cells; ordinary (O), diverging (D), merging (M), source (R) and sink (S). 

: set of discrete time intervals 

: number of vehicles in cell i at time interval t 

: maximum number of vehicles in cell i at time interval t 

: number of vehicles moving from cell i to cell j at time interval t 

: set of cell connectors; ordinary (O), diverging (D), merging (M), source (R), sink (S). 

: maximum number of vehicles that can flow into or out of cell i during time interval t 

t

i : ratio v/w for each cell and time interval (Assumed t

i =1 throughout the analysis) 
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 ti : set of successor cells to i 

 ti

1
 : set of predecessor cells to cell i 

 : discretization time interval 

t

id : demand (inflow) at cell i in time interval t 

 

CTM based SODTA formulation can be simply given in the following compact 

standard form as below, with explicitly written capacity and demand constraints. 

 

 

       
 

  

            

    
    
    

                                                                  
        

                     

 

 

where    
  

 

   
    is the vector of system states. Regarding the matrix dimensions, 

let there are r and s equality and inequality constraints excluding the constraints with 

capacity and demand values at the right hand side (RHS), k capacity constraints and l 

source cell constraints with demand values at the RHS, making r+s+k+l=m constraints 

in total and n decision variables. Then A(s x n) and Aeq(r x n) stands for matrix for the 

equality and inequality constraints, with corresponding RHS b(s x 1) and beq(r x 1). R(l x 

n) represents the demand constraints with demand vector D(k x 1) and T(k x n) represents 

the capacity constraints with capacity vector C(k x 1). Since the constraints are 

formulated for each time step, C and D vectors consist of time-expanded forms of all cell 

capacities and demands in the network. 
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4.2 System Optimal Dynamic Traffic Assignment with Probabilistic 

Demand and Capacity Constraints  

Stochastic programming has been defined in Prekopa [115] as "mathematical 

programming problems, where some of the parameters are random variables; either we 

study the statistical properties of the random optimum value or random variables that 

come up with the problem, or we reformulate it into a decision type problem by taking 

into account the joint probability distribution of random variables". Although the term 

stochastic clearly conveys the probabilistic nature, stochastic programming problems are 

solved through their underlying deterministic problem. The stochastic constraints of the 

problem are represented in their deterministic equivalent forms which enforce the 

constraints to hold for certain prescribed probabilities. The deterministic equivalent of the 

probabilistic constraints are plugged into the underlying deterministic formulation to 

obtain the results for the stochastic programming at hand. In other words, stochastic 

programs are solved as nothing but deterministic problems whose form is imposed by the 

random variables in the model. The results are interpreted within user prescribed 

probability level on the probabilistic constraint.  

Regarding our underlying deterministic SODTA problem, when cell flow 

capacities are assumed to be probabilistic, we have k constraints of the form       
 for 

each probabilistic cell capacity, where   
  represents the probabilistic capacity 

distribution of cell j at time t, and    represents the i
th

 (i=1,2,…,k) row of matrix T (k x 1) 

corresponding to the probabilistic capacity constraint with RHS   
 . Similarly, we can 

write the demand constraint for the source cell as       
  for each source cell, where 
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  represents the probabilistic demand at source cell j at time t, and    represents the i

th
 

(i=1,2,…,l) row of matrix R(l x 1) corresponding to the probabilistic demand constraint 

with RHS   
 .  

The form of the underlying deterministic problem is closely related with whether 

the desired probability levels for the constraints are imposed individually on each 

constraint (ICC), or jointly on multiple constraints (JCC). Choice of ICC or JCC provides 

different interpretations of the model results, mainly in terms of system reliability.  

 

The SODTA problem with probabilistic demand and capacity constraints can be 

modeled with ICC and the formulation (Problem-1) is given below. 

 

          
 

  

               

             
   
                        

             

            
   
                      

        
      

                           

          (P1) 

     
 

where    refers to the number of probabilistic demand constraints (having a total of 

l) and    refers to the number of probabilistic capacity constraints (having a total of k).     

and     are the probability levels are imposed on each probabilistic constraint individually 

and can be assigned different values based on the desired local reliability of the constraint 

at hand.  

 

When the problem is modeled with joint constraints for demand and capacity, we 

get: 
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          (P2) 

 

where   (k x 1) is the random capacity vector composed of capacity distributions 

of cell j at time t (  
 ), and   (l x 1) is the random demand vector composed of demand 

values at source cell j at time t (  
 ). We refer to this JCC approach as Problem-2 (P2). 

Since the constraints are enforced jointly,    and    refers to the reliability levels 

enforced on random roadway capacities and random demand.  

 

Solutions of P1 and P2 may have different levels of difficulty based on the type of 

random variable used, e.g. discrete or continuous. The DTA problem studied in the 

current study uses discrete parameters (e.g. number of vehicles, the flow capacity of a 

roadway). Still the probability distributions for both demand and capacity can be assumed 

to follow a continuous distribution and rounded up. However, small capacity fluctuations 

(e.g. 1990 vphpl instead of 2000 vphpl) will not cause a significant change on the 

network traffic, but changes that correspond to a more significant percentage of the 

existing capacity (e.g. 1750 vphpl instead of 2000 vphpl ) will affect network flows. 

Similar argument is also valid for demand. Moreover, considering that such continuous 

distributions will be based on continuous fits to discrete field data, it can be argued that 

using known continuous distributions will just add generalized assumption to the actual 

measurements. In the current study, it is assumed that demand and capacity distributions 

follow discrete probability distributions. Naturally, the discretization of the probability 
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distribution is important and coarse intervals may provide rough results. Nevertheless, 

properly chosen discretization level will provide the desired network analysis results. On 

the other hand, to solve the proposed problems, solution techniques customized for 

discrete random variables are needed. Such a technique to be used for solving stochastic 

programming problem with discrete right hand sides has been provided by Prekopa [115].  

 

In terms of interpretation of the solutions, P2 differs from P1 by providing overall 

reliability for network capacity and demand over all time horizon rather than meeting 

reliability levels individually for each link and source cell at each time step.    and    

can be defined based on problem dynamics and modeler's risk perception, e.g. assigning 

higher    would mean that the analysis will provide results assuming less possible 

capacity degradations. Similarly higher    would assign higher demand on the network 

so that the possible realized demand would not exceed the assigned demand value. A 

detailed discussion of ICC and JCC approaches are provided below.  

4.2.1 ICC vs. JCC: Theoretical Considerations 

The capacity constraints in SO DTA formulation are in the form of    
    

  

where    
  is the flow from cell i to cell j at time t, and   

  is the flow capacity of cell i at 

time t. Assuming that cell flow capacities are random, we can write k probabilistic 

constraints as       
 , where   

  is the random capacity of cell j at time t, and    

represents the i
th

 (i=1,2,…,k) row of matrix T (k x 1) corresponding to the probabilistic 

capacity constraint with right hand side   
 . We can write the probabilistic constraints 

individually on the inequalities as: 
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where    is the prescribed probability that the probabilistic constraint would hold.  

 

Following the same logic, For the stochastic demand, the probabilistic constraints 

can be written individually as         
     . However, probabilistic equality 

constraints with random RHS is problematic since probability of a random variable being 

equal a certain value is either zero in case of a continuous random variable, or very small 

in case of a discrete random variable. A remedy proposed in the literature for this 

problem [115,159] is to re-write the demand constraints in inequalities form as       

  
      and use the demand constraint as a lower bound for the possible demand 

realizations. This approach was used by Waller and Ziliaskopoulos [115] to model the 

demand uncertainty for SODTA problem and also adopted in the current study. 

 

The    value in a probabilistic constraints connects to the reliability of the system 

and "ensures that the state of the system remains within a subset of all possible states 

where its functioning is undisturbed by major failures" [115]. An optimal solution with 

the probabilistic constraint         
      ensures that the constraint is violated at 

most (1-pi) 100% of the possible realizations. Assuming that    
  is the probability 

distribution function of   
 , then the probabilistic constraint can be re-written in its 

deterministic equivalent as      
  

 
       . Then the problem at hand can be solved via 

conventional LP solution methods after substituting deterministic equivalent of each 

probability constraint. This approach is, in general, called "chance constrained 

programming", first proposed by Charnes, Cooper and Symonds in 1958 [18]. 
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Specifically, the above formulation is called individual chance constraint formulation 

because the probabilistic constraints are imposed individually. On the other hand, the 

problem can be also formulated using joint chance constraints (JCC) - or joint probability 

constraints (JPC). In JCC setup, the probabilistic capacity constraints are arranged to hold 

jointly with prescribed probability level p as:  

 

        
        

          
          

      

 

and for demand, with the same p, we get: 

 

        
        

          
          

      

 

where N is the total number of cells with random capacity. 

 

The p value associated with ICC provides local reliability, since the probability 

constraint is bounded for each link/cell separately. Hence, the reliability levels can be 

assigned based on local requirements in the system. On the other hand, JCC solution 

yields a system wide reliability via using the joint cases of possible system wide capacity 

realizations. As a direct result of Boole's inequality, the solutions satisfying ICC 

formulation also satisfy JCC [115]. Hence ICC provides tighter bounds for the problem 

compared to JCC. However, from the computational perspective, deterministic equivalent 

ICCs are easier to calculate by re-writing the probabilistic constraint as      
  

 
       , 

provided that we can compute  
  

 
       . On the other hand, JCC may require high order 

integrals to calculate the joint probability density of the random right hand side variables. 

Fortunately, this computational burden can be reduced significantly if the random 
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variables are independent, since the joint probability density calculation boils down to 

multiplication of marginal densities.  

The choice of joint constraints or individual chance constraints is a matter of 

model formulation and the dynamics of the problem. It may be meaningless to employ 

ICC when the constrained processes/events in the problem do not operate without 

affecting each other. The reservoir problem [115] in which the probabilistic constraint 

imposed on one reservoir nullifies the local probabilistic constraint of the other reservoir 

provides a good example for such problematic use of ICC. In case the problem dynamics 

allow both approaches, the decision of ICC or JCC is a matter of modeler's perspective 

on the desired reliability of system components. In this respect, the formulation discussed 

in this dissertation distinguishes itself from previous works [156, 149, 65] in which use 

only ICC approach in network design problem context and incorporates only demand 

uncertainty into DTA formulation.  

4.2.2 Nature and Modeling of Random Roadway Capacity and Demand 

The SODTA formulation is based on a ―clock tick‖ which is a –preferably short– 

time interval that the flows in the network are updated. Clock tick also determines the 

length of each cell according to CTM setup. A link on the highway network can be 

composed of several cells, which will have imposed capacity constraints for each time 

step. The modeling of link capacity can be performed at the cell level, or link level 

composed of several cells. It can be assumed that the roadway capacity does not exhibit 

significant fluctuations for small time intervals or for small road segments. Similarly for 

the demand at a specific time interval would not be expected to differ significantly for 
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short time intervals. In other words, compared to CTM clock tick and cell length, the 

demand and capacity randomness may be quantifiable for relatively larger time intervals 

and for longer length of road segments. Thus, we can assume all the roadway and source 

cells in a roadway link would more likely have the same random capacity and demand 

realizations for certain period of time. The actual realization of the demand and link 

capacity is assumed to prevail during whole time interval that the distribution is 

calculated for. Thus, the capacity and demand are allowed to change at pre-determined 

time intervals rather than each clock tick of the SODTA model. Let    
  be the capacity 

realization of cell i for time interval   ; let T is the duration that the calculated capacity 

probability is valid; and assume cells i-1, and i+1 are on the same link with cell i, then we 

can write: 

 

   
       

       
     

          
          

     with probability 1, for all        

 

Then, if we assign the same p for all constraints, we will have the RHS of 

deterministic equivalent of probabilistic constraints as  
    

 
       

    
    

       

 
  

 
       

  
    

        
    

 
       

    
    

       since the random capacities are assumed 

to be the same for all cells on the same link and for a certain time period. Following the 

same steps for demand at each source cell, we will have  
  

 
       

  
   

       at the RHS 

for the deterministic equivalent of the demand constraint. The calculation of pLEPs for 

ICC is straightforward since we are dealing with one dimensional probability 

distributions. For solution of JCC we cannot directly use the individual distribution, and 

we need the joint probability distribution of the RHS random variables to calculate the 
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deterministic equivalent of the probabilistic constraint. Due to space and temporal 

dependency of the random capacity between consecutive time steps and cells, we can 

calculate the joint probability density as follows. Letting    and    as the rth realization 

of random discrete capacity, we know that     
          

         since the 

experienced capacity will be the same for consecutive time steps for the whole period that 

the random capacity distribution is defined. For consecutive cells we can write       
  

       
         since the realized capacity will not change at short distances. Then 

we will have the joint probability     
    

     as: 

 

    
         

          
          

          
          

      

 

or for consecutive cells, we can calculate       
    

  :  

 

      
       

            
        

          
          

      

 

Similarly, for demand at a source cell for consecutive time steps, we can compute  

 

    
         

          
          

          
          

      

 

The same procedure can be followed for higher dimensions and the joint 

probability distribution for several time steps for a link composed of several cells can be 

computed. On the other hand, we assume that a capacity decrease (say, due to an 

incident) on a specific link does not imply occurrence of another capacity decrease on 

another link in the network. Thus, the capacity decreases in the network links can be 

assumed as independent both in time and space. Likewise, demand at a certain source cell 

is independent of the demand loaded onto network from different sources. Then, the joint 

probability of the random capacity variables will be the product of each probability 
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distribution. As an example, let we have 3 links (links L1, L2, L2, each composed of 

certain number of cells) and the capacity distributions are calculated 4 time intervals 

(           , each including by several clock ticks). Assume that the capacity probability 

distribution for link L at time interval T is represented by   
 , then the joint probability of 

the random capacity for 3 links and for 4 time interval will be the product of each 

probability distribution:          

                
  

   
 
   . The resulting joint probability 

function will be used to determine pLEPs for JCC setup.  

For a simple representation of how the random capacity is modeled, assume that 

we have cells i, j and k, m have random capacities at two different links in a cell network 

(Figure 4.2). Their discrete probability distributions are given by   
  and   

  for link-A 

and link-B respectively, where i is the cell number and t is the time step. For other cells, 

the assume deterministic capacity assigned as   
 , 

 

Figure 4.2 Two Links Extracted from a Cell Network 

 

For Link-A, let us set random variable for capacity to be   
  where i is the cell 

number and t is the time step. If we write the capacity constraints for cells i and j for 2 

time steps, we have: 
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As shown above, in ICC formulation we can assign separate reliability levels (  ) 

for each constraint, however that will provide the constraint to hold within the assigned 

local capacity reliability for that specific time and cell that the constraint is written for. If 

we want to have the same local reliability for all links, hence we assign the same p for all 

constraints, e.g.                           for all constraints. Then 

we will have  
  

 
       

  
   

        
  

   
        

  
 

       
  

   
        

  
   

       since 

the random capacities are assumed to be the same for all cells on the same link and for a 

certain time period. Set of probabilistic capacity constraints can be written for Link-B in 

a similar fashion. The solution will follow substituting  
  

 
      values as the right hand 

side of the probabilistic equation for all probabilistic capacity constraints for Link-A and 

Link-B, thus make them deterministic, and solve the problem via conventional LP 

solvers. For link-B let us assign   
  for the random capacity of cell i at time t. The 

complete set of capacity constraints for Link-A and Link-B is given below, assuming that 

we impose the same reliability level p on all probabilistic constraints:  
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Now, let us write the probabilistic equations for link-A in JCC setup.  

 

          

       
      

            
        

    

      
    

 

      
      

   

    
    

 

    
      

   

    
    

 

    
      

   

      
    

 

      
      

   

      
      

            
        

   

    
           
         

       
      

            
        

    

      

 

 
 
 
 
 
 
 
 

      
    

 

      
      

   

    
    

 

    
      

   

    
    

 

    
      

   

      
    

 

      
      

   
 

 
 
 
 
 
 
 
 

  

      
      

            
        

   

 

The difference of JCC solution is that we cannot use the marginal probability 

densities and need the joint probability distribution of the right hand side random 

variables to calculate the deterministic equivalent of the probabilistic constraint. The 

calculation of joint probability densities can be difficult, which stands as the trade off for 

receiving system reliability with JCC rather than obtaining local reliability levels with 

ICC. For our problem, due to space and temporal dependency of the random capacity 

between consecutive time steps and cells, we can calculate the joint probability density 
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easily. For instance, letting    as a single realization of random capacity, we know that 

    
          

         since the experienced capacity will be the same for 

consecutive time steps for the whole period that the random capacity distribution is 

defined. Likewise, for consecutive cells we can write       
         

         since 

the realized capacity will not change at short distances. Then we will have the joint 

probability     
    

     as: 

    
       

            
          

          
          

      

or similarly       
    

   as: 

    
         

            
        

          
          

     . 

Following the same procedure for higher dimensions, we can write our joint 

probability distribution of random capacities for a link (composed of several cells) and 

time interval (composed of several time steps) as:  

  
    

        
            

          
               

              
         

where     is the r
th

 possible realization of the discrete random roadway capacity, 

which is assumed to prevail for cells           and time interval         ,   
  is the 

joint probability function of random capacities for link-A at time interval T=[       . 

Hence, our multi dimensional joint probability function   
  has zero probability 

everywhere except capacity realizations for each cell and time step are equal. More, the 

probability values assigned for those points are equal to the marginal probabilities of each 

realization.  

Expanding JCC formulation for two links is not as straightforward as ICC. The 

JCC formulation for link-A and link-B is given below.   
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For the JCC solution, we need to find the joint probability function covering both 

links. We can compute the joint probability function for link-B for time interval T,   
 , 

similar to   
 . Moreover, a capacity decrease (say, due to an incident) on a specific link 

does not imply occurrence of another capacity decrease on another link in the network. 

Thus, the capacity decreases in the network links can be assumed as spatially 

independent. It is also reasonable to assume that capacity reductions are independent for 

different long time intervals. This temporal and spatial independency assumption is 

important in terms of joint probability calculations. We can write the joint probability 

function for capacity of link-A and link-B for single time interval as multiplication of   
  

and   
 , e.g.     

    
    

 . Now, let us assume our analysis horizon is composed of 

two time intervals,    and   , for which the link capacities are defined. Then our joint 

probability function for JCC formulation will include   
  ,   

  ,   
  ,   

   and our joint 
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probability function of two links for two time steps will be     
        

     
     

   

  
  . The same approach is valid for source cells where the demand at each source cell is 

assumed to be independent from each other and the demand distribution is assumed to 

prevail for certain time period rather than fluctuating at every CTM time-step. 

The resulting joint probability function can be used to determine p-level efficient 

points (pLEP) which is a method introduced by Prekopa [116] for solution of stochastic 

programming problems with discrete random RHS.  

4.2.3 Proposed Solution Approach for Stochastic SO DTA Problem with Integer 

Right Hand Side 

P-Level Efficient Points (pLEP) method proposed by Prekopa [116] can be used 

to solve the stochastic SO DTA problem. Defining                       , 

letting F be the probability distribution of , then p-level efficient points can be defined 

as follows. 

 

Definition: A point z  Zp is called a p-level efficient point (pLEP) of a 

probability distribution function F, if F(z)   p and there is no y, z, y<z such that F(y)   

p, where p[0, 1].  

 

pLEPs provide discretized set of points, which give the lower bound of a specific 

probability distribution which ensures that the probabilistic constraint would hold with 

the given p. They are used in the deterministic equivalent of the probabilistic constraint 

and assure that the constraint will satisfy the given reliability level p. For a scalar random 

variable   and for every p   (0, 1), there is exactly one p-efficient point which is the 
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smallest z such that F(z)   p. Figure 4.3 visualizes the pLEP points for a two 

dimensional case.  

 
Figure 4.3 An Example of the set Zp with pLEPs v

1
…v

4
 [35] 

 

Prekopa [117] proposes a recursive algorithm to enumerate the p-efficient points 

for multidimensional discrete probability distributions. Let Z be a discrete random vector, 

let the i
th

 element of Z be a discrete random variable, and let the number of possible 

values of multidimensional discrete random variable   be gi. The variable      denotes 

the m
th

 possible value of the i
th

 element of Z in the increasing order (i.e.,         is the 

highest possible value of the n
th

 discrete random variable of Z). The algorithm to 

enumerate the p-efficient points for a multidimensional discrete probability distribution is 

as follows [117]: 

 

Step 0.  Initialize k ← 0. 

Step 1.  Let   
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Step 2.  Let                     

Step 3.  Let k ← k+1. If  j1 + k  k1+1 then go to Step 5.  If j1 + k  k1 + 1, then 

go to Step 4. 

Step 4. Enumerate all p-efficient points of the function              of the 

variable   and eliminate in     and eliminate those that dominate at least one element in 

  . If     is the set of the remaining p-efficient points, which may be empty, then let 

            

 Go to Step 3. 

Step 5. Stop. The variable     is the set of all p-efficient points of the function  . 

 

To provide a simple example of how pLEP points are found, assume we have a 3 

dimensional joint probability function                        where   ,   and   are 

the discrete random variables and    ,    and    are possible realizations of the 

corresponding discrete random variable. pLEP enumeration first finds the pLEP 

candidate points whose probability values are higher than the prescribed p value, e.g. 

        . Among those pLEP candidate points, the algorithm eliminates the ones which 

are dominated by another candidate in terms of providing tighter bounds. For instance, if 

there are two points, point-1=           and point-2=            , point-1 is excluded 

from set of pLEP points because point-2 dominates point-1 by at least one dimension, 

e.g.        . Assume we have another point, point-3=            . Point-3 also 
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dominates point-1 but no such inference can be made between point-2 and point-3. 

Although point-2 dominates by        , since point-3 also dominates point-2 for the 

2
nd

 dimension (       ) no absolute dominance can be mentioned and both points-2 

and 3 stay in the pLEP set. The algorithm continues until there are no points that are 

dominated by another candidate and the resulting set of points is assigned as the pLEP 

set. 

Once the set of pLEPs are calculated, the SO DTA problem with probabilistic 

capacity constraints can be re-written in its deterministic form as: 

 

 

          
 

  

              

                        

            
                           

            

 

 

where    
                  is the set of pLEPs for demand constraints, and 

    
                      is the set of pLEPs for capacity constraints. The proof for 

necessary and sufficient conditions for the existence of optimality can be found in [35]. 

Depending on the approach (ICC or JCC) the set of pLEP point sets are either computed 

from marginal probability, or joint probability functions. Brute-force solution approach is 

to find all p-efficient points and to solve all corresponding LP problems. Let v
i
 is the 

optimal solution to the i
th

 LP problem with constraint      . If               , 

then v
i
 is the optimal solution. Hence the use of pLEPs does not increase the complexity 
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of the problem but requires LP solutions as many as the number of pLEPs. It is proved 

that the number of pLEPs is finite a number [35], however for high-dimensional random 

vectors the number of pLEPs can be large. For large number of pLEP points, Dentcheva 

et al.[35] provide cone generation method which decreases the computational burden by 

using the dual of the problem and generating the pLEP points when needed instead of 

running the problem for each pLEP.  

CHAPTER 5. NUMERICAL EXAMPLES 

For the illustration of the proposed formulation’s use, 2 numerical examples are 

provided. First example studies the impact of capacity randomness in JCC setup and 

shows how the favorable shelter locations and the shelter utilization change if the 

roadway capacity uncertainty is taken into account. Second numerical example studies 

both the demand and capacity uncertainty and provides a comparison of ICC and JCC 

approaches. 

5.1 Numerical Example-1: Effect of Roadway Capacity Uncertainties 

on Shelter Locations and Capacities 

In this section the change in traffic flow due to capacity uncertainties is 

investigated regarding the impacts on favorable shelter locations and shelter utilization on 

Cape May, NJ evacuation network. For this purpose, the existence/necessity of a shelter 

at one of the destinations is analyzed by employing consecutive assignments assuming a 

shelter is operational, then not operational. This analysis is done in a deterministic 
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fashion in which all network specific attributes are kept constant. The flow patterns for 

each operational shelter set scenario, the network flows and the capacity utilization is 

calculated. Then, the same analysis is performed under stochastic SO DTA. For the 

numerical analysis, only the roadway capacity is assumed to be stochastic. The time step 

chosen for the analysis and the corresponding cells length are large for the current 

example, hence the capacity distribution is assigned on selected cells rather than using 

links composed of several cells. More, the problem is solved via JCC only. At the end, 

the results of deterministic and probabilistic analysis are compared to make inference 

about the impacts of capacity changes. Figure 5.1 shows the official evacuation routes for 

Cape May and Figure 5.2 shows the simplified cell representation of the Cape May 

evacuation network.  

 

 
Figure 5.1 Cape May Evacuation Routes [95] 
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Figure 5.2 Simplified Cell Representation of Cape May Evacuation Network 

 

The analyzed network is a multi-origin multi-destination network, each 

destination being a shelter location. However, the original SO-DTA formulation is based 

on single destination. Kalafatas and Peeta [62] suggest that in the evacuation problem, 

where all destinations are equivalent, a single super-destination cell can be added and 

connected to all destination cells. Destination cells and the connectors to super-

destination are assigned infinite capacity so that there will be no congestion at the 

destination cells. This suggestion is adopted in the current setup.  

 

The average evacuation speeds of the vehicles are assumed to be 30 mph. The cell 

length is set to be 5 miles. Following the requirement of the CTM that a vehicle can 

traverse at most one cell in one time interval, the time interval is set to be 10 minutes and 

loading is also performed for each 10 minute interval. Following the Highway Capacity 

Manual the maximum flow rate is set to be 2160 vehicles per hour per lane and about 150 

vehicles are assumed to fit 1 mile road segment. The cells on Garden State Parkway 

(cell#11, 12, 13, 14, 15, 16) have 4 lanes, whereas the other roads have 3 lanes. Overall 

network features and cell physical properties are shown in Table 5.1. 
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Table 5.1 Physical Cell Properties of the Example Network 

Cell# 
# of 

Lanes 

Max Flow 

(veh/τ
*
/ln) 

Physical 

Capacity, 

Ni (veh / mile) 

Cell 

Length 

(miles) 

Speed 

(mph) 

4,5,6,7,20,21,22,23,24 3 1080 450 5 30 

11,12,13,14,15,16 4 1440 600 5 30 
*
 τ : Time interval = 10 minutes,   

 

For network loading, S-curve is used following state-of-the-practice in evacuation 

modeling. Mathematical representation of S-curve is as follows: 

                                             )(exp1
1

Ht
tP





                                             (25)  

 

where P(t) is the cumulative percentage of the total trips generated at time t. The 

―α‖ parameter represents the response of the public to the disaster and alters the slope of 

the cumulative traffic-loading curve. H is the half loading time; the time at which half of 

the vehicles in the system have been loaded onto the highway network. H defines the 

midpoint of the loading curve and can be varied by the planner according to disaster 

characteristics. The loading parameter choice adjusts the overall performance thus the 

parameters are kept fixed during all analyses. Specifically, loading parameters are set as 

α=0.01 and H=6. According to census data, there are 42148 households in Cape May area 

and assuming 1 departure from each household, approximately half of the evacuations 

(21000) are generated from 3 concentrated sources representing the resident and tourist 

population along the shore.  

5.1.1 Case Studies 

There are 2 basic issues that are studied. First issue is the existence/necessity of a 

shelter at one of the destinations. Second issue is the effect of flood probability, which 
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may cause decrease in roadway capacity, and eventually change the ―favorable‖ shelter 

locations. In both cases, capacity of the shelters are under consideration since deciding 

the location of a shelter is not enough without knowing the number of people that may 

use that shelter. Maintaining a shelter is further complicated because of emergency 

supply and response personnel requirements. 

 

Let the problem be the elimination of one shelter out of three shown in Figure 5.1 

because of supply logistics and possible problems in finding sufficient number 

emergency response personnel that can staff all three shelters. However, let’s also assume 

that there is a flood risk in the area, especially near the shore, which may cause a specific 

link to lose part or all of its capacity and consequently alter the shelter selection plan.  

 

First, cell capacities are assumed to be deterministic and constant. Then, the 

network is analyzed for all possible couples of shelters by eliminating the third one at 

each iteration. Same procedure is employed but this time with capacity loss probabilities 

for specifically chosen links. The independence of flood probabilities of cells is again 

assumed, while solving the simple network probabilistic assignment problem.  

 

Case-1 

For this case, Cells #20, #21 and #22 represent the roadway which is near the 

shore and covered with water creeks that can be visually seen from aerial photos. 

Probabilities of the number of lanes that are operational are set to be 0.3, 0.45, 0.20, 0.05 

for 0, 1, 2 and 3 lanes respectively for cell#20 and #21. This distribution represents a 

severe flooding where the fully operational and 1 lane loss probabilities only sum up to 
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0.25. Cell#22 is assigned probabilities of 0.20, 0.30, 0.45 and 0.05 for 0, 1, 2 and 3 

operational lanes, which represent less severe flooding conditions compared to other cells 

with flood risk. These cells are chosen since the road segments that are represented with 

these cells are close to the shore and lie in a water-rich area as well. All other cells are 

assigned fixed, deterministic capacities throughout the evacuation.  

First, a complete analysis with all shelters is performed to compare the average 

evacuation travel time and needed shelter capacities under best conditions. Then each 

shelter shown in Figure 5.2 are eliminated one-by-one, and the increase travel times and 

shelter capacity requirements are compared with the complete network where all the 

shelters are operational. The same procedure is applied for probabilistic road capacity 

formulation and results are given in Table 5.2. Please note that for the probabilistic 

assignment, p is set to be 0.75. This p value results in pLEPs which correspond to 1 lane 

flooding (in other words 2 operational lanes) for all cells with flood risk. Also note that 

the base scenario is chosen to be the deterministic case and all other performance values 

are compared with the base scenario. 

Table 5.2 The Results for Deterministic Case and Case-1 

Abandoned 

Shelter 

ATT
*
 

(mins) 

ATT 

Change 

Needed 

Capacity 

Det. Prob. Det. Prob. Deterministic Probabilistic 

All 

Operational 

66 

(CT
**

=440) 

78 

(CT=450) 
n/a 24% 

S#1 = 6943 

S#2 = 7000 

S#3 = 7057 

S#1 = 7585 

S#2 = 7744 

S#3 = 5671 

S#1 

 

127 

(CT=550) 

169 

(CT=640) 
92% 156% 

S#2 = 10469 

S#3 = 10531 

S#2 = 12426 

S#3 = 8574 

S#2 

 

126 

(CT=550) 

169 

(CT=640) 
91% 156% 

S#1 =10369 

S#3 =10631 

S#1 =13399 

S#3 =7601 

S#3 

 

128 

(CT=550) 

128 

(CT=550) 
94% 94% 

S#1 = 10318 

S#2 = 10682 

S#1 =10280 

S#2 =10720 

* ATT: Average Travel Time, ** CT: Clearance Time 
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As seen in Table 5.2, for the deterministic case, all the shelters as appear to be 

equal in terms of overall evacuation performance and capacity requirements. The 

increases in clearance times, average travel times and capacities are equal or very close.  

However, when the analysis is done with predetermined flood probabilities, the 

absence of shelter#1 makes a big difference in evacuation performance. Average travel 

time increases by 156% whereas the increase in deterministic case is 92%. Also 

compared to absence of other shelters, shelter#1 is distinguished as the most vital shelter. 

There is also another point that is of importance other than the location or absence of the 

shelter. Even if one assumes that all shelters will remain open, probabilistic analysis 

suggests different capacities for shelters. Results show that the number of evacuees in the 

shelters will differ by 6%, 10%, -20% for shelter#1, #2 and #3 respectively. These 

changes are equal up to 1386 evacuees, for instance for shelter 3. If the shelter 

maintenance aspects are considered, e.g. food-water supply, medical facilities, this 

difference can change evacuation plans.  

Case-2 

For Case-1, it should be noted that the cells, which have flood risk, are the ones 

near the shore and affect only the evacuees that travel from origin#3 to shelter#3. 

However, the results are still significant in terms of the impact of the probabilistic 

analysis on the overall picture. For Case-2, same analysis that is presented in Table 5.2 is 

repeated by assigning a flood probability to an additional cell. One can also think of this 

proposed probabilistic capacity decrease as a result of the probability of an accident on 

the road instead of possible flooding. This perspective may lead us to use probabilistic 

analysis for links that do not have a major flood risk but high incident risks instead. For 
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this purpose, cell#23 is assigned a capacity decrease probability. Cell#23 connects 

shelter#1 to all origins, and is an important cell. The probability distribution, which is 

same as cell#22 (0.20, 0.30, 0.45, and 0.05 for 0, 1, 2 and 3 operational lanes 

respectively) is assigned to cell#23. The results of Case-1 and Case-2 are given in Table 

5.3. Note that all the increase/decrease comparisons are based on the deterministic base 

scenario in which all cell capacities are deterministic and all shelters are operational. 

Same p value as in case-2 is used (0.75) and this again corresponds to 1 lane closure for 

all cells with flood risk.   

Table 5.3 Results for Case-1 and Case-2 

Abandoned 

Shelter 

ATT
*
 

(mins) 

ATT 

Change 

Needed  

Capacity 

3  

Flooded 

 Cells 

4  

Flooded  

Cells 

3  

Flooded  

Cells 

4  

Flooded  

Cells 

3 Flooded 

Cells 

4  

Flooded  

Cells 

All 

Operational 

78  

(CT
**

=450) 

96 

(CT=490) 
24% 45% 

S#1 = 7585 

S#2 = 7744 

S#3 = 5671 

S#1 = 6006 

S#2 = 8703 

S#3 = 6291 

S#1 

 

169 

(CT=640) 

169 

(CT=640) 
156% 156% 

S#2 = 12426 

S#3 = 8574 

S#2 = 12430 

S#3 = 8570 

S#2 

 

169 

(CT=640) 

234 

(CT=800) 
156% 254% 

S#1 =13399 

S#3 =7601 

S#1 =10370 

S#3 =10630 

S#3 

 

128 

(CT=550) 

170 

(CT=640) 
94% 158% 

S#1 =10280 

S#2 =10720 

S#1 =8315 

S#2 =12685 
* ATT: Average Travel Time, ** CT: Clearance Time 

 

As seen in Table 5.3 addition of another cell with flood probability alters the 

overall network performance. For example, the required shelter capacities, when all 

shelters are operational, change with respect to both deterministic case and Case-1. 

Shelter#2 receives 959 more evacuees than it did in Case-1, and 1703 more compared to 

the deterministic case. Demand for shelter#3 increases by 620 compared to Case-1, 

nevertheless it still stays under the deterministic case demand. For Case-2 shelter#1 

demand drops below deterministic case by 937 which was above the deterministic 
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capacity prediction by 642 in Case-1. This shows that not only probabilistic approach 

changes the overall results, but also a complete probability estimates of flooding for all 

the cells in the network is essential. Since the network capacities are fully utilized during 

the evacuation, any change in capacity, especially at merging cells can alter the flows 

considerably. 

The addition of a new flood risk cell also changes the importance ranking of the 

shelters. In the deterministic case, absence of any of the shelters results more or less in 

the same overall consequence. In Case-1, shelters #1 and #2 are found to affect the 

performance of evacuation more than shelter#3. In Case-2, shelter#2 is found to be the 

most vital shelter and the absence of shelters #1 and #3 are found to have almost the same 

impact on ATT. In terms of capacity requirements in case of an abandoned shelter, the 

needed capacity for a shelter can be up to 3029 evacuees. This change is equal to 

relocating of almost 15% of the total evacuees in Cape May County to operational 

shelters. 

5.1.2 Discussion of Results 

Findings show that accounting for flood probabilities, even for links that are not 

used by all evacuees, can change the system-optimal flows and performance measures, as 

well as the favorable shelter locations and capacity requirements. Two case studies show 

that a complete flood risk analysis is also necessary because any new flood probability 

assignment to a link in an already congested network alters the evacuation pattern 

considerably. Since shelter allocation is not only building the shelter but also maintaining 

it, these kinds of shelter allocation and capacity determination models are not sufficient 
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on their own. Other emergency management issues such as medical equipment and 

personnel, food and water supply, energy supply etc. should also be considered. 

However, these issues can be dealt efficiently only if planners employ realistic models 

such as the proposed stochastic SO DTA model which not only captures time-dependent 

traffic flows but also various stochasticities due the events causing the emergency 

situation. As shown in this analysis, when flooding risk of certain links are incorporated 

into the model, the demand for shelters changed significantly (highest change being at 

shelter#2) compared with the predictions of the deterministic model. Thus, if the planners 

consider the predictions of the deterministic model, they face the risk of not having 

sufficient food, medicine and other emergency supply in shelter#2. This kind of 

inefficient emergency planning has already created post-disaster problems in case of 

major disasters such as Katrina and Tsunami in South East Asia. These recent disasters 

and post–disaster conditions have only increased the need for better and more realistic 

planning models along the possible improvements suggested in this dissertation.  

5.2 Numerical Example-2: Simultaneous Use of Demand and Capacity 

Constraints  

For the second numerical example for simultaneous use of demand and capacity 

constraints, a test network of 3 origins and 3 destinations is used. Is it assumed that total 

of 54,000 vehicles depart equally from 3 sources (=18000 vehicles from each source). 

The evacuees are assumed to be loaded onto the network following S-curve for 3 hours 

and and =0.05 is used. As the background traffic, the network is assumed to have 

vehicles at the level of 50% of its physical capacity already in the network.  
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The cell network used for the analysis is given in Figure 5.3, along with Table 5.4 

showing the time-independent parameters of the CTM network. For the numerical 

example representing congested traffic,     is assumed to be 5. 

 

 

Figure 5.3 Cell Representation Of The Test Network 

 

Table 5.4 Time Invariant Cell Properties of The Test Network For Time Step = 30 

Seconds 
 Cell # 

 Source/Destination 1-31 32-42 

Free Flow Speed (mil/h) - 70 35 

Cell Length (ft) - 3000 1500 

Number of Lanes - 3 2 

Max Flow Capacity (veh/hr/lane) Infinite 2400 1800 

Max Cell Flow (veh/time step) Infinite 60 45 

Max Cell Physical Capacity (vehicles/lane) Infinite 316 108 

Ratio of v/w - 5 5 

 

As one of the important contributions of the current study, the demand profile is 

not assumed to be deterministic, but probabilistic. The randomness is introduced by 

assuming that the demand will follow a distribution with mean value based on the S-
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curve demand values. Considering that the clock tick will be very small compared to the 

overall evacuation time, instead of assuming a different demand distribution for each 

time interval, the demand distribution will be subject to the same random variable for 

each half an hour time interval for total of 3 hours loading time. In other words, the 

demand profile will be linearized for every half hour period, yielding the same average 

total demand for the overall assignment. As shown in Figure 5.4, such an approach will 

consider an area of possible demand realizations rather than using the exact S-curve 

values. Regarding the probability distributions, the demand probabilities are discretized 

for each ±5% interval from the average value covering the range of ±15% deviations 

from the S-Curve estimations. The assigned probabilities can be found in Table 5.5.  

 

 
Figure 5.4 S-Curve and Probabilistic Loading Distribution Used In Numerical 

Example 
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For the capacity distributions, the roadway capacities are defined for 10% 

intervals up to 100% of maximum (=deterministic) capacity. For the numerical example, 

cells 1-31, which represent major freeways with higher flow capacities carrying the 

majority of the evacuees are analyzed. Other connecting routes (cells 32-42) are not 

assigned any capacity probability, since they are infrequently used due to the topography 

of the network and their inclusion would not affect the results. The assigned probabilities 

can be found in Table 5.5. To present the model capabilities, probability distributions 

representing different levels of capacity reduction severity are used. Such a case can be 

realized based on the threat types, e.g. higher flood prone risk links during a hurricane, or 

links with more/weaker bridges that can fail after a seismic disaster, etc. 

 

Table 5.5 Capacity Probability Distributions Used In The Numerical Example 

 
Probability of Capacity Remaining based on Deterministic 

(Maximum) Roadway Capacity 

Link # Cells 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

1&2 [1-5] & [6-10] 0.00 0.00 0.00 0.00 0.05 0.15 0.25 0.35 0.15 0.05 

3,4,5& 

6 

[11-13], [14-16], 

[17-19] & [20-

21] 

0.00 0.00 0.00 0.05 0.10 0.15 0.25 0.35 0.10 0.00 

7&8 
[22-24] & [25-

31] 
0.00 0.00 0.05 0.10 0.25 0.30 0.20 0.10 0 0 

 Probability of Divergence from the Estimated S-Curve Demand 

- O1, O2, O3 -15% -10% -5% 0% 5% 10% 15% 

 0.075  0.125  0.175  0.25  0.175  0.125  0.075 

 

 

The analysis aims to find out the changes in clearance and average travel times in 

the network, which are two important outcomes of an evacuation study. To draw 

conclusions about the use of probabilistic approach, apart from comparison of ICC and 

JCC approach, effect of different levels of reliability are also tested. For the problem, the 
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flow capacity probabilities are assumed to obey the same random variable for all 

assignment period. In other words, realized capacity is assumed prevail during whole 

assignment. On the other hand, the demand is assumed to obey a different random 

variable (based on the linearized S-Curve) at every half hour. Following the previous 

discussion on the joint probability calculations, the link capacity and demand changes are 

assumed to be independent. The results can be found in Table 5.6.     

 

Table 5.6 Analysis Results Based On Differences With Deterministic Analysis 

 

JCC ICC 

p1=0.90, 

p2=0.90 

p1=0.90, 

p2=0.80 

p1=0.80, 

p2=0.90 

p1=0.90, 

p2=0.90 

p1=0.90, 

p2=0.80 

p1=0.80 

p2=0.90 

Clearance Time +27.7% +27.7% +27.7% +39.5% +39.5% +34.4% 

Average Travel +141.2% +155.5% +137.7% +182.8% +199.9% +162.8% 

 

Essence of the proposed formulation lies in the rich interpretation possibilities of 

the results given in Table 5.6. For the demand constraint, higher p1 value corresponds to 

higher assigned demand. Hence, a possible realized demand is less likely to exceed the 

assigned value, and the calculated evacuation performance measures are safe estimations 

for the real-life case. In other words, higher the p1 value, the planner takes less risks in 

terms of having lower clearance and average travel time estimations than would possible 

be realized, and provide results more on the safer side. For the capacity constraints, 

higher p2 corresponds to less likely capacity degradations hence the results are based on a 

higher system reliability for roadway capacities. For instance, the assigned flow 

capacities for p2=1 would be the maximum capacity for the links since the transportation 

network is assumed to work without any capacity reduction. Regarding the difference of 

JCC and ICC approach, with ICC approach, reliability levels are assigned for each 
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demand and capacity constraint individually. On the other hand, JCC ensure the 

reliability for the set of demand and capacity constraints covering joint event space. More 

strict nature of ICC compared to JCC can be mathematically verified with Boole's 

inequality, and also reflected in analysis results. ICC approach predicts higher clearance 

and average travel times compared to JCC.  

The modeler can use either approaches with different p values based on modeling 

needs. If possible exceeded capacity at each link is considered to be fatal, use of ICC 

would be a better choice, however the results will reflect local reliability enforcements 

instead of system reliability. Regarding the numerical results, it is clear that deterministic 

analysis estimates lower clearance and average travel times. However, the difference in 

clearance time is lower in magnitude compared to average travel time. Although 

frequently addressed in the literature, clearance time may be short of providing planning 

measures if not properly analyzed. Clearance time is defined as the last vehicle exiting 

the network and if the last vehicle hits the road considerably later than the other vehicles, 

then the clearance time is defined by this lat vehicle exit of the system although majority 

of the vehicles arrive to safety earlier. In that respect, analysis of average travel time, 

which gives a measure of how long the vehicles stay in the danger zone before leaving 

the danger area and relates to the risk exposure. So, even the clearance times are close, 

like the results in Table 5.6 for different levels of p1 and p2, the risk exposure measures 

can be different. Assuming that the vehicles arriving at destination D1, D2 and D3 arrive 

their safe destinations (e.g shelters), or they represent the exit points from the danger 

area, Figure 5.5 shows the number of people reaching to safety for different analysis 

scenarios. As shown in Figure 5.5, deterministic results may underestimate the risk 
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exposure considerably, since the percentage of evacuation at certain time, or the time 

needed to evacuate a certain percentage shows significant discrepancies. Thinking in 

terms of emergency personnel needed for evacuation operations, such discrepancies may 

result in under utilization or lack of human resources during evacuation.         

 

 
Figure 5.5 Percentage of Evacuees Reaching to Safety 

 

Overall, the proposed probabilistic approach incorporates the inherent stochastic 

nature of evacuation demand and roadway capacities into the evacuation modeling. The 

probabilistic SODTA model results are expected to be more realistic compared to 

deterministic approach results which most likely would not be realized during actual 

evacuation process. Regarding the interpretation of results, SODTA with probabilistic 

capacity and demand constraints gives flexibility to the planner in terms of reliability 
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levels on the estimated evacuation performance measures such as clearance and average 

travel times. This is an important planning issue since inferences made for a highly 

probabilistic process cannot be provided as just point estimates of expected outcomes, but 

they should rather be accompanied by confidence intervals or reliability levels.  

CHAPTER 6. CONCLUSIONS AND FUTURE 

RESEARCH  

The literature on emergency evacuation and the analysis of real-world evacuation 

practices exhibit a discrepancy between the deterministic assumptions of main stream 

evacuation studies and what is actually experienced due to uncertainty in evacuation 

demand and network roadway capacities. The state-of-practice  in evacuation planning 

either ignores the real-world uncertainties or attempts to address this problem by 

providing scenario-based solutions. This dissertation proposes an alternative solution that 

employs a closed form cell transmission model based dynamic traffic assignment 

formulation with probabilistic demand and capacity constraints. The major achievements 

and contributions of the dissertation can be summarized as follows: 

1. A comprehensive review of evacuee behavior is done with the main objective of 

conducting a network-wide sensitivity analysis of evacuation performance measures 

(e.g. clearance time, average travel time) vis-a-vis different demand generation 

models for the first time in the literature. The results of the analysis show that the 

impact of demand uncertainty, especially coupled with capacity reduction can cause 

significant changes in the evacuation performance measures. The impacts of 
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uncertainty is found to be non-linear, hence it is not possible to make reliable 

inferences about a possible scenario based on the results of a deterministic or scenario 

analysis. These findings in turn prove the need for developing and solving 

probabilistic network models.   

2. Based on the findings of the literature review regarding the necessity of a 

probabilistic evacuation model, cell transmission model based dynamic traffic 

assignment with probabilistic capacity and demand constraints is formulated. The 

novelty of the proposed formulation comes from the fact that the computed results are 

accompanied by a reliability measure rather than providing deterministic/scenario-

based results. Real-life practices show that such deterministic models fall short of 

meeting the reality such as the Hurricane Katrina experience, hence the proposed 

formulation can be considered as a pioneering model for next generation of 

emergency evacuation modeling. 

3. Although the literature includes probabilistic approaches for DTA, these works are in 

the area of network design problem and mainly focus on demand uncertainty [156, 

149, 65]. Moreover, these studies employ individual chance constraint approach 

which provides link based reliability for the analysis. The formulation discussed in 

this dissertation distinguishes itself from previous works by incorporating demand 

and capacity uncertainty together and introducing joint chance constraint approach, 

which gives the modeler a better tool to assess the overall system reliability.  

4. The numerical examples studied in this dissertation show that the probabilistic SO-

DTA model results are more realistic compared to the results of the deterministic 
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models which most likely would not be experienced during actual evacuation process. 

The proposed SO-DTA with probabilistic capacity and demand constraints gives a 

certain flexibility to the planner in terms of considering reliability levels of the 

estimated evacuation performance measures such as clearance and average travel 

times. This is an important planning issue since inferences made for a highly 

probabilistic process cannot be provided as point estimates of outcomes, but they 

should rather be represented using confidence intervals and / or reliability levels. For 

instance a deterministic study would conclude that the clearance time of a city to be, 

say, 12 hours. On the other hand proposed model’s outcome would be, say 14 hours 

at 90% of the possible capacity and demand realizations. This type of probabilistic 

will help the decision maker to make a more informed decision.  

6.1 Future Research  

The mathematical model proposed in this dissertation is a planning model that 

predicts evacuation time estimates based on the given demand and capacity probability 

distributions. As for all DTA problems, the network size is a challenge since CTM based 

SO DTA has large number of constraints. However the LP structure of the formulation 

allows the use of computationally efficient LP solution methods provided in the 

literature. Due to scarcity – if ever exists – of real data for a rare event like evacuation, it 

is not possible to benchmark the model output with real-world data. Nevertheless, an 

immediate research direction is comparing simulation-based approaches with the 

proposed model in terms of computational efficiency and accuracy. Such a comparison 

will show the developed model’s power of using a closed-form approach as opposed to 
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multiple demand/capacity realization scenario analysis using a series of deterministic 

models.  

Another research direction is the development of a framework for the use of the 

proposed model in a real-time setup. This can be achieved by updating the evacuation 

time estimated at certain intervals based on the real-time information obtained during the 

evacuation. For instance, hurricanes are known to change their track as they approach the 

mainland. Consequently the flood probabilities on the roadways as well as the status of 

an evacuation order – which affect the demand – also change in time. Since the proposed 

model outcomes are as good as the probability distributions, the changing environmental 

and emergency management actions can be fed into the model during the approach of the 

hurricane to the mainland. The updated results can be used for route guidance or shelter 

management purposes as illustrated in the second numerical example.  

Another research direction lies in the generic nature of the proposed stochastic 

DTA model. Although the proposed formulation is developed within an emergency 

evacuation context, the use of the model is transferable to other transportation 

engineering problems, provided that the demand and capacity probability distributions 

can be identified. An example of such an application is emergency management. 

Incidents are probabilistic events and they have an impact on roadway capacity similar to 

a flood after hurricane or to roadway damage after an earthquake. Hence, the existing 

incident occurrence and duration models can provide a suitable input for the roadway 

capacity probability distributions. The ultimate aim of incident management policies is to 

reduce impacts of incidents on the roadway capacity. Thus, the proposed model can be 
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used to assess the network-wide effectiveness of several IM solutions and can be used to 

provide cost-benefit analysis of candidate policies.  
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