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ABSTRACT OF THE THESIS

A study of pricing-based relaying cooperation in wireless

ad hoc networks

By YAN WANG

Thesis Director:

Professor Wade Trappe

Relaying cooperation in wireless ad hoc network has been studies for years. Through

relaying cooperation, nodes can communicate with other nodes that are not in their

communication range. However, because relaying packets costs extra resources of in-

termediate nodes, certain nodes may refuse to cooperate for saving own resources,

especially when a network doesn’t belong to a fixed infrastructure, such as wireless ad

hoc network. Thus, to change the behavior of those selfish node, certain systems are

proposed to stimulate the relaying cooperation. These systems are popularly classified

as reputation-based system and pricing-based system. Three pricing-based strategies

based on different key variables are proposed in this thesis. To evaluate the effectiveness

of these strategies in terms of the equality of chances to participate in cooperation, a

new fairness index named centrality fairness is proposed. By studying the behavior

of nodes in static and dynamic topologies, edge node issues and importance of node

mobility are discussed. With sufficient results from experiments, these pricing-based

strategies are proved to be effective in static topology, and all of them can alleviate the

effect from edge node issues. Eventually, the strategy using utility ratio as the key vari-

able of the pricing adjustment is concluded to be the best strategy, which can provide
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the best centrality fairness of a designated static network. Finally, to study the con-

tributions of other parameters, such as pricing refresh rate (τ) and step size of pricing

adjustment (∆), several experiments are done with these parameters fine-tuned.
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Chapter 1

Introduction

A wireless ad hoc network is a system involving a collection of nodes that do not

belong to a fixed infrastructure. Every node in an ad hoc network is capable of both

handling local transmissions, and supporting network functions like traditional

routing. By utilizing the ability of routing and forwarding of packets offered by nodes

nearby, a node pair can communicate even if they are not within each other’s signal

range. The help provided by relaying is a form of cooperation, which refers to “a

node’s willingness to sacrifice resources(e.g., energy, bandwidth) for the benefit of

other nodes in the network” [1]. Because of cooperation, nodes not only can

communicate with nodes that are beyond their signal range, but also reap the benefit

of saving energy while communicating with other nodes by not having to increase

transmit power to reach that node.

However, it may not be that all of the nodes in the network are cooperative. Initially,

wireless ad hoc networks were developed for scenarios when all participants were

members of the same organization or policy, and hence would naturally cooperate

with each other. For example, in a military scenario, every node in the network would

adhere to the orders issued by a commanding node, and would cooperate for the

benefit of accomplishing the tactical mission. Later, wireless ad hoc networks were

proposed for commercial use, such as in vehicular communications, where automobiles

would transmit valuable information, for example traffic status updates and

malfunction warnings, to friendly automobiles nearby. In the latter scenario, due to

the lack of a singular infrastructure, it is important to note that nodes in commercial

wireless ad hoc networks maybe selfish [2] in nature. Such nodes might hold the relay

packets for the purpose of saving their own resources because the network is
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decentralized and resources are limited especially for mobile nodes.

Since relaying packets incurs both a real cost (energy and bandwidth) and an

opportunity cost(in lost transmissions) [1], nodes may not sacrifice their resources to

help others unless there are appropriate incentives. To stimulate cooperation in

wireless ad hoc networks, additional mechanisms are needed. Several approaches to

encourage this cooperation have already been studied, which can be roughly classified

into reputation-based systems [3–5], and pricing-based systems [1, 6–12].

In reputation-based systems, nodes keep a record of the reputation of all or some of

the nodes in the network. Based on the reputation records, these nodes judge the

behaviors of other nodes and whether they will likely cooperate. Accordingly, they

decide whether to cooperate with other nodes or not. In general, nodes will gain

reputation for successful forwarding of packets, and lose reputation for rejecting a

cooperation request or failing to deliver packets. One significant problem in

reputation-based systems is that nodes of these systems must have good knowledge of

the behaviors of all other nodes in the networks [3, 4], or that some neutral devices

must be deployed in the network to monitor and offer an assessment of reputation

information for every node in the network.

In pricing-based systems, incentives take the place of reputation. Nodes that take

advantage of relaying cooperation must pay for the cooperation through incentives,

and the intermediate nodes will agree to cooperate as long as the source node can

afford the cost associated with relaying cooperation. Node reputation information is

no longer required in pricing-based system, instead. Moreover, pricing-based systems

are independent of the form of incentives, that is to say, incentives can be credits that

are only valid within the network [7–10], or, can be a form of digital coin that has the

real value outside the network [6,11,13–15]. The ability to attract more cooperation is

very important for each node in pricing-based system, because if nodes want to send

out more packets they must be able to afford the cooperation, while the only way for

nodes to accumulate incentives is through cooperation and successfully relaying

packets. As a result, understanding the role of pricing in the network is important as

the cost associated with forwarding packets will have a direct impact on whether
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nodes will engage in cooperation, if they will be able to afford cooperation, and

whether or not the underlying micro-economy running within the network will be

stable enough to support persistent operations of the network. The goal of this thesis

is to examine the problem of pricing and to explore a general strategy of adjusting

prices in pricing-based network systems.

Beyond the problem of pricing control, a successful pricing-based system will face

many challenges. First, certain measures are required to keep transactions (relaying

cooperation) robust. Unlike reputation values, the incentives in pricing-based systems

must be transported through networks to complete the relaying cooperation. It is

necessary to have consistent regulations for preventing misbehavior as well as

accidental events. For example, a selfish relay node that drops relay packets on

purpose should not receive any incentive. Further, nodes should receive partial

payment even though packets may be lost due to poor channel conditions, which are

natural occurrences in wireless networks. We note that malicious behavior can exist,

but in this thesis we are focusing on the scenario that nodes are assumed to be

rational. The strategies of pricing adjustment mentioned above can also be viewed as

a form of regulations. For instance, before deciding the path to use, the source node

can collect the prices of intermediate nodes, and the path with lowest price can be

adopted. Thus any node that is eager to cooperate can win its opportunity by offering

a price lower than the price of other other nodes. As a result, nodes that are greedy,

or desire to manipulate, the resources of other nodes can be regulated through pricing

strategies. However, we note that pricing adjustment is a double-edeged sword. On

one hand, lower pricing can attract more cooperation; on the other hand, it lowers the

income resulting from an individual cooperation act, which may result in nodes

running behind their expenses.

Another challenge exits because packets are relayed without trustworthiness

guarantees. Security strategies for transactions are required to assure the

confidentiality. Similar strategies are also used in Electronic Commerce

applications [14,16], but in a wireless environment, the existence of conventional

central authority is no longer a reasonable approach, because traditional public key
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infrastructure (PKIs) or certificate authorities (CAs) are expensive to build and

vulnerable to maintain. To be suitable for wireless ad hoc networks, the strategies

must be off-line achievable and distributable. One choice is anonymous asymmetric

fingerprinting, which has been popularly used in digital coin based

systems [13–15,17,18] as a means to prevent illegally redistribution of coins because

this technique does not require the owner to be present when using digital cash, which

is a basic requirement for digital cash. Another good choice is identity-based

cryptography (IBC) [19,20]. In [9], an IBC is used in order to ensure that the

confidentiality and authenticity of information exchange is not compromised. IBC is a

new form of public key cryptography (PKC), whereby a node can generate the public

key of another entity through its identity directly, so that the role of PKIs or CAs can

be reduced. Although this thesis does not study security problems in networked

communications, it is assumed that certain security strategies have already been set

up in the environment.

Third, maintaining the fairness of the network is very important to keeping the

network functional. This will be another focus of this thesis. There are various

definitions of fairness based on different ways to view the operation of the network.

For example, Jain’s fairness index [21] is widely used to measure the fairness of

throughput, and protocols that seek throughput fairness try to have every node in the

network have the same share of throughput. However, due to the variable link quality

in a wireless ad hoc network, it is hard to maintain the same share of bandwidth for

every node, which makes Jain’s fairness index not well-suited for wireless ad hoc

networks. To adapt to this character of wireless ad hoc networks, a modified max-min

fairness [12] and proportional fairness [22,23] have been proposed. These two types of

fairness are achieved if the node that spends the most resources, obtains the highest

data rate in the network. Still, in systems that use these two types of fairness, a

trustworthy central judge is required in calculating the fairness. To avoid the central

authority, we take the viewpoint that the economic balance of incentives (or digital

coins, if you will) in the network indicates the fairness of the network. As a result, the

design of an incentivized network should strive to keep the amount of digital coins in
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each node’s account to follow a budget balance that is neither too large nor too small.

The reason for choosing economic balance as the indicator is because it is a parameter

that’s locally bound to each node, and it has a direct correlation with the number of

packets that the node has relayed.

In this thesis, we focus on the fairness and robustness of the relaying cooperation

system in wireless ad hoc networks. Towards this objective, we assume the security

issues can be taken care of by some trustworthy agents, which are working between

users and networks. Such an idea is similar to using controllers in Law Governed

Interactions (LGI) [24–26] and is a common assumption in the area of electrical

commerce [16] . Regulations for assuring the success of cooperation as well as related

transactions are proposed, which are integrated with agents. Users can only call the

functions offered by local agents, and have no way to redefine the functions or

regulations. We also assume that all nodes are rational, which means nodes will not

attack or exploit each other. With these assumptions, we build a pricing-based

cooperation system over a wireless ad hoc network where we use digital coins as the

incentive. In our system, only the agent can be the subject of a relaying cooperation

involving actions, which includes sending/receiving packets, handling users’ digital

wallet, and exchanging digital coin for relaying cooperation. Digital coins are

supposed to be initially obtained by the agent through a secure manner from the bank

account of the identified user. Similar ideas can be found in pre-paid metro card or

phone card with a micro-chip on it. In every relaying cooperation, all participants,

who successfully relay the packets, will get the payment from the initiator. With our

designed system, experiments have been performed on the ORBIT testbed to study

the fairness of wireless ad hoc networks, where the fairness is defined as the economic

balance of the network. We will define the network and hence the protocol as unfair

for nodes in the networks if they have large differences in the amount of their budge of

digital coins, while an effective strategy would keep the fairness by adjusting the price

according to certain regulations, so that the balance of digital coins across the

network is equitable.

The remainder of this thesis is organized as follows. Related work is discussed in
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Chapter 2. In Chapter 3 we present our cooperation scheme and regulations in detail.

We show the experiment results and discussions in Chapter 4 and summarize the

thesis in Chapter 5.
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Chapter 2

Background Knowledge and Related Works

In this chapter, we will discuss some background knowledge related to the techniques

and tools that we are going to use in this thesis. The contents of this chapter are

divided into four sections, the first section explains the issues involved in the relaying

cooperation in wireless ad hoc network. In next two sections, we show two elementary

tools for studying networks, which are centrality and fairness. The last section is an

introduction of Law Governed Interactions (LGI), which is used as a guideline for

presenting our regulations.

2.1 Relaying cooperation in wireless ad hoc network

2.1.1 Relaying cooperation and wireless ad hoc network

Relaying cooperation

Traditional end-to-end transmission involves only one hop, which means one end node

can only communicate with another end node within its signal range . However, there

are many cases where nodes want to communicate with the others out of signal range,

especially in wireless ad hoc networks. It is convenient to have some intermediate

nodes help connect these two unrelated nodes together by offering delivery/forwording

services. As a result, the idea of relaying cooperation is introduced, which implies that

some intermediate nodes can help route packets to the destination for node pairs that

cannot reach each other directly. There are many advantages for using relaying

cooperation, such as that the energy consumption of the nodes can be reduced

because the distance for each communication hop is reduced, or that interference with

other nodes can be reduced.
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Wireless ad hoc network

A wireless ad hoc network is a network that consists of many wireless nodes that are

not designated to a predefined infrastructure. The wireless nodes in ad hoc networks

can support not only basic transmissions, but also routing functions, just like

traditional routers. However, due to the nature of the wireless medium, the

connections are unstable and vulnerable to malicious attacks. Moreover, most wireless

ad hoc networks are based on mobile nodes, and hence the issue of power

consumption is very critical to the network. Therefore, many issues about security

and power efficiency are related to the problem of relaying cooperation in wireless ad

hoc network.

Relaying cooperation in wireless ad hoc networks

Relaying cooperation in wireless ad hoc networks involves more than merely accepting

the request to forward packets and then relaying their packets, there are many other

factors that are involved. In wireless ad hoc network, every node has the ability of

relaying packets, so that it can accept the request of relaying packets. Thus, every

source node that wants to send packets to another node beyond its signal range will

face many choices for choosing its partners. To make a proper choice, a source node

needs to compare the conditions of candidates that are meaningful to the nodes

raising the requests. For example, transmission delay and pricing of cooperation may

be factors to consider. Similarly, intermediate nodes also have many choices to face,

such as choosing a source node to cooperate with, since many nodes in the network

can issue cooperation requests simultaneously, yet that node may only be able to be

involved in a few forwarding actions. In that case, the criteria for choosing partners

are related to the bandwidth usage or power consumption of the node that will offer

cooperation. To assure both source nodes and relay nodes can make a right decision,

certain strategies are designed for every nodes in the network. The strategies are like

laws for nodes to follow, so that nodes can behave themselves and compete with each

other rationally.
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(a) An example for always bad connection (b) An example for always rejection

Figure 2.1: Different scenarios of bad connection in (a) and (b)

2.1.2 Relaying cooperation systems

Initially, wireless ad hoc networks were designed for military use, so that every node in

the network would obey the command from an unique officer, and cooperate without

argument. However, it is unreasonable to force a node to cooperate in a heterogeneous

and commercial network, which might involve nodes from different infrastructures.

Further, even if the node accepts the request to relay packets, there is no reason to

believe the cooperation is efficient or trustworthy. In some circumstances, the

traditional attributes, like estimated delivery time and hop count, are not good

enough to assist nodes making right choices. For example, in Figure 2.1(a), node1

wants to communicate with node3 using the relaying cooperation of node2 or the

involvement of both node4 and node5. Based on a shortest path protocol, the path

through node2 is the best choice. However, node2 may have a long delay in order to

communicate with node3. In this case, problem can easily be solved if link quality is

introduced. There are other cases, like the one in Figure 2.1(b), where node2 may

always reject a request to cooperate, which is a form of misbehavior. It is also quite

unfair for node4 to always sacrifice its resources for others, just because another node

does not want to cooperate. This can only be solved if certain measures are taken by

node1 and node4 to recognize this bad behavior, and suppress it.

To regulate the relaying cooperation in networks and assist nodes in making decisions,
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various systems based on an assortment of criteria have been designed. Most of them

can be classified into two categories: reputation-based systems and pricing-based

systems. We now provide more detail about these two categories, and describe the

associated literature.

Reputation-based systems

In reputation-based systems, nodes monitor others’ behaviors throughout the entire

process of relaying cooperation, and assign grade according to the observations. The

grade of each node is called reputation in the system. The basic idea is that nodes

will get an increment in their grade for completing a relay cooperation, and will get a

decrement for rejecting requests or cheating in cooperation. It is analogous to building

a credit history in the real world, where a higher reputation implies a more reliable

history and this is used as a suggestion for more trustworthiness in future activities.

A reputation-based system is designed to choose the nodes with highest reputation to

cooperate with, and accordingly abandon or disregard the uncooperative nodes. This

strategy takes effect when choosing the path for relaying packets, such as in a routing

protocol. In previous research work, some metrics have been introduced as the

criterions for assessing reputation in networks. For example, Sonja Buchegger [3]

proposed a reputation-based system named CONFIDANT , where nodes observe the

transmission activities of their neighbors to recognize the misbehaved events, and try

to keep the misbehavior away from relaying cooperation. Marti [27] proposed a

similar system in which nodes use a “watchdog” mechanism to detect malicious nodes,

and avoid them in routing the relay packets. Haijin Yan used a cooperation

coefficient [4], which is a numerical measure of a given node’s contribution to and

consumption from the network. Urpi proved that reputation-based systems can be

modeled by using Bayesian game theory in [2]. However, these strategies can only

help a node to make decisions, not offer a way to compensate the relay nodes for the

extra resources they used while relaying packets.
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Pricing-based systems

For relaying cooperation without incentives, like the reputation-based systems

mentioned above, no matter how the strategy is designed, cooperation always

consumes the resources of relay nodes without compensation. Such sacrifices may not

be accepted by some nodes that really value their resources, e.g. a form of

selfishness [2]. To stimulate cooperation, incentives are required to compensate the

loss of resources. Incentives may not be directly related to real money, but it must be

something valuable in the network, so that even selfish nodes would consider

cooperating to earn the incentives.

In pricing-based systems, incentives are used to stimulate relaying packets. Nodes in

such systems gain micro-payments (or credits) for relaying packets, and they can use

the payments (or credits) to send their own packets when relaying cooperation is

needed. Buttyan and Hubaux proposed a credit-based system in [10], which uses

probability payment. Such an approach is like a lottery: the source node just send

credits along with the packet, and intermediate nodes can take credits from the packet

as long as it receives the ’winning ticket’, which is also given by the source node

randomly. In [7], another approach is proposed for credit-based systems whereby the

pricing for relaying each packet is governed by the length of the packet. This

approach typically leads to a loss for long route relaying, but yields a profit for short

route relaying. Naveen Shastry and Raviraj and S.Adve proposed a simple pricing

game that can stimulates cooperation [1], where the source nodes only consider

maximizing their utilities. Peter Marbach and Ying Qiu used an iterative algorithm

for the nodes to adapt the price [6]. However, none of these approaches consider the

fact that nodes will likely have budget constraints. That is to say, even nodes at the

edge of the network, which suffer from having small chances of taking part in

cooperation, do not need to worry about spending out their savings, which might

cause them to become unable to send their own packets through relaying cooperation.

In this thesis, we provide the construction of a pricing-based system, and use the

system to explore how would the nodes behave while having constraints in their
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budgets, and explore what can be utilized to achieve a better performance under that

constrain.

2.2 Network centrality

Centrality index is introduced to describe relative importance of a vertex in the graph

structure. It is also widely used in measuring the relative importance of a given node

in a network, since it concerns issues such as network resilience. Nodes with higher

centrality usually have higher probability to communicate with other nodes, therefore,

these nodes are more likely to be invited to take part in activities, like relaying

cooperation. As a result, centrality is a very useful attribute to help in choosing nodes

for efficient relaying cooperation, and regulating the behaviors in the network. Four

measures of centrality are widely used in network analysis: degree centrality,

betweenness centrality, closeness centrality and eigenvector centrality. Here we

introduce two most popular ones, degree centrality and betweenness centrality.

2.2.1 Degree centrality

Degree centrality is defined as the number of connections with other vertices (or

adjacent edges) that a given vertex has, which is also called degree in a graph

structure. In [28], the mathematical definition of degree centrality is given as below

(eq.2.1):

d(i) =
∑

j

mij , (2.1)

where mij = 1 if nodes i and j has connection, and mij = 0 if the connection does not

exist. An example is given in Figure 2.2(a), where the numbers in boxes are degree

centralities of specific vertices of the network. Such degree information is often of

interest in social network analysis, and roughly indicates the relationship between two

human beings. For directed networks, such as friendship graphs, degree centrality is

separated into two parts, called indegree centrality and outdegree centrality; these two

parts can be referred to as popularity and gregariousness respectively. However,
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(a) An example for degree centrality (b) An example for betweenness centrality

Figure 2.2: Comparison of degree centrality and betweenness centrality

degree centrality can only emphasize the local information, which is not sufficient

when studying the global effects of a node in a network. For example, such problems

exist in the scenarios of fast recovery from network attacks.

2.2.2 Betweenness centrality

Betweenness centrality is another measurement of centrality that involves studying

how many shortest paths between two vertices exist via the given one. Contrary to

degree centrality, betweenness centrality has a global sense of the importance of given

vertex. It tells us how many paths will become longer when a certain vertex is

removed on purpose or becomes dead by accident. It is also interesting to note that

the behaviors of a node with high betweenness centrality can have a control on the

participating interactions. Such a scenario is very similar to the problem of relaying

cooperation in communication networks. In fact, intermediate nodes with high

betweenness centrality are more efficient in delivery of packets because they have

more choices of possible paths. Theoretically, betweenness centrality is very useful for

estimating behaviors of nodes and in deciding the best partner to choose in

cooperation. One common definition of betweenness centrality index is given in [29] as

( eq.2.2):
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Cb(ni) =
n
∑

j

n
∑

k

gjk(ni)

gjk
, j < k, (2.2)

where gjk(ni) is the number of shortest paths between selected node pair j and k that

pass node i, and gjk is the number of all shortest paths between selected node pair j

and k. Freeman also proposed two other definitions for betweenness-based centrality

measure [29], one of them extend the betweenness centrality measure by considering

the number of points in the graph, and the other takes an alternative view of

centrality, which implies the dominance of one point in the graph. Figure 2.2(b) shows

the betweenness centralities of the same network that was previously used in the

example for degree centrality. As we can see, although vertex2 is different from

vertex3 and vertex4 in degree centrality, the betweenness centrality for all of them are

zeros. That means all three of these vertices have nothing to do with others’

relationship, no matter how many connections they have.

Although betweenness centrality can globally describe the importance of nodes in the

network, the calculation of betweenness centrality needs a complete description of all

of the connections in a given network, which makes it impossible for a single node to

compute based on information that is only locally available. We will introduce a new

definition of centrality in Chapter 3, which is a revised version of betweenness

centrality that can be achieved based on local information.

2.3 Fairness

Fairness in a network is related to how much of a fair share of the resources, such as

bandwidth, timeslots, etc., that a node receives in the network. Just like in real

society, a network system with fairness maintained is optimized for a sustainable

operation. It is very hard to measure the fairness with a general approach, because

different measures of fairness focus on different attributes of the system, and most of

them involve tradeoffs. Several popular definitions of fairness are listed below:
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2.3.1 Total capacity fairness

To maximize the sum of data rates of all data flows is the purpose of this measure of

fairness. Jain’s fairness index [21] is a very popular tool to show how fairness of data

rate (throughput) can be allocated in a network, which was first proposed to measure

the throughput fairness of a network. The fairness index actually measures the

“equality” of the resources allocated to users, that is to say, if all users get the same

share of the resources, the fairness index reaches its maximum, which is equal to 1.

The definition of Jain’s fairness index is showed below (eq.2.3):

f(x) =

[

n
∑

i=1

xi

]2

n
∑

i=1

x2i

, (2.3)

where xi is the resources allocated to the node i. An extension of total capacity

fairness that maximizes a weighted sum of data rates wireless network is proposed

in [30]. Jain gave the definition of this general weighted fairness in [30] as following

(eq.2.4):

ai = λi +
wi(B − λ)

n
∑

j=1

wj

, (2.4)

where

ai = general weighted fair allocation for connection i

B = excess bandwidth to be shared among candidate connections

wi = predetermined weight associated with the connection i

λi = minimum cell rate of candidate connections i

λ = sum of minimum cell rate of candidate connections

n = number of candidate connections

In this definition, only excess bandwidth is allocated proportional to predetermined

weights. However total capacity fairness, which is a throughput based fairness, has

been shown to be unsuitable for wireless networks because it can report high values of

unfairness in wireless when transmission power tends to infinity [22].
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2.3.2 Max-min fairness

Conventional max-min fairness is defined by flow rate, which is referred to end-to-end

transmission rate of a flow. The approach is that the minimum data rate requirement

of flows is firstly maximized, and then the second lowest data rate requirement is

maximized, and so on. This criterion is suitable for wired networks, since flows in

wired networks do not contend against each other for the resource, which is the link

bandwidth. However, in wireless networks, the effect of intra-flow contention and

unequal channel capacity [12] cause efficiency problems with max-min fairness.

2.3.3 Proportional fairness

Proportional fairness was first introduced by Kelly [31] as an alternative to max-min

fairness. The aim of proportional fairness is to balance fairness and efficiency of the

network. This is achieved by allocating an optimal data rate to each of the data flows,

which is inversely proportional to its resource consumptions. In [22], B. Radunovic

and J.-Y. Le Boudec numerically showed that proportional fairness of rates can

achieve a better trade-off between fairness and efficiency than max-min fairness in

multi-hop wireless networks.

In our thesis, we will use economic balance to indicate the fairness of the network.

Details of this fairness are introduced in Chapter 3, but the basic idea is that fairness

is achieved when every node has the same share of the total amount of incentives in a

network, assuming we start with a fixed total amount of incentives, and allow the

networked system to communicate for a period of time to achieve the steady-state.

The reason we use this fairness is because it is a parameter locally bound to each node,

and it has a direct correlation with the number of packets that the node has relayed.

2.4 Law governed interaction (LGI)

2.4.1 Introduction of LGI

LGI was first introduced by N.H. Minsky [24]; it is a mechanism for exchanging

messages that allows an open group of distributed agents to interact under designed
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policies. The agents are software blocks written in arbitrary languages, and the

structure of them are unlimited. The only requirement for communications between

agents is that the messages as a language used in communications should be

constrained by designed laws, we call it L-messages. This unique requirement ensures

that agents of the same group can communicate with each other, by the same group

here it means being able to use the L-messages that comply with same laws in

communications. Besides agents, the LGI mechanism makes a strict separation

between policies and a set of policy independent executors, called controllers. It is an

essential property of LGI that the controllers are implemented to ensure the policies

be executed strictly by following involved laws. Each law consists of many basic

elements, which are called rules. These rules are usually described by a pseudo-code

in event-condition-action form:

UPON e IF c DO [o], (2.5)

where e is an event, c is an optional condition, and o is the set of primitive operations.

That means, actions [o] should be executed if the condition c is true when event e

happens. The involved events and primitive operations can be represented by

following notations:

(a) send(m): a “sent” event, representing the case that a message m is sent from an

agent to a destination, which is not specified here,

(b) arrived(m): a “arrive” event, representing an arrival of a message m at the home

agent,

(c) forward(m): an “forward” action, representing that the controller forwards the

message m from the agent to the destination defined by sent event, which is not

specified here,

(d) acceptMessage(m): an “accept” action, representing that the controller gives the

permission to accept the arrived message m,
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An example of law ST is provided as pseudo-code in Table 2.1. This law is defined by

two event-condition-action rules. Each rule starts with an index and ends with a

comment. First rule R1 only allows the special component called mgr to send the

message setTime(k), which is to set the remote clock to k. By second rule R2, when

the message setTime(k) arrives at its destination, the agent sets its local parameter

localTime to received value k. Through this law ST , the action to set up a remote

clock is locally constrained by designed rules.

Table 2.1: A pseudo-code representation for the example law ST of Set Time

R1. UPON sent(setTime(k))

IF sender=mgr DO [forward(setTime(k))]

If message setTime(k) is sent, and the mgr is the sender, this message
is forwarded to its destination.

R2. UPON arrived(setTime(k)) DO [localTime=k; acceptMes-
sage(setTime(k))]
Triggered by the arrival of message setTime(k), the variable localTime
is set to value k, and the message is accepted by the actor.

2.4.2 Elements of LGI

The LGI system consists of four main elements: agents, controllers, control-state, and

laws, as illustrated in Figure 2.3. All controllers maintain the control-state CS, which

is a set of attributes for the given agent that connects to the controller. Controllers

have the same copies of the laws L for every group. Both agents and controllers are

independent of policies, so that a given agent can join different policies

simultaneously. However, agents are expected to be responsible for being familiar with

the laws that used by policies, because laws are enforced by controllers which are also

separated from agents, and cannot be violated by any agent, even one who does not

know the law.

2.4.3 Electronic-commerce with LGI

Electronic-commerce(e-commerce), which is the core subject of online transaction, is

being adopted because of its efficiency compared to the conventional commercial

activities. Such efficiency highly requires secure policies that can be viewed as the
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Figure 2.3: LGI model

contracts between clients and merchandisers involved in the transactions. A

commercial policy may face various issues. For example, it is necessary to prevent

digital coins used as currency from being duplicated, or it may be desirable to ensure

the privacy of the clients or merchandisers being protected. Unfortunately, there is no

universal policy that can solve all such issues. Traditional commercial activities may

contain many policies focusing on different issues, and further there are many

implementations of the various policies involved in electronic commerce. However, due

to the flexibility of e-commerce, the deployment of these implementations are very

vulnerable to malicious manipulation as participants of a transaction can easily

modify their interface to make high profit. In recent research, LGI was proposed to be

used for e-commerce, the policies in e-commerce can easily be defined and deployed by

combining certain predefined laws. With the help of LGI, different policies can be

adopted by a single agent in different commercial activities. Further, agents are forced

to follow the laws by the policy independent trusted controllers. Examples of
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Figure 2.4: Detail structure of a single agent

e-commerce applications implemented by LGI can be found in [26,32,33].

In this thesis, we are going to use digital coins as the incentives to stimulate relaying

cooperation, which we view as electronic commercial activities. The required

commercial policies can be conveniently implemented by using LGI defined agents and

controllers. As showed in Figure 2.4, a designed “Agent” consists of a LGI agent and

a LGI controller, inside which the LGI agent is supposed to be ruled by the LGI

controller. The “Agent” can be thought as a black box to users, so that users cannot

make any malicious change to the controller. A new object called “Wallet” is proposed

in this thesis for the purpose of storing digital coins and recording transactions. The

“Wallet” can only be operated by the corresponding user’s agent via a controller.

This makes the “Wallet” also separate from users, agents and policies, which means it

is protected by the controller from illegal usages of digital coins.
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Chapter 3

System Description

In this chapter, we are going to introduce our pricing-based relaying cooperation.

First, several definitions are provided to introduce the system. Then the assumptions

for the system and experiments are listed. Finally, we introduce our strategies of

pricing adjustment.

3.1 Definitions

3.1.1 Task

In this thesis, a task is defined as a selected node transmitting a certain number of

packets to another selected node during specific time period. We denoted a task by

Tk(IDs, IDd, Pk,Tk), where IDs and IDd are ID of source and destination

respectively, Pk is the number of packets to be transmitted, and Tk is the time period

designed for the task Tk.

3.1.2 Local centrality

We define the local centrality as the number of cooperation that a node has taken

during the specific time period, denoted by Ci, where i indicates the ith node of the

network. To complete the definition, we first define the indicator function of node i

for kth task as following:

Sk
i =











1, node i cooperates in task k

0, node i does not cooperate in task k

(3.1)

Hence the local centrality of ith node can be calculated by the equation showed below.
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Ci =

Ntotal
∑

k=1

Sk
i , (3.2)

where the Ntotal is the total number of tasks.

3.1.3 Centrality fairness

Following the introduction of local centrality, we can define the fairness of a network

as the statistical variance of the local centralities of every node in the system at a

particular instant, which is shown in (eq. 3.3).

Fn = V ar(Cn), (3.3)

Since it stands to reason that the more evenly distributed are the chances to

participate in network tasks, the more fair the network is, then smaller values of

centrality fairness implies that max fairness exists in the network.

3.1.4 Local utility ratio

We defined the local utility ratio of a node as the times the node has taken part in the

cooperation to the times it has requested for cooperation, denoted by Ui which is

shown below.

Ui =
ni

ri
, (3.4)

where ni is the number of cooperation events that the ith node has participated, and

ri is the number of requests that the ith node has issued.

3.1.5 “Agent” and “Wallet”

Previously in 2, we mentioned that we will use LGI structured “Agent” in this thesis

as the motivational framework for building and enforcing electronic commerce policies

related to network cooperation. The “Agent” is a program integrated with each node,
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Figure 3.1: An illustration of “Agents”

as corresponds to the depiction of LGI shown in Figure 2.3. In addition to managing

policies, the “Agent” executes the pricing adjustment strategies for the user it

attaches to, and acts as a trustworthy third party between user and the network, or,

user and his money account called “Wallet” in the system. It is also the responsibility

of an “Agent” to guarantee the success and the security of each task it takes part in.

All the abilities of “Agents” are bounded by regulations called laws in LGI, which are

software building blocks provided by controllers inside the “Agents”. As shown in

Figure 3.1, the “Agents” work between users and networks, which indicates that only

“Agents” can actually complete the tasks, and hence access the “Wallets” of

particular users as well.

The “Wallet” is an isolated object with available actions: “Deposit” and “Withdraw”.

It is only authorized to the “Agent” that serves the same owner of the “Wallet”, and

all transactions are recorded. None of the users can directly access the “Wallet”, not

even the transaction records. We adopted this design to eliminate possible

misbehavior to the “Wallet”, such as illegal duplication of digital coins.
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3.1.6 Balance and digital coin

This thesis uses balance Bi to indicate the amount of incentives held in the “Wallet”

of node i. The incentives used in the thesis are digital coins, which in the system are

representatives of real money. Initially, real money is withdrew from the bank in the

form of digital coins by the “Agent”, and deposited to the corresponding “Wallet”. In

fact digital coins can also be redeemed via “Agents” if users want to, the redeemed

cash can be consumed outside the network, or deposited to the banking account.

As the most important character of digital coins, off-line anonymous transaction is the

reason why digital coins are used in our system. Doing transactions without the

attendance of users is very convenient for a distributed system, for example the

pricing-based relaying cooperation system in wireless ad hoc network.

3.1.7 Fairness

Unlike other systems, we are not going to use throughput or other physical attributes

of communications to evaluate the fairness of the network. Instead, fairness is defined

as the economic balance of the network in our system. That is to say, the system

achieves its best fairness when the balance is equitably distributed across the nodes of

the network (after the network has been working for a certain amount of time).

3.1.8 Incentives and pricing

Our incentives are defined as digital coins, which are initially deposited into each

node’s account. The total amount of incentives are fixed, the only way to earn the

incentive in the system is through the relaying of packets. Hence the pricing of

cooperation is the key weapon for fighting for fairness in this economic environment:

whichever path has the lowest price for relaying cooperation will win the competition,

and the nodes on the path will benefit from winning the competition.

3.2 Assumptions

Here, we list the assumptions for the system and experiments we had in this thesis.



25

• Each user will attach to only one “Agent”, and one “Wallet”.

• Certain amount of incentives are initially deposited to every “Wallet”, and each

“Wallet” does not have a limitation an the maximum balance it can hold.

• The only way to collect incentives in the system is to relay packets for other

nodes; the only way to lose incentives in the system is to transmit packets via

some intermediate nodes.

• The minimum denomination of digital coins, which we use as incentives, is 1 coin,

and the value of the digital coin is same for every node of the system.

• Although the incentives are redeemable, the total amount of incentives in the

whole system is assumed to be fixed. That is to say, users are assumed not to

redeem their incentives during any experiment.

• Users are the ones who give orders to “Agents”. They are all assumed to be

well-behaved in the system, which means no malicious activities exist.

• The “Agents” used in the system are assumed to be trustworthy and unbreakable,

thus any security related or privacy related issues are taken care of by “Agents”.

• The environment of wireless communication is assumed to be stable, no interfer-

ence exists during any transaction. Thus, there is no packet loss in our experi-

ments. This was a necessary simplification for this preliminary analysis.

• For every task, incentives are assumed to be paid for each relayed packet. Such

assumption can guarantee that the intermediate nodes will receive compensation

for their relaying cooperation.

• In our experiments, the communication pairs are selected randomly for each task,

so that every node has an equal chance to be a source node or a destination node.

• To prevent interference and to make the experimental results clear, we assume

that the system will have only one task at a time, and every communication task

is assumed to last for the same length of time.
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3.3 Strategies of pricing adjustment

Strategies of pricing adjustment are categorized according to the three modes for

different control variables used in the strategies. We compare the results of the

experiments using different pricing adjustment modes to find the strategy that can

achieve the best fairness for the network. Later, we will fine tune the parameters of

the chosen mode to achieve an optimum results. In the pricing adjustment modes, we

describe the pricing in terms of pricing rate rkn, which is the unit price of the kth node

for relaying per packet at time n. The price P k
n of node k for one packet can be

calculated with following equation.

P k
n = rkn ∗ νi, (3.5)

where νi is the number of bytes for one packet in ith task. As a default, the pricing

rate rkn is refreshed every 10 seconds, this time interval τ is also a very important

control variable which will be showed in Chapter 4.

• Mode 1: Savings control mode, where the “Agent” decides whether to adjust the

current pricing rate (rkn) or not by observing the savings of digital coins in the

account of each node. If the current balance is larger than the previous balance,

this node increases the charge rate, otherwise, it reduce the charge rate, we set

the effective region of rn−1k is 0.6 ≤ rkn−1 < 1 to prevent the pricing adjustment

being too aggressive. The pricing rate for node k can be calculated as following:

rkn = rkn−1 +
Bk

n −Bk
n−1 − γkB

∣

∣Bk
n −Bk

n−1
− γkB

∣

∣

∗∆, 0.6 ≤ rkn−1 < 1, (3.6)

where Bk
n is the balance of nodek at time n, and γkB is the threshold for the

difference of balance of nodek, which has the default value of 0.

• Mode 2: Centrality control mode, where the “Agent” decide whether to adjust the

pricing or not by observing the local centrality of each node previously defined.

If the current centrality is larger than the previous saved centrality for γkC , this

node will increase the charge rate, otherwise, it will reduce the charge rate. The
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effective region for rn−1 is 0.6 ≤ rkn−1 < 1. The pricing rate update is calculated

as follows:

rkn = rkn−1 +
Ck
n−1 − Ck

n − γkC
∣

∣Ck
n−1

− Ck
n − γkC

∣

∣

∗∆, 0.6 ≤ rkn−1 < 1, (3.7)

where Ck
n is the local centrality of node k at time n, and γkC is the threshold for

the difference in the centrality of node k, which has a default value of 0.

• Mode 3: Ratio control mode, where the “Agent” decides whether to adjust the

pricing or not by observing the local utility ratio Ui introduced in chapter2 (eq.

3.4). If the ratio is larger than γkR, this node increases the charge rate, otherwise,

it reduces the charge rate. The effective region of rn−1 is the same as mode 1 and

mode 2. The update for γkn is as follows:

rkn = rkn−1 +
Uk − γkU
∣

∣Uk − γkU
∣

∣

∗∆, 0.6 ≤ rkn−1 < 1, (3.8)

where Uk is the local utility ratio of node k at time n, and γkU is the threshold for

the local utility ratio of node k, which has a default value of 1.

3.4 Pricing-based cooperation in LGI

We assume the pricing-based cooperation system that we proposed is implemented

using LGI to achieve the security. The interactions involved in cooperation can be

roughly divided into two parts: first part is to choose partners for cooperation, which

is a preparation for the cooperation; second part is to accomplish the cooperation

with selected partners. For the first part, there are three stages: a) request for help;

b) answer with prices; c) compare received prices and make a decision. The request of

cooperation will be sent out to all the neighbors from the source node, if any neighbor

can directly reach the destination, it will answer with his price for this single hop

relaying cooperation, otherwise, the request will be handed over to this particular

node’s neighbors. In the latter scenario, the total price for relaying through each

intermediate node will be added together and sent back to the source node that issued
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the request. Finally, the source node will receive one or more than one answers for his

request, a decision will be made based on the total price included in the received

message. The second part is the exchange of messages between nodes. This topic is a

normal issue in communications, and we don’t explain the details in this thesis. These

interactions mentioned above are restricted by laws that are analogous to the

pseudo-codes shown in the Table (3.1). Note that these pseudo-codes are just a

fragment of the laws of the pricing-based cooperation system, there are many other

laws required in the whole pricing-based cooperation system, such as WH for Wallet

Handling, which is for handling all the actions related to “Wallet”.
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Table 3.1: A fragment of the law of pricing-based cooperation

R1. UPON send(taskRequest, dest addr)

DO [forward(taskRequest, dest addr, req id)]

Triggered by the message (taskRequest, dest addr), the message will be
forwarded to all its neighbors with an id of request for preventing dupli-
cation.

R2. UPON arrived(taskRequest, dest addr, req id)

IF req id=/=last req DO [acceptMessage]

When receiving the message (taskRequest, dest addr, req id), if the re-
quest received last time has different id, accept the message, otherwise,
ignore the message.

R3. UPON send(acceptRequest, req id)

IF isReachable=True DO [forward(acceptRequest, req id,
localprice]

IF isReachable=False DO [price=localprice+nextprice;
forward(acceptRequest, req id, price]

The message (acceptRequest, req id) is forwarded to the node that sends
out the request of cooperation with the localprice for relaying cooperation,
only if the destination of this relaying task is reachable. Otherwise, the
price forwarded to the requesting node is the sum of localprice and the
nextprice offered by next cooperative node.

R4. UPON arrived(acceptRequest, req id, p)

IF (req id=my req) AND (p<=localbalance) DO

[acceptMessage]

IF req id=/=my req DO [newprice=localprice+p; for-
ward(acceptRequest, req id, newprice)]

When the message (accepRequest, req id, p) arrives, if this is the sender
of the request and the offered price is affordable, accept the message, else
if this is not the sender of the request, forward the message with updated
price to the node that sends out the request.
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Chapter 4

Experimental Results and Aenalysis

This chapter includes three parts. First, we are going to present experiments that will

illustrate the different behaviors that nodes in static topologies and dynamic

topologies exhibit respectively. Second, we will show the best strategy to use to keep

the network fair. Finally, we will fine tune the parameters for the best strategy of

pricing adjustment to find a set of parameters that can achieve the best fairness for a

given network. The experiments that we are going to introduce are all listed in Table

4.1, and details will be given later through corresponding sections.

4.1 Part I: Experiments with static and dynamic topologies

4.1.1 Importance of topologies

The topology of a network indicates the relationships between nodes of the network,

which also has an impact on the fairness of the network. Due to the limitation of

geographical positions or energy consumption, it is almost impossible for every node

to have connections with all other nodes. This provides opportunities for relaying

cooperation. However, different topological and operational settings may cause nodes

having extremely different opportunities to participate in relaying cooperation. Just

as we mentioned in the previous chapter, the limited incentives (budget) of each node

will soon be spent if the node has an isolated position in the network, e.g. is at the

edge of the network. Thus, topology is the most important character in determining

the fairness of a network.

In general, topologies can be divided into two categories, static topologies and

dynamic topologies. In the former, topologies do not change or seldom change, so
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Table 4.1: List of the experiments presented in this thesis

Part I

Exp. index Topologies Strategies Parameters

1 Static S1 Strategy mode1 τ = 10s

γk
∗
= 0

∆ = 0.1

2 Static S2 Strategy mode1

3 Dynamic D1 Strategy mode1

4 Dynamic D1 Strategy mode1

Part II

5 New dynamic N1 Strategy mode1 τ = 10s

γk
∗
= 0

∆ = 0.1

6 New dynamic N1 Strategy mode2

7 New dynamic N1 Strategy mode3

Part III

Exp. index Topologies Strategies Parameters

τ = 0.1s, 30s, 60s, 120s

8 New dynamic N1 Strategy mode1,mode2,mode3 γkB = 0

∆ = 0.1

τ = 60s

9 New dynamic N1 Strategy mode1,mode2,mode3 γkB = 0

∆ = 0.00125, 0.4

10 New dynamic N1 Strategy mode1,mode2,mode3

τ = 30, 60s

γkB = ±10P k
n−1

, 10P k
n−1/10P

k
n−1

∆ = 0.00125

nodes won’t have a chance to pursue more opportunities to relay packets. In the

latter, topologies can often change by means of node mobility. Nodes with bad initial

position can easily change their situation by moving towards the center of the

network, which will provide more opportunities to relay packets. We did many

experiments to study the behavior of nodes for both categories of topologies. The

experiments are set up as follows.
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4.1.2 Experiment setup

Static topology

Two static topologies, topology S1 (Figure 4.1(a)) and topology S2 (Figure 4.1(b))

are studied in this thesis. Both topologies have 8 nodes and the same geographical

positions for the nodes, but the connections for node2 are slightly different. This small

difference makes node1 and node3 have very different opportunities to relay packets in

the two topologies. Details of the setup for these two topologies are given below:

(a) Static topology S1

(b) Static topology S2

Figure 4.1: Static topologies used in the thesis

• Parameters:
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– Number of nodes (K): 8

– Number of tasks included (Ntotal): 600

– Types of tasks: all relaying

– Initial amount of digital coins (Binit): 3000000

– Initial pricing rate (rinit): 1/Byte

– Seconds of per task: 2 s/7.5 s (transmission only/total)

– Length of per packet (νi): 800 Bytes

– Task logging rate: 10 times/s

– Strategy of pricing adjustment: none

• Short comment: In topology S1, node2 has connections with node4 and node5,

which makes shortcuts that bypass node1 and node3. That is to say, any task

that needs cooperation will ignore node1 and node3, because they can never

offer a price for relaying packets better than 0 for direct connections. While in

topology S2, node2 only has connections with node1 and node3, and tasks that

need cooperation may choose node1 and node3 as the intermediate node.

Dynamic topology

Two dynamic topologies are used in this thesis, topology D1 (Figure 4.2(a)) and D2

(Figure 4.2(b)). These two topologies are derived from the static topologies S1 and

S2. As the pictures show, node1 is traveling through the network for three stages.

With the help of mobility, a node can easily increase the number of connections in the

network by moving towards the center of the network. For the same reason,

opportunities to participate in relaying cooperation also vary according with the

changes of relative geographical position of node1.

• Parameters:

– Number of nodes (K): 8

– Number of tasks included (Ntotal): 600
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(a) Dynamic topology D1 (b) Dynamic topology D2

Figure 4.2: Dynamic topologies used in the thesis
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– Types of tasks: all relaying

– Initial amount of digital coins (Binit): 3000000

– Initial pricing rate (rinit): 1/Byte

– Seconds of per task: 2 s/7.5 s (transmission only/total)

– Length of per packet (νi): 800 Bytes

– Task logging rate: 10 times/s

– Strategy of pricing adjustment: none

• Short comment: Starting from static topology S1 mentioned earlier, topology D1

has node1 moving through the network. With the movement, the betweenness

centrality of node1 changes accordingly, and the chances of being invited to a

relaying cooperation change with the centrality. In topology D2, node1 has the

same traveling route as it has in D1, but certain shortcuts are removed from D1,

just as it is in static topology S2. We will see in the following chapter that the

fairness of this network is better than the others. The reason for this is because

initially there are no shortcuts that can bypass node1 and node3, and later the

node can move to even better positions.

4.1.3 Results and analysis

Limitation of the static topology

First, we will show the results of the experiments under topology S1 and topology S2,

where node1 has totally different economic abilities in these two topologies, although

the difference between the topologies is very small. In topology S1, node1 is bypassed

by the direct connection between node2 and node4, this makes node1 isolated from

any relaying cooperation, similarly for node3. No matter what price for relaying

packets node1 offers, it is always more expensive than a direct connection without

paying between node2 and node4. In Figure 4.3, the solid line with circle and

rectangle indicate the balance of node1 in topology S1 and topology S2 respectively.

The balance for node1 in topology S2 doesn’t drop as fast as it does in topology S1.
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Figure 4.3: A comparison of balance of node1 between static topology S1 and S2

In fact, it even has some increments during the experiment. These increments allow

node1 to survive longer in the network, which is a mission impossible for node1 in the

topology S1. However, because of the static property, all static topologies will

eventually face the problem that the edge nodes become isolated and eventually

unable to participate. It is also the aim of this thesis to alleviate this difficulty in

some ways.

Second, if we take a look at the Figure 4.4, which is the comparison of fairness for

these two scenarios, we will find that topology S2 does have better centrality fairness

than topology S1. In addition, we can also find the correlation between the

distribution of local centrality and cumulative balances through this experiment

(Figure 4.5). Note that the value in Figure 4.5 are collected at the end of the

experiment, however this correlation exists throughout the experiment. It is clear that

the distribution of digital coins in the network follows the distribution of local

centralities, which has been proposed as a conclusion of [8]. With all the comparisons

given above, we can further conclude that, for a long running experiment, the

topology impacts the behaviors of nodes within the network, and a node’s balance has

a direct correlation with its local centrality.
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Figure 4.4: A comparison of fairness between static topologies S1 and S2

Mobility creates chances for economic opportunity

In Figure 4.6, we compare the cumulative balance of node1 in the static topology S1

and the dynamic topology D1, the centrality fairness of these two scenarios are also

given in Figure 4.7. The cumulative balance of node1 in topology S1, which is

indicated by the red line in Figure 4.6, goes all the way down to zero at time around

1200s, while the cumulative balance of node1 in topology D1 indicated by the blue

line stops dropping and keeps increasing after around 1100s. Obviously, node1 in

topology D1, benefitting from its mobility, not only has a moderate speed of

decrement in its limited balance, but even earns a great fortune after the node

changes its position. When node1 moves towards the center of the network, more

connections are available, which leads to more chances to participate in cooperation.

This significant change is because as that node travels through the network, the

topology changes, which changes the node’s local centrality and creates opportunities

to participate in possible cooperation.

The comparison of centrality fairness showed in Figure 4.7 further presents a clear

picture of the difference between the dynamic topology and the static topology. The

dynamic topology D1 with a flat line of centrality fairness, has better fairness than
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Figure 4.5: A comparison between balance and centrality for static topology S1 and S2
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another topology S1 does, and, as a result, topology D1 has an even distribution of

digital coins after the completion of the experiment(Figure 4.8), comparing to the

topology S1. The remaining balance of node1 grew up to 22% in topology D1, which

was 0% in topology S1. This great change of cumulative balance makes node1 able to

afford more tasks that will need cooperation.

4.2 Part II: Experiments for pricing adjustment modes

The previous section proves that topologies strongly affect the fairness of networks

and a node’s ability to earn digital coins. A network with dynamic topology may

provide more fairness than a network with static topology. However, if the static

topology is given, is that possible to improve the fairness of the network without

forcing nodes moving around? The answer is yes. In this part we are going to show

experiments involving different strategies for pricing adjustment, in hopes to find a

best one that should have the best ability to keep the fairness of a static network. In

Table 4.2, we again list three modes mentioned in Chapter 3. We will see that,

although all of the results show the same trend of changes in balances, the strategy

based on balance is the one we are looking for.

Table 4.2: Strategies of pricing adjustment

Mode Index Mode Name Equations

1 Savings control rkn = rkn−1 +
Bk

n−Bk
n−1

−γk

B

|Bk
n−Bk

n−1
−γk

B|
∗∆, 0.6 ≤ rkn−1 < 1

2 Centrality control rkn = rkn−1 +
Ck

n−1
−Ck

n−γk

C

|Ck
n−1

−Ck
n−γk

C |
∗∆, 0.6 ≤ rkn−1 < 1

3 Ratio control rkn = rkn−1 +
Uk−γk

U

|Uk−γk

U |
∗∆, 0.6 ≤ rkn−1 < 1

4.2.1 Effectiveness of pricing adjustment

We are going to present the effectiveness of using the strategies of pricing adjustment

in this section. The topologies that we use for experiments are all static topologies, so

that we can focus our study on the contribution of different strategies of pricing

adjustments. The static topologies S1 and S2 used in this part are the same
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topologies that were used in previous experiments, as well as the setups, except that

we will add some scenarios using different strategies of pricing adjustment.

Before studying different strategies, we notice an interesting phenomenon in Figure

4.9, where we provide the comparison of node1’s balance in two static topologies with

the scenario using or not using pricing adjustment. We note that, compared to the

result from static topology S2 (Figure 4.9(b)), the trends of node1’s balance in static

topology S1 (Figure 4.9(a)) improved only a little after applying the strategy of

pricing adjustment. The same conclusion can be drawn from Figure 4.10, which is the

comparison of centrality fairness in these two topologies that involved with or without

pricing adjustment. This difference in the effectiveness of using pricing adjustment is

caused by the static topology itself, which is the same reason that node1 and node3

don’t earn money in static topology S1. As a result, because no strategy can provide

a price less than nothing, it is impossible for any strategy of pricing adjustment to

significantly improve a node’s ability of earning incentives if that node is bypassed by

shortcuts. In fact, the slight improvement of node1’s balance in Figure 4.9(a) is just a

side effect of the pricing adjustment, which is caused by the decrement of the other

nodes’ prices for relaying packets during the competition of pricing.

There is one more conclusion for Figure 4.9(b). The huge difference in balance after

using pricing adjustment in static topology S2 indicates that a pricing adjustment

does affect the ability to earn incentives in some topologies. As long as a node in the

network is not bypassed, there will be a price given by the pricing adjustment that

can make the node win a role in cooperation. We can argue that if there exists a lower

boundary for pricing adjustment to guarantee profits from cooperation, and if there

are only decrements in the pricing adjustment, the static topology will lead the price

all the way down to this boundary. It is even worse if every node has the same lower

boundary, because when the prices converge to the same boundary, the prices are

logically fixed, so that the strategies of pricing adjustment become no longer effective.

To deal with this issue, we can either choose different lower boundaries for different

nodes, or include the increment operation in the strategies. The former is not

practical, since it is like manually defining a weight value for each connection without
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Figure 4.9: A comparison of node1’s balance in topology S1 and S2 for different scenarios
that involved with or without pricing adjustment
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Figure 4.10: A comparison of node1’s balance in topology S1 and S2 for different
scenarios that involved with or without pricing adjustment
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Figure 4.11: A new static topology for testing strategies of pricing adjustment

any reason. As a result, we choose the latter, and we note that it is possible to set

different thresholds for the operations of increasing and decreasing prices in pricing

adjustment strategies.

4.2.2 Experiment setups

A new static topology

To present the effectiveness of different strategies better, we introduce a new topology

(Figure 4.11), which doesn’t have shortcuts for nodes in the network and the node5 in

the center of the network will have more chances to participant in cooperation. We

will see that the ability to earn incentives is suppressed for the node in the center of

the network, and an opposite effect exists for the nodes at the edge of the network,

when the strategies of pricing adjustment are applied.

Common setups for the experiments with different strategies:

• Parameters:

– Number of nodes (K): 8

– Number of tasks included (Ntotal): 600

– Types of tasks: all relaying

– Initial amount of digital coins (Binit): 3000000

– Initial pricing rate (rinit): 1/Byte
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– Seconds of per task: 2 s/7.5 s (transmission only/total)

– Length of per packet (νi): 800 Bytes

– Task logging rate: 10 times/s

– Strategy of pricing adjustment: Mode1, 2 and 3

– Pricing refresh rate (τ): 1 time/10 s

– Pricing adjustment step size (∆): 0.1

• Short comment: Node1, 3, and 7 have the worst positions, comparing to other

nodes. Node5 is in the center of the network which has the most connections of

the network. Node 2 and 4 although are not in the middle of the network, they

both have more connections than Node1, 3 and 7 has. Two left node6 and 8 are

having slightly better because they have direct connection to the center node5,

which makes them logically close to the center of the network.

Different setups for strategies (Table 4.3):

Table 4.3: Different values for strategies

Parameter Mode1 Mode2 Mode3

γ+
1 0 1 1

γ−
2 0 1 1

We try to keep all the strategies used in this experiment in a comparable manner, as a

result we choose similar values for the parameters within each strategy. It is the

effectiveness of different strategies themselves that we are looking for in this

experiment. We will test different combinations of the parameters in experiments of

Part III to see the effectiveness of every parameter.

1Threshold for taking increasing step

2Threshold for taking decreasing step
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Figure 4.12: A comparison of different strategies of pricing adjustment in centrality
fairness

4.2.3 Results and analysis

We compare the centrality fairness of network topology N1 with all listed strategies of

pricing adjustment shown above, the result of which is shown in Figure 4.12. It is

obvious that the red line with the most flat trend is the fairest strategy, where the

local balance of a node is used as the key in adjusting the local price of relaying

cooperation.

We also observe that the distributions of balances shown in Figure 4.13 are not really

clear enough to distinguish the differences between each strategy. In Figure 4.13, The

large bars separated in rows represent the same total amount of digital coins existing

in the network with different strategies of pricing adjustment. From bottom to top,

the large bars denotes the scenarios with Mode 1, Mode 2, Mode 3 and without

adjustment (Mode 4), respectively. Each large bar consists of small blocks with

different colors, which represent the balances of different nodes of the network. The

thickness of each colored block indicates the amount of a node’s digital coins. By

showing these five subplots we present the comparison of the distributions of balances

at five selected time instances (every 769 seconds). One interesting discovery is that,

although Mode 1 is concluded to be the fairest strategy according to its flat trend of
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Figure 4.13: A comparison of different strategies of pricing adjustment in balance

centrality fairness, the distributions of balances show little difference between each

mode. It can be observed that the distributions of balance of different scenarios start

to converge in the subplot 3 of Figure 4.13. Only Mode 2 and 3 still have over 4

significant portions of balances in the subplot of subplot 3, and this difference is hard

to tell in subplot 4.

Another observation is that we compare the life time of nodes for different scenarios,

which is the time during that nodes can complete tasks without stopping for

cumulating incentives. Benefiting from strategies, nodes at the edge can keep activate

and send more packets in the scenarios with pricing adjustment than they do in the

scenarios without pricing adjustment. This phenomenon can be easily observed from

Figure 4.14, which shows the counts of the packets sent by node1 versus the elapsed

time. The light green line representing the scenario without pricing adjustment

increases very slowly after 2000 seconds elapsed, and the other three lines for

scenarios with pricing adjustment keep the same speed of increasing till the end of the

experiment. The amount of packets sent by node1 in the experiments varied from

4200 to 10000 in the scenario without pricing adjustment and with strategy mode 1,

respectively, which is a 138% increment in all. However, the result still shows very

little differences between the scenarios using different modes of strategies.
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Figure 4.14: A comparison of different strategies of pricing adjustment in number of
packets sent by nodes

We conclude for this section that although the strategy mode 1 that use local balance

as the key of controlling local price has good centrality fairness in the comparison.

Neither the distribution of balance, nor the life time of nodes shows that these three

strategies of pricing adjustment have big difference between each other. In next

section, We will keep testing these three strategies with different combinations of

parameters to see which will be the best.

4.3 Part III: Experiments for optimum fairness of a network

Previous section shows that there is no big difference between different strategies,

except that the mode 1 achieves the best centrality fairness of the network among all

the scenarios. We will do more experiments in this section to fine tune the parameters

in the strategies. These parameters include the pricing refresh rate (τ), adjustment

step size (∆), and thresholds for adjusting prices (γ+, γ−).

4.3.1 Experiment setups

Like previous setups for experiment, we provide the common setups for every

experiment as follows:
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• Parameters:

– Number of nodes (K): 8

– Number of tasks included (Ntotal): 600

– Types of tasks: all relaying

– Initial amount of digital coins (Binit): 3000000

– Initial pricing rate (rinit): 1/Byte

– Seconds of per task: 2 s/7.5 s (transmission only/total)

– Length of per packet (νi): 800 Bytes

– Strategy of pricing adjustment: Mode1, 2 and 3

• Short comment: Topology is the same as the one used in previous experiments.

The results are compared with each other and the result from the scenario without

pricing adjustment.

The detail setups for different scenarios are shown below:

Table 4.4: Different values for nodes

Scenario Index of experiment τ ∆ γ+ γ−

Mode 1, Mode 2, Mode 3

1 1s 0.1 0

2 30s 0.1 0

3 60s 0.1 0

4 120s 0.1 0

5 30s/60s3 0.4 0

6 30s/60s 0.00125 0

7 60s 0.1 1.1

8 60s 0.1 0.9

9 60s 0.1 1.1 0.9

1Depends on the mode.
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4.3.2 Results and analysis

First we change the time intervals τ between each pricing check, this change also

affects the minimum time intervals between two pricing adjustments. We choose the

values for τ as 1s, 10s, 30s, 60s and 120s, and test them in all three modes. The

results of the experiments are shown in Figure 4.15. After comparing the results, we

conclude that the minimum time interval between two pricing adjustments has little

effect to Mode 1, but for Mode2 and Mode3, the centrality fairness is obviously

changed with the increment of the time interval τ . There are also differences between

the best case for each mode in these tests: both Mode 1 and Mode 2 has its best

centrality fairness when τ equals to 30s, but Mode 3 has its best centrality fairness

when τ equals 60s.

Second, based on the best cases for different τ in different mode, we do experiments by

tuning the step size of pricing adjustment as listed in Table 4.4. We expect to see that

the smaller step size may cause better performance in pricing adjustment, because

when the source node considers its partners in cooperation, the differences between

total offered prices from different paths are not limited to any small value, which can

be even one digital coin. So that candidate nodes can win the pricing competitions

with lower costs, eventually, this can lead the nodes working for longer time.

However, the experimental results shown in Figure 4.16 illustrate that all three

strategies achieve their best centrality fairness respectively when the step size is set to

0.1. One possible reason for this is because centrality fairness cannot reflect the effects

of changing step size ∆, since the step size can only lower the cost of winning each

pricing competition and improve the life time nodes. We compare the results from

different combinations of step size ∆ and refresh time interval τ for each pricing

adjustment strategy in Figure 4.17, from which we can conclude that Mode 3 is the

best strategy to control the pricing adjustment. Further more, we do experiments for

different pricing adjustment thresholds (γ+,γ−). To illustrate the effects of changing

pricing adjustment thresholds, we simply show the experimental results of Mode 3,

which is previously concluded to be the best strategy of pricing adjustment. The
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Figure 4.15: A comparison of centrality fairness for different τ values in Mode 1, Mode
2, and Mode 3
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Figure 4.16: A comparison of centrality fairness for different ∆ values in Mode 1, Mode
2 and Mode 3
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Figure 4.17: A comparison of centrality fairness for the best combinations of parameters
of three strategies
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Figure 4.18: An experiment with different choices for pricing adjustment threshold γ+
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values of pricing adjustment thresholds are chosen as they were given in Table 4.4,

and the results are provided in Figure 4.18. Apparently, the results for both

increment and decrement adjustment thresholds set to 0.9 and 1.1 are not good

enough to compete with the one that has the threshold set to 1. One possible reason

for this is because the pricing adjustment can be viewed as a consequence of

participating or not participating in the cooperation that is initialized by randomly

picked communication pairs. To achieve the best centrality fairness, differences

between centrality of nodes should be maintained as close as no difference. Since

every node cannot be aware of the centrality of other nodes, the best way to build a

balanced network is to keep a balance between the time for using and gaining digital

coins, which is using the threshold (ratio) of 1 in the strategy.
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Chapter 5

Conclusion and Future work

We illustrated the basic behavior of nodes in relaying cooperation for both a static

topology and a dynamic topology involving our pricing-based cooperation system. We

also observed the importance of the geographical position of a node in terms of the

centrality. It is also illustrated in the thesis that static topologies always suffer from

edge node issues when payments are exchanged for cooperation, which lead edge

nodes spending their digital coins while having less chance to earn income through

cooperation than other nodes. By studying the variation of nodes’ centrality defined

as centrality fairness in the thesis, we can easily tell the differences between networks

in terms of their opportunities for participating in cooperation. The importance of

node mobility is also illustrated in the thesis. With the mobility, a node can have its

cooperation activity vary significantly according to the change of this node’s

geographical position in the network. This is considered to be the most effective way

to solve the issue of edge nodes. However, there is an alternative way to alleviate the

issue of edge nodes: we have shown that with a pricing adjustment strategy, we can

improve the centrality fairness of a static network, and further we can also improve

the life time of edge nodes to participate in cooperation. Finally, we studied the

parameters of the pricing adjustment strategies, and made fine-tunes to the

parameters to achieve even better results of the fairness. We found that the pricing

refresh rate (τ) doesn’t affect the Mode 1 very much, which monitors a node’s local

balance of digital coins for the purpose of adjusting prices; but for the other two

modes, which use local centrality and local utility ratio respectively as the control

variable in the adjustments of prices, they were impacted by the pricing refresh rate a

lot. We also found that the optimum refresh rate for each strategy is not the same:
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Mode 1 and Mode 2 achieves the best fairness when the refresh rate is set to 30

seconds, but Mode 3 achieves its best fairness when the refresh rate is 60 seconds.

Through the experiments we performed, we conclude that the best one of the three

pricing adjustment strategies we designed used a node’s utility ratio as the control

variable to adjust the prices for relaying packets. Finally, we studied the effectiveness

of changing the step size (∆) and thresholds (γ+,γ−). We found that ∆ equal to 0.1

exhibited the best centrality fairness, not the smallest step size 0.00125, which makes

the minimum amount of digital coins in exchange is 1 coin. Finally we note that the

pricing adjustment threshold can also impact the centrality fairness, but precisely how

it works is still under study.

There are many questions still left open in this topic, such as how does the parameter

change the behavior of nodes in the network, and what is the economic relationship

between nodes in the networks. According to the experimental results shown in the

thesis, the parameters don’t work separately, that is to say, it is the combination of

parameters that impacts the performance of each strategy. To find the right

combination of parameters, a good stochastic model should be built for the system,

since the experiments are based on randomly chosen communication pairs for each

task. The economic environment actually hasn’t been well modeled in this thesis,

which should be another interesting problem in microeconomics. One possible way to

look at this system is through game theory, since every node is trying to win the

chance to participate in every task. Still, this will need a new mathematical model to

describe the system in economic terms.
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