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ABSTACT OF THE DISSERTATION

TRACING THE BUILDING OF ROBERT’S CONNECTIONS IN MATHEMATICAL
PROBLEM SOLVING: A SIXTEEN-YEAR STUDY
By: ANOOP AHLUWALIA
Dissertation Director:

Carolyn A. Maher

This research analyzes how external representations created by a student, Robert,
helped him in building mathematical understanding over a sixteen-year period. Robert
(also known as Bobby), was an original participant of the Rutgers longitudinal study
where students were encouraged to work on problem-solving tasks with minimum
intervention (Maher, 2005). The research demonstrates how Robert built robust counting
techniques by tracing the evolvement of his problem-solving heuristics, strategies,
justifications and external representations. The study also examines how Robert made
connections to his earlier problem solving. In addition, the origins of Robert’s ideas
related to Pascal’s Triangle and Pascal’s Pyramid are investigated.

Fifteen sessions were selected between Robert’s fifth grade (February 26, 1993)
and post-graduate interviews (March 27, 2009) yielding more than twenty hours of video
data. Powell, Francisco, and Maher (2003) model was used for analysis where by each
session was viewed, transcribed and coded for critical events to create a comprehensive
narrative.

The study reveals that mature combinatorial techniques were a part of Robert’s

counting strategies as early as middle school. Robert used binary notation to count two-



colored candle arrangements and later to count the number of ways a team could win a
World Series; modified exponential formulae to account for combinations for a garage
door opener, arrangements for n-colored candles and n-toppings pizzas; discovered the
combinations formula, C(n, 2), in his eleventh grade; and connected these solutions to
Pascal’s identities. In general, Robert looked for patterns in his solutions; generalized the
findings; and identified structural similarities in tasks presented to him as he connected
three-position garage door opener to three-colored candles arrangements, pizza with four
toppings to towers four high, and directions on Pascal’s Triangle to routes for a taxi on a
two-dimensional grid. External representations created by Robert served as
communication tools for him and provided insight into his problem solving heuristics and
mathematical understanding.

The research contributes to the growing body of case studies from Rutgers
longitudinal study providing evidence that building of early mathematical ideas is the

foundation of more advanced learning (Davis & Maher, 1997).



ACKNOWLEDGEMENTS

My father had hoped that | would become a physician one day. | tried very hard
to get into the medical schools in India but the competition was too fierce. Eventually, |
realized that I loved mathematics and physics much more than biology and chemistry. |
chose to study mathematics and it was clear, 1 was not going to be a physician after all.
Even after all the efforts and hopes my father had put into helping me become a
physician, he never gave me a chance to feel that | had disappointed him. For all the trips
we made to New Delhi, all the tuitions he paid on top of schooling expenses, and all the
hours he spent in scorching Indian sun waiting for me to come out of exams, | want to
first and foremost thank my father, Mr. Gurusharan S. Kalsi. Thank you Papa for always
believing in me and supporting everything | chose to do in my life. Your endless love for
me has and always will be my inner strength.

My mother was a middle school teacher before she got married. Her natural
talents to teach and a passion for sharing knowledge laid a strong foundation for the
exciting educational journeys that her four children took. Along with cooking delicious
food and keeping a spotless home, she shared with us a lot of fun biology. She bestowed
upon me a keen sense of wonder and intrigue that led me to always ask a ton of
questions. | want to thank my mother, Mrs. Davinder Kalsi, for her love and relentless
pride in my capabilities. Thank you Mummy for all your love, all the chores and all the
hard work you did instead of your children.

| have to thank my best friend next, my husband Mr. Harpreet Singh Ahluwalia.
Harpreet has spent the last three years tirelessly picking up all the slack after me so that

our two young children, Nihal and Ruhee, hardly missed their mommy. To him, | will

iv



always be grateful for sharing and supporting my dream. | also want to extend this
gratitude to my parents-in-law, Mr. Sudarshan S. Ahluwalia and Dr. Jagjeet K.
Ahluwalia, who have been just as supportive in my journey as my own parents would
have been. And finally, | want to thank my siblings for cheering me on through the ups
and downs of the doctorate program. Thank you Sukhveer, Pritpal and Priti for being my
never ending supply of laughter, love and support.

In addition to a supportive family, | found the most amazing mentor in Dr
Carolyn A. Maher who has held my hand like a friend through this challenging journey.
Carolyn, thank you for your enormous patience, brilliant guidance and tireless support
along with lovely conversations over comforting cups of tea that have helped me unravel
the wonders of math education. 1 feel that | have just begun to absorb a small piece of
your immense enthusiasm and expertise for guiding students to truly understand and
appreciate mathematics. Dr. Gerald A. Goldin has been my other major source of
inspiration and encouragement in this journey. | am very thankful to you, Jerry, for
giving me hours of your time to discuss representations, abstract algebra and writing
skills along with your expert feedback. 1 also want to thank Dr. Roberta Schorr for her
continuous support and guidance in writing of this dissertation along with her gracious
praise and encouragement. Dr. Elizabeth B. Uptegrove has amazed me with her careful
reading and feedback that has taken this dissertation to a higher level of precision and for
that, I am extremely grateful to her. Dr. Joseph Rosenstein, who was not on the advising
committee, also deserves many thanks for helping me since step one of this journey and

always being there for fun and enlightening conversations.



Several graduate students have helped me with transcription and verification of
the enormous video data for this study. | want to thank Erica Bilyk, Mathew J. Cann,
Kathryn E. Dougherty, Kristen Lew, Scott Rutherford, and Kiranjeet K. Sran for all the
hours they put into creating and verifying transcripts. | also want to thank Lou Pedrick
for recording interview sessions for me. | am also extremely grateful to have friendship
of Marjory Palius and Dr. Manjit K. Sran who have guided me with their insights, time
and much needed encouragement. In addition, | want to thank my colleague and friend
Barbara Tozzi for her wonderful support.

Last but certainly not the least, | want to thank Robert Sigley for all the efforts he
has put into making this dissertation a reality. Robert participated in the long interview
sessions with me; helped me discover the wealth of video data that captured his
participation in the longitudinal study; recorded endless number of sessions on DVDs;
helped make arrangements to share data with other graduate students; provided unlimited
time to discuss ideas; and, provided expert technical support on every step of this
dissertation. For all your selfless hard work and an exceptional opportunity to study the

development of mathematical ideas, Robert, | am forever grateful to you!

Vi



DEDICATION

To the most wonderful kids in the whole wide world!
I love you Nihal and | love you Ruhee!

vii



Table of Contents

ABSTACT OF THE DISSERTATION ...ttt ii
ACKNOWLEDGEMENTS ...ttt iv
DEDICATION ...ttt r et r et r e nnns vii
1. INTRODUCTION ..ottt et nn e r et r et r e 1
1.1 STATEMENT OF THE PROBLEM .....ccititiieiiirinieiiaresresesresr e sne e snesn e snesne e enesne e enenne e anenneseenenneneas 1
1.2 BACKGROUND OF LONGITUDINAL STUDY ....cciiriirerearerresesrenreesresresessesseessessesesnessesessesnesessesnesessessesens 4
1.3 PURPOSE OF THE STUDY ...ooviiirireiearirresesressesearessesessessesesnessesesneseesesnessesessessesssnessesessessesessensessasenseneas 7
1.4 RESEARCH QUESTIONS ....utiiuiiiteeiteesteattasesueesueasteesteastesssessesstesssessaeanseasseassasssesseessesssessssssnessesssesssesnns 8

2. LITERATURE REVIEW/ THEORETICAL FRAMEWORK ......cccooiiiiiniiencee e 9
2.1. INTRODUGCTION ...uttiiutieantee sttt atee st e abee st e asbe e s sbe e e be e e bt e e ke e e be e e ke e e kbt e ke e e bbeesbeeenbb e e sbneenbbeesnneennneas 9
2.2 THEORETICAL FRAMEWORK .....uciitteittetiasteastesieesteesteesteasesnsesssesssesseessesssesseessesssesssesssesnsesssesssessenssenns 9
2.2.1  Mathematical UNderstanding .........cccoeveevieieevieiieieseceecie et 9
2.2.2  REPIESENTALIONS .....eeivivieiecieeteeie ettt ste e et e te s e et e steere e besreessesbeeasebesreensesseeseens 12

2.3 RELATED RESEARCH ...cuttiitiiittiitiite et stt ettt ettt st sbeente e et anbeastesbeesbeenbeesbeasbenseesneesreesneesaeebeenns 18
2.3.1  Mathematical UNderstanding ..........cccceeeevieiieceenieseece et sreennens 18
2.3.2  REPIESENTAIIONS ....evirvitititeieiet ettt sttt sttt be e e b e 20

3. METHODOLOGY ...ttt stttk b et b bbbt bbbttt b e 33
3.1. SETTING AND BACKGROUND........cuiiiiiitieiteeieaie sttt ettt sreaneesneanrenneenneeneanennnesneas 33
3.2. DATA SOURCE ...ttt sttt ettt sttt b etk e s b e s bt e sb e e et e an e em e e ebeenbeenbe e b e e beeneennesnnas 34
3.3. T ASKS ettt ettt bt bR R R Rt E e R R e R e e R e e R et e e e n e aRe e nre e nneeneenns 35
3.4. IMETHOD OF ANALYSIS ..ttt ettt ettt ettt ettt ettt e sttt s be e e sas e sttt e sabe e sbbeesaneesbbeessbeesbbeennneesnbeesnnee e 36
4L, VIBWING .eoiiitieieie ettt ettt ettt ettt s b e et e st e s te et e s be e s e stesbeeabesbeesbebesaaenbesreennas 36
3.4.2.  Transcribing and VErifyiNg .......cccveceriiieeceeese et 37
3.4.3.  1dentifying CritiCal EVENLS .......cceivieieeceeese ettt 37
B o T [ T PSR 38
3.3.5  COoNnStructing @ STOMYIINE.......ocuieeiitieeeceeeee ettt st be e 39
3.3.6  ComMPOSING @ NAITALIVE .....ccviieieiiitieiecieeeete ettt beeteste e e sbeereesesreeanas 40

3.4 VERIFICATION OF VALIDITY ..otiuitiuititiesttestteteesteaseessesstessteesteanseanseansesseesseesseesseassessesssesssesssessseensennes 40

A CHAPTER 4.t b e et b e e bt bbbt bbbt bbbt bbbt 41
4.1 INTRODUCTION ...ctititeateteseatesteseatesteseasesseseesesseseebesseseesesaesees e st e s ees e abe st es e abe e eb e ab et eb e nb et en e abe b enenbenenen 41
4.2 PASCAL’S TRIANGLE......tttitititeteatisteseett sttt sttt sttt st e eb st e e e bt ab et e bt ab e e e bt st et eb e n b et en e abe st eseabennenes 44
4.3 PASCAL’ S PYRAMID ... .ccttiititieiteesteesteateaseeastesteesteenteaseeaseesseesseesseanseaneeaseeaseesseesseesseanseanessnessseenseanes 47
4.4  LAYERS OF PASCAL’S PYRAMID: AUGUST 8, 2005 (SESSION 12) ...ccveiiviriiieiirienieiinienieesieseeesieseens 48
4.4.1  Setting and BaCKgrOUNG ...........cecuiriieeeriieeeieseee ettt eee ettt nae e ens 49
4.4.2  INitial EXPIOTatioN ...cccouieiee ettt 49
443 “Adding a b” and worrying about “duplicates” .........ccccererreririeenenenseneeeese e 50
444  Let’s draw it 3-DI CONCENLIIC IAYEIS...c..ieuieeeeeee e 52

viii



445 “What’s the dominant geometric shape?”” From circles to triangles............c.ccce.ee. 55
4.4.6 Is there a pattern? Getting to the “prettiest PICtUIE” ........cceeveerireerierenseneeeeseeieenee 57
447 “We always ask the next layer”: Robert finds the fourth layer of Pascal’s Pyramid63
4.48  Ankur’s Challenge: Where does the solution lie on the Pascal’s Pyramid?............. 65
449 “There’s going to be an overlap”: worrying about duplicates again.............ccc.c.uee... 66

5. CHAPTER 5: THREE POST-GRADUATE INTERVIEWS .......cccooi e 71
5.1 INTRODUGCTION w..ettiitatatieitseietss ettt 71
5.2 FIRST POST-GRADUATE INTERVIEW: JULY 2, 2008 (SESSION 13) ....covuviriiiririiniiiciniiicineeieeneeienns 71
5.2.1  Setting and Background ..........ccccceeiririninieneiieiee et 71
5.2.2  Robert’s first recollection of “Pascal’s Triangle” and “Pascal’s Pyramid” ............. 72
5.2.3  Reconstructing layers of Pascal’s Pyramid after three years .........c.ccecevvreeneennennee. 73
5.2.4  What’s in the middle of the third layer?...........ccooiiiiiiiiineeee 76
5.2.5 Reflecting on Session 12 and Robert’s claim: “I am horrible at math™ ................... 78
5.3  SECOND POST-GRADUATE INTERVIEW: NOVEMBER 14, 2008 (SESSION 14) ......covviriiiinieiienieas 84
5.3.1  Setting and Background ...........cceiueeieiiieeeiiceeeeste ettt b e 84
5.3.2  Robert makes a three-dimensional model for Pascal’s Pyramid...........ccccceevreruennens 85
5.3.3  Robert explains layers of his model Pyramid to VicCtor .........ccccceevvercenieceenienenen, 88
5.3.4  Would two colors work for the Pyramid’s model? ..........ccccocereevenenienineenenennne. 91
5.3.5 “Any future Ankur’s” on Robert’s model for the Pyramid..........cccooerieinnniannnnns 94
5.3.6  The Taxicab on Pascal’s Triangle and Pyramid...........c.ccecevererenenienieneerenineneneens 96
5.3.7  Was it helpful to build the Pyramid with Zome toolSs?..........ccecveeveieieiiececieenns 102
5.4 THIRD POST-GRADUATE INTERVIEW: MARCH 27, 2009 (SESSION 15) .....cciviiiiiiiiiieie e 104
5.4.1  Setting and Background ...........cceceeciiiieieiiceeeceee ettt s 104
5.4.2  Robert builds a Pyramid again with Zome toolS..........ccccceeireeierieceneiiee e, 104
5.4.3 Mapping two colored towers to Pascal’s Triangle .........ccocceevverreerceeriieenenneeneennes 107
5.4.4  Mapping three colored towers to the Pyramid ...........cccoeoveeirieenieceneciee e, 113
6. CHAPTER 6: HIGH SCHOOL AND UNDERGRADUATE SESSIONS .......cccciiiiiiiiiiiieie 122
B.1  INTRODUCTION ...otitiiiiiiieieeieste ettt sttt e e r e e e e r e e e et e e re e nr e re e 122
6.2 SESSION 11 (9/12/2003): ROBERT AND BRIAN DISCUSS A TOWERS PROBLEM .....cccovevererieinienieneans 122
6.2.1  Setting and BaCKground ...........c.ooceeieiiiieneiceeee e e e 122
6.2.2  Brian tries to find @ SOIULION.........ccooiriririrecc e 123
6.2.3  Draw OUL thE TOWEFS ......eoveiiieieieeeee et 128
6.2.4  Robert recalls Pascal’s Triangle.......ccocevvviriiirieenieenieenieeieeieesieesieesieeseee e eeeeneees 129
6.3 SESSION 10 (8-31-1999): ROBERT AND MICHAEL DISCUSS WORLD SERIES PROBLEM................... 134
6.3.1  Setting and BaCKGroUNd ..........ccocvevieiieierieseeieseeteste ettt 134



6.3.2  Using binary notation versus combinations formula to list possibilities................ 135

6.3.3  Which solution makes sense for the World Series Problem?..........cccccovvvecvernnnne. 139
6.4 SESSION 9 (7- 7- 1999): ROBERT AND MICHAEL PRESENTATION .....ceveuirteriaientenieresiesreneseesneneseeeans 141
6.4.1  Setting and BaCKgroUNd ...........c.occvevveiieieniieeie ettt 141

6.4.2  Robert shares three different methods to find the number of committees possible142

6.4.3 Why is “5 choose 2 same as “5 ch00SE 377 ......coverieririenienienieieneeie e 145
6.4.4 Combinations on Pascal’s Triangle.........ccoceveevenereenineenirineeeseeese e 146
6.5 SESSION 8 (4-26-1999): TOWERS EXTENSIONS IN A SMALL GROUP .....ocviviririieriiciseeieesessennnnes 149
6.5.1  Setting and BaCKGrOUNG .........ccccoveiriririnenieieieeeeeei et 149

6.5.2  Listing all possible towers that are n tall with at least one each of the n-1 colors . 150

6.6  SESSION 7 (3-1-1999): THE PIZZA PROBLEM .....ccitiiteeiteaiesteesteesteesteesteaaessaesseesseesseansessesssessesssenns 156
6.6.1  Setting and BaCKGrOUNG .........ccceoveiririninieriesieieieeeee et 156
6.6.2 How many pizzas are possible with 4 toppings and 5 toppings? .......ccccceevvervennne. 156
6.6.3  Why addition property of Pascal’s Triangle works for pizzas and toppings.......... 159
6.6.4  Why is the number of total PIiZzZas 2"7........coeeveveveeeeeeeeeeeeeeeeeee e 161
6.6.5 How is building towers activity related to the pizza problem?.........cccccocevveninnenne. 162

6.7 SESSION 6 (11-13-1998): REVISITING TOWERS PROBLEMS.......cccveitieieiieiieseesieesteenseesesnsessnesenens 164
6.7.1  Setting and BaCKGrOUNG .........ccceoueiririririerienieieeeeeeei et 164
6.7.2  How many four tall towers can you make with two colored blocks? .................... 165
6.7.3 How many five tall towers have exactly two of one color in them?...................... 168
CHAPTER 7: ELEMENTARY AND MIDDLE SCHOOL SESSIONS.........cccooiiiiiiinieiienins 173

7.1 INTRODUCTION ...couiiiiiieitieite st st et ettt st e e e e e s s e nr e r e e e e snesee e s beesreenneeneenneeneenreenreens 173

7.2 SESSION 1 (2 —26-1993): GUESS MY TOWERS ....c.eiteietirteiereateneesesteseesesteseesesteseesesseseeseseessesessessane 173
7.2.1  Setting and BacKgroUNd ...........cooveiiiiiieienieceeiece ettt 173
7.2.2  Stephanie’s “Family TrEe” ......ccccerueiriririerienieriesieeeeeiesesie e saesee e eesessesseseennes 174
7.2.3  Robert’s solution to the problem..........ccocueriiiriiiiieiiieiiee e 176

7.3 SESSION 2 (3-1-1993): THE PIZZA PROBLEM .....ccuviitiiiieiiesiiesiee e esteeste e saesae e steenaeaveenaesnaesneens 180
7.3.1  Setting and BaCKGroUNd ..........cc.oeveiieiieierieceeeseeteie sttt 180
7.3.2  Group Solution for the problem ...........cccoveiieeeceeeee s 180

7.4 SESSION 3 (12 -13-1994): GARAGE DOOR PROBLEM ......cuuiiiiiiiiitisiesiisieeie e see st et siesneesee e e 185
7.4.1  Setting and BaCKGroUNd ..........ccoevevieiieieriieeece ettt st 185
7.4.2  Why use binary strings for Candles Arrangements problem?...........cccccocevvenenienne. 186
7.4.3  Robert finds solution to the Garage Door problem ...........ccooveoiviieiiniieene 187
7.4.4  How long will it take Mrs. O’Brien to open the door?...........cecevvreecenencenenenne 189

7.5 SESSION 4 (12/14/1994): CANDLES ARRANGEMENT ...cutitiietiiteietestesiereste et steseereste e e seeseanesneseens 191
7.5.1  Setting and Background ............ccveieeiiiiiiiieccee et 191



7.5.2  Why there are 32 candle arrangements for five candles and two colors? .............. 192
7.5.3  What if there are three colored Candles? ..........ccovveeerireerinieere e 193
7.5.4 How many arrangements are there for seven candles choosing from two colors? 193
7.6 SESSION 5 (12/15/1994): CANDLES ARRANGEMENT .....titiieiiiteieiintesieie sttt seese b sre s 195
7.6.1  Setting and BaCKgroUNd ..........cc.ooveviiiieeierieieeieseeeeie ettt 195
7.6.2  The dilemma: How many “places” to have in binary notation for candles?.......... 195
7.6.3  Whatis 2 divided DY O7.......ooeeiieieeseeee e 197
7.6.4  What can be done about the extra “place” in binary numbers?............c.cceceerrennnne 199
7.6.5 Robert extends his solution to three colored candles..........ccceeevvvveceneeceennenenne 201
8. CONGCLUSIONS ...ttt e bt e et e e b e e e be e e be e e ba e e nbe e e nbeeenbee s 204
8.1 INTRODUCTION ...eiutiittettauteattesteesteesteesteestesseesbeesbeesbeaseeasbeaseesseesbe e beenbeasbesseesbeesbeenbeanteaneesneenbeenbeens 204
8.2 WHAT ARE THE EXTERNAL REPRESENTATIONS THAT ROBERT USES TO HELP HIM UNDERSTAND
PROBLEMS RELATED TO THE PROPERTIES OF PASCAL’S PYRAMID? ....ccveeitiiiiiiiesie et 205
8.2.1  INTFOTUCLION .....eeveeeeeieeeeeeeee ettt ettt et e s te e e esesseensesneensesreeneens 205
ST 1= 1 o] 1 OSSR 206
8.2.3  Three Post-Graduate interviews (Sessions 13, 14, 15)......cccccvveveeveeceeneieecresieenns 208
8.3 How, IF AT ALL, DO THESE EXTERNAL REPRESENTATIONS HELP HIM IN SOLVING PROBLEMS RELATED
TO PASCAL’S TRIANGLE OR PYRAMID? ....cotiiitiiiiiiesiiestte st estee e te et steesbeestesnsesneasseesbeesbeebeesaesseeseeas 212
ST T0 A 1011 €0 [FTox o] OSSR 212
8.3.2  Solution t0 Ankur’s CRAIIENGE .........coeeeererieieieieieees e 213
8.3.3  Solution to the Taxi-Cab ProbIEM ..........ccevirieiirieereeeee s 214
8.3.4  Solution to the Committee of tWo Problem........cccvecveviriericeeeee e, 215
8.3.5  Solution to Towers with two of one color problem ...........cccoooveverieceniicececeens 216
8.3.6  Solution to the Pizza problem ..........c.ccv e 216
8.4 How DOES ROBERT USE, MODIFY OR REUSE HIS EXTERNAL REPRESENTATIONS OVER TIME TO
PROVIDE JUSTIFICATIONS FOR HIS SOLUTIONS? ...v.vvitiisiseeetstsseissssesesesessssssssssssesesesessssssssssssesesesssasassssns 217
ST R 1011 €0 [FTox o] SRS 217
8.4.2  The Binary NOTALION........c.coieieiieciiecece ettt sttt beernens 218
8.4.3  The “family tree” fOr tOWETS .....cevueiiuiiriieiieeese ettt 218
8.4.4  “Exactly one” or “exactly or two” Of SOMELNING......c.cccvrveviiieiiricesec e, 219
8.5 WHAT CONNECTIONS, IF ANY, DOES ROBERT MAKE TO EARLIER PROBLEM SOLVING? ........ccccevuene 222
8.5. 1 INTFOTUCTION ...ttt sttt sbe e 222
8.5.2  Looking for a pattern or a formula..........ccocveveveiieceniceeeceeee e 223
8.5.3  Thinking of a simpler problem..............oooireier e 226
8.5.4  Using isomorphism between structure of problems............ccocoeiiiiiinniiieiiieees 227
8.5.5  Proposing changes to conventional NOations ..........ccccceveerereereneecerereee e 228

Xi



8.0 CONCLUSIONS.....cttuteitieteeiteste sttt st b et e s e s besb e bbbt e s e e et e Rt e Rt bt e bt e s e e b e b e nb e bt e bt eb e e bt e s e e e nnene e 229

8.7 IIMPLICATIONS ...c.tvtteteesesetetseeeeeseeseseseeeeeees e eseeeeesesee e e e s eseseees e e e s e e e e s s et e s e b ee e e e s esebesan et s nnns 231

8.8 LIMITATIONS .etotttutetieseseeetseeeseseseseseseeesesesse st eseeeeeseae e e e e s eseseeesee e s e et se s e s et e s et e e e e s esebesen et s nnns 232

8.9 FUTURE STUDIES ...ttt ittt e n bbb nn bt b et nn e 234
APPEND X A ettt bbbt h et E e bt R bt R b e R e e Rt e bt bt R be e heenEe e nbe e nbe e b enne 237
APPENDIIX Bttt b etttk bt bt h e bR bR e e b e e bt bt bRt e R e nhe e nbe e nbe e b enee 271
APPENDIIX € oottt b ettt e h e bt e bt e bt bt R bt R b e h e e Rt ekt e be R b e he e bt nbe e nbe e b enne 289
APPENDIX D ..ttt b ettt ke bt bRt b e R bR bR e Rt e bt bR b e heenbe e nbe e nbe e b enne 318
APPENDIIX E...e ettt ettt et h e bt bt bt bR et bt e Rt bt bR bR e b e nbe e bt e b e 353
APPENDIX Fo. ettt R e ne e 372
APPENDIX G ..ottt R e R e re s 404
APPENDIX H .ottt b ettt R bR Rt bR R nneen e 413
APPENDIX Lttt bt et et a e Rt Rt R e R e Re e nre e aneen e 440
APPENDIX J ettt h Rt R R Rt e R e e R Rt e nRe e nre R n e 484
APPEND X K ettt h e s bt Rt e n e R et Rt Rt e R e R R e e R e nre e nneen e 526
APPEND X L.ttt ekttt b e bt b e bt e b e bt e b e bt e be et e e e nnee e 553
APPENDIX MM ettt ettt b e bt b et b e bttt et be e b e e nne et 563
REFERENGCES ... ettt ettt ettt s e b e s b e sbe e sbeenbeanbeenbesbeesbeenbeen 603
CURRICULUM VITAE ..ottt ettt ettt s e s bt sb e e sbe e beenbesnbesneenbeens 609

xii



List of Tables

TABLE 3-1 CODES USED FOR THE STUDY .eeteeeiuuttreeeeeseseurerneesessssssseseessessssssssssssesssssssssssseessssssnssssssesssessnsssssessssesnnnnes 39
TABLE 4-1 SESSIONS REVIEWED ....uuuvvtreeieeeieiuttteeeeesesesuuereeesesssasssesasesessssssssesssesssasssssssseessssssssssssessssssssssseeessessnnnes 41
TABLE 6-1 OLD AND NEW PROBABILITIES ..eeeeteteeereeeeeeeeeeeeeeeeeeeeeeeeeeeeseseeeeesesssesesesesesssseesesssesesesessssseseseresesersrersmmmen 139
TABLE 6-2 ROBERT FINDS A PATTERN IN TOWERS WITH TWO BLUES ...ccevtieieeeeeeeereeeeeeeeeereeeeeseeesesesssesssesesesesssesesssemssennn 170
TABLE 8-1 SESSIONS ANALYZED ..eeeeeteteteeeteeeeeeeeeeeeeeeeseeeeeeeseeeeeseseessssesseseeessssssssessseseeeeesessseseseseetsererererererersrmrer 204

Xiii



List of Figures

FIGURE 2-1 LING CHEN'S DRAWING (MAHER & ALSTON, 1998, P. 244) ......occveeciiieciieeiiieesteesiee e seveesiveesiveesveeasane v s 18
FIGURE 2-2 LING CHEN’S PATTERN BLOCK CONSTRUCTION (MAHER & ALSTON, 1989, P. 244) ......ocvvveecriecreecireesreeennn 19
FIGURE 2-3 LING CHEN’S THREE ATTEMPTS TO SOLVE THE PROBLEM (MAHER & ALSTON, 1989, p. 247) ....
FIGURE 2-4 BRANDON’S WORK (MAHER, MARTINO & ALSTON, 1993, p. 34)
FIGURE 2-5 DANA’S, STEPHANIE’S AND MICHAEL’'S SECOND GRADE WORK (MAHER & YANKELEWITZ, 2010)......cccevvvennnes 24
FIGURE 2-6 DANA’S, STEPHANIE’S AND MICHAEL’S THIRD GRADE WORK (MAHER AND YANKELEWITZ, 2010)......cccevvvennnee 25
FIGURE 3-1 MAHER'S ILLUSTRATION FOR TIMELINE OF EVENTS ...eeeeuveeeeeueeeeeitreeeestreeeeeseeeeessseeesasseeeessseesesssseessssseesenns
FIGURE 4-1 ROBERT'S INITIAL REPRESENTATION FOR THE PYRAMID ....eeeeeuvieeeeureeeeetreeeeesreeeeetseeeeaseeeeessseeesasseeessssseeeanes
FIGURE 4-2 SECOND LAYER ....ci it iiiiiicec e
FIGURE 4-3 THIRD LAYER ... .uttteeettteeetteeeeitteeeseitteeesesseeeesasseeaasssseesasssasesssseseasssessasssesesnsseseassssessssssesssssssseassseeenanes
FIGURE 4-4 "TRIANGULAR" THIRD LAYER ... .utvteeeureeeseusreeasrseeeasssseesassesessssessasssssssssssssssssssssasssssssssssssssssssssssnsssesnnes
FIGURE 4-5 "TRIANGULAR" SECOND LAYER ....vveeeetreeesiuteeeessseeeassseeesassesesssseseasssssesasssssssssssssssssssssasssssssssssssssnssssssnes
FIGURE 4-6 CONCENTRIC TRIANGLES ....vvveeeittieeeeiureeesesseeessseeeasssseesassssessssesesnssssssassssssssssssssssssssssssssssssssssssssssessnes
FIGURE 4-7 ROBERT EXPLAINS HOW THIRD LAYER IS BUILT FROM SECOND LAYER...
FIGURE 4-8 "STAR OF DAVID" ......euttiiiieeeieiiitittee e e ee ettt e e e eeseettareeeeeeeseetasaeeseeesessssseseaeeseasssseseaeesensnssnseaeesennnnses
FIGURE 4-9 SEPARATING THE A, B, CTERMS ...vveeeeiureeeeeureeeeirreeeensreeeenisseeeassseseessseesesssseessasssssssssessssssseessnsssesssssseeeses
FIGURE 4-10 TERMS IN THE THIRD LAYER ......uvveeeeitreeeeereeeeeteeeeensseeeeessseeeassseseessseeseessseessesssessssseessssseessnssseessnseeeesnes
FIGURE 4-11 THE "PRETTY" THIRD LAYER...ce.uttteeeitreeesitreeeitreeeassseeesassesesssseseasssssesassssssssssssssssssssasssssssssssssssnssssssnes
FIGURE 4-12 PLACING SECOND LAYER ON TOP OF THE THIRD
FIGURE 4-13 ATTEMPTING TO CONSTRUCT FOURTH LAYER FROM THE THIRD LAYER ....vveeeerieeeiireeeesireeeessseeesssseeessssesennes 64
FIGURE 4-14 DECIDING HOW MANY 125 TO USE AND WHERE THEY COME FROM ......uvvieeereeeeeireeeeenreeeeeinreeeesseeeennsnesennns 66
FIGURE 4-15 WHERE THE 125 COME FROM ....eeeeeiuveeeeetreeeeeteeeeeeseeeeeisseeesesseseessseesesssseeesasseseesssesesssseessesssesssnssesesnes 67
FIGURE 4-16 ROBERT USES TOWERS FOR TERMS OF FOURTH LAYER ...uvvveeeeeeieeuurrreeeeeesesnnreeeeeeesessnsseseesesensssssssessssennnnses 68
FIGURE 4-17 TWO ALTERNATIVE TRIANGLES THAT MAY PRODUCE A 12.....uviiiiiieeeeciieeeeeieee e eeteeeeeereeeeetveeeeetneeeeenreeeenns 69
FIGURE 4-18 LISTING TERMS FOR TWO TRIANGLES .....cccvveeeenrrreennnnen.

FIGURE 5-1 FIRST THREE LAYERS OF PASCAL'S PYRAMID
FIGURE 5-2 HOW ADDITION PROPERTY WORKS TO GENERATE THE NEXT LAYER ....eeeeiuvrieeeireeesireeeesnreeeeesseeessseeesssnesennns 75
FIGURE 5-3 THE THIRD LAYER .ititiiitiieeiieeee e ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaeeaeens
FIGURE 5-4 THE CO-ORDINATE SYSTEM ..veeteutteeeeureeesaueeesessseeesasssesessssessssssessssssesssssssessssssssssssssessssssesssssssesssssseessns
FIGURE 5-5 ROBERT'S FIRST 3-D MODEL FOR THE PYRAMID ..
FIGURE 5-6 ROBERT'S SKETCH FOR FIRST FOUR LAYERS ....vveeeiuvreeeesreeessuueesessssessassseeesssssessssssesssnsssesssssssessssseesssnssessnns
FIGURE 5-7 ROBERT'S INCOMPLETE BLUE AND RED MODEL .....uvveeeeureeeeeiueeeessseseessseeeeessesessssesessssseessssssesssssssssnsssaennes
FIGURE 5-8 R1'S AND ROBERT'S IMODEL ..c.uutveeeeireeeeitteeeesteeeeestteeesestesessseseanssssssasssssssssssesssssessasssssessssssesansssesnnes
FIGURE 5-9 THE TAXI-CAB HANDOUT ...ciiiiiiiiiiiee ettt
FIGURE 5-10 ROBERT LISTS PASCAL'S TRIANGLE ON TAXI-CAB GRID ...vveeeeuvveeesureeeesureeesassesessssesessssessssssesssssssesassssesnnes 97
FIGURE 5-11 ROBERT EXPLAINS TAXI-CAB ON HIS MODEL
FIGURE 5-12 FOUR SHORTEST ROUTES TO DESTINATION ...eeeeiuvteeeeuteeesauuresessseeeassseeessssesssssssessssseesssssssesssseessnssseesnnns
FIGURE 5-13 ROBERT POINTS OUT THE SOLUTION FOR TAXI-CAB ON HIS MODEL .....ccevvvuuiieeeeererennnneeeeeeennnnnsneseseesnnnnnnnns 101
FIGURE 5-14 STEP BY STEP CONSTRUCTION OF THE PYRAMID MODEL......uvveeeierieeesirieeeeereeeseereeesneeesennsneessnsneessnnseneas 105
FIGURE 5-15 MARJORY MAPS UNIFIX CUBES TO THE TRIANGLE ..eeceeuvrreeetreeeeitreeeesreeeeessseeeessseeeessseeeesaseeesssssesessssenens
FIGURE 5-16 ROBERT'S HOLLOW MODEL UP TO THE THIRD LAYER ... .
FIGURE 5-17 ROBERT'S CORRECTED THIRD LAYER ....veeeeeutieeeitteeeeitreeeeesseeesiaseeeesssseeeesssesesasssssssssssssnssssesasssesesssseeann
FIGURE 5-18 MARJORY CONNECTS HER PASCAL TRIANGLE'S ROWS ... veeeeuvreresureeeeserreeeenreeessnssesssssessssnssesssssssssnnsesenn
FIGURE 5-19 ROBERT EXPLAINS MULTIPLICATION IN PASCAL'S TRIANGLE ...veeeveuveeeererreeeeiureeessnsreessssesssssseeesssssessssssesens
FIGURE 5-20 MARJORY BUILDS THIRD LAYER OF THE TRIANGLE ...cecuvvveeeeuereeesureesessteeesssnsesessnssesesssessssnssesssnssesssnnseeenn
FIGURE 5-21 MARJORY MAPS TOWERS TO THIRD ROW OF PASCAL'S TRIANGLE ...eeeeruvreeeerereresinereeesnreeessnsneessnseessnnseeens
FIGURE 5-22 ROBERT BUILDS NINE TOWERS FOR SECOND LAYER OF PYRAMID ... .
FIGURE 5-23 MARJORY ARRANGES TOWERS FOR SECOND LAYER OF PYRAMID .....ceeeiuviieeeiiiieeeitiieeeeireeeeeireeeesaneeeessseaaas
FIGURE 5-24 MARJORY PLACES 27 TOWERS OF THE THIRD LAYER ON THE MODEL «.eeeiviiiiiiiiiiiiieeieeceeeeeeeeeeeeeee e, 117

Xiv


file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352265
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352266
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352267
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352268
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352269
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352270
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352271
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352272
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352273
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352274
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352275
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352276
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352277
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352278
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352279
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352280
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352281
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352282
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352283
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352284
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352285
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352286
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352287
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352288
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352289
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352290
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352292
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352293
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352294
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352295
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352296
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352297
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352298
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352299
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352300
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352301
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352302
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352303
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352304
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352305
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352306
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352307

FIGURE 5-25 MARJORY ARRANGES SIX TOWERS TO MATCH THE FACE OF PYRAMID....cccceiveiuvriieeieeeeeriirreeeeeeeessnvnnneeeeeeens 119
FIGURE 5-26 ROBERT'S THIRD LAYER WITH ALL BLUE CONNECTORS .... .
FIGURE 6-1 BRIAN LISTS THE POSSIBLE COMBINATIONS .tieeieieieeieieeeieeeeeeeeeeeeeee e e e ee e e eeee e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaaaaaaaens
FIGURE 6-2 ROBERT WRITES OUT COMBINATIONS FORMULA.....cciiiiiiiiieieieeeeecceeeeeeee et ee e aee e e e ae e e e e e e e e e e e
FIGURE 6-3 ROBERT SIMPLIFIES N CHOOSE 2 .iiiiiieieeieeeeeeeeee ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e aaaa e
FIGURE 6-4 ROBERT SHOWS WHERE BLUE BLOCKS CAN GO ..eeeiieiieieiiiieieieeeeeeeeeeeeeeee e e eeeee e e e eeeaeeee e e e aeaeaaaeaaaaaaeaaaaaaaaaeas
FIGURE 6-5 BRIAN MAKES 12 TOWERS ..eeeeetieutttrreeeesssssnerereeesseesnssaseeesssssasssssesesessssssssssessesssessssssssesssesssnssssessesssns
FIGURE 6-6 BRIAN CROSSES OUT THE REPEATING TOWERS... .
FIGURE 6-7 BRIAN WRITES ROWS OF PASCAL'S TRIANGLE. ... .vveeeesttreeeeereeesiureeeesasseesasssesesssssssessssessssssssesssssesesnssesenn

FIGURE 6-8 ROBERT EXPLAINS BINOMIAL EXPANSION ON TRIANGLE ..vveeeevreeesiurreeestreeeeisreeesssssesssssesessnsssesssssesessssesens
FIGURE 6-9 ROBERT WRITES COMBINATIONS FOR FOURTH ROW OF THE TRIANGLE ...ceeeeeieiiirieeeeeeeesinrreeeeeeeeeennnnneeeeeeans 132
FIGURE 6-10 BRIAN SOLVES FOR “TWO REDS IN A HUNDRED TALL” TOWER .......uuuuiieeeeeeieiiinreeeeeeeeesinrseeeeseeesensnseeeseseans 133
FIGURE 6-11 ROBERT'S BINARY LIST FOR SIX GAMES SERIES ......

FIGURE 6-12 TOTAL COMBINATIONS TO ARRANGE FIVE PEOPLE

FIGURE 6-13 MICHAEL WRITES OUT ROWS OF PASCAL'S TRIANGLE ...vveeeeuvreeeiureeeeitreeeessreeesssseessssesessssssesssssssessssesens 147
FIGURE 6-14 MICHAEL WRITES COMBINATIONS FOR PASCAL'S TRIANGLE ...veeeeuvreeeirreeeesireeesssreeeessseseessseeessssesessssesens 148
FIGURE 6-15 ROBERT'S SIX TOWERS FOR THREE TALL +uuuvveeeiutreeeesurreesesseeessuseseessssessasssssessssssssssssssesnsssssssssssssssssseenn 150
FIGURE 6-16 AMY LYNN'S 36 TOWERS FOR FOUR TALL TOWERS......uuuvureeeeeeeieirrreeeeeeesesinssseeeeseeesssssssseesesesssssnssessessans 151
FIGURE 6-17 ROBERT'S REPRESENTATION FOR FOUR TALL TOWERS «...uvvvveeeeeeieiutrreeeeeeesesnnreeeeesesessisrseseesesesssssssesseeeans 152
FIGURE 6-18 ROBERT EXPLAINS HOW TOWERS DOUBLE IN NUMBER WITH TWO COLORS ......uvvverieeeeerinrreeeeeeeeseennnseeeeeeeans 154
FIGURE 6-19 ROBERT'S SOLUTION FOR 4-TOPPING PIZZAS...veeeeeeeeeieiurureeeeeeeieiisreeseeessesissssssesesesssssssssesssesssssssesseesans 157
FIGURE 6-20 ROBERT'S SKETCH OF TOWERS ...vveeeetteeeeeutteeesuseeeasssseesessasessssessssssssseasssssessssssssssssesessssssssssssesesssesenn 163
FIGURE 6-21 ANGELA AND MAGDA FIND 14 TOWERS ....uvveeeitteeeestteeeeesreeesiaseesesssseseasssssessssssssssssesesssssessssssssssssesenn 166
FIGURE 6-22 ROBERT AND MICHELLE'S TOWERS ....vvveeeeuvieeesireeeesireeeeennneesnnnas ...167

FIGURE 6-23 ROBERT AND MICHELLE'S TOWERS SIX TALL WITH EXACTLY TWO BLUE .eeevivieiiiiiiiiiiieieieiieeeeeeeeeeeeeeeeeeeee e 170
FIGURE 6-24 ROBERT'S PATTERN FOR TOWERS WITH EXACTLY TWO BLUE ..ccceeveuveriieeeeeieinrreeeeeeesesisnreeeresseesssssaneeesssesns

FIGURE 7-1 STEPHANIE'S FAMILY TREE FOR TOWERS ....uuuuvvveieeeeieiinureeeeeeeeesasnsaseeesesssessssssresesssssssssssesesssssssssssssesssssns

FIGURE 7-2 ROBERT'S SOLUTION FOR THREE-TALL TOWERS +.vvveetiieiuurereeeeeeessssseeereeeesssssssseresesssssssnsssesessssssssasssessessns

FIGURE 7-3 ROBERT'S SOLUTION FOR FOUR-TALL TOWERS... .
FIGURE 7-4 ROMINA'S LIST OF 8 PIZZAS ..ccciiieiutvteeeeeeiieiiareeeteseteiiistaseseseeessssasesssesssesssssssssesssemsssrssssesssessssssssssseesns
FIGURE 7-5 ANKUR'S LIST OF PIZZAS .vvvvveieiiieitureeeeeeeieiisteeeteseseiissasesesssesassssssssesssemssssssssesssemssssssssessesssssssssssseenns
FIGURE 7-6 GROUP SOLUTION = PAGE L......ciirieeeeeeeeiiireeeeeeeeeeeiaeeeeeeeeeeetnsaeeeeeesesnnnsaeeseeesesnnsssseesesesannsnsaeeeseesnn
FIGURE 7-7 GROUP SOLUTION = PAGE 2......ttireeeeeeeeeciireeeeeeeeeseataeeeeeeeeseeatnsaeeeeessesasssaessaeesessnnrseseesseesaansnsseeesenann
FIGURE 7-8 ROBERT'S LIST FOR PIZZAS...cc.cceteetureeeeeeeeesiisreeeeeeesesasssaseeesesesassssssesesssesssssessesssesssssssssesssesmmssnsssseseesnn
FIGURE 7-9 ROBERT'S TREE DIAGRAM .....ceeevurrrrreeeeeeinnreeeeeeesenannnns .
FIGURE 7-10 ROBERT'S EXPLANATION FOR "PLACES" IN BINARY DIGITS vvvveeeeeeiiirrrreereeeieiirnreeereeesessnreeeseseeessssssseeseessns
FIGURE 7-11 ROBERT'S BINARY LIST FOR CANDLES ARRANGEMENTS ..vvvvvvreeeeeiiiurnreeeeeeeiessnreeeseeesesssreeesesseesssssssesseeesns
FIGURE 8-1 ROBERT'S CIRCULAR AND TRIANGULAR CROSS SECTIONS ...uvvvveeeeeeiiiurrrreeeeeeiesissreeeseeesesssreessesseessssassesseessns
FIGURE 8-2 STAR OF DAVID, THREE TRIANGLES AND "PRETTY" THIRD LAYER ...uuvvvrveeieeeieiirrreeereeeeeiianreeereseeesssraneeeseeenns
FIGURE 8-3 ROBERT'S CROSS SECTIONS FOR FIRST FOUR LAYERS OF THE PYRAMID..... .
FIGURE 8-4 ROBERT'S BOTTOM UP CONSTRUCTION OF THE PYRAMID'S MODEL ...vvvveeeeeeieirrreeeeeeeeesinrreeeeeeeessensnseeeesenens
FIGURE 8-5 ROBERT PUTS UNIFIX CUBES AND ZOME TOOLS TOGETHER vvveeeeeeieiurrreeeeeeeiesitnreeeeeeeeesisrseeeeeseessssnsseeseesans
FIGURE 8-6 ROBERT'S SKETCH OF "FAMILY TREE" .. iiiiiiiiiiiiiiiiieieceeeeeeeeeeeeee ettt ettt ettt

XV


file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352308
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352309
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352310
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352311
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352312
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352313
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352314
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352315
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352316
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352317
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352318
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352319
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352320
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352321
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352322
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352323
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352324
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352325
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352326
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352327
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352328
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352329
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352331
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352332
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352333
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352334
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352335
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352336
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352337
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352338
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352339
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352340
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352342
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352343
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352344
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352345
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352347
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352348
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352349
file:///H:/Full%20Dissertation/Final%20Anoop.docx%23_Toc275352350

1. INTRODUCTION

1.1 Statement of the Problem

To help students become better problem solvers in mathematics, understanding
how representations play a role in problem solving can be of great significance. A deeper
understanding of how representations assist a student in solving problems can help
practitioners design lessons that invite students to build their own representations to solve
problems in mathematics. By representations, | mean how ideas are represented
externally by what the student says, writes, draws, or builds to solve a mathematical
problem.

The National Council for Teachers of Mathematics (NCTM) in its document,
Principles and Standards for School Mathematics (2000a), identifies five process
standards, with one of them focusing on representations. This document recommends
that all students kindergarten through grade 12 should be able to: “l1) create and use
representations to organize, record, and communicate mathematical ideas; 2) select, apply
and translate among mathematical representations to solve problems; and 3) use
representation(s) to model and interpret physical, social and mathematical phenomena”
(NCTM, 20004, p. 67). The NCTM standard also states that the mathematics curriculum
should provide students with opportunities to “represent their ideas in ways that make
sense to them, even if their first representations are not conventional ones” (p. 67).

The NCTM standard suggests that creating representations “can play an important
role in helping students understand and solve problems” (p. 68). The standard further

states that students need to develop an understanding of the strengths and weaknesses of



various representations and use them as meaningful ways to “record a solution method
and to describe the method to others” (p. 68). The standard also affirms that the
representations that students develop can help teachers understand “students’ ways of
interpreting and thinking about mathematics” (p. 68). That is, observing how students
represent their ideas as they do mathematics or solve problems can help educators and
researchers gain knowledge of how they “understand” or “do” mathematics.

Research has shown that use of particular modes of representation, visual or
concrete, can improve a student’s mathematical success, reasoning skills and problem
solving skills (Cifarelli, 1998; Niemi, 1996; Novick 1990). Students’ use of
representations can play a central role in problem solving by serving as an illustration of
symbolic results, helping a student resolve conflicts between correct and incorrect
intuitions and helping a student understand the conceptual fundamentals of a
mathematical task (Arcavi, 2003). Also, Pape and Tchoshanov (2001) contend that the
brain works more effectively when it makes representational patterns for encoding
(internalizing) and decoding (externalizing) information. They explain that when a
student can “see” the relationship, he/she can easily memorize (internalize) and reproduce
(externalize) the idea. For example, students often can’t remember a number like
1123581321345589 unless they see the Fibonacci pattern where each term is the sum of
the two immediately preceding terms (Pape and Tchoshanov).

Goldin (1987) says that competent problem solvers have systems of
representation that help them access “the world of imagined experience” to resolve
problem solving situations. Cifarelli (1998) conducted an empirical study to show that

the success of capable problem solvers is highly related to their ability to construct



appropriate representations and use them for the information and relationships described
in the problem. Pape and Tchoshanov (2001) explain this relation between problem
solving and construction of representations by asserting that representations help
students keep track of their ideas, inferences and the intermediate steps and act as an
important tool for absorbing some of the “cognitive load” during problem solving.
Hence, they believe that students who are fluent in constructing representations can free
up their mind by jotting down some of the important information in form of
representations and then focus on the big picture of the problem. This can help students
perform better on problems that have many different parts or various aspects that need
attention at the same time.

The Rutgers Longitudinal Study has several examples where students used their
own representations to communicate ideas and convince peers and researchers of their
solutions and justifications for a mathematical problem (Maher, Martino & Alston, 1993;
Davis & Maher, 1997; Maher & Martino, 1996). The longitudinal study research was
conducted with a belief that students can construct their own mathematical understanding
and build their own representations when they are given ample time to work on
meaningful mathematical tasks with minimum intervention (Davis & Maher, 1990).
Davis, Maher, and Martino (1992) contend that in order to build abstract ideas, the
students need to build, rebuild, revisit and talk about their representations over a long
period of time. For the Rutgers longitudinal-study students, using representations to
solve a problem and to communicate their ideas was a natural part of their learning as

they were given several opportunities to rebuild and revisit their representations.



Maher, Martino & Alston (1993) demonstrated that as students construct more
elaborate and sophisticated representations for new problems, they expand their existing
knowledge. Maher and Yankelewitz (2010) concluded that representations helped young
students effectively communicate with others about their problem solving schemes much
like an adult, active member of the mathematical community. Muter and Uptegrove
(2010) pointed out that students from the Rutgers longitudinal study were able to connect
many different problems and discover the mathematical connection by co-constructing
and implementing a common representation.

Studying the initial representations offered by a student while working on a
mathematical problem can give an insight into how his/her mathematical ideas originate,

get connected and are extended through problem solving experiences.

1.2 Background of Longitudinal Study

This study is grounded in extensive research done in the public schools in
Kenilworth, New Jersey, a working class community, as part of the Rutgers longitudinal
study on the development of mathematical ideas in learners. The longitudinal study is
now in its 24™ year. The first purpose of the study was to explore the development of
student’s mathematical ideas that later lead to a study of their reasoning. The first eight
years of the research were conducted in classrooms at the Harding Elementary School.
At this elementary school, the students were being taught mathematics in half hour
sessions and mostly rote methods were used. As such, the students were having difficulty
with mathematics. The student difficulties led the school to a partnership with Rutgers

University that began in 1984. The first step for this partnership was to conduct



professional development at the school and later, to study the effect of intervention on
student learning.

For the first three years, this collaboration took the form of a teacher development
project. Dr. Carolyn A. Maher, professor of mathematics education at Rutgers University
and director of the longitudinal study and her team of graduate students worked with
teachers to help them build an understanding of the mathematics they were teaching their
students. Dr. Mabher initiated a formal longitudinal study in 1987. In 1992, when
students in the study were in fourth grade, the National Science Foundation funded the
Rutgers research team with a grant for the longitudinal study. The various pieces of the
study were partially funded by NSF grants MDR 9053597, directed by Robert B. Davis
and Carolyn Maher, and REC9814846, directed by Carolyn Maher, as well as by grant
93-992022-8001 from the New Jersey Department of Higher Education.

As a part of the longitudinal study, the students were followed from elementary
grades all the way up to high school years. Some were even interviewed and studied
beyond high school. The topics that students investigated involved counting,
combinatorics, algebra, probability pre-calculus, and calculus. The activities were open-
ended in nature and provided the students with meaningful problem-solving experiences
(Maher, Powell & Uptegrove, 2010). The researchers took up the role of a facilitator
while students worked by themselves or in small groups to make sense of the new
mathematical ideas. The students were not graded for their work but were encouraged to
share their work with their classmates and the instructors by talking about their ideas or
by presenting ideas on the projector to the entire class. The students were encouraged to

explain their understanding and convince themselves, their peers, and the researchers of



their solutions or ideas about how they would solve the problems. The students were
aware of the high expectations that involved defending their work to the peers and
researchers and took it upon themselves to come up with satisfactory solutions and
explanations (Maher, PME 2002). The sessions at all the sites were videotaped and the
work of students, along with the field notes from researchers, was preserved in an
archive.

The investigations were designed by the researchers and contained mathematics
that had not yet been introduced into the school curriculum at the time of the study. The
task design was crafted to provide a platform where students were invited to build
mathematical ideas in ways that encouraged sense-making. Students worked in pairs or
small groups to build not only individual but also a collaborative understanding of
mathematics. Some tasks, like building towers of a specific height selecting from Unifix
cubes of either two or three different colors, were revisited many times with new
variations or extensions added to the original task. In addition, tasks that had apparently
different features but shared a similar mathematical structure were given to students so
that they could have an opportunity to connect mathematical ideas and discover
isomorphism.

Throughout the study, researchers conducted several interviews with one or more
students at a time to enable deeper exploration of students’ ideas. They challenged
students to explain their ideas in a clearer manner through verbal or written explanations
and justifications. The problem-solving sessions and interviews were videotaped. In

order to get a detailed view and to capture the student actions, multiple cameras were



used in the study. This enabled researchers to study an event through many different

viewing angles.

1.3  Purpose of the Study

This study traced and analyzed the external representations used by Robert Sigley
(Bobby) as he tried to discover and understand problems related to the properties of
Pascal’s Pyramid. Robert was part of the original cohort of students from Kenilworth
and participated in the longitudinal study since the first grade. Robert is currently 27
years old and works as Applications Developer at the Graduate School of Education at
Rutgers. His willingness to re-visit the tasks that were introduced to him during his
school years, along with his continued interest in solving new mathematical problems,
made him an appropriate participant for the study. Also, Robert went on to pursue a
baccalaureate degree in mathematics and a graduate degree in statistics. His continued
education in fields related to mathematics made it possible for me to introduce
challenging combinatorial tasks that were aimed at eliciting creation of multiple
representations. Furthermore, Robert was exposed to many challenging tasks at an early
age through the longitudinal study and there is video data from his school years that
provided an interesting insight into Robert’s work as a young student.

The central activity that Robert worked on during his interviews with me was to
understand properties of Pascal’s Pyramid and how they can be used to solve a set of
combinatorial tasks like the Building Towers Activity for three-colored Unifix blocks,
Ankur’s Challenge and the TaxiCab Problem. From his earlier work in the longitudinal
study, there was video data available where Robert works with problems like the World

Series Problem, The Garage Door Problem, The Candles Arrangements Problem, Guess



My Rule, Pizza Toppings problem, etc. Specifically, this study analyzed Robert’s
problem solving strategies through a lens that focused on the role of external
representations. That is, to understand Robert’s mathematical ideas, his external
representations were used as a lens to analyze his problem-solving heuristics, strategies
and justifications along with his hand-written work and verbal explanations. This
research also analyzed some of Robert’s earlier ideas from previous explorations and
attempted to trace where his ideas related to Pascal’s Triangle and Pyramid originally
came from, how he built on these ideas and how he connected them across the range of

various activities.

1.4 Research Questions

The following research questions guided the investigations:
1) What are the external representations that Robert uses to help him understand
problems related to the properties of Pascal’s Pyramid?
2) How, if at all, do these external representations help him in solving problems
related to Pascal’s Triangle or Pyramid?
3) How does he use, modify or reuse his external representations over time to
provide justifications for his solutions?

4) What connections, if any, does he make to earlier problem solving?



2. Literature Review/ Theoretical Framework

2.1. Introduction

Davis and Maher (1990) indicate that when students are given the opportunity to
work with problems that are well-designed and challenging and work in a supportive
environment, they begin solving a problem by making personal representations. Maher
(1998) further indicates that students develop their reasoning as they build connections
between and among the representational systems. Novick (1990) suggests that it is not
always easy for an observer to distinguish between the fine point “at which solvers stop
representing information and start solving the problem” (p. 129). As such, understanding
students’ representations and how they use them to solve a problem are complex ideas
but important for providing important insight into how children reason about
mathematical ideas. This literature review will first discuss theoretical views related to
learning mathematics with understanding and how students use representations to build
this understanding. Then, research that has been carried out in relation to these views
will be outlined in the context of how representations can help a student build

mathematical understanding and successfully solve problems.

2.2  Theoretical Framework

2.2.1 Mathematical Understanding

Davis proposes a theory to explain what happens in students’ mind when they
“do” mathematics. In his theory, he explains some mechanisms that capture

“understanding” of mathematics (Davis, 1992). Davis, in his book, Learning
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Mathematics: A Cognitive Science Approach explains that understanding mathematics is
a matter of fitting a new idea into larger framework of ideas that are assembled
previously (Davis, 1984). This is Davis’ idea of an “assimilation paradigm.” He states
that students create their own ways of understanding and what they learn is built upon the
“previously-built-up understanding” which can possibly control or even limit future
learning (Davis, 1992). He compares this to solving a jig-saw puzzle where a new piece
is only helpful if it fits part of the puzzle that you have already figured out. That is, the
new ideas are only useful when they act as an “answer” to a question that was already of
interest to the learner (Davis, 1992).

Skemp (1976) provides a view on understanding that is particularly applicable to
this study. He identifies instrumental and relational understanding as two types of
understanding. He defines instrumental knowledge to be the basic knowledge about
different rules and procedures in mathematics in contrast to conceptual understanding and
understanding of relations between and among various concepts. Skemp (1976) holds
that instrumental understanding is easier to teach and learn and can also provide
immediate rewards. Skemp (1976) indicates that instrumental understanding is more
prevalent in school mathematics teaching. He defines relational knowledge to be
conceptual knowledge where students can use concepts to make relations, adapt and
modify ideas and use them in new situations. Skemp (1976) suggests that although
relational understanding is more difficult to learn, it is more enduring than the
instrumental understanding. Furthermore, relational understanding can be effective as a
goal in itself. It can, according to Skemp (1976) act as an “organic” agent in motivating

students to explore new relations and build conceptual understanding on their own.
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Hiebert and Leferve (1986) also make a distinction between procedural and conceptual
knowledge. They describe conceptual knowledge as “rich in relationships” whereas
procedural knowledge might not be linked to other knowledge (Hiebert & Leferve, 1986,
p. 3).

Zoltan Dienes outlines a six-stage theory of learning mathematics in his book,
Building Up Mathematics (Dienes, 1971). The six stages are: free play; games; search
for communalities; representation; symbolization; and, formalization. He describes the
“trial and error” activity as the first stage of play. When a learner realizes the rules to
play and uses them, the activity becomes a game. The next stage is when the learner
begins to see that many different games share the same structure. This is the stage where
a learner is searching for isomorphisms. When a learner is able to make successful
distinctions between the relevant and irrelevant features of the many games, he/she is
ready for a representation. Dienes recommends that formal symbolic language should
only be introduced after the learner has reached the representation stage. And finally,
when a learner works with symbols and formalizes them, he/she is able to reach an
abstraction for the idea at hand (Dienes, 1975, p. 83-84).

In order to achieve mathematical understanding, one needs to consider the role of
the teacher and the environment for learning. Davis and Maher (1997) indicate that there
is a need for change from a teacher-centered learning environment to a more student-
centered environment. According to Davis, in this new type of environment, students
would be able to build up mathematical ideas and conceptual understanding themselves.
As students share their ideas and make their thinking public through group work,

interviews, or class discussions, the teacher has an opportunity to observe and explore
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student’s ideas in development. As the teacher asks students to explain their ideas and
probe their justifications, they help students build for themselves a deeper understanding

of the mathematical concepts (Maher & Martino, 1992).

2.2.2 Representations

The NCTM (2000a) defines representations as following:

The term representation refers both to process and to product — in other words, to

the act of capturing a mathematical concept or relationship in some form and to

the form itself. (p. 67)

The NCTM further states that the term “representation” can apply to externally
observable as well as internal processes and products that people use while doing
mathematics. Goldin (1998) proposed a model for systems of representations that
outlines the many attributes of external and internal representations.

Goldin (1998) describes natural languages, notation systems and computer
environments (“microworlds”) to be external to the individual and recommends that the
external representational systems should be analyzed independently of the cognitions of
the learner. Goldin (1998) notes that external representations can be very structured and
the study of these systems can provide significant insight into problem-solving behavior.

Goldin (1998) proposes five categories of “mature internal representational
systems” (p. 148). He describes verbal/syntactic system to be an individual’s capability
to process “natural language, on the level of words, phrases and sentences (only)” (p.
149). In this system of internal representations, Goldin includes an individual’s ability to
understand and work with common definitions, verbal descriptions, synonyms, antonyms

along with grammar and syntax information of a language. In the formal notational

systems, Goldin suggests that formal notations of mathematics have external as well as
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internal aspects of representations that can be studied. He contends that a skilled problem
solver can make relationships between the formal “symbols, imagistic configurations, and
words” (p. 153). That is, a competent problem solver can not only understand a problem
and convert it to formal symbols, but can also “imagine” the situation of the problem by
constructing imagistic configurations internally. Then, the solver is further able to
translate the imagistic configurations back to formal notations. Although use of the
imagistic competencies is mostly “tacit,” Goldin suggests that a careful analysis of words
and symbols of the problem solver can help one describe his/her imagistic processing (p.
153).

In the planning, monitoring and executive control system of internal
representations, Goldin includes the various strategies and heuristics used by an
individual to solve a problem. For example, he includes the planning, monitoring and
decision-making steps used by the problem solver in this system of internal
representations. Also, a problem solver’s heuristic processes like “trial and error”, “think
of a simpler problem”, “explore special cases”, etc are considered a part of this system.
Goldin points out that these heuristics can be complex to study or isolate as “ heuristic
processes can access each other, and act on each other in the course of their use” (p. 154).

Goldin and Shteingold (2001) write:

A mathematical representation cannot be understood in isolation. A specific

formula or equation, a concrete arrangement of base-ten blocks, or a particular

graph in Cartesian coordinates makes sense only as a part of a wider system

within which meanings and conventions have been established (p. 1).

As such, they suggest that to understand representations offered by a student, one

needs to pay attention to cognitive, social, and affective attributes that the student assigns

to these representations. The representations should be studied not in isolation but as a
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part of all the various problem-solving strategies that a student implements for a
particular task.

Maher and Weber (in press) use Goldin’s theory of representation systems to offer
a definition of conceptual understanding; they used data from the Rutgers longitudinal
study to show how students can construct this conceptual understanding. Maher and
Weber assert using Goldin’s model that students understand new representation systems
by forming links with representation systems that are intuitively meaningful to them.
They further state that participants in the longitudinal study respected each other’s
representation systems and used these systems to build understanding. Maher and Weber
contend that asking students to justify and explain their work to others allows the students
to reflect on their representation systems. In process of explaining the representation
system to others, the students are able to build an explicit understanding of their
representations.

Davis, in addressing “mental representations,” indicates that the building of these
representations is usually so quick that one may doubt if anything has actually happened
(Davis 1984). However, this process is rather complicated and deserves a closer
inspection. Davis (1984) suggests that students move through a cycle, once or many
times, to think about a mathematical situation.

Davis suggests that learners build new knowledge from existing knowledge in the
process of thoughtful problem solving, beginning by first building a representation for the
data of the problem. A memory search for a representation of knowledge that are
relevant to the problem at hand, brings forth certain representations, and if such

representations do not already exist, the solver might construct them. Then, the solver
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tries to map the representations from the data to the knowledge representations and judge
if the representations are satisfactory. The process can lead to a successful solution to the
problem if the constructions are appropriate. However, if the mapping between data and
knowledge representations is not satisfactory, the solver might have to repeat this cycle a
few times or create new representations (Davis, 1984).

Davis further suggests that visualization or representations can help a student
foresee the “unseen” in problem solving situations. Davis uses the phrase visually-
moderated-sequences (VMS) to explain this; he describes VMS as a procedure where one
may use visualization as a tool to remove oneself from situations in which one may be
uncertain of how to proceed. He gives, as an example, how one might not remember
exactly how to get to a destination that one visits very occasionally. However when one
sets out to drive, the visual reminders on the way like the ice cream shop, help one
remember the next turn and give clues to the subsequent sequence of directions. In a
similar manner, when a student sets out to solve a problem, the intermediary steps like
making representations for the information in the problem can provide clues to the next
step in problem solving.

Raymond Duval (1999) says that the role of representation and visualization lies
at the core of understanding mathematics. Duval sees visualization as the intuition one
might have for an object and representation as a way to denote that intuition. Duval
explains representations through the idea of a “register” where he defines a semiotic
system that leads to a specific way of representing and processing for mathematical
thinking as a “register of representation” (p. 6). For example, he considers Cartesian

graphs a “register.” Duval states that in a problem- solving situation, a student needs to
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be able to change registers because another representation might be needed or because
two registers might be needed simultaneously. Duval emphasizes that understanding of
mathematics requires that one does not confuse the mathematical objects with their
representations. He also cautions that the distinction between internal and external
representations only refers to their mode of production and not to their form or nature.
Greer and Harel (1998) contend that “a central goal of mathematics education is
to increase the power of students’ representations” (p. 22). They emphasize that
isomorphism plays an important role in helping students to notice and develop the
structural relationships in mathematics. They recommend that students should be
encouraged to recognize isomorphism as a means to generally improving their
representational skills. Greer and Harel view “isomorphisms as components of mental
representations” that are constructed by individuals as they gradually “assimilate” and
work with given situations (p. 11). They propose three models for construction of
isomorphism and explain how an individual might make a surface-level isomorphism,
deep isomorphism or a mediated isomorphism. For example, they explain that a student
is making a surface-level isomorphism when he/she uses the “conservation formula” to
solve a problem with “nasty” numbers by substituting “friendly” numbers in there (p. 13).
As an example of deep isomorphism, they cite a case where a student makes a diagram to
illustrate the problem: “how many ways can you distribute 8 candies among 3 children?”
and realizes that this problem is the same as asking: “how many combinations can you
position two sticks in the spaces between them (the candies)” (p. 14). In a mediated
isomorphism there is a third situation that acts as a mediator to help construct

isomorphism between two other situations.
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Gerard Vergnaud (1998) proposed a representational theory for understanding
mathematics in terms of schemes, “theorem-in-action” and “concept-in-action.”
Vergnaud postulates that a student brings a full collection of schemes to problem-solving
situations that were developed from previous learning. Vergnaud indicates that while
learners are working with peers on new mathematical problems, new schemes are
developed or former schemes are enhanced. This idea of building on schemes is similar
to building an assimilation paradigm where the learner assimilates new knowledge into
existing knowledge (Davis 1984; Davis & Maher, 1996).

In a classroom context, Vergnaud (1998) describes the teacher as a mediator
whose most important responsibility is to help students develop their collection of
schemes and representations by providing students with appropriate tasks to explore.
Vergnaud notes that the teachers are largely responsible for clarifying the goal to be
reached, providing a model for action, or helping students choose the relevant
information and reason with that information. Davis and Maher (1997) outline a similar
role of guidance for a mathematics educator and suggest using a “paradigm teaching
strategy” where students are exposed to carefully designed experiences that reflect the
structure of relevant mathematics. They contend that when students work on specifically
chosen activities, they create conceptual frameworks that later enable student to build
more abstract representations.

In a paper addressing goals for learning mathematics in schools, Davis and Maher
(1996) emphasize the need for changing mathematical instruction in classrooms to
encourage building representations and models that enhance students’ thinking rather

than memorizing dry facts. In addressing children’s construction of mathematical ideas
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in a conference in Brisbane, Australia, Maher, Martino and Alston (1993) report from
their data that as students continue to work on new problems, their representations
become increasingly elaborate and sophisticated and help them in expanding their
existing knowledge. NCTM (2000b) also encourages educators to use representations as
tools for learning and doing mathematics rather than teaching representations like

graphical displays and symbolic expressions as if “they were ends in themselves” (p. 14).

2.3 Related Research

2.3.1 Mathematical Understanding

Maher and Alston (1989) and Davis and Maher (1990), in a case study about a
student named Ling Chen, illustrate a distinction in the two types of understanding:
instrumental and relational. Ling Chen was interviewed during the summer after she
finished fifth grade when she was participating in a program for gifted students. This

interview was videotaped as she worked on the following problem:

1 1
Karen had a whole candy bar. She gives > to Kathy. She also gives 3 to Paul. How

much does she have left?

Figure 2-1 Ling Chen's Drawing (Maher & Alston, 1998, p. 244)
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Figure 2-2 Ling Chen’s Pattern Block construction (Maher & Alston, 1989, p. 244)

Ling Chen used pattern blocks to build a representation of the problem (Figure
2-2). With the blocks, Ling Chen concluded that one-sixth of the candy bar is left. Later,
the interviewer asked her if she could do the problem with numbers. Originally, Ling
Chen incorrectly used the algorithms she learned for fractions and she came up with an
answer that did not match her representation. Ling Chen was using her instrumental
understanding at this point. Later, she was able to match her numeric answer to her
representation by writing one-third divided by one-half equals one-third multiplied by
one-half, as she “reached” to go with her answer of one-sixth (Figure 2-3) (Maher &

Alston, 1989, p. 247).
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Figure 2-3 Ling Chen'’s three attempts to solve the problem (Maher & Alston, 1989, p.
247)

Although Ling Chen knew the division algorithm for fractions, she did not

understand its relation to the candy bar task. Nevertheless, she was confident in her
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reasoning and representations and was able to choose the correct solution for the
problem. The researchers concluded that in this instance, as Ling Chen had chosen a
“concrete imagery,” she had access to mental representations that enabled her to think

“reliably about problems of this type” (Maher & Alston, 1989, p. 248).

2.3.2 Representations

Robert B. Davis emphasized the importance of the representations that students
build, as he monitored growth in understanding when students “do” mathematics (Davis,
1984). Davis and Maher (1997) suggest that students’ representations can take many
different forms and modes. Also, as students build new schemas for their mathematical
understanding, these representations become increasingly sophisticated. As students
construct more elaborate and sophisticated representations for new problems, they have
further opportunity to expand their existing knowledge (Maher, Martino & Alston, 1993).

Davis and Maher used Brian’s work from fifth grade to explain how the cycle of
building representations that is outlined in the theoretical framework might be carried
out. Brian was a fifth grader when he solved the following pizza problem with Scott as
his partner:

At pizza hut each large pizza is cut into 12 slices. Mrs. Elson ordered two large

pizzas. Seven students from Mrs. Elson’s class are to eat one piece from each of

the pizzas. What fraction of the two pizzas was eaten? (Davis & Maher, 1990)

Brian had the option to work with pattern blocks that were shaped like Triangles,
hexagons, trapezoids, etc. The shapes of the blocks were such that six of the green
Triangles fit on one yellow hexagon; two of the red trapezoids fit on the yellow hexagon,

etc. There were many blocks of the same kind available. Brian first picked up a yellow

hexagon to represent a pizza and ignored the matter of representing the students who will
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eat the pizza. Once Brian had settled on representations for the pizza, he tried to work on
building representations for the children who were to eat the pizza. He initially took the
idea of “children in a class” and associated it with actual boys in his class at that moment
(Davis and Maher, 1990). Davis and Maher (1990) conjecture that Brian perhaps built up
a preliminary “primitive” representation of the problem in which the idea of “children in
a class” was not well represented at first. When Scott reminded him that there are only
seven students from Mrs. Elson’s class who will eat one slice form each of the two
pizzas, Brian worked to model the students eating the slices very concretely. Once Brian
had built representations for students who will eat the pizza, the knowledge
representation he had about fractions matched his data representations. Using his
fractional knowledge and representational model, Brian was able to finish the task
correctly.

Davis and Maher (1990) observed that Brian exhibited a deeper understanding of
the problem as he built representations of the data using concrete models, compared to
his partner Scott who worked on paper and pencil. Also, this excerpt showed that Brian
built his representations in parts, first for the pizzas, ignoring the children who will eat it,
and then for the children, ignoring the pizzas. Davis and Maher (1990) conjecture that
this behavior is common in adult experts as the problem solvers usually try to build
representations in pieces.

Brandon in the fourth grade built powerful representations that Greer and Harel
(1998) used as an illustration of an instance in research where a student not only created
his own representation but also discovered and proved the similarity in the structure of

two “unrelated” problems.
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Brandon had previously solved the question:

How many different towers can you build, if each tower is 4 cubes high and you have as
many red cubes, and as many yellow cubes, as you want?

Later, he worked on the following pizza problem:
How many different pizzas can be made if every pizza has cheese, but to this you can add
whichever of the following toppings you wish and in any combination you wish: peppers,
sausage, mushrooms and pepperoni? (Maher, Martino and Alston, 1993)

While working with the second problem, Brandon invented his very own notation
where 1 meant that the topping was present and 0 meant that the topping was missing.
He made a table with these “binary” symbols to come up with all the different

possibilities for pizza toppings. Furthermore, Brandon was actually able to see and prove

that the pizza problem was same as the problem of building towers.
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Figure 2-4 Brandon’s Work (Maher, Martino & Alston, 1993, p. 34)

The researchers summarize:

At this point Brandon’s insight moved him to exhilaration. He pointed out that
the group of four towers with exactly one red cube was like the four pizzas with
one topping in his chart. He carefully moved each tower and placed it on top of
the corresponding pizza code on the chart thereby validating the relationship he
had organized. He then explained how the red cubes in each tower correspond to
the “0”s in his pizza chart and how the yellow cubes in each tower correspond to
the “1”’s on his chart. (Maher, Martino & Alston, 1993, p. 36)
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This discovery is very impressive considering that the two problems, the towers
and the pizza problem are very different on the surface. Greer and Harel (1998) use
Brandon as an example to assert that recognizing and exploiting structural relationships
between situations that look different on the surface is an innate part of mathematical
cognition. Greer and Harel claim that Brandon’s insight into the isomorphism is not a
sudden recognition, but actually the result of a long process of construction that he had
mastered by working on his notational system while discussing and explaining his ideas
to his peers and the interviewer.

In the Rutgers longitudinal study, students often worked in groups to discuss
problems. As an example of how students working in groups can help each other build
on their representation systems and communicate their ideas, Davis, Maher and Martino
(1992) analyze the work of three students who worked on the following “Shirts and
Pants” activity.

Stephen has a white shirt, a blue shirt, and a yellow shirt. He has a pair of blue

jeans and a pair of white jeans. How many different outfits can he make?

Convince us that you have them all. (p. 178)

In second grade, Dana, Stephanie and Michael all made pictures of shirts and
jeans to represent the items of this problem. Michael suggested that only two outfits were
possible as he held that blue shirt only goes with blue jeans and the white shirt only goes
with white jeans. Dana and Stephanie told him that they were expected to find all
combinations possible. Stephanie labeled her shirts with “w” for white and “y” for
yellow and “b” for blue respectively and labeled the jeans similarly using a letter to
represent the color. She then made a list writing letters that symbolized shirts together

with letters that symbolized jeans and started counting her combinations. Dana drew
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pictures of shirts and pants and labeled them with a letter to represent colors also, but in
addition, she drew connecting lines to find outfits. Stephanie was able to find five
combinations and was convinced that she had found them all. Dana also found five
combinations as she did not include a line connecting a yellow shirt with white jeans.
Dana said that yellow shirt and white pants can’t go together. Davis, Maher, and Martino
(1992) contend that Dana’s list of outfits originated from her personal experience and
sense of style. Maher and Yankelewitz (2010) note that in second grade, none of the
three students counted all six outfits possible but they all showed that they were building

schemes to solve this problem.

Figure 2-5 Dana’s, Stephanie’s and Michael’s Second Grade work (Maher &
Yankelewitz, 2010)

Davis, Maher, and Martino (1992) contend that in order to build abstract ideas,
the students need to build, rebuild, revisit and talk about their representations over a long
period of time. In grade three when Dana, Michael and Stephanie revisited this problem
five months later, they found all six possible outfits. This time around, Stephanie and
Michael also used the strategy of connecting lines that Dana had used in second grade

and modified their representations. The students in this example had worked together on
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a problem and were given ample time to explore and justify their solutions along with an
opportunity to revisit the problem. Through co-construction of representations and
understanding, the students were able to build their knowledge, find the correct solution,

and convince researchers and peers of their solution.
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Figure 2-6 Dana’s, Stephanie’s and Michael’s Third Grade work (Maher and
Yankelewitz, 2010)

Davis and Maher (1990) propose that very young children are capable of building
mathematical understanding by using appropriate representations. This was
demonstrated by their work with Machtinger, a kindergarten teacher who helped her
students conjecture and prove theorems like even + even = even; even + odd = odd and
odd + odd= even by tapping into their representational understanding. In the school
Machtinger worked at, students walked in the corridors in pairs on a daily basis.
Machtinger took this very familiar situation for the students and defined “even” to be
such a group where every child has a partner and “odd” to be a group where one child is
left without a partner. Students were able to see that if an “even” group meets another
“even” group, it would be an “even” group as everyone in the original group already had

a partner; when two “odd” groups meet, the two children without partners can pair up to
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become an “even” group. Similar reasoning was used to help students discover that
“even” + “odd” = “odd.” Her approach was skillful and it gave students a chance to work
creatively and build on the representations they already knew well.

All through the examples outlined above, it is clear that there were many
occasions during the longitudinal study where students successfully built their own
representations to solve a new problem. The social co-construction of representations
was an important part of student discovery and sense making as in the example of Dana,
Michael and Stephanie. Students often relied on their external representations to defend
their solutions to peers or the researchers. They often worked with manipulatives or drew
pictures to help them break the problem into tangible pieces and built visual evidence for
their arguments as in the case of Brandon and Brian. Francisco and Maher (2005)
emphasize the important role that the classroom culture played in the longitudinal study
where students were invited to work on well-defined and open-ended mathematical tasks
and encouraged to justify their solutions.

David Niemi (1996) says that, “Students who cannot use mathematical symbols
appropriately and do not know the mathematical meanings of the symbols cannot be
judged to know mathematics” and calls for a greater emphasis on understanding symbols
and representations related to a mathematical concept (p. 361). Working with fifth-grade
students from Washington State, Niemi discovered that ‘“greater understanding of a
written representation is closely related to number of different synonymous meanings one
can associate with the representation” (p. 354). The statistical results from his study
showed that there was significant superiority of the “high-fluency group” that did very

well in relation to the concepts/principles and misconceptions dimensions. The “high-
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representational-knowledge group” came up with more correct solutions and provided
their answers with more graphical and verbal explanations. However, as Niemi had
anticipated, the overall performance level was quite low, as the majority of the students
did not have the desired synonymous meanings for the idea of a fraction. Niemi
recommends that students should be exposed to multiple meanings of a concept so that
they can build connections between various representations of a concept.

Thomas, Mulligan, and Goldin (2002) studied the representations of young
children by examining their drawings and verbal explanations of the meaning of numbers
1 — 100. In one task, the students were asked to think of the number 100 and draw
whatever representation comes to their mind. One of the students, Anthony, drew a truck
with an explanation “...cause my Dad’s truck does a hundred.” (p. 122) The researchers
coded this as an example of pictorial representation as Anthony connected the number
100 to speed of his Dad’s truck and saw the truck as a representation of it. Another
student, Andrew, drew a picture of 100 shells and researchers inferred that as the “shells”
were depicted with minimal detail, his representation was partially iconic. This study
provides evidence for Goldin’s (1998) conjecture that external representations can be
very structured and provide insight into the internal representations used by the student.
Further, the researchers contend that the representations that students had previously
developed provided a framework on which new cognitive structures could be built. They
proposed that the active processing of images plays an important part in the numeration
understanding of a child. From this study, Thomas, Mulligan and Goldin (2002)
concluded that as the internal representational systems are developed, more “cohered,

well-organized and stable” external representations emerge.
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Gagatsis and Shiakalli (2004) conducted a study focusing on 195 students from
the University of Cyprus to see if the “translation ability,” which students have for
different representations of a function, is correlated with their success in problem solving.
The results of Gagatsis and Shiakalli’s work reflected that the students see the verbal and
graphical representations of the function as two different tasks. They concluded that this
indicates that the students do not “understand” the idea of function, as they fail to
recognize it when it is embedded in representational systems with varying qualities. The
students in this study were not able to make connections between the external
representation of a function, the graph, and the internal representation related to the
verbal description of a function. Gagatsis and Shiakalli suggest that the instructor should
encourage students to perform simple translations from one representation of a concept to
the other. They advise that this will foster the students’ problem solving ability. Also,
they recommend that all modes of representation should be emphasized as each
representation has its own characteristic and poses different challenges for different
students.

Goldin (1998) emphasizes a need to address qualitative aspects of mathematical
performance (like abstract levels of solution activity) that are not usually considered an
important part of the study of representations. Cifarelli (1998) agrees with Goldin and
suggests that mental representation processes play a major role in problem solving.
Cifarelli observed fourteen first-year students at University of California as they worked
with a set of similar algebra word problems. Students were asked to talk aloud, and as
such the researcher was able to observe their dilemmas through verbalized reasoning.

Ciffarelli concluded that there is a need to acknowledge a “constructive function of
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representations in the development of conceptual knowledge and the resulting mental
objects that solvers can then reflect on and transform as they interpret problem situations”
(p. 261). In a particular instance, a student in this multiple case study was able to run
through her potential solution activity to anticipate a problematic situation. Cifarelli
points out that this is an example of Goldin’s imagistic processing as the student was able
to reflect on her potential activity as an object. Cifarelli suggests that problem solving
situations provide opportunities for solvers to “modify existing representations which
may have outlived their usefulness” (p. 241). This is in sync with Davis’s (1984) view on
how mathematical understanding is built.

A study by Rubel and Zolkower (2007) involved an interesting classroom activity
with beginning teachers that highlighted the significance of spatial versus kinesthetic
mathematical representations as outlined by Goldin (1998). The researchers gave the
participants the following two non-routine tasks and asked them to work in groups on one
problem of their choice.

Staircase Problem: Suppose that a staircase comprises ten steps and that you can

climb the stairs one or two steps at a time. In how many different ways can you
climb these ten steps?

Blocks Problem: You have a 2-by-10 rectangular frame as well as ten rectangular
blocks, each having the dimensions 2 by 1. Your task is to fill the frame with the
ten blocks so that no blocks overlap and the frame is entirely filled. In how many
different ways can you arrange the ten blocks? (Rubel & Zolkower, 2007, p. 341)

The first interesting thing about this experiment was that many participants had
immediate strong preference for one problem or the other. Each group spent forty
minutes working on their selected problem and summarized their work on a poster to

present to the class. The first group to present came up with the correct answer of 89
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ways by adding the correct number of combinations for each simpler case. As soon as
this solution was shared, the class felt curious and intrigued to find that the blocks
problem had the same solution as the stair problem. Many students were surprised by the
isomorphism between the two problems given that they had had strong preference for one
of the problems initially. This experiment showed that when a problem solver is engaged
in representations, the solutions depend on how each participant situates himself or
herself within the task at hand (Rubel & Zolkower, 2007).

Interestingly, although both tasks in the Rubel and Zolkower study involved an
iterative process and had an inductive solution in combinations, they had very important
differences. The blocks problem was spatial, as it called for placing blocks within the
fixed space, and the staircase problem called for climbing, which is a very dynamic
process. The nature of this difference made “each problem more imaginable, accessible
or challenging for different students” (p. 344). Rubel and Zolkower’s study further
suggests that students should be invited to work on a variety of problems that bring forth
a variety of representations.

Pape and Tchoshanov (2001) contend that the students usually come up with
initial representations based on the “purpose” for creating the representational form.
These initial representations are later refined by interacting with peers and the instructor.
The task of building representations from the ground up requires intensive “social co-
construction of meanings” and therefore, teachers and students need to work together to
build understanding of the mathematical operations as they manipulate the concrete
materials. Pape and Tchoshanov hypothesize that use of manipulatives facilitate the

building of new understandings and representations through the use of “analogy,
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transformation and simplification”. When working with manipulatives, the task of the
learner is to construct the mapping between the manipulation of concrete material and the
internal abstraction.

It has been supported through research that use of manipulatives can greatly assist
students in building their own representations (DeGeorge & Santoro, 2004; Hall, 1998).
DeGeorge and Santoro (2004) feel that using a multisensory approach to education
targets the “strongest learning channels of individual students.” (p. 28) Also, it has been
shown that students who use manipulatives in their math classroom usually outperform
those who do not (DeGeorge, Santoro, 2004; Hall, 1998). Although this benefit might be
slight, it holds across grade levels, ability levels, and topic, given that the student can
make sense of the use of manipulative for that topic (Clements, 1999). Furthermore,
manipulatives can increase scores on problem-solving tests along with improving student
attitudes towards mathematics (Clements, 1999). These findings resonate with
experiences of the Rutgers longitudinal study researchers as manipulatives were widely
used in the study and were found to facilitate student sense-making, reasoning and
creation of representations (Maher, Powell, & Uptegrove, 2010).

However, manipulatives are not always introduced or used effectively in a
classroom. Hall (1998) states that in a typical classroom, the teachers expect that the
“mathematical ideas embedded in these (concrete) materials, and in actions on them, will
be absorbed by porous and inanimate students.” (p. 33) Educators often do not realize
that the materials themselves are not enough to convey concepts, and that they need to
impose mathematical structure on them to help students get mathematical understanding

out of using them.
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Although NCTM (2000a) emphasizes that the students should be able to use
different forms of representations flexibly to work with real-world phenomenon, students
have a rather difficult time in developing mathematical representations. Hiebert (1988)
proposes a few things that can help students achieve representational competency. He
contends that students should first be able to connect symbols with the objects that they
represent. Then, the student must develop “manipulation procedures” for symbols that
should become routine over time. Finally, a student should be able to elaborate on these
symbols and rules to make more abstract systems using them as a building block. Pape
and Tchoshonov (2001) recommend that for a fair chance at benefitting from construction
of representations, students need ample time and opportunity to explore and understand
the mathematical concept at hand and build multiple representations. Furthermore, Pape
and Tchoshonov suggest that the students should have the freedom to negotiate the
meanings of the symbols they create as well as the meanings of the standard
representational forms with peers and the instructor.

Davis and Maher (1990) outline some very helpful hints for the teachers so that
they can help students build their own representational blocks. They point out that how a
teacher introduces a new idea is crucial to student success thereafter. Furthermore, if a
teacher can understand the student’s representation and discuss concepts in terms of these
representations, it can greatly benefit the student. On the other hand, Davis and Maher
(1990) warn that if the teacher misunderstands the representation, the discussion can be
very damaging to student progress. As such, they recommend that teachers should be
trained to encourage students to create their own representations and pay attention to the

meanings that students give to their representations.
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3. METHODOLOGY
3.1. Setting and Background

This study is situated in the longitudinal study that began in 1987 in Kenilworth,
New Jersey. Robert Sigley was a participant in the longitudinal study since first grade at
the Harding Elementary School in Kenilworth. Prior to the study, this K-8 elementary
school had half-hour sessions devoted to mathematics and the mathematical instruction
involved rote memorization of procedures or drill and practice of computational skills.
The principal of the Harding elementary school approached Rutgers University for help
with instruction in mathematics as most of the students from the school did not excel
when they moved on to high school mathematics classes (Maher, Powell, & Uptegrove,

2010).

The focus group initially picked by the Rutgers team consisted of 18 students
from first grade that were randomly selected. These 18 students were together for grades
1 through 3. After grade three, the principal helped the Rutgers team keep a focus group
of twelve students together for grades 4 through 8. During middle school, the group of
students continued meeting with researchers, during school hours, about four to six times
a year. Each time, they met for two 90-minute sessions and one 45-minute session and
worked on mathematical tasks in small groups or pairs. In 1996 the high school in
Kenilworth was closed and students became part of the regional system during their ninth
grade. After a year, though, the community successfully protested the merger and
students returned to Kenilworth for the remaining three years of high school. During
high school years, fourteen students made time in their schedules to meet after school

with researchers for informal sessions about four to six times a year and spent time on
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problem-solving activities (Maher, Powell, & Uptegrove, 2010). Robert Sigley was one
of the original ten students who had been with the study since first grade and continued

working with the team during high school years on their own time.

The students in the Rutgers longitudinal study were encouraged to communicate
their ideas and justify their solutions to their peers and researchers. They were not told if
their answers were correct; instead it was up to them to convince themselves and others
of the validity of their arguments and correctness of their solutions. The various
experiences involving justification of solutions in the classroom helped students in
developing sound mathematical reasoning skills and even facilitated building of proofs
(Francisco & Maher, 2005; Maher 2002; 2005). As students worked in pairs or small
groups, teachers and researchers questioned them to further explain their ideas. Martino
and Maher (1999) assert that questioning students about their reasoning helps a

teacher/researcher monitor the present thinking of a student.

3.2. Data Source

The data for the present study came from three main sources. The first source
was the database of video recordings of every session and interview that was held with
the students of the longitudinal study and maintained in an archive. For these sessions,
one to three cameras were used to capture the data. Many times, one of the cameras was
focused on capturing the students and their expressions while another camera focused on
their work. The video recordings served as the source for Robert’s early work in the
longitudinal study. Video data allowed screen-shots that facilitated capturing

participant’s actions and representations as they happened during the actual session.
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| recently interviewed Robert three times (7/2/2008; 11/14/08; 3/27/09) under the
guidance of Professor Carolyn A. Maher, a principal investigator of the longitudinal
study. These interviews were videotaped, and they provide the second major source of
data of approximately six hours in length. These interviews followed and elaborated on
an informal session where Robert began to explore the structure of Pascal’s Pyramid with
mathematician, Professor Todd Lee. This session provided additional two hours of video
data that was also analyzed for this study. The third source of data came from field notes
taken during interviews by me and Robert’s work on paper preserved from his early years
and recent interviews. The variety of sources provided a triangulation and helped
enhance the validity of data collection.

To map out how Robert made any connections to his earlier problem solving,
many sessions from the archived video data of the Rutgers longitudinal study were
analyzed. All the sessions examined are listed at the beginning of Chapter 4. As a total,
more than twenty hours of video data was analyzed for this study to construct a
comprehensive account of how the participant created and used representations to solve

mathematical problems.

3.3. Tasks

The tasks used in this research were combinatorial in nature and many of them
shared an isomorphic structure. These tasks were chosen with the aim of providing
meaningful instances during which the participant could be anticipated to create external
representations and build understanding to solve a problem. Many of these tasks
involved the Pascal’s Pyramid and its relation to combinatorial problems. Pascal’s

Triangle was discussed by longitudinal study participants in relation to problems like the
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Building Towers activity, the Pizza problem, the Taxicab problem, etc; and Robert was
already familiar with the Pascal’s Triangle. In this case study, he was given an
opportunity to extend his understanding of the relationship between Pascal’s ideas and

combinatorics from the two-dimensional Triangle to the three-dimensional Pyramid.

3.4. Method of Analysis

| used the video analyzing model reported by Powell, Francisco, and Maher (2003) to
analyze this data. This model consists of several steps that might be conducted in a non-
linear fashion: viewing video, describing segments, identifying critical events,
transcribing of video data, coding the data, constructing a storyline, and finally

composing a narrative (p. 413). | briefly describe these steps.

3.4.1. Viewing

| viewed and listened to the video data many times so that | could become
familiar with their contents. Powell, Francisco and Maher (2003) suggest that at this
phase, the researcher should view the data without a particular lens for analysis in mind.
This first step can help the researcher highlight the important parts of the video that can
be analyzed further. These important pieces of the data are called critical events. Once
the critical events surface, the researcher knows where to look in the video data for
information-rich events and may then focus on analyzing them.

| watched all the videos at least two times and took notes on the important events.
This helped me know what parts of the video were to be focused on. 1 also took time to

write short summaries of the videos for myself as | viewed them. This was an important
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step that assisted me in efficiently keeping track of the information in the sessions viewed
and how it related across the sessions. In addition, | spent time working on the
combinatorial problems in the sessions myself so that I could follow Robert’s solutions

and ideas.

3.4.2. Transcribing and Verifying

A detailed transcript provides a researcher an opportunity to pay attention to
minor details of the video. Also a complete transcript is necessary to code critical events
and keep track of the chronology of events as they occur. This step can play an important
role in constructing a story line. All transcripts for this study were created by this
researcher or other graduate students and they were verified by an independent
researcher. The verification process assures that the researcher has an accurate transcript
to analyze the events of a video session.

The transcripts helped me in accurately capturing the conversation that took place
in the videos. It was also helpful to refer to the line numbers in the transcripts to verify

the analysis provided in the results chapters.

3.4.3. ldentifying Critical Events

The events that are coded as being critical depend on what the researcher is
looking at. According to Maher (2002):

The analysis begins with the identification of critical events. The
mathematical content of each critical event is identified and described,
taking into account the context in which the event appears, the
identifiable student strategies and/or heuristics employed earlier
evidence for the origin of the idea, and subsequent mathematical
developments that follow its emergence. (p. 35)
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In this case study, the events that shed light on Robert’s strategies, heuristics and
justification along with his use of external representations to solve a problem or discover
a pattern, were considered critical events.

Maher (2002) suggests that the critical events are part of a continuous story and
that “Each critical event defines a timeline, consisting of a past, a present and a future”
(p. 35). She uses the following illustration to represent the timeline of events (Figure

3-1).

Past Present Future

(Critical event)

Figure 3-1 Mabher's illustration for timeline of events

According to this model, as the critical event represents the present, it is important
to study the events prior to the critical event and the events after the critical event to see

how it might influence the future events.

3.4.4. Coding

A coding scheme was developed to help identify the themes that occurred in the
data. In the Powell, Francisco and Maher (2003) model for analysis, the code is used to
help the researcher make interpretations of the data by identifying recurring and
important ideas. This stage of analysis is a major stepping stone to answering the
research questions. As common themes emerged through the video data, the following

codes were used.
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Codes for heuristics
1. | Guess and check strategy H1
2. | Try asimple problem H2
3. | Think of a similar problem H3
4. | Think of a special case H4
5. | Create an external representation or notation H5
Codes for explanations and justifications
6. | Explain/justify answers using formal notation/formulae learned previously | E1
7. | Explain/justify using his external representations (diagrams, sketches, | E2
pictures)
8. | Explain/justify using a manipulative E3
9. | Explain/justify using solution of a similar problem done previously E4
10/ Explain/justify how a previously solved problem (related to Pascal’s) can | E4
be extended to three-dimensional case of Pyramid
11| Explain/justify how a problem can be solved using the external | E5
representation/diagrams/notations
12| Explain/justify using a formula devised by Robert during a session E6
Codes for monitoring answers
13| Check to see if an external representation(s) are adequate or correct M1
14| Modify external representation or notation to take care of new ideas or | M2
discoveries
15/ Count all possibilities to check answer M3
16 Consult with peers to verify conjectures or solutions M4

3.35

Constructing a Storyline

Once the data is coded and verified for reliability, the researcher can begin to

weave

together pieces of information to construct a storyline. In this phase, the

researcher tries to take results from the coding phase and begins to identify an “emerging

narrative about the data” (Powell, Francisco & Mabher, 2003, p. 430). At this time, other

data sources, such as field notes and student’s work should be used to come up with a

comprehensive viewpoint of the video events. During this phase, the researcher attempts

to identify a collection of events, called traces, that provide an insight into growth of

student’s mathematical understanding.
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As | tried to construct a storyline for this study, a trace of Robert building an

understanding of the structure of Pascal’s Pyramid began to emerge.

3.3.6 Composing a Narrative

This is the final stage of data analysis where the researcher uses the outlined
theoretical framework and attempts to answer the findings in terms of the research
questions posed. This process, even though it is listed last, is usually intertwined and
imbedded in the coding stage and the construction of story line stage (Powell, Francisco
& Mabher, 3003). The attempt of this stage is to provide overall general conclusions of
the research study and synthesize the findings for the reader. My final narrative
composition involved constructing an interpretation of the events described in the
storyline, from the perspective of mathematical understanding and the role of external
representations. As a final step, the findings from coded data and other non-video
sources were narrated in an attempt to provide a comprehensive overview of the results of

the study.

3.4  Verification of Validity

To ensure validity and trustworthiness, triangulation of data with researcher field
notes, participant work, and video recordings along with transcripts was used to construct
an accurate storyline of the events. Also, an independent researcher was used to assist in
creation and verification of the coding scheme. Finally, results of the study were shared

in a detail-oriented manner that allows the reader to conclude similar facts independently.
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4  Chapter 4

4.1 Introduction

Robert (known as Bobby in his earlier years) was a participant in the longitudinal
study since first grade. To analyze his problem solving strategies and heuristics related to
combinatorial tasks leading up to his work with Pascal’s Pyramid, this study analyzed his
work over a sixteen-year period (from 1993 to 2009). One major focus of this study is to
investigate how external representations used by the participant facilitate his building of
mathematical understanding. The mathematical understanding relevant here is the
development of Robert’s ideas for an array of combinatorial activities leading up to the
ideas of Pascal’s Triangle and Pascal’s Pyramid. The second major focus of this study is
to trace any connections that Robert makes with his earlier problem solving and provide a
longitudinal overview of interplay between his external representations, knowledge-
building and problem solving.

To map out how Robert makes any connections to his earlier problem solving,
many sessions from the archived video data of the Rutgers longitudinal study were
analyzed in addition to his post graduate work with the researcher and Professor Lee. In

specific, the following sessions were examined.

Table 4-1 Sessions Reviewed

Session | Grade Date Task/Interview Type of Session | Approximate
No. Topic Time Length
1. |5 2/26/1993 | Guess My Towers | Whole class | 132 min

session

2. |5 3/1/1993 Pizza Problem Whole class | 37 min
session

3. |7 12/13/1994 | Garage Door | Whole class | 91 min
Problem session

4. |7 12/14/1994 | Candles Whole class 42 min
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Arrangement session
5 |7 12/15/1994 | Candle Whole class | 108 min
Arrangements session
Problem
6. |11 11/13/1998 | Revisiting Towers | Small group 120 min
problem interview
7. |11 3/1/1999 Pizza Problem Small group 97 min
interview
8. |11 4/26/1999 | Towers Extensions | Small group 118 min
interview
9. |12 7/7/1999 Combinations for | Two people 27 min
choosing presentation to
committee of two | class
out of five people
10. |12 8/31/1999 | World Series Two people 95 min
Problem and the interview
Problem of Points
11. | 16 9/12/2003 | Towers: Each has | Two people 46 min
two of one color problem solving
session
12. | 18 8/8/2005 Exploring Pascal’s | Informal session | 82 min
Pyramid
13. | Post 7/2/2008 Explaining layers | First Post- 49 min
Graduate of Pascal’s Graduate
level Pyramid interview
14. | Post 11/14/2008 | Explaining Second Post- 86 min
Graduate Pascal’s Pyramid | Graduate
level and connecting it | interview
to building towers
and Ankur’s
Challenge
15. | Post 3/27/2009 | Explaining Third Post- 82 min
Graduate Pascal’s Pyramid | Graduate
level and connecting it | interview
to building towers
and exploring the
Taxicab problem

The research questions that guide the investigations of this study are: 1) What are

the external representations that Robert uses to help him understand problems related to

the properties of Pascal’s Pyramid? 2) How, if at all, do these external representations

help him in solving problems related to Pascal’s Triangle or Pascal’s Pyramid? 3) How
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does he use, modify or reuse his external representations over time to provide
justifications for his solutions? 4) What connections, if any, does he make to earlier
problem solving?

The informal session (Session 12) with Todd Lee is the episode where | had
started my study of Robert’s work. In Session 12, Robert was informally discussing how
to represent the layers of Pascal’s Pyramid on white board with markers. To build on and
understand Session 12, | conducted three interviews (Sessions 13, 14, 15) with Robert
under the supervision of Carolyn A. Maher, a principal investigator of the Rutgers
longitudinal study. An objective of these interviews was to understand the external
representations and Pascal’s pyramidal ideas that Robert had shared during Session 12.
The second objective of these interviews was to provide Robert with an opportunity to
revisit and extend various combinatorial problems related to Pascal’s Triangle and
Pascal’s Pyramid that he had encountered as a part of the Rutgers longitudinal study. To
begin investigating the first two research questions concerning the nature of external
representations and how these external representations help Robert in building
understanding, Sessions 12, 13, 14, and 15 (dated 8/8/2005, 7/2/2008, 11/14/2008, and
3/27/2009 respectively) are analyzed. In addition, to answer the remaining research
questions about how Robert modifies his external representations over time, and to
investigate if and how he makes connections to his previous problem solving, Robert’s
work related to the counting strand since fifth grade (sessions 1 — 11) are analyzed.

As a starting point, this chapter focuses on Session 12 where Robert informally
explored the layers of Pascal’s Pyramid with Professor Todd Lee. I want to use this

session as a starting point as it is chronological with my journey of studying Robert’s
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work. Furthermore, this session includes a variety of external representations that Robert
used for Pascal’s Pyramid as he attempted to construct its layers. As such, Session 12
provided considerable insight into the first two research questions of this study to explore
the nature and role of external representations that Robert used. In the next (fifth)
chapter, I analyze the three post-graduate interviews (sessions 13, 14, and 15) that build
on session 12 and provide opportunities to observe how Robert modified and reused his
external representations over time. Once the recent work (Sessions 12 — 15) is reviewed
to initially address the nature and role of external representations used by Robert, I
explore the connections between his new and old ideas in the following chapters.
Overall, this study begins with the critical event of Robert sharing ideas with Professor
Lee in an informal conversation, and then tracing the origins and extensions of these
ideas.
I present a brief overview of some of the properties of Pascal’s Triangle and

Pyramid that will be discussed as a part of the following analysis before sharing results of

the Session 12.

4.2 Pascal’s Triangle

Pascal’s Triangle bears the name of the seventeenth-century French philosopher
and mathematician Blaise Pascal who explored many of the Triangle’s properties and
related them to the area of probability (Navigations Il, p. 41). The Triangle was known
to mathematicians for centuries before Pascal. The Chinese mathematicians described
this Triangle in eleventh, thirteenth and fourteenth centuries and Islamic mathematicians

had worked with it in eleventh and fifteenth centuries (Navigations I, p. 157). The
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earliest explicit depictions of a Triangle of binomial coefficients occur in the 10th century

in an ancient Indian book on Sanskrit (Pascal’s Triangle, 2009).

Pascal’s Triangle is a triangular array of numbers. The top row, which is the top
vertex of the Triangle, consists of the single number 1 (marked as S for start here). Each
succeeding row begins and ends with a 1, and remaining each entry in the row refers to
entries in the rows above it. Each number in a given row, except the 1s at the ends,
represents the following sum: (Number just above and to the left) + (Number just above

and to the right) (Navigations Il, p. 41). Look at the figure below for further reference.

There is a deep connection between ideas of combinations, Pascal’s Triangle and
the binomial theorem. Pascal's Triangle determines the coefficients which arise in
binomial expansions. In general, when a binomial like x + y is raised to a positive integer

power, n, the binomial theorem gives:

(x+y)" =aX" +axX" 'y + axX" Y + .+ axy" ! +any”,
where the coefficient a; is the number of combinations C(n, i). Interestingly, numbers on

the rows of Pascal’s Triangle are in fact the combinations @; in the binomial expansion


http://en.wikipedia.org/wiki/Binomial_coefficients
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where n corresponds to the row number. The index i corresponds to the position in a

particular row as we move from left to right. Look at the figure below for reference.

Row O C(0,0)

Row 1 C(1,0) c(1,1)

Row 2 C(2,00 C@21) C22

Row 3 C(3,0) c3, 1) C(3,2) C(3, 3)

Row 4 C(4,0) Ci(4,1) C4,2) C(4,3) C(4, 4)

Row 5 CB,0 CB,1) C65,2 C5,3) CB,4 C(55)

(Source for Figure: Pascal’s Triangle, 2009)

As such, the coefficients of a binomial expansion can just be read on rows of the
Triangle. For example, if we consider the binomial expansion of (X+Y)°, the binomial
: : C@3,00x°y° +C B, )X*y +C(3,2)xy* +C(3,3)x°y?
theorem gives the expansion to be; C:OXY +CE DXy +C(E,2)xy" +CEB3)xXTy"
When the combinations are calculated in this expansion, we get: 1X° +3x°y +3xy” +1y°.

So, if we look at the coefficients in the expansion of (x+y)3, they are 1, 3, 3, 1, which is

the third row of the Pascal’s Triangle.

Another interesting consequence of the binomial theorem is obtained by setting

both variables x and y equal to one. In this case, we know that (1 + 1)" = 2", and so

() () ()
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As such, sum of the entries in the nth row of Pascal's Triangle is the nth power of 2. So,

sum of the entries in the third row is expected to be 2° =8and it is easy to verify that:

1+3+3+1=8.

Another useful application of Pascal's Triangle is counting the number of
combinations possible for a given n. Suppose there is a team of ten basketball players
and one wants to know how many ways there are of selecting eight. Rather than working
out the calculation: C(10,8), one can just refer to the row 10 (keeping in mind that the
topmost row is numbered 0) of the Pascal’s Triangle. Looking at the coefficient of the
eight entry, (keeping in mind that the first entry is numbered 0), the value is 45.
Therefore, the solution of "10 choose 8" is 45 (Problem adopted from Pascal’s Triangle,

2009).

4.3 Pascal’s Pyramid

The Pascal’s Triangle has higher dimensional generalizations. The three-
dimensional version is called Pascal's Pyramid or Pascal's tetrahedron. Just like the
Pascal’s Triangle gives coefficients of binomial expansion, the Pyramid gives coefficient
of trinomial expansion. The faces of the Pyramid are Pascal’s Triangle. As such every
row on the outer surfaces of the Pyramid is a row corresponding to a row of the Triangle.
Every entry in the middle of the Pyramid is the sum of three entries above it. The

following figures show first two cross-sectional views of the Pyramid.

/ 1\ The (a + b +c)* layer

1 1



http://en.wikipedia.org/wiki/Dimension
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2 2 The (a + b + c)® layer

/ I

1 2 1

Again, if we consider the trinomial (x +y + z)" the coefficients are given by the

trinomial coefficients. For example, for n=3, we have the coefficients:

(050)
0,3,0

1121‘:. D,E,l
2,1,{' 1,1,1 ﬂ,l,z

(300) (201) (102) (055)
3,00/ \20.1/) \1,02/) \op3

These trinomial coefficients simplify to the third cross-sectional layer shown in

the figure below.

Also, the sum of entries in the n-th of cross-sections is 3". For example, all the

terms in n=3 cross-section add up to 3° = 27. Next, | present results from the Session 12.

4.4 Layers of Pascal’s Pyramid: August 8, 2005 (Session 12)



49

4.4.1 Setting and Background

Note: For this session, Todd Lee is coded as R1, Elizabeth Uptegrove is coded as R2 and

Carolyn Maher is coded as R3.

On August 8, 2005, Robert, working for the Robert B. Davis Institute for
Learning as videographer, was planning to videotape some of the middle-school
participants in an NSF funded Informal Mathematics Study conducted in Plainfield, New
Jersey. The children were designing posters in preparation for sharing their work.
Waiting for an earlier session to end, Robert was engaged in a conversation with
Professor Todd Lee (R1), a mathematician from Elon University who was visiting
Rutgers and who had observed videos of participants in the Kenilworth longitudinal study
the previous evening. R1 learned that Robert was a participant in the long-term Rutgers
study and they began chatting about his mathematical activity. What followed was an
informal session where Robert and R1 talked at length about the Pascal’s Pyramid
(approximately 70 minutes) and how to represent it on the white board with markers. R2
and R3 observed parts of this session, arranging that it be captured on video. There was
no specific task designed for this session other than trying, informally, to capture the
conversation between a mathematician and participant in the longitudinal study that

occurred rather spontaneously.

4.4.2 Initial Exploration

When the camera began to capture the conversation between Robert and R1, they
were already engaged in a conversation about “duplicates” and adding a “b” or adding a

“c” to the terms they had written out on the white board. Robert had already created a
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representation with green marker on white board as to what some terms of the Pascal’s

Pyramid would look like or how they were connected (Figure 4-1).

Figure 4-1 Robert's initial representation for the pyramid

In Figure 4-1, Robert used green line segments and arcs to connect terms that he
thought would be added up to produce a term in the following layer of Pascal’s Pyramid.
About four minutes into the video, Robert gave up on this particular representation and
created other new representations that will be discussed here. Also, at the start of the
video, Robert and R1 had created an explicit list of the terms that result from expansion

of (a + b + ¢)® and written them on one side of the whiteboard.

443 “Adding a b” and worrying about “duplicates”
In the first three minutes or so, Robert said that he is “adding” b (meaning,
attaching b to indicate a factor) to the 2a term; it seems that what he actually was doing

was multiplying b by 2a to get 2ab (lines A1l — A19). R1 corrected his language a
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couple of times (lines A25 — A30) but Robert continued to utter “addition” when he
showed “multiplication” several times in the session. This language use was observed in
other sessions as well, in particular, the three post-graduate interviews (Sessions 13, 14,
15).

The use of “addition™ is not literal but reflects how Robert uses language to
represent a product of factors using the notation of letters. It is conjectured that Robert
may be drawing upon his earlier problem-solving experience, in particular the towers
building activity where students used Unifix cubes to answer questions like how many
different towers are possible that are three tall when using two colors, etc. This became
evident at end of this session when Robert discussed a solution to 4nkur’s Challenge and
drew out towers four tall. While explaining Ankur’s Challenge, when Robert multiplied
a term by a variable, he compared it to adding a block to the Unifix tower. It is
reasonable to infer that Robert may mentally be adding a Unifix cube to make a tower
taller as he moved between layers. This might explain his articulation of multiplication
as addition.

Also, Robert was concerned that when he multiplied terms by a certain variable,
there would be some “duplicate” terms that he thought would be counted twice. He
considered dividing by two later as a strategy to correct the doubling (lines A47 — A51).
Robert’s concern about “duplicates” also hints that Robert was drawing upon his earlier
experience with building towers activities. In building towers with Unifix cubes, students
would occasionally get two identical towers that they would refer to as “duplicates.”

Robert was anticipating, perhaps drawing upon his previous experiences, that there will
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be a repetition in terms that were generated by the multiplications with the three

variables, a, b, and c.

4.4.4 Let’s draw it 3-D! Concentric layers

Three and a half minutes into the session, R1 noted that Robert’s picture (Figure
4-1) was not “beautiful” anymore and Robert said that they needed to draw in three
dimensions.  So, R1 encouraged Robert to try and create a three-dimensional
representation for his two-dimensional drawing of Pascal’s Pyramid. Robert hesitated
and said that he can’t draw in three dimensions and that he was a “terrible drawer” (line
A57).
Note: For all sessions, the layer (a + b + ¢)° is referred to as the “layer zero”, (a + b +
c)! is referred to as the “first layer”, (a + b + ¢)? is called the “second layer” and so on.

R1 suggested that Robert try to construct just the first layer of the Pyramid and
Robert wrote a, b, ¢ in a straight line. R1 questioned why the variables were in a straight
line and Robert asked him to imagine that a is actually coming out of the board while b
and c are in the plane of the white board to “visualize” his “three-dimensional” sketch.
When asked to draw the next level out, Robert made the following representation of the

second layer to represent the terms in expansion of (a + b + c) 2 (Figure 4-2).
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Figure 4-2 Second Layer

Robert explained that the “ones” in the yellow circle represent 1a%, 1b? and 1c? in
the expansion of (a + b + ¢) ? and the “twos” outside the yellow circle (enclosed in green
circle) were the terms 2ab, 2bc and 2ac. Interestingly, Robert suggested that the drawing
in Figure 4-2 not only represented the second layer, (a + b + c) ? but also encompassed
the first layer (a + b + ¢)'. That is, Robert suggested that the “ones” in the yellow circle
could also mean 1a, 1b, 1c as he remarked that “It’s kinda like this is its own level but
then green has these two levels” (line A87). This prompted R1 to ask Robert to carry his
ideas further and draw out the third layer. Before Robert could draw the third layer out,
R1 asked him to explain the coefficients of his second layer one more time. This time
around Robert realized that he could not represent two layers simultaneously (A94 — 95).
Robert had initially used a yellow circle to represent the first layer and alleged that the
green circle was not only the second layer but it represented the first layer inside of the
second layer. When Robert was convinced that the layers cannot coincide, he erased the
inner yellow circle.

Shortly afterwards (seven minutes into the video), R1 encouraged Robert to think

about layers of the Pascal’s Pyramid one at a time. When asked about the very topmost
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layer, Robert replied that the level at very top was the (a + b + ¢)° layer which equaled
one; this was followed by the (a + b + ¢)* and the (a + b + c) ? layers and so on. R1
jokingly put 1 on the white board and said that he will help Robert with the very top layer
and that Robert should try to create the next layers. Robert put three ones in a circle to
represent the (a + b + c)* layer. He kept Figure 4-2 as his second layer and drew the

third layer as shown in Figure 4-3.

Figure 4-3 Third Layer

Once again, Robert tried to include the second layer within the third layer and
wrote six 2s around the Figure 4-3. However, he changed his mind shortly afterwards
and erased the “twos” to leave the third layer as in Figure 4-3.

At around ten minutes, Robert shared with R1 that he thought there would also be
a six in the third layer and placed a six in the middle of Figure 4-3. Then, R1 encouraged
Robert to explain how the layers he had created would fit in a real three-dimensional
space. Robert explained that the layers, the single 1, three 1’s in a circle, Figure 4-2 and

Figure 4-3, would be stacked one on top of the other to create the three-dimensional
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Pyramid. Robert was able to visualize how the two-dimensional representations of the

various layers would be stacked in three-dimensional space to create the Pyramid.

445 “What’s the dominant geometric shape?” From circles to triangles

Next, R1 began to prompt Robert to make his representations in the most
“dominant” geometric shape of the Pascal’s Pyramid. Robert remarked that a Triangle
was the most “dominant” shape for the Pyramid and began to look for triangles in his
representations. As one of the early attempts, Robert created the second and the third

layers as shown below.

Figure 4-5 "Triangular" Figure 4-4 "Triangular"”
Second layer Third layer

Robert represented his layers with circle(s) inside a Triangle with ones written in
the vertices of the outer Triangle (Figure 4-5, Figure 4-4). R1 asked him to think if the

numbers inside the circle actually form a triangular pattern as well. Robert suggested
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they might and replaced the circles in his figures with smaller concentric triangles (Figure
4-6). Up to this point in the session, Robert maintained that a layer of Pascal’s Pyramid
would have “ones” on the edges and that the other numbers, “twos” and “threes,” would

be in middle of the surface of a layer.

Figure 4-6 Concentric Triangles

Then, Robert began to explain to R1 that he thought of an edge of the Triangle as
a “direction” which guided what variable out of a, b, and ¢ should be multiplied with
terms of a previous layer. He said that as one followed a certain edge of the Pyramid, one
went on to multiply with one of the three variables. He equated picking an edge of the
Pyramid with choosing a particular “direction” out of the three possible “directions” (A
167). Thinking of each edge of the Pyramid as a “direction” was an important heuristic
that Robert used to construct terms in the following layer of the Pyramid. Robert used
his definition of “directions” to arrange the terms he created for the next layer. Thinking
of a particular direction as multiplication with a particular variable seemed to provide a

cue to Robert about what the next generated term would look like. It seems plausible that
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this is not a novel idea for Robert as he explained it with ease to R1. Robert said that he
had previously thought of Pascal’s triangular edges as a “direction” that guided
multiplication by a or b to yield terms in the expansions of binomials (a + b)" (A181-
186).

When R1 asked Robert to explain what the threes in Figure 4-4 meant, Robert
explained that the threes were the terms 3a’b, 3bc, etc. in the expansion of (a + b + ¢)°.
This reveals that Robert has an understanding of the numbers he used in the
representation of the third layer as coefficients of the terms in the expansion of (a + b +

c)® (Figure 4-4).

4.4.6 Is there a pattern? Getting to the “prettiest picture”

At about fifteen minutes into the conversation, R1 pointed out the addition
property of Pascal’s Triangle where one could add successive terms from previous layer
to generate the next layer and questioned Robert how they might do the same thing for
the Pyramid. Robert wrote three “twos” inside a separate yellow Triangle and explained
that each of the “twos” went to two places (using two arrows from each of the “twos”) in

the next layer and generated the “threes” (Figure 4-7).
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Figure 4-7 Robert explains how third layer is built from second layer

At this point R1 asked the other observers in the room if there was a transparency
they could use. He suggested that Robert should try to put together or “brick™ a previous
layer to show how the next layer might be generated and try to get the “prettiest picture”
possible (line A187 - A197). R1 continued to encourage Robert to find a representation
that was more convincing to them visually as they continued to discuss Robert’s existing
diagrams.

R1 summarized that Robert had many correct ideas as he said “This may be what
you want, ‘cause it certainly works out in our heads” (A229) but R1 indicated that he
was not sure that they had found the “prettiest thing that makes you (Robert) happy” at
that point (A217). And therefore, Robert continued to modify and edit his external
representations to get to a mathematically “pretty” picture.

Simultaneously with placing numbers in a layer of the Pyramid, Robert tried to
represent the addition pattern between terms of different layers. For one attempt, Robert
moved the “ones” to the middle of the second layer and wrote the “twos” on the outside

instead. Pretty quickly Robert realized that if “ones” were in the center, he would have
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no space to put the six from the third layer in the middle. This was a guess and check
strategy where Robert used his external representation as a sounding board and rejected
the idea of placing “ones” in the middle of a layer. Robert projected that the
representation with “ones” in the middle would fail for the third layer. At this point an
observer handed R1 a transparency. R1 asked again if Robert’s representation of the
second layer was a Triangle of some sort; Robert then created two triangles that together

made a “star of David” (line A279, Figure 4-8).

Figure 4-8 "Star of David"

R1 continued to ask if there was an overall single shape to the layers that Robert
had created. Robert indicated that for the third layer the “threes” would sit outside of the
“star” but the six would still go in the middle. Robert however indicated puzzlement and
wondered why the “six” still has to be placed in the middle. R1 suggested that Robert
should highlight all his terms related to a, b and ¢ separately and see if that would yield a
pattern or help him answer his question about the placement of “six.” R1 was suggesting

to Robert to try a simpler case here as a problem-solving strategy. Robert created three
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triangles with different colored markers to show all the terms related to the variables a

(red triangle), b (yellow triangle) and c (black triangle) (Figure 4-9).

Figure 4-9 Separating the a, b, ¢ terms

R1 questioned if Robert was convinced of his picture (Figure 4-9) and Robert
changed his mind after trying to explain some of the terms in the diagram. He created
another grouping of the terms in the third layer that R1 suggested were “asymmetric”
(line A338). R1 asked Robert at this point in the conversation (about 30 minutes into the
session), whether Robert would choose to work alone or with a friend if he was on the
game show: “Who wants to be a Millionaire?”” Robert replied that he would choose a
friend because he claimed that if R1 was not there, he would not have gotten this far and
that he would have stopped working on the representation in absence of R1’s questioning
(lines A344 — A353).

R1 persisted in his quest to see a triangular representation that would yield the
“prettiest picture” and encouraged Robert to come up with a mathematically appealing

picture. R1 asked Robert to try again to write out the piece of a layer if one of the
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variables was set to zero. R1 was again suggesting Robert to work with a simpler version
of the problem at hand. R1 explained that it should look like a “line out of Pascal’s
Triangle” when it was only two variables (line 420). As a response, Robert came up with
the following figure (Figure 4-10). He also filled in this time the terms that accompanied

the numbers on the layer.

Figure 4-10 Terms in the third layer

R1 liked this representation and asked Robert to now eliminate a variable. Robert
momentarily ignored R1’s request and went on to make another diagram. Robert
remarked that he was going to try and make it more triangular by spacing out the
numbers even more and he made Figure 4-11 to which R1 exclaimed, “Look at that... my

math gut kicks in and says ah ha ha that’s pretty!” (A470).
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Figure 4-11 The "pretty"” third layer

R1 then put another transparency on top of Figure 4-11 and asked Robert to
explain what the layer previous to this one looked like. Robert placed the second layer
on the transparency (Figure 4-12). RL1 then repeated his questions about how the next
layer might be generated from a previous layer in the Pyramid. At this time Robert
clarified the pattern of addition between the layers by explaining that one of the black 1s

along with one black 2 from the second layer would add to give a red 3 of the third layer.

Figure 4-12 Placing second layer on top of the third
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This is a remarkable moment in the session as Robert was able to very easily
explain the pattern of addition in the Pyramid moments after he has created an
appropriate and sufficient external representation for it (A 478 — A 481). All through the
earlier parts of the session (first 35 minutes approximately), Robert had ideas about
adding terms to produce the next row but he was not able to convey them to R1 in a clear
manner. Occasionally, Robert’s external representations hindered the communication as
R1 tried to follow what terms Robert verbally proposed to add and create the new term.
Once the external representation was concise, and R1 seemed to agree with it, Robert was
able to not only see the pattern clearly but also communicate his ideas in an effective

manner to R1.

4.4.7 “We always ask the next layer”: Robert finds the fourth layer of Pascal’s

Pyramid

Although R1 seemed satisfied with the third layer’s representation that Robert
created, he and Robert together decided to go ahead and discuss one more layer. Robert
claimed that this was “fun” and he was happy to continue (line A489). Robert created a
layer for (a + b + ¢)* by placing 4’s and 6’s around the Triangle enclosing the third layer
(Figure 4-13). It is evident that Robert was adding terms from the previous layer to
generate and place his 4’s and 6’s on the circumference. At this point, Robert had figured
out that the outer rows of the next layer would be 1, 4, 6, 4, 1 on each side, which was a

row of Pascal’s Triangle.
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Figure 4-13 Attempting to construct fourth layer from the third layer

R1 asked Robert if he knew what would be the sum of all the numbers in the
fourth layer. Robert quickly responded that it would be 3* or 81. This response was very
quick on Robert’s part, suggesting that he had previously worked with a similar idea.
Perhaps Robert was retrieving earlier knowledge related to the sum of entries in a row of
Pascal’s Triangle.

It still remains to investigate how Robert might have generalized from 2" for the
sum of entries in a row of a Triangle to 3" for sum of entries in a layer of the Pyramid.
After settling with 81 as sum of the entries in the fourth layer of the Pyramid, Robert tried
to calculate what was missing in the center part of this layer. He figured out that the
outside entries all add up to 45, so the entries in the middle add up to 36 as 81 — 45 = 36.

R1 pointed out that there were many kinds of additions going on here and Robert
decided to start writing out “options” like “4-0-0”. Robert explained that “4-0-0"" meant
there were four of the first variable (a) and none of other two variables (b, ¢). In other

words, “4-0-0” was the term a’. The idea of using co-ordinates to list all the options was
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used very fluently by Robert and hints that it was a notation that Robert had developed

earlier.

4.4.8 Ankur’s Challenge: Where does the solution lie on the Pascal’s Pyramid?

At this point (about 42 minutes in to the session), R3 interrupted the conversation
to divert Robert’s attention to Ankur’s Challenge upon a suggestion by R2. R3 asked
Robert to recall what Ankur’s Challenge was and Robert responded that the problem
asked for “four tall, three colors, you have to use one of each color” referring to the
building towers activity that he had seen in his earlier years (line A547)'. R3 asked
Robert to explain where the solution to Ankur’s problem would lie in the Pyramid.

As a first response, Robert thought the solution would lie in the middle of the
fourth layer; then he quickly offered that it would be on the outside. At this point, R3
rephrased Ankur’s Challenge to be a problem of finding towers that were “four tall” with
“exactly two of one color” and Robert agreed with this interpretation (line A552). Again,
trying to locate solution to Ankur’s Challenge on his graph, Robert responded:

A Robert ~ Umm...I the... this ring... the threes... cause those are like, that’s

555. like... no wait. This won’t work ‘cause this is three tall, so there
can’t be... this is the three tall case. The yellow Triangle, so that...
you can’t have two of one color in there.

Robert realized quickly that the solution to Ankur’s challenge could not be in the

third layer as it only represented towers three tall. This instance suggests that Robert had

previously mapped his ideas from building towers three tall to the third layer of Pascal’s

Y Ankur’s Challenge (January 1998, Grade 10) — Find all possible towers that are four

cubes tall, selecting from cubes available in three different colors, so that the resulting

towers contain at least one of each color. Convince us that you have found them all.
(Maher, Powell, & Uptegrove, 2010)
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Triangle. Robert went on to conjecture that he would need “inside” of the fourth layer.
He further guessed that the inside would have 12s.
At this point the first disk ended and Robert had created representation of his

fourth layer as in Figure 4-14.

Figure 4-14 Deciding how many 12s to use and where they come from

4.4.9 “There’s going to be an overlap”: worrying about duplicates again

At the beginning of the second disk, Robert was again discussing possible
“duplicates” as he “adds” a or b to some of the terms. R1 interrupted to remind him that
he was actually referring to multiplication when he said addition. R1 tried to walk him
through a term by term expansion of the trinomial (a + b + c)® to explore where these
“duplicates” might be. Robert insisted that there were would be terms that produce the
same term twice in the next layer as a result of multiplication with a particular variable
(A612-615). R1 pinpointed one particular 12 on Figure 4-14 and asked Robert to explain

where that particular 12 might have come from. Robert began to draw diagonals around
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the triplets of 3, 6, and 3 that he believed would produce one of the 12s in his next layer

(Figure 4-15).

Figure 4-15 Where the 12s come from

At seven minutes into the second part of the session, R2 intervened and explained
which group of 3, 3, and 6 from the third layer produced the twelve in the fourth layer.
She was drawing upon her experience of working with the Pyramid and walked Robert
through how one of the 12°s was produced (A653 — 661). Robert quickly absorbed R2’s
explanation of the addition in the Pascal’s Pyramid. However, he wondered if “her
choice” of 3, 3 and 6 was the only choice that would work. He questioned why a
particular 12 had to come from a particular set of 3’s and 6. R1 was also unsure about an
answer to Robert’s question. However, to address the doubling issue, R1 guided Robert
to match up his numbers in the Figure 4-15 with the terms in the expansion of (a + b +
c)®. This led R1 to discover that Robert was counting 6abc twice. R1 asked R2 if she
had meant for Robert to count 6abc twice and she said that she had not. R2 said that she

was not sure that she understood Robert’s concern about the “doubling” at that point.
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To clarify things, R2 began to talk about the variables, a, b, ¢ as colors of the
Unifix cubes. She talked about building towers and claimed that there were no
duplicates. R2 contended that there were no duplicates as going from one layer to next,
one multiplied by each of the variables (a, b, ¢) exactly once and they get “used up.” She
suggested that Robert should remember to not multiply any term by a particular variable
more than once. In other words, R2 was explaining that the 6abc term would produce
6a’bc only once when it was by multiplied by a. Robert agreed that R2 was proposing an
addition that will not yield any duplicates. Robert used his representation of towers to
convince himself that there are no duplicates and he began to create towers corresponding

to the terms in the fourth layer (Figure 4-16).

Figure 4-16 Robert uses towers for terms of fourth layer

From the towers listed, Robert saw that each tower was unique even though they
all had two as, one b, and one ¢ and therefore there would be no over counting.
However, Robert was still not sure why one set of 3, 3, and 6 from the third layer was
better than any other set to produce a 12 in the fourth layer. R2 explained that although a
sum of 12 can be obtained by picking any two 3s and one 6 mathematically, it will not

work in terms of building towers (A705 — 709). Robert was not completely satisfied and
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began to list each term from the third layer to explicitly create a 12 of the fourth layer.
R1 encouraged him to write two alternate set of three’s and six that he could have picked
to create a certain 12. Robert picked a green Triangle and a red Triangle of 3, 3, 6 as two
alternative sources of a 12 (Figure 4-17). He elaborated the green Triangle using a black

list of terms and the red Triangle with a red list of terms (Figure 4-18).

Figure 4-17 Two alternative Figure 4-18 Listing terms for
triangles that may produce a 12 two triangles

R1 asked what was the property that one list had but the other did not. Robert
continued to say that as long as there was no overlapping it did not matter and both the
lists were equally sensible. However, through further discussion with R1, Robert came to
agree that the red list would not work. Robert was eventually able to verify that the black
list will yield a 12a’bc when the first three a’c terms are multiplied by b, the next three
a’b terms are multiplied by c, and the six abc terms are multiplied by a. However,

carrying out a similar multiplication with the red list will produce a’bc and abc? terms
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that could not be added together. R1 concluded with Robert that “So, it’s (red list) not
just ugly, it’s not working” (A824). This particular strategy of listing each term
convinced Robert that only a particular set of 3, 3, 6 (in this case the green Triangle in
Figure 4-17) could be counted to yield the 12 in the next layer. Although R2 had
explicitly showed Robert how the addition was carried out in the Pascal’s Pyramid,
Robert was only convinced after trying and testing out his own hypothesis through a term
by term listing.

Finally when R3 inquired about Ankur’s Challenge again, Robert explained its
solution is the three 12s on the inside of the fourth layer (A870 -883). Robert explained
that he was counting the 12’s in the middle as they represented four-tall towers with
exactly two of one color. Robert associated the variable a with the color blue, the
variable b with the color red, and the variable ¢ with the color white. He explained that a
tower with two blues and one red (a term with a’b) was missing a white (or c), so you add
a white block to it (multiply by c to get a’bc). Similarly, the 6abc term had one of each
color and you were adding the blue (or a) to it to produce a 6a’bc term. Finally when the
two 3a’bc terms and one 6a’bc terms were combined, it resulted in one 12abc term.
Robert explained that this term represents 12 towers that were four tall and had exactly
“two of one color” (here a) in them and hence a solution to Ankur’s Challenge. As a
total there would be 36 towers from the three 12s added together. R3 claimed that it was
a different solution than any one has shared with her before and requested Robert to write
up his solution. The session concluded shortly afterwards with Robert discussing his

math courses at the time and what his future plans for education were.
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5.  Chapter 5: Three Post-Graduate Interviews

5.1 Introduction

Three post-graduate interviews with the participant were conducted on 7/2/2008,
11/14/2008 and 3/27/2009 under supervision of a lead principal investigator of the
Rutgers longitudinal study, Carolyn A. Maher. Robert revisited properties of Pascal’s
Pyramid as these interviews explored his ideas and external representations that were
observed in Session 12 (8/8/2005) as discussed in Chapter 4. In addition, the interview
sessions gave him an opportunity to revisit some of the combinatorial tasks that he had
seen during his earlier participation in the Rutgers longitudinal study. The first interview
(Session 13) was conducted with Robert sharing his ideas on the paper and white board;
however, in the other two interviews, Robert was provided with concrete materials
(Zome-tools) to build a three-dimensional model of the Pyramid. The three interviews
will be analyzed at length in this chapter to further shed light on nature and role of the
external representations in Robert’s construction of understanding for properties of

Pascal’s Pyramid.

5.2  First Post-Graduate Interview: July 2, 2008 (Session 13)

5.2.1 Setting and Background
Note: For this session Anoop Ahluwalia is coded as R1 and Carolyn Maher is coded as
R2.

The first post-graduate interview with the participant was conducted by R1 and

observed by two graduate students, Erika Bilyk and Scott Rutherford. Scott also video
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recorded the session while Erika observed the session and took notes. R2 had co-
authored and overseen the interview protocol for this session.

R1 had transcribed Session 12 and watched its video several times prior to
conducting this interview. Along with R2, R1 designed questions to probe further into
the representations that Robert had created with Professor Lee. Several other questions
were designed to encourage Robert to reflect on his initial introduction to the terms
“Pascal’s Triangle” and “Pascal’s Pyramid,” the hurdles and triumphs from Session 12,
his opinions about group-work and his experience studying mathematics. To facilitate
discussion about Session 12, Robert was shown some clips to refresh his memory and
then asked about those specific clips. Robert was provided with a white board and
markers as well paper and pens to choose and write on. The interview lasted 48 minutes

and a detailed discussion of the critical events from the session follows.

5.2.2 Robert’s first recollection of “Pascal’s Triangle” and “Pascal’s Pyramid”

R1 started the interview by asking Robert to recall where he had first learnt about
properties of Pascal’s Triangle. Robert claimed that he “subconsciously knew it” since
fourth or fifth grade but it was in high school that he connected several ideas, like the
binomial expansion, to structure of Pascal’s Triangle (B3). R1 inquired what in specific
about the Pascal’s Triangle was of interest to Robert. Robert replied that he and his
friends saw the Triangle as a neat way of getting answers to many combinatorial
problems like the Towers-Building activity, the Pizza problem and the Taxicab problem
(B4 —9). Robert recalled that the name “Pascal’s Triangle” was shared with the class by

their teacher Ralph Pantozzi in eleventh grade. Robert expressed amazement that the
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class came to know about a name for the triangular array of numbers long after they had
worked at length relating it to the combinations formula C(n, r) (B15).

When asked about the first time Robert had heard about Pascal’s Pyramid, Robert
recollected that it was only when he took a combinatorics course at undergraduate level
that he came across the term “Pascal’s Pyramid.” Robert also recalled that in Session 11
he discussed some ideas related to Pascal’s identities when he worked with Elizabeth
Uptegrove and Brian, a fellow student. Robert explained that as an undergraduate he
came to realize that it was possible to list terms in layers of the Pyramid in a
methodological way and that the terms were related to expansion of a trinomial (B 25).
Furthermore, Robert recalled that his experience with the Pyramid was related to
mapping particular extensions of the Pizza problem and the Building Towers activity to
terms of the Pyramid and not necessarily thinking of a trinomial expansion (B 25).
Finally, Robert recollected that some student in high school had attempted to make a
three-dimensional Pascal’s Triangle which was hollow from inside and had Pascal’s
Triangle on each of its three surfaces. Robert explained that the students decided plainly
that a three dimensional model was easier to discuss and share with a group rather than a
two-dimensional sketch (B39 - 43).

5.2.3 Reconstructing layers of Pascal’s Pyramid after three years

Around ten minutes into the session, R1 invited Robert to draw some layers of the
Pascal’s Pyramid on the white board. The last time Robert had done this particular
activity was three years earlier in Session 12 (8/8/2005). Robert began by saying that the
shape of each layer does not have to be a triangle and that it can be a circle or anything

else; however, Robert claimed that a layer looked “nicer” as a triangle (B 47). Robert
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suggested that properties of Pascal’s Pyramid would be preserved even if they were not
represented in a triangular arrangement. This is a significant observance as Robert is
thinking beyond the conventional representation for Pascal’s three-dimensional ideas and

realized that the pyramidal shape might be convenient but not necessary.

Figure 5-1 First three layers of Pascal's Pyramid

As Robert sketched some layers, he explained that the very top layer was 1
followed by a layer of (a + b +c)!. He quickly sketched a representation for layer zero,
first layer and second layer as in Figure 5-1. It is interesting to note that Robert placed
2’s on the circumference of his triangular representation of the second layer immediately.
As was observed in Session 12, Robert again started with a circular arrangement for
numbers in a layer of the Pyramid and eventually “discovered” and adjusted to the
triangular shape. Here in Session 13, Robert is picking his external representations up

from the point of closure he had attained three years ago in Session 12.
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When R1 asked Robert how he thought the first layer produced terms in the
second layer, Robert drew arrows from the first layer as in Figure 5-2 to show the
addition property. He drew two arrows from each of the 1’s in the first layer and
connected them to the 2’s; he claimed they would generate in the next layer. He
explained, for instance, 1 for a in the first layer goes to the 2ab term and the 2ac term in

the second layer when multiplied by b and ¢ (B 61).

Figure 5-2 How addition property works to generate the next layer

Along with the numbers, Robert also used co-ordinates to list his terms. He used
an exponent of zero to imply that a variable is missing. For instance, he wrote a’b%c® to
imply b®. At this point Robert again reflected on the shape of the pyramid and concluded
that “the pyramid makes more sense, cause you’re drawing it, all the arrows kind of go
down” (B 63). Robert continued to justify to himself and R1 that Pyramid’s shape is
arbitrary and went on to collect further evidence why pyramidal arrangement might be
more convenient. He concluded that drawing all the “arrows” going down for the

purposes of tracking addition between the terms might be most efficiently done on a
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pyramid (B 63). R1 agreed that directions might be most conveniently represented as

linear segments giving rise to a Pyramid.

5.2.4 What’s in the middle of the third layer?

When asked to draw one more layer, Robert made Figure 5-3 as indicated. He
arranged the 3’s and 1s as a triangle and placed three 6’s in the middle. He quickly

remarked that he might have made an error.

Figure 5-3 The third layer

R1 questioned Robert about whether there is a way to check how many 6’s would
go in this layer. Robert began to list the variables that would go with the coefficients of
6. He initially guessed that the three 6’s represent 6a°bc, 6ab’c and 6abc®. R1 pointed
out that this layer corresponded to expanding third power of a trinomial and that 6a’bc
had four factors in it. Robert agreed but indicated that he was unsure what would go in
center of the third layer. To figure out the middle, Robert began to list all the terms in the

second layer. He wrote out the list as: a® 2ac, ¢ 2bc, b% 2ab, 2a’h, 2b%a. R1
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questioned where 2a’b might come from and Robert quickly realized that it does not exist
in the second layer and reduced his list to a% 2ac, ¢?, 2bc, b? 2ab. Itis interesting to note
that terms in the list followed a clockwise order of 1’s and 2’s that Robert created for the
second layer (Figure 5-1). It is as if Robert was mentally walking on periphery of the
second layer to generate his terms in the expansion of (a + b + c)°. Robert also used his
idea of “direction” discussed in Chapter 4. As he went from the term a® in the c
“direction” terms begin to gain a c, that is, a gained ¢ and lost an a to become 2ac which

in turn gained another ¢ to become ¢ and so on.

Once he had settled on terms that lied on the circumference, Robert continued to
explore terms for middle of the Pyramid’s third layer. Robert indicated that the second
layer had no abc term. He indicated that in absence of the abc term in the second layer,
there is nothing that can multiply with a variable to produce the terms (6a’bc, 6ab’c and
6abc?) that he had intended to be in middle of the third layer (B 96 — 99). At this point it
was clear that Robert was using multiplication of terms from the second layer by a
variable to check validity of terms he created for the third level. When R1 asked him
about what the 3’s in the third layer represented, Robert explained that the 1a® term
multiplied by b along with 2ab term multiplied by a gave rise to 3a’b term when they
were added together. Robert explained with similar reasoning what the six 3’s in the

third layer represent (B 94).

R1 questioned Robert again whether there was anything in the middle of the third
layer, and Robert initially responded that there wasn’t. He continued to say that each
term in the layer had to have exponents “add up to three” (B 104). In the course of

mentally counting options, Robert realized that the only option for the center would be
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abc where each variable is represented once to give a total exponent of 3: 1 (for a'), 1
(for b') and 1 (for c*) (B 104). Then, he continued to use the multiplication and addition
property of the Pyramid and multiplied 2ab by c, 2ac with b and 2bc with a to produce a
single 6abc for the middle. Here, Robert monitored his work by counting all possibilities
for exponents that add up to 3 and found the missing term for the third layer. At this
point it is critical to note that although Robert initially guessed the middle terms
incorrectly, he was able to reason and correct his work using his previously constructed

understanding for exponents in a layer of Pascal’s Pyramid.

R1 continued to ask Robert if he could explain one of the 12’s that would be
generated in the fourth layer and Robert easily explained that there would be a set of 3, 3,
and 6 that would yield a 12. For one example, he lists that 3a’c multiplied by b, 3a’b
multiplied by ¢ and 6abc multiplied by a would yield 12a*bc when added together. It is
reasonable to conclude that Robert had a clear understanding of how terms from one
layer generate terms in the next layer of the Pyramid in Session 13. In Session 12,
however, Robert had placed six 12s in his fourth layer and only after a continued
discussion discovered that there are three 12s that come from a specific choice of 3, 3 and
6. It is noteworthy that even after a span of three years Robert was fluently drawing upon

his experience from Session 12 to explain the 12s in the fourth layer.

5.2.5 Reflecting on Session 12 and Robert’s claim: “I am horrible at math”

The remaining part of the interview was designed to probe ideas that Robert had
shared in Session 12 about the Pyramid and his attitude towards the subject of
mathematics. R1 asked Robert if he had spent any time trying to construct a three-

dimensional model of the Pyramid. Robert replied that Elizabeth Uptegrove had once
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shown him a model but he had not made one himself. R1 then asked Robert to try and
remember why he was trying to make concentric layers for the Pyramid and how he
eventually thought that it would not work. To this Robert replied: “I think it can be done,
but there’s no point to do it because it’s going to get messy” (B 188). Robert suggested
that it is possible to create a representation for the third layer in a manner such that it
contained the second and the first layer in it; however, he expressed uncertainty that it
would be very helpful. One reason that he expressed for giving up on the attempt was
that the representation became “messy.” He again claimed that “shape doesn’t matter”
and that the layers could be represented as circles and the entire pyramid could be a
sphere instead (B 192).

Then, R1 inquired about Robert’s representation in Session 12 where he had
placed all the 1’s in the middle of the layers. Robert explained that he was “all over the
place” and “just trying different things out” (B 208). That is, Robert was using a trial and
error strategy to see if he could clearly represent the various cross-sections of the pyramid
by placing 1’s in the middle. As noted in Session 12, Robert realized that 1’s in the
middle would be problematic rather than useful and had abandoned that representation.

When R1 asked what the co-ordinates in his sketches from Session 12 meant,
Robert explained that he was thinking of a three-dimensional space that has x, y and z
axes. He was using his (X, y, z) co-ordinates to guide him in the placement of terms in a
three-dimensional space (B 226). For example, he explained that one vertex of the
pyramid in the fourth layer would be (4, 0, 0) to represent a* and that it could be drawn as

a “dot” on the white board (Figure 5-4).
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Figure 5-4 The co-ordinate system

Robert explained that (4, 0, 0) would be a* and (0, 4, 0) would be b* and (0, 0, 4)
would be ¢*.  And the edge between a* and ¢* would have co-ordinates likes (3, 0, 1), (2,
0, 2) and (1, 0, 3) to represent terms with a’c, a’c? and ac®. Again, Robert was using his
idea of “direction” to list the terms on the circumference, indicating that as one “walks”
from a’ to ¢, one is “walking” in the ¢ direction and as such, each term replaces an a

with a ¢ (becoming a’c, a’c® and ac®) to finally yield a c*.

At this point in the interview (thirty minutes approximately), R1 encouraged
Robert to share why he picked statistics over mathematics for his graduate level studies.
Robert stated that in statistics he was able to use the data and “actually get something
useful that makes sense” whereas in mathematics, he was not sure of the applicability of
the proofs he had to do (B 266). Robert also remarked that as he was “not very good at
English” he “had” to do math (B 359). Robert also shared with R1 a book he wrote that
was recently published on the topic of gambling. R1 expressed amusement that Robert

claimed to hate math even after an undergraduate degree in mathematics and a graduate
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degree in statistics. Robert explained that he used the strategy of “I hate math” to
motivate himself and said “You know that kind of influence, you know I am horrible and
then you’re like no wait I can do this...so it’s a form of influence” (B 363). It is an
interesting and modest statement by the participant as he also shared with R1 that he
earned a 4.0 G.P.A in his math courses despite wondering “how the heck did I (Robert)
get these grades because I (Robert) just don’t know simple things” (B 353 - 357). At this

point, R1 interrupted the interview to show Robert some more clips from Session 12.

R1 asked Robert to explain why he claimed in Session 12 that there would be
overlap between the terms. Robert explained that in Session 12, he was not using the
“identities” about the expansion of a trinomial and therefore confusing himself (B 317).
He reflected that in this session (Session 13), he was using the complete terms instead of
the coefficients from the very beginning and therefore, he made fewer errors (B 317).
Then, R1 asked Robert why he was doing many alternate additions picking different sets
of 3s and 6s to produce a 12 in the fourth layer during Session 12. Robert said that he
was trying a guess and check strategy to see where the 12 could come from, for example,
four 3’s, two 6s or a group of 3, 3 and 6 could all make a 12 (B 322). However, as he
was not writing the entire terms out, he was trying all groups of numbers that
mathematically added to give a 12 (B 329 - 331). In Session 13 though, Robert was
consistently reflecting on what term a 12 would represent and used it as a guide to pick a

particular group of 3’s and 6.

R1 asked Robert what his biggest hurdle was in understanding properties of
Pascal’s Pyramid during Session 12. Robert claimed that representing a three-

dimensional object on a two-dimensional white board was the most difficult part. He
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explained: “one, I can’t draw, two, you know it was in three dimensions, which if you
don’t have a computer you need to actually have manipulatives to draw in 3-D” (B 335).
Robert claimed that a person can draw the Pyramid on the board if he/she is a “good
drawer” which he declared he is not (B 335). It is an interesting statement as the
participant deemed it necessary to have good drawing skills to represent the Pyramid as a
two-dimensional object. However, he was able to create clear and mathematically-
correct two-dimensional representations for the layers of the Pyramid. Robert further
stated that it was easier for him to work with the Towers problem as he had manipulatives
(Unifix cubes) to play with and did not need to imagine what they looked like (B 335).
Similarly in the Pizza problem, he stated that a two-dimensional representation was
enough and that a third dimension was unnecessary (B335). Robert also recollected that
while taking calculus courses, he had a difficult time visualizing the three-dimensional
objects (B 335). R1 agreed that it is challenging to use a white board for representing the
Pyramid. R1 also reflected that Robert’s attempt to create coincident layers played a role

in delaying the creation of his final representation.

When R1 asked Robert what was the most helpful thing in understanding the
Pyramid’s structure and properties; Robert asserted that his notation for the coordinates

was most helpful (B 343). He went on to say that if he was taught to think of choosing

4 4
two things out of four (in his notation [ZJ) as [

) 2] instead, he would have an easier

4
time generalizing the notation to three variables. He explained that [2 j IS same as

4
[2) but it includes a representation for the variable that was not picked. In the three-
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variable case Robert used notation like ( J to represent picking four things where

121

one item is of the first kind, two items are of second kind and one item is of the third kind

4
(B 343). In other words, (

12 J were his coordinates to represent ab’c. Robert also

reflected that he did not “put together” for himself that the “squared identities (implying
binomial expansions)” could be extended to “more dimensions” (B 343). He claimed that

if he had realized that the “triangle” can be extended to the three dimensions and if he

4 4
were taught to think of [2] as (

) 2] “from the start,” he would have had an easier time

creating a two-dimensional representation for the Pascal’s Pyramid (B 343).

Towards the end (around 45 minutes), R1 asked Robert if he would have chosen
to work with a friend to draw out and represent the Pyramid like he claimed in Session 12
to Professor Lee. Robert confided that he was misrepresenting. He explained that he
preferred to work by himself on a problem before having to participate in a group
discussion (B 365). He reflected that groups work best when everyone first works on the
problem individually and brings different ideas for the group to share (B 365). He
explained that if students “just start working in a group right away there is always one or
two people who immediately just shut down and become very passive” or end up

passively copying work from other students (B 365).

Finally, R1 inquired about the ease with which Robert was able to point out a
solution to Ankur’s Challenge in Session 12. Robert stated that he understood the

“constraints” of Ankur’s Challenge and as long as you have the “abc’s written out there
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you can just circle the ones that meet those requirements” (B 369). He explained that
Ankur’s Challenge had solutions of the nature a’bc, ab’c and abc? and since he knew
that, he could circle them right away (B 369). This statement provides evidence for
Robert’s clear understanding of the isomorphism between towers that are four tall and
have exactly two of one color to the terms that have exactly two of a variable that is the
terms a’bc, ab’c and abc®. The session ended with Robert reflecting that he had worked
on Ankur’s Challenge prior to the Session 12 when R2 had asked him to solve certain

problems in a notebook.

5.3 Second Post-Graduate Interview: November 14, 2008 (Session 14)

5.3.1 Setting and Background

Note: For this session Anoop Ahluwalia is coded as R1.

A second interview with the participant was conducted to provide him with an
opportunity to build a three-dimensional model using concrete materials, in this case the
Zome tools. The Zome tools consisted of plastic rods and spheres that could interlock
with each other to make a three-dimensional object. Carolyn Maher had recommended
that Victor Liu should be an observing learner in this session as Robert built a model for
the Pascal’s Pyramid and explained to him some properties of the Pyramid. Marjory
Palius sat in as another observer for the session. A graduate student, Lou Pedrick,
recorded the session on video camera. R1 along with Carolyn Maher designed the
interview protocol for this session. The interview lasted an hour and 25 minutes. R1 had
already transcribed and watched Session 13 several times before she conducted the

Session 14 interview. R1 had also spent time building a two-color model of the Pyramid
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herself using Zome tools prior to this session. The two-tier goal of this session was to
allow Robert to experience building a three-dimensional model for the Pyramid and also
map solution to Ankur’s Challenge and the Taxicab problem to the Pyramid.
5.3.2 Robert makes a three-dimensional model for Pascal’s Pyramid

R1 had already given Robert time to construct a three-dimensional model for the
Pyramid before the interview recording began. Robert had constructed Figure 5-5 at the
beginning of the interview while R1 had observed him construct the model and took
notes. When camera began to roll, Robert was explaining to R1 that he thinks that the
Zome tools will not allow a two-colored model for the Pyramid as the rods were specific
lengths and that might hinder the layers from touching each other. R1 decided to address
this comment later in the interview and proceeded on to request that Robert explain his
model in Figure 5-5 to Victor. Victor commented that it was “very hard” for him to
pretend that he did not know the problem (C11). R1 explained to Victor that he had to
act as a student who had not seen the Pyramid before and encourage Robert to explain the

structure of his model in great depth (C12).
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Figure 5-5 Robert's first 3-D model for the Pyramid

Even though the Zome tools’ kit had several other colors, Robert chose to create
his model using blue rods of two different lengths along with the connecting white
spheres. It is noteworthy that from each sphere in his model, three blue rods were
hanging. Robert later explained that each of those rods represented a “direction” or one
of the three variables in the trinomial (a + b + ¢)". Interestingly, Robert used longer blue
rods only for the three outer edges and as such, his layers with shorter rods in the middle
did not touch each other. Robert was able to move his hand inside the model to point out
some of the spheres in middle of the layers. Finally, R1 had observed that Robert built
his model from 