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ABSTRACT OF THE THESIS

Dispersion relations for elastic waves in plates and rods

by Feruza Abdukadirovna Amirkulova

Thesis Director: Professor Andrew Norris

Wave propagation in homogeneous elastic structures is studied. Dispersion relations are ob-

tained for elastic waves in plates and rods, for symmetric and antisymmetric modes using

different displacement potentials. Some engineering beam theories are considered. Dispersion

relations are obtained for phase velocity. The comparison of results based on the fundamen-

tal beam theories is presented for the lowest flexural mode. The Rayleigh-Lamb frequency

equations are derived for elastic plate using the Helmholtz displacement decomposition. The

Rayleigh-Lamb equations are considered in a new way. A new series expansion of frequency to

any order of wave number, in principle, is obtained for symmetric and antisymmetric modes

using an iteration method. Dispersion relations are shown in graphs for frequency, phase

speed and group speed versus wave number. The obtained results are in good agreement

with exact solutions. The cutoff frequencies for axial-shear, radial-shear and flexural modes

are calculated and taken as starting points in dispersion relations for frequencies versus wave

number. Different displacement potential representations are presented and compared. The

Pochhammer-Chree frequency equations are derived for elastic rods using two displacement

potentials, such as the Helmholtz decomposition for vector fields and Buchwald’s vector po-

tentials. Buchwald’s representation enables us to find an efficient formulation of dispersion

relations in an isotropic as well as anisotropic rods. Analysis of the numerical results on

ii



dispersion relations and cutoff frequencies for axial-shear, radial-shear and flexural modes is

given.
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Chapter 1

Introduction

Wave propagation in solids is of interest in a number of engineering applications. The study

of structures involving wave phenomena includes the response to impact loads and crack

propagation. For typical transient loads, the response can be evaluated by elastic wave

theory. For acute loading elastic wave theory can still predict the response far from the

region of load application. Some other areas of application of wave phenomena are in the

field of ultrasonics, seismology (waves in rocks), earthquakes (waves in earth).

The application of numerical methods have enabled the solution of challenging problems.

For instance, before the invention of computer, finding the roots of the Rayleigh-Lamb fre-

quency equation was considered to be intractable. The roots of a transcendental equation

can be now evaluated easily on a computer. Consequently, the interest in the theory of wave

propagation has increased over the last few decades.

This thesis studies wave propagation in elastic solids, especially in plates, thin rectangular

rods, and cylindrical rods. The thesis consists of four chapters, references, and appendixes.

The introduction is given in this chapter.

Chapter §2 presents a review of the elastic wave theory for waveguides and it illustrates

the basic ideas of wave propagation in solids. The chapter begins with the literature review

of elastic wave propagation in plates, shells and rods. The fundamental research conducted

in the past as well as recent publications concerning wave propagation are described, such as

some complex characteristics of material in anisiotropy, viscosity, initial stress, polarization,

as well as composite structure. The governing equations for a linear homogeneous isotropic

elastic solid are developed. The displacement vector is expressed in terms of scalar and vector

potentials. The Rayleigh-Lamb frequency equations for the propagation of symmetric and
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antisymmetric waves in an isotropic elastic plate are derived next. Lastly, some approximate

beam theories are discussed which substantially simplify wave analysis in beams and rods.

The comparison of results for phase velocity for the considered models is shown.

Chapter §3 is devoted to the study the Rayleigh-Lamb frequency equations in more de-

tail, and it proposes a new expansion of the roots of the Rayleigh-Lamb frequency equations.

Introducing the non-dimensional frequency and wavenumber, the Rayleigh-Lamb frequency

equation in non-dimentional parameters is developed. The non-dimensional frequency is ex-

panded into a series for the wavenumber for symmetric modes. Numerical evalution of the

series coefficients are performed with Maple 12 using the iteration method. We next represent

the frequency series expansion for antisymmetric modes on the basis of the approach used

in the previous section. This followed by a discussion of numerical results of the dispersion

relations for phase speed and group speed. The dispersion relations in a plate for the sym-

metric and antisymmetric modes are obtained from the Rayleigh-Lamb frequency equations.

These relations are illustrated as plots of frequency versus wavenumber.

Chapter §4 is concerned with the investigation of wave propagation in a rod. The chapter

begins with a review of wave propagation in rods. Next the statement of problem of wave

propagation in an elastic isotropic rod is formulated. The three different representations

of displacement potentials are introduced. Then, using these potential representations, the

frequency equations in the rod for symmetric and antisymmetric modes are derived. Finally,

the numerical results of the dispersion relations and cutoff frequencies for axial-shear, radial-

shear and flexural modes in the rod are given in Section §4.5.

The Appendixes give sample computational program codes written with Matlab and

Maple. The Maple codes given in Appendix 1 calculate the coefficients Un and Wn of the

series expansions of frequency Ω in terms of wave number ξ, where the Un depend on the

polynomials Bn for symmetric modes, and Wn depend on the polynomials Dn for antisym-

metric modes in a plate. Appendix 2 gives the Matlab codes that solve and plot the dispersion

relations for plates and rods, using nondimensional frequency, phase speed and group speed

versus wave number.

A new way to study the low frequency behavior of the Rayleigh-Lamb frequency equations
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is proposed in Chapter §3. The approach is built on a new series expansion of the roots of

Rayleigh-Lamb equations using iteration method combined with symbolic algebra on Maple.

The frequency and phase speed dependence on wave number shows good agreement between

series expansion method and the exact theory for low frequency waves.

A new approach to derive the frequency equations for rods using Buchwald’s potential

representation is proposed in Chapter §4. Some unexpected interesting behavior of cutoffs

for antisymmetric modes in rods is revealed.

Finally, some applications, conclusions and suggestions are given in Chapter §5.
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Chapter 2

Review on Elastic Wave Theory for Waveguides

2.1 Review

This section presents a review of problems concerning the topic of the thesis. References

include works on exact and approximate theories for plates, shells and rods. Fundamental

approaches in the development of mathematical models of non-stationary processes in plates,

shell structures and beams are attributed to Euler, Bernoulli, Rayleigh [1], Timoshenko [2],

Kirchhoff, Love, Mindlin [3], Flugge [4], Naghdi [5], Markus [6], Hermann and Mirsky [7]

etc. The simple theories, such as engineering theories for compressional waves in rods, or

flexural waves in beams, are restricted to low frequencies as a consequence of kinematical

assumptions, as is shown at the end of this chapter. Consequently, the exact and refined

theories of plates, rods and shells are necessary for considering problems at high frequencies

and for transient loadings.

Frequency equations for waves in nfinite plates were presented by Rayleigh [1] and Lamb

[8] in 1889. The frequency equations for wave propagation in an infinite rod were proposed

by Pochhammer [9] in 1876 and independently, Chree [10] in 1889. A brief review of wave

propagation in rods is given in Section §4.1. Lamb [8] analyzed the lowest symmetric and

antisymmetric modes of the Rayleigh-Lamb equations, classifying the cutoff modes, Lamé

modes and specific features of the high frequency spectrum. Holden’s approach [11] of com-

posing a portion of the frequency spectrum of symmetric modes for real wave numbers was

employed and expanded for antisymmetric modes by Onoe [12]. A similar approach was

proposed by Mindlin [13] to construct the branches of the frequency equation, to examine

complex behavior of the branches in the neighborhood of zero wavenumber, to ascertain the



5

modes at the cut-off frequencies which differ from the modes determined by Lamb [8], and

to identify complex wave numbers and phase velocities associated with real frequencies in-

cluding higher modes. The general solution for a shell was first treated by Gazis [14] in 1959.

The application of numerical methods has assisted in solving a number of dificult problems

including the frequency spectrum analysis of higher modes and complex branches. An exten-

sive review of related problems on wave propagation in rods and plates is given by Graff [15].

The basic concepts of one dimensional wave propagation and discussion of formal aspects of

3D elastodynamic theory, and description of typical mechanical wave propagation phenom-

ena, such as reflextion, refraction, diffraction, radiation, and propagation in waveguides was

presented by Achenbach [16].

The broad research and results offered for Rayleigh-Lamb and Pochhammer-Chree fre-

quency spectrum show that propagation of harmonic waves in infinite elastic media can be

solved in general [11], [12], [13], [15], [16]. For instance, free vibrations of an elastic layer may

produce an infinite number of modes whose frequencies can be obtained from the Rayleigh-

Lamb equation. Conversely, for forced motion of a plate of finite dimensions each of these

modes couples, leading to an intricate frequency spectrum [16]. As a consequence of the

complexity of the governing equations and boundary conditions, the solution of the forced

and free vibration problems using exact theory is generally difficult. These obstacles have

motivated the development of approximate theories for plates, shells and rods. The 3D gov-

erning equations were reduced to 2D equations in most of these theories by making some

kinematical assumptions, such as the Kirchhoff assumption.

An approximate plate theory for isotropic elastic plates, taking into account rotary iner-

tia and transverse shear, was proposed by Mindlin [3]. The displacement components were

expanded in power series in the thickness coordinate, then substituted into the equations of

motion, and then subsequently integrated over the thickness. Then, by incorporating bound-

ary conditions, 3D equations of elasticity are altered into an infinite series of 2D equations

in the in-plane coordinates which is then truncated to form the approximate equations. A

survey of the kinematical hypotheses and governing equations of refined theories of plates

is presented by Jemielita [17], where it is shown that a kinematical hypothesis by Vlasov
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[18] is a model for all cited works in the survey. In a review article, Reissner [19] discussed

some aspects of plate modeling, including the sixth-order plate theories. Norris [20] brought

together the beam and plate theories, established relationships between them and showed

that four classical theories for plates and beams yielded quite dissimilar results, which were

illustrated by comparison of the wave speeds for antisymmetric modes on narrow plates.

Kirchhoff - Love theory and Timoshenko type theories [4, 6, 21, 22] are based on different

hypothesis, which simplify the form of the governing equation of vibrations and at the same

time lead to essential disadvantages and errors. To avoid such errors, various refined vibra-

tion equations were proposed such as those of Boström [23], Kulikov [24], Khudoynazarov

[25], Amirkulova [26]. These models are free from hypotheses and preconditions used in

known classical and refined theories. They are more general than Timoshenko type equa-

tions and Hermann-Mirsky [7] equations and take into account the effect of transversal shear

deformation and the rotary inertia, and admit various truncations of equations. Boström

[23] derived a refined set of flexural equations of motion for an isotropic elastic plate by an

antisymmetric expansion in the thickness coordinate of the displacement components. These

equations can be truncated to any order in the thickness, thus making it possible to have

numerical comparision of different truncations of the equation with each other, in particular,

with the exact 3D solution and Mindlin’s plate theory is possible. It is noted by Boström

[23] that the corresponding dispersion relation seems to correspond to a power series ex-

pansion of the exact Rayleigh-Lamb dispertion relation to all orders. The refined equations

of non-stationary symmetric vibrations of the cylindrical prestressed viscoelastic shells was

proposed by Amirkulova [26]. The approach is based on exact mathematical formulation of

the 3D problems of theory of elasticity and their general solutions using transformations.

The displacements of intermediate surface of the shell are taken as the basic unknowns. The

intermediate surface of the shell can alter into median (neutral), external or internal sur-

face. It allows one to use these equations for thin shells, thick walled layers, as well as rods.

The obtained equations are of hyperbolic type and describe the wave distribution caused by

dispersion.

Recent publications include [27] by Stephen, [24] by Kulikov, [28] by Guz, [29] by Guz and
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Rushchitsky, [30] by Thurston, [31] by Selezov, [32] by Shulga, [33] by Norris and Shuvalov.

Hyperbolic equations of motions for rods, plates and shells are derived by Selezev [31] using

a series expansion technique in the thickness coordinate and by retaining as many terms as

appropriate. The deformation due to plane harmonic waves propagating along the fibres of

nanocomposite and polarised perpendicular direction is considered by Guz and Rushchit-

sky [29]. Norris and Shuvalov [33] constructed the wave impedance matrix for cylindrically

anisotropic radially inhomogeneous elastic solids using the Stroh-like system of six first order

differential equations.

2.2 The Governing Equations for 3D Solids

The equations for a linear homogeneous isotropic elastic solid are:

Ia) the equations of motion of three-dimensional elasticity

σij,j + ρfi = ρüi, (2.1)

Ib) the stress-strain relations (Hooke’s law)

σij = λεkkδij + 2µεij , (2.2)

Ic) the strain-displacement relations (Cauchy’s relations)

εij =
1

2
(ui,j + uj,i), (2.3)

Here ui are the displacement components, σij are the stress tensor components, εij are the

deformation tensor components, εkk is the trace of deformation tensor, fi are the volume force

components, ρ is the density, λ and µ are Lamé coefficients, and the summation convention

is taken for i = 1, 2, 3.

Introducing the strain-displacement relations (2.3) into the stress-strain relations (2.2),

the stress tensor components can be expressed in terms of displacement vector components

as following:

σij = λui,iδij + µ
[

ui,j + uj,i

]

. (2.4)
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Substituting the stress-displacement relations (2.4) in the equation of motion (2.1) and sim-

plifying, the Navier’s equation of motion in terms of displacements can be obtained in the

form:

(λ+ µ)uj,ji + ui,jj + ρ fi = ρüi, (2.5)

or in vector form as

(λ+ µ)∇∇∇∇∇∇ · uuu+ µ∇2uuu+ ρfff = ρüuu, (2.6)

where ∇2 is the Laplace operator.

In terms of rectangular Cartesian coordinates (2.6) can be written as

(λ+ µ)

(

∂2u

∂x2
+

∂2v

∂x∂y
+

∂2w

∂x∂z

)

+ µ∇2u+ ρ fx = ρ
∂2u

∂t2
,

(λ+ µ)

(

∂2u

∂x∂y
+
∂2v

∂y2
+

∂2w

∂y∂z

)

+ µ∇2v + ρ fy = ρ
∂2v

∂t2
, (2.7)

(λ+ µ)

(

∂2u

∂x∂z
+

∂2v

∂y∂z
+
∂2w

∂z2

)

+ µ∇2w + ρ fz = ρ
∂2w

∂t2
,

where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.8)

In the absence of body forces the equation of motion in vector form reduces to

(λ+ µ)∇∇∇∇∇∇ · uuu+ µ∇2uuu = ρüuu. (2.9)

2.3 Displacement Potentials

The system of equations (2.9) is coupled in the three displacement components u, v, w. These

equations can be uncoupled by expressing the components of the displacement vector in terms

of derivatives of scalar and vector potentials in the form [16] of the Helmholtz decomposition

for vector fields,

uuu = ∇∇∇ϕ+∇∇∇×ψψψ, (2.10)

where φ is a scalar potential function and ψψψ is a vector potential function. In Cartesian

coordinates ψψψ = ψx eeex + ψy eeey + ψz eeez, and the Helmholtz displacement decomposition will
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have form

u =
∂ϕ

∂x
+
∂ψz

∂y
−
∂ψy

∂z
, v =

∂ϕ

∂y
−
∂ψz

∂x
+
∂ψx

∂z
, w =

∂ϕ

∂z
+
∂ψz

∂x
−
∂ψx

∂y
. (2.11)

where

Plugging the equation (2.10) into the equation of motion (2.9) and taking into account

that ∇∇∇ ·∇∇∇ϕ = ∇2ϕ and ∇∇∇ ·∇∇∇×ψψψ = 0, we obtain

∇∇∇
[

(λ+ 2µ)∇2ϕ− ρϕ̈
]

+∇∇∇×
[

µ∇2ψψψ − ρ ψ̈̈ψ̈ψ
]

= 0. (2.12)

Equation (2.10) therefore satisfies the equation of motion if it satisfies the following uncoupled

wave equations

∇2ϕ =
1

c21
ϕ̈, (2.13)

∇2ψψψ =
1

c22
ψ̈ψψ, (2.14)

where

c21 =
λ+ 2µ

ρ
, c22 =

µ

ρ
. (2.15)

Here c1 is the longitudinal wave velocity and c2 is the transverse wave velocity.

In the xyz coordinate system (2.13) remains the same while (2.14) can be written as

∇2ψx =
1

c22

∂2ψx

∂t2
, ∇2ψy =

1

c22

∂2ψy

∂t2
, ∇2ψz =

1

c22

∂2ψz

∂t2
. (2.16)

In cylindrical coordinates (r, θ, z) the relations between the displacement components and

the potentials follow from (2.10) as:

ur =
∂ϕ

∂r
+

1

r

∂ψz

∂θ
−
∂ψθ

∂z
, (2.17a)

uθ =
1

r

∂ϕ

∂θ
+
∂ψr

∂z
−
∂ψz

∂r
, (2.17b)

uz =
∂ϕ

∂z
+

1

r

∂(ψθr)

∂r
−

1

r

∂ψr

∂θ
. (2.17c)

In (r, θ, z) system the scalar potential ϕ is defined again by (2.13) whereas the component of
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vector potential ψψψ satisfy the following equations

∇2ψr −
ψr

r2
−

2

r2
∂ψθ

∂θ
=

1

c22

∂2ψr

∂t2
, (2.18a)

∇2ψθ −
ψθ

r2
+

2

r2
∂ψr

∂θ
=

1

c22

∂2ψθ

∂t2
, (2.18b)

∇2ψz =
1

c22

∂2ψz

∂t2
, (2.18c)

where the Laplacian is of the form

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
+

∂2

∂z2
. (2.19)

2.4 Waves in Plane Strain in Thin Plates

2.4.1 General Solution

Consider harmonic wave propagation in thin plate having thickness 2h shown in Figure 2.1.

For plane strain motion in xy plane: u = u(x, y, t), v = v(x, y, t). Then in the absence of

body forces the equation of motion (2.1) will reduce to the form

∂σxx

∂x
+
∂σxy

∂y
= ρ

∂2u

∂t2
, (2.20a)

∂σxy

∂x
+
∂σyy

∂y
= ρ

∂2v

∂t2
, (2.20b)

and Hooke’s law is

σxx = λ

(

∂u

∂x
+
∂v

∂y

)

+ 2µ
∂u

∂x
, (2.21a)

σyy = λ

(

∂u

∂x
+
∂v

∂y

)

+ 2µ
∂v

∂y
, (2.21b)

σxy = µ

(

∂u

∂y
+
∂v

∂x

)

. (2.21c)

Plugging (2.21a)-(2.21c) into (2.20a)-(2.20b) the following equations are obtained

λ

(

∂2u

∂x2
+

∂2v

∂x∂y

)

+ 2µ
∂2u

∂x2
+ µ

(

∂2u

∂y2
+

∂2v

∂x∂y

)

= ρ
∂2u

∂t2
,

µ

(

∂2v

∂x2
+

∂2u

∂x∂y

)

+ λ

(

∂2v

∂y2
+

∂2u

∂x∂y

)

+ 2µ
∂2v

∂y2
= ρ

∂2v

∂t2
,
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Figure 2.1: Plate in plane strain

which can be modified as

∂2u

∂x2
+

λ+ µ

λ+ 2µ

∂2v

∂x∂y
+

µ

λ+ 2µ

∂2u

∂y2
=

ρ

λ+ 2µ

∂2u

∂t2
, (2.22a)

∂2v

∂y2
+

λ+ µ

λ+ 2µ

∂2u

∂x∂y
+

µ

λ+ 2µ

∂2v

∂x2
=

ρ

λ+ 2µ

∂2v

∂t2
. (2.22b)

The Lamé coefficients are related to the Young modulus of elasticity E, the shear modulus

G and Poisson’s ratio ν as follows,

µ = G =
E

2(1 + ν)
, λ =

2Gν

1 − 2ν
,

λ

µ
=

2ν

1 − 2ν
. (2.23)

Substitution of (2.23) into (2.22a) and (2.22b) yields

∂2u

∂x2
+

1

1 − ν

∂2v

∂x∂y
+

1 − 2ν

2(1 − ν)

∂2u

∂y2
=

1

c21

∂2u

∂t2
, (2.24a)

∂2v

∂y2
+

1

1 − ν

∂2u

∂x∂y
+

1 − 2ν

2(1 − ν)

∂2v

∂x2
=

1

c21

∂2v

∂t2
. (2.24b)

If conditions of plane strain hold in xy plane, equation (2.11) reduces to

u =
∂ϕ

∂x
+
∂ψz

∂y
, v =

∂ϕ

∂y
−
∂ψz

∂x
, (2.25)

and the potentials ϕ and ψz satisfy 2D wave equations

∂2ϕ

∂x2
+
∂2ϕ

∂y2
=

1

c21

∂2ϕ

∂t2
, (2.26a)

∂2ψz

∂x2
+
∂2ψz

∂y2
=

1

c22

∂2ψz

∂t2
. (2.26b)
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We seek solution of the wave equations (2.26a)-(2.26b) in the form

ϕ = Φ(y)ei(kx−ωt), ψz = iΨ(y)ei(kx−ωt), (2.27)

where ω is the frequency and k is the wave number. These solutions represent traveling waves

in the x direction and standing waves in the y direction. Having substituted the assumed

solutions (2.27) back into displacement representation (2.25), we obtain

u = i

(

kΦ +
dΨ

dy

)

ei(kx−ωt), (2.28a)

v =

(

dΦ

dy
− i kΨ

)

ei(kx−ωt). (2.28b)

Substituting the solutions (2.27) into (2.26a)-(2.26b) results in the following Helmholtz

equations for Φ and Ψ

d2Φ

dy2
+ α2Φ = 0,

d2Ψ

dy2
+ β2Ψ = 0. (2.29)

where the longitudal and transverse wave numbers, α, β, are

α2 = ω2/c21 − k2, β2 = ω2/c22 − k2.

The solutions of equations (2.29) are obtained as

Φ(y) = A sin αy +B cos αy, (2.30a)

Ψ(y) = C sin βy +D cos βy. (2.30b)

Substitution of these solutions into the equations (2.27) and (2.28a)-(2.28b) results in the

following potentials and displacements:

ϕ = (A sin αy +B cos αy)ei(kx−ωt), (2.31a)

ψz = i(C sin βy +D cos βy)ei(kx−ωt), (2.31b)

u = i
[

k(A sin αy +B cos αy) + β(C cos βy −D sin βy)
]

ei(kx−ωt), (2.31c)

v =
[

α(A cos αy −B sin αy) − i k(C sin βy +D cos βy)
]

ei(kx−ωt). (2.31d)
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The stress components can be obtained by rewriting (2.21a)-(2.21c) as

σxx = (λ+ 2µ)

(

∂u

∂x
+
∂v

∂y

)

− 2µ
∂v

∂y
, (2.32a)

σyy = (λ+ 2µ)

(

∂u

∂x
+
∂v

∂y

)

− 2µ
∂u

∂x
, (2.32b)

σxy = µ

(

∂u

∂y
+
∂v

∂x

)

. (2.32c)

In terms of potentials ϕ and ψz the stresses are

σxx = (λ+ 2µ)

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

− 2µ

(

∂2ϕ

∂y2
−
∂2ψz

∂x∂y

)

, (2.33a)

σyy = (λ+ 2µ)

(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)

− 2µ

(

∂2ϕ

∂x2
+
∂2ψz

∂x∂y

)

, (2.33b)

σxy = µ

(

2
∂2ϕ

∂x∂y
+
∂2ψz

∂y2
−
∂2ψz

∂x2

)

. (2.33c)

Substituting the resulting potentials (2.31a)- (2.31b) into (2.33a)-(2.33c) yields the following

σxx = µ

[

[2α2 − κ2(k2 + α2)](A sin αy +B cos αy) − 2kβ(C cos βy −D sin βy)

]

ei(kx−ωt),

(2.34a)

σyy = µ

[

[2k2 − κ2(k2 + α2)](A sin αy +B cos αy) + 2kβ(C cos βy −D sin βy)

]

ei(kx−ωt),

(2.34b)

σxy = iµ

[

2αk(A cos αy −B sin αy) − 2(β2 − k2)(C sin βy +D cos βy)

]

ei(kx−ωt), (2.34c)

where

κ2 =
c21
c22

=
λ+ 2µ

µ
=

2(1 − ν)

1 − 2ν
>

4

3
.

We will omit the term ei(kx−ωt) in the sequel because the exponential appears in all of the

expressions and does not influence the determination of the frequency equation.

2.4.2 Symmetric and Antisymmetric Modes

Solution of the boundary-value problem for plates become simpler if we split the problem

using symmetry. Thus, for u in the yz plane the motion is symmetric (antisymmetric) with
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respect to y = 0 if u contains cosines(sines); for v it is vice versa. By inspection of equations

(2.31a)- (2.31d), (2.34a)- (2.34c) we notice that the modes of wave propagation in a thin plate

may be separated into two systems of symmetric and antisymmetric modes respectively:

SYMMETRIC MODES:

Φ = B cos αy, Ψ = C sin βy, (2.35a)

u = i
[

kB cos αy + βC cos βy
]

, (2.35b)

v = −Bα sin αy + Ck sin βy, (2.35c)

σxx = µ
[

[2α2 − κ2(k2 + α2)]B cos αy − 2kβC cos βy
]

, (2.35d)

σyy = µ
[

[2k2 − κ2(k2 + α2)]B cos αy + 2kβC cos βy
]

, (2.35e)

σxy = −iµ
[

2αkB sin αy + (β2 − k2)C sin βy
]

, (2.35f)

ANTISYMMETRIC MODES:

Φ = A sin αy, Ψ = D cos βy, (2.36a)

u = i
[

kA sin αy − βD sin βy
]

, (2.36b)

v = Aα cos αy +Dk cos βy, (2.36c)

σxx = µ
[

[2α2 − κ2(k2 + α2)]A sin αy + 2kβD sin βy
]

, (2.36d)

σyy = µ
[

[2k2 − κ2(k2 + α2)]A sin αy − 2kβD sin βy
]

, (2.36e)

σxy = iµ
[

2αkA cos αy − (β2 − k2)D cos βy
]

. (2.36f)

The frequency equation can be obtained from the boundary conditions. If we consider

the case of waves in a plate of thickness 2h having traction free boundaries, the boundary

conditions are:

σyy = σxy = σzy = 0, at y = ±h (2.37)

where σzy ≡ 0 is satisfied identically.

Consider first the case of symmetric waves. Symmetric displacements and stresses are

given by (2.35b)- (2.35f). Substitution of equations (2.35e)- (2.35f) into (2.37) yields the

following system of two homogeneous equations for the constants B and C:
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



(k2 − β2) cos αh 2k β cos βh

∓2ikα sin αh ∓(k2 − β2) sin βh



 ·





B

C



 =





0

0



 . (2.38)

Since the system of equations (2.38) is homogeneous, the determinant of the coefficients

has to vanish, which results in the frequency equation. Thus

(k2 − β2)2 cos αh sin αh + 4k2αβ sin αh cosβh = 0, (2.39)

or the determinant can be written as

tan βh

tan αh
= −

4k2αβ

(k2 − β2)2
. (2.40)

Equation (2.40) is known as the Rayleigh-Lamb frequency equation for symmetric waves in a

plate.

Similarly, for antisymmetric modes displacements and stresses are given by (2.36b)-

(2.36f). Substituting (2.36d) and (2.36f) into (2.37) the following system for constants A

and D is obtained:

±
[

(k2 − β2)A sin αh− 2βkD sin βh
]

= 0, (2.41a)

2kαA cos αh− (k2 − β2)D cos βh = 0. (2.41b)

which gives the Rayleigh-Lamb frequency equation for the propagation of antisymmetric waves

in a plate

tan βh

tan αh
= −

(k2 − β2)2

4k2αβ
. (2.42)

2.5 Engineering Theories for Beams and Rods

In this section, we discuss several fundamental beam theories used in engineering practice.

The development and analysis of four beam models were presented by Han et al. in [34]. They

are the Euler-Bernoulli, Rayleigh, shear, and Timoshenko models for transverse motion. In

this paper beam models were obtained using Hamilton’s variational principle, whereas here

the theories are derived using force balance which will be presented below.
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Consider a long elastic uniform beam (or thin rod) in Cartesian coordinates where coor-

dinate x parallels the axis of the beam (rod). The thickness and width of the beam (rod) are

small compared with the overall length of the beam. Let the beam (rod) of cross-sectional

area A be comprised of material of mass density ρ and elastic modulus E. We assume that

the arbitrary cross-sectional area of the beam (rod) remains plane after deformation.

2.5.1 Compressional Waves in Thin Rods

In compressional wave motions the longitudinal displacement is the dominant component.

Let a thin rod be under a dynamically varying stress field σ(x, t) and be subjected to the

externally applied distributed axial force f(x, t). For 1D stress σ and axial strain ǫ are related

by Hooke’s law

σ = E ǫ, (2.43)

where ǫ is defined by

ǫ =
∂u

∂x
. (2.44)

By writing the equation of motion for an element of rod, we obtain

∂σ

∂x
+ f = ρ

∂2u

∂t2
. (2.45)

Substitution of (2.43) and (2.44) into (2.45) yields

E
∂2u

∂x2
+ f = ρ

∂2u

∂t2
. (2.46)

In the absence of the distributed loads (f=0) (2.46) reduces to

∂2u

∂x2
=

1

c2b

∂2u

∂t2
, (2.47)

where

c2b =
E

ρ
, (2.48)

cb is referred to as bar velocity.

Seeking the solution of the form

u = Cei(kx−ωt), (2.49)
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Figure 2.2: Beam with distributed transverse force and body couples

we obtain the following relation

ω2 = c2bk
2, (2.50)

or

ω = ±cbk, (2.51)

where ω is the frequency, k is the wave number.

Equation (2.51) predicts that compressional waves are not dispersive [16].

2.5.2 Bending and Flexural Waves in Elastic Beams

In this section we will examine how the alteration occurs between classical and refined beam

theories, in particular, we will analyze the leading order correction to beam theory. The

development is conducted in the context of the three fundamental beam theories used in

engineering practice, beginning with the Euler-Bernoulli theory, then followed by Rayleigh

and Timoshenko theories.

Consider a long beam that is loaded by normal and transverse shear stress over its up-

per and lower surfaces shown in Figure 2.2. The external forces may be expressed in terms

of distributed transverse loads q(x, t) and distributed body couples η(x, t). Let the x-axis

coincide with the centroid of the beam in the rest configuration. According to the Kirch-

hoff kinematic assumption, straight lines normal to the mid-surface remain straight after

deformation; straight lines normal to the mid-surface remain normal to the mid-surface after

deformation; the thickness of the beam does not change during a deformation. Using the



18

Kirchhoff assumption we have the following kinematical relations [35]:

ux(x, z, t) = u(x, t) − z ϕ(x, t), uz(x, z, t) = w(x, t), (2.52)

where ϕ is the in-plane rotation of the cross-section of the beam, ux(x, z, t) and uz(x, z, t)

are the axial and transverse displacements of the particle originally located at the indicated

coordinates, u(x, t) and w(x, t), respectively, corresponding to displacements of the particle

on the neutral surface z = 0.

Utilizing the geometric relation

ǫxx =
∂ux

∂x
, (2.53)

the strain distribution is found in the form

ǫxx(x, z, t) = ǫ(x, t) − z κ(x, t), (2.54)

where

ǫ(x, t) =
∂u

∂x
, κ(x, t) =

∂ϕ

∂x
, (2.55)

are correspondingly the axial strain of the neutral surface and the curvature of the neutral

axis of the beam at x.

The stress-strain relation is

σxx(x, z, t) = E ǫxx(x, z, t). (2.56)

The bending moment acting on cross section x is

M(x, t) =

∫

A
σxx(x, z, t)zdA = −EIκ(x, t) = −EI

d2w(x, t)

dx2
. (2.57)

The shear force acting on cross-section is

V (x, t) =

∫

A
τ(x, z, t)dA, (2.58)

where τ(x, z, t) is the shear stress. Writing the equation of motion in the transverse direction,

we obtain

−V (x, t) +

(

V (x, t) +
∂V

∂x
dx

)

+ q(x, t)dx = ρAdx
∂2w

∂t2
, (2.59)
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where q(x, t) is the distributed transverse force. This reduces to

∂V

∂x
+ q(x, t) = ρA

∂2w

∂t2
. (2.60)

Summing moments about an axis perpendicular to the xz-plane and passing through the

center of the beam element, we have

η(x, t) dx+M −

(

M +
∂M

∂x
dx

)

+
1

2
V dx+

1

2

(

V +
∂V

∂x
dx

)

dx = J
∂2ϕ

∂t2
, (2.61)

where J is the polar inertia of the element, and η is the body couple. For an element of

length dx and having a cross-sectional-area moment of inertia about the moment of neutral

axis of I, we have that

J = ρIdx = Iρdx, (2.62)

where Iρ = ρI is called the rotary inertia of the beam.

Substitution of (2.62) into (2.61) results in

V =
∂M

∂x
+ Iρ

∂2ϕ

∂t2
− η(x, t). (2.63)

Introducing (2.63) into (2.60) and incorporating equations (2.55) and (2.57) yields the

following equation expressed in terms of the transverse displacement w and in-plane rotation

ϕ

∂2

∂x2

(

EI
∂ϕ

∂x

)

+ ρA
∂2w

∂t2
−

∂

∂x
Iρ
∂2ϕ

∂t2
= q(x, t) −

∂η

∂x
. (2.64)

Each term in equation (2.64) represents a different physical characteristic of beam behavior.

If rotary effects are neglected, the third term on the right hand side of equation (2.64) is zero.

This case is shown in detail in the following section.

Euler-Bernoulli Beam Theory

In this model, the effects of rotary inertia are neglected compared with those of the linear

inertia. The deformations associated with transverse shear are also neglected. It is assumed

that the dominant displacement component is parallel to the plane of symmetry so the dis-

placement v in the y direction is zero, and that the deflections are small and w = w(x, t).
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Thus we have

ϕ(x, t) ∼=
∂w

∂x
, (2.65)

Substituting equation (2.65) into (2.64) and setting the rotation inertia Iρ = 0, yields

∂2

∂x2

(

EI
∂2w

∂x2

)

+ ρA
∂2w

∂t2
= q(x, t) −

∂η

∂x
. (2.66)

Equation (2.66) is referred to as the Euler-Bernoulli beam equation. Equation (2.66) in the

absence of body couples and external loadings can be modified into the form

∂4w

∂x4
+

1

b2
∂2w

∂t2
= 0, (2.67)

where

b2 =
EI

ρA
. (2.68)

By considering a harmonic waves of the form:

w = C ei(kx−ωt), (2.69)

where k-wavenumber, ω-frequency, we find

k4 −
ω2

b2
= 0, (2.70)

or

ω2 = b2k4, (2.71)

which yields

ω = ±bk2. (2.72)

Let us define the phase speed c:

c =
ω

k
, (2.73)

and the group speed cg:

cg =
∂ω

∂k
. (2.74)

Using relationship ω = k c and a propagating wave of the form (2.69), we obtain

c = ±bk, cg = 2c. (2.75)
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Thus the phase and the group velocity are proportional to the wavenumber which suggests

that (2.75) cannot be correct for large wave numbers [16].

Let us introduce the non-dimensional parameters,

Ω =
ωh

c2
, ξ = kh, (2.76)

where Ω and ξ are non-dimensional frequency and wavenumber, respectively, 2h is the thick-

ness of the beam, c2 is transverse wave speed defined by (2.15). Introducing non-dimensional

parameters (2.76) into (2.71) and incorporating (2.23), we obtain

Ω2 = a ξ4, (2.77)

where

a =
2(1 + ν)

k2
, (2.78)

k2 is a non-dimensional parameter defined as:

k2 =
Ah2

I
. (2.79)

Rayleigh Beam Theory

This model incorporates the rotary inertia into the model for Euler-Bernoulli beam theory.

We derive the equation of motion for Rayleigh beams based on assumptions of Euler-Bernoulli

theory but by including the effects of rotary inertia. Preserving the rotary inertia Iρ in (2.64)

and incorporating equation (2.65), we obtain the equation of motion for Rayleigh beams as

[35], [1]

∂2

∂x2

(

EI
∂2w

∂x2

)

+ ρA
∂2w

∂t2
−

∂

∂x
Iρ

∂3w

∂x∂t2
= q(x, t) −

∂η

∂x
. (2.80)

Considering free vibrations of Rayleigh beams we neglect terms on the right-hand side of

equation (2.80)

∂4w

∂x4
+

1

b2
∂2w

∂t2
−

1

c2b

∂4w

∂x2∂t2
= 0, (2.81)

where b is defined by (2.68) and cb by (2.48).
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We seek solutions of the form (2.69). Plugging (2.69) into (2.81) results in the following

characteristic equation

k4 −
ω2

b2
−
ω2k2

c2b
= 0, (2.82)

which gives following dispersion relation

ω2 =
k4b2

1 + k2b2

c2
b

, (2.83)

or

ω = ±
k2b

√

1 + k2b2

c2
b

. (2.84)

Introducing non-dimensional frequency and wavenumber parameters by (2.76) into (2.83)

and incorporating (2.23), we obtain

Ω2 =
a ξ4

1 + ξ2

k2

≈ a ξ4 −
a

k2
ξ6 +

a

k2
2

ξ8 −
a

k3
2

ξ10 + ..., (2.85)

where the non-dimensional parameters a and k2 are defined by (2.78) and (2.79) and

c = ±
kb

√

1 + k2b2

c2
b

, cg = 2c−
c3

c2b
. (2.86)

Timoshenko Beam Theory

Beams whose description include both shear correction and rotary inertia are referred to as

Timoshenko Beams. This model [2] includes shear deformation to the basic beam theories

discussed above. Let’s consider the transverse shear stress σxz = τ(x, z, t), acting on a cross

section and associated shear strain ǫxz(x, z, t) = 1
2γxz(x, z, t).

The stress-strain relation for shear is

τ(x, z, t) = 2Gǫxz(x, z, t) = Gγxz(x, z, t), (2.87)

where G is the shear modulus.

We define the shear angle for a beam as [35]:

γ(x, t) =
1

k1A

∫

A
γxz(x, z, t)dA, (2.88)



23

where k1 is a ”shape factor” and is known as the Timoshenko Shear Coefficient. Substitution

of equation (2.87) and (2.88) into equation (2.58) yields

V (x, t) = ksγ(x, t), (2.89)

where

ks = k1AG (2.90)

is the shear stiffness of the beam.

The slope of the centroidal axis is considered to be made up of two contributions. The

first is ϕ, due to bending. An additional contribution γ due to shear is included. Thus

∂w

∂x
∼= ϕ(x, t) + γ(x, t), (2.91)

substitution of which into (2.89) results in

γ(x, t) =
∂w

∂x
− ϕ(x, t) =

V (x, t)

ks(x)
. (2.92)

Substituting equations (2.91) and (2.92) into (2.57), yields

M(x, t) = −EI
∂

∂x

[

∂w

∂x
− γ(x, t)

]

= −EI

[

∂2w

∂x2
−

∂

∂x

V

ks

]

. (2.93)

Substitution of equations (2.89), (2.92), (2.93) into (2.60) and (2.63) results in the governing

equations for the Timoshenko beams

ρA
∂2w

∂t2
+GAk1

∂

∂x

[

ϕ(x, t) −
∂w

∂x

]

= q(x, t), (2.94)

Iρ
∂2ϕ

∂t2
−GAk1

[

∂w

∂x
− ϕ(x, t)

]

− EI
∂2ϕ

∂t2
= η(x, t). (2.95)

Since there two degree of freedom this set of equations describes two wave modes. The

equations of motion (2.94), (2.95) can be simplified to a single equation. From (2.95) it

follows that

GAk1

[

∂w

∂x
− ϕ(x, t)

]

= η(x, t) + EI
∂2ϕ

∂x2
− Iρ

∂2ϕ

∂t2
. (2.96)

From (2.94) we have

∂ϕ

∂x
=
q(x, t)

GAk1
+
∂2w

∂x2
−

ρ

Gk1

∂2w

∂t2
. (2.97)
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Substituting equation (2.96) into (2.94) and incorporating equation (2.97) gives a single

equation of motion in terms of flexural deflection w

ρA
∂2w

∂t2
+
Iρρ

k1G

∂4w

∂t4
−

(

Iρ +
EIρ

k1G

)

∂4w

∂x2∂t2
+ EI

∂4w

∂x4
=

= q(x, t) −
∂η

∂x
+
Iρ
ks

∂2q

∂t2
−
EI

ks

∂2q

∂x2
, (2.98)

where ks is defined by (2.90). Equation (2.98) is known as the Timoshenko Beam Equation.

Let us study propagation of harmonic waves in infinite Timoshenko beams. There are

two approaches. In the first approach, we consider the single equation (2.98). Assuming that

beam has traction free boundaries, we neglect terms on the right-hand side of the equation

(2.98), which is simplified as:

∂2w

∂t2
+

Iρ

kGA

∂4w

∂t4
−
I

A

(

1 +
E

kG

)

∂4w

∂x2∂t2
+
EI

ρA

∂4w

∂x4
= 0. (2.99)

Seeking a harmonic wave solution of the form (2.69) results

EI

ρA
k4 −

I

A

(

1 +
E

k1G

)

k2ω2 − ω2 +
Iρ

k1GA
ω4 = 0. (2.100)

Using the identity ω = kc in above equation, the dispersion equation is obtained in the

following form

EI

ρA
k4 −

I

A

(

1 +
E

k1G

)

k4c2 − k2c2 +
Iρ

k1GA
k4c4 = 0. (2.101)

In the second approach considering equations (2.94) and (2.95) directly, with q(x, t) = 0 and

η(x, t) = 0, we assume solutions of the form

w = B1 e
i(kx−ωt), ϕ = B2 e

i(kx−ωt), (2.102)

which leads to

(GAk1k
2 − ρAω2)B1 + iGAk1kB2 = 0, (2.103a)

iGAk1kB1 − (GAk1 + EIk2 − ρIω2)B2 = 0. (2.103b)

Equating the determinant of coefficients B1, B2 to zero in the above system yields the the

frequency equation

(GAk1k
2 − ρAω2)(GAk1 + EIk2 − ρIω2) −G2A2k2

1k
2 = 0, (2.104)
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which can be simplified to the form (2.100).

Let us modify the frequency equation (2.100) dividing it by Iρ
k1GA , thus

ω4 − ω2

(

k1GA

Iρ
+
k1G+ E

ρ
k2

)

+
EGk1

ρ2
k4 = 0. (2.105)

Introducing non-dimensional frequency and wavenumber parameters by (2.76) into (2.105)

leads to

Ω4

h4

µ2

ρ2
−

Ω2

h2

µ

ρ

(

k1µA

Iρ
+
k1µ+ E

ρ

ξ2

h2

)

+
Eµk1

ρ2h4
ξ4 = 0. (2.106)

Dividing the last equation by µ2

h4ρ2 and introducing the non-dimensional parameter k2 by

(2.79), we can write it as

Ω4 − Ω2
(

k1k2 + (k1 + 2(1 + ν))ξ2
)

+ 2(1 + ν)k1ξ
4 = 0, (2.107)

which yields roots

Ω2 =
k1k2 + (k1 + 2(1 + ν))ξ2

2
±

√

(

k1k2 + (k1 + 2(1 + ν))ξ2

2

)2

− 2(1 + ν)k1ξ4. (2.108)

Let’s consider now a smaller root, namely (0, 0) root which yields zero frequency Ω = 0 when

ξ = 0, and rewrite it as follows:

Ω2 =
k1k2

2

[

1 +
(k1 + 2(1 + ν))ξ2

k1k2

−

√

(

1 +
(k1 + 2(1 + ν))ξ2

k1k2

)2

−
4 · 2(1 + ν)k1ξ4

k2
1k

2
2

]

=
k1k2

2

[

1 + a1ξ
2 −

√

(1 − a1ξ2)2 − a2ξ4
]

, (2.109)

where

a1 =
1

k2
+

a

k1
, a2 =

4 a

k1k2
, (2.110)
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and a was introduced by (2.78). Assuming ξ << 1 and expanding the square root in expres-

sion (2.108) into a Taylor series about ξ = 0, we obtain

Ω2 =
k1k2

2

{

1 + a1ξ
2 −

[

1 + a1ξ
2 −

a2

2
ξ4 +

a1(a1 − a2) + a3
1

2
ξ6+ (2.111)

(

a2
1(a1 − a2)

4
−

45a4
1

64

)

ξ8 +O(ξ10)

]}

=
k1k2

2

{

a2

2
ξ4 +

a1(a1 − a2) + a3
1

2
ξ6 +

(

a2
1(a1 − a2)

4
−

45a4
1

64

)

ξ8 +O(ξ10)

]}

=a ξ4 + (k1 + k2a)

{

(a1 − a2) + a2
1

2
ξ6 +

(

(a1 − a2)a1

4
−

45a3
1

64

)

ξ8 +O(ξ10)

}

. (2.112)
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Figure 2.3: Plot of phase speed Ω/ξ vs. wave number ξ for 0 ≤ ξ ≤ 1
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Figure 2.4: Plot of phase speed Ω/ξ vs. wave number ξ for 0 ≤ ξ ≤ 6

Let us rewrite the dispersion relations for the above considered beam models in the form:

Ω2 =a ξ4, Euler-Bernoulli model, (2.113)

Ω2 =a

{

ξ4 − k−1
2 ξ6 + k−2

2 ξ8 − k−3
2 ξ10 +O(ξ12)

}

, Rayleigh model (2.114)

Ω2 =a

{

ξ4 +

(

k1

a
+ k2

)[

(a1 − a2) + a2
1

2
ξ6

+

(

(a1 − a2)a1

4
−

45a3
1

64

)

ξ8 +O(ξ10)

]}

,Timoshenko model. (2.115)

Comparing the results obtained for Euler-Bernoulli (2.77), Rayleigh (2.85) and Timo-

shenko beams (2.111), it can be noticed that the leading term aξ4 is the same for all consid-

ered models. Starting from the second term the results are different. Thus the second term

in the Timoshenko model differs from the Rayleigh model by −(k1 + k2a)(a1 − a2)/2 times,

the third term fluctuates (k1 + k2a)

(

a1(a1−a2)
4 −

45a3

1

64

)

k2
2 times.
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Dispersion relations in bar with rectangular cross section are shown in Figures 2.3-2.5 for

phase velocity. For a solid rectangular cross section with thickness 2h the form factor k1 is

defined as [36]

k1 =
10(1 + ν)

12 + 11ν
. (2.116)
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Figure 2.5: Plot of relative diffenrence between the models, ν = 0.29, k2 = 3. Curve ’1’
corresponds to the relative difference of phase velocities for Timoshenko and Euler-Bernoulli
beams, curve ’2’ corresponds to the relative difference of phase velocities for Timoshenko and
Rayleigh models

Calculations are performed on Matlab for Poisson’s ratio ν = 0.29 and the nondimen-

tional parameter k2 = 3. The program code is attached in Appendix 2. The dependence

of phase speed Ω/ξ on wave number ξ for Euler-Bernoulli, Rayleigh and Timoshenko beams

correspodingly for 0 ≤ ξ ≤ 1 is given in Figure 2.3, for 0 ≤ ξ ≤ 6 in Figure 2.4. As can

be seen from the obtained results, the Euler-Bernoulli model gives accurate results only for

small values of wave number ξ. For 0 ≤ ξ ≤ 0.2 the results coincide and all three models
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are in agreement. As ξ is increased the results become less accurate. It can be noticed from

Figure 2.3 that for ξ > 0.2 the curve corresponding to Timoshenko beam starts deviating

from the rest. For ξ > 0.3 the graph for Rayleigh beam also starts departing from one Euler-

Bernoulli beam. However, the curves for the Timoshenko beam diverge from the plots for the

Euler-Bernoulli beam much more than the ones for the Rayleigh beam. Figure 2.4 shows that

Euler-Bernoulli theory gives unbounded phase velocity, whereas Timoshenko and Rayleigh

models give a bounded phase speed. However the Rayleigh model gives a high phase speed.

Figure 2.5 compares the relative difference of phase velocities for the three models. It

again shows that all three models yield accurate results for 0 ≤ ξ ≤ 0.2. The difference

for Timoshenko and Rayleigh models approaches some asymptote with increase of ξ. It can

be noticed that the deviation between results for Timoshenko and Euler-Bernoulli beams is

increasing as ξ is enlarging. This can be explained by looking at dispersion relations (2.113)-

(2.115), the expansion of frequency to some order of wave number. Euler-Bernoulli model

only gives one term in series expansion, whereas Timoshenko model gives more terms in

series expansion, leading to more accurate results. When ξ > 1 the influence of coefficients

of higher order wave numbers increases, leading to the deviation of results. As we expected

the Euler-Bernoulli model works only for low frequency processes, for small wave numbers,

whereas Timoshenko Theory can be applied for high frequency processes.
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Chapter 3

The Rayleigh-Lamb Wave Equations

3.1 Introduction

Recall the frequency equations derived in the preceding chapter: the equation (2.40) for

symmetric waves,

tan(βh)

tan(αh)
= −

4αβk2

(k2 − β2)2
, (3.1)

and (2.42) for antisymmetric waves:

tan(βh)

tan(αh)
= −

(k2 − β2)2

4αβk2
, (3.2)

where α2 = ω2/c21 − k2, β2 = ω2/c22 − k2, ω is the frequency, k is the wavenumber, thickness

is 2h, speeds are c1, c2, with c1
c2

= κ where κ2 = 2(1−ν)
1−2ν > 4

3 .

The Rayleigh-Lamb wave equations state the dispersion relations between the frequencies

and the wave numbers. They yield an infinite number of branches for an infinite number

of symmetric and antisymmetric modes. The symmetric modes are referred to as the lon-

gitudinal modes because the average displacement over the thickness is in the longitudinal

direction. The antisymmetric modes are generally termed the flexural modes since the average

displacement is in the transverse direction.

Despite deceptively simple apperance of the Rayleigh-Lamb wave equations it is impossible

to obtain analytical expressions for the branches. Even though these equations were derived

at the end of 19th century, a complete understanding of the frequency spectrum including

higher modes and complex branches has been ascertained only comparatively recently, which

became available with the development of computer software, and was shown in detail by

Mindlin [13]. Nowadays, the root of the transcendental equations (3.1) and (3.2) can be

obtained numerically using available software and programing codes.
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Next, a new way to consider the Rayleigh-Lamb equations and find expansion to any

order, in principle, is proposed.

3.2 Non Dimensional Equations

Let us introduce non-dimensional frequency and wavenumber parameters,

Ω =
ωh

c2
, ξ = kh, (3.3)

and let

x =
(

Ω2 − ξ2
)1/2

, y =
(

Ω2κ−2 − ξ2
)1/2

, (3.4)

then substitution of these non-dimensional parameters into the frequency equations (3.1) and

(3.2) yields

4xyξ2

(ξ2 − x2)2
+

tanx

tan y
= 0, for symmetric waves, (3.5a)

4xyξ2

(ξ2 − x2)2
+

tan y

tanx
= 0, for antisymmetric waves. (3.5b)

Multiplying (3.38a) by (ξ2 − x2)2 cosx sin y and (3.5b) by (ξ2 − x2)2 cos y sinx, we obtain

the following equations

(ξ2 − x2)2 sinx cos y + 4xyξ2 cosx sin y = 0, (3.6)

(ξ2 − x2)2 sin y cosx+ 4xyξ2 cos y sinx = 0. (3.7)

Let us now multiply last system of equations by x−1y−1, so that we have

(ξ2 − x2)2x−1 sinx cos y + 4y2ξ2y−1 sin y cosx = 0, (3.8)

(ξ2 − x2)2y−1 sin y cosx+ 4x2ξ2x−1 sinx cos y = 0, (3.9)

which can be modified as

(ξ2 − x2)2f(x, y) + 4y2ξ2f(y, x) = 0, for symmetric waves, (3.10)

(ξ2 − x2)2f(y, x) + 4x2ξ2f(x, y) = 0, for antisymmetric waves. (3.11)



32

where

f(p, q) ≡ p−1 sin p cos q. (3.12)

Expanding sin and cos in equation (3.12), we obtain

f(p, q) =
(

1 −
p2

6
+

p4

120
+ . . .

)(

1 −
q2

2
+
q4

24
+ . . .

)

= 1 −
p2

6
−
q2

2
+

p4

120
+
q4

24
+
p2q2

12
+ . . . . (3.13)

Notice that f is even in p and q.

3.3 Symmetric Modes in Plates

Now let us assume that the non-dimensional frequency Ω can be expanded into series expan-

sion though wavenumber ξ in the form

Ω2 = U1ξ
2 + U2ξ

4 + U3ξ
6 + U4ξ

8 + U5ξ
10 . . . . (3.14)

Let us rewrite equation (3.10) in the following form:

F (Ω, ξ, x, y) = 0, (3.15)

where

F (Ω, ξ, x, y) = (ξ2 − x2)2f(x, y) + 4y2ξ2f(y, x). (3.16)

Substitution of expansion (3.14) into (3.4) and then into (3.15) yields

F (Ω, ξ) = 0, (3.17)

where

F (Ω, ξ) = S1ξ
2 + S2ξ

4 + S3ξ
6 + S4ξ

8 + S5ξ
10 + . . . , (3.18)

S1 = S1(ν, U1), S2 = S2(ν, U1, U2),

S3 = S3(ν, U1, U2, U3), . . . , Sn = Sn(ν, U1, . . . Un).

Equation (3.24) was solved numerically on Maple 12 using the iteration method by equat-

ing each of the coefficients Sk, k = 1, n to zero in each step. It was noticed that S1 is a linear
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function of U1, S2 is a linear function of U2 but nonlinear function of U1 and so on, Sk is

a linear function of Uk but is nonlinear in terms of U1, U2, . . . Uk−1, which leads us to find

a unique solution U1, U2, . . . Uk−1. Thus first U1(ν) was obtained from S1=0, then U1 was

substituted into S2 and U2(ν) was calculated and so on. Continuing this procedure leads to

the following solution:

U1 =
2

1 − ν
; U2 = −

2 · ν2

3 · (1 − ν)3
; U3 =

2 · ν2 · (7ν2 + 10ν − 6)

45 · (1 − ν)5
;

U4 = −
2 · ν2 · (62ν4 + 294ν3 − 27ν2 − 168ν + 51)

945 · (1 − ν)7
;

U5 =
2 · ν2 · (381ν6 + 3852ν5 + 375ν4 − 5374ν3 − 554ν2 + 1524ν − 310)

14175 · (1 − ν)9
;

U6 = −
2ν2

467775 · (1 − ν)11
· (4146 − 27104ν + 23919ν2 + 145530ν3 + 253549ν4−

− 107448ν5 + 238567ν6 + 89650ν7 + 5110ν8),

and so on.

Substituting the obtained solutions into (3.14) we obtain

Ω2 =
∞

∑

n=1

ξ2nUn, (3.19)

where Un has the form:

Un =
(−1)(2n−1) · 2n · (n− 1)! · ν2

(2n− 1)!(1 − ν)2n−1
·Bn, (3.20)

and Bn are polynomials of order (2n− 4) in ν

B1 = −1/ν2, B2 = 1, B3 = (−7ν2 − 10ν + 6)/3,

B4 = (62ν4 + 294ν3 − 27ν2 − 168ν + 51)/9,

B5 = (−381ν6 − 3852ν5 − 3750ν4 + 5374ν3 + 554ν2 − 1524ν + 310)/(3 · 5),

B6 = (5110ν8 + 89650ν7 + 238567ν6 − 107448ν5

− 253549ν4 + 145530ν3 + 23919ν2 − 27104ν + 4146)/(32 · 5),

and so on.

Calculations were performed on Maple 12. The program code is gived in Appendix 2.1.
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3.4 Antisymmetric Modes in Plates

For the antisymmetric case we assume that the frequency is expressed by the expansion

Ω2 = W1ξ
2 +W2ξ

4 +W3ξ
6 +W4ξ

8 +W5ξ
10 +W6ξ

12 +W7ξ
14 +W8ξ

16 +W9ξ
18 +W10ξ

20 + . . . .

(3.21)

We then rewrite equation (3.11) in the following form:

F1(Ω, ξ, x, y) = 0, (3.22)

where

F1(Ω, ξ, x, y) = (ξ2 − x2)2f(y, x) + 4x2ξ2f(x, y). (3.23)

After substituting series expansion (3.21) into equation (3.15) and incorporating equation

(3.4), we obtain the following equation

F1(Ω, ξ) = 0, (3.24)

where

F1(Ω, ξ) = G1ξ
2 +G2ξ

4 +G3ξ
6 +G4ξ

8 +G5ξ
10 + . . . , (3.25)

G1 = G1(ν,W1), G2 = G2(ν,W1,W2),

G3 = G3(ν,W1,W2,W3), . . . , Gn = Gn(ν,W1, . . .Wn).

Equation (3.24) was solved numerically on Maple 12 by the iteration method described

in detail in the previous section and the following solution was obtained:

W1 = 0; W2 = −
2

3(ν − 1)
; W3 =

2 · (7ν − 17)

45 · (ν − 1)2
; W4 = −

2 · (62ν2 − 418ν + 489)

945 · (ν − 1)3
;

W5 =
2 · (381ν3 − 4995ν2 + 14613ν − 11189)

14175 · (ν − 1)4
;

W6 = −
2 · (5110ν4 − 110090ν3 + 584257ν2 − 1059940ν + 602410)

467775 · (ν − 1)5
;

W7 =
2

638512875 · (ν − 1)6
· (−1404361931 + 3109098177ν − 2386810276ν2 (3.26)

+ 754982390ν3 − 90572134ν4 + 2828954ν5);
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Figure 3.1: Plot of Wn vs Poisson’s ratio ν for n = 1, 2, 3, 4, 5

W8 = −
2

1915538625 · (ν − 1)7
(3440220ν6 − 153108900ν5 + 1840593186ν4

− 8868547040ν319607784669ν2 − 19849038802ν + 7437643415);

W9 =
2

488462349375 · (ν − 1)8
(355554717ν7 − 20978378363ν6 + 343393156317ν5

− 2332360918791ν4 + 7695401450679ν3 − 12978692736341ν2 + 10724754208055ν

− 3433209020623),

W10 = −
2

194896477400625 · (ν − 1)9
(57496915570ν8 − 4341050683790ν7 + 92811983812139ν6

− 843435286359132ν5 + 3856675179582919ν4 − 9557544387771638ν3

+ 12977929665725313ν2 − 9051135401463140ν + 2528890541707756)

and so on.

Figure 3.1 and Figure 3.2 show the dependence of Wn on Poisson’s ratio ν. It can be
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Figure 3.2: Plot of Wn vs Poisson’s ratio ν for n = 6, 7, 8, 9, 10

noticed that plots of Wn for n = 2k, k = 1, 2, 3... are monotonically increasing and for

n = 2k+1, k = 1, 2, 3... are monotonically decreasing as Poisson’s ratio ν is enlarging, except

W1 which remains constant: W1 = 0.

Plugging obtained above solutions (3.26) into equation (3.21) will result in following ex-

pression for Ω2

Ω2 =
∞

∑

n=1

ξ2nWn, (3.27)

where Wn has the form

Wn =
(−1)n · 2n+5

(2n)!(1 − ν)n−1
·Dn =

(−1)n · Zn

(1 − ν)n−1
·Dn, (3.28)

Zn has the form

Zn =
2n+5

(2n)!
, (3.29)
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Figure 3.3: Plot of D∗

n = Dn ∗ Zn versus Poisson’s ratio ν for 6 ≤ n ≤ 10

and Dn are polynomials of order (n− 2) in ν:

D1 = 0; D2 = 1/8; D3 = (−7ν + 17)/8; D4 = (62ν2 − 418ν + 489)/6;

D5 = (−381ν3 + 4995ν2 − 14613ν + 11189)/2;

D6 = 5110ν4 − 110090ν3 + 584257ν2 − 1059940ν + 602410;

D7 = (−2828954ν5 + 90572134ν4 − 754982390ν3 + 2386810276ν2 (3.30)

− 3109098177ν + 1404361931)/15;

D8 = 9173920ν6 − 408290400ν5 + 4908248496ν4 − 70948376320ν3/3

+ 52287425784ν2 − 158792310416ν/3 + 59501147320/3;

D9 = (2844437736ν7 + 167827034904ν6 − 2747145250536ν5 + 18658887350328ν4

− 61563211605432ν3 + 103829541890728ν2 − 17159606732888 · 5ν

+ 27465672164984)/5,

D10 = (919950649120ν8 − 69456810940640ν7 + 1484991740994224ν6 − 4498321527248704

· 3ν5 + 61706802873326704ν4 − 152920710204346208ν3 + 69215624883868336 · ν2

− 144818166423410240ν + 40462248667324096)/21.
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Figure 3.4: Plot of D∗

n = Dn ∗ Zn versus Poisson’s ratio ν for 6 ≤ n ≤ 10

Dn can be expressed in terms of (1 − ν) in the following form:

D1 = 0; D2 = 1/8; D3 =
7

8
(1 − ν) +

5

4
; D4 =

31

3
(1 − ν)2 + 49(1 − ν) +

133

6
;

D5 =
381

2
(1 − ν)3 + 1926(1 − ν)2 + 2883(1 − ν) + 595;

D6 = 5110(1 − ν)4 + 89650(1 − ν)3 + 284647(1 − ν)2 + 201256(1 − ν) + 21747;

D7 =
2828954

15
(1 − ν)5 +

25475788

5
(1 − ν)4 +

140327798

5
(1 − ν)3

+
127401274

3
(1 − ν)2 +

252281029

15
(1 − ν) + 988988;

D8 = 9173920(1 − ν)6 + 353246880(1 − ν)5 + 3004405296(1 − ν)4 (3.31)

+
23747671168

3
(1 − ν)3 + 6843245240(1 − ν)2 +

4973128160

3
(1 − ν) +

150133984

3
;
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Figure 3.5: Plot of frequency Ω vs wave number ξ, ν = 0.25. The Curve ’1’ corresponds to
keeping the first term in series expansion (3.21), the curve ’2’ corresponds to keeping the first
and the second terms, the curve ’3’ corresponds to keeping the first, the second and the third
terms and so on, the curve ’10’ corresponds to keeping the first ten terms.

D9 =
2844437736

5
(1 − ν)7 +

147915970752

5
(1 − ν)6 +

1799916233568

5
(1 − ν)5

+
7341011300448

5
(1 − ν)4 + 2228425866432(1 − ν)3 +

6079451002144

5
(1 − ν)2

+
941710405376

5
(1 − ν) + 2138696560,

D10 = (919950649120(1 − ν)8 + 20699068582560 · 3(1 − ν)7 + 1024552682585104(1 − ν)6

+ 5992089929183488(1 − ν)5 + 14140264242025504(1 − ν)4 + 1960397265026816

· 7(1 − ν)3 + 716851023485824 · 7(1 − ν)2 + 71863824869824 · 7(1 − ν)

− 208590934864 · 7)/21.

Evaluation of the coefficients Wn and Dn was performed on Maple 12, program code is

attached in Appendix 1. As can be seen from last expressions for Dns all coefficients of
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Figure 3.6: Plot of phase speed Ω/ξ versus wave number ξ, ν = 0.25. Curve ’1’ corresponds
to keeping the first term in series expansion (3.21), the curve ’2’ corresponds to keeping the
first and the second term, the curve ’3’ corresponds to keeping the first, the second and the
third terms and so on, the curve ’10’ corresponds to keeping the first ten terms.

(1 − ν)k, (k = 0, 1, 2, 3...) terms became positive except the expression for D10 for k = 0.

The graphs of D∗

n = Dn ∗ Zn versus Poisson’s ratio ν are given correspondingly for n = 1, 5

in Figure 3.3 and for n = 6, 10 in Figure 3.4 , where Zns are defined by (3.28).

The plots of frequency Ω versus wave number ξ are calculated by (3.21) and given in

Figures 3.5 for ν = 0.25. The dependence of phase speed Ω/ξ on wave number ξ is shown

in Figures 3.6 for ν = 0.25. It can be noticed from plots given in Figures 3.5 and 3.6 that

series expansion (3.21) gives accurate results only for small values of ξ. As ξ increases result

become less accurate.

The group velocity cg by definition is [15]:

cg =
∂Ω

∂ξ
. (3.32)
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Figure 3.7: Plot of group speed ∂Ω/∂ξ versus wave number ξ, ν = 0.25. Curve ’1’ corresponds
to keeping the first term in series expansion (3.21), the curve ’2’ corresponds to keeping the
first and the second term, the curve ’3’ corresponds to keeping the first, the second and the
third terms and so on, the curve ’10’ corresponds to keeping the first ten terms.

Using the chain rule, we have

∂Ω2

∂ξ
= 2Ω

∂Ω

∂ξ
(3.33)

and

∂Ω2

∂ξ2
= 2Ω

∂Ω

∂ξ

∂ξ

∂ξ2
=

Ω

ξ

∂Ω

∂ξ
. (3.34)

Thus the group velocity is obtained as:

cg =
∂Ω

∂ξ
=

∂Ω2

∂ξ

2Ω
=
ξ

Ω

∂Ω2

∂ξ2
(3.35)

or

cg =
1

c

∂Ω2

∂ξ2
, (3.36)
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Figure 3.8: Plot of frequency Ω versus wave number ξ, symmetric modes, ν = 0.25

where

∂Ω2

∂ξ
= 2W1ξ + 4W2ξ

3 + 6W3ξ
5 + 8W4ξ

7 + 10W5ξ
9 + 12W6ξ

11

+ 14W7ξ
13 + 16W8ξ

15 + 18W9ξ
17 + 20W10ξ

19 + . . . . (3.37)

Figure 3.7 illustrates the group speed ∂Ω/∂ξ in plate as function of wave number ξ for

ν = 0.25. The plots illustrated in Figure 3.1-3.7 were produced on Matlab.

3.5 Numerical Evaluation of the Roots of the Rayleigh-Lamb Equations

Recall again the Rayleigh-Lamb wave equations for plates in non-dimentional parametrs:

(ξ2 − x2)2 sinx cos y + 4xyξ2 cosx sin y = 0, for symmetric modes, (3.38a)

(ξ2 − x2)2 sin y cosx+ 4xyξ2 cos y sinx = 0, for antisymmetric modes. (3.38b)
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Figure 3.9: Plot of Frequency Ω versus wave number ξ, antisymmetric modes, ν = 0.25

where

x =
(

Ω2 − ξ2
)1/2

, y =
(

Ω2κ−2 − ξ2
)1/2

, Ω =
ωh

c2
, ξ = kh.

As it was mentioned above it is not possible to find the roots of the transcendental equa-

tions (3.38a)-(3.38b) analytically, therefore to solve these equations a numerical method is

applied. The numerical evaluation of the roots of the transcendental equations (3.38a)-(3.38b)

is performed on Matlab using the ”fzero” routine. The codes are attached in Appendix 2.

The plate is homogeneous, isotropic and elastic. Numerical analysis of real branches of fre-

quency spectrum in plate for symmetric and antisymmetric modes was conducted by Mindlin

[13]. Plots showing the frequency dependence on wave number are shown correspondingly

for symmetric mode propagation in Figure 3.8 after Mindlin. Dispersion curves correspond-

ing to real propagation constants for the antisymmetric mode are given in Figure 3.9, after

Mindlin [13]. The cutoff frequencies are taken as starting points for each branch. The cutoff
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Figure 3.10: Plot of frequency Ω vs wave number ξ for the lowest mode. Comparison of
results for series expansion method and exact theory, n=1

frequencies can be obtained setting ξ = 0 in the frequency equations (3.38a) - (3.38b). Thus,

setting ξ = 0 in equation (3.38a), we have the following equation for symmetric modes

Ω4 sin(Ω) cos(κ−1Ω) = 0, (3.39)

which can be separated into two equations

sin(Ω) = 0, (3.40)

and

cos(κ−1Ω) = 0. (3.41)

Equations (3.40) and (3.41) specify two independent sets of cutoff frequencies. The cutoff

frequencies produced by equation (3.40) are independent of Poisson’s ratio ν, some of them

are given below:

0, π, 2π, 3π, 4π, 5π, 6π, 7π, 8π, 9π, 10π, 11π, . . . (3.42)
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Figure 3.11: Plot of phase velocity Ω/ξ vs wave number ξ for the lowest mode. Comparison
of results for series expansion method and exact theory, n=1

The cutoff frequencies determined by equation (3.41) depend on Poisson’s ratio:

κ
π

2
, κ

3π

2
, κ

5π

2
, κ

7π

2
, κ

9π

2
, κ

11π

2
, κ

13π

2
, κ

15π

2
, . . . (3.43)

for ν = 0.25 the cutoff frequencies become:

2.7207, 8.1621, 13.6035, 19.0449, 24.4863, 29.9277, 35.3691, 40.8105 . . . (3.44)

For antisymmetric modes the cutoffs are found from the frequency equation (3.38b) setting

ξ = 0,thus we have:

Ω4 sin(κ−1Ω) cos(Ω) = 0, (3.45)

Equation (3.45) can be separated into two equations

cos(Ω) = 0, (3.46)
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and

sin(κ−1Ω) = 0, (3.47)

Equation (3.45) specifies the following cutoffs:

π

2
,

3π

2
,

5π

2
,

7π

2
,

9π

2
,

11π

2
,

13π

2
,

15π

2
, . . . (3.48)

Equation (3.45) yields the following cutoff frequencies which depend on Poisson’s ratio

ν:

0, κπ, 2κπ, 3κπ, 4κπ, 5κπ, 6κπ, 7κπ, 8κπ, 9κπ, 10κπ, 11κπ, . . . (3.49)

For ν = 0.25 the cutoffs specified by (3.47) have the following values:

0, 5.4414, 10.8828, 16.3242, 21.7656, 27.2070, 32.6484, 38.0898, 43.5312, 48.9726, . . .

(3.50)

It can be noticed from dispersion curves for frequency shown in Figure 3.10 and for phase

velocity shown in Figure 3.11 that the series expansion method is in a good agrement with

the exact theory and it gives accurate results for 0 ≤ ξ ≤ 0.6. Keeping 10 terms in series

expansion which corresponds to curve 10 in Figure 3.10-3.11, gives a more precise result for

0 ≤ ξ ≤ 0.6.

To analyze the Rayleigh-Lamb frequency equations for high wave numbers, one can use

the Pade approximant with obtained series expansion to expand the radius of convergence.

The Padé approximant developed by Henri Padé which is the ”best” approximation of a

function by a rational function of given order. The approximant’s power series agrees with

the power series of the function it is approximating and it may still work where the Taylor

series does not converge as in our case. Another approach is to use the effective equations of

refined engineering theories [23] with specified boundary conditions. The refined equations

are unclear sometimes, the specified boundary conditions should correspond to an order of

PDE and a number of independent variables. The refined equations are high order PDEs. It is

necessary to specify a large number of boundary conditions to relate the boundary conditions

to the order of the PDE and the number of unknowns. Consequently, considered problem

becomes complicated.
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Chapter 4

Waves in Rods

This section is designed to study wave propagation in elastic isotropic circular cylindrical

rods. We begin with a review of wave propagation in rods. In Section 4.2 the governing

equation of elasticity in cylindrical coordinates and boundary conditions are derived. We

present three different representations of displacement potentials, namely the Helmholtz de-

composition (2.10) for vector fields given in [16], Buchwald’s potential [37] and the scalar

potential introduced by Morse and Feshbach [38]. Two of these representations, (2.10) and

(4.47), are used to derive dispersion relations in rod for symmetric and antisymmetric modes

in the succeding Section 4.4. Finally, this chapter ends with the discussion of the numerical

results on dispersion relations and cutoff frequencies for axial-shear, radial-shear and flexural

modes, which is given in Section 4.5.

4.1 Review of Elastic Waves in Rods

The frequency equations for waves in circular cylindrical rods, based on the solution of the

boundary value problem of the theory of elasticity, were given by Pochhammer [9] and inde-

pendently by Chree [10] in the 19th century. However, numerical solutions of the frequency

equations were not attempted up to beginning of the computer era. In 1940, Shear et al. [39]

tried to clarify obtained experimental results without referring to the Pochhammer-Chree

theory. In 1941, Bancrof [40] first initiated the interpretation of wave propagation in rods on

the basis of the Pochhammer-Chree theory.

The development of dispersion relations for an isotropic elastic bar has been studied by

Green [41] who divided the development of approximate theories into two categories. In the
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first category, where equations of motion were derived based on approximation, contribu-

tions by Rayleigh [1], Love, Timoshenko [2], Mindlin, Volterra [42] etc. were reviewed. In the

second category, exact solutions of the theory of elasticity that only approximately satisfy

the boundary conditions were studied and contributions by Chree [10], Morse [43], Green

were cited. Thurston studied elastic waves in rods and clad rods of circular cross section in

[30], with a broad review and descriptive material on typical waveguide dispersion, charac-

teristic velocities of an isotropic elastic material, waves in homogeneous rods, and previous

results on the clad rod were given. Investigation of elastic wave propagation in a cylinder

has been conducted by Zemanek [44], both experimentally and theoretically. Dispersion of

compressional waves in rods of rectangular cross section has been examined by Morse [43].

In most of the above mentioned references, [16], [15], [41], [44], etc., the exact solutions of the

theory of elasticity were represented through potentials given by equation (2.10) in Section

2. However, there are alternative forms of the representation of displacement vector in terms

of the scalar potentials such as one proposed by Morse and Feshbach [38], and Buchwald

[37]. Chadwick [45] has applied Buchwald’s approach [37] in the study of wave propagation

in transversely isotropic heat conducting elastic materials. Honarvar and Sinclair [46] used

the displacement decomposition proposed by Morse and Feshbach [38] in the analysis of wave

scattering from transversely isotropic cylinders. Ahmad and Rahman [47] also studied the

scattering of acoustic wave incident on a transversely isotropic cylinder. However, he showed

that Buchwald’s representation [37] yields much more simpler equations, and is much more

efficient in application. Norris and Shuvalov [33] adopted Buchwald’s approach to construct

the solid-cylinder impedance matrix for transverse isotropic radially inhomogeneous elastic

solids. We defer the discussion of this matter to Sections 4.3.2 and 4.4.2 where this approarch

will be used in the development of frequency equations for rods.

4.2 Theory

In cylindrical coordinates (r, θ, z) consider an infinitely long solid circular rod of radius a,

it’s cross section shown in Figure 4.1. In (r, θ, z) system the equation of motion (2.9) can be
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Figure 4.1: Cross section of circular rod in cylindrical coordinates

written as

∇2ur −
ur

r2
−

2

r2
∂uθ

∂θ
+

1

1 − 2ν

∂ǫ

∂r
=

1

c22

∂2ur

∂t2
, (4.1a)

∇2uθ −
uθ

r2
+

2

r2
∂ur

∂θ
+

1

1 − 2ν

1

r

∂ǫ

∂θ
=

1

c22

∂2uθ

∂t2
, (4.1b)

∇2uz +
1

1 − 2ν

∂ǫ

∂z
=

1

c22

∂2uz

∂t2
, (4.1c)

where the Laplacian ∇2 is defined by (2.19) and the dilatation ǫ is of the form

ǫ =
∂ur

∂r
+

1

r

(

∂uθ

∂θ
+ ur

)

+
∂uz

∂z
. (4.2)

The displacement components are expressed in terms of the scalar potential ϕ and the vector

potential ψψψ by the Helmholtz decomposion (2.17a)-(2.17c). The potentials ϕ and ψψψ satisfy

equations (2.13), (2.18a)-(2.18c), where the component of vector potential ψr and ψθ are

coupled in equations (2.18a) and (2.18b). The stress-strain relation is given by Hooke’s law

(2.2), where the strain-displacement relations (2.3) are defined as

ǫrr =
∂ur

∂r
; ǫθθ =

1

r

∂uθ

∂θ
+
ur

r
; ǫθz =

1

2

(

∂uθ

∂z
+

1

r

∂uz

∂θ

)

(4.3a)

ǫzz =
∂uz

∂z
; ǫrθ =

1

2

(

1

r

∂ur

∂θ
+
∂uθ

∂r
−
uθ

r

)

; ǫrz =
1

2

(

∂uz

∂r
+
∂ur

∂z

)

. (4.3b)
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If the cylindrical surface is traction free the boundary conditions of the problem at r = a will

be given as

τrr = τrθ = τrz = 0. (4.4)

4.3 Potentials

4.3.1 Displacement Potentials Using Helmholtz Decomposion

We seek solution of the wave equations in the general form

ϕ = Φ(r)ΘΦ(θ)ei(kz−ωt), ψr = Ψr(r)Θr(θ)e
i(kz−ωt), (4.5a)

ψθ = Ψθ(r)Θθ(θ)e
i(kz−ωt), ψz = Ψz(r)Θz(θ)e

i(kz−ωt), (4.5b)

where ω is the frequency, and k is the wave number.

Plugging last solutions into (2.13), (2.18a)-(2.18c) yields sine and cosine solutions of ar-

gument nθ. Thus, for Φ(r) and ΘΦ(θ), we obtain

d 2Φ

dr 2
+

1

r

dΦ

dr
+

(

β1
2 −

n2

r2

)

Φ = 0, (4.6)

d 2ΘΦ

dθ 2
+ n 2ΘΦ = 0, (4.7)

where

β2
1 = ω2/c21 − k2. (4.8)

The solutions ΘΦ(θ) are continuous 2π periodic functions of θ, with continuous derivatives,

therefore, n is an integer, and

ΘΦ = A1 sinnθ +A2 cosnθ.

Similar solutions have been obtained for Θr, Θθ, Θz. Considering the torsional, axial-radial

and flexural modes separately, we will remove either sine or cosine terms in the results for

ΘΦ,Θr, Θθ, Θz. Thus the following set of resulting expressions for Φ, Ψr, Ψθ, Ψz may be

considered

ϕ = Φ(r) cosnθei(kz−ωt), ψz = Ψz(r) sinnθei(kz−ωt), (4.9a)

ψθ = Ψθ(r) cosnθei(kz−ωt), ψr = Ψr(r) sinnθei(kz−ωt). (4.9b)
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Alternatively, the following set of potentials may be examined

ϕ = Φ(r) sinnθei(kz−ωt), ψz = Ψz(r) cosnθei(kz−ωt), (4.10a)

ψθ = Ψθ(r) sinnθei(kz−ωt), ψr = Ψr(r) cosnθei(kz−ωt). (4.10b)

The solution of equation (4.6) for Φ(r) yields ordinary Bessel functions as solutions.

Because of singular behavior of the solution at the origin only Bessel functions of first kind

are used. Thus

Φ = A3 Jn(β1r). (4.11)

Similar solution is obtained for Ψz by replacing β2
1 by β2

2 in the resulting equation for Ψz :

Ψz = B3 Jn(β2r), (4.12)

where

β2
2 = ω 2 /c22 − k2. (4.13)

Substitution of solutions (4.9b) into equations (4.1a)-(4.1b) results in the following equations

for Ψr(r) and Ψθ(r)

d 2Ψr

dr2
+

1

r

dΨr

dr
+

1

r2
[

− n 2Ψr + 2nΨθ − Ψr

]

− β2
2Ψr =0,

d 2Ψθ

dr2
+

1

r

dΨθ

dr
+

1

r 2

[

− n 2Ψθ + 2nΨr − Ψθ

]

− β2
2Ψθ =0.

These equations can be solved simultaneously. Thus, subtracting the first equation from the

second one, we have

{

d 2

dr2
+

1

r

d

dr
+ β2

2 −
(n+ 1)2

r2

}

(

Ψr − Ψθ

)

= 0, (4.14)

which has a solution

Ψr − Ψθ = 2B2Jn+1(β2r). (4.15)

Similarly, upon adding the two equations, we obtain an equation for Ψr + Ψθ, which yields

Ψr + Ψθ = 2B1Jn−1(β2r). (4.16)
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Thus, we obtain

Ψr = B1Jn−1(β2r) +B2Jn+1(β2r), (4.17)

Ψθ = B1Jn−1(β2r) −B2Jn+1(β2r). (4.18)

Potentials are determined in terms of four arbitrary constants whereas there are three

displacement components and three boundary conditions. The additional condition ∇·ψψψ = 0

can be used to eliminate one of the constants. This condition can be replaced by Ψr = −Ψθ

which sets B1 = 0. Therefore following the preceding analysis the following set of potentials

may considered

ϕ = AJn(β1r) cosnθ ei(kz−ωt), (4.19)

ψz = BJn(β2r) sinnθ ei(kz−ωt), (4.20)

ψθ = −CJn+1(β2r) cosnθ ei(kz−ωt), (4.21)

ψr = CJn+1(β2r) sinnθ ei(kz−ωt), (4.22)

or alternatively the following analogous set may be discussed

ϕ = A∗Jn(β1r) sinnθ ei(kz−ωt), (4.23)

ψz = B∗Jn(β2r) cosnθ ei(kz−ωt), (4.24)

ψθ = −C∗Jn+1(β2r) sinnθ ei(kz−ωt), (4.25)

ψr = C∗Jn+1(β2r) cosnθ ei(kz−ωt). (4.26)

The first set of potentials (4.19)-(4.22) results in the following displacements

ur =

{

Φ′ +
n

r
Ψz + i kΨr

}

cosnθ ei(kz−ωt), (4.27)

uθ =

{

−
n

r
Φ + i kΨr − Ψ′

z

}

sinnθ ei(kz−ωt), (4.28)

uz =

{

i kΦ − Ψ′

r −
n+ 1

r
Ψr

}

cosnθ ei(kz−ωt). (4.29)
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Having substituted the resulting displacements into Hooke’s law, we obtain

σrr =

[

− λ(β2
1 + k2)Φ + 2µ

{

Φ′′ +
n

r

(

Ψ′

z −
1

r
Ψz

)

+ i kΨ′

r

}]

cosnθ ei(kz−ωt), (4.30)

σrθ = µ

[

−
2n

r

(

Φ′ −
Φ

r

)

−
[

2Ψ′′

z + β2
2Ψz

]

+ i k

(

n+ 1

r
Ψr − Ψ′

r

)]

sinnθ ei(kz−ωt), (4.31)

σrz = µ

[

2 i kΦ′ −
n

r
Ψ′

r +

(

1 + n− n2

r2
+ β2

2 − k2

)

Ψr +
i n k

r
Ψz

]

cosnθ ei(kz−ωt). (4.32)

Incorporating (4.11), (4.12), (4.17) and (4.17), the displacements can be modified as

ur =

{

Aβ1J
′

n(β1r) +
n

r
BJn(β2r) + i k C Jn+1(β2r)

}

cosnθ ei(kz−ωt), (4.33)

uθ =

{

−
n

r
AJn(β1r) + i k C Jn+1(β2r) −B β2 J

′

n(β2r)

}

sinnθ ei(kz−ωt), (4.34)

uz =

{

i k AJn(β1r) − C β2 J
′

n+1(β2r) −
n+ 1

r
C Jn+1(β2r)

}

cosnθ ei(kz−ωt), (4.35)

yielding the stresses in the form

σrr =

[

− λ(β2
1 + k2)AJn(β1r) + 2µ

{

−A

[

β1

r
J ′

n(β1r) +

(

β2
1 −

n2

r2

)

Jn(β1r)

]

+
n

r
B

(

β2 J
′

n(β2r) −
1

r
Jn(β2r)

)

+ i kCβ2 J
′

n+1(β2r)

}]

cosnθ ei(kz−ωt), (4.36)

σrθ = µ

[

−
2n

r
A

(

β1J
′

n(β1r) −
1

r
Jn(β1r)

)

− 2B

[

β2

r
J ′

n(β2r) +

(

β2
2 −

n2

r2

)

Jn(β2r)

]

− β2
2BJn(β2r) − i k

(

n+ 1

r
C Jn+1(β2r) − Cβ2 J

′

n+1(β2r)

)]

sinnθ ei(kz−ωt), (4.37)

σrz = µ

[

− 2 i k Aβ1J
′

n(β1r) −
n

r
Cβ2 J

′

n+1(β2r) +

(

1 + n− n2

r2
+ β2

2 − k2

)

C Jn+1(β2r)

+
i n k

r
BJn(β2r)

]

cosnθ ei(kz−ωt). (4.38)

Analogous results can be obtained by keeping on preceding procedure for the second set

of potential given by (4.23)-(4.26). Thus the resulting displacements are [30]

ur = U(r)





sinnθ

cosnθ



 ei(kz−ωt), uθ = V (r)





cosnθ

− sinnθ



 θei(kz−ωt), uz = W (r)





sinnθ

cosnθ



 ei(kz−ωt),

(4.39)

where an integer n determines the type of mode, and either upper set (sinnθ, cosnθ, sinnθ)
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or lower set (cosnθ,− sinnθ, cosnθ) is used; the functions U, V, W are defined as:

U(r) = Aβ1J
′

n(β1r) +
n

r
BJn(β2r) + i k C Jn+1(β2r), (4.40)

V (r) = −
n

r
AJn(β1r) + i k C Jn+1(β2r) −Bβ2 J

′

n(β2r), (4.41)

W (r) = i k AJn(β1r) − Cβ2 J
′

n+1(β2r) −
n+ 1

r
C Jn+1(β2r). (4.42)

The potential representation (2.10) was used in [15], [16], [12]. The alternative displace-

ment representations proposed by Buchwald [37] and Morse and Feshbach [38] will be dis-

cussed next, and their advantages and disadvantages will be shown.

4.3.2 Alternative Representation Using Buchwald’s Potentials

Recall that solutions (4.39)- (4.42) were obtained by decomposing the displacement vector

in terms of vector and scalar potentials in the form (2.10). It can be noticed from the form

of solutions that that it contains Jn+1, whereas it is possible to obtain a solution with the

lower order Bessel functions Jn. Below we will show that an alternative decomposition of

the displacement vector uuu through scalar potentials results in much simpler equations and

consequently simpler solutions. The alternative representation was proposed by Buchwald

[37] and was applied in [47], [48], [45], [33]. As it was mentioned above this representation is

much simpler and its application is timesaving.

Let’s consider transversely isotropic elastic cylinder of radius a. The equations of motion

in the absence of body forces are

σij,j = ρüi. (4.43)

Hooke’s Law for a transversely isotropic elastic material is
































σrr

σθθ

σzz

σθz

σrz

σrθ

































=

































c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 (c11 − c12)/2


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



























































εrr

εθθ

εzz

2εθz

2εrz

2εrθ

































. (4.44)
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Substituting the geometrical relations between displacement field and deformation tensor into

(4.44) and then into equations of motion (4.43) yields [45]

1

2
(c11 − c12)∇

2
1ur +

1

2
(c11 + c12)

[

∂2ur

∂r2
+

1

r

∂2uθ

∂r∂θ

]

+ c44
∂2ur

∂z2
+ (c13 + c44)

∂2uz

∂r∂z
= ρ

∂2ur

∂t2
,

(4.45a)

1

2
(c11 − c12)∇

2
1uθ +

1

2
(c11 + c12)

[

∂2uθ

∂r2
+

1

r

∂2ur

∂r∂θ

]

+ c44
∂2uθ

∂z2
+ (c13 + c44)

1

r

∂2uz

∂θ∂z
= ρ

∂2uθ

∂t2
,

(4.45b)

c44∇
2
1uz + c33

∂2uz

∂z2
+ (c13 + c44)

[

∂2ur

∂r∂z
+

1

r

∂2uθ

∂z∂θ

]

= ρ
∂2uz

∂t2
,

(4.45c)

where

∇2
1 = ∇2 −

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (4.46)

Let the displacement vector be decomposed in terms of scalar wave functions ϕ, χ and ψ

[37]

uuu = ∇∇∇ϕ+∇∇∇× (χezezez) +

(

∂ψ

∂z
−
∂ϕ

∂z

)

ezezez (4.47)

or in component form in cylindrical coordinates as

ur =
∂ϕ

∂r
+

1

r

∂χ

∂θ
, uθ =

1

r

∂ϕ

∂θ
−
∂χ

∂r
, uz =

∂ψ

∂z
. (4.48)

The wave function representation (4.47) was introduced into the theory of wave propagation

by Buchwald [37]. Inserting equation (4.48) into (4.45a)- (4.45c) results in the following

system of equations:

(

c11∇
2
1 + c44

∂2

∂z2
− ρ

∂2

∂t2

)

∇2
1ϕ+ (c13 + c44)∇

2
1

∂2ψ

∂z2
=0, (4.49a)

(

c44∇
2
1 + c33

∂2

∂z2
− ρ

∂2

∂t2

)

∂2

∂z2
ψ + (c13 + c44)

∂2

∂z2
∇2

1ϕ =0, (4.49b)

(

1

2
(c11 − c12)∇

2
1 + c44

∂2

∂z2
− ρ

∂2

∂t2

)

∇2
1χ =0. (4.49c)

Omitting ∇2
1 in the first and the third equations and ∂2

∂z2 in the second equation, the system
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of equation (4.49a)- (4.49c) can be modified as

c11∇
2
1ϕ+ c44

∂2ϕ

∂z2
+ (c13 + c44)

∂2ψ

∂z2
− ρ

∂2ϕ

∂t2
=0, (4.50a)

(c13 + c44)∇
2
1ϕ+ c44∇

2
1ψ + c33

∂2ψ

∂z2
− ρ

∂2ψ

∂t2
=0, (4.50b)

1

2
(c11 − c12)∇

2
1χ+ c44

∂2χ

∂z2
− ρ

∂2χ

∂t2
=0. (4.50c)

It can be noticed that the equation for χ is uncoupled, whereas ϕ and ψ functions are coupled

by (4.50a) and (4.50b). The function χ is independent, it generates the separate pure SH-

shear waves from the rest of displacements.

For an isotropic elastic material Hooke’s Law has the form:


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








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








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








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


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































λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ
























































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

εrr

εθθ

εzz

2εθz

2εrz
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










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


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. (4.51)

Incorporating (4.44) and (4.51) for an isotropic material the system of equations (4.50a)-

(4.50c) will reduce to:

(λ+ 2µ)∇2
1ϕ+ µ

∂2ϕ

∂z2
+ (λ+ µ)

∂2ψ

∂z2
− ρ

∂2ϕ

∂t2
=0, (4.52a)

(λ+ µ)∇2
1ϕ+ µ∇2

1ψ + (λ+ 2µ)
∂2ψ

∂z2
− ρ

∂2ψ

∂t2
=0, (4.52b)

µ∇2
1χ+ µ

∂2χ

∂z2
− ρ

∂2χ

∂t2
=0, (4.52c)

or dividing by ρ, this system of equations can be modified as

c21∇
2
1ϕ+ c22

∂2ϕ

∂z2
+ (c21 − c22)

∂2ψ

∂z2
−
∂2ϕ

∂t2
=0, (4.53a)

(c21 − c22)∇
2
1ϕ+ c22∇

2
1ψ + c21

∂2ψ

∂z2
−
∂2ψ

∂t2
=0, (4.53b)

c22∇
2χ−

∂2χ

∂t2
=0. (4.53c)
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We assume solutions of the form:




ϕ

ψ



 =





A

B



 Jn(βr) cosnθ ei(kz−ωt), (4.54)

χ = CJn(γr) sinnθ ei(kz−ωt). (4.55)

Inserting these solutions into equations (4.53a)-(4.53c), we obtain

[

c21β
2 − ω2 + c22k

2
]

A+
[

(c21 − c22)k
2
]

B =0, (4.56a)

[

(c21 − c22)β
2
]

A+
[

c22β
2 − ω2 + c21k

2
]

B =0, (4.56b)

[

c22
(

γ2 + k2
)

− ω2
]

C =0. (4.56c)

Thus for potential function χ equation (4.56c) yields

γ2 =
ω2

c22
− k2. (4.57)

Equating the determinant of coefficients of A and B to zero in equations (4.56a)-(4.56b) for

potentials ϕ and ψ, we obtain the following characteristic equation:

c21 c
2
2 β

4 + β2E + F = 0, (4.58)

where

F = ω4 − ω2(c21 + c22) k
2 + c21 c

2
2k

4, E = 2c21 c
2
2 k

2 − ω2(c21 + c22). (4.59)

The roots of the characteristic equation (4.58) are

β2
1, 2 =

−E ∓
√

E2 − 4c21 c
2
2 F

2 c21 c
2
2

. (4.60)

Substitution of equation (4.59) into the above equation yields

β1 =

√

ω2

c21
− k2, β2 =

√

ω2

c22
− k2. (4.61)

We can notice that γ = β2, and the general solutions for Buchwald’s potentials are of the

form [47]:

ϕ =
[

AJn(β1r) + q2B Jn(β2r)
]

cosnθ ei(kz−ωt), (4.62)

ψ =
[

q1AJn(β1r) +B Jn(β2r)
]

cosnθ ei(kz−ωt), (4.63)

χ = C Jn(β2r) sinnθ ei(kz−ωt), (4.64)
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where q1 and q2 are the amplitude ratios defined in [47]. They follow from (4.56a)-(4.56b)

for an isotropic material as q1 = 1 and q2 = − k2

β2

2

, and hence solutions become

ϕ =
[

AJn(β1r) −
k2

β2
2

B Jn(β2r)
]

cosnθ ei(kz−ωt), (4.65)

ψ =
[

AJn(β1r) +B Jn(β2r)
]

cosnθ ei(kz−ωt), (4.66)

χ = C Jn(β2r) sinnθ ei(kz−ωt). (4.67)

As it was anticipated at the beginning, the results obtained contain only Jn(β1r) and Jn(β2r)

terms, which are Bessel functions of the first kind of order n. The results obtained earlier us-

ing displacement decomposition (2.10) involved higher order Bessel functions, namely Jn(αr),

Jn(βr) and Jn+1(βr) - Bessel functions of order n and (n + 1) respectively, which leads to

extraneous terms and cumbersome expressions. The evaluation of the result shows that Buch-

wald’s representation [37] yields a simplier solution, involving lower order Bessel functions, Jn

instead of Jn+1. We observe that Buchwald’s representation produces simplified expressions.

It should be noted that introducing the roots (4.57) and (4.61) into (4.54)-(4.55) yields

ϕ = AJn(β1r) cosnθ ei(kz−ωt), (4.68)

ψ = B Jn(β2r) cosnθ ei(kz−ωt), (4.69)

χ = C Jn(β2r) sinnθ ei(kz−ωt). (4.70)

However, this set of solutions for n = 0 does not lead to the Pochhammer-Chree frequency

equations (4.109) given in the subsequent section because the general solutions for Buchwald’s

potentials ϕ and ψ depend on both Jn(β1r) and Jn(β2r) functions as shown in equations

(4.62)-(4.63). The set of potentials (4.68)- (4.70) instead of the frequency equation yields the

following relation for n = 0:

(β2
2 + k2)β1β2 J0(β1a)J1(β1a) − k2(β2

2 − 2β2
1 − k2)J1(β1a)J0(β2a)

−2(β2
1 + k2)β2/aJ1(β1a)J1(β2a) = 0. (4.71)

As it will be shown in the next section, the general solutions (4.65)- (4.67) lead to the

Pochhammer-Chree frequency equations.
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The set of potentials (4.65)- (4.67) yields the following displacement field

ur =

{

Aβ1J
′

n(β1r) −
k2

β2
2

Bβ2 J
′

n(β2r) +
n

r
CJn(β2r)

}

cosnθ ei(kz−ωt), (4.72)

uθ =

{

−
n

r

[

AJn(β1r) −
k2

β2
2

B Jn(β2r)
]

− β2C J
′

n(β2r)

}

sinnθ ei(kz−ωt), (4.73)

uz = i k
[

AJn(β1r) +B Jn(β2r)
]

cosnθ ei(kz−ωt). (4.74)

The substitution of the last expressions for displacements into geometric relations (2.3) results

in the following expressions for deformations:

ǫrr =

{

Aβ2
1J

′′

n(β1r) − k2BJ ′′

n(β2r) +
n

r
Cβ2J

′

n(β2r) −
n

r2
CJn(β2r)

}

cosnθ ei(kz−ωt), (4.75)

ǫθθ =

{

1

r

[

Aβ1J
′

n(β1r) +
n

r
CJn(β2r)

]

−
n

r

[

n

r
AJn(β1r) + Cβ2J

′

n(β2r)

]

+
k2

β2
2

B

[

n2

r2
Jn(β2r) −

1

r
β2 J

′

n(β2r)

]}

cosnθ ei(kz−ωt), (4.76)

ǫzz = −k2
[

AJn(β1r) +B Jn(β2r)
]

cosnθ ei(kz−ωt), (4.77)

ǫrθ =
1

2

{

2n

r
A

[

1

r
Jn(β1r) − β1J

′

n(β1r)

]

+
k2

β2
2

B

[

−
2n

r2
Jn(β2r) +

2n

r
β2 J

′

n(β2r)

]

− C

[

β2
2J

′′

n(β2r) −
1

r
β2J

′

n(β2r) +
n2

r2
CJn(β2r)

]}

sinnθ ei(kz−ωt), (4.78)

ǫrz =
i k

2

{

A2β1J
′

n(β1r) +

(

1 −
k2

β2
2

)

Bβ2J
′

n(β2r) +
n

r
CJn(β2r)

}

cosnθ ei(kz−ωt), (4.79)

ǫθz = −
i k

2

{

2n

r
AJn(β1r) +

(

n

r
−
k2

β2
2

)

BJn(β2r) + Cβ2J
′

n(β2r)

}

sinnθ ei(kz−ωt). (4.80)

The stresses are obtained by substituting the last expressions into Hooke’s law (2.2):

σrr =

{

− λA(β2
1 + k2)Jn(β1r) + 2µ

[

Aβ2
1J

′′

n(β1r) − k2BJ ′′

n(β2r)

+
n

r
Cβ2J

′

n(β2r) −
n

r2
CJn(β2r)

]}

cosnθ ei(kz−ωt), (4.81)

σrθ = µ

{

A

[

2n

r2
Jn(β1r) −

2n

r
β1J

′

n(β1r)

]

+
k2

β2
2

B

[

−
2n

r2
Jn(β2r) +

2n

r
β2 J

′

n(β2r)

]

− C

[

β2
2J

′′

n(β2r) −
1

r
β2J

′

n(β2r) +
n2

r2
Jn(β2r)

]}

sinnθ ei(kz−ωt), (4.82)

σrz = µi k

{

A2β1J
′

n(β1r) +

(

1 −
k2

β2
2

)

Bβ2J
′

n(β2r) +
n

r
CJn(β2r)

}

cosnθ ei(kz−ωt), (4.83)
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which can be modified as following:

σrr =

{

− λA(β2
1 + k2)Jn(β1r) + 2µ

[

−A

(

β1

r
J ′

n(β1r) +

(

β2
1 −

n2

r2

)

Jn(β1r)

)

− k2B

(

β2

r
J ′

n(β2r) +

(

β2
2 −

n2

r2

)

Jn(β2r)

)

+

+
n

r
C

(

β2J
′

n(β2r) −
1

r
Jn(β2r)

)]}

cosnθ ei(kz−ωt), (4.84)

σrθ = µ

{

A

[

2n

r2
Jn(β1r) −

2n

r
β1J

′

n(β1r)

]

+
k2

β2
2

B

[

−
2n

r2
Jn(β2r) +

2n

r
β2 J

′

n(β2r)

]

+ C

[

2

r
β2J

′

n(β2r) +

(

β2
2 −

2n2

r2

)

Jn(β2r)

]}

cosnθ ei(kz−ωt), (4.85)

σrz = µi k

{

A2β1J
′

n(β1r) +

(

1 −
k2

β2
2

)

Bβ2J
′

n(β2r) +
n

r
CJn(β2r)

}

cosnθ ei(kz−ωt). (4.86)

The results obtained for the components of the stress tensor again display advantage of

using Buchwald’s potentials. Analyzing equations (4.36)-(4.38) and (4.84)- (4.86), it can

be noticed that displacement representation (2.10) produces expressions containing n + 1 -

order Bessel functions such as Jn+1(β1r) and Jn+1(β2r) and it’s derivatives J ′

n+1(β1r) and

J ′

n+1(β2r) , whereas Buchwald’s representation yields much simpler expressions containing

only n-order Bessel functions Jn(β1r) and Jn(β2r) and it’s derivatives J ′

n(β1r) and J ′

n(β2r).

It shows that Buchwald’s potentials produce simpler expressions, where computation is less

laborious.

4.3.3 Sinclair’s Method

At the end of our discussion on representation of displacement vector through scalar potentials

we should add that there are some other forms of displacement decomposition available, such

as one presented by Morse and Feshbach [38]

uuu = ∇∇∇ϕ+∇∇∇× (χezezez) + a∇∇∇×∇∇∇× (ψezezez), (4.87)
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where a is the radius of the cylinder which is constant with dimensions of length. In compo-

nent form in cylindrical coordinates it has form

ur =
∂ϕ

∂r
+

1

r

∂χ

∂θ
+ a

∂2ψ

∂r∂z
, (4.88a)

uθ =
1

r

∂ϕ

∂θ
−
∂χ

∂r
+ a

∂2ψ

∂θ∂z
, (4.88b)

uz =
∂ϕ

∂z
− a

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

ψ. (4.88c)

This approach was applied by Honarvar and Sinclair [46] in the analysis of a wave scat-

tering problem for a transversely isotropic material. The displacement decomposition (4.87)

results in the 5th order PDEs, lengthy and cumbersome coupled equations for ϕ and ψ,

whereas Buchwald’s representation yields much simplier equations, in the form of compact

second order PDEs [48]. Ahmad and Rahman [47], [48] showed that the above mentioned

two representations lead to identical characteristic equations and the same final result.

It can be concluded that Buchwald’s representation (4.47) is of great importance among

considered above three displacement representations (2.10), (4.47) and (4.87). Buchwald’s

potential yields simplier expressions, and it is less laborious. Therefore it is proposed to

use Buchwald’s representation in the study of wave propagation in isotropic and transversely

isotropic elastic materials [45].

4.4 Frequency Equation for Waves in a Rod

The frequency equation is obtained from the boundary conditions. If the surface is free of

traction, the boundary conditions at r = a are given by equation (4.4).

4.4.1 Frequency Equation Derived Using Helmholtz representation

Having substituted the resulting displacements (4.39) into Hooke’s law and evaluated the

result at r = a the frequency equation was derived as the following vanishing determinant

[15]

|aij | = 0, (i, j = 1, 2, 3), (4.89)
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where

a11 =

{

λ(β2
1 + k2)(β1a)

2

2µβ2
1

+ (β1a)
2 − n2

}

Jn(β1a) + β1aJ
′

n(β1a),

a12 =
{

n2 − (β2a)
2
}

Jn(β2a) − β2aJ
′

n (β2a),

a13 = 2n
{

β2aJ
′

n (β2a) − Jn(β2a)
}

,

a21 = n
{

β1aJ
′

n (β1a) − Jn(β1a)
}

,

a22 = n
{

β2aJ
′

n (β2a) − Jn(β2a)
}

,

a23 = −
{

2n2 − (β2a)
2
}

Jn(β2a) + 2β2aJ
′

n (β2a),

a31 = −β1aJ
′

n (β1a),

a32 = −
(β2

2 − k2)

2k2
β2aJ

′

n (β2a),

a23 = nJn(β2a).

Equation (4.89) is a general characterestic equation for the various types of waves in rods.

The frequency equations for torsional, longitudinal, and flexural modes will be developed.

The general frequency equation (4.89) yields torsional and longitudinal frequency equations

for n = 0 and flexural frequency equation for n = 1. When investigating the propagation

of torsional and longitudial waves one or two displacement components vanish whereas all

displacement components remain for flexural modes.

n=0 case:

The general frequency equation (4.89) for the case n = 0 yields axi-symmetric modes since

there is no dependence on θ, i.e., sinnθ ≡ 0, cosnθ ≡ 1. When n = 0 determinant (4.89)

has the form:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 0

0 0 a23

a31 a32 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.90)

which can be split into two factors [15]
∣

∣

∣

∣

∣

∣

a11 a12

a31 a32

∣

∣

∣

∣

∣

∣

a23 = 0, (4.91)
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where

a11 =

{

λ(β2
1 + k2)(β1a)

2

2µβ2
1

+ (β1a)
2

}

J0(β1a) + β1aJ
′

0(β1a),

a12 = −(β2a)
2J0(β2a) − β2aJ

′

0(β2a),

a31 = −β1aJ
′

0(β1a), a32 = −
β2

2 − k2

2k2
β2aJ

′

0(β2a), a23 = −a12,

and we note that J ′

o(x) = −J1(x). The axi-symmetric modes can be classified as torsional and

axial-radial. For torsional modes the θ component of displacement is the only nonvanishing

one whereas for axial-radial modes the component θ vanishes.

Torsional Modes. The axially symmetric modes described by the upper set of functions

in (4.39) are the torsional modes. In this case ur = uz = 0 and uθ 6= 0. The equation (4.91)

factors into two equations. The one corresponding to torsional waves is

a23 = 0 ⇒ β2aJ0(β2a) = 2J1(β2a) (4.92)

Equation (4.92) is the frequency equation for torsional waves, which produces the following

dispersion relation for torsional modes

(β2ν
a)2 = (ωa/c2)

2 − (ξa)2, (4.93)

where β2ν
a are the roots of the equation (4.92), the first three of them are [15]

β21
a = 5.136, β22

a = 8.417, β23
a = 11.62. (4.94)

Let us now consider β2 = 0 which is also a solution of the frequency equation (4.92). For

β2 = 0 the governing equations for Ψz(r) yields a solution Ψz = A + B ln r, which does

not give an acceptable displacement since at r = 0 Ψz, tends to infinity. But if we take

ur = uz = 0, uθ = uθ(r, z) and seek the solution of the form uθ = U(r)exp[i(kz − ωt)], then

there will be the only non-trivial equation:

d2U

dr2
+

1

r

dU

dr
+

{

β2
2 −

1

r

}

U = 0, (4.95)

which yields the following solution

U =
A

r
+Br. (4.96)
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Because of singularity at r = 0, in (4.96) A = 0 which results in the following displacement

field:

uθ = Br exp[i(kz − ωt)] (4.97)

where k = ω/c2. The mode β2 = 0 is independent of frequency and propagates nondisper-

sively with speed c2 =
√

µ/ρ.

Axial-Radial Modes of Rod. The axially symmetric modes described by the lower

set of trigonometric functions in (4.39) are referred to as axial-radial modes. In this case for

n = 0, uθ ≡ 0, ur 6= 0 and uz 6= 0 and equations (2.17a) - (2.17c) will reduce to the form:

ur =
∂ϕ

∂r
−
∂ψθ

∂z
, uz =

∂ϕ

∂z
+

1

r

∂(ψθr)

∂r
. (4.98)

Then solutions for ϕ and ψθ given by (2.17a) and (2.17c) will have the form:

ϕ = AJn(β1r) e
i(kz−ωt), ψθ = −CJn+1(β2r) e

i(kz−ωt). (4.99)

Insertion of solutions (4.99) into the boundary conditions (4.4) leads to a frequency equa-

tion which is given by equation (4.91). Expanding cofactor matrix in (4.91), we obtain

∆1 =

∣

∣

∣

∣

∣

∣

a11 a12

a31 a32

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

[

λ
2µ((β1)

2 + (k)2) + (β1)
2

]

a2J0(β1a) − β1aJ1(β1a) −(β2a)
2J0(β2a) + β2aJ1(β2a)

β1aJ1(β1a)
(β2)2−(k)2

2(k)2
β2aJ1(β2a)

∣

∣

∣

∣

∣

∣

∣

= 0.

(4.100)

Substitution of the solutions (4.99) into (4.98) yields a displacement field for axial-radial

modes[15]:

ur = C

{

−
A

C
β1J1(β1r) + ikJ1(β2r)

}

ei(kz−ωt), (4.101)

uz = C

{

A

C
ikJ0(β1r) − β2J0(β2r)

}

ei(kz−ωt), (4.102)

where

A

C
= −

(

β2

β1

)2(β2
2 − k2

2k2

)

·
J1(β2a)

J1(β1a)
. (4.103)
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Equation (4.103) is obtained from the boundary conditions.

Let us divide the second column of the cofactor ∆1 by β2a and then add two resulting

rows, thus we obtain

∆′

1 =

∣

∣

∣

∣

∣

∣

a′11 a′12

a′31 a′32

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

[

λ
2µ((β1)

2 + (k)2) + (β1)
2

]

a2J0(β1a) −β2aJ0(β2a) + (β2)2+(k)2

2(k)2
J1(β2a)

β1aJ1(β1a)
β2

2
−k2

2k2 J1(β2a)

∣

∣

∣

∣

∣

∣

∣

= 0.

(4.104)

From (4.8) and (4.13) we have

β2
1 + k2

β2
2 + k2

=
ω2

c21

c22
ω2

=
µ

λ+ 2µ
, (4.105)

from which we find that

λ

µ
= −2 +

β2
2 + k2

β2
1 + k2

. (4.106)

Incorporating (4.106) the a′11 element of cofactor can be modified as

a′11 =

[

λ

2µ
((β1a)

2 + (ka)2) + (β1a)
2

]

J0(β1a) =
(β2a)

2 − (ka)2

2
J0(β1a). (4.107)

Substituting (4.107) into (4.104) and expanding the resulting determinant yields

(β2a)
2 − (ka)2)

2

(β2a)
2 − (ka)2)

2(ka)2
J0(β1a)J1(β2a) + β1β2a

2J1(β1a)J0(β2a)

−(β1a)
(β2a)

2 + (ka)2

2(ka)2
J1(β1a)J1(β2a) = 0, (4.108)

which further can be modified multiplying by (k/a)2, thus

2β1

a
(β2

2 + k2)J1(β1a)J1(β2a) − (β2
2 − k2)2J0(β1a)J1(β2a) − 4k2β1β2J1(β1a)J0(β2a) = 0.

(4.109)

Equation (4.109) is the dispersion relation for nontorsional axisymmetric waves and referred

to as the Pochhammer-Chree frequency equation.
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n=1 case:

The family of modes with n = 1 are known as flexural and they correspond to the lowest

order family of flexural modes. For n = 1 (4.89) will reduce to the following:

|aij | = 0, (4.110)

where

a11 =

{

λ(β2
1 + k2)(β1a)

2

2µβ2
1

+ (β1a)
2 − 1

}

J1(β1a) + β1aJ
′

1(β1a),

a12 =
{

1 − (β2a)
2
}

J1β2a) − β2aJ
′

1(β2a),

a13 = 2
{

β2aJ
′

1 (β2a) − J1(β2a)
}

,

a21 =
{

β1aJ
′

1 (β1a) − J1(β1a)
}

,

a22 =
{

β2aJ
′

1 (β2a) − J1(β2a)
}

,

a23 = −
{

2 − (β2a)
2
}

J1(β2a) + 2β2aJ
′

1 (β2a),

a31 = −β1aJ
′

1 (β1a),

a32 = −
(β2

2 − k2)

2k2
β2aJ

′

1 (β2a),

a33 = J1(β2a).

Expansion of the determinant in (4.110) results in the following frequency equation [9]

J1(α)J2
1 (β)

(

f1 F
2
β2

+ f2 Fβ1
Fβ2

+ f3 Fβ2
+ f4 Fβ1

+ f5

)

= 0, (4.111)

where

f1 = 2
(

β 2 − k 2
)

2, f2 = 2β 2
(

5k 2 + β 2
)

,

f3 = β 6 − 10β 4 − 2β 4k 2 + 2β 2k 2 + β 2k 4 − 4k 4,

f4 = 2β 2(2β 2k 2 − β 2 − 9k 2), f5 = β 2
(

− β 4 + 8β 2 − 2β 2k 2 + 8k 2 − k 4
)

,

α = β1a, β = β2a, k = k a, Ω = ωa/c2, Fx = x
J0(x)

J1(x)
.

The equation (4.111) is know as the Pochhammer frequency equation for flexural modes in a

rod. It can be noticed that the frequency equation for flexural modes is much more compli-

cated than the ones for axi-symmetric modes.
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4.4.2 Frequency Equation Derived Using Buchwald’s Potentials

Let us now derive dispersion relations using the Buchwald approach. Evaluating stresses

(4.84) -(4.86) at r = a and substituting into the boundary conditions (4.4), we obtain the

following determinant of coefficients which vanishes:

|bij | = 0, (i, j = 1, 2, 3) (4.112)

where

b11 =
λ

2µ

[

(β1a)
2J ′′

n(β1a) + (β1a)J
′

n(β1a) − (n2 + (ka)2)Jn(β1a)
]

+ (β1a)
2J ′′

n(β1a)

=

[

−
λ

2µ

(

(β1 a)
2 + (ka)2

)

− ((β1 a)
2 − n2)

]

Jn(β1a) − (β1a)J
′

n(β1a);

b12 =
(k a)2

(β2a)2

[

(β2a)J
′

n(β2a) + ((β2 a)
2 − n2)Jn(β2a)

]

;

b13 = −n
[

Jn(β2a) − (β2a)J
′

n(β2a)
]

; (4.113)

b21 = 2n
[

Jn(β1a) − (β1a)J
′

n(β1a)
]

;

b22 = −
2n(k a)2

(β2a)2

[

Jn(β2a) − (β2a)J
′

n(β2a)

]

;

b23 = −(β2a)
2J ′′

n(β2a) + (β2a)J
′

n(β2a) − n2Jn(β2a)

= 2 (β2a)J
′

n(β2a) + [(β2a)
2 − 2n2]Jn(β2a);

b31 = 2(β1a)J
′

n(β1a); b32 =

[

1 −
(k a)2

(β2a)2

]

(β2 a)J
′

n(β2a); b33 = nJn(β2a).

Equations (4.112)- (4.113) agree with ones obtained by Ahmad [47] for transversal isotropic

material, with q1 = 1, q2 = − k2

β2

2

. Let us analyze these relations in more detail.

n=0 case:

As it was mentioned above when n = 0 equation (4.113) yields the frequency equation for

axisymmetric waves. Thus, when n = 0 the determinant in (4.113) reduces to the form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 0

0 0 b23

b31 b32 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.114)
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which factors into
∣

∣

∣

∣

∣

∣

b11 b12

b31 b32

∣

∣

∣

∣

∣

∣

b23 = 0, (4.115)

where

b11 = −
λ

2µ

(

(β1a)
2 + (a k)2 − (β1a)

2

)

J0(β1a) − (β1a)J
′

0(β1a);

b12 =
(a k)2

(β2a)2

[

(β2a)J
′

0(β2a) + (β2a)
2J0(β2a)

]

; b13 = b21 = b22 = b33 = 0; (4.116)

b23 = 2 (β2a)J
′

0(β2a) + (β2a)
2J0(β2a);

b31 = 2(β1a)J
′

0(β1a); b32 =

[

1 −
(a k)2

(β2a)2

]

(β2 a)J
′

0(β2a).

As was mentioned earlier (4.115) factors into two equations. For torsional waves we have:

b23 = 0 ⇒ β2aJ0(β2a) = 2J1(β2a), (4.117)

which is the same as (4.92).

To derive the frequency equation for extentional waves we need to require that cofactor

in (4.115) vanishes
∣

∣

∣

∣

∣

∣

b11 b12

b31 b32

∣

∣

∣

∣

∣

∣

= 0. (4.118)

Multiplying the second column of cofactor in (4.118) by β2a and dividing the second row by

2, and then adding the resulting two rows, we obtain
∣

∣

∣

∣

∣

∣

∣

− λ
2µ

(

(β1a)
2 + (a k)2 + (β1a)

2

)

J0(β1a) (a k)2(β2a)
2J0(β2a) −

(β2a)2+(a k)2

2 J1(β2a)

(β1a)J1(β1a) − (β2a)2−(a k)2

2 J1(β2a)

∣

∣

∣

∣

∣

∣

∣

= 0.

(4.119)

Utilizing equations (4.105)-(4.106), we have
∣

∣

∣

∣

∣

∣

− (β2a)2−(a k)2

2 J0(β1a) (a k)2(β2a)
2J0(β2a) −

(β2a)2+(a k)2

2 J1(β2a)

(β1a)J1(β1a) − (β2a)2−(a k)2

2 J1(β2a)

∣

∣

∣

∣

∣

∣

= 0. (4.120)

Expansion of last determinant yields,
(

(β2a)
2 − (a k)2

)2

4
J0(β1a)J1(β2a) + (β1a)(β2a)(a k)

2J0(β2a)J1(β1a)

−(β1a)
(β2a)

2 + (a k)2

2
J1(β1a)J1(β2a) = 0 (4.121)



69

or dividing by a4, we obtain the frequency equation for axial-radial modes

(

β2
2 − k2

)2
J0(β1a)J1(β2a) + 4β1β2k

2J0(β2a)J1(β1a) −
2β1

a
(β2

2 + k2)J1(β1a)J1(β2a) = 0,

(4.122)

which agrees with the Pochhammer-Chree frequency equations (4.109).

n=1 case:

When n = 1 we obtain the lowest-order family of flexural modes. In this case the determinant

in (4.112) has the form:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b11 b12 b13

b21 b22 b23

b31 b32 b33

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (4.123)

where

b11 =

[

−
λ

2µ

(

(β2a)
2 + (a k)2

)

− (β2a)
2 + 1

]

J1(β1a) − β1aJ
′

1(β1a);

b12 =
k2

β2
2

[

β2aJ
′

1(β2a) +
(

(β2a)
2 − 1

)

J1(β2a)

]

;

b13 = (β2a)J
′

1(β2a) − J1(β2a);

b21 = 2
[

J1(β1a) − (β1a)J
′

1(β1a)
]

;

b22 = −
2k2

β2
2

[

J1(β2a) − β2aJ
′

1(β2a)
]

; (4.124)

b23 = 2β2aJ
′

1(β2a) + ((β2a)
2 − 2)J1(β2a);

b31 = 2β1aJ
′

1(β1a); b32 =

[

1 −
k2

β2
2

]

β2 aJ
′

1(β2a); b33 = J1(β2a).

4.5 Analysis of Numerical Results

4.5.1 Axisymmetric Waves in Rods

Let us now consider the dispersion relations for axisymmetric modes in more detail. The

lowest branch of the axial-radial modes extends to zero, which is a longitudinal mode whose

propagation velocity in the low frequency limit is governed by Young’s modulus [30].
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Let us introduce non-dimensional frequency Ω and wavenumber ξ:

Ω =
ωa

c2
, ξ = ka, (4.125)

and let

x2 = (β2a)
2 = Ω2 − ξ2, y2 = (β1a)

2 = κ−2Ω2 − ξ2, κ2 =
2(1 − ν)

1 − 2ν
. (4.126)

Using equtions (4.125) and (4.126) the frequency equation (4.122) in non-dimensional

parameters can be written as:

(Ω2 − 2ξ2)2J0(y)J1(x) + 4xyξ2J0(x)J1(y) − 2yΩ2J1(y)J1(x) = 0. (4.127)

To find cutoff frequencies of the axisymmetric mode we set ξ = 0 in (4.127), then

xJ1(x)
[

(Ω3J0(y)/2 − Ω2κ−1J1(y)
]

= Ω3J1(Ω)
[

(ΩJ0(κ
−1Ω)/2 − κ−1J1(κ

−1Ω)
]

= 0.

(4.128)

The equation (4.128) factors into two seperate equations, yielding two sets of cutoff frequen-

cies which were calculated on Matlab uzing ”fzero” routine.

The first factor of (4.128) yields the following equation:

J1(Ω) = 0, (4.129)

it does not depend on Poisson’s ratio ν, some of cutoff frequencies are:

0, 3.8317, 7.0156, 10.1735, 13.3237, 16.4706, 19.6159.... (4.130)

The modes associated with these cutoff frequencies are referred to as axial-shear modes.

The second factor of (4.128) depends on Poisson’s ratio ν and results in the following

equation:

(ΩJ0(κ
−1Ω)/2 − κ−1J1(κ

−1Ω) = 0. (4.131)

The numerical evaluation of roots of equation (4.131) leads to the following cutoff frequencies

for ν = 0.3317:

0, 4.3119, 10.8139, 17.1273.... (4.132)
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Figure 4.2: Plot of frequency Ω vs Poisson’s ratio ν

which agree with results given by Zemanek [44]. The modes associated with these cutoff

frequencies are called radial-shear modes. Some numerical results for axisymmetric modes in a

rod are given in Figures 4.2-4.3. The material of the rod is elastic, isotropic and homogeneous.

Calculations are performed on Matlab using ”fzero” routine. Codes are attached in Appendix

2.

In Figure 4.2 for n = 0 the cutoffs of axial-shear and radial-shear axisymmetric modes in

rod versus Poisson’s ratio ν are shown, after the results of Thurston [30]. Here the dashed

horizontal lines correspond to axial-shear modes which are zeros of J1(Ω), they do not depend

on Poisson’s ratio; the continuous lines correspond to radial-shear modes. For ν = 0, the

first higher mode is radial and the second is axial-shear. The lowest radial cutoff and the

first axial-shear cutoff are equal at ν = 0.2833 becomes equal to As ν → 0.5 the values of

frequency Ω at cutoffs of radial modes all tend to infinity whereas the axial-shear cutoffs do
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not fluctuate.

The real branches of the frequency spectrum for longitudinal waves in a rod are obtained

from the frequency equation (4.127). The roots of equation (4.127) are evaluated on Matlab

using ’fzero’. The dispersion relations in the rod for real-valued wavenumbers and ν = 0.3317

are given in Figures 4.3. Here the relative position of nondimentional frequency depends on

wave number. The cutoff frequencies (4.130) and (4.132) are used as starting points of each

dispersion curve. The graphs shown in Figure 4.3 agree with Zemanek’s results [44].

4.5.2 Antisymmetric Waves in Rods

Equation (4.112) becomes the frequency equation for antisymmetric modes for n ≥ 1. The

lowest flexural mode corresponds to n = 1 case and refered to as the ordinary flexural mode

of propagation.
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The solutions of frequency equations in plate and rods shows that there is an infinite

number of symmetric and antisymmetric modes. Each mode maintains its transverse pattern,

though it attenuates and propagating through waveguide, it shifts in phase. These modes

are similar to the resonant modes of a drumhead. Low-order modes of drumhead have only

a few transverse variations and high-order modes have many forms.

As we saw in previous sections, each mode in a waveguide has a cutoff frequency, also

known as its critical frequency, or cuton frequency. The cutoff frequencies correspond to

standing waves of one dimensional resonance through the thickness - as expected for zero

horizontal wavenumber. This provides a method to estimate thickness from one side only by

measuring the frequencies at which resonances occur. Below the cutoff frequency a traveling

wave in a given mode cannot be maintained in a waveguide and the mode will not propagate

but when excited it will attenuate. At frequencies above the cutoff frequencies the modes
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Figure 4.5: Plot of cutoff frequency Ω vs Poisson’s ratio ν for 0.12 ≤ ν ≤ 0.5, n = 1

propagate through a waveguide to regions far removed from excitation with a finite phase ve-

locity and small attenuation. The critical frequency is the frequency at which the attenuation

of the waveguide mode changes rapidly as a function of frequency.

Introducing the non-dimentional frequency Ω and wave number ξ by (4.125) and allowing

ξ → 0 enables one to find the cutoff frequencies of the axisymmetric modes. Thus setting

ξ = 0 in the frequency equation (4.112) leads to the following equation:

[

ΩJn−1(Ω) − nJn(Ω)
]

·

{

2n2 ·
[

(1 + n)Jn(κ−1Ω) − κ−1ΩJn−1(κ
−1Ω)

]

×
[

ΩJn−1(Ω) − (n+ 1)Jn(Ω)
]

−

[(

n2 + n−
Ω

2

)

Jn(κ−1Ω) − κ−1ΩJn−1(κ
−1Ω)

]

×
[

2(ΩJn−1(Ω) − nJn(Ω)) + (Ω2 − 2n2)Jn(Ω)
]

}

= 0. (4.133)

Modifying equation (4.133) it can be factorized into two separate equations:

F1 = 0 (4.134)
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and

F2 = 0, (4.135)

where

F1 = ΩJn−1(Ω) − nJn(Ω) (4.136)

and

F2 =
[

κ−1ΩJn−1(κ
−1Ω) − (n+ 1)Jn(κ−1Ω)

]

·
[

2(n2 − 1)
[

nJn(Ω) − ΩJn−1(Ω)
]

+ Ω2Jn(Ω)
]

−

(

n2 − 1 −
Ω2

2

)

Jn(κ−1Ω) ×
[

2ΩJn−1(Ω) + (Ω2 − 2n2 − 2n)Jn(Ω)
]

. (4.137)

Equations (4.134) and (4.135) agree with ones given by Zemanek [44]. Equation (4.134)

and (4.137) yield two independent sets of the cutoff frequencies. The first equation (4.134)

yields the cutoff frequencies of axial-shear modes which are independent of Poisson’s ratio.

The roots of the second equation (4.137) depend on Poisson’s ratio.

When n = 0 equation (4.134) becomes equation (4.129) which specifies the cutoff fre-

quencies for axil-shear modes, equation (4.135) becomes the product of equations (4.131)

specifying the cutoff frequencies for radial-shear modes and (4.92) with ξ = 0 specifying the

cutoff frequencies for torsional modes of propagation.

The plots of functions F1 and F2/Ω
2 versus frequency Ω for ν = 0.3317 are shown in

Figure 4.4 for n = 1. Equation (4.134) yields the following cutoff frequencies:

0, 1.8412, 5.3314, 8.5363, 11.7060, 14.8636, 18.0155, 21.1644, 24.3113, 27.4571, 30.6019, ...

(4.138)

The cutoff frequencies defined from equation (4.135) for ν = 0.3317 are:

3.5669, 6.8623, 7.4497, 10.1851, 13.3477, 13.8099, 16.4672,

19.6082, 20.1783, 22.7616, 25.9074, 26.4708, 29.0460, . . . (4.139)

The roots of the frequency equation corresponding to real propagation constants are

depicted in Figures 4.5-4.6. Here the dashed horizontal lines correspond to axial-shear modes

which are zeros of equation (4.134), they do not depend ν. The cutoff frequencies (4.138) and

(4.139) are the starting points for each branch of dispersion curves in Figure 4.5. These cutoffs



76

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

2

3

4

5

6

7

8

9

10

11

12

ν

Ω

 

 
1−1

Ω=1.8412
1−2

Ω=5.3314
1−3
Ω=8.5363
1−4
Ω=11.7060
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agree with Zemanek’s results [44]. The dependence of the cutoff frequencies on Poisson’s ratio

is depicted for 0.12 ≤ ν ≤ 0.5 in Figure 4.5. Obtained results are stable for 0.14 ≤ ν ≤ 0.5;

for 0.12 ≤ ν < 0.14 the cutoffs started at Ω = 7.4497 (ν = 0.14) jump to the next branch.

It is noticed that the cutoff frequencies of some branches intersect or come close to each

other. For instance, at ν ≈ 0.42 the cutoff starting at branch Ω = 7.4497 intersects with one

starting at Ω = 10.1851; as ν increases the cutoff starting at branch Ω ≈ 5.5 (ν = 0.14) tends

to Ω = 7.4497 - the starting point of the next branch.

In Figure 4.6 for n = 1 the cutoffs of antisymmetric modes in rod versus Poisson’s ratio

ν is shown. To construct a plot of Ω versus ν for small range of Poisson’s ratio ν, the cutoff

frequencies of equation (4.135) are calculated for ν = 0:

0, 3.2215, 4.9656, 7.0524, 9.7483 . . . (4.140)

which are taken as starting point in Figure 4.6. An unstable operation of root finder ’fzero’
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is detected, it jumps from one root to another. The cutoffs starting Ω = 4.9656 tend to

starting point of branch starting at Ω = 7.0524 which itself tends to starting point of the

next branch Ω = 9.7483. Besides the cutoffs of the branch starting at Ω = 9.7483 drop at

ν ≤ 0.12 abruptly down to the previous branch starting at Ω = 7.0524. It contradicts the

plots given on Figures 4.5 where the branch starting at Ω = 9.7483 does not change much

with the increase of ν.

To understand better an intricate behavior of roots of equation (4.135), the dependence

of F2/Ω
2 function on frequency Ω was evaluated for n = 1 at fixed values of Poisson’s ratio

ν. The plot of F2/Ω
2 versus Ω is depicted in Figure 4.7 for ν = 0.33, 0.36, 0.42, 0.45, 0.48

and in Figure 4.7 for ν = 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12. The F2/Ω
2 function behaves

extraordinarily at some cutoff branches. Let us consider first Figure 4.7. There are two

roots: Ω = 6.86 and Ω = 7.425 for ν = 0.33. As ν increases, the first root Ω = 6.86 remains
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the same for ν = 0.48, the second root Ω = 7.425 shifts to the right and for ν = 0.48 it

is Ω = 10.1851, it approaches the next branch. The ’fzero’ root finder can not distinguish

between the two branches. This explains why the two cutoff branches shown in Figure 4.5

coincide with each other for ν ≥ 0.42.

Now let us examine Figure 4.8 in more detail. We can observe that the F2/Ω
2

function has either two or one root depending on values of Poisson’s ratio for interval

Ω ∈ [9.7, 10.4]. Thus F2/Ω
2 function has two zeros for ν = 0; 0.02; 0.12 and one zero

for ν = 0.03; 0.04; 0.06; 0.08; 0.1; 0.11. As ν increases from 0 to 0.1 it shifts up and then

again goes down for ν = 0.12. Therefore the cutoff branch started at Ω = 9.7483 and

0.03 < ν ≤ 0.12 suddenly jump and coincides with the previous branch as shown in Figure

4.5 - 4.6. This results in unstable behavior of the cutoff frequencies as function of ν. As the

consequence of this behavior, it is only possible to find dispersion relations in the rod for
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certain values of Poisson’s ratio ν, e.g. for 0.12 ≤ ν ≤ 0.42. The results given in [44], [3],

[16], [15] are within this range of ν.
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Chapter 5

Application, Coclusion and Future Work

5.1 Application to Elastic Waves in Waveguides

Propagation characteristics of ultrasonic elastic guided waves are directly related to the mi-

crostructure and the mechanical properties of the medium. Because of this feature ultrasonic

waves are widely used in the field of characterizations and non-destructive testing of struc-

tures to detect defects in waveguides [49], [50], [49], [51].

Ultrasonic non-destructive evaluation can provide a rapid and accurate measurement in

a wide range of industries. The ability to inspect large structure from a single probe position

makes inspection by ultrasonic waves an appealing solution for many industrial applications

(aircraft parts, rails, pipes, stay cables and so on). But there are some difficulties in applying

this technique.The multimodal and dispersive nature of the waveguide which can lower the

quality of ultrasonic wave test in connection with test sensitivity and the distance of propaga-

tion [51]. Thus, prior to performing tests one should be able to calculate and understand the

propagated field in a waveguide. Therefore some models of wave propagation in waveguides

have been developed by Mindlin [3], Zemanek [44], Puckett et al [52]. These models identify

dispersion curves and associated mode shape. For cylindrical shapes this can be done using

analogous solutions of dispersion relations shown in Chapter 4 and for plates using results

given in Chapter 3 of the thesis. Puckett et al. [52] studied wave propagation of multiple

modes in a finite cylinder with excitation using a normal expansion model.

Application of ultrasonic Lamb waves for rapid inspection of metallic and composite

structures have been described in a number of studies [49]. A good review of guided Lamb

waves for identification of defects in composites is given by Zu et al. [53]. The damage is
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Figure 5.1: Application of non-destructive testing using ultrasonic waves

traditionally identified by analyzing the modifications in the received Lamb waves signals.

The results presented in Chapter 3 are applicable here. Another possible technique to analyze

Lamb wave propagation is the dual signal processing approach [49], by measuring signals at

different positions.

Consider a long pipe (pod) used in oil (petroleum) transportation which can be modeled

as an infinitely long rod. Sending signals in the pipe gives the ability to extract material

properties of the pipe using the solution of dispersion relations obtained in Chapter 4. The

picture given in Figure 4.9 is taken from

http://en.wikipedia.org/wiki/File:Ultrasonic_pipeline_test.JPG#filelinks

Figure 4.9 shows how technician uses ultrasonic phased array instrument to detect damages on

a pipeline weld at a construction site. An ultrasound transducer is connected to a diagnostic

machine, scanner, which consists of a frame with magnetic wheels. The scanner holds the

probe in contact with the pipe by a spring. The wet area is water or an ultrasonic couplant

(such as oil). The couplant allows the sound to pass into the pipe wall. Application of non-

destructive inspection techniques, using mechanical guided waves, have potential to monitor
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these structures. It gives ability to inspect long lengths of wave guide from a single position.

In recent years methods based on guided ultrasonic waves gained increasing attention for

the non-destructive evaluation and the health monitoring of multi-wire strands used in civil

structures as prestressing tendons and stay cables [54]. These structures suffer from aging

and degradation due to corrosion and fatigue of structural steel members. The classical

way to study wave propagation in strand wires (the lowest number of strands is 7) is to

use an infinite cylinder. Kwun et al. [55], Laguerre et al. [54], Lanza di Scalea et al. [56]

have conducted experimental studies for both cylindrical bar and seven wire strand to find

similarities between behaviors of both structures that could be modeled from solutions of

Pochhammer-Chree frequency equations for the bare waveguide case.

Conventional non-distractive evaluation requires a coupling medium to permit the ul-

trasound transmission into the structure investigated. The coupling issues in exciting and

detecting elastic Lamb waves are removed in non- contact Laser Based Ultrasonic Systems.

Laser Based Ultrasonic (LBU) technique is efficient to study wave propagation in plates due

to its large bandwidth and the potential for fast scanning [57], [58], [59]. Lamb waves are used

in the ultrasonic characterization of plates to extract mechanical properties of plates. Some

symmetric and antisymmetric Lamb modes display atypical characteristics at the minimum

frequency, where the group velocity of the mode is zero while the phase velocity remains

non-zero, for instance, a backward wave propagation, a resonance peak. Such Lamb modes

are called Zero Group Velocity (ZGV) modes. Dispersion curves for some low symmetric and

antisymmetric Lamb modes are depicted in Fig. 3.8 and Fig. 3.9, where the first symmetric

mode and the second antisymmetric mode have negative slope. Since at minimum frequencies

of ZGV modes the energy is gathered under the source, a resonant behavior of these modes is

expected. Using LBU technique, ZGV resonances were observed for the first symmetric and

the second antisymmetric Lamb mode by Prada et al. in [57], [58] for isotropic plate, and in

[59] for anisotropic plate.
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5.2 Conclusion

Research has been performed to study elastic wave propogation in rods and plates. A new ap-

proach has been proposed in Chapter §3 to study the low frequency behavior of the Rayleigh-

Lamb frequency equations. The approach is built on new series expansion of the roots of

the Rayleigh-Lamb equations using iteration combined with symbolic algebra on Maple. The

non-dimensional frequency is expanded into a series for the wavenumber for symmetric modes

in Section §3.3 and for antisymmetric modes in Section §3.4. A numerical evaluation of the

series coefficients has been performed by solving of sequence of linear equations. The disper-

sion relations for frequency, phase speed and group speed for the lowest mode, n = 1, have

been analyzed in Sections §3.4 and §3.5. The frequency and phase speed dependence on wave

number showed a good agreement of series expansion method with exact theory and gives

quite accurate results for 0 ≤ ξ ≤ 0.6. For 0 ≤ ξ ≤ 0.6 keeping 10 terms in series expansion

gives more precise result.

The advantage of the proposed series expansion method is that there is no need to evaluate

the root the Rayleigh-Lamb frequency equations; it is straightfoward and uses less effort to

compute. For low frequency processes the series expansion method gives accurate results.

The roots of the Rayleigh-Lamb frequency equations can only be obtained using numerical

method which is not exact solution. The disadvantage of the series expansion method is

that it works only for low frequencies. For high frequencies series expansion produces high

phase speed and frequency. In addition, the obtained frequency expansion is divergent. It is

suggested to use some other methods to analyze the Rayleigh-Lamb frequency equations for

high frequency spectrum, some approaches are shown in the following section.

Different displacement potential representations have been presented and contrasted. The

frequency equations have been derived for symmetric and antisymmetric modes in a rod

using two displacement potentials, namely the Helmholtz decomposition for vector fields and

Buchwald’s vector potentials. A new approach to derive the frequency equations for rods

using Buchwald’s potential representation is proposed. It has been observed that Buchwald’s

potentials produce a simpler solution, involving lower order Bessel functions.
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The frequency equation are derived and analyzed in Section §4.4 in more detail for the case

n = 0, corresponds to symmetric modes, and the n = 1 case corresponding to propagation

antisymmetric modes in a rod. It has been shown that Buchwald’s potential and Helmholtz

decomposition produce the same frequency equation for n = 0 case. The development of the

frequency equations for rods has shown that Buchwald’s approach is less laborious and time

saving.

Numerical results are given in Section §4.5 where the dispersion relations and the cutoff

frequencies for axial-shear, radial-shear and flexural modes in the rod are discussed. The

obtained results for symmetric modes agreed with ones published earlier. The evaluation of

the dependence of cutoff frequencies on Poisson’s ratio ν revealed some unexpected interesting

behavior of cutoffs for antisymmetric modes. Some branch cuts abruptly jump and coincide

with previous or next branch for some values of Poisson’s ratio. It has been explained in

Section §4.5, looking at the dependence of the F2/Ω
2 function on frequency Ω at some fixed

values of Poisson’s ratio. At some branches for some values of frequency Ω the F2/Ω
2 function

has either one, two or no roots depending on a value of Poisson’s ratio ν.

5.3 Suggestions for Further Work

While the results in Chapter 3 are restricted to high wave length, ξ << 1, they could be

extended to finite values of ξ. In order to analyze the Rayleigh-Lamb frequency equations for

higher wave number, one could use the Pade approximant method combined with obtained

series expansion to expand the radius of convergence. The Padé approximant, developed

by Henri Padé, is the ”best” approximation of a function by a rational function of given

order. The approximant’s power series agrees with the power series of the function it is

approximating and it may still work where the Taylor series does not converge, like in our case.

Another approach is to use the effective equations of refined engineering theories [23] with

specified boundary conditions. The refined equations are unclear sometimes, the specified

boundary condition should correspond to an order of PDE and a number of independent

variables.
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The series expansion method was shown above for the lowest family of symmetric and

antisymmetric modes when m = 0. This method will also work for all modes (m=0,1,2,3)

using the following expansion:

Ω2 = Ω2
m +

∞
∑

n=1

ξ2nWn, (5.1)

by starting for each mode with the corresponding cutoff frequency Ωm.

In addition, the proposed series expansion method can be extended to study the roots of

the frequency equation for symmetric and antisymmetric waves in a rod.

Buchwald’s potentials [37] are the most effective to use in cylindrical coordinates. In the

more general case, considering a radially inhomogeneous solid, Shuvalov and Norris’ approach

[33] based on Stroh framework is the most efficient, where the impedance matrix was also

derived using Buchwald’s potentials.
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D. Appendix. Sample Maple and Matlab Codes

D..1 Appendix 1. Maple Codes

a) Codes for Section 3.3. Symmetric Modes

OM2 := Sum(U[n]*xi^(2*n), n = 1 .. 10); k2 := (2*(1-nu))/(1-2*nu);

x2 := OM2-xi^2; y2 := OM2/k2-xi^2; f1 := sin(sqrt(x2))*cos(sqrt(y2))/sqrt(x2);

f2 := sin(sqrt(y2))*cos(sqrt(x2))/sqrt(y2); S11 := (xi^2-x2)^2*f1+4*y2*xi^2*f2;

S := taylor(S11, xi = 0, 20); S0 := simplify(coeftayl(S, xi = 0, 4));

eq := solve({S0}, [U[1]])[2];

for i from 2 by 2 to 10 do S0 := simplify(coeftayl(S, xi = 0, 4+i));

eqt := op(solve({subs(eq, S0)}, [U[(1/2)*i+1]]));

eq := [op(eq), op(eqt)]: end do

for k from 1 by 1 to 6 do V[k] := subs(eq, U[k]); B[k] := simplify(V[k]*C[k]):

C[k] := factorial(2*k-1)*(1-nu)^(2*k-1)

/((-1)^(2*k-1)*2^k*factorial(k-1)*nu^2); end do

_________________________________________________________________

OUTPUT:

eq := [U[1] = -2/(nu-1), U[2] = (2/3)*nu^2/(nu-1)^3,

U[3] = -(2/45)*nu^2*(7*nu^2+10*nu-6)/(nu-1)^5,

U[4] = (2/945)*nu^2*(62*nu^4+294*nu^3-27*nu^2-168*nu+51)/(nu-1)^7,

U[5] = -(2/14175)*nu^2*(381*nu^6+3852*nu^5+3750*nu^4-5374*nu^3

-554*nu^2+1524*nu-310)/(nu-1)^9,

U[6] = (2/467775)*nu^2*(5110*nu^8+89650*nu^7+238567*nu^6-107448*nu^5

-253549*nu^4+145530*nu^3+23919*nu^2-27104*nu+4146)/(nu-1)^11]

V[1] := -2/(nu-1), C[1] := -(1/2)*(1-nu)/nu^2, B[1] := -1/nu^2,

V[2] := (2/3)*nu^2/(nu-1)^3, C[2] := -(3/2)*(1-nu)^3/nu^2, B[2] := 1,

V[3] := -(2/45)*nu^2*(7*nu^2+10*nu-6)/(nu-1)^5

C[3] := -(15/2)*(1-nu)^5/nu^2, B[3] := -(7/3)*nu^2-(10/3)*nu+2
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V[4] := (2/945)*nu^2*(62*nu^4+294*nu^3-27*nu^2-168*nu+51)/(nu-1)^7

C[4] := -(105/2)*(1-nu)^7/nu^2,

B[4] := (62/9)*nu^4+(98/3)*nu^3-3*nu^2-(56/3)*nu+17/3

V[5] := -(2/14175)*nu^2*(381*nu^6+3852*nu^5+3750*nu^4-5374*nu^3

-554*nu^2+1524*nu-310)/(nu-1)^9; C[5] := -(945/2)*(1-nu)^9/nu^2

B[5] := -(127/5)*nu^6-(1284/5)*nu^5-250*nu^4+(5374/15)*nu^3+(554/15)

*nu^2-(508/5)*nu+62/, C[6] := -(10395/2)*(1-nu)^11/nu^2

V[6] := (2/467775)*nu^2*(5110*nu^8+89650*nu^7+238567*nu^6-107448*nu^5

-253549*nu^4+145530*nu^3+23919*nu^2-27104*nu+4146)/(nu-1)^11

B[6] := (1022/9)*nu^8+(17930/9)*nu^7+(238567/45)*nu^6-(35816/15)*nu^5

-(253549/45)*nu^4+3234*nu^3+(7973/15)*nu^2-(27104/45)*nu+1382/15

b) Codes for Section 3.4. Antisymmetric Modes

OM2 := Sum(U[n]*xi^(2*n), n = 2 .. 16);

x2 := OM2-xi^2; k2 := (2*(1-nu))/(1-2*nu);

y2 := OM2/k2-xi^2; f1 := sin(sqrt(x2))*cos(sqrt(y2))/sqrt(x2);

f2 := sin(sqrt(y2))*cos(sqrt(x2))/sqrt(y2);

B := (xi^2-x2)^2*f2+4*x2*xi^2*f1; S := taylor(B, xi = 0, 28);

S0 := simplify(coeftayl(S, xi = 0, 8)); eq := solve({S0}, [U[2]])[2];

S1 := simplify(coeftayl(S, xi = 0, 6));

for i from 2 by 2 to 16 do S0 := simplify(coeftayl(S, xi = 0, 8+i));

eqt := op(solve({subs(eq, S0)}, [U[(1/2)*i+2]]));

eq := [op(eq), op(eqt)] end do

for k from 2 to 10 do W[k] := subs(eq, U[k]);

CL[k] := simplify(factorial(2*k)*(1-nu)^(k-1)/((-1)^k*2^(k+5)));

DL[k] := factor(W[k]*CL[k]); DT[k] := taylor(DL[k], nu = 1, 10) end do

_______________________________________________________________________

OUTPUT:
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eq := [U[2] = -2/(3*(nu-1)), U[3] = (2/45)*(7*nu-17)/(nu-1)^2,

U[4] = -(2/945)*(62*nu^2-418*nu+489)/(nu-1)^3,

U[5] = (2/14175)*(381*nu^3-4995*nu^2+14613*nu-11189)/(nu-1)^4,

U[6] = -(2/467775)*(5110*nu^4-110090*nu^3+584257*nu^2-1059940*nu+602410)

/(nu-1)^5,

U[7] = (2/638512875)*(2828954*nu^5-90572134*nu^4+754982390*nu^3-2386810276

*nu^2+3109098177*nu-1404361931)/(nu-1)^6,

U[8] = -(2/1915538625)*(3440220*nu^6-153108900*nu^5+1840593186*nu^4

-8868547040*nu^3+19607784669*nu^2-19849038802*nu+7437643415)

/(nu-1)^7,

U[9] = (2/488462349375)*(355554717*nu^7-20978379363*nu^6+343393156317

*nu^5-2332360918791*nu^4+7695401450679*nu^3-12978692736341*nu^2

+10724754208055*nu-3433209020623)/(nu-1)^8,

U[10] = -(2/194896477400625)*(57496915570*nu^8-4341050683790*nu^7

+92811983812139*nu^6-843435286359132*nu^5+3856675179582919*nu^4

-9557544387771638*nu^3+12977929665725313*nu^2

-9051135401463140*nu+2528890541707756)/(nu-1)^9]

W[2] := -2/(3*(nu-1)), CL[2]:= -(3/16)*nu+3/16, DL[2]:= 1/8,DT[2]:= 1/8,

W[3] := (2/45)*(7*nu-17)/(nu-1)^2, CL[3] := -(45/16)*(nu-1)^2,

DL[3]:= -(7/8)*nu+17/8, DT[3]:= 5/4-7/8*(nu-1), CL[4]:= -(315/4)*(nu-1)^3,

W[4]:=-(2/945)*(62*nu^2-418*nu+489)/(nu-1)^3, CL[4] := -(315/4)*(nu-1)^3,

DL[4]:= (31/3)*nu^2-(209/3)*nu+163/2, DT[4]:= 133/6-49*(nu-1)+(31/3)*(nu-1)^2

W[5]:= (2/14175)*(381*nu^3-4995*nu^2+14613*nu-11189)/(nu-1)^4,

CL[5] := -(14175/4)*(nu-1)^4

DL[5] := -(381/2)*nu^3+(4995/2)*nu^2-(14613/2)*nu+11189/2

DT[5] := 595-2883*(nu-1)+1926*(nu-1)^2-(381/2)*(nu-1)^3

W[6] := -(2/467775)*(5110*nu^4-110090*nu^3+584257*nu^2-1059940*nu

+602410)/(nu-1)^5, CL[6] := -(467775/2)*(nu-1)^5

DL[6] := 5110*nu^4-110090*nu^3+584257*nu^2-1059940*nu+602410
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DT[6] := 21747-201256*(nu-1)+284647*(nu-1)^2-89650*(nu-1)^3

+5110*(nu-1)^4

W[7] := (2/638512875)*(2828954*nu^5-90572134*nu^4+754982390*nu^3

-2386810276*nu^2+3109098177*nu-1404361931)/(nu-1)^6,

CL[7] := -(42567525/2)*(nu-1)^6

DL[7] := -(2828954/15)*nu^5+(90572134/15)*nu^4-(150996478/3)*nu^3

+(2386810276/15)*nu^2-(1036366059/5)*nu+1404361931/15

DT[7] := 988988-252281029/15*(nu-1)+(127401274/3)*(nu-1)^2-(140327798/5)

*(nu-1)^3+(25475788/5)*(nu-1)^4-(2828954/15)*(nu-1)^5

W[8] := -(2/1915538625)*(3440220*nu^6-153108900*nu^5+1840593186*nu^4

-8868547040*nu^3+19607784669*nu^2-19849038802*nu

+7437643415)/(nu-1)^7, CL[8] := -2554051500*(nu-1)^7

DL[8] := 9173920*nu^6-408290400*nu^5+4908248496*nu^4-(70948376320/3)

*nu^3+52287425784*nu^2-(158792310416/3)*nu+59501147320/3

DT[8] := 150133984/3-4973128160/3*(nu-1)+6843245240*(nu-1)^2-(23747671168/3)

*(nu-1)^3+3004405296*(nu-1)^4-353246880*(nu-1)^5+9173920 (nu-1)^6

W[9] = (2/488462349375)*(355554717*nu^7-20978379363*nu^6+343393156317*nu^5

-2332360918791*nu^4+7695401450679*nu^3-12978692736341*nu^2

+10724754208055*nu-3433209020623)/(nu-1)^8,

CL[9] := -390769879500*(nu-1)^8

DL[9] := -(2844437736/5)*nu^7+(167827034904/5)*nu^6-(2747145250536/5)*nu^5

+(18658887350328/5)*nu^4-(61563211605432/5)*nu^3+(103829541890728/5)

*nu^2-17159606732888*nu+27465672164984/5

DT[9] := 2138696560-941710405376/5*(nu-1)+(6079451002144/5)*(nu-1)^2

-2228425866432*(nu-1)^3+(7341011300448/5)*(nu-1)^4-(1799916233568/5)

*(nu-1)^5+(147915970752/5)*(nu-1)^6-(2844437736/5)*(nu-1)^7

W[10] = -(2/194896477400625)*(57496915570*nu^8-4341050683790*nu^7+*nu^6

-843435286359132*nu^5+3856675179582919*nu^4-9557544387771638*nu^3

+12977929665725313*nu^2-9051135401463140*nu+2528890541707756)/(nu-1)^9
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CL[10] := -74246277105000*(nu-1)^9

DL[10] := (919950649120/21)*nu^8-(69456810940640/21)*nu^7+(1484991740994224

/21)*nu^6-(4498321527248704/7)*nu^5+(61706802873326704/21)*nu^4

-(152920710204346208/21)*nu^3+(69215624883868336/7)*nu^2

-(144818166423410240/21)*nu+40462248667324096/21

DT[10] := -208590934864/3-71863824869824/3*(nu-1)+(716851023485824/3)*(nu-1)^2

-(1960397265026816/3)*(nu-1)^3+14140264242025504/21 (nu-1)^4

-5992089929183488/21 (nu-1)^5+1024552682585104/21 (nu-1)^6

-20699068582560/7 (nu-1)^7+919950649120/21 (nu-1)^8

D..2 Appendix 2. Matlab Codes

a)Codes for Section 2.5

%Beam_Tim_R_EB1.m: Plot of Phase velocity \Omega / \xi versus wave number

nu=0.29; k1 = 10*(1+nu)/(12+11*nu); k2=3; a=2*(1+nu)/k2; a1=1/k2+a/k1;

a2=4*a/(k1*k2); sp = 6; sv = 0:0.01:sp;

for J=1:length(sv)

s2=sv(J).^2; s4=sv(J).^4; s6=sv(J).^6; s8=sv(J).^8; s10=sv(J).^10;

s12=sv(J).^12; xv1(J)=a*s4; xv2(J)=a*s4./(1+s2/k2);

xv3(J)=(k1*k2+(k1+2*(1+nu))*s2)/2-sqrt(((k1*k2+(k1+2*(1+nu))*s2)/2)...\

.^2-2*(1+nu)*k1*s4);

end

OMEGA1=sqrt(xv1)./sv; OMEGA2=sqrt(xv2)./sv; OMEGA3=sqrt(xv3)./sv;

plot(sv,OMEGA1,’b--’,’LineWidth’,1.5); hold on;

plot(sv,OMEGA2,’g-’,’LineWidth’,1.5);plot(sv,OMEGA3,’r-.’,’LineWidth’,1.5);

hold off; grid on; xlabel(’\xi’); ylabel(’\Omega / \xi ’);

title(’Plot of \Omega/ \xi vs. wave number \xi’)

legend(’Euler-Bernoulli’,’Rayleigh’,’Timoshenko’)

b)Codes for Section 3.4
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% ANTISYM_Omega2

%Plot of Frequency \Omega vs. wave number \xi

%\nu- Poisson’s ratio, sv- \xi vector(wave number), \OMEGA -frequency

nu=0.25; sv=linspace(0,1); W(1)= zeros(1,length(nu)); W(2)= -2./(3.*(nu-1));

W(3)= (2./45).*(7.*nu-17)./(nu-1).^2;

W(4)= -(2./945).*(62.*nu.^2-418.*nu+489)./(nu-1).^3;

W(5)= (2./14175).*(381.*nu.^3-4995.*nu.^2+14613.*nu-11189)./(nu-1).^4;

W(6)= -(2./467775).*(5110.*nu.^4-110090.*nu.^3+584257.*nu.^2.../

-1059940.*nu+602410)./(nu-1).^5;

W(7)= (2./638512875)*(2828954.*nu.^5-90572134.*nu.^4+754982390.../

.*nu.^3-2386810276.*nu.^2+3109098177.*nu-1404361931)./(nu-1).^6;

W(8)= -(2/1915538625).*(3440220.*nu.^6-153108900.*nu.^5+1840593186.../

.*nu.^4-8868547040.*nu.^3+19607784669.*nu.^2-19849038802.../

.*nu+7437643415)./(nu-1).^7;

W(9)= 2./488462349375.*(355554717.*nu.^7-20978379363.*nu.^6+ .../

343393156317.*nu.^5-2332360918791.*nu.^4+ 7695401450679.../

.*nu.^3-12978692736341.*nu.^2+10724754208055.*nu.../

-3433209020623)./(nu-1).^8

W(10,:)=-(2/194896477400625)*(57496915570*nu.^8-4341050683790.../

*nu.^7+92811983812139*nu.^6-843435286359132*nu.^5.../

+3856675179582919*nu.^4-9557544387771638*nu.^3.../

+12977929665725313*nu.^2-9051135401463140*nu+.../

2528890541707756)./(nu-1).^9; O=zeros(1,length(sv));

for n=1:1

O=O+W(n)*sv.^(2*n)

end

OMEGA1=sqrt(O); O=zeros(1,length(sv));

for n=1:2

O=O+W(n)*sv.^(2*n)
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end

OMEGA2=sqrt(O); O=zeros(1,length(sv));

for n=1:3

O=O+W(n)*sv.^(2*n)

end

OMEGA3=sqrt(O); O=zeros(1,length(sv));

for n=1:4

O=O+W(n)*sv.^(2*n)

end

OMEGA4=sqrt(O); O=zeros(1,length(sv));

for n=1:5

O=O+W(n)*sv.^(2*n)

end

OMEGA5=sqrt(O); O=zeros(1,length(sv));

for n=1:6

O=O+W(n)*sv.^(2*n)

end

OMEGA6=sqrt(O); O=zeros(1,length(sv));

for n=1:7

O=O+W(n)*sv.^(2*n)

end

OMEGA7=sqrt(O); O=zeros(1,length(sv));

for n=1:8

O=O+W(n)*sv.^(2*n)

end

OMEGA8=sqrt(O); O=zeros(1,length(sv));

for n=1:9

O=O+W(n)*sv.^(2*n)

end
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OMEGA9=sqrt(O); O=zeros(1,length(sv));

for n=1:10

O=O+W(n)*sv.^(2*n)

end

OMEGA10=sqrt(O); hold on

plot(sv,OMEGA1,’r-.’,’LineWidth’,2.5); plot(sv,OMEGA2,’b-’,’LineWidth’,2);

plot(sv,OMEGA3,’m--’,’LineWidth’,2); plot(sv,OMEGA4,’g-’,’LineWidth’,2);

plot(sv,OMEGA5,’r-’,’LineWidth’,2.5); plot(sv,OMEGA6,’k:’,’LineWidth’,2.5)

plot(sv,OMEGA7,’c-.’,’LineWidth’,2.5); plot(sv,OMEGA8,’k-’,’LineWidth’,1.5)

plot(sv,OMEGA9,’b--’,’LineWidth’,2); plot(sv,OMEGA10,’m:’,’LineWidth’,2.5);

hold off; grid on; xlabel(’\xi ’); ylabel(’\Omega’ )

legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,’10’); AXIS([0 1 0 2.5])

c) Codes for Section 3.5

% RL_find_roots11.m

% Program plots dispersion relations for plate using R.L. roots

% ISYM=1 corresponds to symmetric modes

% ISYM=2 corresponds to antisymmetric modes

clear; clf; ISYM=2; nu=0.25; k2 = 2*(1-nu)/(1-2*nu) ;

numroots=8; sp = 5; sv = 0.01:0.01:sp; a0=(.2)^2;

for N=1:numroots

a0=N^2-.99;

for J=1:length(sv)

s2=sv(J)^2;

if N==1

Dfun= @(a) 1;

else

Dfun= @(a) prod( (a-xv(J,1:N-1) ) );

end
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if ISYM==1

xv(J,N)=fzero(@(a) RL_sym1(a,s2,k2)/Dfun(a), a0);

else

xv(J,N)=fzero(@(a) RL_antisym1(a,s2,k2)/Dfun(a), a0);

end

a0=xv(J,N);

end

end

OMEGA=sqrt(xv); plot(sv,OMEGA, ’LineWidth’,1.5); grid on

xlabel(’\xi ’); ylabel(’\Omega’); title(’plot of \Omega vs. wave number’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RL_sym1.m

function f = RL_sym1(a,s2,k2)

x = sqrt(a-s2); y = sqrt(a./k2-s2);

f = ( sin(x)./x.*cos(y).*(a-2*s2).^2+cos(x).*sin(y).* 4.*s2.*y)./a;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% RL_antisym1.m

function f = RL_antisym1(a,s2,k2)

x = sqrt(a-s2); y = sqrt(a./k2-s2);

f = ( sin(x).* cos(y).* 4.* s2.*x + cos(x).*sin(y)./y .*(a-2*s2).^2 )./a;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d) Codes for Section 4.5. Symmetric Modes

% Rod_nu_01.m

% Plot of frequency \Omega versus Poisson’s ratio

clear; clf; nu = 0:0.01:0.45; tic

a0=2.6038;
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for J=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xv(J)=fzero(@(a) Rod511_sym(a,k), a0); a0=xv(J);

end

a0=3.837

for M=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xw(M)=fzero(@(a) Rod6_sym(a), a0); a0=xw(M);

end

OMEGA1=xv/pi; OMEGA2=xw/pi;

plot(nu,OMEGA1,’r-’,’LineWidth’,1.5); hold on

plot(nu,OMEGA2,’r--’,’LineWidth’,2);legend(’R01’,’\Omega=J_{1,1}=3.837’)

a0=7.5398;

for J=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xv(J)=fzero(@(a) Rod511_sym(a,k), a0); a0=xv(J);

end

a0=7.0156

for M=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xw(M)=fzero(@(a) Rod6_sym(a), a0); a0=xw(M);

end

OMEGA3=xv/pi; OMEGA4=xw/pi; plot(nu,OMEGA3,’b-’,’LineWidth’,2);

plot(nu,OMEGA4,’b--’,’LineWidth’,1.5);

legend(’R02’,’\Omega=J_{1,2}=7.0156’)

a0=12.0722;

for J=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xv(J)=fzero(@(a) Rod511_sym(a,k), a0); a0=xv(J);



96

end

a0=10.1735;

for M=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xw(M)=fzero(@(a) Rod6_sym(a), a0); a0=xw(M);

end

OMEGA5=xv/pi; OMEGA6=xw/pi; plot(nu,OMEGA5,’g-’,’LineWidth’,2)

plot(nu,OMEGA6,’g--’,’LineWidth’,1.5)

legend(’R03’,’\Omega=J_{1,3}=10.1735’)

a0=16.5548;

for J=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xv(J)=fzero(@(a) Rod511_sym(a,k), a0); a0=xv(J);

end

a0=13.3237;

for M=1:length(nu)

k=sqrt(2*(1-nu(J))./(1-2*nu(J))); k2 = k.*k;

xw(M)=fzero(@(a) Rod6_sym(a), a0); a0=xw(M);

end

OMEGA7=xv/pi; OMEGA8=xw/pi; plot(nu,OMEGA7,’m-’,’LineWidth’,1.5)

plot(nu,OMEGA8,’m--’,’LineWidth’,2)

legend(’R01’,’\Omega=J_{1,1}=3.837’,’R02’,’\Omega=J_{1,2}=7.0156’,’R03’,.../

’\Omega=J_{1,3}=10.1735’,’R04’,’\Omega=J_{1,4}=13.327’)

hold off; grid on; xlabel(’\nu’); ylabel(’\Omega / \pi’)

AXIS([0 0.45 0 13]);toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Rod6_sym.m

function ff = Rod6_sym(a)

%axial shear modes
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ff=besselj(1,a);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Rod511_sym.m

function f3 = Rod511_sym(a,k)

%s2=0 cut off frequencies, radial shear modes

x = a; y = a./k; Jy0 = besselj(0,y); Jy1 = besselj(1,y);

f3= x.*Jy0-2*Jy1./k;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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