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Thesis Director: 
Peng Song 

 

 

 

There have been increased interests in mobile robot research due to its many applications 

in areas such as material handling, explorations in hazardous environments, and military 

missions under extreme conditions.  Many control schemes and robot systems have been 

developed, yet most of these systems eventually become individual experiments that are 

unique or specific to particular applications.  It is very difficult to verify or reuse the 

controls developed and build upon the existing knowledge.  We argue that it is necessary 

to develop an integrated experiment and simulation environment equipped with a user-

friendly interface to examine existing controls and eventually serve as an experimental 

testbed for mobile robot research.  

The main contributions of this thesis are the design and integration of a hardware 

in the loop simulation environment for mobile robot control and navigation. We 

developed an easy to use graphical user interface (GUI) that can provide the users with 

the overall access to various robot functions including sensor feedback, object 

recognition, and tools for implementing the control strategies to study robot behaviors. 
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Chapter 1 

 

Introduction 

 

Due to the broad capabilities of mobile robot systems and the proliferation of computing 

capacity, extensive amount of research has been done in the past two decades in control 

and coordination of multiple mobile robots. The main reason of the rapid development in 

mobile robots is that they can help to reduce the demand of human presence for tasks in 

extreme environments.  One of the major challenges in this area is for the robots to work 

in a fully autonomous way to achieve the goals specified by a person. Many control 

strategies have been reported and applied in a wide variety of applications, such as large-

size object transportation [1], unknown environment explorations [2], map-making [3], 

landmine detection [4] and search-and-rescue missions [5, 6]. A good review on the 

applications of multi-robot systems can be found in [7]. 

  The problems considered in this research are rooted from the fundamental areas of 

mobile robots - the planning and navigation of mobile robots, which answers to the basic 

question of moving from one location to another and achieve that safely (without 

collisions to the environment).  Among different types of robots, wheeled mobile robots 

are considered closest to our daily life. Wheeled robots can have different topologies 

depending on the number and the configuration of wheels.  Even though three wheels are 

sufficient for a robot to balance on the ground, additional wheels can still be added, but 

more complicated mechanisms need to be applied to keep all wheels on the ground if the 
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surface is not flat.  A few representative examples of three-wheeled mobile robots with 

differential drives are PioneerTM of ActivMedia Robotics, the robotic vacuum cleaner 

RoombaTM by iRobot and the general purpose robot ER1 from Evolution Robotics.  The 

differential drives are a two-wheeled driving system with two independent driving 

motors. A comprehensive review of different types of mobile robots in academia and 

industry can be found in [8].  

The robot used in this thesis is the ER1 mobile platform.  The ER1 is a 

differential drive mobile robot which can be easily assembled and customized. The 

software provided allows for a quick installation of the needed drivers to control the 

robot’s motion.  The robot we assembled for this thesis has a passive front steering 

wheel, two differential driven rear wheels, and is equipped with an on-board webcam as 

its vision sensor.  

 

1.1 Scope of the Thesis 

 

With the recent increase in computing power available, there has been a great deal of 

research being done in the design of robot control schemes, however there is still limited 

work focusing on the development of an integrated simulation and testing environment 

that can readily examine and eventually further develop the existing controls. 

This thesis focuses on the implementation of sensor-based robot control schemes 

and the design of an integrated simulation environment for sensor based robot navigation.  

The simulation environment allows for the robot to detect and track an object via user 
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specified control schemes and provide a general hardware-in-the-loop simulation and 

testing environment for mobile robot research. 

 In order to develop the integrated simulation environment for sensor based 

navigation, several challenges need to be overcome.  The robot must be able to correctly 

identify a 2-D object with known geometry in a cluttered environment and calculate its 

extrinsic parameters such as its position and orientation.  Next, the robot needs to plan the 

proper motion required to maintain a specified orientation and distance from the object.  

After determining the motion plans, the robot should be able to localize itself and follow 

the planned trajectory. 

The main contributions of this thesis are the design and integration of a hardware 

in the loop simulation environment for mobile robot control and navigation.  We created 

a user friendly graphical interface that can provide the overall access to various robot 

functions including sensor feedback, object recognition, and tools to implement control 

strategies and observe robot behaviors.  The interface is developed on top of the 

Application Program Interface of the ER1 robot for communication and control.  The 

object recognition is performed through the on-board camera.  A toolbox has been built 

and integrated into the environment for camera calibration and color-based object 

identification. 

 

1.2 Thesis Organization 

 

The rest of the thesis is organized as follows:  Chapter 2 presents details of the 

nonholonomic control schemes used in the experiments.  Chapter 3 provides information 
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on the method and algorithms for camera calibration and experimental results for vision-

based sensing.  Chapter 4 studies the advantages and limitations of the hardware platform 

of the ER1 robot with experiments carried out on the original robot control center (RCC).  

Chapter 5 contains details of the object identification algorithm, vision-based tracking, 

teleoperation, and motion control simulations and experimental results.  Chapter 6 

describes the design and user interface for the integrated simulation and experimental 

environment and provides experimental results for the user interface implementation.  

Chapter 7 presents conclusions and suggests directions for future research. 
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Chapter 2 

 

Mobile Robot Control 

 

In this chapter, we present the kinematics, dynamics, and trajectory tracking control of a 

differential drive mobile robot.  We describe an integrator backstepping method for robot 

motion control.  The control input is determined by tracking a reference trajectory via an 

auxiliary control velocity vc.  We demonstrate the effectiveness of the control method 

with the results from simulations for various reference trajectories. 

 

2.1 Kinematics 

 

Consider a differential drive, three-wheeled mobile robot as shown in Fig. 2.1, where the 

two rear wheels are driven by two independently controlled motors and the front wheel is 

passive.  The velocity, v, of the robot, can be expressed as a vector consisting of the 

linear velocity of the robot, v, at a reference point C and the angular velocity, ω, around 

the vertical axis. In general, the velocity of the robot can be expressed as a function of the 

velocity of the driving wheels, 

),,( 21 ppf ωω
ω
ν

=







=v     (2.1) 
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where ωp1 and ωp2 are the angular velocities of the individual wheels. Assuming pure 

rolling between the wheels and the ground, for the robot shown in Fig. 2.1, v can be 

expressed as 






















−
=








=

2

122
p

p

R
r

R
r

rr

ω
ω

ω
ν

v .    (2.2)
 

 

Figure 2.1 A nonholonomic mobile platform.  C – Center of mass; ν – Velocity at the center of mass;  v1, 
v2, – Linear velocities at the center of the right and left wheels, respectively;  θ – The 
orientation of the robot with respect to the fixed frame F. 

 

d 
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 If we use the notation of the generalized coordinates Tyx ),,( θ=q  to describe the 

x-y position of a reference point P on the robot and the orientation of the robot in an 

inertial Cartesian coordinate frame (frame F in Fig. 2.1), the generalized velocity of the 

robot can be computed as 
























 −
=

ω
ν

θθ
θθ

10
cossin
sincos

d
d

q .     (2.3) 

The nonholonomic constraints of the robot which describe the non-slipping condition 

along the axis of the driving wheels can be written as 

0)( =qqA  ,      (2.4) 

where    
















−

−
=

d
θ
θ

cos
sin

)(qA  .         (2.5)  

 

2.2 Dynamics 

 

The dynamics equation for the mobile robot depicted in Fig. 2.1 can be written as 

λττ )()()()(),()( qAqBqGqFqqqHqqM T
dm −=++++  ,   (2.6) 

where 33)( ×ℜ∈qM  is a symmetric, positive definite inertia matrix, 33),( ×ℜ∈qqH m  is 

the centripetal and coriolis matrix, 13)( ×ℜ∈qF   denotes the surface friction, 13)( ×ℜ∈qG  

is the gravitational vector, τd denotes bounded unknown disturbances which includes 

unstructured unmodeled dynamics, 23)( ×ℜ∈qB  is the input transformation matrix, 
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13×ℜ∈τ  is the input vector, and 13×ℜ∈λ  is the vector of constraint forces.  For a mobile 

robot moving on a horizontal plane, 0)( =qG . 

 Considering the nonholonomic constraints of the robot given by Equation (2.5), 

let )(qS  be a full rank matrix formed by a set of smooth and linearly independent vector 

fields spanning the null space of ),(qA  which can be written as 

0)()( =qAqS TT ,     (2.7) 

where   ,
10

cossin
sincos

)(














 −
= θθ

θθ
d
d

qS

 

       (2.8) 

The auxiliary vector time function 1)( ℜ∈tv  can be defined for all t as 

)()( tvqSq = ,       (2.9) 

where    







=

ω
ν

v         (2.10) 

 ,
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cossin
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





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

 −
=










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





ω
ν
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θθ

θ
d
d

y
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





    (2.11) 

where maxv≤ν  and maxωω ≤ .  vmax and ωmax are the maximum linear and angular 

velocities of the robot in consideration.  Equations (2.8), (2.10), and (2.11) constitute the 

steering system of the vehicle. 

 By multiplying (2.6) by ST, we can eliminate the constraint matrix λ)(qAT  

noting the relation given by (2.7).  After replacing q  with the relation given by (2.9), the 

new dynamics equation becomes 

ττ BSFSSvSHSMSvMSS T
d

T
m

TT =++++ )(  .   (2.12) 



9 
 

We can rewrite this as 

        ,)(),()( ττ BvFvqqHvqM =+++ dm      (2.13) 

,ττ B=       (2.14) 

where 22)( ×ℜ∈= MSSqM T  is a symmetric, positive definite inertia matrix, 

22)(),( ×ℜ∈+= SHSMSqqH m
T

m
  is the centripetal and coriolis matrix, 

12)( ×ℜ∈= FSSvF T  is the surface friction, dτ  denotes bounded unknown disturbances, 

12×ℜ∈τ  is the input vector, and 22×ℜ∈= BSB T is a constant nonsingular matrix 

dependent on the distance between the driving wheels R and the radius of the wheel r 

(refer to Fig. 2.1).  Equation (2.13) describes the behavior of the nonholonomic system in 

a set of local coordinates.  By inserting (2.9) into the dynamics equation, it is clear that 

the Jacobian Matrix, S(q), transforms the mobile base coordinates v into Cartesian 

coordinates q . 

 

2.3 Trajectory Tracking Control 

 

The described steering system changes the desired v into a torque control, τ, for the actual 

mobile platform.  If u is an auxiliary input, we can apply the nonlinear feedback to obtain 

[ ],)(),()()(),,,()( 1 vFvqqHuqMqBuvqq ++== −  mft ττ    (2.15) 

where one can convert the dynamic control problem into the kinematic control problem. 

uv
vqSq

=
=



 )( .      (2.16) 
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 The above equation represents a state-space description of the nonholonomic 

mobile robot.  It also constitutes the basic framework for defining its nonlinear control 

properties.  It is assumed in (2.15) that all the dynamical quantities of the robot 

( )),(),(),( qqHvFqM m  are known and 0=dτ .  The objective is to select the torque in 

(2.15) so that (2.16) will exhibit the desired behavior motivating the specific choice of the 

velocity v(t).  This allows the steering system commands to be converted into torques that 

take into account all of the actual robot’s parameters. 

There are three basic problems that the nonholonomic steering v(t) may be 

divided into:  tracking a reference trajectory, following a path, and point stabilization.  

Since we will be dealing with reference trajectory tracking, only the first problem will be 

presented in this paper.  For more information on path following and point stabilization, 

refer to [9]. 

 

Tracking a Reference Trajectory 

The trajectory tracking problem is described as follows:  Let there be a reference robot 

with position and velocity values 

   

rr

rrr

rrr

r

r
r

r

r

r
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=





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


=


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






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




=


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sin
cos

, vq

 ,    (2.17) 

where vr > 0 for all t.  There is a smooth velocity control ),,()( Cvev rpcc ft =  such that 

0)(lim =−
∞→

qq rt
 where ep, vr, and C are the tracking error, reference velocity vector, and 
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the controller gain vector, respectively.  The torque input, τ(t) for (2.15), is then 

computed such that cvv →  as .∞→t   Assuming that the dynamics of the robot is 

completely known, (2.15) is used to compute the torque, given u(t).  From here, we 

present the integrator backstepping method [9] to derive a suitable u(t) and τ(t) from a 

specific vc(t) that controls the steering system (2.16). 

It is assumed that the solution to the steering system tracking problem is available 

and is denoted by vc(t).  The tracking error vector is expressed as 

ep = Te(qr – q),       

,
100
0cossin
0sincos
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
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r

r

r

yy
xx

e
e
e

     (2.18) 

and its derivative is expressed as 

















−
+−
+−

=
ωω

νω
ννω

r

r

r

p ee
ee

31

32

sin
cos

e .     (2.19) 

The equations for the auxiliary velocity control input that achieves tracking for (2.16) is 

given by 

,
sin

cos

3322

113








++
+

=
ecec

ece

rrr

r
c ννω

ν
v     (2.20) 

and whose derivative becomes 
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The proposed nonlinear feedback acceleration control input is 

),(4 vvCvu −+= cc       (2.22) 



12 
 

where C4 is a positive, definite, diagonal matrix, 

C4 = c4I.      (2.23) 

By defining an auxiliary velocity error as 

,
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   (2.24) 

and by using (2.22), we obtain 

,4 cc eCe −=       (2.25) 

and the velocity vector of the mobile base then satisfies v → vc  as t → ∞. 

 By the assumption ,0>rν  then 02 →e  as ∞→t .  Therefore, the equilibrium 

point 0=e  is uniformly asymptotically stable.  For more information, refer to [9]. 

 

Simulation Results 

We simulate a robot with the distance between the wheels R = 0.5m, the distance between 

points P and C d = 0m, and the wheel radius r = 0.05m.  The mass and the inertia of the 

robot are 10kg and 5kgm2, respectively.  The initial positions and velocities of the robot 

are set to zero.  

Our first simulation example is to have the robot follow a straight line trajectory 

that is perpendicular to its initial orientation.  The trajectory is given in the form of a 

reference robot with the following initial conditions 
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with the robot’s initial conditions set as 





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 The simulation results are shown in Fig. 2.2. The mobile robot would begin its 

motion by moving in reverse to reposition itself to move toward the reference robot.  The 

motion of the robot results in convergence with the reference robot’s trajectory. 

Our second example is to have the robot follow a semicircular trajectory with a 

radius of 2m over a period of ten seconds.  The initial conditions of the reference robot 

are 

























=








s
rad

s
m

m
m

r

r deg

10

5

90
0
0

π

πv
q

 

with the robot’s initial conditions set as 























=








srad
sm

m
m

/
/

deg

0
0
0
0
2.0

0

0

v
q

. 

 The simulation results are shown in Fig. 2.3.  The mobile robot would begin its 

motion by moving in reverse to reposition itself to move toward the reference robot. 

Once the robot completes the reverse motion, it would begin following the path of the 

reference trajectory. 
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(a)       (b) 

Figure 2.2 A differential drive mobile robot following a straight line reference trajectory using the 
backstepping control.  (a) Reference robot’s path (dashed) and mobile robot’s response 
(solid); (b) and error in position of the mobile robot over time in the x- and y-directions. 

 

     
(a)       (b) 

Figure 2.3 A differential drive mobile robot following a semicircular reference trajectory using the 
backstepping control.  (a) Reference robot’s path (dashed) and mobile robot’s response (solid); 
(b) and error in position of the mobile robot over time in the x- and y-directions 

 

The results from both examples show that as ∞→t , the mobile robot trajectory 

converges to the reference trajectory, resulting in a decrease in both position and 

orientation errors between the mobile robot and the specified reference trajectory. 
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2.4 Discussion 

 

This Chapter provides a stable control algorithm based on the backstepping method that 

is capable of dealing with reference trajectory tracking problems.  Our simulations and 

experiments show that the kinematic control is able to stabilize a nonholonomic mobile 

robot about a reference trajectory when the reference trajectory has a constant or varying 

velocity profile.  This servo-control scheme is valid as long as the velocity control inputs 

are smooth and bounded and the dynamics of the robot is completely known.  In practice, 

the perfect knowledge of the inertial property is not easy to obtain.  The neural network 

based adaptive control approach may be able to learn these parameters online and may 

resolve this problem.  

 The kinematics and dynamics equations are linked by (2.15).  The steering 

system, along with the actual and reference robot’s position and velocities (i.e., the 

kinematics of both vehicles), is used in the integrator backstepping method to solve for 

the auxiliary control velocity, vc, and the feedback acceleration control input, u, to reduce 

the position and velocity error between the reference and actual robot.  These values are 

plugged into (2.15) and the wheel torques can be calculated assuming the initial 

properties are known. 
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Chapter 3 

 

Vision-Based Sensing  

 
For the vision system of the robot, we consider a widely used robot configuration with 

one on-board camera.  This configuration is similar to the eye-in-hand configuration in a 

visual servoing system [10].  The difference between the eye-in-hand system and the 

system used here is that instead of the camera being mounted on the hand of a robot 

manipulator which is fixed at the base, the camera is attached to a mobile platform that 

can move freely in its workspace.  In order to sense and eventually track an object, 

camera calibration must be performed to determine the intrinsic parameters of the camera 

such as the focal length of the optical system, principal point, skew coefficients, and 

distortions. 

 In this chapter, we describe the model utilized for camera calibration.  This is 

followed by the implementation details and experiments to validate the accuracy of the 

intrinsic parameter recognitions.  In the experiments, we calculate the transformation 

matrix of an object from the camera’s perspective in two known orientations and 

compare this matrix to the known transformation matrix. 

 

3.1 Models for Camera Calibration 

 

Camera calibration is a technique in computer vision which is used to determine a 

camera’s internal geometric and optical characteristics (intrinsic parameters) and the 3D 
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position and orientation of the camera system relative to a certain world coordinate 

system (extrinsic parameters).  In order to identify the intrinsic parameters of the camera, 

we use a method called Direct Linear Transformation (DLT).  This method works by 

taking several snapshots of the camera’s view with an object of a known geometry and 

location relative to the camera.  In each snapshot, the object is moved to a different 

location and with a different orientation relative to the camera [11].  These snapshots are 

then used to determine the intrinsic parameters of the camera.  In general, the intrinsic 

parameters of a vision system include: 

• Focal length (fc): The focal length (in pixels) is stored as a 2x1 vector. 

• Principal point (pc): The principal point coordinates are stored as a 2x1 vector. 

• Skew Coefficient (αc): The skew coefficient defining the angle between the x and 

y pixel axes is stored as a scalar value. 

• Distortions (kc): The image distortion coefficients (radial and tangential) are 

stored as a 5x1 vector. 

 

3.1.1 DLT Model 

 

For the DLT model, we assume that there is no image distortion (i.e. kc = 0).  We start 

with an initial point, P, where 
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where Po is a vector containing the 3D coordinates of point P in the object reference 

frame, Pc is a vector containing the 3D coordinates of point P in the camera reference 

frame, d is the translation vector from the camera frame of reference to the object frame 

of reference, and Rc is the rotation matrix from the camera reference frame to the object 

reference frame (refer to Fig. 3.1 and 3.2). 

 Since the camera reference frame has the same orientation as the body-fixed 

reference frame of the robot which the camera is attached to, they differ by only a 

translation.  They are related by 

ccB dPP += ,      (3.3) 

where dc is the translation vector in the camera reference frame.  

 We can define Nn to be the normalized (pinhole) image projection 
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where ui and vi are the Xc and Yc locations of the point Pc projected on a 2-dimensional 

image plane, respectively (see Fig. 3.1).  This frame of reference is what is seen by the 

camera. The given values for this model are Pc and Po.  After obtaining the corner 

locations of at least five points on the object for each orientation, enough information has 
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Figure 3.1 Projection of the point Pc on the image plane 
 

 

 
(a)       (b) 

Figure 3.2 (a) Setup for the calculation of intrinsic parameters. X, Y, dx, dy are predefined; (b) and camera 
reference frame (Xc, Yc, Zc), Object reference frame (X, Y, Z), and Image plane reference 
frame (U, V).  Note that the object reference frame is labeled without the “o” subscript to 
remove confusion in this figure between Xo, Yo, Zo and Xc, Yc, Zc.  
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been collected to determine the intrinsic parameters.  From here, we can easily solve for 

fc. 

 Although the DLT model is computationally efficient, it is not always accurate 

enough to use.  This is due to not taking lens distortions into account. 

 

3.1.2 DLT Model with Distortion Compensation 

 

Although the lens distortion model takes image warping into account, it is a time 

consuming method and the possibility of getting trapped in a local error minimum arises 

[12].  To remedy these issues, we use a combination of the DLT and distortion models.  

This applies the distortion-free camera model to the input data and uses the results to 

apply a nonlinear search of each local corner location, resulting in a method that takes 

distortion into account and removes any local minimum traps.   

 The normalized point with lens distortion taken into account is written as 
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where, for the tangential distortion vector dx, kc1, kc2, and kc5 are radial distortions and kc3 

and kc4 are tangential distortions.  From here, we can relate the pixel coordinates to the 
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     Actual image              Distorted image 

Figure 3.3 Comparison of Actual image to a Distorted image as seen by a camera with a distorted lens 

 

projection of point Pc on the image plane 
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where xp and yp are the final coordinates in pixels of the projection of point P on the 

image plane.  Since the skew coefficient determines the relationship between the u-axis 

and v-axis on the image plan, the coefficient only needs to be accounted for in one of the 

two terms (refer to Fig. 3.4). 

 Equation (3.7) can be rewritten as 
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After substituting all of the known variables into (3.7), we obtain 
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Figure 3.4 Comparison of Actual image and the same image as seen by a camera with a skewed 

perspective 
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These two equations relate to the given coordinates in pixels to the given coordinates in 

the camera reference frame.  Since there are a total of two equations and ten unknowns (2 

for fc, 2 for pc, 1 for αc, and 5 for kc), we need a minimum of five unique points in order to 

solve for the intrinsic parameters.  The more points used, the greater the accuracy of the 

intrinsic parameters.  For more information, refer to [13].
 

 

3.1.3 Pose Estimation Using DLT Model 

 

After obtaining the intrinsic parameters, we can calculate the extrinsic parameters for any 

orientation of any object of known dimensions.  For every image of the object that we 
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wish to obtain the transformation matrix, we already have the values for xp, yp, fc, pc, αc, 

and kc.  In the implementation, we specify an origin of the object frame and the pose of 

the object is estimated by the image analysis.  This ensures that there is a unique 

homogenous transformation matrix corresponding to any object location. 

 To solve for the transformation matrix, we use (3.2).  From (3.10), we can 

obtain the values of Xc, Yc, and Zc.  Rewriting (3.2), we obtain 
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where T is a 4x4 transformation matrix containing the extrinsic parameters 
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From (3.11), we have three equations and six unknowns.  For every additional 

point chosen from the same image, we obtain three more equations, but the number of 

unknowns remains unchanged.  Since we are obtaining the transformation matrix from 

the camera reference frame to the object reference frame, any additional points do not 

change the transformation matrix, but the values of Pc and Po change.  Once the second 

point is known in the camera reference frame, the extrinsic parameters can be solved for 

without any difficulties. 
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3.2 Implementation and Results for the Vision System Calibration  

 

For implementation of the DLT model with distortion and calculation of the extrinsic 

parameters, an off-the-shelf webcam is utilized for image capturing as the ‘eye’ of the 

robot. 

 

3.2.1 Intrinsic Parameters  

In order to obtain the intrinsic parameters of the webcam, a simple black and white 

checkered board is used for calibration.  The board size is 12x12 squares, with each 

square exactly 30 millimeters in length per side. 

 

 

Figure 3.5 General setup for camera calibration. 
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 Our camera calibration program is built on top of the Matlab toolbox described in 

[14].  In our experiments, 30 images of the checkered board are taken at various locations 

and orientations from the camera frame.  Typical images from the camera are shown in 

Fig. 3.6.  After obtaining at least the minimum required number of images, the four 

corners of each image is selected as object corner locations as seen in Fig. 3.7.  Using the 

pixel locations of these four corners for all of the images, the intrinsic parameters are 

calculated by applying the DLT model with distortion as described by Equations (3.5)-

(3.10).  Fig. 3.8(a) shows the estimated locations prior to using the DLT method (i.e., 

evenly spaced points).  The squares surrounding each corner are the area in which the 

DLT with distortion method is applied.  Fig. 3.8(b) shows the same image after DLT with 

distortion applied.  Fig. 3.9 shows the projected orientation and location of the checkered 

board for the first 15 images in the order that each image was taken. 

 

   
(a)            (b) 

Figure 3.6 Typical images of the calibration grid at different locations and orientations used for camera 
calibration. 
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(a)      (b)  

Figure 3.7 Corner capture using the mouse for camera calibration. 

   
(a)      (b) 

Figure 3.8  Checkered board intersect estimations (a) Estimated location of each edge; (b) and final 
estimation with distortion taken into account. 

 

3.2.2 Extrinsic Parameters 

After the intrinsic parameters are determined, the extrinsic parameters of the object at any 

location and orientation can be calculated from the camera image.  Fig. 3.10 shows the 

camera image of two calibration grids mounted on two perpendicular surfaces.  Since the 

angle between these two grids is known, we can use this set up to validate our calibration 

and object identification programs. We will compare the known transformation matrix for 
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Figure 3.9 Projected locations of each object orientation 

 

the two checkered boards with the two transformation matrices obtained from the 

checkered board to the camera.  Fig. 3.11 shows the results from the extrinsic parameter 

calculations.  The results from the camera image in Fig. 3.10(b) and (c) are indexed as 

pose 27 and pose 28, respectively.  For these two poses, the transformation matrix from 

the camera to each image is calculated.  Since we already know these two objects lie on a 

cube and the length of each side is known, the transformation from object in Fig. 3.10(c) 

to the object in Fig. 3.10 (b) (i.e. from pose 28 to pose 27 shown in Fig. 3.11) should 

ideally be a translation of 300mm along the object’s negative z-axis and a rotation of 90 

deg. counterclockwise around the object’s x-axis 
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(a) 

   
(b)         (c) 

Figure 3.10 (a) Original image used for verification of extrinsic parameter calculations; (b, c) Two 
orientations of the checkered box used to determine the accuracy of extrinsic parameter 
calculations. 

 

 The results from our calibration and identification program are expressed in 

terms of the transformation matrices from the camera frame to the object frame for each 
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 (a)       (b) 

Figure 3.11 Two orientations of the calibration board (a) a 3rd person view; (b) and on-board camera view. 
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The resulting transformation from reference frame 28 to reference frame 27 can be 

calculated as 
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Comparing (3.14) to (3.13), we see that the calculated transformation matrices for the two 

different poses in this example is accurate to within an error of less than 1%. 
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3.3 Discussion 
 

The method presented in this chapter is used to calibrate the on-board camera of the robot 

and identify the extrinsic parameters of an object with known geometry.  No major issues 

were encountered with camera calibration.  For extrinsic parameter calculations however, 

issues were encountered for the object detection.  These issues are described in  

section 5.4. 
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Chapter 4 

 

Experimental Setup 

 

The test bed used in this project is the ER1 Personal Robot System developed by 

Evolution Robotics™.  The ER1 is a differential driven three-wheeled robot with a 

passive steering wheel.  It is purchased as a kit that can be assembled and customized into 

different configurations. 

In this chapter, we present information on the robot design and software interface 

provided with the ER1.  Extensive experiments have been performed to study the 

capabilities and limitations of the ER1’s sensing and motion control systems. 

 

4.1 ER1 Robot 

 

The ER1 robot kit consists of aluminum rods and connectors for the frame, a power 

module, a Robot Control Module (RCM) for sending commands to and receiving 

information from the robot, mounting plates (for the power module and RCM), a 

webcam, and three wheels (one 360-degree rotating caster wheel and two nonholonomic 

scooter wheels with one stepper motor pre-installed on each).  A Dell™ Inspiron 8200 

(Intel Pentium 4 processor 1.8GHz with 512 MB RAM) with Windows XP installed is 

used as the on-board controller for the robot. 
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 The robot kit provides several suggested assemblies for a variety of applications 

but can be redesigned into any desired shape and size.  This allows the user to customize 

the robot for better manipulation in unique environments and in multiple surroundings 

with easier access to the battery, RCM, and/or the on-board computer.  Optional add-ons 

for the robot include a gripper arm for grabbing and transporting objects, 9 infra-red 

sensors for additional detection options, and a second camera for obstacle avoidance.  A 

customized ER1 robot used in our experiments is shown in Fig. 4.1. 

 The ER1 comes with software which provides a way to explore the capabilities of 

the robot (refer to Fig. 4.2).  This software is called the Robot Control Center (RCC).  

The RCC contains a GUI that allows the user to set up if-then commands with a minimal 

amount of input.  Also, because the robot is compatible with many different computer 

languages (Java, C++, etc.), it is very flexible when dealing with other methods to control 

the robot. 

The RCC software allows the user to make simple motions with the ER1.  These 

 
Figure 4.1 Customized ER1 robot 
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motions can be triggered by a sound, a timer, or even an email.  One of these triggers is  

the use of the webcam.  With the webcam, a user can capture an image of an object and 

store this image in the RCC’s memory.  By recognizing the stored image in the RCC’s 

memory, the robot can be made to respond to this image in a desired manner. 

Another feature that the RCC has is the Application Programmer’s Interface 

(API).  This feature allows the user to control the robot directly, rather than by using the 

GUI.  With this feature, the user can input commands to the robot using a command line 

interface rather than in response to stimuli.  However, even with these features, there 

were still issues with the API that needed to be addressed before achieving usability (see 

section 4.3 for more information on API issues). 

 

4.2 Vision and Motion Capabilities 

 

As mentioned earlier, the ER1 comes equipped with a webcam for image capturing.  The 

RCC has the capabilities of image capturing, video recording, object recognition, object 

and color tracking, and obstacle avoidance.  For the obstacle avoidance function, a 

second webcam is required to be aimed toward the floor directly in front of the robot.  

Several tests were performed to determine the limits of the obstacle avoidance function. 
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Figure 4.2 Graphical User Interface of the RCC 

 

4.2.1 Obstacle Avoidance 

 

The RCC’s obstacle avoidance function can identify obstacles based on either differences 

in light intensity or differences in color (RGB values).  After selecting one of the two 

choices to use, the tolerance for the choice made can be manipulated.  The tolerance 

range was from 0 to 100, where 0 was as sensitive as possible, and 100 was as tolerant as 

possible. 

Two tests were implemented to determine the robot’s obstacle avoidance abilities.  

In the first test, the robot was given a set distance to move in a straight-line path in which 

three obstacles were placed.  The first two obstacles were chosen to be colors that were 
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unrelated to the color of the ground.  The third obstacle was selected to blend in with the 

background (refer to Fig. 4.3). 

The second test for obstacle avoidance involved giving the robot a nonlinear location to 

reach.  The robot would start in one corner of a rectangular hallway and was commanded 

to move to the opposite corner of the hallway.  In order to do so, the robot would have to 

avoid the walls of the hallway as the motion was being performed (refer to Fig. 4.4). 

 

Figure 4.3 Test setup for the first test taken by the robot’s camera and a sample path of the robot.  The 
robot was given a straight-line distance to travel in a clustered environment with various 
obstacles. 

 

Obstacle Avoidance Results The results for the first test showed that both intensity and 

color difference gave the best results with a tolerance level set between 35 and 50.  If the 

tolerance was set lower than 35, the robot would perform one of two actions:  the robot 

would either detect the floor as an obstacle and keep rotating in place, or its motion 

X 
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X 



36 
 

would be extremely jerky and would take a long period of time to complete its task.  If 

the tolerance was set higher than 50, the robot’s motion would either be successful, or the 

robot would either nick or drag the obstacle along the way.  Overall, light intensity 

difference detection gave slightly better results than color difference detection.  The color 

difference detection tests had a larger number of trials that either nicked or dragged the 

obstacles. 

For the second test, regardless of the tolerance level, the robot was unable to 

complete the required motion.  This was due to the ground itself having a section with a 

grating (see Fig. 4.4(b) and Fig. 4.5).  The robot detected the grating as an obstacle and 

was unable to cross the grating. 

 

   
(a)       (b) 

Figure 4.4  Second obstacle avoidance test.  (a) An overhead view of the ideal (dashed line) and predicted 
(solid line) robot path; (b) View of path from starting position.  For the second test, the robot 
was required to navigate the hallway with no prior knowledge other than the location of the 
endpoint relative to the start position.  During this test, the grating (circled) was detected as an 
obstacle. 
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Figure 4.5  View of the grating which acted as an obstacle for the second obstacle avoidance test (marked 
as “Camera 2”).  Note the error message highlighted in blue above the pointer. 

 

 

4.2.2 Motion Control System 

 

The ER1 has the ability to be controlled via teleoperation or move autonomously based 

on input from the camera.  By using the recognition software, the robot can be made to 

move or turn toward or away from an object or color.  The ER1 control software imposes 

limits on the robot with a maximum linear velocity of 50cm/s, and turn at a maximum of 

90 deg/s.  Although the hardware structure is capable of performing its motions at greater 

speeds, the limits imposed by the control interface are more than enough to work with for 
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our purpose.  We tested the final position accuracy and some of the discussions are 

presented in Chapter 5. 

 

4.3 Discussion 

 

ER1 Vision Issues As useful and easy to use as the vision functions were, issues still 

arose that were unavoidable by using the RCC.  One such issue involved motion using 

color detection.  The RCC would determine the motion to or from a user-specified color 

based on the percentage of the screen taken up by said color.  If the object is not seen to 

be a uniform color by the robot or if the object’s orientation reduces the robot’s 

perception of the actual size of the object (refer to Fig. 4.6), the robot would determine 

the desired final location relative to the object incorrectly.  This method of detection was 

unusable due to the robot’s lack of ability to detect the object orientation.  

  
(a)      (b) 

Figure 4.6 (a) Straight; (b) and angled object.  The object location is unchanged, but due to the orientation, 
the screen percentage of the object in each image would result in different robot reactions. 
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 Another issue that occurred was image skipping during motion involving a 

live video feed.  During object or color searches, the video feed would, on occasion, 

freeze for up to several seconds.  This would cause the robot to use the latest (and 

inaccurate)image as the current view.  If this happened while the robot was either heading 

towards a wall or as the target came into view, the robot would miss the target altogether 

and disaster tended to ensue.  Once the video feed would be restored, the robot would 

continue as though the video had not frozen. 

 

Image Capturing Using Matlab In order to remedy the problems with the RCC, Matlab 

was used to obtain and analyze image data.  With Matlab, frame skipping was greatly 

reduced and color recognition using camera detection allowed for more accurate distance 

measurements then with screen percentages. 

 

ER1 Motion Issues The motion for the ER1 was easily manipulated and did not cause 

any major problems with motion to set location or with tracking of an object or color.  

One minor issue with the robot motion occurred when specifying x-y coordinates to 

move towards.   If the robot were given a linear distance to move, the ER1 would always 

finish its motion short of where it had intended to reach.  This error was constant and 

would not increase beyond a certain value.  The error value was a relatively small amount 

compared to the actual and commanded distances traveled by the robot.  Section 5.3.2 

contains discussions on this error. 

 



40 
 

Issues With the API There have been several issues while working with the API.  The 

first issue is with the position readout from the robot.  Although the x-y position is easily 

read from the encoders, the angle of the robot is always the value from the robot’s frame 

of reference (i.e. always zero).  The second issue is that, although the user guide for the 

robot provided the commands that can be used for the API, a small number of commands 

were not mentioned in the user guide and no notification of the availability of these 

commands was mentioned.  This includes one of the most important of the movement 

commands which involves nonlinear motion to specified x-y coordinates allowing the 

motion to be completed in a single, fluid action.  Without this command, the robot needs 

to move in straight paths, only turning in place, causing a seemingly unnatural rigid 

motion.   

Another issue was related to the default x-y directions for the robot’s motion.  As 

shown in Fig. 3.2, the object’s frame of reference and the camera’s frame of reference 

have different orientations and must be taken into account when calculating the motion of 

the robot.  What makes the motion even more difficult is the RCC’s choice of the robot’s 

x- and y-directions for motion.  The robot’s x-direction is in the camera’s z-direction (the 

direction the camera is facing) and the robot’s y-direction is in the camera’s negative x-

direction.  All of these orientations need to be taken into account when determining the 

robot’s motion in the robot’s frame of reference. 
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 Chapter 5  

 

Simulation and Control Interface 

 

In this chapter, we present the details on vision-based tracking, teleoperation, and the 

motion control of the ER1 robot.  For vision-based tracking, we describe the methods 

used to identify and track an object with known color and geometry by tracking the 

transformation matrix from a reference frame fixed on the object to the robot’s frame of 

reference.  We discuss the difficulties with the object tracking program and possible 

solutions to these issues.  For teleoperation, we study the strategy of using single or 

multiple computers to relay the control from a remote command center.  For the ER1 

motion control, we provide information on wheel calibration for accurate position 

control. 

 

5.1 Vision-Based Identification and Tracking  

 

The object used in our experiment is a 2-D square-shaped object in red color. The 

features for this object are the edges and the corners.  The object tracking algorithm 

begins by grabbing an image frame from the on-board camera.  A Gaussian filter is 

implemented for noise reduction, followed by a color detection algorithm which marks 

the object as white and the background as black (refer to Fig. 5.2(b) and (c)). 
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Figure 5.1 Object used for tracking from the on-board camera 

  

 The color detection algorithm detects the object by applying a ratio comparison 

between the red value and the green and blue values in the image (i.e. red/green, 

red/blue).  If both ratios are within the ratio threshold values, the pixel is given the value 

of 1.  Otherwise, the pixel is given the value 0. 

After performing edge detection on this result (Fig. 5.2(d)), a linear curve fit of 

the upper and lower edges of the image is calculated.  If the slope of the upper curve fit is 

determined to be too close to zero, the curve fits of the left and right sides of the image 

will be calculated inaccurately using the curve fit algorithm due to an infinite slope 

condition (i.e. vertical sides).  The inaccurate curve fit results are displayed in Fig. 5.4.  

However, since we already know that the edge is vertical, we can use the average x-

coordinate value for the left and right-hand sides of the image with a negligible change in 

accuracy of the actual vs. calculated corner locations. 



43 
 

 

Figure 5.2  Determining the locations of the object:  (a) original image; (b) filtered image; (c) color 
detection; (d) edge detection; (e) slope detection for upper and lower edge; (f) final corner 
locations 

 

If the slopes of the upper and lower curve fits are determined to be outside of a 

zero slope threshold, a linear curve fit of the left and right sides of the object can also be 

calculated.  By determining the intersections of these four curve fits, we can pinpoint the 

locations of the four corners of the object.  The obtained corner locations (shown in Fig. 

5.2(f) and Fig. 5.3(f)) are plugged into (3.10) as xp and yp to determine the object’s 

location in both the robot and world reference frames. 

 

Errors from the Vision Algorithm and Possible Corrections The calculation of the 

image corners did not always run smoothly.  Several situations have resulted in consistent 

errors that needed to be fixed in the program.  One such situation is shown in Fig. 5.4 

(a)          (b)               (c) 

(f)          (e)               (d) 
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Figure 5.3 Determining the locations of the object:  (a) original image; (b) filtered image; (c) color 
 detection; (d) edge detection; (e) slope detection for each edge; (f) final corner locations from
 curve fit intersections. 
 

 The issue with this image is that the curve fits for the sides of the image were 

detected to be near infinite slopes.  Matlab has trouble handling this situation and gives 

an incorrect response for the resulting curve fit.  As mentioned previously, to remedy this 

issue (as mentioned previously), if the slope of the top and bottom edges of the curve 

iswithin a set threshold of zero slope, it can be assumed that the sides are vertical and we 

can set the x-coordinate value equal to the average value of the vertical edges.  It is for 

this reason that the calculations of the slopes of the upper and lower edges are calculated 

prior to the sides.  

Another error occurred for an image held at a roughly 45 degree angle to the 

horizontal.  Since an angled image does not have an issue with curve fitting a vertical 

line, all four edges can be curve fitted (refer to Fig. 5.5).  The error with the image that 

was held at a 45 degree angle is that, when calculating the curve fit, the left side of the  

(a)        (b)           (c) 

(f)       (e)           (d) 
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Figure 5.4 Error occurring for the Figure 5.5 Angled image after curve fit.  The green  

calculation of infinite slope  circles in the corners are the locations where 
curve fit.  the curve fits intersect.  

 

maximum and minimum points along the y-axis would have opposite values to those on 

the right side.  This would result in the slopes of the left side and right side to average out 

to zero slope and the resulting curve fit would be a horizontal line (refer to Fig. 5.6).  To 

solve this issue, the curve fit was separated into two parts.  By taking the average x-value 

to determine the change from positive to negative slope and finding the slopes of the left 

and right sides separately, we could then compare them and take the greater absolute 

value of the two for our curve fit.  This method completely removed the slope 

miscalculation issue and gave more consistent readings.  The results from the 

combination of the corner detection program and the extrinsic parameter calculation 

resulted in an accurate and consistent readout of the object location.  These results can be 

seen in Fig. 5.7. 

Before tracking of the object can begin, the object needs to be located by the 

robot.  This task is required to be completed before any future motion is to be  
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Figure 5.6  Slopes of left and right sides of object angled at 45 degrees averaging out to a zero-slope line. 

 

implemented.  The search for the object is a simple method.  By turning the robot small 

increments followed by an image analysis of its current view, the robot can confirm the 

presence of the object.  If the object is not in the field of view, the robot will continue to 

turn clockwise by a set increment and recheck its surroundings.  Once the object is in 

view, the robot will center the object before determining whether the object is at a 

reasonable distance for tracking. 

 After the object has been centered, its distance from the robot is measured.  If 

the distance of the object is not within an acceptable range for accurate corner detection, 

the robot will move to within an acceptable range.  The importance of this adjustment is 

to increase the accuracy of the transformation matrix for the object tracking algorithm.  If 

the object is located too close to the robot, the shadow on the surface of the object can be 

cause for an inaccurate distance reading.  The farther away from the robot, the greater the  
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(a)       (b) 

Figure 5.7  Final results of corner location algorithm for (a) upright; (b) and angled images.  Note:  The 
object reference frame origin (marked as light blue) is always located at the corner location 
closest to the upper-left hand corner of the camera’s field of view (origin of image frame of 
reference). 

 

difficulty in determining accurate corner locations and the more precise the readings of 

the object corners would need to be.  The acceptable range chosen for the object was 

between 75 and 100cm from the robot.  After this adjustment, the object tracking 

algorithm is implemented. 

 

Object Tracking The final and most important step for the robot is accurately tracking 

the object.  By determining the motion of the object, the robot calculates a response for 

the robot to adjust itself by moving to a new position.  This new position will view the 

object’s new location at the same orientation as the original position. 

In order to determine the motion required by the robot, an image of the desired 

object position needs to be taken.  This image is the initial position of the object after 

distance adjustment.  Using this image as a reference, the most current position of the 

object is constantly compared with the reference image to determine if the robot is 

required to change its current position (refer to Fig. 5.8).  Upon a quick inspection of the 
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 (a)    (b)    (c) 

Figure 5.8 Image from the on-board camera for object tracking.  (a) Original object location; (b) current 
object corner detection; (c) and current object location 

 

motion from the reference image, coupled with the angle that the object was turned along 

its own x-axis, the motion required by the robot is calculated. 

The determining factor for the robot motion is the net distance the robot would 

need to adjust itself.  If the required translation from the robot’s current position is at 

least 30cm, the robot adjusts itself to the new position with a new orientation (refer to 

Fig. 5.9).  The robot would position its reference frame to be at a position that would 

change the transformation matrix from the robot to the object to be as close as possible to 

that of the initial image.  It is at this point that trajectory tracking presented in section 2.3 

is put to use. 

 Once the 30cm threshold is breeched, the x-y coordinates that the robot needs 

to reposition itself to is sent to the simulation algorithm.  The algorithm takes these 

coordinates and performs trajectory tracking of a reference robot following an arced 

motion to the robot’s calculated position.  The returned values from the algorithm are the 

x-y coordinates of the robot for every projected x-y coordinate for the reference robot at 

each time step. 
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(a)     (b)     (c)  

Figure 5.9 Results for object tracking.  (a) initial object location; (b) new object location; (c) and object 
location after robot motion.  

 

 

5.2 Teleoperation 

 

ER1 can be controlled by using the teleoperation mode.  The robot control software 

provides the ability to connect to the robot via the internet and control the robot remotely 

from any location.  Through the command prompt, the ER1 can accept simple motion and 

vision detection commands, and generate feedbacks such as the robot position. 

To demonstrate a scenario of the general teleoperation mode for ER1, we can use 

a three-computer setup that consists of a host computer, a remote computer, and an on-

board computer.  The remote computer sends commands to the host computer.  The host 

computer, which acts as a liaison between the remote computer and tablet PC, forwards 

these commands to the tablet PC.  The onboard computer performs the actual robot 

motion after receiving commands sent from the remote computer.  In practice, it is more 

practical to use two computers where one is the command station and the other is the on-

board computer.  For our intended purposes, the simplest setup involves using a single 

computer which assumes the roles of both host and client. 
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For sending and receiving information packets through an internet connection, we 

use the pnet1 and ERToolkits2

For the single computer set up, we use a laptop for both a remote or local 

connection.  This enables control of the robot on the same computer that the RCC is 

being used on.  By specifying the IP address to connect to as a local home address 

(127.0.0.1), we no longer rely on any external resources.  This removes the need of a 

second or third computer.  It also eliminates the need for an internet connection as well. 

This scenario allows us to achieve local control even though the RCC is running on 

teleoperative mode. 

 toolboxes in Matlab.  The pnet toolbox opens connections 

as a client or server to send/receive text strings.  It is used for network communication 

with other applications & allows for remote Matlab control.  The ERToolkits toolbox 

communicates with the RCC of the robot directly by using the pnet toolbox.  By using the 

pnet and ERToolkits toolboxes to connect to the ER1, commands can easily be sent to the 

robot and feedback can be read from the encoders. 

 

5.3  Motion Control of ER1 

 

For straight-line motion prior to calibration, the robot would always undershoot the target 

distance.  To remedy this issue, the robot was given a straight-line trajectory using 

several attempts to move a total distance of 200cm at set increments for each attempt.  

These increments were 4, 5, 10, 20, 50, 100, and 200cm.  For each increment, a different 

number of iterations were performed to reach the 200cm mark (50 iterations for 4cm, 40 

                                                 
1 The pnet toolbox can be obtained from http://www.mathworks.com/matlabcentral/fileexchange. 
2 The ERToolkits toolbox can be obtained from http://vision.ucsd.edu/mobile_robot. 
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Input Distance (cm) 25 25 25 25 25 25 25 25
Iteration 1 2 3 4 5 6 7 8

Average Stepsizes (cm) 22.67 22.73 22.60 22.77 22.73 22.77 22.63 22.77
Error (cm) 2.33 2.27 2.40 2.23 2.27 2.23 2.37 2.23

Final Distances (cm) 22.67 45.40 68.00 90.77 113.5 136.3 158.9 181.7  

Table 5.1 Iteration values of 25cm stepsize. 

 

iterations for 5cm, 20 iterations for 10cm, etc).  The resulting positions for each iteration 

was then plotted to compare with the ideal final position. After the robot completed the 

commanded motion, the stepsize errors were compared with each other and the pooled 

standard deviation was calculated. 

The average error in the actual stepsize of the robot was 2.33cm with a pooled 

standard deviation of 0.0693.  Fig. 5.10 shows the plot of the averages along with the 

standard deviations for each set of tests.  The resulting equation for correcting this error 

in position can be written as 

33.2+= inputfinal DD      (5.1) 

where Dinput is the desired distance for the robot to move and Dfinal is the actual value sent 

to the RCC.   

 For nonlinear motion, since the ER1 uses eye-in-hand configuration and because 

the position error is always miniscule, this error in position of nonlinear motion would be 

negligible in the final working model.  In addition, any overshoot would be taken into 

account with every image capture the camera would perform.  For this reason, it was 

unnecessary to calibrate the nonlinear motion of the robot. 
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Figure 5.10 Plot of Average error of each step vs. the distance input to the ER1 and their standard 
      deviations. 
 

 

5.4 Discussion 

 

In section 5.1, an issue with illumination had developed for object detection.  This issue 

arose after determining the RGB threshold values for a particular room brightness.  

Originally, the color detection was calculated using the max and min RGB values rather 

than ratios.  Because of this, if there was too much or too little background lighting after 

the threshold was set, the object location and orientation would not be accurately 

determined.  This was due to the automatic brightness correction (refer to Fig. 5.11).  
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Figure 5.11 The first row shows the image with accurate corner detection.  The second row shows an 
example with inaccurate corner detection due to the interference of automatic brightness 
correction. 

 

 
(a)               (b) 

 
(c)      (d) 

Figure 5.12 Blue tinting of the webcam’s view.  (a) Original video; (b) Object is moved toward webcam; 
(c) Blue saturation begins; (d) Saturation remains. 
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Another issue that arose is the saturation level in the image.  If the webcam was 

activated with the object too close, or if the object was brought too close to the webcam 

for a short amount of time (<10 seconds), the webcam’s video and resulting snapshots 

would gain a bluish hue (refer to Fig. 5.12).  This hue would cause the object to go 

undetected by the robot.  The best solution that has been determined to address this issue 

is to avoid the robot from approaching close enough to the object to cause this hue 

saturation to occur. 
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Chapter 6 

 

Integrated Simulation Environment  

 

In this chapter, we present a general framework for integrated, hardware-in-the-loop 

simulation and control in mobile robot studies.  We use the ER1 as the testbed and the 

vision-based object tracking as our test subject for the implementation environment.  This 

is followed by an in-depth explanation of the capabilities and functions of the 

environment. 

 

6.1 General Framework 

 

The main objective for the integrated simulation environment is to combine all the 

individual components including the sensor information gathering (object identification), 

trajectory generation, and robot motion control.  Firstly, the robot needs identify a given 

object of known dimensions.  Secondly, the object’s initial location relative to the robot is 

to be determined.  Thirdly, the robot must be able to track the object’s motion relative to 

its initial position.  Lastly, the robot must be able to properly implement a control to track 

and maintain a constant relative position with respect to the object in order to accurately 

follow the reference trajectory. 
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6.2 Simulation Environment Capabilities 

 

One of the main outcomes of the thesis research is a user friendly integrated simulation 

environment that allows direct implementation and testing of the various robot control 

functions (refer to Fig. 6.1).  The simulation environment developed also grants the user a 

straightforward approach to implementation of the combined vision-based tracking of the 

object and backstepping control response.  The object’s relative motion is calculated by 

applying the object tracking algorithm presented in chapter 5 to obtain the robot’s target 

position.  Using the integrator backstepping method (chapter 2) combined 

 
Figure 6.1 Simulation environment developed for control of the nonholonomic mobile robot. 
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with the Matlab toolboxes and ER1 teleoperation (chapter 5), the robot motion is 

implemented.  This motion is a smooth transition from the robot’s initial position to the 

robot’s new target position. 

 

6.3 Functionalities and Operations 

 

Descriptions of the Graphical User Interface The Image Preview window displays the 

live video feed from the webcam.  The Snapshot window displays a snapshot from the 

Image Preview window.  This image is used as the reference image for object tracking.  

The B&W Image shows a black and white outline of the object.  The Object Corner 

Locations window shows the calculated corners of the object with the object’s frame of 

reference origin marked with a blue star.  The Overhead View of Object Location window 

displays an overhead of the initial object location (i.e. the reference image as a blue line), 

the current object location relative to the initial object location (red line) and a blue 

triangle for the robot’s location.  Since this overhead view is to show the motion of the 

object, this view is shown from the camera’s frame of reference.  For this reason the blue 

triangle is always placed at (0,0). 

The Robot’s Position window shows multiple plots.  Two plots are for the 

object’s location and two are for the robot’s motion.  For the two object location plots, 

the first plot is the object’s actual location in the world frame of reference.  This is shown 

as a thick black solid line.  This line has a thin black line extending to a point marked by 

a black circle.  This black circle marks the ideal location where the robot should move to 
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in order to maintain a constant transformation matrix from itself to the object (i.e. ideal 

object tracking).  The second plot, represented by a thick red line, is the object’s initial 

location perceived by the robot in the world frame of reference.  The robot’s location for 

each of these perceived views of the object is marked by a red star (i.e. actual object 

tracking). 

For the robot motion plots, the ideal path of the robot is shown as a thin black arc.  

The predicted path, which is calculated using the input from the object tracking 

algorithm, is shown as a thin green arc.  The magenta stars are the points on the green arc 

that the robot is given to follow.  For perfect object following, the black curve and the 

green curve should overlap identically. (The plot of the object’s ideal location and the 

robot’s ideal path motion are only used for the setup presented in section 6.4.  These are 

used for testing purposes only.  Otherwise, these plots can be omitted.) 

The controls are pushbuttons, each with a unique function.  Each of these control 

buttons was placed into one of five control blocks for straightforward usability which are 

discussed in the following five subsections. 

 

6.3.1 Constants and Connections Block 

 

Change Constants The Change Constants button accesses the Matlab script file which 

contains all of the constants that are used by the robot.  These constants include the 

intrinsic parameters of the webcam and the red/green, and red/blue ratios used for the 

object identification algorithm. 
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Connect to Robot The Connect to Robot button allows the user to connect to the robot 

from any IP address.  Since the graphical user interface buttons are designed to work 

locally, after pressing Connect to Robot on a remote computer, the user would have to 

send commands using Matlab’s command window rather than using the user interface 

buttons.  This provides the user with the freedom to control the robot from any location 

provided that the user inputs the robot’s controlling laptop’s IP address. 

 

6.3.2 Camera Functions Block 

 

The Camera Functions block contains all of the buttons that are used to access the 

webcam and analyze snapshots taken of the robot’s environment. 

 

Preview Image The Preview Image button is used to display a live video feed from the 

webcam.  The video feed is displayed in the Image Preview display window. 

 

Grab Image The Grab Image button takes a snapshot from the video feed and displays 

the results in the Snapshot display window.  The purpose of allowing the user to grab an 

individual image is to give the user the ability to visually inspect the image to determine 

whether or not to continue with the object identification algorithm.   

 

Extract Object Corners This button determines the locations of the object’s corners by 

using object identification.  The image used is the instantaneous view in the Image 

Preview display window.  After the object identification algorithm calculates the corner 
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locations of the object, the black and white outline and the original image of the object 

with marked corners are displayed in the B&W Image and Object Corner Locations 

display windows, respectively (refer to Fig. 6.1). 

 

Get Transformation Matrix The calculation of the transformation matrix is completed 

during object identification (i.e. the transformation matrix is calculated once the Extract 

Object Corners button is pressed).  The Get Transformation Matrix button displays the 

transformation matrix in the Matlab command window.   

 

6.3.3 Control Functions Block 

 

The Control Functions block contains all of the buttons used to control the motion of the 

robot for displacements inputted by the user. 

 

Forward The Forward button allows the user to move the robot forward by a distance 

inputted by the user.  Once this button is pushed, the user is prompted to enter a value.  

The robot moves forward by the value inputted by the user (in centimeters).  To move the 

robot backwards, the user would place a negative sign in front of the desired distance for 

the robot to move. 

 

Turn The Turn button allows the user to turn the robot clockwise by an angle inputted by 

the user.  Once this button is pushed, the user is prompted to enter a value.  The robot 

turns clockwise by the value inputted by the user (in degrees). To turn the robot 
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counterclockwise, the user would place a negative sign in front of the desired angle for 

the robot to turn. 

 

X,Y Location The X,Y Location button allows the user to move the robot to specific x-y 

coordinates that are inputted by the user.  Once this button is pushed, the user is prompted 

to enter x-y coordinates.  The robot moves to the x-y coordinates inputted by the user (in 

centimeters) where the x-direction in the robot’s frame of reference is forward, and the y-

direction in the robot’s frame of reference is to the left. 

 

Record Motion The Record Motion button plots the x-y location of the robot in the 

Robot’s Position display window.  After pressing the Record Motion button, the user is 

prompted to enter an x-y location for the robot to approach.  As the robot is moving, the 

x-y coordinates of the robot are plotted in real-time. 

 

6.3.4 Object Tracking Functions Block 

 

The Object Tracking Functions block contains all of the functions the robot uses to track 

the object.  This block incorporates the capabilities of both the Camera Functions block 

and the Control Functions block and integrates them for object tracking. 

 

Get Robot Position (cm) The Get Robot Position (cm) button displays the robot’s 

current position (in centimeters) relative to the robot’s starting position.  The starting 

position is the location in which the ER1 RCC is first initialized and it is always marked 
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as the origin.  After the robot moves away from this position, the user can reset the 

robot’s position from within the RCC. 

 

Scan for Object Once the Scan for Object button is pressed, the robot will begin 

scanning the room for the object.  This is accomplished by turning clockwise a set 

increment, taking a snapshot of the robot’s current view, and checking to see if the object 

is within this view via the object identification algorithm.  If the object is not in view, the 

robot will continue scanning until the object is identified.  Once the object is identified, 

the robot adjusts its position to center the object in the robot’s field of view. 

 

Adjust Initial Position The Adjust Initial Position button causes the robot to adjust the 

distance between itself and the object.  If the robot is not between 75 and 100cm from the 

object, or if the robot does not see the object head-on, the robot will adjust its position to 

be within these two values by moving to the appropriate location.  After the adjustment, 

the robot will be between 75 and 100cm from the object and will be facing the object 

head-on.  This assures a more accurate reading of the object corner locations. 

 

Follow Object The Follow Object button causes the robot to follow the object.  The 

robot begins by using the object tracking algorithm in a nonstop loop.  The initial image 

and current image comparisons are plotted in the Overhead View of Object Location plot 

along with a printout of the x-, y-, and angle differences in units of meters and degrees in 

the Matlab command window.  Once a threshold value of 30cm is required for the robot’s 

motion to maintain the initial transformation matrix relative to the object, the trajectory 
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tracking method described in section 2.3 is implemented and adjusts the robot’s position 

accordingly. 

 

Complete Motion The Complete Motion button runs the Follow Object function in a 

nonstop loop.  This allows multiple motions of both the object and the robot to be plotted.  

This also provides a comparison of the object’s ideal motion with the object’s perceived 

motion by the robot.  The Complete Motion function is provided as an example to future 

users of the capabilities of the integrated simulation environment. 

 

6.4 Testing and Results 

 

In order to test the nonholonomic robot motion, the Complete Motion function was 

tailored for the robot to move in a semicircular path with a radius of 91cm.  The 

semicircular motion was split into nine identical segments for the robot to follow.  Prior 

to each motion, the object was placed in set locations along the semicircular path to have 

the robot move to the correct location on the semicircle.  The object’s actual location in  

 
(a)     (b) 

Figure 6.2 (a) Object’s actual position, ideal path, and robot’s perceived path along with; (b) the object’s 
initial position relative to the robot’s new orientation in the world frame of reference.  
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Figure 6.3  Simulation environment’s view prior to the fifth motion segment of the robot. 
 

the world frame of reference, along with the ideal path the robot should follow, was then 

plotted in the Robot’s Position window.  In addition, the perceived path calculated via 

trajectory tracking was also plotted.  After the robot completed each perceived segment 

of the semicircle, the object’s initial location relative to the robot’s new location in the 

world frame of reference was plotted and compared to the object’s actual location (refer 

to Fig. 6.2). 

 The results show that the robot accurately follows the actual semicircular path 

with very little offset.  The difference between the ideal path and the actual path of the 
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robot was due to differences between the ideal location and the perceived location of the 

object by the robot.  This offset was caused by inherent precision limitations in the object 

identification algorithm.  The results for the first 5 semicircular segments are shown in 

Fig. 6.3. 

 

6.5 Discussion 

 

There are several advantages of using the integrated simulation environment presented in 

this chapter.  The graphical user interface functions are designed to be intuitive and easy 

to learn.  The simulation environment offers a front-end between the researcher and RCC 

software for object tracking and sensor based controller design. This includes 

determining the object’s relative orientation to the robot in either the robot’s reference 

frame or in the world reference frame.  The user is also given the ability to freely modify 

the graphical user interface’s functions to fit one’s own research needs.  In addition, the 

robot control is not limited to only using the backstepping method, but can be replaced 

with any other method preferred by the user.  For data handling, the simulation 

environment developed here establishes the ability to store data to be analyzed.  The RCC 

provided for the ER1 does not store any data to be either viewed or analyzed other than 

predefined images where the user must input the object’s relative distance from the robot.  

The environment presented in this chapter has the capability to store all of the 

information the robot obtains.  This information includes the initial and current views of 

the robot and the relative location of the object and robot in both the world and robot 
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frames of reference.  All of this information can be viewed or accessed through the user 

interface. 

 To use this simulation environment and the graphical user interface, the ER1 RCC 

must be running and set to listen to incoming API requests through a port.  Once the RCC 

is set to accept connections to the same port as that set in Matlab, the user interface can 

then be initialized. 

 The Connect to Robot function should be used for remote access only.  Otherwise, 

this function is not needed since the localhost (127.0.0.1) is used by default. 
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Chapter 7 

 

Conclusions and Future Work 

 

The objective of this thesis is the design and integration of a simulation environment and 

an ER1-based experiment platform to aid the research in mobile robot control.  Along the 

way, we studied a trajectory tracking control scheme using ER1 robot and implemented 

vision-based object tracking algorithms using the on-board camera.  Simulation and 

experimental results show that the overall design is feasible and easy to use.  All the 

components in the design have been tested with a certain level of success, including 

image capturing, object identification and tracking, communication between the graphical 

user interface and the ER1’s RCC, as well as robot motion control.  The environment 

designed in this thesis will provide researchers with an excellent tool for studying the 

capabilities of the mobile robot systems, and more importantly, for designing and testing 

new sensor-based control schemes. 

 Our results show that the current vision algorithm we implemented is sensitive to 

the change of the illumination of the object or in the environment.  Conditions such as too 

much reflection on the objects, not enough light, or shadows from the surroundings 

would interfere with the robot’s perception of the object.  Extensive research has been 

done in the computer vision community along the direction of increasing the contrast and 

the robustness of object identification and tracking.  For future work, we will look into 

the integration of these algorithms into our simulation environment. 
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