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ABSTRACT OF THE THESIS

Modeling and Simulation of Dissolution and Erosion of

Porous Solids

by Daniel Braido

Thesis Director: Professor Alberto Cuitino

Tablet dissolution modeling has seen multiple efforts from both empirical and physical

approaches. We present an expandable 3-D Cartesian framework for modeling many of

the physical processes involved in tablet dissolution, which allows for powerful model

manipulation. The primary focus of this framework is the way in which the moving

boundaries are handled, while the internal mechanisms represent one possible set of

physical process interaction. The effects of external fluid shear and internal density

profiles are compared for several cases including active and inactive internal processes.
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Cw is the concentration of solvent
Cw = 0 at φ = 0, the tablet/bulk fluid interface
t is the time in seconds
αw is the penetration/diffusion coefficient. This value is assigned at initialization, and
can vary throughout the tablet.
x is the position in the x direction
Ca is the volume based concentration of active particles
Cs is the concentration of dissolved active in the fluid in the cell
∂Ca
∂t becomes the ”source” term for the solute diffusion equation in the next section

t is the time
αC is the dissolution coefficient which combines the effects of surface area, solvent con-
centration, and a solvent/solute specific coefficient
αC = αAPI ∗ Cw

αAPI is the dissolution coefficient of the specific API/solvent system being considered.
It is an assigned value which represents the affinity of the API to enter solution.
Cs is the concentration of drug in solution, normalized from 0 to 1.
Cs = 0 at φ = 0, the tablet/bulk fluid interface
t is the time in seconds
β is the diffusion coefficient, this value is assigned at initialization and can vary through-
out the tablet
x is the position in the x direction in meters
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Chapter 1

Introduction

Precision of dosage, mechanical and chemical stability and ease of storage and distribu-

tion make tablets the most popular drug delivery dosage form currently in use. A typical

pharmaceutical tablet consists of several different powders, (such as actives, excipients,

lubricants, glidants, disintegrants, etc.) compressed into a solid body. Usually admin-

istered orally, tablets disintegrate and dissolve in the gastro-intestinal tract, allowing

for the pharmaceutical active to be absorbed in the body. It is the properties of this

dissolution, which govern a tablet’s performance as a drug delivery form. The ability

to explicitly manipulate the factors involved in tablet dissolution is key to developing

the necessary understanding for the next generation of engineered delivery systems.

Despite its importance for the process of time-controlled delivery, the complexity of the

phenomena and the multiple scales involved cause drug dissolution to remain poorly

understood. In fact, currently, formulation design targeted at preset release profiles

consists in large parts of trial and error with feed-back provided by large amounts of

dissolution testing. The most common approach to designing a new formulation is to

start with what is already being used and insert the new API. This limits the ability of

designers to create a truly new or more effective product. In an attempt to ameliorate

the state of the art, over the last several years, the FDA has championed the Process

Analytical Technologies and Quality by Design initiatives. Aiming to provide a novel

systematic approach for the design, analysis and control of manufacturing processes.

QbD requires an in-depth, model-based understanding of the engineering and scientific

principles involved and the identification of the variables, which affect product quality.

After setting the targeted product profile Critical Quality Attributes need to be identi-

fied. These are the product qualities affecting its performance as a time-controlled drug
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delivery device. The set of material characteristics and independent process parame-

ters capable of affecting the CQAs is usually referred to as the set of critical process

parameters. Determination of the range of each CPP that produces acceptable product

allows for the establishment of a process design space. While experimental methods,

such as dissolution testing can still serve an important role as a control mechanism,

product quality cannot be tested in - it needs to be designed along with the product,

on the foundation of physics and engineering-based models of the system. The last sev-

eral decades have seen tremendous progress in the implementation of numerical models

for the study of pharmaceutical tablet dissolution. Of these, the simplest ones were

based on zero-order kinetics, approximating a slow release system with no disagrega-

tion, which never reaches equilibrium conditions [1]. The full history of dissolution

modeling can be read in recent review papers[2, 3], but a brief recount is given here. As

the need to consider additional phenomena became apparent, first-order kinetics mod-

els were devised, taking into account the effects of the concentration of the dissolved

drug in a diffusion layer around the tablet - the Noyes-Whitney equation, dissolution

rate dependence on the solid area available for dissolution - the Brunner equation and

the proportionality of the release rate to the amount of drug remaining in the solid

(accounting for diminishing tablet dimensions) - the Hixson Crowell equation [4, 5].

Further insight into the importance of tablet microstructure lead to the inclusion of the

location of individual active particles inside the solid form. The Higuchi equation (mod-

ified by Cobby to apply to cylindrical tablets) models the dissolution of drug particles

dispersed in a uniform, homogeneous matrix. It accounts for tablet porosity, volume

accessible to the dissolution media and an effective diffusion coefficient through the pore

channels. The model was augmented by Seki [6] to handle non-homogeneous matrices.

Progression in model development has recently yielded simulation tools accounting for

tablet structure and geometric characteristics - the Korsmeyer-Peppas model[7], as well

as surface erosion (handled as a kinetic process) - the Hopfenberg model[8]. Current

dissolution models have attained high levels of sophistication, simulating the change in

diffusivity caused by the gradual penetration of the solvent into the tablet and the sub-

sequent swelling of the polymer matrix. The phenomena considered also include, active
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dissolution and the changes in porosity it produces as well as tablet surface erosion

[9, 10, 11]. We look to expand on these models by incorporating all the elements they

do into an expandable 3-D framework which allows for a more discrete representation

of the tablet and environmental conditions. Such a framework allows for simulation of

changing dissolution environments like and in vivo process. Other research in the field

has placed increased interest in the effects of the fluid flow around the tablet, with an

emphasis on the effects of shear disintegration[12, 13]. The work herein provides a basis

for that expansion.

1.1 Overview of Thesis

The goal of our research work is to develop a numerical scheme for studying the evolution

of porous solids in a dissolving media. This model is developed as a combination of

the different processes involved in the disintegration and dissolution of a porous solid.

The thesis illustrates the contribution of each of these phenomenon separately and then

details the tools and methodology used in superposing individual contribution to obtain

the overall model of dissolution. The first chapter of this thesis entitled Introduction

gives an overview of the numerical scheme and provides background information about

the previous work done to model the different processes involved as well as equations

which empirically model tablet dissolution as a whole. The second chapter, which is

titled Formulation describes the separate components used in our numerical scheme.

The first section is a detailed discussion of the level set representation that combines

velocity components from diffusion and erosion to obtain the total velocity driving the

solid/fluid interface, including how boundary conditions are applied over an irregular

boundary using a ghost node based method. This is followed by a description of the

processes of solvent penetration, particle dissolution and solute diffusion which occur

past this interface. This chapter outlines the general framework which is later used to

solve specific problems. The third chapter entitled Applications is where problems

involving different types of tablets are solved using the model. The main focus is placed

on the importance of the moving boundaries in tablet dissolution. Also, the effect of

non-homogeneous density and surface shear profiles on drug release are compared. In
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this section the release profiles of a model tablet is compared under different erosion

conditions; homogenous surface erosion, a density based erosion profile, fluid shear

based erosion profile and a combined response. A detailed analysis of obtained results

can be found in the final chapter entitled Conclusion and Future Scope followed

by a discussion about the scope of current research for future work and its applications

to various problems of practical importance. Finally, an Appendix is included where

the algorithm and code for the numerical model can be found.
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Chapter 2

A modeling framework for predicting release profiles due

to coupled phenomena: surface erosion and bulk diffusion

2.1 Drug (active substance) release in physiological environments

When pharmaceutical solids such as tablets are ingested a set of processes is triggered

that results in the release of the active substance component. Once has reached the

stomach, unless there is a coating layer, the surface of the tablet immediately begins

absorbing the surrounding fluid. As the excipient matrix absorbs the fluid, active drug

particles are dissolving from inside this matrix. The resulting drug solute then diffuses

out past the tablet surface until it reaches the surrounding bulk fluid and becomes

mixed. As this is occurring, the excipient matrix often swells and fractures resulting in

movement of the tablet surface and also the formation of new surfaces. A side by side

comparison of the different processes is shown in Figure 2.1 with time based progression.

2.2 Modeling Framework

The simulation tools presented in this thesis allow for considering coupled mechanisms

of dissolution and disintegration as observed in actual experiments. The boundary

conditions for these processes are governed by the location of the tablet/bulk fluid in-

terface. Tablet erosion makes this a moving boundary problem. A level set formulation

is used to track to evolution of the interface and calculate the necessary boundary

conditions. In this study we consider solvent penetration governed by diffusion, with

a predetermined solvent penetration coefficient which controls the rate at which the

fluid progresses. This process is fully described in the Solvent Penetration section.

Once fluid has reached a cell, the active particles inside that cell begin dissolving as
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(a) 60s

(b) 300s

(c) 1380s

Figure 2.1: Snapshots of simulated tablet evolving shape, solvent concentration, active
concentration and drug release profiles.
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described in the Active Dissolution section. Although the active concentration value

is uniform throughout the cell, the active particles’ rate of dissolution is calculated

as one dimensional diffusion from a sphere using the current fluid concentration, total

surface area of active particles and a prescribed particle dissolution coefficient. As the

active particles enter solution, the concentration of solute increases. The solute diffu-

sion is then calculated using Fick’s Second Law, and is governed by a prescribed solute

diffusion coefficient. The details of this process are described in the Active Diffusion

section.

2.2.1 Modeling Evolving Topologies

One of the primary concerns of the numerical simulations is proper evolution of the

tablet fluid interface. Previous work has shown scaling between identical formulations

compacted in different geometries[14]. There are numerous schemes which have been

developed, both Lagrangian and Eularian, to track changes of a surface. As the prob-

lem of tablet dissolution entails tracking complex geometry changes based on various

external and internal effects, it is important to use a surface tracking method which

is both stable and inexpensive. Lagrangian methods often rely on complicated meshes

which are adapted over time. This remeshing can result in a highly distorted grid shape,

which can in turn negatively influence the time-step which is based on the smallest grid

size. The simplicity and consistency of fixed-grid method has focused our attention on

Eularian methods. The most commonly used Eularian methods of surface tracking are

the Volume-of-Fluid method by Hirts and Nichols[15], the phase-field method and the

level set method by Osher and Sethian. Level set functions have been shown to produce

smooth evolution of surfaces with complex geometry and are extremely well suited for

use on cartesian based grid structures. There has been extensive work[16] employing

levels sets to track surfaces for the purpose of modeling fluid dynamics, crystal growth

and chemical deposition. The ability of level sets to operate based on a single velocity

function makes this framework easy to expand as well, since all of the effects considered

can be combined into a single function representing the velocity of the surface. Inclu-

sion of additional factors will have no effect on the level set implementation and can be
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incorporated directly into the velocity function.

In addition, the formation of new surfaces are handled implicitly by this function,

which will become important as the internal effects of swelling are added to the model

and fractures and cracks develop. The methodology used was adapted from a framework

developed by Kinjal Dhruva.[17]

Level Set Method

The Level Set Method is implemented using an explicitly defined signed distance func-

tion. The tablet fluid interface, herein referred to as Γ exists where φ(Ẋ, t) = 0. A

basic 2-dimensional representation of the evolution of an object with a circular cross

section is shown in Figure 2.3. The function is defined in such a way that:

φ = 0 at Γ

φ > 0 inside Γ

φ < 0 outside Γ

The function values range from positive to negative, with negative values being

exterior and positive values being interior. It is important to note that none of the

actual discretized points will be equal to 0. That is to say that the interface always lies

between nodes, and never specifically at any node on the fixed grid. This characteristic

is inherent to the level set method and will later be used in proper implementation of

the boundary conditions.

The evolution of the interface is based on the function:

φ(Ẋ, t) = 0 (2.1)

The derivative of this equation with respect to time can be determined using the chain

rule to be:

dφ

dt
+
dφ

dX
· X
dt

= 0 (2.2)

Which can be rewritten as:

φt +∇φ · Ẋ = 0 (2.3)
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(a) Dense Shell Erosion Beginning

(b) Dense Shell Erosion Intermediate

(c) Dense Shell Erosion Final

Figure 2.2: The tablet shapes shown in the figures above are the location of the zero
level set as time progresses. The formation of the central hole is handled implicitly.
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For our purposes it is only necessary to move the surface in the normal direction.

All tangential motion is neglected. Assuming a normal velocity has been previously

calculated, in our case one representing tablet erosion, it can be expressed as vn. It can

then be shown that:

Ẋ ·N = vn (2.4)

Where:

N =
∇φ
|∇φ|

(2.5)

Therefore:

v = Ẋ · ∇φ
|∇φ|

(2.6)

This representation means that equation(1.2.3) can be rewritten as:

φt + vn|∇φ| = 0 (2.7)

Which can in turn be adapted to our present use in a timestep based discretization as:

dφ = −vn|∇φ|4t = 0 (2.8)

This methodology assumes vn exists at all points inside the computational boundary.

In most cases of tablet dissolution the velocity function will only really have meaningful,

non-zero values near the interface, but this only serves to simplify the calculations, not

render this assumption false. vn has been explicitly defined in the presented models.

The values assigned range from representing uniform erosion to density based erosion

as well as an erosion profile based on fluid shear calculations from the fluid dynamics of

the bulk solvent, and can also incorporate swelling of the excipient matrix as a result

of solvent penetration or increasing porosity as a result of particle dissolution, though

this aspect is not explored here.
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Figure 2.3: The figure above is a simple representation of the level set evolution of a
circular tablet in two-dimensions. If One were to progress from left to right, the opera-
tions would represent a swelling of the interface. The two-dimensional figure(circle) is
represented by a three-dimensional object(cone). φ = 0 represents the interface, evident
from the resulting projection on the plane.
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Normal and Curvature

When using level sets to define interface locations it is necessary to determine the nor-

mals to the surface and the curvature. These values are important for proper evolution

of the level set function, as well as for proper application of the boundary conditions

of the nested equations. Fortunately, the use of a fixed cartesian grid makes these

calculations extremely simple. The normal of the level set function can be expressed

as:

nx,y,z =
∇φ
|∇φ|

=
φx, φy, φz

(φ2
x + φ2

y + φ2
z)

1
2

(2.9)

and the curvature is given by the equation: While these formulas may appear complex,

they are easily and inexpensively computed using a few lines of matrix algebra. This

represents a great savings over any lagrangian method, as such computations are often

complex and expensive.

Indexing

As the problem will be represented on a fixed cartesian grid, and the interface exists

between grid nodes, it is necessary to determine which nodes are closest to this interface.

As mentioned before, the tablet/fluid interface is considered to exist everywhere the

level set function is equal to 0. Thus the nodes of interest are those where any nearest

neighbor has a level set value of opposite sign. While the majority of nodes, ’regular’

nodes, exist purely inside or outside the tablet interface, some nodes lie within less than

a grid space from the interface. These ’irregular’ nodes must be identified and properly

indexed. These are the nodes which need to be given special attention, especially

when it comes to proper implementation of the boundary conditions. The use of a

fixed cartesian grid makes the determination of such nodes quite simple. A discretized

scheme in 2 dimensions can be simply stated as:

φmax · φmin {< 0, irregular > 0, regular
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where,

φmax = max{φi,j+1, φi,j−1, φi+1,j , φi−1,j}

φmin = min{φi,j+1, φi,j−1, φi+1,j , φi−1,j}.

Figure 2.4: A simplified portion of a 2D mesh noting areas of regular and irregular grid
nodes as considered by indexing algorithm.

For both regular and irregular points, their relative position of inside or outside the

surface can still be determined simply by the sign of the level set function value at that

location. Figure2.4 shows how the grid nodes are defined surrounding the interface

location.

Immersed Boundary Conditions

In order to properly update all of the equations, the boundary conditions associated

with the problem statement must be properly implemented. The level set tracks the

propagation of the interface, as well as information about its shape and normal vectors

pointing to the interface.

Boundary conditions were handled by assigning temporary values at certain spe-

cialized nodes in each of the concentration matrices. This process, known as ghosting,

was to ensure that the concentration gradient remained continuous across the tablet

fluid interface. By assigning temporary values to the set of nodes located just outside

the interface, it is hoped that the concentration can be calculated more effectively.

Three different methods of boundary condition implementation were compared: simple
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value assignment, one-dimensional interpolation, and a layered three-dimensional to

one-dimensional interpolation method.

For the value assignment method, if a node is identified as a ghost node it is as-

signed a value. This value was either the concentration value at the interface, or the

concentration of the bulk fluid. For the one-dimensional method, the ghost node value

is determined based on the value of the interface concentration and the concentration

of the internal neighboring node nearest to the surface. The value at the ghost node is

a simple linear interpolation using the two values.

The most complicated method we used to assign ghost node values was actually a

layered method. The process began when a node in need of ghosting was identified.

The vector from that node normal to the surface was first analyzed to determine the

most appropriate style of interpolation with which to begin. If the normal vector

pointed entirely in one dimension, the one-dimensional interpolation method previously

described was used. However, if the vector pointed in two or three dimensions, a form

of triangular interpolation was utilized. The two methods are fairly similar, with the

three-dimensional method being an extension of the two-dimensional method. All of

these methods assume that the concentration is known at the tablet/fluid interface.

Figure 2.5: The edges of the square represent the edges of a 2d cell. The triangular
area is the area used for 2-D ghosting interpolation.
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If it was determined that the normal vector lies in only two of the three dimensions

being considered, the two-dimensional interpolation method is used. The two non zero

dimensions of the normal vector are used to determine the associated nodes used for

interpolation. The three nodes make up a triangle. The cartesian coordinates of these

nodes are used in conjunction with the cartesian coordinates of the point on the surface

closest to the ghost node. The location of the surface point is determined using the level

set value and cartesian coordinates at the ghost node as well as the associated normal

vector. These cartesian coordinates are then used to form the ”natural coordinates”

of the point on the surface being considered, which serve both as interpolation coeffi-

cients and ensure the surface point lies within the area of interpolation. The natural

coordinates are calculated as a series of vector dot product operations, as indicated

below:

SB = GC ·GS, SC = GB ·GS, SG = BC ·BS

4B = GC, 4C = GB, 4G = BG ·BC

NB =
SB
4B

, NB =
SC
4C

, NB =
SG
4G

,

where NB is the natural coordinate for node B. If this value is positive, or more directly,

if the vectorSB points in the same direction as the vector4B, the point lies inside the

interpolation area. NB represents the distance of the point on the surface normal to the

opposing face of the triangle divided by the distance of point B normal to the opposing

face of the triangle. The distance of B to the opposing face is used as a normalizing

factor, so the coordinates actually act as interpolation coefficients. The value at the

ghost node is determined by the equation:

CS = NBCB +NCCC +NGCG (2.10)

Since the concentration at the tablet fluid interface is already known, the equation can
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be rewritten as

CG =
CS −NBCB −NCCC

NG
, (2.11)

thus, solving for the ghost node concentration.

If it is determined that the normal vector points in all three dimensions, a three-

dimensional interpolation scheme is used. This method is a direct extension of the

previously described two-dimensional method. Again using the ghost node as the base

point, the vector normal to the surface is used to select the other three nodes whose

values will be used to interpolate the temporary concentration for the ghost node, as

shown below:

SG = (CB×CD)·CS, SB = (CD×CG)·CS, SC = (GD×GB)·GS, SD = (CG×CB)·CS

4G = CG, 4B = CB, 4D = CD,

4C is computed by calculating the equation of the plane across from node C, followed

by calculating the distance to point C along the normal.

NG =
SG
4G

, NB =
SB
4B

, NC =
SC
4C

, ND =
SD
4D

These normal coordinates are then used in a similar fashion to determine the ghost

node concentration, with the reconfigured equation being:

CG =
CS −NBCB −NCCC −NCCD

NG
(2.12)

The goal of the layered three-dimensional method is to provide the most accurate repre-

sentation of the concentration gradient across the surface in the quickest way possible.

Figure 2.6 is a table showing the different interface situations and their associated

ghosting schemes.
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(a) Case 1a (b) Case 1b (c) Case 1c

(d) Case 2a (e) Case 2b (f) Case 2c

(g) Case 3

Figure 2.6: This table shows the 7 different interface situations possible in the model.
Each one is associated with its respective ghosting type. G indicates the node for which
a ghost value is to be calculated.
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2.2.2 Solvent Penetration

An important factor in tablet dissolution is the penetration of solvent into the excip-

ient matrix. In the physical process of dissolution, the surrounding solvent enters the

excipient matrix of the tablet similar to a sponge soaking up water. While the process

of solvent entering the tablet takes longer than water entering a sponge, the process by

which both happen is very similar. The small voids between particles in a tablet allow

for water to enter and proceed through the tablet, in many cases, to the center of the

tablet. As the tablet enters the solvent media, or after the simulation is started, the

tablet begins to soak up the surrounding fluid. In many cases this will result in the

tablet swelling and possibly fracturing. While the present iteration of the numerical

simulation does not incorporate swelling or fracture, the bulk fluid is still considered to

penetrate the excipient matrix. The model considers the natural porosity of the tablet

to exist as a network of channels, some open and some closed. Solvent penetration is

represented as a diffusion based process, whose rate is manipulated via a diffusion coef-

ficient which represents the porosity, hydrophobicity, and tortuosity of the compacted

particles. The method is based on Fick’s second law, and incorporates the effects of a

non-uniform diffusion coefficient:

∂Cw

∂t
= ∇.αw∇Cw (2.13)

This equation can be expanded in one dimension using the chain rule to:

∂Cw

∂t
=
dαw

dx

dCw

dx
+ αw

d2Cw

dx2
(2.14)

Where:

Cw is the concentration of solvent

Cw = 0 at φ = 0, the tablet/bulk fluid interface

t is the time in seconds

αw is the penetration/diffusion coefficient. This value is assigned at initialization, and

can vary throughout the tablet.
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x is the position in the x direction

Full expansion results in a summation of the right side of the equation for all included

dimensions, in our case x, y and z. The incorporation of a non-uniform diffusion

coefficient allows for better tablet definition especially when exploring the effects of

channeling. The diffusion is modeled using a centrally based finite-differencing method.

The equation uses the current solvent concentration values of the six surrounding nodes

and a prescribed coefficient to determine the rate of change of the solvent concentration

with respect to time. The prescribed diffusion coefficient represents the aggregate

effects of porosity, hydrophobicity and tortuosity of the excipient matrix. Since physical

tablet structure may not have uniform porosity, the function is so defined that each cell

represented has its own solvent diffusion coefficient. This diffusion coefficient represents

a combination of the physical factors affecting the rate of solvent entering the tablet.

The variation of αw is explored later in the paper. It has been argued that solvent

penetration into a polymer matrix would be better represented by Case II diffusion,

but in the case of the referenced physical experiments, solvent penetration of the tablets

would best be described as anomalous diffusion.([18, 19]) This type of diffusion can be

modeled by augmenting the local coefficients of solvent penetration in proportion to

their current solvent concentration. By increasing the local penetration coefficients

a sharper penetration front is effected more closely matching the observed physical

response. While this is still not the exact solution, it is a quick way to get useful results.

Furthermore, depending on the specific physical system, some solvent penetration cases

are best handled by Fick’s Law based modeling.[20] It is important to note that other

modes of solvent transport can easily be added, as the solvent penetration portion is

represented by its own module in the algorithm. In fact, this interchangeability is part

of the overall goal of the modeling platform presented here. Some early simulations were

performed showing the effects of the different diffusion types on the model output was

nominal at relatively fast penetration rates, especially when paired with an eroding

interface and no swelling. As this was the case, Case 1 diffusion was implemented

for the simulations as this reduced the number of variables to be estimated. The
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Figure 2.7: Time evolution of the solvent penetration into the matrix. Scale is from
completely dry(0) to completely wet(100). In this simulation case 1 solvent diffusion

with sαwof.001mm2

sec is considered. The corresponding time evolution of the active
substance dissolution is presented in 2.8.

evolution of solvent penetration through the excipient matrix is for a specific case,

αw = .001mm2

sec , is shown in Figure 2.7 At the onset of the simulation, the tablet is

assumed to be completely dry, and everywhere outside the tablet is pure solvent. The

initial conditions assign a concentration of 0 in the inside and of 1 at the boundary.

The conditions at the boundary are imposed using the ghosting scheme described above,

where a concentration larger than 1 is specified at the ghost (external to the domain

of analysis) to property enforce the concentration of 1 at the boundary. Note that grid

nodes are not necessarily on the boundary. During the time evolution, the external

concentration is held constant at 1, as it is assumed the tablet is surrounded by pure

solvent.
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2.2.3 Dissolution and Diffusion of Active Substance

The dissolution and release of drug form the excipient matrix is handled via two sepa-

rate processes, active dissolution and active diffusion. The former handles the physics

which describe the dissolution of drug particles from their solid form into solute. The

diffusion of this solute is handled by a second set of equations which tracks the localized

concentration of the solute until it has diffused past the tablet fluid interface. The API

solid concentrations are what are used when calculating the amount of drug which has

been released from the system at any given time, while the active diffusion is more of

a physically relevant clearing mechanism. The rate at which solute diffuses from the

system can be release rate limiting, but such cases were not considered in this thesis.

2.2.4 Active Dissolution

Particle dissolution is calculated using a set of parameters which represent the average

values of particle size, shape, and concentration for each cell. The size, shape and

number of active particles is initially defined for every cell located inside the tablet. At

the beginning of the simulation, each grid cell inside the tablet is assigned a number

of active particles of known size. The number and size of the active particles is used

to produce a volume based concentration of active particles. While the concentration

flux is determined based on the bulk active concentration of each cell, the volume of

the individual particles is considered to decrease with this bulk concentration. This

results in a decrease in surface area of the particles which affects their bulk dissolution

rate. The representative equation is similar to the Brunner equation[21]. The rate of

particle dissolution is based on another extrapolation of Fick’s Law which incorporates

the solvent penetration, and operates on the total particle volume inside the cell:

∂Ca

∂t
= αC(Ca − Cs), (2.15)

where Ca is the volume based concentration of active particles, Cs is the concentration

of dissolved active in the fluid,
∂Ca

∂t
becomes the ”source” term for the solute diffusion

equation in the next section, t is the time, ᾱ = αAPISpCw is the dissolution coefficient
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which combines the effects of surface area, solvent concentration, and a solvent/solute

specific coefficient, with Sp the surface area of the particle, Cw the concentration of

solvent and αAPI the dissolution coefficient of the specific API/solvent system being

considered, which is a value accounting for the affinity of the API to enter solution. The

units of αAPI are mm−2

s , which may seem odd, but is a result of the dimensionless formats

in which the solvent and API concentrations are considered. As more realistic systems

are considered, with experimentally determinable physical constants, the concentration

units can be adjusted to mass/volume.

Although the concentration flux calculations are made using the bulk concentration

of each cell, the evolution of the individual particles is still considered. As the concen-

tration decreases, the size of the particles in each cell must also decrease. The change

in API is used both to update the remaining volume of API in each cell and the local

solute concentration. Solute concentration will be further explained in the next section.

This equation assumes that the active particles remain in the grid cell in which they

were initially defined. That is not to say that solid drug particles are not be able to

move in dissolving tablets, simply that such an effect is not handled via this particular

model. In decreasing the volume of the individual particles in a cell, we assume that

all of the particles of a given size in that cell dissolve at the same rate. Therefore in

a monosized active distribution, all of the active particles in a given internal cell will

be reduced by the same volume. This reduction in volume has a large effect on the

rate of dissolution as the dissolution coefficient takes into account the surface area of

the particles. In this equation, αC is determined by three factors; combined surface

area of active particles in the cell, solvent concentration in the cell and an active ingre-

dient/solvent system based dissolution constant. This results in a diffusion coefficient

which can change not only based on the location inside the tablet, but also with every

timestep. As time progresses the concentration of active particles decreases and particle

volume is reduced until the particles in a cell have decreased below a threshold volume.

Once the particles in a given cell have reached the threshold volume, they are then

considered completely dissolved and are removed from the simulation. Figure ?? shows

the resultant concentration distributions of a model tablet as time progresses.
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(a) initial (b) intermediate

(c) intermediate2 (d) final
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Figure 2.8: The evolution of API concentration inside a tablet undergoing uniform
surface erosion.
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Diffusion of Active Substance

Once the active particles have entered solution the solute proceeds to diffuse out of the

tablet and into the bulk solution. As the API particles dissolve, the associated volume

of drug dissolved is converted to a solute concentration inside the tablet. This solute

concentration must diffuse out of the excipient matrix to the bulk solution. The process

is very similar to the solvent penetration into the tablet, and thus is handled in much

the same mathematical formulation.[22]

∂Cs

∂t
= ∇.αs∇Cs + Source (2.16)

This equation can be expanded in one dimension using the chain rule to:

∂Cs

∂t
=
dβ

dx

dCs

dx
+ β

d2Cs

dx2
+ Source (2.17)

Where:

Cs is the concentration of drug in solution, normalized from 0 to 1.

Cs = 0 at φ = 0, the tablet/bulk fluid interface

t is the time in seconds

β is the diffusion coefficient, this value is assigned at initialization and can vary through-

out the tablet

x is the position in the x direction in meters

Like the solvent penetration, the solute diffusion is solved using a modified version

of Fick’s diffusion equation. Each cell inside the tablet represents a generating source,

while the bulk solution outside the tablet is treated as a perfect sink. This assumption

has been previously used and verified by Feldman in 1967 [4]. At every timestep the

contributions from the particle diffusion step are added to the solute concentrations,

then the solute concentrations are updated using a basic finite-diffencing scheme like

the solvent concentrations. Currently, the solute concentration is calculated only as a

rational clearing mechanism for the dissolved active, which results in some mild rate
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limiting of particle dissolution, as opposed to defining the drug release profile.

2.3 Summary

The framework described herein is capable of handling dissolution modeling for a fairly

large range of cases. The use of level sets to track the tablet/fluid interface allow

for multiple model geometries of varying complexity. The formation of increasingly

complex geometries as a result of moving boundaries are also well handled. In addition,

there is no need to directly define the governing process, only the rate constants of the

individual processes. The governing process can be revealed through small changes in

these coefficients. The different processes; moving boundaries, solvent penetration, API

dissolution and solute diffusion are modular and easy to replace with new governing

equations. For example, the solute diffusion equation can be changed to represent

Case II diffusion, or the API dissolution could consider individual particles directly

without need for cell based concentrations(other than the need for more detailed model

construction). The data output is scalable depending on desired resolution. The output

can be as little as a release profile, to detailed contour maps of solvent concentration,

API concentration, solute concentration, etc. at every timestep.
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Chapter 3

Case Study: The role of erosion patterns on the active

substance release profiles

3.1 Introduction

The dissolution performance of pharmaceutical tablets varies from tablet to tablet,

even when those tablets are from the same batch. These changes can be the result of

differences in active particle distribution, internal structure or particle properties. In

order to determine the importance of the roles played by each of the governing physical

processes of the model, a series of simulations were performed to compare change in

operating coefficients to changes in the release profile. The design space was restricted

to an area which produced release profiles similar to those of physical tablets which

were previously dissolved. The physical results will not be displayed here as the tablets

in question were subject to physical processes not currently incorporated in this model.

3.2 Erosion Patterns

A moving tablet fluid interface is necessary to capture the effects of changing geometry

on tablet dissolution. The model focuses on smooth interface tracking over a stan-

dardized grid structure in order to allow for additional complexities to be added to the

model framework. It has been shown that evolving geometries have an effect on the

rate of drug release and thus overall tablet performance [23, 13] In order to prove the

feasibility and effectiveness of our method, four different types of erosion controlling

profiles have been performed using the model. These different erosion patterns result

from the specific evolution law provided for the normal component of the surface ve-

locity vn in Eq. 2.7 of the dissolving solid. The four cases are: homogeneous erosion,
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heterogeneous erosion due to inhomogeneities in density distributions, heterogeneous

erosion due to inhomogeneities fluid flow profiles, and heterogeneous erosion due to

variations in both density and flow. Finally, a case of coupled surface erosion and bulk

diffusion is presented.

To ensure that a proper spatial representation is utilized, a mesh convergence test

was performed. The results for this analysis is shown in Figure 3.1 for a solid without

erosion. As expected, the simulated release profiles are smoother for more resolved

meshes, however the overall behavior shows a converged response for all meshes studied:

323, 403, 483 and 643. A resolution of 403 was deemed sufficient for all subsequent

simulations.

(a) Mesh Test Parameters
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(b) Mesh Test Release Profiles

Figure 3.1: Mesh convergence test
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3.2.1 Homogeneous Erosion

The first erosion case explored is simple uniform erosion of the tablet surface, where vn is

equal to a constant v0 = 1m
s . This scenario corresponds to the erosion of a completely

homogeneous and isotropic solid in a motionless fluid acting as a perfect sink. The

boundary conditions at the tablet fluid interface are set slightly differently for each of the

processes. In the case of the solvent penetration equations, everything outside the tablet

surface is considered to be pure solvent at all times, and everything inside the tablet is

considered to be perfectly dry initially. For the solute diffusion equations, everywhere

outside the tablet is initially pure solvent, but as time progresses the formation of a

boundary layer is considered. The boundary layer thickness is determined based on

the current average concentration of solute at the tablet surface. This is discussed in

more detail in the previous section on Solute Diffusion. These conditions represent at

t = 0 a completely dry solid submerged into a fluid medium. These boundary and

initial conditions are utilized for all subsequent cases. The erosion evolution, shown in

Fig. 3.2, exhibits a uniform shrinkage over time and the shape remains self-similar. It

should be noted that no numerical artifact effects are introduced on the evolving tablet

shape even when the level set was never reinitialized.

3.2.2 Heterogeneous Erosion Driven by Solid Properties: Density Dis-

tribution

We computationally examine the effect of non-homogenous density distribution on the

active release profiles. The distribution has been shown to alter the drug release per-

formance of compacted tablets [5]. In this study, we limit our analysis to density

distributions with radial symmetry which is one of the most prevalent cases due to the

effects of friction during compression. These profiles are exemplified in the 3D density

mappings shown in Fig. 3.3 which were obtained by X-ray µ-computer tomography.

Other studies have shown similar heterogeneous density distributions in pharmaceu-

tical tablets[24, 25]. It should be noted that the proposed methodology allows for

incorporating more general density profiles with similar level of complexity.
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(a) Uniform Erosion Beginning

(b) Uniform Erosion Intermediate

(c) Uniform Erosion Final

Figure 3.2: The progression of tablet geometries show the evolution of the tablet-fluid
interface due to a uniform erosion profile. The shape remains completely the same as
the tablet erodes. There is no solvent penetration or API dissolution taking place. This
would represent a completely isotropic tablet floating in solvent with no fluid motion.
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Figure 3.3: Density Profile of tablet obtained from X-ray µCT. Intensity represents
relative density. White areas have values below the cutoff threshold. An exaggerated
form of this density profile is investigated in the light core case.
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The erosion profiles are considered to be proportional to the tablet density which

are described by equation for the normal velocity at the interface:

vdensity
n (X,Y ) = Kdensity

v0(
1 +A

√
X2+Y 2

R2

)

where v0 is the erosion rate for the uniform case and A is constants selected to account

for the variation of the erosion rate due to density distributions. Values of A < 0

corresponds to light cores and A > 0 to dense cores. Two different cases have been

considered, one with A = −0.5 another with A = 0.5. The erosion profiles for each

case are shown in Fig. 3.4. Finally, Kdensity is a constant selected in such a way that

the initial dissolution rate of the active substance, denoted as ξ, is the same to the

homogeneous case, i.e.

Kdensity is selected such that ξhomogeneous|t=0 = ξheterogeneous|t=0

which gives Kdensity light core = 1.1984 for light core case (A < 0) and Kdensity dense core =

0.6585 for dense core case (A > 0). Different erosion profiles are also derived from het-

erogeneities in composition, for example, experiments with HPMC tablets have shown

that higher API concentrations result in faster erosion of the tablet matrix, more so in

the case of low solubility API [26, 27]. This type of variability is also amenable within

the current modeling framework.

(a) Dense Core (b) Light Core

Figure 3.4: Density Distributions for Dense Core and Light Core Cases.
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Light Core Case

In this case, the erosion produces a smooth tablet surface which dips in the center of

the top and bottom of the tablet as expected. As time progresses this dip becomes

more pronounced, and eventually would lead to a hole forming in the center of the

tablet. Notice that the numerical formulation can follow the evolving topology of solid

without the need of any ad-hoc schemes which requires any a priori assumptions about

the erosion pattern.

Dense Core Case

Alternatively, the tablet might have a density distribution with a dense core. The tablet

might be more dense in the center than at the radial surface. The resulting tablet erosion

from the density profile in Fig. 3.4 produces a smooth tablet surface which becomes

increasingly spherical over time as shown in Fig. 3.6 due to the preferential erosion of

the outer surface.

3.2.3 Heterogeneous Erosion Driven by Fluid Conditions: Non-uniform

Flow

The third case corresponds to the erosion due to fluid flow where we assumed that the

erosion is proportional to the tangential component of the flow velocity. Notice that

the surface is evolving in time, so does the tangential direction of the tablet surface. In

fully coupled fluid-solid simulations, the evolving shape of the tablet changes the flow

patterns. In the present study, we assumed that the fluid flow remains unaltered by the

evolving tablet shape. In particular, we consider an approximation for the flow velocity

in a 2D channel as shown in Fig. 3.7, which results in the following expression for the

erosion rate:

vflow
n (X,Y, Z) = Kflow [a sinθ + b sin(c θ) + v0] ,

where θ is the angle between the evolving surface normal n which is computed by

evaluating the gradient of the level set φ at the interface (φ = 0) properly normalized
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(a) Density Based Erosion Beginning

(b) Density Based Erosion Intermediate

(c) Density Based Erosion Final

Figure 3.5: Evolved tablet surface geometries accounting for density profile which de-
creases wrt. radial location. The tablet forms a hole in the center due to its lower
central density. The formation of this new surface is handled implicitly via the level
set.
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(a) Density Based Erosion Beginning

(b) Density Based Erosion Intermediate

(c) Density Based Erosion Final

Figure 3.6: Evolved tablet surface geometries accounting for density profile which de-
creases wrt. radial location. Tablet becomes increasingly spherical over time.
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and the z-axis, i.e.

θ(X,Y, Z) = arccos [n(X,Y, Z) · k] .

The constants a,b and c are set to 0.5, 0.25, and 2 respectively. The resulting shear

erosion profile is shown in Fig.3.8. Similar to the density case, the constant Kfluid is

selected so the dissolution rate of the active substance is the same to the homogeneous

case, i.e.

Kflow is selected such that ξhomogeneous|t=0 = ξheterogeneous|t=0,

which gives Kflow = .6654

Figure 3.7: simulated shear profile around cylindrical solid

Figure 3.8: Imposed erosion rate as a function of θ.
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The simulations capture the directionality imposed by the channel flow conditions

(in addition to the uniform erosion), showing a preferential erosion in regions of higher

tangential velocity. The initial cylindrical shape evolves into an airfoil or a teardrop one

as shown in 3.9. Other flow patterns can also be considered such as the one produced

by the USP type II apparatus. However, it has been shown [28, 29] that the flow

profile acting on the surface of the solid is highly sensitive on positioning of the solid,

in particular on misalignments of the axis of the tablet with the axis of rotation.

3.2.4 Heterogeneous Erosion Driven by Density and Flow

A more complex scenario is the drug release profiles of heterogeneous solid in a het-

erogeneous environments, where erosion is dictated by both solid and fluid properties

and conditions. Two different conditions have been considered with the same imposed

flow, light core and dense core. In the first case, shown in 3.10, the solid surface be-

comes less symmetric, owing to the combined effects of shear based erosion and tablet

density. As the front portion of the solid has a larger levels of tangential velocities and

tablet density decreases with the radial location, the front portion of the solid shows a

noticeable shape variation from the rear end. In the second case, shown in 3.11, there

is also noticeable change in shape where the tendency towards sphericity due density

effects dominates the surface topology. This modeling strategy can be expanded to

include other modalities of interfacial movement such as additional shear conditions(ie.

solid/solid interactions) or internal swelling. In this case, the erosion rate is controlled

by:

vdensity+flow
n (X,Y, Z) = Kdensity+flow


A

√
X2 + Y 2

R2

+ [a sinθ + b sin(c θ)] + v0

 ,
where again Kdensity+flow has been modulated to enforced that

ξhomogeneous|t=0 = ξheterogeneous|t=0,

which give Kflow+density light core = .6898 and Kflow+density dense core = .3978.
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(a) Shear Based Erosion Beginning

(b) Shear Based Erosion Intermediate

(c) Shear Based Erosion Final

Figure 3.9: Initial and intermediate tablet surface geometries for implied shear based
erosion. There are no dissolution processes occurring besides surface erosion. This case
represents an augmented version of the uniform erosion case.
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(a) Shear and Density Based Erosion Beginning

(b) Shear and Density Based Erosion Interme-
diate

(c) Shear and Density Based Erosion Final

Figure 3.10: Initial and intermediate tablet surface geometries for implied shear based
erosion combined with the imposed density profile for tablets with denser edges than
cores.
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(a) Shear and Density Based Erosion Beginning

(b) Shear and Density Based Erosion Interme-
diate

(c) Shear and Density Based Erosion Final

Figure 3.11: Initial and intermediate tablet surface geometries for implied shear based
erosion combined with the imposed density profile for tablets with denser cores than
edges.
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Effect of Erosion Mechanisms on Release Profiles

In order to study the imprint of the erosion mechanisms on the release profile of the

active substances, we compare the homogeneous release profile to all heterogeneous

cases studied in the previous sections. In order to compare the characteristic features

of the release profiles, the initial rate for all heterogeneous cases is set to be equal to

the homogeneous case. These profiles are presented in Figure3.12 , where the effects

are clearly observed.

(a) Model parameters
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Figure 3.12: Release Profiles of model tablets with different erosion conditions
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To quantify these differences a similarity factor f2 is used, which is defined as [30]:

κ = 50 log

100

[
1 +

1

n

n∑
t=1

(Rt − Tt)2

]− 1
2

 ,
where n is the number of points used Rt is the simulated percent active released at

time t of the reference (homogeneous) case and Tt is the percent active released at time

t of the test (heterogeneous) case. If the value of f2 is 100, the profiles are identical.

The values computed from all cases at t → 0, t = 9 and 17 minutes (when about 80%

release is observed for all cases) are presented in Table 3.1. It is common to cap the

release percentage when using this comparison technique so as to reduce the effects of

a trailing difference as the tablets have neared the end of their release.

Table 3.1: Similarity factors for erosion controlled release

Case f2 → 0 f2 at 9 minutes f2 at 17 minutes

Density with dense core 100 78 92
Density with light core 100 66 89

Flow 100 92 96
Flow + Density with dense core 100 78 90
Flow + Density with light core 100 63 84

It is interesting to notice that the larger difference in active release profiles are found

for the set of parameter of these study when the density of the core is relatively high

which shows a closer shape evolution to the reference homogeneous case. It can be

noted that the lowest values in the table for 17 minutes are for comparisons of the

tablets with two different density profiles. The difference between dense exterior and

dense interior and even between both and the uniform erosion case is attributable to

the different ways in which the surface evolves. The case with denser exteriors have a

divot form in the middle of the tablet as time increases. This divot allows for faster

solvent penetration and solute diffusion from the tablet as it increases the surface area

to volume ratio as the tablet dissolves. This effect clearly produces greater differences

than a change in the flow profile around the tablet, as long as the overall erosion rates

are similar. The tablets with denser cores are the slowest to dissolve. Part of this is
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due to the normalization of the erosion rates, but also because these tablets have the

smallest surface area to volume ratio of any of the groups as they tend towards a more

spherical shape as time progresses.

3.3 Coupling Active Dissolution to Surface Erosion Modes

As the simulation framework allows to consider the interaction of several concurrent

processes, we finally consider the interaction of the surface erosion modes with the rate

of dissolution of the active which depends on the current value of the solvent concen-

tration(increasing as time progresses), the solubility of the active(defined in advance)

and the particle size distribution(defined in advance). Four specific cases have been

considered in which the solvent penetration rates and API dissolution rates were ma-

nipulated via the main governing coefficients. The cases range from no dissolution,

to fast dissolution. The cases which include internal dissolution have API dissolution

coefficients which are each a factor of 10 greater than the previous slower case. In the

previous sections, the model parameters, with the exception of erosion type and density

distribution amp, are those of the Slow Dissolution case. The difference between this

case and the case where all dissolution is the effect of erosion is very small, as shown in

Fig 3.13. This is because the surface erosion is still the rate governing process for these

parameter values. As the API dissolution coefficient is increased, it plays a larger and

larger role in the drug release rate. The shape of the release profile for the Fast Disso-

lution case is much more curved than that of the No Dissolution case. Since the API

particle dissolution rate is handled by calculating spherical diffusion, as the particles

dissolve, their surface area decreases, and their individual dissolution rates decrease.

That is why the release rate of the Fast Dissolution cases tailors off after the inital fast

release.
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(a) Release Increase Dissolution Coefficient

(b) Model Parameters

Figure 3.13: Release Profiles of model tablets with different API for tablets whose
surface erosion is influenced by fluid shear and density distribution, dense core.
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Chapter 4

Conclusions and Future Work

The model shows at least a core competency in effectively modeling basic release pro-

cesses. The movement of the surface is properly handled, and the numerical portion

is handled in such a way as to allow for full customization of the surrounding fluid

shear environment. This is evident in the multiple geometry changes handled by the

model, and the resulting smoothness of the release profiles from these various mod-

els. The changes to the location of the tablet fluid interface had the expected effects

for the simple cases considered. There were clear differences in the resultant release

from tablets with different density distributions. At the same time, the effects of a

differently shaped fluid flow profile did not have as great an effect on the system. The

model system presented here is meant to show feasibility as a platform for the creation

of new models and for studying environmental effects. Before this model is complete

more physical processes need to be added and the format needs to be ported to C and

converted to take advantage of parallel processing techniques.

4.1 Future Work

Swelling of the excipient matrix has been shown to be an extremely important part

of tablet dissolution for certain excipient formulations. Most commonly, the swelling

response of HPMC(hydroxy propyl methyl cellulose)[31, 32, 33]. Other excipients, in-

cluding micro-crystalline cellulose and lactose, can also swell when exposed to solvents.

Swelling of the matrix can cause changes in the location of the bulk interface, the

rate of solvent uptake, rate of solute diffusion and contribute to internal stresses. We

have already begun to perform experiments using video processing to characterize 1-D
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swelling and solvent penetration parameters. We also plan to measure the swelled vol-

ume of individual particles and use simulations to relate this to swelling of the tablet

as a whole.

In addition to measuring the swelling parameters physically, it will be necessary

to make adjustments to the model to include swelling. A cellular automata model

which captures the swelling response of HPMC has been recently published[34], which

demonstrates a 2-D model of HPMC swelling verified with physical experiments. Incor-

porating a high resolution 3-D cellular automata model inside the existing grid space

would allow for swelling and solvent penetration to be simulated with an increased

relevance at an increased resolution. These processes are less computationally expen-

sive than updating the level set function or calculating the ghosting coefficients, thus

increasing their resolution would have much less of an effect than increasing overall

grid resolution. As previously described we are focusing on a meso-scale model which

allows for non homogeneous tablet descriptions, and part of the goal is to resolve the

processes involved in tablet dissolution at meaningful resolutions. A mechanistic 1-D

model which calculates tablet swelling in response to stress relaxation of individually

swelled particles as a result of solvent penetration using a level set technique has been

tested, but scaling to 3-D would cause the model to run orders of magnitude slower

than the present framework.

Once swelling effects have been incorporated, we also plan to allow for more methods

of model input. Currently, models are built using a simple program which does not

have the power of a DEM based approach. It would be extremely useful to directly

incorporate results from models of tablet compaction. As another group member is

working directly with such models[35], the data produced by these will be the obvious

starting point. Once a model can be built using this data, more common formats such

as .stl will be considered, as this greatly broadens the range of programs which can

then build the initial model. Part of the drive to add recognition of common formats is

due to our participation in the Pharmahub project. We are also looking for new ways

to extract parameters from physical tablets using techniques such as X-ray tomography

and LIBS(Laser Induced Breakdown Spectroscopy).
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.1 Model Builder

The models used in this study were built in groups using this script where the values of

each of the user defined parameters are entered. The function handles the recursion of

building different models and names files from a base group with a numbered counter.

The actual model building is done by the referenced function ”build tablet model3”

which is described in the next section.

clear;

Grid_nodes = 30;

Tablet_thickness = 5;

Tablet_radius = 5;

Tstep = 150000;

Partr = .0000215;

Conc_Active = 9;

RReducer=[10000];

Pen_Coeff=[100];

Dissolution_Coefficient=[2000];

Porosity_factor=[0];

active_slope=[0];

DD_solute= [1e-6];

PPen_slope=[0];

Amp=[1]

fudge=1;

erosion_type=4;

pillset=[’Uniform_Erosion_w_Internal_Disso_mesh_30’];

pillstyle=[pillset,num2str(fudge)];

final_time=40*90;

for tt=1:length(RReducer)
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for vv=1:length(Pen_Coeff)

for qq=1:length(Dissolution_Coefficient)

for ff=1:length(Porosity_factor)

for uu=1:length(active_slope)

for bb=1:length(DD_solute)

for cc=1:length(PPen_slope)

for dd=1:length(Amp)

coords=[tt,vv,qq,ff,uu];

[D_solute]=build_tablet_model3(RReducer(tt),Pen_Coeff(vv),

Dissolution_Coefficient(qq),Porosity_factor(ff),active_slope(uu),

DD_solute(bb),PPen_slope(cc),pillstyle,coords,Grid_nodes,

Tablet_thickness,Tablet_radius,Tstep,Partr,Conc_Active,final_time,

erosion_type,Amp(dd));

fudge=fudge+1;

pillstyle=[pillset,num2str(fudge)];

end

end

end

end

end

end

end

end

Amp =

1

fname =
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Load_Files\Uniform_Erosion_w_Internal_Disso_mesh_301_setup

.2 build tablet model3

This function builds the models used in the simulation engine. It takes the user inputs

and build all the necessary matrices including the level set solvent concentration, active

concentration, solute concentration and other helper matrices.

function[D_solute]=build_tablet_model3(reducer,Pen_coefff,Dissolution_coefficient,

porosity_factor,active_slope,D_solute,Pen_slope,pillstyle,coords,grid_nodes,

tablet_thickness,tablet_radius,tstep,partr,Conc_active,final_time,erosion_type,Amp)

interface_factor=.9;

set_step = 1000;

form_factor=(1/.9);

% % active_slope=0;

M=Dissolution_coefficient;

dte=2e-6;

dt=5e-14;

dtmax=1;

warning(’off’,’all’);

stepp=1;

tablet_thickness=tablet_thickness*.001;

tablet_radius=tablet_radius*.001;

Conc_active=Conc_active*.01;

release_step=100;

safety=50;

vol_threshold=.1;

solvent_threshold=.3;

percolation_threshold=.5;
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Cw_interface=1;

C_solute_interface=0;

%reducer=reducer*1e10;

Pen_coeff = Pen_coefff*1e-11;

% % porosity_factor=porosity_factor*1e-11;

percent_released=0;

max_release=99.8;

max_ite=10;

D=1;

oops=0;

dtplus=0;

relaxor=0.5;

dte=2e-8;%Fixed timestep

step=1;%initialize step counter

%uses user input values to determine state space parameters

x_length=2*form_factor*tablet_radius;

y_length=2*form_factor*tablet_radius;

z_length=form_factor*tablet_thickness;

xmin =-form_factor*tablet_radius; ymin =-form_factor*tablet_radius; zmin=...

-.5*form_factor*tablet_thickness;

xmax = form_factor*tablet_radius; ymax = form_factor*tablet_radius; zmax=...

.5*form_factor*tablet_thickness;

nx=grid_nodes;

ny=grid_nodes;

nz=grid_nodes;

%uses physical limits and defined number of nodes in each direction to

%determine cell dimensions
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dx=(xmax - xmin)/(nx - 1); dy=(ymax - ymin)/(ny - 1); dz=(zmax - zmin)/(nz - 1);

%dd =min(min(dx,dy),dz);

dd=(dx*dx + dy*dy + dz*dz )^(0.5);

%tb=0.05*tstep*dt;

timenow=0;

shift=1000000;

%defines the percentage of nodes/100 which are actives

%total number of nodes

nump=ny*nx*nz;

%particles=100000;

particle_volume=(4/3)*pi*partr^3;

cell_volume=dx*dy*dz;

Tablet_volume=(tablet_radius^2)*pi*(tablet_thickness);

total_active_volume=Conc_active*Tablet_volume;

num_part=ones(ny,nx,nz).*total_active_volume/particle_volume;

%uses physical limits and defined number of nodes in each direction to

%determine cell dimensions

C_active=zeros(ny,nx,nz);C_BC=zeros(ny,nx,nz);

pathway=C_active;

%Cxp=zeros(ny,nx,nz);Cxm=zeros(ny,nx,nz);Cyp=zeros(ny,nx,nz);

%Cym=zeros(ny,nx,nz);Czp=zeros(ny,nx,nz);Czm=zeros(ny,nx,nz);

%Positional Matrices

x=linspace(xmin,xmax,nx); y=linspace(ymax,ymin,ny); z=linspace(zmin,zmax,ny);

[X,Y,Z] = meshgrid(x,y,z);

%Uno

ONE=ones(nx,ny,nz);
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%Diffusion matrix; Used in conjuction with Cw matrix to determine

%diffusibility of active through the scaffold

%Dw=Pen_coeff*ONE;

%Concentration of water in scaffold

Cw=zeros(ny,nx,nz);

% %~~~~ INITIALIZE MATRICES ~~~~~%

Cxp=zeros(ny,nx,nz);Cxm=zeros(ny,nx,nz);Cyp=zeros(ny,nx,nz);Cym=zeros(ny,nx,nz);

Czp=zeros(ny,nx,nz);Czm=zeros(ny,nx,nz);

Lxp=zeros(ny,nx,nz);Lxm=zeros(ny,nx,nz);Lyp=zeros(ny,nx,nz);Lym=zeros(ny,nx,nz);

Lzp=zeros(ny,nx,nz);Lzm=zeros(ny,nx,nz);

%~~~~ INITIALIZE COUNTERS ~~~~~%

k=1;m=1;t=0;p=1;pp=2;ite=1;

So=zeros(ny,nx,nz);

%~~~~ THE CARTESIAN GRID ~~~~~%

x=linspace(xmin,xmax,nx); y=linspace(ymax,ymin,ny); z=linspace(zmin,zmax,ny);

[X,Y,Z] = meshgrid(x,y,z);

x2 = linspace(2*xmin,2*xmax,nx);

y2 = linspace(2*ymin,2*ymax,ny);

z2 = linspace(2*zmin,2*zmax,nz);

[X2,Y2,Z2] = meshgrid(x2,y2,z2);

ZZ = zeros(nx,ny,nz);

ONE=ones(nx,ny,nz);

EPS =eps*ones(nx,ny,nz);

k=1;
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%~~~~ LOCATION AND SIZE OF INTIAL PILLS ~~~~~%

R=sqrt(X.^2+Y.^2);

%z=p(:,3);

Rs=sqrt(X.^2+Y.^2+Z.^2);

d1=R-.9*xmax;

d2=Z-.9*zmax;

d3=-Z+.9*zmin;

d=dintersect(dintersect(d1,d2),d3);

L=d;

%~~~~ INTIALIZE GRAPHICS OUTPUT ~~~~~%

Lxp(:,1:nx-1,:) = L(:,2:nx,:);

Lxp(:,nx,:) = 2*L(:,nx,:)-L(:,nx-1,:);

Lxm(:,2:nx,:) = L(:,1:nx-1,:);

Lxm(:,1,:) = 2*L(:,1,:)-L(:,2,:);

Lyp(2:ny,:,:) = L(1:ny-1,:,:);

Lyp(1,:,:) = 2*L(1,:,:)-L(2,:,:);

Lym(1:ny-1,:,:) = L(2:ny,:,:);

Lym(ny,:,:) = 2*L(ny,:,:)-L(ny-1,:,:);

Lzp(:,:,2:nz) = L(:,:,1:nz-1);

Lzp(:,:,1) = 2*L(:,:,1)-L(:,:,2);

Lzm(:,:,1:nz-1) = L(:,:,2:nz);

Lzm(:,:,nz) = 2*L(:,:,nz)-L(:,:,nz-1);
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GradLx = (Lxp - Lxm)/(2*dx);

GradLy = (Lyp - Lym)/(2*dy);

GradLz = (Lzp - Lzm)/(2*dz);

Norm = (GradLx.^2 + GradLy.^2 + GradLz.^2).^(1/2) + EPS;

P1=GradLx./Norm;

P2=GradLy./Norm;

P3=-GradLz./Norm;

OUT_level = (max(L,ZZ)./L);

IN_level = (min(L,ZZ)./L);

L_min = min(min(min(L)));

[index]=index_irregular3(L,Lxp,Lxm,Lyp,Lym,Lzp,Lzm,ny,nx,nz);

active_level=max((IN_level-abs(index)),ZZ);

[C_active,C_cell]=active(active_level,active_slope,nx,ny,nz,index,ZZ,L,...

total_active_volume,cell_volume);

Dw=(OUT_level+(Pen_coeff.*IN_level))+IN_level.*((L-L_min/2)./(L_min/2))...

.*(Pen_slope/100).*Pen_coeff;

SV=C_active.*cell_volume;

total_active_volume=sum(sum(sum(C_active*cell_volume)));

C_solute=zeros(ny,nx,nz);

fname=[’Load_Files\’,pillstyle,’_setup’]

%Tablet_conc=sum(sum(sum(C_active)));

save (fname);

Input argument "Dissolution_coefficient" is undefined.

Error in ==> build_tablet_model4 at 8
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M=Dissolution_coefficient;

.3 Tablet Dissolution

This function is used to perform batches of simulations, enacting the main engine for

each of the models in a defined series.

pillstyle = ;

start_tab = ;

tot_tab = ;

for pp=start_tab:tot_tab

newTablet=[pillstyle,num2str(pp)];

[release_profile,Run_name,flood_profile,C_active,TimeTaken,C_solute,L]=...

Cylinder_dissolve_3D(pillstyle,pillstyle, grid_nodes, tablet_thickness,...

tablet_radius, reducer, tstep, partr, Conc_active, M, Pen_coeff, D_solute,...

erosion_type,Amp );

end

quit;

.4 group dissolve33

This is the main function of the simulation engine. This portion of code loads the

previously constructed models and simulates their dissolution. Once the models are

loaded and several helper matrices constructed, the first step of the simulation process

is completed. This includes an update of the level set, the ghosting values, solvent

penetration, API dissolution, solute diffusion. Once all the values have been updated to

the first step, a repeat loop is entered for the remaining simulation. This loop includes

all the previous operations to some degree, ie. some are calculated more often than

others depending on the calculation of error times. there are also progress checks which
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save the workspace every so many steps or time and which can end the simulation

if certain criteria have been met. The helper functions used here will be described

following this section in order of appearance.

function[release_profile,Run_name,flood_profile,C_active,TimeTaken,C_solute]=...

group_dissolve33(pillstyle)

tic

Run_name=pillstyle; %#ok<NASGU>

loadfilename=[’Load_files/’,pillstyle,’_setup.mat’];

%filename of active matrix to be loaded

load(loadfilename)

maxN=5;

max_release=94;

movie_counter=1

%-----------------Initialize constants------------

C_active1=C_active; %#ok<NODEF>

Outer_layer=abs(index); %#ok<NODEF,NASGU>

max_conc=max(max(max(C_active)));

% Dw=Pen_coeff*ONE;

Run_name=pillstyle;

SV_original=SV; %#ok<NODEF>

total_active_conc=sum(sum(sum(C_active)));

%percolation_prob=zeros(ny,nx,nz);

%-----------------Initialize Matrices------------

index2=zeros(ny,nx,nz);

Ng=zeros(ny,nx,nz);Nb=zeros(ny,nx,nz);Nc=zeros(ny,nx,nz);Nd=zeros(ny,nx,nz);

pointg=zeros(ny,nx,nz,3);pointb=zeros(ny,nx,nz,3);pointc=zeros(ny,nx,nz,3);

pointd=zeros(ny,nx,nz,3);

release_profile=zeros((tstep/release_step),2);

release_profile2=zeros((tstep/release_step),2);



56

flood_profile=zeros((tstep/release_step),2);

flood_profile2=zeros((tstep/release_step),2);

Tablet_Volume=zeros(tstep/release_step,3);

Tablet_Volume2=zeros(tstep/release_step,3);

%~~~~ INTIALIZE GRAPHICS OUTPUT ~~~~~%

stepp=1;

release_time=90;

release_time2=60;

time_step=1;

time_step2=1;

now_time=0;

newtime=0;

curve_shift=1.5;

%final_time=91*60;

%~~~~ INDEXING FOR BOUNDARY VARIABLES ~~~~~%

%id(i)=0 for interior nodes

%id(i)=1 for boundary nodes

Cid=zeros(ny,nx,nz);

Cid(:,:,nz)=1; % XY+(FRONT)

Cid(:,:,1)=1; % XY-(BACK)

Cid(1,:,:)=1; % XZ+(TOP)

Cid(ny,:,:)=1; % XZ-(BOTTOM)

Cid(:,nx,:)=1; % YZ+(RIGHT)

Cid(:,1,:)=1; % YZ-(LEFT)

Lxp(:,1:nx-1,:) = L(:,2:nx,:);
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Lxp(:,nx,:) = 2*L(:,nx,:)-L(:,nx-1,:);

Lxm(:,2:nx,:) = L(:,1:nx-1,:);

Lxm(:,1,:) = 2*L(:,1,:)-L(:,2,:);

Lyp(2:ny,:,:) = L(1:ny-1,:,:);

Lyp(1,:,:) = 2*L(1,:,:)-L(2,:,:);

Lym(1:ny-1,:,:) = L(2:ny,:,:);

Lym(ny,:,:) = 2*L(ny,:,:)-L(ny-1,:,:);

Lzm(:,:,2:nz) = L(:,:,1:nz-1);

Lzm(:,:,1) = 2*L(:,:,1)-L(:,:,2);

Lzp(:,:,1:nz-1) = L(:,:,2:nz);

Lzp(:,:,nz) = 2*L(:,:,nz)-L(:,:,nz-1);

GradLx = (Lxp - Lxm)/(2*dx);

GradLy = (Lyp - Lym)/(2*dy);

GradLz = (Lzp - Lzm)/(2*dz);

Norm = (GradLx.^2 + GradLy.^2 + GradLz.^2).^(1/2) + EPS;

P1=-GradLx./Norm;

P2=GradLy./Norm;

P3=-GradLz./Norm;

OUT_level = (max(L,ZZ)./L);

IN_level = (min(L,ZZ)./L);

L_max=max(max(max(max(max(Lxp,Lxm),Lyp),Lym),Lzp),Lzm);

L_min=min(min(min(min(min(Lxp,Lxm),Lyp),Lym),Lzp),Lzm);

[CC]=Curvature3D(P1,P2,P3,nx,ny,nz,dx,dy,dz);
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[CC_fac]=Curv_factor(CC,curve_shift,index);

%~~~~ SOLUTION OF PARABOLIC EQUATION ~~~~~%

Cw=OUT_level;

initial_in=sum(sum(sum(IN_level)));

initial_out=sum(sum(sum(OUT_level)));

%~~~~ LEVEL SET UPDATE UNDER VELOCITY FIELD ~~~~~%

%%F represents the rate at which the surface will erode or swell.

F=-ONE/reducer;

[F2]=changeFtype(F,X,Y,tablet_radius,P1,P2,P3,nx,ny,nz,erosion_type,CC_fac,ONE,Amp);

normalizer=sum(sum(sum(F)))/sum(sum(sum(F2)));

F2=F2.*normalizer;

if ( rem(stepp,1)==0)

[critical,timenow,dL,L,k,IN_level,OUT_level,dt,C_active]=Level_update_3D(dd,F2,...

timenow,dt,L,Lxm,Lym,Lzm,Lxp,Lyp,Lzp,ZZ,ONE,k,dx,dy,dz,safety,C_active,index);

end

OUT_level = (max(L,ZZ)./L);

IN_level = (min(L,ZZ)./L);

%~~~~ INDEX FOR REGULAR/IRREGULAR ~~~~~%

%index=1 ->Irregular Inside

%index=-1 ->Irregular Outside

%index=0 ->Regular

[index]=index_irregular3(L,Lxp,Lxm,Lyp,Lym,Lzp,Lzm,ny,nx,nz);

[Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd,index2]=boundary_ghost3D_coord(index,L,x,y,z,...

P1,P2,P3,maxN,nx,ny,nz,index2,Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd,dx,dy,dz);
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%%[X1,X5,Y1,Y5,Z1,Z5,D1,D2,D3,Xp,Yp,Zp,Iym,Ixm,Izm,Iyp,Ixp,Izp,DB]=bilinear_coeff_3D...

(dd,P1,P2,P3,X,Y,Z,nx,ny,nz,index,dx,dy,dz,L,x,y,z);

[C_interface]=determine_interface(C_solute,index,interface_factor,ZZ);

% [Cw,oops]=boundary_ghost2(nz,ny,nx,index,Cw_interface,Cw,L,Cw_bulk_fluid,oops);

[Cw,C_solute]=boundary_ghost3D(nz,ny,nx,index,index2,Cw_interface,Cw,C_interface,...

C_solute,Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd);

%[C_solute,oops]=boundary_ghost3a(nz,ny,nx,index,C_interface,C_solute,L,x,y,z,P1,...

P2,P3,dx,dy,dz,oops,C_bulk_fluid);

%Steps ahead water level through scaffold

[Cw,dtcw,dCw]=water_level2(Cw,Dw,dd,dx,dy,dz,nx,ny,nz,dte,IN_level,OUT_level,dt,ONE);

Cw=max(Cw,OUT_level);

Cw=min(ONE,Cw);

dt;

[Surf]=Surf_calc(C_active,cell_volume,particle_volume);

%[dt_conc,C_active,dC_active]=Active_conc(C_active,Cw,dd,dx,dy,dz,nx,ny,nz,dte,...

IN_level,OUT_level,dt,ONE,ZZ,M,max_conc,Surf);

[C_solute,C_active,dC_active,Dw]=Active_conc4(C_solute,C_active,Cw,IN_level,dt,...

ONE,ZZ,M,max_conc,Surf,Pen_coeff,porosity_factor,Conc_active,Dw);

[dt_solute,C_solute,dc_solute]=Solute_conc(C_solute,Cw,dd,dx,dy,dz,nx,ny,nz,dte,...

IN_level,OUT_level,dt,ONE,ZZ,M,max_conc,D_solute);

C_active=C_active.*IN_level;

% %saves the values from the first step of the simulation

% fname=[pillstyle,’step_’,num2str(stepp+shift)];

% save (fname);
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stepp=2;

newstep=2;

for stepp=2:tstep

OUT_level = (max(L,ZZ)./L);

IN_level = (min(L,ZZ)./L);

dtplus=dtplus+dt;

if dtplus>=newtime

Lxp(:,1:nx-1,:) = L(:,2:nx,:);

Lxp(:,nx,:) = 2*L(:,nx,:)-L(:,nx-1,:);

Lxm(:,2:nx,:) = L(:,1:nx-1,:);

Lxm(:,1,:) = 2*L(:,1,:)-L(:,2,:);

Lyp(2:ny,:,:) = L(1:ny-1,:,:);

Lyp(1,:,:) = 2*L(1,:,:)-L(2,:,:);

Lym(1:ny-1,:,:) = L(2:ny,:,:);

Lym(ny,:,:) = 2*L(ny,:,:)-L(ny-1,:,:);

Lzm(:,:,2:nz) = L(:,:,1:nz-1);

Lzm(:,:,1) = 2*L(:,:,1)-L(:,:,2);

Lzp(:,:,1:nz-1) = L(:,:,2:nz);

Lzp(:,:,nz) = 2*L(:,:,nz)-L(:,:,nz-1);

GradLx = (Lxp - Lxm)/(2*dx);

GradLy = (Lyp - Lym)/(2*dy);

GradLz = (Lzp - Lzm)/(2*dz);

Norm = (GradLx.^2 + GradLy.^2 + GradLz.^2).^(1/2) + EPS;
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P1=-GradLx./Norm;

P2=GradLy./Norm;

P3=-GradLz./Norm;

[CC]=Curvature3D(P1,P2,P3,nx,ny,nz,dx,dy,dz);

[CC_fac]=Curv_factor(CC,curve_shift,index);

[F2]=changeFtype(F,X,Y,tablet_radius,P1,P2,P3,nx,ny,nz,erosion_type,...

CC_fac,ONE,Amp);

F2=F2.*normalizer;

%~~~~ SOLUTION OF PARABOLIC EQUATION ~~~~~%

%~~~~ LEVEL SET UPDATE UNDER VELOCITY FIELD ~~~~~%

% Erosion rate of the surface

% Changes to surface location are made with this function. It uses

% the matrices built above to calculate the necessary changes for

% the level set values and then implements them. It also reduces

% the active concentration to correspond to the loss of volume of

% the outermost layer of the tablet.

[critical,timenow,dL,L,k,IN_level,OUT_level,dt,C_active]=...

Level_update_3D(dd,F2,timenow,dtplus,L,Lxm,Lym,Lzm,Lxp,Lyp,...

Lzp,ZZ,ONE,k,dx,dy,dz,safety,C_active,index);

OUT_level = (max(L,ZZ)./L);

IN_level = (min(L,ZZ)./L);
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%~~~~ INDEX FOR REGULAR/IRREGULAR ~~~~~%

%index=1 ->Irregular Inside

%index=-1 ->Irregular Outside

%index=0 ->Regular

[index]=index_irregular3(L,Lxp,Lxm,Lyp,Lym,Lzp,Lzm,ny,nx,nz);

SV=C_active.*cell_volume;

vol_dissolved=1-(SV./SV_original)-OUT_level;

[Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd,index2]=...

boundary_ghost3D_coord(index,L,x,y,z,P1,P2,P3,maxN,nx,ny,nz,...

index2,Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd,dx,dy,dz);

dtplusnow=dtplus;

dtplus=0;

if critical>dtmax

critical=dtmax;

end

smaller_dt=min(dtmax,dtcw);

if critical>smaller_dt

factor=min(200,round(.9*(critical/smaller_dt)));

else

smaller_dt=critical;

factor=1;

end
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newstep=stepp+factor;

newtime=factor*smaller_dt;

end

[C_interface]=determine_interface(C_solute,index,interface_factor,ZZ);

[Cw,C_solute]=boundary_ghost3D(nz,ny,nx,index,index2,Cw_interface,...

Cw,C_interface,C_solute,Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd);

[Cw,dtcw,dCw]=water_level2(Cw,Dw,dd,dx,dy,dz,nx,ny,nz,dte,IN_level,OUT_level,dt,ONE);

Cw=max(Cw,OUT_level);

Cw=min(Cw,ONE);

[Surf]=Surf_calc(C_active,cell_volume,particle_volume);

%[dt_conc,C_active,dC_active]=Active_conc(C_active,Cw,dd,dx,dy,dz,nx,ny,nz,dte,...

IN_level,OUT_level,dt,ONE,ZZ,M,max_conc,Surf);

[C_solute,C_active,dC_active,Dw]=Active_conc4(C_solute,C_active,Cw,...

IN_level,dt,ONE,ZZ,M,max_conc,Surf,Pen_coeff,porosity_factor,Conc_active,Dw);

[dt_solute,C_solute,dc_solute]=Solute_conc(C_solute,Cw,dd,dx,dy,dz,...

nx,ny,nz,dte,IN_level,OUT_level,dt,ONE,ZZ,M,max_conc,D_solute);

C_active=C_active.*IN_level;

now_time=now_time+dt;

dt=min(min(critical,dtcw),dtmax);
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%dt=min(dt,dt_solute);

%dumps necessary data into a save file

if rem(stepp,500)==0

percent_released=100*(1-(sum(sum(sum(C_active)))/total_active_conc));

percent_flood=100*(((sum(sum(sum(Cw)))-initial_out)/initial_in));

release_profile(time_step,1)=percent_released;

release_profile(time_step,2)=now_time;

flood_profile(time_step,1)=percent_flood;

flood_profile(time_step,2)=now_time;

[Tablet_Volume(time_step,1)]=Level_Set_Volume(IN_level,index,ZZ,...

nx,ny,nz,cell_volume,dx,dy,dz,L,P1,P2,P3);

Tablet_Volume(time_step,2)=Tablet_volume-Tablet_Volume(time_step,1);

Tablet_Volume(time_step,3)=Tablet_Volume(time_step,2)/Tablet_volume;

release_time=release_time+120;

time_step=time_step+1;

% rpUtilsProgress((stepp/tstep*100),’Iterating’);

end

if now_time>release_time2

percent_released=100*(1-(sum(sum(sum(C_active)))/total_active_conc));

percent_flood=100*(((sum(sum(sum(Cw)))-initial_out)/initial_in));

release_profile2(time_step2,1)=percent_released;

release_profile2(time_step2,2)=now_time;

flood_profile2(time_step2,1)=percent_flood;

flood_profile2(time_step2,2)=now_time;

[Tablet_Volume2(time_step2,1)]=Level_Set_Volume(IN_level,index,...

ZZ,nx,ny,nz,cell_volume,dx,dy,dz,L,P1,P2,P3);

Tablet_Volume2(time_step2,2)=Tablet_volume-Tablet_Volume2(time_step,1);

Tablet_Volume2(time_step2,3)=100*Tablet_Volume2(time_step,2)/Tablet_volume;

fname=[Run_name,’step_’,num2str(release_time2+shift)];
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save (fname, ’release_profile2’, ’C_active’, ’C_solute’ ,’Cw’, ’L’);

tecplot_Level_Set(x,y,z,nx,ny,nz,L,pillstyle,t);

release_time2=release_time2+120;

time_step2=time_step2+1;

% rpUtilsProgress(percent_released,’Iterating’);

end

if now_time>movie_counter

fname=[Run_name,’movie_step_’,num2str(round(now_time)+shift)];

save (fname, ’release_profile2’, ’C_active’, ’C_solute’ ,’Cw’, ’L’);

movie_counter=movie_counter+60;

end

if percent_released>max_release %||percent_released<0

percent_released=100*(1-(sum(sum(sum(C_active)))/total_active_conc));

fakestep=ceil(stepp/release_step);

release_profile(fakestep,1)=percent_released;

release_profile(fakestep,2)=timenow;

fname=[Run_name,’step_’,num2str(stepp+shift)];

save (fname)

break;

elseif timenow>final_time %||percent_released<0

percent_released=100*(1-(sum(sum(sum(C_active)))/total_active_conc));

fakestep=ceil(stepp/release_step);

release_profile(fakestep,1)=percent_released;

release_profile(fakestep,2)=timenow;

fname=[Run_name,’step_’,num2str(stepp+shift)];

save (fname)

break;

end
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end

endstep=length(release_profile);

TimeTaken=toc/60

fname=[’Output/’,Run_name]

save (fname)

Error in group_dissolve33 at 4

Run_name=pillstyle; %#ok<NASGU>

.5 Helper Functions

.5.1 Curvature3D

This function calculates the curvature of the tablet/bulk fluid interface across the whole

level set.

function [K]=Curvature3D(P1,P2,P3,nx,ny,nz,dx,dy,dz)

%~~~~~~ CURVATURE ~~~~~%

P1p(:,1:nx-1,:) = P1(:,2:nx,:);

P1p(:,nx,:) = 2*P1(:,nx,:)-P1(:,nx-1,:);

P1m(:,2:nx,:) = P1(:,1:nx-1,:);

P1m(:,1,:) = 2*P1(:,1,:)-P1(:,2,:);

dP1dx=(P1p-P1m)./(2*dx);
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P2p(2:ny,:,:) = P2(1:ny-1,:,:);

P2p(1,:,:) = 2*P2(1,:,:)-P2(2,:,:);

P2m(1:ny-1,:,:) = P2(2:ny,:,:);

P2m(ny,:,:) = 2*P2(ny,:,:)-P2(ny-1,:,:);

dP2dy=(P2p-P2m)./(2*dy);

P3m(:,:,2:nz) = P3(:,:,1:nz-1);

P3m(:,:,1) = 2*P3(:,:,1)-P3(:,:,2);

P3p(:,:,1:nz-1) = P3(:,:,2:nz);

P3p(:,:,nz) = 2*P3(:,:,nz)-P3(:,:,nz-1);

dP3dz=(P3p-P3m)./(2*dz);

K=dP1dx+dP2dy+dP3dz;

.5.2 Curv factor

Calculates the curvature factor based on the current interface curvature.

function[K_fac]=Curv_factor(K,curve_shift,index)

K_fac=((erf(K+curve_shift)+1)/2).*abs(index);

.5.3 changeFtype

This function is responsible for calculating the velocity of the interface based on the

assigned uniform erosion speed and the type of erosion being considered; Uniform,

Density Based, Shear Based, Shear Density Based.

function [F2]=changeFtype(F,X,Y,Ri,P1,P2,P3,nx,ny,nz,type,index,ONE,Amp)

if type==1

F2=F;



68

elseif type==2

%density based erosion only

pos=(pi*sqrt((X.^2+Y.^2)./Ri^2));

density_factor=ONE+Amp*cos(pos);

F2=F./density_factor;

elseif type==3

%fluid shear based erosion only

a=.5;

b=.25;

c=2;

theta=atan2(P2,P1);

erosion_factor=(abs(a.*sin(theta)+b.*sin(c.*theta)));

normalizere=max(max(max(erosion_factor)));

erosion_factor=erosion_factor/normalizere;

F2=F+(F.*erosion_factor.*(P1.^2+P2.^2)+a.*F.*(P3.^2));

elseif type==4

%combined fluid shear, uniform and density based erosion

a=1;

b=.5;

c=2;

theta=atan2(P2,P1);

erosion_factor=(abs(a.*sin(theta)+b.*sin(c.*theta)));

normalizere=max(max(max(erosion_factor)));

erosion_factor=erosion_factor/normalizere;

pos=(pi*sqrt((X.^2+Y.^2)./Ri^2));

density_factor=ONE+Amp*cos(pos);

F2=(F+(F.*erosion_factor.*(P1.^2+P2.^2)+a.*F.*(P3.^2)))./density_factor;
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end

.5.4 Level update 3D

This function updates the level set using the previously calculated interfacial velocity,

also modifying the current API concentration due to volume loss of the outermost cells.

function [critical,timenow,dL,L,k,IN_level,OUT_level,dt,C_active]=...

Level_update_3D(dd,F,timenow,dt,L,Lxm,Lym,Lzm,Lxp,Lyp,Lzp,ZZ,ONE,k,...

dx,dy,dz,safety,C_active,index)

critical = dd/(max(max(max(abs(F))))*safety);

%dt=critical*.5;

timenow=timenow+dt;

Deltap = sqrt(...

((max(L-Lxm,ZZ)).^2 + (min(Lxp-L,ZZ)).^2)/dx ...

+ ((max(L-Lym,ZZ)).^2 + (min(Lyp-L,ZZ)).^2)/dy ...

+ ((max(L-Lzm,ZZ)).^2 + (min(Lzp-L,ZZ)).^2)/dz);

Deltam = sqrt(...

((min(L-Lxm,ZZ)).^2 + (max(Lxp-L,ZZ)).^2)/dx ...

+ ((min(L-Lym,ZZ)).^2 + (max(Lyp-L,ZZ)).^2)/dy ...

+ ((min(L-Lzm,ZZ)).^2 + (max(Lzp-L,ZZ)).^2)/dz);

dL = max(F,ZZ).*Deltap + min(F,ZZ).*Deltam;

% ADD = (max(L,ZZ)./L);

% ADD=ones(ny,nx);
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% L = (L - dt*dL.*ADD);

DL=dt*dL;

L = (L - DL);

L=min(L,ONE);

% MIN=-ONE;

L=max(L,-ONE);

C_active=C_active+max(index,ZZ).*(DL/dd);

%mesh(X,Y,L)

% contour(X,Y,L,[0 0])

% pause(0.2);

% N(k)=getframe;

inside=min(L,ZZ);

IN_level=inside./L;

OUT_level=ONE-IN_level;

k=k+1;

.5.5 index irregular3

This function is used to populate and update the matrix storing the locations of the

irregular points, those immediately adjacent to the tablet/bulk fluid interface.

function [index]=index_irregular3(L,Lxp,Lxm,Lyp,Lym,Lzp,Lzm,ny,nx,nz);

%---------------------------------------------------------------------------------------------------------------------------------

%%%INDEXING IRREGULAR POINTS %%%%%%%%%%%%%
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L_max=max(max(max(max(max(Lxp,Lxm),Lyp),Lym),Lzp),Lzm);

L_min=min(min(min(min(min(Lxp,Lxm),Lyp),Lym),Lzp),Lzm);

for k=1:nz

for i=1:ny

for j=1:nx

if (L_max(i,j,k)*L_min(i,j,k)<=0 & L(i,j,k)<0)

index(i,j,k)=1; % +1 points inside,

end

if (L_max(i,j,k)*L_min(i,j,k)<=0 & L(i,j,k)>0)

index(i,j,k)=-1; % -1 for points outside,

end

if (L_max(i,j,k)*L_min(i,j,k)>=0)

index(i,j,k)=0; % 0 for regular points

end

end

end

end

.5.6 boundary ghost3D coord

This function calculates the ghosting coefficients for the irregular points. The coordi-

nates here are updated whenever the level set is updated, but not at every iteration.

The ghosting values are calculated for the solvent penetration and solute diffusion at

every step in a separate function using the coordinates calculated here.

function [Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd,index2]=boundary_ghost3D_coord...

(index,L,x,y,z,P1,P2,P3,maxN,nx,ny,nz,index2,Ng,Nb,Nc,Nd,pointg,pointb,pointc,...



72

pointd,dx,dy,dz)

for k=1:nz

for i=1:ny

for j=1:nx

if index(i,j,k)==-1

PIy=-P2(i,j,k)*L(i,j,k)+y(i);

PIx=P1(i,j,k)*L(i,j,k)+x(j);

PIz=P3(i,j,k)*L(i,j,k)+z(k);

points=[PIx,PIy,PIz];

corner1=[i,j,k];

corner2=[i+sign(P2(i,j,k)),j,k];

corner3=[i,j+sign(P1(i,j,k)),k];

corner4=[i+sign(P2(i,j,k)),j+sign(P1(i,j,k)),k];

corner5=[i,j,k+sign(P3(i,j,k))];

corner6=[i+sign(P2(i,j,k)),j,k+sign(P3(i,j,k))];

corner7=[i,j+sign(P1(i,j,k)),k+sign(P3(i,j,k))];

corner8=[i+sign(P2(i,j,k)),j+sign(P1(i,j,k)),k+sign(P3(i,j,k))];

if ((abs(sign(P1(i,j,k))))+(abs(sign(P2(i,j,k))))+...

(abs(sign(P3(i,j,k)))))<2

[Ng(i,j,k),pointb(i,j,k,:),index2(i,j,k)]=natural_coordinates1D...

(L,P1,P2,P3,i,j,k);

elseif ((abs(sign(P1(i,j,k))))+(abs(sign(P2(i,j,k))))+...

(abs(sign(P3(i,j,k)))))<3

Pmax=max(abs(P1(i,j,k)),max(abs(P2(i,j,k)),abs(P3(i,j,k))));

Pmin=min(abs(P1(i,j,k)),min(abs(P2(i,j,k)),abs(P3(i,j,k))));

if P1(i,j,k)==Pmax



73

if abs(P2(i,j,k))==Pmin

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner3,corner7,points,...

x,y,z,maxN);

else

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner3,corner4,points,...

x,y,z,maxN);

end

elseif abs(P2(i,j,k))==Pmax

if abs(P1(i,j,k))==Pmin

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner2,corner6,points,...

x,y,z,maxN);

else

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner2,corner4,points,...

x,y,z,maxN);

end

else

if abs(P2(i,j,k))==Pmin

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner5,corner7,points,...

x,y,z,maxN);

else
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[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),index2(i,j,k)]=...

natural_coordinates2D(corner1,corner5,corner6,points,...

x,y,z,maxN);

end

end

else

Pmax=max(abs(P1(i,j,k)),max(abs(P2(i,j,k)),abs(P3(i,j,k))));

if abs(P1(i,j,k))==Pmax

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),Nd(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),pointd(i,j,k,:),index2(i,j,k)]=...

natural_coordinates3D(corner1,corner4,corner3,corner7,points,...

x,y,z,maxN,dx,dy,dz);

elseif abs(P2(i,j,k))==Pmax

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),Nd(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),pointd(i,j,k,:),index2(i,j,k)]=...

natural_coordinates3D(corner1,corner6,corner2,corner4,points,...

x,y,z,maxN,dx,dy,dz);

else

[Ng(i,j,k),Nb(i,j,k),Nc(i,j,k),Nd(i,j,k),pointg(i,j,k,:),...

pointb(i,j,k,:),pointc(i,j,k,:),pointd(i,j,k,:),index2(i,j,k)]=...

natural_coordinates3D(corner1,corner7,corner5,corner6,points,...

x,y,z,maxN,dx,dy,dz);

end

end

end

end

end

end
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.5.7 bilinear coeff 3D

function [X1,X5,Y1,Y5,Z1,Z5,D1,D2,D3,Xp,Yp,Zp,Iym,Ixm,Izm,Iyp,Ixp,Izp,DB]=...

bilinear_coeff_3D(dd,P1,P2,P3,X,Y,Z,nx,ny,nz,index,dx,dy,dz,L,x,y,z)

% Xp=dd*P1+X;

% Yp=dd*P2+Y;

% Zp=dd*P3+Z;

Xp=2*L.*P1+X;

Yp=2*L.*P2+Y;

Zp=2*L.*P3+Z;

pxb=L.*P1+X;

pyb=L.*P2+Y;

pzb=L.*P3+Z;

DB=zeros(ny,nx,nz);

for k=1:nz

for i=1:ny

for j=1:nx

if index(i,j,k)==-1

% % px=-2*L(i,j,k)*P1(i,j,k)+X(i,j,k);

% % py=-2*L(i,j,k)*P2(i,j,k)+Y(i,j,k);

% % pz=-2*L(i,j,k)*P3(i,j,k)+Z(i,j,k);

pbx=L(i,j,k)*P1(i,j,k)+X(i,j,k);

pby=L(i,j,k)*P2(i,j,k)+Y(i,j,k);

pbz=L(i,j,k)*P3(i,j,k)+Z(i,j,k);

px=Xp(i,j,k);

py=Yp(i,j,k);

pz=Zp(i,j,k);

[ixm,ixp,iyp,iym,izp,izm]= neighbour3(pbx,pby,pbz,x,y,z,nx,ny,nz,...

dx,dy,dz);
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Ixm(i,j,k)=ixm;

Ixp(i,j,k)=ixp;

Iyp(i,j,k)=iyp;

Iym(i,j,k)=iym;

Izp(i,j,k)=izp;

Izm(i,j,k)=izm;

X1(i,j,k)=X(Iym(i,j,k),Ixm(i,j,k),Izp(i,j,k));

X2(i,j,k)=X(Iym(i,j,k),Ixp(i,j,k),Izp(i,j,k));

X3(i,j,k)=X(Iyp(i,j,k),Ixp(i,j,k),Izp(i,j,k));

X4(i,j,k)=X(Iyp(i,j,k),Ixm(i,j,k),Izp(i,j,k));

X5(i,j,k)=X(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k));

X6(i,j,k)=X(Iym(i,j,k),Ixp(i,j,k),Izm(i,j,k));

X7(i,j,k)=X(Iyp(i,j,k),Ixp(i,j,k),Izm(i,j,k));

X8(i,j,k)=X(Iyp(i,j,k),Ixm(i,j,k),Izm(i,j,k));

Y1(i,j,k)=Y(Iym(i,j,k),Ixm(i,j,k),Izp(i,j,k));

Y2(i,j,k)=Y(Iym(i,j,k),Ixp(i,j,k),Izp(i,j,k));

Y3(i,j,k)=Y(Iyp(i,j,k),Ixp(i,j,k),Izp(i,j,k));

Y4(i,j,k)=Y(Iyp(i,j,k),Ixm(i,j,k),Izp(i,j,k));

Y5(i,j,k)=Y(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k));

Y6(i,j,k)=Y(Iym(i,j,k),Ixp(i,j,k),Izm(i,j,k));

Y7(i,j,k)=Y(Iyp(i,j,k),Ixp(i,j,k),Izm(i,j,k));

Y8(i,j,k)=Y(Iyp(i,j,k),Ixm(i,j,k),Izm(i,j,k));

Z1(i,j,k)=Z(Iym(i,j,k),Ixm(i,j,k),Izp(i,j,k));

Z2(i,j,k)=Z(Iym(i,j,k),Ixp(i,j,k),Izp(i,j,k));
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Z3(i,j,k)=Z(Iyp(i,j,k),Ixp(i,j,k),Izp(i,j,k));

Z4(i,j,k)=Z(Iyp(i,j,k),Ixm(i,j,k),Izp(i,j,k));

Z5(i,j,k)=Z(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k));

Z6(i,j,k)=Z(Iym(i,j,k),Ixp(i,j,k),Izm(i,j,k));

Z7(i,j,k)=Z(Iyp(i,j,k),Ixp(i,j,k),Izm(i,j,k));

Z8(i,j,k)=Z(Iyp(i,j,k),Ixm(i,j,k),Izm(i,j,k));

D1(i,j,k)=(Xp(i,j,k)-X(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k)))/dx;

D2(i,j,k)=(Yp(i,j,k)-Y(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k)))/dy;

D3(i,j,k)=(Zp(i,j,k)-Z(Iym(i,j,k),Ixm(i,j,k),Izm(i,j,k)))/dz;

D4=abs(pbx-px)/dx;

D5=abs(pby-py)/dy;

D6=abs(pbz-pz)/dz;

DB(i,j,k)=(1-D4)*(1-D5)*(1-D6);

end

end

end

end

.5.8 determine interface

This function determines the concentration of solute which will be used as the surface

concentration when calculating the ghosting values.

function[C_interface]=determine_interface(C_solute,index,interface_factor,ZZ)

index_factor=max(index,ZZ);

avg_outer_solute_conc=sum(sum(sum(index_factor.*C_solute)))/sum(sum(sum(index_factor)));

C_interface=avg_outer_solute_conc*interface_factor;
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.5.9 boundary ghost3D

This function creates the ghosting matrix at every iteration. The values created are for

both the solvent concentration(C1) and solute concentration(C2).

function [C1,C2]=boundary_ghost3D(nz,ny,nx,index,index2,C1_interface,C1,...

C2_interface,C2,Ng,Nb,Nc,Nd,pointg,pointb,pointc,pointd);

for k=1:nz

for i=1:ny

for j=1:nx

if index(i,j,k)==-1

if index2(i,j,k)==1

C1(i,j,k)=(C1(pointb(i,j,k,1),pointb(i,j,k,2),...

pointb(i,j,k,3))-C1_interface)*Ng(i,j,k)+C1_interface;

C2(i,j,k)=(C2(pointb(i,j,k,1),pointb(i,j,k,2),...

pointb(i,j,k,3))-C2_interface)*Ng(i,j,k)+C2_interface;

elseif index2(i,j,k)==2

C1(i,j,k)=(C1_interface-Nb(i,j,k)*C1(pointb(i,j,k,1),...

pointb(i,j,k,2),pointb(i,j,k,3))-Nc*C1(pointc(i,j,k,1),...

pointc(i,j,k,2),pointc(i,j,k,3)))/Ng;

C2(i,j,k)=(C2_interface-Nb(i,j,k)*C2(pointb(i,j,k,1),...

pointb(i,j,k,2),pointb(i,j,k,3))-Nc*C2(pointc(i,j,k,1),...

pointc(i,j,k,2),pointc(i,j,k,3)))/Ng;

elseif index2(i,j,k)==3

C1(i,j,k)=(C1_interface-Nb(i,j,k)*C1(pointb(i,j,k,1),...

pointb(i,j,k,2),pointb(i,j,k,3))-Nc*C1(pointc(i,j,k,1),...

pointc(i,j,k,2),pointc(i,j,k,3))-Nd*C1(pointd(i,j,k,1),...

pointd(i,j,k,2),pointd(i,j,k,3)))/Ng;

C2(i,j,k)=(C2_interface-Nb(i,j,k)*C2(pointb(i,j,k,1),...
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pointb(i,j,k,2),pointb(i,j,k,3))-Nc*C2(pointc(i,j,k,1),...

pointc(i,j,k,2),pointc(i,j,k,3))-Nd*C2(pointd(i,j,k,1),...

pointd(i,j,k,2),pointd(i,j,k,3)))/Ng;

else

C1(i,j,k)=C1_interface;

C2(i,j,k)=C2_interface;

end

end

end

end

end

.5.10 water level2

this function calculates the solvent penetration of the tablet using a Fick’s Second Law

approach.

function [Cw,dtcw,dCw,dcw]=water_level2(Cw,Dw,dd,dx,dy,dz,nx,ny,nz,dte,IN_level,...

OUT_level,dt,ONE)

%Creates matrices for use with Taylor series approximation

Cwxp(:,1:nx-1,:)=Cw(:,2:nx,:);Cwxp(:,nx,:)=1;

Cwxm(:,2:nx,:)=Cw(:,1:nx-1,:);Cwxm(:,1,:)=1;

Cwyp(2:ny,:,:)=Cw(1:ny-1,:,:);Cwyp(1,:,:)=1;

Cwym(1:ny-1,:,:)=Cw(2:ny,:,:);Cwym(ny,:,:)=1;

Cwzp(:,:,1:nz-1)=Cw(:,:,2:nz);Cwzp(:,:,nz)=1;

Cwzm(:,:,2:nz)=Cw(:,:,1:nz-1);Cwzm(:,:,1)=1;

%calculates change of water concentration in pill per unit time

dcw=-Dw.*(Cwxp/dx^2+Cwxm/dx^2+Cwyp/dy^2+Cwym/dy^2+Cwzp/dz^2+Cwzm/dz^2 ...

-2*Cw*(1/dx^2 + 1/dy^2+ 1/dz^2));
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%calculates critical timestep size

critical = dd/max(max(max(abs(IN_level.*dcw))));

dtcw=.95*critical;

%timestep change of water concentration

dCw=dt*dcw;

%new water concentration in pill

Cw=min((IN_level.*(Cw-dCw)+OUT_level),ONE);

.5.11 Surf calc

This function calculates the combined surface area of the particles in each cell.

function [SA]=Surf_calc(C_active,cell_volume,particle_volume)

num_part=C_active.*cell_volume./particle_volume;

SA=4*pi*((3*C_active*cell_volume)./(4*pi*num_part)).^(2/3).*num_part;

SA(isnan(SA))=0;

.5.12 Active conc4

This function calculates the volume released form the active particles and updates the

API concentration as well as the solvent penetration coefficient in cases where dissolu-

tion of the actives results in faster absorption of solvent into the tablet.

function [C_solute,C_active,dc,Dw]=Active_conc4(C_solute,C_active,Cw,...

IN_level,dt,ONE,ZZ,M,max_conc,Surf,Pen_coeff,porosity_factor,Conc_active,Dw)

%Creates matrices for use with Taylor series approximation

%calculates change of water concentration in pill per unit time

dc=IN_level.*Cw.*M.*Surf.*(C_active-C_solute);
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% % %calculates critical timestep size

% % critical = dd/max(max(max(abs(IN_level.*dc))));

% % dt_conc=.95*critical;

%timestep change of water concentration

dC=dt*dc;

dC=max(dC,ZZ);

%new water concentration in pill

C_active=min(max_conc,max(IN_level.*(C_active-dC),ZZ));

C_solute=IN_level.*(C_solute+dC);

Pen_increase=-porosity_factor.*dc;

Dw=max(ZZ,(Dw-isnan(Pen_increase)));

.5.13 Solute conc

This function calculates the evolution of the drug solute. It updates the concetration

of solute inside the tablet based on the volume of solvent added from dissolving API

and the volume which moves from or to another cell and for the irregular points, the

volume released from the tablet.

function [dt_conc,C,dc]=Solute_conc(C,Cw,dd,dx,dy,dz,nx,ny,nz,dte,...

IN_level,OUT_level,dt,ONE,ZZ,M,max_conc,D_solute)

%the effective diffusion coefficient(alpha) is calculated as a function of solvent

%concentration, active particle surface area and a prescribed diffusion

%constant representing the chosen API-solvent system.

alpha=Cw.*D_solute;
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%Creates matrices for use with Taylor series approximation

alphaxp(:,1:nx-1,:)=alpha(:,2:nx,:);alphaxp(:,nx,:)=0;

alphaxm(:,2:nx,:)=alpha(:,1:nx-1,:);alphaxm(:,1,:)=0;

alphaym(2:ny,:,:)=alpha(1:ny-1,:,:);alphaym(1,:,:)=0;

alphayp(1:ny-1,:,:)=alpha(2:ny,:,:);alphayp(ny,:,:)=0;

alphazp(:,:,1:nz-1)=alpha(:,:,2:nz);alphazp(:,:,nz)=0;

alphazm(:,:,2:nz)=alpha(:,:,1:nz-1);alphazm(:,:,1)=0;

Cxp(:,1:nx-1,:)=C(:,2:nx,:);Cxp(:,nx,:)=0;

Cxm(:,2:nx,:)=C(:,1:nx-1,:);Cxm(:,1,:)=0;

Cym(2:ny,:,:)=C(1:ny-1,:,:);Cym(1,:,:)=0;

Cyp(1:ny-1,:,:)=C(2:ny,:,:);Cyp(ny,:,:)=0;

Czp(:,:,1:nz-1)=C(:,:,2:nz);Czp(:,:,nz)=0;

Czm(:,:,2:nz)=C(:,:,1:nz-1);Czm(:,:,1)=0;

%calculates change of water concentration in pill per unit time

dc=IN_level.* ...

(((alphaxp-alphaxm).*(Cxp-Cxm))./(2*dx)^2+ ...

((alphayp-alphaym).*(Cyp-Cym))./(2*dy)^2+ ...

((alphazp-alphazm).*(Czp-Czm))./(2*dz)^2)+ ...

alpha.*(Cxp/dx^2+Cxm/dx^2+Cyp/dy^2+Cym/dy^2+ ...

Czp/dz^2+Czm/dz^2-2*C*(1/dx^2 + 1/dy^2+ 1/dz^2));

%calculates critical timestep size

critical = dd/max(max(max(abs(IN_level.*dc))));

dt_conc=.95*critical;
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%timestep change of water concentration

dC=dt*dc;

%new water concentration in pill

C=min(max_conc,max(IN_level.*(C+dC),ZZ));

.5.14 Level Set Volume

This function uses the current level set to determine the remaining volume of intact

tablet.

function[Tablet_Volume]=Level_Set_Volume(IN_level,index,ZZ,nx,ny,nz,...

cell_volume,dx,dy,dz,L,P1,P2,P3)

Tablet_Volume=0;

Tablet_Volume=sum(sum(sum(IN_level-max(index,ZZ)/2)))*cell_volume;

avg_dist=(dy+dx+dz)/3;

for i=1:ny

for j=1:nx

for k=1:nz

if index(i,j,k)==1

% % dist=abs(P1(i,j,k)*dx)+abs(P2(i,j,k)*dy)+abs(P3(i,j,k)*dz);

dist=sqrt((P1(i,j,k)*dx)^2+(P2(i,j,k)*dy)^2+(P3(i,j,k)*dz)^2);

Tablet_Volume=Tablet_Volume+(cell_volume*sqrt((L(i,j,k))^2/(dist)^2));

end

end

end

end
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