GUI LITE - A REDUCED COMPLEXITY GRAPHICAL USER INTERFACE
DEVELOPMENT TOOLBOX IN MATLAB (WITH APPLICATIONS TO DIGITAL
SPEECH PROCESSING PROBLEMS)

BY REEMY MARIA D’SOUZA

A thesis submitted to the
Graduate School-New Brunswick
Rutgers, The State University of New Jersey
in partial fulfillment of the requirements
for the degree of

Master of Science
Graduate Program in Electrical and Computer Engineering

written under the direction of

Professor Lawrence R. Rabiner

And approved by

New Brunswick, New Jersey

January, 2011

ABSTRACT OF THE THESIS

GUI Lite - a Reduced Complexity Graphical User Interface Development
Toolbox in MATLAB (with Applications to Digital Speech Processing
Problems)
by Reemy Maria D’Souza
Thesis director

Dr. Lawrence R. Rabiner

Graphical User Interfaces (GUIs) are used to view and study the capabilities and
limitations of a range of speech processing applications. They are invaluable teaching
and algorithm implementation aids. Using a GUI to explore the capabilities of a given
application greatly increases the utility of the application, particularly in the area of

digital speech processing.

Currently there exists a powerful GUI design toolbox, called the GUIDE (Graphical
User Interface Development Environment), included with MATLAB. Learning how to
use the GUIDE effectively is complicated and time-consuming. Our basic premise
about the GUIDE is that a small and manageable subset of the GUIDE’s capability
could provide sufficient flexibility to implement most speech processing problems of

interest.

With this driving principle, we have designed and implemented the GUI Lite Version 1
and Version 2 which enable the user to easily design and create GUIs in MATLAB.
GUI Lite Version 1 is a single-pass design tool in which the GUI layout and callback
functions (i.e., code associated with the various GUI elements like graphical displays
and buttons) are integrated into a single stage solution. The GUI Lite Version 1 User
Manual explains how to write code to control and manipulate the various GUI

components used in a given implementation of a speech processing algorithm.

GUI Lite Version 2 is a two-pass design tool in which the GUI layout is implemented
in the first stage, and the selected GUI element callback functions are implemented in
the second stage. GUI Lite Version 2 automates and separates the design and layout of
the GUI from the writing of the callback code that controls the various GUI elements.
This two stage GUI design and creation tool simplifies the process of creating viable
GUIs and improves the user experience significantly. GUI Lite Versions 1 and 2 have
undergone a series of user trials to develop GUIs for a range of speech processing
algorithms. The trial results indicate that the two GUI Lite tools succeed in making the
creation process of GUIs for speech processing algorithms a great deal simpler and

more intuitive than MATLAB’s GUIDE tool.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Prof. Lawrence Rabiner for his constant guidance and
motivation. Inspite of his busy schedule, Prof. Rabiner was always available to discuss
my thesis, edit my manuscript and offer encouragement. This thesis would not have

been possible without him.

I would also like to thank my parents, and my extended family, Savio, Remya, Cibin,
Vanchi, Preeti, Kashyap and Narayanan for their support and motivation while writing

my thesis.

Table of Contents

ABSTRACT OF THE THESIS ...ttt sttt il
ACKNOWLEDGEMENTS ...ttt ettt sttt ettt e saeeneeaesseensensesneenes v
Chapter 1 INtrOQUCHION.eiiieiiieiieieeieeseeeee ettt ettt e sebe s e esbeeteesteesenesssessseesseenseessnensnes 1
1.1 IMOTIVALION ...ttt ettt ettt ettt et esat e e et et e bt e bt e bt e s st e eseeeateenbeebeesaeesaeeenneenne 1
1.2 Description Of GUI LIEccueiiciiiiiiiciiie ettt ettt e erae e aveesaraeeeaeas 2
1.2.1 Components that can be created using GUIL Lite.c.ccccvevivvieencieeciecieeeeeeeeen, 3
1.2.2 Essential MATLAB functions for GUI development.cccccveeviiiicieeecieenieens 6
Chapter 2 Implementation of a GUI using GUI Lite -Version 1.......ccoceveninienininienineene 12
2.1 GUILIte = VEISION 1 ..oouiiiiiiiiiiiii ettt ettt st e be e 12
2.2 Implementation of four Baseline Programs Using GUI Lite Version 1...........c.cccoc...... 12
221 Program 1 - Hello World program...........ccccoviiiiiiiiiiiiiieeeeetee e 13
2.2.2 Program 2 - Display the waveform of a designated speech file............c.cccoceeeennen. 19
2.2.3 Program 3 - Load a Speech File, Play it Back and Display the Waveform. 26
2.2.4 Program 4 - Load an Existing Speech File or Record a New Speech File. Play the
File, Display a Waveform of the Speech File and Save the File...........cccccoooiniiiiiinininnenn. 35
2.3 GUI Lite - Version 1: Strengths and Weaknesses.........coccovveeveeneenienieniieeeeeceeens 48
Chapter 3 Implementation of a GUI using GUI Lite -Version 2........c.cccceeevvevvereenvenveenvesnneenn, 49
3.1 GUI LIte = VEISION 2 ..ttt ettt ettt ettt ettt e bt sat e st e eateeteesbeesbeesneeens 49
3.1.1 Naming conventions for GUI Lite — Version 2..........cccceeevveevvevieereeneeneesvesveenens 49
3.2 Implementation of four Baseline Programs Using GUI Lite - Version 2 50
3.2.1 Program 1 - Hello World program...........cccccueeveevieerieeniesienieeieeieeieeseeseeesvesenes 50
3.2.2 Program 2 - Display the waveform of a designated speech file.............c.ccccee.... 60
3.2.3 Program 3 - Load a Speech File, Play it back and Display the Waveform............ 68
324 Program 4 - Load an Existing Speech File or Record a New Speech File. Play the
File and Save the File........coooiiiieeee e 80
33 GUI Lite — Version 2: Strengths and Weaknessescocvereerienieriieenieeneeneesieseens 95
Chapter 4 Testing of GUI Lite - VErsion L.......ccccoiieviiiiieiiiciicieeieeeesiee e sre e ere e sieesene e 97
4.1 Overview of the testing of GUI Lite - Version 1ccccceveiveeiieciienienienienieeieeieeiens 97
4.1.1 Feedback for the GUI Lite — Version 1 from user 1ccccoveeiieniininniiiieeeene 97
4.1.2 Feedback for the GUI Lite — Version 1 from user 2ccccevereerieneneencnenienens 98
413 Feedback for the GUI Lite — Version 1 from user 3cccccoveenieniininniieieeene 99

4.2 Analysis of the feedbacki..........cccoeviiiiieiieiieceeceeee s 100

Chapter 5 Testing for GUI Lite - VEISION 2c.ccoveciieiiiiiiiciiicieeiecsieestee e ere e eveesveesene e 101
5.1 Testing for GUI Lite — VEISION 2......c.eecvieriieriierierieeieeieeseesieeseesnesneeseeseesseesssessnes 101
5.1.1 Questionnaire for users using MATLAB’s GUIDE toolboxXccccevvevvvennnnee. 101
5.1.2 Questionnaire for users using the GUI Lite-Version 2 toolboXccveeeenee. 102
5.2 Results of the comparative testing between GUIDE and GUI Lite — Version 2.......... 103
5.2.1 Feedback from User 1 after testing the GUIDE and the GUI Lite toolboxes....... 103
522 Feedback from User 2 after testing the GUIDE and the GUI Lite toolboxes...... 105

5.3 Analysis of the feedback obtained after testing the GUIDE and the GUI Lite toolbox

107

F N 0 81S] 116 D Qe OO U UURPPSURPR 108
W 070153 T 1l PR 140
APPENAIX C oottt e et e et e e et e e e bae e tbee e bae e tbeeabee e tbeeebeeetaeearbaeeraaearraeans 167
BN 030153 0T 1l PR 181
RETEIEIICES ...ttt et ettt e s he e sate st e eabe e beenbeesbeesaeesnees 241

Vi

Chapter 1 Introduction

1.1 Motivation

User Interfaces (Uls) are used by researchers, teachers and students alike to
demonstrate and study various speech processing algorithms and applications. GUIs [1]
[2] [3] [4] [5] make it fast and easy for users to change parameters, optimize
performance and get fast results from speech processing applications without delving

into the application’s code.

A fairly powerful UI toolkit called the GUIDE [6] was created by MathWorks and
developed in MATLAB. Uls are implemented using the GUIDE which is an acronym
for the MATLAB Graphical User Interface Development Environment. The GUIDE
toolbox provides the user with extensive UI development facilities. In order to create a
button, a user launches the GUIDE toolbox at the MATLAB command prompt and then
selects the style of button that he or she would like to create from a menu bar that is
provided after the toolbox is launched. Double clicking the created button will provide
the user with approximately 37 properties that the user can either set or leave at their
default values. The GUIDE toolbox enables the user to create an extremely
sophisticated GUI with extensive Ul development features. However, in order to use
the GUIDE, the user needs to be able to learn a new environment and develop a level of
expertise in it to understand how to use it effectively. GUIDE is complicated and takes
a long time to get working, even for small programs. The GUIDE is also not very
intuitive and often it takes longer to create the user interface than it does to write the

speech processing application itself.

To ameliorate this issue, we have designed and implemented a new toolbox, called the
GUI Lite toolbox, which is a lighter, more intuitive, alternative to the GUIDE toolbox.
It is based on the driving principle that a small and manageable subset of GUIDE’s
capability will provide sufficient flexibility to create GUIs for almost all speech
processing applications. Though GUI Lite does not provide a plethora of Ul
development capabilities to the user like the GUIDE, it is more than sufficient to design
and implement Ul environments that are of low-to-moderate complexity. GUI Lite
significantly reduces the time and effort to design and create GUIs for speech

processing applications.

1.2 Description of GUI Lite

GUI Lite is a graphical user interface design tool set implemented in MATLAB. It
provides an intuitive and relatively simple UI development environment which aims to
improve a user’s ability and experience while creating Uls. GUI Lite is intended to help
the user focus on the implementation of the application rather than the implementation
of the UI for the application. The GUI Lite toolbox is intended to be mainly used to
create graphical user interfaces for speech processing applications. GUI Lite provides a
highly intuitive and straightforward method to create GUIs. The target users are

researchers, faculty and students.

GUI Lite attempts to create a trade-off of complexity versus features. It offers reduced
complexity while maintaining most of the essential features required by a GUI design
toolbox. The MATLAB UI design toolkit, GUIDE, offers far more features than GUI

Lite but using the toolkit is quite complicated and not very intuitive.

GUI Lite, the low complexity toolbox for easy Ul development was implemented in
two different ways which we call Version 1 and Version 2. Version 1 was a single stage
design in which GUI features and callback code implementation for the GUI
components were integrated into a single package. Version 1 was tested on a range of
signal processing problems until it became clear that a 2-stage solution, in which the
design of the Ul and the code implementation for each of the UI elements was

separated into individual code components, was the preferred solution.

Subsequent GUI development showed that the 2-stage solution, dramatically simplified
the problem of how to create viable user interfaces. A brief user manual (included in
Appendix A for GUI Lite-Version 1 and Appendix B for GUI Lite-Version 2) and a
package of files that must be saved onto the user’s computer for Version 2 are included
in the appendices of this thesis.

1.2.1 Components that can be created using GUI Lite.

A GUI created using the GUI Lite toolkit consists of one or more of the following GUI

objects.

1. Panel: A panel is a gray rectangular outline that is used to contain buttons, plots,
title boxes or a combination of all three. Panels are also used to group UI
objects (buttons or plots) performing similar functions together. Panels improve
the layout of the GUI by providing a well-defined, more organized way of
arranging the elements of the GUI.

2. Graphic Panel: A graphic panel is a plot window in which plots are drawn. It is
different from the panel above. It is a white box and is sometimes enclosed by a

‘panel’.

3. Title Box: A title box is a gray rectangular box which is used to add a title for a
panel, a graphic panel or a group of buttons. The text to be displayed in the title
box is entered while writing callbacks (i.e., code implementations of the desired
buttons) for the various GUI objects.

4. Button: A button is an object that is used to input a desired parameter to the
GUI, perform a desired function when clicked, or provide options (e.g.: a drop
down menu). Figure 1.1 displays a dummy GUI with GUI objects including a
panel, a graphic panel, a title box and a button created and labeled. Note that the
rectangular outline for the title box is not clearly distinguishable from the

background since they are both gray in color.

Panel

Title hox

This is a title box. You may
chanae this strina

Graphic Panel

09
08r
07F
06
05-
04
03

02

Figure 1.1 A dummy GUI with GUI objects including a panel, a graphic panel, a title box

and one button.

The types of buttons that can be created using GUI Lite are as follows:

A) Pushbutton: This button performs a certain function when clicked i.e., it

B)

executes code in its callback function when clicked via the mouse. This is
the default ‘type’ of any button created using GUI Lite.

Edit box: This kind of button is used to provide input to a GUI in
MATLAB (e.g., the value of a variable). To create an edit box, the user

must specify the type of button be created as an ‘edit’ button. The value in

the edit box can be changed by moving the mouse to the edit box and
editing the value in the box.

C) Text button: This is a gray box that contains text. It can be used to hold a
common title for a group of buttons or the label for a single button. The
text in this box cannot be edited. Also, the text for this button is entered
while writing the code for the callback functions.

D) Popupmenu button: The popupmenu button is a pull down menu which
contains a list of options for user selection (e.g., possible speech files
within a directory for analysis). The user must enter the type of button as a
‘popupmenu’ button while creating the button.

E) Slider button: This button is a horizontal slider button. It can be used for
tasks such as volume control. The user must enter the type of button as a
‘slider’ button while creating this type of button.

5. ‘Callback’ functions: The ‘uicontrol’ object/function is used to create buttons
for a GUI. The buttons created by the ‘uicontrol’ function do not perform the
desired functions until the callback code for the buttons has been written. The
‘callback’ function is the backend code of the button that actually performs the
function the button of the button. The ‘callback’ code is the application’s code,

and is written by the user.

1.2.2 Essential MATLAB functions for GUI development.

MATLAB provides its users with a multitude of functions which they use to write their
own applications. Two of the most important functions provided by MATLAB for GUI

development are the ‘uipanel’ and the ‘uicontrol’ functions. They are explained below.

e ‘uipanel’ function: The ‘uipanel’ [7] function/object is used to create user interface
objects such as panels which are used to outline GUI objects such as graphic panels
and buttons. The ‘uipanel’ object has attributes like ‘Title’, ‘BackgroundColor’,
‘Position’, etc., which must be specified by the user while creating the ‘panel’.
Entering the values for the ‘position’ attribute of the ‘uipanel’ object is tedious,
time consuming and difficult to get right. To help demonstrate how tedious entering
the ‘position’ attribute of the uipanel’ object can be, a dummy GUI, named the

‘Simple Test GUI’ which contains four panels created and is displayed in Figure

1.2.

o

Panel 4

Panel 3
Panel 2

Panel 1

Figure 1.2 The ‘Simple Test GUI’ contains four panels. The panels are labeled as Panel 1,
Panel 2, Panel 3 and Panel 4.

Figure 1.3 displays the ‘Simple Test GUI” with the co-ordinates and dimensions of the

four ‘uipanel” objects clearly marked on the GUL

=10/ x|

1 unit

09
08

0.35 units
wrt Panel 2
0.35 units
wrt Panel 2

08
08

07
0.7

06

06

05
05

ﬂ ™~ ']
E T = Z 1z
0 £ £
o = t ~
= S : 24z
2 T 2 @
= % c o
= [= =
o E_r! <o = |
[am] 3 o vy
0 S
o [L=
Ln_r.:i Ln_rn‘._.
o
=, | =
1 ! | 1 1 = L 1 1 1 L = o~
ERRTIEE T e
e
> . :
% n oo B | g] |
d‘! = ('\! = ("Q =
(= (= f o -
2
— — = —
= | o o = —
=1 <I L | o o
D SRR S
& L= = =

Figure 1.3 The ‘Simple Test GUI’ with the co-ordinates and the dimensions of the
panels and graphic panels clearly marked on it.

‘uicontrol’ object: The ‘uicontrol’ [8] object is used to create user interface objects
such as buttons. The ‘uicontrol’ object is used to create different types of buttons
such as ‘pushbutton’, ‘edit’, ‘popupmenu’, ‘text’ and ‘slider’ buttons. Similar to
the ‘uipanel’ object, each button has attributes such as ‘BackgroundColor’,
‘String’, ‘Type’, ‘Position’, etc. Entering the ‘position’ attribute of a ‘uicontrol’
object is very tedious since getting the positions of the buttons to look just right on
the GUI window requires meticulously entering the position attribute of the
‘uicontrol’ object, sometimes with accuracy even up to 3 decimal places.

Figure 1.4 displays the ‘Simple Test GUI” with the co-ordinates and dimensions of

the buttons clearly marked on it.

Figure 1.4 The ‘Simple Test GUI’ with the co-ordinates and dimensions of the buttons
marked on it.

10

11

From Figures 1.3 and 1.4, it is clear that properly positioning GUI objects like
panels and buttons is a tiresome and painstaking task.
The ‘position’ attribute of a ‘uipanel” or ‘vicontrol’ object needs to be entered in
the following format:
[x y length width] where
‘x” and ‘y’ are the x and y co-ordinates respectively of the bottom left corner of
the created panel with respect to the bottom left corner i.e., origin [0, 0] of the
GUI window. The ‘length’ and ‘width’ variables are the horizontal length and
vertical width of the GUI object whose ‘position’ attribute is being entered. For
the GUI object ‘panell’ displayed in Figures 1.2 and 1.3, the position attribute
is [0 0.001 0.23 0.354].
Similarly, the “position’ attribute for the ‘Get directory/Select file’ button which is
displayed in the top left corner of the ‘Simple Test GUI’ in Figure 1.4 is [0.1 2.5

0.35 0.16].

12

Chapter 2 Implementation of a GUI using GUI Lite -Version 1

2.1 GUI Lite - Version 1

GUI Lite - Version 1 is a one-pass design tool in which GUI features and callback
programs (i.e., code associated with the various panels, graphic panels, title boxes and
buttons) are integrated into a single stage solution. GUI Lite - Version 1 (for which a
detailed user manual is given in Appendix A) explains how to understand and write
code to create GUI objects such as panels, graphic panels, title boxes and buttons. The
GUI Lite — Version 1 User’s Guide is a self contained user manual that includes
detailed instructions, code snippets and clearly marked screenshots from which the user
can create a viable user interface. The user’s guide for GUI Lite — Version 1 provides
an example showing how to create a GUI in MATLAB. The user’s guide begins with
the layout of the GUI which is created using combinations of ‘uicontrol’ and ‘uipanel’
functions. The user’s guide explains how to write callbacks for the created GUI objects.
GUI Lite - Version 1 was developed with the intention of assisting and teaching the
user how to create his or her own GUIs with ease. Using the detailed user’s guide, a
user should be able to familiarize himself with the various components of a GUI and
understand how GUI objects can be manipulated to create much more complicated

GUTIs than the one given in the user guide.

2.2 Implementation of four Baseline Programs Using GUI Lite Version

1
In this section we explain how to use the GUI Lite — Version 1 to design UI’s for four
speech processing exercises. The four exercises are ordered to demonstrate increasing

complexity GUI solutions. The reader should consult the User’s Guide for GUI Lite —

13

Version 1 (Appendix A) for additional input and explanations of the Version 1 steps in

setting up the GUI for each of these four examples. The following four exercises show

simple examples of how to build GUIs using the GUI Lite — Version 1 Toolkit. The

programs consist of the following signal processing exercises.

e Program 1 - Hello World program.

e Program 2 - Display the waveform of a designated speech file.

e Program 3 - Browse a directory, load the selected speech file, play it and display the
waveform.

e Program 4 - Load an existing speech file or record a new speech file. Play the

selected speech array and save the recorded speech array in a designated file.
The MATLAB code for all four examples has been included in Appendix C.
2.2.1 Program 1 - Hello World program
The GUI Lite - Version 1 toolbox can easily be used to create a GUI which simply
displays the text ‘Hello World” when a button is pressed. The first step in creating a

GUI is to determine what the GUI should look like. To do this the user must draw a

sketch of the GUI on paper, as shown in Figure 2.1 for the Hello World program.

14

Hello Wovld GUL |

Figure 2.1 A sketch of the tentative layout for the ‘Hello World GUT’.

For this simple GUI the user will require a GUI window i.e., a window/screen where
the desired buttons will be laid out and a button which, when clicked, will display the
message ‘Hello World’.

The first step in the in the ‘Hello World GUI’ development process is to define a
function called ‘helloWorld’. The ‘helloWorld’ function represents the GUI being

created. The ‘helloWorld’ function is created using the following code snippet:
function helloWorld

%embedded code for the GUI application

end

15

The user should first enter the commands ‘clc; clear all;” within the function that has
just been created (i.e., helloworld). The ‘clc;’ and ‘clear all;” commands clear all the
variables from the workspace before running the GUIL The ‘Hello World GUI” contains
only one button and hence does not require any panels,. The following code snippet

should next be inserted within the function ‘helloWorld’ created by the user.

clc;clear all;

f = figure('Visible', 'on', ...
'Units', '"normalized', ...
'Position', [0,0,1,1],...
'MenuBar', 'none', ...
'NumberTitle', 'off');

% Assign the GUI a name to appear in the window title.

set (f, "Name', '"Hello World');

The above code creates a GUI window named ‘Hello World” whose units are
normalized to the [0 1] range and whose position is set to full screen. The GUI is
positioned at coordinate (0, 0) (the left bottom corner) of the user’s computer screen
and has length and width of one unit. The user can save and run the ‘helloWorld.m’ file

to see the screen shown in Figure 2.2.

16

Figure 2.2 The ‘Hello World’ ‘figure’ window created using the ‘figure’ command. The
dark blue line at the top of the gray window contains the name of the window.

The next step in the ‘Hello World GUI’ development process is to create the ‘Push me’
button using the ‘uicontrol’ function/object. Since the default style of a ‘uicontrol” (user
interface object) object is ‘pushbutton’, if the style attribute of the ‘uicontrol’ function
is not specified, it is assumed to be a pushbutton. The user can create a ‘pushbutton’
that says ‘Push me’ using the following code (as given in the user’s guide in Appendix
A):
$BUTTON
% Push me button
pushMebutton=uicontrol ('Parent', f, ...

'Units', "Normalized', ...

'Position', [0.1 0.3 0.2 0.1],...

'String', 'Push Me', ...
'Callback', @pushMeCallback) ;

17

While using the code from the user’s guide, the user should remember to change the
‘parent’ attribute of the ‘uicontrol’ function to ‘f”, where ‘f” is the default name of the
‘figure’ window created by the user and within it lies the ‘Push me’ button. Hence ‘f’
is known as the ‘parent’ of the ‘Push me’ button. Also the ‘string’, ’position’ and
‘callback’ attributes should be assigned as shown in the above code snippet. The
callback function ‘pushMeCallback’ is called and executed when the ‘Push me’ button
is clicked. Figure 2.3 displays how the GUI window will look to the user after the ‘Push

me’ button has been created.

Push Mz

Figure 2.3 The ‘Hello World’ GUI containing the ‘Push me’ ‘pushbutton’ button. This
button is not ready to be clicked since the callback for the button has not yet been written.
Clicking the button will display an error alert on the MATLAB command window.

18

The next step is to write a callback for the ‘Push Me’ button. The callback is the code
that actually performs the function that the ‘Push Me’ button is supposed to do when
the ‘Push me’ button is clicked. The button code that was written using the ‘uicontrol’
function only creates the button. If the user were to push the button at this stage he (or
she) would get an error alert on the MATLAB command window as the button does not

perform any function. The code for the callback for the ‘Push me’ button is as follows:

%callback for the push me button
function pushMeCallback (h,eventdata)
msgbox ('Hello World!', 'modal')

end

In the above callback function, the argument ‘h’ represents the handle to the object
‘pushMe’ and the argument ‘eventdata’ is reserved for use in future versions of
MATLAB. The ‘h’ and ‘eventdata’ arguments are always passed while writing callback
functions. The ‘msgbox’ function is used to create and display a message box that
displays the text sequence ‘Hello World!’. The ‘modal’ attribute of the ‘msgbox’
function prevents the user from interacting with other windows in MATLAB before
responding to the ‘msgbox’. After all of the above code has been entered into an editor,
the completed ‘.m’ file needs to be saved and then can be run. The result of running the
‘helloWorld.m’ file is shown, Figure 2.4 where we see both the ‘Push me’ button and

the ‘Hello World!” Message box.

19

=IDx]

=
Hello world!

Figure 2.4 The fully functioning ‘Hello World’ GUI with a message box displaying the
message ‘Hello World!” when the ‘Push me’ button is clicked.

2.2.2 Program 2 - Display the waveform of a designated speech file.

In order to display the waveform of a designated speech file, the user must first sketch
the desired layout of the GUI on paper. The GUI for Program 2 will require a GUI
window , a ‘pushbutton’ (to initiate the plot) and a ‘plot window’ (graphic panel) within
which the designated speech file is displayed. The user should also have a button
which, when clicked, closes this GUI. The user can also draw individual panels around
both the buttons and the ‘plot window’ to make the resulting GUI more visually
appealing and to create a visual separation between the button space and the plot space.
The ‘plot window’ is also referred to as a ‘graphic panel’. This makes a total button
count of two, a panel count of two and a graphic panel count of one for the basic GUI.

Figure 2.5 shows how the GUI should look on paper.

20

e
graphicPanell M ’1":"9'
e
e
panell
buttonl button2
Disglay speech um ou:

Figure 2.5 A sketch of the tentative layout of the ‘Display Speech Waveform GUI’.

The first step in building the GUI for Program 2 is to create a

‘displaySpeechWaveform’ function, as follows:
function displaySpeechWaveform

%embedded code for the GUI application

end
Once the ‘displaySpeechWaveform’ function has been created, the desired GUI code
must be embedded into it. The user needs to create a figure window and the two panels

that will enclose the buttons and the plot window. The ‘plot window’ is also referred to

21

as a ‘graphic panel’. The following code is used to create the GUI window and its

panels.

clc;clear all;

f = figure('Visible', 'on',
'Units', '"normalized', ...
'Position', [0,0,1,1],...
'MenuBar', 'none', ...
'NumberTitle', 'off');

% Assign the GUI a name to appear in the window title.

set (f, '"Name', 'Display speech waveform GUI');

%$GUI PANELS

%$This GUI is divided into two panels, a panel to group the buttons and

a %panel to enclose the graphic panel.

panell=uipanel ('Parent',f,...
'Units', '"Normalized', ...

'Position', [0.1 0.05 0.75 0.2]);%button panel

panel2=uipanel ('Parent',f,...
'Units', '"Normalized', ...
'Position’', [0.1 0.3 0.75 0.65]);%plot window

% (graphic panel) panel
Creating the panels is extremely tedious since setting the ‘position’ attribute of the
‘uipanel’ (panel object) object requires multiple tries to get the panel positions and
dimensions to look just right. Figure 2.6 displays the ‘Display speech waveform GUT’

window with only the panels drawn on it.

Figure 2.6 The ‘Display speech waveform GUI’ with two panels created in it. The two
large gray rectangles contained within the GUI window are the panels. They are used to
visually separate the button space and the plot space.

Now that the two panels have been created, the next step is to create the buttons and the

‘graphic panel’, as follows:

%The speech waveform will be displayed within graphicPanel.
graphicPanel = axes('parent',panel2,...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.8 0.5],...
'GridLineStyle', '-=");

The user should remember that ‘panel2’ is the ‘parent’ of ‘graphicPanel’ and hence
should set the ‘parent’ attribute of the ‘axes’ function to ‘panel2’ as done in the above

code snippet.

22

23

The next step is to create the buttons for Program 2. The user can use the code used in

Program 1 as a template for creating the required pushbuttons.

$BUTTONS

Q

o

s Display speech waveform button
displaySpeechbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.1 0.3 0.2 0.371,...
'String', 'Display speech waveform', ...

'Callback',@displaySpeechCallback) ;

[o)

% Close GUI button

closebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.6 0.3 0.2 0.371,...
'String', 'Close GUI', ...
'Callback',@closeCallback) ;

Now that the buttons have been created, the display should look like the screen shown

in Figure 2.7.

Display speech waveform GUI _ =101 %]

0 01 02 03 04 05 D& 07 na 08 1

Display spesch waveform Close GUI

Figure 2.7 The ‘Display speech waveform GUI’ with two panels, one graphic panel, and
the ‘Display speech waveform’ and ‘Close GUI’ ‘pushbutton’ buttons. Callbacks for the
two buttons have not been written as yet.

Now that the buttons have been created, the callbacks (i.e., the working code that gets

executed on each button press) must be provided, and is of the form:

%callback for the display speech waveform button
function displaySpeechCallback (h,eventdata)
loadedSpeech=wavread('sl.wav');
%The speech file is 'sl.wav'
axes (graphicPanel) ;
plot (loadedSpeech) ;
title('sl.wav');
xlabel ('Time in seconds');

ylabel ('Amplitude');

24

25

end

For the ‘displaySpeechWaveformCallback’ code to work properly, the speech
waveform that is going to be displayed (in this case the speech array from file ‘sl.wav’)
must be saved in the directory that the code for ‘displaySpeechWaveformCallback.m’
file is saved in. The above callback loads the image ‘s1.wav’ from the current directory

and displays it on the ‘graphicPanel’. The image has been titled, ‘sl.wav’.

%callback for the close GUI button
function closeCallback (h,eventdata)
close (gcf) ;

end

The ‘closeCallback’ code closes the current GUI window. Figure 2.8 displays the

completed GUI. The final Program 2 code is included in Appendix C.

26

EARTEY

Armnplitude

4 I I 1 I
0 0.5 1 15 2 9:5

Time in seconds i

Cloze GUI

Figure 2.8 The fully functioning and completed ‘Display speech waveform GUI’. On
clicking the ‘Display speech waveform’ button, ‘sl.wav’ is displayed.

2.2.3 Program 3 - Load a Speech File, Play it Back and Display the Waveform.

Program 3 shows how to build a GUI to browse a directory in order to find and load a
speech file, play out the speech array and finally display the waveform of the speech
file. Again the user first needs to sketch the layout of the GUI. For this GUI, we again
use two ‘panels’ to create a well organized GUI. The first panel is a button panel that
contains the required buttons, the second panel contains the graphic panel which is used
to display the speech waveform. The buttons that are required for this GUI are a ‘Get
directory’ button (which is used to browse the file system), a ‘popupmenu’ button

(which will be populated with the file list from the selected directory), a ‘Play’ button, a

27

‘Plot’ button and a ‘Close GUI’ button. Figure 2.9 shows a sketch of the layout for the

Program 3 GUIL

Plog & flot speech GUI
| flay e« 2 P ————
i -
panel2
graphicPanell W '{'L le
rapctanel o o —
hutton2
(Ejﬁlc' ct‘:ﬂldsornd‘]’huttunl | Sedect file Ivi
' hutton? huttond | huttons
Py | [fot [\dose GUI
panell
l -

Figure 2.9 Sketch of the layout of the Program 3 GUI.

We begin writing the code for Program 3 by first creating the framework for the

different functions, using the code:

28

function playPlotSpeechGUI
%embedded code for the GUI application

end
Next the GUI window and the panels are created, as in the previous examples, using the

code:

clc;clear all;

%variable initialization

%the variables have been initlaized
%$to dummy values.

curr_ file=1;

fs=1;

directory name='ABCD';

wav_file names='ABCD';

file info string='ABCD';

f = figure('Visible', 'on',
'Units', '"normalized', ...
'Position', [0,0,1,17,...
'MenuBar', 'none', ...
'"NumberTitle', 'off');
% Assign the GUI a name to appear in the window title.
set (£, 'Name', 'Play and plot speech GUI');
%$GUI PANELS
$This GUI is divided into two panels
panell=uipanel ('Parent', f, ...
'Units', '"Normalized', ...

'Position', [0.1 0.05 0.75 0.35]);%button panel

panel2=uipanel ('Parent', f, ...
'Units', "Normalized', ...
'Position', [0.1 0.45 0.75 0.5]);%plot window

% (graphic panel) panel
The variable initialization segment of the code will be explained during the callback

section of this program. Now that the panels which organize the GUI have been

29

created, the next step is to create the graphic panel within which the plot of the speech

file will be displayed.

%$The image will be displayed within graphicPanel.
graphicPanel = axes('parent',6panel2, ...
'Units', '"Normalized', ...
'Position', [0.1 0.2 0.8 0.7],...
'GridLineStyle','-=");

Note that the ‘parent’ attribute of the ‘axes’ function has been set to ‘panel2’ since the

‘graphicPanel’ is found in ‘panel2’.

The next step is to create the buttons which control the GUI. Again, the user can

redeploy the code used in Program 2 for creating pushbuttons.

$BUTTONS

o)

% Get directory button

getDirectorybutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...

'Position', [0.25 0.55 0.2 0.25], ...
'String', 'Get directory/Select file',...
'Callback', @getDirectoryCallback) ;

The ‘Get directory’ button is a ‘pushbutton’. Hence the style attribute of the ‘uicontrol’
object used to create the button need not be specified. The ‘parent’ attribute of the
‘uicontrol’ function has been set to ‘panell’ since the ‘Get directory’ button is found in
‘panell’.

The next button that needs to be created is a ‘popupmenu’ button which creates a drop

down menu. This drop down menu will be populated with the speech files present in

30

the directory selected using the ‘Get directory’ button. Not that the ‘style’ attribute of

the “uicontrol’ object must be changed to ‘popupmenu’ for the ‘Select file’ button.

o)

% Select file button
selectFilebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.55 0.45 0.2 0.25],...
'style', "popupmenu', ...
'BackgroundColor', 'white', ...
'String', 'Select file',...

'Callback',@selectFileCallback);

The last three buttons i.e., ‘Play’, ‘Plot’ and ‘Close GUI’ are ‘pushbuttons’ and can be

created easily using the code from the earlier “pushbuttons’ as templates.

%$Play button

playbutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 0.1 0.2 0.25],...
'String', 'Play',...
'Callback', @playCallback);

%Plot button

plotbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.4 0.1 0.2 0.25],...
'String', 'Plot',...
'Callback',@plotCallback);

)

% Close GUI button

closebutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.7 0.1 0.2 0.25],...
'String', 'Close GUI', ...
'Callback',@closeCallback) ;

31

Figure 2.10 displays the GUI window visible to the user after the two panels, the

graphic panel and the five buttons have been created.

<) Play and plot speech GUI =1001%]

08

06

04r-

021

0 0.1 0.2 0.3 0.4 0.5 06 07 0a 0.8 4

Get directory/Select file Select file .
Play Plat Close GUI

Figure 2.10 Screenshot of the GUI window after the all the GUI elements have been added
to

it. Callbacks for the buttons have not yet been written.

The callbacks for the different buttons are described below. The user does not need to
write code that is identical to the code displayed in the callbacks below. This code is
just an example that the user can use as a guideline to write his (or her) own code. The
‘getDirectoryCallback’ function is used to browse and load the contents of the selected
directory from the wuser’s computer into the ‘selectFilebutton’ button. The

‘loadSelection’ function loads the default/initial value of the drop down menu into the

32

‘curr_file’ variable which stores the index of the speech file to be played. This function
can be ignored or completely re-implemented by the wuser. Within the
‘getDirectoryCallback’ function, there are some variables that need to be shared with
the other callback functions. These variables need to be initialized at the beginning of
the ‘playPlotSpeechGUI’ code to dummy values so that they can be shared amongst all
the callback functions. This initialization of variables has been included in the code just
before the GUI window is created using the ‘figure’ command. The callback code [9]

for the various buttons is as follows:

%Callbacks

%Get directory callback

function getDirectoryCallback(src,eventdata)

directory name = uigetdir('start path',6 'dialog title');

A=strvcat(strcat((directory_name),'*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (selectFilebutton, 'String',wav_file names);

%once the popupmenu/drop down menu is created, by default, the
first

%selection from the popupmenu/drop down menu must be loaded
even 1if the

%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
$menu will be loaded
[curr file, fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu) ;

end

33

This ‘selectFileCallback’ callback gets the value entered into the ‘selectFilebutton’
button and passes the value to the ‘loadSelection’ function. The callback code for the

‘selectFilebutton’ button is as follows:

%Select file callback

function selectFileCallback(src,eventdata)
indexOfDrpDwnMenu=get (selectFilebutton, 'val');
[curr file,fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu) ;

end

The function code for the ‘loadSelection’ function is as follows:

$Function--load selection
function [curr file, fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
finipath=strcat(directoryiname,'\',...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;
$fin path is the complete path of the file .wav file that
is
%selected
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs);
%$Information about the file being played
file info string=strcat ('Current file = '

J e e e

wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...

Number of samples in file = ', ...

num2str (length (curr file)));

The callback code for the ‘playbutton’ is used to play the selected speech file. It also

clears the ‘graphicPanel’. This is required because if the user selects, plays and plots

34

filel, the ‘graphicPanel’ will display the waveform of filel. Then if the user selects and
plays file2, the ‘graphicPanel’ will still contain the image of filel unless it is
automatically cleared in the ‘playCallback’. The resulting callback code is thus of the

form;

%Callback for the playbutton
function playCallback (h,eventdata)
sound (curr file, fs);
reset (graphicPanel); %clearing the graphic panel
temp=0;
plot (temp) ;

end

The callback code for the ‘plotbutton’ is as follows:

%callback for the plotbutton
function plotCallback (h,eventdata)
hold off; %It is essential to turn hold off so that the
hold off; $%earlier contents of the panel are replaced
%the two hold off's are for the speech file and the hamming
window
grid off;
reset (graphicPanel) ;
axes (graphicPanel) ;
l=length(curr file);
i=(1:1)/fs;%coverting samples to time
plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ("Amplitude');
title(file info string);
axis tight;
grid on;

end

35

The callback code for the ‘closebutton’ is as follows:

%Callback for close
function closeCallback (h,eventdata)
close(gcf);

end
Once all of the above code has been entered into the MATLAB editor, the user must
save and run the program. The final code for Program 3 is shown in Appendix C.

Figure 2.11 displays the completed GUI for Program 3.

<) Play and plot speech GUI & =101 %]

Current file =s1.wav. Sampling freguency =8000Hz. Number of samples in file =24000
T T T T T

08

04 I -

1| I N R - a0 Ees e -

Amplitude

- RS (- . - I . 4

04 ! 2 : .. o
h ol ' i

B - - | B S— 1

- ; i ; ‘ i

Time in seconds

Get directorySslect file ’ﬁ
Play ‘ Plat Close GUI

Figure 2.11 The fully functioning and completed GUI for Program 3. On selecting the
desired speech file using the ‘Get directory’ and ‘Select file’ buttons, the ‘Plot’ button will
display the waveform of the selected speech file in the ‘graphicPanel.’

2.2.4 Program 4 - Load an Existing Speech File or Record a New Speech File. Play
the File, Display a Waveform of the Speech File and Save the File.

Since the previous three examples have a lot of common steps, in this example, only the

steps that are different from the previous ones will be covered in detail. As always, the

36

user needs to visualize and sketch the panels, graphic panels and buttons of the GUL

The sketch of the GUI for Program 4 is given in Figure 2.12.

Reword speech GU)

S

: button2
e divedoy | {Geleck file v

huttonl hutton3 panel3

oy |

o 1
buttond| RoO00O | l button3

Entex e £nr Bat N0
Soun "111\;"‘lté,"3 0& E,QLOT‘dﬁ 407

Lveauln MT 'lmﬁ
huttont panelz
{Ruor& [ve-vecond
hutton7 buttond
! %ilm] lScw& 'E;-PECLHI
Enbpro. Nong
o sove the

dle.

button9 [(logd Ul] 71]31/‘}

Figure 2.12 A tentative sketch of the Program 4 GUI.

Program 4 again uses panels to organize the GUIL In this program we use multiple

panels to organize the GUI, since groups of buttons, related to the same function, can

37

be grouped together and thus dependencies and the errors caused by clicking buttons
not meant to be used consecutively can be minimized. e.g., the ‘Get directory’ and
‘Select file’ buttons in Program 3 which were used to browse a selected directory and
populate the drop down menu with the speech files in the current directory.

The buttons that our implementation of Program 4 requires are a ‘Get directory’ and
‘Select file’ button to browse and load the desired speech file. A ‘Play’ button is used to
play the selected speech file. To implement the record speech section of Program 4, the
user also needs to create a ‘Record/re-record’ button. Two ‘edit’ buttons are used to
enter the parameters for recording speech (sampling frequency and number of seconds
for recording) should also be created. Next, the user needs to create an ‘edit’ button in
which the filename used to save the recorded speech can be entered. Finally the user
needs to create two additional ‘pushbuttons’, one to save the recorded speech and the
other to close the GUI window. These buttons should also be incorporated into the
design for the Program 4 GUL

In our implementation of Program 4, the buttons are distributed into three panels to
organize them more efficiently. The panels that were created are the following:

e ‘Panell’ contains the ‘Get directory’, ‘Select file’ and ‘Play’ buttons.

e ‘Panel2’ contains the ‘Enter the sampling frequency in Hz’ ‘edit’ button and the
‘text’ button that contains the label for the ‘edit’ button. ‘Panel2’ also contains
the ‘Enter the number of seconds for recording’ ‘edit’ button and its label. It
also contains the ‘Record/re-record’ button, the ‘Enter a filename to save
recorded speech’ ‘edit’ button, its label and the ‘Save speech’ action button.

e ‘Panel3’ contains the ‘Close GUI’ button.

38

The steps that are followed in the creation of the GUI for Program 4 are as follows:
1. Create the GUI function framework.
2. Create a set of three panels.
3. Create the set of nine buttons.

4. Write the callbacks for all the buttons.

The first step is to enter the GUI function framework into the MATLAB editor. Next
the GUI window and the panels that organize the GUI must be created. These two steps

can be done as shown in the code below:

function recordGUI
%embedded code for the GUI application
clc;clear all;
SINITIALIZATION
%The variables returned from the edit boxes must
%be initialized, else the box will only display
%the value but not actually hold that wvalue
curr_ file=1;
directory name='ABCD';
wav_file names='ABCD';
y=1;%y 1is the wvariable that contains the recorded speech
nsec=3;
£s=8000;
fileName="filel';
%The 1 1 in the position attribute means that the GUI
%is fit to screen
f = figure('Visible','on',
'Units', '"normalized', ...
'Position', [0,0,1,17,...
'MenuBar', 'none', ...

'NumberTitle', 'off');

%GUI PANELS

%$This GUI is divided into four panels

panell=uipanel ('Parent', f, ...

'Units', "Normalized', ...

'Position', [0.3 0.65 0.3 0.345]);%top panel
panel2=uipanel ('Parent’', f, ...

'Units', "Normalized', ...

'Position', [0.3 0.245 0.3 0.4]);%center panel
panel3=uipanel ('Parent', f, ...

'Units', '"Normalized', ...

'Position', [0.3 0.04 0.3 0.2]);%bottom panel
% Assign the GUI a name to appear in the window title.
set (f, 'Name', 'Record speech GUI');
$Initialize GUI
set ([f,panell,panel2,panel3], 'Units', 'normalized")

end

After creating the three panels, Figure 2.13 will be visible to the user.

Record speech GUI

Figure 2.13 This GUI window contains the three panels that have been created for

grouping the various buttons of the GUI.

39

40

The above code includes code for the initialization of variables. This will be discussed
during the button creation and callbacks section of Program 4. The next step is to create

the buttons for this GUI. The code for creating the buttons for ‘Panell’ is as follows:

$BUTTONS

% Get directory button

getDirectorybutton=uicontrol ('Parent’',panell, ...
'Units', '"Normalized', ...
'Position', [0.05 0.6 0.35 0.2],...
'String', 'Get directory/Select file',...
'Callback',@getDirectoryCallback);

% Select file button

selectFilebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.55 0.5 0.35 0.25], ...
'style', "popupmenu', ...
'BackgroundColor', 'white', ...
'String', 'Select file',...
'Callback', @selectFileCallback) ;

%$Play button

playbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.3 0.2 0.35 0.2],...
'String', 'Play speech',...
'Callback',@playCallback);

In the above code for creating the buttons for Panel 1, the user should note that the
‘parent’ attribute of the ‘Get directory’, the ‘Select file’ and the ‘Play’ buttons should

be set to ‘panell’ which is the panel in which they reside.

41

Setting the ‘position’ attribute of the buttons is an extremely tedious task since it takes

numerous adjustments and tweaks to set the position of the buttons to exactly the right

position and dimensions.

The code to create the buttons for ‘Panel2’ is shown below. ‘Panel2’ contains a new

type of button, the ‘edit’ button and its label which is a ‘text’ button. An ‘edit’ button is

created by setting the ‘style’ attribute of the “uicontrol’ object to ‘edit’. Another change

in the definition of this button is that the ‘backgroundcolor’ attribute is set to ‘white’ so

that the button is white in color and not gray. Also the ‘string’ attribute must be set to

the user defined default value of the ‘edit’ button. The resulting code is:

%Enter sampling frequency for recording in Hz button
fsbutton=uicontrol ('Parent',panel2, ...
'Units', '"Normalized', ...
'Position', [0.05 0.8 0.35 0.1571,...
'style', 'edit', ...
'String', '8000',...
'BackgroundColor', 'white', ...

'Callback',@fsCallback) ;

In the above example, the ‘string’ attribute has been set to ‘8000° which is the default

value for the sampling frequency.

%Label for 'Enter sampling frequency for recording in Hz' button
fsLabelbutton=uicontrol ('Parent',panel2, ...

'Units', '"Normalized', ...

'Position', [0.05 0.63 0.35 0.15],...

'style', "text', ...

'String', 'Enter sampling frequency for recording in Hz');

%$Enter the number of seconds for recording button
nsecbutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...

'Position', [0.55 0.8 0.35 0.15], ...

'style', 'edit', ...
'String', '3',...
'BackgroundColor', 'white', ...

'Callback',@fsCallback);

In the above example, the ‘string’ attribute has been set to ‘3’ which is the default value
for the number of seconds for recording.

%$Label for 'Enter the number of seconds for recording' button
nsecLabelbutton=uicontrol ('Parent’',panel2, ...

'Units', "Normalized', ...

'Position', [0.55 0.63 0.35 0.157, ...

'style', "text', ...

'String', 'Enter the number of seconds for recording');
$Record/re-record button
recordbutton=uicontrol ('Parent’',panel2, ...

'Units', "Normalized', ...

'Position', [0.3 0.5 0.35 0.157],...

'String', 'Record/re-record', ...

'Callback', @recordCallback) ;

%Enter a file name to save the recorded speech button
fileNamebutton=uicontrol ('Parent',panel2, ...
'Units', '"Normalized', ...
'Position', [0.05 0.2 0.35 0.15], ...
'style', 'edit', ...
'String', 'filel', ...
'BackgroundColor', 'white', ...

'Callback',@fileNameCallback) ;

In the above example, the ‘string’ attribute has been set to ‘filel’ which is the default

value for the file name that the recorded speech will use if/when it is saved in a new

file.

%Label for 'Enter a file name to save the recorded speech' button
filenameLabelbutton=uicontrol ('Parent’',panel2, ...
'Units', "Normalized', ...

'Position', [0.05 0.03 0.35 0.157, ...

42

'style', "text', ...
'String', 'Enter a file name to save the

speech') ;

%$Save speech button

savebutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...
'Position', [0.55 0.2 0.35 0.1571,...
'String', 'Save speech',...
'Callback', @saveCallback);

% Close GUI button

closebutton=uicontrol ('Parent',panel3, ...
'Units', "Normalized', ...
'Position', [0.3 0.25 0.35 0.471, ...
'String', 'Close GUI', ...
'Callback',@closeCallback) ;

Figure 2.14 displays the completed ‘recordGUL.m” GUI.

43

recorded

-} Record speech GUI

Get directorySelect file [Select file 7

Play speech

‘ 8000 3

Enter sampling frequency Erter the number ot
for recarding in Hz seconds for recording

Recorifte-record
filet Save speech

Enter & file name to save
the recorded speech

Close GUI

Figure 2.14 The GUI window visible to the user once the ‘recordGUIL.m’ file has been

saved and run. The callbacks for the GUI have not yet been written at this point.

44

The next step is to write the callbacks [9] for the buttons that have been created. The

callback codes for the ‘getDirectoryCallback’, the ‘selectFileCallback’ and the

‘loadSelection’ function are identical to the codes used in Program 3 and have been

included below. Some variables in these functions need to be shared among other

functions and hence need to be initialized at the beginning of the program. The

variables that need to be initialized to dummy values are curr_file, directory names,

wav_file names, y, nsec, fs and filename.

%Callbacks

function getDirectoryCallback (src,eventdata)

first

even if

45

directory name = uigetdir('start path', 'dialog title');

A=strvcat(strcat((directoryiname),'*.wav'));
struct filenames=dir (A);
wav_file names={struct filenames.name};

set (selectFilebutton, 'String’',wav_file names);

%once the popupmenu/drop down menu is created, by default, the

%selection from the popupmenu/drop down menu must be loaded

the

%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the

popupmenu/dropdown

end

$menu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

function selectFileCallback(src,eventdata)

end

$Functio

function

is

indexOfDrpDwnMenu=get (selectFilebutton, 'val');
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

n--load selection
[curr file, fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat (directory name, '\', ...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;

$fin path is the complete path of the file

$selected
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs);

%$Information about the file being played

.wav file that

file info string=strcat ('Current file = ', ...

wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...
'. Number of samples in file = ', ...
num2str (length (curr file)));

end

The ‘playCallback’ code is similar to the code used in Program 3.

%Callback for the playbutton
function playCallback (h,eventdata)
sound (curr_ file, fs);

end

46

The callbacks [9] for the ‘Enter sampling frequency’ button i.e. ‘fsCallback’ and for the

‘Enter the number of seconds for recording’ button i.e. ‘nsecCallback’ are as follows.

The value returned from the ‘edit’ buttons is a string and needs to be converted into a

numeric variable. The user can do this using the ‘str2num’ function. Also the variables

returned from these functions, fs, and, nsec, need to be initialized to their default values

at the beginning of the program.

%callback for the fs button
function fsCallback (h,eventdata)
fs=str2num(get (fsbutton, 'string'));

end

%callback for the nsec button
function nsecCallback (h,eventdata)
nsec=str2num(get (nsecbutton, 'string'));

end

The code shown below is one way of writing a function that records speech.

%callback for the record/ re-record button
$record speech file of fixed duration (nsec) and

%given sampling rate (fs)

func

end

47

tion recordCallback (h,eventdata)
fsCallback (h,eventdata) ;
nsecCallback (h,eventdata) ;
% yn=speech samples normalized to 1
% N is the number of samples in each speech file
% ch is the number of channels in the recording
N=fs*nsec;
ch=1;
y=wavrecord (N, fs,ch, "double"') ;
ymin=min (y) ;
ymax=max (y) ;
% calculate dc offset and correct
offset=sum(y (N-999:N))/1000;
y=y-offset;
sound (y, £s) ;

The function ‘fileNameCallback’ is used to obtain the name of the file in which the

recorded speech is to be saved. It retrieves the ‘string’ entered in the ‘fileNameButton’.

%cal

func

end

lback for filename speech
tion fileNameCallback (h,eventdata)

fileName=get (fileNamebutton, 'string"') ;

The function ‘saveCallback’ is used to save the recorded speech in the specified file

and is of the form:

%cal

func

end

lback for save speech

tion saveCallback (h,eventdata)
currentDir=pwd
currDir=strcat (currentDir, '\',fileName, '.wav"')
wavwrite (y, fs, strvcat (currDir));
c=wavread (strvcat (currDir));

soundsc (c, f£s)

The code for ‘closeCallback’ is used to close the GUI and is:

48

%Callback for close
function closeCallback (h,eventdata)
close (gcf);

end
A screenshot of the final GUI for Program 4 is shown in Figure 2.14 and the final code

for Program 4 is included in Appendix C.

2.3 GUI Lite - Version 1: Strengths and Weaknesses

The four examples in section 2.2 clearly explain and demonstrate how to use GUI Lite
— Version 1 to create GUIs of varying complexity. GUI Lite — Version 1 provides the
user with sufficient functionality to create GUIs for speech processing applications.
Along with creating a GUI for the user, GUI Lite — Version 1 teaches a user how to use
the various GUI development functions provided by MATLAB like ‘uicontrol’,
‘uipanel’, ‘figure’, etc. We also provide an extremely useful guide/ instructional manual
to understand how to put together a good looking GUI using the functions and features
provided by MATLAB. The downside of using GUI Lite — Version 1 is that the user
needs to enter the position attribute for every GUI object that he or she adds to the GUI
layout. Entering the position attribute is an extremely tedious and painstaking task.
Automating the process of selecting the positions of the various GUI objects like
buttons and panels would greatly reduce the time taken to enter the co-ordinates and
size of each of the GUI objects. GUI Lite — Version 2 separates and automates this
process of positioning the GUI objects like panels and buttons thereby reducing the

time taken to create a GUI and improving the user’s experience while using GUI Lite.

49

Chapter 3 Implementation of a GUI using GUI Lite -Version 2

3.1 GUI Lite - Version 2

GUI Lite - Version 2 is intended to improve the user experience while creating viable
GUIs by providing an interface that is more intuitive and simpler than GUI Lite —
Version 1. The goal for GUI Lite — Version 1 was to enable the user to focus on the
actual application itself, rather than the creation of the GUI. However the resulting GUI
Lite — Version 1 required the user to focus a lot of attention on handling and optimizing
the actual GUI code. Version 1 focused on helping users to write their own code for the
GUT’s layout and functioning. The user had to decide the position of each of the buttons
and meticulously enter the panel and button screen co-ordinates, and repeatedly adjust
them to create a good looking GUI To solve this problem, a two — step procedure for
creating GUIs was conceived in which the first stage was essentially a layout of the
GUI created using a set of automated tools, and the second stage was implementation of
the application code. This two stage process enabled a user to define panels, graphic
panels, title boxes (titles for graphic panels or groups of buttons) and buttons using
mouse clicks on a GUI screen. The layout and positioning of the various GUI elements
were then stored into a “.mat’ file and the layout of the GUI was created and displayed.
In the second stage, the callbacks for the various GUI objects were written and
integrated into the final program. The complete code and user manual for the GUI Lite
— Version 2 toolbox is included in Appendix B.

3.1.1 Naming conventions for GUI Lite - Version 2

GUI Lite — Version 2 lets users create panels, graphic panels, title boxes and buttons

using a graphic cursor and mouse clicks. Consecutive panels will be referred to as

50

‘panell’, ‘panel2’, ‘panel3’, etc. as per the order in which they were created. Similarly,
if three graphic panels are created, they will be referred to using the names
‘graphicPanell’, ‘graphicPanel2’ and ‘graphicPanel3’ respectively when being called in
the callbacks. Also if the user creates two title boxes, they will be referred to as
‘titlebox 1’ and ‘titlebox2’ based on the order in which they were created. Buttons will
be referred to as ‘buttonl’, ‘button2’, ‘button3’, etc depending on the number of
buttons created and the order in which they are created. This sequential numbering

process greatly simplifies stage 1 of the GUI Lite — Version 2 GUI creation process.

3.2 Implementation of four Baseline Programs Using GUI Lite -
Version 2

In the remainder of this section, we illustrate the process of designing simple GUIs for

the 4 program examples discussed in Chapter 2 using GUI Lite — Version 2. The

resulting code and supporting explanations and screenshots will help illustrate how GUI

Lite — Version 2 greatly simplifies the process of designing Lite GUIs for a range of

program complexities. Detailed explainations regarding how to use the GUI Lite —

Version 2 toolbox and various objects that can be created using it are mentioned in

Appendix B.

3.2.1 Program 1 - Hello world program

The first step in designing a GUI for Program 1 is for the user to visualize and sketch

the GUI. Once the user has sketched the GUI and decided which panels and buttons to

include, GUI development can begin. Figure 3.1 displays an initial sketch of the

Program 1 GUL

51

HQ.,HO wa‘ld ()’Ul I J

Figure 3.1 A sketch of the layout of the ‘Hello World GUI’, containing just one button.

The ‘Hello World GUI” contains only one button, namely a ‘pushbutton’ which when
clicked displays a message saying ‘Hello World’. The GUI also contains a single panel
to outline the GUI window and enclose the button. This panel has not been shown in

Figure 3.1.

The wuser first needs to load the GUI Lite folder containing the files
‘panelButtonSetup.m’, ‘runGULm’ and ‘PanelandButtonCallbacks.m’ into the
MATLAB work folder. After this has been done, the ‘panelButtonSetup.m’ program

should be run. As shown in Figure 3.2, an initial screen, the ‘Button/Panel Setup GUI’

52

is displayed asking the user to enter the total number of panels, graphic panels (plot
windows), title boxes and buttons that need to be created. As in GUI Lite — Version 1,
panels are used to visually group related GUI elements, graphic panels are used for
plotting, title boxes are used to display information regarding a plot or a group of

buttons, and buttons are used to perform user defined functions.

Additional buttons are used to define the length and width of a ‘standard’ size button, a
name for the saved GUI code and finally a button to initiate the GUI Lite — Version 2

design process.

For Program 1, the user enters one as the number of panels, zero as the number of
graphic panels and title boxes, and one as the number of buttons. Once the user has
entered the number of GUI elements, he or she needs to enter a name in with which the
file containing the layout of the GUI is saved. For this example, the user chooses the
name ‘helloworld’. Figure 3.3 displays a screenshot of the ‘Button/Panel Setup GUI’
window with the user’s parameters entered into it. The user can now click the ‘Begin

drawing panels & buttons’ button to begin the GUI Lite — Version 2 design process.

—
=
=]
[=3
=
=1
o
i
T |
=
)
e
=
S
=
=1
=,
k=]

Figure 3.2 The first screen that is visible to the user when the GUI Lite toolbox is
launched. It contains default values for the number of panels, graphic panels, title boxes
and buttons to be created.

53

=
=]
z
=]
T
2

Button;Panel Setup GUI

Figure 3.3 The ‘Button/Panel Setup GUI’ with the user’s values for the number of panels,
graphic panels, title boxes and buttons entered into it. The filename entered to save the
layout is ‘helloworld’.

54

55

A white screen appears with a grid overlaid over it with horizontal and vertical
crosshairs that are visible to the user. Using these crosshairs, the user can select the
position and size of the single panel for Program 1. Moving the crosshairs over the
desired location and using a mouse click, the initial co-ordinate (the lower left co-
ordinate of the panel) is first selected and is the bottom left corner of the panel. The
next co-ordinate selected (using the graphic cursor) is the bottom right corner of the
panel; the third and final co-ordinate is the top right corner of the panel. Changing the
order of selection of co-ordinates will cause an error. The user does not need to enter
the fourth co-ordinate of the panel since the GUI Lite toolbox automatically calculates

and plots it based on the previous three co-ordinates.

The user can now select the position of the single button. The button requires only one
co-ordinate, i.e., the bottom left co-ordinate since a ‘standard size’ button is assumed.
The length and the width of the buttons are entered in the initial ‘Button/Panel Setup
GUT’ shown in Figure 3.2. Once the position of the button has been selected, another
GUI window, the ‘Button Stats’ GUI will appear on the screen. The user selects the
type of the button as ‘pushbutton’ and enters the string to be written on the button as
‘Push me’. The ‘Push me’ button does not require a label explaining its function since
the name ‘Push me’ written over the button is self-explanatory. Also the length and
width of the button can be left at their default values and the ‘Accept Specs Button’ can
be clicked. Figure 3.4 displays the ‘Button Stats’ GUI with the user’s parameters for the

‘Push me’ button.

56

X ar=

“Aulls B aankbad JouU 800 UoPng, 801, Yl oSy eniuelaay|eniuen] [BuliueH Aa
“aldwiexs Bl Ul UAWOLS 2B padaple ag Buuis ayl Jeyl saanbal uonng nuswdndod Su] 31 bk

7 uojng saads daaoy
Uopng auy bo yiiue) aug e LORG aU} Jo Lo, oy} =il
800 s0a
‘uopng soads 1aaoy ayy yoa ' aoe e
aJinkiad 10U 0p nod § "uoling S3ads deady auyl

U0 §3I[0 [B08] & pEIEYUE SABY NOA Bl T AMORY
%00 B} Ul pajeada Lojng auy) 4o} [Sce) & agug

++ HOPNG aL
U0 Lajjuan B 0] AULE au} aiug uogng aup jo adi] sy esooys

all yzng ; 2

M2 3iels Lopng

uopngy s

$1e35 uopng -

f the ‘Push me’ button.

ion o

the posit

ing

ble to the user after selecti

visi

It contains the user parameters for the ‘Push me’ button.

Figure 3.4 The GUI

After clicking the ‘Accept Specs Button’, the user will be prompted to save the

selection and can select the ‘Yes’ radio button displayed in Figure 3.5.

57

Figure 3.5 The GUI development screen containing, the user defined panel i.e. the large

rectangle outlined by a solid black line and the ‘Push me’ button which is the small

rectangle in the center of the figure. The user has been prompted to save his selection.

In order to see what the GUI looks like at this stage, the user can edit the name of the

‘mat’ file in ‘runGULm’ to ‘helloworld’, save the ‘runGULm’ file and run it. The user

will then be able to see the screen displayed in Figure 3.6.

58

Figure 3.6 The GUI window created by the user. It contains one panel and one button.
The callback for the button has not yet been written.

At this stage clicking the ‘Push me’ button will only result in a MATLAB error since
the callback for the button has not yet been written and integrated into the MATLAB

code.

To enter the callback code for the ‘Push me’ button, the user needs to go into the
‘PanelandButtonCallbacks.m’ file and enter the callback code in the callback

framework for buttonl. The callback framework for buttonl is as follows:

%$Callback for the buttonl
function buttonlCallback (h,eventdata)

%$Enter user’s callback code

end

59

The framework with the callback code for button 1 is as shown below.

function buttonlCallback (src,eventdata)
msgbox ('"Hello World!', 'modal');

end

The GUI created by the user is referred to as ‘f” as per the naming convention of the
GUI Lite toolbox. The user can choose a name for the GUI ‘f” using the ‘set’ function
as shown below. This code snippet should be inserted just above the callback

framework for buttonl in the ‘PanelandButtonCallbacks.m’ file.

%$set a name for the GUI

set (f, "Name', 'Version 2-Hello World GUI');

Figure 3.7 displays the completed, fully functioning GUI. The complete code for this

example is included in Appendix D.

i
Hello Wworld!

Push me

Figure 3.7 The completed and fully functioning ‘Hello World GUI’. Clicking the ‘Push
me’ button will display the ‘Hello World!” message.

3.2.2 Program 2 - Display the waveform of a designated speech file.

Program 2 implements a GUI in which the click of a button displays the speech
waveform of a designated speech file. Using GUI Lite — Version 2, the user should
attempt to replicate the layout of the GUI created by GUI Lite — Version 1 for the same
problem. The first step is to sketch the GUI and the various elements (panels, graphic
panels, title boxes and buttons) included in this GUI. This GUI will have two panels,
two buttons and one ‘graphic panel’ within which the speech waveform will be
displayed. The two buttons that the user needs to create are the ‘Display speech
waveform’ the ‘Close GUI’ ‘pushbutton’ buttons. Figure 3.8 displays a sketch of a

possible layout for the Program 2 GUI.

61

i graphicPanell M-\, ‘H le

-______.___._..—-—-—-—'—‘_‘———-----—-—._
W
panell
buttonl huttunl
podes s | (Close cur] \/(

Figure 3.8 A sketch of the Program 2 GUI.

The user should now save the GUI Lite folder into the MATLAB work directory and
run the ‘panelButtonSetup.m’ file. When the ‘panelButtonSetup.m’ file is run, an initial
screen in which the GUI parameters can be entered is displayed. Figure 3.9 displays

the GUI window with the parameters for Program 2 entered in it.

=]
=
=
=
T
in
iz
il
o
=
=
=
=]

Figure 3.9 The GUI window with the parameters for the GUI elements for Program 2
entered into it.

Once the user has entered the number of GUI elements to create in the ‘Button/Panel
Setup GUI’, the user should enter a filename for the GUI layout to be saved. In this
example the name ‘displayspeech’ can be entered. On clicking the ‘Begin Drawing
buttons & panels’ button, a white screen with crosshairs will be visible to the user. The

user can select the co-ordinates of the two panels and a single graphic panel using these

62

63

crosshairs. Next, the user will be prompted so select the position of the ‘Display speech
waveform’ button using the crosshairs. After selection of the position of the ‘Display
speech waveform’ button on the white screen, another GUI, the ‘Button Stats’ GUI will
be displayed on the screen. The user can use this GUI to enter the parameters of the
‘Display speech waveform’ ‘pushbutton’ button. The ‘Button Stats’ GUI with the
parameters for the ‘Display speech waveform’ button entered into it is shown in Figure

3.10.

64

Tar=

AUlEE & aunbad JoU S300 UoRng, 28RS, 3ul oSy enBueaay|ienBue.) [BuweH G
"aldlExE SU] Ul UAOUS S8 palajla ag BuLis Ayl el saanbal uopng huawdndod Syl 31Okl

uojng soads ey

uopne U0 yius) 2y} g UOHNE U 40 IRk S} a0

1o _ soo

‘uoyng 0ads a0y Ayl yona jage| e
auinkiad J0u op nod J) uopng saads deady auyp
U 213 |30 B paUsia SARY N0A Sl A0jag
X004} Ul pEIERJT UOPNG 2U) 40} |30E] B J2pT

w UORNY a4}

o Uaqas 2 0 BULgS auy Jejug uaHng auy 4o adhy Uy a200Us

_ - co::asma_

wopasea yagads Agjdsig

(M2 Sk Hogng

§]035 UoJINg -

Figure 3.10 The ‘Button Stats’ GUI with the parameters for the ‘Display speech

waveform’ entered into it.

65

After entering the parameters for the ‘Display speech waveform’, the user is prompted

to select the position of the ‘Close GUI’ button. On selecting the position of the ‘Close

GUT button, the ‘Button Stats’ GUI is again visible to the user. The user can leave the

type of the button at its default value, i.e., ‘pushbutton’, and enter ‘Close GUI’ as the

name of the button. The length of the button is increased to 0.1 units and the width is

left at its default value. The user can then click the ‘Accept Specs Button’.

Since the positions of all the GUI elements have been selected, the user is now

prompted to save the selection of GUI positions. Figure 3.11 displays the screen visible

to the user when he is prompted to save his selection.

Figure 3.11 The user is prompted to save his selection of panels, graphic panel and button
positions for Program 2. The large rectangles stacked over each other and outlined in
black are the panels, the green rectangle is the graphic panel and the two small rectangles
are the buttons.

66

In order for the user to see what the GUI looks like at this stage, the user can edit the
name of the ‘mat’ file in the ‘runGULm’ file to ‘displayspeech.mat’, save the
‘runGULm’ file and run it. Figure 3.12 will be visible to the user on running the newly

edited ‘runGULm’ file.

<} Display Speech Wavelorm GUI =101%]

08r-

06

04r

02+

Displary speech wavefo, Cloze GUI

Figure 3.12 The ‘Display Speech Waveform’ GUI with the user defined panels, graphic
panel and button. No callbacks are written for the buttons at this stage.

The next stage in the development of the GUI is writing callbacks for the buttons
created by the user. Before writing callbacks for the user defined GUI elements, the
user should name the GUI. The code snippet mentioned below is used in the naming of
the GUL This code snippet should be inserted below the comment ‘USER CODE FOR

THE VARIABLES, CALLBACKS AND INITIALIZATION".

67

%set the name of the GUI

set (f, '"Name', 'Display Speech Waveform GUI');

To write the callback for the first button, the user enters the callback code for ‘buttonl’
within the pre-defined button framework for ‘buttonl’ in the

‘PanelandButtonCallbacks.m’ file. The callback code for ‘buttonl’ is as follows:

%button 1-Display speech callback
function buttonlCallback (src,eventdata)

loadedSpeech=wavread('sl.wav');
%The speech file is 'sl.wav'
axes (graphicPanell) ;
plot (loadedSpeech) ;
title('sl.wav');
xlabel ('Time in seconds');

ylabel ('Amplitude');

end

The ‘buttonlCallback’ function loads the ‘sl.wav’ file using the ‘wavread’ function

and displays it on ‘graphicPanell’. The waveform is titled ‘sl.wav’.

The callback code for the ‘Close GUI’ button is as follows:

$button2-Close callback
function button2Callback(src,eventdata)
close (gcf) ;

end
The ‘button2Callback’ function closes the current GUI window. Figure 3.13 displays
the completed and fully functioning ‘Display Speech Waveform’ GUI. The complete

code for Program 3 has been included in Appendix D.

68

<) Display Speech Waveform GUI =101%]

slwav

Lmplitude

0 05 1 it 2 25
Time in seconds 4 104

Display speech wavefo..) Close GUI

Figure 3.13 The completed and fully functioning ‘Display Speech Waveform’ GUI with
‘sl.wav’ displayed in ‘graphicPanell’.

3.2.3 Program 3 - Load a Speech File, Play it back and Display the Waveform.

Program 3 is an extension of Program 2. In Program 3, the user is able to browse the
file system and select a particular directory. The user then loads a selected ‘.wav’
speech file from the selected directory, and can then play and display a waveform of the

selected file.

The first step in the GUI development for Program 3 is to sketch the GUI and the
various elements (panels, graphic panels, title boxes and buttons) included in this GUI.

This GUI will have two panels, five buttons and one ‘graphic panel’ within which the

69

image will be displayed. The five buttons that the user creates are the ‘Get directory’
‘pushbutton’ button, the ‘Select file’ ‘popupmenu’ button and the ‘Play’, ‘Plot’ and
‘Close GUI” ‘pushbutton’ buttons. The user can also use a ‘titleBox’ to display the
filename of the speech waveform being displayed in the ‘graphicPanel’. Figure 3.14

shows a sketch of the desired GUI.

Plog & Tlot speech GUI
| flay e« 2 P8 ————
i -
panel2
graphicPanell W '{'L \e
rapctanel o o —
hutton2
(Ejﬁlc' ct‘:fELbrnd‘]’huttunl | Sedect file Ivi
' hutton? huttond | huttons
(Play | [fot [\dose GV
panell
l o)

Figure 3.14 The tentative layout of the GUI for Program 3 — Play and Plot Speech GUI on
paper.

70

Once the user has saved the GUI Lite folder into his ‘work’ folder, the GUI
development can begin. On running, the ‘panelButtonSetup.m’ file, the user can enter
the number of panels as two, the number of graphic panels and title boxes as one and
the number of buttons as five. The filename to be entered to save the selection of panel

and button positions and dimensions is ‘play&plot’.

]
=3
ol
=
g
=

/Panel Setup GUI

Figure 3.15 The ‘Button/Panel Setup GUI’ with the user parameters for the various GUI
elements.

71

72

On clicking the ‘Begin Drawing panels and buttons’ button, crosshairs will be visible
on the screen, from which the user can select the endpoints of the panels, the graphic
panel and the title box for Program 3. After selecting the position of the first button, the
user is prompted to select and enter parameters for that button. The user is then
prompted to select the position of the next button and to enter the parameters for that
button. The user needs to follow the same procedure while creating the last three
buttons for Program 3. For the ‘Get directory’ button, the user should leave the type of
button at its default value i.e., ‘pushbutton’, the name of the button can be entered as
‘Get directory/Select file’ and the length of the button should be increased to 0.15 units
to make it easier to read the button name. For the ‘Select file’ ‘popupmenu’, the user
can select the type of the button as ‘popupmenu’, the name of the button as ‘Select file’
and again the length of the button should be increased to 0.15 units. For the ‘Play’,
‘Plot’ and ‘Close GUI’ buttons, the type of the button should be left at its default value,
i.e., ‘pushbutton’ and the name for the buttons should be entered as ‘Play’, ‘Plot’ and
‘Close GUI’ respectively. The lengths of the ‘Play’, ‘Plot’ and ‘Close GUI’ buttons
should be increased to 0.15 units. Figures 3.16 and 3.17 show the screens visible to the

user while creating the ‘Plot’ and ‘Close GUI” buttons respectively.

73

*fuiz & agnbal 10U Sa0p LoPnd, SRS, a1 osy enBusinaudenEue) [Buwwep B
adwexa AU Ul UAMOYS S8 padajla ag BuliE 3yl Jey] saankad uopng nuawdndod au) 3] Onle

7 uopng sdads daoay
Uopne S} 4o Yiius) su} aeug UopnG U 4o Wil aut S
G0 SO
‘uapng saads a0y AU jo0 jage| B
a4nkbiad 10U op nok | - uonng £0ads Jdeooy eyl

LD H3I2 (90 & PR4BIIE SAEY NOA iy ahojed
%00 AU} U pajeais UoHhg aL Jo) [2oe] & Jaju

unpng auyl jo adil ayl asooys

_ . uo. m:n_
121d A

+ Holng =L}
U0 Lsfia B o) BULS 843 4833

(M2 Siels uonng

Figure 3.16 This is the ‘Button Stats’ GUI after the user has entered the parameters for

the ‘Plot’ button. The type of button is ‘pushbutton’. The string to be written on the
YP p g

button is ‘Plot’. The length of the button has been changed to 0.15units.

74

*BUME E adnbal 10U a0 uophd, JaplE, aul ' og)y enbueiaadenBued) Buuwed e
B[cEXS LY | UAMOYS S8 palaiua 3q AUS aul jeul saunkad uopng nuawdndad 2u)) Ohle

— uopng s2ads daooy

LGHNG 240 LHEUS) Ay} 4T UGN B4 Ui S 41T

[sto _ 500 _

uopng saads jdaa2y AUy ' lBge B
alinbal 1ou ap nod J) uonng eoads jdaaoy aul
U0 4202 [20E] & palaa 2aU NOA JUY A0
00 SY) Ul pajEaia UOPNG aU) o) [aoe) & Jagu3

Uonng ay Lo adAl ay) aso0y

_ h cot:nsma_

+ UOENG AL}
U0 LSk B0 o) Buls au) 483ua

INo =010

(M9 =1E1S Lopng

$3e35 uoyIng -

A A R AT

GUI after the user has entered the parameters for

the ‘Button Stats’
the ‘Close GUI’ button. The type of button is ‘pushbutton’. The string to be written on the

is is

Figure 3.17 Th

button is ‘Close GUI’. The length and width have been left at their default values.

75

After all five buttons for Program 3 have been created, the user is prompted to save the
selection. Figure 3.18 displays the GUI window after the user has selected the positions

of the panels, the graphic panel, the title box and the buttons.

st - — M=k
| By i | |
: i Cis : : :
! ; : Save coordinates - - - ¥
§ * 7 T ; i T *
————————— —_— | .
T T T

Figure 3.18 This is the screen visible to the user after the panels, graphic panels and
buttons have been created. The two large rectangles stacked above each other represent
the panels. The green and the pink rectangle represent the graphic panel and the title box.
The five small rectangles are the buttons.

To view how the GUI will look at this stage, the user can edit the ‘.mat’ filename from
‘runGULmM’ to ‘play&plot.mat’ and save and run the ‘runGULm’ file. The screen in
Figure 3.19 will be visible to the user. At this stage none of the buttons work and
clicking on then would cause errors since the callbacks for them have not yet been

written.

76

I =101]

This is a title box. You may change this
strinn

08—

06—

04 -

02

Get directory/Select fle [Select fie

Play Plat Cloze GUI

Figure 3.19 This screen displays the user’s GUI with the panels, graphic panel, title box
and buttons for Program 3. The buttons do not work at this point since the callbacks for
the buttons have not been written.

In order to write the callbacks, the user must insert the callback code [9] into the

callback frameworks already defined in the ‘PanelandButtonCallbacks.m’ file.

The user can name the GUI using the ‘set’ function included in MATLAB. The code to

set the name of the GUI is given below:

%set the name of the GUI

set (£, 'Name', 'Play and Plot Speech GUI');

The callbacks for the ‘Get directory’ and ‘Select file’ button are as follows:
function buttonlCallback(src,eventdata)

directory name = uigetdir ('start path', 'dialog title');

77

A:strvcat(strcat((directory_name),'*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (button2, 'String',wav_file names);

%once the popupmenu/drop down menu is created, by default, the
first

%selection from the popupmenu/drop down menu must be loaded

even if the

$callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
gmenu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

function button2Callback (src,eventdata)
indexOfDrpDwnMenu=get (button2, 'val') ;
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

The ‘loadSelection’ function is not a part of the GUI Lite toolbox and should be a user
defined function. Its purpose is to load the default value of the ‘popupmenu’ as the
current speech file to be played once the ‘Select file’ button is populated. The user can
use this function or write another one.
$Function--load selection
function [curr file,fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\', ...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;
$fin path is the complete path of the file .wav file that
is
$selected

clear curr file;

78

clear fs;

[curr file, fs]=wavread(fin path);

FS=num2str (fs);

$Information about the file being played
file info string=strcat ('Current file = ', ...

wav_file names (indexOfDrpDwnMenu), ...

'. Sampling frequency = ',FS,'Hz',
'. Number of samples in file = ', ...
num2str (length (curr file)));

set (titleBoxl, 'String',file info string);
set (titleBoxl, 'FontSize',0.3);

end

In the ‘loadSelection’ function above, the user sets the ‘string’ attribute of the
‘titleBox 1’ object to the string in the variable ‘file info string’ so that the title box will
reflect the contents of the ‘file info string’ variable. The ‘file info string’ variable
contains information regarding the file currently being played. @ The above
‘button]Callback’, the ‘button2Callback’ and the ‘loadSelection’ functions require
some variables to be shared amongst them. In GUI Lite, the user can share variables
among all the callback functions by initializing the variables before the callback
functions are written. They variables to be share are initialized to dummy values just
below the comment that says ‘USER CODE FOR THE VARIABLES, CALLBACKS

AND INITIALIZATION’. The code for initializing the variables is given below:

curr_ file=1;
fs=1;
directory name='abcd';

wav_file names='abcd';
The next callback to be written is the callback for button3 i.e., the ‘Display speech
Waveform’ button. This button displays the speech waveform of the selected ‘.wav’ file

in the graphic panel. Since there is only one graphic panel created, it is referred to as

79

‘graphicPanell’ as per the naming convention of the GUI Lite toolbox. The callbacks

for button3 and button4 are provided below. ‘button3Callback’ displays ‘s4.wav’ and

also creates the title ‘s4.wav’. ‘button4Callback’ closes the current GUI window.

%Callback for the playbutton

function button3Callback (h,eventdata)

end

sound (curr_file, fs);

%callback for the plotbutton

function button4Callback (h,eventdata)

window

end

hold off; %It is essential to turn hold off so that the
hold off; $%earlier contents of the panel are replaced

%the two hold off's are for the speech file and the hamming

grid off;

reset (graphicPanell) ;

axes (graphicPanell) ;

l=length(curr file);

i=(1:1)/fs;%coverting samples to time

plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ('"Amplitude');

axis tight;

grid on;

%callback for the close GUI button

function button5Callback (h,eventdata)

end

close(gct);

The completed and fully functioning GUI is displayed in Figure 3.20.

< Play and Plot Speech GUL

Current file =s4.wav. Sampling frequency =8000Hz. Number of
samples in file =24000

Amplitude

05 1 15 2) £
Time in seconds

4 &
Get directory/Select fils SRkl

Play

Close GUI

Figure 3.20 This is the completed ‘Display Image GU I’. The file to be displayed is selected
using the ‘Get directory’ and “Select file’ buttons. Clicking the ‘Display image’ button
displays the desired speech file in ‘graphicPanell’.

3.2.4 Program 4 - Load an Existing Speech File or Record a New Speech File. Play
the File and Save the File.

For this example, we will try to replicate the look of the GUI created by Version 1 for
the same problem. As done in the previous examples, the user first needs to visualize
and sketch the GUI to determine which GUI elements need to be included. Figure 3.21

displays a sketch of the proposed layout for the ‘Record Speech GUTI’.

81

hutton2

\Wm—'_

huttonl hutton? panel3

oy,]

.L-*:’f—z e
buttunf-il OO0 buttons

Ernt&‘f Te Enlex l:JM; No.
SN mcé’j ok 5@-«0\" s ¥

Lreautn Yerod ”"‘3
huttont panslz
{Ruorck [ve-vecond
hutton7 buttonS
! %ilm] lScw& 'E;-PECLHI
Enbpro. Nong
o sovg the

dnle.

button9 [(logd Ul] jpaij/‘}

Figure 3.21 A sketch of the layout of the ‘Record Speech GUI’.

The ‘Get directory’ ‘pushbutton’, the ‘Select file’ ‘popupmenu’ and the ‘Play’
‘pushbutton’ buttons are grouped together in the first panel i.e., ‘Panell’. The ‘Enter the
sampling frequency’ and ‘Enter the number of seconds for recording’ ‘edit’ buttons
along with the ‘Record/re-reccord’ ‘pushbutton’, the ‘Enter a filename to save the
recorded speech’ ‘edit’ button and the ‘Save speech’ ‘pushbutton’ are grouped together

into the second panel i.e., ‘Panel2’. The ‘Close GUI” ‘pushbutton’ is in ‘Panel3’. This

82

grouping of buttons into different panels is done to minimize errors caused by clicking
buttons unrelated to each other consecutively. Grouping related buttons together

reduces errors caused by inter-button dependencies.

Once a tentative sketch of the GUI is available, the user can save the GUI Lite folder in
the ‘work’ folder and run the ‘panelButtonSetup.m’ file. In the initial screen that
appears on running ‘panelButtonSetup.m’, the user enters the number of panels as
three, the number of graphic panels and title boxes as zero and finally the number of
buttons as nine as shown in Figure 3.22. For this example, ‘recordgui’ is entered as the

filename that is used to save the GUI layout.

Button;/Panel Setup GUI

=
=
z
=]
o
z

Figure 3.22 The GUI screen that is visible to the user after the user has run the
‘panelButtonSetup.m’ file and entered all the user parameters into the GUI.

83

84

After the user parameters for the GUI are entered and the ‘Begin drawing panels and
buttons’ button is clicked, the user will be asked to select the positions of the three
panels. Once the panels are defined, the user will be asked to create the buttons by
selecting their positions and entering their parameters. Screenshots of some of the

buttons being created are included below as Figures 3.23, 3.24, 3.25, 3.26 and 3.27.

85

‘AUz e adibal JoU 2800 Lo, Japls, AUl os)y *enbueay enuey | Buwiwe a
a|diexa) U UAOUYS S8 palalua ag Aus syl eyl saanbad uoung nuswdndod 2431 3] On:

7 uopng s2ads 1aaay

oy sy 40 ybla) s Jagug Lo SU po Lk, aU)ej1g

a0n _ soo _

uopng soads jdaaay Ayl 4012 'jage &
3k jou op oA | "uanng soads jdaooy auy
U0 2] [2GE| B Pa4aja aney nod Jayy majag
00 A1 Ul palEa UOBnG B4} o) [Bie] e Japug

uopng au} o adi ay) asooy

A coﬁgswa_

+ UAHng auy
10 Uafah 3 0} BUIAS a4} 8103

Aeg ;

(N9 =IEIS Logng

51e35 uoyIng -

Figure 3.23 The ‘Button Stats’ GUI after the user has entered the parameters for the
‘Play’ button. The type of button is ‘pushbutton’. The string to be written on the button is

‘Play’. The length and width of the button have been left at their default values.

86

*Aupgs & aanbal 10U S80p UOPNG, JeplE, AUl 'osy Jeniuemadenhue | |SuwweH G
B|chuexa AUl U UAMOYE S padaiua 29 Bus au Jeyl sadnhad uonng nuawdnclod 2y 13 Only:

7 uapng s3ads daary

UOWNG S} 40 YA U 4epag UORnG SLY 40 Lplas SUE A4S

1] _ S0

“uong sJads; jdanay Ul R ege e
a4nbal 10U op nok)| uopng saads jdaady Ayl
U0 202 [26E] & RIS 3Ry Nod Sy ojag
00 BU) Ul 80284 UOHNG 541 10 e & Jajug

H u Bupaodad 4oy Aauanhagy Bupdues au) kmi

+ UOHNG 24}

U0 Ui g 0} BULS a4 Bl UOPNG a4} 0 BEA} 8} 830047

- El
(ong _ o

(N9 Slels Lomng

51038 UoqINg -

Figure 3.24 The ‘Button Stats’ GUI after the user has entered the parameters for the
‘Enter the sampling frequency in Hz’ button. The type of button is ‘edit’. The string to be

written on the button is ‘Enter the sampling frequency in Hz’. The length has been

ts while the width has been left at its default value.

changed to 0.1 uni

87

' ‘AUl & adnbad 100 $20p UoPng, Japs, Syl oSy Jehiueayg|ehuen | [Buie:ha
! “B|ciiExE BU) U UAOUS S8 padsuR 29 Augs au) 1ey) saanbad uopng nuswdndod 24):3) Ol

, — uopng =2ads; Jdaony

Uoyne a0 yiila] aut e UoPNg SU} 0 pia sl s

31] =]

‘uapng soads ey aul§ala age| e
adnbial Jou op hok §| uapng saads jdadoy auy
U0 42112 [208] & PRIRIM3 24y NoA JaNY A0jeY
m 00 8L} I PAESD UOING B4 0 [35E] & s

BLR094 40} SPUCTSS J0 SS0INU 34} 4303

+ HOPNnG auf
m 10 Uapash a0 0} BULAS au} g LG B} 10 B4} U} 50047

SRU. RU— - :
” ¢ g

(N9 SIS Lopng

B

135 uopng -

Figure 3.25 The ‘Button Stats’ GUI after the user has entered the parameters for the

‘Enter the number of seconds for recording’ button. The type of button is ‘edit’. The
string to be written on the button is ‘Enter the number of seconds for recording’. The

.1 units while the width has been left at its default value.

length has been changed to 0

88

‘AUz B aanbad 100 S200 UoPhd, Ja0s, Syl os enBueiaaug e niue | Buwiue b

“B|diERa U] Ul UAOYS S8 padsiia 2 Buls Ayl Jeul saunkad uopng nuawdndod S0y :3] Obl:

7 uopng saads; ey
ORI &l o yibus) auy dagug oG au 40 Ll B4 83
200 soo
uong =aads jdanay aul qaI 'ade| e
24nkad Jou ap nok §f uoghg soads, daooy aup

U 202 (B0 & PRAEIUE BARY oA I3l MOjag
%06 34 U palea4a Uaping aU3 o) [208) & saqug

uagng auy jo adAy ay ss00y;

_] coﬁgsma_

¢ UORNG 2L
U0 Uaiiiah 2 0} BULS 34} 4813

029431 fRICaay

(N9 SiEls Lomng

$1835 uoyng -

Figure 3.26 The ‘Button Stats’ GUI after the user has entered the parameters for the
‘Record/re-record’ button. The type of button is ‘pushbutton’. The string to be written on

the button is ‘Record/re-record’. The length and width have been left at their default

values.

89

! ‘AU & adnkad 10U S20p LoPhG, aRIS, B4 oSty enBuelaa gl nbue) [BuniueH:Ga]
! “B[cEza AL} U UAnaLS S8 padaile ag Bulgs syl Jeu sadnbad uopng nuawdndod 2] 31 0n;:]

5 (o] il

7 uanng s3ads; idasay

uogne i yo YiEus] au sepug ORI U 40 Uptas au 43
41] S0

“uapng s3acls Jaa0y auy) 3aIa 'age &
alnbal J0u op hod J| uonng saads jdaaoy auyp
U0 I (2o & PEURYIR 3ABY NOA Japy " mojag
00| &Y} Ul paleaud UOKng U1 o) [e] 8 g

10950 PARIDIRI U} SAES O} SlEUBI & 4aju3

w Hopng auy
10 s 20 0} BUs 8l Bpa

uanng ayy o adil Ay} asooy;

el

19 SiEls Uomng

51835 uoying -

Figure 3.27 The ‘Button Stats’ GUI after the user has entered the parameters for the
‘Enter a filename to save the recorded speech’ button. The type of button is ‘edit’. The
string to be written on the button is ‘Enter a filename to save the recorded speech’. The

1 units while the width has been left at its default value.

length has been changed to 0

90

Screenshots of the ‘Get directory’, ‘Select file’ and ‘Close GUI” have not been included
as these buttons are created in exactly the same way as they were in section 3.2.2.
Figure 3.28 displays the GUI window visible to the user after the user has saved the

selection of positions and dimensions for the created GUI elements.

Figure 3.28 The three large vertically stacked rectangles that enclose the smaller
rectangles are the three panels. The smaller rectangles are buttons. The red rectangles are
the labels for the black rectangular edit boxes directly above them.

In order to see how the GUI looks with all the user parameters loaded into it, the user
can edit the name of the ‘.mat’ file in the ‘runGULm’ file to ‘recordgui.mat’, and save
and run the ‘runGULm’ file. On running the ‘runGUILm’ file, the screen in Figure 3.29

will be visible to the user.

91

Figure 3.29 The screen visible to the user on running the ‘runGULm’ file with the
‘recodgui.mat’ file.

At this stage, clicking any of the GUI buttons will cause a MATLAB error alert since

the callbacks for the buttons have not yet been written.

The callbacks [9] for the buttons created are mentioned below.

$buttonl-Get directory
function buttonlCallback(src,eventdata)

directory name = uigetdir('start path', 'dialog title');

A=strvcat (strcat ((directory name), '*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (button2, 'String',wav_file names) ;

%once the popupmenu/drop down menu is created, by default, the
first

$selection from the popupmenu/drop down menu must be loaded

even i1if the

92
%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
$menu will be loaded
[curr file, fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu) ;

end

tbutton2-Select file

function button2Callback(src,eventdata)
indexOfDrpDwnMenu=get (button2, 'val') ;
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

$Function--load selection
function [curr file,fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\', ...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;
$fin path is the complete path of the file .wav file that
is
$selected
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs) ;
%$Information about the file being played
file info string=strcat ('Current file = '

Joe e

wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...

Number of samples in file = ', ...

num2str (length (curr file)));

end

The callback for button3, the ‘Play’ button plays the selected speech file using the

‘sound’ function of MATLAB.

93

%button3-play button
function button3Callback(src,eventdata)
sound (curr file, fs);

end

The callback for button4, the ‘Enter the sampling frequency’ button gets the ‘string’
value from the ‘edit’ button and converts it into a ‘numeric’ value. In order for this
numeric value ‘fs’ to be shared by the other callbacks, the value ‘fs’ must be initialized
to an initial value. Also if an ‘edit’ button contains a default value, the variable returned
from the ‘edit’ box, ‘fs’ (in this case), should be initialized to the default value of that
box, i.e., ‘8000°. Since the default value for the sampling frequency is 8000 Hz, the
value of ‘fs’ has been initialized to 8000. The code for the initialization is included after

the code for the ‘Close GUI’ callback.

%buttond-enter sampling freqg
function button4Callback (src,eventdata)
fs=str2num(get (button4, 'string'));

end

The callback for button5, performs a function similar to the callback of button4. The
variable ‘nsec’ is initialized to the value 3 so that its value can be shared with all the

callback functions.

SbuttonbS-enter no of secs for recording button
function buttonb5Callback(src,eventdata)
nsec=str2num(get (button5, 'string'));

end

Callback for the ‘Record/re-record’ button

$callback for the record/ re-record button

$record speech file of fixed duration (nsec) and

%given sampling rate (fs)

function button6Callback (h,eventdata)
button4Callback (h,eventdata);

94

button5Callback (h,eventdata) ;

o\

yn=speech samples normalized to 1

o\

N is the number of samples in each speech file
% ch is the number of channels in the recording
N=fs*nsec;
ch=1;
y=wavrecord (N, fs,ch, 'double"') ;
ymin=min (y) ;
ymax=max (y) ;
% calculate dc offset and correct
offset=sum(y (N-999:N))/1000;
y=y-offset;
sound (y, £s) ;

end

The callback for button7 performs a function similar to the callback of button4. It gets
the ‘string’ value from ‘button7’ which is then used by the callback for ‘button8’. The

variable ‘filename’ is initialized to the value ‘filel’ so that it can be shared with all the

callbacks.

%button7-get filename
function button7Callback (src,eventdata)
fileName=get (button7, 'string') ;

end

The callback for button8 is used to save the recorded speech.

%button8-save speech

function button8Callback (src,eventdata)
currentDir=pwd
currDir=strcat (currentDir, '\',fileName, '.wav')
wavwrite (y, fs, strvcat (currDir));
c=wavread (strvcat (currDir)) ;
soundsc (c, £s)

end

The callback for the ‘Close GUI” button is used to close the current GUI window.

95

%button9-close gui
function button9Callback(src,eventdata)
close (gcf) ;

end
Besides the above variables, there are some additional variables that need to be
initialized so that their values can be shared among the various callback functions. Also
the user can set a name for his GUI using the code:
curr file=1;
directory name='ABCD';
wav_file names='ABCD';
y=1;%y is the variable that contains the recorded speech
nsec=3;

£s5=8000;

fileName='filel"';

%$set a name for the GUI

set (f, 'Name', 'Version 2-Record speech GUI');

The variable initialization code and the code that sets the name of the GUI are added
just below the comment ‘USER CODE FOR THE VARIABLES, CALLBACKS AND
INITIALIZATION’. The fully functioning GUI at this stage looks like the screen

shown in Figure 3.29. The complete code for Program 4 is included in Appendix D.

3.3 GUI Lite — Version 2: Strengths and Weaknesses

GUI Lite — Version 2 automates the processing of selecting the co-ordinates and
dimensions of the various objects that are part of a GUIL Version 2 separates the layout
process of the various GUI objects including panels, graphic panels, title boxes and
buttons from the writing of the callback code that controls and manipulates the created

GUI elements. Version 2 simplifies the layout process and saves a considerable amount

96

of the user’s time during GUI development. Version 2 provides the user with
predefined callback frameworks for each button. Callback code that performs the
functions the buttons are supposed to is written within these frameworks. GUI Lite -
Version 2 is scalable and can easily be scaled to accommodate more than the defined
number of panels, graphic panels, title boxes and button. GUI Lite — Version 2
simplifies and improves the user experience of creating GUIs a great deal. It provides
more than sufficient capabilities for GUI development even though it does not offer the

extensive functionality provided by the GUIDE toolbox of MATLAB.

97

Chapter 4 Testing of GUI Lite - Version 1

4.1 Overview of the testing of GUI Lite - Version 1

The GUI Lite — Version 1’s User’s Guide was given to three test users for evaluation
purposes. The users, after experimenting with GUI Lite — Version 1, were asked to
answer the following questions on a scale of 1-10, with 1 being the lowest score and 10

the highest score.

1. Rate your MATLAB proficiency: /10.

2. Rate your GUI development proficiency in MATLAB: _ /10.

3. Clarity of GUI Lite - Version 1’s User Guide: _ /10.

4. Ease of creating a GUI using GUI Lite - Version 1: /10.

5. Willingness to use the GUI Lite - Version 1 again: _ /10.

6. Rate your GUI development proficiency after using GUI Lite - Version

1: /10.

7. Overall rating of the guide: /10.
The users were also asked to provide detailed feedback on how to make the User’s
Guide for Version 1 more user friendly and how to improve its efficiency and clarity.
4.1.1 Feedback for the GUI Lite - Version 1 from user 1
User 1 was a graduate student in engineering who is extremely proficient with
MATLAB.
User 1’s scores on the above questions are as follows.

1. Rate your MATLAB proficiency: 8 /10.

2. Rate your GUI development proficiency in MATLAB: 1 /10.

3. Clarity of GUI Lite - Version 1’s User Guide: 7 /10.

98

4. Ease of creating a GUI using GUI Lite - Version 1: 7 /10.

5. Willingness to use the GUI Lite - Version 1 again: 8 /10.

6. Rate you GUI development proficiency after using GUI Lite - Version

1: 7 /10.

7. Overall rating of the guide: 7 /10.
Additional feedback from User 1:
User 1 suggested adding more figures and screenshots into the GUI Lite - Version 1’s
User Guide so that the user could see what the GUI would look like at every stage of its
development. User 1 appreciated the detail oriented nature of the User’s Guide and the
idea that it explained the process of creating a GUI from the most basic level possible.
User 1 found editing the position attribute of the various GUI objects very tedious. The
user felt that changing the position attribute took as much time as it took to write the
entire application’s code itself.

4.1.2 Feedback for the GUI Lite - Version 1 from user 2

User 2 was a graduate student in engineering who is moderately proficient with
MATLAB.
User 2’s feedback after using the GUI Lite — Version 1 is as follows.

1. Rate your MATLAB proficiency: 6 /10.

2. Rate your GUI development proficiency in MATLAB: 1 /10.

3. Clarity of GUI Lite - Version 1’s User Guide: 8 /10.

4. Ease of creating a GUI using GUI Lite - Version 1: 7 /10.

5. Willingness to use the GUI Lite - Version 1 again: 8 /10.

6.

7.

99

Rate you GUI development proficiency after using GUI Lite - Version
1: 8 /10.

Overall rating of the guide: 8 /10.

Additional feedback from User 2:

User 2 suggested adding more figures into the User’s Guide so that the user could see

what the GUI being developed would look like at every stage. User 2 found it difficult

to position the various GUI objects on the GUI window since the values of the position

attribute needed to be entered with a high degree of precision.

4.1.3

Feedback for the GUI Lite - Version 1 from user 3

User 3 was a graduate student in Mathematics who is extremely proficient with

MATLAB.

User 3’s feedback after using the GUI Lite — Version 1 is as follows.

1.

2.

7.

Rate your MATLAB proficiency: 10 /10.

Rate your GUI development proficiency in MATLAB: 1 /10.
Clarity of GUI Lite - Version 1’s User Guide: 9 /10.

Ease of creating a GUI using GUI Lite - Version 1: 8 /10.
Willingness to use the GUI Lite - Version 1 again: 9 /10.

Rate you GUI development proficiency after using GUI Lite - Version
1: 9 /10.

Overall rating of the guide: 8 /10.

Additional feedback from User 3:

User 3 too suggested adding a lot more figures into the User’s Guide to see step-by-step

images of GUI development. User 3 mentioned that the User’s Guide for Version 1 was

100

very detailed, lengthy, and took a lot of time to go through completely. User 3
commended the User’s Guide’s attention to detail saying that it made understanding

how to write a GUI very easy.

4.2 Analysis of the feedback

From the written feedback provided by the users it was evident that the user manual
needed to have many more images and screenshots to document all stages of the GUI
during GUI development. Based on the feedback, the GUI Lite — Version 1’s User’s
Guide was updated to include a lot more figures and text explaining how the GUI
needed to be created. The test users also mentioned that the GUI Lite — Version 1’s
User Guide was very extensive and took a lot of time to read. The test users also found
that entering the ‘position’ attribute of the various ‘uicontrol’ objects while creating and
positioning the various GUI objects on the GUI window was very time consuming and
difficult to get right. The majority of the time allotted to GUI development by a user
was taken up by entering the ‘position’ attribute of the various ‘uicontrol’ objects.
Based on this feedback and the GUI Lite toolbox developer’s own experience, we
decided to automate and separate the design, positioning and layout of the GUI
elements from the writing of the code that controlled them. This idea was the concept

behind GUI Lite — Version 2.

101

Chapter 5 Testing for GUI Lite - Version 2

5.1 Testing for GUI Lite - Version 2

Testing for the GUI Lite - Version 2 was conducted by asking the test subjects to
complete a specified GUI design problem using first the GUIDE toolbox and then the
GUI Lite — Version 2 toolkit. The GUI created using each toolbox had to be designed
and completed within an hour.

The GUI design problem was to create a simple GUI which contained a single button.
The button when clicked would display the message ‘Hello World’.

The test subjects were asked to use MATLAB’s ‘help’ feature while creating the GUI
using MATLAB’s GUIDE toolkit. The users were also asked to complete the same
GUI design problem using the GUI Lite — Version 2 and its User’s Guide. One hour
was allotted to completing the problem using each of the toolkits.

The test subjects were asked to fill the questionnaires in sections 5.1.1 and 5.1.2 after
completing the problem using each of the toolboxes.

5.1.1 Questionnaire for users using MATLAB’s GUIDE toolbox

Rate the following questions on a scale of 1-10, with 1 being the lowest and 10 being
the highest.

1. Rate your proficiency in MATLAB? : /10

2. Rate your proficiency in Ul development before using GUIDE? : /10
3. The complexity of the problem assigned to you : /10
4. How much of your task were you able to complete? : /10

5. The level of complexity of the GUIDE toolbox: /10

102

6. The helpfulness of MATLAB’s ‘help’ section for the ‘GUIDE’ toolbox:

/10
7. Rate your proficiency in UI development after using GUIDE? : /10
8. Rate your willingness to use the GUIDE toolbox again? : /10

9. Mention any other feedback that you would like to provide.

10. Did you use any help other than MATLAB help to complete this task?

E.g.: Google, other human beings, etc. If yes, list the sources of help.

11. What was the degree of help you required from an external source? : /10

5.1.2 Questionnaire for users using the GUI Lite-Version 2 toolbox

Rate the following on a scale of 1-10 with 1 being the lowest and 10 being the highest.
1. Rate your proficiency in MATLAB? : /10
2. Rate your proficiency in Ul development? : /10
3. How much of your task were you able to complete? : /10
4. The level of complexity of the GUI Lite toolbox: /10
5. The helpfulness of the GUI Lite User’s Guide for Version2: /10
6. Rate your willingness to use the GUI Lite - Version 2 toolbox again? : /10

7. Any other feedback that you would like to provide.

103

8. Did you use any help other than MATLAB help to complete this task?

E.g.: Google, other human beings, etc. If yes, list the sources of help.

9. What was the degree of help you required from an external source? : /10

5.2 Results of the comparative testing between GUIDE and GUI Lite -

Version 2

5.2.1 Feedback from User 1 after testing the GUIDE and the GUI Lite toolboxes

User 1 was a graduate student in Engineering.

User 1’s feedback after attempting to complete the given problem using MATLAB’s
GUIDE toolbox is included below.
¢ Rate the following on a scale of 1-10 with 1 being the lowest and 10 being the
highest.
1.Rate your proficiency in MATLAB? : 5 /10.
2.Rate your proficiency in Ul development before using GUIDE? : 1 /10.
3.The complexity of the problem assigned to you: 7 /10.
4.How much of your task were you able to complete? : 10 /10.

5.The level of complexity of the GUIDE toolbox: 8 /10.

104

6.The helpfulness of MATLAB’s ‘help’ section for the ‘GUIDE’ toolbox:
2 /10.

7.Rate your proficiency in UI development after using GUIDE? : 2 /10.

8. Rate your willingness to use the GUIDE toolbox again? : 1 /10.

9.Any other feedback that you would like to provide.

The ‘help’ section provided by MATLAB was not very useful. I found

better tutorials online that were really helpful to do the given task. The

layout provided by GUIDE is formidable and confusing. 1 decided to

just look up an example on the internet because the GUIDE’s ‘help’

section was too confusing.

10. Did you use any help other than MATLAB help to complete this task?
E.g.: Google, other human beings, etc. If yes, list the sources of help.

Yes, [used Google. I could not have finished my task without it.

11. What was the degree of help you required from an external source? :

10/10.

User 1’s feedback after using the GUI Lite — Version 2 toolbox is included below.

Rate the following on a scale of 1-10 with 1 being the lowest and 10 being the

highest.

1.Rate your proficiency in MATLAB? : 5 /10.
2.Rate your proficiency in Ul development? : 2 /10.
3.How much of your task were you able to complete? : 10 /10.

4.The level of complexity of the GUI Lite toolbox: 2 /10.

105

5.The helpfulness of the ‘GUI Lite User’s Guide for Version 2’: 7 /10.

6.Rate your willingness to use the GUI Lite - Version 2 toolbox again?
.8 /10.

7.Any other feedback that you would like to provide.

Using the GUI —Lite toolbox to complete my task was very easy. I just

needed to read the manual to know which files to use. Once I found out

which files to use the whole process was very intuitive and simple.

8.Did you use any help other than MATLAB help to complete this task?
E.g.: Google, other human beings, etc. If yes, list the sources of help.

No.

9.What was the degree of help you required from an external source? :
1/10.
5.2.2 Feedback from User 2 after testing the GUIDE and the GUI Lite toolboxes
User 2 was also a graduate student in Engineering. User 2’s feedback after using the
GUIDE and the GUI Lite — Version 2 toolkit to complete the given task is mentioned

below.

¢ Rate the following on a scale of 1-10 with 1 being the lowest and 10 being the
highest.
1.Rate your proficiency in MATLAB? : 2 /10
2.Rate your proficiency in Ul development before using GUIDE? : 1 /10
3.The complexity of the problem assigned to you: 2 /10
4.How much of your task were you able to complete? : 7 /10

5.The level of complexity of the GUIDE toolbox: 9 /10

106

6.The helpfulness of MATLAB’s ‘help’ section for the ‘GUIDE’ toolbox:
2 /10

7.Rate your proficiency in Ul development after using GUIDE? : 1 /10

8.Rate your willingness to use the GUIDE toolbox again? : 1 /10

9.Any other feedback that you would like to provide.

The example demonstrating how to use the GUIDE in MATLAB’s help

section was a very complicated one. Using the GUIDE within the time

limit specified was difficult and I could not complete my task.

10. Did you use any help other than MATLAB help to complete this task?
E.g.: Google, other human beings, etc. If yes, list the sources of help.

Yes, I used Google for help. Using Google, I found a simple example to

demonstrate how to use the GUIDE toolbox.

11. What was the degree of help you required from an external source? :

10/10.

User 2’s feedback after testing the GUI Lite — Version 2 toolbox is included below.
Rate the following on a scale of 1-10 with 1 being the lowest and 10 being the
highest.

1.Rate your proficiency in MATLAB? : 2 /10

2.Rate your proficiency in Ul development? : 1 /10

3.The helpfulness of the ‘GUI Lite User’s Guide for Version2’: 9 /10

4.How much of your task were you able to complete? : 10 /10

5.The level of complexity of the GUI Lite toolbox: 2 /10

107

6.Rate your willingness to use the GUI Lite - Version 2 toolbox again?
: 10_/10
7.Any other feedback that you would like to provide.

I found the GUI Lite very systematic and easy to follow. Its step-by-step

procedure helped me to complete my task easily and well within the

time limit.

8.Did you use any help other than MATLAB help to complete this task?
E.g.: Google, other human beings, etc. If yes, list the sources of help.
No.

9.What was the degree of help you required from an external source? :

~0_/10.

5.3 Analysis of the feedback obtained after testing the GUIDE and the
GUI Lite toolbox

The feedback from the users who tested the GUIDE and GUI Lite toolboxes for GUI
development clearly indicate that using the GUI Lite — Version 2 toolbox is simpler,
easier and far more intuitive than using the GUIDE toolbox from MathWorks. The
GUI Lite toolbox improves the user’s experience while creating a GUI. GUI Lite
allows a user to create a GUI of the same complexity level that would have been
possible using the GUIDE toolbox. GUI Lite provides a user with sufficient
functionality while offering a low complexity user interface for the user to create GUIs
in MATLAB. GUI Lite has achieved its objective of providing a low complexity and
highly intuitive GUI development solution which users can use in MATLAB to create

Graphical User Interfaces with ease.

108

Appendix A

GUI Lite — Version 1 User's Guide for the simpleGUI

The GUI Lite is a Graphical User Interface design tool. It provides a user with a step-
by-step guide to create GUI's to demonstrate and test various speech processing

applications with ease.

The current user guide is written using functions provided in MATLAB 7.8.0.347

(R2009a).

This guide is specifically written to create a GUI to display, play and spectrally analyze
a subset of the file. It has features to select a frame of a user specified size of the speech
file and to plot the log magnitude Fourier Transform of the selected frame. To use this
guide you must read the explanations and comments provided with the code. Use the
given sections of code in the MATLAB editor to create you own GUI. The complete
code is given at the end of this document. The buttons are populated from top-to-

bottom and left-to-right.

Overview of the GUI design and the various buttons involved.

The entire GUI figure window is divided into four panels in which buttons and graphics
panels i.e. panels in which plots will be drawn will be placed. Figures 1 and 2 provide
you with an idea of how the GUI window will look. Panels 1, 3 and 4 are button panels

i.e. panels containing only buttons and panel 2 contains two graphic panels.

109

The types of buttons that will be used for this GUI are as follows:

1. Pushbutton: This is the default style of a button. Hence there is no need to
specify ‘style’ in the ‘uicontrol’ function of MATLAB while creating a
pushbutton. This button executes code in the callback when clicked via mouse.

2. Edit box: This kind of button is used to provide input to a GUI in MATLAB
(eg: The value of a variable). The ‘style’ property of the ‘uicontrol’ function of
this button is set to ‘edit’. The value in the edit box can be changed by moving
the mouse to the box and editing the value in the box.

3. Popupmenu button: The popupmenu button generates a pull down menu which
is populated with a list of options for user selection (eg: Possible speech files
within a directory for analysis). The ‘style’ property of the ‘uicontrol’ function
of this button is set to ‘popupmenu’.

1. Define the GUI as a function.

function simpleGUI
%embedded code for the GUI application

end

2. Create the GUI and define the various panels that you require within the

created function.

Initially add the line ‘clc; clear all;” to the GUI code to clear all variables before
running. The global variable declarations and variables initializations should preferably

be done after the “clc; clear all;’ line.

110

Create a GUI window using the ‘figure’ command. The GUI objects that need to be
created are added into this GUI window. The 'figure' function in MATLAB is used to
define the GUI window within which all the panels are defined. Normalizing the units
of the GUI window to the range [0 O] to [1 1] using the ‘figure’ function lets the
position of the various panels defined within the GUI window be fixed even if the GUI

is run on another computer.

The panels are the rectangles defined within the main GUI window. Buttons performing
various GUI functions are then defined within the panels. The ‘set’ function in
MATLAB is used to set the name of the GUI and to initialize the GUI and its
associated panels. Here the name of the GUI is 'Simple Test GUI'". Figure 1 displays the
output of the figure command which defines the GUI window and divides it into four

panels. The code below details how the panels are created.
clc;clear all;

%$GLOBAL VARIABLE DECLARATIONS
global curr file;%curr file is the value of
$the .wav file once read into MATLAB
global fs; $sampling frequency
global x; %$starting point for expansion
%$selected using ginput function
global frame dur;%length of the frame in seconds

$for which expansion must be done

global W; %1t is the selected frame of curr file
global nfft; gnfft is the value of n in the n point stft
SINITIALIZATION

%$The variable returned from the edit boxes must

%be initialized, else the box will only display

%the value but not actually hold that wvalue
frame dur=0.04;

nfft=1024;

%$The 1 1 in the position attribute means that the GUI
%is fit to screen
f = figure('Visible', 'on',

'Units', '"normalized', ...

'Position', [0,0,1,11,...

'MenuBar', 'none', ...

'"NumberTitle', 'off');

%$GUI PANELS
%$This GUI is divided into four panels
panell=uipanel ('Parent',f, ...

'Units', "Normalized', ...

'Position', [0 0.001 0.23 0.354]);%left bottom panel
panel2=uipanel ('Parent',f, ...

'Units', "Normalized', ...

'Position', [0.233 0 0.8 1]);%right panel
panel3=uipanel ('Parent',f, ...

'Units', "Normalized', ...

'Position', [0 0.359 0.23 0.28]);% left center panel
paneld4=uipanel ('Parent',f,...

'Units', '"Normalized', ...

'Position', [0 0.642 0.23 0.358]);%left top panel
% Assign the GUI a name to appear in the window title.

set (f, '"Name', 'Simple Test GUI');

$initialize GUI

set ([f,panell,panel?2,panel3,paneld], 'Units"', 'normalized")

111

112

DomelsTestoU ~loix|
Panel 4
Panel 3
Panel 2
Panel 1

Figure 1: This displays the GUI window along the four panels created within it. Within
the panels, buttons controlling the GUI will be defined.

The next step is to create two graphics panels within which the waveform and its log
magnitude Fourier Transform can be displayed. Both graphics panels are created within
Panel 2 which is the large panel on the right. The graphics panels are created using the
'axes' function. The ‘axes’ function lets the user specify parameters like parent, i.e the
panel in which the new graphics panel is going to be placed, position, units, etc. and
returns the handle or name of the panel. Figure 2 shows the GUI window with the

relevant co-ordinates and size of the panels marked on the figure.

$GRAPHICS PANELS

%Create graphics panels for plots in panel?

%handle top is the handle of the top graphics panel.
$Similarly handle bott is the handle of the bottom panel.
%$The bottom panel plots the waveform of the complete file.
%It is also used to plot one frame of the file.

%The top panel is used to plot the log magnitude

%spectrum of the window-weighted FFT of the selected
handle top = axes('parent',6 panel2,...
'Units', "Normalized', ...
'Position', [0.05 0.5 0.8 0.357],...
'GridLineStyle', '-=-");
handle bott = axes('parent', panel2Z, ...
'Units', '"Normalized', ...
'Position’', [0.05 0.08 0.8 0.35],...
'GridLineStyle','-=");

frame.

113

114

=]
E]
=
| 5
‘ — / a o~ 1 A a N T
E @ e 2
5 € S5 5
i £ LN o
- 1E ™t e
o = o =
= =
o o
i =
[= ==
Jw o
o o
v i ¥
o o
™~ o~
@ - @ i
c = c =
@ @
(=1 =
= £ ™~
2 ™N | = T _|m
9 T |° A & |7
-E : -E Q
1]
= o = +
OQ E_N. OQ 2 o
(=] p— (=]
< it ©)
LE) <
Q= o =
Ln_d Ln_dd—n
o =
=2 | -
L I 1 I ! A5 1 1 I ! L o N
= ==} w = o (=} - == w - o~ (=] -
o o o o (==} o = o O
e
% ik oo 1 f g] |
™M = N E gl e
o - o - o -
P
—— —— : ———
= o o S =
G e wy [on o
D M S
] = oo (=}
o) = O o
- -.-'. e —

Figure 2: View of the GUI after step 2. The panels on the left are used for the controls of
the GUI. The panel on the right containing two graphics panels is used to display plots of
the waveform (lower graphics panel) and the log magnitude spectrum (upper graphics
panel).

115

3. Creating the controls for the GUI. This includes all the buttons and menus
which are required in order to display the waveform and the spectral log
magnitude output on the bottom and upper sub-panels of panel 2.

1. Get directory/Select file button

This button is used to get a list of directories from which the .wav file to be
displayed is selected and to select the speech file for display and analysis. This
button is defined using the 'wicontrol' function. The 'uicontrol' function is used
to specify various attributes of the button.

The callback for the 'Get directory/Select file' button will be explained in the
section related to callbacks. The callback is a section of code that makes the
buttons actually work. The buttons are not yet ready to be clicked since the
callbacks have not yet been defined. Note that the default style of button is a

'pushbutton' , hence it is not specified below.

$BUTTONS
% Get directory/Select file button
getDirectorybutton=uicontrol ('Parent’',panell, ...
'Units', '"Normalized', ...
'Position’', [0.1 2.5 0.35 0.16],...
'String', 'Get directory/Select file',...
'Callback',@getDirectoryCallback);

2. Play button
This button is used to play the selected .wav file. It is created in the same way as

the 'Get directory/Select file' button.

%$Play button

playbutton=uicontrol ('Parent',panell, ...

116

'Units', '"Normalized', ...
'Position', [0.1 2.1 0.35 0.161]1,...
'String', 'Play speech file',...
'Callback', @playbuttonCallback) ;

3. Plot button
This button is used to plot the selected .wav file. It is created in the same way as

the 'Get directory/Select file' button.

$Plot button

plotbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 2.1 0.35 0.16]1,...
'String', 'Plot speech file',...
'Callback',@plotbuttonCallback) ;

4. Select starting sample in speech file for display and short time Fourier
analysis.

This is used to select the starting sample for a frame of speech to be displayed in

the bottom graphics panel. This frame of speech is defined from the selected

starting sample and is of the duration specified by the frame length (in seconds)

button, as described below.

%Select starting sample of frame for expansion
startpoint=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.1 1.55 0.35 0.1671,...
'String', 'Select start point',...

'CallBack', @startpointCallBack);

117

5. Enter frame length (in seconds) box.

This button is used to input the length of the frame (in seconds) to be displayed.
Note that the type of this box is 'Edit' and that it will have a label (‘Enter length
in seconds’), explaining the meaning of the input. Frame length is initially set to
40 msecs i.e 0.04 seconds. Hence the variable returned by the

frame lenCallback function is initialized to 0.04 as follows.

SINITIALIZATION

frame dur=0.04;

Frame length button code

%Enter frame length

frame len = uicontrol ('Parent', panell, ...
'Units', '"Normalized', ...
'Position', [0.6 1.55 0.35 0.16], ...
'Style', 'Edit', ...
'String','0.04"',...
'HorizontalAlignment', 'center', ...
'BackgroundColor', 'w', ...
'CallBack', @frame lenCallBack);

Label2 = uicontrol ('parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 1.42 0.35 0.12],...
'Style', "text', ...

'String', 'Enter length in seconds');
6. Plot frame button.
This button is a push button which will plot the selected frame of speech with a

Hamming window superimposed over the duration of the speech frame.

118

%This plots the expanded waveform on the screen
expand=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 1.2 0.35 0.161]1,...
'String', 'Plot frame', ...
'HorizontalAlignment', 'center', ...

'CallBack', @plotFrameCallBack);

7. FFT size box.

This button is used to enable the user to enter the size of the FFT analysis (in
samples). Note that the style of the button is 'Edit' since users need to enter a
value into it. This box will have a label below it explaining what it does or the
value that must be entered. Here it is called 'Labell'. By default the FFT size
box has the value '1024' in it. In order for an edit box to have an initial value,
the string field must have the same initial value. One important point to
remember about edit boxes which are initialized to some default value is that
just setting the string field to the initial value is not sufficient for correct
operation. The variable returned by the FFTsizeCallback function should be
initialized to the same initial value at the beginning of the program, or else the
callback function will not work properly. The initializations must be done at the

beginning of the program below the initial 'clc' and 'clear' functions.

$SINITIALIZATION
nfft=1024;

$Enter FFT size, box code
%Enter no of samples for FET

FFTsize=uicontrol ('Parent',panell, ...

119

'Units', '"Normalized', ...
'Position', [0.1 0.7 0.35 0.16]1,...
'Style', 'Edit', ...
'String', '1024"', ...
'HorizontalAlignment', 'center', ...
'BackgroundColor', 'w', ...
'CallBack', Q@FFTsizeCallBack);
Labell = uicontrol ('parent',panell, ...
'Units', "Normalized', ...
'Position’', [0.1 0.57 0.35 0.12],...
'Style', "text', ...

'String', 'Enter the number of samples for FFT');

8. STFT button.
This button is a push button which computes the log magnitude of the short-
time Fourier transform (STFT) of the window-weighted speech frame and plots

it in the upper graphics panel.

%$Display FFT

getstft=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.6 0.7 0.35 0.167,...
'String', 'STFT',
'Callback', @getstftCallback);

9. Save screen button.
This button is a push button which allows you to save a screenshot of the GUI

graphics display.

%Save screen button

savebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.35 0.16],...
'String', 'Save screen',...

'Callback',@saveCallback) ;

120

10. Close GUI button.

This button is a push button which closes the GUI window.

%Close

closebutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 0.3 0.35 0.161]1, ...
'String', 'Close’', ...

'Callback', @closeCallback);
The reader is cautioned that none of these buttons work, as yet, since the
callbacks for them have yet to be defined. Callbacks are the code that actually
makes the buttons work. The callback code performs the function tha Figure 3

shows how the GUI will look after all the buttons have been added.

121

Figure 3: View of the GUI after step 3: Insertion of all required buttons and boxes.

122

Observe that all buttons related to a particular function, eg: The playing or
plotting a speech file, are dependent on the 'Get directory/Select file' button
which ultimately specifies the speech file for analysis. Hence those set of
buttons are all placed in one panel. Buttons that are dependent on each other are
placed in a single panel so that the user can easily identify dependencies and

minimize errors.

4. Adding callbacks for each of the buttons created.

1. Callback for the Get directory/Select file button.

The getDirectoryCallback function allows the user to select a folder (directory)
which contains speech files stored in .wav format. If the selected folder does
contain one or more .wav files, a popup menu is created above the 'Get
directory/Select file' button. This allows the user to select a .wav file to work
with. The popup menu and its callback are nested within the
getDirectoryCallback function because the popup menu depends on the
getDirectoryCallback function. Also, as soon as a file is selected, a label,
'file_info label' will display relevant information about the current file. The
information consists of, name of the file being played, sampling rate and the

total number of samples in the file.

The 'getDirectoryCallback' callback is implemented by using the 'uigetdir’
function which launches a dialog box using which the folder containing the

.wav files maybe selected. The value returned from the 'uigetdir' function is then

123

concatenated with "*.wav' and passed to the 'dir' function. This provides us with

a list of .wav files which are displayed using the popup menu.

The popup menu is created using the 'uicontrol' function, specifying the style of
the button as 'popupmenu’. The other attributes of the button are specified in the

same way as described earlier for the other buttons.

The 'file info label' is created the same way you would create a button,

however the style is specified as 'text'.

%Callbacks
%callback for the Get directory/Select file button
function getDirectoryCallback (h,eventdata)
dir name = uigetdir('start path',6 'dialog title');
A=strvcat (strcat ((dir_name), '*.wav'));
emp structl=dir (A);
wav_file names={emp structl.name};
%drop down menu
drp_dwn menu = uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.6 2.45 0.35 0.16], ...
'Style', "popupmenu', ...
'Visible', 'on',
'String',wav_file names, ...
'BackgroundColor', 'w', ...

'CallBack', @drp dwn callback);

function drp_dwn callback (h,eventdata)
vall=get (drp_dwn _menu, 'val');

%$it is the path of the file .wav file that is selected

fin path=strcat(dir name, '\',strvcat (wav_file names(vall)));

$RMD

124

clear curr file;

clear fs;

[curr file, fs]=wavread(fin path);

FS=num2str (fs) ;

%$Information about the file being played

file info strng=strcat('Current file = ', ...
wav_file names (vall), ...

Sampling frequency = ',FS,'Hz',...
'. Number of samples in file = ', ...

num2str (length (curr file)));

file info label = uicontrol ('parent',panel2, ...

'Units', "Normalized', ...

'Position', [0 0.9 0.9 0.05], ...

'Style', "text', ...

'FontUnits', 'Normalized', 'FontSize',0.5,'String', ...

file info strng);
end

end

2. Callback for the Play speech file button.

The sound function in MATLAB is used to play the selected file. The
arguments for the sound function are curr file and fs which are variables
present in the getDirectoryCallback function. In order for the
playbuttonCallback function to work, these variables need to be declared as

global. Use the declarations below at the beginning of the GUI function in Step

$GLOBAL VARIABLE DECLARATIONS
global curr file;%curr file is the value of
$the .wav file once read into MATLAB

global fs; $sampling frequency

125

The function below is the one that plays the sound file. This snippet should be

placed with all the other callbacks.

%callback for the playbutton
function playbuttonCallback (h,eventdata)
sound (curr_ file, fs);

end

3. Callback for the Plot speech file button.

In order to plot a waveform, the panel in which it will be displayed must be
selected. Here the name or handle is handle bott since we are using the bottom
graphics panel. The panel is selected by passing the handle of the panel as an

argument to the axes function.

%callback for the plotbutton
function plotbuttonCallback (h,eventdata)
hold off; %It is essential to turn hold off so that the
%earlier contents of the panel are replaced
axes (handle bott);
l=length(curr file);
i=(1:1)/fs;%coverting samples to time
plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ("Amplitude');
axis tight;

end

4. Callback to obtain starting sample for frame analysis.

126

The 'ginput' function uses vertical and horizontal cursor lines to return the x and

y co-ordinates of the selected sample.

For this function only the x-coordinate has any relevance. To retain this value
for use by any other function, declare it as global as shown. This will ensure that

the value of the x-coordinate is shared by all the functions.

$GLOBAL VARIABLE DECLARATIONS
global x; $starting point for expansion

%selected using ginput function

Starting sample function:

%callback for startpoint
function startpointCallBack (varargin)
[%x,y]=ginput (1) ;

end

5. Callback to set the frame length.

For this function use the following statement for global variable declaration.

$GLOBAL VARIABLE DECLARATIONS
global frame dur;%length of the frame in seconds

$for which expansion must be done

Frame length function:

%callback for frame len
function frame lenCallBack (varargin)
frame dur = str2num(get (frame len, 'String'));

end

127

6. Callback to plot the selected frame (along with a Hamming window

overlap).

This function plots the selected frame. It also creates a label, Label5, giving
information regarding the length of the selected frame in samples. This

information is displayed above the top graphics panel.

For this function the selected frame array should be declared as global. The
getstftCallback requires this array for calculation and display of the STFA of the

window-weighted frame. The global declaration is as follows.

$GLOBAL VARIABLE DECLARATIONS

global W; %1t is the selected frame of curr file

Function to plot the selected frame:

%callback for expand
function plotFrameCallBack (h,eventdata)

hold off; %to clear the hold set by the plot command

X=round (x*fs) ;

W=curr file(X:round(x*fs+frame dur*fs));

axes (handle bott); %plotting will be done in the Dbottom
panel

i=(l:length(W))/fs;%converting samples to time

plot(i,w,'k', 'LineWidth',2), ...

xlabel ('Time in seconds'), ...

ylabel ('Amplitude');

hold on;

plot (i, hamming (length (W)), 'b') ;%hamming window over the
drawn plot

grid on;

hold on;

128

axis tight;

frame length=num2str (length(W));

frame info strng=strcat('Selected frame =

', frame length, 'samples');

Label5 = uicontrol ('parent',panel2, ...
'Units', '"Normalized', ...
'Position', [0 0.85 0.9 0.0571,...
'Style', "text', ...

'FontUnits', "Normalized', ...
'FontSize',0.5, ...
'String', frame info strng);

end

7. Callback to get the size of FFT used in the STFA.

Here the 'get' function is used to get the value of the box with the handle
num_FFT. The value entered is in string form and must be converted to a

number.

For this function the value is returned in a variable nfft. It should be declared as
a global variable. The following statement should be placed with the other

global variable declarations.

$GLOBAL VARIABLE DECLARATIONS

global nfft; gnfft is the value of n in the n point stft

Function to get size of FFT:

%Callback to get the number of samples for which FFT must be
calculated
function FFTsizeCallBack (varargin)
nfft = str2num(get (FFTsize, 'String'));

end

8. Callback to calculate and display the log magnitude of the STFA.

129

%callback for STFT
function getstftCallback (h,eventdata)
if (length (W)>nfft)%Check if aliasing needs to be done
%$Msg box provides a warning
msgbox ('Length of the frame must be less than FFT
length', 'modal')
else
Wl=W*hamming (length (W)) ';
f=fft (Wl,nfft);
end
F=20*10gl0 (abs (f));
tempFFT=F (1l:length (F)/2);%displaying fft for only
half the range since it is
periodic
axes (handle top); $displaying fft in the top panel

%Y is the range from 0 to the number of samples specified by

user
Y=(l:nfft/2)* (fs/nfft);
plot (Y, tempFFT, 'k', 'LineWidth',2), ...
xlabel ('Frequency in Hz'), ...
ylabel ('Log Magnitude in dB'), ...
title ('Fourier Transform');
axis tight;

end

9. Callback for the Save screen button.

This callback saves a screen shot of the GUI in bitmap format in the location

specified in the code.

3Callback for save screenshot
function saveCallback (h,eventdata)

currentDir=pwd;

currDir=strcat (currentDir, '\new') ;

print ('-dbitmap',currDir) %prints a screenshot and saves it
in

%the work folder as new.bmp

130

end

10. Callback for the Close GUI button.

This callback closes the GUI window.

%Callback for close
function closeCallback (h,eventdata)
close (gcf) ;

end

Figure 4 shows an example of the completed GUI for the file s3.wav.

131

SPUDIAS Ul al|

ZH Ul hauanbaly

000v 00sE 000g 0052
I T I

000z 0osL
I T

sa|dwes | zg= alel) paloajas

000%FZ= 3|u W sajduies Jo Jaqunp ZHoo08= Aousnbaly Buldwes "Aeamgs= ajil WaLNy

X

0z

o

0e-

0z

0l

0l

apnyjduy

gp ul apnyubepy 5o

_ 25010 UB2438 8heS
144 4o} sapdwes
10 J3quinu Ay} Jaug
L41s Fe0lk
alled] 104
ERUOIAE
ujyiiua e

00 Jiod e 0aEs

all yoaads J0ig

_ z >w>.,.mm“

— Al yoaads Aeg

“9ISAI0RIRIR j8E)

N9 1531 3jdwis -

ted callbacks working

ir associa

The completed GUI with all the buttons and thei

Figure 4

perfectly.

132

Complete Code:

function simpleGUI
clc;clear all;

%$GLOBAL VARIABLE DECLARATIONS
global curr file;%curr file is the value of
$the .wav file once read into MATLAB
global fs; $sampling frequency
global x; %$starting point for expansion
%selected using ginput function
global frame dur;%length of the frame in seconds

$for which expansion must be done

global W; %it is the selected frame of curr file
global nfft; $nfft is the value of n in the n point stft
$INITIALIZATION

%The variable returned from the edit boxes must
%be initialized, else the box will only display
$the value but not actually hold that wvalue
frame dur=0.04;

nfft=1024;

%$The 1 1 in the position attribute means that the GUI
%$is fit to screen
f = figure('Visible','on',

'Units', "normalized', ...

'Position', [0,0,1,17, ...

'MenuBar', 'none', ...

'"NumberTitle', 'off');

gmovegui (f, 'center');

%GUI PANELS

%$This GUI is divided into four panels

133

panell=uipanel ('Parent',f, ...

'Units', '"Normalized', ...

'Position', [0 0.001 0.23 0.354]);%left bottom panel
panel2=uipanel ('Parent',f,...

'Units', '"Normalized', ...

'"Position', [0.233 0 0.8 1]);%right panel
panel3=uipanel ('Parent',f, ...

'Units', "Normalized', ...

'Position', [0 0.359 0.23 0.28]);% left center panel
paneld=uipanel ('Parent',f, ...

'Units', '"Normalized', ...

'"Position', [0 0.642 0.23 0.358]);%left top panel
% Assign the GUI a name to appear in the window title.

set (f, '"Name', 'Simple Test GUI');

$initialize GUI

set ([f,panell,panel?,panel3,paneld], 'Units', 'normalized")

$GRAPHICS PANELS
%Create graphics panels for plots in panel?2
$handle top is the handle of the top graphics panel.
$Similarly handle bott is the handle of the bottom panel.
%$The bottom panel plots the waveform of the complete file.
%It is also used to plot one frame of the file.
%$The top panel is used to plot the log magnitude
$spectrum of the window-weighted FFT of the selected frame.
handle top = axes('parent',6 panel2,...

'Units', "Normalized', ...

'Position', [0.05 0.5 0.8 0.35],...

'GridLineStyle', '-=-");
handle bott = axes('parent',6panel2, ...

'Units', "Normalized', ...

'Position', [0.05 0.08 0.8 0.35],...

'GridLineStyle', '-=-");

$BUTTONS
% Get directory/Select file button

getDirectorybutton=uicontrol ('Parent',panell, ...

'Units', '"Normalized', ...

'Position', [0.1 2.5 0.35 0.16],...
'String', 'Get directory/Select file',...
'Callback', @getDirectoryCallback) ;

%$Play button

playbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.1 2.1 0.35 0.161, ...
'String', 'Play speech file',...
'Callback', @playbuttonCallback) ;

$Plot button

plotbutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.6 2.1 0.35 0.167,...
'String', 'Plot speech file',...
'Callback', @plotbuttonCallback) ;

%Select starting sample of frame for expansion

startpoint=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position',[0.1 1.55 0.35 0.167,...
'String', 'Select start point',...

'CallBack', @startpointCallBack);

%Enter frame length

frame len = uicontrol('Parent', panell, ...
'Units', '"Normalized', ...
'Position', [0.6 1.55 0.35 0.1671,...
'Style', 'Edit"', ...
'String','0.04"',...

'HorizontalAlignment', 'center', ...

A} A}

'BackgroundColor', 'w', ...
'CallBack', @frame lenCallBack);

Label2 = uicontrol ('parent',panell, ...

134

135

'Units', "Normalized', ...
'Position', [0.6 1.42 0.35 0.1271,...
'Style', "text', ...

'String', 'Enter length in seconds');

%$This plots the expanded waveform on the screen
expand=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 1.2 0.35 0.16],...
'String', 'Plot frame', ...
'HorizontalAlignment', 'center', ...

'CallBack', @plotFrameCallBack);

%Enter no of samples for FET

FFTsize=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 0.7 0.35 0.16]1,...
'Style', 'Edit', ...
'String', '1024"', ...
'HorizontalAlignment', 'center', ...
'BackgroundColor', 'w', ...
'CallBack', QFFTsizeCallBack);

Labell = uicontrol ('parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 0.57 0.35 0.127],...
'Style', 'text', ...

'String', '"Enter the number of samples for FFT');

%Display FFT

getstft=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 0.7 0.35 0.16],...
'String', 'STFT',
'Callback', @getstftCallback);

%$Save screen button
savebutton=uicontrol ('Parent',panell, ...

'Units', "Normalized', ...

136

'Position', [0.1 0.3 0.35 0.161,...
'String', 'Save screen',...

'Callback', @saveCallback);

%Close

closebutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 0.3 0.35 0.16],...
'String', 'Close’', ...

'Callback',@closeCallback) ;

%Callbacks
%callback for the Get directory/Select file button
function getDirectoryCallback (h,eventdata)
dir name = uigetdir('start path',6 'dialog title');
A=strvcat (strcat ((dir_name), '*.wav'));
emp_structl=dir (A);
wav_file names={emp structl.name};
%drop down menu
drp_dwn menu = uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.6 2.45 0.35 0.16],...
'Style', "popupmenu', ...
'Visible', 'on',
'String',wav_file names, ...
'BackgroundColor', 'w', ...

'"CallBack', @drp dwn callback);

function drp dwn callback (h,eventdata)
vall=get (drp _dwn menu, 'val');
%$it is the path of the file .wav file that is selected
fin path=strcat(dir name, '\',strvcat(wav_file names(vall)));
$RMD
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs);
%$Information about the file being played

137

file info strng=strcat('Current file = ', ...
wav_file names (vall), ...
'. Sampling frequency = ',FS,'Hz',...
'. Number of samples in file = ', ...
num2str (length (curr file)));

file info label = uicontrol ('parent',panel2, ...
'Units', '"Normalized', ...
'Position', [0 0.9 0.9 0.05],...
'Style', "text', ...
'FontUnits', 'Normalized', 'FontSize',0.5,'String', ...
file info strng);

end

end

%callback for the playbutton
function playbuttonCallback (h,eventdata)
sound (curr_ file, fs);

end

3callback for the plotbutton
function plotbuttonCallback (h,eventdata)
hold off; %It is essential to turn hold off so that the
%earlier contents of the panel are replaced
axes (handle bott);
l=length(curr file);
i=(1:1)/fs;%coverting samples to time
plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ('Amplitude');
axis tight;

end

%callback for startpoint
function startpointCallBack(varargin)
[x,yv]=ginput (1) ;

end

%callback for frame len

function frame lenCallBack(varargin)
frame dur = str2num(get (frame len, 'String'));

end

%callback for expand

function plotFrameCallBack (h,eventdata)
hold off; %to clear the hold set by the plot command
X=round (x*fs) ;

W=curr file(X:round(x*fs+frame dur*fs));

138

axes (handle bott); S%plotting will be done in the bottom panel

i=(l:length(W))/fs;%converting samples to time
plot(i,w,'k', 'LineWwidth',2), ...

xlabel ('Time in seconds'), ...

ylabel ("Amplitude');

hold on;

plot (i, hamming (length (W)), 'b');%hamming window over the drawn plot

grid on;

hold on;

axis tight;

frame length=num2str (length (W)) ;

frame info strng=strcat ('Selected frame

', frame length, 'samples');

Label5 = uicontrol ('parent',panel?2, ...
'Units', "Normalized', ...
'Position', [0 0.85 0.9 0.0571,...
'Style', "text', ...

'"FontUnits', '"Normalized', ...
'FontSize',0.5, ...
'String', frame info strng);

end

%$Callback to get the number of samples for which FFT
calculated
function FFTsizeCallBack(varargin)
nfft = str2num(get (FFTsize, 'String'));

end

$callback for STFET

must Dbe

function getstftCallback (h,eventdata)

if (length(W)>nfft)%Check if aliasing needs to be done

$Msg box provides a warning

139

msgbox ('Length of the frame must be less than FFT

length', 'modal')

else

Wl=W*hamming (length (W)) ';

f=fft (Wl,nfft);
end
F=20*10gl0 (abs (f));
tempFFT=F (1l:length (F)/2);%displaying fft for only

%$half the range since it is periodic

axes (handle top); $displaying fft in the top panel
%Y is the range from 0 to the number of samples specified by user
Y=(1l:nfft/2)* (fs/nfft);
plot (Y, tempFFT, 'k', 'LineWidth',2), ...

xlabel ('Frequency in Hz'), ...

ylabel ('Log Magnitude in dB'),...

title ('Fourier Transform');

axis tight;

end

%Callback for save screenshot

function saveCallback (h,eventdata)

end

currentDir=pwd;
currDir=strcat (currentDir, '\new') ;
print ('-dbitmap',currDir) %prints a screenshot and saves it in

%the work folder as new.bmp

%Callback for close

function closeCallback (h,eventdata)

end

end

close (gcf);

140

Appendix B

GUI Lite User's Guide for Version 2

GUI Lite is a Graphical User Interface design tool which allows a user to create a
graphical user interface for virtually any speech processing application with ease. It
uses a two-stage approach in which the creation of the layout of the GUI and the actual
writing of the callback code for the created GUI objects is separated into two stages to
simplify GUI development. It automates the layout and positioning of various GUI
objects and separates them from the writing of the code that controls the created
objects. The GUI Lite User’s Guide is a user manual that explains the capabilities of the
GUI Lite — Version 2. The user’s guide explains using step-by-step instructions, how to
create a GUI that uses all the different types of buttons that can be created using GUI
Lite. The user’s guide also demonstrates how to create a GUI to select a speech file,

play and plot it using the capabilities of GUI Lite.

The current User’s Guide for GUI Lite — Version 2 is written using functions provided
in MATLAB 7.8.0.347 (R2009a). GUI Lite — Version 2 is compatible with lower

versions of MATLAB also.
Important vocabulary pertaining to GUI Lite

A GUI created using the GUI Lite toolkit consists of one or more of the following GUI

objects.

1. Panel: A panel is a gray rectangular outline that is used to group or separate

141

buttons, plots, title boxes or a combination of all three. Panels are used to group

UI objects (buttons or plots) performing similar functions together. Panels

improve the layout of the GUI by providing a well-defined, more organized way

of arranging the elements of the GUI

Graphic Panel: A graphic panel is a plot window in which plots are drawn. It is

different from the panel mentioned above. It is a white box and is sometimes

enclosed by a ‘panel’ to provide better presentation.

Title Box: A title box is a gray rectangular box and is used to add a title for a

panel, a graphic panel or a group of buttons. The text to be displayed in the title

box is entered while writing callbacks (i.e., code implementations of the desired
buttons) for the various GUI objects.

. Button: A button is an object that is used to input a desired parameter to the

GUI, perform a desired function when clicked, or provide options (e.g.: a drop

down menu). The types of buttons that can be created using GUI Lite are as

follows:

o Pushbutton: This button performs a certain function when clicked i.e., it
executes code in its callback function when clicked via the mouse. This is
the default ‘type’ of any button created using GUI Lite.

o Edit box: This kind of button is used to provide input to a GUI in MATLAB
(e.g., the value of a variable). To create an edit box, the user must specify
the type of button be created as an ‘edit’ button. The value in the edit box
can be changed by moving the mouse to the edit box and editing the value in

the box.

142

o Text button: This is a gray box that contains text. It can be used to hold a
common title for a group of buttons or the label for a single button. The text
in this box cannot be edited. Also, the text for this button is entered while
writing the code for the callback functions.

o Popupmenu button: The popupmenu button is a pull down menu which
contains a list of options for user selection (e.g., possible speech files within
a directory for analysis). The user must enter the type of button as a
‘popupmenu’ button while creating the button.

o Slider button: This button is a horizontal slider button. It can be used for
tasks such as volume control. The user must enter the type of button as a
‘slider’ button while creating this type of button.

5. ‘Callback’ functions: The ‘uicontrol’ object/function is used to create buttons
for a GUIL. The buttons created during the layout stage of GUI Lite do not
perform the desired functions until the callback code for the buttons has been
written. The ‘callback’ function is the backend code of the button that actually

performs the function the button of the button.

For example when ‘buttonl’ is clicked, the callback for ‘buttonl’ i.e.
‘button1Callback’ is called to execute the code that performs the function that
button1 performs when it is clicked. This callback code is the application’s code
and is written by the user and needs to be entered in the button framework that
is provided in the latter part of the ‘PanelandButtonCallbacks.m’ file. This will

be explained in detail in the section on callbacks later in this user’s guide.

Figure 1 displays a screenshot of GUIwith all the GUI objects.

Panel

Title hox

This is a title box. You may
chanae this strina

Graphic Panel

Figure 1: A dummy GUI with GUI objects including a panel, a graphic panel, a title
box and one button.

Guidelines to use GUI Lite Solution 2 effectively

1. Before using GUI Lite, draw a sketch of the layout of the GUI on paper.

2. The GUI Lite folder should then be downloaded and saved into the ‘work’ folder
of MATLAB. The GUI Lite folder contains three ‘.m’ files. They are
‘panelButtonSetup.m’, ‘runGUL.m’ and ‘PanelandButtonCallbacks.m’.

3. The GUI Lite toolbox is then launched by running the ‘panelButtonSetup.m’ file.
On running the ‘panelButtonSetup.m’ file from the ‘GUI Lite’, the user is first
asked to enter the number of panels that need to be drawn. An important point to

remember is that panels do not include graphic panels (i.e. plot windows which are

144

used for plotting) but are just gray rectangular outlines that are used to group
buttons, graphic panels and title boxes. The window that the user views on running
the ‘panelButtonSetup.m’ file is displayed in Figure 2.

The user should also enter the number of graphic panels, title boxes and buttons in
the order mentioned.

Once the user has entered these values, the user should change the name in the box
‘Enter a name to save the file’. This box is used to provide a filename to save the
co-ordinates obtained for the layout of the GUI. After entering the file name, the

user clicks the ‘Begin drawing GUI” button.

145

—
=
(]
a
=
=
1]
un
T |
=
]
=
=
=]
=
=1
=
=]

Figure 2: This is the first screen that appears once the GUI Lite toolbox is launched. It
allows a user to enter parameters using which it draws the layout of a GUI. This launch
screen contains default parameters.

146

To demonstrate the functionality of the GUI Lite toolkit, the user’s guide will first

explain:

I. An example to create a GUI which utilizes the different types of buttons that
can be created using GUI Lite. The different types of buttons are a ‘pushbutton’,
an ‘edit’ button, a ‘text’ button, a ‘popupmenu’ button and finally a ‘slider’
button. No callbacks will be written for these buttons. This exercise only
demonstrates to the user the various types of buttons that can be created using
GUI Lite.

II. The user’s guide will also explain using an example, how to create a GUI to

select, play and plot a desired speech file.

I. Example to create a GUI containing the five types of buttons that can be
created using GUI Lite — Version 2.

After following the first three guidelines from the section on ‘Guidelines to using the
GUI Lite — Version 2 effectively’, the user will be prompted to enter the number of
panels, graphic panels, title boxes and buttons to be created. The user can enter zero as
the number of panels, graphic panels and title boxes in the screen displayed in Figure 2.
The user can enter five as the number of buttons that need be to be created and enter the
file name to save the button parameters as ‘buttonparameters’. After the GUI
parameters have been entered by the user, the user should click on the ‘Begin Drawing
buttons and panels’ button. After clicking the ‘Begin drawing buttons and panels’
button, a white screen with a grid overlaid on it and crosshairs will appear. Using the

vertical and horizontal crosshairs that appear over the grid, the user can now select the

147

position of the first button after which the screen in Figure 3, i.e. the ‘Button Stats’ GUI

will be visible to the user.

For the first button, the user can use the default values already present in the ‘Button
Stats’ GUI. The type of button is ‘pushbutton’ , the string to be written on the button is
‘Play’ and the length and width of the button are set to default values. The ‘edit’ box in
which a label can be entered for the button is left blank since ‘pushbuttons’ generally

do not require labels since the string written on them explains their purpose.

Clicking the ‘Accept Specs Button’ will save the current button parameters and allow
the user to select the position of the next button which is an ‘edit’ button. After entering
the ‘edit’ button’s parameters the user can click the ‘Accept Specs Button’. Now, the
white screen with the grid will reappear and on it a black rectangle which represents the
previous ‘pushbutton’ will be drawn. Also horizontal and vertical crosshairs which let

the user select the position of the next button will be available.

After selecting the position of second button, the ‘Button Stats’ GUI will appear
allowing the user to select and enter the various button parameters. For the second
button, the user needs to set the value of the drop down menu button to ‘edit’ to create
an ‘edit’ button. Figure 4 displays the ‘Button Stats’ GUI with all the ‘edit’ button
parameters added to it. ‘Edit’ buttons generally have labels below them which explain
what purpose the ‘edit’ buttons serve. The width of the edit button has been increased
to 0.08 units. This gives it a square like appearance. Figure 5 displays the GUI element
selection grid (white screen with the grid) with the positions of the ‘pushbutton’ and the

‘edit’ buttons.

148

w
=i}
Il
a
W
=
=l
=
=
=
@ |

Figure 3: The ‘Button Stats’ GUI with the parameters of the first button, a ‘pushbutton’
entered into it.

149

*AUE B adinkbad 10U S30p Uophd, SRS, auyl o5y enhueinsd|enBuen | [Bumed b
*BICIERS BU U UANILE S8 padala S0 BULS SU) e sadnka) uopng nuswdndod 24110

_ uopng saeds Haaoy

oG L Lo Wia) au egg UCHNG S 40 Wipta auy =g

Bon _ Bon

(a3 1gTm et =T, ool T =t =] =1 = =
Ak J0U Of oA J| “uopng sJads daaoy auy
U0 213 [a0e] B passila sAsl NoA Ja)y “Aojeg
®00f SU} Ul pajeasa UOHng SL 4] [BoE) & Jajug

00 SL L] Sy & Jajug _

¢ HONG 34}
U0 s 20 o) BUS 843 Jepug uopng auj jo adiy au} ssoays

; - 3
b s

(M9 sjels Lojng

5135 uojing

1n9 dnjas pueg /uoyng

for the ‘edit’ button has

ion
been selected. It has all the parameters for the ‘edit’ button entered into it.

.

The ‘Button Stats’ GUI that appears after the posit

Figure 4

Figure 5: This white screen is visible to the user after the user has selected the positions of
the first two buttons. The black rectangle towards the left represents the ‘pushbutton’ and
the black rectangle on the right represents the ‘edit’ button. The red rectangle below the
black rectangle on the right represents the ‘label’ for the ‘edit’ button. The vertical line
which runs over the ‘pushbutton’ along with the horizontal line that intersects it are the
crosshairs which are used for selecting the positions and dimensions of the GUI elements.

Next, the position of the third button, a ‘text’ button needs to be selected. After
selecting the position of the ‘text’ button, the user enters the parameters for the ‘text’

button in the ‘Button Stats’ GUI. Figure 6 displays the ‘Button Stats” GUI.

151

c
=
&
g
=
3

£
a
g,
=
s
@
&
=

=
£
®
£
£

Button stats

Figure 6: The ‘Button Stats’ GUI with the parameters of the ‘text’ button entered into it.

152

Similarly, after selection of the position of the ‘popupmenu’, which is the fourth button

that is going to be created, the screen in Figure 7 will be displayed.

AUl & adnbad J00 S50 UONNG, S00E, Su1 08y JenBueiad e) Buuger b
A SUL L) UARDLS S8 pRdaile ag AUS Su) gl saanbad uogng nuswdncod 2U1:3) ks

7 UG S90S ey
UOHNG B} 40 yiua) aul a3 UOHNG SL Ho Ll aU] 4eil
a0a il
“Lapng $7ads 333y AU 302 '[ade| &
adrbal 1ou op hok) uopng saads ideoay aup

10§20 [REE] & Pa31US BABY NOA JBLT mojEY
X0 8l U Pajeaa UoNNG SU) 40} 36| & JEg

U0 au) 40 24} a4 850045

7 Em_._._%%g_

¢ WOPng sy}
10 LA B 0 BUs au} 43

Jen|fue) e nBUueloadfume

(N2 siels uogng

$1e35 uong

XM

The ‘Button Stats’ GUI with the parameters of the ‘popupmenu’ entered into it.

Figure 7

153

The last button that needs to be created is the ‘slider’ button. Figure 8 displays the
‘Button Stats” GUI with the parameters of the ‘slider’ button entered into it. A ‘slider’
button does not allow text to be written over it hence ‘Enter the string to be written on
the button’ box in the GUI had been left blank. Also the length and width of the ‘slider’

button has been adjusted to create a longer, slimmer button.

-0

><|
E|
i
i
£2
5
z
= = =
=] =
5 T e R ned
£ 2 £z
= = i
= = = =g
e = z =
= = S z
== = =3 & 5
= 5 5
= & e o =
a = = &
= = =
= = S
& = = -
= = = = =2
B =
in = =
= [= =t
) Z LR
& ==
= = g2
= = =
=y =2 = 5
= = 53
faa] = 5] i ==
= = =
= = ==
£ z ES |- —
= = ==
& 5 (e =i
> = = =
= s | B =
= = o =
= ol =S
2 = E S
] = B
S
= & £

=

=
£
=
2

Figure 8: The ‘Button Stats’ GUI with the parameters of the slider button entered into it.

154

Figure 9 displays the white screen with the grid and the six rectangles that represent the
buttons and their label. After all the buttons have been created, the user will be

prompted to save the selection of buttons.

Wauld you lice to save your selection

Cives

Figure 9: This screen contains the user selections of the button positions and dimensions.
The user may either choose to save the selection or discard it and begin again.

On running the ‘runGULm’ file with the ‘buttonparameters.mat’ file that contains the
above button selection, Figure 10 is displayed to the user. To run the ‘runGULm’ file
with the ‘buttonparameters.mat’, the user must edit the ‘runGULm’ file and change the
name of the ‘.mat’ file to ‘buttonparameters.mat’. After this change is completed, the
‘runGUI’ file must be saved and run. The code snippet to edit the ‘runGULm’ file is as
follows. The user does not need to paste this code into ‘runGULm’ but can use it to

understand how to edit the ‘runGUILm’ file.

SENTER THE NAME OF THE . mat FILE

fileData=load ('buttonparameters.mat');

155

Figure 10: The GUI screen that is visible to the user when the ‘runGULm’ file is run with
the current selection of button positions and dimensions.

156

At this stage none of the buttons work and if clicked will cause errors in MATLAB. In

order for the buttons to work, callbacks for the buttons must be written.

II. An example which demonstrates how to create a GUI that plays and plots a
selected .wav file using GUI Lite. It includes information on how to write

callbacks for buttons created using GUI Lite.

The first step in implementing this example is to draw a sketch of the tentative layout of
the GUL Once this has been completed, the user should save the GUI Lite folder in the
MATLAB ‘work’ folder and the ‘panelButtonSetup.m’ file must be run. On running the
‘panelButtonSetup.m’ file, the user will be able to see the screen displayed in Figure 2.
For this example, the user can enter the number of panels as two, the number of graphic
panels as one, the number of title boxes as one and finally number of buttons as four.
The length and width of the buttons can be left at their default values. Here the user can
use the name ‘simpleGUI’ as the name of the file that will contain the coordinates for
the various GUI elements. Finally the user needs to click the ‘Begin Drawing panels
and buttons’ button to start drawing the GUI layout. The screen that will be visible to

the user at this stage is displayed in Figure 11.

157

=
[
o
=
E
@

Button/Panel Setup GUI

Figure 11: The GUI window containing the user’s parameters for GUI development.

158

Once the ‘Begin Drawing buttons and panels’ button is clicked, a white screen with a
grid will appear. Horizontal and vertical crosshairs will also appear over the grid. Using
these crosshairs, the users selects the endpoints of the panels, the graphic panels, the
title boxes and finally the positions of the buttons. The endpoints of the panels, graphic
panels and title boxes need to be selected by first selecting the left bottom co-ordinate
then the right bottom co-ordinate and finally the top right co-ordinate of the panels,
graphic panels or the title boxes using mouse clicks. The user does not need to select
the top left co-ordinate for any of the GUI objects since this is done automatically
through GUI Lite. The grid laid out over the GUI layout window is to help select the
endpoints of the various GUI objects accurately. Any change in the order of selecting

the endpoints will cause a MATLAB error.

To select the position of a button object, the user needs to only to select the left bottom
co-ordinate of the button object using the horizontal and vertical cursors and a mouse
click. The button object with then be drawn automatically since a standard size button

1s assumed.

After the positions and properties of all the GUI elements have been selected and
entered, the user will be asked to save the selection. If the user does not wish to save

the selection, the user may begin selecting the coordinates of the GUI elements again.

While selecting the coordinates of the GUI elements, if the user makes a mistake in

selection, there are three things that the user can do to rectify the situation.

1. Stop the program by closing the current window or by pressing the keys ‘Ctrl’

and ‘c’.

159

2. The user can choose to complete selecting all the coordinates and then click the
option ‘No’ when asked to save the selection of coordinates. The user will then
be allowed to reselect all the co-ordinates without re-entering the number of
panels, graphic panels, title boxes and buttons.

3. The user can complete selecting all the coordinates and save the selection. Then
while writing the callback code for the various GUI elements in the
‘panelButtonCallbacks.m’ file the user can reset the coordinates of the created
GUI elements that need to be changed using the ‘set’ command.

For example, if the user needs to change the position attribute of the title box,

the user would use code similar to the one used below:

set (titleBox1l, 'Position', [u(l) v(1l)+0.01 u(2)-u(l) v(3)-
v(2)+0.01])

Here the u and v represent the x and y co-ordinates of the position of the title
box. Each title box that is created has three co-ordinates stored for it into the
“mat’ file. u(1),v(1) are the co-ordinates of the first i.e. left bottom point,
u(2),v(2) co-ordinates of the second i.e. right bottom point and u(3),v(3) the co-
ordinates for the third i.e. right top point. In general, each GUI element like the
panel, graphic panel and title box have a set a three points which contain their
position and dimension. These three points are the lower left corner, lower right
corner and the top right corner. Hence changing the position of any of the GUI
elements just involves changing the co-ordinates involved in the ‘position’
attribute of the element that needs to be changed as done in the above code

snippet. The code snippet is used to move the title box upwards by 0.01 units.

160

Similarly, to change the string attribute of the title box, the user would use the

following command:

set(titleBoxl, 'String','I am the new title box');

The ‘string’ attribute of the title box is reset from its current value to the value ‘I am the

new title box’. Here there is only one title box being used hence as per the naming

convention followed by GUI Lite, this title box is referred to as ‘titleBox1°.

The screen that appears after the user has chosen to save his selection is displayed in

Figure 12.

............

.........

............

Figure 12: The GUI screen after the user has selected the positions of the panels, graphic
panel, title boxes and button. The large black boxes are the panels. The green box is a
graphic panel, the pink one is a title box and the small black rectangles are button.

161

Now that the layout of the GUI has been saved, the user needs to change the change the
name of the file which needs to be loaded in the ‘runGULm’ from ‘filel.mat’ to
‘simpleGULmat’. ‘simpleGUL.mat’ contains the layout of the GUI as selected and
saved by the user. Once the user had updated the file name change in the ‘runGULm’
file, the ‘runGULm’ file can be saved and run. On running the ‘runGULm’ function, the

screen in Figure 13 is displayed.

101X

This is a title box. You may change this
sfrina

Get directoryiSele... [Select file »

08F
07r

0B

it

04+

03

024

01

Figure 13: This is the screen that runs once the ‘runGUILm’ file is loaded with the user’s
GUI layout.

If the user were to click any of the buttons in the GUI at this stage (Figure 13), none of
them would work since the callbacks for the buttons have not been written as yet.
Hence the next step to making the GUI a fully functioning one is to write the callbacks

in the ‘PanelandButtonCallbacks.m’ file.

162

While writing the code for the callbacks, the user can set a name for the created GUI by
using the ‘set’ function. The window that contains the GUI created by the user is
referred to as ‘f” by the GUI Lite toolbox. Using the ‘name’ attribute of the ‘set’

function the user can assign a name to it as follows.

set (f, '"Name', 'Solution2-Play and Plot GUI');
The above code snippet needs to be inserted in the file ‘PanelandButtonCallbacks.m’
just below the comment that says ‘USER CODE FOR THE VARIABLES,

CALLBACKS AND INITIALIZATION’.

The ‘PanelandButtonCallbacks.m’ file contains pre-defined callback frameworks for
each of the buttons. For example, to complete writing a callback for a button, the user
just needs to enter the callback code within the pre-defined function framework defined

below.

%$Callback for the buttonl
function buttonlCallback (h,eventdata)

%Enter user’s callback code

end

There are 15 such callback frameworks defined in the ‘PanelandButtonCallbacks.m’
file for buttons. Also as per GUI Lite’s naming convention, if three panels were to be
created, they would be called ‘Panell’, ‘Panel2’ and ‘Panel3’ depending on the order in
which they were created. If there were two graphic panels created, they would be called
‘graphicPanell’, ‘graphicPanel2’, etc. Similarly title boxes would be called titleBox1,

titleBox2, etc and buttons would be called ‘buttonl’, ‘button2’, etc. If the user needs

163

more than 15 buttons, the GUI Lite toolkit can easily be scaled to accommodate the

extra buttons by replicating the callback frameworks.

The callback code for button 1 is mentioned below. Buttonl is used to browse the

user’s file system.

%Callback for the Get directory button (buttonl)

function buttonlCallback(src,eventdata)

directory name = uigetdir ('start path', 'dialog title');

A=strvcat(strcat((directoryiname),'*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (button2, 'String',wav_file names) ;

$once the popupmenu/drop down menu is created, by default, the
first

%selection from the popupmenu/drop down menu must be loaded
even 1if the

%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
$menu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

Similarly, the callback code for the remaining buttons have been inserted into their
respective callback frameworks. Button2 is a ‘drop down menu’ which is populated
with the names of speech files present in a selected folder. The callback code for

button2 is as follows.

%Call back for the Select file drop down menu (button2?)

function button2Callback(src,eventdata)

end

indexOfDrpDwnMenu=get (button2, 'val') ;
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

164

The ‘loadSelection’ function called in the ‘button2Callback’ is used to set the first entry

that populates the ‘Select file’ drop down menu/popupmenu button as the value of the

‘curr_file’ variable which holds the speech array to be played. The user may either re-

implement this function or use the function mentioned below.

$Function--load selection

function [curr file,fs]=loadSelection(directory name, ...

is

end

wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\', ...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;

$fin path is the complete path of the file

%selected

clear curr file;

clear fs;

[curr file, fs]=wavread(fin path);

FS=num2str (fs);

%$Information about the file being played

file info string=strcat ('Current file = ', ...
wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...

'. Number of samples in file = "', ...
num2str (length (curr file)));

set (titleBoxl, 'String',file info string);

set (titleBoxl, 'FontSize',0.3);

The callback code for ‘button3’ is mentioned below.

%Callback for the play button (button3)

function

button3Callback (h,eventdata)

sound (curr_ file, fs);

.wav file that

165

end

The callback code for ‘button4’ is mentioned below.

%callback for the plot button (buttoni4)
function button4Callback (h,eventdata)
hold off; %It is essential to turn hold off so that the
hold off; $%earlier contents of the panel are replaced
%the two hold off's are for the speech file and the hamming

window

grid off;

reset (graphicPanell) ;

axes (graphicPanell) ;

l=length(curr file);

i=(1:1)/fs;%coverting samples to time

plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ('Amplitude');

axis tight;

grid on;

end
Some variables like the ones mentioned below need to be initialized so that they can be

shared among the various callback functions.
curr file=1;
fs=1;

directory name='abcd';

wav_file names='abcd';
Figure 14 displays what the GUI created by the user when he has clicked the ‘Get

directory, ‘Select file’ and ‘Plot’ buttons.

166

101X

=) 5olution2-Play and Plot GUL

Current file =s4.wav. Sampling frequency =8000Hz. Number of
samples in file =24000

.....

Get directoryiSele. bt]

Play Plot

Armplitude

Tirme in seconds

Figure 14: After selecting a ‘.wav’ file using the ‘Get directory’ and ‘Select file’ buttons,
the user can click the ‘Play’ and ‘Plot’ buttons in to hear the file and see it plotted.

Appendix C

167

Code for the four example GUI programs created using GUI Lite — Version

1

1. Program 1 — Hello World Program

function helloWorld
%embedded code for the GUI application
clc;clear all;
f = figure('Visible', 'on',
'Units', "normalized', ...
'Position', [0,0,1,1],...
'MenuBar', 'none', ...
'NumberTitle', 'off');
% Assign the GUI a name to appear in the window title.
set (f, '"Name', 'Hello World');
$BUTTONS
% Push me button
pushMebutton=uicontrol ('Parent', f, ...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.2 0.171,...
'String', 'Push Me', ...
'Callback', @pushMeCallback) ;
%callback for the push me button
function pushMeCallback (h,eventdata)
msgbox ('"Hello World!', 'modal')

end

end

2. Program 2 — Display the Waveform of a Designated Speech File.

function displaySpeechWaveform
%embedded code for the GUI application
clc;clear all;
f = figure('Visible', 'on',

'Units', 'normalized', ...

'Position', [0,0,1,1],...

'MenuBar', 'none', ...

'"NumberTitle', '"off');

Q

% Assign the GUI a name to appear in the window title.

set (f, 'Name', 'Display speech waveform GUI');

%GUI PANELS

168

%$This GUI is divided into two panels,a panel to group the buttons and

a

%panel to enclose the graphic panel.

panell=uipanel ('Parent',f, ...
'Units', '"Normalized', ...

'Position', [0.1 0.05 0.75 0.2]);%button panel

panel2=uipanel ('Parent',f, ...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.75 0.65]);%plot window

% % (graphic panel)

%$The speech waveform will be displayed within graphicPanel.
graphicPanel = axes('parent',panel2,...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.8 0.5],...
'GridLineStyle', '-=");

$BUTTONS

% Display speech waveform button

displaySpeechbutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.1 0.3 0.2 0.371,...
'String', 'Display speech waveform', ...
'Callback',@displaySpeechCallback) ;

% Close GUI button

closebutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...

'Position', [0.6 0.3 0.2 0.371,...
'String', 'Close GUI', ...

panel

'Callback',@closeCallback) ;

%callback for the display image button
function displaySpeechCallback (h,eventdata)
loadedSpeech=wavread('sl.wav');
%$The speech file is 'sl.wav'
axes (graphicPanel) ;
plot (loadedSpeech) ;
title('sl.wav');
xlabel ('Time in seconds');
ylabel ("Amplitude');
end
%callback for the close GUI button
function closeCallback (h,eventdata)
close (gcf) ;

end

end

3. Program 3 — Load a Speech File, Play it Back and Display the Waveform.

function playPlotSpeechGUI
clc;clear all;

curr file=1;

fs=1;

directory name='ABCD';
wav_file names='ABCD';

file info string='ABCD';

f = figure('Visible', 'on',
'Units', 'normalized', ...
'Position', [0,0,1,1],...
'MenuBar', 'none', ...
'NumberTitle', 'off');
% Assign the GUI a name to appear in the window title.
set (f, 'Name', 'Play and plot speech GUI');
%$GUI PANELS

%$This GUI is divided into two panels

169

panell=uipanel ('Parent',f, ...
'Units', '"Normalized', ...

'"Position', [0.1 0.05 0.75 0.35]);%button panel

panel2=uipanel ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [0.1 0.45 0.75 0.5]);%plot window

% (graphic panel)

%$The image will be displayed within graphicPanel.
graphicPanel = axes('parent',panel2,...
'Units', '"Normalized', ...
'Position', [0.1 0.2 0.8 0.71,...
'GridLineStyle','-=");

$BUTTONS

% Get directory button

getDirectorybutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.25 0.55 0.2 0.25],...
'String', 'Get directory/Select file',...

'Callback',@getDirectoryCallback);

% Select file button

selectFilebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.55 0.45 0.2 0.25], ...
'style', "popupmenu', ...
'BackgroundColor', 'white', ...
'String', 'Select file',...
'Callback',@selectFileCallback);

%$Play button
playbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.1 0.1 0.2 0.25],...
'String', 'Play',...

panel

170

'Callback', @playCallback);

sPlot button

plotbutton=uicontrol ('Parent', panell, ...
'Units', "Normalized', ...
'Position', [0.4 0.1 0.2 0.25],...
'String', 'Plot',...
'Callback',@plotCallback);

% Close GUI button

closebutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.7 0.1 0.2 0.25],...
'String', 'Close GUI', ...
'Callback',@closeCallback);

%Callbacks
%Get directory callback
function getDirectoryCallback (src,eventdata)
directory name = uigetdir ('start path', 'dialog title');
A=strvcat(strcat((directoryiname),'*.wav'));
struct filenames=dir (A);
wav_file names={struct filenames.name};
set (selectFilebutton, 'String',wav_file names);
$once the popupmenu/drop down menu is created, by default, the

first

%selection from the popupmenu/drop down menu must be loaded
even 1f the

%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the

popupmenu/dropdown

$menu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

171

is

%Select

172

file callback

function selectFileCallback(src,eventdata)

indexOfDrpDwnMenu=get (selectFilebutton, 'val');

[curr file,fs]=loadSelection(directory name, ...

end

$Functio

function

wav_

wav_file names, indexOfDrpDwnMenu) ;

n--load selection
[curr file,fs]=loadSelection(directory name, ...

file names, indexOfDrpDwnMenu)

fin path=strcat(directory name, '\', ...

clea

strvcat (wav_file names (indexOfDrpDwnMenu))) ;

$fin path is the complete path of the file .wav file that

%selected

r curr_ file;

clear fs;

[curr file, fs]=wavread(fin path);

FS=num2str (fs);

$Information about the file being played

file info string=strcat ('Current file = ', ...

wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...

Number of samples in file = '

y o os e

num2str (length (curr file)));

end

%Callback for the playbutton

function

playCallback (h,eventdata)

sound (curr file, fs);

reset (graphicPanel) ;

temp=0;

plot
hold
hold

end

(temp) ;
off;
off;

173

%callback for the plotbutton

function plotCallback (h,eventdata)
hold off; %It is essential to turn hold off so that the
hold off; S%earlier contents of the panel are replaced

%the two hold off's are for the speech file and the hamming

window

grid off;

reset (graphicPanel) ;

axes (graphicPanel) ;

l=length(curr file);

i=(1:1)/fs;%coverting samples to time

plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ('Amplitude');

title(file info_string);

axis tight;

grid on;

end

%Callback for close

function closeCallback (h,eventdata)
close (gcf) ;

end

end

4. Program 4 — Load an Existing Speech File or Record a New Speech File. Play the File
and Display a Waveform and Save the File.

function recordGUI
%embedded code for the GUI application

clc;clear all;

$SINITIALIZATION
%$The variable returned from the edit boxes must
%be initialized, else the box will only display

%$the value but not actually hold that wvalue

curr_ file=1;

directory name='ABCD';

wav_file names='ABCD';

y=1;%y 1is the wvariable that contains the recorded speech
nsec=3;

£s5=8000;

fileName='filel';

%The 1 1 in the position attribute means that the GUI
%1is fit to screen
f = figure('Visible', 'on',

'Units', 'normalized', ...

'Position', [0,0,1,1],...

'MenuBar', 'none', ...

'NumberTitle', 'off');

3GUI PANELS
%$This GUI is divided into four panels
panell=uipanel ('Parent',f, ...

'Units', "Normalized', ...

'Position', [0.3 0.65 0.3 0.345]);%top panel
panel2=uipanel ('Parent',f, ...

'Units', '"Normalized', ...

'Position', [0.3 0.245 0.3 0.4]);%center panel
panel3=uipanel ('Parent',f,...

'Units', "Normalized', ...

'Position', [0.3 0.04 0.3 0.2]);%bottom panel

% Assign the GUI a name to appear in the window title.

set (£, 'Name', 'Record speech GUI');

$Initialize GUI

set ([f,panell,panel2,panel3], 'Units', '"normalized")

$BUTTONS

% Get directory button

174

getDirectorybutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.05 0.6 0.35 0.271,...
'String', 'Get directory/Select file',...
'Callback', @getDirectoryCallback) ;

% Select file button

selectFilebutton=uicontrol ('Parent',panell, ...
'Units', "Normalized', ...
'Position', [0.55 0.5 0.35 0.25],...
'style', "popupmenu', ...
'BackgroundColor', 'white', ...
'String', 'Select file',...
'Callback',@selectFileCallback);

$Play button

playbutton=uicontrol ('Parent',panell, ...
'Units', '"Normalized', ...
'Position', [0.3 0.2 0.35 0.2],...
'String', 'Play speech',...
'Callback',@playCallback);

%$Enter sampling frequency for recording in Hz button
fsbutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...
'Position', [0.05 0.8 0.35 0.15], ...
'style', 'edit', ...
'String', '8000',...
'BackgroundColor', 'white', ...

'Callback',@fsCallback);

%Label for 'Enter sampling frequency for recording in Hz' button
fsLabelbutton=uicontrol ('Parent',panel2, ...

'Units', '"Normalized', ...

'Position', [0.05 0.63 0.35 0.15],...

'style', "text', ...

'String', 'Enter sampling frequency for recording in

175

Hz');

176

%$Enter the number of seconds for recording button
nsecbutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...
'Position', [0.55 0.8 0.35 0.15], ...
'style', 'edit', ...
'String', '3',...
'BackgroundColor', 'white', ...

'Callback',@fsCallback);

%Label for 'Enter the number of seconds for recording' button
nsecLabelbutton=uicontrol ('Parent’',panel2, ...

'Units', '"Normalized', ...

'Position', [0.55 0.63 0.35 0.157, ...

'style', "text', ...

'String', 'Enter the number of seconds for recording');

$Record/re-record button

recordbutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...
'Position', [0.3 0.5 0.35 0.157, ...
'String', 'Record/re-record',...

'Callback',@recordCallback) ;

%Enter a file name to save the recorded speech button
fileNamebutton=uicontrol ('Parent',panel2, ...
'Units', "Normalized', ...
'Position', [0.05 0.2 0.35 0.15],...
'style', 'edit', ...
'String', 'filel', ...
'BackgroundColor', 'white', ...

'Callback',@fileNameCallback) ;

%$Label for 'Enter a file name to save the recorded speech' button
filenameLabelbutton=uicontrol ('Parent’',panel2, ...
'Units', '"Normalized', ...

'Position', [0.05 0.03 0.35 0.15],...

'style', "text', ...

'String', 'Enter a file name to save the

speech') ;

%$Save speech button

savebutton=uicontrol ('Parent',panel2, ...

o)

'Units', '"Normalized', ...
'Position', [0.55 0.2 0.35 0.15], ...
'String', 'Save speech',...

'Callback', @saveCallback);

% Close GUI button

closebutton=uicontrol ('Parent',panel3, ...

'Units', "Normalized', ...
'Position', [0.3 0.25 0.35 0.471, ...
'String', 'Close GUI', ...

'Callback',@closeCallback) ;

%Callbacks

function getDirectoryCallback(src,eventdata)

first

even if

directory name = uigetdir ('start path', 'dialog title');
A:strvcat(strcat((directory_name),'*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (selectFilebutton, 'String',wav_file names);

$once the popupmenu/drop down menu is created, by default, the

%selection from the popupmenu/drop down menu must be loaded
the

$callback for the popupmenu/drop down menu id not called

177

recorded

indexOfDrpDwnMenu=1; $by default first option from
popupmenu/dropdown
tmenu will be loaded
[curr file,fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

function selectFileCallback(src,eventdata)
indexOfDrpDwnMenu=get (selectFilebutton, 'val');
[curr file,fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

$Function--load selection

function [curr file,fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\', ...

strvcat (wav_file names (indexOfDrpDwnMenu))) ;

178

the

$fin path is the complete path of the file .wav file that

is

$selected

clear curr file;

clear fs;

[curr file, fs]=wavread(fin path);

FS=num2str (fs);

$Information about the file being played

file info string=strcat ('Current file = ', ...
wav_file names (indexOfDrpDwnMenu), ...
'. Sampling frequency = ',FS,'Hz',...
'. Number of samples in file = ', ...
num2str (length (curr file)));

end

%Callback for the playbutton
function playCallback (h,eventdata)
sound (curr file, fs);

end

179

%callback for the fs button
function fsCallback (h,eventdata)
fs=str2num(get (fsbutton, 'string'));

end

%callback for the nsec button
function nsecCallback (h,eventdata)
nsec=str2num(get (nsecbutton, 'string'));

end

%callback for the record/ re-record button
$record speech file of fixed duration (nsec) and

%given sampling rate (fs)

function recordCallback (h,eventdata)
fsCallback (h,eventdata) ;

nsecCallback (h,eventdata) ;

o\

yn=speech samples normalized to 1

oo

N is the number of samples in each speech file
% ch is the number of channels in the recording
N=fs*nsec;

ch=1;

y=wavrecord (N, fs,ch, 'double"') ;

ymin=min (y) ;

ymax=max (y) ;

% calculate dc offset and correct
offset=sum(y (N-999:N))/1000;
y=y-offset;

sound (y, £s) ;

end

%callback for filename speech
function fileNameCallback (h,eventdata)
fileName=get (fileNamebutton, 'string"') ;

end

180

%callback for save speech

function saveCallback (h,eventdata)
currentDir=pwd
currDir=strcat (currentDir, '\',fileName, '.wav"')
wavwrite (y, fs, strvcat (currDir));
c=wavread (strvcat (currDir)) ;
soundsc (c, £s)

end

%Callback for close
function closeCallback (h,eventdata)
close (gcf) ;

end

end

181

Appendix D

Code for the four example GUI programs created using GUI Lite Version 2
When creating programs using the GUI Lite — Version 2, the user needs to save the GUI Lite

folder into the MATLAB work folder. The GUI Lite folder contains three ‘.m’ files.
Their names are as follows:

e panelButtonSetup.m

¢ PanelandButtonCallbacks.m

e runGULm
The panelButtonSetup.m file is not edited by the user and stays the same for any GUI program
being created. The ‘.mat’ file that is generated by the ‘panelButtonSetup.m’ file is not included
in this thesis since it is not in human readable format. The user needs to create the ‘.mat’ file in
order to test these examples. The code for the ‘panelButtonSetup.m’ file is included below:
The ‘panelButtonSetup.m’ file.
function panelButtonSetup

clc;

clear all;

$DECLARATIONS

o\

1Button;%length of a button

o\

wButton; $width of a button

s X7 %$x co ordinates of the panel
5 vy %y co ordinates of the panel
% m; $left bottom x co ordinate of the button
% n; %$left bottom y co ordinate of the button

global ENTERSTYLEOFBUTTON; $element of a cell array in which the STYLE

%of the button is stored

182

global ENTERSTRINGOFBUTTON; %$element of a cell array in which the
STRING
%0f the button is stored
global ENTERLABELOFBUTTON;
global FLAGFORPAUSE; %for the pause function after the button stats
GUI appears
%$it is related to the accept specs button
global YESBUTTON;
global NOBUTTON;
global SAVETEXTBOX;
global SAVEBUTTON;

SINITIALIZATION

move=0.1;%the buttons move by this amount
labelDist=0.05;%distance that the label is below the button
noPanels=4;

noGraphicPanels=2;

noButtons=4;

noTitles=2;

1Button=0.08;

wButton=0.05;
%$labelHeight=0.8*wButton;
labelHeight=0.8*0.05;
writefilename='filel';%name of the file in which the name
%0f the file is stored

typelndex=1;%index for the popupmenu which allows you to choose the
type

%of button. typelndex=l=pushbutton,2=edit,etc.
FLAGFORPAUSE=0; %$for the pause function after the button stats GUI

%appears it is related to the accept specs button

f = figure('Visible', 'on',
'Units', 'normalized', ...
'Position', [0 O 1 17,...
'MenuBar', 'none', ...

'NumberTitle', 'off');

183

set (f, '"Name', 'Button/Panel Setup GUI');

%Enter the number of panels
numberOfPanels=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Style', 'edit"', ...
'Position', [0.1 0.9-move 0.08 0.05],...
'Backgroundcolor', 'w', ...
'String', '4', ...
'Callback', @noPanelsCallback) ;
Labell=uicontrol ('parent',f, ...
'Units', "Normalized', ...
'Position', [0.1 0.85-move 0.08 0.047], ...
'Style', "text', ...

'String', 'Enter the total number of panels');

%Enter the number of panels
numberOfGraphicPanels=uicontrol ('Parent', f, ...
'Units', "Normalized', ...
'Style', 'edit', ...
'Position', [0.3 0.9-move 0.08 0.05], ...
'Backgroundcolor', 'w', ...
'String','2', ...
'Callback', @noGraphicPanelsCallback) ;
Label2=uicontrol ('parent',f, ...
'Units', "Normalized', ...
'Position', [0.3 0.85-move 0.09 0.047], ...
'Style', "text', ...

'String', 'Enter the total number of graphic panels');

%Enter the number of title boxes
numberOfTitles=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Style', 'edit', ...
'Position', [0.5 0.9-move 0.08 0.05], ...
'Backgroundcolor', 'w', ...

'String','2', ...

184

'Callback',@noTitlesCallback) ;
Labeld=uicontrol ('parent',f, ...

'Units', "Normalized', ...

'Position', [0.5 0.85-move 0.08 0.0471,...

'Style', "text', ...

'String', 'Enter the total number of title boxes');

3Enter the number of buttons
numberOfButtons=uicontrol ('Parent’',f, ...
'Units', "Normalized', ...
'Style', 'edit', ...
'Position', [0.7 0.9-move 0.08 0.05],...
'Backgroundcolor', 'w', ...
'String', '4', ...
'Callback', @noButtonsCallback) ;
Label3=uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'Position', [0.7 0.85-move 0.08 0.047], ...
'Style', "text', ...

'String', 'Enter the total number of buttons');

%Enter the length
lengthButton=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Style', 'edit', ...
'Position', [0.3 0.75-move 0.08 0.057], ...
'Backgroundcolor', 'w', ...
'String','0.08"',...
'Callback',@l1ButtonCallback) ;
Labelb5=uicontrol ('parent',f, ...
'Units', "Normalized', ...
'Position', [0.3 0.7-move 0.08 0.047,...
'Style', "text', ...
'String', '"Enter the length of the button');

$Enter the width

widthButton=uicontrol ('Parent', f, ...

185

'Units', "Normalized', ...

'Style', 'edit"', ...

'Position', [0.5 0.75-move 0.08 0.057], ...

'Backgroundcolor', 'w', ...

'String','0.05"',...

'Callback', @wButtonCallback) ;
Label6=uicontrol ('parent',f, ...

'Units', "Normalized', ...

'Position', [0.5 0.7-move 0.08 0.047], ...

'Style', "text', ...

'String', 'Enter the width of the button');

[o)

% Enter a file name for the save option
fileName=uicontrol ('parent',f, ...
'Units', '"normalized', ...
'Position', [0.4 0.6-move 0.08 0.05],...
'Style', 'edit"', ...
'String', 'filel', ...
'BackgroundColor', 'white', ...
'Callback',@fileNameCallback) ;
Label7=uicontrol ('parent',f, ...
'Units', 'normalized', ...
'Position', [0.4 0.55-move 0.08 0.047], ...
'Style', "text', ...

'String', 'Enter a name to save the file');

%$Begin drawing

beginDraw=uicontrol ('Parent', f, ...
'Units', "Normalized', ...
'Position', [0.36 0.45-move 0.15 0.05], ...
'String', 'Begin Drawing panels & buttons', ...

'Callback', @beginDrawCallback) ;

$CALLBACKS
%callback for begin drawing

function beginDrawCallback (h,eventdata)

186

$turn all the buttons and edit boxes off
set (numberOfPanels, 'Visible', 'off"');

set (numberOfGraphicPanels, 'Visible', 'off"');
set (numberOfButtons, 'Visible', 'off'");
set (numberOfTitles, 'Visible', 'off"');

set (lengthButton, 'Visible', 'off');

set (widthButton, 'Visible', 'off"');

set (Labell, 'Visible', 'off");

set (Label2, 'Visible', 'off");

set (Label3, 'Visible', 'off');

set (Labeld, 'Visible', 'off');

set (Label5, 'Visible', 'off');

set (Labelo6, 'Visible', 'off'");

set (beginDraw, 'Visible', 'off'");

set (fileName, 'Visible', 'off"');

set (Label7, 'Visible', 'off');

%A cell i.e. temp, which stores all information from panelSetup is
%created and will be written into a .mat file

temp=cell (1,18);

temp{l,14}=noPanels;

temp{1l,15}=noGraphicPanels;

temp{1l,16}=noButtons;

temp{l,18}=noTitles;

%$Draw a plot to select points.If a plot(i.e. the white screen)is
not

%drawn over the figure window using the axes command, the ginput

$command will not work

plotHandle = axes('parent',f,...

'Units', "Normalized', ...

'Position', [0 O 1 1]);

% 'GridLineStyle', '—-=-");
grid on;
hold on;
$PANELS

%$You may now begin selecting the endpoints for each panel

187

%0nly three endpoints begining with the lower left point, the

%$lower right point and the upper right point needs to be selected

x=zeros (1, 3*noPanels) ;

y=zeros (1l,3*noPanels);

if noPanels~=0

%$Msgbox indicating that the co-ordinates for the panels will

now begin

ok

end

%to be selected

panelString=strcat ('You may now begin selecting the ',...

co-ordinates of the panels. Begin by selecting the lower

' left corner, then the lower right corner and finish by ',...

' selecting the top right corner for each panel.');

msgbox (panelString, 'modal')

uiwait (gcf) ;%This stops execution until the user has clicked

for i=0:noPanels-1

end

for j=1:3
[x(J+4*1) y(Jj+4*1i)]=ginput(1);
plot (x(j+4*i),y(j+4*i), 'marker','*');
hold on;
%display('hellooo');
x1im ([0 171);ylim ([0 17);

end

line ([x(1+4*1i) x(2+4*i) x(3+4*i) x(1+4*i) x(1+4*i)],...
[y(1+4*i) y(2+4*i) y(3+4*i) y(3+4*i) y(l+4*i)],...
'Color', 'k','linewidth', 2);
if i==noPanels-1
temp{l,1}=x;%x and y are for the button panels
temp{l,2}=y;

end

the

ok

188

$GRAPHICS PANELS

%$You may now begin selecting the endpoints for each graphic panel

%0nly three endpoints begining with the lower left point, the

%$lower right point and the upper right point needs to be selected

a=zeros (1,3*noGraphicPanels) ;

b=zeros (1,3*noGraphicPanels) ;

if noGraphicPanels~=0

end

$Msgbox indicating that the panels have been drawn and that

%graphic panels may now be drawn

graphicString=strcat ('You may now begin selecting the ',...

' co-ordinates of the graphics panels. Begin by ', ...

' selecting the lower left corner, then the lower ',...
' right corner and finish by selecting the top right ', ...
' corner for each graphic panel.');

msgbox (graphicString, 'modal"')

uiwait (gcf) ;%This stops execution until the user has clicked

for i=0:noGraphicPanels-1
for j=1:3
[a(j+4*1) b(j+4*i)]=ginput(1l);
plot(a(j+4*i),b(j+4*i), 'marker','*");
hold on;
%display('hellooo');
x1im ([0 11);ylim ([0 11);

end
line([a(l1+4*i) a(2+4*1i) a(3+4*1i) a(l+4*i) a(l+4*i)]1,...
[b(1+4*i) b(2+4*1) b(3+4*i) b(3+4*i) b(1+4*i)]1,...
'Color', 'g','linewidth', 2);
if i==noGraphicPanels-1
temp{l,3}=a;%a and b are coordiantes for the
temp{l,4}=b;%graphics panel
end

end

189

$TITLE BOXES
%$You may now begin selecting the endpoints for each title box
%0nly three endpoints begining with the lower left point, the
%$lower right point and the upper right point needs to be selected
u=zeros (1,3*noTitles);
v=zeros (1,3*noTitles);
if noTitles~=0

%$Msgbox indicating that the graphic panels have been drawn and

%that the title boxes may now be drawn

titleString=strcat ('You may now begin selecting the ', ...

' co-ordinates of the title boxes. Begin by selecting

' the lower left corner, then the lower right corner ', ...
' and finish by selecting the top right corner for ',...
' each title box.');

msgbox (titleString, 'modal')

uiwait (gcf) ;%This stops execution until the user has clicked

ok

for i=0:noTitles-1
for j=1:3
[u(j+4*i) v (j+4*i)l=ginput(l);
plot(u(j+4*i),v(j+4*i), 'marker','*");
hold on;
%display('hellooo');
x1im ([0 11);ylim ([0 11);
end
line([u(l+4*i) u(2+4*1i) u(3+4*1i) u(l+4*i) u(l+4*i)1,...
[V(1+4*1) v (2+4*1) v (3+4*1i) v (3+4*1i) v (1+4*i)],...
'Color', 'm','linewidth', 2);
if i==noTitles-1
temp{l,5}=u;%u and v are for the title boxes
temp{l, 6}=v;
end
end
end

$BUTTONS

ok

o\

o\

o\

190

%$You may now begin selecting the endpoints for each button
%0Only the lower left point needs to be selected
m=zeros (1, noButtons) ;

n=zeros (1, noButtons) ;

%$Length and width of a button

%initialized to 0.08 and 0.05 respectively
1Button (1:noButtons)=0.08;

wButton (1:noButtons)=0.05;

if noButtons~=0
%$Msgbox indicating that the title boxes have been drawn and
%that the buttons may now be drawn
buttonString=strcat ('You may now begin selecting the ',...
' co-ordinates of the buttons. Select only the lower ',...
' left corner for each button.'):;
msgbox (buttonString, 'modal')

uiwait (gcf) ;%This stops execution until the user has clicked

$Initializing for default values

for i=l:noButtons
ENTERSTYLEOFBUTTON({1, i}="pushbutton';
ENTERSTRINGOFBUTTON({1l,i}="Play';
ENTERLABELOFBUTTON{1l,i}="";

end

for i=l:noButtons
[m(i) n(i)]l=ginput(l);
plot(m(i),n (i), 'marker','*");
hold on;
%display('hellooo');
x1im ([0 171);ylim ([0 17);
line([m(i) m(i)+1Button m(i)+1Button m(i) m(i)], ...
[n(i) n(i) n(i)+wButton n(i)+wButton n(i)]l, ...

'Color', 'k'):;

%1if u have not yet selected the ©position of

button, pause until

will

191

the

%$you have. If a pause is not created, the button stats gui

%appear before the position of the point is selected.
while m(1i)==
pause (0.01) ;
end
gmovel=-0.05;
%$Button Stats figure to enter the button details
buttonStats = figure('Visible', 'on',
'Units', 'normalized', ...
'Position', [0.2 0.2 0.6 0.6]1,...
'MenuBar', 'none', ...
'"NumberTitle', 'off');

set (buttonStats, '"Name', 'Button stats');

buttonStatsTitleDisplay=uicontrol ('Parent',buttonStats, ...

'Units', "Normalized', ...

'Style', "text', ...

'Position', [0.35 0.9 0.2 0.07571,...
'FontSize',13, ...

'String', 'Button Stats GUI');

%Buttons for Button stats

ENTERSTYLEOFBUTTONBox=uicontrol ('Parent',buttonStats, ...

'Units', "Normalized', ...
'Style', "popupmenu', ...
'Position', [0.2 0.84-move 0.2 0.1],...
'Backgroundcolor', 'w', ...
'String', 'pushbuttonl|edit|text|popupmenu|slider', ...
'Callback', {GENTERSTYLEOFBUTTONCallback,i}) ;
Label8=uicontrol ('parent',buttonStats, ...

'Units', "normalized', ...

'Position', [0.2 0.81l-move 0.2 0.06],...

'Style', "text', ...

'String', 'Choose the type of the button');

192

ENTERSTRINGOFBUTTONBox=uicontrol ('Parent',buttonStats, ...
'Units', '"Normalized', ...
'Style', 'edit', ...
'Position', [0.5 0.88-move 0.2 0.17,...
'Backgroundcolor', 'w', ...
'String', 'Play’', ...
'"Callback', {GENTERSTRINGOFBUTTONCallback,i}) ;
Label9=uicontrol ('parent',buttonStats, ...
'Units', "normalized', ...
'Position', [0.5 0.81-move 0.2 0.06],...
'Style', "text', ...

'String', 'Enter the string to be written on the

button.**"');

ENTERLABELOFBUTTONBox=uicontrol ('Parent',buttonStats, ...
'Units', "Normalized', ...

'Style', 'edit', ...

'Position', [0.3 0.67-move 0.3 0.17,...
'Backgroundcolor', 'w', ...

'String','... ", ...

'Callback', {@ENTERLABELOFBUTTONCallback,i});

labelString=strcat ('Enter a label for the button '

2R

created in the box below. After you have '

2R
|l

entered a label click on the Accept Specs '

Joe e e

' button. If you do not require a label, '

Joe e e

click the Accept Specs Button. ');

labelInfoBox=uicontrol ('Parent',buttonStats, ...
'Units', "Normalized', ...

'Style', "text', ...

'Position', [0.3 0.52-move 0.3 0.13],...
'String',labelString);

$ENTER NEW LENGTH OF BUTTON

that the

193

ENTERLENGTHOFBUTTONBox=uicontrol ('Parent',buttonStats, ...
'Units', '"Normalized', ...
'Style', 'edit', ...
'Position', [0.5 0.4-move 0.2 0.087],...
'Backgroundcolor', 'w', ...
'String','0.08"',...
'Callback', {QENTERLENGTHOFBUTTONCallback,i}) ;
lengthLabel=uicontrol ('Parent',buttonStats, ...
'Units', "Normalized', ...
'Style', "text', ...
'Position', [0.5 0.33-move 0.2 0.06],...

'String', 'Enter the length of the button');

$ENTER NEW WIDTH OF BUTTON
ENTERWIDTHOFBUTTONBox=uicontrol ('Parent',buttonStats, ...
'Units', '"Normalized', ...
'Style', 'edit', ...
'Position', [0.2 0.4-move 0.2 0.08],...
'Backgroundcolor', 'w', ...
'String','0.05"',...
'Callback', {@GENTERWIDTHOFBUTTONCallback,i}) ;
lengthLabel=uicontrol ('Parent',buttonStats, ...
'Units', "Normalized', ...
'Style', "text', ...
'Position', [0.2 0.33-move 0.2 0.06],...
'String', 'Enter the width of the button');

acceptSpecsBox=uicontrol ('Parent',buttonStats, ...
'Units', "Normalized', ...

'Position', [0.3 0.2-move 0.3 0.17,...

'String', 'Accept Specs Button',...

'Callback', {@QacceptSpecsCallback,i,m,n});

labelNote=strcat ('**NOTE:The popupmenu button requires

|l
2

string be entered as shown in the example. '

2R

"slidexr" ',

eg:Hamming|Triangular|Rectangular. Also,

'button does not require a string. ');

labelNoteBox=uicontrol ('Parent',buttonStats, ...
'Units', '"Normalized', ...

'Style', "text', ...

'Position', [0.1 O0.1l-move 0.8 0.065],...
'String', labelNote) ;

$While the FLAGFORPAUSE 1is not set,pause. Then reset

FLAGFORPAUSE

buttons are

end

while FLAGFORPAUSE==0
pause (0.01);

end

FLAGFORPAUSE=0;

pause (0.05) ;

xlim ([0 1]);ylim ([0 1]);

194

the

the

line([m(i) m(i)+1Button(i) m(i)+1Button(i) m(i) m(i)], ...

[n(i) n(i) n(i)+wButton(i) n(i)+wButton (i) n(i)], ...

'Color', 'k', 'linewidth', 2);

%$Load all button parameters into the cell once all

screated

if i==noButtons
temp{l, 7}=m;%m and n are for the buttons
temp{1l,8}=n;
temp{l, 9}=1Button;
temp{l,10}=wButton;
temp{1l,11}=ENTERSTYLEOFBUTTON;
temp{1l,12}=ENTERSTRINGOFBUTTON;
temp{l, 13}=ENTERLABELOFBUTTON;
temp{l,17}=labelDist;

end

the

195

end
%$UICONTROL objects associated with saving the current coordinates
SAVETEXTBOX=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Style', "text', ...
'Position', [0.36 0.9 0.15 0.0571,...
'Backgroundcolor', 'w', ...
'String', 'Would you like to save your selection',...
'Callback', @saveCallback);
YESBUTTON=uicontrol ('Style', 'RadioButton’', ...
'Units', "Normalized', ...
'String', 'Yes', ...
'Position', [0.36 0.85 0.08 0.0571,...
'Parent’', f, ...
'Callback', {@yesCallback, temp}) ;
NOBUTTON=uicontrol ('Style', 'RadioButton', ...
'Units', '"Normalized', ...
'String', 'No', ...
'Position', [0.36 0.8 0.08 0.0571,...
'Parent',f, ...

'Callback',@noCallback) ;

$CALLBACKS within the beginDrawing function
function ENTERSTYLEOFBUTTONCallback (src,eventdata, i)
typelIndex=get (ENTERSTYLEOFBUTTONBox, 'val');
if typelIndex==1
ENTERSTYLEOFBUTTON{1,i}="pushbutton';
elseif typelndex==
ENTERSTYLEOFBUTTON{1,i}="edit"';
elseif typelndex==
ENTERSTYLEOFBUTTON{1,i}="text"';
elseif typelndex==4
ENTERSTYLEOFBUTTON({1,i}="popupmenu';
elseif typelndex==
ENTERSTYLEOFBUTTON{1l,i}="slider"';
end
end

function ENTERSTRINGOFBUTTONCallback (src,eventdata,i)

196

ENTERSTRINGOFBUTTON{1, i}=get (ENTERSTRINGOFRUTTONBoOXx, 'string"') ;
end
function ENTERLABELOFBUTTONCallback (src,eventdata, i)

ENTERLABELOFBUTTON({1l, i}=get (ENTERLABELOFBUTTONBoOx, 'string') ;
end
function ENTERLENGTHOFBUTTONCallback(src,eventdata,i)

1Button (1l,1i)=str2num(get (ENTERLENGTHOFBUTTONBoOx, 'string"')) ;
end
function ENTERWIDTHOFBUTTONCallback (src,eventdata, i)

wButton (1,1)=str2num(get (ENTERWIDTHOFBUTTONBox, 'string'));
end
function acceptSpecsCallback(src,eventdata,i,m,n)

$If a label is created, then draw the label.

if strcmp (ENTERLABELOFBUTTON{1l,i},"'")==

figure (f),line([m(i) m(i)+1Button (i) m(i)+1Button (i) m(i)

m(i)],

[n(i)-labelDist n(i)-labelDist...
n(i)-labelDist+labelHeight
n(i)-labelDist+labelHeight n(i)-labelDist], ...
'Color', 'r');

end

close (buttonStats) ;

FLAGFORPAUSE=1; $Set FLAGFORPAUSE to release the pause

end
end

function noPanelsCallback (varargin)
noPanels = str2num(get (numberOfPanels, 'string'));
end
function noGraphicPanelsCallback (varargin)
noGraphicPanels = str2num(get (numberOfGraphicPanels, 'string'));
end
function noTitlesCallback (varargin)
noTitles = str2num(get (numberOfTitles, 'string'));
end
function noButtonsCallback (varargin)

noButtons = str2num(get (numberOfButtons, 'string'));

197

end
function 1ButtonCallback (varargin)
1Button = str2num(get (lengthButton, 'string'));
end
function wButtonCallback (varargin)

wButton = str2num(get (widthButton, 'string'));

end

%callback for filename speech
function fileNameCallback (h,eventdata)
writefilename=get (fileName, 'string');

end

function yesCallback (h, eventdata, temp)
if get (YESBUTTON, 'Value')==
$turn off the no radio button

set (NOBUTTON, 'Value',0) ;

%Save button

SAVEBUTTON=uicontrol ('Parent', f, ...
'Units', "normalized', ...
'Position', [0.36 0.7 0.08 0.05],...
'String', 'Save coordinates', ...
'Callback', {@saveCallback, temp}) ;

else
display('You selected no');

end

end

%$If you donot want to save your selection, turn the radio buttons and
%save off and call the beginDrawCallback again
function noCallback (h, eventdata)
if get (NOBUTTON, 'Value')==
set (SAVETEXTBOX, 'Visible', 'off"');
set (YESBUTTON, 'Visible', 'off"');

198

set (NOBUTTON, 'Visible', 'off"');
set (SAVEBUTTON, 'Visible', 'off'");
beginDrawCallback (h,eventdata) ;

end

end

%Callback for save speech

%The entire cell, temp is saved into a .mat file

function saveCallback(src,eventdata, temp)
currentDir=pwd;
currDir=strcat (currentDir, '\',writefilename, ' .mat');
save (strvcat (currDir), "temp') ;

end

end

The code for the ‘PanelandButtonCallbacks.m’ file and the ‘runGUILm’ file for each of the
example programs is mentioned below.

1. Program 1 — Hello World Program

e The ‘panelandButtonCallbacks.m’ file.

function PanelandButtonCallbacks (f,C, labelHeight)

a=C{1,3};
b=C{1,4};
u=C{1,5};
v=C{l,6};
m=C{1,7};
n=C{1l,8};
1Button=C{1,9};
wButton=C{1,10};

enterType=C{1,11};

199

enterString=C{1,12};

enterLabel=C{1,13};

noPanels=C{1,14};

noGraphicPanels=C{1,15};

noButtons=C{1,16};

labelDist=C{1,17};%distance that the label is below the button

$BUTTON PANELS
for j=0:noPanels-1
uipanel ('Parent',f, ...
'Units', "Normalized', ...
'Position', [x(1+4%*7) v (1+4%7) X (2+4%3) —=x (1+4%*7) v (3+4%7) -
y(2+4*3)1);

$GRAPHIC PANELS
for i=0:noGraphicPanels-1
switch (i+1)
case 1
graphicPanell = axes('parent',6f,...
'Units', "Normalized', ...
'Position', [a(1+4*1) Db(1+4*i) a(2+4*i)-a(l+4*i) Db (3+4*1i)-
b(2+4*i)1,...
'GridLineStyle', '-=-");
case 2
graphicPanel?2 = axes('parent',6f,...
'Units', "Normalized', ...
'Position', [a(1+4*1) Db(1+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i)1,...
'GridLineStyle','-=");
case 3
graphicPanel3 = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i) 1, ...

200

'GridLineStyle','-=");
case 4
graphicPaneld4 = axes('parent',6f,...
'Units', "Normalized', ...
'Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db (3+4*1i)-
b(2+4*i)1,...
'GridLineStyle','-=");
case 5
graphicPanelb = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db (3+4*1i)-
b(2+4*i)1,...
'GridLineStyle','-=");
case 6
graphicPanel6 = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db (3+4*1i)-
b(2+4*1i) 1, ...
'GridLineStyle','-=");
end

$TITLE BOXES
for k=0:noTitles-1

$Temporary strings whose wvalue can be changed to reflect the
correct title
stringl='This is a title box. You may change this string';
string2="'This is a title box. You may change this string';
string3="'This is a title box. You may change this string';
string4="'This is a title box. You may change this string';
string5='This is a title box. You may change this string';

string6="'This is a title box. You may change this string';

switch (k+1)

case 1

titleBoxl = uicontrol ('parent',f, ...

201

'Units', '"Normalized', ...
'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k)], ...
'Style', "text', ...
'"FontUnits', '"Normalized', ...
'"FontSize',0.5, ...
'String',stringl);
case 2
titleBox2 = uicontrol ('parent',f,...
'Units', '"Normalized', ...
'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'FontUnits', "Normalized', ...
'"FontSize',0.5, ...
'String',string?2);
case 3
titleBox3 = uicontrol ('parent',f,...
'Units', "Normalized', ...
'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'FontUnits', "Normalized', ...
'FontSize',0.5, ...
'String',string3);
case 4
titleBox4 = uicontrol ('parent',f, ...
'Units', "Normalized', ...
'Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'"FontUnits', '"Normalized', ...
'FontSize',0.5, ...
'String',string4) ;
case 5
titleBox5 = uicontrol ('parent',f, ...

'Units', '"Normalized', ...

202

'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...

'Style', "text', ...

'FontUnits', "Normalized', ...

'"FontSize',0.5, ...

'String',stringb);

case 6
titleBox6 = uicontrol ('parent',f,...

'Units', "Normalized', ...

'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...

'Style', "text', ...

'FontUnits', "Normalized', ...

'FontSize',0.5, ...

'String',string6) ;

end

89900900000000000000000000000000000000090000000090000000000090 0 999000000

$BUTTONS
for i=l:noButtons
enterColor="w'
if strcmp (enterType{i}, '"pushbutton')==1
| |strcmp (enterType{i}, "text')==1
enterColor="default';
end
if strcmp(enterLabel{l,1i},'"')==0%i.e. there is a label
%creating a label for some buttons
uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(1i) n(i)-labelDist 1Button (1)
labelHeight], ...
'Style', "text', ...
'String',enterLabel{i}, ...
'HorizontalAlignment', 'center');
end

switch i

203

case 1

buttonl=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonlCallback);

case 2

button2=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button2Callback);

case 3

button3=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @utton3Callback) ;

case 4

buttond4=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@uttond4Callback) ;

case 5

button5=uicontrol ('Parent',f, ...

204

'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton5Callback) ;

case 6

button6=uicontrol ('Parent', f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton6Callback) ;

case 7

button7=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton7Callback) ;

case 8

button8=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button8Callback) ;

case 9

button9=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...

'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...

205

'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton9Callback) ;

case 10

buttonlO=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonlOCallback) ;

case 11

buttonll=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonllCallback);

case 12

buttonl2=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@uttonl2Callback) ;

case 13

buttonl3=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...

'String',enterString{i}, ...

'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonl3Callback) ;
case 14
buttonl4=uicontrol ('Parent',f, ...

'Units', '"Normalized', ...

206

'Position', [m(i) n(i) 1Button(i) wButton(i)], ...

'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@buttonl4Callback) ;
case 15
buttonl5=uicontrol ('Parent',f, ...

'Units', '"Normalized', ...

'Position', [m(i) n(i) 1Button (i) wButton(i)], ...

'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...

'"Callback',@uttonl5Callback) ;

end
end
©900
©C00

$USER CODE FOR THE VARIABLES AND CALLBACKS
SINITIALIZATION

%$set a name for the GUI

set (f, "Name', 'Solution 2-Hello World GUI');

function buttonlCallback(src,eventdata)
msgbox ('"Hello World!', 'modal');

end

end

e The ‘runGULm’ file.

990 9000

207

function runGUI
clcy;

clear all;

$ENTER THE NAME OF THE FILE
fileData=load ('helloworld.mat') ;

temp=fileData(l) .temp;

labelHeight=0.8*0.05;

%$x y are related to the panels

%m n are related to the buttons

f = figure('Visible', 'on',
'Units', 'normalized', ...
'Position', [0,0,1,11,...
'MenuBar', 'none', ...

'NumberTitle', 'off');

PanelandButtonCallbacks (f, temp, labelHeight) ;

end

2. Program 2 - Display the waveform of a designated speech file.

e The ‘panelandButtonCallbacks.m’ file.

Hh
c
=]
Q
s
[
O
o]
o
V)]
o]
0]
=
V)]
o]
O,
w
[}
+
o+
O
o]
Q
V)
[
=
o
V)
Q
-
[0)]
Hh
@}
[
V)
o
()
=
sy
()
[
Q
jon
t

990090000000000000000900009000000009000000000000 0

a=C{1,3};
b=C{1,4};
u=C{1l,5};
v=C{1l,6};
m=C{1,7};
n=C{1,8};
1Button=C{1,9};

208

wButton=C{1,10};
enterType=C{1,11};
enterString=C{1,12};
enterLabel=C{1,13};
noPanels=C{1,14};
noGraphicPanels=C{1l,15};
noButtons=C{1,16};

labelDist=C{1,17};%distance that the label is below the button

$BUTTON PANELS
for j=0:noPanels-1
uipanel ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [x(1+4%*7) y(1+4*7) x(2+4%]) -x (1+4*7) y(3+4*7) -
y(2+4*3)1);

99900 9900000000

$GRAPHIC PANELS
for i=0:noGraphicPanels-1
switch (i+1)
case 1
graphicPanell = axes('parent',f,...
'Units', "Normalized', ...
'Position', [a(1+4*1) Db(1+4*i) a(2+4*i)-a(l+4*i) Db (3+4*1i)-
b(2+4*i) 1, ...
'GridLineStyle','-=");
case 2
graphicPanel?2 = axes('parent',f,...
'Units', "Normalized', ...
'Position', [a(l+4*1i) b (1l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i) 1, ...
'GridLineStyle','-=-");
case 3
graphicPanel3 = axes('parent',f,...

'Units', "Normalized', ...

209

'Position', [a(1+4*1) Db (l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-

b(2+4*i)1,...
'GridLineStyle','-=");
case 4
graphicPaneld4 = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(1+4*1) Db(1+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i) 1, ...
'GridLineStyle','-=");
case 5
graphicPanel5 = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(l+4*i) b (1l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i) 1, ...
'GridLineStyle','-=-");
case 6
graphicPanel6 = axes('parent',f,...
'Units', "Normalized', ...
'Position', [a(l+4*1i) b (1+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i)1,...
'GridLineStyle','-=-");
end
end

99000000000000000000000000000000000090000000090000000000090 0 999000000

$TITLE BOXES
for k=0:noTitles-1
$Temporary strings whose wvalue can be changed to reflect the

correct title

stringl="'This is a title box. You may change this string';
string2="'This is a title box. You may change this string';
string3="'This is a title box. You may change this string';
string4='This is a title box. You may change this string';
stringb5='This is a title box. You may change this string';

string6="'This is a title box. You may change this string';

switch (k+1)

210

case 1
titleBoxl = uicontrol ('parent',f, ...
'Units', "Normalized', ...
'Position', [u(1l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'"FontUnits', '"Normalized', ...
'FontSize',0.5, ...
'String',stringl);
case 2
titleBox2 = uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k)], ...
'Style', "text', ...
'"FontUnits', '"Normalized', ...
'"FontSize',0.5, ...
'String',string2);
case 3
titleBox3 = uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k)], ...
'Style', "text', ...
'"FontUnits', '"Normalized', ...
'"FontSize',0.5, ...
'String',string3);
case 4
titleBox4 = uicontrol ('parent',f,...
'Units', "Normalized', ...
'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'FontUnits', "Normalized', ...
'"FontSize',0.5, ...
'String',stringd);
case 5

titleBox5 = uicontrol ('parent',f, ...

211

'Units', '"Normalized', ...

'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k)], ...

'Style', "text', ...

'"FontUnits', '"Normalized', ...

'"FontSize',0.5, ...

'String',stringb);

case 6
titleBox6 = uicontrol ('parent',f,...

'Units', '"Normalized', ...

'"Position', [u(1+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...

'Style', "text', ...

'FontUnits', "Normalized', ...

'"FontSize',0.5, ...

'String',string6) ;

end
end
3%%55%5%5%%%%5%5%5%5%5%%%5%55%5%5%5%%5%55%5%55%%5%5%55%55%%%5%55%55%%%5%5555%%%555%55%%%%5%5%5%5%5%5%%%
%%%%%
$BUTTONS
for i=l:noButtons
enterColor="w'
if strcmp (enterType{i}, "'pushbutton')==
| |strcmp (enterType{i}, "text')==1
enterColor='default';
end
if strcmp(enterlLabel{l,1i},'"')==0%i.e. there is a label
%creating a label for some buttons
uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(1i) n(i)-labelDist 1Button (1)

labelHeight], ...
'Style', "text', ...
'String',enterLabel{i}, ...
'HorizontalAlignment', 'center');

end

212

switch i

case 1

buttonl=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@uttonlCallback) ;

case 2

button2=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button2Callback) ;

case 3

button3=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button3Callback);

case 4

buttond=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@uttond4Callback) ;

case 5

213

button5=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button5Callback) ;

case 6

button6=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton6Callback) ;

case 7

button7=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton7Callback) ;

case 8

button8=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton8Callback) ;

case 9

button9=uicontrol ('Parent',f, ...

'Units', "Normalized', ...

214

'Position', [m(i) n(i) 1lButton(i) wButton(i)],...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@utton9Callback) ;

case 10

buttonlO=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback',@uttonlOCallback) ;

case 11

buttonll=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonllCallback) ;

case 12

buttonl2=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @buttonl2Callback) ;

case 13

buttonl3=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...

'Style',enterType{i}, ...

215

'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...

'Callback', @buttonl3Callback) ;

case 14

buttonl4=uicontrol ('Parent',f, ...

end

'Units', '"Normalized', ...

'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...

'Callback', @buttonl4Callback) ;

case 15

buttonl5=uicontrol ('Parent',f, ...

'Units', '"Normalized', ...

'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...

'Callback',@uttonl5Callback) ;

$USER CODE FOR THE VARIABLES AND CALLBACKS
SINITIALIZATION

%set the name of the GUI

set (f, '"Name', 'Display Speech Waveform GUI');

%button 1-Display speech callback
function buttonlCallback (src,eventdata)

loadedSpeech=wavread('sl.wav');

%The speech file is 'sl.wav'
axes (graphicPanell) ;

plot (loadedSpeech) ;

216

title('sl.wav');
xlabel ('Time in seconds');

ylabel ('Amplitude');

end

$button2-Close callback
function button2Callback(src,eventdata)
close (gcf) ;

end

end

e The ‘runGULm’ file.

function runGUI
clc;

clear all;

$ENTER THE NAME OF THE FILE
fileData=load('displayspeech.mat');
temp=fileData(l) .temp;

labelHeight=0.8*0.05;

%$x y are related to the panels

%m n are related to the buttons

f = figure('Visible', 'on',
'Units', '"normalized', ...
'Position', [0,0,1,1],...
'MenuBar', 'none', ...

'"NumberTitle', 'off');

PanelandButtonCallbacks (f, temp, labelHeight) ;

217

end
3.

Program 3 - Load a Speech File, Play it back and Display the Waveform.

The ‘panelandButtonCallbacks.m’ file.

function PanelandButtonCallbacks (f,C, labelHeight)

o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o
o
o
o
o
oe
o
o
o
o
o
o
o
o
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\
o\°
o\°
o\°
o\°
o\

oe
oe
oe
oe
oe

c{1,1};

X=

c{1l,2};

Yy
a
b

C{1,3};

C{l,4};

c{1,5};

u=

Cc{l,6};

v=

C{1,7};

m=

C{1,8};

n=

=C{1,9};

1Button

=C{1,10};

wButton

=C{1,11};

enterType

=C{1,12};
C{1,13};
C{1,14};

enterString

enterLabel

noPanels

Cc{1,15};

C{1l,16};

noGraphicPanels

noButtons

C{1l,17};%distance that the label is below the button

C{1,18};

labelDist

noTitles

o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o
oe
o
o
o
oe
o
o
o
o
o
o
o
o
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\
o\
o\
o\°
o\°
o\
o\°

oe
oe
oe
oe
oe

$BUTTON PANELS

O:noPanels-1

for j

uipanel ('Parent',f, ...

'Units', "Normalized', ...

y(1+4%9) x(2+44%9) —x (1+4%3) y(3+4%5) -

'Position', [x(1+4%*7)

y(2+4*3)1);

end

o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o\°
o
oe
o
o
o
oe
o
o
o
o
o
o
o
o
o\°
o\°
o\°
o\
o\°
o\°
o\°
o\°
o\°
o\°
o\
o\
o\
o\°
o\°
o\
o\

o\°
o\°
o\
o\°
o\

%$GRAPHIC PANELS

218

for i=0:noGraphicPanels-1
switch (i+1)
case 1
graphicPanell = axes('parent',6 f,...
'Units', "Normalized', ...
'"Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i)1,...
'GridLineStyle','-=");
case 2
graphicPanel?2 = axes('parent',f,...
'Units', "Normalized', ...
'"Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*1i)]1, ...
'GridLineStyle', '-=");
case 3
graphicPanel3 = axes('parent',f,...
'Units', "Normalized', ...
'Position', [a(l+4*1i) b (l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*1i) 1, ...
'GridLineStyle','--");
case 4
graphicPanel4 = axes('parent',f,...
'Units', '"Normalized', ...
'Position', [a(l+4*1i) b (l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i)1,...
'GridLineStyle','--");
case 5
graphicPanelb = axes('parent',f,...
'Units', '"Normalized', ...
'"Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i)1,...
'GridLineStyle', '-=");
case 6
graphicPanel6 = axes('parent',f,...
'Units', "Normalized', ...
'"Position', [a(1+4*1) Db(1l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*1i)-
b(2+4*i)1,...
'GridLineStyle','-=");

219

$TITLE BOXES
for k=0:noTitles-1
$Temporary strings whose wvalue can be changed to reflect the

correct title

stringl='This is a title box. You may change this string';
string2='This is a title box. You may change this string';
string3='This is a title box. You may change this string';
string4='This is a title box. You may change this string';
string5='This is a title box. You may change this string';

string6="'This is a title box. You may change this string';

switch (k+1)

case 1
titleBoxl = uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'"Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'FontUnits', 'Normalized', ...
'FontSize',0.5, ...
'String',stringl);
case 2
titleBox2 = uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'"FontUnits', 'Normalized', ...
'FontSize',0.5, ...
'String',string2);
case 3

titleBox3 = uicontrol ('parent',f, ...

'Units', "Normalized', ...

'"Position', [u(l+4*k) v (1l+4*k)

v(2+4*k) 1, ...

case 4

titleBox4 =

'Style', "text', ...
'FontUnits', 'Normalized', ...
'"FontSize',0.5,...

'String',string3);

uicontrol ('parent',f, ...
'Units', '"Normalized', ...

'"Position', [u(l+4*k) v (1+4*k)

v(2+4*k) 1, ...

case 5

titleBox5 =

'Style', "text', ...
'FontUnits', 'Normalized', ...
'FontSize',0.5, ...

'String',string4) ;

uicontrol ('parent',f, ...
'Units', '"Normalized', ...

'Position', [u(l+4*k) v (1+4*k)

v(2+4*k) 1, ...

case 6

titleBox6 =

'Style', "text', ...
'"FontUnits', 'Normalized', ...
'FontSize',0.5, ...

'String',stringb);

uicontrol ('parent',f, ...
'Units', "Normalized', ...

'Position', [u(l+4*k) v (1+4*k)

v(2+4*k) 1, ...

end

'Style', "text', ...
'"FontUnits', 'Normalized', ...
'"FontSize',0.5,...

'String',string6) ;

u(2+4*k)-u(l+4*k)

u(2+4*k)-u(l+4*k)

u(2+4*k)-u(l+4*k)

u(2+4*k)-u(l+4*k)

220

v (3+4*k) -

v (3+4*k) -

v (3+4*k) -

v (3+4*k) -

221

$BUTTONS
for i=l:noButtons
enterColor="w';
if strcmp (enterType{i}, "'pushbutton')==
| |strcmp (enterType{i}, 'text')==1
enterColor="default';
end
if strcmp(enterlLabel{l,1i},'")==0%1i.e. there is a label
%creating a label for some buttons
uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(1i) n(i)-labelDist 1Button (i)
labelHeight], ...
'Style', "text', ...
'String',enterLabel{i}, ...
'"HorizontalAlignment', 'center');
end
switch i
case 1
buttonl=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonlCallback) ;
case 2
button2=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@utton2Callback) ;
case 3

button3=uicontrol ('Parent',f, ...

222

'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@utton3Callback) ;

case 4

buttond4=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttond4Callback) ;

case 5

button5=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@utton5Callback) ;

case 6

button6=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button6Callback);

case 7

button7=uicontrol ('Parent',f, ...
'Units', "Normalized', ...

'Position', [m(i) n(i) 1lButton (i) wButton(i)],...

223

'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@utton7Callback) ;

case 8

button8=uicontrol ('Parent',f, ...
'Units', 'Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button8Callback);

case 9

button9=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'Callback', @button9Callback) ;

case 10

buttonlO=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonl0Callback) ;

case 11

buttonll=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...

'String',enterString{i}, ...

224

'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'Callback', @uttonllCallback);

case 12

buttonl2=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonl2Callback) ;

case 13

buttonl3=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonl3Callback) ;

case 14

buttonl4=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'"Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@uttonl4Callback) ;

case 15

buttonl5=uicontrol ('Parent',f, ...
'Units', 'Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...

'HorizontalAlignment', 'center', ...

225

'"Callback',@buttonl5Callback) ;

end

$USER CODE FOR THE VARIABLES AND CALLBACKS
SINITIALIZATION

curr file=1;

fs=1;

directory name='abcd';

wav_file names='abcd';

$set (titleBoxl, 'Position', [u(l) v(1)+0.01 u(2)-u(l) v(3)-v(2)+0.01]1);

% set the name of the GUI

set(f, '"Name', 'Play and Plot Speech GUI');

function buttonlCallback(src,eventdata)

directory name = uigetdir('start path', 'dialog title');

A=strvcat (strcat ((directory name), "*.wav'));

struct filenames=dir (A);

wav_file names={struct filenames.name};

set (button2, 'String',wav_file names) ;

%once the popupmenu/drop down menu 1is created, by default, the
first

$selection from the popupmenu/drop down menu must be loaded
even 1if the

%callback for the popupmenu/drop down menu id not called

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
tmenu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

226

function button2Callback(src,eventdata)
indexOfDrpDwnMenu=get (button2, 'val');
[curr file, fs]=loadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu) ;
end
$Function--load selection
function [curr file, fs]=locadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\',...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;
$fin path is the complete path of the file .wav file that
is
%selected
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs);
$Information about the file being played
file info string=strcat ('Current file = '

y oo e oo

wav_file names (indexOfDrpDwnMenu), ...

Sampling frequency = ',FS,'Hz',...

Number of samples in file = ', ...
numZstr (length (curr file)));

set (titleBoxl, 'String',file info string);
set (titleBoxl, 'FontSize',0.3);

end

%Callback for the playbutton

function button3Callback (h,eventdata)
sound (curr file,fs);

end

%callback for the plotbutton

function buttond4Callback (h,eventdata)
hold off; %It is essential to turn hold off so that the
hold off; %earlier contents of the panel are replaced

$the two hold off's are for the speech file and the hamming

window

grid off;

227

reset (graphicPanell) ;
axes (graphicPanell) ;
l=length (curr file);
i=(1:1)/fs;%coverting samples to time
plot(i,curr file, 'k', 'LineWidth',2), ...
xlabel ('Time in seconds'), ...
ylabel ("Amplitude');
axis tight;
grid on;
end
3callback for the close GUI button
function button5Callback (h,eventdata)
close (gcf);
end

end

e The ‘runGULm’ file.

function runGUI
clc;

clear all;

$ENTER THE NAME OF THE FILE
fileData=load('play&plot.mat');
temp=fileData (1) .temp;

swButton=temp{1l,10};
labelHeight=0.8*0.05;

3x y are related to the panels
m n are related to the buttons
Spanellpos=[x (1) y(1) x(2)-x(1) y(4)-y(2)];
f = figure('Visible', 'on',

'Units', 'normalized', ...

'Position', [0,0,1,1],...

'MenuBar', 'none', ...

'NumberTitle', 'off');

228

PanelandButtonCallbacks (f, temp, labelHeight) ;

end

4. Program 4 - Load an existing speech file or record a new speech file. Play the file,
display a waveform and save the file.

The ‘panelandButtonCallbacks.m’ file.

function PanelandButtonCallbacks (f,C, lab

10}
’_l
as]
™
’_l.
Q
=
ct

a=C{1,3};

b=C{1,4};

u=C{1,5};

v=C{1l,6};

m=C{1l,7};

n=C{1l,8};
1Button=C{1,9};
wButton=C{1,10};
enterType=C{1,11};
enterString=C{1l,12};
enterLabel=C{1,13};
noPanels=C{1,14};
noGraphicPanels=C{1l,15};
noButtons=C{1,16};
labelDist=C{1,17};%distance that the label is below the button

$BUTTON PANELS
for j=0:noPanels-1
uipanel ('Parent',f, ...
'Units', "Normalized', ...
"Position', [x(1+4*7) v (1+4*7) x(2+4%]) -x (1+4*7) y(3+4*7) -
y(2+4*3)1);

229

$GRAPHIC PANELS
for i=0:noGraphicPanels-1
switch (i+1)
case 1
graphicPanell = axes('parent',6 f,...
'Units', '"Normalized', ...

'Position', [a(l+4*1) Db (l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i)1, ...

'GridLineStyle', '-=");
case 2
graphicPanel?2 = axes('parent',6 f,...
'Units', "Normalized', ...

'Position', [a(l+4*1) Db (l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*i)-
b(2+4*i)1, ...

'GridLineStyle','-=");
case 3
graphicPanel3 = axes('parent',f,...
'Units', "Normalized', ...

'Position', [a(l+4*1) Db (l+4*i) a(2+4*i)-a(l+4*i) Db(3+4*i)-
b(2+4*1) 1, ...

'GridLineStyle','-=");
case 4
graphicPanel4 = axes('parent',f,...
'Units', "Normalized', ...

'Position', [a(l+4*1) Db(l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*1) 1, ...

'GridLineStyle','--");
case 5
graphicPanel5 = axes('parent',f,...
'Units', 'Normalized', ...

'Position', [a(l+4*1) Db(l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-
b(2+4*i)1, ...

'GridLineStyle', '-=");

case 6

graphicPanel6 = axes('parent',f,...

230

'Units', "Normalized', ...

'Position', [a(l+4*1) Db (l+4*i) a(2+4*i)-a(l+4*i) b(3+4*i)-

'GridLineStyle', '-=");

$TITLE BOXES
for k=0:noTitles-1
$Temporary strings whose wvalue can be changed to reflect the

correct title

stringl='This is a title box. You may change this string';
string2="'This is a title box. You may change this string';
string3='This is a title box. You may change this string';
string4='This is a title box. You may change this string';
string5='This is a title box. You may change this string';

string6="'This is a title box. You may change this string';

switch (k+1)

case 1
titleBoxl = uicontrol ('parent',f, ...
'Units', '"Normalized', ...
'"Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...
'Style', "text', ...
'"FontUnits', 'Normalized', ...
'FontSize',0.5, ...
'String',stringl);
case 2
titleBox2 = uicontrol ('parent',f, ...
'Units', "Normalized', ...
'"Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k) v (3+4*k)-
v(2+4*k) 1, ...

'Style', "text', ...
'"FontUnits', 'Normalized', ...

'"FontSize',0.5,...

case 3

'String',string2);

titleBox3 = uicontrol ('parent',f, ...

'Units', 'Normalized', ...

'"Position', [u(l+4*k) v (1l+4*k) u(2+4*k)-u(l+4*k)

v(2+4*k) 1, ...
'Style', "text', ...
'FontUnits', 'Normalized', ...
'FontSize',0.5, ...
'String',string3);
case 4
titleBox4 = uicontrol ('parent',f, ...

'Units', 'Normalized', ...

'Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k)

v(2+4*k) 1, ...

case 5

titl

'Style', "text', ...
'"FontUnits', 'Normalized', ...
'FontSize',0.5, ...

'String',string4);

eBox5 = uicontrol ('parent',f, ...

'Units', "Normalized', ...

'Position', [u(l+4*k) v (1+4*k) u(2+4*k)-u(l+4*k)

v(2+4*k) 1, ...

case 6

'Style', "text', ...
'"FontUnits', 'Normalized', ...
'"FontSize',0.5,...

'String',stringb);

titleBox6 = uicontrol ('parent',f, ...

'Units', "Normalized', ...

'Position', [u(l+4*k) v (1l+4*k) u(2+4*k)-u(l+4*k)

v(2+4*k) 1, ...

end

'Style', "text', ...
'"FontUnits', 'Normalized', ...
'"FontSize',0.5,...

'String',string6) ;

231

v (3+4*k) -

v (3+4*k) -

v (3+4*k) -

v (3+4*k) -

232

$BUTTONS
for i=1l:noButtons
enterColor="w';
if strcmp (enterType{i}, 'pushbutton')==
| | strcmp (enterType{i}, "text')==1
enterColor="default';
end
if strcmp(enterLabel{l,i},"'')==0%1.e. there is a label
%$creating a label for some buttons
uicontrol ('Parent',f, ...
'Units', 'Normalized', ...
'"Position', [m(1i) n(i)-labelDist 1Button (i)
labelHeight], ...
'Style', "text', ...
'String',enterLabel{i}, ...
'HorizontalAlignment', 'center');
end
switch 1
case 1
buttonl=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@uttonlCallback) ;
case 2
button2=uicontrol ('Parent',f, ...
'Units', 'Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)],...
'Style',enterType{i}, ...
'String',enterString{i}, ...

'BackgroundColor',enterColor, ...

233

'"HorizontalAlignment', 'center', ...
'"Callback',@utton2Callback) ;

case 3

button3=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@utton3Callback) ;

case 4

buttond=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@uttond4Callback) ;

case 5

button5=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button5Callback) ;

case 6

button6=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...

'Callback', @button6Callback) ;

234

case 7

button7=uicontrol ('Parent',f, ...
'Units', 'Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @button7Callback) ;

case 8

button8=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'Callback', @button8Callback);

case 9

button9=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@utton9Callback) ;

case 10

buttonlO=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'Position', [m(i) n(i) 1lButton (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonl0Callback) ;

case 11

buttonll=uicontrol ('Parent',f, ...

235

'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@uttonllCallback) ;

case 12

buttonl2=uicontrol ('Parent',f, ...
'Units', "Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'"HorizontalAlignment', 'center', ...
'"Callback',@buttonl2Callback) ;

case 13

buttonl3=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'"Position', [m(i) n(i) 1lButton (i) wButton(i)], ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@uttonl3Callback) ;

case 14

buttonl4=uicontrol ('Parent',f, ...
'Units', '"Normalized', ...
'Position', [m(i) n(i) 1Button (i) wButton(i)]l, ...
'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'Callback', @uttonl4Callback) ;

case 15

buttonl5=uicontrol ('Parent',f, ...
'Units', "Normalized', ...

'Position', [m(i) n(i) 1Button (i) wButton(i)], ...

236

'Style',enterType{i}, ...
'String',enterString{i}, ...
'BackgroundColor',enterColor, ...
'HorizontalAlignment', 'center', ...
'"Callback',@uttonl5Callback) ;

end

3USER CODE FOR THE VARIABLES AND CALLBACKS

SINITIALIZATION

curr_ file=1;

directory name='ABCD';

wav_file names='ABCD';

y=1;%y 1s the wvariable that contains the recorded speech
nsec=3;

£s=8000;

fileName='filel"';

%$set a name for the GUI

set (f, 'Name', 'Solution 2-Record speech GUI');

$buttonl-Get directory
function buttonlCallback (src,eventdata)
directory name = uigetdir('start path', 'dialog title');
A=strvcat (strcat ((directory name), "*.wav'));
struct filenames=dir (A);
wav_file names={struct filenames.name};
set (button2, 'String',wav_file names) ;
%once the popupmenu/drop down menu is created, by default, the
first
%selection from the popupmenu/drop down menu must be loaded
even 1if the

$callback for the popupmenu/drop down menu id not called

237

indexOfDrpDwnMenu=1; $by default first option from the
popupmenu/dropdown
tmenu will be loaded
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

tbuttonz2-Select file

function button2Callback (src,eventdata)
indexOfDrpDwnMenu=get (button2, 'val') ;
[curr file, fs]=loadSelection(directory name, ...

wav_file names, indexOfDrpDwnMenu) ;

end

$Function--load selection
function [curr file,fs]=locadSelection(directory name, ...
wav_file names, indexOfDrpDwnMenu)
fin path=strcat(directory name, '\', ...
strvcat (wav_file names (indexOfDrpDwnMenu))) ;
$fin path is the complete path of the file .wav file that
is
3selected
clear curr file;
clear fs;
[curr file, fs]=wavread(fin path);
FS=num2str (fs);
%$Information about the file being played
file info string=strcat ('Current file = '

Joe e e

wav_file names (indexOfDrpDwnMenu), ...
'. Sampling frequency = ',FS,'Hz', ...

|l

Number of samples in file = ', ...

num2str (length (curr file)));

end

Sbutton3-play button

function button3Callback(src,eventdata)

sound (curr_ file, fs);

end

Sbuttond-enter samplign freqg
function button4Callback (src,eventdata)
fs=str2num(get (button4, 'string'));

end

Sbuttonb-enter no of secs for recording button
function buttonbCallback(src,eventdata)
nsec=str2num(get (button5, 'string'));

end

$callback for the record/ re-record button
$record speech file of fixed duration (nsec) and

%given sampling rate(fs)

function button6Callback (h,eventdata)
buttond4Callback (h,eventdata) ;
button5Callback (h,eventdata) ;

o

yn=speech samples normalized to 1

o

N is the number of samples in each speech file

o

ch is the number of channels in the recording
N=fs*nsec;
ch=1;

y=wavrecord (N, fs,ch, "double');

ymin=min (y) ;

ymax=max (y) ;

% calculate dc offset and correct
offset=sum(y (N-999:N))/1000;
y=y-offset;

sound (y, £s) ;

end

$button7-get filename

238

239

function button7Callback(src,eventdata)
fileName=get (button7, "'string');

end

Sbutton8-save speech

function button8Callback (src,eventdata)
currentDir=pwd
currDir=strcat (currentDir, '\',fileName, '.wav')
wavwrite (y, fs, strvcat (currDir));
c=wavread (strvcat (currDir));
soundsc (c, £s)

end

Sbutton9-close gui
function button9Callback(src,eventdata)
close (gcf) ;

end

end

e The ‘runGULm’ file.

function runGUI
clc;

clear all;

$ENTER THE NAME OF THE . mat FILE
fileData=load ('recordgui.mat'");

temp=fileData(l) .temp;

labelHeight=0.8*0.05;

3x y are related to the panels

%m n are related to the buttons

240

f = figure('Visible','on',
'Units', '"normalized', ...
'Position', [0,0,1,11,...
'MenuBar', 'none', ...

'"NumberTitle', 'off');

PanelandButtonCallbacks (f, temp, labelHeight) ;
end

241

References

[1] McGrenere, J., Baecker, R., Booth, K. (2002) An Evaluation of a Multiple Interface
Design Solution for Bloated Software. In Proceedings of the CHI 2002 Conference on
Human Factors in Computing Systems, April 20-25, 2002, Minneapolis, MN, pp. 163-
170.

[2] Hsi, . and Potts, C. (2000). Studying the evolution and enhancement of software
features. International Conference on Software Maintenance, 143-151.

[3] Fischer, G. (1993). Shared knowledge in cooperative problem-solving systems -
integrating adaptive and adaptable components. In M. Schneider-Hufschmidt, T.
Kuhme and U. Malinowski (Eds.), Adaptive user interfaces: Principles and practice
(pp. 49-68). North Holland: Elsevier Science Publishers B.V.

[4] Kaufman, L. and Weed, B. (1998). Too much of a good thing? Identifying and
resolving bloat in the user interface: A CHI 98 workshop. SIGCHI Bulletin, 30(4), 46-
47

[5] Mackay, W. E. (1991). Triggers and barriers to customizing software. CHI’91, 153
—160.

[6] MathWorks. http://www.mathworks.com/help/techdoc/creating guis/baz79mu.html

[7] MathWorks. http://www.mathworks.com/help/techdoc/ref/uipanel.html

[8] MathWorks. http://www.mathworks.com/help/techdoc/ref/uicontrol props.html

[9] L. R. Rabiner and R. W. Schafer. Theory and Applications of Digital Speech
Processing. Prentice-Hall Inc., 2011.

http://www.mathworks.com/help/techdoc/creating_guis/bqz79mu.html�
http://www.mathworks.com/help/techdoc/ref/uipanel.html�
http://www.mathworks.com/help/techdoc/ref/uicontrol_props.html�

	ABSTRACT OF THE THESIS
	ACKNOWLEDGEMENTS
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Description of GUI Lite
	1.2.1 Components that can be created using GUI Lite.
	1.2.2 Essential MATLAB functions for GUI development.

	Chapter 2 Implementation of a GUI using GUI Lite -Version 1
	2.1 GUI Lite - Version 1
	2.2 Implementation of four Baseline Programs Using GUI Lite Version 1
	2.2.1 Program 1 - Hello World program
	2.2.2 Program 2 - Display the waveform of a designated speech file.
	2.2.3 Program 3 - Load a Speech File, Play it Back and Display the Waveform.
	2.2.4 Program 4 - Load an Existing Speech File or Record a New Speech File. Play the File, Display a Waveform of the Speech File and Save the File.

	2.3 GUI Lite - Version 1: Strengths and Weaknesses

	Chapter 3 Implementation of a GUI using GUI Lite -Version 2
	3.1 GUI Lite - Version 2
	3.1.1 Naming conventions for GUI Lite – Version 2

	3.2 Implementation of four Baseline Programs Using GUI Lite - Version 2
	3.2.1 Program 1 - Hello world program
	3.2.2 Program 2 - Display the waveform of a designated speech file.
	3.2.3 Program 3 - Load a Speech File, Play it back and Display the Waveform.
	3.2.4 Program 4 - Load an Existing Speech File or Record a New Speech File. Play the File and Save the File.

	3.3 GUI Lite – Version 2: Strengths and Weaknesses

	Chapter 4 Testing of GUI Lite - Version 1
	4.1 Overview of the testing of GUI Lite - Version 1
	4.1.1 Feedback for the GUI Lite – Version 1 from user 1
	4.1.2 Feedback for the GUI Lite – Version 1 from user 2
	4.1.3 Feedback for the GUI Lite – Version 1 from user 3

	4.2 Analysis of the feedback

	Chapter 5 Testing for GUI Lite - Version 2
	5.1 Testing for GUI Lite – Version 2
	5.1.1 Questionnaire for users using MATLAB’s GUIDE toolbox
	5.1.2 Questionnaire for users using the GUI Lite-Version 2 toolbox

	5.2 Results of the comparative testing between GUIDE and GUI Lite – Version 2
	5.2.1 Feedback from User 1 after testing the GUIDE and the GUI Lite toolboxes
	5.2.2 Feedback from User 2 after testing the GUIDE and the GUI Lite toolboxes

	5.3 Analysis of the feedback obtained after testing the GUIDE and the GUI Lite toolbox

	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

