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ABSTRACT OF THE THESIS

Sliding Mode Control of Discrete-time Weakly Coupled Systems

by Prashanth Kumar Gopala

Thesis Director:

Professor Zoran Gajić

Sliding mode control is a form of variable structure control which is a powerful tool

to cope with external disturbances and uncertainty. There are many applications of

sliding mode control of weakly coupled system to absorption columns, catalytic crackers,

chemical plants, chemical reactors, helicopters, satellites, flexible beams, cold-rolling

mills, power systems, electrical circuits, computer/communication networks, etc. In

this thesis, the problem of sliding mode control for systems, which are composed of two

weakly coupled subsystems, is addressed.

This thesis presents several methods to apply sliding mode control to linear discrete-

time weakly-coupled systems and different approaches to decouple the sub-systems.

The application of Utkin and Young’s sliding mode control method on discrete-time

weakly-coupled systems is studied in detail which is then compared with other control

algorithms while emphasising the importance of the decoupling technique in each case.

It also presents the possibility of integrating two or more control strategies for a sin-

gle system; one for each sub-system, depending upon the respective requirements and

constraints.

In this thesis, the effectiveness of the proposed methods is demonstrated through

theory and simulation results.
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Chapter 1

Discrete-Time Sliding Mode Control

1.1 Introduction

Sliding mode control has been recognized as a robust control approach, which yields

to reject disturbances and system uncertainties. The design of sliding mode control is

achieved in two steps. Firstly, a sliding surface is described which ensures the system

to remain on the surface after reaching it from any initial conditions in a finite time.

Secondly, discontinuous control is designed to render a sliding mode.

Consider the following single input linear discrete-time systemx1k+1

x2k+1

 =

0 1

α β

x1k
x2k

+

0

1

uk (1.1)

If x2k = λx1k, where | λ |< 1, then x1k and x2k are asymptotically stable because (1.1)

yields x1k+1 = λx1k. Define a line as follows

sk = x2k + λx1k, | λ |< 1 (1.2)

The control objectives are to design uk to ensure that the system reaches the sliding

line from any initial condition in a finite time and stay on the line after reaching it.

The conditions to achieve these objectives are called reaching and sliding conditions.

The reaching condition provides that the system state reaches the sliding surface in a

finite time, whereas the sliding condition facilitates that the system state slides on the

sliding line towards the origin.

The general reaching condition is given by

‖sk+1‖ < ‖sk‖
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The general form of discontinuos control is given by

ui(k) =


u+i (k), if si(k) > 0

u−i (k), if si(k) < 0

,∀i

The reaching condition described by Utkin and Young is (Utkin, 1977; Young, 1978)

sk+1 = −δsgn(sk), δ > 0 (1.3)

where the signum function sgn(sk) is defined as follows

sgn(sk) =


+1 if sk > 0

0 if sk = 0

−1 if sk < 0

(1.4)

Two different definitions of discrete-time sliding mode have been proposed for discrete-

time systems Young et al. (1999). Both share the common base of using the concept of

equivalent control. Drakunov and Utkin (1990) proposed a ueqk = u(kT ) which is the

solution of

sk+1 = 0 (1.5)

On the other hand, ueqk is defined in Furuta (1990) as the solution of

∆sk = sk+1 − sk = 0 (1.6)

Note that (1.5) implies (1.6), however the converse is not true. Herein, the second

definition shall be used since the magnitude of input required to achieve sk+1 = 0

would be considerably higher. Such high inputs might be hard to supply and, in the

case of weakly-coupled systems, could cause instability due to the existence of residual

external-input coupling even after decoupling techniques are applied (as will be studied

in the following chapter).

From (1.2), we have

∆sk = (α− 1)x1k + (β + λ)x2k, | λ |< 1 (1.7)

For ∆sk = 0, it follows

ukeq = −(α− 1)x1k − (β + λ)x2k, | λ |< 1 (1.8)
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Therefore, the control law to satisfy the reaching condition (1.3) is

uk = ukeq − δsgn(sk), δ > 0 (1.9)

1.1.1 Constructing Sliding Surfaces of MIMO System

1.2 Sampled Data Control Stratergies

If a discrete-time system without disturbances is modelled in the tracking error space

(where the tracking error is given by e(k) = r(k) − x(k)) the resultant state-space

structure is as follows

e(k + 1) = Adx(k)− bdu(k) (1.10)

Ad = eAT ; bd =

∫ T

0
eAτ bdτ ;

where A, b are the state space matrices of the corresponding continuous time system.

All known state space based sliding mode design methods are special cases of the

following general reaching law algorithm (Milosavljević et al., 2006):

∆g(k) = g(k + 1)− g(k) = −Tf(e(k), g(k)) (1.11)

where T is the sampling period and

g(k) = cTd e(k) (1.12)

The vector cd has to be selected so that the motion has the desired dynamics.

LHS of equation (1.11) represents the first difference of the sliding function and RHS

is a nonlinear function, f , of the tracking error and the sliding function. The value of

control is determined by equaling the first difference of g(k) with RHS of (1.11). By

assuming cTd bd = 1, without loss of generality, the following value of the control input

is obtained

u(k) = ueq(k)− g(k) + Tf(•); (1.13)

ueq(k) = cTdAde(k).

Depending on the selection of the function f(•), various control algorithm were proposed

(Milosavljević, 1985; Golo and Milosavljević, 2000; Milosavljević, 1982; Bučevać, 1985;
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Salihbegović, 1985; Furuta, 1990; Chan, 1991; Pots and Yu, 1990; Yu and Pots, 1992;

Gao et al., 1995; Bartolini et al., 1995; Bartoszewitz, 1998; Furuta and Pan, 2000;

Milosavljević et al., 2005). The most widely known are listed below.

1. Quasi-relay Control Algorithm

The algorithm is defined by the following representation (Milosavljević, 1985, 1982)

Tf(•) = −ueq + g(k) + Σn−1
i=1 wi | ei(k) | sgn(g(k)); w > 0. (1.14)

u(k) = Σn−1
i=1 wi | ei(k) | sgn(g(k)). (1.15)

where wi are the weights of the errors. The main feature of this control is the modulated

amplitude of control. The control signal decays when the state approaches to zero and

then the chattering disappears.

2. Relay Control Algorithm

In this algorithm, the function f(•) is given by

Tf(•) = δsgn(g(k)) + g(k) + ueq(k); δ > 0. (1.16)

and the control input is

u(k) = δsgn(g(k)). (1.17)

This algorithm’s main feature is the control signal switching between two large constant

values. The disadvantage is significant chattering even in the steady state.

3. Bučevac-Salihbegović Control Algorithm

The function f(•) satisfies the following criterion (Bučevać, 1985; Salihbegović, 1985)

Tf(•) = g(k) (1.18)

and the equivalent control law ueq, is given by

u(k) = ueq(k), ∀g(k) (1.19)

Regardless of the value of g(k), control (1.2) will bring the system onto the sliding

hypersurface (SHS) in one step if g(k) 6= 0 and then maintain the system state on the

SHS g(k)=0 by the action of equivalent control. If the control input in the reaching

phase is too high it may be moderated in the following way

u(k) = ueq(k)− αg(k), α > 0 (1.20)
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4. Furuta’s Control Algorithm

This algorithm is defined as follows (Furuta, 1990; Chan, 1991)

Tf(•) = ψT e(k)ψ0g(k), (1.21)

u(k) = ueq − (1− ψ0)g(k)− ψT e(k), (1.22)

ψi =


ψ if ei(k)g(k) < −δi

0 if − δi leqei(k)g(k) ≤ δi

−ψ if ei(k)g(k) > δi

(1.23)

where 0 < ψ0 < 1

δi = 0.5ψ(1− ψ0)
−1 | ei(k) | σnj=1 | ej(k) | (1.24)

Here the Quasi-Sliding Mode (QSM) stays within a domain that does not coincide with

the sliding hyperplane but is very close to it. But, this method works only in the single

input case.

5. Gao’s Control Algorithm

In this algorithm the function f(•) satisfies

f(•) = qg(k) + psgn(g(k)) (1.25)

where q, p, 1− q > 0 (Gao et al., 1995)

u(k) = [ueq(k)− (1− qT )g(k) + pT sgn(g(k))] (1.26)

The choice of q and p defines reaching dynamics and the width of the QSM domain,

which is 2∆ = 2pT/(1− qT ) in a nominal system. For p = 0, q = 1/T the width of the

domain is zero and the algorithm reduces to (1.20).

6. Bartolini etal’s Control Algorithm

In this algorithm, the function f(•) is defined as follows (Bartolini et al., 1995)

Tf(•) =


αsgn(ueq(k))− ueq(k) + g(k) if |ueq| > α

g(k) if |ueq(k)| ≤ α
(1.27)
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and the control input is given by

u(k) =


αsgn(ueq(k)) if |ueq| > α

ueq(k) if |ueq| ≤ α
(1.28)

This control strategy suitably takes into account the control magnitude limitation by

the actuator in real systems. The relay component is active in the reaching regime,

whereas ueq acts in the QSM.

7. Bartoszewicz’s Control Algorithm

Bartoszewicz introduced a desired hypersurface gd (Bartoszewitz, 1998), which defines

the control magnitude in the reaching phase as follows

Tf(•) = g(k)− λgd(k + 1), (1.29)

where originally in (Bartoszewitz, 1998) λ=1, so that control is

u(k) = ueq − gd(k + 1) (1.30)

where

gd(k) =


(1− k∗/k)g(k) if |g(k)| > 2δd

0 if |g(k)| ≤ 2δd

(1.31)

where k∗ is the desired number of sampling intervals needed to reach the SHS and δd is

a function of lower and upper limits of disturbance. In order to improve the accuracy,

Bartoszewicz also modifies the control strategy by introducing an additional integral

action. The control input then becomes (h=1).

u(k) = ueq(k)− λgd(k + 1) + hσk−11=0 (g(i)− gd(i)). (1.32)

8. Golo-Milosavljević Algorithm

This method proposes the following f(•) function (Golo and Milosavljević, 2000; Milosavl-

jević et al., 2005)

Tf(•) =


εsgn(g(k)) if |g(k)| > ψ

g(k) if |g(k)| ≤ ψ
(1.33)

and the respective control law is given by

u(k) =


ueq − g(k) + ψsgn(g(k)) if |g(k)| > ψ

ueq if |g(k)| ≤ ψ
(1.34)
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9. Utkin and Young’s Method

Consider a discrete-time linear system given by

xk+1 = Axk +Buk (1.35)

where xk ∈ Rn, uk ∈ Rm, and A, B are constant matrices of appropriate dimensions,

and B has full rank. There exists a similarity transformation defined by Utkin and

Young (1978)

qk = Hxk (1.36)

with

H =
[
N B

]T
(1.37)

and columns of the n× (n−m) matrix N composed of basis vectors in the null space

of BT , which puts (1.35) into the form

qk+1 = Āqk + B̄uk (1.38)

with Ā = HAH−1 and B̄ = HB =

 0

B̄r

. Equation (1.38) is decomposed as follows

q1k+1

q2k+1

 =

Ā11 Ā12

Ā21 Ā22

q1k
q2k

+

 0

B̄r

uk (1.39)

where q1k ∈ Rn−m, q2k ∈ Rm, and B̄r is an m×m nonsingular matrix.

Equation (1.39) yields

q1k+1 = Ā11q
1
k + Ā12q

2
k (1.40)

and

q2k+1 = Ā21q
1
k + Ā22q

2
k + B̄ruk (1.41)

q2k is treated as a control input to the system (1.40) and a state feedback gain K, which

makes the system stable, is defined by

q2k = −Kq1k. (1.42)
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For the system (1.40), Utkin and Young (1978) have shown that (Ā11, Ā12) is control-

lable if and only if (A,B) is controllable (see also Chen, 1999).

On the sliding surface, the system trajectory in the (q1k, q
2
k) coordinates is expressed

as [
K Im

]q1k
q2k

 = 0 (1.43)

or

sk = Gxk =
[
K Im

]
Hxk = 0 (1.44)

in the original coordinates.

Dote and Hoft (1980) firstly considered Discrete-time Sliding Mode Control (DSMC)

and used a discrete-time reaching condition (DRC) to ensure the existence of the sliding

mode. The DRC is obtained by slimply substituting the forward difference into the

continuous-time reaching condition(CRC). Milosavljević et al. (1985), suggested the

concept of the quasi-sliding mode, and pointed out that the DRC of (Dote and Hoft,

1980) is only a necessary condition and not a sufficient condition for the existence of

such a quasi-sliding mode. Later a modified DRC given in the form of an inequality was

presented in (Sarpturk et al., 1987). Although the DRC can guarantee the magnitude

of the sliding mode function value to be strictly decreased, to solve the corresponding

inequality is uneasy. In (Furuta, 1990), Furuta proposed a DRC by the equivalent form

of a Lyapunov-type of CRC, but it is difficult to extend to multi-input systems. In

(Gao et al., 1995), desired propertiies of DSMC systems, defined notions of the reaching

condition, quasi-sliding mode and quasi-sliding mode band, were specified and used the

so-called reaching law to approach DSMC algorithms. Since then, many investigations

have been done on the basis of (Gao et al., 1995), see (Xiao et al., 2005; Yao et al.,

2001; He et al., 2001; Zhai and Mwu, 2000; Mao et al., 2001; Li, 2004)

1.2.1 Multi-step Prediction Based Discrete-time Sliding Mode Con-

trol Algorithm (MSMPM)

By creating a special multi-step sliding mode prediction model (Lingfei and Hongye,

2008) which includes the function of compensation for system parameter perturbations
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and external disturbances, the future information of the sliding mode can be used.

The reachability of the sliding surface can be obtained by making the output value

of MSMPM to track the sliding surface closely, even when matched or unmatched

uncertainities influence the system; thus strong robustness is maintained.

1.2.2 Design of MSMPM

When an uncertainty does not appear, the nominal discrete-time system is represented

by

x(k + 1) = Ax(k) + bu(k) (1.45)

Consider the following sliding mode function

s(k) = σTx(k),where σT = [σ1...σn] 6= 0. (1.46)

The sliding surface is S = x|s(x) = 0. The choice of σi(i = 1, ..., n) should guarantee

stability and dynamic performance of an ideal quasi sliding mode and σT 6= 0. For

linear systems, the suitable σi can be obtained by eigenvalue placement. The sliding

mode value at time k+i can be described as

s(k + i) = σTAix(k) + Σi
j=1σ

TAj−1bu(k + i− j) (1.47)

where i, j, k ∈ Z are time instants. In the presence of uncertainty, the future value

of sliding mode will not equal to (1.47). Therefore, we introduce the following sliding

mode predictor

s(k + i) = σTAix(k) + Σi
j=1σ

TAj−1bu(k + i− j) + βisgn(s(k)) (1.48)

where β is a negative constant. The function of term βisgn(s(k)) is to make com-

pensation for uncertainty. According to the receding horizon optimizaion approach in

predictive control strategy, Xi (1993, 2000), in the control vector U = [u(k), u(k +

1), ...u(k+M − 1)]T only the first element of U , i.e.,u(k) is transmitted to the process,

other elements are not used for control, but serve as initial values for the next round of

optimization. In order to decrease calculations, we let u(k + i) = αu(k + i− 1), where
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0 < α < 1. Additionally, (Xi, 1993) points out that the control horizon should not be

larger than the prediction horizon N , and u(k + i) = u(k + i− 1), M ≤ N , therefore,

u(k + i) =


αu(k + i− 1), if k + i < M

u(M − 1), if k + i ≥M
(1.49)

As a result, the multi-step sliding mode prediction model (MSMPM) is constructed as

follows,

sm(k + i) = σTAix(k) + Σi
j=1σ

TAj−1αpbu(k) + βisgn(s(k)) (1.50)

where

p =


i− j,i− j < M

M − 1,i− j ≥M
(1.51)

The above Sm equation can be described in vector form as follows,

Sm = Fx(k) +GL1u(k) + L2sgn(s(k)) (1.52)

where

Sm = [sm(k + 1) . . . sm(k +N)]T ,

F = [σTA . . . σTAN ]T ,

L1 = [1α1 . . . αM−1]T ,

I2 = [β . . . βN ]T ,

G =



σT 0 . . . . . . 0

σTAb σT b . . . . . . 0

...
...

...
...

...

σTA(M−1)b σTA(M−2)b . . . . . . σT b

...
...

...
...

...

σTA(i−1)b σTA(i−2)b . . . σTA(i−M+1)b Σi−M+1
j=1 σTAj−1b

...
...

...
...

...

σTA(N−1)b σTA(N−2)b . . . σTA(N−M+1)b ΣN−M+1
j=1 σTAj−1b


where N is the prediction horizon and M is the control horizon.

Now, the performance index is defined as

J = ΣN
i=1(sm(k + i)− sd)2 + λu2(k) (1.53)
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where sd is the sliding mode desired value, λ is a weight coefficient and λu2(k) acts as

a penalty factor for the control signal in the performance index.

According to SMC theory, (Utkin, 1992) states should be forced to the sliding surface

and stay on it thereafter. Thus, the sliding mode desired value are zero, namely, sd = 0.

Therefore, (1.53) reduces to

J = ΣN
i=1s

2
m(k + i) + λu2(k) = STmSm + λu2(k) (1.54)

Substituiting (1.50) into (1.54), yields

J = [Fx(k) +GL1u(k) + L2sgn(s(k))]T [Fx(k) +GL1u(k) + L2sgn(s(k))] + λu2(k)

= [H(k) +Qu(k)]T [H(k) +Q(k)] + λu2(k) (1.55)

where H(k) = Fx(k) + L2sgn(s(k)) , Q = GL1u(k) .

Optimizing (1.55), i.e., by taking ∂J
∂u(k) =0. The following sliding mode control law can

be obtained.

u(k) = − Q
TH(k)

QTQ+ λ
(1.56)

In the conventional SMC, a highly switched controlleris designed to realize the reacha-

bility of sliding surface. In the above algorithm, the reachability of the sliding surface

is completed by making the future value of the sliding mode track s(k) = 0. Due to the

future information of the sliding mode, control signal is able to adjust immediately to

prevent system states cross the sliding surface, hence chattering can be avoided.

1.3 The Invariance Condition for Linear Systems with Exogenous Dis-

turbances

Consider a multi input system with a disturbance dk (Drazenovic, 1969)

xk+1 = Axk +Buk + Edk (1.57)

where xk ∈ Rn, uk ∈ Rm, dk ∈ Rl and A, B, E are constant matrices of appropriate

dimensions, B and E have full rank. The sliding mode of (1.57) can be described as

sk = Gxk = 0, (1.58)
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where Gk is a m × n matrix. Equation (1.57) is invariant to dk in the sliding mode if

and only if

rank
[
B | E

]
= rank

[
B

]
(1.59)

The above condition is known as Drazenovic’s Invariance condition for linear systems

with exogenous disturbances.
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Chapter 2

Discrete-Time Weakly Coupled Systems

2.1 Introduction

Linear weakly coupled systems have been studied in different set-ups by many re-

searchers since Kokotovic and his coworkers introduced them in 1969 (Kokotovic et al.,

1969; Gajić and Borno, 2000; Gajić et al., 2009). Traditionally, solutions of weakly

coupled systems were obtained in terms of Taylor series and power series expansions

with respect to a small weak coupling parameter ε (Kokotovic et al., 1969). In 1989,

Gajić and Shen, under certain conditions, introduced a decoupling transformation which

exactly decompose weakly coupled linear systems composed of two subsystems into in-

dependent two reduced-order subsystems. In (Qureshi, 1992), another version of the

transformation was obtained.

The linear weakly coupled system composed of two subsystem is defined by (Koko-

tovic et al., 1969)

x1k+1 = A1x
1
k + εA2x

2
k +B1u

1
k + εB2u

2
k

x2k+1 = εA3x
1
k +A4x

2
k + εB3u

1
k +B4u

2
k

(2.1)

where ε is a small weak coupling parameter and xik ∈ Rni are state space variables and,

uik ∈ Rmi are subsystem controls. Two standard assumptions for weakly coupled linear

system exist (Gajić et al., 2009, pp. 98-100).

Assumption 2.1.1. Matrices Ai, i = 1, 2, 3, 4, are constant and O(1). In addition,

magnitudes of all system eigenvalues are O(1), that is, |λj | = O(1), j = 1, 2, . . . , n,

which implies that the matrices A1, A4 are nonsingular with det{A1} = O(1) and

det{A4} = O(1).

Assumption 2.1.2. Matrices A1 and A4 have no common eigenvalues.
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2.2 Decoupling Transformation of Gajic and Shen

Consider a linear weakly coupled system (Gajić and Shen, 1989; see also Gajić et al.,

2009)

x1k+1 = A1x
1
k + εA2x

2
k +B1u

1
k + εB2u

2
k (2.2)

x2k+1 = εA3x
1
k +A4x

2
k + εB3u

1
k +B4u

2
k (2.3)

where x1k ∈ Rn1 , x2K ∈ Rn2 , n1 + n2 = n, are subsystem states, uik ∈ Rmi , i = 1, 2, are

subsystem controls, and ε is a small coupling parameter. Introducing new variables η1

and a matrix L1 as follows

x1k = η1k + εL1x
2
k (2.4)

transforms (2.2) into

η1k+1 = A10η
1
k + εΦ1(L1)x

2
k +B10u

1
k + εB20u

2
k (2.5)

where

A10 = A1 − ε2L1A3

B10 = B1 − ε2L1B3

B20 = B2 − L1B4

(2.6)

and

Φ1(L1) = A1L1 − L1A4 +A2 − ε2L1A3L1 (2.7)

If L1 is chosen such that Φ1(L) = 0, (2.5) is completely decoupled subsystem

η1k+1 = A10η
1
k +B10u

1
k + εB20u

2
k (2.8)

Introducing another change of variables as follows

η2k = x2k + εH1η
1
k (2.9)

we have from (2.3) and (2.8)

η2k+1 = εΦ1(H1)η
1
k +A40η

2
k + εB30u

1
k +B40u

2
k (2.10)
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where

A40 = A4 + ε2A3L1

B30 = B3 +H1B10

B40 = B4 + ε2H1B20

(2.11)

and

Φ2(H1) = H1A10 −A40H1 +A3 (2.12)

Assuming that matrix H1 can be chosen such that Φ2(H1) = 0, (2.10) represents

another decoupled subsystem

η2k+1 = A40η
2
k + εB30u

1
k +B40u

2
k (2.13)

The original system (2.2)-(2.3) is transformed into the decoupled subsystems using the

similarity transformationη1k
η2k

 =

 In1 −εL1

εH1 In2 − ε2H1L1

x1k
x2k

 = T1

x1k
x2k

 (2.14)

where

T−11 =

In1 − ε2L1H1 εL1

−εH1 In2

 . (2.15)

2.2.1 Decoupling Transformation of Qureshi

The difficulty of the decoupling transformation of Gajić and Shen is that computa-

tion must be done sequentially. Introducing the change of variables to overcome this

difficulty (Qureshi, 1992; see also Gajić et al., 2009, Chapter 5),η1k
η2k

 =

 In1 −εL2
k

εH2
k In2 − ε2H2

kL
2
k

x1k
x2k

 = T2

x1k
x2k

 (2.16)

where

T−12 =

In1 − ε2L2
kMkH

2
k εL2

kMk

−εMkH
2
k Mk

 (2.17)

with Mk = (In1 − ε2H2
kL

2
k)
−1, the original system (2.1) is transformed into

η1k+1 = (A1
k − ε2L2

k(A
3
k)η

1
k +B10u

1
k + εB20u

2
k

η2k+1 = (A4
k − ε2H2

kA
2
k)η

2
k + εB30u

1
k +B40u

2
k

(2.18)
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where matrices L2
k and H2

k are obtained from

Φ3(L
2
k, L

2
k+1) = L2

k+1−A1
kL

2
k + L2

kA
4
k

−A2
k + ε2L2

kA
3
kL

2
k = 0

Φ4(H
2
k , H

2
k) = H2

k+1−A4
kH

2
k +H2

kA
1
k

A3
k + ε2H2

kA
2
kH

2
k = 0

(2.19)

with

B10 = B1 − ε2L1B3

B20 = B2 − L2B4

B30 = B3 −H2B1

B40 = B4 − ε2H1B2

(2.20)

Note that equations for L2
k and H2

k are independent of each other.

2.2.2 Decoupling Transformation for N Weakly Coupled Subsystems

Consider a continuous-time systems consisting of n states represented by Gajić and

Borno (2000); see also Gajić et al. (2009, Chapter 5),

xk+1 = Axk (2.21)

where xk is n-dimentional state vector partitioned consistently with N subsystems as

xk =
[
x1

T

k x2
T

k . . . xN
T

k

]T
, xik ∈ Rn

i , and constant matrix A is

A =



A11 εA12 . . . εA1N

εA21 A22 . . . . . .

. . . . . . . . . . . .

εAN1 εAN2 . . . ANN


(2.22)

The similar assumptions as Assumption 1.2.1 and 1.2.2 of are imposed for N weakly

coupled linear system (Gajić et al., 2009, pp. 108-111).

Assumption 2.2.1. All matrices Aij are constant and O(1), and magnitudes of all

system eigenvalues are O(1), that is, |λj | = O(1), j = 1, 2, . . . , n, which implies that

the matrices Aii, j = 1, 2, . . . , N are nonsingular with det{Aii} = O(1).
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Assumption 2.2.2. Matrices Ajj and Aii have no eigenvalues in common for every

i, j, i 6= j.

The corresponding similarity transformation matrix is given by

ηk = Γxk (2.23)

where

Γ(ε) =



I εL12 . . . εL1N

εL21 I . . . εL2N

. . . . . . . . . . . .

εLN1 . . . εLN(N−1) I


(2.24)

The original system (2.21) is decoupled into

ηik+1 = Ωiη
i
k, i = 1, 2, . . . , N (2.25)

with

Ωi = Aii + ε2
N∑

j=1,j 6=i
LijAji, j = 1, 2, . . . , N (2.26)

where Lij satisfies

Ωij(Lij , ε) = LijAjj −AiiLij +Aij + ε(
N∑

r=1,r 6=i,j
LirAri)

− ε2(
N∑

r=1,r 6=i
LirAri)Lij = 0,

i, j = ∀1, 2, . . . , N, i 6= j

(2.27)

These equations can be solved iteratively by starting with

L
(0)
ij Ajj −AiiL

(0)
ij +Aij = 0 (2.28)

and performing the following iteration

L
(m+1)
ij Ajj −AiiL(m+1)

ij +Aij + ε(

N∑
r=1,r 6=i,j

L
(m)
ir Ari)

− ε2(
N∑

r=1,r 6=i
L
(m)
ir Ari)L

(m)
ij = 0,

i, j = 1, 2, . . . , N, i 6= j; m = 0, 1, 2, . . .

(2.29)
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This algorithm converges with the rate of O(ε), that

||L(m)
ij − L

(0)
ij || = O(εi),m = 0, 1, 2, . . . (2.30)

Other methods, like the Newton method and eigen-value method (Gajić et al., 2009),

can be used to solve (2.27).



19

Chapter 3

Sliding Mode Control of Linear Discrete-Time Weakly

Coupled Systems

3.1 Introduction

Weakly coupled systems have been traditionally controlled by assuming that the cou-

pling between subsystems does not exist i.e., by setting the coupling parameter ε =

0. This method is neither comprehensive nor accurate. The introduction of decou-

pling techniques has made it possible to handle each subsystem separately with much

better precision. In this chapter, we address the problem of sliding mode control of

a weakly coupled linear discrete-time system without external disturbance. Both the

traditional approach and the novel decoupling approach will be studied. The Utkin and

Young method of sliding mode control (Utkin and Young, 1978) is employed to achieve

stability.

3.2 Traditional Approach

Consider the following discrete-time linear weakly coupled system

 x1k+1

x2k+1

 =

 A1 εA2

εA3 A4

 x1k

x2k

+

 B1 εB2

εB3 B4

 u1k

u2k

 (3.1)

The traditional method of decoupling this system is by setting ε = 0. The system then

reduces to the following two independent systems:

x1k+1 = A1x
1
k +B1u

1
k (3.2)
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x2k+1 = A4x
2
k +B4u

2
k (3.3)

where x1k ∈ Rn1 , x2k ∈ Rn2 , n1 + n2 = n, are state variables, uik ∈ Rmi , i = 1, 2, are

control inputs and ε is a small weak coupling parameter. It is assumed that matrices

A1, A4 are constant and O(1). In addition, magnitudes of all system eigenvalues are

O(1), that is, |λj | = O(1), j = 1, 2, . . . , n, which implies that the matrices A1, A4

are nonsingular with det{A1} = O(1) and det{A4} = O(1). It is also assumed that

matrices A1 and A4 have no common eigenvalues (see Assumption 2.1.1). A and B are

constant matrices of appropriate dimensions.

3.2.1 Case Study

A physical example of a fifth-order distillation column control problem (Kautsky et al.,

1985) is used here to demonstrate the approach of section 3.2. The system matrices are

as follows

A = 10−3



989.5 5.6382 0.2589 0.0125 0.0006

117.25 814.5 76.038 5.5526 0.37

8.768 123.87 750.2 107.96 11.245

0.9108 17.991 183.81 668.34 150.78

0.0179 0.3172 1.6974 13.298 985.19


=

 A1 εA2

εA3 A4



B = 10−3



0.0192 −0.0013

6.0733 −0.6192

8.2911 −13.339

9.1965 −18.442

0.7025 −1.4252


=

 B1 εB2

εB3 B4



These matrices have been obtained from (Kautsky et al., 1985) by performing dis-

cretization. The coupling parameter ε can be roughly estimated from the strongest

coupled matrix - in this case matrix B. The strongest coupling is seen in the third row,
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which implies

ε =
b31
b32

=
8.2911

13.339
≈ 0.62

Setting ε = 0, we get

A0 =



0.9895 0.0056 0.0003 0 0

0.1173 0.8145 0.0760 0 0

0.0088 0.1239 0.7502 0 0

0 0 0 0.6683 0.1508

0 0 0 0.0133 0.9852


=

 A1 0

0 A4



B0 =



0 0

0.0061 0

0.0083 0

0 −0.0184

0 −0.0014


=

 B1 0

0 B4



The resultant system is a concatenation of two completely independent sub-systems and

each can be dealt with separately. Thus, two independent sliding surfaces are designed

for them as follows.

Consider the first sub-system. Let

N1 = null(B′1) =


−0.5909 −0.8067

0.6515 −0.4758

−0.4758 0.3504


then

H1 = [N1B1]
′ =


−0.5909 0.6515 −0.4758

−0.8067 −0.4758 0.3504

0 0.0061 0.0083


Transferring to the new co-ordinates, we have
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A1new = H1A1H
−1
1 =


0.7543 0.0828 2.6916

0.1679 0.9318 −2.4260

0.0002 −0.0011 0.8681

 =

 A11 A12

A21 A22



B1new = H1B1 = 10−3


0

0

0.1056

 =

 0

Br1


The eigenvalues of A11 are at 0.6955 and 0.9906. The following sliding surface is de-

signed to shift these eigenvalues to 0.5 and 0.6 respectively.

s1k = G1x
1
k

where

G1 = [K1 1]H1

and K1 is the feedback gain matrix for placing the eigenvalues of the system at the

desired locations.

K1 =
(
−0.9165 −1.2585

)
Therefore,

G1 =
(

1.5569 0.0078 0.0034

)
The resultant feedback control law for this sub-system is defined by

u1k = −(G1B1)
−1G1(A1 − In1)x1k + σsgn(s1k) =

−
(
−145.8167 73.4110 1.3452

)
x1k + σsgn(s1k)

Following a similar approach for the second sub-system, we obtain

N2 = null(B′4) =

 −0.0771

0.9970


H2 = [N2B4]

′ =

 −0.0771 0.9970

−0.0184 −0.0014


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Transferring to the new co-ordinates

A4new = H2A4H
−1
2 =

 0.9707 −1.9822

−0.0032 0.6828

 =

 A11 A12

A21 A22


B4new = H2B4 = 10−3

 0

0.3421

 =

 0

Br2


The eigenvalue of A11 is at 0.9707. To shift this eigenvalue to .55, the required K2 is

-0.2122. Consequently,

G2 = [K2 1]H2 =
(
−0.0021 −0.2130

)
The resultant feedback control law for this sub-system is defined in

u2k = −(G2B4)
−1G2(A4 − In2)x2k + σsgn(s2k) = −

(
−6.2551 8.3009

)
x2k + σsgn(s2k)

Thus, the feedback law of the full-order system is given by

uk = −

 u1k 01×2

01×3 u2k

 =

−

 −145.8167 73.4110 1.3452 0 0

0 0 0 −6.2551 8.3009

 x1k

x2k

+ σ

 sgn(s1k)

sgn(s2k)


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3.2.2 Observations

Figure 3.1: Divergence of state variables with σ = 50

Figure 3.2: Control inputs
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Figure 3.3: Sliding surfaces/ divergences

These observations clearly show that the traditional approach is insufficient in cases

where ε is not very small. The interaction between the two subsytems and the al-

ternate control inputs in this case upsets the system causing instability inspite of the

controller design that put individual sub-system eigenvalues inside the unit circle.

3.3 Decoupling Approach

Here we use the decoupling transformaton proposed by Gajic and Shen (Gajić and Shen,

1989). This involves the introduction of a change of variables as follows. For the system

xk+1 = A1xk + εA2zk +B1u
1
k + εB2u

2
k (3.4)

zk+1 = εA3xk +A4zk + εB3u
1
k +B4u

2
k (3.5)

introducing
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xk = ηk + εLzk (3.6)

The original system is transformed into

ηk+1 = A10ηk + εF1(L)z +B10U
1
k + εB20U

2
k (3.7)

where

A10 = A1 − ε2LA3 (3.8)

B10 = B1 − ε2LB3 (3.9)

B20 = B2 − LB4 (3.10)

F1(L) = A1L− LA4 +A2 − ε2LA3L (3.11)

Assuming that a matrix L can be chosen such that F1(L) = 0, Equation (3.7) represents

a completely independent (decoupled) subsystem

ηk+1 = A10ηk +B10U
1
k + εB20U

2
k (3.12)

Introducing the second change of variables as

ζk = zk + εHηk (3.13)

Equation(3.5) becomes

ζk+1 = A40ζk + εF2(H)ηk + εB30u
1
k +B40u

2
k (3.14)

with
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A40 = A4 + ε2A3L

B30 = B3 +HB10

B40 = B4 + ε2HB20

and

F2(H) = HA10 −A40H +A3 (3.15)

In addition, if matrix H can be chosen such that F2(H)=0, we have

ζk+1 = A40ζk + εB30u
1
k +B40u

2
k (3.16)

Equations (3.12) and (3.16) represent two completely decoupled linear subsystems.

Notice that the weakly coupled structure of the control inputs in (3.4) and (3.5) is

preserved in the new coordinates. Also, the inverse transformation is applicable to the

feedback structure. Thus, applying the non-singular transformation

 ηk

ζk

 =

 In1 −εL

εH In2 − ε2HL

 xk

zk

 = T1

 xk

zk

 (3.17)

with

T1
−1 =

 In1 − ε2LH εL

−εH In1

 (3.18)

Note that the transformation T1 is uniquely defined if the unique solutions of the

following two algebraic equation exist:



28

A1L− LA4 +A2 − ε2LA3L = 0 (3.19)

H(A1 − ε2LA3)− (A4 + ε2A3L)H +A3 = 0 (3.20)

It is important to notice that at ε = 0 we have

A1L
(0) − L(0)A4 +A2 = 0 (3.21)

H(0)A1 −A4H
(0) +A3 = 0 (3.22)

so that

L = L(0) +O(ε2) (3.23)

H = H(0) +O(ε2) (3.24)

Equations (3.21) and (3.22) are Sylvester equations and their unique solutions exist

if matrices A1 and A4 have no eigen values in common (Lancaster and Tismenetsky,

1985). Thus the presented results will be valid under the following Assumption 2.1.2.

3.3.1 Case Study

Let us consider the same distillation column system and apply the decoupling techniques

on it. Applying Gajić and Shen’s transformation we get the following tranformation

matrix,

T =



1.0000 0 0 0.0033 0.0276

0 1.0000 0 −0.1365 0.0745

0 0 1.0000 0.2850 −0.1497

−0.1726 0.3137 −0.4038 0.8415 0.0791

−0.1496 −0.0155 0.0187 0.0070 0.9919


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This matrix is used to transform the system as follows

An = TAT−1 =

 A1 0

0 A4

 =



0.9895 0.0057 0.0012 0 0

0.1172 0.8128 0.0581 0 0

0.0090 0.1289 0.8014 0 0

0 0 0 0.6186 0.1821

0 0 0 0.0129 0.9855



Bn = TB

 B1 0

0 B4

 =



0.0001 −0.0004

0.0052 0.0031

0.0107 −0.0165

0 −0.0078

0.0004 −0.0017


The resultant system is a concatenation of two completely independent sub-systems and

each can be dealt with separately. Thus, two independent sliding surfaces are designed

for them as follows.

Consider the first sub-system. Let

N1 = null(B′1) =


−0.4376 −0.8991

0.8105 −0.3894

−0.3894 0.2000


then

H1 = [N1B1]
′ =


−0.5909 0.6515 −0.4758

−0.8067 −0.4758 0.3504

0 0.0061 0.0083


Transferring to the new co-ordinates

A1new = H1A1H
−1
1 =


0.7440 0.0180 1.9162

0.1155 0.9818 −1.3792

0.0007 −0.0012 0.8778

 =

 A11 A12

A21 A22


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B1new = H1B1 = 10−3


0

0

0.1427

 =

 0

Br1


The eigenvalues of A11 are at 0.7356 and 0.9903. To shift these eigenvalues to .5 and

.6 respectively, the following sliding surface is designed.

s1 = G1xk

where

G1 = [K1 1]H1

and K1 is the feedback gain matrix for placing the eignvalues of a system with matices

A11 and A12 at the desired locations.

K1 =
(
−0.7965 −1.5604

)
Therefore,

G1 =
(

1.7516 −0.0327 0.0089

)
The resultant feedback control for this sub-system is

u1 = −(G1B1)
−1G1(A1 − In1)x1k + σsgn(s1k) =

−104
(

155.0754 −121.4321 10.4135

)
x1k + σsgn(s1k)

Following a similar approach for the second sub-system,

N2 = null(B′4) =

 −0.2069

0.9784


H2 = [N2B4]

′ =

 −0.2069 0.9784

−0.0078 −0.0017


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Transferring to the new co-ordinates

A4new = H2A4H
−1
2 =

 0.9303 −9.8630

−0.0020 0.6738

 =

 A11 A12

A21 A22


B4new = H2B4 = 10−4

 0

0.6379

 =

 0

Br2


The eigenvalue of A11 is at 0.9303. To shift this eigenvalue to .55, the required K2 is

-0.0386. Consequently,

G2 = [K2 1]H2 =
(

0.0002 −0.0394

)
The resultant feedback control for this sub-system is

u2k = −(G2B4)
−1G2(A4 − In2)x2k + σsgn(s2k) = −

(
−8.9192 9.4422

)
x2k + σsgn(s2k)

Thus, the feedback of the complete system is given by

uk = −

 u1k 01×2

01×3 u2k

× T−1 =

 −136.7745 111.5125 7.3026 31.1710 3.4097

3.4112 3.1323 −5.3822 −8.9192 9.4422

 x1k

x2k

+ σ

 sgn(s1k)

sgn(s2k)


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3.3.2 Observations

Figure 3.4: Convergence of state variables with σ = 0

Figure 3.5: Control inputs
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Figure 3.6: Sliding surfaces

For a better convergence, the feedback gain σ can be increased. But, this action causes

chattering since there exists a trade-off between fast convergence and complete conver-

gence. As σ is increased, the system converges faster but the chattering phenomenon

escalates. The sign (sgn()) function can be replaced with the saturation (sat()) function

to alleviate this side effect as illustrated below.



34

Figure 3.7: Convergence of state variables with σ = 10 and using sign function

Figure 3.8: Convergence of state variables with σ = 10 and using saturation function
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3.3.3 Analysis of Results

In order to control the reaching time of the subsystems to the sliding surfaces, the

control input parameter available is σ. As σ is increased, the reaching time decreases.

The effect of σ on the reaching time i.e. the time within which the sliding functions

reach the neighborhood of zero (chosen here as -0.1 ≤ sk ≤ 0.1) is demonstrated as

follows.

Figure 3.9: Reaching time when σ = 10
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Figure 3.10: Reaching time when σ = 100

Figure 3.11: Reaching time when σ = 200
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Figure 3.12: Reaching time when σ = 300

This indicates that the best way to achieve minimum reaching time under any

conditions is by setting the feedback gain parameter σ to the maximum value feasible.
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3.3.4 Other Control Methods

In this section, some of the discrete-time sliding mode control techniques introduced in

Chapter 1 are applied to weakly-coupled linear systems.

1. Bartolini et al’s Control Algorithm

The control law used in this approach is

uk =


αsgn(ukeq) if |ukeq| > α

ukeq if |ukeq| ≤ α
(3.25)

This control method, used in sliding-mode control of sampled data systems, can also be

applied to weakly-coupled discrete-time linear systems. The first step in this process is

the decoupling of the weakly-coupled parts of the system. To decouple the subsystems,

we can either employ the traditional approach or novel decoupling techniques.

Traditional Approach

Consider the following discrete-time linear weakly coupled system in the tracking error

domain as described in Chapter 1

 e1k+1

e2k+1

 =

 A1 εA2

εA3 A4

 e1k

e2k

−
 B1 εB2

εB3 B4

 u1k

u2k

 (3.26)

The traditional method of decoupling this system is by setting ε = 0. The system then

reduces to the following two independent systems:

e1k+1 = A1e
1
k −B1u

1
k (3.27)

e2k+1 = A4e
2
k −B4u

2
k (3.28)
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where e1k ∈ Rn1 , e2k ∈ Rn2 , n1 + n2 = n, are state variables, uik ∈ Rmi , i = 1, 2, are

control inputs and ε is a small weak coupling parameter. It is assumed that matrices

A1, A4 are constant and O(1). In addition, magnitudes of all system eigenvalues are

O(1), that is, |λj | = O(1), j = 1, 2, . . . , n, which implies that the matrices A1, A4

are nonsingular with det{A1} = O(1) and det{A4} = O(1). It is also assumed that

matrices A1 and A4 have no common eigenvalues (see Assumption 2.1.1). A and B are

constant matrices of appropriate dimensions.

Once the two subsystems are decoupled, a sliding surface is designed for each. The

equivalent control input pertaining to each subsystem is calculated. The control law

for the complete system is then described using Bartolini et al’s definition.

Numerical Example:

To study the application of this method, let us consider the same distillation column

system introduced earlier. The system matrices in the tracking error domain (with

reference r(k) =0, ∀k) are as follows

A = −10−3



989.5 5.6382 0.2589 0.0125 0.0006

117.25 814.5 76.038 5.5526 0.37

8.768 123.87 750.2 107.96 11.245

0.9108 17.991 183.81 668.34 150.78

0.0179 0.3172 1.6974 13.298 985.19


=

 A1 εA2

εA3 A4



B = −10−3



0.0192 −0.0013

6.0733 −0.6192

8.2911 −13.339

9.1965 −18.442

0.7025 −1.4252


=

 B1 εB2

εB3 B4



Setting ε = 0, we get
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A0 =



−0.9895 −0.0056 −0.0003 0 0

−0.1173 0.8145 −0.0760 0 0

−0.0088 0.1239 −0.7502 0 0

0 0 0 −0.6683 −0.1508

0 0 0 −0.0133 −0.9852


=

 A1 0

0 A4



B0 =



0 0

−0.0061 0

−0.0083 0

0 0.0184

0 0.0014


=

 B1 0

0 B4



The resultant system is composed of two completely independent sub-systems and each

can be dealt with separately. Thus, two independent sliding surfaces are designed for

them as follows.

Consider the first sub-system. Let

N1 = null(B′1) =


−0.5909 −0.8067

0.6515 −0.4758

−0.4758 0.3504


then

H1 = [N1B1]
′ =


−0.5909 0.6515 −0.4758

−0.8067 −0.4758 0.3504

0 −0.0061 −0.0083


Transferring to the new co-ordinates,we have

A1new = H1A1H
−1
1 =


−0.7543 −0.0828 2.6916

−0.1679 −0.9318 −2.4260

0.0002 −0.0011 −0.8681

 =

 A11 A12

A21 A22



B1new = H1B1 = 10−3


0

0

0.1056

 =

 0

Br1


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The eigenvalues of A11 are at - 0.6955 and - 0.9906. The following sliding surface is

designed to shift these eigenvalues to - .5 and - .6 respectively.

g1k = C1e
1
k

where

C1 = [K1 −1]H1

and K1 is the feedback gain matrix for placing the eigenvalues of the system at the

desired locations.

K1 =
(

0.9165 1.2585

)
Therefore,

C1 =
(
−1.5569 −0.0078 −0.0034

)
The resultant equivalent control for this sub-system is defined by

u1eq(k) = C1Ae
1
k =

(
1.5399 0.0036 −0.0098

)
e1k

Following a similar approach for the second sub-system,

N2 = null(B′4) =

 −0.0771

0.9970


H2 = [N2B4]

′ =

 −0.0771 0.9970

0.0184 0.0014


Transferring to the new co-ordinates, we have

A4new = H2A4H
−1
2 =

 −0.9707 −1.9822

−0.0032 −0.6828

 =

 A11 A12

A21 A22


B4new = H2B4 = 10−3

 0

0.3421

 =

 0

Br2


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The eigenvalue of A11 is at - 0.9707. To shift this eigenvalue to -.55, the required K2 is

0.2122. Consequently,

C2 = [K2 −1]H2 =
(
−0.0348 0.2102

)
The resultant equivalent control for this sub-system is defined in

u2eq(k) = C2A2e
2
k =

(
−0.0205 −0.2018

)
e2k

Thus, the equivalent control input of the full-order system is given by

ueq(k) =

 u1eq(k) 01×2

01×3 u2eq(k)

 =

 1.5399 0.0036 −0.0098 0 0

0 0 0 0.0205 −0.2018

 e1k

e2k


The control law used in this approach is

uk =


αsgn(ueq(k)) if |ueq(k)| > α

ueq(k) if |ueq(k)| ≤ α
(3.29)

with α = 0.6.

To simulate this method for the above example, the following Simulink model is con-

structed.
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Figure 3.13: Bartolini’s method

The resultant pattern of the state variables is given by the following graph.

Figure 3.14: State tracking errors (with α = 0.6)
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From the above plot, it is clear that the traditional approach of setting the coupling

parameter equal to zero does not present favourable results due to the fact that the

coupling between the two systems is large that one system does not allow the other

to settle to zero and vice versa. Therefore, there arises a need to apply alternative

approaches to control the system.

Decoupling Approach

Another more comprehensive approach to decouple the subsystems would be to use the

decoupling techniques. Applying Gajić and Shen’s transformation on the above system,

we get the following tranformation matrix,

T =



1.0000 0 0 0.0090 0.1832

0 1.0000 0 −0.1972 0.1751

0 0 1.0000 0.5603 −0.3584

−0.4963 0.3213 −0.5716 0.6119 0.1702

−0.8301 −0.0282 0.0300 0.0149 0.8322


This matrix is used to transform the system as follows

An = TAT−1 =

 A1 0

0 A4

 =



−0.9895 −0.0057 −0.0012 0 0

−0.1172 −0.8128 −0.0581 0 0

−0.0090 −0.1289 −0.8014 0 0

0 0 0 −0.6186 −0.1821

0 0 0 −0.0129 −0.9855



Bn = TB

 B1 εB2

εB3 B4

 =



−0.0001 0.0004

−0.0052 −0.0031

−0.0107 0.0165

0 0.0078

−0.0004 0.0017


The resultant system has two decoupled sub-systems, which are weakly-coupled through

the input matrix. Thus, two independent sliding surfaces are designed by neglecting
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O(ε) coupling in the matrix B. Consider the first sub-system. Let

N1 = null(B′1) =


−0.4376 −0.8991

0.8105 −0.3894

−0.3894 0.2000


then

H1 = [N1B1]
′ =


−0.4376 0.8105 −0.3894

−0.8991 −0.3894 0.2000

−0.0001 −0.0052 −0.0107


Transferring to new co-ordinates

A1new = H1A1H
−1
1 =


−0.7440 −0.0180 1.9162

−0.1155 −0.9818 −1.3792

0.0007 −0.0012 −0.8778

 =

 A11 A12

A21 A22



B1new = H1B1 = 10−3


0

0

0.1427

 =

 0

Br1


The eigenvalues of A11 are at - 0.7356 and - 0.9903. To shift these eigenvalues to -.5

and -.6 respectively, the following sliding surface is designed.

s1 = C1ek

where

C1 = [K1 −1]H1

and K1 is the feedback gain matrix for placing the eigenvalues of a system with matices

A11 and A12 at the desired locations.

K1 =
(

0.7965 1.5604

)
Therefore,
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C1 =
(
−1.7516 0.0432 0.0126

)
The resultant feedback equivalent control input for this sub-system is

u1eq(k) = C1A1e
1
k =

(
1.7278 −0.0266 −0.0105

)
e1k

Following a similar approach for the second sub-system,

N2 = null(B′4) =

 −0.2069

0.9784


H2 = [N2B4]

′ =

 −0.2069 0.9784

0.0078 0.0017


Transferring to new co-ordinates

A4new = H2A4H
−1
2 =

 −0.9303 −9.8630

−0.0020 −0.6738

 =

 A11 A12

A21 A22


B4new = H2B4 = 10−4

 0

0.6379

 =

 0

Br2


The eigenvalues of A11 is at - 0.9303. To shift this eigenvalue to -.55, the required K2

is 0.0386. Consequently,

C2 = [K2 −1]H2 =
(
−0.0158 0.0361

)
The resultant feedback equivalent control input for this sub-system is

u2eq(k) = C2A4e
2
k = −

(
0.0093 −0.0327

)
x2k

Thus, the equivalent control input of the complete system is given by

ueq(k) =

 u1eq(k) 01×2

01×3 u2eq(k)

× T−1 =

 1.2737 −0.0536 −0.0097 −0.0207 −0.4061

−0.0270 −0.0036 0.0061 0.0088 −0.0325

 e1k

e2k


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The control law used in this approach is

uk =


αsgn(ukeq) if |ukeq| > α

ukeq if |ukeq| ≤ α
(3.30)

with α = 0.6.

The resultant convergence pattern of the state variables is given by

Figure 3.15: Tracking errors of state variables (with α = 0.6)

Comparing results presented in Figures 3.15 and 3.14 it is obvious that the trans-

formation approach outperforms the traditional approach. Note that in Figure 3.14

the plot does not converge to zero. This is due to the fact that the coupling between

the sub-systems had been neglected. Comparatively, the plot in Figure 3.15 completely

converges to zero due to the implementation of decoupling.

2. Relay Control Algorithm

The control law to be applied to achieve relay control (1.17) is

u(k) = δsgn(g(k))

Both the traditional and transformation decoupling approaches are studied for the

above introduced algortihm.
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Traditional Approach

Considering the same distillation column system used earlier. Setting ε = 0, in the

system matrices we get

A =



−0.9895 −0.0056 −0.0003 0 0

−0.1173 0.8145 −0.0760 0 0

−0.0088 0.1239 −0.7502 0 0

0 0 0 −0.6683 −0.1508

0 0 0 −0.0133 −0.9852


=

 A1 0

0 A4



B =



0 0

−0.0061 0

−0.0083 0

0 0.0184

0 0.0014


=

 B1 0

0 B4



The resultant system represents two completely independent sub-systems and each can

be dealt with separately. A sliding surface is constructed for each of the two sub-systems

and they are given by the following equations.

First sub-system:

g1k = C1e
1
k

where

C1 = [K1 −1]H1

and K1 is the feedback gain matrix used for placing the eigenvalues of the system at

the desired locations.

K1 =
(

0.9165 1.2585

)
Therefore,
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C1 =
(
−1.5569 −0.0078 −0.0034

)
Second sub-system: Similarly to the first sub-system take

g2k = C2e
2
k

where

C2 = [K2 −1]H2

Here K2 is 0.2122. Consequently,

C2 =
(
−0.0348 0.2102

)
The control law is given by

u(k) = δsgn(g(k))

To simulate this algorithm, the following simulink model is constructed.

Figure 3.16: Relay control algorithm

The resultant pattern of the state variables is given by the following graph.
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Figure 3.17: Behaviour of the state tracking errors with the feedback gain δ = 5

Decoupling Approach

Applying Gajić and Shen’s transformation on the above system, we get the following

decoupled system matrices

An =



−0.9895 −0.0057 −0.0012 0 0

−0.1172 −0.8128 −0.0581 0 0

−0.0090 −0.1289 −0.8014 0 0

0 0 0 −0.6186 −0.1821

0 0 0 −0.0129 −0.9855



Bn =



−0.0001 0.0004

−0.0052 −0.0031

−0.0107 0.0165

0 0.0078

−0.0004 0.0017


Two independent sliding surfaces are designed for the two sub-systems respectively.

This is done in the same manner as discussed in the previous algorithm.

Consider the first sub-system.
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g1 = C1ek

where

C1 = [K1 −1]H1

and K1 is the feedback gain matrix for placing the eigenvalues of a system with matices

A11 and A12 at the desired locations.

K1 =
(

0.7965 1.5604

)
Therefore,

C1 =
(
−1.7516 0.0432 0.0126

)
Following a similar approach for the second sub-system,

The required K2 is 0.0386. Consequently,

C2 = [K2 −1]H2 =
(
−0.0158 0.0361

)
The control law of this approach is

u(k) = δsgn(g(k))

The resultant convergence pattern of the state variable tracking errors is presented

in Figure 3.18
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Figure 3.18: Behaviour of state tracking errors with feedback gain δ = 5

In comparison to Utkin and Young’s control approach, this method appears to work

for both traditional and decoupling approaches since there appears no ueq term in the

control law. The major disadvantage though is chattering of the output and high speed

swtching of the control input as shown in Figure 3.19.

Figure 3.19: High speed switching of control inputs
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3. Gao’s Control Algorithm

This algorithm proposes the following control law

u(k) = [ueq(k)− (1− qT )g(k) + pT sgn(g(k))] (3.31)

The values of q and p are chosen as 0.8 and 0.1 respectively. This gives a quasi-sliding

mode domain (∆) of 0.5 as follows

2∆ = 2pT/(1− qT ) = 2× 0.1× 1/(1− 0.8× 1) = 1

The application of this control to weakly-coupled systems is done using both the tradi-

tional and decoupling tehniques in the following sections with a numerical example.

Using the results of the distillation column example studied earlier, we can obtain

ueq for both the traditional and transformation decoulpling approaches. The following

Simulink model is used to observe the behaviour of the state variables.

Figure 3.20: Gao’s control algorithm
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Traditional Approach

On setting the coupling parameter ε = 0 and designing sliding surfaces for each sub-

system, the following equivalent control was obtained to make the tracking errors stay

on the sliding surfaces.

ueq(k) =

 u1eq(k) 01×2

01×3 u2eq(k)

 =

 1.5399 0.0036 −0.0098 0 0

0 0 0 0.0205 −0.2018

 e1k

e2k


Substituting this in equation (3.31) and implementing it in the Simulink model the

following plot is obtained.

Figure 3.21: Behaviour of state variable tracking errors (with p =0.1 and q =.8)

It is observed that the states do not converge which implies the failure of the tradi-

tional approach of separating weakly coupled systems into their individual sub-units.

Decoupling Approach

Applying Gajić and Shen’s transformation on the distillation column system, two de-

coupled sub-systems are obtained which are coupled only by the control inputs. Sliding

surfaces are constructed for each sub-system and the equivalent control input is ob-

tained. Obtained ueq is given by



55

ueq(k) =

 u1eq(k) 01×2

01×3 u2eq(k)

× T−1 =

 1.2737 −0.0536 −0.0097 −0.0207 −0.4061

−0.0270 −0.0036 0.0061 0.0088 −0.0325

 e1k

e2k


Substituting this in (3.31) and implementing it in the simulink model the following plot

is obtained.

Figure 3.22: Convergence of state tracking errors (with p =0.1 and q =.8)

The above graph shows that this algorithm can be used for weakly-coupled systems

provided decoupling is done prior to designing the sliding surfaces.
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3.4 Composite Control

Composite control is the method of using two or more control approaches on a single

system. In the case of weakly-coupled systems this refers to the use of different control

algorithms for each subsystem. The above observations indicate that though the Utkin

and Young method is an effective control scheme for all applications, other methods

could be better suited for certain specific applications. For example, in an application

where there is a definite threshold on the magnitude of the input signal, the relay

control algorithm or Bartolini’s method would be better suited. In some cases,a certain

subsystem alone might have such a threshold in which case it would be best to use relay

control on that particular subsystem alone while applying Utkin’s method for the rest

of the system.

3.4.1 Example

In the distillation column control problem, let us assume that the control input to the

second subsystem is limited. Applying Utkin’s control to the first subsystem and relay

control to the second subsystem leads to the following results.

Figure 3.23: Convergence of state variables
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Figure 3.24: Control input of the first subsystem (U1)(Utkin & Young’s)

Figure 3.25: Control input of the second subsystem (U2)(relay control)
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Figure 3.26: Sliding surfaces

Note that, the state convergence in this case takes around twice the time of that of

a homogeneous Utkin and Young approach. But, the input requirement to the second

subsystem remains well below the set threshold ( ε =.5). By increasing this threshold

value, it is possible to achieve faster convergence.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

The study of sliding mode control for discrete-time weakly coupled systems is firstly in-

troduced in this thesis. It is shown that using the decoupling transformation of weakly

coupled systems, we can apply the sliding mode control technique to the individual sub-

systems. It is to be noted that fundamental choices like that of the reaching condition

have several implications and have to be tailored to suit the type of the system being

considered. Moreover, the Utkin and Young’s method of designing sliding surfaces for

continuos-time MIMO systems has been extended to discrete-time MIMO systems and

has been proven to work well. Several other methods of discrete-time sliding mode

control have been discussed and implemented. Though each method holds in its own

importance in different applications and practical conditions, it can be concluded that

the Utkin and Young’s method is the most generally effective method considering the

various trade-offs involved in these different techniques. Combining efficient decoupling

and sliding mode control techniques, this thesis provides a novel and proficient con-

trol methodology for discrete-time weakly coupled systems. Moreover, the composite

control approach provides for suitably adjusting the control based on presented con-

straints in any application. It also shows that the choice of control of one subsystem

is completely independent from another though they are part of the same full-order

system.
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4.2 Future Work

We can extend the results of this thesis to the systems composed of N weakly coupled

subsystems using the decoupling transformation for N weakly coupled subsystems. Also

the multi-step prediction based discrete-time sliding mode control algorithm of Lingfei

and Hongye (2008) can be applied on discrete-time weakly coupled systems to analyse

its benefits. Furthermore, the sliding mode of a deterministic weakly coupled system

could be developed with feedback of estimated states, and the optimal sliding Gaussian

control of the weakly coupled system could be found for stochastic systems.

There is also scope to apply different mathetical techniques to try and decouple both

the A and B matrices of a state-space weakly-coupled system at the same time so that

we can achieve both internal and external decoupling which will further enable us to

treat subsystems as completely separated systems.
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