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 A strategy in regenerative medicine involves the restitution of functional 

tissues using biomaterials pre-populated with transplanted cells such as human 

mesenchymal stem cells (hMSC).  However, current design and optimization of 

extracellular environments to controllably promote tissue-specific regeneration 

are guided by empiricism, and there is a lack of structure-activity relations 

underlying cell-biomaterial interactions.  This dissertation is focused on using 

high resolution confocal/multiphoton fluorescence imaging for developing 

quantifiable descriptors of cell-biomaterial interactions under complex 

microenvironments, including three-dimensional scaffolds, textural gradients of 



 

iii  

polymer substrates, and soluble biochemical factors that stimulate differentiation 

or cancerous transformation.   

In the first project (Chapter 2), we demonstrated the feasibility of using 

multiphoton imaging to quantitatively characterize microstructure of 3D 

biomaterial scaffolds and pseudo-3D cell morphology.  This approach was further 

expanded, in the second project (Chapter 3), to a multidimensional space of 

cellular and subcellular features (termed cell descriptors) derived from: 

morphology, reporter protein expression, localization and spatial organization of 

protein reporters.  Using spatially graded polymer blend substrates of both 

continuous roughness and discrete chemical compositions, we combined high 

throughput screening with high content analysis to identify both "global" and 

―high-content‖ structure-property relationships between cell adhesion and 

biomaterial properties such as polymer chemistry and topography.    

In the next project (Chapter 4), we developed a novel molecular screening 

tool based on the high content descriptors of a nuclear reporter, nuclear mitotic 

apparatus (NuMA).  Using high content imaging, data dimension reduction and 

machine learning techniques we mapped the nuclear features to different stem 

cell phenomena, specifically, stem cell lineage commitment to osteogenic versus 

adipogenic lineages.  We reported that NuMA based nuclear descriptors 

captured the early lineage commitment of hMSC vs self-renewal.  Moreover, a 

combined cytoskeletal and nuclear based ―composite‖ profiling was 

demonstrated to be a robust tool to parse out not only lineage commitment vs 

self-renewal but within different lineages (e.g. osteogenic vs adipogenic).  In the 
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final project (Chapter 5), nuclear feature based modeling was used to discern 

early subcellular changes during oncogenic transformation. The utility of this 

approach was demonstrated by parsing a library of synthetic polymer substrates 

based on their differential potential to modulate carcinogen-induced 

transformation of stem cells. 
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1 Introduction 

 

1.1 Regenerative Medicine and Tissue engineering  

Each year millions of people suffer from degenerative diseases which result 

in tissue loss and organ failure.  Tissue and organ failure, caused by diabetes, 

heart disease, bone disease, strokes, to cancer, is a growing problem for the 

aging population1,2.  The direct healthcare cost of organ replacement and 

assistance is more than $350 billion, including kidney dialysis, implanted 

replacement devices, and organ transplants.  Over decades, a tremendous 

amounts of effort has been put into the treatment of tissue/organ failure; 

however, currently there is no satisfactory approach available1,3-5.  Thus there is 

need for regenerative medicine that holds the promise of repairing damaged 

tissue and growing replacement tissues and whole organs.   

Regenerative medicine, sometimes termed tissue engineering, is an 

emerging interdisciplinary field with applications focusing on repair, replacement 

or regeneration of cells, tissue or organs to restore impaired function resulting 

from any cause of tissue/organ damage, including congenital defects, disease, 

injury, trauma and aging1-3,6.  The initial focus involved developing ex vivo 

creation of replacement tissues intended for subsequent in vivo implantation, for 

instance, skin substitutes and bone substitutes.  By the start of the 21st century 

the emphasis on tissue replacement with ex vivo manufactured products had 

evolved to include strategies to induce both in vivo constructive remodeling of 

cell-based and cell-free scaffold materials and tissue regeneration.  The 
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implementation of these strategies involves the use of several technological 

approaches in biology, material sciences, and related engineering principles that 

move it beyond traditional transplantation and replacement therapies.  These 

approaches may include, but not limited to, the use of soluble molecules, gene 

therapy, stem cell transplantation, nanotechnology, biomaterials and 

reprogramming of cells1,7-11.  These approaches allow for substantial advantages 

over current medicine, with the most significant impact being that regenerative 

medicine has the potential to provide a cure to failing or impaired tissues, thus 

eliminating the cost of recurring treatments for chronic disease and their 

subsequent complications.  A wide range of diseases can benefit from 

regenerative medicine, including diabetes (through regeneration of islet), heart 

disease (through regeneration of heart), bone disease (through bone 

regeneration), and even cancer (via replacing the removed cancerous tissue with 

externally grown healthy tissue).  

Despite the potential for regenerative medicine to develop revolutionary 

clinical therapies that will address unmet patient needs, the scientific 

advancement and clinical translation of regenerative medicine are still lagged 

behind the time line necessary for products to reach the patient bedside.  The 

total market on tissue engineering and regenerative medicine in 2008 was less 

than $2 billion, and it is expected to reach $3 billion in 2010 and $4.5 billion by 

2014, these statistics represents only a fraction of the potential market, with 

expectation of over $120 billion by 2013, and $500 billion by 2020 according to 

―2020-A new vision: a future for regenerative medicine‖ from a US NEWS 2010 
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September commentary.  There are many hurdles that limit the current 

development and commercialization of tissue engineering and regenerative 

medicine products.  These range from understanding the basic biology; to 

biomaterial scaffolds and matrix; to the enabling tools that will be necessary, and 

issues of scale-up, translation, and regulatory1.  Funding agencies and 

specialized inter-agency groups have identified critical priorities for the 

advancement of modern regenerative medicine and tissue engineering, such as:  

1) Cell sourcing and characterization.  

2) Clinical understanding of cells and their interaction with microenvironment. 

3) Immunologic understanding and control.  

4) Enabling technologies (biomarker development, advanced imaging modalities, 

computational modeling and system biology).   

5) Regulatory for translation and sustainable commercialization.   

Among these priorities, understanding and controlling the cells and their 

interactions with the microenvironment and the technologies that enable 

monitoring cell-microenvironment interactions are the most urgently needed.  

Since the discovery of stem cells with potential to differentiate into multiple 

distinct cell phenotypes, research on the biology of stem cells (e.g. human adult 

stem cells, progenitor cells from various tissues, embryonic stem cells and, more 

recently, induced pluripotent stem cells) became a mainstream research thrust in 

regenerative medicine strategy for tissue regeneration.   Stem cells interact 

actively with the microenvironment, also known as stem cell niche.  The stem cell 

niche parameters include pH, ionic potential, nutrients, hormones, cytokine, 
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oxygen concentration, mechanical forces, and substrate properties, all of which 

are in a state of dynamic equilibrium in temporal and spatial patterns unique to 

each tissue and organ12-15.  Therefore, an understanding of stem cell-niche 

interactions can guide the rational design of an appropriate niche for targeted 

tissue regeneration while eliminating undesirable behaviors such as formation of 

teratoma or uncontrolled cell proliferation (oncogenic transformation).  To 

achieve this goal, screening tools that enable efficient monitoring and potentially 

predict stem cell-niche interactions are needed.    

 

1.2 Bone Tissue Regeneration 

Bone tissue engineering is a heavily investigated area of regenerative 

medicine and tissue engineering.   Ten million individuals in the US are thought 

to already have bone-related diseases and almost 34 million more are estimated 

to have low bone mass17.  It is estimated that as many as 50,000 Americans 

suffer from osteogenesis imperfecta, a genetic disorder characterized by bones 

with a poor quantity or quality of collagen that results in weak bones18.  Patients 

with these diseases are susceptible to fracture and even more severe bone 

injury.  Bone cancers, primarily osteosarcoma, are generally treated with 

multimodal therapeutic interventions with the combination of adjuvant 

chemotherapy followed by complete surgical resection of the primary tumor and 

any metastasis sites19-22.  Moreover, there are other instances that call for bone 

replacement or regeneration such as joint replacement, spinal arthrodesis, 

maxillofacial surgery, and implant fixation17,23.   
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Early bone tissue engineering strategy used cell-free bio-inert materials to 

provide temporary support.  Up to now, three strategies were commonly applied 

in bone tissue engineering: 1) transplantation of cells, including stem cells, 

isolated from the patient‘s own or cultured from other sources; 2) the use of 

scaffold materials emitting biochemical signals to spur cells, especially stem 

cells, into action; 3) incorporation of both stem cells and biomaterials for 

accelerated bone regeneration processes  

 

1.2.1 Biomaterials for bone tissue engineering—need for rational design 

and optimization of biomaterials 

The earliest strategy for healing bone defects was transplantation of 

natural bone tissue using either autograft or xenograft.  However, there are 

limited sites from which bone may be harvested without loss of function24,25.  

Moreover, disease transmission and immunologic rejection are serious concerns 

for autograft and xenografts26.  Metals and ceramics have been widely used to fill 

a defect to provide internal fixation.  However, several ongoing problems of metal 

implants such as fatigue, corrosion, tissue infection and poor material-tissue 

interface keep these metal implants from further utility.  Degradable biomaterials 

for implants have caught intensive attention in the past thirty years.  This is due 

to the following reasons: 1) a degradable implant does not have to be removed 

surgically since they degrade in the human body over time, especially in 

instances that only require short-term functions of the devices; 2) the use of 

degradable biomaterials can circumvent long-term safety issue of permanently 
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implanted devices.  In general, there are two subdivisions of degradable 

biomaterials: natural and synthetic. 

 Natural degradable biomaterials are those obtained from natural sources, 

such as animal or plant sources. The most popular natural polymers are 

collagen, fibrinogen, chitosan, starch, hyaluronic acid (HA), and 

poly(hydroxybutyrate) 27-35. The main advantage of these natural materials is 

their low immunogenic potential, the potential bioactive behavior and the 

capability of interacting with host tissue, and chemical versatility. 

 Synthetic degradable biomaterials present chemical versatility and 

processability based on their structure and nature. The major advantage of 

synthetic biomaterials over ceramics is flexibility. The mechanical and 

degradation properties of a polymer can be modified by composition and 

processing conditions.  Molecular weight, hydrophobicity/hydrophilicity, 

crystallinity, material surface roughness and topography are variables that 

can be tailored for specific applications17,36-40.  

Although synthetic biodegradable polymers represent a promising 

alternative to current biomaterials for bone tissue engineering applications, the 

choice of available degradable biomaterials is still very limited.  poly(L-lactic acid) 

(PLLA) and poly(Lactic-glycolic acid) (PLGA) are the most widely used.  They are 

capable of delivering cells or growth factors to target tissue and they can be 

processed into three-dimensional scaffolds for tissue growth23,28,36,41.  They 

degrade by hydrolysis into nontoxic biocompatible components, but their weak 

mechanical properties may not meet the needs for load-bearing applications.  
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There are also a few other synthetic polymers investigated for bone tissue 

engineering, such as: poly(propylene fumarates) (PPE), poly(phosphazenes)21,42-

46. In addition, polycarbonates derived from the amino acid, L-tyrosine, also 

demonstrated great potential in bone tissue engineering applications47.   

The aforementioned polymers have demonstrated biocompatibility with 

relatively non-toxic and non-immunogenic degradation products and have a 

degradation rate comparable to the healing process of the bone wounds.  

However, a few issues have to be addressed for some of these degradable 

polymers, such as loss of mechanical strength and accumulation of acidic 

components during degradation process (in the case of PLGA).  This stimulates 

the need for material optimization for controllable bone tissue regeneration. 

Some researchers have investigated the processing of polymeric materials by 

chemically modifying the surface structure, mixing with other 

biomaterials/biomimetic materials such as hydroxyapatitie or beta-tricalcium 

phosphate(β-TCP)36,48-50, or physically rendering surface features such as 

surface topography and topology. However, the material design and optimization 

protocols in the biomaterials industry are largely based on ―trial-and-error‖, which 

makes the design of improved materials laborious and empirical.  This impedes 

the exploration of the biomaterials feature space (chemical, physical, mechanical, 

etc) to fulfill specific bone tissue engineering applications.   Therefore, there is a 

growing need for rationally designed and optimized biomaterials to promote 

desired bone regeneration.   
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1.2.2 Cell Source for Bone Tissue Regeneration 

Apart from cell-free biomaterial scaffold approach, another strategy for 

bone regeneration is transplantation of cells.  More recently, a combined strategy 

of cell transplantation and biomaterial scaffold has been proposed, which allows 

culturing osteogenic cells within three-dimensional biomaterial scaffolds under 

conditions supporting bone formation.   Ideally, the osteogenic cell source should 

have the desired properties such as easy expandability, non-immunogenic, non-

transplant rejection and having a protein expression pattern similar to the tissue 

to be regenerated.  Osteoblasts and mesenchymal stem cells (from bone 

marrow, adipose tissue or umbilical cord blood) are the most commonly used cell 

source for the regeneration of bone tissues3,4,51-65.   

Osteoblasts are the immature bone cells responsible for bone matrix 

synthesis and subsequent mineralization.  They are descendent from 

osteoprogenitor cells (e.g.mesenchymal stem cells).  Autologous osteoblasts 

have been used for bone regeneration because of their non-immunogenicity. 

However, osteoblast cell transplantation based strategy is limited by low 

extraction efficiency from tissue and low expansion rates.   

The use of mesenchymal stem cells for bone regeneration can be dated 

as early as the 1960s, when Petrakova et al. showed that implanting pieces of 

bone marrow under the renal capsule generated an osseous tissue66.  In 1987, 

Friedenstein et al. showed that cells existing in bone marrow can differentiate to 

different cell types, including osteoblasts67.  In 1991 and 1994, Caplan named 

them ―mesenchymal stem cells (MSC)‖ and described that these cells, when 
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placed in the adequate culture conditions, could be differentiated into cells with 

mesenchymal origin and give rise to bone, cartilage, fat, muscle skin, tendon and 

other tissues (Figure 1.1)68,69.  This finding spurred a spate of different studies 

using MSC, in combination with biomaterials, for bone tissue engineering studies.  

Temenoff et al. used an injectable and biodegradable polymer, oligo [poly 

(ethylene glycol) fumarate], as a cell carrier70.  Rat bone marrow stromal cells 

were encapsulated within the hydrogel and cultured with osteogenic supplements 

and osteogenic differentiation was confirmed by matrix mineralization in the 

crosslinked hydrogels.  Boo et al. reported rapid bone formation by rat bone 

marrow stromal cells cultured on porous HA scaffolds with osteogenic 

supplements71.  They demonstrated the enhanced bone formation rate in these 

implants compared with that of fresh bone marrow or undifferentiated MSC.  

Mikos and his colleagues studied factors that can influence the osteoblastic 

differentiation of marrow stromal cells when cultivated on three-dimensional 

tissue engineering scaffolds43,72,73.  They used a flow perfusion bioreactor to 

investigate hMSC cell differentiation and proliferation behavior in degradable 

polymer scaffolds.  The bioreactor eliminates mass transport limitations to the 

scaffold interior and provides mechanical stimulation to the seeded cells through 

fluid shear.  Their studies reported that scaffold properties such as pore size 

impact cell differentiation, especially in flow perfusion culture.  In addition, the 

bone-like extracellular matrix created by the in vitro culture of marrow stromal 

cells on porous scaffolds creates an osteoinductive environment for the 

differentiation of other marrow stromal cell populations.  
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Figure 1.1:   Multilineage differentiation potential of mesenchymal stem 

cells (MSC).   

MSC are able to undergo extensive self-renewal prior to differentiation into a 

range of mesenchymal tissue and cell types, including bone, cartilage, muscle, 

tendon, and adipose.  Evidence has suggested they also have the ability to 

differentiate into non-mesenchymal tissues including liver, heart, skin and 

nervous tissues. 

 

Although the potential therapeutic aspects of MSC, especially for bone 

regeneration, continue to be well-researched, the possible hazards of MSC, in 

particular their oncogenic capacity are poorly understood.  The risk for malignant 

transformation exists in each stage of the clinical lifecycle of MSC, including 

malignant transformation during in vitro expansion, during insertion of potentially 

therapeutic transgenes, and finally in vivo via interactions with surrounding 

microenvironment and tumor stroma.   



11 

 

    Several reports of long-term cultures of bone marrow derived MSC and 

adipose derived MSC (≥5 months, ≥ 30 doublings) indicated changes in cell cycle 

kinetics and the possibility of abnormal karyotype development, leading to 

malignant cell transformation33,74-79.  Moreover, biomaterials, not only metal (e.g. 

titanium, nickel chromium, cobalt, vanadium) but also polymers (e.g. 

polyethylene, aliphatic polyurethane, polyvinyl chloride, polymethylmethacrylate) 

were documented to induce abnormal cell transformation80-84.  The mechanism 

for the stem cell transformation is not yet clear.  However, numerous studies 

pointed out that spontaneous transformation and biomaterials induced 

transformation shared some of the molecular pathways, such as reactive oxygen 

species (ROS) mediated cell transformation mechanisms (Figure 1.2)82,85,86.  It is 

clear that future studies need examination of the interaction and crosstalk of 

multiple pathways, which can further unravel the mechanism of cell 

transformation process at a systemic level.  Taken together, these studies 

identified some limitations of stem cell ex vivo manipulation, which should be 

taken into consideration and explored further to ensure the biosafety of 

mesenchymal stem cells before clinical application.   
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Figure 1.2: Some ROS mediated pathways for cell oncogenic 

transformation.  

Certain growth factor receptors for EGF, VEGF, PDGF, Ras signaling, mitogen-

activated protein kinases, nuclear transcription factors NF-kB, AP-1, p53, NFAT, 

and HIF-1 can contribute to cell oncogenic transformation by both ROS-

dependent or ROS-independent mechanisms.  Figure used by permission from 

Elsevier (Liscense number 2554441411943).   

 
Additionally, the knowledge regarding the mechanisms and pathways that 

lead to the final functional differentiation in the context of biomaterial scaffolds is 

still scarce, thus necessitating the need for building correlations between the 

phenotypes of cultured cells and their potential for functional differentiation.  

Moreover, further investigations are also needed to understand the oncogenic 
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and tumor-supporting potential of MSC, especially within the context of cancer 

treatment.  

Finally, characterization methods employed in laboratories and clinical trials 

to date either lack long term follow-up or adequate screening potential to detect 

the onset of transformation, thus calling for high content assays to efficiently 

identify the early events preceding state change of stem cells, which will be 

discussed in the next section. 

 

1.3 Need for High Throughput / High Content Screening to Evaluate 

Cellular Response to Biomaterials and Various Extracellular Stimuli 

Regenerative medicine, in the future, will require customizable 

cell/biomaterial products to meet the needs of specific individuals.  The 

advancement of future regenerative medicine makes it necessary for scientists to 

investigate fundamental cellular-extracellular systems relationships and develop 

techniques for controllable cellular production and preservation.  Therefore, the 

implementation of future regenerative medicine relies largely on the elucidation of 

stem cell responses to extracellular stimuli, including but not limited to 

biomaterial and soluble factors.         

Biomaterials differing in chemical properties, post-processing physical 

properties, and geometries have been shown to cause various changes in 

cellular processes by way of alterations in protein adsorption, cell adhesion and 

spreading, and extracellular matrix production87,88.  Parameters such as 

hydrophobicity, physicomechanics, architecture, and protein permissivity 
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represent powerful determinants of both cell function and phenotypic 

expression47,89-91.  Most of the studies to date depend on traditional 

characterization assays and a limited number of material conditions.  Moreover, 

some assays are qualitative and fail to capture minute changes of cellular 

responses.  The limitation of the biomaterial property space available for 

traditional characterization represents a significant shortcoming as interesting 

cellular behaviors elicited in response to incremental but unselected experimental 

conditions may be overlooked.  

Current trends in polymeric biomaterials discovery have evolved from the 

synthesis of a few potential materials to combinatorial design of biomaterial 

libraries92-95.  These libraries permit the exploration of a large "property" space 

while simultaneously promoting the development of detailed structure-function 

relationships relating material parameters to cellular actions96-98.  Advances in 

instrumentation for the synthesis and assembly of large polymer libraries have 

expanded the size and complexity of available material arrays99.  The advantage 

of such sizable material test sets lies in the more thorough examination of cell-

material interactions that would have otherwise gone unnoticed when 

investigating smaller test sets.  However, the full impact of combinatorial 

biomaterial libraries will be realized only with the development of methods that 

are able to evaluate material performance on the scale of the synthesis93. 

Unfortunately, traditional approaches to the biological screening of materials are 

not amenable to the rapid evaluation on biomaterials of large sets and therefore, 

necessitate the development of novel screening approaches that can 
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quantitatively profile multiple cellular responses in one single experimental 

substrate.   

One technique that garnered significant interests is the creation of single 

substrates with spatially resolved chemistries, roughness, and/or 

microstructures100-103.  Single substrate approaches allowed for the assay of 

cellular response to materials of differing properties with equivalent processing 

conditions and faster data acquisition, thereby providing lower experimental 

error104,105.  Additionally, studies which varied both chemistry and temperature 

and utilize gradient-based technology permitted the simultaneous study of 

continuous ranges of chemical and topographical properties98,102,106,107.  These 

methods were potentially useful as they mapped the near complete experimental 

space of binary blends with roughness.  The matrix of chemistries and surface 

physical properties further facilitated the identification of potentially new 

structure-function relationships that could help biomaterial scientists to rationally 

design materials to meet specific applications. 

On the other hand, to establish cell-material relationships, it is necessary to 

isolate individual material parameters and their effects on specific responses.  

For example, previously, Bailey et al. utilized discrete binary blends of two 

tyrosine-derived polycarbonates, poly(DTE carbonate) and  poly(DTO 

carbonate), respectively, and used phase separation-induced topography to 

determine how changes in material surface energy and roughness affect cells 

grown on these surfaces100.  Zapata et al. employed continuous temperature 

gradients to assess osteoblast response to demixed polymer blends102.  These 
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studies demonstrated that surface microstructure and topography strongly 

influenced cell attachment, spreading, and proliferation.  One limitation 

highlighted by the authors in these studies was that, because the topographical 

features of the surface were dependent on composition and temperature, 

universal structure-function correlations regarding roughness, surface chemistry, 

and cell responses could not be readily ascertained.  

Rapid screening of cell outcomes, which was generally implemented 

through detecting fluorescence under microscopes with low magnification 

objectives, may not be sufficient to denote intracellular response of cells to 

material cues due to the inherent low resolution of this methodology.  The spatial 

temporal changes inside the cell as a result to biomaterial cues cannot be 

discerned simply through rapid screening, thus calling for high content 

approaches where capturing multiple intracellular responses is possible.  A 

desirable high content screening system should enable high-resolution 

subcellular imaging to collect quantitative readouts from complex biological 

systems in addition to low-resolution high throughput screening.   

The concept of ―high content imaging/screening (HCS)‖ was originally 

introduced to meet the need for automation of information-rich cellular assays in 

the pharmaceutical industry and is now also closely associated with the 

implementation of large-scale cell biology research.  HCS was first utilized to 

characterize preclinical drug candidates in pharmaceutical industry and is now 

integrated into all stages of contemporary drug discovery processes, including 

primary compound screening, post-primary screening capable of supporting 
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structure–activity relationships, and early evaluation of absorption, distribution, 

metabolism and excretion/toxicity properties and complex multivariate drug 

profiling108-110.  Moreover, the growing availability of libraries of compounds and 

small molecules spurred widespread interests in applications to study biology 

systems, e.g. stem cell biology110-112.  HCS was utilized, in combination with 

chemical genetics, to define protein functions and to disect signaling 

pathways109.  More recently, combined with genome-wide RNA interference 

(RNAi) technology, HCS has allowed for probing gene function in mammalian cell 

culture systematically113.   

Despite these dramatic advances of HCS, a number of significant 

challenges remain to be addressed with regards to the utility of HCS to more 

biology- and disease-relevant cell systems.  These challenges include the 

development of informative reagents/reporters to measure and manipulate 

cellular events, and the seamless integration of imaging modalities with data 

management and informatics109,110,112,114,115.   

The most widely adopted imaging modalities in high content imaging 

system are wide field fluorescence microscopy and confocal microscopy.  

Conventional fluorescence microscopy enables live cell imaging and can provide 

image resolution as low as 250nm. It is generally employed in intensity based 

screening, such as multi-protein markers expression.  However, conventional 

epifluorescence microscopy cannot provide satisfactory high quality images for 

cell morphology, texture and protein localization based screening.  This is due to 

the fact that images acquired from conventional optical microscopy are diffraction 
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limited.  Moreover, taking surface images of 3D objects using conventional 

optical microcopy can often cause some degree of localized blurring of sections 

of images. Therefore, supplementary mathematical deconvolution processes are 

needed to retrieve high resolution images116-118.  Confocal imaging modalities, 

including laser scanning microscopy (CLSM) and multiphoton microscopy 

(MPM), enable high resolution live cell imaging with 3D sectioning capabilities 

and are now widely used in the imaging of biological specimens, biomaterials, 

non-biological samples. They are potential candidates for high content imaging to 

investigate spatial temporal intracellular response to material features90,117,119-123.   

On the other hand, morphometric analysis of cellular response on 

biomaterial substrates differing in chemistry was an important aspect of the 

biological characterization of materials, but lacked reproducible, quantifiable 

results and largely remains in the domain of qualitative observations90,103,123-127.  

In the past decade, ―high content‖ cell morphological based screening 

approaches were developed for the screening of potential pharmaceuticals and 

biologically active small molecules82,111,128-130.  Recently, we published a 

technique whereby high-content CLSM/MPM imaging of cell morphology yielded 

a large number of quantifiable descriptors that can be used to potentially discern 

combinatorial variations in substrate composition47.  

One question raised from the high content screening is that what should be 

the appropriate molecule(s) to probe?  There is no definite answer to this 

question yet. It varies and depends largely on applications.  Generally, cell 

spreading, adhesion, proliferation, differentiation and transformation can be 
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probed through the use of a variety of reporters including whole cell reporter, 

subcellular reporters (e.g. cytoskeletal proteins, focal adhesion proteins), 

signaling molecules (protein farnesylation, Rac, Rho), and even cell nuclear 

proteins.  What is known is cellular outcomes result from the "outside-in" 

signaling emanating from the extracellular microenvironment to cellular functions 

(differentiation, transformation, etc.), which will be discussed in the next section.  

 

1.4 Subcellular Components as Signatures of Cellular Response 

An increasing number of investigations have demonstrated that the state 

change of stem cells (self-renewal, differentiation and transformation) is the 

result of selective expression and suppression of genes, accompanied by 

acquisition of defined cell morphology and subcellular architecture (e.g. spatial 

organization of key cytoskeleton proteins), and functional/phenotypical marker 

expression131-142.   Therefore, genes, proteins, and even larger scale markers 

can all be the candidate for screening purposes.    

Previous studies showed that gene expression profiles associated with a 

particular cell type during state change did not only include genes primarily or 

solely expressed in that tissue.  Among differentiation-specific genes were genes 

responsible for the changes in cellular morphology (e.g. genes coding for 

adhesion molecules and cytoskeleton proteins) necessary for tissue 

differentiation143,144.  It was also found that a number of genes that are 

transcriptionally altered fell into six categories including: cell and tissue structure 

dynamics, cell cycle and apoptosis, intercellular communication, metabolism and 
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regulation of gene expression.  In some of these categories, especially the 

categories of cell and tissue structure genes (e.g. integrins, keratins, and actin), 

gene expression changes were correlated to morphological modification.  Thus, 

the state change of stem cells required the regulation of genes necessary to 

achieve a particular type of morphology, as well as genes necessary to assure 

the specific functions of that cell phenotype.  One interesting finding during these 

studies was that precursor cells appeared to already contain uniquely expressed 

genes, suggesting that signaling pathways that were important for the 

differentiation of these particular cells are in place early-on64,134,143,145.   

At the protein level, a continuous link between cell adhesion complexes 

responsible for the cell's interaction with extracellular components, the 

cytoskeleton and the nuclear structure were extensively studied90,126,135,138,139,146-

151.  Cells physically bind to the extra cellular matrix (ECM) by making contact 

with specific ECM molecules via cell membrane receptors (Figure 1.3a). ECM 

induces changes in cellular morphology and signaling resulting from soluble 

molecules. The ECM is composed of a meshwork of fibrillar molecules such as 

collagens, elastin, and glycoproteins (e.g. fibronectin, laminin, and hydrophilic 

proteoglycans). Cell-ECM adhesion elicits intracellular signaling that can be 

divided into biochemical signal transduction (via phosphorylation cascades and 

protein translocation to the cell nucleus) and mechano-transduction (via 

cytoskeleton rearrangement)152,153.  Mechano-transduction is also activated upon 

ECM-induced modification of cell shape, in which case actin is considered to be 

an essential part.  Mechanical forces are transmitted to the cell nucleus via 
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envelope proteins such as nesprin that couple the cytoskeleton and chromatin.  

By interacting with different cytoskeleton networks, these nuclear envelope 

protein complexes link the ECM, the cytoskeleton and the cell nucleus148,149.  A 

nuclear protein, emrin also exists in the mechano-transduction between nucleus 

compartment and cytoskeleton.  It bridges the actin cytoskeleton and the nuclear 

actin polymer via the lamina, made of intermediate filament proteins lamin A/C 

and lamin B, thus providing tension forces within the cell nucleus152,154-157.   

Some other studies also showed that nuclear lamina contributed to chromatin 

organization; as a result, some regions were associated with transcriptional 

silencing state.  
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Figure 1.3: Cellular responses to extracellular stimuli.   

A) Schematic of cellular response to extracellular stimuli.  Cell membrane 

receptors recognize small molecules from extracellular matrix, and then pass the 

information into cell nucleus through various signaling events.  B) Cell nuclear 

structure and organization of different cell phenotypes.   
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The study of the inner organization of the cell nucleus is emerging as a 

critical avenue to further understanding of controllable stem cell differentiation 

and transformation.  Many of the compartments of the cell nucleus (e.g. nucleoli, 

the higher organization of chromatin into heterochromatin and euchromatin 

regions, non-chromatin domains) have been identified to be important in stem 

cell state change, especially differentiation156,158-164.  Some of the nuclear 

organizational features of the cell nucleus were observed in the nuclei of non-

differentiating cells, like the concentration of heterochromatin at the nuclear 

periphery and the presence of transcription permissive areas around splicing 

factor speckles (Figure 1.3b).  However, a specific organization of the cell 

nucleus, including chromatin and nonchromatin regions, was also observed upon 

phenotypically normal differentiation (Figure 1.3b).  The major characteristics 

reported so far, regardless of tissue phenotype, were the concentration of 

heterochromatin domains around a central nucleolus and at the nuclear 

periphery, DNAase sensitive chromatin at the nuclear periphery, and the 

formation of large and fewer splicing factor speckles compared to non-

differentiated cells148,158,164.  Sophie and her group members accessed the 

impact of nuclear organization on differentiation by directly altering elements that 

contribute to such nuclear organization in differentiated cells131,165-167.  They 

demonstrated that nuclear organization is important for the maintenance of 

breast acinar differentiation by altering directly the organization of a nuclear 

protein, nuclear mitotic apparatus (NuMA), using peptides and antibodies 

targeted against this protein.  NuMA is a cell nuclear matrix protein first described 
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to have an exclusively nuclear localization in interphase cells but to associate 

with the spindle poles during mitosis.  Moreover, the cell differentiation 

phenotype and oncogenic status can be captured through the NuMA protein 

expression and spatial organization features.  Altering NuMA organization in 

breast acinar cells led to the loss of differentiation capability. Likewise, when 

NuMA was silenced during differentiation, glandular differentiation was not 

achieved.  The action on NuMA was accompanied with drastic changes in 

chromatin structure, as shown by the redistribution of histone acetylation and 

histone methylation patterns, prior to phenotypic changes. 

As of now, extracellular stimuli, subcellar morphology and organization, and 

transcription factors, which all contribute to the modulation of gene expression in 

the cell nucleus, are likely to converge on the nuclear mechanisms, making study 

of the inner organization of the cell nucleus critical for the understanding of gene 

expression control during stem cell differentiation. The factors that trigger nuclear 

reorganization have yet to be fully indentified.  Further investigations are needed 

to fully understand how extracellular stimuli (e.g. mechanical, biological and 

biochemical stimuli) converge on the cell nucleus and integrate to alter stem cell 

response (differentiation, transformation), although it is difficult to identify specific 

factors that trigger the changes. For instance, in MSC differentiation, a number of 

molecules that participate in biochemical signaling cascades can be activated 

upon mechanical stress such as Rho-GTPases altering the actin and 

intermediate filament cytoskeleton networks via activation of secondary 

messengers that additionally modify a variety of signaling pathways.  However, 
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the ability to quantitatively capture nuclear features during stem cell state change 

can bridge the understanding of the contribution of nuclear organization to 

differentiation and further help delineating correlations of epigenetic control of 

gene expression and stem cell differentiation.   

 

1.5 Hypothesis and Thesis Aims 

The motivation of this dissertation is to address some of the critical priorities 

in the advancement of regenerative medicine, such as the need to rationally 

design and optimize the stem cell-niche/biomaterial interactions behavior and 

lack of rapid quantitative bio-relevant evaluation of stem cell responses (self-

renewal, differentiation, transformation).  In this thesis, it is proposed that a high 

content cell imaging based composite profiling platform enables quantitative 

evaluation of biomaterial scaffolds, characterization and prediction of stem cell 

fates in response to soluble factors and biomaterials.  This high content imaging 

based platform will characterize cellular response to combinatorially designed 

biomaterials and soluble factors that are involved in the modulation of cell 

behavior.  This profiling platform captures not only quantitative features of 3D 

biomaterial scaffolds, but it captures the subcellular features from the whole cell, 

including the cytoskeleton and the cell nucleus/nuclear proteins.  Furthermore, it 

identifies the correlation between these subcellular features to cell behavior to 

various extracellular stimuli.   

It was observed that some organizational features of cells, especially in the 

cell nucleus are representative of stem cells undergoing differentiation or 
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transformation.  Based on these observations, it has been proposed that the 

specific nuclear organization observed in differentiated cells might be important 

to lock gene expression in place by maintaining genes in a silent state, enabling 

the expression of a small number of genes necessary for state change. The 

overall hypothesis of this study is that subcellular features of cells provide a 

composite signature that serves as an early marker of stem cell phenotypic 

changes such as lineage commitment, transformation.  In this dissertation, the 

major interest is human mesenchymal stem cell differentiation and 

transformation.  This dissertation will develop cell descriptors for high content 

profiling stem cell responses and demonstrate the utility of this platform through 

the following three aims:   

1. To develop a confocal/multiphoton imaging based characterization 

platform to identify microstructure descriptors of 3D biomateirial scaffolds.  

2. To develop a high content, quantitative, cell-descriptor-based screening 

methodology to evaluation cell responses and applications to 

combinatorially designed chemistry and roughness gradient substrates.   

3. To extend the ―high content‖ imaging based profiling platform to identify 

long term stem cell differentiation and transformation.  Further 

determination of early predictability of the nuclear descriptors of stem cells 

in response to various extracellular stimuli.  
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2 Development of Quantitative Platform for Screening Cellular Response 

in 3-D Scaffolds  

Note: This chapter is reproduced from the following publication: 

Er Liu, Matthew D. Treiser, Patrick A. Johnson, Parth Patel, Aarti Rege, 

Joachim Kohn, and Prabhas V. Moghe. 2007.  Quantitative biorelevant 

profiling of material microstructure within 3-D porous scaffolds via multiphoton 

fluorescence microscopy. 2007.  J Biomed Mater Res B Appl Biomater. 

82(2):284-97.  ©2007 Wiley Periodicals, Inc.  Used by permission. 

 

2.1 Introduction 

Numerous studies document the role of three-dimensional porous polymer 

scaffolds for tissue engineering by serving as substrates for induction of cell 

activation, preservation of tissue density volume, provision of temporary 

mechanical function, and organization of new tissues168-173. The morphology and 

micro-architecture of a scaffold, once implanted, can influence the rate of cell 

growth, migration, morphogenesis, and transport of nutrients, which can alter the 

overall tissue functions174.  In the past two decades several specialized 

techniques have been developed to produce hierarchical 3-D scaffolds to attain 

desired mechanical function and mass transport properties.  These techniques 

include solvent casting/particulate leaching175, gas foaming176, fiber meshes/fiber 

bonding177, phase separation178, melt molding179, emulsion freeze drying/freeze 

drying180, solution casting181, computational topology design182, and solid free-

form fabrication171.  Consequently, there is an increasing need for 
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complementary techniques to visualize and quantify local scaffold microstructure 

and to correlate these to cell growth, attachment, and migration within the 

scaffold.  While the structure and functionality of 2-D substrates or surfaces of 3-

D scaffolds continue to be extensively studied183-190, robust and efficient imaging 

techniques for mapping cell-material interactions within 3-D scaffolds non-

invasively are limited. 

The conventional methods for the indirect characterization of scaffold 

microstructure are mercury intrusion porosimetry (MIP), while direct imaging 

approaches include scanning electron microscopy (SEM), light microscopy & 

confocal microscopy, micro-computer tomography (MicroCT) and optical 

coherence microscopy191-193.  Scanning electron microscopy can provide surface 

topography of the scaffolds on the scale of few nanometers190.  Longitudinal and 

transverse sections can be easily visualized to reveal the microstructure of the 

scaffold189,194,195.  There are also methodologies to render 3D images acquired 

from SEM196; however, it is neither amenable to real-time imaging nor 

quantitative analysis197.  Contrastly, the real-time quantitative microstructural 

study of biodegradable tissue analog scaffolds was accomplished using direct 

imaging based on confocal laser scanning microscopy (CLSM)198,multiphoton 

microscopy199,  micro-computerized tomography (MicroCT)184,200-204 and optical 

coherence microscopy (OCM)191-193.   

None of the above reviewed techniques alone can satisfactorily provide 

non-invasive three-dimensional sections of images with a resolution of less than 

one micrometer.  Typically this requires characterization based on two or more 
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techniques.  For example, a combination of SEM and mercury intrusion 

porosimetry was used to characterize porous micro-particles195 and 

scaffolds189,205.  MicroCT was used to study the micro-architectural and 

mechanical characterization of oriented porous polymer scaffolds206.   An 

interesting study that combined multiple techniques of SEM, MIP, CLSM and 

MicroCT was applied to evaluate the microstructure of PLGA scaffolds using 

carbon dioxide as a solvent194. Cartmell et al. utilized microCT and histological 

staining to perform quantitative analysis of mineralization within 3D scaffolds in 

vitro207.  Similarly, OCM was utilized for characterizing tissue engineering 

medical products191-193,208.  OCM, as a confocal technique enhanced by 

interferometric rejection of out-of-plane photon scattering, can image composites 

with a thickness of < 1 cm with high spatial resolution (1mm).  It‘s a good tool for 

cell/scaffold structure imaging; however, cell function imaging may not be 

accessible unless combined with fluorescence CLSM imaging.  Confocal 

microscopy has been utilized in situ for the assessment of cell viability and 3D 

cellular morphology within biodegradable polymer matrices188,209,210.  CLSM is 

now widely used in the imaging of biological specimens, biomaterials, as well as 

non-biological samples211-213.  Although CLSM is an attractive imaging modality it 

has several significant draw backs including: photobleaching and phototoxicity of 

the image probe, fast signal attenuation rate with regard to penetration depth of 

the sample214-217, and the large degree of internal scattering, particularly within 

three-dimensional tissue/material specimens.    
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Multiphoton microscopy is regarded as an alternative to CLSM in visualizing 

tissue explants and living biological samples because of the deeper optical 

penetration (2-3x of confocal microscopy) with less photobleaching and 

phototoxicity, enhanced spectral accessibility and flexibility218-220.  The term MPM 

encompasses two photon excitation microscopy, three photon excitation 

microscopy, second harmonic generation multiphoton microscopy, and third 

harmonic generation multiphoton microscopy221,222; all based on nonlinear 

excitation to generate fluorescence limited within a thin raster-scanned plane.  

With the advent of ultrafast (femto-second pulsed) lasers, such as Ti:Sapphire 

laser and Nd:YLF laser223,224, multiphoton microscopy (MPM) has become a 

viable tool to monitor complex biological samples.   

The present study focuses on comparing MPM with traditional CLSM/SEM 

technologies for the characterization of the macro and microstructure of porous, 

biodegradable polymer scaffolds and cell-scaffold interactions.  In this study, we 

utilized two new tyrosine-derived polycarbonates (Figure 2.1) for scaffold 

fabrication.  These two polymers, referred to as poly(DTE carbonate) and 

poly(DTO carbonate) form immiscible, phase-separated blends225,226.   

Depending on the blend composition, cells growing on these scaffolds are 

exposed not only to different surface compositions, but also to changes in the 

scaffold's pore architecture.  These variations provide a challenging test system 

for the imaging of cell-scaffold interactions.  Although the polymers are weakly 

auto-fluorescent, we found that contrast and image quality can be significantly 

enhanced by doping the polymer matrix with a minute quantity of a hydrophobic 
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fluorescent marker prior to scaffold fabrication.  The resulting fluorescent 

scaffolds greatly enhanced the quantitative analysis of scaffold architecture.  In 

addition, cell organization, morphology, and cytoskeleton distribution were 

imaged locally within a scaffold using genetically engineered fluororeporter cells. 

These studies demonstrate the unique advantages as well as the viability of 

MPM as an imaging modality for the non-invasive, real-time profiling of cell-

substrate characterization in 3-D constructs in comparison to conventional 

imaging techniques (e.g. CLSM and SEM).  

 

2.2 Materials and Methods 

2.2.1 Polymeric Scaffolds 

Biomaterials used in this study were from the family of tyrosine-derived 

polycarbonates synthesized utilizing previous published procedures97. Polymers 

derived from desaminotyrosyl tyrosine alkyl ester monomers were named 

poly(DTR carbonate)s with R = ethyl (E) or octyl (O).  Copolymers of x mole% 

desaminotyrosyl tyrosine alkyl ester with y mole% desaminotyrosyl tyrosine with 

a free acid (DT) and z% Poly(ethylene glycol) (PEG) blocks of 1000 units were 

identified as poly(x%DTE-co-y%DT-co-z%-PEG1000 carbonate).  In this study, five 

types of scaffolds were fabricated, including scaffolds made of pure poly(DTE 

carbonate) and poly(DTO carbonate) (see chemical structure in Figure 2.1), as 

well as scaffolds made of different poly(DTE carbonate)/poly(DTO carbonate) 

weight ratio blends (70%:30%), (50:50%), and (30%:70%).  The analysis of the 

polymer composition and surface characterization were performed using 
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established procedures.  Porous polymer sponges were fabricated by a 

combination of liquid-liquid phase separation, freeze drying and particulate 

leaching.  The polymer solution was prepared by mixing 300 mg of polymer, 300 

uL of nanopure water, 3 mL of 1,4 Dioxane (Sigma-Aldrich Inc., anhydrous, 

99.8%) and 10 uL of Texas Red indicator dye (Sigma Genosys:GE-TXRD100, 

Fisher Scientific. USA) in a vortex mixer.  The vial was sealed with parafilm 

during mixing, to avoid solvent evaporation.  Once a homogeneous solution was 

obtained, 11 g of sodium chloride (size 212 um to 425 um) was placed in a 

Teflon Petri dish and the polymer solution was slowly poured over the salt and 

kept undisturbed for 1 h to allow for the penetration of the viscous polymer 

solution throughout the bed of salt.  The mixture was then rapidly cooled in liquid 

nitrogen for 5 –10 min and was dried overnight in a freeze drier.  The dried 

polymer scaffold was carefully punched into 8 mm-diameter by 5mm-height 

cylinders for imaging purposes. The cylinder-shaped scaffolds were incubated 

and rinsed with nanopure water at least 7 times until the silver nitrate test was 

negative, indicating that absence of chloride ions in the washings.  The scaffolds 

were maintained under vacuum for 24-48 h and then stored in an 8-well plate 

sealed with tin foil to protect them from light and dust. 

 

Figure 2.1: General chemical structure of poly (DTR carbonate).  
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The pendent R groups of the polycarbonates consist of either ethyl or octyl 

esters, corresponding to poly (DTE carbonate) or poly (DTO carbonate), 

respectively. A wide range of compositions were used in this study, ranging from 

100 to 0%, 70 to 30%, 50 to 50%, 30 to 70%, and 0 to 100% combinations of 

poly (DTE carbonate) and poly (DTO carbonate). 

 

2.2.2 Cell Culture and Scaffold Seeding 

A Green Fluorescent Protein (GFP)-fibroblast (extracted from a GFP 

engineered rat) cell line was used as a model cell line to probe the morphology 

and organization of cells cultured within the scaffolds.  GFP-fibroblast cells were 

cultured in Dulbecco‘s Modified Eagle Medium (Mediatech Inc., Herndon, VA) 

supplemented with 5% FBS, 1% Penicillin-streptomycin/ 1% L-glutamine.  The 

porous scaffolds were first sterilized by exposure to UV light in a Spectro XL-

1500 UV Crosslinker (Spectronics Corporation) for 15 min and kept immersed in 

the DMEM medium for 60 min in tissue culture plates or the imaging chamber 

prior to cell seeding.  A 12 mL GFP-fibroblast cell-medium suspension with a 

density of 200,000 cells/mL was seeded into the scaffold by pumping the cell 

suspension through the scaffold at least seven times at 3 mL/min infusion/refill 

rate using a Remote Infusion/Withdrawal PHD 22/2000 Syringe Pump (Harvard 

Apparatus Inc) at room temperature.  This technique produced relatively uniform 

distributions of cells within the scaffolds. 
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2.2.3 Imaging Methods of Scaffold Microstructure and Cellular Dynamics 

Multiphoton Microscopy (MPM) and Confocal Laser Scanning Microscopy 

(CLSM) 

Multiphoton imaging was performed on a Leica TCS SP2 system (Leica 

Microsystems, Inc., Exton, PA).  The polymer scaffolds were placed on a cover-

glass bottom microwell dish (MatTek Corp., Ashland, MA) and illuminated using a 

titanium: sapphire femtosecond laser with a tunable wavelength from 780 nm to 

920 nm (Mai Tai, repetition rate80Mhz, 100 fs pulse duration, 800 mW). Texas 

Red-dyed scaffolds were imaged at 10x and 63 x magnifications, 890 nm two 

photon excitation, and 572.5-647.5 nm emission.  A HC Plan APO CS 10x/0.4 air 

lens was employed for imaging macro pores, while an oil immersion type HCX 

Plan APO CS 63x/1.3 glycerol immersion lens was used to obtain micro pore 

images.  Images were acquired for each sample at 0.7, 1 or 5 um intervals along 

the vertical axis (z-axis). 10x and 63x images were taken at depths of 250um and 

60-75um respectively.  For cell adhesion and spreading imaging, another 500-

550 nm band-pass filter channel was used to detect GFP emission parallel to the 

572.5-647.5 nm band-pass filter channel for detecting Texas Red emission only.  

For comparison with conventional 1-photon excitation methods, single photon 

confocal images were acquired using a 488-nm and 594-nm excitation with a 

500-535nm and 600-700nm emission channel respectively.   All image frames 

underwent two line and frame averaging.   

Scanning Electron Microscopy 
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The pore structure and morphology of the polymeric scaffolds were 

validated using scanning electron microscopy on an AMRAY1830 microscope.  

Scaffold samples were dried, sectioned, and sputter-coated for scanning electron 

microscopy.  Details of accelerating voltage, magnification and working distance 

are noted on the bottom of the corresponding SEM micrographs. 

 

2.2.4 Image Analysis 

Fluorescence Signal to Noise Ratio Calculation 

Maximum signal to noise ratio (SNR) was calculated for qualitative 

evaluation of the effectiveness of single photon CLSM and MPM.  To this end, 

multiphoton and confocal images were processed with ImageJ freeware (NIH 

USA, V1.37a).  The CLSM and MPM images were imported within ImageJ and 

transformed into a pseudo-stack. Three brightest regions of interest (ROIs) of 

1000 pixels each were designated as noise-free areas, and three darkest ROIs 

represented area of background.  The average pixel intensity and standard 

deviation for CLSM and MPM images were measured.  The SNR values were 

calculated as follows:  

𝑆𝑁𝑅 = 20 × log(
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
)          (Equation 2-1) 

In this equation Asignal and Anoise are the root mean square amplitudes of the 

signal and the noise, respectively.  

3D image Reconstruction 

Images acquired through multiphoton microscopy were processed with a 

combination of commercially available and freeware software.   The sequential 
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analysis was conducted as follows.  First, 3-D maximum projection and 3-D view 

of image stacks were performed using a Leica TCS SP2 microscope; 

subsequently, raw images were exported to Image Pro Plus (Version 5.1 for 

windows, Media Cybernetics, Inc. MD.USA) for image analysis.  Data resulting 

from that analysis were used to quantify the properties of scaffold void regions.  

All further analysis was implemented in Matlab 7.0 (The MathWorks Inc., MA).   

Quantitative Image Based Feature Extraction 

The methodology of analyzing the scaffold microstructure is shown 

schematically in Figure 2.2.  The image slices first underwent image 

enhancement optimization (image contrast, brightness and gamma value 

adjusting) to highlight the contrast of void/pore area to the scaffold backbone 

(Figure 2.2b).  These contrast enhanced images were then low-pass filtered 

(e.g., Gaussian filter, average filter or non-linear filters applied to the raw image) 

to reduce high frequency noise (Figure 2.2c).  The smoothed images then 

underwent an adaptive thresholding process in which the 2D image stacks were 

thresholded according to a base value and the values beneath a moving mask of 

radius N.  This segmentation technique converted an intensity image to a binary 

image where ―object‖ or ―background‖ was represented as a Boolean variable ―1‖ 

or ―0‖ respectively.   

Morphological operations (e.g., erosion, dilation, opening) were applied to 

the binarized images to smooth object contours and break narrow connected 

structures (Figure 2.2e).  The binarized image was subjected to size filters for 

sieving misrecognized voids/pores or noncontiguous speckles in the frame 
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(Figure 2.2f).   Further, a median filter was applied to extremely bright 

spots/points (Figure 2.2g).  This was accomplished by replacing the center pixel 

within a square/rectangular neighborhood by the median value of the 

neighborhood.  Thus, the filtering step counted the number of white and black 

pixels in the neighborhood and assigned the median value to the pixel.  Individual 

objects (pores) within the image frame were then labeled and stored in an excel 

spread sheet with selected features of each pore/void: (1) the area of the pore, 

(2) the perimeter of the pore, (3) major axis and minor axis of the ellipse 

equivalent to the object(an ellipse with the same first and second order moments 

of inertia as the pore), (4) the mean diameter of the circle with the same 

geometric moment of inertia(area) as the pore, (5) angle of primary axis of the 

ellipse to the horizontal axis.  The strut size characterizations were done 

manually by drawing a straight line between pores using Leica LCS Lite (Leica 

Microsystems Inc., Exton PA). 

Porosity analysis was performed using both visual assessment and 

quantitative morphometry located in a region of interests (three ROIs: 400 by 400 

pixels of pore images were randomly chosen) following image segmentation 

using Image Pro.  After the image processing steps, the pores were recognized 

as binary images and porosity was calculated as the void area/ (void area+strut 

area).  The pore interconnectivity analysis was performed using ImageJ software 

(version 1.37a, NIH).  The image stacks were first read in as 3-D slice series and 

subjected to image enhancement and smooth filtering, similar to the steps 

described in Figure 2.2.  The segmentation process was performed using a 3D 
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adaptive thresholding plug-in (Adaptive 3DThreshold_.java, v 1.22, per Christian 

Henden and Jens Bache-Wiig).  

The binarized 3-D stacks were inverted and subjected to 3-D object 

counting (courtesy Fabrice Cordelières, Institut Curie, Orsay, France), another 

ImageJ plug-in that counts the number of 3-D objects in a stack and displays the 

volume, the surface, the center of mass and the center of intensity for each 

object.  Thus, the total number of objects recognized in 3-D image stacks was 

determined.  Similar object counting can be done with a single collapsed image 

along the vertical axis of the 3-D stacks of the scaffold (Z-projection image) using 

the algorithm described in Figure 2. 2.  If all the pores were interconnected in the 

3-D stack, the number of 3-D objects recognized in the image stacks should be 

one.  If no pores were interconnected in the 3-D stack, the number of objects 

recognized in 3-D image stacks should equal to number of objects recognized in 

the Z projection images.  The following equation gave a calculation of pore 

interconnectivity.  

 𝐼𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 1 −
#𝑜𝑏𝑗𝑒𝑐𝑡𝑠  𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑  𝑖𝑛  3𝐷 𝑖𝑚𝑎𝑔𝑒  𝑠𝑡𝑎𝑐𝑘𝑠 −1

#𝑜𝑏𝑗𝑒𝑐𝑡𝑠  𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑  𝑖𝑛  𝑍 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖 𝑜𝑛  𝑖𝑚𝑎𝑔𝑒𝑠
          (Equation 2-2) 

Imaging of Cell Organization and Morphology in Scaffolds 

The biorelevant profiling capabilities of MPM were examined by (a) 

comparing image contrast for cells within scaffolds using both multiphoton and 

single photon confocal laser scanning microscopy (CLSM); and (b) quantifying 

cellular morphology within the scaffolds as a function of the underlying polymer 

composition.   
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Figure 2.2: Methodology of sequential processing of images obtained by 

multiphoton microscopy for quantitation of polymeric scaffold 

microstructure.  

(A) Raw image slice, 1024 by 1024 pixels in size, obtained by imaging poly(DTR 

carbonate) scaffolds stained with Texas Red through excitation at 594nm, and 

signal collection at 605-700nm; (B) Contrast enhanced image; (C) Low pass 

filtered image; (D) Binarized image; (E) Morphologically filtered image (open); (F) 

Size filtered image; (G) Final void distribution 

 

Utilizing conventional CLSM and MPM, GFP engineered rat fibroblasts 

were imaged after seeding within the porous scaffolds fabricated from poly(DTE 

carbonate)/poly(DTO carbonate) blend.  The clarity of cell visualization against 

the polymer substrate was compared for MPM versus CLSM.   The ability of 

CLSM and MPM to discern the underlying microstructural details of the polymer 

substrate was compared. 
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The three-dimensional morphology of GFP-fibroblasts was analyzed 

based on the maximum intensity projection of image stacks obtained via 

multiphoton fluorescence microscopy.   Cell morphology was characterized in 

terms of cell area, A, perimeter, P, and shape factor, ∅, which describes the 

morphologic polarization of the cell defined as ∅ =
𝑃2

4𝜋𝐴
 (Equation 2-3).  The 

average cell area and the cell perimeter were quantitatively measured using 

ImageJ software.  Shape factor values of unity are representative of rounded 

cells, whereas values larger than unity indicate the increased morphological 

asymmetry.  

 

2.2.5 Statistical Analysis 

Statistical analysis was performed using ANOVA test.  The differences were 

considered significant for p<0.05.  Error bars indicate the standard deviation 

around the mean.   

 

2.3 Results  

2.3.1 Qualitative Microstructure Analysis of Polymeric Scaffolds 

Using both conventional confocal imaging and multiphoton imaging 

techniques, it is possible to resolve polymeric scaffolds to a depth of a few 

hundred microns without the destruction of the sample.  Figure 2.3 illustrates the 

macro pore structure of the scaffolds at low magnifications and the micro pore 

structure at higher magnifications.  A comparison of CLSM and MPM images is 

shown here.  The maximum intensity projection images and orthogonal view of 
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the image stacks indicates that images acquired using multiphoton excitation 

were brighter and had a higher signal-to-noise (SNR) ratio than those taken via 

single photon excitation.  The experimental maximum SNR in figure 2.4 

demonstrates a decline of SNR in both CLSM and MPM images as objective 

magnification increases: the SNR in CLSM images declined from 18.8 db to 6.3 

db, while the SNR of the MPM images declined from 23.4db to 18.5db.  The SNR 

in MPM images at higher magnifications (63x objective) is three times higher 

than that taken with the same objective via CLSM.  Additionally, the SNR 

observed at higher magnifications via MPM was greater than then SNR observed 

via CLSM at lower magnifications (10x objective).  
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Figure 2.3: Comparative evaluation of the microstructure of porous 

scaffolds of poly (DTE carbonate) using confocal single photon 

microscopy (CLSM) and multiphoton microscopy (MPM).   

Images marked with ―a*‖ represent MPM images, images marked with ―b*‖ 

represent CLSM images. a1-b1: maximum intensity projection of 10x image 

stacks, z depth=250um; a2-b2: orthogonal view of 10x image stacks, z 
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depth=250um; a3-b3: maximum intensity projection of 63x image stacks, z 

depth=61.34um;  a4-b4:  orthogonal view of 63x image stacks, z depth=61.34um; 

 

 

Figure 2.4: Comparison of experimental maximum signal-to-noise ratio of 

CLSM and MPM images at different objective magnifications (10x and 63x 

respectively).   

Images of Texas Red dyed p (DTE carbonates) scaffolds with macro and micro 

pores were obtained.  Scaffolds were excited at 594nm (single photon CLSM) 

and 880nm (MPM), and emission signals were collected at 605-700nm (CLSM 

channel) and 610±37.5nm (MPM channel).  MPM images shows pronounced 

improved signal-to-noise ratio over CLSM images, especially at high 

magnifications.  Values are the average of 3 experiments performed in triplicates. 

Error bars represent standard error around the mean. * A statistically significant 

difference, P<0.05, compared with 10x single photon CLSM images.  ** A 
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statistically significant difference, P<0.05, compared with 63x single photon 

CLSM images.  

 

2.3.2 Quantitative Analysis of Polymer Scaffold Microstructure 

The microstructure of porous, biodegradable, polymer scaffolds made 

from a series of five blend compositions of poly(DTE carbonate) and poly(DTO 

carbonate) were imaged using two-photon excitation microscopy at vertical depth 

of 200-250um and 60-75um respectively, and independently examined via 

scanning electron microscopy (for qualitative validation).  Both SEM images and 

MPM images showed a relatively homogeneous distribution of pores.  Table 2.1 

classifies the scaffolds and their respective blend compositions (items A through 

E).  Images of the scaffold structures (macro pores and micro pores) of the 

polymer family members obtained via MPM and SEM are illustrated in Figure 

2.5.  The macro and micro pore sizes on the raw SEM images were manually 

analyzed as a comparison to digital image analysis process (thresholding, filters, 

and morphological operators) to validate the effectiveness and repeatability of 

the digital image analysis on the MPM images. Ten interceptive lines were drawn 

on each pore in SEM images, the distance between the points, where the lines 

intercepted the pixels of the scaffold, were measured and averaged.  Comparing 

the analysis results on MPM images with that on SEM images (Table 2.2), it was 

found that only one of the ten metrics analyzed was significantly different from its 

respective control (the analysis on raw SEM images).  
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Table 2.1:  Pore quantification results of the scaffold of poly (DTE 

carbonate)/poly (DTO carbonate) blends.  

Pore size/strut size/porosity/interconnectivity were analyzed on three MPM image 

slices/stacks of three scaffold samples of the same chemistry each. * A 

statistically significant difference, P<0.05, between the values for a given 

condition and respective control (poly (DTE carbonate) scaffold).  

 

 

 

 

 

 

 

 
Scaffold A B C D E 

DTE(%) 100 70 50 30 0 

DTO(%) 0 30 50 70 100 

MACRO 
PORES 

Pore size 

(m) ±  Std 
156±56 159±30 161±38 158 ±42 158±62 

Porosity± Std 
0.547 
±0.032 

0.556 
± 0.010 

0.542 
±0.069 

0.497 
±0.058 

0.436 
±0.031 

Strut width 

(m) 
54±15 63±24 55±20 54±19 65±19 

 Pore 
Interconnecti

vity 

0.96± 
0.05 

0.94± 
0.08 

0.99± 
0.01 

0.97± 
0.01 

0.97± 
0.02 

MICRO 
PORES 

Pore size 

(m) ± Std 
2.5±0.5 3.0±0.7* 2.9 ±0.7* 4.9±1.9* 3.7 ±1.5* 

Porosity± Std 
0.467 
±0.080 

0.410* 

±0.028 
0.373* 

±0.039 
0.320* 

± 0.034 
0.276* 

±0.080 

Strut width 

(m) 
1.4±0.3 1.7±0.5 1.5±0.3 1.5±0.4 1.4±0.4 

Pore 
Interconnecti

vity 

0.98± 
0.01 

0.98± 
0.02 

0.98± 
0.02 

0.99± 
0.01 

0.98± 
0.02 
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Table 2.2: Comparison of pore size estimation using MPM and SEM.  

Each value in the table was analyzed in triplicate on image slices/stacks of three 

scaffold samples of the same chemistry. * A statistically significant difference, 

P<0.05, between the values for a given condition and respective control (analysis 

results on SEM images).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Scaffold A B C D E 

DTE(%) 100 70 50 30 0 

DTO(%) 0 30 50 70 100 

MPM 

Macro Pore 
size(um)±  Std 

156±56 159±30 161±38 158 ±42 158±62 

Micro Pore 
size(um)±  Std 

2.5±0.5 3.0±0.7 2.9 ±0.7 4.9±1.9 3.7 ±1.5* 

SEM 

Macro Pore 
size(um)±  Std 

172±16 161±60 187±42 182±45 173±29 

Micro Pore 
size(um)±  Std 

2.6±0.75 2.65±0.7 2.7±0.6 4.4±0.9 2.9±0.6 
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Figure 2.5: Microstructure of the porous scaffolds of varying compositions 

of poly (DTE carbonate)/poly (DTO carbonate) blends as imaged via MPM 

and Scanning Electron Microscopy (SEM).   

Scaffold A-E refer to: poly(DTE carbonate), 70%poly(DTE 

carbonate)/30%poly(DTO carbonate), 50%poly(DTE carbonate)/50%poly(DTO 

carbonate), 30%poly(DTE carbonate)/70%poly(DTO carbonate), and poly(DTO 
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carbonate). Images marked ―*1‖ represent MPM images of macro pores, images 

marked with ―*2‖ represent MPM images of micro pores, images marked with ―*3‖ 

are SEM images of micro pores.  

 

The porosity, pore size, strut size and pore interconnectivity of porous 

scaffolds were quantified from the MPM image stacks shown in Figure 2.5.  The 

macroscale pores exhibited a square/rectangular shape while the micro pores 

were irregular, lacking a defined morphology.  Average macro pore size in the 

polymer scaffolds was around 158 um with minor variations as the poly(DTE 

carbonate)/poly(DTO carbonate) ratio was decreased (Table 2.1).  We found that 

the average micro pore size increased from 2.5 um to 5um as the poly(DTE 

carbonate)/poly(DTO carbonate) ratio decreased from 100/0 to 30/70 (Table 

2.1).  Further analysis of the macro pore size distribution showed a normal 

distribution, with most pores at or near 160 µm size for all scaffolds regardless of 

their chemical composition (Figure 2.6a).  Similarly, a normal distribution was 

obtained for the microscale pores (Figure 2.6b), although the average diameter 

of the micro pores varied at different poly (DTE carbonate)/poly (DTO carbonate) 

ratios.  
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Figure 2.6: MPM enabled bi-modal size distribution of microscale and 

macroscale pores in scaffolds of poly (DTE carbonate)/poly (DTO 

carbonate) blends.  

a: Size distribution of macroscale pores of poly(DTE carbonate),70%poly(DTE 

carbonate)/30%poly(DTO carbonate), 50%poly(DTE carbonate)/50%poly(DTO 
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carbonate), 30%poly(DTE carbonate)/70%poly(DTO carbonate), and poly(DTO 

carbonate).  b: Size distribution of microscale pores of poly(DTE 

carbonate),70%poly(DTE carbonate)/30%poly(DTO carbonate), 50%poly(DTE 

carbonate)/50%poly(DTO carbonate), 30%poly(DTE carbonate)/70%poly(DTO 

carbonate), and poly(DTO carbonate). 

 

Porosity analysis revealed that the porosity of macroscale pores was 

almost invariant with regard to variations of poly(DTE carbonate)/poly(DTO 

carbonate) ratio (Table 2.1), in contrast to the porosity of micro pores, which 

continuously declined as the poly(DTE carbonate)/poly(DTO carbonate) ratio 

decreased.  Notably, the macroscale porosity for all blend compositions was 

somewhat higher than the micro porosity (Table 2.1).  Seen also from Table 2.1, 

the strut size of both macro and micro pores of each test scaffold was relatively 

constant with regard to polymer chemistry and blend composition, averaging 58 

um and 1.5 um for macro and micro pores respectively.   

Spatially interconnected pores are highly desirable in tissue engineering.  

Analysis of interconnectivity demonstrated high levels of pore interconnectivity of 

both macroscale pores and microscale pores, ranging from 96.3 percent to 

nearly 100 percent, respectively (Table 2.1).  Pore orientation was also studied 

on the MPM images and characterized as the normalized angle distribution. The 

angle subtended by the major axis of the pores with the horizontal (or vertical) 

axis was recorded for each pore and the average angle value for each scaffold 

was taken and shifted to zero degrees to make a more objective descriptor of 
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pore orientation since angle value could change depending on the orientation of 

the scaffold itself. Then the normalized and shifted angle distributions of 

macroscale and microscale pores were plotted, respectively. The distribution 

probability of macroscale pore angle ranges varied slightly around 17% for all 

studied scaffolds, indicating that the angles were evenly distributed and these 

macroscale pores are randomly oriented (Figure 2.7a).  However, opposite 

trends were observed following the analysis of normalized microscale pore angle 

distributions (Figure 2. 7b).  Among the normalized angle regions (from -90 to 90 

degrees), there were peaks at zero degrees which denoted a preference of micro 

pore orientation for all scaffolds. 
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Figure 2.7: MPM enabled normalized orientation distributions of 

macroscale and microscale pores of scaffolds of poly (DTE carbonate)/poly 

(DTO carbonate) blends.  

The normalized angle distribution probability was plotted as a function of the 

angle ranges (in bins of 30 degrees). a: normalized angle distribution of 

macroscale pores of poly(DTE carbonate), 70%poly(DTE 

carbonate)/30%poly(DTO carbonate), 50%poly(DTE carbonate)/50%poly(DTO 

carbonate), 30%poly(DTE carbonate)/70%poly(DTO carbonate), and poly(DTO 
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carbonate).  b: normalized angle distribution of microscale pores of poly(DTE 

carbonate), 70%poly(DTE carbonate)/30%poly(DTO carbonate), 50%poly(DTE 

carbonate)/50%poly(DTO carbonate), 30%poly(DTE carbonate)/70%poly(DTO 

carbonate), and poly(DTO carbonate).  

 

2.3.3 MPM Imaging of Cellular Morphology within Polymer Scaffolds   

Utilizing conventional CLSM and MPM, GFP engineered rat fibroblasts 

were imaged after seeding within the poly (DTE carbonate)/poly (DTO carbonate) 

blend porous polymer scaffolds.  Images demonstrated improved clarity of cell 

visualization with MPM versus CLSM (Figure 2. 8).  Images produced with MPM 

had improved signal to noise ratios, a significant reduction in the photobleaching 

of the Texas Red dyed scaffolds, and a marked improvement in the ability to 

visualize cellular interactions on the scale of scaffold features.   

Further, we quantified cellular morphogenesis in the scaffolds using MPM 

in terms of cellular area, perimeter, and morphologic shape factor.  The MPM 

analysis confirmed the visual observations that cells cultured on 50% poly(DTE 

carbonate)/ 50% poly(DTO carbonate) blends scaffold exhibited greater 

spreading than either poly(DTE carbonate) homopolymer scaffold or poly(DTO 

carbonate) homopolymer scaffold (Table 2.3; Figure 2. 9).  Notably, no 

significant differences were observed between overall projected areas of cells 

cultured in poly (DTE carbonate) scaffold and poly (DTO carbonate) scaffold.  
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Figure 2.8: Comparison of MPM and CLSM images of GFP-fibroblast Cells 

in Texas Red dyed poly(DTE carbonate)/poly(DTO carbonate) blends 

scaffolds.  

Cells were seeded on the scaffolds for 8 hours before imaging.  All images were 

taken on Leica SP2 microscope, using 63x glycerol immersion objective 

(NA=1.2).  a1-a2: CLSM and MPM images of GFP-fibroblast cells on poly(DTE 

carbonate) scaffold; b1-b2: CLSM and MPM images of GFP-fibroblast cells on 

50%poly(DTE carbonate)/50%poly(DTO carbonate) blend scaffold; c1-c2: CLSM 

and MPM images of GFP-fibroblast cells on poly(DTO carbonate) scaffold.  In 

CLSM mode, emission at 500-535nm and 605-700nm were used to collect 
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fluorescence signals from GFP-Fibroblast and Texas Red respectively. In MPM 

mode, two channels at 525±25nm and 610±37.5nm were used to collect 

fluorescence emissions from GFP-Fibroblast and Texas Red respectively. All 

image sizes were 512 by 512 pixels.  

 

 

Figure 2.9:  Composite biorelevant profiling of scaffolds using multiphoton 

microscopy: Correlation of cell morphogenesis and polymer scaffold 

microstructure for blends of variable DTO content.   

The scaffold microstructure was quantified in terms of the relative substrate 

microsurface area (computed as number of micropores times average area of 

micropore), while the cell membrane spreading was quantified in terms of cell 

perimeter (Table 2.3).   
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The incorporation of the more hydrophobic DTO is reported to suppress 

cell spreading on two-dimensional films
72

, but our MPM studies show an 

increase in cell spreading on 3-D scaffolds upon the incorporation of 50% DTO, 

which can be attributed to the variations in scaffold microstructure.  Intermediate 

levels of scaffold microporous surface area enhanced cell spreading, indicating 

that the role of substrate microstructure, and not the surface chemical effects, 

was likely the predominant determinant of cell spreading in this regimen. 

 

Table 2.3: Quantification of Cell Spreading in Polymer Scaffolds using 

Multiphoton Microscopy.  

10 to 30 cells were analyzed per scaffold. * A statistically significant difference, 

P<0.05, between the values for a given condition and respective control (poly 

(DTE carbonate) scaffold). 

 

Scaffold chemistry 

Cell 
Area, A 

(m2) 

Cell 
Perimeter, 

P (m) 

Cell Shape 

factor,  ∅

P(DTE carbonate) 240±35 70±10 1.7±0.4 

50%p(DTE carbonate) 
50%p(DTO carbonate) 

306±60* 98±11* 2.5±0.3* 

P(DTO carbonate) 221±59 73±15 2.0±0.5 
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2.4 Discussion 

Advances in scaffold fabrication technologies have brought a new 

dimension to the field of tissue engineering171,227,228.  Assessment of the 

performance of material-based engineered tissues will require quantitative 

measures of scaffold properties, structures, composition and in vitro cellular 

responses.  Previously reported methods for characterizing and quantifying 

scaffold microstructure and cell-scaffold interactions have been limited by harsh 

processing of specimens (SEM) and the inability to provide high quality images at 

a penetration depth of a few hundred microns.  In this study, a novel approach 

based on multiphoton microscopy was employed to quantify the microstructure of 

porous biodegradable polymer scaffolds as well as cell-scaffold interactions in a 

non-invasive manner.  Multiphoton microscopy, through a two-photon 

fluorescence excitation rather than single photon fluorescence excitation, 

restricts fluorophore excitation/emission to the focal plane of the microscope, 

which provides high quality thin optical section images from deep within thick 

specimens.  2-D multiphoton image slice series were subjected to digital image 

analysis and 3-D reconstruction processes to obtain the overall 3-D structural 

characteristics of the polymer scaffold at macro and micro scale as well as the 

cellular responses. The porosity, pore size and distribution, strut size, pore 

interconnectivity and orientation of both macro and micro pores of poly (DTE 

carbonate) / poly (DTO carbonate) blends were quantified. Statistical analysis 

demonstrated that the resulting metrics of the digitally analyzed MPM images 

were no different (analysis not shown) from the metrics calculated based on SEM 
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images that did not undergo digital image analysis processes (thresholding, 

filters, and morphological operators). This validated the use of digital image 

analysis on MPM acquired images for the determination of scaffold architecture. 

Compared with other scaffold characterizing techniques, MPM microscopy with 

subsequent digital image analysis provides non-invasive, high quality, improved 

signal to noise (SNR), 3-D image sections with a resolution of less than one 

micron.   

Studies have shown that a major advantage of MPM over CLSM is a 

significant improvement in the imaging penetration depth by a factor of two or 

more without a loss of lateral resolution in typical biological specimens that are 

highly light scattering222-224,229,230. The effective resolution achieved from MPM 

and single-photon CLSM is a function of many complex factors, such as the 

absolute number of photons (signal intensity) collected per pixel and the fraction 

of true signal photons relative to scattered photons from outside the observation 

volume (contrast or SNR)219,231.  Therefore, the SNR (contrast) of the images 

plays a key role in the evaluation of image quality.  Our MPM scaffold images at 

low magnifications (10x objective NA=0.3) showed a 25% improvement in SNR 

over the corresponding single photon confocal images at a z-depth of 250 um.  

The MPM scaffold images obtained at higher magnifications (63x objective 

NA=1.3) showed a more pronounced improvement in SNR over one photon 

CLSM scaffold images (300%).  Several factors possibly account for this SNR 

improvement223,232-234.  The degradation of confocal images is especially evident 

at higher magnification where far fewer photons can be collected through the 
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lens in a much smaller region of sample.  Additionally, the struts bounding the 

micro pores (size range 2~55um) scatter more light than struts among macro 

pores (size range >100um) due to Mie Scattering, which is more prevalent for 

2~5 um micro pores rather than 150 um macro pores.  Therefore, at higher 

magnifications, both Rayleigh (particles sized 1/10 of wavelength) and Mie 

scattering (particles sized at larger diameters) contribute to the background noise 

while at lower magnifications, Mie scattering is negligible.  Therefore, with the 

decrease in collected fluorophore emission intensity and increased contribution 

of scattered photons to the background, the SNR of the high magnification 

single-photon CLSM images is expected to deteriorate.  On the other hand, as 

the MPM does not generate a signal out of the plane of focus, there are no 

spurious scattered photons to contribute to the background and image contrast is 

maintained.  Our higher magnification (63x) images of MPM and single photon 

CLSM illustrate this trend: both single-photon CLSM and MPM images encounter 

a decrease in the SNR value when switching from low magnification objective 

(10x) to high magnification objective (63x), however, the single-photon CLSM 

images attenuate much faster than MPM microscopy.     

The use of MPM incorporated with the digital image analysis process 

afforded insights into the role of polymer chemistry and fabrication with regards 

to variations of local micro-architecture of the porous scaffolds fabricated from 

poly(DTE carbonate)/poly(DTE carbonate) blends.  Clearly, the macroscale pore 

formation is largely dictated by the salt-leaching process, and therefore, strut 

size, pore size, and porosity of the macro pores are not likely to be sensitive to 
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alterations of DTO/DTE ratio.  A statistical analysis of the macropore size 

distribution using the MATLAB code 'normplot' revealed that the pores have 

identical mean diameters and follow a Gaussian distribution regardless of the 

scaffold chemistry (data not shown).  The microscale pores are generated by 

liquid-liquid phase separation enabling nucleation and growth of the pores via 

rapid cooling within the spinodal phase regime.  It is reported that with increasing 

composition DTO, the average diameter of the micropores increased, while the 

total number of observed pores decreased.  These observations are most likely 

due to the kinetics of nucleation associated with pore formation and the relative 

glass transition temperatures of the polymer blends.  poly (DTE carbonate) has a 

glass transition temperature of 81oC while poly (DTO carbonate) has a glass 

transition temperature of 58oC.  During the cooling process, those blends rich in 

DTE versus DTO become vitrified earlier decreasing time for Ostwald ripening, 

the process by which smaller droplets dissolve and larger droplets expand, and 

coalescence of the solvent rich phases235-239.  This results in an increased 

number of total micropores with decreased individual sizes of the pores when 

compared to the DTO rich blends, which have increased opportunity to undergo 

the aforementioned phenomena prior to vitrification.   

Pore interconnectivity was calculated from the 3-D reconstructed images of 

the scaffolds.  It is important to note that for the image based interconnectivity 

calculations to be valid, the thickness of the reconstructed images in the vertical 

direction must be significantly larger than the individual pore sizes.  The current 

study contained reconstructed 3-D image stacks of macro and micro pores that 
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were 250 um and 60-75 um thick respectively. Since the macro and micro pores 

were respectively on the order of a hundred microns and microns scale, the 60 

um z stacks of micro pore images should be sufficient for interconnectivity 

analysis while the 250 um z stacks of macro pore images might not represent the 

true macro pore interconnectivity. The penetration depth improvement on the 

MPM imaging modalities may be helpful for better evaluation of macro pore 

interconnectivity.  

Further analysis of the scaffold architecture reveals that the pore strut size 

is neither affected by the scaffold chemistry nor by the fabrication method.  The 

pore strut size remains constant at 58 um for macropores and 1.5 um for micro 

pores.  Similarly, both macro and micro pore interconnectivity values were high 

(>90%) and are unaffected by scaffold chemistry and fabrication methods.  

Previous studies reported that the porosities and interconnectivity of the scaffolds 

were determined by the interstitial space in the leachable templates and by the 

initial concentration of the polymer solution used in freeze drying240. The 

porogen/polymer weight ratio determines the pore microstructure of the scaffolds 

with highly interconnected pores observed when the porogen/polymer ratio range 

lies between 15-20241,  At sufficient porogen/polymer ratios such as the ones we 

employed, the salt particles are clustered and therefore the pores obtained after 

leaching are open and well interconnected242.  

 Orientation analysis of the scaffold microstructure showed that scaffold 

fabrication process has some hierarchical relationship with pore orientations.  

There was no orientation preference for the macroscale pores while microscale 
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pores indicated an orientation bias.  The possible explanation is that the salt 

leaching process occurs under normal conditions (room temperature, standard 

pressure) with the tension/compression around the porogen evenly distributed.  

In the case of microscale pore orientation, during the phase separation and 

freeze drying process that occur in liquid nitrogen, small amounts of existing 

water molecules cause nucleation and promote solvent crystallization, which 

result in the phase separation within the polymer blends and thus induce the 

orientation of micro pores. 

This study validates the utilization of MPM for the real time in situ imaging 

of fluorescent cells seeded within 3-D porous polymer scaffolds.  Cells were 

visualized with greater effectiveness using MPM over CLSM due to the greater 

SNR and reduced scatter with MPM as has been previously explained.   Perhaps 

the greatest advantage of MPM was the ability to simultaneously image 

fluorescently engineered cells and scaffold microstructure.  As was demonstrated 

(Figure 2.8), in comparison to CLSM, MPM allowed better combined resolution 

of cell morphology and scaffold microstructure (micropores).  This is essential in 

facilitating the detailed examination of how scaffold structures may mediate 

cellular responses and behaviors243.  Specifically, in our study, we found 

enhanced cell spreading on scaffolds of polymer blends rather than scaffolds of 

corresponding homopolymers.  Our findings stand in contrast to those recent 

studies of similar substrates in 2-D film configurations100, wherein cell spreading 

was inhibited on substrates with increased poly(DTO carbonate) content in the 

poly(DTE carbonate)/poly(DTO carbonate) blends, likely due to increased 
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hydrophobicity of the polymer.  Our results suggest that the scaffold 

microstructure also plays a key role in modulating cell spreading aside from the 

effects of polymer chemistry48,244-246.  Micropores can present microscale texture, 

which, depending on the cell adhesivity of the substrate, can affect the 

interdigitation of the cellular membrane with the scaffold  and thus alter cell 

membrane spreading247.  We estimate from the number of micropores and the 

size of micropores of the various scaffolds that the net microporous surface area 

is the highest for poly(DTE carbonate) scaffolds and decreases progressively 

upon the incorporation of DTO (Figure 2.9).  Thus, the 50%poly(DTE 

carbonate)/50%poly(DTO carbonate) blend substrates, which exhibited larger 

micropores than poly(DTE carbonate), elicited the most enhancement in cell 

spreading.  Since incorporation of 50% poly(DTO carbonate) should have 

reduced cell spreading, not increased it, we believe that the scaffold 

microstructure likely plays a major role in influencing cell spreading within this 

regimen.  The 100% poly(DTO carbonate) scaffolds, which had the largest 

micropores but the least fraction of microporous surface area, did not elicit 

enhanced cell spreading, suggesting that a combination of scaffold 

microstructure and surface chemistry influence cell spreading.  

 

2.5  Conclusion 

In summary, while MPM has been previously validated to be an effective 

noninvasive method for imaging various cells and tissues, we present the first 

systematic report of the comparative use of MPM for the characterization of 
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biodegradable polymer scaffold microstructures.  We have demonstrated that 

MPM imaging techniques are superior to confocal imaging and can achieve high 

signal to noise ratio for the dual characterization of non-invasive visualization and 

quantification of both biodegradable polymer scaffold microstructure as well as 

the local cell morphogenesis within scaffold.   This MPM imaging/image analysis 

based platform enables quantitative characterization of 3-D biomaterial scaffold 

spatial features as well as pseudo-3D cell spreading features.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 



66 

 

3 High Content / Rapid Screening of Cells on 2-D Substrate and Gradients 

Note: This chapter is reproduced from the following publication: 

Liu, E., M.D. Treiser, H. Patel, H.J. Sung, K.E. Roskov, J. Kohn, M.L. Becker, 

and P.V. Moghe. 2009. ―High-content profiling of cell responsiveness to graded 

substrates based on combinatorially variant polymers‖. Combinatorial Chemistry 

and High-throughput Screening - Special Issue on Combinatorial and High-

Throughput Screening of Cell Response to Biomaterials 12(6). © 2009 Chemistry 

and High-throughput Screening.  Used by Permission.   

 

3.1 Introduction 

 Polymer substrates differing in chemical properties, post-processing 

physical properties, and geometries have been shown to cause variable changes 

in cellular processes by way of alterations in protein adsorption, cell adhesion 

and spreading, and extracellular matrix production87,88.  Parameters such as 

hydrophobicity, physicomechanics, architecture, and differential ligand 

conditioning represent strong determinants of both cell function and phenotypic 

expression89-91,122.  Most of the studies to date depend on traditional 

characterization assays and a limited number of material conditions.  This 

limitation on potential physical parameter space represents a significant 

shortcoming as interesting behaviors elicited in response to incremental but 

unselected experimental conditions may be overlooked.  

 Current trends in polymeric biomaterials discovery have expanded from 

the synthesis of a few potential materials to the design of relatively large libraries 
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of combinatorially derived materials92,94,248.  These libraries permit the exploration 

of a large physico-chemical "property" space while simultaneously promoting the 

development of detailed relationships which relate cellular actions to material 

parameters96-98.  Advances in instrumentation for the synthesis and assembly of 

large polymer libraries have expanded the size and complexity of available 

material arrays99.  The advantage of such sizeable material test sets lies in the 

more thorough examination of cell-material behaviors that would have otherwise 

gone unnoticed when investigating smaller libraries.  However, the full impact of 

combinatorial polymer libraries will be realized only with the development of 

methods that are able to evaluate material performance on the scale of the 

synthesis248.  Unfortunately, traditional approaches to characterization and the 

biological screening of materials are not amenable to the rapid evaluation of 

large member material sets and therefore, necessitate the development of novel 

screening approaches.   

 One technique that has garnered significant interest involves the creation 

of single substrates with spatially resolved chemistries, roughness, and/or 

microstructures100-103,249.  Single substrate approaches allow for the assay of 

cellular response to materials of differing properties with equivalent processing 

conditions and faster data acquisition, thereby providing lower experimental 

error105,250.  Additionally, studies which vary both chemistry and temperature and 

utilize gradient-based technology permit the simultaneous study of continuous 

ranges of chemical and topographical properties98,100,102,251.  These methods 

represent great potential as they map the near complete compositional and 
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processing experimental space of binary blends.  This matrix of chemistries and 

surface physical properties further facilitates the identification of potentially new 

structure-function relationships that may help biomaterial scientists to rationally 

design materials to meet specific applications. 

 To establish cell-material relationships, it is necessary to isolate individual 

material parameters and their effects on specific responses.  Zapata et al. 

employed continuous temperature gradients to assess osteoblast response to 

demixed polymer blends102.  Previously, Bailey et al. utilized discrete binary 

blends of two tyrosine-derived polycarbonates, poly(DTE carbonate) and  

poly(DTO carbonate) (abbreviated as pDTEc and pDTOc, respectively, 

throughout this manuscript) and used phase separation-induced topography to 

determine how changes in material surface energetics and roughness affect cells 

grown on these surfaces100.  These studies demonstrated that surface 

microstructure and topography strongly influenced cell attachment, spreading, 

and proliferation.  One limitation highlighted by the authors in this study was that 

because the topographical features of the surface were dependent on both 

composition and temperature, universal structure-function correlations regarding 

roughness, surface chemistry, and cell responses could not be readily 

ascertained.  

 Recently, Treiser et al. published a technique whereby high-content 

imaging of cell morphology yielded a large number of quantifiable descriptors that 

can be used to potentially discern combinatorial variations in substrate 

composition47.  Using a similar high content imaging approach, this study derives 
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morphometric descriptors from cells cultured on discrete binary blends of pDTEc 

and pDTOc that have been annealed on a gradient heat stage, which yields a 

temperature-induced roughness profile.  Cell descriptors that are sensitive to 

roughness and/or surface chemistry are identified, and were utilized to decouple 

the effects of roughness and surface chemistry on cell attachment and adhesion 

strength.  This study demonstrates a fast-screening, high-content imaging 

method to discern how surface topography and surface energy of structurally 

similar but compositionally varying, immiscible blends affect biological response 

on two dimensional gradient substrates. 

 

3.2 Materials and Methods 

3.2.1 Polymer Synthesis and Gradient Fabrication 

Tyrosine-derived polycarbonates were synthesized as described 

previously.252 Poly(desaminotyrosyl-tyrosine alkyl ester carbonate)s are referred 

to as poly(DTR carbonate)s, where R represents the alkyl ester pendent chain. In 

this study R is either ethyl (DTE) or octyl (DTO).  The mass-average molecular 

mass and molecular mass distribution Mw/Mn (PDI) for each of the polymers are 

listed.  poly(DTE carbonate) (abbreviated as pDTEc): Mw = 131,000, PDI = 3.0; 

poly(DTO carbonate) (abbreviated as pDTOc): Mw = 61,500, PDI = 2.7.    

 

3.2.2 Annealing Gradient Preparation   

Discrete composition thin film strips of pDTEc and pDTOc tyrosine-derived 

polycarbonate homopolymers and blends (70/30,50/50,30/70 pDTEc/pDTOc 
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ratio, by mass) were fabricated on a single 42 mm round glass coverslip (VWR, 

No 1½) by flow coating (Figure 3.1)253.  Briefly, 3 % (mass fraction) solutions of 

each mixture were dissolved in methylene chloride and 25 uL drops were placed 

under the blade.  The coating conditions were stage acceleration of 25 mm/s2, 

stage velocity of 15 mm/s and a spread distance of 40 mm resulting in films 

approximately 0.2 mm thick.  The substrates were then subjected to a variable 

temperature heating stage exhibiting a well-defined linear temperature range to 

induce phase-separation100.  The range and slope of the temperature gradient 

are tailored through the respective block temperatures and their distance apart.  

All gradients and control films were annealed for 48 h in air.  The final substrates 

consisted of five discrete polymer strips (two homopolymer and three blends) on a 

single coverslip which when subjected to a linear annealing temperature profile 

orthogonal to the respective compositions.  This format yielded "two-dimensional 

gradients substrates‖ (referring to these substrates with a continuous temperature 

gradient in one dimension and a discrete compositional gradient in the other).  The 

films were sterilized using ethylene oxide and degassed for 48 h prior to use.   

 

3.2.3 Atomic Force Microscopy (AFM)  

Tapping-mode atomic force microscopy measurements were conducted in 

air with a Nanoscope IV system (Digital Instruments) operated under ambient 

conditions with standard silicon tips (Nanodevices; L, 125 um; normal spring 

constant, 40 N/m; resonance frequency, (300 to 360) kHz).  Images were 

collected using automated data acquisition every 2.5 mm.  Root mean square 
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(RMS) roughness measurements were determined using standard Digital 

Instruments software; averages and standard deviations were determined from 

two measurements at each distance from each of two different polymer thin film 

coated coverslips (n=4).  Normalized mean gradients of steepness were 

calculated for 5 positions at 5 mm intervals for each of the compositional strips. 

Normalized gradient steepness was calculated with the following formula:  

 

Normalized gradient steepness = 
 RMS Roughness

Physical Distance Mean RMS roughness 

(Equation 3-1) 

 

Figure 3.1: Fabrication of 2D orthogonal composition/roughness gradient 

platform.  

a) Schematic of roughness gradient polymer substrate fabrication using the 

annealing temperature gradient platform.  b) Overview of the design of the 
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roughness gradient substrates based on polymer blends. Along the horizontal 

axis is a continuous temperature annealing gradient; along the vertical axis is the 

compositional variation of pDTEc/pDTOc blends. 

 

3.2.4 Cell Culture and Transfection  

Human Saos-2 cells (a gift from Dr. David Denhardt; Rutgers University) 

transfected with Green Fluorescent Protein (GFP)-tagged farnesylation (GFP-f) 

gene were used as model cell lines to probe the morphology and organization of 

cells cultured on topological gradients of poly(DTE carbonate) and poly(DTO 

carbonate) blends.  The gene that encodes the farnesylation protein is fused with 

the EGFP gene in the vector (Clontech, Mountain View, CA).  SV40 viral 

promoter is used for the expression of GFP-farnesylation protein in mammalian 

cells. The farnesylation gene codes for a 20 amino acid sequence, which 

translates to the farnesylation protein that targets and binds to Ha-Ras, creating 

the farnesylated Ras protein complex.  This binding process is mediated by a 

farnesyl transferase enzyme, which accompanies targeting of the protein 

complex to the inner face of the cellular plasma membrane.  Because pEGFP is 

tagged to the farnesylation gene within the same vector, EGFP and farnesylation 

proteins are co-expressed, and EGFP can therefore be utilized as a visual 

indicator of activation of the Ras-farnesylation process, as well as an intracellular 

tracer to track the farnesylated Ras protein complex as it localizes to the plasma 

membrane.  Therefore, using the pEGFP-farnesylation reporter gene provides 

two simultaneous advantages: 1) a membrane marker, which allows for 

fluorescent demarcation and resolution of the plasma membrane and is used for 
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morphometric cellular analysis, and 2) an indicator of cell signaling activation 

related to oncogenic Ras-mediated cell proliferation, which is presented as GFP-f 

intensity descriptors, such as standard deviation, mean, maximum, and minimum 

values of the density (GFP-f fluorescence intensity normalized to cell area).  The 

transfection process was performed as previously described47.  Briefly, Saos-2 

cells were propagated in HAM‘s F12 (F12H) culture medium (Invitrogen, 

Carlsbad, CA, USA) supplemented with L-glutamine, penicillin-streptomycin, and 

10% fetal bovine serum (FBS; Sigma-Aldrich, St. Louis, MO, USA).  Cells were 

transfected with Lipofectamine™ supplemented with PLUS™ reagent 

(Invitrogen), and stable lines were selected using 0.5 mg/mL G418 (Sigma-

Aldrich).  Saos-2 GFP-f cells were cultured in flasks (75 cm2 surface area) at 37 

oC in a fully humidified atmosphere with 5 % CO2 in F12H (Invitrogen, Carlsbad, 

CA) supplemented with L-glutamine, penicillin-streptomycin, and 10 % fetal 

bovine serum (Sigma; St. Louis, MO).  Medium was changed twice weekly and 

cultures were passaged with 0.25 % Trypsin EDTA (Lonza Inc., Walkersville). 

  

3.2.5 Confocal Microscopy and Imaging 

Saos-2 GFP-f cells were cultured on the roughness gradient substrates 

and incubated for 24 h at 37 °C.  Live cell, real-time imaging was performed 

within a temperature controlled POC chamber retrofitted on the motorized stage 

of a Leica TCS SP2 confocal laser scanning microscope (CLSM) (Leica 

Microsystems Inc. Exton, PA).  Green fluorescent images of cells were acquired 

using a 488 nm excitation with a 500 to 535 nm emission bandpass filter. All 

image frames underwent two line and frame averaging.   For higher throughput 
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cell attachment and adhesion imaging, tile-scanned CLSM images were obtained 

at low (10X objective, numerical aperture (NA) =0.7) magnification over a 2.5 mm 

x 30 mm region (n = 6).  For high-content imaging, single cells were viewed 

under high magnification (63x oil immersion objective NA=1.3) for the 

quantification of morphologically based cell descriptors (Image Pro Plus, Silver 

Spring, MD) and functional data (e.g. cell attachment and spreading).  For the 

high-content imaging 15-30 cells per position (5 positions per composition) were 

examined for two independent substrates (n = 2).   

 

3.2.6 Degree of Cell Attachment  

Cells were seeded (6000 cells/ cm2) on polymer gradient substrates and 

incubated for 24 h (n = 2).  The culture medium was removed and the disks were 

washed carefully with PBS to remove any unattached cells.  The roughness 

gradients underwent tile scanning as described previously.  The total number of 

cells within a region was determined. 

 

3.2.7 Degree of Cell Adhesion Strength  

The cell adhesion strength was quantified by determining the centrifugal 

force required to detach a critical fraction of adherent cells from the respective 

position on the gradient substrates.  Cells were seeded (6000 cells/ cm2) on the 

gradient substrates and allowed to adhere for 1 h.  Samples were then inverted 

and plates were filled with 1x DPBS solution (Lonza Inc.).  The substrates were 

subjected to stepwise increases in centrifugal force ((200 to 800) rpm, 

corresponding to (9 to 146) x g) in a Beckman centrifuge for 5min at room 
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temperature.  The number of adherent cells remaining on each surface was 

determined microscopically in six random positions on two independent samples 

(n = 2).  The mean detachment force required to remove a critical fraction of 

adherent cells was calculated from the following relationship: 

)( mccVRCFf    (Equation 3-2), where RCF  is the centrifugal force applied 

to the samples, cV is the volume of a cell, and c  and m are the densities of a 

cell and the medium respectively244. 

 

3.2.8 GFP-farnesylation Based Morphometric Descriptors of Single Cells  

Individual cell images of GFP-fusion protein expressing cells acquired 

through confocal microscopy were exported to Image Pro Plus (Version 5.1 for 

windows, Media Cybernetics, Inc., MD, USA) for morphometric descriptor 

generation.  Image processing algorithms included contrast enhancement, low 

pass/sobel/flatten filtering, intensity-based thresholding, morphological 

operations, and parameter measurements.  15-30 at cells examined from each 

position were used to calculate a population distribution for each descriptor.  

The GFP-f descriptors were analyzed in two ways.  The first utilized the 

ability of GFP-tagged farnesylation protein to fluorescently demarcate the plasma 

membrane.  This analysis was not affected by variations in GFP-f fluorescence 

intensity, but was valid as long as the plasma membrane demarcation could be 

identified through image processing algorithms.  It was possible to measure the 

cell boundary through membrane demarcation at even minimal fluorescence 

signaling around the plasma membrane.  This analysis provided us with various 
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cellular morphologic parameters: area; perimeter; lengths of major and minor 

axes of the ellipse circumscribing the same geometric area of the cell; mean 

radius; mean diameter; roundness; protrusions; protrusion length; mean feret 

length; maximum feret length; and minimum feret length.  The second mode of 

analysis scrutinized the variation in GFP-f fluorescence intensity within a single 

cell area.  This analysis relates to the level of intracellular expression of the 

farnesylation protein and to Ras-mediated cell signaling activity, as described 

above. It provided us with another class of descriptor parameters: mean, sum, 

and standard deviation of density (GFP-f fluorescence intensity normalized to cell 

area); margination; heterogeneity; and clumpiness.   

All descriptors listed were calculated utilizing standard object descriptors 

provided with Image Pro Plus software.  SPSS statistical software (SPSS; 

Chicago, IL, USA) was then used to determine which high-content descriptors 

correlated best with surface roughness and cell attachment on the gradient 

surfaces.  Bivariate correlation coefficients were computed relating each of the 

descriptors with surface roughness and cell attachment.  Correlation coefficients 

that were found to be statistically significant (p<0.05 unless otherwise noted) 

were extracted for further analysis. 

 

3.2.9 Statistical Analysis 

Statistical analysis was performed on morphometric parameters using 

SPSS software and included analysis of variance (ANOVA) with Tukey‘s HSD 

post hoc method and other multivariate statistical tools.  The differences were 
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considered significant for p < 0.05 unless otherwise noted.  Error bars indicate 

the standard uncertainty around the mean. 

 

3.3 Results and Discussion 

3.3.1 Two-Dimensional Gradient Fabrication 

 Significant efforts have been expended to develop a versatile platform 

capable of varying one or more material properties with well-defined spatial 

constraints for biomaterials applications.  However, unexpected physical and 

chemical variations which occur during the material processing remain a 

persistent challenge249.  These variations impede a correlation-based 

interpretation of biological events.  The combinatorial platform presented in this 

study was designed to vary two material properties, i.e., surface topography and 

chemical composition in a two-dimensional gradient platform (Figure 3.1b).  This 

platform affords the simultaneous evaluation of the topography changes that 

present themselves during the phase separation process within a series of 

discrete blend compositions.  Unlike current microarray-based methods for the 

concurrent assessment of hundreds of potential biomaterials254, the orthogonal 

gradient approach in this study focuses on the detailed examination of the effects 

of two material properties; surface topography associated with phase separation 

and composition, on cellular responses within a single substrate. 

 The phase-separation technique has been utilized to produce a variety of 

surface features in polymer blends98,100-102,249,255.  Unlike other technologies, 

including laser ablation256,257, helium irradiation258, and imprint lithography89, 

which produce discrete topographical features on polymer surfaces, this 
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temperature gradient method produces a wider variation in surface properties.  

The demixing process was induced by annealing the blends of pDTEc/pDTOc on 

a hot stage possessing a linear temperature gradient.  This resulted in a 

composition-dependent change in the surface roughness and surface-available 

phase fraction, which were determined by AFM measurements (Figure 3.2).  The 

slope of the roughness variation was determined mainly from the pDTEc content 

in the blend.  Phase separation is a kinetically controlled process and as the 

temperature of the thermal stage approached the glass transition temperature 

(Tg) of the pDTEc (99.2  0.7 and 52.6  1.6 oC for pDTEc and pDTOc 

respectively)100 the demixing process slows appreciably.  The phase-separated 

surface of 50/50 pDTEc/pDTOc blends exhibited RMS roughness values ranging 

from 68 nm to 5 nm.  Similar pseudo-linear curves with varying slopes in the 

surface roughness were observed on 70/30 and 30/70 pDTEc/pDTOc blends 

with RMS roughness values ranging from 35 nm-5 nm and 50 nm-5 nm, 

respectively (Figure 3.2).  The reproducibility and the pseudo-linear increase in 

the surface roughness that were demonstrated in this study indicate that the 

temperature gradient technologies can be utilized as a reliable property-

controlled gradient platform.  Complicating the trend elucidation is the fact that 

the respective components of the phase-separated surfaces exhibit markedly 

different behavior.  The variable annealing temperature procedure yields a profile 

that possesses various amounts of each phase at the surface.  As the individual 

components each have different protein adsorption behavior, the variable profile 
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has rich physico-chemical phase space46.  Composition control in the form of 

discrete blends simplifies further the potential chemical variability.   

 

Figure 3.2:  Surface roughness characterization of surface roughness 

using AFM tapping mode.  

 a) AFM phase images were taken along 30/70 pDTEc/pDTOc roughness 

gradients at an interval of 2.5 mm.  The five positions selected are represented 

by p1 through p5.  b) Comparison of different RMS roughness (computed from 

AFM height images; n=4) along annealing temperature gradients of the 

respective pDTEc/pDTOc blend compositions.  The RMS roughness of the 

respective polymer blends decreases monotonically with composition as the 

temperature approaches the glass transition temperature of p(DTE)c.  The RMS 

roughness of homopolymers (pDTEc or pDTOc) stays constant at 1~5 nm along 
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annealing temperature gradient. The dotted vertical line indicates the extremity of 

the range of roughness conditions shown in Panel 2(a). 

 

3.3.2 Cellular Attachment and Adhesion Evaluation 

 Rapid screening of cell population-level adhesive responses was 

conducted through tile-scanning of images of Saos-2 GFP-f adherent cells to 

different regions of the polymer roughness gradients.  Cells were found to attach 

in greater numbers to the pDTEc than to the pDTOc (Figure 3.3 and 3.4).  As 

both homopolymer surfaces were relatively smooth, these variations in cell 

attachment are likely due to differences in polymer hydrophobicity and protein 

adsorption16.  The homopolymer pDTOc has a longer hydrocarbon pendant chain 

and is more hydrophobic than pDTEc.  This result is consistent with previously 

reported in vitro and in vivo studies demonstrating an inverse correlation between 

cell adhesion, spreading, and growth, and polymer hydrophobicity100,252,259. 

 With regards to surface features, Washburn et al. reported that cells on 

the 12 nm rough surface exhibited increased spreading, more readily entered 

into the proliferative S-phase, and showed more profuse F-actin organization 

compared to those on the 1 nm rough surface260.  This study suggests that cell 

proliferation and cytoskeletal organization are controlled by the nanometer scale 

topography.  The present study showed that for a given blend composition, the 

cell attachment increased monotonically with the degree of surface roughness 

until the RMS value reached 30 to 40 nm in the 50/50 pDTEc/pDTOc blends 

(data not shown).  However, cell attachment to the surfaces with RMS roughness 

values greater than 40 nm was diminished. While, a similar pattern was observed 
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for cell attachment on 70/30 and 30/70 pDTEc/pDTOc blends, the greatest 

overall cell attachment was observed on the 50/50 blends.   

Further, we observed that the locations in the pDTEc/pDTOc blends with 

the most significant changes in topography slope, about (5 to 10) mm along the 

roughness, exhibited RMS roughness values of (30 to 40) nm and maximum cell 

attachment.  Whether the roughness gradient steepness is a significant 

determinant of cell attachment and spreading remains to be confirmed.  Our 

substrates presented both varying roughness and roughness gradient 

steepnesses on different blend compositions, so the roles of roughness and the 

gradients need to be decoupled.  We examined whether cell adhesion profiles 

are governed by a specific gradient steepness of roughness, an index defined as 

steepness of roughness gradient divided by average degree of local roughness 

(Figure 3.4).  This index allows comparison of roughness gradients over regions 

of varying average roughness.  Three trends appear to emerge.  In general, 

regions with greater specific gradient steepness of roughness correlated with 

increased cell adhesion, suggesting that (apart from degree of roughness), the 

degree of gradient of roughness is a likely determinant of cell response.  Second, 

the slope of the linear best fits to Figure 3.4 (see equations in caption for Figure 

3.4) was greatest for the 30/70 pDTEc/pDTOc blend composition, suggesting 

that the gradient steepness has the most pronounced effect on cell adhesion on 

the pDTO-rich blends, consistent with the notion that the homopolymer pDTOc 

elicits lower levels of cell adhesion.  Finally, the 50/50 pDTEc/pDTOc blends 

showed variable cell adhesion for similar values of specific gradient steepness, 
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suggesting that the roughness gradient steepness is a weaker determinant than 

the average degree of roughness and blend chemistry for this blend composition. 

The 50/50 blends had the greatest overall cell adhesion (Figure 3.3&3.4) at 

comparable roughness and lower roughness gradient steepness than the other 

blends and greater adhesion than either of the homopolymer substrates.  This 

seems to support the dominance of blend chemistry in cell adhesion behavior in 

the 50/50 composition.  

 

Figure 3.3: Degree of cell adhesion (24 h) was plotted versus RMS 

roughness on the substrates with roughness gradients.  

Cell adhesion was analyzed at 5 different locations spaced 5 mm apart for each 

compositional strip. The number of cells attached to roughness gradient 
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displayed a biphasic correlation with the RMS roughness of the substrate 

surface. 

 

 

Figure 3.4:  Cell adhesion (24 h) was plotted versus the specific gradient 

steepness of roughness, an index that corrects for varying degrees of 

roughness in different regions of the gradient steepness.   

The number of cells attached to different positions on the substrates and different 

blend compositions are correlated with the ―normalized‖ gradient steepness of 

the substrate surface.  The best fit equations for the three compositions are: 

70DTE/30DTO: y=62.3+182.45x, R=0.69; 50DTE/50DTO: y=70.87+181.54x, 

R=0.89; 30DTE/70DTO: y=58.65+283.25x  R=0.80 
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The degree of cell adhesion strength was measured indirectly by counting 

the number of cells that still remained on the substrate after differential 

centrifugal fields (Figure 3.5 a&b).  The detachment curves demonstrated that 

the cells adhered more strongly to the rough surfaces than the smooth surfaces 

for a given composition; this was indicated by the decreased absolute value of 

the slope of the detachment curve, as compared to the slope of graphs obtained 

from the smoother surfaces in Figure 3.5.  Notably, cells adhered more strongly 

to the 50/50 pDTEc/pDTOc blends than to pDTEc, indicating that polymer 

composition and roughness can cooperatively sensitize cell adhesion and 

cytoskeletal organization.  Our rapid screening studies also revealed that cell 

adhesion force increased monotonically with the surface roughness of the 

substrate on all the blends (Figure 3.3).  In contrast, we found biphasic patterns 

in both cell attachment and spreading, as evidenced by the fact that both cell 

attachment and spreading increased significantly at the position with intermediate 

roughness (RMS value: ~ 40 nm) as compared to other positions with higher or 

lower levels of roughness.  
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Figure 3.5: Saos-2 GFP-f cell adhesion force measurement using high 

throughput imaging.  

(a-c) Saos-2 GFP-f cells were seeded on roughness gradients, incubated for 1h 

and centrifuged at 200~800rpm (9~137xg).   Tile-scans were constructed for 

each of the substrate gradients with the 10x objective of a Leica TCS SP2 

CLSM/MPM microscope. Cell number of GFP fluorescencent cells was 

determined by counting the number of fluorescent cells remaining.  The 5 

positions noted (p1-p5) refer to 5 positions (see Figure 3. 2) along each 
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composition spaced 5 mm apart.  Position 1 corresponds to the roughest portion 

of the gradient, while position 5 corresponds to the smoothest. A montage of the 

gradients of each pDTEc/pDTOc composition after centrifugation was 

reconstructed based on the tile-scanned images (1.5 x1.5 mm) in ImageJ.  A 

single example of one of these montages before centrifugation is shown for the 

70/30, 50/50 and 30/70 pDTEc/pDTOc blends (a-c respectively). The tile scan 

images were then used to determine the number of cells remaining after 

centrifugation under differential forces for the respective blends. The cell 

adhesion force monotonically increased with RMS roughness of the surface 

within individual compositions.  (d) The number of cells remaining after 

application of 40 xg detachment force was compared across polymers. The 

50/50 blend demonstrated the greatest adhesion force at 40 xg. 

 

The mechanistic factors underlying the role of roughness on cell adhesion 

and spreading are not entirely clear.  However, one key link may be through the 

regulation of adsorbed extracellular matrix proteins from the culture environment, 

which in turn may be altered on microphase separated substrates with varying 

chemistry and hydrophobicity.  A number of published reports as reviewed by 

Wilson et al. indicate that the nano-scale surface roughness regulates the cell 

attachment and adhesion force through protein adsorption onto the substrate 

surface: the geometry and chemistry that are changed by the roughness 

formation can influence the concentration, conformation, and activity of the 

adsorbed proteins261.  



87 

 

 

3.3.3 High-content Single Cell Imaging on Substrates with Roughness 

Gradients 

Cell population level differences on substrates with incremental variations 

in surface physiochemical proprties can be too subtle to be captured by high 

throughput or rapid screening.  For such applications, information-rich high 

content imaging is called for.  Recently, Treiser et al. published a technique 

whereby quantitative descriptors of cell morphology are used to parse cell 

response to combinatorial polymer materials with differing chemistry47.  This 

study employed a similar technique to identify descriptors of cellular 

morphometry, which were responsive to changes in the substrate roughness. 

 The high-resolution imaging of the single cells and its quantitative image 

analysis were used to screen the multiple cellular responses to the roughness 

gradient surfaces.  The cell morphology and spreading changed continuously 

along both the roughness gradient axes (Figure 3.6).  At the smooth end of 

pDTEc-rich compositional regions, the cells spread more relative to the 

hydrophobic pDTOc-rich surfaces. This finding is consistent with reports from a 

previous study252.  The fact that pDTEc increases cell-substrate adhesion more 

than cell-cell cohesion as proposed by Ryan et al. might account for the different 

cell behaviors elicited by the two polymers262.  The maximum cell spreading was 

observed at the intermediate position at RMS roughness of (30 to 40) nm in the 

50/50 pDTEc/pDTOc blends.   

 The Saos-2 cells were cultured on pDTEc/pDTOc blends with roughness 

gradients, and the cell areas were computed (Figure 3.6).   The surface 
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roughness behaved in a threshold-like manner; regions containing RMS 

roughness values greater than 5 nm resulted in larger cell areas for the textured 

pDTEc/pDTOc blends as compared to the non-textured homopolymers. The 

RMS roughness exceeding 5 nm led to no significant difference in cell area.  In 

fact, while the surface features ranged from 4.3 nm to 64.2 nm in RMS height 

(positions located (0 to 15) mm), the cell area remained relatively constant 

except in a few positions on the 50/50 roughness gradient.  One of the key 

findings of our high-content imaging is that, whereas the cell area is responsive 

to the "presence" of surface topography102, it lacks sensitivity to differences in 

nanometer scale surface features255.  

 

Figure 3.6:  Normalized cell area versus roughness. 
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Cell area was utilized to characterize the spreading behavior of Saos-2 GFP-f 

cells cultured on the two dimensional gradients for 24 hours.  Similar to 24 h cell 

attachment, Saos-2 GFP-f cell spreading displayed a biphasic correlation to 

surface roughness across compositions with intermediate roughness promoting 

the largest cell areas. (n =15 to 30 cells per condition). 

 

 Because the cell area correlated poorly with changes in the surface 

roughness, high-content image processing and statistical analyses were 

particularly valuable to potentially identify other cell morphometric parameters 

that were sensitive to the changes in roughness within individual chemistries.  

We found two such parameters: "perimeter length" of GFP-f on the 70/30 and 

30/70 pDTEc/pDTOc blends, and the "standard deviation of the intracellular 

intensity" of GFP-f on 50/50 pDTEc/pDTOc blends, which correlated well with the 

changes in the surface roughness (Figure 3.7).  While the perimeter is often 

used in combination with cell area to measure cell spreading, we report that only 

the cell perimeter length was responsive to the surface roughness.  Since 

surface roughness can modulate cell response by affording increased anchor 

sites for cellular membrane processes263,264, changes in the membrane function 

of the Saos-2 cells might be guided by the roughness gradient and then 

coordinate changes in global cell shape.  The protein farnesylation has been 

implicated in alteration of both the cytoskeleton organization and cell functions 

via the activity changes of the Rho and Ras protein family265,266.  An activation of 

this protein family and their downstream effectors is an important event in the 



90 

 

actin-myosin operation and focal adhesion assembly, both of which play a 

significant role in actin cytoskeleton organization and cell adhesion151,267,268.  The 

standard deviation of farnesylation intensity, the second high-content parameter 

that our analysis yielded, may reflect some aspect of cellular farnesylation activity 

and thus implicate a direct or an indirect role for protein farnesylation in the 

signaling events downstream of cell adhesion to our gradient substrates.  It 

should be noted that this parameter was correlated with the variations in the 

surface roughness of the 50/50 blends, but it was not as well correlated on the 

other compositional blends.  Interestingly, the 50/50 blends were the substrates 

that elicited the greatest increase in cell response to the increase in surface 

roughness.  Of note, while the statistically significant (p<0.05) correlation 

coefficients for surface roughness were found for all of the blends, the value of 

the coefficients was low (< 0.90) for the 70/30 and 50/50 pDTEc/pDTOc blends 

(Figure 3.7).  The pDTEc represents a polymer surface composition that 

promotes favorable spreading and attachment of cells in comparison to 

pDTOc252.  The low values of the correlation coefficients for the blends with  50 

% pDTEc content may indicate that the increased presence of pDTEc lowers the 

ability to resolve cell morphologic changes that result from roughness alone.  

This would imply that the chemistry effect of the pDTEc dominates over the 

changes in the surface roughness.  However, in polymer conditions composed of 

more pDTOc (e.g. 30/70 blends), the surface roughness effects on cell 

morphology may be resolved.  
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 A major challenge in biomaterials characterization remains how to relate 

qualitative and quantitative changes in cell morphology to biological functions of 

interest.  While the cell area provides a qualitative measure of cell behavior, 

quantitative correlations and the possibility that other cell morphometry-based 

descriptors will correlate with greater sensitivity and accuracy must be explored.  

By utilizing high-content imaging, descriptors that correlated best with 1 h cellular 

attachment were identified (Figure 3.7).  Briefly, a bivariate correlation coefficient 

was calculated (Pearson correlation coefficient) utilizing SPSS software.  

Correlation coefficients that were found to be statistically significant (p<0.05) 

were flagged and identified.  The heat map compares the descriptors on all of the 

surfaces against those on single smooth control surfaces, but it does not make 

comparisons among the different degrees of roughness.   Therefore, while the 

descriptor can be statistically different on all values of roughness versus the 

smooth surface, they could all have the same value on the different values of 

roughness and therefore have a poor correlation coefficient.  Since the heatmap 

does not represent the value of the descriptor, it alone is not able to identify 

which descriptors best correlate linearly with roughness, hence necessitating the 

use of statistical analysis.  Overall, the cell area was found to be a reliable 

predictor of cell attachment on the 50/50 blends but was not well correlated with 

attachment on the 70/30 and 30/70 pDTEc/pDTOc blends.  However, the cell 

roundness and the length of the major axis of cells correlated with the 1 h cell 

attachment on the 70/30 and 30/70 pDTEc/pDTOc blends, respectively.  The 

identification of descriptors that describe cell behavioral polarity as those that 
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correlate best with early cell attachment implicates global cytoskeletal 

organization as a dominant mediator or effector of early cell attachment to 

textured substrates. 
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Figure 3.7:  Quantitative characterization of cell shape descriptors and 

morphologic expression of GFP-farnesylation using cell morphometric 

descriptors.  

 a*) A ‗heatmap‘ demonstrates the difference along roughness gradients of 

different pDTEc/pDTOc compositions.  Cell population descriptors were 

determined for cells  (15-30 cells per position) cultured at different locations 

along individual roughness gradient positions (0, 5, 10 and 15 mm) within 

compositional blends.  An ANOVA with post-hoc Tukey‘s HSD was utilized to 

determine differences in mean values of cell population descriptors as compared 

to the mean values of population descriptors on smooth surfaces of the same 

composition.  The ―heat map‖ representation identifies the statistical differences 

(P-value) between descriptor values comparing positions of increasing 

roughness and smooth positions utilizing a color-based keying system.  A strong 

statistical difference in descriptor value (ANOVA p value approaching 0) is 

represented by blue, while no statistical difference (p value approaching 1) by 

red, an intermediate color between dark blue and red indicates moderate 

statistical difference (p value between 0 and 1)  The heat map does not compare 

the mean values of descriptors between different levels of roughness within the 

same compositions, nor do the color bars correlate to the direction of the 

difference.  b*) Identified descriptors that are sensitive to changes in surface 

roughness within polymer chemistries. Cell perimeter2 (another method of 

calculating perimeter of a cell), density (GFP-f fluorescent intensity normalized to 

cell area) standard deviation and perimeter were identified as descriptors that 
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were sensitive to surface roughness of 70/30, 50/50 and 30/70 pDTEc/pDTOc 

respectively.  c*) Identified descriptors that are well correlated to short term cell 

attachment. The 1h cell attachment was intercorrelated to cell area, axis major 

and roundness of 70/30, 50/50 and 30/70 pDTEc/pDTOc respectively.   *1) 

represents polymer blends with 70/30 pDTEc/pDTOc;  *2) represents polymer 

blends with 50/50 pDTEc/pDTOc;  *3) represents polymer blends with 30/70 

pDTEc/pDTOc.  

 

 Perhaps most striking about the presented findings is the identification of 

individual measures of cell shape that are sensitive to and correlate with surface 

topography and cellular behaviors.  Typical qualitative analysis may identify 

elongation as a hallmark of surface roughness, but this relationship lacks 

reproducibility and is insensitive to small changes in material properties.  The 

high-content imaging of cells cultured on the dual-gradient substrates permitted 

the identification of cell shape descriptors that are sensitive to either roughness 

or surface wettability (Figure 3.7).  The polygonal area of the cell was found to 

correlate with the surface energy of the material, while the perimeter length of the 

cell and the standard deviation of the intensity of GFP-f were all found to 

correlate statistically with the surface roughness.  Current studies suggest that 

cell morphology and the generation of cytoskeletal tension are key regulators of 

cell function and signaling.  Cell studies have highlighted the mechanisms by 

which the cell shape regulates cell cycle progression, apoptosis, and 

differentiation138,150,269,270.  If cell shape is an essential regulator of cell response 
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to materials, then detailed quantitative analysis of cell morphology, as presented 

in this study, may provide new insights to determine how material chemistry and 

roughness interact to produce observable differences in the cell behaviors. 

 

3.4 Conclusion 

In this study, we employed both rapid screening and high-content imaging, 

two complementary approaches, to examine cellular adhesion and 

morphogenesis on compositionally differing substrate blends of two members of 

tyrosine-derived polycarbonates that possess a gradient in phase-separation 

which induce several surface variations including hydrophobicity, individual 

polymer component and surface roughness.  The adhesion of Saos-2 cells was 

rapidly screened via tile-scanning and was found to be maximized at 

intermediate regions, characterized by intermediate levels of roughness and the 

steepest roughness gradient.  Through high-content imaging, we identified 

different morphometric parameters of the organization and intensity of GFP-f that 

correlate best with the most adhesive substrate compositions (chemistry) or with 

the degree of surface roughness.  We examined the correlations between the 

defined parameters and the cell functions (e.g. early cell adhesion) obtained by 

rapid screening.  Thus, by using a combination of high-throughput and high-

content analysis, we demonstrated that quantitative descriptors of cell 

fluororeporters can be effectively identified to parse the biologically responsive 

properties of a library of polymer substrates. 
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4 Cell Cytoskeleton and Nucleus Based High Content “Composite” 

Profiling on Stem Cell Differentiation and Self-Renewal 

Note: Part of this chapter is reproduced from the following publication: 

Er Liu, Simon Gordonov, Matthew Treiser, and Prabhas Moghe.  Parsing the 

early cytoskeletal and nuclear organizational cues that demarcate stem cell 

lineages. Cell Cycle. 9: 2108 – 2117 (2010).  Used by permission.   

 

4.1 Introduction 

Stem cells have garnered interest in the field of regenerative medicine due 

to their ability to differentiate into distinct functional tissue types.  In particular, 

human mesenchymal stem cells (hMSC), isolated from bone marrow or adipose 

tissues have been extensively characterized with regards to their multi-lineage 

differentiation capabilities53,271-273.  A variety of exogenous cues have been 

investigated to manipulate stem cell differentiation, including soluble growth 

factors274,  substrate composition275, and underlying matrix compliance276.  hMSC 

differentiation behaviors, particularly those toward osteogenic and adipogenic 

lineages, were reported to be influenced by overall cell shape and regulated by 

RhoA GTPase activity and cytoskeletal tension138.  Therefore, our laboratory 

members utilized the high content imaging platform developed in Chapter 3 to 

screen the actin cytoskeletal organization of hMSC to discern heterogeneous 

subpopulations exposed to osteogenic versus adipogenic induction cues277.   

This profiling methodology utilizes quantifiable higher-order actin cytoskeleton 

organization features to parse individual stem cells at time points as early as 24 
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hours that commit to different long term fates (Figure 4.1).  The early 

identification of stem cell lineage commitment based on quantification of 

cytoskeletal features demonstrates significant advantages over cell population 

pooled assays like PCR analysis, which cannot identify the heterogeneity of 

differentiation within a particular condition on an individual cell basis.  

 

Figure 4.1: Deciphering early genes and cellular morphometrics governing 

long-term stem cell lineage fates.  

A new approach based on high content imaging was recently proposed to 

resolve early cytoskeletal organization as a basis to discern differential lineage 

outcomes and track lineage specification in human mesenchymal stem cells. 

Early cytoskeletal organization parsed cells cultured within osteogenic (OS) 

versus non-osteogenic conditions but failed to discriminate, even at later times, 

between adipogenic (AD) and basal (BA) conditions.     
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Despite its ability to successfully parse out heterogeneities in cytoskeletal 

architecture of adipogenic (AD) and osteogenic (OS) treated hMSC, this 

methodology was unable to effectively distinguish adipogenic lineage committed 

hMSC from non-differentiated hMSC treated with basal growth media (BA) using 

cytoskeletal features alone.  The cell cytoskeleton itself is not isolated, but is 

actively linked to the cell nucleus.  The eukaryotic cell nucleus is a membrane-

enclosed compartment containing the genome and associated molecules 

supported by a highly insoluble filamentous network known as the 

nucleoskeleton or nuclear matrix, which is believed to play a role in maintaining 

nuclear architecture and organizing nuclear metabolism.   Previous studies have 

shown that within the cell nuclear matrix domains there are dynamic nuclear 

transactions between both soluble and insoluble components involving in the 

control of multiple nuclear transactions17,278-281.  Similar to the cytoplasm and its 

skeleton, the nucleoplasm is highly structured and very crowded with an equally 

complex skeletal framework.  Increasing evidence shows that the two skeletal 

systems are functionally contiguous, suggesting a dynamic cellular matrix 

connecting the cell surface with the genome280.  With regards to stem cell 

differentiation, previous studies have demonstrated that although the genome is 

maintained within the nucleus when stem cells undergo differentiation processes, 

the shuttling of macromolecules between the nucleus and the cytoplasm permits 

a constant exchange of information and materials necessary for the control of 

gene expression282.  Moreover, studies also report a link existing between 
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nuclear structure and cell adhesion complexes that are responsible for the cell's 

interaction with extracellular components through the cytoskeleton283-286.   

Collectively, the cell nucleus, in addition to the cell cytoskeleton, could 

potentially provide alternative clues in capturing stem cell differentiation versus 

self-renewal.  To this end, we utilized DNA microarrays to probe whether nuclear 

and cell cycle related genes in hMSC were differentially up-regulated after 

exposure to differentiation/growth medium conditions.  Clear variations were 

observed in cell proliferation rates and a number of key nuclear transport and cell 

cycle proteins, suggesting that nuclear events are sensitively influenced early on 

prior to lineage commitment.  A major goal of this study was to extend the high 

content imaging-based profiling platform discussed in Chapter 3 beyond the 

cytoskeleton to include the nuclear organization as well. A good candidate 

nuclear protein for nuclear profiling was determined to be the nuclear mitotic 

apparatus (NuMA).  NuMA is a nuclear matrix protein closely related to cell cycle 

progression through tethering spindle microtubules to their poles during mitosis. 

It has also been linked to nuclear transport components in interphase and mitosis 

and plays a role in spindle positioning and asymmetric cell division (stem cell 

differentiation versus self renewal) 17,131,164,165,287.  Based on these findings, 

NuMA organization and expression may mirror changes in differentiation and 

cancerous progression (will be addressed in the next chapter), and is acutely 

affected by the redistribution of histone acetylation and histone methylation 

patterns, prior to cellular phenotypic changes131,165.  Thus, a composite, 

cytoskeletal-nuclear organization based high content imaging approach was 



101 

 

applied, demonstrating that early variations in hMSC within distinct lineage 

inductive environments could be more sensitively discerned. 

 

4.2 Materials and Methods 

4.2.1 Cell Culture 

Human mesenchymal stem cells (hMSC) were obtained from commercial 

sources (Lonza; Walkersville, MD).  Cells were cultured in a humidity-controlled 

environment under 5% CO2 and 37°C and fed every 3-4 days with growth media 

(basal media) supplemented with commercial SingleQuot‘s© (Catalog # PT-

3001, Lonza).  Cells were received at passage 1 and used for up to 4 passages. 

Cells were subcultured upon reaching 90% confluence.  Osteogenic induction 

(OS) and adipogenic induction/maintenance (AD) media were reconstituted as 

per manufacturer (Catalog #‘s PT-3002 and PT-3004 respectively, Lonza). 

Adipogenic media was cycled with 3 days induction followed by 1 day 

maintenance. 

 

4.2.2 hMSC Differentiation on Fibronectin-Coated Glass Substrates  

Fibronectin- (BD Biosciences; Franklin Lakes, NJ) coated glass substrates 

were created via the application of 400 L of 25 g/mL phosphate buffered saline 

(PBS) solution to each well of a glass bottom 24-well plate for 1 hour at room 

temperature.  Bone marrow derived hMSC (Source: Lonza Inc.) were applied at 

10,000 cells per cm2 and allowed to attach in basal medium for 4 hours.  After 

the 4-hour attachment period, the basal medium was replaced with appropriate 
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induction media.  For differentiation assays, cells were cultured for 2 weeks and 

then stained for alkaline phosphatase activity and lipid production as described in 

the cell labeling section.  

 

4.2.3 Gene Microarray Analysis of hMSC under Induction Media 

At 4 hour and 24 hour time points after hMSC were cultured on 

fibronectin-coated glass and treated with induction media as described previously 

in induction media, total mRNA was extracted (Catalog # 74106, Qiagen; 

Valenica CA) and reverse transcribed to produce a cDNA library (Catalog # 

4374966, Applied Biosystems; Foster City, CA).  Gene microarrays were 

analyzed using Affymetrix Microarray System. Additionally, microarray data 

normalization, gene selection, and hierarchical clustering from the values 

produced in the microarray chip readout was performed using dChip 

(www.dchip.org, freeware version 8/7/09). This processed data was used to 

identify genes of most variable expression between media condition treatments 

and time points. Briefly, normalization was performed to baseline intensity from 

one of the microarray chip files that displayed median intensity values on the chip 

image file. Replicate groups were designated per time point and media condition 

(10 total samples combined in duplicate into 5 conditions based on media and 

time point).  Unsupervised sample and gene clustering was used to identify and 

visualize sample clusters and their signature genes from specific gene 

ontologies.  Standardization across conditions was performed by subtracting the 

mean and dividing by the standard deviation.  The distance metric between 

genes was defined as 1-r, where r is the Pearson correlation coefficient between 
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the standardized gene expression values across samples.  Genes were ordered 

by cluster tightness and the centroid linkage method was used to produce the 

cluster plot.  Dimensionality reduction (PCA) of the gene data sets for 

visualization in 3-D of cross-conditional variability in gene expression was 

performed using Matlab‘s (Mathworks) statistical toolbox. In particular, each 

principal axis in the graph represents a linear combination of all the genes shown 

in the clustering analysis.  Different weights were placed for each variable to 

produce an increasing contribution of each consecutive principal axis (1, 2, and 

3) to the variability in gene expression between media treatment conditions. 

 

4.2.4 Cell Labeling 

Functional marker staining: to stain alkaline phosphatase, cells were fixed 

with 4% paraformaldehyde in PBS, permeabilized with 0.1% Triton-X 100 in PBS, 

rinsed with PBS and stained with Fast Blue RR/napthol (Kit # 85, Sigma-Aldrich; 

St. Louis, MO).  To stain intracellular lipids, cells were washed with 60% 

isopropanol and then stained with 30 mg/mL Oil Red O (Sigma).  

Subcellular protein staining: prior to the addition of the primary antibody to 

NuMA, cells were permeabilized using a buffer of 0.1% Triton X-100 in PBS for 

30 minutes.  Mouse anti-human primary antibodies were used at a 1:50 dilution 

in 5% goat serum in PBS to mitigate non-specific binding.  Each well received 75 

μL for 1 hour at room temperature on rocker. Primary antibody was then removed 

and three 10 minute washes were performed with washing buffer (0.1 % Tween-

20, 0.01% Triton X-100 in 1x DPBS).  The secondary antibody used was 
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Alexa488 goat-anti-mouse at a dilution of 1:200 in washing buffer overnight at 

4°C on rocker. The actin cytoskeleton was stained with Phalloidin TexasRed 

(Invitrogen). Cell nuclei were counterstained with 1 g/mL Hoechst 33342 

(Sigma).  Samples were washed with PBS, mounted in fluoroguard anti-fade 

reagent, and stored in the fridge before imaging on a Leica Multiphoton/Confocal 

Microscope. 

 

4.2.5 High Content Imaging-Based Profiling Platform Build-up 

The overall high content imaging-based profiling platform is composed of 

three modules: high resolution cell imaging and microscopy module, subcellular 

feature extraction module and data mining module (Figure 4.2a), as described in 

the following paragraphs: 

Confocal/Multiphoton Microscopy and Subcellular Feature Extraction of 

Cells 

Fixed and stained cell samples were imaged using a 63X objective (NA = 

1.3) with a Leica TCS SP2 system (Leica Microsystems Inc.; Exton, PA).  

Various fluorophores were excited either through visible laser (single photon 

excitation) or IR laser (two photon excitation). The excitation and emission setup 

parameters of the microscope are listed in Table 4.1. Optical sections were 

performed on cells with ~20um thickness using a step-size of 0.5um; average 

projection images were generated using a collection of these z-stacks for image 

analysis.  Raw images of cells were exported to Image Pro Plus Version 5.1 

(Media Cybernetics; MD) and went through a series of image processing steps 
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including: background subtraction, contrast enhancement, filtering, and 

segmentation to ensure that reporters of interest within the whole cell or cell 

nucleus were selected. These reporters were then used to yield three categories 

of subcellular features: decoding reporter protein expression (intensity-based), 

reporter morphology (morphometrics), and texture and spatial distribution (higher 

order elements) of the reporter. This cell/nucleus reporter data was then exported 

to an Excel spreadsheet for further analysis (Figure 4.2b).  

Table 4.1: Excitation and emission setup of fluorophores used in the thesis 

Fluorophore name Excitation max [nm] Emission max [nm] 

Hoechst 33342  780 (two-photon excitation) 483 

Alexa Fluor 488  494 519 

Alexa Fluor 546  554 572 

Alexa Fluor 633  632 648 

Alexa Fluor 647  652 668 

Alexa Fluor 594  591 618 

 

Table 4.2: List of Cell Nuclear Descriptors 

This table lists a pool of cell nuclear descriptors quantified for each cell.  The 

definition of the feature and its possible biological relevance is listed.  Nuclear 

morphology features are highlighted in red, intensity based features are 

highlighted in yellow, and textural/spatial organizational features are highlighted 

in blue. 

Nuclear Features Description 

Angle 

Reports the angle between the vertical axis and the major 
axis of the equivalent ellipse.  Within the context of this study 
it would capture randomly oriented versus aligned cell nuclei, 
which might be indicative of cell orientation itself.    

Area Reports the total area of each cell nucleus. 

Polygonal Area 
Reports the area of the polygon that defines the object‘s 
outline. Anorhter metric measurement for area of cell 
nucleus. 
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Area/Box 
Reports the ratio between the area of each object and the 
area of the imaginary bounding box. 

Aspect 
Reports the ratio between the major and minor axes of the 
ellipse with the same area, first and second order moments.  
The simplest way to define the cell nuclear shape factor.   

Axis (major) 
Reports the length of the main axis of the ellipse with the 
same area, first and second order moments. 

Axis (minor) 
Reports the length of the minor axis of the ellipse with the 
same area, first and second order moments. 

Box Height 
Reports the height of the smallest bounding box that 
completely encompasses the whole cell. 

Box Width 
Reports the width of the smallest bounding that completely 
encompasses the whole cell. 

Box Ratio Reports the ratio between the Box Width and Box Height 

Dendrites 

Reports the number of 1-pixel thick open branches.  Within 
the context of the whole cell, it represents stretching process 
of the cells (migrations). In nuclear reporters, such as nucleus 
matrix protein NuMA, it could represent the number of 
traslocation of NuMA between cell nucleus and extra-nuclear 
environment.  

Dendritic 
Length 

Reports the total length of all dendrites. 

Maximum 
Diameter 

Reports the length of the longest line joining two outline 
points and passing through the centroid of the cell nucleus. 

Mean Diameter Reports the average length of the diameters. 

Minimum 
Diameter 

Reports the length of the shortest line joining two outline 
points and passing through the centroid of the cell nucleus. 

End Points 
Reports the number of 1-pixel thick processes stemming from 
the cell nucleus. 

Maximum Feret 
Length 

Reports the longest caliper length. 

Mean Feret 
Length 

Reports the average caliper length. 

Minimum Feret 
Length 

Reports the shortest caliper length. 

Fractal 
Dimension 

Reports the fractal dimension of the cell nucleus‘s outline.   

Cell Area/Total 
Area 

Reports the ratio between the areas of the cell nucleus to that 
of the entire field of view. 

Center-X Reports the geometric center of the cell nucleus, X-cordinate. 

Center-y Reports the geometric center of the cell nucleus, Y-cordinate. 

Center-X(mass) 
Reports the intensity weighted centroid of the cell nucleus, X-
cordinate. 

Center-Y(mass) 
Reports the intensity weighted centroid of the cell nucleus, Y-
cordinate. 

Perimeter Reports the length of the outline of each cell nucleus using a 
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polygonal outline. 
Perimeter2 Faster but less accurate measure of the perimeter. 
Perimeter3 Reports a corrected chain code length of the cell perimeter. 

Convex 
Perimeter 

Reports the perimeter of the convex outline of each cell 
nucleus. 

Elliptical 
Perimeter 

Reports the perimeter of the ellipse surrounding the outline of 
each cell nucleus. 

Perimeter Ratio 
Reports the ratio of the convex perimeter to the perimeter 
outline of each cell nucleus. 

Maximum 
Radius 

Reports the maximum distance between each cell nucleus‘ 
centroid pixel position and its perimeter. 

Minimum 
Radius 

Reports the minimum distance between each cell nucleus‘ 
centroid pixel position and its perimeter. 

Radius Ratio 
Reports the ratio between Max Radius and Min Radius for 
each object, as determined by Max Radius / Min Radius. 
Another shape factor metric for cell nucleus. 

Roundness 

Reports the roundness of each object, as determined by the 

following formula:  (perimeter2) / (4 *  * area). Circular cell 

nucleus will have a roundness = 1; other shapes will have a 
roundness > 1.  Standard metric for nuclear shape 
measurement.   

Size (Length) 
Reports the feret diameter (caliper length) along the major 
axis of the cell nucleus. 

Size (Width) 
Reports the feret diameter (caliper length) along the minor 
axis of the cell nucleus. 

Minimum 
Density 

Reports minimum intensity inside the object (cell nucleus).   

Maximum 
Density 

Reports maximum intensity inside the object (cell nucleus).  

Segmentation 
range 

Reports the intensity range that each object (cell nucleus) 
was segmented into. 

Mean Density 
Reports the mean intensity of all pixels within a cell nucleus.  
Correlates to the average amount of fluorescently tagged 
NuMA protein present within a given cell nucleus. 

Sum of the 
Density 

Reports the sum of the total intensity values of all pixels 
within a cell nucleus.  Corresponds to the total amount of 
positive NuMA-staining within the cell nucleus. 

Integrated 
Optical Density 

Reports the average intensity of each object normalized by 
the area of the cell nucleus. 

Standard 
Deviation of 

Density 

Reports the standard deviation of the intensity of pixels within 
a cell nucleus.  This represents the degree to which the 
NuMA protein is localized into cell nucleus of equal staining 
intensity. 

Holes 
Reports the number of independent contiguous areas with no 
staining within a cell nucleus. Also can be regarded as NuMA 
absent areas 
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Hole Area 
Reports the area of holes within an object. Also  can be 
regarded as total NuMA absent areas.   

Hole Ratio 

Reports the ratio of the object area excluding holes, to the 
total area of the object, as determined by Area / (Area + 
Holes Area).  One metric that provide the degree of NuMA 
localization within cell nucleus. 

Margination 
Reports the distribution of intensity between the center and 
the edge of the cell nucleus.  Describes the relative spatial 
distribution of NuMA within the cell nucleus.  

Heterogeneity 

Reports the fraction of pixels that vary more than 10% from 
the average intensity of the cell nucleus.  One texture feature 
that describes how well NuMA proteins are organized winthin 
cell nucleus.  

Clumpiness 

The fraction of heterogeneous pixels remaining in a cell 
nucleus after an erosion process. Another spatial distribution 
feature that reflects the degree of NuMA protein clustering 
within cell nucleus.   

 

Data Mining and Computational Methods to Parse Nuclear-Encoded Stem 

Cell Phenotypes 

As described in the previous section, there is a large pool of quantifiable 

features of the cell nucleus and nuclear protein NuMA.  Features that were 

defined include: cell nuclear morphological features, intensity-based features that 

relate to the expression level of NuMA protein, textural and NuMA organizational 

features that describe the spatial distribution of NuMA protein and their location 

within the nucleus.  A complete list of the nuclear features and their relevance to 

the cell nucleus and NuMA protein is shown in Table 4.2.  Due to the large 

numbers of nuclear descriptors for each cell, it‘s barely possible to visualize such 

a high dimensional dataset.  Therefore, for better visualization of the cell 

descriptor data set, dimension reduction was performed using a variety of 

techniques such as linear methods (principal component analysis (PCA)), non-

linear methods (Probabilistic PCA,  Factor Analysis (FA), Multidimensional 
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scaling (MDS)) or embedding methods (Isomap, Local Linear Embedding (LLE),  

Laplacian Eigenmaps, Hessian LLE), all implemented utilizing Matlab‘s toolbox 

(Mathworks Inc. MA http://www.mathworks.com/matlabcentral/linkexchange). 

Using Matlab, these datasets were graphically reduced to three-dimensional 

representations where each point represents an individual cell (Figure 4.2c).  In 

particular, PCA involves a mathematical transformation that groups a number of 

possibly correlated descriptors into a smaller set of uncorrelated ―integrated 

descriptors‖ called principal components given the fact that some of the extracted 

subcellular descriptor metrics could be redundant.  Using this methodology, the 

higher dimensional descriptor data set was reduced to three new dimensions, 

each representing a linear combination of a group of raw descriptors.  The low 

dimensional features underwent classification using linear discriminant analysis 

(LDA), or support vector machine (SVM), with a randomized two-fold cross 

validation on individual data sets utilizing a radial distribution function (Figure 

4.2d).  Two parameters, sensitivity and specificity, were used to evaluate the 

performance of the classification.  Sensitivity measures the proportion of actual 

positives that are correctly identified as such, while specificity measures the 

proportion of negatives that are correctly identified.  The optimal 

classification/prediction can only be achieved when the sensitivity and specificity 

are both high, while low values of sensitivity and specificity indicate poor 

classification/discrimination between two datasets. 

http://www.mathworks.com/matlabcentral/linkexchange
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Figure 4.2: Schematic of High content Imaging Based Cell Profiling 

platform.   

A) Overall profiling platform, including cell imaging module, subcellular feature 

extraction module, and data mining module.  B) Subcellular feature extraction 

from high resolution images using image processing techniques; a pool of 50 cell 

descriptors was created and exported for further data mining.   C) Subcellular 

feature dimension reduction using Matlab‘s toolbox.  D) Further classification to 

identify the degree of separation of two clusters of cells based on dimensionally 

reduced subcellular features.  Sensitivity and specificity were generated to report 

how different the two clusters of cells are from each other.  For better 

visualization, a receiver operating characteristic curve was plotted based on 

sensitivity and specificity, where upper-left of the curve represented perfect 

separation of two clusters of cells and at the 45 degree slope line represented 

poor separation (random guess).  E) A composite profiling approach using the 

concept of data fusion to combine cell descriptors from different reporters (e.g. 

cytoskeletal proteins, nuclear proteins).  Raw cell descriptors from different 

reporters (actin and NuMA) first underwent feature dimension reduction to 

generate three representative super descriptors for each reporter (actin and 

NuMA) and were merged together to form six super descriptor pools and 

underwent further dimension reduction and final classification.  All cell descriptors 

contributed to the final classification results but at different weights. 
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4.3 Results and Discussion  

4.3.1 hMSC Differentiation versus Self-Renewal Cannot be Sensitively 

Captured Through Early Cytoskeletal Features or Lineage Specific 

Marker Expression  

Human bone-marrow derived MSC demonstrate differentiation behaviors 

that are dependent upon both cell seeding density (optimally 3,000cells/cm2 for 

OS and 20,000cells/cm2 for AD) and growth factors.  In this study, we cultured 

hMSC at an intermediate seeding density (10,000cells/cm2) on fibronectin-

treated glass and observed distinct differentiation fates after two weeks in AD, 

basal, and OS induction media. At 10,000 cells per cm2 on fibronectin-coated 

glass in AD media, which is about half of the optimal seeding density for 

adipogenic differentiation, a small portion of hMSC also developed into 

osteogenic lineage(~15%) apart from adipocytic lineage (~40%) at 2 weeks as 

identified by fat marker Oil Red O and alkaline phosphatase marker Fast Blue 

Staining, respectively (Figure. 4.3).  On the other hand, while cultured in OS 

media (Figure. 4.3), hMSC exhibited osteoblastic differentiation with greater than 

80% of the cells displaying alkaline phosphatase activity and no detectable 

evidence of lipid accumulation.  Finally, under basal control media (Figure. 4.3), 

the vast majority of cells were identifiable neither as osteoblastic nor adipocytic 

cells. Thus, under these conditions, hMSC demonstrated robust differentiation 

behaviors in response to altered soluble cues.  However, screening for early 

lineage specific marker expression, or cytoskeleton features at 24 hours cannot 

distinguish lineage committed cells from naïve self-renewing cells, although it 
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somehow captures the difference between different lineages. (Figure 4.1 and 

Figure 4.3), as demonstrated by the classification results.   
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Figure 4.3: Evaluation of Mesenchymal Stem Cell Differentiation versus 

Self-renewal After 2-week Induction.   

A) immunostaining of hMSC cultured under AD, OS induction medium and basal 

(BA) medium for 2 weeks.  All cells were stained with Oil red O (adipogenic 

marker), Fast blue (osteogenic marker), NuMA proteins were labeled with 

antibodies and Alexa488 dye, and cell nuclei were counterstained with Hoechst.   

B) Quantification of Fast blue and Oil red O expression of cell populations in AD, 

OS, and BA culture conditions.   

 

4.3.2 Human MSC Differentiation versus Self-Renewal Can be Captured 

Through Gene Expression Profiles and High Content Nuclear 

Features   

Two key questions were addressed in this section: (1) which genes related 

to nuclear processes are differentially upregulated under distinct lineage 

inductive conditions (osteogenic versus adipogenic versus self-renewal)?  To this 

end, we performed microarray analysis of human MSC seeded on glass 

substrates in osteogenic, adipogenic, and basal media at 24 hours. Using 

hierarchical clustering and Principal Component Analysis (PCA) we detected and 

visualized the variability in gene expression levels in MSC exposed to different 

soluble cues.  (2) Do nuclear organization based high content imaging approach 

yield a more robust classification of stem cells, with the potential to forecast cells 

likely leading to distinct lineages? 
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4.3.2.1 Certain Genes Coding for Nuclear Proteins are turned on at 24-

hours After Induction  

Apart from the genes coding cytoskeletal proteins and downstream 

effectors, microarray analysis also showed different levels of gene expression 

that code for cell nuclear components, such as the family of nucleoporins, 

importin/transportin, lamin A/C, RAN and NuMA (Figure 4.4a).  Under 

osteogenic induction conditions, the family of nucleoporins (NUP37, NUP160, 

NUP98, NUP62CL, NUP43) were upregulated, together with a family of 

importins/transportins (KPNA3, KPNA1, KPNA4, KPNA5); compared to the 

corresponding downregulation under adipogenic induction and basal treatment.   

On the other hand, certain nucleoporin families (NUP205, NUP188, NUP93, 

NUP50, NUP153, NUP155, NUP88, NUP62, NUP214, NUP107, NUPL1, 

NUP35), importins/transportins (IPO8, KPNB1, IPO11) and RAN protein 

(RANBP5) were downregulated under adipogenic induction conditions compared 

with the osteogenic condition or non differentiation-inducing (basal) condition.    

Large macromolecular structures, called nuclear pores, are transmembrane 

proteins that span the nuclear envelope that enable transport of molecules 

between the nucleus and cytoplasm288,289.  Nucleoporins, a family of proteins that 

are part of the nuclear pore complexes, are the dominant constituents of the 

nuclear pore complex in eukaryotic cells.  The nuclear pore complex can extend 

across the nuclear envelope to form a gateway regulating the exchange of 

macromolecules between the cell nucleus and the cytoplasm through the 

importin/exportin transport system.  Macromolecules such as mRNA generated in 

http://en.wikipedia.org/wiki/Nuclear_pore
http://en.wikipedia.org/wiki/Nuclear_pore
http://en.wikipedia.org/wiki/Nuclear_envelope
http://en.wikipedia.org/wiki/Cell_nucleus
http://en.wikipedia.org/wiki/Cytoplasm
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the nucleus are exported to the ribosome in the cytoplasm for protein synthesis, 

while proteins synthesized in the cytoplasm, such as histones, DNA and RNA 

polymerases, and transcription factors, are imported into the nucleus.  The 

importin/exportin transport system provides the machinery involved in 

nucleocytoplasmic transport of cargo molecules larger than 40 kDa, while the 

RAN family of proteins actively plays a role in nuclear transport as well as 

nuclear assembly, cell-cycle regulation, and spindle assembly290,291.  We found 

that under adipogenic induction, osteogenic induction, and basal conditions, 

different proteins from the nucleoporin and importin/exportin families were 

upregulated, which might indicate that pathways and regulation of molecular 

transport through the nuclear envelope vary with the onset of differential lineage 

commitment of MSC.  

The lineage induction media may modify the chromatin structure that 

affects gene transcription in the cell nucleus.  It has been proposed that the 

nuclear lamina contributes to heterochromatin formation that is associated with 

inhibition of transcription and gene silencing on the genomic level136.  The 

nuclear lamina is composed of intermediate filaments and lamins A/C and B292. 

Nesprin, another nuclear protein that is located at the inner nuclear membrane 

can bind to lamin A/C and emerin, an inner nuclear envelope protein, via their 

spectrin-repeat rich KASH-domain293,294.  However, gene expression levels of 

lamin A/C may not necessarily capture or reflect the spatial distribution that 

affects nuclear structure, which in turn affects regional control of gene expression 

associated with differentiation processes.  
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Figure 4.4: Structural and functional regulators of nuclear transport, 

organization and cell cycle show clear lineage-based variation in gene 

expression at 24 hours prior to the morphometric parsing in stem cells.  

Hierarchical clustering analysis of genes involved in nuclear import and structural 

organization, reveals upregulation of nucleoporin messages under osteogenic 

(OS) and basal (BA) media treatment compared with adipogenic (AD) media 

treatment.  Expression of lamin A/C and the nuclear mitotic apparatus, is 

upregulated (red) in OS and BA treated cells and downregulated (green) in cells 
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treated with AD media (A). Analysis of genes involved in cell cycle regulation, in 

particular the cyclins, cyclin-dependent kinases (Cdks), and cyclin-dependent 

kinase inhibitors, shows media-dependent levels of expression that indicates 

early differential regulation of cellular proliferation and cell cycle control in MSC 

under exposure to different extracellular soluble cues (B).  Dimensionality 

reduction of gene expression values shown in (A) and (B) using Principal 

Component Analysis (PCA) is shown in (C).  Principal Component (PC) 1, 2, and 

3, account for 42%, 17%, and 12% of the variability in the gene expression data, 

respectively.  Notably, projection of the points in the 3-D PCA plot onto the first 

PC, shows largest variability in gene expression of nuclear transport/organization 

and cell cycle regulators between AD treated cells (red) and OS/BA treated cells 

(blue/black), while the intra-condition and OS/BA variability is relatively low.  

Gene expression of proteins involved in cell cycle control, nuclear import, and 

structural organization of the nucleus is thus less variable between OS and BA 

treatment than between AD and OS/BA treatment of MSC at 24 hours.   (D) The 

growth curve of MSC under OS, AD induction and basal conditions.  Cell growth 

was evaluated through the CyQUANT® Cell Proliferation Assay.  The Y axis 

represents total DNA content per well (ng/ml), and the X axis represents the 

duration of induction.  Cells are observed to grow fastest in BA media, while cells 

in OS media grow faster than AD media.  The growth curve of cells in OS/AD/BA 

media aligns well with gene expression pattern of cell cycle-related cyclin family 

proteins.    
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Some organizational features of the cell nucleus are unique to 

undifferentiated cells, such as the concentration of heterochromatin at the 

nuclear periphery and the presence of transcription permissive areas around 

splicing factor speckles165,295-297.  On the other hand, for differentiated cells, the 

most prominent organizational features are the concentrations of 

heterochromatin domains around a central nucleolus and at the nuclear 

periphery, as well as the formation of larger and fewer splicing factor speckles.  

Based on these observations, it has been proposed that the specific nuclear 

organization observed in differentiated cells might be important in stem cell 

determination, locking gene expression in place by maintaining genes in a silent 

state and enabling the expression of a small number of genes necessary for 

differentiation136.  Therefore, the ability to quantitatively capture stem cell nuclear 

features during MSC differentiation could bridge the understanding of the 

contribution of nuclear organization to differentiation and help further delineate 

correlations between epigenetic control of gene expression and stem cell 

differentiation.  Consequently, we sought to probe the nuclear structure and 

organization using an alternative approach—high content imaging of nuclear 

mitotic apparatus protein (NuMA) as a test case, since NuMA has been reported 

as a nuclear matrix protein, the expression and spatial organization of which 

changes as cells differentiate131,165,295,298,299.   

Moreover, we assessed the variability in expression of NuMA organization 

and cell cycle control genes between media conditions via principal component 

analysis (Figure 4.4c).  Points corresponding to media condition groups in the 
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3D principal component plot were projected onto the first principal component 

axis, which accounted for 42% of variability in the original gene data set.  We 

found that the variability was greatest between AD and the two other treatments 

(OS and BA), represented by a larger separation of the points along the first PC 

axis.  This finding is similar to the earlier observation with the expression of actin-

associated proteins. 

4.3.2.2 Lineage Induction Conditions Elicit Differential Proliferation Rates 

and Upregulation of Genes Related to Cell Cycle Control 

It was observed that cyclin family proteins, which regulate cell cycle 

progress, were differentially upregulated/downregulated in MSC among the 

adipogenic, osteogenic, and basal conditions (Figure 4.4b).  There was a broad 

expression of most cyclin family proteins (major cyclins such as cyclin A-E and 

minor cyclins such as cyclin F-I) and cyclin dependent kinase (Cdk) enzymes to 

which they bind in MSC grown in non-inducing basal media.  However, in 

adipogenically induced cells, the expression of a number of major cyclin proteins 

was downregulated, including that of cyclin B, cyclin C, cyclin D1&3, and cyclin E 

as well as Cdks.  Similarly, it was observed that in osteogenically induced cells, 

only a few major cyclins were upregulated, namely cyclin A2, cyclin D3, cyclin 

E1&2, and cyclin B3.  

To note, cyclin D/Cdk4, cyclin D/Cdk6, and cyclin E/Cdk2 complexes 

regulate the G1 to S phase transition, and cyclin B/Cdk1 regulates progression 

from the G2 to the M phase.  Moreover, cell differentiation presumably happens 

after the checkpoint at G1 to S transition phase, where cells committed states of 
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continued growth, differentiation, or undergo apoptosis.  Therefore, the formation 

of cyclin D/Cdk4, cyclin D/Cdk6, and cyclin E/Cdk2 complexes appear to be of 

significance during hMSC differentiation following induction with soluble cues.  

Interestingly, in adipogenic cells, most of the gene expression levels of proteins 

involved in cell cycle control was downregulated, which indicates the propensity 

of cells for inhibited cell growth and enhanced differentiation.  Furthermore, for 

osteogenically treated cells, upregulation of cyclinA2, cyclin B3, cyclinD3, 

cyclinE1&2 was observed.  However, upregulation of CDKN2B, which inhibits 

Cdk4 binding with cyclin D, was also noticed, which may suggest that one 

subpopulation of cells treated with OS media exhibited cell cycle progression 

while a second subpopulation committed to the differentiation pathway at 24 

hours post-induction.  For non-differentiating hMSC seeded in basal growth 

media, almost all members of the cyclin family and their associated Cdks were 

upregulated, indicating the expected proliferation of non-differentiating cells in 

normal growth media.  In support of these findings, the growth curve of the hMSC 

seeded under adipogenic and osteogenic induction conditions showed growth 

trends reminiscent of the mRNA levels of cyclin/Cdk proteins determined from 

the microarrays, as demonstrated in Figure 4.4d, where hMSC grew faster in 

osteogenic induction media than in adipogenic induction media, but slower than 

in basal media.    
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4.3.3  Improved Classification of MSC Lineages at Early Time Points Using 

Nuclear Descriptors 

Previously it was demonstrated by Treiser et al. that fibronectin pre-

treatment could potentially speed up the lineage commitment forecasting as early 

as 24 hours277. Therefore, we sought to explore the potential of utilizing nuclear 

features to improve the lineage segregation.  As described previously, a large 

pool of cell actin cytoskeletal descriptors and nuclear descriptors were extracted 

using image-based feature extraction algorithms47,300.  For better visualization of 

the cell descriptor data sets, dimension reduction was performed on both the 

actin cytoskeletal descriptor pool and the nuclear descriptor pools using Principal 

Component Analysis (PCA).  Interestingly, the 24 hour actin descriptors after 

PCA-LDA based data mining successfully segregated adipogenic lineage and 

osteogenic lineage committed cells, with a sensitivity of 93.30% and specificity of 

91.51% (Figure 4.5).  However, the cytoskeletal descriptor-based classification 

of adipogenic-lineage committed cells relative to undifferentiated cells was poor, 

with sensitivities of 45.83% (AD vs. BA) and 51.39% (OS vs. BA) (Figure 4.5).   

Interestingly, when data dimension reduction and classification were 

applied to nuclear descriptors alone, lineage committed cells (either AD or OS) 

could be parsed out completely (100% sensitivity and 100% specificity) from 

undifferentiated cells (BA), while adipogenic and osteogenic lineages could also 

be parsed out from each other with sensitivity and specificity of 85.54% and 

95.18%, respectively (Figure 4.5).   By examining the principal components from 

the dimensionality reduction, we found that all three categories of descriptors 
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(morphology descriptors, NuMA expression descriptors, and spatial distribution 

descriptors), contributed to the final data interpretation.  This sheds light on the 

limitation of gene microarray data to parse out MSC exposed to adipogenic, 

osteogenic, and basal conditions.   

Another interesting observation was that differences between MSC 

cultured in adipogenic, osteogenic, and basal media correlated with variations in 

cell growth (Figure 4.4d), which is also demonstrated through the gene 

expression of cyclin family proteins and NuMA descriptor- based profiling.  NuMA 

is an abundant 240 kDa protein that is present in the nucleus of interphase cells 

and concentrates in the polar regions of the spindle apparatus during 

mitosis17,298,299.  As a mitotic-associated protein, NuMA is more closely related to 

cell cycle progression and thus NuMA organization could be conceivably linked 

to differential growth kinetics.  However, NuMA also functions as a structural 

protein interface between the nucleoskeleton and RNA splicing. The structure 

and organization of NuMA have been reported to be distinctly modulated 

between non-differentiating cells and differentiated cells131,165.  Therefore, 

whether NuMA based segmentation is solely a consequence of varying cell 

growth, differentiation, or a combination of both, remains to be further 

investigated.    
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Figure 4.5: A composite profiling approach using both cytoskeleton and 

nuclear features enhanced the classification of adipogenic, osteogenic and 

non-differentiated cells.   

Left panel: Visualization of subcellular component.  Actin cytoskeleton 

was stained with phalloidin Texas Red (Red in the image), cell nuclear mitotic 

protein (NuMA) was stained with Alexa 488 through immunocytochemistry 

(Green in the image).  All subcellular components were visualized through Leica 

SP2 confocal/multiphoton imaging system under a 63x immersion objective 

(NA=1.3).   Middle panel: Visualization and classification of actin cytoskeletal 

descriptors and nuclear descriptors, respectively. Human MSC from bone 

marrow were cultured on fibronectin-coated coverglass for 24 hours in OS/AD/BA 

media, respectively.  Actin cytoskeleton features and nuclear features were 

extracted separately according to the image analysis procedures described in our 
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previous publications.  Principal component analysis was performed on each 

descriptor dataset to reduce the dimensionality to three new dimensions that are 

combinations of descriptors from the original descriptor pool.  Following that was 

the classification steps.  Right panel: Composite descriptors after data fusion.  A 

smaller composite descriptor pool was formed by combining the dimensionally 

reduced cytoskeletal descriptors and nuclear descriptors; new dimension 

reduction was performed on the composite descriptor pool and visualized in 

another three new dimensions and was subject to LDA classification.  

Overall, the combination of the composite descriptor data sets showed 

that the cell cytoskeletal descriptors and nuclear descriptors collectively improve 

lineage commitment classification, with cytoskeletal descriptors parsing 

adipogenic over osteogenic lineage while nuclear descriptors parsed out lineage 

committed cells over non-differentiating cells.  These insights suggest that the 

combination of both cytoskeletal and nuclear descriptors can more robustly 

distinguish amongst adipogenic, osteogenic, and non-differentiating cells.  To this 

end, we proposed a data fusion approach that combines data from multiple 

sources to improve efficiency, robustness, and accuracy for subsequent 

classification (Figure 4.2e).  This technique was originally utilized in geospatial 

applications with the expectation that fused data is more informative than the 

original separate inputs.  With the use of data fusion, high dimensional 

cytoskeletal and nuclear descriptor data sets were first reduced to three new 

dimensions, combined together to produce a new data set of six dimensions, 

further reduced to three new dimensions of descriptors comprising of linear 
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combinations of both cytoskeletal and nuclear descriptors, and finally subjected 

to classification algorithms.  Classification results after fusion of cytoskeletal and 

nuclear descriptors showed improvement in the parsing of adipogenic and 

osteogenic lineages (with sensitivity and specificity of 97.22% and 98.18% 

respectively), as well as separation of lineage committed cells (either adipogenic 

or osteogenic) over basal-treated cells (Figure 4.5).  Thus, we demonstrated that 

the data fusion technique can improve the classification of cells in the 

adipogenic, osteogenic, and uncommitted states.   

 

4.4 Conclusion 

Previous high content imaging of single cell cytoskeletal features identified 

osteogenic versus adipogenic lineage signatures of human mesenchymal stem 

cells much earlier than traditional endpoint assays of differentiation.  However, it 

failed to identify self-renewal versus lineage-committed phenotypes.  In this 

study, we used gene expression profiling via microarray analysis to search for 

nuclear clues of lineage-specific cell phenotypes.  Our studies on 24-hour gene 

expression after induction demonstrate that among differentiation-specific genes 

are certain genes coding for nuclear proteins and cell cycle related proteins.  The 

role of nuclear structure was further explored in terms of high content imaging of 

nuclear structural proteins.  We propose a novel high content imaging based 

composite profiling approach, as a continuation of the high content profiling work 

published previously, to capture the early stem cell differentiation on a single cell 

basis.  This methodology extracts morphological features, spatial distribution, 
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and expression of key cytoskeletal proteins (e.g. actin) and nuclear proteins (e.g., 

NuMA) to parse out osteogenic, adipogenic, and undifferentiated states of MSC 

within the first 24 hours.  By virtue of discerning different lineage pathways, this 

―integrative‖ approach is more comprehensively linked to both cell cycle/nuclear 

and cytoskeletal substrate signaling and provides more robust forecasting than 

exclusive cytoskeleton-based profiling. 
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5 Mapping Cell Phenotypes Using High Content Nuclear Imaging based 

Profiling Approach  

 

5.1 Introduction 

Stem cells have the potential to serve as a source of cells for therapeutics 

to treat several degenerative diseases, but their ability of self-renewal, in other 

words plasticity, also makes them susceptible to cancerous transformation.  This 

brings along with stem cell-based therapy a possible risk of tumor formation. The 

risk for malignant transformation exists for each stage of the clinical lifecycle of 

stem cells, including malignant transformation in vitro during production phases, 

during insertion of potentially therapeutic transgenes, and finally in vivo via 

interactions with tumor stroma and oncogenic microenvironments.  Current 

methods employed in clinical trials have limitations such as the absence of long 

term follow-up and lack of adequate screening methods to detect transformation 

early on.  Therefore, to better harness the potential of stem cells for regenerative 

medicine, one needs not only in-depth stem cell biology but also screening tools 

to probe and monitor stem cell behaviors: self-renewal, differentiation, and 

transformation.    

Different states of stem cells, e.g. self-renewal, cancerous transformation, 

and lineage commitment can usually be visualized using conventional 

microscopy.  Differences in expression readouts or sub-cellular localization of 

biomolecular markers often reveal phenotypic differences amongst a population 

of cells.  However, these differences may not be observable until later stages of 
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the developmental process (ranging from weeks to months). Thus, there is a 

need for an early identity or ―signature‖ that reflects the ―preprogrammed‖ stem 

cell state.  Conventional efforts to tackle this problem have been focused on early 

gene expression profiles.  Previous studies have demonstrated that upon stem 

cell state changes, phenotypic genes do not turn on at early stages of lineage 

commitment or upon the onset of transformation; on the contrary, a number of 

other genes, including cell and tissue structure dynamics, cell cycle and 

apoptosis, intracellular communication, metabolism and regulation of gene 

expression, are transcriptionally altered143,144,301.   

Taken together, these previous studies suggest that seemingly 

indistinguishable cells at an early stage may undergo further state changes, as 

indicated by non-lineage specific phenotypic gene expression profiles.  Since the 

cell nucleus is the location where gene expression control takes place, the study 

of the inner organization of cell nucleus could be an avenue to expand the 

understanding of changes of a cell‘s state.  The nuclear matrix, a major 

component of cell nucleus, provides a three dimensional framework for the tissue 

specific regulation of genes by directed interaction with transcriptional activators.  

It binds diverse nuclear matrix proteins and supports their assembly into 

functional macromolecular complexes involved in important nuclear processes, 

such as DNA replication, transcription, and RNA processing.  The nuclear matrix 

is the first link from the DNA to the entire tissue matrix system and provides a 

direct structural linkage to the cytomatrix and extracellular matrix302.  In summary, 

the tissue matrix serves as a dynamic structural framework for the cell, which in 
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turn interacts to organize and process spatial and temporal information to 

coordinate cellular functions and gene expression.  Apart from nuclear matrix, 

certain compartments of the cell nucleus, including nucleoli, the higher 

organization of chromatin into heterochromatin and euchromatin regions, as well 

as non-chromatin domains have been identified to be important in changes of 

stem cell state156,158-164.  Therefore, we hypothesize that distinct early gene 

expression profiles in cells might translate into characteristic nuclear structural 

and organizational changes that might be too minute to be discerned using 

conventional microscopy and intensity-based low content analysis, but may be 

detected by high resolution microscopy and in silico data processing and 

modeling techniques to extract high content information.   

Here we propose a high content imaging-based profiling platform for the 

early identification of nuclear signature profiles indicative of long-term stem cell 

state changes based on confocal microscopy.  We started by hypothesizing that 

state changes of cells can be readily identified through the use of an initial 

biomolecular marker set.  To capture the early changes of cell state, our strategy 

was to (1) use one of the most abundant nuclear matrix proteins, nuclear mitotic 

apparatus (NuMA) as a biologically-relevant reporter; (2) perform 

confocal/multiphoton microscopy to acquire high resolution images; (3) perform 

image-based high content nuclear feature extraction to harvest an array of 

nuclear descriptors that can be divided into three categories: nuclear matrix 

protein expression (intensity based features), nuclear shape (morphological 

features) and nuclear organizational/spatial distribution features (texture 
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features); (4) utilize dimension reduction and classification techniques to identify 

differential states of stem cells.  This platform enables identification of early 

subcellular ―signatures‖ of cells that precedes state change.  It also provides an 

alternative strategy for obtaining phenotypic and functional characterization of 

identifying cell state without using additional biomolecular markers at later time 

points.  The utility of this platform was demonstrated in capturing mesenchymal 

stem cell transformation on various extracellular substrates.   

 

5.2 Materials and Methods: 

5.2.1 Cell Culture 

Human mesenchymal stem cells (hMSC) were obtained from commercial 

sources (Lonza; Walkersville, MD). Cells were cultured in a humidity-controlled 

environment under 5% CO2 and 37°C and fed every 3-4 days with growth media 

(basal media) supplemented with commercial SingleQuot‘s© (Catalog # PT-

3001, Lonza). Cells were received at passage 1 and used from passage 13-19. 

Cells were sub-cultured upon reaching 90% confluence. The in vitro oncogenic 

transformation process was performed through periodic treatment of a known 

metal carcinogen, nickel sulfate (Sigma) according to the following protocol:  

Cells seeded in 24-well plates were allowed to attach for 24 hours in basal 

conditions.  After 24 hours, wells were washed with DPBS and treated with nickel 

(II) sulfate (36-72 μM in basal media) for 48 hours.  The samples were then 

washed and supplemented with basal media for 48 hours, followed by nickel (II) 

sulfate treatment for 72 hours, and ended with 72 hours in basal medium.  This 



133 

 

brings the total to an 11-day transformation. In addition to nickel sulfate-treated 

hMSC, we also studied genetically-transformed hMSC, which were acquired from 

Dr. Richard Gorlick‘s lab (The Children‘s Hospital at Montefiore, Bronx, NY). 

These hMSC were sequentially transformed with a retrovirus containing human 

telomerase reverse transcriptase (hTERT), simian vcuolating virus 40 large T 

antigen (SV40 TAg), and lentivirus containing oncogenic H-Ras303. 

 

5.2.2 Cellular Assays 

5.2.2.1 Characterization of hMSC Oncogenic Transformation  

Fluorescent in-situ hybridization (FISH) 

Fluorescent in-situ hybridization was used to detect and localize for the 

presence of telomerase within the MSC population of transformed cells.  A 

cadmium selenium (CdSe), a gift from of Dr. Matthew Becker (University of 

Akron, OH), conjugated probe (5‘-NH2(CH2)12 -T*C*T*C*AGTTAGGG*T*T*A*G) 

was designed to be complimentary to a human telomerase unit (hTR), an mRNA 

transcript, and a portion of the holo-enzyme.  This quantum dot conjugated probe 

has an emission peak at 594nm, which can be easily detected using confocal 

microscopy. After washing with PBS, cells were fixed using 4% 

paraformaldehyde at room temperature for 15 minutes.  Cells underwent a 

dehydration process by washing with 70%, 90%, and 100% ethanol successively 

for 4 minutes.  They were then washed with 100% xylene for 5 minutes before 

rehydration with 100%, 90%, and 70% ethanol successively for 4 minutes.  Cell 

samples were washed with PBS and then treated with Pepsin (100 μg/mL 
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PEPSIN in 10 mM HCl) for 10 minutes at 37°C.  After another 5-minute PBS 

wash and a 10-minute post fixation with 1% paraformaldehyde, cell samples 

were treated with 50 μL of hybridization solution and 10 μL of the CdSe quantum 

dot solution for 16 hours at 37°C.  Cells were then washed with solution (60% 

formamide, 300 mM NaCl and 30 nM sodium citrate) three times for 10 minutes.  

More washes with the same solution were applied in 37°C for 10 minutes 

followed by a last wash with PBS.  

Telomerase expression was acquired as mean fluorescence intensity per 

cell through image analysis.  Telomerase fold-change was further quantified as 

the ratio of telomerase expression on carcinogen-treated hMSC over normal 

hMSC on the same substrate condition.  Oncogenic transformation was 

quantified using a scalar, ―transformation index‖, which normalized the fold 

change of telomerase expression of hMSC under carcinogen treatment to that of 

genetically transformed hMSC (0—no transformation, 1—fully transformed).   

Immunocytochemistry (ICC) 

Staining for a proliferation marker (Topoisomerase α-II) and nuclear 

mitotic apparatus (NuMA) were completed on MSC fixed on well plates with 4% 

paraformaldehyde.  Prior to the addition of the primary antibodies, cells were 

permeabilized using a buffer of 0.1% Triton X-100 in PBS for 30 minutes.  Mouse 

anti-human primary antibodies were used at a 1:50 dilution in 5% goat serum in 

PBS for non-specific binding.  An amount of 75-100 μL of antibody solutions were 

added to each well for 16 hours in 4°C on rocker.  After primary antibody removal 

cell samples were washed with washing buffer (0.1 % Tween-20, 0.01% Triton X-
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100 in 1x DPBS) three times for 5 minutes. AlexaFluor488 goat anti-mouse 

secondary antibody was applied to samples at a dilution of 1:200 for 1 hour at 

room temperature on rocker.  Cell samples were then washed three times for 5 

minutes.  Cell nuclei were counterstained with Hoechst 33342 dye (1:1000 

dilution) in PBS for 10 minutes at room temperature on rocker.  Samples were 

washed with PBS, immersed in fluoroguard anti-fade reagent and stored at 4°C 

before being imaged on a Leica Multiphoton/Confocal Microscopy.   

Flow Cytometry 

Non-confluent cultures were trypsinized into single cell suspensions, 

counted, washed with phosphate-buffered saline (PBS), and stained with 

antibodies specific for human cell surface markers: CD44-FITC, Stro-1-PE, and 

CD133-APC (eBioscience Inc. San Diego, CA).  A total of 100,000 cells were 

incubated with antibodies for 15 minutes at room temperature.  Unbound 

antibodies were washed off and cells were analyzed no longer than 1 hour post-

staining on a BD FacscaliburTM flow cytometer system (Billerica, MA). 

 

5.2.3 Microscopy, High Content Profiling and Computational Modeling  

High resolution confocal/multiphoton microscopy, image based nuclear 

feature extraction, and dimensionality reduction (Figure 5.1a) were employed as 

described in the methods section of Chapter 4.  Dimensionally-reduced nuclear 

features were classified using SVM, as described previously.  For validation 

purposes, two datasets with known divergent outcomes (negative and positive 

controls identified through conventional assays) were compared, and SVM 
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classifier performed on the two sets of dimension reduced cell nuclear 

descriptors were expected to have no overlap in the two distributions (100% for 

both sensitivity and specificity).  The sensitivity and specificity can further be 

incorporated into a receiver operating characteristic (ROC) curve for better 

visualization of the classification results, where sensitivity was plotted against 1-

specificity.  In the curve, the upper left corner represents a perfect separation 

between two data sets, and the middle 45 degree region passing the origin 

represents a random guess region, indicating inseparable datasets.  The area 

under the ROC curve (Az), defined as a measurement of area within the upper 

left quadrant (above the random guess line), is a parameter that measures 

discrimination (the ability of the test to correctly classify those with and without 

the disease in clinical diagnostics, specifically in this study, hMSC 

transformation).  The closer the ROC curve is to the upper left corner, the higher 

the Az value, thus the higher the overall accuracy of the test.  The popular criteria 

for determining the accuracy of a diagnostic test is similar to traditional academic 

point systems: an Az value of 0.9 to 1 is indicative of excellent discrimination, 0.8 

to 0.9 is good discrimination, 0.7 to 0.8 is fair discrimination, 0.6 to 0.7 is poor 

discrimination and an Az value of 0.6 and below is indicative of no discrimination 

(failure).   

In order to determine the degree of transformation of a given condition, 

e.g. hMSC exposed to short term (72h) carcinogen induction, nuclear descriptors 

were generated and compared with genetically transformed hMSC (positive 

control) and normal hMSC (negative control) respectively in the SVM classifier 
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(shown in Figure 5.1b).  Therefore, two Az values were acquired from the 

classifier, with Az1 representing the comparison between the test set and 

negative controls (normal hMSC), and Az2 representing the comparison between 

the test set and positive controls (oncogenetically-transformed hMSC).  Equation 

5-1, which combines the two Az values: 𝑖𝐴𝑧 =
(𝐴𝑧1+1−𝐴𝑧2)

2
  (Equation 5-1), can 

then be used to calculate an integrated Az (iAz) value. This value determines the 

location of the test set, which is between 0 (the negative controls) and 1 (positive 

control).  For our application of stem cell transformation, iAz could be used to 

mirror the degree of transformation (transformation index).   
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Figure 5.1: Schematic of data mining on high content nuclear descriptors.   

A) Schematic of cell nuclear descriptors dimension reduction and classification.  

Left panel: a pool of nuclear descriptors was extracted from image analysis.  

PCA analysis was used to reduce the dimensionality of the nuclear feature space 

into three ‗integrated‘ nuclear descriptors (visualized in the Right panel), each 

axis representing a combination of nuclear descriptors.  A SVM-based 
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classification technique was used to discriminate the dimensionally reduced 

nuclear descriptor datasets from two different conditions. SVM classification was 

verified by assessing sensitivity and specificity.  B) Utilization of the classification 

results used to determine the location of the test set in-between the negative and 

positive controls.  Left panel: Visualization of classification results using a 

receiver operating characteristic (ROC) curve.  In the ROC plot, sensitivity is 

plotted against 1-specificity.  The upper left corner in the ROC curve represents a 

perfect separation between two data sets, and the middle 45 degree region 

passing the origin represents random guess region, indicating inseparable 

datasets.  Measuring the area within the upper left quadrant (above the random 

guess line), named the area under the ROC curve (Az), can be used to evaluate 

the discrimination between the two datasets.  Right panel:  An example showing 

the utility of Az to estimate the location of a test set in the negative (normal MSC) 

and positive controls (genetically transformed MSC).  Comparison was first made 

between the test set and negative controls, followed by a comparison between 

the test set and positive controls.  An integrated Az (iAz) was further calculated 

via combining the two Az values from the previous two comparisons.  The iAz 

value, ranging from 0-1, is indicative of the location of the test set in the unit 

index defined by negative (0) and positive (1) controls.  

 

5.2.4 hMSC Transformation Study on Polymeric Substrates  

Tyrosine-derived polycarbonates225 (Figure 5.5a), polymethacrylates 

(Courtesey of Dr. Abraham Joy from NJCBM), and poly(L-lactic acid) (Resomer 
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L-206) (Boehringer Ingelheim; Ridgefield, CT) were dissolved in 1.5% (v/v) 

methanol in methylene chloride solutions yielding a 1% (w/v) polymer solution.  

Polymer solutions were then spin-coated onto 15 mm glass coverslips. Spin-

coating was conducted at 4,000 RPM for 30 seconds.  

Polymer-coated glass coverslips were placed in the bottom of a 24 well 

glass-bottom tissue culture plate and secured with a silicon O-ring (Catolog # -

111, Molding Solution; Lexington, KY).  The plate was sterilized with a UV light 

applied at 5,500 to 6,500 W per cm2 for 900 seconds.  Human MSC were 

seeded at 20,000 cells per cm2 and underwent an 11 day carcinogen induced 

transformation process (described in the methods section).  At 72 hours, cells 

were fixed and stained with NuMA for imaging.  After the 11 day transformation 

treatment, cells were fixed and subjected to functional assay screening as 

described earlier in this section. 

 

5.2.5 Statistical Analysis 

Statistical analysis was performed on morphometric parameters using 

SPSS software and included analysis of variance (ANOVA) with Tukey‘s HSD 

post hoc method and other multivariate statistical tools.  The differences were 

considered significant for p < 0.05 unless otherwise noted.  Error bars indicate 

the standard uncertainty around the mean. 
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5.3 Results 

5.3.1 Overview of the high content nuclear profiling platform 

Our methodology is composed of three steps.  In the first step, we 

identified a collection of cell populations from high-resolution confocal images of 

cells stained with a set of initial functional markers or via functional assays.  

Semi-automated analysis is then used to characterize the cells stained with initial 

marker and returns readouts that can be used to distinguish multiple cell 

phenotypes within a single cell population, through the choice of initial markers 

varies for different studies.   In the second step, we sought to determine whether 

the distinctions identified in the first step can also be captured utilizing the high 

content nuclear features at end time points.  Therefore, a SVM-based classifier 

was used to distinguish the known distinct cell populations using the high content 

nuclear features, thus ―training‖ the classifier.  In the third step, we performed 

new experiments on different cell types/sources or culture conditions at time 

points earlier than the first step.  We then used the high content nuclear features 

obtained from these experiments as a test set for the trained classifier, and used 

the classifier to try to distinguish cell fates under these unknown experimental 

conditions.  Thereby, this approach provides a way of early identifying cells with 

different behaviors and mapping potential cellular responses to variant stimuli 

without using complex molecular/functional marker sets.    
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5.3.2 Predicting Oncogenic Transformation of Stem Cells   

5.3.2.1 Oncogenically Transformed hMSC have Distinct Molecular and 

Nuclear Signatures from Normal hMSC 

We first applied our approach to identify normal hMSC and genetically 

transformed hMSC as training sets.  Since the genetically transformed hMSC 

were well characterized by Liu et al. and his colleagues303, we selected 

telomerase as the initial molecular marker for the transformed phenotypes in this 

study.  Shown in Figure 5.2a, the telomerase mRNA expression in genetically 

transformed hMSC was three times higher than normal hMSC.  In parallel, high 

resolution images from the nuclear protein, NuMA, labeled with Alexa488 (green)  

and nuclei, labeled with Hoechst 33342 (blue) were acquired for genetically 

transformed hMSC and normal hMSC (Figure 5.2b left panel).  These images 

demonstrated that there were indeed minute visual differences in the cell nuclear 

morphology and NuMA organization within 72 hours, however, they were difficult 

to quantify without the use of computer based image analysis, where individual 

cell nuclear morphology, NuMA protein expression, texture and spatial 

distribution descriptors were obtained via a series of image processing 

techniques that captured quantitative differences in cell nuclear organization 

(Figure 5.2b middle panel).  Further feature dimension reduction and 

classification analysis results confirmed the distinction between these two cell 

types (Figure 5.2b right panel), with 100% sensitivity and specificity, 

respectively.   
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Figure 5.2: Characterization of genetically transformed hMSC using high 

content nuclear descriptors.  

 A) Telomerase (a cancer marker) expression screening was performed on 

genetically transformed hMSC (MSC-TSR) and normal hMSC.  Quantitative 

telomerase mRNA expression was acquired from image analysis performed on 

genetically transformed hMSC (MSC-TSR) cells and normal hMSC labeled with a 

quantum dot-conjugated Telomerase mRNA probe via Fluorescent In-Situ 

Hybrydization (FISH).  B) High content nuclear descriptor based profiling on 

genetically transformed hMSC and normal hMSC.  Left panel: High resolution 

(63x, confocal average projection) images of NuMA proteins from genetically 

transformed hMSC (MSC-TSR);  Middle panel: A pool of nuclear descriptors 

were extracted from NuMA images; Right panel and table:  Three dimension plot 

of  ‗integrated‘ super nuclear descriptors, where each axis represents a 
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combination of nuclear descriptors.  A SVM-based classifier was applied to the 

dimension reduced nuclear descriptors and returned 100% sensitivity and 

specificity, demonstrating the distinctive nuclear features of transformed hMSC 

and normal hMSC.  

 
5.3.2.2 hMSC Transformation Can Also be Observed after Periodical 

Carcinogen Treatment  

In this section, we performed an alternative experiment on hMSC 

transformation, but utilizing carcinogen induced transformation as an alternative 

approach.  hMSC were exposed to periodical carcinogen, nickel sulfate, 

containing basal medium for 11 days.  The effect of nickel sulfate induced cell 

carcinogeneisis was reported and well characterized by Shobha et.al304.  In this 

study, abnormal transformation was confirmed using assays for cell proliferation, 

cell growth, topoisomerase-II α protein expression, and telomerase mRNA 

expression.  Figure 5.3a left panel showed raw images of cells that were used to 

quantify cell growth by staining nuclei with Hoechst and performing automated 

counting using ImagePro Plus at 72 hours post-attachment.  Expression of the 

proliferation marker topoisomerase-II α, represented by mean fluorescence 

intensity per cell, was enhanced by two-fold on carcinogen-treated hMSC when 

compared to the basal control (Figure 5.3a middle panel).  Both cell number 

and proliferation marker expression confirmed that carcinogen treated cells 

underwent replication at a much higher rate than those in basal conditions.  To 

further establish the transformation process at molecular level, we quantified the 

expression of telomerase, which is over-expressed in more than 95% of all 
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cancer types in literature305-308. The telomerase mRNA expression in carcinogen 

treated hMSC was two-fold higher than that of basal cells (Figure 5.3a right 

panel). This further confirmed the transformation process of hMSC under 

periodical nickel sulfate treatment.  Certain cancer stem cell markers were also 

investigated, including CD44, CD133 and Stro-1, all of which showed increased 

expression on carcinogen treated hMSC (Figure 5.3b). 
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Figure 5.3: Characterization of carcinogen-induced hMSC transformation 

using traditional approach.   
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A) Schematic of transforming hMSC using a carcinogen (nickel sulfate) induction 

model.  Transformation was assessed after 11day periodical carcinogen (nickel 

sulfate) treatment vs cell growth (72h), proliferation marker expression, and 

telomerase mRNA expression.  All cells were labeled with quantum dot 

conjugated Telomerase mRNA probe via Fluorescent In-Situ Hybrydization 

(FISH); Topoisomerase II-α were labeled with antibodies and Alexa488 dye; Cell 

nuclei were counterstained with Hoeschst 33342 dye.  Cell growth evaluation 

was performed by image-based automatic counting cells at 72h and normalized 

to the 4h control.  Quantitative for Topoisomerase II-α and Telomerase mRNA 

expression were performed based on fluorescent intensity normalize to each 

single cells.  B) Expression of certain known cancer stem cell markers (CD44, 

CD133 and Stro-1) were evaluated via flow cytometry.  All data points were 

normalized to normal hMSC.  C) Telomerase expression level of hMSC at early 

(72h) time point of transformation compared with normal hMSC and transformed 

hMSC (MSC-TSR).  No telomerase expression difference was observed at 72h 

post nickel sulfate treatment.  D) Further visualization of the telomerase based 

transformation index.  Telomerase based transformation index was calculated 

through the following equation:  

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =

𝑇𝑒𝑙𝑜𝑚𝑒𝑟𝑎𝑠𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑜𝑓  𝑀𝑆𝐶72  𝑁𝑖  𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 −𝑇𝑒𝑙𝑜𝑚𝑒𝑟𝑎𝑠𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑜𝑓  𝑀𝑆𝐶𝑛𝑜𝑟𝑚𝑎𝑙

𝑇𝑒𝑙𝑜𝑚𝑒𝑟𝑎𝑠𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑜𝑓  𝑀𝑆𝐶𝑇𝑆𝑅 −𝑇𝑒𝑙𝑜𝑚𝑒𝑟𝑎𝑠𝑒  𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛  𝑜𝑓  𝑀𝑆𝐶𝑛𝑜𝑟𝑚𝑎𝑙
, 

(Equation 5-2), where transformation index was normalized to a value that lies in 

the range of 0 (normal MSC)-1(fully transformed MSC).  Telomerase based 
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transformation index at early carcinogen treatment (72h) was close to normal 

MSC side.  

 

5.3.2.3 Early High Content Nuclear Features Capture Long Term hMSC 

Oncogenic Transformation   

Under periodical carcinogen treatment, differences in transformation 

behavior were observed in hMSC. Therefore, an interesting question was raised: 

can the onset of transformation be detected for these cells at early timepoints?  

Notably, typical cancer detection markers such as telomerase expression failed 

to sensitize onset transformation at the first 72h after nickel sulfate treatment 

(Figure 5.3c).  The telomerase based transformation index plot (Figure 5.3d) 

showed that 72h carcinogen induced hMSC were much closer to normal hMSC 

compared with genetically transformed hMSC.  On the other hand, early cell 

nuclear morphology and nuclear protein organization of single cells may hold 

some clues to the long-term abnormal transformation since changes in the 

nuclear protein organizational may occur earlier than changes in cancer related 

gene expression profiles.  The reduced-feature dimension plot depicted the 

localization of nickel sulfate treated hMSC population in-between the reference 

cell populations (hMSC in green and genetically transformed hMSC in red) 

(Figure 5.4a), with 72h nickel sulfate treated hMSC population in the middle 

region (in black) Further visualization of nuclear descriptor based prediction on 

the degree of transformation of hMSC was demonstrated in Figure 5.4b.  In this 

figure, iAz was generated from classifications of nuclear descriptors of 72h 
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carcinogen induced hMSC compared with both negative controls (normal hMSC) 

and positive controls (MSC-TSR) using the technique described in the methods 

section.  iAz was plotted on a one dimensional ‗ladder‘ line, with left end being 

normal hMSC labeled with ‗0‘ and right end being genetically transformed hMSC 

labeled with ‗1‘.  The 72h carcinogen treated hMSC has a iAz value of 0.48, 

locating in the middle region of the transformation ladder. Taken together, this 

indicated that early nuclear protein NuMA features could mirror the onset and 

progression of the carcinogen induced transformation process.   

 

 

Figure 5.4: Characterization of carcinogen-induced hMSC transformation 

using high content nuclear descriptor based profiling. 
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 A) Visualization of high content nuclear descriptors after feature dimension 

reduction.  Three-dimensional plots of dimension-reduced nuclear descriptors 

represented mathematical grouping of original nuclear descriptor pool. Green: 

descriptors from normal hMSC, Black: hMSC with 72h nickel sulfate treatment, 

Red: genetically transformed hMSC (MSC-TSR).  Three clusters were shown in 

the plot, the evaluation of how close carcinogen treated hMSC to either normal 

hMSC or transformed hMSC were sketched and further implemented through the 

use of SVM based classifier.  B)  Visualization of the location of 72h carcinogen 

induced hMSC in between normal hMSC (0) and genetically transformed hMSC 

(1).  iAz values was calculated from classifications on nuclear descriptors,  as 

described in the methods section.  Results were demonstrated in a one-

dimensional arrow plot, with left end being normal hMSC and right end being 

genetically transformed hMSC. Early carcinogen induced hMSC lied in the 

middle of the transformation arrow, with an iAz value of 0.48.     

  

5.3.2.4 Forecasting hMSC Transformation on Synthetic Polymer Substrates 

Based on 72h High Content Nuclear Descriptors 

We next examined whether the high content nuclear descriptors could be 

used to screen the susceptibility of hMSC to transformation when cultured on 

complex extracellular microenvironments modulated by combinatorial polymeric 

biomaterials (Figure 5.5b & Table 5.1).  Twelve polymers with diverse 

physicochemical properties were used as the test set based on their ability to 

slow down or speed up the carcinogen induced hMSC transformation process.  
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Examination of the hMSC telomerase expression post 11day periodic carcinogen 

treated demonstrated differential degree of transformation, as shown in Figure 

5.5a.  

It was shown in Figure 5.5a that the hMSC transformation process was 

differentially modulated on these biomaterials substrates, with transformation 

index ranging from (0 to 0.5).  Utilizing the high content nuclear feature extraction 

and SVM based classification approach described in the methods section; we 

generated a predictor for each individual biomaterial substrate that described the 

degree of transformation process.  This predictor value was compared with the 

experimentally observed telomerase expression based transformation index at 

11 day post-carcinogenic transformation induction for the same biomaterial 

substrate.  A high Pearson correlation coefficient of 0.8737 was acquired 

between the nuclear descriptor based predictors and the 11day telomerase 

expression based transformation index (Figure 5.5c). 
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Figure 5.5: Forecasting degree of hMSC transformation using high content 

nuclear descriptor based profiling.   

A) Quantification of telomerase based transformation index for hMSC cultured on 

each substrate after 11day periodic carcinogen treatment ranging from 

approximately 0 to 0.5. Error bars represent the standard deviation of N=2-4 

experiments per substrate.  (B) Key chemical structures of biomaterials (listed in 

Table 5.1) used in this study.   (C) Scatter plot of iAz (X-axis) calculated from 72h 

high content nuclear descriptor based classification (generated as described in 

the methods section) vs the experimental transformation index acquired from 

telomerase data on 11 day carcinogen treated cells to those non-carcinogen 

treated cells on the same substrate (Y-axis). A high degree of correlation 
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between the iAz and observed transformation index was acquired (Pearson 

correlation coefficient = 0.8737). The Y error bars represent the standard 

deviation for N=2-4 independent experiments.  

 

Table 5.1:  A list of biomaterial substrates 

Substrate index Substrate name 

1 poly(10%HEMA-co-65%NIPAAM) 

2 poly(82%DTE-co-8%PEG-co-10%DT  carbonate) 

3 poly(DTE carbonate) 

4 poly(40%HEMA-co-35%TEGMA) 

5 poly(90%DTE-co-10%DT carbonate) 

6 poly(55%EHA-co-20%HEMA) 

7 poly(L-lactic acid) 

8 poly(40%EHA-co-35%HEMA) 

9 poly(20%EHA-co-55%HEMA) 

10 coverglass 

11 poly(40%EHA-co-35%TEGMA) 

12 poly(92%DTE-co-8%PEG carbonate) 
 

5.4 Discussion  

Our high content imaging based profiling platform is based on the ability to 

identify cell populations using nuclear protein markers instead of alternative 

phenotypic readouts.  The value of our approach is its ability to identify subtle 

differences of nuclear features resulting from stem cell transformation.  

Moreover, this approach enables prediction of long term cell behavior at the first 

24-72h culture, thereby reducing the necessity of using multiple molecular 
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markers for characterization.  As our platform is based on high content imaging 

and computational data mining, it could potentially be applied to various fields as 

long as the cell type can attach to a substrate and can be imaged with 

appropriate nuclear protein marker(s) stained.   

The cell nuclear descriptors used in this study, which was derived mainly for 

a nuclear protein, NuMA, support the notion that structure and organization of the 

nuclear proteins and DNA in the nucleus has cell- and tissue- specific 

determinants, or ‗signatures‘.  As one of the four most abundant proteins in the 

cell nucleus in eukaryotic cells, NuMA was found to be closely associated with 

cell cycle related events, such as normal proliferation and apoptosis, cancerous 

progression, stem cell self-renewal (symmetric division), stem cell differentiation 

(asymmetric division).  One of the roles of NuMA that have been heavily 

investigated is regulation of cell cycle progression during cancerous progression. 

Lelievre and her colleagues reported that the degree of malignancy of breast 

cancer cells had committant patterns of NuMA expression and organizational 

features through the investigation of benign, malignant breast cancer cells, 

together with reversely engineered breast cancer cells131,165,166.  Therefore, our 

high content nuclear descriptors could virtually capture the competition between 

stem cell self-renewal and oncogenic transformation.  Moreover, our approach 

allows evaluation of substrates that differentially regulate the transformation 

process at early time-points.   

One interesting finding of this study was that biomaterials differentially 

modulated cell transformation processes.  Some polymeric biomaterials, such as 
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p(92%DTE-co-8%PEG carbonate), synergistically worked with metal carcinogen, 

nickel sulfate in culture, denoting a higher degree of transformation compared 

with other substrates (Figure 5.5a), while other biomaterials, such as p(DTE-co-

8%PEG-co-10%DT carbonate) acted against nickel sulfate induced 

transformation process.  The role that biomaterials played in the transformation 

progress is not quite clear, however, there are two possible explanations.  First, it 

could be attributed to the modulation of reactive oxygen species (ROS) 

imbalance and oxidative stress, which were generally believed to have an 

important role in the initiation of cellular injury by triggering a cascade of radical 

reactions, enhancing secondary ROS generation, stimulating inflammatory 

cytokine production, altering gene expression and other cellular modifications 

and finally lead to diseases including cancer82,86,309.  Our previous studies 

showed that these polymeric substrates were characterized for their intrinsic 

ability to generate ROS.  PEG-containing substrates induced both exogenous 

and intracellular ROS production, whereas the charged substrates reduced 

production of both types, indicating coupling of exogenous ROS generation and 

intracellular ROS production310.  The aforementioned reason is based on the 

assumption of no interaction between the nickel compound and the polymeric 

substrate; however, in some instances such as negatively charged DT-containing 

polymer substrate, it could electro-statically attract nickel ions to the polymer 

surface, thereby limiting the binding of nickel ions around/in target cells at site. 

This ionic binding event of nickel to cellular components has also been identified 

to be responsible for inducing cancer by International Agency for Research on 
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Cancer (IARC) in 1990 through mechanistic and animal studies82-84,304.  

According to IARC, DNA strand breaks, mutations, chromosomal damage, cell 

transformation, and disrupted DNA repair were observed in cell-culture studies 

with the existence of nickel compounds.   The reduction-oxidation activity of the 

nickel ion reacting with cellular molecular may produce ROS that attack DNA or 

induce cell signaling pathways82,84.  Moreover, ROS production can also result 

from Haber-Weiss-type mechanisms (Equation 5-3), where nickel ion acts a 

catalyst84,   

𝑂2
.− + 𝐻2𝑂2

𝑚𝑒𝑡𝑎𝑙 𝑛+1/𝑚𝑒𝑡𝑎𝑙 𝑛+

               𝑂𝐻. +𝑂2 + 𝑂𝐻−  (Equation 5-3) 

Through ROS-mediated reactions, nickel compounds cause lipid peroxidation, 

protein modification, DNA damage and chromosome abberation, ROS have been 

shown to act as signal transduction messengers both alone and as activators of 

signal transduction pathways.  Nickel compounds affect a number of receptors 

and genes, including growth factor receptors factors (EGF, VEGF, PDGF) Ras 

signaling, mitogen-activated protein kinases, nuclear transcription factors NF-kB, 

AP-1, p53, NFAT, and HIF-1 by both ROS-dependent and ROS-independent 

mechanisms82-84,304.  Therefore, the reduced amount of nickel ion on DT 

containing polymer substrate could result in less physical attack to cells and DNA 

and subsequently less transformation.  And the nuclear descriptors at 72h also 

showed this DT effect as demonstrated in Figure 5.5b, with all DT containing 

polymers at low end of transformation.    

To note, the telomerase based transformation index showed that the 

degree of transformation using nickel sulfate is not high, with ~50% of genetically 
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transformed hMSC (Figure 5.5a) although growth and other functional assays 

did confirm the transformation process (Figure 5.3a&b).  This could due to the 

use of hMSC of relatively low passage number (less than passage 20) under 

carcinogen treatment in this study.  As shown in literature, hMSC transformation 

is a chronic process, usually takes place in 5-6 months of culture when hMSC 

reached senescence stage and are more susceptible to spontaneous or 

carcinogen induced transformation33,75-77,311.  This also explains the possible 

reason why our early nuclear descriptors tend to over-predict the transformation 

process (Figure 5.5b), with correlation curve shifted to the right side of the origin.  

Therefore, longer induction may be necessary for improved predictions, however, 

current correlations could be used as early rank-ordering of biomaterials‘ 

susceptibility to transformation.   

It is noteworthy that nuclear descriptors in this study can be used 

determine the degree of transformation, regardless of the methods to transform 

hMSC, either genetically or carcinogen induction.  Stem cell transformation is a 

complicated process that still needs comprehensive investigation, which is further 

challenged by the possibility that the cancer phenotype after transformation could 

be more than a single cancer type.  Literature reports have shown that bone 

marrow derived mesenchymal stem cells could give rise to a variety of tumor 

types, such as sarcoma, epithelial tumors, neural tumors, muscular tumors, 

tumors of fibroblasts, blood vessel endothelial tumors and so on312,  Therefore, 

using telomerase as a functional cancer marker seemed an expedient but 

realistically an efficient marker to identify general cell transformation.  Moreover, 
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one of the clinical concerns is to avoid cancerous transformation of stem cells 

after implantation, regardless of specific cancer phenotypes stem cells will 

transform into.  Thus, our high content nuclear descriptor based screening 

platform could potentially be used for biomaterials design and screening.  In the 

future, cancer markers specific for certain molecular pathways could be used as 

a functional marker, and the selection of appropriate nuclear protein marker, 

which is more specific to that cancer phenotype could also be used apart from 

NuMA, whose expression and organizational features may only report global but 

not specific cell cycle progression as a result of the cell transformation process. 

Another interesting application enabled by this method is the possibility of 

identifying stem-like cell subpopulation in cancer cells, given that our high 

content nuclear descriptors based approach could capture the stem cell self-

renewal vs cancerous progression.  Therefore, further studies are warranted to 

identify stem-like subpopulation in heterogeneous breast cancer cells and 

preliminary results indicate some success of our proposed high content profiling 

platform (data shown in Chapter 6).   

To adapt this method to other applications with different cell types requires 

merely the availability of effective staining of nuclear proteins (not limited to 

NuMA but potentially other nuclear proteins as well), fluorescent imaging 

equipment, image-based feature extraction and data mining software (either in 

house or commercially available), which are cell type-independent or application-

independent and represent a common set of tools enabled by the advances in 

microscopy, computer vision and machine learning field.  In particular, our 
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profiling platform is highly adaptable to both two-dimensional and three-

dimensional systems with more markers (some preliminary data shown in the 

future work section), better methods for resolving fluorescent signals, especially 

for 3-D applications as demonstrated in chapter 2.   

 

5.5  Conclusion 

 We have demonstrated that through a ―high-content‖ nuclear based 

profiling platform it is possible to identify different state of stem cells (transformed 

vs normal) at early time points.  As a proof of concept, this platform was first built 

on predicting genetically transformed hMSC over normal hMSC.  Further utilities 

were expanded to predict the degree of transformation of hMSC under 

carcinogen induction cultured on various extracellular stimuli as modulated by 

polymeric substrates.    We are the first to show that organizational patterns of 

cell nucleus and nuclear proteins can be used to identify differences in the stem 

cell fate decision process amongst individual cells in a population of cells, such 

as the balance between self-renewal vs cancer transformation/progression.  

Additionally, it was also shown that substrate chemistry played a critical role in 

the balance of self-renewal and transformation of stem cells, shedding some light 

on the control of stem cell niche for regenerative medicine in cancer treatment.   

Moreover, the ability to identify cellular response early on may allow us to 

establish a timeline for cellular self-renewal/ transformation and identify critical 

points in cellular evolution for further screening.  This platform also has the 

potential for identifying and separating heterogeneous cell populations that could 
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be useful in the future for cell sorting given sufficient incorporation with flow-

cytometry related equipment.  It is also worthwhile to note that this platform is so 

versatile that it can also be applied to rapid screening of combinatorially designed 

substrates for directed stem cell differentiation, or cancer drug treatment to 

identify customized biomaterials or anti-cancer drugs in regenerative medicine 

and cancer treatment.    
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6 Research Summary and Future Directions 

 

6.1   Research Summary 

 This dissertation focuses on the development and applications of high 

resolution and ―high-content‖ subcellular imaging based profiling approaches. 

The overall hypothesis of the thesis is that high content subcellular imaging 

based profiling methodology can capture the changes of cellular responses, 

including but not limited to cell adhesion, spreading, stem cell self-renewal, 

differentiation and transformation, to various extracellular stimuli in a quantitative 

manner and enable predictive insights of stem cell fates.   

To test the above hypothesis three specific aims were addressed.  First, 

we developed a multiphoton imaging based approach to quantitatively 

characterize cellular response to three-dimensional scaffolding biomaterials.  

This methodology was based on fluorescence multiphoton microscopy (MPM) to 

image and quantitatively characterize the microstructure and cell–substrate 

interactions within microporous scaffold substrates fabricated from synthetic 

biodegradable polymers.  Image-based features were extracted to profile cell-

biomaterial interactions, thus generating 3-D biomaterial scaffold microstructure 

descriptors, and pseudo-3D whole cell morphological descriptors.  Second, a 

more comprehensive high content profiling method was examined, incorporating 

an expanded set of cell morphological descriptors including intensity based 

expression descriptors and texture/spatial organization descriptors.  This high 

content analysis was coupled with rapid screening platforms, such as the use of 
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two-dimensional gradient-based polymer coated substrates, to enable 

simultaneous elucidation of cell response to continuous changes in surface 

roughness and discrete changes in surface chemistry.  The gradient and high-

content approaches synergized to provide rapid assessment of cell response to 

material composition and topography while providing in depth single cell features 

that responded to these material factors.  Finally, the high content platform was 

refined further to incorporate high content information about intracellular nuclear 

organization that may hold clues into cellular functional fates.  By selecting 

nuclear proteins as subcellular reporters and introducing more sophisticated data 

mining/modeling approach, we sought to identify and predict stem cell related 

behaviors, including stem cell self-renewal, differentiation, transformation, and 

etc.  This ―enhanced‖ version of the high content profiling platform was first built 

on predicting self-renewal vs differentiation behavior of mesenchymal stem cells 

under various culture conditions.  The subsequent version was utilized to predict 

stem cell self-renewal vs transformation.  These findings highlight the versatility 

of this high content imaging based profiling platform in that we are among the 

first to report that organizational pattern of cell nucleus and nuclear proteins can 

be used to identify a broad range of stem cell fate decision process, such as the 

balance between self-renewal vs differentiation, self-renewal vs cancer 

transformation/progression.  Additionally, it was also shown that substrate 

chemistry played a critical role in the balance of self-renewal and transformation 

of stem cells, shedding some light on the control and harness of stem cell niche 

for regenerative medicine in cancer treatment.    
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 Results from this thesis strengthen the utility of high-content subcellular 

imaging to capture early cell response leading to divergent different stem cell 

behaviors.  Previous work from our laboratory by Treiser et al. have shown that 

incorporation of texture features with intensity and morphology features of whole 

cell and cytoskeleton protein actin could enhance classification of mesenchymal 

stem cells going into different lineages277.  The actin based profiling however has 

limited applicability in dense cell culture conditions, which is more representative 

of physiological conditions.  Moreover, cytoskeleton-based discrimination of cells 

also failed to identify mesenchymal stem cell self-renewal vs lineage 

commitment.   On the other hand, researchers from cancer research community 

indicated the importance of cell nuclear features, using image based grey scale 

feature extraction with classification techniques, in aiding cancer diagnosis and 

prognosis140-142,159.  One of the advantage of probing cell nucleus or nuclear 

proteins can minimize the need for complicated image segmentation efforts while 

expanding the utility of the high content platform to a broader applications where 

cell-cell contact are ubiquitous.      

 In fact, this study found that changes in nuclear features may be one 

alternative to probe cellular behaviors, as phenotypical changes of cells are 

inevitably accompanied by regulation of nuclear proteins, especially matrix 

proteins could play a role in the coordination of gene expression networks and 

signaling that link the ‖outside-in signaling‖.  Therefore, the cell nucleus features 

could be utilized to identify different state of the cells, including self-renewal, 

differentiation, transformation, and possibly aging, apoptosis.  In this study we 
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chose to apply our high content subcellular profiling platform to investigate 

human mesenchymal stem cell self-renewal, osteogenic vs adipogenic 

differentiation and transformation as a test case.  Similar approaches could be 

tested to examine cellular differentiation to other lineages such as chondrogenic, 

myogenic, neuronal and so on52,53,133,271,313-320.  In conclusion, this dissertation 

has presented a single cell based characterization approach that provides: 

quantitative characterization of subcellular features at early time points, 

prediction of different state of cells (not limited to stem cells) such as self-

renewal, differentiation and transformation, identifying stem cell/precursor cells of 

various origins, and capture of heterogeneity of cell populations, and capability to 

parse cell response to complex extracellular stimuli or biomaterial substrates.   

 

6.2  Ongoing and Future Directions 

6.2.1 Analysis of Other Subcellular/Nuclear Molecules for Descriptor 

Generation 

The study of the inner organization of the cell nucleus is emerging as a 

critical path to further the understanding of state change of cells, represented by 

controlled specific gene expression.  Our study focused on profiling changes of 

state of the cells through high-content imaging of nuclear protein expression and 

organizational features within cell nucleus.  A nuclear protein, NuMA was 

selected for the following reasons: first, its abundance in most mammalian cells 

makes it potentially useful for multiple applications. Second, NuMA is an 

essential player in cell cycle progression in that it aids mitotic spindle assembly 
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and maintenance.  Studies have shown the different expression and 

organizational patterns as cells undergo different proliferation paces, such as 

self-renewal, transformation136,164,165,280.  Third, NuMA and its invertebrate 

homologs play a similar tethering role at the cell cortex, thereby mediating 

essential asymmetric divisions during development287.  Fourth, as a nuclear 

matrix protein, it is also a structural component of the nucleus, and is responsible 

for maintaining nuclear integrity, keeping appropriate genomic order and 

organization as well as functional identity279-281,295.  Given the central role of 

NuMA, we hypothesized that high content descriptors of NuMA reflecting 

quantitative information of NuMA protein expression, nuclear morphology and 

organizational patterns, could thereby provide useful information for further 

cellular response. In the future, other nuclear components could also be 

analyzed and subjected to similar high content analysis.  Candidate nuclear 

component molecules include the heterochromatin/euchromatin family, and 

splicing factor speckles that are major components in chromatin 

remodeling156,160,165,166,321.  It is known that chromatin remodeling is necessary to 

modify expression of specific genes underlying a state change of cells.  The 

major characteristics of these nuclear components, as reported so far, are the 

concentration of heterochromatin at the nuclear periphery, DNAase sensitive 

chromatin at the nuclear periphery, formation of larger and fewer splicing factor 

speckles and the presence of transcription permissive areas around splicing 

factor speckles (Figure 6.1).   
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Figure 6.1: Patterns of nuclear organization depending on the 

differentiation stage.  

A number of reports have shown that upon differentiation into functional tissues 

(e.g., tissues that have acquired the organization and function typically found in 

normally developed organs), major characteristics of nuclear organization that 

can be observed include large splicing factor speckles, the concentration of 

heterochromatin domains at the periphery of the nucleolus, and the presence of 

DNAse sensitive chromatin at the nuclear periphery (right drawing). Before this 

differentiation stage or upon loss of this differentiation stage, this typical 

organization was not observed (left drawing).  Figure used by permission from 

Elsevier (License number 2554461244565).  
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Certain proteins whose translocation mediates the inside-out nuclear 

signaling may also be good candidates for the high content descriptor based 

approach.  One such candidate is nuclear lamina, made of intermediate filament 

proteins, lamins A/C and B, which is associated mostly with transcriptional 

silencing61,152,292-295,322.  Moreover, lamina also plays a role in 

mechanotransduction from outside to inside of cell nucleus.  The cell nucleus has 

been identified to have a compartment within which mechanotrasduction could 

occur.  Some proteins such as emrin, can bridge the actin cytoskeleton and the 

nuclear actin polymer via the lamina157.  Cell substrate interactions start at the 

interfaces, where cells utilize integrins, adhesion receptor molecules, to initiate 

binding to ligands adhering to the substrate surface135,147,159,283,285,323-327.  

Integrins also represent the mechanosensory machinery of the cell.  The 

generation of force at integrin binding site leads to local focal adhesion assembly 

and activation of signaling cascades and gene transcription324,327-330.  For 

instance, activation of focal adhesion kinase (FAK), mitogen activated protein 

(MAP) kinase and the Ras GTPase superfamily, further activate a number of 

downstream intracellular proteins and signaling molecules and regulate cellular 

functions ranging from proliferation, differentiation, apoptosis to migration, all of 

which represent change of cell state.  Thus, integrins could also serve as 

proteins whose organization and intensity may lend themselves to high content 

information extraction and modeling. 

The state change of cells is a complicated process, involving biochemical 

and mechanical signaling from outside to inside of cell nucleus.  We could 
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envision that communication between cell extracellular matrix, cytoskeleton and 

chromatin in the cell nucleus could form a large network encompassing all these 

factors together to guide the signaling outputs, proliferation, differentiation, and 

transformation.  Therefore, a systems biology based approach is highly desirable 

to reconstruct a large scale network that mimic cellular-signaling network, but 

utilize high content features of probes at both nuclear level and extra-nuclear 

level together with gene expression profiles.         

 

6.2.2 Expanding the Utility 

The ultimate goal of the proposed high content cell imaging based profiling 

platform is to be useful for a wide range of clinical-related applications, not only 

stem cell based regenerative medicine, but also cancer treatment.  In 

regenerative medicine, stem/progenitor cells in large-scale clinical applications 

are usually acquired from various sources with seemingly identical molecular 

marker expression, but may in fact possess different capacities for self-renewal 

and differentiation.  The selection of appropriate stem cell/precursor cell source is 

especially critical for the clinical success of stem cell therapies.  To this end, one 

potential application of our approach is to discern early differences in stem cells 

isolated from different regions of the central nervous system, as described next. 

 

6.2.2.1 Identifying Precursor Cells from Different Origins   

Oligodendrocyte Precursor Cells Display Divergent Self-renewal and 

Differentiation Potential 
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Oligodendrocyte-type-2 astrocyte progenitor cells (O-2A/OPCs) derived 

from different brain regions are expected to possess different long-term self-

renewal and differentiation patterns of oligodendrocyte generation, which mirrors 

the timing of myelination in vivo331. However, O-2A/OPCs, isolated from the optic 

nerve, cerebral cortex, and optic chiasm, are typically antigenically 

indistinguishable and share similar differentiation behaviors.  Ongoing efforts 

seek to evaluate the long term differentiation and self-renewal properties and 

examine determine whether O-2A/OPCs from two distinct sources of tissues, the 

cerebral cortex (CX) and corpus collosum (CC), have measurable intrinsic 

differences.  O-2A/OPCs from CX and CC are closely associated in proximity as 

well as the timing of myelination that occurs in these brain tissues.   

First, O-2A/OPCs plated at clonal density and cultured in proliferation 

promoting media containing 10ng/mL PDGF-AA revealed that both CX and CC 

derived O-2A/OPCs were responsive to the mitogen but underwent different self-

renewing behaviors.  Clones generated from single O-2A/OPCs originating in the 

CX tended to form much larger colonies on average than clones generated from 

single CC O-2A/OPCs (Figure 6.2a&b).  Only 4% of clones from CX derived O-

2A/OPCs contained a single oligodendrocyte whereas 20% of clones from CC 

derived O-2A/OPCs contained at least one oligodendrocyte. These results 

suggested that CX derived O-2A/OPCs were more prone to self-renewal and less 

prone to differentiation as compared to CC derived O-2A/OPCs in proliferation 

culture conditions. When media conditions favored differentiation (1ng/mL PDGF-

AA + 0.49nM T3/T4), even larger differences became evident between the two 
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populations of O-2A/OPCs.  After 7 days in differentiation media, 71% of CC-

derived O-2A/OPCs contained at least one oligodendrocyte, with 22% of clones 

containing at least 5 oligodendrocytes(Figure 6.2c&d).  In contrast, only 29% of 

clones derived from CX O-2A/OPCs contained at least a single oligodendrocyte, 

with just 3% containing 5 or more oligodendrocytes.  Thus, marked differences 

were seen in self-renewal and differentiation characteristics of O-2A/OPCs 

isolated from cerebral cortex (CX) and corpus collosum (CC). 

The varied self-renewal and differentiation properties we observed in 

different O2-A/OPC populations could represent a developmental progression331-

333, for which precursor cells from some specific regions possess a more mature 

pattern of behavior than other regions, thereby forming a developmental 

continuum of myelination.  As all cells were isolated from animals of the same 

age invoking a developmental progression would require positing a different 

timing of this progression in each tissue, which may make these populations 

biologically different from each other.  Further, the fact that O2-A/OPC(CX) 

continueed to express their characteristic potential for continuous and extended 

self-renewal in vitro, compared with O2-A/OPC(CC) seemed to suggest that the 

properties of these different populations may contribute to the diverse time 

courses of differentiation in different CNS regions. 
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Figure 6.2: Identifying oligodendrocyte precursors from different regions of 

brain (cerebral cortex and corpus collosum) via long term functional 

assays and high content nuclear descriptors based profiling approach.  
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 A-B) Proliferation assays performed on O-2A/OPC from cerebral cortex (A) and 

(B); C-D) Differentiation assays performed on O-2A/OPC from cerebral cortex (C) 

and (D); In these 3D plots, X-axis represents the number of precursors in a 

clone, Y-axis represents number of colonies with a specific composition, Z-axis 

represents the number of oligodendrocytes in a clone.  E) Marker staining to 

identify olygodendrocyte precursor cells using A2B5 marker.  All cells were 

stained with A2B5 and NuMA antibodies and Alexa488 and Alexa594 secondary 

antibody respectively for visualization, cell nuclei were counterstained with 

Hoechst 33342 dye.  F) A2B5 marker expression failed to demonstrate difference 

of O-2A/OPC from cerebral cortex and corpus collosum.  A2B5 expression was 

quantified as mean fluorescence intensity per cell.  G) High content nuclear 

descriptor based approach to visualize and classify O-2A/OPC from cerebral 

cortex and corpus collosum, SVM-based classification returned a 100% 

sensitivity and specificity respectively between cerebral cortex and corpus 

collosum derived O-2A/OPC. 

 

Next, we applied our high content nuclear based profiling method on these 

O2-A/OPCs identified through A2B5 marker staining (Figure 6.2e). Quantified 

A2B5 marker expression did not return noticeable difference between O2-A/OPC 

from CC and CX (Figure 6.2f).  NuMA based uclear descriptors were extracted 

from NuMA and Hoechst staining. After performing nuclear feature dimension 

reduction and classifications, the integrated nuclear descriptors were visualized 

in 3-D feature space.  Two distinct clusters, presumably corresponding to O-
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2A/OPC(CC) and O-2A/OPC(CX) respectively(Figure 6.2g) were demonstrated.  

Further SVM-based classification was performed and results indicated a perfect 

separation between the two clusters, with 100% sensitivity and 100% specificity.   

In this ongoing study we asked whether it is possible to help identify O-

2A/OPCs with properties that might be associated with divergent patterns of 

development in different central nervous system (CNS) regions without 

performing long term proliferation or differentiation studies.  Conventional means 

to define O-2A/OPCs is through A2B5+ staining, regardless of their origin.  

Examination of these A2B5+ cells revealed that all of these populations behave 

identically in terms of their final fate:  stellate phenotype of type-2 astrocytes334, 

which characterize the O2-A/OPCs.  The only difference reported in literature is 

their different self-renewal and differentiation response as they are from different 

sources, such as optical nerve, cortex and optic chiasm331.  Therefore, there is 

currently no reported effective way to identify the origin of O-2A/OPCs at early 

stages without performing long-term differentiation studies as shown above.  

Perhaps the most remarkable finding of this study is that high content nuclear 

descriptors can identify precursor cells whose self-renewal characteristics and 

response to inducers of differentiation differ in precursor cell origin but all give 

rise to oligodendrocytes and are isolated from postnatal animals of a single age.  

The difference of CC and CX derived O2-A/OPCs is mostly because of the 

intrinsic biological tendency to undergo self-renewal and their response to 

inducers of oligodendrocyte generation, in other words, tissue-specific properties.  

One possible cell-intrinsic property that regulates self-renewal and 
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responsiveness to induction factors is the intracellular redox (reduction/oxidation) 

state, as shown by other researchers331,335,336.  It could be that the redox state 

modifies the ability of extracellular signaling molecules that shuttle between cell 

nucleus and extracellular environment, and in turn modify the balance between 

self-renewal and differentiation, as can be probed by NuMA protein and high 

content analysis, which quantitatively captures self-renewal vs differentiation.  

 

6.2.2.2 Identifying Heterogeneous Stem-like Subpopulation in Breast 

Cancer Cells 

The discovery of stem-like subpopulation, sometimes called cancer stem 

cells, in cancer cells opened up a new strategy for fighting cancer from its 

origin13,337,338.  This stem-like subpopulation possesses certain stem cell 

properties, such as self-renewal.  Moreover, these cancer stem cells can evade 

conventional anti-cancer drug treatment and later on result in cancer recurrence.  

Therefore, successful identification of the stem-like subpopulation could 

potentially help design anti-cancer drug that target the cancer initiating 

subpopulation.  To this end, identifying stem-like subpopulations within breast 

cancer is currently being investigated as another test case.    

The phenotypic and functional differences between cells that initiate 

human breast tumors (cancer stem-like cells) and those that comprise the tumor 

bulk are difficult to study using only primary tumor tissue.  Since high content 

nuclear descriptors can capture the transformation of stem cells, another 

interesting question is raised: could it be used to identify stem-like population 
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within cancer cell population?  The premise is that since NuMA is a cell cycle 

related protein, cancer cells that have abnormally high proliferate capability 

should display different nuclear signatures compared with slow growing cancer 

initiating cells, also known as stem-like cells within the cancer population.   To 

address this question, breast cancer cells (SUM149) were used to train the 

classifier, with a known mixed population of phenotypic markers CD24+/CD44- 

low(~50%) and CD24-/CD44+ (~50%)339-341.  In SUM149 cell line and other 

breast cancer cell lines, CD24-/CD44+ cell population was reported to have 

stem-cell like behavior.  In this experimental setup, surface marker CD44 and 

CD24 were used for initial feature set identification of two subpopulations (Figure 

6.3a); nuclear protein marker, NuMA, was used for high content nuclear 

descriptors profiling.  Visual observation of CD24 and CD44 channel of SUM149 

cell images confirmed the heterogeneity, as reported in literature339,340.  A later 

step was to extract high content nuclear descriptors from NuMA channel and 

pinpoint the cells according to the CD24-CD44+ and CD24+CD44- 

subpopulations as identified from the initial phenotypic marker set.   Dimension 

reduction and SVM-based classifier on the two subpopulations of SUM149 cells 

returned 96% for sensitivity and 97.06% for specificity respectively (Figure 6.3b).  

This indicated that high content nuclear descriptors could be used to identify 

heterogeneous subpopulation.  Using the two subpopulations in SUM149 cells as 

training set, further validation experiment was performed on a similar breast 

cancer cell type, SUM159 cell line with a more homogeneous subpopulation 

(~90% CD24-CD44+ and ~10% CD24+CD44-)340.  Similarly, two subpopulations 
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were point picked based on CD24/CD44 expression and the high content nuclear 

descriptors from these subpopulations were subject to SVM classifications 

respectively.  A predictor value of 0.1341 was acquired for CD24-CD44+ 

subpopulations in SUM159 cells, indicating the closer relationship to the CD24-

CD44+ subpopulation in SUM149 cells (Figure 6.3c).  Comparatively, a predictor 

value of 0.8125 was acquired for CD24+CD44- subpopulations in SUM159 cells, 

indicating the closer relationship to that of SUM149 subpopulations.    

 

Figure 6.3: Identifying heterogeneity within breast cancer cells using 

surface marker expression and high content nuclear descriptors. 

A) immunostaining of surface markers CD24 (left 1), CD44(left 2) and nuclear 

protein NuMA (right 1), with respective antibodies and alexa 647, alexa488 and 

alexa594 respectively and merged (right2) together.  B) Visualization of high 
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content nuclear descriptors of CD24+CD44- and CD24-CD44+ subpopulation in 

SUM149 cells. Classification results showed 88.57% sensitivity and 90.91% 

specificity of the nuclear descriptors to parse out heterogeneity of breast cancer 

cells.  C) Validation of high content nuclear descriptor based parsing.  The two 

subpopulations in SUM149 were used as training sets (0: stem-like 

subpopulation, 1: regular cancer subpopulation).  SUM159 cells, with 

approximately 90%CD24-CD44+ and 10% CD24+CD44- subpopulations were 

used as test sets.  iAz values showed the location of the two test sets in the 

negative  (0) and positive controls (1), with iAz value of 0.1341 for CD24-CD44+ 

subpopulation in SUM159 and 0.8125 for CD24+CD44- in SUM159.   

 

To note, the CD44+CD24- subpopulation in the breast cancer cells have 

been reported by different groups to possess stem cell-like properties, including 

ability of self-renewal, cancer-initiating on certain circumstances339-341.  This is 

consistent with our high content nuclear descriptor outcomes, which show 

differences between CD44+CD24- subpopulation from other subpopulations, 

where there are mostly rapidly proliferating cancer cells.  In other words, the high 

content nuclear descriptors in this breast cancer cell study could capture the self-

renewal behavior vs cancerous progression.  On the other hand, CD44 and 

CD24 also serve as readouts for breast cancer cells, which can be classified into 

luminal-type (those express luminal keratins) and basal-type (those express 

stratified epithelial keratins) based on CD44 and CD24 expression337,339-343.   

CD44+/CD24- cells exhibit features of basal cells and express genes that are 
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involved in motility, whereas CD24+/CD44- cells exhibit features of more 

differentiated luminal epithelial cells and express genes involved in hormone 

responses. The differences of the high content nuclear descriptors of these two 

subpopulations may also mirror the differences of basal cell phenotype from 

differentiated phenotype340,342.  Therefore, further studies are needed to delineate 

whether the high content descriptors report dominantly the differentiation 

phenotype or simply capture the self-renewal over cancer progression.         

 

6.2.3 Pushing the High Content Profiling Platform to 3D 

 In the regenerative medicine or cancer research community, the ultimate 

goal is the ability to regenerate 3-D functional tissue.  Therefore, cellular 

response on 2-D systems is the simplest model to start with, however, may not 

be representative for actual cell response in 3-D by nature.  In the past few 

decades, 3-D studies have been focused on culture, expansion and 

differentiation of cells in 3-D scaffolds in a variety of applications264,344-348.   

Studies have shown the differences of cells on 3-D culture from 2-D culture, for 

instance, the organization and type of focal adhesions formed in 3-D 

environments are distinct from those formed in their 2-D counterparts.  In 

addition, studies have demonstrated extracellular matrix forces are generally 

transmitted to cells differently when the cells are on two-dimensional (2-D) vs. in 

three-dimensional (3-D) and in turn regulate different patterns of focal adhesions, 

and later cell proliferation, survival, migration, and invasion349,350.  Moreover, 

extensive studies have demonstrated the advantage of using 3-D culture system 
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for improved in vitro/ex vivo expansion and differentiation of both embryonic and 

adult stem cells65,346,347,351-353.  Ongoing research efforts in the Moghe laboratory 

also demonstrated that certain 3-D scaffolds of specific chemistry and 

microstructure can modulate the in-vitro expansion and differentiation of 

embryonic (ES) cells and induced pluripotency (iPS) cells.  Interestingly, the 

corresponding pseudo-3D nuclear descriptors could also capture the loss of 

stemness or lineage commitment, as demonstrated in Figure 6.4 and Figure 6.5 

respectively.  In the preliminary experiment, iPSCs were cultured on electrospun 

poly(DTE carbonate) scaffold stained with stemness marker SOX2 and nuclear 

protein marker NuMA and nuclei Hoechst (Images shown in Figure 6.4a).  Our 

pseudo-3D nuclear descriptors demonstrated the difference between SOX2 

positive and SOX2 negative cells, indicating the organizational difference 

between iPSCs retaining stemness vs losing stemness (Figure 6.4b).  Further 

studies on variation of scaffold chemistry and geometry are necessary to 

calibrate these responses to the environment.  On the other hand, preliminary 

studies on hES cell (H9) differentiation also showed that nuclear descriptors 

could be used to parse out lineage committed H9 cells from undifferentiated H9 

cells.  Shown in Figure 6.5a, following neurogenic induction for 3 days, hES cells 

became two distinct populations, with one population having stemness, as 

denoted by OCT4 positive cells and the other population losing stemness, as 

denoted by OCT4 negative cells (Figure 6.5b).  The pseudo-3D nuclear 

descriptor also demonstrated a clear separation, with a sensitivity of 95.19% and 

specificity of 88.72%, between neuro-precursor cells and non-lineage committed 
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H9 cells (Figure 6.5c).  Further studies are needed to address specific lineage 

commitment.   

 

Figure 6.4: Identifying heterogeneity within iPSCs cells using marker SOX2 

expression and high content nuclear descriptors. 

A) Immunostaining of cell nuclesi (left), nuclear protein NuMA (middle), and 

stemness marker SOX2(right) labeled with primary antibodies and conjugated 

alexa488 and alexa594 secondary antibodies respectively.  B) Visualization of 

high content nuclear descriptors of SOX2+ and SOX2- subpopulations. 

Classification on nuclear descriptors from SOX2+ and SOX2- subpopulation 

returned a sensitivity of 90.79% and specificity of 81.57% respectively.   
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Figure 6.5: Identifying lineage committed cells within hESCs using 

stemness marker OCT4 expression and high content nuclear descriptors.  

A) Immunostaining of cell nuclesi (left), stemness marker OCT4 (middle) and 

nuclear protein NuMA (right), labeled with primary antibodies and conjugated 

alexa4594 and alexa488 secondary antibodies respectively.  B) Visualization of 

OCT4 expression within neurogenically induced (3day) hESCs.  The histogram of 

OC4 expression showed a bi-modal distribution of cells with OCT4 high and 

OCT4 low subpopulation.  C)  Visualization of high content nuclear descriptors of 

OCT4 high and OCT4 low subpopulations. Classification on nuclear descriptors 

from OCT4+ and OCT4- subpopulation returned a sensitivity of 95.19% and 

specificity of 88.72% respectively.   
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Currently, our high-content descriptor based profiling platform has been 

demonstrated in two-dimensional cultures and some emerging 3-D applications, 

including deriving 3-D scaffold descriptors and pseudo-3D cell morphology 

descriptors due to limitation of image analysis capabilities.   However, recent 

technical development has made it possible to derive true 3-D cell descriptors.  

Therefore, another challenging task for the future will be to develop mathematical 

model to classify and predict various cellular responses in 3-D.  It would be 

interesting to investigate the correlations of the 2-D descriptors, pseudo-3D 

descriptors and true-3D descriptors to the overall cell response in 3-D.  

Successful prediction of the cellular response could provide a powerful 

alternative to characterize early cellular response in 3-D for better 

diagnosis/treatment in regenerative medicine and cancer research.       

 

6.2.4 Other Thoughts 

 The high-content subcellular imaging based profiling methodology 

discussed within this dissertation represents a new approach to characterize and 

forecast cell response to extracellular stimuli.  However, compared with other 

traditional techniques such as flow cytometry, the utility is limited despite its 

inherent advantages.  The biggest limitation of our current high content profiling 

platform is that it relies largely on fixed attached cells instead of live cells; thereby 

live cell sorting is barely possible.  However, live cell sorting is currently more 

desirable in biology related research labs or companies, representing a large 

market value.  Therefore, there are several technical hurdles to overcome in 
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order for our high content profiling platform to become widely useful for the 

community:  First, there is a great need to seek a non-invasive method to label 

cells that does not perturb the functions of the cells, either with endogenous 

fusion proteins (e.g. GFP live-act) or even using label-free cells but derive other 

cell descriptors using other optical imaging techniques such as phase contrast or 

Coherent anti-Stokes Raman spectroscopy(CARS)354-356.  Second, a system that 

can locally detach selected cells (e.g. some gel system that can detach local 

cells given certain heat stimuli) is highly desirable for live cell sorting.  Third, a 

seamless integration of the cell culture and processing equipment, imaging 

equipment, image analysis, data mining and computational modeling is also 

critical for the utility of this platform.  Fourth, if non-attached cells could also be 

utilized to acquire cell descriptors that capture different cellular response, a high 

content flow cytometry could be developed through the combination of our high 

content profiling with the flow cytometer.   
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7 Appendix 

 
7.1 Identification of the most influential cytoskeletal/nuclear descriptors 

for parsing hMSC lineage commitment (AD vs OS vs BA) 

In an effort to determine critical cell descriptors for hMSC lineage 

commitment, PCA analysis was performed to reduce the descriptor feature space 

(50+ dimensions) into three non-correlated dimensions (corresponding to top 

three highest Eigen values),  with each principal component (PC1, PC2, PC3) 

representing a linear combination of cytoskeletal/nuclear descriptors.  The 

criterion to determine the most influential descriptors was based on the weighting 

factors of each descriptor in the linear transformation in PCA analysis.  For each 

principal component, the descriptors were identified as influential if the weighting 

factor was more than half of the highest weighting factor in that transformation 

equation.  As a result, by reviewing the weighting factors of each linear 

combination, a subset of cytoskeletal/nuclear descriptors were identified as 

influential descriptors.      

PCA analysis on actin based cytoskeletal descriptors revealed that all three 

categories of cytoskeletal descriptors (reporter morphology, expression and 

spatial distribution) were of importance to parse out lineage commitment (AD, 

OS, BA) of hMSC (Table 7.1).  On the first principal component, with an Eigen 

value of 19.2 accounting for ~50% of the variability of the original dataset, the 

most influential descriptors were actin morphology descriptors (mostly 

descriptors for diameter, perimeter and area) and actin expression descriptors 

(density sum and IOD).  On the second principal component (Eigen value of 5.90 
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accounting for ~15% of variability of the original dataset), only actin morphology 

descriptors (mostly descriptors for diameter and area) were identified as most 

influential.  On the third principal component, which were about equally important 

as the second principal component (an Eigen value of 5.12), all three categories 

of actin descriptors were identified as influential, such as heterogeneity and 

density std.dev (spatial distribution descriptors); density mean, density sum and 

IOD (actin expression descriptors); box X/Y, perimeter ratio (shape factor for 

morphology descriptors). 

Similarly, all three categories of NuMA based nuclear descriptors were 

found to be important after PCA analysis (Table 7.2).  On the first principal 

component, with corresponding Eigen value of 20.9 accounting for ~40% of the 

variability of the original nuclear descriptor dataset, the most influential nuclear 

descriptors were mostly descriptors for diameter, perimeter and area (nuclear 

morphology descriptors).  On the second principal component (Eigen value of 

6.67 accounting for ~14% of the original dataset), all three categories of nuclear 

descriptors were identified as influential, including heterogeneity and density 

std.dev and clumpiness (spatial distribution descriptors); density mean, density 

min, density max, density sum and IOD (NuMA expression descriptors); area/box 

and perimeter ratio (morphology descriptors).  On the other hand, only nuclear 

morphology descriptors (area/box and perimeter ratio) were found to contribute 

to the third principal component.  

After data fusion process (described in chapter 4), dimension reduced 

cytoskeletal descriptors (Actin PC1-3) and nuclear descriptors (NuMA PC1-3) 
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were combined into six dimensions and underwent further PCA based dimension 

reduction (results shown in Table 7.3).  Interestingly, the final three dimensions 

reduced from six dimensions (three cytoskeletal and three nuclear descriptors) 

were of relatively the same contributions to the dataset, with Eigen values of 

1.39, 1.21 and 1.00 respectively. Moreover, the descriptors identified as most 

influential were PC2 and PC3 from both cytoskeletal and nuclear descriptors, 

comprising of all three categories of descriptors (morphology, expression and 

spatial distribution) but less contribution from morphology descriptors (ruling out 

contributions of actin/nuclei perimeter descriptors while keeping only shape, 

area, diameter descriptors).    
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Table 7.1: A list of cytoskeletal descriptors identified as most influential 

from PCA analysis in parsing hMSC lineage commitment (AD, OS) from 

non-differentiated (BA) state   

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, actin expression descriptors and actin spatial distribution 

descriptors respectively.   

 
PC1 (Eigen value=19.2) PC2 (Eigen value=5.90) PC3 (Eigen value=5.12) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.223 Radius (min) 0.310 Heterogeneity 0.370 

Perimeter (convex) 0.222 Area/Box 0.285 Density (std.dev.) 0.358 

Diameter (mean) 0.217 Axis (minor) 0.260 Density (mean) 0.310 

Perimeter (ellipse) 0.217 Diameter (min) 0.243 Box X/Y 0.242 

Perimeter 0.214 Area (polygon) 0.171 Perimeter (ratio) 0.234 

Area (polygon) 0.207 Feret (min) 0.154 Density (sum) 0.227 

Area 0.207 Size (width) 0.153 IOD 0.227 

Per Area (Obj./Total) 0.207 Area 0.151   

Perimeter3 0.206 Per Area (Obj./Total) 0.151   

Feret (max) 0.203     

Size (length) 0.198     

Radius (max) 0.193     

Diameter (max) 0.192     

Feret (min) 0.183     

Axis (major) 0.182     

Dendrites 0.177     

End points 0.177     

Size (width) 0.177     

Box Height 0.172     

IOD 0.169     

Density (sum) 0.169     

Perimeter2 0.169     

Dendritic length 0.166     

Axis (minor) 0.165     

Diameter (min) 0.163     
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Table 7.2: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing hMSC lineage commitment (AD, OS) from non-

differentiated (BA) state   

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively.   

 

PC1 (Eigen value=20.9) PC2 (Eigen value=6.67) PC3 (Eigen value=5.48) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Perimeter (ellipse) 0.217 Density (mean) 0.270 Perimeter (ratio) 0.215 

Diameter (mean) 0.217 Density (max) 0.266 Area/Box 0.158 

Feret (mean) 0.216 Perimeter (ratio) 0.263   

Area 0.216 Density (std.dev.) 0.255   

Area (polygon) 0.216 IOD 0.236   

Perimeter (convex) 0.214 Density (sum) 0.236   

Perimeter 0.208 Heterogeneity 0.231   

Per Area (Obj./Total) 0.206 Density (min) 0.231   

Count (adjusted) 0.204 Area/Box 0.191   

Diameter (max) 0.200 Clumpiness 0.120   

Feret (max) 0.200     

Size (length) 0.199     

Feret (min) 0.198     

Axis (minor) 0.198     

Perimeter2 0.198     

Size (width) 0.196     

Diameter (min) 0.196     

Axis (major) 0.195     

Perimeter3 0.195     

Radius (min) 0.193     

Box Width 0.188     

Box Height 0.176     
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Table 7.3: List of composite descriptors identified as most influential from 

PCA analysis in parsing hMSC lineage commitment (AD, OS) from non-

differentiated (BA) state   

Descriptor categories were color-coded as yellow and purple representing 

dimension reduced actin based cytoskeletal descriptors (Actin PC1-3) and NuMA 

based nuclear descriptors (NuMA PC1-3) respectively.   

 

PC1 (Eigen value=1.39) PC2 (Eigen value=1.21) PC3 (Eigen value=1.00) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Actin PC2 0.598 Actin PC3 0.708 NuMA PC3 0.777 

NuMA PC2 0.481 Actin PC2 0.399   
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7.2  Identification of the most influential nuclear descriptors for parsing 

hMSC transformation 

Similarly, PCA based dimension reduction was applied to NuMA based 

nuclear descriptors of hMSC and the transformed phenotypes (results shown in 

Table 7.4).  The first principal component, with corresponding Eigen value of 

19.55 accounting for ~40% of the variability of the original nuclear descriptor 

dataset, were composed of nuclear morphology descriptors for diameter, 

perimeter and area and NuMA expression descriptors (IOD and Density sum).  

On the second principal component (Eigen value of 6.62 accounting for ~14%), 

all three categories of nuclear descriptors were identified as influential, including 

heterogeneity and density std.dev (spatial distribution descriptors); density mean, 

density max, density sum and IOD (NuMA expression descriptors); per area, 

aspect and perimeter ratio (shape descriptors).  Similarly, all three categories of 

descriptors contribute to the third principal component, including diameter, area, 

and shape descriptors from (morphology descriptors category), density mean, 

density min, density sum, IOD (NuMA expression descriptors category), and hole 

ratio, heterogeneity and density std.dev (spatial distribution descriptors).  

Notably, NuMA expression and spatial distribution descriptors had more 

contributions to the dimension-reduced dataset:  IOD and Density sum appeared 

in all three PCs while heterogeneity and density std.dev appeared in PC2 and 

PC3.  This may be attributed to the fact that transformed cells tend to proliferate 

faster than normal hMSC, whose proliferative capability can be captured by 

proliferation markers such as NuMA protein expression.        
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Table 7.4: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing transformed hMSC (genetically transformed or 

carcinogen induced) from normal hMSC   

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively.   

 
PC1 (Eigen value=19.55) PC2 (Eigen value=6.62) PC3 (Eigen value=5.05) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.222 Density (std.dev.) 0.300 Perimeter (ratio) 0.245 

Perimeter (convex) 0.222 Density (max) 0.296 Density (mean) 0.235 

Perimeter (ellipse) 0.221 Heterogeneity 0.289 Density (min) 0.213 

Diameter (mean) 0.220 IOD 0.265 IOD 0.212 

Area (polygon) 0.218 Density (sum) 0.262 Hole Ratio 0.209 

Area  0.217 Per Area (Obj./Total) 0.245 Radius (min) 0.192 

Perimeter 0.217 Perimeter (ratio) 0.203 Area/Box 0.187 

Diameter (max) 0.215 Aspect 0.152 Box X/Y 0.148 

Feret (max) 0.215 Density (mean) 0.151 
Segmentation 
range 

0.136 

Size (length) 0.213   Diameter (min) 0.135 

Radius (max) 0.212   Heterogeneity 0.112 

Perimeter3 0.211   Density (std.dev.) 0.112 

Diameter (max) 0.211   Density (min) 0.110 

Perimeter2 0.209     

Feret (min) 0.191     

Size (width) 0.190     

Box Height 0.188     

Diameter (min) 0.181     

Box Width 0.175     

Radius (min) 0.167     

IOD 0.150     

Density (sum) 0.149     
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7.3 Identification of the most influential nuclear descriptors for parsing O-

2A/OPCs derived from cerebral cortex (CX) and corpus collosum (CC) 

PCA based dimension reduction was performed on nuclear descriptors of 

CC or CX derived O-2A/OPCs (results shown in Table 7.5).  The first principal 

component, with corresponding Eigen value of 24.91 accounting for ~50% of the 

variability of the original nuclear descriptor dataset, were composed of nuclear 

morphology descriptors (including diameter, perimeter, roundness and area 

descriptors).  On the second principal component (Eigen value of 7.85 

accounting for ~15% of the variability of the original dataset), all three categories 

of nuclear descriptors were identified as influential, including heterogeneity, 

density std.dev, clumpiness and margination (spatial distribution descriptors); 

density mean, density max, density min, density sum and IOD (NuMA expression 

descriptors); radius, dendrites and area/box (shape descriptors).  The third 

principal component was solely composed of morphology descriptors including 

roundness, dendrites descriptors.  To note, PC3 accounted for only ~7% of 

original dataset, and was not as important as the first two principal components.  
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Table 7.5: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing O-2A/OPC from different sources (CC, CX)  

 Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively.   

 
PC1 (Eigen value=24.91) PC2 (Eigen value=7.85) PC3 (Eigen value=3.53) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.202 Density (mean) 0.322 Roundness 0.303 

Perimeter (convex) 0.202 Density (max) 0.314 Dendrites 0.271 

Perimeter (ellipse) 0.201 Heterogeneity 0.314 End points 0.271 

Count (adjusted) 0.199 Density (std.dev.) 0.312 Radius Ratio 0.255 

Perimeter 0.199 Density (sum) 0.259 Fractal Dimension 0.253 

Perimeter2, 0.199 IOD 0.259 Dendritic length 0.247 

Perimeter3 0.199 Density (min) 0.255 Aspect 0.181 

Area 0.198 Clumpiness 0.193   

Area (polygon) 0.197 Radius (min) 0.182   

Diameter (max) 0.197 Margination 0.176   

Feret (max) 0.197 Dendrites 0.175   

Size (length) 0.196 End points 0.175   

Radius (max) 0.196 Dendritic length 0.169   

Diameter (mean) 0.196 Diameter (min) 0.151   

Per Area (Obj./Total) 0.196 Area/Box 0.143   

Axis (major) 0.194     

Box Width 0.194     

Box Height 0.194     

Feret (min) 0.191     

Size (width) 0.190     

Axis (minor) 0.180     

Cluster 0.176     

Roundness 0.138     

Diameter (min) 0.134     
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7.4 Identification of the most influential nuclear descriptors for parsing 

heterogeneous subpopulation of breast cancer cells 

PCA based dimension reduction was performed on nuclear descriptors of 

two subpopulations (CD24-CD44+/CD24+CD44-) of breast cancer cell lines 

(including SUM149 and SUM159).  The first principal component, with 

corresponding Eigen value of 20.54 shown in Table 7.6, was composed of 

nuclear morphology descriptors (including diameter, perimeter and area 

descriptors) and NuMA expression descriptors (IOD and density sum).  On the 

second principal component (Eigen value of 6.40 accounting for ~14% of the 

variability of the original dataset), only morphology descriptors (diameter, area, 

and shape descriptors) were identified as most influential.  To note, the third 

principal component only accounted for ~8% of total variability of the original 

dataset, however, it was composed of NuMA expression descriptors, including 

density mean, density max, density sum, IOD, and spatial distribution 

descriptors, including density std dev and heterogeneity.   
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Table 7.6: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing CD24-CD44+ and CD24+CD44- subpopulations 

within breast cancer cell lines (SUM149 and SUM159)  

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively.   

 
PC1 (Eigen value=20.54) PC2 (Eigen value=6.40) PC3 (Eigen value=4.38) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.219 Radius (min) 0.296 Density (mean) 0.433 

Perimeter (convex) 0.219 Area/Box 0.282 Density (std.dev.) 0.423 

Perimeter (ellipse) 0.218 Diameter (min) 0.247 Heterogeneity 0.415 

Perimeter 0.217 Axis (minor) 0.217 Density (max) 0.362 

Perimeter2, 0.216 Perimeter (ratio) 0.206 Density (sum) 0.216 

Perimeter3 0.216 Feret (min) 0.181 IOD 0.216 

Area 0.215 Size (width) 0.178   

Area (polygon) 0.215     

Diameter (mean) 0.215     

Feret (max) 0.204     

Diameter (max) 0.204     

Size (length) 0.203     

Radius (max) 0.201     

Axis (major) 0.198     

Per Area (Obj./Total) 0.196     

IOD 0.182     

Density (sum) 0.182     

Feret (min) 0.182     

Size (width) 0.181     

Axis (minor) 0.179     

Box Width 0.172     

Box Height 0.171     

Diameter (min) 0.170     
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7.5 Identification of the most influential nuclear descriptors for parsing 

heterogeneous subpopulation of iPSCs 

PCA based dimension reduction was performed on nuclear descriptors of 

SOX2+ and SOX2- subpopulations of iPSCs.  The first principal component, with 

corresponding Eigen value of 23.23 shown in Table 7.7, was composed of 

nuclear morphology descriptors (including diameter, perimeter and area 

descriptors) and NuMA expression descriptors (IOD and density sum).  On the 

second principal component (Eigen value of 6.62 accounting for ~18% of the 

variability of original dataset), morphology descriptors (shape, area, and diameter 

descriptors) and spatial distribution descriptors (hole ratio, heterogeneity and 

density std dev) were identified as most influential.  The third principal 

component only accounted for ~9% of the variability of original dataset, however, 

it was a combination of NuMA expression descriptors, including density mean, 

density max, density min, and spatial distribution descriptors, including density 

std dev, heterogeneity and clumpiness. 
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Table 7.7: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing SOX2- and SOX2+ subpopulations of iPSCs 

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively. 

 
PC1 (Eigen value=23.23) PC2 (Eigen value=9.52) PC3 (Eigen value=4.14) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.204 Perimeter (ratio) 0.267 Density (mean) 0.414 

Perimeter (ellipse) 0.203 Area/Box 0.240 Density (max) 0.398 

Count (adjusted) 0.203 Hole Ratio 0.228 Density (min) 0.339 

Diameter (mean) 0.201 Radius (min) 0.187 Density (std.dev.) 0.328 

Area, 0.201 Heterogeneity 0.170 Heterogeneity 0.303 

Per Area (Obj./Total) 0.201 Density (std.dev.) 0.166 Clumpiness 0.117 

Area (polygon) 0.200 Diameter (min) 0.153   

Perimeter (convex) 0.197     

Diameter (max) 0.192     

Feret (max) 0.192     

IOD 0.192     

Density (sum) 0.192     

Size (length) 0.190     

Feret (min) 0.190     

Size (width) 0.186     

Radius (max) 0.186     

Axis (major) 0.186     

Axis (minor) 0.184     

Cluster 0.180     

Box Width 0.179     

Box Height 0.173     

Perimeter 0.172     

Perimeter3 0.164     

Diameter (min) 0.153     

Perimeter2 0.151     
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7.6 Identification of the most influential nuclear descriptors for parsing 

neuronal-induced human ESCs 

PCA based dimension reduction was performed on nuclear descriptors of 

OCT4+ and OCT4- subpopulations of human ESCs (H9).  The first principal 

component, with corresponding Eigen value of 20.29 shown in Table 7.8, was 

composed of nuclear morphology descriptors (including diameter, perimeter and 

area descriptors) and NuMA expression descriptors (IOD and density sum).  On 

the second principal component (Eigen value of 5.91 accounting for ~14% of the 

variability of the original dataset), only morphology descriptors (diameter, area, 

and shape descriptors) were identified as most influential.  The third principal 

component was a contribution of all three categories of descriptors:  including 

shape, area, diameter descriptors from morphology descriptors category, density 

mean, density max, density sum, IOD from NuMA expression descriptors 

category, and heterogeneity, density std.dev, clumpiness from spatial distribution 

descriptors.   
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Table 7.8: A list of nuclear descriptors identified as most influential from 

PCA analysis in parsing neuronal committed hESCs from non-differented 

hESCs  

Descriptor categories were color-coded as blue, green and red representing 

morphology descriptors, NuMA expression descriptors and NuMA spatial 

distribution descriptors respectively.   

 

PC1 (Eigen value=20.29) PC2 (Eigen value=5.91) PC3 (Eigen value=4.49) 

Top descriptors Weight Top descriptors Weight Top descriptors Weight 

Feret (mean) 0.220 Radius (min) 0.284 Density (std.dev.) 0.317 

Perimeter (convex) 0.220 Area/Box 0.279 Density (mean) 0.310 

Perimeter (ellipse) 0.218 Diameter (min) 0.258 Heterogeneity 0.304 

Perimeter2, 0.216 Axis (minor) 0.203 Density (max) 0.293 

Perimeter3 0.216 Perimeter (ratio) 0.192 Perimeter (ratio) 0.239 

Perimeter 0.216 Per Area (Obj./Total) 0.180 Clumpiness 0.217 

Area, 0.214 Feret (min) 0.155 Area/Box 0.192 

Area (polygon) 0.214 Size (width) 0.154 Radius (min) 0.183 

Diameter (mean) 0.213   IOD 0.178 

Feret (max) 0.211   Density (sum) 0.178 

Diameter (max) 0.210     

Size (length) 0.210     

Radius (max) 0.210     

Axis (major) 0.206     

Box Width 0.192     

Feret (min) 0.187     

IOD 0.185     

Density (sum) 0.185     

Size (width) 0.184     

Box Height 0.177     

Axis (minor) 0.175     
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