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ABSTRACT OF THE DISSERTATION

Exploiting the Physical Layer

to Enhance Wireless Operation

with Cognitive Radios

by Robert D. Miller

Dissertation Director: Professor Wade Trappe

Wireless communication systems have undergone considerable evolution in the

past decade. This is in large part due to significant advancements made in un-

derlying physical (PHY) layer technologies, resulting in substantial performance

leaps in data rates and reliability. These strides have made wireless devices the

platform of choice for communicating. Accordingly, considerable progress in the

realm of Software Defined Radio (SDR) has made seamless cross-protocol commu-

nication not only plausible but a near-term certainty. This is primarily due to the

openness of the physical layer to the system user and developer. Unfortunately,

this same openness also provides an adversary with a powerful point of attack.

It is therefore essential to consider physical layer exploits in order to enhance

operation in future wireless communication networks. In this thesis, we consider

using physical layer exploitation to: (1) enhance situational awareness, (2) act as

an adversary, and (3) mitigate poor environments and adversarial conditions.
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By enhancing its situational awareness, a device can make truly intelligent

operational decisions. In order to efficiently and effectively utilize the RF spec-

trum a device should know what services are available and the level to which

they are utilized — perhaps even down to the identity of neighboring devices. It

is also advantageous for a device to know its physical location, characteristics of

its environment (e.g. indoor vs. outdoor), and of course whether or not there is

an adversary in the region. In this thesis, we explore new physical layer based

techniques to acquire this valuable information.

Next, we acknowledge that sometimes the best defense is a good offense as we

explore attack strategies focused on the physical layer. By thinking like an ad-

versary, one can better anticipate possible attacks and determine the appropriate

remedies. Since most 3G and 4G wireless standards and protocols incorporate

some form of multi-input multi-output (MIMO) technology, we pay specific atten-

tion to MIMO operation. Whereas the majority of related research has assumed

the presence of an unintelligent jammer, our focus will be on truly smart attacks.

In the final part of this thesis, we consider what to do once an accurate

description of the operational scenario is achieved. Accurate knowledge of the

environment plays a key role in Dynamic Spectrum Access (DSA), where devices

adapt modulation schemes and protocols to both optimize communications and

minimize interference with existing wireless infrastructures. Additionally, accu-

rate situational awareness provides insight into potential communication hazards

— from severe multipath conditions to adversarial attacks. In this thesis, we

present unique physical layer methodologies that can be used to overcome chan-

nel degradations due to both natural phenomena and adversarial activity.

In each part of this thesis, we accompany theoretical results and findings with

simulations and real-world experimentation in order to illustrate the feasibility

and applicability of the proposed techniques. Real-world implementations were

conducted using current SDR architectures.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication systems have undergone considerable evolution in the

past decade. In 1999, only 27% of US citizens used cell phones. In 2009, this

number skyrocketed to 89% [1]. Wireless devices now permeate through society,

and the general public has grown accustomed to high quality, dependable wireless

links to both cellular and broadband services. As of 2010, 59% of American adults

access the Internet wirelessly from either a laptop or cellular phone [2]. Society

has grown accustomed to tweeting and texting, syncing with email and calendar

events, and streaming multimedia content such as YouTube and Pandora at a

moment’s notice from any location — and all from a single wireless device.

The capabilities needed to support these demands have arisen in large part

due to significant advancements in underlying physical (PHY) layer technologies.

Advanced coding and modulation techniques 1 now come close to achieving the

Shannon capacity of wireless channels. Moore’s law has resulted in devices that

are capable of employing these advanced techniques, and Eveready’s law has

helped to maximize device usability. Popular handheld devices such as the Apple

iPhone last for days on a single charge and fit conveniently in a user’s pocket.

In order to meet user demand, most wireless communication devices support

1Error corrective coding (ECC) techniques such as low-density parity check (LDPC) codes
and Turbo-codes, coupled with modulation techniques such as Trellis-coded modulation and
multi-input multi-output (MIMO) systems offer throughput increasingly closer to the capacity
limit for Gaussian channels given by the Shannon-Hartley theorem [3].
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Figure 1.1: The general communication system task allocation between hardware
and software is illustrated for a traditional radio and a software defined radio.

multiple protocols. Access to GSM, CDMA, WiFi, and Bluetooth networks are

often offered in single platform solutions. This is presently done by including

multiple, protocol-specific hardware units. But as protocols expand and grow,

devices need to include more and more hardware units to meet user demand;

these hardware units are often application specific integrated circuits (ASICs).

Recent advancements in the realm of Software Defined Radios (SDRs) offer a

more promising solution to this dilemma. By leveraging the increased processing

power available on modern platforms, software can perform the jobs traditionally

relegated to hardware. By pushing the software processing closer to the antenna,

the wireless device becomes more readily adaptable — developers can wirelessly

deliver code updates and new protocol stacks on the fly to facilitate new commu-

nication schemes. Further, protocols like WiFi and Bluetooth that share spectral

resources can also share processing resources. This is essential in future wireless

networks, where devices may choose to associate with existing protocols or imple-

ment their own. Figure 1.1 presents the functional mappings between hardware

and software for traditional radios and Software Defined Radios.

We now introduce the concept of a Cognitive Radio (CR), which we define

simply as a Software Defined Radio with an intelligence engine. A CR is capable
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of intelligently deciding how best to use and adapt its resources in any given envi-

ronment. Consider a relevant example, as FCC regulations now allow secondary

usage of idle spectral resources in selected radio frequency (RF) bands [4]. A CR

can use the capabilities inherent in an SDR to implement a wide array of spec-

tral sensing algorithms in order to detect primary user occupancy. The CR can

then implement a communication protocol catered specifically for the situation at

hand. The Cognitive Radio concept was first introduced in [5], with much recent

interest thanks to prominent advancements in SDR architectures [6, 7, 8, 9, 10].

It is clear that future wireless networks will be made up of more and more

Cognitive Radios, giving software developers complete control over the majority

of the transmit and receive path functions. Thus, developers have total access to

information from all layers of the protocol stack — from application (APP) to

physical (PHY). While traditionally, developers would have access to data bits

(and perhaps rough signal quality estimates), now they have access to the actual

received waveform. The data processing inequality tells us that such access inher-

ently provides more information [11]. While this added information can greatly

benefit wireless operation, it also provides new cogent attacks for an adversary. In

this thesis, we present new and novel techniques to harness information available

at the physical layer in order to: (1) enhance situational awareness, (2) act as an

adversary, and (3) mitigate poor environments and adversarial conditions.

1.2 Situational Awareness

By enhancing its situational awareness, a device can make truly intelligent oper-

ational decisions. In order to efficiently and effectively utilize the RF spectrum

a device should know what services are available and the level to which they are

utilized — perhaps even down to the identity of neighboring devices. It is also
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advantageous for a device to know its physical location, characteristics of its en-

vironment (e.g. indoor vs. outdoor), and of course whether or not there is an

adversary in the region. In Chapter 2 of this thesis, we explore new physical layer

based techniques to acquire this valuable information.

We begin by addressing the issue of service discovery and device identification

in the 2.4 GHz ISM band. Our focus is on exploiting physical layer details of the

WiFi and Bluetooth protocols to reliably detect networks and specific devices.

We then introduce new signal processing techniques that leverage physical layer

information from existing transmitters to discover device mobility and location.

We demonstrate the effectiveness of these algorithms by using multiple protocols

and services such as GSM, WiFi, FM radio, and broadcast television.

1.3 Attack

Next, we acknowledge that sometimes the best defense is a good offense, as Chap-

ter 3 explores attack strategies focused on the physical layer. By thinking like an

adversary, one can better anticipate possible attacks and determine the appro-

priate remedies. We begin with a survey of cogent, protocol-specific attacks that

rely upon PHY layer exploitation and have been implemented with current SDR

platforms. Acknowledging that most 3G and 4G wireless standards and proto-

cols incorporate some form of multi-input multi-output (MIMO) technology, we

perform an analysis on the physical layer weaknesses of such systems. Proper op-

eration of MIMO systems demand accurate and timely knowledge of the wireless

channel, whether at the transmitter, the receiver, or both. Our work explores the

effects of inaccurate channel knowledge, and proposes methodology to force mis-

estimation in MIMO systems. We target the two most popular MIMO schemes

— the capacity achieving singular value decomposition (SVD) based scheme, and
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the practical Alamouti space-time block code (STBC) scheme. The vulnerabil-

ities that we develop are illustrated via real-world attacks. We note that the

majority of related research has assumed the presence of unintelligent jammers

rather than truly smart adversaries.

1.4 Mitigation

In Chapter 4 of this thesis, we consider what to do once an accurate description

of the operational scenario is achieved. Accurate knowledge of the environment

plays a key role in Dynamic Spectrum Access (DSA) [12, 13, 14], where devices

adapt modulation schemes and protocols to both optimize communications and

minimize interference with existing wireless infrastructures. Additionally, accu-

rate situational awareness provides insight into potential communication hazards

— from severe multipath conditions to adversarial attacks. In this Chapter, we

present unique physical layer methodologies that can be used to overcome channel

degradations due to both natural phenomena and adversarial activity.

We begin the Chapter with an overview of traditional mitigation strategies

such as simply transmitting with more power. We continue by addressing the

channel estimate vulnerabilities introduced in Chapter 3. Rather than focusing

specifically on MIMO systems, however, we present a general physical layer based

protection scheme to authenticate channel state information estimates. The tech-

niques are then validated through SDR experimentation in real environments.

Next, we pay attention to the difficulties associated with reliably communi-

cating in high multipath environments. With the added complexity of a high

powered jammer, we develop strategies to overcome such daunting conditions by

leveraging the multipath in our favor. Again, these techniques are verified in real

world experiments using a software defined radio.
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Figure 1.2: Pictured is the GNU Radio/USRP SDR platform used for experimen-
tation in this thesis. The RF to baseband conversion is provided by the USRP,
thus allowing GNU Radio processing blocks to be run on the host platform.

1.5 Experiment Methodology

In each part of this thesis, we accompany theoretical results and findings with

simulations and real-world experimentation in order to illustrate the feasibility

and applicability of the proposed techniques. Real-world implementations were

conducted using a current SDR architecture — the Universal Software Radio

Peripheral (USRP) [6] and GNU Radio [7]. GNU Radio is an open source, free

software toolkit that provides a library of signal processing blocks that run on a

host processing platform. Algorithms implemented using GNU radio send/receive

baseband data directly to/from the USRP, which is the hardware that provides

radio frequency (RF) access via an assortment of daughterboards. Many of these

SDRs are deployed in the WINLAB Orbit grid at Rutgers University [15], and

are publicly available for use. The USRP/GNU Radio SDR platform is depicted

in Figure 1.2 and described in more detail in the following section.
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(a) USRP Motherboard (b) RFX-2400 Daughterboard

Figure 1.3: Pictured above is the USRP motherboard (a) and the RFX-2400
daughterboard (b). The RFX-2400 provides RF to IF translation for the 2.4
GHz ISM band, and the USRP motherboard is responsible for the upconversion,
downcoversion, and channelization. Baseband data is interchanged with the host
processing platform over a USB 2.0 interface.

1.5.1 USRP

Motherboard

The USRP motherboard is the core hardware unit; it supports the simultaneous

transmission and reception of four real or two complex channels in real-time. For

reception it utilizes four 12-bit analog-to-digital converters (ADCs) operating at

64 MHz, and four digital-downconverters (DDCs) with programmable decimation

rates. The transmit side of the USRP incorporates four 14-bit digital-to-analog

converters (DACs) that operate at 128 MHz, and two digital-upconverters (DUCs)

with programmable interpolation rates. The on-board Altera Cyclone FPGA is

responsible for the channelization, down-conversion, and up-conversion. Data is

transferred between the host computer and the USRP via a USB 2.0 interface,

therefore limiting the sustainable data rate to 32 MBps half-duplex. Default
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Table 1.1: RF Daughterboards
Name Frequency Range TX RX

BasicRX 0.1 - 300 MHz X

BasicTX 0.1 - 300 MHz X

LFRX DC - 30 MHz X

LFTX DC - 30 MHz X

TVRX 50 - 80 MHz X

DBSRX 800 - 2400 MHz X

RFX-400 400 - 500 MHz X X

RFX-900 750 - 1050 MHz X X

RFX-1200 1150 - 1450 MHz X X

RFX-1800 1500 - 2100 MHz X X

RFX-2200 2000 - 2400 MHz X X

RFX-2400 2300 - 2900 MHz X X

XCVR2450 2400 - 2500 MHz X X

4900 - 5900 MHz X X

WBX 50 - 2200 MHz X X

operation results in 16-bit complex sampling, thus delivering an effective total

bandwidth of 8 MHz. Modification of the sample size to 8 and 4 bits is supported,

thus sacrificing sampling accuracy for respective increased bandwidths of 16 and

32 MHz. For the experiments conducted in this thesis, we employed the default 16-

bit complex sample size for both receive and transmit. The USRP motherboard

is shown in Figure 1.3 (a).

RF Daughterboards

The USRP motherboard by itself does not provide direct RF access, but rather

it utilizes an assortment of daughterboards to perform the RF to IF translation.

These daughterboards plug directly into the USRP motherboard. Some daugh-

terboards are receive-only, some are transmit-only, and some are transceivers —

devices that provide both receive and transmit functionality. Table 1.1 lists the

daughterboards associated with the USRP platform. Throughout this thesis, we

refer to the daughterboards by their names listed in the table. Figure 1.3 (b)

depicts the RFX-2400, which provides access to the 2.4 GHz ISM band.
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Figure 1.4: The general USRP architectural flow is depicted above. A Python
flowgraph is created by connecting GNU Radio processing blocks. The blocks
are implemented in C++ and made callable in Python via SWIG. Baseband
data is transferred between the USRP and the Host over a USB 2.0 interface.
The FPGA on the USRP is responsible for upconversion, downcoversion and
channelization of the baseband data. The DACs and ADCs provide the analog
to digital transformation, and daughterboards provide RF access.

1.5.2 GNU Radio

GNU Radio is an open source, free software toolkit that provides a library of signal

processing blocks for developing communications systems and experiments. The

processing blocks are written in C++, and made callable from Python via SWIG

(Simplified Wrapper and Interface Generator). Standard practice is to create a

Python flowgraph by connecting the appropriate signal processing blocks. If a

custom signal processing block is desired, it can be created in C++ and integrated

into the GNU Radio development environment via SWIG. The overall operational

flow is depicted in Figure 1.4.
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Chapter 2

Situational Awareness

2.1 Motivation

In future wireless communication networks, it will be important for devices to

obtain accurate situational awareness in order to maintain efficient, effective, and

secure communications. Two main categories of situational awareness emerge:

(1) identifying available resources and active devices and (2) recognizing envi-

ronmental conditions in the region. Many methods of acquiring these types of

situational knowledge exist.

Addressing the issue of service discovery, researchers have proposed the intro-

duction of a global control channel whereby devices can be informed as to the

policies and services that are present in a region [16]. But if a control plane does

not exist, devices may wish to perform their own discovery routines. One option

would be for cognitive platforms to implement full protocols in order to engage

and probe the existing services and devices. This however can prove timely, enve-

lope ample resources, and in fact may be ineffective with uncooperative networks

or devices. Additionally, many cognitive platforms may be incapable of imple-

menting the full protocols of existing services. While the device would then not be

able to associate with such networks, it is still advisable to know of the network’s

existence in order to select a communication method that will work in the region

without ample interference. As an example, a device implementing the 802.11

protocol may wish to know about 802.16 devices in the region due to co-existence

results in [17]. In the sections immediately following, we consider the physical
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limitations of cognitive platforms while harnessing their lower layer access in order

to effectively and efficiently perform service discovery and device identification by

leveraging physical layer information and partial protocol knowledge.

In the later sections, we investigate methods of obtaining environmental knowl-

edge. To better operate in future wireless networks, a device should know if the

channel is line-of-sight or riddled with severe multipath, if it is mobile, or if it is

under an adversarial attack. We will examine new methods of determining such

knowledge based upon physical layer reconnaissance.

2.2 System Details

Experiments conducted in this Chapter leveraged the USRP SDR platform de-

scribe in detail in Section 1.5. For RF access in Section 2.3, we used the RFX-2400

daughterboard to conduct our experiments, as the focus was on the ISM band. In

Section 2.4, we employed a variety of daughterboards in order to access cellular,

FM, television, and WiFi signals. These daughterboards included the DBSRX,

TVRX, RFX-1800, and RFX-2400.

An important note about our experiments relates to our usable spectral snap-

shot. Due to limitations of our host computer’s USB 2.0 interface, we were re-

strained to a usable spectral bandwidth of 4 MHz (using complex 16-bit samples).

2.3 Resources and Devices

2.3.1 Service Discovery

Spectral awareness plays an essential role in Cognitive Radio (CR) operation. In

order for a CR to make intelligent operational decisions it should be knowledgeable

of available services. For example, if a CR desires to access the Internet via WiFi

networks, it may decide to join one existing WiFi network, or perhaps set up
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Figure 2.1: Spectral activity is displayed for the ISM band. A spectrogram is
shown for 0.5 seconds of activity over 4 MHz of spectrum centered at 2467 MHz.

its own WiFi network. Here it is advantageous for the CR to monitor various

portions of the ISM band in order to estimate the best channel to use. The mere

presence of other WiFi networks in addition to existing Bluetooth piconets would

be important information to be used to select an optimal channel.

Using GNU Radio, the USRP board, and the RFX-2400 daughterboard [6, 7],

we illustrate it is possible to detect services and devices with relatively narrow-

band spectral surveillance (i.e. 4 MHz), in spite of the fact that the underlying

protocols themselves may employ a broader spectral range (e.g. 20 MHz in the

case of WiFi). We note that, although we illustrate our techniques for Bluetooth

and WiFi, our strategies may be applied to identify other wireless technologies.

Figure 2.1 shows the spectrogram of a snapshot from our platform that was

centered at 2467 MHz. Note that the data spans half of a second and lies within

the spectral range of WiFi devices. Upon examination, one immediately notices
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Figure 2.2: A closer look into the spectrogram of Figure 2.1. Note the Bluetooth
bursts hopping through the band amidst the WiFi beacon.

various broadband, periodic bursts. These are in fact WiFi beacons being broad-

cast by an 802.11g Access Point (AP) in range of our receiver. WiFi (802.11g)

beacon signals are 20 MHz in bandwidth and default to a pulse-repetition interval

(PRI) of 102.4 ms on most APs.

Observe that there are other bursts hopping through the spectrogram. A

zoomed-in view of the data collection from 0.09 to 0.14 seconds (Figure 2.2) reveals

that the bursts span 1 MHz and vary in burst length. These sporadic narrow-

band bursts are in fact Bluetooth bursts. The Bluetooth protocol mandates that

transmissions frequency hop over 79 MHz of the ISM band while maintaining

an instantaneous frequency of 1 MHz using Gaussian Frequency Shift Keying

(GFSK) [18]. Bluetooth also exhibits a time-division multiplexed (TDM) nature

where timeslots exist to guide network transmissions. A timeslot is 625 µs in

length, and devices are allowed to transmit continuously for 1, 3, or 5 timeslots.

Detecting the presence of services is plausible by monitoring narrow-band
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Algorithm 1: Service discovery in the ISM band

while (1) do
/*** Data Collection ***/
Collect new samples;
/*** Time/Frequency Analysis - detect individual bursts ***/
num burst = 0;
for ( each burst in time ) do

for ( each distinct frequency ) do
/*** extract physical properties ***/
leading edge[num burst] = start time;
trailing edge[num burst] = end time;
. . .

bandwidth[num burst] = burst bw;
num burst++;

end

end
/*** Service Discovery Phase ***/
for ( each detected burst ) do

if ( ( burst width ≤ 5 timeslots ) && ( bandwidth ∼ 1 MHz ) ) then
Bluetooth service found;

end
if ( ( bandwidth ∼ min (sample rate, 20MHz) ) && ( periodic ) ) then

WIFI AP;
end
/*** Checks for other available services ***/
. . .

end

end

activity and leveraging protocol-specific features. As listed in Algorithm 1, CRs

first collect data and identify bursts. Then, properties of individual bursts are

extracted. Finally, CRs decide that a service is present if the burst patterns and

properties match the intrinsic time and frequency properties of the corresponding

protocol. For example, the presence of various 1 MHz GFSK bursts that do

not exceed 5 Bluetooth timeslots in length indicates the presence of a Bluetooth

piconet. Likewise, periodic, broadband bursts suggest the presence of a WiFi

network.

Although using a small amount of spectrum to identify broader band services
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is inherently desirable due to the associated reduction in sampling and computa-

tion, a natural questions that arises is whether there is any need for a bandwidth-

limited CR device to know about services it cannot utilize. For example, with our

experimental setup, we cannot join an 802.11g network due to the bandwidth lim-

itation of the USRP and the USB 2.0 interface. The most obvious answer is that

knowledge of services operating in the region plays an important role in choos-

ing an optimal communication scheme. To illustrate, consider the co-existence

issues inherent to WiFi and Bluetooth [17]; knowledge of only 802.11g services

operating in a region may suggest that a CR should not choose to implement a

frequency-hopping spread spectrum (FHSS) scheme.

Establishing knowledge of all existing services is therefore important. With

this in mind, we present a general PHY/MAC classifier in Figure 2.3. The classi-

fier expands upon the notion of service discovery, addressing prominent protocols

outside of the ISM band such as cellular services (e.g. GSM and CDMA) and

broadcast media (e.g. radio and television broadcasts). As an example, detection

of a TDMA, constant-envelope signal in the 1800 MHz band with a burst width

of 577 µs is a clear indicator of an active GSM network.

While knowledge of the presence of certain services can guide CR operations

by giving a hint of spectral activity, it would be more advantageous for a CR to

know more detailed information about the services present in the RF environment.

For example, it would be very useful to know how many WiFi networks and

Bluetooth piconets exist. It would be even more desirable to know how many

distinct WiFi or Bluetooth devices are operating in the region. We now discuss

how this information can be extracted from our narrowband data by leveraging

protocol-specific properties.
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Figure 2.3: A general PHY/MAC classifier is illustrated. Using PHY and MAC
based feature vectors provides reliable service discovery across the RF spectrum.
For example, detection of TDMA, constant-envelope bursts using GMSK modu-
lation and burst widths of 577 µs in the 1800 MHz band indicates GSM operation.

2.3.2 Device Identification

In this section, we investigate the problem of device identification in both Blue-

tooth and WiFi networks. For Bluetooth, we perform device identification on two

levels. First, we detect distinct Bluetooth piconets; second, we identify individual

Bluetooth devices. In a similar manner, we identify distinct WiFi Access Points

and then illustrate how our methodology can be extended to identify individual

WiFi devices.

Bluetooth Piconets

Every piconet has 1 device that acts as the Master, and up to 7 active devices

operating as Slaves. A piconet is always synchronized to its Master’s clock, and
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timeslots are defined based on this reference. The Master is only allowed to begin

transmitting its bursts at the beginning of even timeslots, while the Slaves may

only begin their transmissions at the beginning of odd timeslots [18].

Time-binning approach: By analyzing the detected leading edge times, we

can determine a lower bound on the number of piconets. Since piconets operate

independently, we can view a particular piconet’s timeslot structure as a uni-

formly distributed random variable between 0 and 625µs (U(0, 625)µs), where

the random variable represents the relative starting point of a new timeslot. By

dissecting an arbitrary timeslot into sub-intervals, we can collapse all of the start-

ing times into bins. Starting times that fall into the same bins are then likely

to belong to the same piconet. Since the specification allows for 20µs of time

uncertainty (±10µs of jitter), it is wise to choose a time bin resolution δ slightly

bigger than the maximum allowed uncertainty window (i.e. 20µs).

In our case, we chose δ = 25µs, resulting in 25 time bins. Analysis of our

data revealed all Bluetooth bursts falling into the same bin, validating that they

all came from the same piconet. As an example, consider the leading edge times

of the bursts transmitted at 2466 MHz shown in Figure 2.2. The first burst is

at t1 = 0.09378 seconds while the second burst is detected at t2 = 0.13127975

seconds. Thus, the second burst is 250ns shy of 60 timeslots away from the first

burst ((t2−t1)/ts ≈ 60; (t2−t1) mod ts = −250ns). Since 250ns is much smaller

than the time uncertainty window 20µs, we conclude that these bursts belong to

the same piconet. Using GNU Radio and the USRP, we developed a Bluetooth

Access Point Detector using this approach. Figure 2.4 depicts a screenshot of our

real-time histogram, where a single Bluetooth network was active.

It is possible that the time-binning approach will falsely declare two indepen-

dent piconets as the same piconet when two piconets have overlapping uncertainty

windows. One way to detect this would be to look for a scenario where two bursts

are transmitted at the same time but on different frequencies. This would be a
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Figure 2.4: A PHY-based Bluetooth Piconet detector was implemented using
GNU Radio and the USRP. Leading-edge burst times are mapped to an intra-
timeslot based histogram as described in the time-binning approach of this Chap-
ter in order to estimate the number of active piconets. The experiment was run
during a call to voicemail using a Bluetooth enabled cellular phone and Bluetooth
earpiece dongle. Results clearly show the presence of a single Bluetooth piconet.
The y-access reflects the number of detected bursts in the processing window.

clear indicator of separate piconets. Additionally, real-world devices inherently

exhibit local oscillator drift. This drift is independent from device to device and

will cause a device’s leading edge bin to drift over time. This phenomenon was

verified during real-world experiment using GNU Radio and the USRP. Yet an-

other alternative approach exists — examination of the actual bits transmitted.

Bit comparison approach: We emphasize that such an approach does not

require a full implementation of the Bluetooth protocol, but merely requires some

knowledge of basic modulation schemes.

The general Bluetooth packet structure, as depicted in Figure 2.5, is comprised

of an access code, a header, and a data payload. All packets must have an access

code, while the presence of the header and the data payload depends on the type of

message conveyed. For actions such as paging and inquiry scans, the packet only
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Figure 2.5: The Bluetooth packet structure is illustrated. The 18 header infor-
mation bits are repetition encoded by 3 to generate the 54-bit packet header.

contains a 68-bit access code. During normal operation within a basic piconet,

all packets begin with a 72-bit access code known as the Channel Access Code

(CAC). This is followed by a header and when pertinent, payload data. The CAC

is derived from the Master’s unique device address and is therefore particular to a

given piconet. By demodulating the bursts and comparing CACs, we can better

estimate the number of distinct piconets, even when the piconets are synchronized

to within the same time uncertainty window.

We now illustrate the CAC comparison procedure with the two Bluetooth

bursts that we analyzed earlier. In order to obtain the access codes, we must

properly demodulate the bursts. The second and third subplots in Figure 2.6

depict the demodulation, where the instantaneous frequency is plotted versus the

sample number for each respective burst. The first subplot is the normalized

burst power. Since high energy indicates the presence of a packet, the relative

burst power plot is shown to illustrate the actual start and end point of the pack-

ets. During the packet transmissions, the reader can clearly see the fluctuation

between two distinct frequencies as specified in the protocol (i.e. GFSK).

The bit-wise comparison of our two demodulated Bluetooth bursts is shown
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Figure 2.6: Bluetooth Piconet differentiation is performed by demodulating and
comparing Channel Access Codes (CACs) from two Bluetooth bursts. The CAC
is conveyed by 72-bits at the beginning of each Bluetooth packet. Bit differences
are illustrated via an exclusive-or between two demodulated Bluetooth bursts. A
0 indicates bit-agreement, whereas a 1 indicates bit-disagreement. It is clear that
the access codes are the same, therefore confirming that these bursts came from
the same piconet. Note that the graph is organized to incorporate our sampling
rate of 4 samples per bit.

in the fourth subplot in Figure 2.6. An exclusive-or was performed using the

two bit sequences. A value of 1 indicates bit disagreement, whereas a value of 0

signifies commonality. The bit disagreement in the plot illustrates the location of

the packet header and payload. The leading 0s indicated that the 72-bit CACs

from the two Bluetooth bursts are identical. Therefore, these packets belong to

the same piconet.

Bluetooth Devices

The upper bound on the number of distinct active Bluetooth device in the region is

8× (number of active piconets), since only 7 active Slaves are allowed per piconet.
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A better estimation can be achieved by further leveraging some protocol-specific

information.

As there can be multiple Slaves communicating with the Master, each packet

needs to contain the identity of the Slave involved in the communication. This

information is found in the Logical Transport Address (LT ADDR) in the packet

header. The LT ADDR is a 3-bit information field derived from the first 9 trans-

mitted bits of the packet header. (The packet header uses a simple 3-bit repetition

procedure for its Forward Error Correction (FEC), and techniques in [19] can be

employed to unwhiten the data). The Master denotes the destination of a trans-

mitted packet by specifying the intended Slave in the LT ADDR. In a similar

manner, Slaves include their own LT ADDR when transmitting packets to the

Master. The LT ADDR of 0 (000) is reserved for broadcast packets, while 1 − 7

(001-111) correspond to particular Slaves. By monitoring the LT ADDRs of the

basic piconet packets, we can identify distinct users of a particular piconet, and

therefore obtain a better estimate of usage within the entire channel. The two

Bluetooth bursts that we examined above had LT ADDRs of ’000’, indicating

that they were broadcast packets. Other bursts revealed an LT ADDR of ’001’

for the same CAC, indicating that the specific piconet that we detected had 2

active users (i.e. the Master and 1 Slave).

We have shown that leveraging PHY layer information clearly results in a

reliable estimate of Bluetooth services and unique devices. However, a CR should

also account for the stationarity or transience of the networks being observed. As

such, it makes sense for a CR to maintain a table of information that is updated

with the most current information. In this manner it can phase out old data

due to periods of inactivity. This is especially important in Bluetooth, since

the protocol allows Slaves to switch functionality with the piconet Master. As a

general process, we propose that every burst we detect have its CAC compared

to a table of access codes for known piconets. If it does not match any of the
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Figure 2.7: Unique identifier table population is illustrated. For Bluetooth,
unique identifiers include the Channel Access Code (CAC) and the Logical Trans-
port Address (LT ADDR).

known piconets, then we insert the newly discovered piconet information into the

table. Likewise, we can keep track of individual Slaves by their LT ADDR and

CAC. This general process is illustrated in Figure 2.7.

WiFi Access Points

WiFi beacons are periodic, broadband bursts that are broadcast by Access Points.

These beacons contain useful identification information such as the service set

identifier (SSID) and the AP name. Beacons are always present, as they function

as the heartbeat of a given network (and are present even if the AP is hidden).

Beacon information can be immediately extracted by properly demodulating the

beacon signals. But, this is a bit more complicated given the limitations of our

research hardware. Since the WiFi (802.11g) beacon is 20 MHz wide, it is out

of scope of our equipment (i.e. 4MHz). However, alternative methods of AP

identification can be pursued using our limited spectral snapshot. One method
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performs an analysis on the periodic structure of the beacons, while another

examines the physical properties of each beacon in more detail.

Periodicity: By default, WiFi APs broadcast beacons every 102.4 ms. Given a

situation where every AP maintains the default periodic repetition interval (PRI),

we can estimate the number of APs by monitoring the number of beacons that

occur within a 102.4 ms period. In cases where APs do not use the default beacon

PRI, an accurate estimation of the number of APs is also discernible by analyzing

the start times of the observed beacons. Assuming AP PRIs are stationary, all

unique PRIs can be determined using standard deinterleaving algorithms [20].

We are then back to the original task of identifying unique APs given knowledge

of a beacon PRI.

Channel estimation: A particular scenario arises, however, where standard

deinterleaving algorithms break down. Consider the case where a beacon frame

is detected every 51.2 ms. There is an inherent uncertainty here in determining

how many distinct APs exist. There could only be one with a PRI of 51.2 ms, or

two with PRIs of 102.4 ms, or three with PRIs of 153.6 ms, etc. By leveraging

the unique capabilities inherent to CRs, the dilemma can in fact be resolved.

Since a CR by nature has direct access to the physically received waveform, it

can exploit non-standard features to best determine a physical differentiator (e.g.

other than just bits). Let us elaborate by discussing the 802.11g protocol a bit

more in detail.

WiFi beacons operating in 802.11g only mode begin with an 8 µs training se-

quence followed by an 8 µs equalization sequence [21]. As previously stated, an

802.11g WiFi channel is 20 MHz wide. Being an OFDM signal, one channel con-

tains 64 equally spaced sub-channels, where each sub-channel is 312.5 KHz wide.

During the training sequence, every fourth sub-channel is active with a phase re-

lationship such that the peak-to-average power ratio is minimized. Subsequently,

the equalization sequence modulates every sub-channel with equal power [21].
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It is therefore intuitive that the equalization sequence would make an excellent

differentiator since it is in fact a channel sounding waveform between the AP

and the CR. Figure 2.8 shows both the training sequence and the equalization

sequence for one of our observed WiFi beacons. The reader can see the distin-

guishing spectral characteristics of the two sequences, even given our narrowband

snapshot.

A CR may wish to take advantage of this broadcasted channel estimation

signal by using it as a means of unique AP identification. Note that an estimate

of the channel can be obtained by accounting for the spectrum of the transmitted

waveform. This adjustment factor is known a priori and it will remain common

for all channel estimates since the waveform is always the same. Let s(t) be the

transmitted equalization signal with S(f) corresponding to its Fourier Transform.

If we denote the channel between the AP and the CR as h(t), and channel noise

as n(t), then a basic linear time invariant model for the waveform received by the

CR is:

r(t) = s(t) ∗ h(t) + n(t)

R(f) = S(f)H(f) + N(f)

Estimating the channel spectrum yields:

Ĥ(f) =
R(f)

S(f)
= H(f) +

N(f)

S(f)

Access Point Discrimination

With a valid channel estimate, it is proposed that unique APs can be differen-

tiated within the time-coherence of the channel by performing cross-correlations

between new channel estimates and known channel estimates. Given K known

users and their corresponding channel estimates, Ĥi(f), where i = 1, ..., K, we

can obtain a vector of cross-correlations, v, between known channel estimates and
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the newest channel estimate, ĤK+1(f), via:

v(i) =
< Ĥi(f), Ĥ∗

K+1(f) >

‖Ĥi(f)‖‖Ĥ∗
K+1(f)‖

(2.1)

If the largest correlation does not exceed a given threshold, then we can declare

the presence of a new user. Similar to the case of Bluetooth devices discussed

earlier, a table can be maintained to aid in AP discovery. And, just like the

Bluetooth user table, the WiFi AP table can be updated over time in order to

remove old users. Note that it is also possible to update the table to account for

the time-coherence of the channel.

However, it should be noted that the aforementioned channel estimate, Ĥ(f),

has one subtle flaw: the use of phase as a differentiator when considering bursty

transmissions from a common source. This is because there is no deterministic

way to estimate the initial phase of the transmitted waveform. Initial phase

offsets can be attributed to various factors not limited to local oscillator drifts

and even software. We must therefore consider the initial phase to be random

and thus should not include it in our channel estimate. We can however base

our channel estimate on the magnitude response of the channel. The following

equation illustrates the relationship of this new channel estimate, ĤM(f), to the

old channel estimate, Ĥ(f). Utilizing solely the magnitude response in performing

the correlations has a performance effect. The typical correlation range of [-1,1]

is now collapsed to [0,1], as seen by bounding ĤM(f) by ‖Ĥ(f)‖:

ĤM(f) =
‖R(f)‖
‖S(f)‖

=
‖S(f)H(f) + N(f)‖

‖S(f)‖

≤ ‖S(f)H(f)‖ + ‖N(f)‖
‖S(f)‖

≤ ‖H(f)‖+
‖N(f)‖
‖S(f)‖ = ‖Ĥ(f)‖
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Figure 2.8: The first 8µs sequence of the WiFi beacon is used as a training
sequence, while the second 8µs sequence is used to aid in equalization. The
training sequence uses every fourth sub-channel, while the equalization sequence
is modulated with equal power over every 312.5 KHz sub-channel.

Experimental Validation

To validate the feasibility of using channel estimation to identify APs, we

conducted an experiment using the beacons of two APs at different locations.

The devices were placed much further than a wavelength away from each other

and the USRP. Figure 2.9 (a) shows the time-series magnitude of one of the data

sequences. Two sets of periodic beacons with varying amplitudes are evident.

Since our narrowband snapshot limits us to 32 samples to represent the equal-

ization sequence, our correlations were performed over a longer data sequence. In

order to prevent this action from jeopardizing our experiment, both APs were

set up with exactly the same parameters (e.g. Channel, SSID, PRI, name, etc.).

This forced both APs to transmit identical bit-sequences. Our analysis used the

appropriate waveform, S(f), to calculate our channel estimate, ĤM(f). With a

wider bandwidth, however, it is desirable to only use the equalization sequence

for channel estimation.
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Figure 2.9: (a) Normalized time-series beacon data for two active 802.11g APs
is shown. Note both the periodicity and the varying magnitudes. (b) Chan-
nel estimate cross-correlation results against the previous 2 beacons show strong
correlations for the appropriate beacon signal.

Using our outlined methodology, every detected beacon resulted in a chan-

nel estimate. That channel estimate was then correlated against every channel

estimate seen within the last 102.4 ms. In our experiment, this resulted in two

correlations per detected beacon. Since our experiment consisted of two distinct

APs alternately transmitting, one would expect to correlate best with the second

to last beacon detected. Figure 2.9 (b) presents our results. As can be seen,

the correlation routine was reliable in its ability to differentiate between APs

based solely on the physical layer signature associated with the AP. The results

were reproducible for various AP locations and over numerous days. It is quite

clear that the proposed methodology therefore provides a plausible solution to

the previously outlined deinterleaving dilemma.

WiFi Devices

Now that unique WiFi APs can be reliably detected, we propose that the same

correlation methodology can be leveraged to estimate the number of distinct WiFi

devices in the area. This includes both APs and clients. While data packets do



28

not exhibit the periodicity of the beacon frames, they do in fact contain known

bit-sequences. These bit-sequences can be utilized to obtain unique channel es-

timates, and these channel estimates could be exploited to differentiate between

distinct WiFi devices. One notable challenge, though, is that mobility might af-

fect the temporal coherence of the channel and, consequently, necessitate more

frequent comparisons.

2.4 Environment

We now investigate methods of obtaining environmental knowledge. To better

operate in future wireless networks, a device should know if the channel is line-

of-sight or riddled with severe multipath, if it is mobile, or if it is under an

adversarial attack. Here, we examine new methods of determining such knowledge

based upon physical layer reconnaissance. We refer to our suite of algorithms as

PLATEAU: Physical Layer Techniques for Enhanced Situational Awareness.

2.4.1 PLATEAU

Wireless devices permeate our society, and with the influx of so many new de-

vices and services, in order for future wireless devices to operate effectively, it

is essential that they have awareness of their operating conditions so as to sup-

port appropriate adaptation of communication waveforms and protocols. At a

minimum, this involves scanning spectrum for occupancy and fallow bands [22].

However, scanning spectrum is but a small component of the scenario describing

a wireless device and its environment, and additional forms of information, such

as whether the device (or its neighbors) are mobile, or whether the device is in-

doors/outdoors or moving between, are valuable and would help support protocol

adaptation.

Although it may be possible to augment future radio platforms with additional
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sensors in order to determine the isolated aspects of a device’s operating condi-

tions (for example, inertial sensors have been proposed for determining whether

a device is mobile), such methods would ultimately require additional hardware

and lead to increased costs and larger form-factors. Ultimately, though, it would

be more desirable for a wireless device to use its native functionality, i.e. the ra-

dio itself, to assess its situation without having to resort to extraneous and costly

methods for gaining situational awareness.

In this Section, we show that it is possible for a wireless device to solely use

its ability to receive and analyze ambient signals in order to answer fundamental

questions about a its operating conditions. In particular, we present a collection

of algorithms, which we call PLATEAU (Physical Layer Techniques for Enhanced

Situational Awareness), that infer coarse levels of mobility and location-oriented

situational awareness. We show that it is possible to devise signal processing

algorithms that extract physical layer information arising from the wealth of ex-

isting, ambient radio signals (such as FM, GSM Downlink, Advanced Television

Standards Committee (ATSC) signals), to acquire accurate situational awareness.

We describe two classes of PLATEAU’s algorithms: mobility determination, and

indoor versus outdoor discrimination. We support the validity of our algorithms

by utilizing measurements from a software defined radio platform (SDR).

Related Work

Work has been done to utilize physical layer information for limited situational

awareness. In [23], the authors leverage PHY layer information to discover services

and detect devices. Our algorithms extend these ideas in order to extract even

more information from the physical layer.

In [24], the authors investigate and implement a passive radar system by using

GSM base stations. The principles used however are to implement a tradition pas-

sive radar system, where a line-of-sight (LOS) signal and a reflection are need to
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obtain a directional estimate. Our algorithms reduce the operational complexity

by only requiring a single arriving signal.

Researchers in [25] detect co-located transmitters based upon the observation

of similar fading characteristics. This is the reverse view of the problem that we

address. Further, the authors only use WiFi client transmissions, which means

that they cannot guarantee constant transmission power.

PLATEAU Overview

PLATEAU provides situational awareness by exploiting physical layer signal prop-

erties that are already present in the environment. By applying machine learning

and passive radar techniques, a device can accumulate accurate situational aware-

ness to drive intelligent operational decisions. The best signals to leverage are

broadcast signals from stationary transmitters across a wide array of frequencies,

and prime candidates include ATSC, FM, GSM Downlink, and WIFI Access Point

signals. In this paper, we focus on signals that have constant envelope and/or

are broadcast with constant power. Such signals include GSM Downlink Control

Channels [26], WIFI beacons [27], and the ATSC pilot tone [28]. In this section,

we explore methods of exploiting the aforementioned signals to acquire two main

types of coarse situational knowledge - mobility and location.

Mobility

If a device is mobile, it should choose a communication scheme that can mitigate

fading effects and the non-stationarity of a time-varying channel. Hence, mobility

information is very valuable for guiding communication protocol adaptation. We

now propose three methods of mobility detection.
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Spectrogram Feature Extraction

Figure 2.10 depicts the spectrograms of an ATSC signal as received from a sta-

tionary and mobile receiver. The ATSC signal was collected on Channel 43 (647

MHz) using a sample rate of 8 MHz. The spectrograms, S(m, k), were computed

from the data samples, x(n), with N = 2048 point non-overlapping FFTs and a

rectangular windowing function, w(n), according to

S(m, k) = 20 log10 |
N−1
∑

n=0

x(n + mN)w(n)e
−j2πnk

N |,

with no zero-padding, thus k = 0, ..., N − 1. Mobility is indicated by the horizon-

tal spectral gradients attributed to fading and Doppler shifts due to the move-

ment. We therefore propose mobility detection using a decision statistic obtained

from the two-dimensional convolution of the spectrogram with a modified Pre-

witt [29] horizontal edge-detection filter, PM , where the modification incorporates

a smoothing filter (for simplicity, we utilize a 20 by 20 moving average filter).

Mobility is then indicated by edges across multiple frequencies. Thus, defining

V = S ∗ PM , our decision statistic, d(m), becomes:

d(m) =
W−1
∑

k=0

V (m, k)/W,

where W = N + b − 1 due to b rows in the detection filter, PM . Mobility is

detected when the decision statistic exceeds a threshold, τ . We have used super-

vised learning techniques to determine τ , and Figure 2.10 illustrates our mobility

detection results using a learned threshold of 0.025.

Power Statistics

Computation of the spectrogram is a costly procedure, and since wireless devices

are typically compute and power-constrained, it is wise to consider more efficient

techniques for mobility detection. One such method is to analyze the magnitudes

of ambient signals. Two experiments were conducted using GNU Radio [7] and
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Figure 2.10: Mobility detection is demonstrated by a spectrogram edge detection
algorithm. Stationary and mobile spectrograms are displayed. For the mobile
spectrogram, an edge detection algorithm was implemented to show its applica-
bility to mobility detection.

a Universal Software Radio Peripheral (USRP) [6] radio in a car monitoring FM,

GSM, and ATSC signals. In both experiments, the car remained stationary for a

few seconds before accelerating and maintaining a speed of 25 mph. At the end

of each experiment, the car came to a complete stop. Both experiments lasted

30 seconds, and were conducted over the same linear stretch of road. The first

experiment simultaneously monitored a GSM Downlink Control Channel in the

1900 MHz band and an ATSC signal from Channel 33 (587 MHz). The second

experiment simultaneously monitored the same GSM channel and an FM signal

at 99.1 MHz.

Mobility detection is possible by monitoring the differential unbiased sample

standard deviations of received signal magnitudes. Using the time-series data,
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Figure 2.11: A car transitioned from a stationary position to a speed of 25 mph
before coming to a complete stop. Mobility detection is demonstrated using GSM,
FM, and ATSC broadcast signals using a power statistic processing algorithm .

x(n), we calculate the mobility metric, d(m), according to

u(m) =
1

N

N−1
∑

n=0

|x(n)|

σ(m) =
1

(N − 1)

N−1
∑

n=0

||x(n)| − u(m)|

d(m) = |σ(m) − σ(m − 1)|.

When the mobility metric rises above the threshold, K, mobility is inferred.

As before, this threshold can be obtained from supervised learning techniques

and is signal dependent due to modulation characteristics. For the mobile car

experiments, we utilize K = 80 for the GSM signals, K = 10 for the ATSC

signal, and K = 1 for the FM signal. Figure 2.11 plots the results for the two

experiments. During the mobile portions of the experiments, our mobility metric

for each signal correctly identifies the car as moving.

Doppler Shift Tracking

By tracking the Doppler shifts associated with the pilot tone of the ATSC signal

[28], we can arrive at a simpler alternative to mobility detection that provides
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a better quantification of the mobility (i.e. speed). The passive radar scenario

that we are considering incorporates a transmitter that we know cannot move.

Therefore the Doppler shift, fd, can be calculated as fd = v
λ
cos(θ), where v is the

velocity of our device, λ is the wavelength, and θ is the approach angle (θ = 0◦

corresponds to moving directly towards the transmitter). Without knowing device

locations, we can bound the Doppler shift as

|fd| ≤ |v
λ

cos(θ)| ≤ v

λ
=

vf

c
,

where c is the speed of light and f is the frequency of the broadcast signal. Note

that higher transmission frequencies result in better Doppler shift resolutions.

This is especially important if we want to detect mobility at reasonable speeds.

For instance, ATSC Channel 33 transmits its pilot tone at 584.31 MHz resulting in

a maximum Doppler shift of 22 Hz for a car moving at 25 mph. Figure 2.12 shows

the ATSC pilot tone Doppler shifts incurred during the moving car experiment

that we previously described. Mobility is again clearly evident. The velocities

obtained from the measured Doppler shifts represent a minimum velocity because

of the unknown approach angle. Thus, when monitoring multiple signals, the

maximum velocity magnitude should be considered as the most accurate. In this

experiment, we estimate a velocity of about −25 mph from the Doppler shift.

Since this is the speed at which we were moving, we conclude that we were

moving almost directly away from the broadcast tower.

Viewing the results from Figure 2.12, the astute reader may notice the slight

Doppler drift associated with the stationary sections of the experiment (the be-

ginning and the end). This drift is attributed to the local oscillator (LO) at the

receiver, and therefore may cause some confusion and uncertainty with mobility

estimation. We can mitigate this issue using a reference signal at a much lower fre-

quency in order to factor out the effects of the LO. By using a very low frequency

reference, any large shifts calculated from this reference signal can be immedi-

ately removed from the higher frequency estimation since it is most likely due to
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Figure 2.12: A car transitioned from a stationary position to a speed of 25 mph
before coming to a complete stop. The spectrogram of an ATSC pilot tone region
is displayed. The mobility region is indicated by Doppler deviations from nominal.

LO drift. An example of a prime reference signal would be the ATSC Channel

2 pilot (54.31 MHz), as the maximum Doppler shift seen by a car moving at 25

mph from this signal is 2 Hz.

Location

Coarse location information is useful in selecting communication schemes since

indoor and outdoor environments have different channel characteristics (e.g. mul-

tipath levels and path loss exponents). Since cellular, FM, and ATSC towers are

located outside, while WIFI access points are primarily located inside, a device

may monitor measurements from these sources to deduce whether it is indoors or

outdoors.
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(a) SQI Measurements (b) SQI Decision Regions

Figure 2.13: (a) Signal Quality Indicators (SQI) are plotted for GSM and WIFI
signals for indoor and outdoor locations. (b) SQI decision regions for coarse
location discovery are depicted.

Signal Quality Comparison

In general, signals emanating from outside sources will degrade when the receiver

moves inside. Contrarily, signals emanating from inside sources will improve

when the receiver moves inside. By monitoring signal quality levels from inside

and outside sources, a device can estimate when it has moved from an inside

location to an outside location or vice-versa.

Experiments were conducted by defining and monitoring signal quality indi-

cators (SQI) for GSM Downlink Control Channel bursts and WIFI beacon signals

from a single access point. Because GSM Downlink Control bursts are transmit-

ted with the same power, and GMSK modulation is constant-envelope, a perfectly

received burst will have a constant magnitude [26] — thus variations in the mag-

nitude can primarily be attributed to noise, multipath, and fading. To provide a

fair comparator, we define the GSM SQI as the ratio of the sample standard devi-

ation to sample mean of the signal magnitude for a given burst. Using N samples

for the mth GSM burst, the SQI, SQIG, is calculated as SQIG(m) = u(m)
σ(m)

, where

u(m) and σ(m) were previously defined.
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Algorithm 2: Modified k-means clustering for location discovery

/*** Traditional k-means clustering ***/
cluster = kMeans(burstMags, k)
/*** Agglomerative Cluster Refinement ***/
while (clusterOverlap(cluster, tolerance) is TRUE) do

cluster = RefineCluster(cluster, tolerance)
end
/*** Location Discovery ***/
if (NumClusters ≥ ThreshNum) AND (σ ≤ ThreshVar) then

Device is outside
else

Device is inside
end

For the WIFI signal, we choose to monitor the WIFI beacon because it is

transmitted with constant power, and it is easily identifiable by its periodicity

and signal structure [23]. However, the WIFI beacon is not constant-envelope, so

we modify our SQI calculation to be the ratio of the average burst power to the

noise floor. Thus we define the WIFI SQI for the mth beacon as SQIW (m) = µ(m)
η(m)

,

where µ(m) is the sample mean of the beacon magnitude, and η(m) is the noise

floor magnitude associated with the mth WIFI beacon. The noise floor estimate

can be obtained from the mean magnitude of the data immediately before and

after the leading and trailing edges of the beacon. Figure 2.13 (a) shows the

results of the experiment, where the Signal Quality Indicators are plotted for

the two signals versus time. The GSM SQI clearly increases when the receiver

is transitioned to an outdoor location, while the WIFI SQI experiences a severe

drop in quality level. By simultaneously monitoring these SQIs, a device can

estimate when it has moved from inside to outside or vice-versa. The SQI Decision

Region is illustrated in Figure 2.13 (b), where time-averaged differential SQI

measurements are used to detect inside/outside transitions — false alarms due to

fading are mitigated by the time-averaging process.
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(a) Indoor (b) Outdoor

Figure 2.14: Clustering analysis of ISM band activity centered at WIFI Channel 6
is performed. Detected burst magnitudes for indoor and outdoor receiver locations
are plotted versus time in addition to modified k-means clustering analysis. An
outdoor receiver location is characterized by more clusters with higher densities
and smaller variances.

Clustering Analysis

Alternatively, we may perform clustering analysis on all signals in the ISM band.

To determine whether a device is inside or outside, we leverage the notion that a

receiver located outside will have more relatively stationary paths from emitters.

Whereas, when the receiver is inside, there will be more multipath signal arrivals

due to an increased number of reflectors within close proximity — thus the arriving

signal magnitudes will smear into each other. Therefore, we wish to analyze the

magnitude clusters and their densities.

To estimate the number of clusters, we first considered the QT clustering al-

gorithm [30], however its uniform cluster diameter was undesirable. More fitting

for this application would be an agglomerative hierarchical clustering algorithm.

We thus introduce a modified k-means algorithm [31], where we first perform tra-

ditional k-means clustering using a large k (e.g. 10). We then reduce the number

of clusters by combining them in a manner related to overlapping variances. If

two cluster means are within α standard deviations of each other, we combine the
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Figure 2.15: A microwave oven is interfering with WIFI Channel 1 activity.

clusters. This process is repeated until no more combining occurs. The number

of final clusters and their densities can be used to estimate whether or not a de-

vice is inside or outside. Our modified k-means algorithm for location discovery

is listed in Algorithm 2. Results from the implementation of this algorithm on

burst magnitudes in the ISM band are depicted in Figure 2.14, where indoor and

outdoor location is correctly identified based purely on a cluster number threshold

of 3 using a cluster separation factor of α = 2.

Unconventional Indicator Detection The detection non-communication

based indicators can also aid in indoor/outdoor estimation. One example is the

detection of microwave oven interference. Note that this is also very useful infor-

mation to have when deciding what communication scheme to use, as microwave

oven interference may be best mitigated by certain protocol selections (e.g FHSS).

Figure 2.15 shows a spectrogram from the ISM band where a microwave oven is

interfering with WiFi activity.
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PLATEAU Summary

Accurate situational awareness is important for cognitive devices to optimize op-

erational decisions. Through PLATEAU, we have presented and demonstrated

techniques that detect device mobility and coarse location by leveraging physical

layer properties from ambient radio signals.

2.5 Situational Awareness Summary

While all of the situational awareness techniques discussed in this chapter have

been passive, we note that active techniques can also be employed — especially

to discover services and devices in the area. For instance, an active CR spectral

sensing routine may invoke the Bluetooth Service Discovery Protocol, whereby

a CR may send a discovery request to Bluetooth devices in its area in order to

obtain a list of services available. A similar discovery packet also exists in the

802.11 protocol in the form of Probe Request Frames. Note that this is of course

dependent on the functional limitations of the CR itself.

Although only a limited number of protocols have been examined, the method-

ology proposed can be extended to other protocols. Furthermore, spectral sensing

techniques can be developed to identify and avoid non-communication based in-

terferers such as microwave ovens.
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Chapter 3

Attack

3.1 Motivation

In most any competitive arena, a good defense is founded upon its understanding

of possible attacks. This holds true for the wireless security world as well. By

thoroughly understanding the vulnerabilities and risks associated with specific

protocols, a wireless network can better defend itself against adversarial attacks.

Attacking a wireless network is an extremely broad area, with many degrees of

freedom including: channel conditions, power constraints, hardware constraints,

covertness constraints, etc. In this Chapter, we do not attempt to propose any

general techniques that will work in any situation — rather we illustrate that

attack strategies become increasingly effective and efficient when considering the

specific protocol of interest. Further, access to the PHY layer provides new ca-

pabilities and advanced functionality to both launch and defend against attacks.

We begin this Chapter by presenting a survey of existing protocol specific at-

tacks. These exploits target popular wireless protocols such as WiFi, Bluetooth,

and GSM, in addition to lesser known yet equally pervasive sensor networks such

as tire pressure monitoring systems (TPMS). Common to each exploit is its re-

liance upon physical layer access with a current SDR platform.

The second portion of this Chapter focuses on multi-input multi-output net-

works (MIMO), because it is incorporated in some fashion in many emerging

wireless technologies, ranging from 802.11n to WiMAX to 4G cellular systems.
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We present a thorough physical layer vulnerability study on two of the most pop-

ular MIMO techniques — the capacity achieving singular value decomposition

(SVD) based scheme, and the practical Alamouti space-time block code (STBC)

scheme. Analysis includes both theory and simulations, culminating in results

from real-world experimentation with the GNU Radio/USRP SDR platform.

3.2 Exploit Survey

Numerous protocol exploits have been made possible by recent advancements

in SDR technology. The low-cost, fully programmable GNU Radio/USRP SDR

platform played a key role in each of the following protocol-specific exploits.

3.2.1 WiFi

The ADROIT project [32] was developed by BBN Technologies and funded by

DARPA’s ACERT program in an effort to create collaborative teams of CRs. As

a result, the group was able to implement an 802.11 receiver using GNU Radio

and the USRP. But due to the spectral limitations of this SDR, functionality was

limited to receiving only 1 Mbps DBPSK signals. In [33], researchers moved de-

spreading functionality into the FPGA in order to support full-bandwidth 802.11b

signal reception. Using this code, full eavesdropping capability at the PHY layer

can be achieved by simply implementing the higher layer protocol parsers (and

of course traditional security cracks).

3.2.2 Zigbee

Another popular protocol with SDR support is IEEE 802.15.4 (Zigbee). In [34],

researchers provide full transceiver functionality for the Zigbee protocol, thus

opening the door for both passive and active attacks — from eavesdropping to

rogue packet injection and device impersonation.
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3.2.3 Bluetooth

GR-Bluetooth

In [19], a novel attack against the Bluetooth protocol is discussed using GNU

Radio and the USRP. Leveraging physical layer access and intentional aliasing,

the GR-Bluetooth code facilitates full eavesdropping capabilities against unen-

crypted Bluetooth devices. Minor modifications to the RFX-2400 daughterboard

and FPGA firmware are needed in order to allow the aliasing to occur. Further

enhancements to the work include a Wireshark plugin to decode higher layer

Bluetooth messages, in addition to keystroke extraction code to reveal keystrokes

from Bluetooth keyboards.

Car Whisperer

The researchers in [35] present software capable of associating with unsuspecting

Bluetooth devices by exploiting passkey flaws — the majority of Bluetooth devices

employ standard passkeys of 0000 or 1234. The software allows for full voice

eavesdropping and is also capable of voice injection. Note that eavesdropping

is possible even if the target device is not active. While the researchers used

Bluetooth dongles rather than an SDR to conduct these attacks, we mention this

work because the extension of the GR-Bluetooth work outlined above to include

transmitter capabilities opens the door to utilize the Car Whisperer techniques.

3.2.4 GSM

GSSM

In [36], the Groupe Special (Software) Mobile (GSSM) project opened the door

for GSM exploitation. The code used the GNU Radio/USRP SDR to provide

demodulation capabilities for the GSM downlink control channel. A real time
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tunneling interface to Wireshark was also implemented.

Airprobe

The exploitation of GSM continued in [37], which uses the GNU Radio/USRP

SDR to passively decrypt and decode GSM calls and text messages. The Airprobe

software utilizes cryptographic rainbow tables to crack the A5/1 cryptography

used in most GSM networks. As expected, utilization of this technique comes

with its proper share of legal concerns.

OpenBTS

The Open Base Transceiver Station (OpenBTS) [38] project provides a GNU Ra-

dio/USRP based GSM access point, thus providing GSM transceiver capabilities.

The software allows standard GSM cellular phones to complete telephone calls

without any existing telecommunication provider networks. While the creators

emphasize the care that should be taken to avoid any legal trouble with operat-

ing such a system (e.g. not connecting antennas and ensuring the use of a test

location area code), most adversaries will not be inclined to follow such measures.

As such, rogue Base Stations can be readily implemented.

3.2.5 MBTA Charlie Card

Researchers in [39] drew much media and legal attention for their exploits related

to the Massachusetts Bay Transportation Authority’s (MBTA) Charlie Cards.

These cards are MiFARE-based, contactless, stored value smart cards that are

used to pay subway fares. By reverse engineering the protocols, the researchers

demonstrate various available exploits such as altering the monetary value stored

on the cards. The team incorporates the GNU Radio/USRP SDR to attack the

RFID vulnerabilities of the system.
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3.2.6 TPMS

In [40], we provide a thorough study on the physical layer vulnerabilities asso-

ciated with modern tire-pressure monitoring systems (TPMS). 1 The purpose

of TPMS is to monitor tire status (e.g. pressure and temperature) in order to

provide timely alerts to drivers in an effort increase overall road safety. As a

result of the Ford-Firestone tire failure controversy [41], TPMSs represent the

first federally mandated in-vehicle wireless sensor network [42]. In our study, a

variety of the most common TPMS sensors were backward engineered in order to

discover the protocols used to send messages. We found that the TPMS sensors

were typically awoken with continuous wave (CW) signals at 125 KHz and then

responded with data bearing messages at 315/433 MHz using ASK or FSK sig-

nals. These signals were unencrypted, and contained unique identifiers that can

therefore be used to identify vehicles and thus individuals. Specific vulnerabilities

of such a system include: individual tracking/anonymity violation, hostile target-

ing based upon sensor ID, and spoofing the TPMS sensor to either attack the

car’s computer or to trick an individual to pull over. Real-world experimentation

and attack demonstrations were conducted using the USRP/GNU Radio SDR to

illustrate practicality and feasibility of the exploits against test equipment and

researcher-owned sensors and vehicles.

3.2.7 Exploit Summary

The complete PHY layer access associated with SDRs provides a powerful point

of attack for current and emerging systems. Most emerging wireless communica-

tion systems, such as 802.11n, WiMAX, and LTE, all incorporate some form of

multi-input multi-output (MIMO) communication scheme in an effort to enhance

1This research study was conducted in collaboration with researchers and developers from
Rutgers University and the University of South Carolina.
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throughput and quality of service. Such systems depend upon reliable PHY layer

channel estimates to operate effectively. In the next section of this thesis, we an-

alyze the vulnerabilities of MIMO systems when subjected to PHY layer attacks

from cognitive platforms.

3.3 MIMO

A major benefit of multi-input multi-output (MIMO) wireless communication

systems [43, 44] is the ability to perform well in scenarios traditionally viewed

as poor — such as richly scattering environments. Consequently, many emerging

wireless technologies, ranging from 802.11n to WiMAX to 4G cellular incorporate

some form of MIMO. Anticipating that systems might be deployed in adversarial

situations, research has examined jamming MIMO wireless systems [45, 46, 47, 48,

49]. But rather than considering smart adversaries, investigations have focused on

broadband jammers or incidental jamming as a result of co-channel interference.

While these results are indeed important, they fall far short of capturing the

shortcomings associated with an intelligent, capable adversary.

In this Section, we study how an intelligent adversary can disrupt MIMO

communication by targeting the generally over-looked, but essential, channel es-

timation procedure. Since there are many MIMO schemes, we begin our analysis

by first exploring attacks on (optimal) capacity-achieving MIMO systems employ-

ing the singular value decomposition (SVD) to create virtual, parallel channels.

Since such systems require channel state information (CSI), we analyze the vul-

nerabilities associated with jamming the CSI estimation procedure. SVD-based

waterfilling MIMO represents a theoretically ideal form of MIMO. On the other

hand, practical MIMO implementations often incorporate space-time block cod-

ing (STBC), and a common form of STBC that appears across many standards

(e.g. 802.11n and 802.16) is the Alamouti space-time block code. Consequently,
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we also focus on the vulnerabilities associated with the baseline Alamouti 2-by-1

(2 transmit antennas and 1 receive antenna) STBC. Our results can be easily

extended to other STBCs, and thus illustrate an underlying fragility in emerging

wireless systems.

3.3.1 Related Work

An excellent overview of MIMO fundamentals, a survey of key research, and

applicability to real-world implementations are provided in [43]. Findings that

were key to initial MIMO developments are found in [44, 50, 51], and capacity for

Gaussian and spatially-correlated Rayleigh fading channels are presented in [52]

and [53]. Initial MIMO demonstrations can be found in [54], with improvements

and extensions in [55, 56, 57].

Research has also analyzed performance degradation due to noise or other

physical phenomenon (e.g. a time-varying channel). In [58], CSI errors due to

noise in the channel are investigated for SVD-based MIMO systems. The authors

use a Wiener filter to track the CSI to avoid stationarity issues in the SVD

calculation. The authors in [59] look at SVD-based MIMO system performance

for unencoded BPSK modulation in the presence of white noise. In [60], it is shown

that the capacity of SVD-based MIMO systems degrade greatly with incorrect CSI

as a result of a time-varying channel. They propose a remedy involving feedback

to achieve near capacity performance. In [61], the authors present a model for

time-varying channels without feedback when the receiver has an estimate or

perfectly knows the CSI.

The work on jamming MIMO is predominantly concerned with adversaries

that do not take advantage of system protocols, i.e. the jammers are unintelligent,

with noise-like impact on the target receiver. In [45], the authors investigate un-

correlated jamming in non-coherent wideband fading channels (since the problem

is understood well for the coherent regime). They show that naive energy-limited
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jammers do not affect capacity in the wideband regime. In [46], the authors ex-

amine a network MIMO scenario where sensors collaborate to decode a message

broadcast by a multi-antenna transmitter in the presence of a white-noise jam-

mer. [48] looks at finding an optimal training sequence for a MIMO system under

flat fading conditions with spatially colored interference due to thermal noise and

multiple non-intelligent, independent jammers. The solution (which, frankly, may

be attacked), requires information feedback. In [49], the researchers assume that

the jammer produces a spatially correlated Gaussian interference signal and that

the jammer has full CSI but does not have any knowledge of the users’ signals.

All of these papers do not involve an intelligent adversary.

On the other hand, there has been non-MIMO work involving a smart adver-

sary [62, 47, 63, 64, 65]. In [62], the authors assume that a non-MIMO system

transmits independent, identically distributed (i.i.d.) Gaussian random variables

with an input power constraint. In the paper, the jammer taps the channel and

perfectly feeds back a signal. Most closely related to our work is [47]. Here,

the authors assume that the users and jammer have independently fading MIMO

channels. They investigate scenarios involving different levels of CSI accuracy. For

each situation, optimal transmit strategies are discussed. When no CSI is known,

they show that the optimal jamming strategy is for the jammer to use equal

power allocation. For perfect CSI, the jammer should use a matched-waterfilling

strategy. Finally, for partial CSI, the jammer should beamform in the direction of

the transmit correlation eigenvectors and perform proportional power allocation.

In our work, we consider a more intelligent (and capable) adversary, which

is quite plausible given recent advancements in software defined radios (SDRs)

[5, 10, 23, 66]. A capable SDR with protocol knowledge can achieve system syn-

chronization therefore enabling increasingly smarter attacks. In this Section, we

analyze smart MIMO attacks, where the CSI is targeted by jamming during the

channel estimation procedure — for the majority of MIMO schemes, it is essential



49

to obtain accurate channel estimates in order to realize the gains associated with

MIMO. By attacking only the CSI, the jammer remains fairly covert and power

conservative as she only needs to operate during channel sounding (typically a

small fraction of user transmission time). In particular, our strategy for a jammer

is as effective and more efficient than a jammer that blasts throughout the data

transmission period.

3.3.2 MIMO Overview

Consider a flat-fading MIMO channel, where Alice (who wishes to send a message

to Bob) has nt transmit antennas, while Bob has nr receive antennas. The channel

matrix between Alice and Bob is a complex nr × nt matrix, H, describing the

propagation effects between each of Alice’s antennas and Bob’s antennas. If

Alice transmits the nt-dimensional signal x to Bob, we can represent the nr-

dimensional received signal as y = Hx + n, where n is nr-dimensional additive

noise. MIMO techniques can be classified into three main categories: precoding,

spatial multiplexing, and diversity coding. A wide array of MIMO implementations

exist, each of which exploits these principles to enhance communication rate and

reliability.

3.3.3 SVD-based MIMO

One of the popular classes of MIMO systems, which can achieve optimal commu-

nication rates, involves precoding. Rather than transmitting x, Alice precodes

the signal using the SVD of the channel matrix, H. Recall that the SVD decom-

poses a matrix as H = UΣVH , where U represents the left singular vectors of

H, Σ = diag{σ1, ..., σn} provides the singular values of the channel matrix along

its diagonal, V corresponds to the right singular vectors, and H indicates the

conjugate transpose.
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If Alice performs the SVD of H and pre-codes x with V by transmitting Vx,

then Bob receives r = HVx + n. Bob can then decode the signal from Alice by

operating on r with UH . Applying the unitarity of U and H, we have

d = UHr = UHHVx + UHn

= UHUΣVHVx + UHn = Σx + UHn.

In this manner, Alice and Bob can communicate over min(nr, nt) parallel single-

input single-output (SISO) channels.

MIMO Capacity

Alice and Bob can achieve capacity over the MIMO channel, H, by employing

a waterfilling solution over the associated parallel SISO channels as computed

above [67]. The mutual information between Alice and Bob is

I(H,Q) = log2(det([Inr
+ ρHQHH ]))

where ρ = Es/γ
2
n is the SNR and Q is the input covariance matrix. The optimal

Q, denoted Q⋆, achieves capacity (by maximizing the mutual information) by

allocating power optimally into the right singular vectors of H. This optimal

power allocation is {p⋆
1, ..., p

⋆
n} where Q⋆ = Vdiag{p⋆

1, ..., p
⋆
n}VH. Capacity for

this channel is

C(H) =

n
∑

k=1

log2[1 + ρp⋆
kλk],

where λk = σ2
k, and the optimal power allocation {p⋆

1, ..., p
⋆
n} is obtained by water-

filling using p⋆
k = (µ − 1

ρλk
)+, where (z)+ = max(z, 0). Here µ is chosen according

to the transmitter’s power constraint (e.g.
∑n

k=1 p⋆
k = 1). Note that in the low

SNR regime, waterfilling reduces to allocating all available power to the strongest

eigenmode, while in the high SNR regime, waterfilling reduces to uniformly dis-

tributing the power over all non-zero eigenmodes.
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3.3.4 Jamming SVD-based MIMO

Now suppose that Eve enters the picture to jam the communication between

Alice and Bob, and (by Kirkhoff’s Principle) that she knows the channel sounding

waveforms. Since Alice and Bob are using a MIMO scheme, which requires CSI,

Eve can jam (1) the data and the CSI, (2) only the data, or (3) only the CSI.

It is the third case, where Eve attacks only the CSI estimation procedure, that

we are interested in as it provides the most efficient and covert avenue of attack

(i.e. a short burst against CSI can be more devastating than a short burst on the

data).

To understand how Eve may attack the CSI, we must first understand how

and where she can affect H. Denoting ĤA as Alice’s estimate of the channel, and

ĤB as Bob’s estimate, CSI estimations are obtained as follows:

• Bob transmits a channel sounding waveform to Alice, who estimates ĤA

and uses this to precode her communication (e.g. standard beamforming).

• Alice transmits a channel sounding waveform so that Bob can estimate

ĤB to enhance decoding. For the Alamouti STBC (used in 802.11n and

WiMAX [68]), only the receiver needs an estimate of the channel.

• Alice transmits a channel sounding waveform so that Bob can estimate ĤB.

Bob then sends ĤB back to Alice in a message. Such feedback is common in

cellular communications, where feedback on the downlink is used to refine

coding on the uplink, and vice-versa.

• Alice transmits a channel sounding waveform so that Bob can estimate ĤB.

Bob then transmits his own sounding waveform so that Alice can obtain

ĤA. This procedure is allowed for in WiMAX [69].

Given this categorization, Eve will either interfere with channel sounding, or

corrupt the feedback channel (we note that although authentication should be
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explicit in CSI feedback, unfortunately this is generally not the case). Thus

either Alice (ĤA), Bob (ĤB), or both may have an erroneous channel matrix.

For SVD-based MIMO systems, both ĤA and ĤB are needed, so the jammed

waveform is

sJ = Û
H

BHV̂Ax + Û
H

Bn

= Û
H

BUΣVHV̂Ax + Û
H

Bn,

where ÛB are the left singular vectors of ĤB, and V̂A are the right singular

vectors of ĤA, and H is the true channel.

Eve knows the channel

Let us assume for the moment that Eve knows H exactly, and can give both

Alice and Bob an arbitrarily chosen matrix. Since Alice and Bob are seeking to

waterfill over the eigenmodes of the channel, an excellent attack would be for Eve

to convince them to perform opposite-waterfilling! Eve can accomplish this by

computing the SVD of the channel, reversing the ordered singular values (i.e. for

n singular values, σ̂i = σn−i, Ĥ = UΣ̂VH), and administering a corrupted Ĥ to

both Alice and Bob. Figure 3.1 illustrates this process. It is important to note

that this result is in clear contrast to [47], where the recommendation is for Eve

to add noise to the existing eigenmodes in a manner proportional to eigenvalue

significance. The difference in attack methodology arises because we attack only

the channel estimation procedure, while [47] assumes that jamming occurs during

data transmission.

In the high SNR regime, however, this attack strategy will not have much

effect since each eigenmode represents an excellent channel. In such a scenario, it

would be better for Eve to give Alice and Bob a corrupted Ĥ so that their singular

vectors are orthogonal to the correct singular vectors (i.e. make Û
H

BU = 0,

VHV̂A = 0, or both)!
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Figure 3.1: The opposite waterfilling attack is illustrated. Optimal waterfilling
is not employed because of the jammed channel estimates resulting in actual
distribution of power in an opposite-waterfilling manner.

If, on the other hand, Eve cannot arbitrarily give a corrupted Ĥ to Alice/Bob,

then she must attack the channel sounding process itself. In this case, there are

added constraints to note. Often, the estimation procedure involves transmitting

a channel sounding waveform from a single antenna and using it to estimate the

channel to each receive antenna (and then cycling through the transmit antennas).

For each of Alice’s transmissions, nr channel elements are calculated by Bob. Thus

ĤB will be populated column-wise (h1i,h2i,...,hnri). If messaging is not used to

return the estimate to Alice, then Alice’s channel estimate, ĤA, will fill in row-

wise (hi1,hi2,...,hint
). If messaging is used, we note that quantization levels must

be considered (in WiMAX [69], 6-bit quantization is used to represent CSI). While

these observations represent added constraints to Eve’s operating procedure, it

does not change the operating goals presented above, and (as we will see in Section

4.2) there is a general procedure that is effective for Eve to employ to corrupt the

measured Ĥ.

In reality, Eve might only have an estimate of the channel, and she would be

unlikely to arbitrarily perturb the channel estimation process. If Eve jams the
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channel sounding process, then the estimation of H will be corrupted by an error

matrix E, and thus it would be valuable for Eve to quantify the impact she could

have on the singular subspaces. Quantifying this impact is very important as the

SVD is a non-continuous function, e.g. consider the following perturbation of H

by an error matrix E.

H =





1 0

0 1 + ǫ



 E =





0 ǫ

ǫ −ǫ





Ĥ = H + E =





1 ǫ

ǫ 1





V =





1 0

0 1



 V̂ = 1√
2





1 1

1 −1





It is clear that a 45◦ relative shift in the singular vector spaces occurs for arbitrarily

small values of ǫ. So, should Alice and Bob be wary of small attacks drastically

altering the singular vectors? The answer is generally “no” because such extreme

perturbations are related to matrices with close singular values [70], and most

real-world MIMO channels do not have close singular values. Consider a MIMO

channel under Rayleigh fading with uncorrelated antenna elements. Here, the

channel matrix contains zero-mean, complex, normal i.i.d. elements. The singular

values of such a matrix are the square roots of the eigenvalues (σi =
√

λi) of the

matrix, W = HHH (for nt > nr, otherwise we use W = HHH). Here, W,

is called a central Wishart matrix, and its eigenvalues are characterized in [71].

Defining n = min(nt, nr), m = max(nt, nr), and noting the ordered eigenvalues

of W as (λ1 ≥ λ2... ≥ λn), the resulting joint p.d.f of eigenvalues is [53]

p(λ1, λ2, ..., λn) = K
n

∏

i=1

e−λiλ
(m−n)
i ·

n
∏

i<j

(λi − λj)
2,
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where K is a normalization constant

K =
π(n(n−1))

Γn(m)Γn(n)
,

and Γn is defined as Γn(a) = π(n(n−1)/2)
∏n

i=1 (a − i)!.

Figure 3.2 depicts distance distributions related to the eigenvalues of W for a

3 by 4 Rayleigh fading MIMO channel. Since the channel matrix is 3 by 4 there

are only 3 eigenvalues to consider. For illustrative purposes, the fading parame-

ters were chosen so that the eigenvalues were generally less than 20. Plotted is

the probability versus mean and minimum eigenvalue distances. In this case, the

expected minimum eigenvalue distance is 1.8, and the expected average eigen-

value distance is 3.1. Hence, close singular values are not probable. Generally,

the probability of encountering a channel of n eigenvalues where the minimum

eigenvalue distance exceeds δ is given by:

P (△λmin ≥ δ) =

n−1
∑

i=1

P ((λi − λi+1) ≥ δ).

For the 3 by 4 channel considered, the probability that the minimum eigenvalue

distance is greater than 1 is 86%. Moreover, 97% of the time the minimum

eigenvalue distance encountered is greater than 0.5.

Since H is generally well-behaved under Rayleigh fading conditions, Alice and

Bob need not worry about drastic changes in the singular vectors when subjected

to general low powered attacks or even noise. But this does not mean that the

singular values are safe. In fact, Eve can use perturbation theory to gauge her

singular value attacks. In general, small random perturbations of the channel

result in small perturbations of the singular values. Also, small singular values

tend to increase under random perturbation on the order of square root of the

number of transmitters [70]. Inherently, by injecting noise Eve makes bad channels

appear better — which is Eve’s goal. Eve may bound her effect on the singular

values by [72, 70, 73]:

|σk(H + E) − σk(H)| ≤ σ1(E) = ‖E‖2,
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Figure 3.2: An eigenvalue distribution analysis of the Wishart matrix for a 3 by 4
Rayleigh fading MIMO channel is shown. Plotted is the probability distribution
versus mean eigenvalue distance as well as minimum eigenvalue distance. Due to
channel constraints, eigenvalues are less than 20. Close singular values are clearly
not probable.

or more generally, by [73, 74, 70]:

n
∑

k=1

(σk(H + E) − σk(H))2 ≤ ‖E‖2
F .

By utilizing these bounding equations, Eve may determine how effective she can

be as a jammer when attacking the singular values of the channel. As noted

earlier, in high SNR scenarios, Eve should not direct her attack against the sin-

gular values, but instead should attack the singular vectors. This is challenging

to accomplish if Eve merely injects noise, however, as we will see shortly, is quite

possible by exploiting the steps in the channel sounding process!

Eve doesn’t know the channel

We now consider the most general case, where Eve uses no knowledge about H.

In this scenario, by using knowledge of the sounding process, Eve can still be very

effective in subverting estimation of H.
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Eve can act as a jammer by injecting random eigenmodes. First consider the

case where estimation messaging (feedback) is used. A special case of this attack

would be Eve jamming during the channel sounding from Alice’s first antenna

element. By using enough power, Eve can cause the first physical channel to

appear to be the best, and thus force Alice and Bob to waterfill primarily over this

physical mode (since it appears optimal). This will have the effect, on average,

of emptying power uniformly into all of the actual eigenmodes of the channel.

In other words, water-filling is thwarted and we merely have a uniform power

allocation scheme! Note that Eve may choose to attack any physical antenna (or

random realization) and still achieve the same result. Additionally, attacking all

of the channel sounding will make the channel appear singular, and deliver similar

results. Utilizing this type of attack in reasonable SNR regimes will on average

reduce the capacity from C to C/min(nt, nr).

In the high SNR regime, the effect of this attack will be minimal, and Eve

could revert to traditional jamming by jamming the data sequences. However,

we must note that the feedback provides yet another point of attack for Eve (as

authentication of CSI feedback is generally not employed). Rather than jamming

only the Alice→Bob sounding procedure, Eve should also inject an appropriate

(random and false) encoding of ĤB. By forcing a dominant mode to appear in

the Alice→Bob estimation, she forces emphasis on a specific vector of ÛB. On

the other hand, Eve can feedback a false, singular version of ĤB (e.g using the

feedback scheme described on pg 449 of [69]), where she has emphasized one

particular random singular vector. The net result is that Alice will waterfill into

this false dominant mode, while Bob will attempt to decode on a false dominant

mode, resulting in significant energy being lost in the transfer from the Alice→Bob

dominant mode to the Bob→Alice dominant mode.

When feedback is not used, Eve can employ a comparable strategy by inter-

fering separately in the Alice→Bob and Bob→Alice estimation processes. Here,
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Eve jams enough energy into a specific transmitter to force Bob to believe in

a particular false dominant mode. She then jams energy into the Bob→Alice

estimation to force a false dominant Bob→Alice mode. Again, Alice will then

waterfill into a false dominant mode, and Bob will decode on a false dominant

mode not related to the true channel.

In both cases, for high SNR, Eve does not have to jam the data transmissions,

and the strategies presented apply well to cases where Eve does know the channel.

3.3.5 Real World MIMO

Theoretical MIMO results, coupled with real-world feasibility demonstrations

[54, 51], have led to MIMO (often coupled with orthogonal frequency-division

multiplexing) being included in many emerging wireless systems. Although par-

ticular implementations vary, a major commonality between most of the standards

is the inclusion of the Alamouti space-time block code (STBC). In fact, 802.11n,

802.16, and 3GPP (Release 7 and 8) all include this MIMO technique with varying

antenna constellations[68]. 802.11n currently supports 2-by-2 (2 transmitters and

2 receivers), while 802.16 and 3GPP Release 7 support 2 by 1. All include options

for higher order antenna constellations in the future (mainly 4-by-4). Since Alam-

outi is such a prevalent component of emerging systems, we now examine attacks

specifically targeted at the Alamouti STBC scheme in an effort to determine any

general vulnerabilities.

3.3.6 Alamouti STBC Overview

The Alamouti 2-by-1 scheme [75] is essentially a spatial repeater with a decoding

trick used to minimize computation at the receiver. Assume that Alice has two

transmit antennas and wishes to send two symbols, c1 and c2, to Bob, who has

a single receive antenna. During the first symbol period, Alice simultaneously
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sends c1 from antenna 1 and c2 from antenna 2. The next symbol period, Alice

simultaneously sends −c∗2 from antenna 1 and c∗1 from antenna 2, where ∗ denotes

the complex conjugate. Let the channel coefficients h1 and h2 represent the

paths between Alice’s two antennas and Bob. The received signal for the first

symbol period is r1 = c1h1 + c2h2 + n1, and for the second symbol period is

r2 = −c∗2h1 + c∗1h2 + n2 ,where n1 and n2 are additive noise components. By

conjugating the signal received during the second symbol period, the received

signal over the two symbol periods is given by r = Gc + n, where

r =





r1

r∗2



 G =





h1 h2

h∗
2 −h∗

1





c =





c1

c2



 n =





n1

n∗
2



 .

Decoding is done at the receiver by taking advantage of the fact that GHG = αI2,

where α = |h1|2 + |h2|2. Including ambient receiver noise, decoding is achieved

by selecting the symbol-tuple ĉ that minimizes:

d = |GHr − αĉ|2 = |GH(Gc + n) − αĉ|2

= |GHGc + GHn − αĉ|2 = |αc + GHn− αĉ|2

= |α(c− ĉ) + GHn|2.

As an example, given binary signaling with symbols c1 and c2, there are 4 symbol-

tuple’s to utilize:

ĉ ∈ {(c1, c1), (c1, c2), (c2, c1), (c2, c2)}.

Extension to the 2-by-2 scheme is straightforward, as the minimization is per-

formed over both receive antennas.
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3.3.7 Jamming the Alamouti STBC

During channel estimation jamming, the matrix G becomes a corrupted Ĝ, which

affects decoding as:

dJ = |ĜH
r − α̂ĉ|2 = |ĜH

(Gc + n) − α̂ĉ|2

= |ĜH
(Gc + n− Ĝĉ)|2 = |ĜH

(Gc − Ĝĉ) + Ĝ
H
n|2.

We call dJ the Alamouti metric for clarity, and note that α̂ = |ĥ1|2 + |ĥ2|2. For

an error to occur, the value of dJ for an incorrect symbol-tuple must be minimal.

Ignoring noise, absolute minimization occurs when (Gc − Ĝĉ) lies in the null

space of Ĝ
H

. We now consider two special cases: Ĝ
H

= 0 and Gc − Ĝĉ = 0.

The first case implies that Eve has convinced Bob that the channel is 0, which

is extremely unlikely and would immediately reveal Eve’s presence. The second

case, however, deserves further examination.

Selective Symbol Jamming

We begin our analysis with a powerful adversarial model where Eve is equipped

with ample situational awareness and can force Bob to use a Ĝ of her choosing.

Given the signal constellation, the channel estimate, and the symbol-tuple to be

transmitted, Eve can choose the symbol-tuple, ĉ, that she wishes Bob to decode

by giving Bob Ĝ, so that Ĝ = GcVĉΣ
−1
ĉ UH

ĉ , where ĉ = UĉΣĉV
H
ĉ . We note that

Σ−1
ĉ is not the traditional matrix inverse of Σĉ, but rather Σ−1

ĉ is computed by

transposing Σĉ and inverting its non-zero diagonal elements (i.e. singular values).

Let us look at an example using the real-valued channel h = [7 -8], and BPSK

modulation with symbols ’-1’ and ’1’. The resulting symbol-tuples are defined in

Table 3.1. Table 3.2 depicts a Ĝ (computed via the SVD method described above)

that forces Bob to decode symbol-tuple c(1) rather than the transmitted symbol-

tuple c(0), when there is no additional channel noise. The table also displays
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Table 3.1: BPSK Symbol Tuples

BPSK Symbol Tuples

c(0) c(1) c(2) c(3)
[

−1
−1

] [

−1
1

] [

1
−1

] [

1
1

]

Table 3.2: Selective Symbol Jamming

Selective Symbol Jamming

Transmitted Decoded Ĝ
c(0) c(1)

[

−1
−1

] [

−1
1

] [

−0.5 0.5
−7.5 7.5

]

Metrics, dJ

c(0) c(1) c(2) c(3)

160 0 320 160

the metrics that Bob computes for the other possible symbol-tuples when c(0) is

transmitted. It is evident that minimization occurs with c(1).

But, a jamming attack that replaces G with Ĝ affects all of the transmitted

symbol-tuples. Table 3.3 illustrates Eve’s impact across every possible transmit-

ted symbol-tuple. For example, when c(0) is transmitted, c(1) is decoded with

a metric of 0. Likewise, when c(3) is transmitted, c(2) is decoded. Note that

transmitted symbol-tuples c(1) and c(2) have identical decoded metric values,

and that they also exhibit two possible valid decoded symbol-tuples (c(0) and

c(3)), both of which are incorrect. The capability to strategically change cer-

tain symbol-tuples would allow the jammer Eve to disrupt specific data sequences

within messages. Fortunately, for Alice and Bob, it is difficult for Eve to affect

Ĝ in the exact manner considered above. First, even letting Eve replace G must

adhere to simple restrictions, as even a simple implementation of the Alamouti
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Table 3.3: Jammed Metrics - Ideal

Alamouti Metrics, dJ

TX \ RX c(0) c(1) c(2) c(3)

c(0) 160 0 320 160
c(1) 0 160 160 0
c(2) 0 160 160 0
c(3) 160 320 0 160

Symbol-tuple Transitions

c(0)
1 ++

c(1)
0.5kk

0.5

��
c(2)

0.5

OO

0.5 ++
c(3)

1kk

scheme would check that Ĝ satisfies:

Ĝ =





a b

b∗ −a∗



 .

We acknowledge, though, that our outlined general exploitation of Ĝ may be

achievable by way of an internal system-level attack. However, for this work, we

are only focused on exploitations that are available at the physical RF level. So,

we must consider perturbation matrices generated from ĥ = [ĥ1 ĥ2]. Given this

constraint, Eve is still capable of selective symbol jamming. Table 3.4 depicts the

symbol-tuple transition table when Bob performs decoding with ĥ = [−7 −8].

Note that while the desired symbol-tuple transition metric for c(0) ⇒ c(1) is not

0, it does represent a global minimum (of 21).

At this point, let us take a moment to discuss error nomenclature— specifi-

cally, the differences between symbol-tuple errors, symbol errors, and bit errors.

Symbol-tuple errors occur when Bob incorrectly decodes a symbol-tuple. This

does not necessarily mean that all of the symbols that Bob decodes are in error.

Rather, it ensures that at least one symbol within the symbol-tuple is in error.

For the Alamouti 2-by-1 STBC, there are 2 symbols transmitted per symbol-

tuple, so a symbol-tuple error implies at least one symbol was decoded in error.
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(a) BPSK (b) QPSK

(c) 8PSK (d) 16QAM

Figure 3.3: Jamming the Alamouti 2-by-1 space-time block code (STBC) scheme
using MPSK and QAM constellations: (a) BPSK (b) QPSK (c) 8PSK (d) 16QAM.
The actual channel is given by h = [(1 + j)(1 + j)]

For the ideal selective symbol jamming case presented in Table 3.3, we see that

symbol-tuple c(0) is decoded incorrectly as symbol-tuple c(1). Looking at the

symbol-tuple mappings in Table 3.1, we see that this produces 1 symbol error.

If, in fact, the symbol-tuple had been decoded as c(3), then there would be 2

symbol errors. Bit errors then arise as a result of the symbol definitions. At this

juncture, we do not consider bit-to-symbol mappings since they are user-defined

and inconsequential to our current analysis.



64

Table 3.4: Jammed Metrics - Practical

Alamouti Metrics, dJ

TX \ RX c(0) c(1) c(2) c(3)

c(0) 210 21 319 241
c(1) 319 210 241 21
c(2) 21 241 210 319
c(3) 241 319 21 210

Symbol-tuple Transitions

c(0)
++
c(1)




c(2)

JJ

c(3)kk

Simulation Results

We now present results from a simulation study. Under the Alamouti 2-by-1

scheme, two symbols are sent over two symbol periods from two antennas to a

single receiver. The narrowband, time-invariant channel matrix for such a scheme

is given by two complex coefficients, h = [h1 h2]. In jamming this channel, we look

at perturbations of h in the complex plane given a “jammer power constraint.”

In our simulations, the true channel is set to h = [(1+j), (1+j)], and the jammer

is empowered to alter the in-phase (I) and quadrature (Q) components of an hj

arbitrarily in the range of [−1, 1] in step sizes of 0.2 (e.g. one jammed channel

instance is hJ = [(−1 + 0.6j), (−0.2 − 0.4j)]). For each possible jammed chan-

nel, the simulation iterates over every possible input codeword (or symbol-tuple)

associated with the user specified signal constellation. (For a given constella-

tion with M symbols, there are M2 possible 2-dimensional codewords.) For each

jammed channel instance, the simulation calculates the number of symbol errors

that occur for every possible input codeword (for the Alamouti 2-by-1 scheme,

the maximum number of symbol errors per input codeword is 2). The simulation

repeats this process for every possible jammed channel case. At the end of the

simulation, the jammed channels that resulted in the most symbol errors (which
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Figure 3.4: Jamming the Alamouti 2-by-1 space-time block code (STBC) for a
QPSK constellation where we hold the jammed second channel coefficient con-
stant at -1-j. The actual channel is given by h = [(1 + j)(1 + j)].

in all cases examined turned out to be the maximum errors possible, which is

2M2) are logged. Each simulation produces two subplots. The first relates to the

first channel coefficient, h1, while the second subplot relates to the second channel

coefficient, h2). The dotted line is the unjammed channel coefficient, while the

solid lines are the jammed channel coefficients. While these plots do not directly

illustrate which hJ1 goes with which hJ2, it is interesting to note the structure of

the jammed channel coefficients when compared to the actual signal constellation.

M-PSK cases for M = {2, 4, 8} and 16-QAM are shown in Figure 3.3, where a

“perfect” channel of h = [(1 + j), (1 + j)] was used. Note how the symbol error

regions mimic the signal constellation.

In order to illustrate the 1-to-1 nature of the jammed coefficients, Figure 3.4

shows results from a QPSK simulation where the second jammed coefficient is

held constant (hJ2 = [−1− j]). Each of the points displayed for the first jammed

coefficient, hJ1, results in the maximum number of symbol errors. Again, the
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Figure 3.5: The maximally effective jamming region, Ω, is illustrated for a single
channel coefficient, h, under the Alamouti 2-by-1 STBC using QPSK. Channel
estimates -h, -j, k, or -k all lie in the desired jamming region.

error region clearly relates to the signal constellation. This is important be-

cause 64-QAM is mentioned for WiMAX and 3GPP MIMO standards when using

Alamouti-based schemes (and extension of these results to 64-QAM is straight-

forward).

It is apparent that the maximal symbol error region related to the Alamouti

STBC mimics the signal constellation. Figure 3.5 illustrates the maximally effec-

tive jamming region, Ω, associated with QPSK for a single channel coefficient. If

Bob decodes using channel coefficients that lie within their respective Ω regions,

then every transmitted symbol will be recovered in error. Let us examine the first

channel element, so that h = h1 from Figure 3.5. Bob will be effectively jammed

on this antenna if he decodes with j, k, −k, or −h, whereas decoding with j (or

of course h), will not incur any errors. The same geometrical region jamming

phenomenon holds for any M-ary PSK or QAM modulation. Note that attacking

either the I or the Q component of a given channel coefficient does not guarantee

inclusion within Ω (the reader can verify this by considering QPSK modulation
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Table 3.5: Jammed Metrics - Inverted

Alamouti Metrics, dJ

TX \ RX c(0) c(1) c(2) c(3)

c(0) 376 266 266 0
c(1) 266 376 0 266
c(2) 266 0 376 266
c(3) 0 266 266 376

Symbol-tuple Transitions

c(0)

��

c(1)

yy
c(2)

99

c(3)

YY

with h1 = 1 + 0.2j where the Q component is inverted). However, observe that

for any of the examined schemes, it is sufficient to simply invert the channel co-

efficients (both I and Q) in order to maximally jam the communication. Thus,

Eve need not even know the modulation as long as she can reliably invert Bob’s

estimate of the true channel.

Channel Inversion Attack

We now examine an attack where Eve successfully inverts the channel estimate so

that Bob uses ĥ = −h (i.e. Ĝ = −G) to decode messages sent by Alice. To gain

a better understanding of the attack, let us look at two examples using different

modulations: (1) BPSK, and (2) QPSK. First, reconsider the previous BPSK

example. Table 3.5 illustrates the decoded metrics given a noiseless channel and

the resulting symbol-tuple transitions when Eve enacts a channel inversion attack.

It is evident that each symbol-tuple is perfectly disturbed. In fact, the symbols

themselves are all reflected in the I/Q plane (i.e. “c0 = 1′′ ↔ “c2 = −1′′ and

“c1 = j′′ ↔ “c3 = −j′′).

Now consider an example with QPSK and a true channel of h = [(7−2j)(−8+

4j)]. Using {1, j,−1,−j} as the QPSK symbols, we define symbol-tuple mappings
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Table 3.6: QPSK Symbol Tuples

QPSK Symbol-tuples

c(0) c(1) c(2) c(3)
[

1
1

] [

1
j

] [

1
−1

] [

1
−j

]

c(4) c(5) c(6) c(7)
[

j

1

] [

j

j

] [

j

−1

] [

j

−j

]

c(8) c(9) c(10) c(11)
[

−1
1

] [

−1
j

] [

−1
−1

] [

−1
−j

]

c(12) c(13) c(14) c(15)
[

−j

1

] [

−j

j

] [

−j

−1

] [

−j

−j

]

in Table 3.6. Under the channel inversion attack, the symbol-tuple transitions are

ci ↔ c(i+6)%16 for i ∈ {2, 3, 6, 7, 10, 11, 14, 15}.

Channel Inversion Attack Mitigation

Since the channel inversion attack causes symbols to be reflected in the I/Q-plane,

higher-layer logic may mitigate this attack. If Bob suspects that he is under this

attack, he can perform source decoding based upon the decoded symbols and their

reflection in the I/Q-plane. It should be noted that to mitigate any stationary

channel estimate attack, Bob can perform source decoding based upon every

possible symbol-tuple mapping. However, complexity rises exponentially in order

to gain such reliability.

An alternative mitigation to the channel inversion attack entails altering the

modulation scheme. Since the attack does not necessarily focus upon the mag-

nitude of the transmission, reasonable immune modulation schemes would in-

clude amplitude-based modulations. However, it is important to note that some

amplitude-based modulations can be viewed as forms of phase-shift keying, or

at least maintain some phase-related dependencies. For instance, consider bi-

nary pulse-amplitude modulation (2-PAM). This scheme is essentially equivalent
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to BPSK, and is therefore affected by the channel inversion attack. Likewise,

4-PAM, is also susceptible to the attack. Under the 4-PAM scheme, amplitude

levels of −3A, −A, A, and 3A are used to transmit data. Since the symbol asso-

ciated with −3A is equivalent to 3A with a 180-degree phase shift, it will suffer

degradation under the channel inversion attack. We now propose a slight modifi-

cation to the general PAM scheme that is immune to the channel inversion attack.

By forcing any M-PAM scheme to be centralized about MA, the modulation be-

comes purely magnitude-based, where negative values become non-problematic .

Spherical decoding based on pure signal magnitudes will remain impervious to

the attack. This remains true for any channel-based attack that is stationary

over the decoding process (which is true for any Alamouti STBC). While this

modified PAM scheme is resistant to the channel inversion attack, there is an

obvious bandwidth tradeoff.

802.11n Application

Let us take a moment to discuss applicability to 802.11n. To do this, we first

provide some protocol background. 802.11n allows for three main modes of op-

eration: Legacy Mode, Mixed Mode, and Green Field. Pertinent to this work

are Mixed Mode and Green Field, where packet fields are designated for channel

sounding. These fields are called High Throughput Long Training Fields (HT-

LTF), and are used by the receiver to estimate the channel matrix, H [76]. While

the beginning packet structure in Mixed Mode and Green Field differ, both end

with HT-LTFs preceding the actual signal data. The two packet structures are

illustrated in Figure 3.6. Under MIMO operation, Eve need only jam during HT-

LTF transmission in order to attack the channel estimation procedure. Under

802.11n, each HT-LTF field lasts for 4us (with an optional extended HT-LTF

lasting another 4us). This represents a relatively insignificant jamming time rela-

tive to data transmission time. (A 1500 byte data packet transmitted at 54 Mbps



70

Figure 3.6: The 802.11n packet structure for Mixed Mode and Green Field oper-
ation are depicted. High Throughput Long Training Fields (HT-LTF) are used
to estimate the channel matrix, H, between the transmitter and the receiver.

will last about 222us). While Eve may wish to implement a channel inversion

attack on the Alamouti scheme, she still has options if it is not in use. Earlier,

in Section 3.3.4 we illustrated the effects of jamming during SVD-based MIMO.

Similar research and conclusions could be applied to any scheme utilizing channel

estimation. Consider a simple scenario where Eve has a single antenna. Continual

jamming during the HT-LTFs would result (given appropriate channel coherence

time) in the same estimate for every channel. Thus, H would appear singular.

Real World Implementation

Implementing any of the aforementioned attacks in the real world raises some

questions and concerns. For instance, Eve can never truly know the phase of the

signals arriving at Bob (from Alice or Eve) due to channel unknowns (e.g. mul-

tipath, antenna separations, etc.). Thus, if Eve is conducting a channel inversion

attack, she cannot guarantee that her signal is 180 degrees out of phase with

Alice’s when it arrives at Bob. However, given limited situational knowledge such

as her jammer to signal ratio (J/S), Eve can reliably estimate her success by ana-

lyzing jamming regions. Let us revisit the Alamouti 2-by-1 STBC for QPSK. If h

is the actual channel coefficient between Alice and Bob, and r is Eve’s transmis-

sion as seen by Bob, then the probability of moving the channel estimate into the
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maximally effective jamming region, P (Ω), can be calculated for a single antenna

element by:

P (Ω) =



























0 if |r|
|h| ≤

√
2

2 ,

2
πr2 [cos−1( A

|r|)r
2 − AB] if

√
2

2 <
|r|
|h| ≤ 1,

3
4 − 1

πr2 [AB + sin−1( A
|r|)r

2 + h2] if |r|
|h| > 1,

where A = |h|
√

2
2

, B =
√

r2 − h2

2
, and we define r2 = rr∗, and h2 = hh∗. The

J/S can be calculated in decibels (dB) by 10 log10
r2

h2 . Figure 3.7 illustrates two

extreme J/S scenarios (J/S ≪ 0 dB and J/S ≫ 0 dB). When the J/S ≪ 0,

Eve simply does not perturb the channel estimate enough to make a difference.

However, when the J/S ≫ 0, Eve has a 3/4 chance of maximally interfering with

a given antenna element. (For a general MPSK scheme, the jamming success

probability of a single antenna is (M − 1)/M when the J/S ≫ 0.)

For ease of presentation, we continue by assuming that Eve is a very strong

jammer (i.e. J/S ≫ 0 dB). Under the well accepted wide-sense stationary un-

correlated scattering model (WSSUS) [77], in a rich multipath environment Eve’s

effect on each antenna element will be independent with regard to phase. Thus,

Eve will penetrate both effective jamming regions 9/16 of the time. Furthermore,

Eve has 3/8 chance of interfering effectively with antenna 1 or antenna 2. So, Eve

is only completely ineffective as a jammer 1/16 of the time. Additionally, these

probabilities equate to ((M − 1)/M)2, 2(M − 1)/(M2), and 1/(M2), respectively

for a general MPSK constellation. But, there is more that Eve can do to ensure

her effectiveness.

To guarantee some level of jamming success, Eve may implement an oscillating

channel inversion attack. Although Eve cannot be certain of the arriving phase,

she can oscillate her transmit signal by 180 degrees. By doing so within the time

coherence of the channel (and assuming some synchronicity between bursts), she

ensures that at least one out of every two jamming attempts lies within the
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(a) J/S ≪ 0 dB (b) J/S ≫ 0 dB

Figure 3.7: Jammer-to-signal ratio (J/S) impact regions are investigated. (a)
When the J/S ≪ 0 dB, the jammer has no real effect. (b) When the J/S ≫ 0 dB,
the probability of randomly perturbing the channel estimate for a single antenna
into the jamming region approaches 3/4.

optimal jamming region for a single antenna. Consider the jamming region finite

state machine in Figure 3.8. Here, Ω1 indicates the optimal jamming region for

antenna 1, and Ω2 indicates the jamming region for antenna 2. Four possible

states arise as a result of Eve’s oscillating attack. There is a 9/16 chance that

Eve’s initial attack falls within the optimal regions for both antenna 1 and 2.

As can be seen, there is only 1/9 chance of leaving that state to the completely

ineffective state of (Ωc
1,Ω

c
2), while remaining in the totally effective state occurs

with probability 4/9. Note that as a jammer Eve will be totally effective 25%

of the time (9/16 × 4/9), and completely ineffective never. In fact, the worst

performance, occurring only 6.25% of the time, will jam the desired regions half

of the time. Note that effectively defeating signal data even half of the time is

sufficient to defeat most inter-burst source decoding schemes.
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Figure 3.8: Above is the Jamming Region Finite State Machine for an oscillat-
ing channel inversion attack against the 2-by-1 Alamouti space-time block code
(STBC) using QPSK when the jammer-to-signal ratio (J/S) is large (J/S ≫ 0dB).

Alamouti STBC Jamming Experiment

To illustrate the effectiveness of jamming the training sequence (e.g. the oscil-

lating channel inversion attack) in the real-world, experiments were conducted

using GNU Radio [7] and the Universal Software Radio Peripheral (USRP) [6].

An Alamouti 2-by-1 scheme was implemented using QPSK modulation in the

1800 MHz band. Additionally, an Agilent Vector Signal Analyzer (VSA) and an

Agilent Arbitrary Waveform Generator (ARB) were used.

Alice was outfitted with 2 transmit antennas and sent bursts once every 4ms

to Bob. In order for Bob to estimate the channel, Alice preceded her data trans-

missions with channel sounding waveforms, TS1 and TS2. TS1 was sent from

transmit antenna 1, and was shortly followed by TS2 from antenna 2. Thus, Bob

could obtain the channel estimates necessary for decoding under the Alamouti

scheme. This procedure follows real world operation, such as found in Mixed and

Green Field Modes in 802.11n [27]. For this experiment, Alice’s data payload
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Figure 3.9: Alice transmits TS1 and TS2 from her antennas so that Bob can esti-
mate the channel coefficients. Eve transmits her own channel sounding waveforms
during these slots in an effort to perturb Bob’s estimations. For our experiments,
Eve only interferes with every other burst.

consisted of 12 symbols transmitted at 12.5 kBd. Eve then entered the picture

by jamming with her own channel sounding waveforms, but only during every

other burst (i.e. every 8ms). This jamming procedure is illustrated in Figure

3.9 and the experimental setup is shown in Figure 3.10. Care was taken to pro-

duce a stationary, yet richly scattered environment (e.g. no line of site and many

reflectors).

As mentioned earlier, we oscillate Eve’s jamming waveform to ensure some

level of jamming success. So, Eve’s transmissions were incrementally phased-

shifted by 90◦ for every burst (which was chosen rather than 180◦ degrees to

provide an expanded sample set for analysis). Additionally, several J/S scenarios

were tested (J/S ∈ {20, 10, 0} dB), each of which resulted in 200 jammed and

200 unjammed bursts. We did not explore J/S ≪ 0 because we showed earlier

that it would not be effective (see Figure 3.7).

In analyzing the experimental results, we pay close attention to Bob’s phase

estimates for TS1 and TS2 for both the jammed and unjammed scenarios. This is

because phase errors will mainly be responsible for symbol-tuple decoding errors

in these J/S regions. Statistical results of the experiment are listed in Table 3.7.

For each J/S scenario, the average phase offset and its variance are calculated for
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Figure 3.10: Equipment used in the Alamouti 2-by-1 space-time block code
(STBC) jamming experiment is pictured. These platforms created and processed
the waveforms; antennas were connected to these devices and positioned such
that the environment was richly scattering.

the jammed and unjammed cases for each training sequence. Additionally, the

symbol error rates are listed.

First, let us examine the large J/S cases (i.e. J/S ∈ {20, 10}). In these two

experiments, Eve caused phase errors at both antennas reliably by an incremental

90 degrees for each jammed burst (and with a minimal variance). The reader

should note, however, that there is another drift occurring on a burst-by-burst

basis during unjammed operation. Here, Bob’s phase estimates are drifting by a

random yet constant offset from experiment to experiment (and the variances of

the drift are also notably small). This drift is attributable to physical phenomena

such as local oscillator (LO) drift and frequency offsets between tuners. (Note

that this could also occur in mobile scenarios as a result of Doppler). So, it is

apparent that Eve’s actual effect at Bob is a function of her waveform and the

unjammed phase drift (in fact it is the difference in the arriving phases between

Alice’s and Eve’s transmissions). This is an important observation since in the

real-world, Eve may not need to phase shift her waveform at all, therefore relying
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on the effective phase shift incurred due to the aforementioned phenomena. A

superior attack strategy would be for Eve to observe Alice’s drift at Eve’s own

antenna, and then match her oscillating transmission accordingly. Note that this

does not guarantee her initial phase arrival, only that the incremental drift from

burst to burst is more controllable — which is her goal. In fact, it is noted that

the initial phases for all J/S scenarios were random.

Now let us examine the low J/S experiment in more detail. It is clear that

the unjammed phase drift is constant and with a low variance. However, while

the average effect of the jammer produces the 90 degree incremental offset, the

variance of the offset is very large (for both antennas). So, Eve effectively cannot

control her impact.

Finally, we examine the symbol error rates from the experiments. For each

J/S scenario, the symbol error rate is quite large (which was Eve’s objective). The

astute reader may wonder why the lower J/S scenario is showing a higher symbol

error rate. This is because the higher J/S experiments were not accounting for

Alice’s phase drifts.

To summarize, in the high J/S arena, a real-world, oscillating channel inversion

attack has been shown to be realizable and quite powerful. Additionally, as a

direct result of our experimental analysis, an important feature of this type of

attack would involve incorporating Alice’s phase drift. In the low J/S regime, the

oscillating channel inversion attack is still effective, however it is less controllable

(as shown by the large variances listed in Table 3.7).

3.4 Attack Summary

In this Chapter, we illustrated various vulnerabilities associated with current and

emerging wireless systems when subjected to a smart adversary with physical
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Table 3.7: Experimental Results

Experimental Results

(200 burst pairs/run)

Not Jammed Jammed

TS1 TS2 TS1 TS2 J/S
(degs) (degs) (degs) (degs) (dB)

Offset Average 16 16 90 90 20
mean(∆Θ) 121 121 90 90 10

-130 -130 90 90 0

Offset Variance 2.85 2.73 0.15 0.18 20
var(∆Θ) 5.3 5.78 0.27 0.33 10

2.56 2.57 38.86 69.74 0

Symbol Error <0.0001 0.6500 20
Rate <0.0001 0.7463 10

<0.0001 0.7711 0

layer access. Given the recent advancements in SDR development, such an adver-

sarial model is increasingly more pragmatic. Although much research has been

done in the area of MIMO, little research has considered limitations due to a

truly smart adversary. In this Chapter, we introduced and explored a strategy

that can be used against MIMO systems that require accurate channel state in-

formation. By targeting the channel estimation procedure, an adversary may

launch effective jamming attacks against unsuspecting users. We have presented

jamming methodology for SVD-based MIMO systems in addition to recommend-

ing strategies to undermine the popular Alamouti STBC-based MIMO scheme.

In addition, such attacks have been proven viable by way of analysis, simulations,

and real-world experimentation. The attack strategies we present are general and

may be applied to other MIMO systems.
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Chapter 4

Mitigation

4.1 Motivation

The value of wireless communications arises from the ability to establish reliable

communication between nodes that are not connected via an infrastructure. The

quality of the communication between two entities is governed by several factors,

including transmission power, modulation format, transmit and receive antenna

capabilities, and environmental conditions.

Given reliable situational awareness, a device is more capable of choosing an

effective and efficient communication scheme. Optimal modulation schemes and

protocols can be determined, in addition to successful mitigation of adversarial

operation. In this Chapter, we first consider traditional mitigation methodology,

and then introduce new physical layer techniques that can be used to overcome

channel degradations due to both natural phenomena and adversarial activity.

After our overview of classical mitigation techniques, we present novel new

ways to address the MIMO channel estimate attack strategy developed in Chapter

3. Our methods provide general channel estimate authentication by exploiting

physical layer properties of the wireless channel. The proposed solutions work for

any system that relies upon channel estimate accuracy.

We then consider resolutions to another undesirable communications scenario,

where we describe a unique mitigation strategy to an urban environment riddled

with severe multipath in the presence of a powerful jammer. In this work, we
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leverage the multipath effects of the channel in order to secure a reliable commu-

nication link.

4.2 Popular Techniques

Many techniques currently exist to mitigate poor channel environments or adver-

sarial activity. Each technique aims to exercise an available degree of freedom. A

listing of popular mitigation strategies follows:

Transmission Power

The most obvious mitigation strategy to address an adversary or poor en-

vironment is to simply transmit with more power [78]. However, this may

be wasteful, or even futile if addressing a hidden node problem. Further,

adding more power is often an ineffective strategy in an adversarial scenario

since adversaries are commonly equipped with more resources.

Frequency Agility

Changing to a different frequency can be effective for fading environments

or when retreating from adversaries that cannot track the retreat in an

expedient manner [79, 80]. Care must be taken to not switch to a fading

channel, or one occupied with other users. In this context, we comment that

frequency hopping spread spectrum (FHSS) techniques provide an excellent

solution, particularly if the hopping sequence is secret.

Modulation Agility

Another mitigation strategy is to dynamically adapt the modulation tech-

niques [78, 81, 82]. One may liken this to 802.11 operation, where various

modulation techniques are available for use depending upon the environmen-

tal conditions and user assets. An excellent adversarial mitigation strategy

would be to switch to direct sequence spread spectrum (DSSS) modulation
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when under attack, thus mitigating any narrow band attacks via the virtue

of signal despreading.

Spatial Diversity

Changing device location (i.e. physically retreating) is a good mitigation

technique for multipath rich environments and adversarial scenarios [78].

Falling under this classification of techniques would be classical beamform-

ing and MIMO strategies.

Advanced Techniques

Advanced techniques exist such as those described in [83], where anti-

jamming timing channels are used to communicate low-bit rate messages

during active adversarial operation.

While each of the above techniques have their own merits, it is quite advan-

tageous to employ mitigation strategies that combine aspects of each category.

In fact, optimal mitigation decisions can be made by leveraging machine learning

techniques in conjunction with the situational awareness achieved from methods

described Chapter 2. We now introduce PHY layer techniques to deal with the

channel estimation attacks presented in Chapter 3.

4.3 Channel Estimate Authentication

4.3.1 Motivation

Reliable communication over the wireless channel is often hampered by the effects

of the channel itself. Transmitted waveforms interact with reflectors in the chan-

nel resulting in multiple distorted copies of the signal arriving at the intended

receiver. Modern wireless systems mitigate these effects by using channel esti-

mates to remove the distortion. Specific known waveforms are often transmitted
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within data packets so that a receiver can obtain these channel estimates — such

waveform segments are commonly referred to as pilots.

Pilots that are used in modern wireless communication systems are often sim-

ple waveforms (e.g. tones) and are unencrypted and unencoded — therefore they

are unprotected and vulnerable to attack. Researchers have shown that current

software defined radios (SDR) and limited protocol knowledge can be used to

perform practical channel estimation attacks that greatly hamper system per-

formance [84]. It is therefore vital that future wireless communication systems

protect the channel estimation procedure. An obvious option would be to encode

or encrypt the pilots themselves. However, such a resolution is impractical as it

would overly complicate the detection process. Existing research has focused on

transmitter authentication rather than channel estimate authentication, and solu-

tions either do not address channel estimate authentication or require undesirable

constraints such as operation within the channel coherence time or sacrificing sys-

tem throughput for authentication [85, 86, 87, 88, 89]. Further, solutions are often

restricted to operation in multipath-rich environments. In this paper, we propose

methodology to embed channel estimate authentication messages into a physical

(PHY) layer feature vector associated with the pilot waveform. The techniques

work as a PHY Layer overlay to existing channel estimation procedures while

also providing a level of channel estimation error inference. Further our pilot

protection procedure works in any channel environment, without coherence time

constraints, and without sacrificing any data throughput.

4.3.2 Channel Estimation Overview

Reliable wireless communication is complicated by the effects of the channel since

a transmitted waveform experiences changes in amplitude and phase due to prop-

agation loss, interaction with reflectors, and channel noise [3]. Over the timespan

of a single packet, most channels are modeled as linear, time-invariant (LTI)
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Figure 4.1: The GSM and WIFI protocols dedicate specific known signal seg-
ments, referred to as pilots, for the purpose of channel estimation.

systems, such that if Alice transmits x(t), then Bob receives

y(t) = h(t) ∗ x(t) + n(t),

where n(t) is additive noise, ∗ denotes convolution, and h(t) represents the channel

response. Given an LTI channel with D distinct multipath components,

h(t) =
D−1
∑

d=0

ade
jθdδ(t − τd),

where ad represents the amplitude attenuation, θd the phase shift, and τd the

time-delay induced by the channel for the dth signal path. Research has been

done to characterize the distributions of ad, θd, and td, which are highly dependent

upon environment type (e.g. urban versus rural) [90, 91, 77]. For example, in

a multipath-rich urban environment, ad is often viewed as a Rayleigh random

variable, and θd is assumed to be uniformly distributed [77].

In order to decode a signal properly, it is important for wireless communication

systems to accurately estimate the effects of the channel. As mentioned in Section

4.1, protocols typically dedicate specific portions of the transmitted waveforms

for the sole purpose of channel estimation. These waveform segments are known

to both the transmitter and receiver, and are commonly referred to as pilots. In

GSM, the pilot signal for normal bursts is a unique series of 26 transmitted bits
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located in the middle of the waveform [92]. For 802.11 (WiFi) [27], the pilots are

constant OFDM symbols transmitted at the beginning of the waveform. Pilot

locations for GSM normal bursts and WiFi packets are depicted in Figure 4.1.

Real world channels are not stationary, however, as they change over time,

frequency, and space. After a short amount of time, the channel decorrelates

with itself, and pilots must be reissued. Knowledge of a channel at a particular

time will not help in the future: a time window over which a channel induces

a predictable phase is known as the coherence time. Similarly, the range of fre-

quencies that experience comparable fading effects is referred to as the coherence

bandwidth. Likewise, a wireless channel rapidly decorrelates with itself in space

for distances larger than one half of the waveform’s wavelength [93]. These are

important observations because most new wireless communication systems oper-

ate over time, frequency, and space. We note that spatial diversity can result

from mobility, but also by using multiple antennas, as is prominent in emerging

wireless systems. For example, 802.11n, WiMAX, and LTE employ multi-input

multi-output (MIMO) schemes coupled with OFDM, where messages are sent si-

multaneously from multiple antennas over numerous frequencies. Therefore, these

protocols need to estimate the channel reliably in time, frequency, and space. Re-

gardless of protocol, the goal remains the same — accurate estimation of channel

state information (CSI).

Now consider that Alice wants to send a message over the wireless medium

to Bob. To enable general channel estimation, Alice transmits a set of pilots

c = {c1, c2, c3, ...ck} over time, frequency, and space (e.g. by using multiple

antennas). Her goal is to choose c such that it properly covers the changes in the

channel without being wasteful. In other words, the pilots should be transmitted

sparsely enough so as not to waste resources but with high enough density such

that the channel estimates obtained by Bob can be used to decode the data. This
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Figure 4.2: Alice transmits a packet to Bob over the wireless channel, h. The
packet consists of a pilot and data. Evil adversary Eve attempts to interfere with
the communication by transmitting her own rogue packet over the channel, hE .

applies to both streaming and packetized data. For this paper, we consider packet-

based protocols, however all principles and techniques can be directly applied to

streaming data. There are thus many piloting strategies available. Classical

results are listed in [94, 95], however the widely adopted “block” and “comb”

schemes only consider time and frequency in a basic manner.

Assuming that the selected channel sounding sequence, c, is properly chosen

for the channel, inaccurate CSI estimates are still possible. Most commonly, this

occurs due to channel noise, unintentional interferers (e.g. co-channel interfer-

ence), and even malicious users. In fact, the authors in [84] show that targeted

CSI attacks provide a covert, effective, and practical means of degrading system

performance. Such an adversarial model is depicted in Figure 4.2, where the ad-

versary Eve hampers communication between Alice and Bob by sending rogue

transmissions. It is therefore important to be able to trust CSI estimates, which

is why we propose a way to authenticate the estimates. Our work fills a ma-

jor void because current and emerging wireless communications systems do not
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provide a way to authenticate the channel estimates. Further, our methodology

provides CSI authentication across coherence time intervals, and can be applied

in any environment (not just richly-scattering). Moreover, our techniques also

infer the cause of the invalid estimate, thus driving more intelligent mitigation

decisions. For example, channel noise may be overcome simply with more power,

while adversarial activity may require a more complex response [96, 97].

Our authentication techniques work in a manner similar to codeword trans-

mission. The goal is to select c such that it encodes an authentication message.

Our techniques leverage the degrees of freedom available in the channel while

exploiting the fact that many channel sounding solutions exist. Properly decod-

ing the message authenticates the CSI, while errors indicate an invalid channel

estimate in addition to its probable cause (e.g. adversarial activity). Since most

future wireless systems are multi-antenna (e.g. MIMO) and multi-carrier (e.g.

OFDM), this is where we concentrate. We note that applying our techniques to

single-antenna, single-frequency systems can be achieved by merely simplifying

the methods.

4.3.3 Related Work

Work has been done in the area of physical layer authentication. In [85], the

authors investigate and implement techniques that embed power-based authenti-

cation messages (referred to as tags) into the data transmissions. The technique

requires accurate CSI estimates, which can be attacked because the pilot trans-

missions remain unaltered and unprotected. Further, the implementation lowers

the overall system throughput because the tag is located within the data itself.

Finally, the authentication scheme is susceptible to replay attacks.

In [86], the authors also use the entire transmission to send an authentication

message, thus resulting in the same drawbacks with regard to throughput. The
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scheme involves sending the authentication message by embedding a channel re-

sponse into the message and relying on equalization techniques at the receiver to

resolve the authentication message. Richly scattering environments may compli-

cate processing, and the technique itself relies heavily upon successive messages

within the coherence time of the channel.

In [87, 88, 89], the authors leverage statistically similar channel estimates

over time to authenticate the transmitter. The techniques rely upon reliable

successive CSI estimates in richly scattering environments, and [88] assumes a

burst structure not emulative of current systems. Further, the computational

complexity may not be practical.

Our work fills a major void in existing literature because it provides a prac-

tical method of CSI estimate authentication that is computationally simple and

does not depend upon successive reliable estimates within the channel coherence

time. Our techniques are also applicable to any channel, not just richly scat-

tering environments. Further, the techniques that we present do not lower data

throughput since the authentication messages are solely embedded within the pi-

lots themselves. Data authentication is inherently part of our techniques because

rogue data packets will not share the same CSI as the authenticated pilots, thus

resulting in demodulation errors at the receiver. Finally, our techniques provide a

level of error inference, which is important to properly drive mitigation decisions.

4.3.4 CSI Protection: The General Framework

We now present a general framework for protecting the CSI estimation procedure

by embedding authentication messages within the pilot waveforms. Our frame-

work assumes that Alice and Bob are equipped with a secret key, k. While such

a key can be obtained by traditional key dissemination mechanisms, it is possible

to procure a key passively and without direct communication via the techniques
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Figure 4.3: The general CSI protection procedure is depicted. Alice and Bob
use a secret key, k, and a sequence number, i, to achieve CSI authentication by
encoding messages into the waveform pilot. If the authentication message fails,
then Bob should not trust the channel estimate to decode the data waveform.

described in [98, 99, 100, 101, 102]. Using k, Alice and Bob can embed au-

thentication messages into the physical attributes of the channel sounding pilots

themselves. A new authentication message, mi, will be created by mi = g(k, i),

where k is the secret key, i is the message sequence number, and g(·) is a one-way

function. The sequence number prevents replay attacks, and the one-way function

allows quick recovery from authentication errors. We incorporate the sequence

number to prevent replay attacks, and use a one-way function to allow quick

recovery from any authentication errors. To prevent replay attacks (e.g. Eve

simply repeats Alice’s transmissions back to Bob), Alice and Bob are required to

use different keys for each directions of the communication. One may think of

these authentication messages in a similar manner to the the pseudo-random hop

sequence utilized in Bluetooth [103] or GSM [92].

The following general procedure, which is illustrated in Figure 4.3, describes

how CSI estimate authentication can be achieved by using the pilot waveform to

embed authentication messages:
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1. Alice computes an authentication message, mi, using the packet number, i,

the secret key, k, and the one-way function, g(·).

mi = g(k, i)

2. The authentication message is then mapped to a physical pilot waveform

via p(·). Shortly, we will introduce a few of these pilot mapping functions.

ci(t) = p(mi)

3. Alice then generates the data waveform. Given L data bits for the ith

packet, bL
i = {b0, b1, · · · bL−1}, Alice generates the data waveform via the

data waveform mapping function, w(·).

di(t) = w(bL
i ).

4. Alice prepends the pilot to the data waveform1, and transmits si(t).

si(t) = [ci(t) di(t)]

5. The transmission is affected by the wireless channel, so that Bob receives

ri(t):

ri(t) = ŝi(t) = [ĉi(t) d̂i(t)]

6. Bob uses the pilot waveform to decode the authentication message, m̂i, and

estimate the CSI, ĥi.

(m̂i, ĥi) = p−1(ĉi(t))

7. (a) If the authentication message is correct, then Bob can trust the CSI

estimate and use it to recover the data bits.

b̂
L

i = w−1(d̂i(t), ĥi), iff m̂i = mi

1The concatenation of the pilot and data waveforms should be done carefully to avoid phase
discontinuities. The application of a Savitzky-Golay smoothing filter would achieve this while
preserving relative signal magnitudes.



89

(b) If the message is incorrect, then Bob may sound an alert and/or de-

modulate the data without the CSI estimate.

b̂
L

i = w−1(d̂i(t)), iff m̂i 6= mi

In our work, we focus on using only the pilot waveform to embed the authenti-

cation message. While the data waveform can also be used to convey our physical

layer authentication message, we note that using only the pilot waveform allows

us to select pilot mapping functions that prevent eavesdroppers from using the

channel estimates obtained by the pilot to decode the data waveform.

The rest of this paper focuses on presenting various pilot waveform mapping

functions, p(·). We begin by assuming single carrier MIMO capabilities and pro-

ceed by extending the schemes to incorporate multiple carriers. We then discuss

practical extensions before demonstrating a selection of the techniques in real-

world environments using a current cognitive platform. We now present two

general classifications of pilot waveform mapping functions that we refer to as

Frequency Quantization and Selective Usage.

4.3.5 Frequency Quantization

Signals transmitted within the same channel coherence bandwidth, ∆BW , will

experience comparable channel effects [104]. Therefore, if a pilot is transmitted

at a nominal frequency of f̃ , then the same pilot transmitted at frequency f0 will

experience similar fading effects if |f̃ − f0| < ∆BW . Thus, af̃
d ≈ af0

d , θf̃
d ≈ θf0

d ,

and τ f̃
d ≈ τ f0

d for each of the D multipath components of h(t). The coherence

bandwidth of micro-cellular environments typical do not go below 80 KHz [105]

— later we use this value in our real world experiments.

Using a single transmit antenna, Alice can embed an authentication message

into the frequency of the pilot without sacrificing CSI validity so long as the

transmission remains within ∆BW . By quantizing ∆BW into N distinct levels
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surrounding the frequency that Alice would normally use to transmit the pi-

lot, f̃ , she can send an authentication message by transmitting her pilot in the

appropriate frequency interval. Note that the pilot is transmitted at the offset

frequency, f0, while the data is still transmitted at the nominal frequency, f̃ .

Since Bob expects the authentication message at f0, he can still properly decode

the data transmitted at the nominal frequency, f̃ , by accounting for the known

frequency offset in his data recovery routines. And by definition of the coherence

bandwidth, the CSI estimate for f0 will approximate f̃ .

We now use the frequency quantization concept to introduce three practi-

cal channel estimate authentication schemes: (1) Relative Frequency Codebook

(RFC), (2) Binary Freqeuncy Codebook (BFC), and (3) Joint Frequency-Power

Codebook (FPC). Figure 4.4 depicts the three methods.

Relative Frequency Codebook

Because there are instabilities and drifts associated with independent local os-

cillators [84], absolute frequency is not a suitable choice in the real world. For

example, 802.11g requires oscillator accuracy within 25ppm [27]. For signals at

2.4 GHz, this equates to a 60 KHz frequency offset. Later in our experiments,

we use a current SDR platform [6] with an oscillator rated at 20 ppm. Thus,

for practical applications, we propose that Alice utilize relative frequency. Given

a MIMO scenario with M transmit antennas, Alice should transmit a baseline

pilot using her first physical transmit antenna. She can then use the remaining

M − 1 antennas to transmit authentication messages using the relative frequency

offsets from the baseline pilot transmission. Given N frequency quantization lev-

els and M antennas, Alice can achieve b authentication bits per packet, where

b = (M − 1) log2 N .

We describe our Relative Frequency Codebook construction using an example.
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Suppose Alice is equipped with M = 2 transmit antennas and uses N = 8 quan-

tization levels over 80 KHz to provide CSI authentication. By frequency shifting

the pilot for the second antenna, Alice can send 3-bit (=log2 8) authentication

messages using 10 KHz frequency offset increments. For simplicity, consider that

Alice uses a nominal carrier frequency, f̃ , of 2.4 GHz, and encodes her messages

by using a frequency offset that is proportional to the two’s complement form of

her message, m. Denoting the two’s complement operator as †, Alice transmits

her message bearing tone at

f0 = f̃ + (∆f)(m†),

where ∆f = 10 KHz. Now envision that Alice wishes to send the following four

authentication messages

m = {010, 111, 011, 001}

(m†) = {2, − 1, 3, 1}

Alice can accomplish this over four packets by transmitting the pilots from the

first antenna at f̃ = 2.4 GHz, and the pilots from the second antenna at

f
0

= 2400 MHz + {20, − 10, 30, 10} KHz

= {2400.02, 2399.99, 2400.03, 2400.01} MHz

In the real world, local oscillator variability (at both Alice and Bob) often

results in frequency drifts. Suppose that inter-packet local oscillator variability

results in the following frequency drifts as seen by Bob.

f
d

= {10, − 10, 20, 30} KHz

Under such conditions, Bob receives the nominal, f̃
B
, and message bearing, f

0,B
,
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(a) RFC (b) BFC (c) FPC

Figure 4.4: Three Frequency Quantization schemes are depicted. The Relative
Frequency Codebook (RFC) scheme in (a) utilizes relative frequency offsets from
nominal to embed an authentication message. The Binary Frequency Codebook
(BFC) scheme in (b) uses a binary codeword generated from multiple pilots. The
Joint Frequency-Power Codebook (FPC) scheme in (c) transmits pilots at each
sub-interval, using relative power levels to convey the authentication message.

pilots at

f̃
B

= f̃ + f
d

= {2400.01, 2399.99, 2400.02, 2400.03} MHz

f
0,B

= f
0
+ f

d

= {2400.03, 2399.98, 2400.05, 2400.04} MHz

Bob decodes the authentication messages via

(m̂†) = ‖
(f

0,B
− f̃

B
)

∆f
‖

= {2, − 1, 3, 1}

∴ m̂ = {010, 111, 011, 001}

Thus, despite oscillator instabilities, Bob recovers the authentication messages

correctly. Figure 4.4 (a) illustrates the quantization of ∆BW for the Relative

Frequency Codebook authentication scheme.
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As one would expect, authentication reliability grows with the number of

receive antennas. The authors note that smart antenna techniques could be used

by Bob (perhaps steered by previously authenticated CSI estimates) to increase

the detection and resolvability of the authentication messages.

This authentication scheme offers error inference by physical layer pilot obser-

vation. For instance, channel noise simply increases the noise floor. Co-channel

interference does the same, but in a sporadic manner since transmissions are asyn-

chronous. For interfering devices, invalid authentication messages would be seen

at unexpected times. While an adversary can mimic both channel noise and co-

channel interference, we have noted that truly smart attacks will target the pilots

in a synchronous fashion. But because Eve is not aware of the authentication

message to send, she does not know where in frequency to transmit the rogue

pilots.

A key point arises when we consider what happens if Eve is equipped with

perfect knowledge of the the proper frequency intervals. Even with this seem-

ingly great advantage, it is extremely probable that there are frequency offsets

between Eve’s pilots and Alice’s pilots. These deviations are attributable to local

oscillator differences. If this frequency error is resolvable, then Bob can detect

Eve’s presence. Later in the paper we will illustrate this principle in a real-world

experiment.

The Relative Frequency Codebook authentication scheme is amenable to CSI

estimation methods that are currently in use. For example, consider 802.11n

where sequential transmissions from each antenna are used in the beginning of

every packet to estimate the channel [76]. These pilots are called high throughput

long training fields (HT-LTFs) and are illustrated in Figure 3.6 of Chapter 3.
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Binary Frequency Codebook

We now consider a similar technique that increases the authentication bit-rate

by further leveraging properties of the channel coherence bandwidth. As we have

noted, a pilot will experience comparable channel effects if it is transmitted any-

where within the channel coherence bandwidth. Thus, if Alice transmits multiple

pilots within a given channel coherence bandwidth using identical power, then

either all or none of them will arrive at Bob. Alice may therefore send an au-

thentication message by utilizing all of the N frequency quantization levels in a

binary fashion (i.e. on/off). In this manner, she can send an N -bit authentication

message per transmitter at a given frequency. The Binary Frequency Codebook

scheme is illustrated in Figure 4.4 (b). Key to the success of this technique is

pilot resolvability. When considering the use of channel sounding tones as pilots,

protocol parameters such as the pilot length and frequency separation must be

carefully selected so as to ensure frequency resolvability [106]. With this scheme, a

single frequency reference is needed per packet, resulting in b =(N−1)+(M−1)N

authentication bits per packet.

Suppose that Alice wishes to use the Binary Frequency Codebook scheme to

send the following 15-bit authentication message, m ={010110011100101}. By

using the same M = 2 antennas and N = 8 quantization intervals from the RFC

example, Alice can achieve this over a single packet transmission. If Alice uses

the lowest frequency interval from the first antenna to send the reference pilot,

then this leaves 7 message bits for the first antenna, and 8 for the second antenna.

Thus, Alice transmits {10101100} from antenna 1 and {11100101} from antenna

2. Given a 1 is transmitted by the presence of a pilot, Alice transmits pilots at

the following frequency intervals, where f
0

indicates antenna 1 and f
1

indicates
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antenna 2:

f
0

= 2400 MHz +

{−40,−30,−20,−10, 0, 10, 20, 30}. ∗ {1, 0, 1, 0, 1, 1, 0, 0} KHz

= {2399.96, 2399.98, 2400.00, 2400.01} MHz

f
1

= 2400 MHz +

{−40,−30,−20,−10, 0, 10, 20, 30}. ∗ {1, 1, 1, 0, 0, 1, 0, 1} KHz

= {2399.96, 2399.97, 2399.98, 2400.01, 2400.03} MHz

Error inference remains the same for this scheme as the Relative Frequency

Codebook method, but with a major enhancement regarding smart adversarial

detection. If Alice transmits pilots from a given antenna using identical power

and within the same coherence bandwidth then the pilots will arrive at Bob with

the same power. Hence, any pilots with different arriving power would immedi-

ately reveal an adversary’s presence — note that it is virtually impossible for an

adversary to match the power received at Bob. In Section 4.3.8, we illustrate this

principle by way of a real-world experiment.

For MIMO operation, Bob will be equipped with multiple receive antennas. In

such a scenario, smart adversary detection becomes more reliable, as each receive

antenna will have independent power levels from each of Alice’s transmissions in

multipath-rich environments [77].

Joint Frequency-Power Codebook

Further leveraging properties of the coherence bandwidth, Alice can add trans-

mission power to her arsenal for authentication. By transmitting relative power

within ∆BW , Alice increases the authentication bit rate by reducing her adver-

sarial detection effectiveness. Under this scheme, Alice should transmit pilots

at every frequency quantization level, but using Q power quantization levels.

Because Alice is now using relative power, a pilot reference is needed for each
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Figure 4.5: Under Selective Usage, Alice keeps a selection of transmitters idle
during the channel sounding process. For packet i, Bob receives authentication
message mi. In the example above, if Alice’s transmitter is active to send a 1,
then Bob receives m1 = [0 1 1 1] and m2 = [1 1 0 1].

antenna. Thus, Alice can achieve b = (N − 1) log2(Q) authentication bits per

transmitter.

Suppose that Alice wishes to use the Join Frequency-Power Codebook scheme

to send the following 14-bit authentication message, m ={01011001110010}. Us-

ing the same N = 8 quantization intervals from the previous examples, we note

that Alice can send the 14-bit message with a single transmit antenna by using

Q = 4 power quantization intervals. Alice uses transmit powers of {0, -3, -6, -9}

dBm to convey bits of {00, 01, 10, 11}, respectively, and transmits her reference

pilot at 0 dBm again at the lowest frequency quantization interval. To send the

message, Alice maps {01, 01, 10, 01, 11, 00, 10} onto the 7 message containing

pilot frequencies, and therefore transmits pilots at {2399.96, 2399.97, 2399.98,

2399.99, 2400.00, 2400.01, 2400.02, 2400.03} MHz using power levels of {0, -3, -3,

-6, -3, -9, 0, -6} dBm, respectively.

For the Joint Frequency-Power Codebook scheme, the CSI estimates again

remain valid, however the detection of adversarial activity may be tougher to

notice in the power domain as an adversary now has an increased range of power

to match. The Joint Frequency-Power Codebook scheme is depicted in 4.4 (c).
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4.3.6 Selective Usage

Some real world devices will not be able to implement any of the Frequency Quan-

tization schemes due to transmitter limitations or OFDM implementations. In

OFDM, carrier frequencies are selected carefully so as to minimize inter-carrier

interference. Thus, we propose a lower bit-rate alternative that we refer to as

Selective Usage. Without altering the actual frequency of the pilots, Alice may

choose to selectively omit the pilot for a given transmit antenna. While CSI in-

formation cannot be estimated by Bob for the omitted antenna, he may utilize

the last CSI estimate or an appropriate estimate based upon previous measure-

ments [107]. Additionally, Bob can always use the data itself to perform timing,

frequency, and phase recovery when the pilot is absent. While this is less efficient

from a processing perspective, it does allow for CSI authentication without loss

of accuracy due to CSI estimate interpolation. Selective omission of pilots will

effectively transmit the authentication message to Bob in a binary fashion using

each nominal pilot frequency. For instance, Alice can send a 1 to Bob by trans-

mitting a pilot, and a 0 by remaining idle. Given M transmit antennas, Alice

can send b authenticated bits per packet, where b = log2 M . Under the Selective

Usage scheme, transmissions from antennas that should remain silent would in-

dicate smart adversarial activity. The Selective Usage procedure is illustrated in

Figure 4.5.

4.3.7 Extensions

In the previous sections, we assumed multiple antennas at a single frequency. We

now explore extensions to our schemes that enhance the authentication bit rate

further and/or deal with system constraints.
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Figure 4.6: The experimental setup is shown. Alice, Bob, and Eve are comprised
of cognitive platforms made up of a computer and a USRP.

Multiple Frequency Extensions

The extension to multiple frequency usage is straightforward. By using K car-

rier frequencies, the Frequency Quantization schemes can all achieve increased

authentication bit rates. For the Relative Frequency Codebook (RFC) scheme,

only a single reference is needed per packet. Thus, the authentication bit rate

becomes

bRFC = (M − 1) log2 N + (K − 1)M log2 N.

The Binary Frequency Codebook (BFC) scheme also only requires a single refer-

ence per packet, resulting in an authentication bit rate of

bBFC = KMN − 1.

For the Joint Frequency-Power Codebook (FPC) scheme, a reference is needed at

each carrier, therefore achieving an authentication bit rate of

bFPC = KM(N − 1) log2 Q.

For the Selective Usage (SU) scenario, the authentication bit rate per packet

is similar to the BFC scheme in that each carrier operates independently, thus

resulting in

bSU = K log2 M.
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Figure 4.7: The Relative Frequency Codebook (RFC) scheme was implemented in
a real-world channel estimate authentication experiment. Eve the adversary was
present in order to inject false channel sounding pilots. Above, Alice transmits the
authentication message {000, 111, 010, 001, 010, 011, 011, 010}, and Bob receives
{000, 111, 010, 001, 010, 010, 011, 010}. The error (010) in the authentication
message is due to Eve’s inability to closely match Alice’s pilot frequency and
reveals Eve’s presence.

Note that these multiple frequency extensions hold for the single antenna scenario,

where the authentication bit rate can be calculated by using M = 1 in the above

equations.

OFDM Extensions

Popular communication standards such as 802.11n and WiMAX utilize OFDM

due to its ease of implementation and spectral robustness with regard to fading

and inter-carrier interference suppression. Such implementations are typically

Fast Fourier Transform (FFT) based, therefore restricting the use of user defined

frequencies as called for in the Frequency Quantization scheme. However, slight

modifications result in successful OFDM usage of Frequency Quantization CSI

authentication. By incorporating a larger FFT, OFDM systems effectively can

utilize more relative frequencies. In essence, the size of the FFT will govern the

quantization levels per CSI estimate. As an example, 802.11 uses a 64-point FFT
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Figure 4.8: The Binary Frequency Codebook (BFC) scheme was implemented in
a real-world channel estimate authentication experiment. Eve the adversary was
present in order to inject false channel sounding pilots. Above, Alice transmits
m ={11101101}, and Bob receives the correct authentication message because
Eve is operating close enough to Alice’s active pilot (i.e. ∆fe is not resolvable).
But because the power deviation at the sixth pilot is much greater than the
nominal power deviation expected (∆pe >> ∆p̃), Eve’s presence is revealed.

during channel estimation [27]. By increasing the FFT to 256 points, Alice can

achieve 4 authentication bins per pilot. With this minor modification, the data

transmission may resume the legacy FFT size thus maintaining efficient use of

the transmission device. Note that WiMAX implementations already utilize a

256-point FFT (with 8 carriers set aside as pilots) [69]. Further, carriers are

often left idle during pilot transmission. In 802.11, the training sequence (TS)

portion of the pilot only modulates on every 4th carrier [27]. By altering this

carrier allocation, Alice can incorporate CSI authentication. The astute reader

may question the frequency offset incurred by shifting the pilot, however since Bob

knows the message that he expects to receive, the offset is in fact correctable. If

the Frequency Quantization schemes are too problematic to implement, then the

OFDM systems may always revert to Selective Usage CSI authentication.
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Single Frequency SISO Applications

While the schemes that we presented are geared towards multi-carrier MIMO op-

eration, they can also be applied to single frequency SISO systems that utilize

channel state information. For single frequency SISO application, CSI authen-

tication messages can be sent either inter-packet (given a large enough channel

coherence time) or by shifting the pilots in frequency within the transmission.

Further extensions and their ramifications are left to the reader for consideration.

4.3.8 Experimental Validation

To illustrate the feasibility of our techniques, we conducted real-world experiments

using a current cognitive radio architecture — the GNU Radio/USRP SDR plat-

form that we describe in detail in Section 1.5 [6, 7]. Each player in the experiments

that follow is a GNU Radio/USRP cognitive platform. The experimental setup

is pictured in Figure 4.6.

Relative Frequency Codebook Experiment

In the Relative Frequency Codebook experiment, Alice uses two transmit anten-

nas to send 8 authentication messages (by using 8 carriers) across 2 MHz in the

1800 MHz band. The carriers are each separated by 200 KHz. At a given carrier,

Alice embeds an authentication message by transmitting the pilot at a frequency

that is offset from nominal. She uses the same pilot message mapping function

discussed in the example of Section 4.3.5, but with a frequency quantization in-

terval (∆f) of 25 KHz. Each authentication message conveys 3-bits, hence valid

frequency offsets are {−100,−75,−50,−25, 0, 25, 50, 75} KHz, which equate to

{100, 101, 110, 111, 000, 001, 010, 011} in bits. In the experiment, Alice transmits

an authentication bit sequence of {000, 111, 010, 001, 010, 011, 011, 010}, resulting

in frequency offsets of {0,−25, 50, 25, 50, 75, 75, 50} KHz. Figure 4.7 depicts the
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spectrum received by Bob due to transmissions from Alice’s second antenna dur-

ing pilot activity. The nominal pilot frequencies (as transmitted by Alice’s first

antenna) are depicted with the dashed lines.

Also present in the experiment is an adversary, Eve, whose goal is to attack

the CSI. For illustrative purposes, Eve is only active on a single carrier. In the

experiment, ample jammer power allows Eve to trick Bob into decoding the wrong

CSI pilot at the sixth carrier. But because Eve does not know the authentica-

tion message, she cannot predict exactly where to transmit the rogue CSI pilot

tone. Since the rogue pilot is offset by −25 KHz from Alice’s pilot, Bob decodes

{000, 111, 010, 001, 010, 010, 011, 010}, where 0 indicates the bit received in-error.

And since the authentication message is incorrect, Eve’s presence is revealed.

Note that if Alice is only equipped with a single transmit antenna, she can still

use the Relative Frequency Codebook methodology by using one of the pilot tones

as the frequency reference. All other nominal frequencies can then be calculated

from the reference. The authors state this to portray practical adaptability to

SISO applications.

Binary Frequency Codebook Experiment

In the Binary Frequency Codebook experiment, we isolate activity at a single car-

rier frequency in order to focus on a particular authentication message. Using a

single antenna, Alice transmits an 8-bit authentication message, m = {11101101},

in the 1800 MHz band over 80 KHz (< ∆BW ). Figure 4.8 shows the spectrum

as seen by Bob. Again, Eve is present, and solely attacks the sixth bit in the

authentication message. Note that if Eve attacks an inactive bit, then the au-

thentication message will fail and her presence will be revealed. However, if she

is close enough in frequency to an active bit (i.e. ∆fe is not resolvable), then the

authentication message will be correct despite an inaccurate CSI estimate. Such

is the case for this experiment, but because Alice and Bob are using the Binary
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Figure 4.9: A real-world experiment was conducted using the Joint Frequency-
Power Codebook scheme, where Alice sends an authentication message of
m ={01,10,11,00,11,00,01}. Alice transmits a nominal pilot at the lowest fre-
quency, and uses the remaining 7 frequencies to send messages by backing off
transmission power. Using backoffs of {0,6,12,18} dB, Alice sends authentication
bits of {00,01,10,11}.

Frequency Codebook Authentication scheme, Bob can still detect Eve’s presence.

Because the transmissions all occur within the coherence bandwidth of the chan-

nel, power deviations from nominal are a clear indicator of an attacker. We see

that Eve’s power deviation from Alice’s is quite large (∆pe ≈ 10 dB >> ∆p̃).

Joint Frequency-Power Codebook Experiment

In the Joint Frequency-Power Codebook experiment, we isolate activity at a single

carrier frequency again in order to focus in upon a specific authentication mes-

sage. Using a single antenna, Alice transmits a 14-bit authentication message,

m = {00101100110001}, in the 1800 MHz band over 80 KHz. Like the Binary

Frequency Codebook scheme, it is essential that the authentication message be

sent within the coherence bandwidth of the channel (i.e. < ∆BW ). Using this

scheme, a power reference is necessary for every message carrier. Alice chooses

to use the lowest frequency carrier to transmit the nominal reference. In order

to send authentication bits {00,01,10,11}, Alice uses relative power attenuations
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of {0,6,12,18} dB from nominal. Therefore, to send the desired 14-bit authen-

tication message, Alice transmits {00,01,10,11,00,11,00,01} by transmitting her

pilot carriers at levels of {0, -6, -12, -18, 0, -18, 0, -6} dBm. Figure 4.9 shows the

spectrum as seen by Bob for this authentication message. As can be seen, the

message is fully recovered by analyzing the relative powers of the received pilot

signals.

4.3.9 Channel Estimate Protection Summary

In this Section, we have provided physical layer approaches to authenticating

channel state information estimates. Methodology has been proposed to support

existing protocols such as 802.11n in addition to new cognitive protocols. Exper-

imental verification was performed using USRP/GNU Radio SDR platforms.

Having proposed techniques to provide channel estimate authentication, we

now proceed to address communication challenges associated with multi-path rich

urban environments with the presence of a very strong adversary. Again, we focus

on PHY layer techniques that can be utilized by emerging cognitive platforms.

4.4 Radio Teaming

Although theoretical results may suggest that it is possible to establish a reliable

wireless link between any two parties, e.g. by increasing transmission power

or adjusting the modulation format to operate at a lower data rate[108], there

are practical limits to what is possible through such methods. In particular,

commodity radios, such as an 802.11 radio, are limited in the types of modulation

mechanisms (e.g. in 802.11b the lowest data rate is 1 Mbps, which corresponds

to employing Direct Sequence Spread Spectrum (DSSS) modulation) that can be

used or are constrained in terms of the amount of power they may employ (e.g.

a 802.11 WLAN card can only transmit with a power level up to 100mW). These
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device limitations, however, correspond to actual limits on the ability to establish

communication links. For example, if we fix a modulation scheme and limit the

amount of power, then there is a corresponding distance to which communications

can reliably be established.

A consequence of this observation is that it may be impossible to establish re-

liable communication between devices that are beyond the communication range

supported by transmitting at the lowest data rate with the highest allowed trans-

mit power. Such a problem might arise in various realistic operational scenarios,

such as the well-known urban canyon or in the presence of radio interference. In an

urban canyon setting, the existence of a complicated multipath environment (e.g.

such as midtown Manhattan, with its streets intertwined amongst tall buildings)

can sufficiently degrade communications in spite of entities being in moderately

close proximity of each other. On the other hand, in an interference setting, the

existence of an interferer near the recipient could lead to a resulting signal-to-

interference level that prevents successful demodulation of communication. In

these challenging settings, given the limitations of commodity devices, a natural

question that arises is whether it is still possible to establish communications

between a sender and a receiver.

In this Section, we overcome the limits of a single commodity device through

a form of cooperative communication that is amenable to commodity devices.

Specifically, we propose that a device forms a radio team of similar devices within

range of each other, and that this team acts synergistically to communicate with

the receiver. Whereas the communication literature that has examined cooper-

ative communication [109, 110, 111, 112, 113] requires stringent synchronization

of devices at their physical layer, our approach works as an overlay on an existing

wireless link-layer. Specifically, the radios work together to establish a common

time line and to exchange a schedule to coordinate their synchronous transmis-

sions. The resulting cacophony of simultaneous transmissions will arrive at the
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receiver incoherently, producing perturbations in the receiver beam response pat-

tern, that can be used to establish a reliable communication channel between the

team and the receiver.

4.4.1 Related Work

Much research has been done in the area of cooperative communications [109, 110,

111, 112, 113]. However, the bulk of the focus has been on traditional beamform-

ing and MIMO techniques that require a very high level of synchronization and

intelligence amongst participating parties. For instance, standard beamforming

requires that all transmissions arrive at the same time and in-phase with each

other at the receiver. Our concept removes this level of synchronization, thereby

making it an adoptable and reliable communication overlay for existing commod-

ity wireless devices. We now overview some other non-traditional techniques.

In [114], the collision that occurs when two packets are transmitted simulta-

neously by two senders is actually used to the network’s advantage. The signal

after the collision is the sum of the colliding signals along with attenuation, phase

and time shifts. If the receiver knows one of the packets, it can cancel the known

packet’s signal, and then proceed to decode the other packet. The receiver carries

out a series of computations to calculate the channel attenuation and phase shift

to decode the packets. Although they assume no synchronization between the

transmitted signals, they assume that the receiver has knowledge of one of the

packets. In our approach, we do not assume a priori knowledge of the packet.

Rather, the receiver looks at perturbations in the beam-pattern response to de-

code the signal. In addition, [114] provides capacity benefit for high SNR oper-

ating regimes, while our approach is geared specifically towards low SNR/SINR

scenarios.

In [115], a single antenna is used to achieve some of the benefits of a MIMO

system. Along with transmitting their own messages, the radio nodes relay each



107

other’s messages in a time slotted fashion. Hence, a form of spatial diversity is

generated, and the receiver sees independently faded versions of the signal. This

approach requires very high levels of synchronization and can be tough to achieve

in the real world. Also, coordinating the cooperation is a challenging task as

it involves a complex partner assignment scheme that is needed to achieve the

desired data path diversity. In our approach, all the radio nodes in the team

transmit the same message at roughly the same time.

Network MIMO is another diversity scheme that allows multiple concurrent

transmissions using space-time coding techniques. It requires multiple transmit

antennas at proper distances from each other to increase diversity in order to

combat channel fading [109]. By sending signals that carry the same informa-

tion through different paths, multiple independently faded replicas of the data

is obtained at the receiver and hence, more reliable reception is achieved. The

protocol that we propose is quite similar to MIMO, however it greatly reduces the

level of synchronization needed. In addition, the location of each radio teaming

transmitter is not restricted in any manner.

Another area of related work is anomaly detection (or deviation detection).

In anomaly detection, some objects have attribute values that differ significantly

from the expected or typical attribute values. The underlying cause of an anomaly

provides important information since objects may be of different types or belong

to different classes. There have been many approaches to anomaly detection

including model based techniques, proximity based techniques and density based

techniques [116]. In [117], a statistical signal processing technique is used to detect

network anomalies. In our protocol, we seek to communicate with the receiver

by causing variations in its beam-pattern response such that it deviates from its

norm. In our experiments, we use a statistical distance-based technique to detect

the anomaly. Our approach can also be compared to significance testing, where

a hypothetical result is considered false if the observed result differs sufficiently
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Figure 4.10: Local oscillator instability due to small temperature variation is
demonstrated using a current Software Define Radio (SDR) architecture. Slight
temperature variations produce a frequency deviation of over 1 KHz in the 1800
MHz band. The SDR’s ovenized crystal oscillator (OCXO) is rated at 20 ppm.

from the hypothetical result. In our approach, we find the difference between

the observed result and a base result, and then decode the signal based on the

difference.

Finally, we also draw a comparison to CDMA techniques. In CDMA, a rake

receiver is used to recombine multipath components emanating from a single

transmitter [118]. While the rake receiver leverages the different time-delays

associated with the multipaths, we look to take advantage of the different angle-

of-arrivals (AOAs) associated with each multipath component at the intended

receiver.

4.4.2 Strategy Overview

Let us now elaborate on the motivation behind radio teaming. It is clear that

an urban canyon presents a difficult environment for reliable wireless commu-

nications. While cooperative communications may represent the most desirable

solution, standard forms of beamforming and MIMO can be challenging to im-

plement in certain scenarios. Consider the example where the “radio team” is a

group of spatially diverse, independent transmitters, none of whom have a reliable
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link to their intended receiver. It is perfectly feasible that units may synchronize

finely in time based upon a shared clock (e.g. GPS). But, in order to prop-

erly beam form the units, the transmitters would need exact knowledge of their

environment or user-specific feedback from the receiver so that each transmit-

ter could properly coordinate its signal’s arrival at the receiver. Otherwise, the

signals will arrive with random phases despite being perfectly time-slotted. Fur-

thermore, the random jitter and drifts associated with the fact that each unit has

an independent local oscillator (and most likely a low-cost one) greatly reduces

the chance of any meaningful analog gain associated with constructive interfer-

ence. To illustrate this phenomenon, Figure 4.10 depicts a frequency drift of over

1 KHz that was incurred due to a temperature variation of only a few degrees

Fahrenheit at the transmitter’s local oscillator. The transmitter used was a USRP

SDR platform with a RFX-1800 daughterboard serving as the RF frontend. The

transmitter/receiver in this experiment is indicative of what is used in commod-

ity communication platforms. Since heterogeneous units are not readily capable

of synchronizing to the level needed to support MIMO or beamforming, is there

something else that they can do to work cooperatively to overcome a bad link?

Overcoming the environment

The first motivating scenario that we will consider is one where our communi-

cations are hampered solely by the environment (i.e. no adversary is present).

The major reason for the inability of the transmitters to reach the receiver in this

scenario is the fact that the environment is multipath rich, resulting in significant

attenuation and degradation of communication versus distance. Consequently,

normal modulation methods may be unlikely to successfully decode at the re-

ceiver. A straight-forward approach to overcoming this problem might be to have

a group of transmitters each try individually to communicate and hope that at

least one of the individual links turns out to be a good one.
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Figure 4.11: Multipath exploitation in the urban canyon is illustrated. Signals
emanating from different transmitters travel along different paths to a common
receiver. Signal statistics differ as a function of arriving look-angle at the receiver.

However, such a strategy would not work if the multipath environment is suffi-

ciently complex. However, in radio teaming, the strategy is to create a team with

multiple transmitters at different locations, and properly coordinate how commu-

nications are transmitted by the team and decoded by the intended receiver so

that we increase our probability of reaching the desired receiver with our message.

To accomplish this, we need to use the multipath nature of the environment to

our advantage. Under the wide-sense stationary-uncorrelated scatterer (WSSUS)

model [77], we can assume independence of arriving signals not only in time and

phase, but also in angle. The key to our proposed idea is to utilize the angle-of-

arrival (AOA) as an added degree of freedom in the multi path-rich environment.

In this manner, rather than relying on one solid multipath link from the radio

team making it to the receiver, we leverage the fact that many multipath compo-

nents arrive at different AOAs. The key benefit here is that each individual link

does not need to be of high enough quality to support conventional communica-

tion. The cumulative effect of the radio team will simply distort the beam-pattern

at the receiver in a manner that deviates from the ambient background received
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Figure 4.12: Beam pattern distortion is illustrated. Jammer activity is distorted
by the team of radio transmitters. The extra energy arriving at angles where
jammer energy is low provides detectable distortion for the receiver.

beam-pattern. By appropriately coordinating the teams’ transmissions, they will

be able to convey the message by modulating the beam-pattern, alternating from

ambient background beam-pattern to a distorted beam-pattern response. Figures

4.11 and 4.12 illustrate the idea. Each transmitter (T1, T2, ..., TK) in Figure 4.11

has its own set of multipath links to the receiver, R, resulting in various different

angles of arrival. The cumulative effect of the disparate arrival angles results in

the distortion seen in Figure 4.12. Two beam patterns are shown. One is indica-

tive of the normal ambient background beam-pattern response, while the other

illustrates the added distortion based upon radio teaming activity.

We reiterate that the the goal of the radio teaming protocol is to merely

distort the beam-pattern at the receiver enough to be perceived at the receiver

as a distortion, and use this effect to convey the team’s message.

Overcoming interference

The second scenario that we consider is the case where there is an adversary

present in the multipath-rich environment. A key point to note here is that we
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must assume that the adversary is not in control of the multipath, and so it cannot

control its paths to the intended receiver. For our discussion, we shall assume

that the adversary is emitting a constant, background signal with the objective

of disrupting all communications to the receiver. Consequently, the multipath

components corresponding to the adversary’s signal will be constrained in terms

of AOAs because it is physically at a single location. We do not consider more

complex scenarios where the adversary conducts adaptive jamming games, and

note that this is a topic of ongoing investigation.

In the radio teaming problem with the constantly emitting jammer in the

background, the radio team geographic dispersal allows for some of its many mul-

tipath signals to arrive on angles other than the angles that the jammer’s signal

arrives at. As a result, the radio teaming transmitters will therefore “waterfill”

the jammed beam-pattern at the receiver. Just as before, radio teaming lever-

ages the multipath (usually considered a detrimental effect) to the advantage of

communications.

4.4.3 Protocol

We now present the radio teaming protocol in a detailed manner. Assume trans-

mitter T1 wants to send a message to receiver R using a conventional communica-

tion method (e.g. BPSK). Now suppose that the multipath effects of the channel

and/or the presence of a jammer prevent their communication - either the SNR

or the SINR is too low. At this juncture, an alternative communication solution

is needed.

The protocol that we now describe makes two main assumptions: (1) the

receiver has a directional antenna and is capable of taking measurements over

various look-angles, such an antenna maybe electronically steerable, (2) the trans-

mitter has a team within a communicable distance that is willing to help convey

its message.
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When T1 realizes that it cannot reliably communicate with R, for e.g. due

to the failure to receive an acknowledgement from R, it will ask for help from

its radio team. Coarse timing synchronization will be carried out amongst the

team, where timeslot boundaries will be coordinated. The team will then decide

upon the signaling specifics (modulation, frequency, symbol mapping, and symbol

timing). Finally, T1 will tell its team the intended message and the time at which

to start transmission.

Meanwhile, receiver R initiates the radio teaming reception. This might occur

for e.g. on a time out condition at the receiver which indicates that the receiver

needs to use teaming in order to receive communication. The receiver R will

utilize its directional antenna to monitor the beam-pattern response over N look-

angles. Using a baseline beam-pattern derived from non-radio teaming activity,

the receiver looks for beam-pattern deviation to perform its symbol recovery. Note

that the receiver may perform deviation detection using a variety of methods (e.g.

statistical analysis, clustering algorithms, etc.). Figure 4.12 illustrates a general

form of beam-pattern distortion.

It is important to note at this juncture that the radio teaming protocol is

focused upon sending reliable data from the radio team to the receiver, and not

vice-versa. In this work, we only analyze the protocol involved in getting data to

the receiver in situations where conventional communication is not reliable. We

assume that the receiver is more capable than any individual in the radio team,

and may in fact have the option of resolutions such as increasing its signal power.

We justify this assumption due to the increased capabilities already inherent to

the receiver (i.e. directional antenna capable of “rotational” operation).

Simple binary communications

Now consider a simple binary communications example. Radio T1 first synchro-

nizes with its team using Network Time Protocol (NTP) in order to achieve
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Algorithm 3: Radio Teaming for Simple Binary Communication using OOK.

/****** Transmitter Processing ******/
/*** Establish Timeslots ***/
NTPSynchronization( );
/*** Coordinate message and start time ***/
(message, start time, frequency) = MessageCoordination( );
/*** Tune to appropriate frequency ***/
TuneTransmitter(frequency);
/*** Transmit the message ***/
if current time is greater than start time then

for (each new symbol in message) do
if symbol is 1 then

Transmit;
end
if symbol is 0 then

Remain Idle;
end

end

end
/****** Receiver Processing ******/
/*** Compute baseline feature vector ***/
baseline = ComputeBaseline( );
/*** Decode the message ***/
for (each new symbol k) do

/*** Collect data for each of the N look-angles ***/
for (each collection angle n in N) do

metric[n] = power statistics;
end
/*** Perform symbol decoding ***/
symbol[k] = decision(metric, baseline);

end

time-slotting accuracy on the order of milliseconds [119, 120]. The team then de-

cides to use a particular carrier frequency. In our experiments we use 2402 MHz.

On-off keying (OOK) is subsequently selected as the modulation, with a symbol

period of 1 second. The symbol, 1, will be conveyed by all the team members

transmitting and the symbol, 0, will be conveyed by all of them remaining idle.

Finally, radio T1 informs the team to send the message, m=10110, and to start

transmitting the message at timeslot M . Figure 4.13 illustrates this process and

its anticipated effects at the receiver. We note that the signaling of the radio
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Figure 4.13: An overview of the radio teaming protocol is provided. The radio
team leverages the variability in the arriving angles to distort the beam pattern
at the receiver. By modulating this distortion, the team sends a message to the
receiver In the example above, K transmitters send an emergency message of
10110 to the receiver despite the presence of a strong jammer.

team should incorporate proper guard time so as to avoid inter-symbol interfer-

ence (ISI) at the receiver. To elaborate, the guard time should be sufficiently long

to account for synchronization accuracy and the delay spread of the channel.

Now it is up to the receiver to decode the symbols by monitoring the beam

pattern. The baseline beam pattern is defined by a feature vector that is created

using power statistics gathered over each of the N look-angles during non-radio

teaming activity. Let receiver R use the mean and standard deviation to define

its baseline feature vector.

y = (µ1, µ2, ..., µN , σ1, σ2, ..., σN)

For every revolution of the directional antenna, a new feature vector is calculated.

For the kth revolution,

xk = (µk
1, µ

k
2, ..., µ

k
N , σk

1 , σ
k
2 , ..., σ

k
N )

The Euclidian distance is then used to calculate the difference between the two
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feature vectors. It is given by

dk = ||xk − y||2

Finally, symbols are decoded at the receiver using

sk =







1, d
k >= τ

0, d
k < τ

where sk is the symbol for the kth revolution and τ is the symbol decision thresh-

old. Under this protocol, receiver R is able to reliably decode the message being

sent by T1 with the help of its radio team. The processing flow for this binary

schema is further described in Algorithm 3.

Advanced communications

While the previous binary example may suffer from a low-bit rate (1 bps), there

exist many immediate extensions to bolster both bit-rate and reliability. One ex-

ample would be an OFDM extension, where the radio team selects M frequencies

as OFDM carriers. Each carrier then modulates an OOK symbol on each carrier.

In this manner, the capacity of the radio team garners a 2M improvement over

the single carrier OOK case given the same symbol timing. It is important here

to select the carriers such that LO drifts associated with multiple transmitters do

not overlap in frequency.

If the goal of the radio team is reliability rather than capacity, the team may

take a spread spectrum approach. Each team member may utilize direct sequence

spread spectrum (DSSS) by using a common chip-sequence on each symbol. This

scenario further leverages the multipath of the environment. And, since the radio

teaming methodology aims to work at low SINR and SNR, the spreading of the

transmission power has a manageable effect on the performance of the system.
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While the above cases utilize frequency as an added degree of freedom, we

now discuss further ways to leverage time diversity in conjunction with the radio

teaming methodology. It is clear that the receiver needs to perform its beam-

pattern observations over a given interval, which in the previous cases defined

the symbol period. However, borrowing from pulse-width modulation (PWM)

techniques, we can successfully transmit data from the radio team by distorting

the environment for time-lengths that are multiples of the receiver rotational

period. In this manner differential and relative schemes can be utilized to achieve

more methods of reliable, covert signaling. In [83], similar extensions are made

to salvage a communications link in the presence of an adversary.

It is important to note at this point that advanced equipment such as Software

Defined Radios (SDR), particularly at the receiver, provide a myriad of options

in terms of exploiting the radio teaming methodology. Consider an SDR with a

phased antenna array acting as a receiver. In this scenario, switching through N

look angles can be performed digitally and therefore in a very fast and efficient

manner.

4.4.4 Simulations

Before discussing the details of the simulations, let us take a moment to justify the

radio-teaming methodology. We are investigating a scenario where members of a

radio team lie within a communicable distance of one another, and various radio

teaming transmitters may have a path— albeit a degraded or indirect one — to

the receiver. A natural question that one might ask is: if one of the radios in the

team has a path to the receiver, why can’t that particular radio just relay the ap-

propriate messages alone? The answer is because in this situation the SNR/SINR

is too low to support conventional modulation schemes. To understand this, let us

consider BPSK since it represents the conventional communication method with

the lowest data-rate and greatest reliability. Figure 4.14 illustrates bit-error rate
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Figure 4.14: Bit-error rate curve for conventional BPSK communication in
AWGN. Radio teaming is useful when conventional communications schemes
break down.

versus SNR for conventional BPSK communication in the presence of additive

white Gaussian noise (AWGN) [121]. In SNR/SINR regimes where we propose

to use radio teaming (below 0dB), conventional communication methods break

down. In fact, in signaling regions where we will demonstrate radio teaming, the

BPSK is basically equivalent to the flipping of a coin (i.e. the BER is about 0.5).

Another question one might have is: what advantage is there in having a

radio team as opposed to using a single radio transmitter on its own to disrupt

the ambient beam-pattern response at the receiver? As we will see, by using

multiple transmitters that concurrently transmit, there will be many independent

multipaths arriving at different angles at the receiver, and hence using more

transmitters will increase the probability of producing a beam-pattern distortion

at the receiver that is sufficiently different from the ambient background levels,

therefore increasing detectability. We now share some results from our simulations

to illustrate this principle.



119

First let us describe the simulation setup. In our simulations, we consider a

radio team consisting of K separate transmitters that are using the OOK version

of our radio teaming protocol. We assume that the multipath environment can

be modeled using a wide-sense stationary uniform scattering model [77], which

is an accepted model for multipath-rich environments, such as in urban canyons

or indoor environments. We choose OOK for various reasons — (1) it is easy to

implement (which supports our real-world experiments in Section 4.4.5), (2) it

provides a good mechanism to induce beam-pattern distortion, and (3) it is easy

to model, simulate, and analyze. Extensions to other forms of radio teaming are

straight-forward.

To add to the realism of the simulation, we conducted an experiment where

we gathered data to act as a trace in support of our simulations. Our experiment

involved a continuous-wave (CW) jammer. The data trace was collected in the

WINLAB ORBIT Grid [122], where the jammer was created using a standard

signal generator. The data collects were taken using a vector signal analyzer

(VSA) in conjunction with a MAXRAD 18 dBi directional panel antenna over

eight uniform receiver look-angles. The simulation incorporates H arriving signals

from the radio team, where the SINR is uniformly distributed between -20 and -10

dB as seen at the receiver. Various other levels of control are also parametrized

in the simulation. For instance, the angle-of-arrival (AOA) of an incoming signal

is uniformly distributed between the eight angles corresponding to the jammer

collects. The simulation also allows for variability in the phases of the arriving

signals, in addition to frequency offsets.

Now that we have described the simulation, let us introduce our first simula-

tion where we wish to investigate the effect of the size of a radio team. Specifically,

we analyzed several cases where we had H={1,4,8,12} arriving signals arrive at

the receiver at the previously stated SINRs. Figure 4.15 shows the beam-pattern

response as we progressively increased the number of radio teaming transmitters.
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(a) 1 arriving signal (b) 4 arriving signals
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(c) 8 arriving signals (d) 12 arriving signals

Figure 4.15: Beam-pattern magnitude distortion increases for a progressive num-
ber of arriving signals. Results from Matlab simulations using H ={1,4,8,12}
arriving signals are illustrated.

The plots clearly demonstrate the escalating beam-pattern distortion that results

from increasing the number of radio teaming transmitters. It is apparent from

the results that increasing the size of the radio team increases the probability of

having more multipath components reach the intended receiver, thus adding to

the beam-pattern distortion at the receiver. The more distortion that the radio

team can create at the receiver, the easier it is for the receiver to reliably recover

the transmitted message.

We now continue with our radio teaming feasibility investigation by taking
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a more in-depth look at scenarios involving an ample number of radio teaming

transmitters. As such, four distinct simulations with H=12 arriving signals were

conducted. The goal of these simulations was to investigate the necessity —

or lack thereof — of synchronization between arriving signals at the receiver

specifically with regard to phase, frequency, and angle (we assume a low enough

data rate and proper guard time relative to delay spreads such that time delays

do not play a significant role). Just as in the previous simulation, arriving SINRs

were uniformly distributed between -20 and -10 dB.

We now describe the setup mathematically. Let x(t) denote the baseband

representation of the transmitted waveform at a given radio teaming transmitter.

Given OOK modulation, we can represent this signal as,

x(t) = [

N−1
∑

n=0

Asnδ(t − nT )] ∗ [u(t) − u(t − T )],

where sn is one of the N binary symbols to be transmitted in the symbol period,

T , A is the amplitude of the waveform, δ is the dirac-delta function, u(t) is

the unit-step function, and ∗ represents convolution. At the receiver, any given

multipath arrival of the transmitted signal can be represented at baseband as,

y(t) = G(t)x(t − τ)ej2πf(t)tej2πθ(t) + n(t),

where G(t) is the gain of the channel, f(t) is the frequency offset (e.g. associated

with LO drifts or Doppler effects), θ(t) represents the phase shift, τ is the time

delay, and n(t) is additive channel noise. While each of these parameters are

time-varying, we assume stationarity and justify it by selecting a small enough

investigation interval. Since we are investigating scenarios where the SINR is

exceptionally large, we relax the arriving radio-teaming signals to have a common,

time-invariant gain, G, and also drop the noise component, n(t). Finally, given

a relatively low symbol period we can assume negligible time delays with respect
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Table 4.1: Simulation Cases
Parameter Case 1 Case 2 Case 3 Case 4

AOA Jammer Jammer Random Random

Phase/Freq Sync Async Sync Async

to the different signal arrivals, and represent each of the H arriving signals as:

yh(t) = Gx(t)ej2πfhtej2πθh.

Adding in our jammer, b(t), we therefore model the arriving signals at the

receiver as,

r(t) =
H

∑

h=1

yh(t) + b(t)

As stated, the simulations that we now discuss deal with four distinct cases

where H = 12 arriving signals are modeled in order to investigate the effect of

synchronization on the radio teaming protocol. The first simulation, Case 1, con-

strains all of the multipath arrivals of the radio teaming transmitters to coincide

with that of the jammer. In addition, the arriving radio team transmissions are

fully synchronized (i.e. frequency, and phase) at the receiver. This simulation

represents the best possible scenario with regard to constructive interference at

the receiver when all AOAs are constrained to be co-linear with the jammer.

The second simulation, Case 2, involves removing the synchronization of the

arriving signals at the receiver. This is the real-world scenario where all arriving

signals are co-linear. Here we have the frequency offsets independent and uni-

formly distributed between +/-500 Hz from the jammer’s center frequency. We

also distribute the phase offset uniformly between 0 and 2π. Note that the energy

received for Case 2 is upper-bounded by Case 1 (i.e. |r2(t)|| ≤ |r1(t)|). This is an

important observation since it tells us that we should expect more beam-pattern

distortion for Case 1 than Case 2.
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Table 4.2: Simulation Parameters
SINR AOA Phase Frequency
(dB) (Degrees) (Degrees) Offset (Hz)

-18.75 90 104 -316
-13.18 90 359.00 177
-12.73 225 0 -441
-16.77 315 216.00 287
-10.71 135 58.00 164
-11.97 45 262.00 -299
-15.29 315 292.00 -374
-11.72 90 64.00 268
-18.70 180 119.00 -292
-12.44 180 44.00 -173
-18.43 225 165.00 -426
-15.58 180 216.00 -231

The third simulation, Case 3, adds AOA diversity while re-instating the syn-

chronization of Case 1. For our model, we choose to uniformly distribute the

AOAs over the eight jammer angles (i.e. 0, 45, 90, ... 315 degrees). This is

the best case scenario where transmitters are all constructively interfering at the

receiver, but from different angles of arrival.

The final simulation, Case 4, is the most realistic, as it combines AOA diversity

with asynchronous signal arrivals. Table 4.1 provides a brief description of the

four distinct cases.

Detailed results for the four cases are found in Figure 4.16, Figure 4.17, and

Table 4.2. Figure 4.16 and Figure 4.17 depict the beam-pattern distortion graph-

ically by plotting beam-pattern magnitudes in both Polar and Cartesian systems,

in addition to illustrating the beam-pattern variance for the four simulated cases.

Figure 4.16 illustrates Cases 1-2, where the AOA is constrained, while Figure 4.17

depicts Cases 3-4, where the AOA is random. Table 4.2 provides the characteris-

tics of the arriving radio teaming signals related to Figure 4.16 and Figure 4.17.

The full table represents Case 4, while all of the other cases are represented by

constraining the appropriate column parameters.

We note that adding synchronization at the receiver only provides minimal
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Figure 4.16: Beam-pattern statistics are depicted for Matlab simulation cases
1 and 2. (a) Case 1: AOA constrained and synchronized. (b) Case 2: AOA
constrained, not synchronized.

signal gain (by way of constructive interference) and also limited distortion of

the beam-pattern (in fact it is linear in Case 1). As expected, randomizing the

AOAs provides much more distortion of the beam-pattern. What is exciting,

is the fact that the beam-pattern exhibits ample distortion with random AOAs

whether or not the arriving signals are synchronized. Because the random AOA,

asynchronous simulation (i.e. Case 4) most represents our problem scenario in the

real world, we conclude that our simulations show that the radio teaming protocol

provides a viable communication mechanism when conventional communication

is just not an option — even when in the presence of a strong jammer. We now
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Figure 4.17: Beam-pattern statistics are depicted for Matlab simulation cases 3
and 4. (a) Case 3: Random AOA, synchronized. (b) Case 4: Random AOA,
not synchronized. Case 4 is most representative of a real-world scenario; the
promising results indicate real-world feasibility of the radio teaming protocol

continue by presenting real-world experimental results.

4.4.5 Experimental Results

Since the first step in the radio teaming protocol is time synchronization, an ex-

periment was conducted in the WINLAB ORBIT Grid where 12 ORBIT nodes

were used to synchronize with each other using Network Time Protocol (NTP).

Each node was allowed to update its clock once every 64 seconds, and the ex-

periment was conducted over the course of an hour. At any given time during
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Table 4.3: NTP results. The average offset and its variance are calculated for
synchronization tests conducted with 12 radio teaming nodes. The calculations
are relative to Node 1.

Time Offset Mean Offset Variance
(minutes) (milliseconds) (milliseconds)

0 320.598 449.183
5 374.129 452.190
10 -5.806 0.494
15 -7.614 0.429
20 -.364 0.334
25 7.340 0.200
30 1.605 0.154
35 8.599 0.114
40 4.360 0.113
45 2.456 0.101
50 5.560 0.119
55 3.282 0.115
60 -0.135 0.197

the experiment, timing offsets existed between Node 1 and its eleven other team

members. Table 4.3 provides the measurements for these timing offsets relative

to Node 1. Listed in this table is the average offset (in milliseconds) at every five

minute interval, as well as the variance of the offsets. After only ten minutes (or

about ten updates), we see that Node 1’s eleven neighbors were on average 5.806

msec adrift, with a variance of only 494 microseconds.

Table 4.4 provides a more in-depth look at the synchronization level between

the radio teaming nodes at precisely thirty minutes into the experiment. Dis-

played is the timing offset in milliseconds between each of the twelve nodes used

in the experiment. Results corresponding to the row with Node 1’s data was used

to generate the data for the “30 minute” entry of Table 4.3. It is clear that this

level of synchronization is more than enough to establish timeslotting in order to

conduct further radio teaming experiments.

After demonstrating the feasibility of timeslotting our radio teaming trans-

mitters, we conducted another experiment in an indoor laboratory facility to
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Table 4.4: Synchronization offsets in milliseconds at 30 minutes into the 12 node
NTP experiment.

Node 1 2 3 4 5 6 7 8 9 10 11 12

1 0 -5.0 -9.8 5.8 14.1 -3.4 11.2 -2.3 21.5 2.8 -23.7 6.4
2 5.0 0 -4.8 10.7 19.0 1.6 16.2 2.7 26.5 7.7 -18.7 11.4
3 9.8 4.8 0 15.5 23.8 6.4 21.0 7.5 31.3 12.5 -13.9 16.2
4 -5.8 -10.7 -15.5 0 8.3 -9.2 5.5 -8.0 15.8 -3.0 -29.4 0.6
5 -14.1 -19.0 -23.8 -8.3 0 -17.5 -2.8 -16.3 7.5 -11.3 -37.7 -7.7
6 3.4 -1.6 -6.4 9.2 17.5 0 14.7 1.2 25.0 6.2 -20.3 9.8
7 -11.2 -16.2 -21.0 -5.5 2.8 -14.7 0 -13.5 10.3 -8.5 -34.9 -4.9
8 2.3 -2.7 -7.5 8.0 16.3 -1.2 13.5 0 23.8 5.0 -21.4 8.6
9 -21.5 -26.5 -31.3 -15.8 -7.5 -25.0 -10.3 -23.8 0 -18.8 -45.2 -15.2
10 -2.8 -7.7 -12.5 3.0 11.3 -6.2 8.5 -5.0 18.8 0 -26.4 3.6
11 23.7 18.7 13.9 29.4 37.7 20.3 34.9 21.4 45.2 26.4 0 30.1
12 -6.4 -11.4 -16.2 -0.6 7.7 -9.8 4.9 -8.6 15.2 -3.6 -30.1 0

illustrate the feasibility of the radio teaming idea in a multipath-rich yet quasi-

stationary environment (i.e. no mobile reflectors were present). A single CW

jammer (generated by an Agilent 83620B swept signal generator) was used in the

presence of two radio teaming transmitters for this experiment. A current SDR

architecture was used to construct our radio teaming transmitters. Specifically,

we used the GNU Radio/USRP SDR platform with two RFX-1800 daughter-

boards [6, 7]. The technical details of this SDR platform are described in detail

in Section 1.5. The radio team is depicted in Figure 4.18, where the separation

between the two transmitters is 1.5m, which is sufficiently far apart to provide

independent multipath from the two transmitters relative to the receiver.

The modulation employed by the radio team was OOK with a symbol pe-

riod of 8 seconds. Together, the team broadcasted a 20-bit message, m =

11101101000100110100, to the receiver, which again was an 18 dBi MAXRAD

directional panel antenna that rotated through 8 look angles separated by 45

degrees. The receiver gathered its beam-pattern statistics over eight uniform

look-angles, and arriving signals from the radio team resulted in SINRs of ap-

proximately -20 dB.



128

Figure 4.18: The radio team consisted of 2 OOK transmitters created using the
USRP/GNU Radio SDR platform.

Figure 4.19 illustrates the beam-pattern response at the receiver for two sym-

bols — one symbol corresponds to a 1 since it occurred during radio teaming

activity, while the other symbol corresponds to a 0 since it resulted from jammer

activity only. One immediately notices the “waterfilling” effect on the received

power per angle statistics in addition to added variability to the variance of the

statistics that occurs during radio teaming activity. It is also interesting to ob-

serve the similarity between the beam-pattern distortions of these experimental

results and Case 4 of the simulations from Figure 4.17 (b). One may wonder why

only 2 radio teaming transmitters appears to mimic the simulated case of 12 arriv-

ing signals, but the reader should keep in mind that 2 radio teaming transmitters

does not equate to 2 arriving signals. In fact, given the multipath-rich experi-

mental environment, the 2 transmitters were responsible for a larger number of

multipath arrivals as seen by the receiver (our own experience suggests that there

are 4 to 5 significant multipaths in this room for any transmission). It is quite

interesting to note the behavior of the beam-pattern magnitude at 270 degrees in

Figure 4.19 — the radio team appears to actually decrease the energy received

when they are active. We attribute this phenomenon most likely to transient

jammer behavior or channel variation, but it may also be a result of destructive
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Figure 4.19: Experimental results are shown for a single symbol. (a) Polar beam-
pattern statistics for a single symbol are plotted. (b) X-Y beam-pattern statistics
for a single symbol are illustrated.

interference with the jammer in this symbol period at this specific angle.

Given ample beam-pattern distortion, is was then up to the receiver to decode

the radio teaming message. Figure 4.20 depicts the symbol decoding process as

the feature vector distances are plotted versus symbol number. The decision

threshold, τ , was computed as a function of the mean and variance statistics

during non-radio teaming activity. Despite the low signaling levels, the complete

message, m = 11101101000100110100, was successfully decoded by the receiver.

It is worthwhile to note that the effective bit-rate of this experiment was 0.125

bps at a low SINR of roughly −20dB. Although this might seem to be a very low

data rate, we note that this is a limitation of the experimental setup that we

employed, which was intended to support the feasibility of radio teaming. A

significant improvement in communication rates is possible by employing more

precise equipment, such as a phased array at the receiver, which would have vastly

improved the effective look-angle switch-rate. Another avenue for improving the

data rate would be to employ better timeslotting mechanisms to allow for tighter



130

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Symbol Number

D
is

ta
nc

e

Distance
Threshold

Figure 4.20: Experimental results are shown for all symbols. Symbol recov-
ery is shown for all symbols, resulting in a perfectly recovered message of
m = 11101101000100110100 .

alignment of transmitters.

4.5 Mitigation Summary

In this Chapter, we have explored various popular mitigation strategies and have

proposed methodology to leverage machine learning techniques in adaptively se-

lecting a path forward. We have also introduced a new, practical form of coop-

erative communications that is able to operate in harsh communication environ-

ments, such as an urban canyon or a scenario involving a jammer. Although most

cooperative communications research has mainly focused on traditional MIMO

and beamforming methodologies, where units share a high level of synchroniza-

tion in time, frequency, and space, our radio teaming approach relaxes these

stringent synchronization constraints. In this manner, radio teaming becomes

a viable option for heterogeneous commodity devices in need of an alternative
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communication scheme— in fact, radio teaming can work as an overlay for ex-

isting wireless networks, relying upon simple network-level time synchronization

between transmitters that is possible through services, such as NTP. We have

outlined the radio teaming protocol, providing a baseline variation that provides

the equivalent of an on-off-keying (OOK) cooperative physical layer, and have

outlined more general extensions that can allow for faster data rates (such as

by employing OFDM). We have supported our radio teaming method through

simulations, where we have demonstrated each of the building blocks of the ra-

dio teaming protocol in order to illustrate the factors related to the feasibility

of radio teaming. We then validated radio teaming using real measurements in

an indoor multipath environment involving an RF jammer and a receiver that

employed a rotational directional antenna. Our experimental results showed that

radio teaming can provide a reliable data link in a multipath-rich environment

even in the presence of a strong adversary.
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Chapter 5

Conclusions

5.1 Thesis Summary

It is clear that advancements in the realm of software defined radio promise near-

term, large-scale usage of cognitive radio devices, where Dynamic Spectrum Ac-

cess and cross-protocol wireless communication will be the norm. Since SDR

platforms provide full access of the physical layer to its users and developers, it

is essential to understand the benefits and drawbacks associated with PHY layer

access in order to enhance operation in future wireless communication networks.

In this thesis, we have investigated the usage of PHY layer access to: (1) enhance

situational awareness, (2) act as an adversary, and (3) mitigate poor environments

and adversarial conditions.

In Chapter 2, we began by investigating the use of physical layer information to

discover services and identify devices. Specific techniques were developed to detect

Bluetooth and WiFi services and devices by leveraging a PHY/MAC classification

approach. Additionally, it was shown that differentiating between devices was

plausible by way of channel estimate based feature vector correlations. We then

took advantage of physical layer features from existing broadcast signals, such as

cellular and broadcast television, to obtain coarse device mobility and location.

In Chapter 3, we started with a survey of cogent, protocol-specific attacks that

relied upon PHY layer exploitation and were implemented with current SDR plat-

forms. Attacks incorporated well known protocols from Bluetooth to GSM, to
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lesser known yet equally pervasive tire pressure monitoring systems. Acknowl-

edging that most 3G and 4G wireless standards and protocols incorporate some

form of multi-input multi-output (MIMO) technology, we performed a thorough

analysis on the physical layer weaknesses associated with two of the most popular

MIMO techniques — singular value decomposition (SVD) based MIMO, and the

Alamouti space-time block code. Our attacks focused on the efficacy of the chan-

nel estimates obtained during MIMO operation, as proper operation of MIMO

systems demand accurate and timely knowledge of the wireless channel.

In Chapter 4, we provided an overview of traditional mitigation strategies such

as transmitting with more power, changing modulation scheme, and changing

carrier frequency. We then addressed the specific channel estimate vulnerabilities

from Chapter 3 by proposing a general channel estimate authentication scheme.

By embedding messages into a physical feature vector of the channel sounding

pilot, we showed it was possible to authenticate channel state estimates and trans-

mitters. Further, our techniques can be applied to any environment, operate over

channel coherence times, and do not impinge upon protocol throughput. Finally,

we introduced a radio teaming mitigation strategy to deal with richly scattering

environments coupled with the presence of a strong jammer. By leveraging the

multipath in favor of the radio team, messages can be conveyed to the receiver

by modulating beam pattern distortion.

In each Chapter of this thesis, theoretical results were accompanied by sim-

ulations and real-world experimentation. We implemented our protocols and

techniques using the USRP/GNU Radio SDR platform, thus illustrating imple-

mentation feasibility and the applicability of the proposed techniques.
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5.2 Future Work

Leveraging the physical layer to obtain situational awareness, attack techniques,

and mitigation strategies is a continually changing area of research. SDR plat-

forms will continue to expand in capability, and new protocols will emerge. Fur-

ther, future wireless networks will allow dynamically changing protocols to be

used by CRs in order to optimize secondary usage of primary bands.

Immediate extensions exist to the device identification ideas presented in Sec-

tion 2.3.2. Continuing the channel estimate based device differentiation, more

experiments can be conducted using WiFi clients rather than just Access Points.

This problem is inherently different and more difficult because these devices do

not transmit specific bursts in periodic fashions and often may be mobile.

To extend the PLATEAU work in Section 2.4.1, investigations are warranted

to incorporate channel model driven statistical clustering analysis to determine

device location. Multipath delay profiles of general indoor and outdoor channels

can be used to further leverage stationary broadcast services and perhaps even

non-stationary transmitters. Statistically, the multipath delay profile of inside to

inside, inside to outside/outside to inside, and outside to outside channels differ,

and therefore should be detectable.

Continuing with situational awareness extensions, we consider that a major

focus of this thesis is to obtain accurate situational awareness given the physical

constraint of a partial bandwidth observation (Sections 2.3.1-2.3.2). Maintaining

this constraint, partially observable modulation recognition algorithms should be

investigated. A CR is never guaranteed to have a complete spectral snapshot of

an existing device, and therefore it is advantageous to determine modulation even

if missing some of the signal. Most modulation recognition algorithms focus on

partial observability in time (and even space), but not frequency.
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Relevant extensions of the radio teaming work from Section 4.4 include inves-

tigations and experimentation using a single radio team member, where rotation

of the effective transmissions may effectively alter the beam-pattern distortion

at the receiver. This can be accomplished by way of physically rotating the an-

tennas, or via beamforming with a phased antenna array. Effective modulation

may be done via the mechanisms discussed in Section 4.4.3 or by the using the

rotational speed of the distortion to send the message.

Further work is also needed to address the vulnerabilities of tire pressure

monitoring systems that were described in Chapter 3.2.6. A notable PHY layer

based authentication approach is to incorporate expected Doppler profiles from

the sensor transmissions to assist input validation.

The research ideas presented in this Section are by no means meant to provide

a definitive summary of future physical layer exploitation research. Rather, each

idea is presented in hopes of providing new avenues for exploration.
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