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ABSTRACT OF THE THESIS

A Study of Large Deflection of Beams and Plates

by Vinesh V. Nishawala

Thesis Director: Dr. Haim Baruh

For a thin plate or beam, if the deformation is on the order of the thickness and

remain elastic, linear theory may not produce accurate results as it does not predict the

in plane movement of the member. Therefore, a geometrically nonlinear, large deforma-

tion theory is required to account for the inconsistencies. This thesis discusses nonlinear

bending and vibrations of simply-supported beams and plates. Theoretical results are

compared with other well-known solutions. The effects of geometric nonlinearities are

discussed. The equation of motion for plates with ‘stress-free’ and ‘immovable’ edges

are derived using modal analysis in conjunction with the expansion theorem. Theo-

retical results are compared with a finite element simulation for plates. ‘Immovable’

edges are studied for beams. For large bending of beams with ‘stress-free’ edges, a the-

ory by Conway is presented. A brief introduction to Duffing’s equation and Gaussian

curvature is presented and their relevance to nonlinear deformations are discussed.
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Nomenclature

δ̄ Dirac delta function

ρ̄ Density - mass per unit volume

κij Curvature

Bij A generic basis

∇2 Biharmonic operator

ν Poission’s ratio

Ω Excitation frequency

ωij Natural frequency

φ Airy’s stress function

ρ Plate: mass per unit area (= ρ̄h). Beam: mass per unit length (= ρ̄bh)

σij Stress

θ Slope of deflection

A Cross sectional area

a Plate length

b Beam or plate width

D Flexural rigidity

E Young’s modulus

iii



Eij Strain

h Beam or plate thickness

I Area moment of inertia

k Bending stiffness for a beam (= EI)

L Length

M(x, y, t) Moment

N(x, y, t) Membrane force

Q(x, y, t) Shear force

q(x, y, t) Applied transverse load

u, v, w Displacements of the midplane in the x, y, and z directions, respectivley.

ux, uy, uz Displacements in the x, y, and z directions, respectivley.

W (x, y, t) A modal function

wmn(t) Coefficient of the modal function
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Chapter 1

Introduction

1.1 Motivation

When beams and plates are deflected beyond a certain magnitude, the linear theory

loses its validity and produces incorrect results. Linear theory can predict that the

deflection of the member may exceed the length of the member, which is unrealistic.

In order for an accurate large deflection solution, one needs to include the coupling

between axial and transverse motion, which is geometric nonlinearity. If the edges are

allowed to move freely within the plane of the undeformed member, this boundary

condition is called ‘stress-free’. If the edges are restricted from moving, the edges

require an equivalent axial load to prevent motion, which is called ‘immovable’ boundary

conditions.

Nonlinear deflection theories also couple axial loads and transverse deflections. This

becomes useful for buckling problems or axially loaded structures. An applied axial load

can act as if it were stiffening or softening the member. This characteristic becomes

important when the structure is rotated about an axis, like a helicopter blade or a

compact disc, where the member is in tension, causing a stiffening of the member.

The modal solution used to solve the linear theory will be used to solve the nonlinear

theory. Since we consider a simply-supported beam and plate, the solution is either a

sine or double sine infinite sum, which simplifies the calculation tremendously. While in

this study we only consider a simply-supported members it may be possible to extend

this method of solution to other boundary conditions.
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1.2 Literature Review

A short history of plate theory and nonlinear plate theory will be given below. Two

highly cited literature reviews on nonlinear vibrations are by Chia [11] and Sathyamoor-

thy [39]. After Kirchhoff [25] established the classical linear plate theory, von Karman

[48] developed his nonlinear plate theory. One of the first to study nonlinear plate dy-

namics were Chu and Herrmann [12], who began with vibrations of simply supported

rectangular plates. The Reissner-Mindlin plate theory [31] took into account shear

strains which is useful for thicker or composite plates. The Reissner-Mindlin plate

theory is considered to be a ‘first-order’ shear theory.

Leung and Mao [27] compared the solution between movable and immovable edges of

simply supported rectangular plates using Galerkin’s Method. El Kadiri and Benamar

[17] used the case of Chu and Herrmann [12] and created a simplified analytical model.

Berger [8] simplified nonlinear plate theory by ignoring terms in the strain energy.

Prathap and Pandalai [35] incorporated rotary inertia and the correction for shear in

their study of nonlinear plate theory. Yosibash and Kirby [52] compared three different

versions of the geometric nonlinear plate theory. One version was neglecting the rotatory

inertia term. The second simplified model ignored rotatory inertia as well as the time

dependent terms of the plate in-plane coordinates. The reasoning to ignore the terms is

that they are multiplied by the thickness squared, which is considered a small quantity.

Other terms in the equation were not multiplied by the thickness at all. The last version

included all of those terms. Amabili [3] considered several different boundary conditions

and compared theoretical and experimental results.

Way [50] used Ritz energy method, Leung and Mao [27] used Galerkin’s Method,

Ribeiro [38] used finite element models and Wei-Zang and Kai-Yuan [51] utilized pertur-

bation theory as an approximate method to solve the system. The double Fourier series

was used by Levy [28] to investigate a simply supported plate under various conditions.

Iyengar and Naqvi [24] used a combination of trigonometric and hyperbolic functions
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to approximate the defelction of clamped and simply-supported plates under immov-

able and stress-free edge conditions. Leissa [26] studied multiple boundary conditions

of plates of different shapes for linear plate theory. Timoshenko’s [45] book Theory of

Plates and Shells is highly cited in the field and should be considered the first reference

to consult for problems in plate theory.

1.3 Nonlinearities

Nonlinearities exist in an equation of motion when the products of variables, or their

derivatives, exist. They can also exist when there are discontinuities or jumps in the

system. There are several sources of nonlinear behavior.

One source is geometric nonlinearity. This characteristic is important to systems

with large deformations, or systems that may fail due to buckling. In beams and

plates, the nonlinearity is from the nonlinear strain equations, where the transverse

displacement is coupled to the axial strains. As a result, mid-plane stretching of the

beam or plate may occur. The von Kármán, or large deformation, theory of plates uses

geometric nonlinearity in its derivation.

Nonlinear moment-curvature relationship become significant when we consider large

deformations without stretching. This analysis does not consider the slope of the de-

flected middle surface to be small compared to unity. This analysis is usually done in

terms of the slope of the beam.

Another cause of nonlinearity is material properties. These nonlinearities would

render Hooke’s law invalid because Hooke’s law is a linear relationship between stress

and strain. Hooke’s law would have to be altered in order to account for the nonlinear

relationship. In the elastic region of materials, we can define the slope of the linear

region as the Young’s modulus. However, this is just an approximation we use in or-

der to simplify the system. Also, the material is considered isotropic, with the same

material properties in all directions, but this too is an approximation of the material
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properties. It is important to note that no material has a perfectly linear elastic mod-

ulus or is perfectly isotropic, these are just approximations that are satisfactory for

most situations. Models of materials with nonlinear elastic properties, like rubber, or

anisotropic materials, like composites, end up in being nonlinear in the equations of

motion. Material nonlinearities are not considered in this thesis.

Nonlinear systems are also caused by nonlinear boundary conditions. Examples to

such a phenomenon include the use of a nonlinear spring or damper on the edge of

a plate, or the case of a nonlinear spring in a mass-spring-damper system. Duffing’s

equation is a special case of a cubic nonlinear spring in a mass-spring-damper system.

The above list of nonlinearities is far from complete. There are many sources of

nonlinear behavior and most linear behavior is an approximation. For certain cases,

linearization has negligible effects. It is important to understand the system in terms

of the material model, loading and expected response, in order to determine where a

linear approximation is adequate and where the use of a nonlinear theory is needed.

1.4 Kirchhoff’s Hypothesis

Kirchhoff, one of the developers of linear thin plate theory, used assumptions to develop

linear plate theory that are known as Kirchhoff’s Hypothesis. These assumptions pro-

vide great insight into Kirchhoff’s plate theory. The first assumption is that the plate is

made of material that is elastic, homogenous, and isotropic. The next assumption deals

with the geometry of the plate. The plate is initially flat, and that the smallest lateral

dimension of the plate is at least ten times larger than its thickness. The following

assumptions deal with the geometry of plate deformation. The quotes below are taken

from Szilard [43]:

‘The deformations are such that straight lines, initially normal to the middle surface,

remain straight lines and normal to the middle surface’. This means that for an initially

flat plate, if we were to draw a line normal to the middle surface, through the thickness

of the plate, and then deform the plate, and the line would remain straight and normal
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to the middle surface. This statement is equivalent in saying that there are no out-of-

plane shear strains. Also the assumption that the strains in the middle surface produced

by in-plane forces can usually be neglected in comparison with strains due to bending,

would cause the undeformed line and the deformed line to have the same length. As a

result of these assumptions, knowing the deformation of the middle surface of the plate

is sufficient to find the deflection of every point on the plate. For example in figure

(1.1),

( , , )  

 

 
( , , )  

 

Figure 1.1: Deformation of Member

ux(x, y, z) = u(x, y)− z sin(θx) (1.1)

where θx is the angle between the plane of the undeformed midsurface and the tangent

of deformed midsurface parallel to the x-axis at the point in question.

‘The slopes of the deflected middle surface are small compared to unity.’ This as-

sumption allows the use of the small angle approximation in our studies. As a result,

the sine of an angle can be approximated by the angle itself, sin(θx) ≈ θx ≈ ∂w/∂x.

This allows our displacement equation to become

ux(x, y, z) = u(x, y)− z
∂w

∂x
(1.2)

‘The stresses normal to the middle surface are of a negligible order of magnitude’

allows the simplification of Hooke’s law such that the terms with σz can be ignored.

The next two assumptions can be applied to small-deflection theory only.
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• The deflections are small compared to the plate thickness. A maximum deflection

from one tenth to one fifth of the thickness is considered as the limit for small-

deflection theory.

• The deflection of the plate is produced by the displacement of points of the middle

surface normal to its initial plate.

For large deflection theory, we begin by considering the bending and stretching

of the plate. Stretching means that the in-plane strains are no longer zero and the

deformed surface is a ‘non-developable’ surface, meaning that it no longer has zero

Gaussian curvature. Also, the deflections are on the order of the plate thickness.

1.5 Outline

In all the cases studied, we consider a simply-supported beam or plate with either

‘stress-free’ or ‘immovable edges’. Chapter 2 describes geometrically nonlinear theory

of beams. The chapter begins with a derivation of the equation of motion followed by a

solution procedure for linear theory of beams and then the nonlinear theory of beams.

For static ‘stress-free’ edges, the theory by Conway is presented. Chapter 3 studies

the geometrically nonlinear theory of plates. The chapter begins with the derivation

and then presents the solution for linear theory of plates. That solution is followed by

the static and dynamic solution to nonlinear theory of plates for both ‘stress-free’ and

‘immovable edges’. A comparison between the theoretical results and a finite element

simulation is presented. Conclusions and future work are presented in Chapter 4.
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Chapter 2

Large Deflection of Beams

2.1 Introduction

In the traditional study of transverse motion of beams, coupling between the axial

(membrane) forces and the transverse motion, known as geometric nonlinearity, is ig-

nored. This assumption is widely used to help predict small deflection of beams. How-

ever, when the membrane force becomes significant, like in the case of buckling and

large deformations, the linear theories become inaccurate and the need for a new model

arises. The beam theory below takes into account the effect of the axial motion, as well

as the membrane forces. As a result of the new ‘degree of freedom’ of the model, we

need to define new boundary conditions that define the axial motion of the beam edges.

This model, Euler-Bernoulli beam theory, does not consider the effect of rotatory iner-

tia and the correction for transverse shear. The nonlinear beam theory below is valid

for deflections on the order of magnitude of the beam’s thickness. This particular large

deflection model is used because it parallels to large deflection of plates as that it also

requires axial boundary conditions.

Below, we will consider a pinned-pinned beam and compare the static and dynamic

responses between the linear and nonlinear theories. For beams, it will be shown that

geometric nonlinearity can only be applied to beams with immovable edges. When

applied to stress-free edges, as it will be shown here, one loses the nonlinearity. Thus,

a theory by Conway [13] will be presented to provide some insight into the large static

bending of beams with stress-free edge conditions. Conway does not translate well to

plates as it does not consider the stretch of the beam as well as the kinetics of the beam

and solely concentrates on the geometry of deformation. Stretching in nonlinear plate
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theory plays a significant role. We present Conway’s formulation here as a reference

and an acknowledgement that other methods of solution exist. Sathyamoorthy [41]

provides a literature review on the topic.

In modal analysis, the deflection of a beam is approximated by the sum of the beam

modes. Each mode has a specific shape and corresponding frequency. When a beam

is loaded, each mode is excited. Modal amplitudes are the influences of the particular

modes on the overall deflection of the beam. It is important to include the influence of

the modes with frequencies that are adjacent to the excitation frequency as they may

have the significant influence on deflections. Usually, the lower frequencies have higher

amplitudes. As a result of the mode separation in a beam, the sum of the first three

modes usually is a sufficient approximation to the deflection of the beam.

2.2 Governing Equations

In order to better understand beams and their motion, it is wise to begin with the

derivation of the equation of motion. The derivation is given below.

2.2.1 Elasticity

Beginning with Green’s Strain, ux, uy and uz are displacements of the member at any

point in the x, y, and z direction, respectively. u, v, and w are displacements of the

middle surface in the x, y, and z direction, respectively, as shown in figure (2.2).

Exx =
∂ux
∂x

+
1

2

[

(

∂ux
∂x

)2

+

(

∂uy
∂x

)2

+

(

∂uz
∂x

)2
]

(2.1)

Using the ‘small strain, moderate rotation’ approximation results in the geometri-

cally nonlinear strain. Small strain, moderate rotation implies that

(

∂w

∂x

)2

∼ O
(

∂u

∂x

)

(2.2)

which allows us to retain the nonlinear term of the strain. Let u,w be middle plane

deflections of the beam. Hence, from Kirchhoff’s Hypothesis we can relate the middle

plane deflections to ux, uz, the deflections of any point on the beam, see figure (2.1).
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z

x

w(x,t)

L

 

Figure 2.1: Undeformed, and Deformed Beam

ux = u− z
∂w

∂x
uy = v − z

∂w

∂y
uz = w (2.3)

ǫxx(x, t) =
∂ux
∂x

+
1

2

(∂uz
∂x

)2
(2.4)

ǫxx(x, t) =
∂u

∂x
+

1

2

(∂w

∂x

)2
− zκ = ǫ− zκ (2.5)

κ =
∂θ

∂x
≈ ∂2w

∂x2
(2.6)

where κ is the curvature and θ is the slope of the deformed beam. From Hooke’s law we

know σ = Eǫxx. Note that we assume shear and normal stresses in the y or z direction

are considered to be zero in magnitude. Next, we will find the resultant normal force

and resultant moment of the beam below

N(x, t) =

∫

A

σdA =

∫

A

EǫxxdA (2.7)

= Eǫ

∫

A

dA− Eκ

∫

A

zdA (2.8)

Since the x-axis passes through the centroid of the cross-section of the beam,

∫

A
zdA = 0. The resultant axial (membrane) force is

N(x, t) = EAǫ(x, t) = EA
(∂u

∂x
+

1

2

(∂w

∂x

)2)

(2.9)
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Figure 2.2: In Plane Displacement of Beam

  

  

Figure 2.3: Axial Stress to Resultant Membrane Force

Calculating the bending moment

M(x, t) =

∫

A

σ(x, z, t)zdA = Eǫ(x, t)

∫

A

zdA− Eκ

∫

A

z2dA

= −EIκ(x, t)

(2.10)

Where I =
∫

A
z2dA.

2.2.2 Derivation of Equation of Motion

In deriving the equation of motion for transverse motion of a beam there are several

different levels of complexity we can add to the problem. Examples include the effects

of rotatory inertia, shear distortion, body couples, and the effect of axial deformation

and axial forces. Including all of these factors can result in a complex beam theory



11

which would be cumbersome to solve and distract us from our true goal, the effect

of axial deformation and force on transverse motion. Therefore, we will ignore these

extra terms and concentrate only on the geometric nonlinearities. In plane stresses and

displacements are critical in large deformation theory as it accounts for the stretching

of the beam, an additional source of beam stiffness or buckling.

q(x, t )dx

Q (x, t )

N (x, t )

M (x, t )

Q +
∂Q

∂x
dx

N +
∂N

∂x
dx

M +
∂M

∂x
dx
=

p(x, t ) dx

 

 

Figure 2.4: Beam Element

We begin with a deformed beam element of length dx, see figure (2.4). q(x, t) is the

applied transverse force, p(x, t) is the applied axial force, Q(x, t) is the internal shear

force, N(x, t) is the internal membrane force, M(x, t) is the internal moment, ρ is the

mass of the beam element and w(x, t) is the vertical deflection of the beam. Summing

forces in the vertical direction:

q(x, t)dx+ p(x, t)dx
∂w

∂x
+
(

Q(x, t) +
∂Q

∂x
dx
)

−Q(x, t) = ρ(x)dx
∂2w

∂t2
(2.11)

q(x, t) + p(x, t)
∂w

∂x
+

∂Q

∂x
= ρ(x)

∂2w

∂t2
(2.12)

We need an equation for the shear force, Q(x, t), which will come from the sum of

moments about the center of the beam element.

−
(

M(x, t) +
∂M

∂x
dx
)

+M(x, t) +
(

Q(x, t) +
∂Q

∂x
dx
)dx

2
+Q(x, t)

dx

2

−
(

N(x, t) +
∂N

∂x
dx
)

(

∂w

∂x
+

∂2w

∂x2
dx

)

dx

2
−N(x, t)

(∂w

∂x

dx

2

)

= 0

(2.13)

Right side of above equation is equal to zero as we are neglecting rotatory inertia.
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Ignoring terms of order (dx)2 and simplifying we get

Q(x, t) =
∂M

∂x
+N

∂w

∂x
(2.14)

Inserting equation (2.14) into equation (2.12) results in

q(x, t) + p(x, t)
∂w

∂x
+

∂2M(x, t)

∂x2
+

∂

∂x
N(x, t)

∂w

∂x
= ρ(x)

∂2w

∂t2
(2.15)

Noting that for this theory we can use the linear moment curvature relationship, equa-

tion (2.10).

ρ(x)
∂2w

∂t2
+

∂2

∂x2
k(x)

∂2w

∂x2
−N(x, t)

∂2w

∂x2

−
(∂N

∂x
+ p(x, t)

)∂w

∂x
= q(x, t)

(2.16)

We define k(x) = EI(x) as the bending stiffness of the beam. For a beam under

the same load, a larger k value would result in smaller deflections. From the equation

of motion in the longitudinal direction

ρ(x)
∂2u

∂t2
− ∂N

∂x
= p(x, t) (2.17)

We will assume that the acceleration in the longitudinal direction is insignificant com-

pared to the acceleration in the transverse direction. We do this by setting ∂2u
∂t2

≈ 0,

which results in

∂N

∂x
≈ −p(x, t) (2.18)

Substituting equation (2.18) into equation (2.16) we get

ρ(x)
∂2w

∂t2
+

∂2

∂x2
k(x)

∂2w

∂x2
−N(x, t)

∂2w

∂x2
= q(x, t) (2.19)

The above equation is known as geometrically nonlinear beam theory even though

it is linear. It is considered a nonlinear equation when N(x, t) is a function of w, which

is when the beam in under large deflections and we cannot ignore axial characteristics.

This equation is useful, along with equation (2.16), when the axial force is known as in

the case of a rotating beam. However, in the case of large deformations, the axial force
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becomes a function of transverse displacement and another equation is needed to solve

the system. This particular case will be discussed later.

The motion of a beam is defined as the sum of its modes. The modes of a particular

structure are the fundamental movements that structure can make from its shape and

boundary conditions. The shape of a pinned-pinned beam’s first three modes are given

in figure (2.5). Usually the first three modes would give sufficient information about

the system. For a beam that is undergoing periodic excitation it is wise to include the

modes that are associated with frequencies near the excitation frequencies.
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Figure 2.5: First Three Modes of a Simply-Supported Beam

2.2.3 Stretching

In large deflection beam theory, the beam begins to stretch. The variable s is defined

as the length of the beam when deflected. When deflected, we can find the length of a

beam element, ds, by assuming it forms a right triangle. Total length of the beam, s,

is the integral of local stretch expression over the length of the beam.
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Figure 2.6: Change in Beam Length

s =

∫ L

0

√

(dx)2 + (dw)2 =

∫ L

0

√

1 +

(

dw

dx

)2

dx

≈
∫ L

0
1 +

1

2

(

dw

dx

)2

dx = L+
1

2

∫ L

0

(

dw

dx

)2

dx

(2.20)

The change in axial length is s− L and its ratio to the original length, L, is

s− L

L
=

∆L

L
=

1

2L

∫ L

0

(

dw

dx

)2

dx (2.21)

We will see this term later on.

2.2.4 Expansion Theorem

The expansion theorem is an important tool in solving for beam deflections. The

theorem allows us to expand any function over an orthogonal basis, an infinite sum,

so that we can obtain the deformation. In order to show that the basis is orthogonal

it must satisfy the condition below. Note that the symbol B will be used to signify a

generic basis.

∫ L

0
Bm(x)Bn(x) dx = Cδ̄(m,n) (2.22)

Where δ̄ is the Dirac-delta function and C is an arbitrary constant. The basis is

determined by boundary conditions of the beam. The basis for a particular set of

boundary conditions is referred to as the modal function. For a beam simply supported

on both sides, the modal function is
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Wm(x) = Cm sin(
mπ

L
x) (2.23)

In order to assign a value of Cm we normalize the modal function using the definition

of inner product. The inner product is defined for two functions that are within angle

brackets, 〈 and 〉.

〈Wm(x),Wm(x)〉ρ =

∫ L

0
ρWm(x)Wm(x) dx

=

∫ L

0
ρC2

m sin2(
mπ

L
x) dx = 1

(2.24)

Solving for the coefficient

Cm =

√

2

ρL
(2.25)

Our modal function becomes

Wm(x) =

√

2

ρL
sin(

mπ

L
x) (2.26)

Our expansion theorem is

g(x, t) =
∞
∑

m=1

gm(t)Wm(x) (2.27)

gm(t) =
〈g(x, t),Wm(x)〉
〈Wm(x),Wm(x)〉ρ

(2.28)

Since the modal functions are normalized, the denominator is equal to one. If we

did not normalize our modal function the integral below would have a constant in front

of it. It follows that since 〈Wm,Wm〉ρ = 1 we have

gm(t) =

∫ L

0
g(x, t)Wm(x) dx (2.29)

In the sections below we will take Cm = 1, as a result the corresponding expansion

theorem becomes

gm(t) =
2

ρL

∫ L

0
g(x, t)Wm(x) dx (2.30)
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We shall use this form of expansion theorem because the maximum value of the

modal function is one, which makes our calculations easier later on. Also note that the

coefficient, Cm, is not a function of m which may not always be the case.

2.3 Linear Beam Theory

Linear beam theory is a simplification of the geometrically nonlinear theory. This theory

is useful if the membrane force of the beam, N , is constant or it can be neglected, which

is valid for beams for small deformations. Also, this theory does take into account the

coupling between an axial load with a transverse displacement. As a result, linear beam

theory does not predict buckling. This theory is also known as Euler-Bernoulli Beam

Theory. As a result, we set the axial force equal to zero, N = 0, in equation (2.19). To

simplify, we assume that the mass per unit length and the stiffness of the beam remains

constant along the length of the beam.

ρ
∂2w

∂t2
+ k

∂4w

∂x4
= q(x, t) (2.31)

This model is a valid approximation for thin beams under small transverse defor-

mations. As a good rule-of-thumb, ‘small’ is defined as deflections that are at least

ten times smaller than beam thickness. This theory is useful when axial forces are

insignificant to the problem.

2.3.1 Statics

In the study of static problems, the system is independent of time, the ‘steady state’ of

the system. Therefore derivatives with respect to time are equal to zero. Furthermore,

the defection and the loading function of the beam are no longer functions of time. Now

that deflection is only a function of x, the partial derivative becomes a total derivative.

Our equation of motion, the Euler-Bernoulli beam equation, becomes

k
d4w(x)

dx4
= q(x) (2.32)
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While it is possible to solve the above equation directly by integration, direct inte-

gration does not translate to dynamics, or to the nonlinear theory of beams and plates.

For that reason, we will solve the equation by expanding on an orthogonal basis, which

we will call Wm(x), and match coefficients of said basis. The orthogonal basis is also

known as the modal function of the beam. The orthogonal basis on which to expand

is defined by the boundary conditions of the beam. The modes of the beam are the

natural shapes that a beam is able to produce under excitation [10].

A pinned-pinned beam is defined as no transverse deflection and zero moment at

the edges. The corresponding boundary conditions are

−EI
d2w

dx2

∣

∣

∣

∣

x=0,L

= 0 w(0) = w(L) = 0 (2.33)

The modal function for this set of boundary conditions is Wm(x) = sin(αmx). The

equation of motion and boundary conditions are satisfied if the deflection takes the

form of

w(x) =
∞
∑

m=1

wmWm(x) =
∞
∑

m=1

wm sin(αmx) (2.34)

αm =
mπ

L
(2.35)

We can also expand our load function, q(x), on our orthogonal basis.

q(x) =
∞
∑

m=1

qmWm(x) =
∞
∑

m=1

qm sin(αmx) (2.36)

qm =
2

L

∫ L

0
q(x)Wm(x) dx =

2

L

∫ L

0
q(x) sin(αmx) dx (2.37)

Substituting the above equations into equation (2.32) we get

kα4
mwm sin(αmx) = qm sin(αmx) (2.38)
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Multiplying by Wn and integrating over the length of the beam, and utilizing the

expansion theorem results in

kα4
mwm = qm (2.39)

wm =
qm
kα4

m

= q̂m (2.40)

Using equation (2.40) along with equation (2.34) gives us the static deflection of

an Euler-Bernoulli beam. For most applications the first three modes of the beam will

give sufficient information of the system.

2.3.2 Dynamics

The mathematical model now includes the time derivative with respect of our deflection

function w(x, t). We need to assume a new form of solution in order to incorporate the

time dependence on the deflection. However the modal function of the beam does not

change. Note that in the study of a static beam wm was a constant that depended on

the loading function. In dynamic systems, the coefficient of the modal function is now

a function of time, wm(t).

w(x, t) =
∞
∑

m=1

Wm(x)wm(t) (2.41)

Wm(x) = sin(αmx) (2.42)

In addition, loading function’s coefficients are a function of time.

q(x, t) =
∞
∑

m=1

qm(t) sin(αmx) (2.43)

qm(t) =
2

L

∫ L

0
q(x, t) sin(αmx) dx (2.44)

Substituting equation (2.41) into equation (2.31), noting ∂4Wm

∂x4 = α4
mWm, and using

expansion theorem,
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ρWmẅm + kW ′′′′

m wm = qmWm (2.45)

ẅm +
kα4

m

m
wm =

qm
ρ

(2.46)

Setting ω2
m = kα4

m

ρ
, where ωm is the natural frequency of the system,

ẅm(t) + ω2
mwm(t) =

qm(t)

ρ
(2.47)

The solution to the second order ordinary differential equation is below. Where wm(0)

is related to the initial position and ẇm(0) is related to the initial velocity of the beam.

wm(t) = wm(0) cos(ωmt) +
ẇm(0)

ωm
sin(ωmt) +

1

ωm

∫ t

0
qm(t− τ) sin(ωmτ) dτ (2.48)

wm(0) =
2

L

∫ L

0
w(x, 0) sin(αmx) dx (2.49)

ẇm(0) =
2

L

∫ L

0
ẇ(x, 0) sin(αmx) dx (2.50)

2.4 Geometrically Nonlinear Beam Theory

In nonlinear beam theory we assume that the deflection has a significant effect on the

boundaries of the beam. If we consider the edges ‘immovable’, the edges are fixed from

moving in the lateral direction when the beam is deflected laterally. As a result, the

beam’s length increases, and a tensile force in the beam is produced. The equation of

motion is below.

ρ(x)
∂2w

∂t2
+

∂2

∂x2
k(x)

∂2w

∂x2
−N(x, t)

∂2w

∂x2
= q(x, t) (2.51)

This equation has two unknowns, w(x, t) and N(x, t). In order to solve this equation

we need an expression for N(x, t) in terms of w(x, t), which turns our equation into a

nonlinear equation.
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We know that there is no applied axial force, therefore p(x, t) = 0, as a result the

equation of axial motion equation becomes

∂N

∂x
≈ −p(x, t) = 0 (2.52)

N(x, t) = N(t) = C0(t) (2.53)

Where C0(t) is some unknown function of t. Since we found that the membrane

force is constant in the beam, not a function of x, the spatial variable, we bring our

attention to the equation for the membrane force in terms of displacement, which will

provide our necessary equation. Using the nonlinear strain equation we write

N(t) = EAǫ(t) = EA
(∂u

∂x
+

1

2

(∂w

∂x

)2)

= EAC0(t) (2.54)

Since w is a function of x, we need to remove the dependence on x in the above equation

by integrating over the length of the beam, where we will find an expression for C0(t).

C0(t) =
∂u

∂x
+

1

2

(∂w

∂x

)2
(2.55)

(C0(t)x+ k0(t))
L
0 =

∫ L

0

∂u

∂x
+

1

2

(∂w

∂x

)2
dx (2.56)

C0(t) =

(

uL(t)− u0(t)

L
+

1

2L

∫ L

0

(

∂w

∂x

)2

dx

)

(2.57)

where uL is the axial deformation of the beam at x = L and u0 is the axial deformation

of the beam at x = 0. The second term in the equation above is equivalent to equation

(2.21).
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Figure 2.7: Axial Deformation of a Roller-Roller Beam

Plugging into equation (2.54) gives

N(t) = EAǫ(t) = EA

(

uL(t)− u0(t)

L
+

1

2L

∫ L

0

(

∂w

∂x

)2

dx

)

(2.58)

Inserting into our equation of motion

ρ
∂2w

∂t2
+ k

∂4w

∂x4
− EA

L

(

uL − u0 +
1

2

∫ L

0

(∂w

∂x

)2
dx
)∂2w

∂x2
= q(x, t) (2.59)

Now we have one equation, however we still need to find a method to calculate uL

and u0. If our boundaries dictate immovable edges, finding these values are quite easy

because they are defined as zero. Stress free edges mean that at x = 0, L, N = 0. Since

N is not a function of x we know that there is zero membrane force throughout the

beam. We find from equation (2.54) that the equation of motion simplifies to linear

beam theory. As a result, a different method is to find the solution is required. Conway’s

[13] formulation is presented as it provides a solution for the large deformation of beams.

However, Conway does not consider the kinetics of the beam and only considers the

geometry of deformation.

Note that for all examples we will use values of h = 0.05 for beam thickness, b = 0.01

for beam width and a value of 1 for L, the beam length. For other values see below
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E = 1E8 (2.60)

I =
bh3

12
(2.61)

A = bh (2.62)

k = EI (2.63)

2.4.1 Statics

As in previous sections, we remove the dependence on the time variable, t. The gov-

erning equations (2.59) and (2.58) become

k
d4w

dx4
−N

d2w

dx2
= q(x) (2.64)

N =
EA

L

(

uL − u0 +
1

2

∫ L

0

( dw

dx

)2
dx
)

(2.65)

Immovable Edges

For immovable edges we assume uL = u0 = 0.

k
d4w

dx4
− EA

2L

(

∫ L

0

( dw

dx

)2
dx
) d2w

dx2
= q(x) (2.66)

As in previous sections, we assume a modal function for a pinned-pinned beam and

substitute.

w(x) =

∞
∑

m=1

wm sin(αmx) (2.67)

Introducing equation (2.67) into the equation of motion we obtain

−EA

2L

(

∞
∑

r=1

∞
∑

s=1

∫ L

0
(αrwr cos(αrx)) (αsws cos(αsx)) dx

)

(−α2
mwm sin(αmx))

+ kα4
mwm sin(αmx) = qm sin(αmx)

(2.68)

Evaluating the integral
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kα4
mwm sin(αmx)− EA

4

(

∞
∑

r=1

(

αrwr

)2)

(−α2
mwm sin(αmx)) = qm sin(αmx) (2.69)

Using the expansion theorem to give us our final result for the coefficients of the infinite

sum,

EIα4
mwm +

EA

4

(

∞
∑

r=1

(

αrwr

)2)

(α2
mwm) = qm (2.70)

Example: Static, Immovable Edges - One-to-One Approximation

To give an idea on the motion of a nonlinear beam a one-to-one approximation is

considered. This approximation ignores the coupling between modes. Hence, the system

of equations are independent of each other which simplifies calculation. While this may

affect the solution accuracy negatively, it may provide satisfactory information about

the system. This assumption should be used when a particular mode is of interest or if

a small set of modes are of interest. If we considered five modes, we would have a highly

coupled system of five equations which would require computational efforts that may

not be available. Also note that the influence of a mode will be directly affected by the

magnitude of qm. If qm is much smaller for a particular mode, it is safe to assume that

wm will also be small. For example for a concentrated load in the center of the beam,

if we only want to consider the first two modes, we know from our study of modes,

the second mode does not contribute to the deflection. Hence, we can solve that mode

independently of the others in order to save on computation time. Multiply equation

(2.70) by our modal function and integrating, utilizing the expansion theorem:

EIα4
mwm +

EA

4
α4
mw3

m = qm (2.71)

wm +
A

4I
w3
m =

qm
α4
mEI

= q̂m (2.72)

Note that q̂m is the solution to the static-linear beam theory.
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A

4I
w3
m + wm − q̂m = 0 (2.73)

For the first two modes of the system m = 1, 2, the system produces two equations

and two unknowns, w1 and w2.

A

4I
w3
1 + w1 − q̂1 = 0 (2.74)

A

4I
w3
2 + w2 − q̂2 = 0 (2.75)

Example: Static, Immovable Edges - Two Term Approximation

For a more accurate solution, the mode coupling must be considered in the solution.

In order to form a complete system for every term we take in the sum we need to add

another equation in order to have an equal number of equations and unknowns. For

a two term solution, we need two equations. In the example below, we take the first

two terms in beam theory, m = 1, 2. In most cases, the first three modes of a beam are

considered a sufficiently accurate solution.

EIα4
1w1 +

EA

4

((

α1w1

)2
+
(

α2w2

)2)

(α2
1w1) = q1 (2.76)

EIα4
2w2 +

EA

4

((

α1w1

)2
+
(

α2w2

)2)

(α2
2w2) = q2 (2.77)

These equations match with the solution given by Leung and Mao [27], who used

Hamiltonian equations and Largrange’s equations, after removing the time dependent

terms. It is important to realize that the values of the coefficients are dependent on

each other. This arises due to the nonlinearity of the system. Also note that setting

w2 = 0 results in the one term approximation.

Note that from figure (2.8), we measure w1 as a response to a constant load at the

middle of the beam. From the second mode’s geometry we recognize that the second

mode would have a zero magnitude for this load configuration. Therefore, the coupled

solution breaks down to the uncoupled solution as shown in figure (2.8).
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Figure 2.8: Static Bending of a Beam with Immovable Edges

Stress Free Edges

For beams with stress-free edges, we define the edges with zero axial stress. As a result,

we must allow the edges to move in the axial direction. However, from equation (2.53)

N is zero for the entire length of the beam. Therefore, the geometrically nonlinear

beam theory reduces back to linear beam theory. From this, we conclude that beams

with stress-free edge conditions behave similarly to a linear beam. However, this beam

still has to follow the condition that the slope of deflection is small compared to unity.

In order to relax this condition we present the theory from Conway [13], which uses

beam geometry to find the deflection of the beam in terms of the slope. Note that

this section derives its deflection using a very specific formulation. The formulation

is specific for a given loading. If the loading were located at a different point, or if

we had uniform loading, the slope-loading relationship would be different. Conway’s

formulation is presented in limited context to give the reader a solution to stress-free

edges for a static, centrally loaded beam. Also, one should take into account that this

derivation is not very flexible, in that it cannot be easily used for dynamic loading and
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Figure 2.9: Conway Beam Geometry

that it cannot be easily compared to other theories that derive a governing equation

and its solution.

Conway’s formulation is used for static deflection of a simply supported beams

with the edges allowed to move in the axial direction. The assumption that there is

no stretch in the beam is also made. As a result, the geometrically nonlinear beam

theory is obsolete as it reduces to linear beam theory. Hence, we use the geometry of

the deformed beam to calculate the deflection of beam. We begin by noting that the

bending moment of a beam is proportional to the curvature, or the derivative of the

slope, θ, of the beam. This coordinate system, with the origin at the middle of the

beam, will only be used in this section.

M = k
dθ

ds
= P (l − x) (2.78)

M is the moment of the beam, P is half of the applied load at the center of the beam, l

is half of the length of the beam, k is the beam stiffness, which is equal to the product

of Young’s modulus, E, and the moment of inertia of the beam’s cross section, I.

Differentiation of each side with respect to s, and multiplying each side by dθ
ds results

in

dθ

ds

d2θ

ds2
= −P

k

dx

ds

dθ

ds
(2.79)

From the picture of the differential element we can see that cos(θ) = dx
ds . Then

integrating each side with respect to s results in



27

1

2

(

dθ

ds

)2

= −P

k
sin(θ) + C (2.80)

where C is a constant of integration. Using the boundary condition that the curvature

of the beam at the ends are zero allows us to find the constant. We also define θo as

the slope of the beam at the ends.

dθ

ds
=

√

2P

k
(sin(θo)− sin(θ)) (2.81)

In order to simplify, we expand the left hand side of the above equation in order to

have a function in terms of w, our displacement variable.

dθ

ds
=

dθ

dw

dw

ds
=

dθ

dw
sin(θ) =

√

2P

k
(sin(θo)− sin(θ)) (2.82)

Solving for dw and integrating results in

wmax =

∫ θo

0

sin(θ)
√

2P
k
(sin(θo)− sin(θ))

dθ (2.83)

This equation is sufficient to find the maximum deflection of a simply-supported

beam. However, we still need to find the value of θo. Equating equations (2.81) and

(2.78) results in

√

2P

k
(sin(θo)− sin(θ)) =

P

k
(l − x) (2.84)

Using the relationship that θ = 0 at x = 0 results in

θo = arcsin

(

Pl2

2k

)

(2.85)

At this point we have enough information to solve for the maximum deflection of the

beam.
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Figure 2.10: Deflection of a Beam using Conway’s Formulation

From figure (2.10) we can see that the deflection of the beam is larger than predicted

from linear theory. This results from allowing the beam to fold onto itself with no

resistance. Physically, we know that the maximum deflection of a beam with roller

edges, assuming no stretch, would be half the length of the beam. However, Conway’s

formulation theory does not take into account the resistance to the folding of the beam

onto itself. As a result, this theory has a upper bound of deflection and values beyond

that would be unrealistic. This upper bound has yet to be formally derived. One should

use their best judgment whether a particular deflection is realistic.

Table (2.1) compares the coefficients and deflections of the four different cases pre-

sented, linear, immovable edges coupled and uncoupled, and the Conway formulation.

Two different load cases were considered. Note that q1 = 2Load. The magnitude of the

smaller load was chosen as the linear theory’s first mode predicts a deflection that is

close in magnitude to the beam thickness. The magnitude of the larger load shows that

the deflection of the immovable coefficients are close in value to the beam thickness,
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0.05. For the smaller load, we can see reasonable agreement between Conway and lin-

ear formulations. However, the immovable edge condition is significantly different from

linear theory. The larger load condition shows a greater difference between the immov-

able and linear theories. The difference between the immovable coupled and uncoupled

conditions are negligible. This is a result from the loading condition. If the load were

at a location where the third mode had a more significant contribution, the coupled

and uncoupled coefficients would have a greater difference. But in our case, where the

load was at the beam’s center, the third mode’s amplitude is about a hundred times

smaller than the first mode’s.

Beam Deflection

Load = 50 Load = 100

w1 w2 w3 Total w1 w2 w3 Total

Linear 0.0986 0 −0.0012 0.0974 0.1971 0 −0.0024 0.1947
Immovable Uncoupled 0.0371 0 −0.0012 0.0359 0.0497 0 −0.0024 0.0473
Immovable Coupled 0.0371 0 −0.0010 0.0361 0.0496 0 −0.0018 0.0478
Stress-Free Conway – – – 0.1033 – – – 0.2320

Table 2.1: Coefficients of a Beam

2.4.2 Dynamics

We retain the time derivative in our equation of motion and the coefficient of the modal

function in our deflection equation, is now a function of time, wm(t). The method that

Conway produced does not extend to dynamics as the formulation does not consider

the time dependence of any of the terms.

Immovable Edges

As in the previous section, where we considered immovable edges, we assume uL =

u0 = 0
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ρ
∂2w

∂t2
+ k

∂4w

∂x4
− EA

2L

(

∫ L

0

(∂w

∂x

)2
dx
)∂2w

∂x2
= q(x, t) (2.86)

We assume the same modal function, Wm = sin(αmx), and the same form of solution

w(x, t) =
∑

∞

m=1wm(t)Wm(x). We substitute this solution into our governing equation,

and utilize expansion theorem.

∞
∑

m=1

(

ρ sin(αmx)ẅm(t) + EIα4
m sin(αmx)wm(t)

−EA

2L

(

∫ L

0

(

αmwm(t) cos(αmx)
)2

dx
)

(−α2
mwm(t) sin(αmx))

)

=

∞
∑

m=1

qm(t) sin(αmx)

Multiplying by Wn(x) and integrating

ρẅm(t) + EIα4
mwm(t)

− EA

4

(

∞
∑

r=1

(

αrwr(t)
)2)

(−α2
mwm(t)) = qm(t)

Example: Dynamic, Immovable Edges - Two Term Approximation

We will use two terms m = 1, 2, we obtain:

ρẅ1(t) + EIα4
1w1(t) +

EA

4

((

α1w1(t)
)2

+
(

α2w2(t)
)2)

(α2
1w1(t)) = q1(t) (2.87)

ρẅ2(t) + EIα4
2w2(t) +

EA

4

((

α1w1(t)
)2

+
(

α2w2(t)
)2)

(α2
2w2(t)) = q2(t) (2.88)

These equations match with the solution given by Leung and Mao [27], who used

Hamiltonian equations and Largrange’s equations. Note that when we set ẅ1 = ẅ2 = 0

the static solution is recovered. Also, setting w2 = 0 in equation (2.87) and w1 = 0 in

equation (2.88) results in the uncoupled approximation. Also note that the uncoupled

approximation is in the form of Duffing’s equation. Duffing’s equation implies the

existence of amplitude jumps for changes in excitation frequency for periodic loading.
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Duffing’s equation also predicts subharmonic and superharmonic resonance, chaos, and

other phenomena. However, these topics are beyond the scope of this study. For

the frequency response curves, we assumed a sinusoidal excitation with a constant

magnitude and we chose ǫ = 0.01. The Duffing equation is described in appendix B.

Figure (2.11) is the time response of a beam with a load suddenly placed at the

center of the beam with magnitude of 25.
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Figure 2.11: Dynamic Solution - Response to Constant Load at Center of Beam with
Immovable Edges
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Chapter 3

Large Deflection of Plates

3.1 Introduction

When a thin elastic plate undergoing small deformations, (w < 0.1h), where w is the

transverse deflection and h is the plate thickness, is considered, it is reasonable to ignore

geometric nonlinearities and use linear plate theory. However in larger deflections,

(w ≈ O(h)), the middle surface of the plate begins to stretch or the in-plane motion of

the plate edges become significant. When these effects become important one needs to

consider geometrically nonlinear plate theory, which was first derived by von Kármán

[48] in 1910.

This plate theory considers the effects of both bending and stretching of the middle

surface of the plate. The method of solution is very similar to that of linear plate theory.

Here we will assume a deflection (mode shapes) based on the boundary conditions of

the plate and then utilize the expansion theorem. The nonlinear plate theory consists

of two coupled nonlinear partial differential equations. Also, the use of a stress function

will be required. The same method of solution will be used for the stress function. An

assumption about the shape of the stress function will be based on the edge boundary

conditions.

We will consider a flat, square plate with all pinned edges of length one. Pinned edges

are used as they allow us to proceed analytically and without loss of generality. Other

boundary conditions would necessitate the use of numerical approximations for finding

mode shapes earlier in the derivation. As with nonlinear beam theory, an additional

set of boundary conditions are required in order to describe edge effects of the plate.

Either ‘immovable’ or ‘stress-free’ boundary conditions need to be defined. We will
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also compare static and dynamic responses between linear and nonlinear theories. The

influence of rotatory inertia and the correction for shear are neglected, as they will

make subsequent calculations cumbersome and may distract us from understanding the

effect of geometric nonlinearities on the system. Rotatory inertia and shear are usually

considered when the plate can no longer be considered ‘thin’, h/min(a, b) < 1/10 is

a thin plate, or the plate undergoes a high frequency excitation where the wavelength

approaches the plate thickness.

Beam theory showed that a beam has an infinite number of modes, each with unique

amplitudes. If one considers a plate as a series of beams placed next to each other, we

can see that the solution to plate theory requires a double infinite sum.

3.2 Governing Equations

To better understand plates and their motion the derivation of geometric nonlinear

plate theory is below.

3.2.1 Elasticity

We begin with Green’s Strain

Exx =
∂ux
∂x

+
1

2

[

(

∂ux
∂x

)2

+

(

∂uy
∂x

)2

+

(

∂uz
∂x

)2
]

(3.1a)

Eyy =
∂uy
∂y

+
1

2

[

(

∂ux
∂y

)2

+

(

∂uy
∂y

)2

+

(

∂uz
∂y

)2
]

(3.1b)

Exy =
1

2

[

∂uy
∂x

+
∂ux
∂y

+
∂ux
∂x

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uz
∂x

∂uz
∂y

]

(3.1c)

In order to simplify the strain-displacement relation we use the ‘small strain’, ‘mod-

erate rotation’ approximation. Following are the definitions used to define ‘large’ de-

flections. For small strains we have

∂ui
∂xj

∂uj
∂xi

≪ ∂uk
∂xl

i, j, k, l = x, y (3.2)

For moderate rotation we have
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∂uz
∂xi

∂uz
∂xj

∼ O
(

∂ui
∂xj

)

i, j = x, y (3.3)

Using the two definitions for large deflections in equation (3.1) we obtain

Exx =
∂ux
∂x

+
1

2

(

∂uz
∂x

)2

(3.4a)

Eyy =
∂uy
∂y

+
1

2

(

∂uz
∂y

)2

(3.4b)

Exy =
1

2

[

∂uy
∂x

+
∂ux
∂y

+
∂uz
∂x

∂uz
∂y

]

(3.4c)

The nonlinear terms above couple the transverse displacement with the axial dis-

placement.

To relate stresses with strains, Hooke’s Law for linearly elastic materials is used:

σx =
E

1− ν2
(Exx + νEyy) (3.5a)

σy =
E

1− ν2
(Eyy + νExx) (3.5b)

σxy =
E

(1 + ν)
Exy (3.5c)

The inverse relationship to relate the strains with stresses is

Exx =
1

E
(σx − νσy) (3.6)

Eyy =
1

E
(σy − νσx) (3.7)

Exy =
1 + ν

E
σxy (3.8)

Since geometrically nonlinear plate theory deals with the relationship between axial

stresses and the transverse displacement the equations above will become useful to

calculate the axial strains, and axial displacements.

The Airy stress function, φ, will be used to represent the stresses.
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σx =
∂2φ

∂y2
σy =

∂2φ

∂x2
σxy = − ∂2φ

∂x∂y
(3.9)

It is also important to calculate the resultant membrane forces, as well as resultant

moments, which are below.

Nx =

∫ h

2

−
h

2

σx dz = σxh Ny =

∫ h

2

−
h

2

σy dz = σyh Nxy =

∫ h

2

−
h

2

σxy dz = σxyh (3.10)

Mx =

∫ h

2

−
h

2

zσx dz My =

∫ h

2

−
h

2

zσy dz Mxy = −
∫ h

2

−
h

2

zσxy dz (3.11)

3.2.2 Derivation of Equation of Motion

+   

+   
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Figure 3.1: Shear Force Diagram on a Differential Plate Element

The origin of the coordinate system is selected to be at the corner of the plate on

the midplane. The midplane is the ‘middle’, with respect to the thickness, of the plate,

such that the top and bottom surfaces are at z = h/2 and z = −h/2, respectively.

Let u, v, w be middle plane deflections of the plate. From Kirchhoff’s hypothesis, the

deflection varies linearly from the middle surface.

ux = u− z
∂w

∂x
uy = v − z

∂w

∂y
uz = w (3.12)



37

  

 

 

 

 

+   

+   

+   

 

+   

Figure 3.2: Moment Diagram on a Differential Plate Element

Substituting equation (3.12) into (3.4)

Exx =
∂u

∂x
+

1

2

(

∂w

∂x

)2

− z
∂2w

∂x2
(3.13a)

Eyy =
∂v

∂y
+

1

2

(

∂w

∂y

)2

− z
∂2w

∂y2
(3.13b)

Exy =
1

2

[

∂v

∂x
+

∂u

∂y
+

∂w

∂x

∂w

∂y

]

− z
∂2w

∂x∂y
(3.13c)

Next, we calculate moments by substituting equation (3.13) into (3.5) then into (3.11),

which results in

Mx = −D

(

∂2w

∂x2
+ ν

∂2w

∂y2

)

(3.14a)

My = −D

(

∂2w

∂y2
+ ν

∂2w

∂x2

)

(3.14b)

Mxy = D(1− ν)
∂2w

∂x∂y
(3.14c)

where D is flexural rigidity or bending stiffness of the plate, E is the elastic modulus,

h is the plate thickness and ν is Poisson’s ratio. We choose E = 1E8, h = 0.05 and

ν = 0.316 for the examples presented later. These quantities are related by

D =
Eh3

12(1− ν2)
(3.15)
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Summing forces in the transverse direction, z, yields

∂Qx

∂x
+

∂Qy

∂y
+ q(x, y, t) + q∗(x, y, t) = ρ

∂2w

∂t2
(3.16)

in which q(x, y, t) is the applied transverse load and q∗(x, y, t) is the resultant transverse

force as a result of internal membrane forces caused by transverse deflections. q∗(x, y, t)

will be determined later.

The moment equations about the x and y axis are

∂My

∂y
− ∂Mxy

∂x
= Qy (3.17a)

∂Mx

∂x
+

∂Myx

∂y
= Qx (3.17b)

Substitute equation (3.17) into (3.16)

∂2Mx

∂x2
+

∂2Mxy

∂y2
+

∂2My

∂y2
− ∂2Mxy

∂x2
+ q(x, y, t) + q∗(x, y, t) = ρ

∂2w

∂t2
(3.18)

Since Mxy = −Myx the above equation simplifies to

∂2Mx

∂x2
− 2

∂2Mxy

∂y2
+

∂2My

∂y2
+ q(x, y, t) + q∗(x, y, t) = ρ

∂2w

∂t2
(3.19)

and using equation (3.14) along with (3.19), we obtain

D

(

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4

)

+ ρ
∂2w

∂t2
= q(x, y, t) + q∗(x, y, t) (3.20)

recognizing the biharmonic operator as ∇2 = ∂2

∂x2 + ∂2

∂y2
, the above equation becomes

D∇4w + ρ
∂2w

∂t2
= q(x, y, t) + q∗(x, y, t) (3.21)

Influence of Membrane Forces

From figure (3.3) we can see that there are components of the membrane force in

the z direction. This is the source of the nonlinearity of the system because from
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Figure 3.3: Projection of Membrane Forces
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Figure 3.4: Differential Plate Element

the figure we can observe that as the deflection increases the transverse component of

the membrane force increases as well. For simplicity, we will define q∗(x, y, t) as the

resultant ‘transverse’ force of the membrane forces. Therefore we need to find the sum

of the projected forces from Nx, Ny and Nxy. Projection of Nx forces onto z plane gives

−Nx dy
∂w

∂x
+

(

Nx +
∂Nx

∂x
dx

)(

∂w

∂x
+

∂2w

∂x2
dx

)

dy (3.22)

Simplifying by ignoring terms of order ( dx2 dy)

Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy (3.23)
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Similarly, projection of Ny forces onto z plane

−Ny dx
∂w

∂y
+

(

Ny +
∂Ny

∂y
dy

)(

∂w

∂y
+

∂2w

∂y2
dy

)

dx (3.24)

and similar simplification yields

Ny
∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy (3.25)

By the definition of the Airy’s stress function, equation (3.9), Nxy = Nyx, and that

the projection of Nyx onto the z plane take the same form.

Nxy
∂2w

∂x∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy (3.26)

Summing the projections of the in plane shear forces, Nxy, and Nyx on the z plane

results in

2Nxy
∂2w

∂x∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy +

∂Nxy

∂y

∂w

∂x
dx dy (3.27)

Summing the projections of all the forces on the z plane

q∗(x, y, t) dx dy =2Nxy
∂2w

∂x∂y
dx dy +

∂Nxy

∂x

∂w

∂y
dx dy +

∂Nxy

∂y

∂w

∂x
dx dy

+Nx
∂2w

∂x2
dx dy +

∂Nx

∂x

∂w

∂x
dx dy +Ny

∂2w

∂y2
dx dy +

∂Ny

∂y

∂w

∂y
dx dy

(3.28)

q∗(x, y, t) dx dy =2Nxy
∂2w

∂x∂y
dx dy +

∂w

∂y

(

∂Nxy

∂x
+

∂Ny

∂y

)

dx dy

+
∂w

∂x

(

∂Nxy

∂y
+

∂Nx

∂x

)

dx dy +Nx
∂2w

∂x2
dx dy +Ny

∂2w

∂y2
dx dy

(3.29)

With no body forces, we can use the equations of equilibrium, from figure (3.4), to

simplify.
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∂Nx

∂x
+

∂Nxy

∂y
= 0 (3.30)

∂Nxy

∂x
+

∂Ny

∂y
= 0 (3.31)

which results in

q∗(x, y, t) dx dy = 2Nxy
∂2w

∂x∂y
dx dy +Nx

∂2w

∂x2
dx dy +Ny

∂2w

∂y2
dx dy (3.32)

Using the above equation with equation (3.21) and (3.10) results in

ρ
∂2w

∂t2
+D∇4w(x, y, t) = q(x, y, t) + h

(

σx
∂2w

∂x2
+ σy

∂2w

∂y2
+ 2σxy

∂2w

∂x∂y

)

(3.33)

Using our equation for Airy’s stress function, equation (3.9)

ρ
∂2w

∂t2
+D∇4w(x, t) = q(x, t) + h

(

∂2φ

∂y2
∂2w

∂x2
+

∂2φ

∂x2
∂2w

∂y2
− 2

∂2φ

∂x∂y

∂2w

∂x∂y

)

(3.34)

The above equation is known as geometrically nonlinear plate theory. It was first

derived by von Karman in 1910. This plate theory helps relate axial forces with trans-

verse displacement. However in situations of large deformations, a transverse deforma-

tion may cause a significant membrane force. As a result, an equation that relates the

amplitude of transverse deflection to the membrane forces is required. In order to find

this equation we turn to St. Ventant’s compatibility equations.

St. Venant’s compatibility condition is satisfied for a particular strain field if the

displacement field associated with those strains will be unique without gaps and over-

laps. Compatibility ensures that the strain field is realistic. While there are six unique

equations the only one equation is of significance for our case and is given below.

∂2Exx

∂y2
+

∂2Eyy

∂x2
= 2

∂2Exy

∂x∂y
(3.35)

Substituting our strain displacement equations, equation (3.13), results in
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∂2Exx

∂y2
+

∂2Eyy

∂x2
− 2

∂2Exy

∂x∂y
=

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
(3.36)

The right hand side of the above equation is called Gaussian curvature. The Gaus-

sian curvature is defined as the product of the two principal curvatures of a surface. A

developable surface is defined as a surface with zero Gaussian curvature. From the equa-

tion above we can say that for a developable surface all inplane strain, Exx, Eyy, Exy,

are equal to zero. In other words, a developable surface is a surface that can be made

into a flat plane without stretching or compressing the surface. The ratio between the

area of a stretched surface to the unstretched surface is proportional to Gaussian cur-

vature which is an interesting characteristic. For example, a cylinder can be unrolled

onto a flat surface without stretching the material. Therefore, a cylinder is a devel-

opable surface. A cone, if cut along one edge to the tip can be flattened without any

stretch, therefore it is a developable surface. While the value of Gaussian curvature

may not have any direct consequences on the plate deformation, it is important to un-

derstand the meaning of Gaussian curvature. Appendix A provides more information

on Gaussian curvature.

Using Hooke’s law, equation (3.6), to relate the strains to stresses, as well as Airy

stress function, equation (3.9), to relate the stresses to the Airy’s stress function, φ,

then substituting into equation (3.36) gives

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= ∇4φ = E

(

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

)

(3.37)

Equations (3.34) and (3.37) constitute a system of nonlinear partial of differential

equations. This system is considered the large deflection theory of plates.

Here we use a square plate with all four edges pinned with a length of one. The

modal functions for such a plate are given below, where Wmn is the modal function

of the plate. Each modal function satisfies all of the boundary conditions. The modal

functions are the fundamental shapes of motion of a plate and are orthogonal to each

other. The motion of a plate can be described as the sum of these modes. Figure (3.5)
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plots the modal function for the simply supported plate that we are considering here.

w(x, y, t) =

∞
∑

m=1

∞
∑

n=1

wmn(t)Wmn(x, y) (3.38)

Wmn(x, y) = sin(αmx) sin(γny) (3.39)

Note that a and b are the edge lengths of the plate, which are equal to one.

αm =
mπ

a
γn =

nπ

b
(3.40)

The stress function also takes the form of a double infinite sum. Its exact form is

based on the boundary conditions.
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Figure 3.5: Modal Functions of a Plate

3.2.3 Expansion Theorem

The expansion theorem is an important tool in solving plate theory. The theorem allows

us to expand any function over an orthogonal basis, an infinite sum, so that we can

solve the system. For plates, we will expand over two bases, one for the x-axis and
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another for the y-axis. In order to show that the basis is orthogonal it must satisfy the

condition below. Note that the symbol B will be used to signify a generic basis.

∫ b

0

∫ a

0
Bm,n(x, y)Br,s(x, y) dx dy = Cδ̄(m,r)δ̄(n,s) (3.41)

For a plate simply supported on all sides, the modal function is

Wmn(x, y) = Cmn sin(
mπ

a
x) sin(

nπ

b
y) (3.42)

In order to assign a value to Cmn we normalize the modal function using the definition

of inner product.

〈Wmn(x, y),Wmn(x, y)〉ρ =

∫ a

0

∫ b

0
ρWmn(x, y)Wmn(x, y) dy dx

=

∫ a

0

∫ b

0
ρC2

mn sin
2(
mπ

a
x) sin2(

nπ

b
y) dy dx = 1

(3.43)

Solving for the coefficient Cmn we obtain, choosing the positive root,

Cmn =
2√
ρab

(3.44)

Now our modal function becomes

Wmn(x, y) =
2√
ρab

sin(
mπ

a
x) sin(

nπ

b
y) (3.45)

The expansion theorem is

g(x, y, t) =
∞
∑

m=1

∞
∑

n=1

gmn(t)Wmn(x, y) (3.46)

gmn(t) =
〈g(x, y, t),Wmn(x, y)〉

〈Wmn(x, y),Wmn(x, y)〉ρ
(3.47)

Since the modal functions are normalized, the denominator is equal to one. If we

did not normalize our modal function the integral below would have a constant in front

of it. It follows that since 〈Wmn,Wmn〉ρ = 1 we have
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gmn(t) =

∫ a

0

∫ b

0
g(x, y, t)Wmn(x, y) dy dx (3.48)

In the sections below we choose Cmn to equal one, which results in the corresponding

expansion theorem

gmn(t) =
4

ρab

∫ a

0

∫ b

0
g(x, y, t)Wmn(x, y) dy dx (3.49)

We shall use this form of expansion theorem because the maximum value of the

modal function is one and this simplifies further calculation. This is important as the

coefficient of the modal function gives the ‘influence’ each mode to the deflection. Also

note that the coefficient, Cmn, is not a function of m or n which is not, in general, the

case.

3.3 Linear Plate Theory

Linear plate theory assumes that the in-plane forces of the plate are negligible. As a

result, we can set φ, the Airy’s stress function and its derivatives equal to zero as it will

result in a plate with zero membrane forces. This assumption will simplify the system

to linear plate theory.

ρ
∂2w

∂t2
+D∇4w(x, y, t) = q(x, y, t) (3.50)

0 =

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
(3.51)

From equation (3.51) we can see that the Gaussian curvature is zero. As a result, we

have a developable surface, which is an approximation for small deflections. Equation

(3.50) is the classic, linear dynamic plate theory. The method of solution to this problem

is similar to that of beams. We will assume a modal function, based on the boundary

conditions, and then substitute into the governing equation. More information on modal

functions of a plate can be found in Timoshenko [45]. Leissa [26] also studied a variety

of boundary conditions and modal functions of plates.
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A plate with all four edges pinned will be considered. This set of boundary condi-

tions are considered the best way to proceed analytically.

3.3.1 Statics

The following equations define the static problem for a pinned-pinned simply supported

plate.

D∇4w(x, y) = q(x, y) (3.52)

w = 0|x=0,a, Mx = 0|x=0,a (3.53)

w = 0|y=0,b, My = 0|y=0,b (3.54)

We expand the solution in the form

w(x, y) =
∞
∑

m=1

∞
∑

n=1

wmnWmn(x, y) (3.55)

Wmn(x, y) = sin(αmx) sin(γny) (3.56)

q(x, y) =
∞
∑

m=1

∞
∑

n=1

qmnWmn(x, y) (3.57)

qmn =
4

ab

∫ b

0

∫ a

0
q(x, y)Wmn(x, y) dx dy (3.58)

Using equation (3.55) along with (3.56) in equation (3.52) allows us to find a form for

the coefficients of the modal functions, wmn. These coefficients are important as they

give the ‘weight’ of the modal function on the overall deflection. For example, if several

coefficients are on the order of 1, we can ignore the terms were the coefficients are on

the order of 10−2 as they will not have very much significance on the final solution.

Note that the summation notation is dropped and a relationship for coefficients are

given. Also note the use of expansion theorem.

D
(

α2
m + γ2n

)2
wmn = qmn (3.59)

wmn =
qmn

D (α2
m + γ2n)

2 = q̂mn (3.60)
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Example: Static - Four Term Approximation

For this approximation we assume that the first four terms of a plate would be a

sufficient approximation of the plate’s deflection.

w11 =
q11

D
(

α2
1 + γ21

)2 (3.61)

w12 =
q12

D
(

α2
1 + γ22

)2 (3.62)

w21 =
q21

D
(

α2
2 + γ21

)2 (3.63)

w22 =
q22

D
(

α2
2 + γ22

)2 (3.64)

After finding the four coefficients above we would place them in the sum below to

get the approximate deflection of the plate.

w(x, y) = w11W11(x, y) + w12W12(x, y) + w21W21(x, y) + w22W22(x, y) (3.65)

3.3.2 Dynamics

The equation motion for the plate is

ρ
∂2w

∂t2
+D∇4w(x, y, t) = q(x, y, t) (3.66)

Using an expansion of

w(x, y, t) =
∞
∑

m=1

∞
∑

n=1

wmn(t)Wmn(x, y) (3.67)

we obtain the modal equation of motion

ẅmn +
D
(

α2
m + γ2n

)2

ρ
wmn =

1

ρ
qmn (3.68)

Setting ω2
mn =

D(α2
m+γ2

n)
2

ρ
, where we consider ωmn as the natural frequency of the

system,
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ẅmn + ω2
mnwmn =

1

ρ
qmn (3.69)

The solution of the above equation takes the form of

wmn(t) = wmn(0) cos(ωmnt) +
ẇmn(0)

ωmn
sin(ωmnt) +

1

ρωmn

∫ t

0
qmn(t− τ) sin(ωmnτ) dτ

(3.70)

and the initial conditions are

wmn(0) =
4

ρab

∫ b

0

∫ a

0
w(x, y, 0) sin(αmx) sin(γny) dx dy (3.71)

ẇmn(0) =
4

ρab

∫ b

0

∫ a

0
ẇ(x, y, 0) sin(αmx) sin(γny) dx dy (3.72)

Example: Dynamic - Four Term Approximation

For this approximation we will use four terms of the infinite sum. Where m,n = 1 or

2.

ẅ11 + ω2
11w11 =

1

ρ
q11 (3.73)

ẅ12 + ω2
12w12 =

1

ρ
q12 (3.74)

ẅ21 + ω2
21w21 =

1

ρ
q21 (3.75)

ẅ22 + ω2
22w22 =

1

ρ
q22 (3.76)

The system above is a system of four independent differential equations. Each equa-

tion can be solved separately and placed back into our truncated sum in the expansion

theorem.

w(x, y, t) = w11(t)W11(x, y) + w12(t)W12(x, y) + w21(t)W21(x, y) + w22(t)W22(x, y)

(3.77)
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Figure 3.6: Loads Caused by Immovable Edge Conditions

3.4 Geometrically Nonlinear Plate Theory

In this section, the geometrically nonlinear terms are retained as the membrane forces,

φ and its derivatives, become significant when large deformations take place. As we

add axial loads, we need to determine axial boundary conditions. We can either choose

to have the edges restricted from moving, ‘immovable edges’, or edges that are free to

move, ‘stress-free’ edges. These boundary conditions have a significant effect on the

stiffness and response of the plate.

Based on the axial boundary conditions we will change the definition of the Airy

stress function. Consider figure (3.6), Px and Py are the loads that prevent the edges

from moving in the axial direction. For ‘stress-free’ edges these forces are equal to zero

as the edges are allowed in move freely in the plane of the undeformed plate. Here we

expand the stress function using a double sine series as it satisfies the condition that

there are no axial stresses for stress-free edges. Other texts like Timoshenko [45] use a

double cosine series in their expansion and integrate over the edge to show that there

is a zero net force along the edge. If one were to use the double cosine series here one

would find that the geometric nonlinear terms would drop out. This is because of the

orthogonality relationship between sine and cosine. We write

φ(x, y, t) = Pxy
2 + Pyx

2 +
∑

φmn(t)Wmn(x, y) (3.78)
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Px and Py are functions of the tensile loads at x = 0, a and y = 0, b, respectively.

For stress-free edges we would allow the edges to move in the axial direction and would

set Px = Py = 0. For fixed edges, we would set the axial deformation to zero and Px

and Py would not be zero. Another question of interest is the dependence of Px and

Py on the spatial variables. For one case we will have Px(x) and Py(y). Another case

will consider Px and Py to be a constant. As a basis for comparison we will use results

from Levy [28], Iyengar and Naqvi [24], and Donnell [16].

In order to find the axial displacement, we first equate the strain-displacement

relationship to the strain-stress relationship using Airy’s stress function.

Exx =
∂u

∂x
+

1

2

(

∂w

∂x

)2

=
1

E

(

∂2φ

∂y2
− ν

∂2φ

∂x2

)

(3.79)

Eyy =
∂v

∂y
+

1

2

(

∂w

∂y

)2

=
1

E

(

∂2φ

∂x2
− ν

∂2φ

∂y2

)

(3.80)

To find the axial displacement in x direction, defined by δx(y)

∂u

∂x
=

1

E

(

∂2φ

∂y2
− ν

∂2φ

∂x2

)

− 1

2

(

∂w

∂x

)2

(3.81)

δx(y) =

∫ a

0

∂u

∂x
dx =

∫ a

0

{

1

E

(

∂2φ

∂y2
− ν

∂2φ

∂x2

)

− 1

2

(

∂w

∂x

)2
}

dx (3.82)

To find axial displacement in y direction, defined by δy(x)

∂v

∂y
=

1

E

(

∂2φ

∂x2
− ν

∂2φ

∂y2

)

− 1

2

(

∂w

∂y

)2

(3.83)

δy(x) =

∫ b

0

∂v

∂y
dy =

∫ b

0

{

1

E

(

∂2φ

∂x2
− ν

∂2φ

∂y2

)

− 1

2

(

∂w

∂y

)2
}

dy (3.84)

3.4.1 Statics

In the static case we remove the time dependent terms from equation (3.34).

D∇4w(x, y) = q(x, y) + h

(

∂2φ

∂y2
∂2w

∂x2
+

∂2φ

∂x2
∂2w

∂y2
− 2

∂2φ

∂x∂y

∂2w

∂x∂y

)

(3.85)
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∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= ∇4φ = E

(

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

)

(3.86)

Stress Free Edges

For stress free edges we set Px = Py = 0 so that the stress function would predict zero

stress at the edges. Using

w(x, y) =
∑

wmnWmn(x, y) (3.87)

φ(x, y) =
∑

φmnWmn(x, y) (3.88)

Wmn = sin(αmx) sin(γny) (3.89)

Φmn = cos(αmx) cos(γny) (3.90)

Using summation notation in our equation of motion

D
∑

(α2
m + γ2n)

2wmnWmn =
∑

qmnWmn + h
{

(
∑

α2
aφabWab)(

∑

γ2nwmnWmn)

+ (
∑

γ2bφabWab)(
∑

α2
mwmnWmn)

− 2(
∑

αaγbφabΦab)(
∑

αmγnwmnΦmn)
}

(3.91)

∑

(α2
m + γ2n)

2φmnWmn = E
{

(
∑

αaγbwabΦab)(
∑

αmγnwmnΦmn)

− (
∑

α2
awabWab)(

∑

γ2nwmnWmn)
}

(3.92)

Example: Static, Stress Free Edges - One-to-One Term Approximation

We make the following assumption initially, we ignore the coupling between modes.

While this assumption may not result in an accurate solution, this procedure would

give a reasonable estimate as to which modes contribute the most for a particular

load case. If a large number of modes are required this assumption will reduce the

computation time significantly. The coupled solution requires an addition equation for

each additional mode, and all the equations increase in complexity as well.
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D(α2
m + γ2n)

2wmnWmn = qmnWmn + 2hα2
mγ2nφmnwmn (WmnWmn − ΦmnΦmn) (3.93)

(α2
m + γ2n)

2φmnWmn = Eα2
mγ2nwmnwmn(ΦmnΦmn −WmnWmn) (3.94)

We multiply by Wab and integrate, taking note of the expansion theorem. Also, for

ease of use, defining

ζmn =

∫

A

(WmnWmn − ΦmnΦmn)Wmn dA (3.95)

results in

D

4
(α2

m + γ2n)
2wmn =

qmn

4
+ 2hα2

mγ2nφmnwmnζmn (3.96)

1

4
(α2

m + γ2n)
2φmn = −Eα2

mγ2nwmnwmnζmn (3.97)

Solving for φmn

φmn = −4Eζmn
α2
mγ2nwmnwmn

(α2
m + γ2n)

2
(3.98)

Using the above result in equation (3.96)

wmn =
qmn

D(α2
m + γ2n)

2
− 32Eh

α4
mγ4nζ

2
mn

D(α2
m + γ2n)

4
w3
mn (3.99)

Simplifying, we obtain

32
Eh

D

α4
mγ4nζ

2
mn

(α2
m + γ2n)

4
w3
mn + wmn =

qmn

D(α2
m + γ2n)

2
= q̂mn (3.100)

We can see that the geometric nonlinear term is dependent on ζmn. If this term

is zero, we recover the linear equation for that coefficient. Table (3.1) shows several

values of ζmn. The equation above is of third order, meaning that it is possible to have
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ζmn

n \ m 1 2 3 4 5

1 4
3π2 0 4

9π2 0 4
15π2

2 0 0 0 0 0
3 4

9π2 0 4
27π2 0 4

45π2

4 0 0 0 0 0
5 4

15π2 0 4
45π2 0 4

75π2

Table 3.1: Values of ζmn

up to three real solutions. However, with values we have chosen, the solution consists

of one real value and two imaginary values.

For the first nine terms we get:

32

9π4

Eh

D
w3
11 + w11 = q̂11

w12 = q̂12

w21 = q̂21

w22 = q̂22

32

625π4

Eh

D
w3
13 + w13 = q̂13

32

625π4

Eh

D
w3
31 + w31 = q̂31

w23 = q̂23

w32 = q̂32

32

729π4

Eh

D
w3
33 + w33 = q̂33



54

From above we can see that several of the terms are not influenced by the geometric

nonlinearity due to the value of ζmn. The coefficients of the w3
mn terms above are smaller

as m and n grow larger. We can see that the coefficient of w3
13 is more than sixty times

smaller than the coefficient of the w3
11 term. In other words, lower frequencies are more

sensitive to the nonlinearity than higher frequencies. Also note that the equation for

w11 matches the result given by Ventsel [47].

We can see that the one-to-one term approximation is useful in determining how

several of the modes behave in a nonlinear system and how some modes are ignored

completely. This approximation predicts that several of the modes are not changed by

the nonlinearity, which, in general, is not the case. We next return to the coupled case.

Example: Static, Stress Free Edges - Four Coupled Terms

This example takes the first four terms of plate theory and solves the equations. It

will be shown that this system results in eights equations and eight unknowns. The

unknowns not only consist of wmn but also the corresponding φmn. Expanding equations

(3.91) and (3.92)

D(α2
1 + γ21)

2w11W11 = q11W11

+ h
{

(γ21w11W11)(α
2
1φ11W11 + α2

1φ12W12 + α2
2φ21W21 + α2

2φ22W22)

+ (α2
1w11W11)(γ

2
1φ11W11 + γ22φ12W12 + γ21φ21W21 + γ22φ22W22)

− 2(α1γ1φ11Φ11)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)
}

(3.101)

D(α2
1 + γ22)

2w12W12 = q12W12

+ h
{

(γ22w12W12)(α
2
1φ11W11 + α2

1φ12W12 + α2
2φ21W21 + α2

2φ22W22)

+ (α2
1w12W12)(γ

2
1φ11W11 + γ22φ12W12 + γ21φ21W21 + γ22φ22W22)

− 2(α1γ2φ12Φ12)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)
}

(3.102)
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D(α2
2 + γ21)

2w21W21 = q21W21

+ h
{

(γ21w21W21)(α
2
1φ11W11 + α2

1φ12W12 + α2
2φ21W21 + α2

2φ22W22)

+ (α2
2w21W21)(γ

2
1φ11W11 + γ22φ12W12 + γ21φ21W21 + γ22φ22W22)

− 2(α2γ1φ21Φ21)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)
}

(3.103)

D(α2
2 + γ22)

2w22W22 = q22W22

+ h
{

(γ22w22W22)(α
2
1φ11W11 + α2

1φ12W12 + α2
2φ21W21 + α2

2φ22W22)

+ (α2
2w22W22)(γ

2
1φ11W11 + γ22φ12W12 + γ21φ21W21 + γ22φ22W22)

− 2(α2γ2φ22Φ22)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)
}

(3.104)

(α2
1 + γ21)

2φ11W11 =

E
{

(α1γ1w11Φ11)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ13)

− (α2
1w11W11)(γ

2
1w11W11 + γ22w12W12 + γ21w21W21 + γ22w22W22)

}

(3.105)

(α2
1 + γ22)

2φ12W12 =

E
{

(α1γ2w12Φ12)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)

− (α2
1w12W12)(γ

2
1w11W11 + γ22w12W12 + γ21w21W21 + γ22w22W22)

}

(3.106)

(α2
2 + γ21)

2φ21W21 =

E
{

(α2γ1w21Φ21)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)

− (α2
2w21W21)(γ

2
1w11W11 + γ22w12W12 + γ21w21W21 + γ22w22W22)

}

(3.107)

(α2
2 + γ22)

2φ22W22 =

E
{

(α2γ2w22Φ22)(α1γ1w11Φ11 + α1γ2w12Φ12 + α2γ1w21Φ21 + α2γ2w22Φ22)

− (α2
2w22W22)(γ

2
1w11W11 + γ22w12W12 + γ21w21W21 + γ22w22W22)

}

(3.108)
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After integration by expansion theorem

D(α2
1 + γ21)

2w11
1

4
= q11

1

4
+ h
{

(γ21w11)(α
2
1φ11

16

9π2
)

+ (α2
1w11)(γ

2
1φ11

16

9π2
)− 2(α1γ1φ11)(α1γ1w11

4

9π2
)
}

(3.109)

D(α2
1 + γ22)

2w12
1

4
= q12

1

4
+ h
{

(γ22w12)(α
2
1φ11

64

45π2
)

+ (α2
1w12)(γ

2
1φ11

64

45π2
)− 2(α1γ2φ12)(α1γ1w11

8

45π2
)
}

(3.110)

D(α2
2 + γ21)

2w21
1

4
= q21

1

4
+ h
{

(γ21w21)(α
2
1φ11

64

45π2
)

+ (α2
2w21)(γ

2
1φ11

64

45π2
)− 2(α2γ1φ21)(α1γ1w11

8

45π2
)
}

(3.111)

D(α2
2 + γ22)

2w22
1

4
= q22

1

4
+ h
{

(γ22w22)(α
2
1φ11

256

225π2
)

+ (α2
2w22)(γ

2
1φ11

256

225π2
)− 2(α2γ2φ22)(α1γ1w11

16

225π2
)
}

(3.112)

(α2
1 + γ21)

2φ11
1

4
= E

{

(α1γ1w11)(α1γ1w11
4

9π2
)− (α2

1w11)(γ
2
1w11

16

9π2
)
}

(3.113)

(α2
1 + γ22)

2φ12
1

4
= E

{

(α1γ2w12)(α1γ1w11
8

45π2
)− (α2

1w12)(γ
2
1w11

64

45π2
)
}

(3.114)

(α2
2 + γ21)

2φ21
1

4
= E

{

(α2γ1w21)(α1γ1w11
8

45π2
)− (α2

2w21)(γ
2
1w11

64

45π2
)
}

(3.115)

(α2
2 + γ22)

2φ22
1

4
= E

{

(α2γ2w22)(α1γ1w11
16

225π2
)− (α2

2w22)(γ
2
1w11

256

225π2
)
}

(3.116)

By inspection we can see that the equations for w11 and φ11, equations (3.109) and

(3.113), form a closed system of two equations and two unknowns. We plug in the

values of those equations below.
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4π4Dw11 = q11 +
32

3
hπ2w11φ11 (3.117)

φ11 = − 4

15π2
Ew11(5w11) (3.118)

Eliminating φ11 from our equations we get

w11 = q̂11 +
Eh

Dπ4
(−32

9
w3
11) (3.119)

which is the same as the equation from the one-to-one term example. It should be

noted that this is not always the case. If one more term were taken in the sum, say

(m,n) = (1, 3) we would see that this would not be the case.

The other equations become:

25dπ4w12 = q12 +
256

9
hπ2w12φ11 −

128

45
hπ2φ12w11 (3.120)

25dπ4w21 = q21 +
256

9
hπ2w21φ11 −

9472

225
hπ2φ21w11 −

128

45
hπ2φ21w11 (3.121)

64dπ4w22 = q22 +
8192

225
hπ2w22φ11 −

512

225
hπ2φ22w11 (3.122)

25

4
π4φ12 = − 16

105
Eπ2w12(7w11) (3.123)

25

4
π4φ21 = −16

15
Eπ2w21(5w11) (3.124)

16π4φ22 = − 64

105
Eπ2w22(7w11) (3.125)

Eliminating φ12, φ21 and φ22 we get:

w12 = q̂12 +
Eh

Dπ4
(−631808

421875
w12w

2
11) (3.126)
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w21 = q̂21 +
Eh

Dπ4
(−13312

9375
w21w

2
11) (3.127)

w22 = q̂22 +
Eh

Dπ4
(−2528

3375
w22w

2
11) (3.128)

We can see that for w12, w21, and w22 the equations changed from the one-to-one

example. Also note that if q12 = q21, for a symmetric type loading, then w12 6= w21.

This results from having a finite number of terms in the solution. As we take more

terms we would find that w12 and w21 would begin to approach each other in value.

The plot for w11 that is solved here is given in figure (3.7). The figure also shows the

results given for Ventsel [47], Donnell [16], Iyengar [24], and Levy [28]. Levy’s six term

approximation assumed that there was a uniform load on the plate. We can see that

there is good agreement of the results. Compared to linear theory, stress-free edges

predict a smaller value. This is due to the fact that the inclusion of the geometric

nonlinearity caused the axial stiffness to be an additional stiffness term in the equation

of motion. If we look at the results in the form of

(

32

9π4

Eh

D
w2
11 + 1

)

w11 = q̂11 (3.129)

Dstress−free(w11)w11 = q̂11 (3.130)

we can see that the nonlinear system would be ‘stiffer’ than the linear system.

Below is the function for w11 if we were to take the first nine terms in the series.

w11 = ˆq11 +
Eh

Dπ4
(−32

9
w11

3 +
11584

2625
w11

2w13 −
1088

675
w11

2w31 +
15296

2625
w11

2w33

+
992

225
w11w13

2 +
832

7875
w11w13w31 −

20288

3375
w11w13w33 −

32

225
w11w31

2

+
3904

2625
w11w33w31 −

8416

3375
w11w33

2)

(3.131)

The complexity of the equation for w11 has grown significantly. However, it is still

possible to recover our one-to-one term approximation.
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Figure 3.7: Comparing Stress-Free Boundary Condition

Immovable Edges

Immovable edges are defined by equations (3.82) and (3.84), which are set equal to zero.

The resulting expressions are

δx = 0 δy = 0 (3.132)

φ = Px(x)y
2 + Py(y)x

2 +
∑

φmnWmn (3.133)

σx =
∂2φ

∂y2
= 2Px(x) + x2

∂2Py

∂y2
−
∑

γ2nφmnWmn (3.134)

σy =
∂2φ

∂x2
= 2Py(y) + y2

∂2Px

∂x2
−
∑

α2
mφmnWmn (3.135)

−σxy =
∂2φ

∂x∂y
= 2y

∂Px

∂x
+ 2x

∂Py

∂y
+
∑

αmγnφmnΦmn (3.136)

Our equations of motion are reproduced below.

D∇4w(x, t) = q(x, t) + h

(

∂2φ

∂y2
∂2w

∂x2
+

∂2φ

∂x2
∂2w

∂y2
− 2

∂2φ

∂x∂y

∂2w

∂x∂y

)

(3.137)
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∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= ∇4φ = E

(

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

)

(3.138)

Expanding the terms

D
∑

(α2
m + γ2n)

2wmnWmn =
∑

qmnWmn + h
{

(
∑

α2
aφabWab)(

∑

γ2nwmnWmn)

+ (
∑

γ2bφabWab)(
∑

α2
mwmnWmn)

− 2(
∑

αaγbφabΦab)(
∑

αmγnwmnΦmn)

− (2Py(y) + y2
∂2Px

∂x2
)(
∑

γ2nwmnWmn)

− (2Px(x) + x2
∂2Py

∂y2
)(
∑

α2
mwmnWmn)

− 2(2y
∂Px

∂x
+ 2x

∂Py

∂y
)(
∑

αmγnwmnΦmn)
}

(3.139)

∑

(α2
m + γ2n)

2φmnWmn = E
{

(
∑

αaγbwabΦab)(
∑

αmγnwmnΦmn)

− (
∑

α2
awabWab)(

∑

γ2nwmnWmn)
}

+−4

(

∂2Px

∂x2
+

∂2Py

∂y2

)

− y2
∂4Px

∂x4
− x2

∂4Py

∂y4

(3.140)

We need an expression for Px and Py in terms of wmn,Wmn or φmn,Φmn then we

can proceed with our expansion theorem.

Using these relationships

0 = δx(y) =

∫ 1

0

1

E

(

∂2φ

∂y2
− ν

∂2φ

∂x2

)

− 1

2

(

∂w

∂x

)2

dx (3.141)

0 = δy(x) =

∫ 1

0

1

E

(

∂2φ

∂x2
− ν

∂2φ

∂y2

)

− 1

2

(

∂w

∂y

)2

dy (3.142)

0 = δx(y) =

∫ 1

0

1

E

(

2Px(x) + x2
∂2Py

∂y2
−
∑

γ2nφmnWmn

−ν(2Py(y) + y2
∂2Px

∂x2
−
∑

α2
mφmnWmn)

)

− 1

2

(

∂w

∂x

)2

dx

(3.143)
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0 = δy(x) =

∫ 1

0

1

E

(

2Py(y) + y2
∂2Px

∂x2
−
∑

α2
mφmnWmn

−ν(2Px(x) + x2
∂2Py

∂y2
−
∑

γ2nφmnWmn)

)

− 1

2

(

∂w

∂y

)2

dy

(3.144)

∫ 1

0

(

∂w

∂x

)2

dx =
∑

∞
∑

q=1

α2
m

2
wmnwmq sin(γny) sin(γqy) (3.145)

∫ 1

0

(

∂w

∂y

)2

dx =
∑

∞
∑

q=1

γ2n
2
wmnwmq sin(γny) sin(γqy) (3.146)

Px and Py must satisfy equations (3.143) and (3.144). Therefore, we will expand

the axial loads.

Px(x) =
∑

P x
m sin(αmx) (3.147)

Py(y) =
∑

P y
n sin(γny) (3.148)

Example: Static, Immovable Edges - Px(x) and Py(y) - One Term

Because of the complicated nature of the problem, we will only consider a one term

approximation, m = n = 1.

δx = 0 =
4

π
P x − π2

3
P y sin(πy)− 2πφ11 sin(πy)

− ν(2P y sin(πy)− 2πy2P x − 2πφ11 sin(πy))−
π2E

4
w2
11 sin

2(πy)

(3.149)

δy = 0 =
4

π
P y − π2

3
P x sin(πx)− 2πφ11 sin(πx)

− ν(2P x sin(πx)− 2πx2P y − 2πφ11 sin(πx))−
π2E

4
w2
11 sin

2(πx)

(3.150)

By expansion theorem

0 =
4

π
P x − π2

6
P y − πφ11

− ν(P y − 2π

3
P x − πφ11)− Ew2

11

π2 − 4

4π

(3.151)
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0 =
4

π
P y − π2

6
P x − πφ11

− ν(P x − 2π

3
P y − πφ11)− Ew2

11

π2 − 4

4π

(3.152)

Collecting like terms

0 = P x(
4

π
− ν(−2π

3
)) + P y(−π2

6
− ν)− πφ11(1− ν)− Ew2

11

π2 − 4

4π
(3.153)

0 = P x(−π2

6
− ν) + P y(

4

π
− ν(−2π

3
))− πφ11(1− ν)− Ew2

11

π2 − 4

4π
(3.154)

Noting like terms, we can use the form below

0 = P xK + P yΥ− Γ (3.155)

0 = P xΥ+ P yK − Γ (3.156)

where

K =
8

π2
+ ν

2π2 − 8

π2
(3.157)

Υ = −π2

6
− ν (3.158)

Γ = πφ11(1− ν) +
πE

3
w2
11 (3.159)

Solving for P x and P y

P x = Γ
K −Υ

K2 −Υ2
= Γ

1

K +Υ
(3.160)

P y = Γ
1

K +Υ
(3.161)

(3.162)

We can see that P x and P y are equal in magnitude.
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P̄ = P x = P y =
−2π3

48(ν − 1) + π2(π2 − 6ν)
(3(1− ν)φ11 + Ew2

11) (3.163)

From above we can see that P x and P y have the same magnitude this is a result of

the symmetry of the first mode. Taking the one term, (m,n) = (1, 1), approximation

for our equation of motion, equations (3.139) and (3.140).

4Dπ4w11W11 = q11W11 + h
{

2(π4φ11w11W
2
11)

− 2(π4φ11w11Φ
2
11)

− (2P y sin(πy)− y2π2P x sin(πx))(π2w11W11)

− (2P x sin(πx)− x2π2P y sin(πy))(π2w11W11)

− 2(2yπP x cos(πx) + 2xπP y cos(πy))(π2w11Φ11)
}

(3.164)

4π4φ11W11 = E
{

(π4w2
11Φ

2
11)− (π4w2

11W
2
11)
}

− 4
(

−π2P x sin(πx)− π2P y sin(πy)
)

− y2π4P x sin(πx)− x2π4P y sin(πy)

(3.165)

Using expansion theorem

w11 = q11
1

4π4D
+

2h

D
φ11w11ζ11

+ P̄ h
4π2 − 18

9Dπ3
w11

(3.166)

φ11 = −Ew2
11ζ11 +

12− π2

π3
P̄ (3.167)

Using our expression for P̄ and φ11, equations (3.163) and (3.167). φ11 becomes

φ11 =
2

3

Ew2
11

(

96− 96ν + 12νπ2 + π4 − 36π2
)

π2 (24− 24ν + π4 − 6π2)
(3.168)

Using φ11 in equation (3.166)

w11 =
q11

4π4D
+−4

9

(

2π6 − 21π4 + 8νπ4 − 84νπ2 + 180π2 − 384 + 384ν
)

hEw3
11

Dπ4 (24− 24ν + π4 − 6π2)
(3.169)
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Equation (3.169) is a complete system with one equation and one unknown, w11.

A plot is given after the next section so that we can compare the results of different

assumptions of Px and Py.

Example: Static, Immovable Edges - Px and Py Constant - One Term

Following a similar procedure to above, ignoring all derivatives of Px and Py in equations

(3.143) and (3.144), P̄ becomes:

P̄ =
π3

8− νπ2
φ11(1− ν) +

π3E

3(8− νπ2)
w2
11 (3.170)

Substituting the above into our equation of motion, equations (3.139) and (3.140),

noting that all derivatives of Px and Py are now zero, and using expansion theorem

results in.

Dπ4w11 = q11
1

4
+ 2h(π4φ11w11ζ11)

− hP̄π2w11

(3.171)

φ11 = −Ew2
11ζ11 (3.172)

Using our expression for P̄ in equation (3.170), equation (3.171) becomes

Dπ4w11 = q11
1

4
+ 2h(π4φ11w11ζ11)

− h

(

π3

8− νπ2
φ11(1− ν) +

π3E

3(8− νπ2)
w2
11

)

π2w11

(3.173)

φ11 = −Ew2
11ζ11 (3.174)

Using equation (3.174) in conjunction with equation (3.173) results in

Dπ4w11 = q11
1

4
+ 2h(π4(−Ew2

11ζ11)w11ζ11)

− h

(

π3

8− νπ2
(−Ew2

11ζ11)(1− ν) +
π3E

3(8− νπ2)
w2
11

)

π2w11

(3.175)
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and simplifying, we obtain

w11 =
q11

4Dπ4
− 32Eh

9π4D
w3
11

−
( −1

8− νπ2
(
4

3π
)(1− ν) +

π

3(8− νπ2)

)

Eh

D
w3
11

(3.176)

Using a more familiar form

32Eh

9π4D
w3
11 +

(

π

3(8− νπ2)
− 4

3π(8− νπ2)
(1− ν)

)

Eh

D
w3
11 + w11 =

q11
4Dπ4

(3.177)
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Figure 3.8: Comparing Immovable Edges Boundary Condition

Figure (3.8) shows that for the equation derived here and other theories we have

a close agreement. Levy assumed that the plate was under a uniform load. However,

the results of Donnell [16], Levy [28], and the one term approximation for Px(y) and

Py(x) are very close in value. We also note that the deflections are smaller than linear

theory, by using similar arguments that we used for equation (3.129) we can see that

the nonlinear plate would be stiffer than the linear system.

Figure (3.9) compares the three different boundary conditions, linear, stress-free and

immovable edges. We can see that the linear case predicts the largest deformations as
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the stiffness of the plate is only the resistance to bending. The nonlinear theories have

a resistance to bending as well as stretching, which would create an overall stiffer plate.

We can also see that the stress-free edges have a larger deformation than the immovable

edges. This is because of the stiffness due to stretching. The nonlinear plates would pull

in toward the center as it is being deformed. Immovable edges would resist that motion

which is why the plate is stiffer than the stress-free edges which allows the movement.

Also note that from equation (3.129) there is one additional term in the stiffness. From

the immovable edge section we see that

(

32Eh

9π4D
w2
11 +

(

π

3(8− νπ2)
− 4

3π(8− νπ2)
(1− ν)

)

Eh

D
w2
11 + 1

)

w11 =
q11

4Dπ4
(3.178)

4π4Dimmovable(w11)w11 = q11(3.179)

We can see that Dimmovable > Dstress−free > D for linear systems. Therefore for linear

systems we have the largest deflections and for immovable edges we have the smallest

deflections as shown in figure (3.9).
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Figure 3.9: Comparing Boundary Conditions for Static Bending of Plates

Table (3.2) shows the coefficients for five different conditions, linear, stress free
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coupled and uncoupled, and immovable edges comparing the dependence of Px and Py

on the spatial variables. The table only considers the coefficients w11 and w33. We

compared two different load cases, for Load = 1000, q11 = 4000 and q̂11 ≈ 0.0089. For

Load = 8000, q11 = 32000 and q̂11 ≈ 0.0710. We can see that w33 contributes little

to the total deflection. As a result, the stress free uncoupled, and coupled results are

close in value. If a different load case were considered, such that the w33 coefficient

was much larger, the coupled values would have a greater difference compared to the

uncoupled values.

Plate Deflection

Load = 1000 Load = 8000

w11 w33 Total w11 w33 Total

Linear 0.0089 0.0001 0.0090 0.0710 0.0009 0.0719
Stress-Free Uncoupled 0.0088 3.7E − 5 0.0088 0.0506 0.0009 0.0515
Stress-Free Coupled 0.0088 0.0001 0.0089 0.0508 0.0008 0.0516

Immovable Px, Py Constant 0.0084 – 0.0084 0.0351 – 0.0351
Immovable Px(x), Py(y) 0.0086 – 0.0086 0.0398 – 0.0398

Table 3.2: Coefficients of a Plate

3.4.2 Dynamics

In this section we include the time derivative of our displacement function w(x, y, t)

which is now a function of time. Many steps below have been omitted as they parallel

steps from previous sections.

Below is equation (3.34) and equation (3.37), the coupled, nonlinear, partial differ-

ential equation that governs our system.

ρ
∂2w

∂t2
+D∇4w(x, y, t) = q(x, y, t) + h

(

∂2φ

∂y2
∂2w

∂x2
+

∂2φ

∂x2
∂2w

∂y2
− 2

∂2φ

∂x∂y

∂2w

∂x∂y

)

(3.180)

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= ∇4φ = E

(

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2

)

(3.181)
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Stress Free Edges

For stress free edges we have

σx|x=0,a = 0 σy|y=0,b = 0 (3.182)

Using

w(x, y, t) =
∑

wmn(t)Wmn(x, y) (3.183)

φ(x, y, t) =
∑

φmn(t)Wmn(x, y) (3.184)

Wmn = sin(αmx) sin(γny) (3.185)

Φmn = cos(αmx) cos(γny) (3.186)

Expanding our equation of motion

ρẅmnWmn+D
∑

(α2
m + γ2n)

2wmnWmn =
∑

qmnWmn

+ h
{

(
∑

α2
aφabWab)(

∑

γ2nwmnWmn) + (
∑

γ2bφabWab)(
∑

α2
mwmnWmn)

− 2(
∑

αaγbφabΦab)(
∑

αmγnwmnΦmn)
}

(3.187)

∑

(α2
m + γ2n)

2φmnWmn = E
{

(
∑

αaγbwabΦab)(
∑

αmγnwmnΦmn)

− (
∑

α2
awabWab)(

∑

γ2nwmnWmn)
}

(3.188)

Example: Dynamic, Stress Free Edges - One-to-One Term Approximation

A simplification to the system is ignoring the coupling between modes. As discussed

earlier, this may negatively affect the accuracy of our results, this approximation gives

us some insight into the behavior of plates.

ρẅmnWmn+D(α2
m+γ2n)

2wmnWmn = qmnWmn+2hα2
mγ2nφmnwmn (WmnWmn − ΦmnΦmn)

(3.189)
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(α2
m + γ2n)

2φmnWmn = Eα2
mγ2nwmnwmn(ΦmnΦmn −WmnWmn) (3.190)

Multiplying by Wab and integrating, taking note of the expansion theorem. Also,

for ease of use, noting that

ζmn =

∫

A

(WmnWmn − ΦmnΦmn)Wmn dA (3.191)

results in

ρ

4
ẅmn +

D

4
(α2

m + γ2n)
2wmn =

qmn

4
+ 2hα2

mγ2nφmnwmnζmn (3.192)

1

4
(α2

m + γ2n)
2φmn = −Eα2

mγ2nwmnwmnζmn (3.193)

Solving for φmn

φmn = −4Eζmn
α2
mγ2nwmnwmn

(α2
m + γ2n)

2
(3.194)

Back into equation (3.192)

ẅmn +
D

ρ
(α2

m + γ2n)
2wmn =

qmn

ρ
− 32Eh

α4
mγ4nζ

2
mn

ρ(α2
m + γ2n)

2
w3
mn (3.195)

Simplifying, and noting that ω2
mn = D

ρ
(α2

m + γ2n)
2, where ωmn is the natural frequency,

ẅmn + 32
Eh

ρ

α4
mγ4nζ

2
mn

(α2
m + γ2n)

2
w3
mn + ω2

mnwmn =
qmn

ρ
(3.196)

Note that the equation above takes the form of the undamped Duffing’s equation.

Since the solution takes the form of Duffing’s equation it provides greater insight into

the problem. As a result, we can have jumps in amplitude as we change the excitation

frequency. This characteristic was confirmed experimentally by Amabili [3]. We also

have the presence of stable and unstable solutions. Duffing’s equation also predicts sub-

harmonic and superharmonic resonance and other phenomena. However, these topics

are beyond the scope of this study. The Duffing equation is described in appendix B.
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The first four terms results in the system of equations below. The four equations

are uncoupled due to the assumptions made above and that some equations do not

have any nonlinear terms. These observations are similar with the results of the static

section.

ẅ11 +
128

9

Eh

ρ
w3
11 +

4π4D

ρ
w11 =

q11
ρ

ẅ12 +
25π4D

ρ
w12 =

q12
ρ

ẅ21 +
25π4D

ρ
w21 =

q21
ρ

ẅ22 +
64π4D

ρ
w22 =

q22
ρ

For a coupled mode solution one would take similar steps to that of the ‘four term’

example from the static section. Figure (3.10) shows the time response of w11 for the

uncoupled, stress free boundary condition. Figure (3.11) shows the frequency response

for that system.
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Figure 3.10: Comparing Linear and Nonlinear Time Response with Stress Free Edges
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Figure 3.11: Comparing Linear and Nonlinear Frequency Response with Stress Free
Edges. ‘–’ Linear Response, ‘- -’ Nonlinear Response. See Legend for Damping values
for each Color.

Immovable Edges

Since the procedure for the solution is similar to that of the static section, only the

solution will be presented below. Note that w11 is now a function of time, which results

in φ11 and P̄ also being functions of time.

Example: Dynamic, Immovable Edges - Px(x, t) and Py(y, t) - One Term

P̄ (t) = P x(t) = P y(t) =
−2π3

48(ν − 1) + π2(π2 − 6ν)
(3(1− ν)φ11(t) + Ew11(t)

2) (3.197)

φ11(t) =
2

3

Ew11(t)
2
(

96− 96ν + 12νπ2 + π4 − 36π2
)

π2 (24− 24ν + π4 − 6π2)
(3.198)

ρ

4π4D
ẅ11+w11(t) =

q11
4π4D

+−4

9

(

2π6 − 21π4 + 8νπ4 − 84νπ2 + 180π2 − 384 + 384ν
)

hEw3
11

Dπ4 (24− 24ν + π4 − 6π2)

(3.199)
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Note that the above equation is of the form of an undamped Duffing’s equation. As

stated earlier we can now predict the presence of amplitude jumps and other phenomena

that are associated with Duffing’s equation. Figure (3.12) shows the time response, and

figure (3.13) shows the frequency response of the system.
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Figure 3.12: Comparing Linear and Nonlinear Time Response with Immovable Edges,
Px, Py - Constant

Example: Dynamic, Immovable Edges - Px(t) and Py(t) - One Term

P̄ (t) =
π3

8− νπ2
φ11(t)(1− ν) +

π3E

3(8− νπ2)
w11(t)

2 (3.200)

φ11(t) = −Ew11(t)
2ζ11 (3.201)

ρ

4Dπ4
ẅ11 +

32Eh

9π4D
w3
11 +

(

π

3(8− νπ2)
− 4

3π(8− νπ2)
(1− ν)

)

Eh

D
w3
11 + w11 =

q11
4Dπ4

(3.202)
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Figure 3.13: Comparing Linear and Nonlinear Frequency Response with Immovable
Edges, Px, Py - Constant. ‘–’ Linear Response, ‘- -’ Nonlinear Response. See Legend
for Damping values for each Color.

Note that the equation is of the form of Duffing’s equation without damping which

implies the presence of jumps in amplitude and other phenomena. Figure (3.14) shows

the time response, and figure (3.15) shows the frequency response of the system.

Comparing the values for all the boundary conditions in figures (3.16) and (3.17).

As in the static section, the stiffest plate predicted is with immovable edges. The least

stiffest plate is linear plate theory. From the times response of the plate, we can see

that the response frequency changes with the boundary conditions. This is a result of

the boundary conditions of the nonlinear plate that stiffen the plate.
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Figure 3.15: Comparing Linear and Nonlinear Frequency Response with Immovable
Edges, Px(x), Py(y). ‘–’ Linear Response, ‘- -’ Nonlinear Response. See Legend for
Damping values for each Color.
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3.5 FEM Results

In order to gain some perspective on the theoretical results presented above, a finite

element approach was used. Abaqus CAE 6.8-3 was used to solve the problem of a

load suddenly placed at the center of a simply supported square plate. Using 400 lin-

ear, quadrilateral, S4R, shell elements, and 441 nodes, a flat shell with edge lengths of

one and with a shell thickness of 0.05 was utilized. A S4R element is a conventional

stress/displacement shell with 4 nodes and reduced integration. While the S4R element

allows transverse shear, for a ‘small’ thickness it is not significant. These elements do

not include rotatory inertia. Shell elements were used to model the middle surface of

the plate and the load was placed on the middle surface. While we could have used

solid elements to model the plate in a life like situation, we are only interested in the

mid-plane response and used shell elements instead. A constant load was placed at

the center of the plate and the edges were restrained from moving in the transverse

direction and zero applied twisting moment, Mxy = 0, simply supported edges. For the

dynamic case, two different magnitude loads were used in order to compare the change

in edge conditions. Three different situations were compared: the linear, NLGEOM off,

condition ,then the nonlinear, NLGEOM on, plate with edges not allowed to move in

the plane of the undeformed plate, or immovable edges, the last condition was allowing

the nonlinear plate to move in the plane of the undeformed plate, or stress-free edges.

NLGEOM is the ‘geometrically nonlinear’ switch. When off, the problem is geomet-

rically linear and when on, the problem is geometrically nonlinear. The NLGEOM

parameter also accounts for the ‘stress stiffening’ of the structure.

For the static problems, Abaqus/Standard was used. Abaqus/Standard solves the

nonlinear equilibrium equations by Newton’s method. Newton’s method is a root find-

ing algorithm that uses Taylor series. For the dynamic problems, Abaqus/Explicit was

used, which uses, by default, the lumped mass matrix. Abaqus/Explicit uses the ex-

plicit central difference integration rule as their method of solution. The lumped mass
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matrix assumes that the mass of an element is concentrated at the nodes of the ele-

ment. Within the explicit central difference integration, the inverse of the mass matrix

is required. With a lumped mass approximation, the mass matrix is diagonal, making

it routine to invert.

The response is given alongside the theoretical solution. The theoretical solution is

the solution derived in the earlier sections.

Figure (3.19) shows that the finite element method predicts a larger static bending

value than the theoretical value. This is because the theoretical values presented are

only the first term, and in some cases an additional term, in the infinite sum. If more

terms were taken, the results would match closer to the finite element results. However,

the relative values of linear, stress-free, and immovable edges agree with relative values

of the theoretical results.

For the dynamic cases two different, constant, load magnitudes were used in order

to compare a load where the nonlinearity would be insignificant and where it would

become significant. Figure (3.20) has a load magnitude of 1000 and figure (3.21) has

a load magnitude of 5000. From figure (3.20a) we can see that for all the boundary

conditions tested, the finite element results are very similar in magnitude and response

frequency. The frequencies match well between theoretical and finite element. On the

other hand, the amplitudes are slightly under predicted by the theoretical results, just

as with the static deflection.

From figure (3.21a) shows a significant change in response amplitude and frequency

between the different boundary conditions in the finite element models. The linear and

immovable edges match well with finite element models in terms of response frequency.

The theoretical frequency of the stress-free edge condition is higher than finite element

model. Just as with the other theories, the amplitude of the finite element model is

higher than the theoretical models.
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Figure 3.19: ‘–’ Theoretical Response, w11, ‘- -’ FEM Response at Plate Center: (a)
Comparing all Boundary Conditions; (b) Linear Response; (c) Immovable Edges Re-
sponse; and, (d) Stress-Free Edges Response.
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Figure 3.20: Load = 1000, ‘–’ Theoretical Response, ‘- -’ FEM Response: (a) Comparing
all Boundary Conditions; (b) Two Term Linear Response, w11, w33; (c) Immovable
Edges Response; and, (d) Two Term Stress-Free Edges Response, w11, w33.
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Figure 3.21: Load = 5000, ‘–’ Theoretical Response, ‘- -’ FEM Response: (a) Comparing
all Boundary Conditions; (b) Two Term Linear Response, w11, w33; (c) Immovable
Edges Response; and, (d) Two Term Stress-Free Edges Response, w11, w33.



81

Chapter 4

Conclusions and Future Work

4.1 Conclusion

From nonlinear beam theory we saw that immovable edges result in the nonlinear beam

becoming stiffer than the linear beam, resulting in smaller deflections. We saw that

stress-free beams simplifies to linear theory. As a result, a new approach was required,

the theory by Conway was presented. The theory proposed by Conway ignores the

kinetics of the problem and concentrates on the geometry of deflection. Conway’s

approach also does not take into account the resistance of the beam to folding onto

itself as well as stretching of the beam. Thus, Conway’s theory can result in unrealistic

deflections.

For vibrations of beams we saw that the nonlinear beam with immovable edges

resulted in the differential equation that took the form of Duffing’s equation. Therefore,

we were able to obtain the frequency response equation of the system. From that

solution, we realized that we may have up to three different amplitudes for a given

excitation frequency.

Considering a nonlinear plate would results in deflections smaller than in linear

plate theory. We also see that a plate with immovable edges makes the plate to be

stiffer than a plate with stress-free edges. Also, as the load grows, the deflection of the

nonlinear plate becomes asymptotic. While this may not be realistic from a materials

point of view, because the material would eventually become plastic, it is realistic in

terms of the plate geometry. We also investigated Gaussian curvature, which quantifies

the ‘stretch’ of a deflected plate.

For dynamic systems we saw that the solution takes the form of Duffing’s equation.
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Using perturbation technique we expanded the form of the solution, ignoring higher

order terms, which allowed us to obtain a system of equations that we are able to solve.

We found the frequency response equation of the system. From the frequency response

plot we can see that jumps in response amplitude may exist, which are not predicted

in linear theory. For nonlinear plates, as we slowly increase or decrease the excitation

frequency we would see a large difference in response amplitudes.

4.2 Future Work

While only one boundary condition was considered, simply-supported, this method of

solution may be extended to other boundary conditions, like clamped. However the

use of a double sine series to represent the Airy’s stress function may no longer be an

accurate modal function. One may have to use the same modal function for a clamped

plate as the modal function for Airy’s stress function, which may or may not be valid.

Another future endeavor is other plate shapes. While this study can easily be

extended to rectangular (not square) plates, circular plates require a bit more work.

One question is how to handle the expansion theorem in polar coordinates because the

integration can include a discontinuity at the plate’s center.
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Appendix A

Gaussian Curvature

The Gaussian curvature comes up in the study of nonlinear plate theory. The derivation

of Gaussian curvature requires knowledge from differential geometry, specifically the

first fundamental form and the second fundamental form. These topics are beyond the

scope of this study. Pressley [37] and O’Neill [34] give the information on differential

geometry theory that is required to derive Gaussian curvature. Here, the derivation of

Gaussian curvature will be carried out by an alternate method, as this approach gives

the reader a better physical understanding of Gaussian curvature and its application

to plates.

Gaussian curvature, K, is defined as the product of principal curvatures, κ1 and

κ2. In order to find the principal curvatures, we first find the curvatures of our x, y, z

coordinate system.

A.1 Curvature - Displacement Relationship

A structural element, beam or plate, deformed in the x− z plane would look like figure

(A.1). Note that we consider dx, dw, and ds to form a right triangle.

From the figure above we can see that

R dθ = ds (A.1)

( ds)2 ≈ ( dx)2 + (dw)2 (A.2)

tan(θ) =
dw

dx
(A.3)
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Figure A.1: Deformed Structural Element

We define curvature as the inverse of radius of curvature, R. Beginning with equa-

tion (A.3)

tan(θ) =
dw

dx
(A.4)

d

dx
tan(θ) =

d2w

dx2
(A.5)

sec2(θ)
dθ

dx
=

d2w

dx2
(A.6)

sec2(θ) dθ =
d2w

dx2
dx (A.7)

Using equation (A.1) and knowing that

sec2(θ) = 1 + tan2(θ) = 1 +

(

dw

dx

)2

(A.8)

results in

(

1 +

(

dw

dx

)2
)

1

R

ds

dx
=

d2w

dx2
(A.9)

From equation (A.2) we can find that

ds

dx
=

√

1 +

(

dw

dx

)2

(A.10)

This results in our expression for curvature
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Figure A.2: Pure Twist

κx =
1

R
=

d2w
dx2

(

1 +
(

dw
dx

)2
)

3

2

(A.11)

But from Kirchhoff’s hypothesis we know that ‘the slopes of the deflected middle

surface are small compared to unity ’ which allows us to approximate the curvature

with

κx ≈ d2w

dx2
(A.12)

When applicable, similar arguments produce the expressions for the curvature in

the y direction, and the expression for twist, κxy. A plate with only nonzero curvature

of κxy would be a surface resembling a saddle point, see figure (A.2), with lines of zero

transverse displacement going from midpoint to midpoint of opposite edges. Also note

that the expression for κx below will now have partial derivatives.

κx =
∂2w

∂x2
κy =

∂2w

∂y2
κxy =

∂2w

∂x∂y
(A.13)

From the above definition we see that κxy = κyx. We can construct the Hessian,

or curvature matrix, [H] , and recognize that the principal curvatures are the solution

to an eigenvalue problem. The eigenvectors are the directions of principal curvatures.
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Principal curvatures are the largest and smallest value of curvature for given deflection,

and there is also zero twist in the direction of principal curvature.

[H] =







∂2w
∂x2

∂2w
∂x∂y

∂2w
∂x∂y

∂2w
∂y2






=







κx κxy

κxy κy






(A.14)

det







κx − κ κxy

κxy κy − κ






= 0 (A.15)

The characteristic equation is

κ2 − (κx + κy)κ− κ2xy + κxκy = 0 (A.16)

The solution by quadratic formula gives two values, as expected, for principal curvature.

κ1 =
1

2

[

κx + κy +
√

(κx − κy)
2 + 4κ2xy

]

(A.17)

κ2 =
1

2

[

κx + κy −
√

(κx − κy)
2 + 4κ2xy

]

(A.18)

From our definition of Gaussian curvature

K = κ1κ2 = κxκy − κ2xy =
∂2w

∂x2
∂2w

∂y2
−
(

∂2w

∂x∂y

)2

(A.19)

Note that Gaussian curvature is equal to the determinant of the Hessian, which is

an invariant. The Gaussian curvature at one point of the surface would allow us to have

the value of the Gaussian curvature for the entire surface. A zero-Gaussian curvature

surface is known as a developable surface. A characteristic of a developable surface is

that one of the principal curvatures is equal to zero, like plate bending into a cylindrical

shape. An easy way to think of it is that a developable surface is a surface made of an

infinite number of straight lines. An example is a cone. If one were to take a straight

line, fix one end and have the other end move in a circular motion we would have a

cone. Any deflection of a simply supported plate would be non-developable. Linear
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plate theory ignores this property as it assumes that the small deflections produce zero

stretch within the plate. Also, from St. Venant’s Compatibility equations,

∂2Exx

∂y2
− 2

∂2Exy

∂x∂y
− ∂2Eyy

∂x2
=

(

∂2w

∂x∂y

)2

− ∂2w

∂x2
∂2w

∂y2
(A.20)

A developable surface implies that all in-plane strains, Exx, Eyy,and Exy, are equal to

zero. Therefore, for a plate, we can say that there is no stretching of the middle surface.

For example a cantilever, or clamped-free-free-free, plate or beam we would consider

having no stretch of the middle surface as shown in figure (A.3). A half-sphere would

not be a developable surface because if one were to try to flatten it, certain sections

would compress and other sections would stretch.

 

 

Figure A.3: Cantilever Member without Stretch
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Appendix B

Duffing’s Equation

Duffing’s equation is a second-order ordinary differential equation with a cubic nonlinear

term as given below.

ẅ + ω2
ow = −2ǫµẇ − ǫαw3 + E(t) (B.1)

Note the equation below also has an excitation term that is harmonic.

E(t) = K sin(Ωt) (B.2)

In mechanical systems, the Duffing equation can used to describe a system with

a nonlinear spring. For α > 0 we have a stiffening spring and for α < 0 we have a

softening spring. However in our situation, this equation describes the amplitude of

modes of a dynamic nonlinear plate or beam. We will always consider an α greater

than or equal to zero. In order to solve the equation a perturbation method, known

as multiple-scale analysis, will be used to approximate the solution to the system. Our

perturbation variable, ǫ, is used to also define the coefficient of the excitation, K = ǫk.

We also introduce σ as a detuning variable such that

Ω = ωo + ǫσ (B.3)

Where for an oscillatory system, ωo is the natural frequency and Ω is the excitation

frequency.

The method of multiple scales requires the use of a second time variable. Using the

notation of Bender and Orszag [7] we choose:
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τ = ǫt (B.4)

We also need to expand the solution in terms of t, ǫ and our new time variable, τ .

w(t; ǫ) = w0(t, τ) + ǫw1(t, τ) + · · · (B.5)

E(t) = ǫk sin(ωot+ στ) (B.6)

Since w is not solely a function of t anymore, we need to define the derivative of w with

respect to t.

dw

dt
=

(

∂w0

∂t
+

∂w0

∂τ

∂τ

∂t

)

+ ǫ

(

∂w1

∂t
+

∂w1

∂τ

∂τ

∂t

)

+ · · · (B.7)

Since ∂τ
∂t

= ǫ the above equation becomes

dw

dt
=

∂w0

∂t
+ ǫ

(

∂w0

∂τ
+

∂w1

∂t

)

+O(ǫ2) (B.8)

Next, finding the second derivative with respect to time results in

d2w

dt2
=

∂2w0

∂t2
+ ǫ

(

2
∂2w0

∂τ∂t
+

∂2w1

∂t2

)

+O(ǫ2) (B.9)

Plugging back into our equation of motion and evaluating the ǫ0 terms and the ǫ1 terms

∂2w0

∂t2
+ ω2

ow0 = 0 (B.10)

∂2w1

∂t2
+ ω2

ow1 = −2
∂2w0

∂τ∂t
− 2µ

∂w0

∂t
− αw3

0 + k sin(ωot+ στ) (B.11)

The general solution to equation (B.10) is

w0 = A(τ)eiωot + Ā(τ)e−iωot (B.12)
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Where A(τ) is yet to be determined and Ā(τ) is its complex conjugate. Plugging

that solution in equation (B.11), and utilizing the complex form of our forcing function,

equation (B.13), yields

cos(θ) =
1

2

(

eiθ + e−iθ
)

sin(θ) =
−i

2

(

eiθ + e−iθ
)

(B.13)

∂2w1

∂t2
+ ω2

ow1 =

{

−
[

2iωo(
dA

dτ
+ µA) + 3αA2Ā

]

eiωot − αA3e3iωot − i
k

2
eiωoteiστ

}

+ cc

(B.14)

Where cc is the complex conjugate of the terms on the right hand side in the curly

brackets. In order to remove ‘secular’ terms, or terms that cause a break down in

perturbation theory, we choose A to be the solution of equation (B.15). ‘Secular’ terms

are terms that could cause the solution to diverge. For an oscillatory system, secular

terms would cause resonance, and the response amplitude would approach infinity. In

our case, since the natural frequency of the system is ωo, it is important to eliminate

the terms that have sine or cosine of ωot in order to eliminate terms that would go off

to infinity.

2iωo(
dA

dτ
+ µA) + 3αA2Ā+ i

k

2
eiστ = 0 (B.15)

Writing A in the form

A =
a

2
eiβ (B.16)

where a and β are real values and plugging in our equation for A we obtain

iωo

(

da

dτ
+ a

dβ

dτ
i+ µa

)

+ 3α
a3

8
+ i

k

2
ei(στ−β) = 0 (B.17)

Separating real and imaginary terms into two equations
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da

dτ
= −µa− k

2ωo
cos(στ − β) (B.18)

a
dβ

dτ
=

3α

8ωo
a3 − k

2ωo
sin(στ − β) (B.19)

Using γ = στ − β results in an equation where τ does not appear directly.

da

dτ
= −µa− k

2ωo
cos(γ) (B.20)

a
dγ

dτ
= σa− 3α

8ωo
a3 +

k

2ωo
sin(γ) (B.21)

The system of equations above are the approximation to the solution to Duffing’s

equation. While it may seem that we increased the difficulty of our problem by ex-

changing a second order differential equation for two first order differential equations,

we now have system of equations in a familiar form that have been well studied.

Now substituting equation (B.16) into equation (B.12) then into equation (B.5)

results in an expression for w.

w = a cos(ωot+ β) +O(ǫ) (B.22)

Note that this expression is the ‘general solution’ to the differential equation, and

the ‘particular’ or steady state solution will be given in the next section. However note

that this general solution does not take into account the change in the natural frequency

with load. We can factor our differential equation in such a form that we can obtain a

new form for natural frequency

ẅ +
(

ω2
o + ǫαw2

)

w = −2ǫµẇ + E(t) (B.23)

ω2
effective = ω2

o + ǫαw2 (B.24)

From the equation above we can see that for larger values of w we would see a higher

natural frequency. As a plate deflects the tensile membrane force would grow. As a
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result, the plate would act as if it were stiffer than linear plate theory. As we know from

past studies, a stiffer plate would have a higher natural frequency. Thus, we can use

equation (B.22) as a approximation for the response but a numerical solution, like the

Runge-Kutta method, would give a solution to the time response with varying natural

frequencies.

B.1 Steady State Solution

For a steady-state, or equilibrium, solution we set da
dτ = dβ

dτ = dγ
dτ = 0. These solutions

are also known as finding the critical, or singular points of the system.

µa = − k

2ωo
cos(γ) (B.25)

σa− 3α

8ωo
a3 = − k

2ωo
sin(γ) (B.26)

The sum of the squares of the above equation removes the dependence on γ and

thus removing the time dependence. This results in the frequency-response equation for

the Duffing equation.

(µa)2 +

(

σa− 3α

8ωo
a3
)2

=
k2

4ω2
o

(B.27)

In order to solve this equation we first simplify by expanding the square term.

(µa)2 + (σa)2 +

(

3α

8ωo

)2

a6 − 3ασ

4ω0
a4 =

k2

4ω2
o

Which simplifies to

9α2

64ω2
o

a6 − 3ασ

4ω0
a4 + (µ2 + σ2)a2 =

k2

4ω2
o

(B.28)

Set p = a2

9α2

64ω2
o

p3 − 3ασ

4ω0
p2 + (µ2 + σ2)p =

k2

4ω2
o

(B.29)
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This third-order algebraic equation relates the amplitude of the response a with the

amplitude of the excitation k, and the excitation frequency, which is a function of σ.

The only unknown in the above equation is p, which is related to the amplitude of the

response. It is possible to have up to three, unique, real solutions for this problem. We

will see that this equation predicts a unique solution for coefficients.

B.1.1 Example

Setting

α = 1 (B.30)

ωo = 1 (B.31)

k = 1000 (B.32)

results in the following frequency response, in figure (B.1), varying σ for different values

of µ.
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Figure B.1: Frequency Response
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We can see from the figure above that for particular excitation frequencies we may

observe up to three different amplitudes. However, from stability analysis in Nayfeh

and Mook [32] we can see that two of the solutions are stable and one is unstable. As

a result, we would have a ‘jump in amplitude’ as we change the excitation frequency,

which will be discussed later.

From the figure it is easy to see that for a particular excitation frequency we may

have up to three different amplitudes. However, these amplitudes depend on what

direction one is coming from. If we began at a high frequency and gradually decreased

the excitation frequency we would follow the lower most path. If we began at a low

frequency and gradually increased the excitation frequency we would follow the upper

most path. This was observed experimentally for plates by Amabili [3]. As a result,

there is a region of the graph that is unused. As shown later, this region is known as

the unstable region.

Now note that this solution is the steady state solution of the system.

w = a cos(Ωt− γ) +O(ǫ) (B.33)

B.2 Stability

Since we have found the ‘critical points’, or the steady-state solution, of the system

from equation (B.28) or (B.29) we can now investigate the stability of these points. In

order to continue, we need to linearize the area around the critical point. By defining

a generic critical point as (as, γs), where as and γs satisfy equation (B.28) and (B.29)

we can continue by the method outlined in Greenberg [22].

da

dτ
= −µa− k

2ωo
cos(γ) = P (a, γ) (B.34)

dγ

dτ
= σ − 3α

8ωo
a2 +

k

2ωo

sin(γ)

a
= Q(a, γ) (B.35)

Our linearized model becomes, note that A = a− as and G = γ − γs
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dA

dτ
=

∂P (as, γs)

∂a
A+

∂P (as, γs)

∂γ
G (B.36)

dG

dτ
=

∂Q(as, γs)

∂a
A+

∂Q(as, γs)

∂γ
G (B.37)

Substituting in the partial differentials

dA

dτ
= −µA+

k

2ωo
sin(γs)G (B.38)

dG

dτ
=

(

− 6α

8ωo
as −

k

2ωo

sin(γs)

a2s

)

A+
k

2ωo

cos(γs)

as
G (B.39)

Using the relationships in equation (B.25) and (B.26) to eliminate γs

dA

dτ
= −µA+

(

3α

8ωo
a3s − σas

)

G (B.40)

dG

dτ
=

(

σ

as
− 9α

8ωo
as

)

A− µG (B.41)

In matrix form







da1
dτ

dγ1
dτ






=







−µ −
(

σas − 3α
8ωo

a3s

)

(

σ
as

− 9asα
8ωo

)

−µ













a1

γ1






(B.42)

The above is an eigenvalue problem with the characteristic equation of

λ2 + 2µλ+ µ2 +

(

σ

as
− 9asα

8ωo

)(

σas −
3α

8ωo
a3s

)

= 0 (B.43)

which has a solution in the form

λ = −µ±
√

(

σ − 9α

8ωo
a2s

)(

3α

8ωo
a2s − σ

)

(B.44)

From Greenberg [22], we can classify the form of the stability based on the values

of λ.

• Center: Purely imaginary roots
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(a) Near a1 (b) Near a2 (c) Near a3

Figure B.2: Phase Planes near the Critical Points

• Focus: Complex conjugate roots

• Node: Real roots of same sign

• Saddle: Real roots of opposite sign

B.2.1 Example

Using values of α = ωo = 1, µ = 10, k = 1000 (see figure (B.1)) we find the stability of

the solutions at σ = 500.

At σ = 500 we find the values of as to be

a1 = 36.8482 (B.45)

a2 = 36.1645 (B.46)

a3 = 1.0005 (B.47)

From figure (B.2) above we can see that the ‘middle’ solution is unstable. Our

frequency response curve with a distinct unstable region is displayed in figure (B.3).

B.2.2 Jump Phenomena

From study of stability we can see that some values of the response amplitude do not

exist. From left to right, a discontinuous curve for response amplitude is present, which

results in jump phenomenon.
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(b) Amplitude Jumps

Figure B.3: Stability and Amplitude Jumps

If we were to start with a ‘low’ frequency and very slowly increase the excitation

frequency until we reach the apex of the curve of figure (B.3a), then a small increase in

excitation frequency would cause the amplitude to decrease significantly. Then, further

increasing the frequency would cause a steady decline in amplitude. See figure (B.3b)

and follow the green arrows, and the amplitude jump is marked be the green ‘dash-dot’

line. Starting with a high frequency and slowly decreasing the excitation frequency

would cause a slight increase in amplitude until we reach the discontinuity where a

slight decrease in excitation frequency would cause the amplitude to increase suddenly.

Then decreasing the excitation frequency would cause the amplitude to decrease at a

steady rate. This response is represented by the red arrows in figure (B.3b), also the

amplitude jump is shown by the red ‘dash-dot’ line.

The discussion above was just a short introduction into Duffing’s equation with

many other topics, which may be of interest, omitted. For interest in subharmonic,

and superharmonic, or overtone, resonance, when Ω ≈ 3ωo and Ω ≈ ωo/3, respectively,

Nayfeh [32] has a detailed explanation. Note that subharmonic and superharmonic

frequencies arise when the response of the system resembles the superposition of two

responses of the linear system. This is important if one is far away from the natural

frequency, one may still have resonance because of their proximity to the subharmonic or

superharmonic frequencies. In between large and small loading, a region exists where
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chaos, or non periodic response, may occur. While it is possible to predict chaotic

regions, such analysis is beyond the scope of this study. As a result, for a particular

system it is important to obtain a numerical solution in order to predict whether or not

chaos will occur.
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Appendix C

Solutions from other Authors

C.1 Stress-Free Edges

Taken from Levy [28] page 155, table 6. Note that p is the magnitude of the uniform

load on a plate.

pa4

Eh4

w11

h
wcenter

h

0 0 0
12.1 0.5 0.486
29.4 1.000 0.962
56.9 1.500 1.424
99.4 2.000 1.870
161 2.500 2.307
247 3.000 2.742
358 3.500 3.174
497 4.000 3.600

Table C.1: Coefficients given by Levy for Stress-Free Edges

From Iyengar [24], page 115, equation (28). q is the magnitude of a uniform load, l

is half of the plate edge’s length.

(w11

h

)3
+ 5.8595

(w11

h

)

= 0.26335
ql4

Eh4
(C.1)

From Ventsel [47], page 222, equation (7.91). Venstel uses f to represent w11 and p

is the magnitude of a uniform load on the plate.

f

h
+

128(1− ν2)

3π4

f3

h3
=

4pa4

π6Dh
(C.2)
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From Donnell [16], page 232, equation (5.11). p11 is the magnitude of a uniform

load on the plate.

12(1− ν2)a4

π4Eh4
p11 =

(

1 +
a2

b2

)2
w11

h
+

3(1− ν2)

4

(

1 +
a4

b4

)

(w11

h

)3
(C.3)

C.2 Immovable Edges

Taken from Levy [28] page 156, table 9.

pa4

Eh4

w11

h
wcenter

h

0 0 0
14.78 0.5 0.485
51.4 1.000 0.952
132.0 1.500 1.402
278.5 2.000 1.846

Table C.2: Coefficients given by Levy for Immovable Edges

From Iyengar [24], page 121, equation (52). q is the magnitude of a uniform load, l

is half of the plate edge’s length.

(w11

h

)3
+ 0.47

(w11

h

)

= 0.03375
ql4

Eh4
(C.4)

From Donnell [16], page 231, equation (5.10). p11 is the magnitude of a uniform

load on the plate.

12(1− ν2)a4

π4Eh4
p11 =

(

1 +
a2

b2

)2
w11

h
+

3

4

[

(3− ν2)

(

1 +
a4

b4

)

+
4νa2

b2

]

(w11

h

)3
(C.5)
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[3] Amabili, M., “Nonlinear Vibrations of Rectangular Plates with Different Boundary
Conditions: Theory and Experiments,” Computers & Structures, Vol. 82, 2004, pp.
2587-2605.

[4] Baruh, H. Analytical Dynamics, McGraw-Hill, New York, 1999.

[5] Beléndez, T., Neipp, C., and Beléndez, A., “Large and Small Deflections of a
Cantilever Beam,” European Journal of Physics, Vol. 23, 2002, pp. 371-379.

[6] Benaroya, H. Mechanical Vibration: Analysis, Uncertainties, and Control , 2nd
Edition, Marcel Dekker, New York, 2004

[7] Bender, C.M. and Orszag, S.A., Advanced Mathematical Methods for Scientists

and Engineers, McGraw-Hill Book Company, New York, 1978.

[8] Berger, H.M., “A New Approach to the Analysis of Large Deflections of Plates,”
Journal of Applied Mechanics, Vol. 22, No. 465, 1955, pp. 465-472.

[9] Bisshopp, K.E., and Drucker, D.C., “Large Deflections of Cantilever Beams,”
Quarterly of Applied Mathematics, Vol. 3, No. 3, 1945, pp. 272-275.

[10] Bottega, W.J., Engineering Vibrations, Taylor & Francis Group, Boca Raton, FL,
2006.

[11] Chia, C.Y., Nonlinear Analysis of Plates, McGraw-Hill, New York, 1980.

[12] Chu, H., Herrmann, G., “Influence of Large Amplitudes on Free Flexural Vibra-
tions of Rectangular Elastic Plates,” Journal of Applied Mechanics, Vol. 23, 1956,
pp. 532-540.

[13] Conway, H.D., “The Large Deflection of Simply Supported Beams,” Philosophical

Magazine, Vol. 38, 1947, pp. 905-911.

[14] Cook, R.D., Young, W.C., Advanced Mechanics of Materials, Macmillan Publish-
ing Company, New York, 1985.

[15] Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J., Concepts and Applications of

Finite Element Analysis, 4th Edition, John Wiley & Sons, Inc., New Jersey, 2002.

[16] Donnell, L.H., Beams, Plates, and Shells, McGraw-Hill, New York, 1976.



102

[17] El Kadiri, M., Benamar, R., “Improvement of the semi-analytical method, based on
Hamilton’s principle and spectral analysis, for determination of the geometrically
non-linear response of thin straight structures. Part III: steady state periodic forced
response of rectangular plates,” Journal of Sound and Vibration, Vol. 264, 2003,
pp. 1-35.

[18] Evensen, D.A., “Nonlinear Vibrations of Beams with Various Boundary Condi-
tions,” AIAA Journal , Vol. 6, No. 2, 1968, pp. 370-372.

[19] Fish, J., Belytschko, T., A First Course in Finite Elements, John Wiley & Sons,
Inc., New Jersey, 2007.

[20] Fung, Y.C., Foundations of Solid Mechanics, Prentice Hall, New Jersey, 1965.

[21] Graff, K.F., Wave Motion in Elastic Solids, Dover Publications, Inc., New York,
1975.

[22] Greenberg, M.D., Advanced Engineering Mathematics, 2nd Edition, Prentice Hall,
New Jersey, 1998.

[23] Howell, P., Kozyreff, G., and Ockendon, J.R., Applied Solid Mechanics, Cambridge
University Press, New York, 2009.

[24] Iyengar, K.T.S.R., Naqvi, M.M., “Large Deflections of Rectangular Plates,” Inter-

national Journal of Non-Linear Mechanics, Vol. 1, No. 2, 1966, pp. 109-122.

[25] Kirchhoff, G.R., “Uber das gleichgewichi und die bewegung einer elasishem
scheibe,” J. Fuer die Reine und Angewandte Mathematik , Vol. 49, 1850, pp. 51-88.

[26] Leissa, A., Vibration of Plates, Government Printing Office, Washington, US, 1969.

[27] Leung, A.Y.T., and Mao, S.G., “A sympletic Galerkin Method for Non-Linear
Vibration of Beams and Plates,” Journal of Sound and Vibration, Vol. 183, No. 3,
1995, pp. 475-491.

[28] Levy, S., “Bending of Rectangular Plates with Large Deflections,” NACA, TR.,
737, 1942.

[29] Mathews, J.H., Fink, K.D., Numerical Methods Using Matlab, 4th Edition, Pearson
Prentice Hall, New Jersey, 2004.

[30] Mansfield, E.H., The Bending & Streching of Plates, 2nd Edition, Cambridge Uni-
versity Press, New York, 1989.

[31] Mindlin, R.D., “Influence of Rotatory Inertia and Shear on Flexural Motions of
Isotropic Elastic Plates,” Journal of Applied Mechancis, Vol. 18, 1951, pp. 31-38.

[32] Nayfeh, A.H., and Mook, D.T., Nonlinear Oscillations, John Wiley & Sons, INC.,
New York, 1979.

[33] Nayfeh, A.H., Introduction to Perturbation Techniques, John Wiley & Sons, INC.,
New York, 1981.



103

[34] O’Neill B., Elementary Differential Geometry , Revised 2nd Edition, Elsevier, New
York, 2006.

[35] Prathap, G., and Pandalai, K.A.V., “Non-Linear Vibrations of Transversely
Isotropic Rectangular Plates,” International Journal of Non-Linear Mechanics,
Vol. 13, 1977, pp. 285-294.

[36] Prescott, J., Applied Elasticity , Dover Publications, INC., New York, 1961.

[37] Pressley, A., Elementary Differential Geometry , 2nd Edition, Springer, London,
2010.

[38] Ribeiro, P., “Periodic Vibration of Plates with Large Displacements,” AIAA Jour-

nal , Vol. 40, No. 1, 2001, pp. 185-188.

[39] Sathyamoorthy, M., Nonlinear Analysis of Structures, CRC Press LLC, Boca Ra-
ton, FL, 1998.

[40] Sathyamoorthy, M., “Nonlinear Vibration Analysis of Plates: A Review and Survey
of Current Developments,” Applied Mechanics Reviews, Vol. 40, 1987, pp. 1553-
1561.

[41] Sathyamoorthy, M., “Nonlinear Analysis of Beams Part I: A Survey of Recent
Advances,” Shock and Vibration Digest , Vol. 14, No. 17, 1982, pp. 19-35.

[42] Singh, G., Sharma, A.K., and Rao, G.V., “Large-Amplitude Free Vibrations of
Beams - A Discussion on Various Formulations and Assumptions,” Journal of

Sound and Vibration, Vol. 142, No. 1, 1990, pp. 77-85.

[43] Szilard, R., Theory and Analysis of Plates: Classical and Numerical Methods,
Prentice-Hall, Englewood Cliffs, New Jersey, 1974.

[44] Woinowsky-Krieger, S., “The Effect of an Axial Force on the Vibration of Hinged
Bars,” Journal of Applied Mechanics, Vol. 17, No. 1, 1950, pp. 35-36.

[45] Timoshenko, S., and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd
Edition, McGraw-Hill, New York, 1959.

[46] Tuttle, M.E., Structural Analysis of Polymeric Composite Materials, Marcel
Dekker, New York, 2004.

[47] Ventsel, E., Krauthammer, T., Thin Plates and Shells: Theory, Analysis, and

Applications, Marcel Dekker, New York, 2001.

[48] von Kármán, T., “Fesigkeitsprobleme in Maschinenbau,” Encycl de Math Wiss,
Vol. 4, 1910, pp. 348-351.

[49] Wang, T.M., “Non-Linear Bending of Beams with Uniformly Distributed Loads,”
International Journal of Non-Linear Mechanics, Vol. 4, 1969, pp. 389-395.

[50] Way, S., “Uniformly loaded clamped rectangular plates with large deflection,”
Proc. 5th Int. Congr. on Applied Mechanics, 1938, pp. 123-128.



104

[51] Wei-Zang, C., and Kai-Yuan, Y., “On the Large Deflection of Rectangular Plate,”
Proceedings of IX International Congress of Applied Mechanics, 1956, pp. 387-394.

[52] Yosibash, Z., and Kirby, R.M., “Dynamic response of various von-Kármán Non-
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