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ABSTRACT OF THE DISSERTATION 

Modeling Receptor Reorganization and Strain in Protein-Ligand Binding 

By KRISTINA A. PARIS 

 

Dissertation Director:  
Professor Ronald M. Levy 

 

 

The key objectives of computational structure-based drug design include the prediction of 

the protein-ligand complex binding modes and estimation of the binding affinities.  The 

overall affinity of a ligand for a receptor can be expressed as a balance between the 

strength of the interactions of a ligand to any particular binding-competent conformation 

of the receptor and the probability of occurrence of that conformation in the absence of 

the ligand.  The receptor conformation probability distributions can be described by the 

free energy landscape of the receptor from which the strain free energy required to move 

from one conformation to another in the absence of a ligand may be estimated.  The 

availability of large datasets of crystal structures in the PDB can provide information 

about the locations of free energy basins and their shapes.  Here we utilize several 

methods in an effort to model the strain free energy of several receptors due to binding 

using the vast structural data publically available in the PDB.  Clustering of 99 X-ray 

structures of HIV-1 reverse transcriptase at the flexible non-nucleoside inhibitor binding 

pocket elucidates eight discrete clusters, one of which displays a novel bound 
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conformation of the functionally important primer grip.  The clustering results served as a 

guide for replica exchange molecular dynamics simulations that offer a more in-depth 

look at the potential reorganization of the binding pocket.  Clustering of 327 available X-

ray structures of HIV-1 protease reveals less discrete variability in the substrate envelope 

than HIV-1 reverse transcriptase but does reveal some receptor reorganization that may 

be due to a combination of mutations. 

A linear response model for incorporation of receptor strain in modern protein-ligand 

binding affinity estimators is proposed.  Receptor-receptor contact counts are employed 

as estimators for changes in receptor conformation due to binding of different ligands.  

Overall, the linear model produces apparent reduction in binding energy estimation errors 

and increases in the rank-order correlation with respect to initial values determined by the 

commercially available Glide 5.0 XP that does not take into account receptor 

reorganization.  It also offers information as to the type of conformational changes, if 

any, that may contribute to the receptor reorganization energy.  A null hypothesis test is 

constructed to evaluate the possibility of producing fits by chance alone.  Finally, an 

alternative estimator approach using structurally significant intrareceptor distance 

descriptors, where there are less possible estimators, shows some promise for several 

drug targets.  The model has the potential to allow for coarse-grained investigation of the 

conformational and energetic landscapes for binding inhibitors to flexible protein 

receptors. 
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Chapter 1 

Introduction 

 

Computational structure-based drug design strives to correctly predict protein-

ligand complex binding modes and estimate binding affinities in an effort to capture the 

physical properties that are responsible for recognition of the drug by its target protein.  

The amount of available structural data is ever-growing as experimental techniques 

improve.  This large amount of structural data along with a large amount of available 

inhibition data allows computer-aided structure-based ligand design to serve as an 

alternative strategy to experimental high-throughput screening to find novel leads in drug 

development.  Previously, ligand binding was often approached via either Fischer’s 

“lock-and-key” model (Fischer, 1894) or Koshland’s “induced fit” hypothesis (Koshland, 

1958).  In the “lock-and-key” model, the free and ligand-bound proteins have the same 

rigid conformation whereas in the “induced fit” model, the ligand induces a 

complementary conformational change in the protein.  The conformational selection 

hypothesis approaches binding from a “folding funnel” point of view where protein 

folding is viewed as a parallel process where an ensemble of molecules goes downhill 

through an energy funnel (Dill and Chan, 1997; Lazaridis and Karplus, 1997; Becker and 

Karplus, 1997; Martinez et al., 1998; Onuchic et al., 1997; Ravindranathan et al., 2005).  

Folding funnels are rugged in the vicinity of the native fold of the protein, suggesting 

energetically competitive and similar conformations that provide an enhanced means of 

interactions between the protein and either ligands or other proteins.  The model of 
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conformational selection takes into account this rugged terrain and argues that ligand 

binding can shift the populations towards the weakly populated, higher energy 

conformations that are more suitable for binding (Ma et al., 1999).   Both conformational 

selection and induced fit appear to play roles in ligand binding (Boehr et al., 2009; Bakan 

and Bahar, 2009). 

 Accurate modeling of hydration and the ability of a scoring function to favorably 

score the native structure are essential in successful computational modeling problems, 

including the study of protein folding, conformational equilibria, and binding.  The first 

part of this study analyzes the ability of the OPLS-AA (Jorgenson et al., 1996; Kaminski 

et al., 2001) scoring function in combination with the AGBNP solvent model (Gallicchio 

and Levy, 2004) to predict protein loop and side chain conformations.   

 The second part of this study utilizes several methods in an effort to model the 

strain free energy of several receptors due to binding using the vast structural data 

publically available in the Protein Data Bank (PDB; Berman et al., 2000).  The first few 

chapters of this section focus on utilizing available X-ray structures to create a 

conformational landscape for binding for two human immunodeficiency virus (HIV) 

enzymes: reverse transcriptase (RT) and protease (PR).  Inhibition of these two enzymes 

allows a retardation of the progression of HIV to full-blown acquired immune deficiency 

syndrome (AIDS).  RT primarily functions as the virus’ “copy machine” as it copies the 

viral RNA into DNA that is incorporated in the host cell’s genome.  PR serves in the 

important role of prepping viral enzymes for production of a new virion.  Both enzymes 

have very flexible inhibitor binding pockets. As they have been the focus of many 

studies, there are many X-ray structures available.  These large ensembles of X-ray 
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structures (99 for RT and 318 for PR) are clustered using hierarchical clustering schemes 

to pinpoint areas of conformational fluctuation due to binding.  Results offer a better 

understanding of the potential conformational landscape for binding and elucidate novel 

configurations of the binding pockets that have not yet been described or fully explored.  

Clustering also offers a benchmark for a more extensive computational exploration of the 

binding landscapes. 

A linear model for incorporation of receptor strain in the modern protein-ligand 

binding affinity estimator Glide (Friesner et al., 2006; Friesner et al., 2004; Halgren et al., 

2004) is proposed in the final part of the section on receptor reorganization.  Receptor-

receptor contact counts and “hand-picked” descriptors are employed as estimators for 

changes in receptor conformation due to binding of different ligands.  Comparison with 

the use of random data leads to the question of the statistical significance of such a model 

based on culling from large data sets.  The protocol set forth serves as an example for 

future projects for incorporation of receptor strain in ligand binding problems and also 

offers a discussion of potential repercussions of the use of large data sets. 
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Chapter 2 

Protein Loop Modeling 

 

2.1 Introduction 

 A scoring function that scores the native conformation more favorably than other 

possible conformations is a necessary component for any effective computational 

approach to protein modeling (Skolnick, 2006; Lazaridis and Karplus, 2000).  Recent 

developments have focused on structure refinement in an effort to optimize models for 

drug discovery and structure prediction problems: prediction of protein loops (Fiser at al. 

2000; Soto et al., 2008; Jacobson et. al., 2004), prediction of protein side chains (Krivov 

et al., 2009; Jacobson et al., 2002), and prediction of ligand-receptor “induced fit” effects 

(Sherman et al., 2006).  Evaluation of scoring functions is often accomplished using a 

decoy set, where a known native structure is combined with a set of plausibly misfolded 

decoy structures and the scoring function is graded on its ability to recognize the native 

conformation (Rhee and Pande, 2003).  For small structural variations, such as those in 

loop modeling, it is necessary to further challenge the scoring function by performing 

extensive local conformational searches, thus making the protein loop prediction problem 

a powerful benchmarking tool for testing accuracy of scoring functions. 

 In this study, we look at the prediction ability the OPLS-AA all-atom force field 

(Jorgenson et al., 1996; Kaminski et al., 2001) and a selection of implicit solvent models: 

distance-dependent dielectric, Surface Generalized Born plus Non-Polar (SGBNP) 

(Zhang et al., 2001; Ghosh et al., 1998), and three parameterizations of Analytical 



8 

Generalized Born plus Non-Polar (AGB-γ, AGBNP and AGBNP+) (Gallicchio and Levy, 

2004) in combination with the Protein Local Optimization Program (PLOP) (Jacobson et 

al. 2004) which employs a torsional angle search protocol.  We also evaluate a version of 

PLOP that has been optimized for loop prediction in the crystal environment.  

 

2.2 Procedures and Results 

 The procedures and results of this part of the thesis are presented below as a 

reprint of a paper published in the Journal of Chemical Theory and Computation 2008, 4, 

855-868. 
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Chapter 3 

Mini-proteins and AGBNP 

 
 

3.1 Introduction 

 As described in Chapter 2, the accurate modeling of hydration and the ability of a 

scoring function to favorably score the native structure are important in computational 

modeling problems, including the study of protein folding, conformational equilibria, and 

binding.  The results of earlier studies (Felts et al., 2004) and the study described in 

Chapter 2 (Felts et al., 2008) suggest that the OPLS-AA/AGBNP (Jorgenson et al., 1996; 

Kaminski et al., 2001; Gallicchio and Levy, 2004) model reproduces reasonably the 

backbone secondary structure features of proteins and peptides.  This chapter, therefore, 

focuses primarily on the prediction of protein side chains. 

 Explicit solvent models are generally thought to provide the most complete and 

detailed description of hydration (Levy and Gallicchio, 1998) but are computationally 

demanding.  Implicit solvent models, which are less computationally demanding, have 

been shown to be alternatives to explicit solvation. (Feig and Brooks, 2004; Roux and 

Simonson, 1999; Felts et al., 2004; Gallicchio et al., 2002) Here we test several 

incarnations of the Analytical Generalized Born plus Non-Polar (AGBNP) solvent model 

(Gallicchio and Levy, 2004) for its ability to predict the structure of several small 

proteins. 
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3.2 Hydrogen Bond Screening and AGBNP  

Previous work with protein decoys (Felts et al., 2002), β-hairpin and α-helical 

peptides (Felts et al., 2004), and side chain and loop modeling (Jacobson et al., 2002; 

Jacobson et al., 2004; Yu et al., 2006) indicated that salt bridge formation is 

overestimated by generalized Born solvation models.  A “quick fix” through use of 

dielectric screening was designed to reduce the occurrence of salt bridges between 

oppositely charged residues as well as to decrease repulsion between like-charged 

residues (Felts et al., 2004).  The standard implementation of the GB model estimates the 

electrostatic component of the hydration free energy as a sum of the self energies and pair 

energies: 

    

€ 

ΔGelec ≅ ΔGGB = ΔGself + ΔGpair          (3.1) 

where 
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ΔGself = −
1
2
1
εin

−
1
εw

 

 
 

 

 
 

qi
2

Bii
∑              (3.2) 

and  

€ 

ΔGpair = −
1
εin

−
1
εw

 

 
 

 

 
 

qiq j

fiji< j
∑           (3.3)  

In equations (3.2) and (3.3), εin is the dielectric constant of the interior of the solute 

(generally set to 1), εw is the dielectric constant of the solvent (generally set to 80 for 

water), qi is the partial charge on atom i, Bi is the Born radius of atom i and fij, the 

generalized Born pair function, is defined as 

€ 

fij = rij
2 + Bij

2 exp(−rij
2 /4Bij

2 )           (3.4) 
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where rij is the distance between atoms i and j, 

€ 

Bij = BiB j  is the geometric average of 

the Born radii of atoms i and j.  The modified pair function used in this work 

€ 

fij = rij
2 + Sij

2Bij
2 exp(−rij

2 /4Bij
2 )          (3.5) 

differs from the original (eq. 3.4) by the introduction of the Sij parameter which is defined 

as the geometric average of the screening constants Si and Sj that are assigned to atoms i 

and j: 

€ 

Sij = SiS j .  The screening constants are nonnegative, dimensionless parameters.  

When both Si and Sj are set to 1, the original GB pair interaction energy is recovered 

(Felts et al., 2004).   

 Original work with the modified pair function aimed to reduce salt bridges and 

thus assigned screening values of 0.5 to the oxygen atoms of the carboxylate groups of 

the glutamate and aspartate residues and to the nitrogen atoms of the ammonium and 

guanadinium groups of the lysine and arginine residues while the screening constants for 

all other atom types were set to 1 (Felts et al., 2004). This preliminary study aims to 

lessen the number of any hydrogen bonds and thus reduces the values to 0.5, 0.7, 0.8 or 

0.9 on both oxygen and hydrogen atoms on either the backbone or side chain.   

 We looked at a set of eight mini-proteins or peptides between 25 and 30 residues 

in length that have been shown to form stable secondary structures in solution.  The set of 

eight structures included: neurotoxin III with sequence 

RSCCPCYWGGCPWGQNCYPEGCSGPKV (PDB id 1ANS; Manoleras and Norton, 

1994), hpTX2 toxin with sequence DDCGKLFSGCDTNADCCEGYVCRLWCKLDW 

(PDB id 1EMX; Bernard et al., 2009), full sequence design 1 with sequence 

QQYTAKIKGRTFRNEKELRDFIEKFKGR (PDB id 1FSD; Dahiyat and Mayo, 1997), 

delta-conotoxin TxVIA with sequence WCKQSGEMCNLLDQNCCDGYCIVLVCT 
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(PDB id 1FU3; Kohno et al., 2002), computationally designed peptide 1 with sequence 

KPYTARIKGRTFSNEKELRDFLETFTGR (PDB id 1PSV; Dahiyat et al., 1997), an 

HPV E6-inhibiting Trp-cage with sequence XALQELLGQWLKDGGPSSGRPPPSX 

(PDB id 1RIJ; Liu et al., 2004), Viola hederacea root cyclotide-1 with sequence 

CAESCVWIPCTVTALLGCSCSNKVCYNGIP (PDB id 1VB8; Trabi and Craik, 2004), 

and the K channel blocker OmTx2 from the venom of the scorpion Opisthacanthus 

madagascariensis with sequence DPCYEVCLQQHGNVKECEEACKHPVEY (PDB id 

1WQD; Chagot et al., 2005).  These structures are not fragments of larger proteins and 

  

Figure 3.1. Graphical representations of eight mini-proteins.  a: neurotoxin III (PDB id 1ANS); b: hpTX2 
toxin (PDB id 1EMX); c: full sequence design 1 peptide (PDB id 1FSD); d: delta- conotoxin TxVIA (PDB 
id 1FU3); e: computationally designed peptide 1 (PDB id 1PSV); f: HPV E6-binding Trp-cage (PDB id 
1RIJ); g: VHR1 cyclotide (PDB id 1VB8); h: potassium channel blocker OmTx2 (PDB id 1WQD).  In each 
case the best representative structure as specified in the NMR model deposited in the PDB is shown.  α-
helices are shown in red, β-strands are shown as cyan arrows, loops and turns are shown in gray, Disulfide 
bonds formed in the unminimized native are shown in yellow.  The tryptophan in the Trp-cage is also 
shown in dark blue for PDB id 1RIJ (f). 
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met the following requirements: no ligands, no non-standard residues, pH between 6.5 

and 7.5, and inclusion of all heavy atom coordinates.  They are a diverse set which 

include various secondary structures as shown in Figure 3.1.   

Hybrid monte carlo (HMC) simulations were conducted for the complete set of 

eight mini-proteins up to 10ns (25ns for 1PSV) starting from the best representative 

structure from the NMR model deposited in the PDB.  A time step of 2 fs was employed 

with 10 MD steps per HMC cycle.  MD simulations were also conducted for a subset of 

four mini-proteins: 1EMX, 1FSD, 1PSV, 1RIJ for 10ns, set to 300 K with the Berendsen 

thermostat, and with a time step of 1fs.  Simulations were performed with the OPLS-AA 

potential using the IMPACT program (Banks et al., 2005).  Resulting structures were 

clustered using Cluster, a single-linkage hierarchical clustering algorithm (Shenkin and 

McDonald, 1994).  Representatives from each cluster were then minimized using the 

OPLS-AA/AGBNP potential.  1ANS and 1PSV were further analyzed with 

minimizations using OPLS-AA/AGBNP and screening constants ranging from 0.5 to 1.0 

for oxygen and hydrogen atoms on either the backbone or side chain.  Explicit solvent 

(4ns with the TIP3P water model in a 45Å x 45Å x 45Å box) simulations were also 

employed for 1PSV using the IMPACT program.  Each minimized representative 

structure was structurally analyzed for extent of molecular interactions including number 

of H-bonds, number of van der Waals contacts and solvent accessible surface area.  H-

bonds were detected using a minimum hydrogen-acceptor distance of 2.5 Å and a 

minimum donor angle of 120°.  Van der Waals contacts were detected using a 1.3 cutoff 

for the ratio of the distance between atoms i and j to the sum of the vdW radii of atoms i 

and j.  A comparison of the average values obtained using AGBNP-minimized 
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(predicted) structures versus the minimized native structures is shown in Table 3.1.  For 

all eight mini-proteins, the predicted structures display much greater numbers of H-bonds 

and vdW contacts while the total SASA of the predicted structures is less than that of the 

native.   

PDB id Av. H-bonds Av. vdW Contacts Av. SASA 
1ANS 21 / 7 2262 / 2023 2257 / 2344 
1EMX 19 / 10 2580 / 2457 2541 / 2664 
1FSD 22 / 18 3055 / 2904 2784 / 3012 
1FU3 24 / 16 2455 / 2293 2149 / 2338 
1PSV 22 / 9 2937 / 2668 2607 / 2865 
1RIJ 21 / 13 2075 / 1957 1880 / 2093 
1VB8 22 / 15 2488 / 2328 2256 / 2431 
1WQD 19 / 13 2502 / 2250 2402 / 2604 

Table 3.1. Comparison of OPLS-AA/AGBNP predicted structures and native structures.  Average number 
of hydrogen bonds, average number of vdW contacts and average solvent accessible surface reported for 
predicted structures / native structure. 

  Backbone  Side chain 
Si 1.0 0.5 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9 

1ANS  
Pred. H-Bonds 20.5 8 9.5 14.5 15 13.5 16.5 15 17 19 
Min. Native. H-bonds 
Native H-bonds = 1 6 3 3 3 3 6 6 3 3 3 

Pred. BB H-bonds  10.5 2 3 6 2.5 7 6.25 5 8.5 8 
Min. Native BB H-bonds 
Native BB H-bonds = 1 4 2 2 2 2 4 4 2 2 2 

Pred. SB 0.5 2 0 0 0 0 0 0 0 0 
Min. Native SB 
Native SB = 0 0 0 0 0 0 0 0 0 0 0 

           
1PSV  

Pred. H-Bonds 26 16.7 16.7 19.3 21.5 18.6 23.3 20 21 21 
Min. Native. H-bonds 
Native H-bonds = 11 11 8 7 7 9 12 12 10 10 12 

Pred. BB H-bonds  14 4.7 7.7 9 10.5 9.6 8.3 9.7 10.5 11 
Min. Native BB H-bonds 
Native BB H-bonds = 11 10 7 6 6 7 9 10 9 8 10 

Pred. SB 2.5 3 1.7 0.5 2.5 1 1.6 0.7 1.75 1.3 
Min. Native SB 
Native SB = 0 0 0 0 0 0 0 0 0 0 0 
Table 3.2. Effect of differing screening constants Si on the number of hydrogen bonds (H-bonds), 
backbone-to-backbone H-bonds (BB H-bonds) and salt bridges (SB).  Average predicted values are 
compared with the minimized native.  The native 1ANS before minimization displays 1 H-bond, of which 1 
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is a backbone to backbone H-bond  and zero are salt bridges.  The native 1PSV before minimization 
displays 11 H-bonds of which 11 are backbone-to-backbone H-bonds and zero are salt bridges. 

 Inclusion of the screening constants for 1ANS and 1PSV given in table 3.2 shows 

that addition of the screening constant does allow for a pronounced decrease in the 

number of H-bonds.  However, comparison shows that whereas the native H-bonds are 

predominantly backbone-to-backbone, the predicted structures display a propensity for 

H-bond formation between side chain-side chain or side chain-backbone.  In both cases, 

there is little effect on the number of salt bridges as salt bridges are difficult to form in 

the selected structures.  Explicit solvent simulations on 1PSV are in agreement with the 

native conformations observed, with the majority of the H-bonds occurring in a 

backbone-to-backbone fashion.   

3.3 Hydrogen Bonds in AGBNP2 

 The preliminary results from part 3.2 above pointed to the inability of the AGBNP 

solvent model to describe correct H-bond formation in the set of eight mini-proteins.  The 

AGBNP2 model was thus presented as an evolution of the AGBNP model in which a 

new empirical component to model first solvation shell effects (such as H-bonding) is 

introduced.  A subset of the eight mini-proteins above was utilized to test the new 

AGBNP2 model.   

 The procedures, results and discussion of this section are included in the 

following reprint of a paper published in J. Chem. Theory Comput. 2009, 5, 2544-2564. 
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Abstract: The AGBNP2 implicit solvent model, an evolution of the Analytical Generalized Born
plus NonPolar (AGBNP) model we have previously reported, is presented with the aim of
modeling hydration effects beyond those described by conventional continuum dielectric
representations. A new empirical hydration free energy component based on a procedure to
locate and score hydration sites on the solute surface is introduced to model first solvation shell
effects, such as hydrogen bonding, which are poorly described by continuum dielectric models.
This new component is added to the generalized Born and nonpolar AGBNP terms. Also newly
introduced is an analytical Solvent Excluded Volume (SEV) model which improves the solute
volume description by reducing the effect of spurious high dielectric interstitial spaces present
in conventional van der Waals representations. The AGBNP2 model is parametrized and tested
with respect to experimental hydration free energies of small molecules and the results of explicit
solvent simulations. Modeling the granularity of water is one of the main design principles
employed for the first shell solvation function and the SEV model, by requiring that water locations
have a minimum available volume based on the size of a water molecule. It is shown that the
new volumetric model produces Born radii and surface areas in good agreement with accurate
numerical evaluations of these quantities. The results of molecular dynamics simulations of a
series of miniproteins show that the new model produces conformational ensembles in
substantially better agreement with reference explicit solvent ensembles than the original AGBNP
model with respect to both structural and energetics measures.

1. Introduction

Water plays a fundamental role in virtually all biological
processes. The accurate modeling of hydration thermody-
namics is therefore essential for studying protein conforma-
tional equilibria, aggregation, and binding. Explicit solvent
models arguably provide the most detailed and complete
description of hydration phenomena.1 They are, however,
computationally demanding not only because of the large
number of solvent atoms involved, but also because of the
need to average over many solvent configurations to obtain
meaningful thermodynamic data. Implicit solvent models,2

which are based on the statistical mechanics concept of the
solvent potential of mean force,3 have been shown to be
useful alternatives to explicit solvation for applications

including protein folding and binding,4 and small molecule
hydration free energy prediction.5

Modern implicit solvent models6,7 include distinct estima-
tors for the nonpolar and electrostatic components of the
hydration free energy. The nonpolar component corresponds
to the free energy of hydration of the uncharged solute, while
the electrostatic component corresponds to the free energy
of turning on the solute partial charges. The latter is typically
modeled treating the water solvent as a uniform high
dielectric continuum.8 Methods based on the numerical
solution of the Poisson-Boltzmann (PB) equation9 provide
a virtually exact representation of the response of the solvent
within the dielectric continuum approximation. Recent
advances extending dielectric continuum approaches have
focused on the development of Generalized Born (GB)
models,10 which have been shown to reproduce with good
accuracy PB and explicit solvent7,11 results at a fraction of* Corresponding author e-mail emilio@biomaps.rutgers.edu.

J. Chem. Theory Comput. 2009, 5, 2544–25642544
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the computational expense. The development of computa-
tionally efficient analytical and differentiable GB methods
based on pairwise descreening schemes6,12,13 has made
possible the integration of GB models in molecular dynamics
packages for biological simulations.14-16

The nonpolar hydration free energy component accounts
for all nonelectrostatic solute-solvent interactions as well
as hydrophobic interactions,17 which are essential driving
forces in biological processes such as protein folding18-21

and binding.22-25 Historically the nonpolar hydration free
energy has been modeled by empirical surface area models26

which are still widely employed.10,27-35 Surface area models
are useful as a first approximation; however, qualitative
deficiencies have been observed.29,36-41

A few years ago we presented the Analytical Generalized
Born plus NonPolar (AGBNP) implicit solvent model,42

which introduced two key innovations with respect to both
the electrostatic and nonpolar components. Unlike most
implicit solvent models, the AGBNP nonpolar hydration free
energy model includes distinct estimators for the solute-
solvent van der Waals dispersion energy and cavity formation
work components. The main advantages of a model based
on the cavity/dispersion decomposition of the nonpolar
solvation free energy stem from its ability to describe both
medium-range solute-solvent dispersion interactions, which
depend on solute composition, as well as effects dominated
by short-range hydrophobic interactions, which can be
modeled by an accessible surface area term.40 A series of
studies highlight the importance of the balance between
hydrophobicity and dispersion interactions in regulating the
structure of the hydration shell and the strength of interactions
between macromolecules.43-45 In AGBNP the work of cavity
formation is described by a surface area dependent mod-
el,37,46-48 while the dispersion estimator is based on the
integral of van der Waals solute-solvent interactions over
the solvent, modeled as a uniform continuum.38 This form
of the nonpolar estimator had been motivated by a series of
earlier studies5,37,49-52 and has since been shown by
us38,53-55 and others39-41,56 to be qualitatively superior to
models based only on the surface area in reproducing explicit
solvent results as well as rationalizing structural and ther-
modynamic experimental observations.

The electrostatic solvation model in AGBNP is based on
the pairwise descreening GB scheme13 whereby the Born
radius of each atom is obtained by summing an appropriate
descreening function over its neighbors. The main distinction
between the AGBNP GB model and conventional pairwise
descreening implementations is that in AGBNP the volume
scaling factors, which offset the overcounting of regions of
space occupied by more than one atom, are computed from
the geometry of the molecule rather than being introduced
as geometry-independent parameters fit to either experiments
or to numerical Poisson-Boltzmann results.14,57-59 The
reduction of the number of parameters achieved with this
strategy improves the transferability of the model to unusual
functional groups often found in ligand molecules, which
would otherwise require extensive parametrization.60

Given its characteristics, the AGBNP model has been
mainly targeted to applications involving molecular dynamics

canonical conformational sampling, and to the study of
protein-ligand complexes. Since its inception the model has
been employed in the investigation of a wide variety of
biomolecular problems ranging from peptide conformational
propensity prediction and folding,54,61-63 ensemble-based
interpretation of NMR experiments,64,65 protein loop homol-
ogy modeling,55 ligand-induced conformational changes in
proteins,66,67 conformational equilibria of protein-ligand
complexes,68,69 protein-ligand binding affinity prediction,70

and structure-based vaccine design.71 The AGBNP model
has been reimplemented and adopted with minor modifica-
tions by other investigators.72,73 The main elements of the
AGBNP nonpolar and electrostatic models have been
independently validated,39,40,74,75 and have been incorporated
in recently proposed hydration free energy models.76,77

In this work we present a new implicit solvent model
named AGBNP2 which builds upon the original AGBNP
implementation (hereafter referred to as AGBNP1) and
improves it with respect to the description of the solute
volume and the treatment of short-range solute-water
electrostatic interactions.

Continuum dielectric models assume that the solvent can
be described by a linear and uniform dielectric medium.78

This assumption is generally valid at the macroscopic level;
however, at the molecular level water exhibits significant
deviations from this behavior.1 Nonlinear dielectric response,
the nonuniform distribution of water molecules, charge
asymmetry, and electrostriction effects79 are all phenomena
originating from the finite size and internal structure of water
molecules as well as their specific interactions which are not
taken into account by continuum dielectric models. Some
of these effects are qualitatively captured by standard
classical fixed-charge explicit water models; however others,
such as polarization and hydrogen bonding interactions, can
be fully modeled only by adopting more complex physical
models.80 GB models make further simplifications in addition
to the dielectric continuum approximation, thereby com-
pounding the challenge of achieving with GB-based implicit
solvent models the level of realism required to reliably model
phenomena, such as protein folding and binding, character-
ized by relatively small free energy changes.

In the face of these challenges a reasonable approach is
to adopt an empirical hydration free energy model motivated
by physical arguments81 parametrized with respect to ex-
perimental hydration free energy data.20 Models of this kind
typically score conformations on the basis of the degree of
solvent exposure of solute atoms. Historically82 the solvent
accessible surface area of the solute has been used for this
purpose, while modern implementations suitable for confor-
mational sampling applications often employ computationally
convenient volumetric measures.83,84 In this work we take
this general approach but we retain the GB model component
which we believe is a useful baseline to describe the long-
range influence of the water medium. The empirical param-
etrized component of the model then takes the form of an
empirical first solvation shell correction function designed
so as to absorb hydration effects not accurately described
by the GB model. Specifically, as described below, we
employ a short-range analytical hydrogen bonding correction

AGBNP2 Implicit Solvation Model J. Chem. Theory Comput., Vol. 5, No. 9, 2009 2545
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function based on the degree of water occupancy (taking into
account the finite size of water molecules) of appropriately
chosen hydration sites on the solute surface. The aim of this
model is to effectively introduce some explicit solvation
features without actually adding water molecules to the
system as for example done in hybrid explicit/implicit
models.85,86

In this work we also improve the description of the solute
volume, which in AGBNP1 is modeled by means of atomic
spheres of radius equal to the atomic van der Waals radius.
The deficiencies of the van der Waals solute volume model
have been recognized.87,88 They stem from the presence of
high dielectric interstitial spaces in the solute interior which
are too small to contain discrete water molecules. These
spurious high dielectric spaces contribute to the hydration
of buried or partially buried atoms causing underestimation
of desolvation effects. The volume enclosed by the molecular
surface (MS), defined as the surface produced by a solvent
spherical probe rolling on the van der Waals surface of the
solute,89 represents the region which is inaccessible to water
molecules and is often referred as the Solvent Excluded
Volume (SEV).90 The SEV, lacking the spurious high
dielectric interstitial spaces, provides a better representation
of the low dielectric region associated with the solute. For
this reason accurate Poisson-Boltzmann solvers9,91,92 have
employed the SEV description of the solute region.

Despite its clear advantages, the lack of analytical and
computationally efficient representation of the SEV have
hampered its deployment in conjunction with GB models
for molecular dynamics applications. The Generalized Born
Molecular Volume (GBMV) series of models87,93,94 achieve
high accuracy relative to numerical Poisson calculations in
part by employing the SEV description of the solute volume.
The analytical versions of GBMV93,94 describe the SEV
volume by means of a continuous and differentiable solute
density function which is integrated on a grid to yield atomic
Born radii. In this work we present a model for the SEV
that preserves the analytical pairwise atomic descreening
approach employed in the AGBNP1 model,42 which avoids
computations on a grid. We show that this approximate
model reproduces some of the key features of the SEV while
yielding the same favorable algorithmic scaling of pairwise
descreening approaches.

This paper focuses primarily on the description and
parametrization of the SEV model and the short-range
hydrogen bonding function of AGBNP2. In section 2 we
present a brief review of the AGBNP1 model, including the
electrostatic and nonpolar models, followed by the derivation
of the analytical SEV pairwise descreening model and the
short-range hydrogen bonding function which are new for
AGBNP2. In section 3 we validate the AGBNP2 analytical
estimates for the Born radii and atomic surface areas using
as a reference accurate numerical evaluations of these
quantities. This is followed by the parametrization of the
hydrogen bonding function against experimental hydration
free energies of small molecules. This section concludes with
a comparison between the structural and energetic properties
of a series of structured peptides (miniproteins) predicted
with the AGBNP2 model and those obtained with explicit

solvation. The paper then concludes with a discussion and
implications of the results, and with a perspective on future
improvements and validation of the AGBNP2 model.

2. Methods

2.1. The Analytical Generalized Born plus Nonpolar
Implicit Solvent Model (AGBNP). In this section we briefly
review the formulation of the AGBNP1 implicit solvent
model, which forms the basis for the new AGBNP2 model.
A full account can be found in the original reference.42 The
AGBNP1 hydration free energy ∆Gh(1) is defined as

where ∆Gelec is the electrostatic contribution to the solvation
free energy and ∆Gnp includes nonelectrostatic contributions.
∆Gnp is further decomposed into a cavity hydration free
energy ∆Gcav and a solute-solvent van der Waals dispersion
interaction component ∆GvdW.

2.1.1. Geometrical Estimators. Each free energy compo-
nent in eq 1 is ultimately based on an analytical geometrical
description of the solute volume modeled as a set of
overlapping atomic spheres of radii Ri centered on the atomic
positions ri. Hydrogen atoms do not contribute to the solute
volume. The solute volume is modeled using the Gaussian
overlap approach first proposed by Grant and Pickup.95 In
this model the solute volume is computed using the Poincaré
formula (also known as the inclusion-exclusion formula)
for the volume of the union of a set of intersecting elements

where Vi ) 4πRi
3/3 is the volume of atom i, Vij is the volume

of intersection of atoms i and j (second-order intersection),
Vijk is the volume of intersection of atoms i, j, and k (third-
order intersection), and so on. The overlap volumes are
approximated by the overlap integral, V

12...n
g , available in

analytical form (see for example eq 10 of ref 42), between
n Gaussian density functions each corresponding to a solute
atom:

where the Gaussian density function for atom i is

where

and

and κ is a dimensionless parameter that regulates the
diffuseness of the atomic Gaussian function. In the AGBNP1
formulation κ ) 2.227.

∆Gh(1) ) ∆Gelec + ∆Gnp

) ∆Gelec + ∆Gcav + ∆GvdW (1)

V ) ∑
i

Vi - ∑
i<j

Vij + ∑
i<j<k

Vijk - ... (2)

V12...n
g = ∫ d3r F1(r) F2(r) ... Fn(r) (3)

Fi(r) ) p exp[-ci(r - ri)
2] (4)

ci )
κ

Ri
2

(5)

p ) 4π
3 (κπ)3/2

(6)
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Gaussian integrals are in principle nonzero for any finite
distances between the Gaussian densities. Although not
mentioned in ref 42, to reduce computational cost AGBNP1
includes a switching function that reduces to zero the overlap
volume between two or more Gaussians when the overlap
volume is smaller than a certain value. If V

12...
g is the value

of the Gaussian overlap volume between a set of atoms, the
corresponding overlap volume V12... used in eq 2 is set as

where

where, when using van der Waals atomic radii, V1 ) 0.1
and V2 ) 1 Å3, and for the augmented radii used in the
surface area model (see below), V1 ) 0.2 and V2 ) 2 Å3.
This scheme sets to zero Gaussian overlap volumes smaller
than V1, leaves volumes above V2 unchanged, and smoothly
reduces volumes between these two limits. It drastically
reduces the number of overlap volumes that need to be
calculated since the fact that an n-body overlap volume V12...n

between n atoms is zero guarantees that all of the (n + 1)-
body overlap volumes corresponding to the same set of atoms
plus one additional atom are also zero. (Note below that the
formulation of AGBNP2 employs modified values of V1 and
V2 to improve the accuracy of surface areas.)

The van der Waals surface area Ai of atom i, which is
another geometrical descriptor of the model, is based on the
derivative ∂V/∂Ri of the solute volume with respect to the
radius Ri

96

where V is given by eq 2 and

with a ) 5 Å2, is a filter function which prevents negative
values for the surface areas for buried atoms while inducing
negligible changes to the surface areas of solvent-exposed
atoms.

The model further defines the so-called self-volume V′i
of atom i as

which is computed similarly to the solute volume and
measures the solute volume that is considered to belong

exclusively to this atom. Due to the overlaps with other
atoms, the self-volume V′i of an atom is smaller than the
van der Waals volume Vi of the atom. The ratio

is a volume scaling factor used below in the evaluation of
the Born radii.

2.1.2. Electrostatic Model. The electrostatic hydration free
energy is modeled using a continuous dielectric representa-
tion of the water solvent using the Generalized Born (GB)
approximation

where

where εin is the dielectric constant of the interior of the solute
and εw is the dielectric constant of the solvent; qi and qj are
the charges of atom i and j, and

In eqs 14-16 Bi denotes the Born radius of atom i which,
under the Coulomb field approximation,57 is given by the
inverse of the integral over the solvent region of the negative
fourth power of the distance function centered on atom i

In the AGBNP1 model this integral is approximated by a
so-called pairwise descreening formula

where Ri is the van der Waals radius of atom i, sji is the
volume scaling factor for atom j (eq 13) when atom i is
removed from the solute, and Qji is the integral (available in
analytic form; see Appendix B of ref 42) of the function (r
- ri)-4 over the volume of the sphere corresponding to solute
atom j that lies outside the sphere corresponding to atom i.
Equation 18 applies to all of the atoms i of the solute
(hydrogen atoms and heavy atoms), whereas the sum over j
includes only heavy atoms. The AGBNP1 estimates for the
Born radii Bi are finally computed from the inverse Born
radii !i from eq 18 after processing them through the function

where b-1 ) 50 Å. The filter function eq 19 is designed to
prevent the occurrence of negative Born radii or Born radii
larger than 50 Å. The goal of the filter function is simply to
increase the robustness of the algorithm in limiting cases.

V12...n ) {0 V12...
g e V1

V12...n
g fw(u) V1 < V12...n

g < V2

V12...n
g V12...

g g V2

(7)

u )
V12...

g - V1

V2 - V1
(8)

fw(x) ) x3(10 - 15x + 6x2) (9)

Ai ) fa( ∂V
∂Ri

) (10)

fa(x) ) { x3

a2 + x2 x > 0

0 x e 0
(11)

V′i ) Vi -
1
2 ∑

j

Vij +
1
3 ∑

j<k

Vijk + ... (12)

si )
V′i
Vi
e 1 (13)

∆Gelec ) uε ∑
i

qi
2

Bi
+ 2uε ∑

i<j

qiqj

fij
(14)

uε ) -1
2( 1

εin
- 1

εw
) (15)

fij ) √rij
2 + BiBj exp(-rij

2/4BiBj) (16)

!i )
1
Bi

) 1
4π ∫solvent

d3r 1
(r - ri)

4
(17)

!i )
1
Ri

- 1
4π ∑

j*i

sjiQji (18)

Bi
-1 ) fb(!i) ) {√b2 + !i

2 !i > 0

b !i e 0
(19)
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The filter function has negligible effect for the most
commonly observed Born radii smaller than 20 Å.

In the AGBNP1 model the scaling factors sji are ap-
proximated by the expression

where sj is given by eq 13 and Vij is the two-body overlap
volume between atoms i and j. Also, in the original AGBNP
formulation the computation of the scaling factors and the
descreening function in eq 18 employed the van der Waals
radii for the atoms of the solute and the associated Gaussian
densities. These two aspects have been modified in the new
formulation (AGBNP2) as described below.

2.1.3. Nonpolar Model. The nonpolar hydration free
energy is decomposed into the cavity hydration free energy
∆Gcav and the solute-solvent van der Waals dispersion
interaction component ∆GvdW:

The cavity component is described by a surface area
model37,46-48

where the summation runs over the solute heavy atoms, Ai

is the van der Waals surface area of atom i from eq 10, and
γi is the surface tension parameter assigned to atom i (see
Table 1 of ref 42). Surface areas are computed using
augmented radii Ri

c for the atoms of the solute and the
associated Gaussian densities. Augmented radii are defined
as the van der Waals radii (Table 1 of ref 42) plus a 0.5 Å
offset. The computation of the atomic surface areas in
AGBNP2 is mostly unchanged from the original implemen-
tation,42 with the exception of the values of the switching
function cutoff parameters V1 and V2 of eq 7, which in the
new model are set as V1 ) 0.01 Å3 and V2 ) 0.1 Å3. This
change was deemed necessary to improve the accuracy of
the surface areas which in the new model also affect the
Born radii estimates through eq 31 below.

The solute-solvent van der Waals free energy term is
modeled by the expression

where Ri is an adjustable dimensionless parameter on the
order of 1 (see Table 1 of ref 42) and

where Fw ) 0.033 28 Å-3 is the number density of water at
standard conditions, and σiw and εiw are the OPLS force
field97 Lennard-Jones interaction parameters for the interac-
tion of solute atom i with the oxygen atom of the TIP4P
water model.98 If σi and εi are the OPLS Lennard-Jones
parameters for atom i

where σw ) 3.153 65 Å and εw ) 0.155 kcal/mol are the
Lennard-Jones parameters of the TIP4P water oxygen. In
eq 23 Bi is the Born radius of atom i from eqs 18 and 19
and Rw ) 1.4 Å is a parameter corresponding to the radius
of a water molecule.

2.2. The AGBNP2 Implicit Solvent Model. The AG-
BNP2 hydration free energy ∆Gh(2) is defined as

where ∆Gelec and ∆Gnp have the same form as in the
AGBNP1 model (eqs 14 and 21-23, respectively). The only
major difference is the pairwise descreening model for the
Born radii that in AGBNP2 is based on the solvent excluded
volume described below rather than the van der Waals
volume as in AGBNP1. ∆Ghb, described in section 2.2.2, is
a novel term for AGBNP2 which represents a first solvation
shell correction corresponding to the portion of the hydration
free energy not completely accounted for by the uniform
continuum model for the solvent. We think of this term as
mainly incorporating the effect of solute-solvent hydrogen
bonding. As described in detail below, the analytical model
for ∆Ghb is based on measuring and scoring the volume of
suitable hydration sites on the solute surface.

2.2.1. Pairwise Descreening Model Using the SolVent
Excluded Volume. When using van der Waals radii to describe
the solute volume, small crevices between atoms (Figure 1,
panel A) are incorrectly considered as high dielectric solvent
regions,93,99,100 leading to underestimation of the Born radii,
particularly for buried atoms. The van der Waals volume
description implicitly ignores the fact that the finite size of water
molecules prevents them from occupying sites that, even though
they are not within solute atoms, are too small to be occupied
by water molecules. Ideally a model for the Born radii would
include in the descreening calculation all of the volume excluded
from water either because it is occupied by a solute atom or
because it is located in an interstitial region inaccessible to water
molecules. We denote this volume as the solvent excluded
volume (SEV). A realistic description of the SEV is the volume
enclosed within the molecular surface89 of the solute obtained
by tracing the surface of contact of a sphere with a radius
characteristic of a water molecule (typically 1.4 Å) rolling over
the van der Waals surface of the solute. The main characteristic
of this definition of the SEV (see Figure 2) is that, unlike the
van der Waals volume, it lacks small interstitial spaces while it
closely resembles the van der Waals volume near the
solute-solvent interface. The molecular surface description of
the SEV cannot be easily implemented into an analytical
formulation. In this section we will present an analytical
description of the SEV for the purpose of the pairwise
descreening computation of the Born radii, as implemented in
AGBNP2, that preserves the main characteristics of the mo-
lecular surface description of the SEV.

The main ideas underpinning the SEV model presented here
are illustrated in Figure 1. We start with the van der Waals
representation of the solute (model A) which presents an

sji = sj +
1
2

Vij

Vj
(20)

∆Gnp ) ∆Gcav + ∆GvdW (21)

∆Gcav ) ∑
i

γiAi (22)

∆GvdW ) ∑
i

Ri

ai

(Bi + Rw)3
(23)

ai ) -16
3

πFwεiwσiw
6 (24)

σiw ) √σiσw (25)

εiw ) √εiεw (26)

∆Gh(2) ) ∆Gelec + ∆Gnp + ∆Ghb (27)
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undesirable high dielectric interstitial space between the two
groups of atoms. Increasing the atomic radii leads to a
representation (model B) in which the interstitial space is
removed but that also incorrectly excludes solvent from the
surface of solvent-exposed atoms. This representation is there-
fore replaced with one in which the effective volume of each
atom in B is reduced by the volume subtended between the
solvent-exposed surface of each atom and its van der Waals
radius (Figure 1C). This process yields model D in which the
effective volume of the most buried atom is larger than those
of the solvent-exposed atoms. This SEV model covers the
interstitial high dielectric spaces present in a van der Waals
description of the solute volume, while approximately maintain-
ing the correct van der Waals volume description of atoms at
the solute surface as in the molecular surface description of
the SEV (Figure 2).

These ideas have been implemented in the AGBNP2
model as follows. The main modification consists of adopting
for the pairwise descreening generalized Born formulation
the same augmented van der Waals radii as in the computa-
tion of the atomic surface areas. As in the previous model
the augmented atomic radii, Ri

c, are set as

where Ri is the van der Waals radius of the atom and ∆R )
0.5 Å is the offset. The augmented radii are used in the same
way as in the AGBNP1 formulation to define the atomic
spheres and the associated Gaussian densities (eqs 3-6).
Henceforth in this work all of the quantities (atomic volumes,
self-volumes, etc.) are understood to be computed with the
augmented atomic radii, unless otherwise specified. In
AGBNP2 the form of the expression for the inverse Born
radii (eq 18) is unchanged; however, the expressions for the
volume scaling factors sji and the evaluation of the descreen-
ing function Qji are modified as follows to introduce the
augmented atomic radii and the reduction of the atomic self-
volumes in proportion to the solvent accessible surface areas
as discussed above.

The pairwise volume scaling factors sji, that is the volume
scaling factor for atom j when atom i is removed from the
solute, are set as

where sj (defined below) is the volume scaling factor for
atom j analogous to eq 13 computed with all the atoms
present, and the quantity

subtracts from the expression for the self-volume of atom j
all those overlap volumes involving both atoms i and j.

Two differences with respect to the original AGBNP1
formulation are introduced. The first is that sj is computed
from the self-volume after subtracting from it the volume
of the region subtended by the solvent-exposed surface
between the enlarged and van der Waals atomic spheres of
atom j, according to the expression

where Aj is the surface area of atom j from eq 10. Referring
to Figure 3, the volume of the subtended region is djAj as in
eq 31 with

The other difference concerns the V′ji term which in the
AGBNP1 formulation is approximated by the two-body
overlap volume Vij (see eq 13), the first term in the right-
hand side of eq 30. This approximation is found to lack

Figure 1. Schematic diagram illustrating the ideas underpinning
the model for the solvent excluded volume descreening. Circles
represent atoms of two idealized solutes placed in proximity of
each other. The van der Waals description of the molecular
volume (panel A) leaves high dielectric interstitial spaces that
are too small to fit water molecules. The adoption of enlarged
van der Waals radii (B) removes the interstitial spaces but
incorrectly excludes solvent from the surface of solvent-exposed
atoms. The solvent volume subtended by the solvent-exposed
surface area is subtracted from the enlarged volume of each
atom (C) such that larger atomic descreening volumes are
assigned to buried atoms (circled) than exposed atoms (D),
leading to the reduction of interstitial spaces while not overly
excluding solvent from the surface of solvent-exposed atoms.

Figure 2. Illustration of the relationship between the van der
Waals volume and the solvent excluded volume enclosed by
the molecular surface.

Ri
c ) Ri + ∆R (28)

sji ) sj +
V′ji
Vj

(29)

V′ji ) V′ij )
1
2

Vij -
1
3 ∑

k

Vijk +
1
4 ∑

k<l

Vijkl - ...

(30)

sj )
V′j - djAj

Vj
(31)

dj )
1
3

R'j[1 - ( Rj

R'j)3] (32)
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sufficient accuracy for the present formulation given the
relative increase in size of all overlap volumes. Therefore
in AGBNP2 V′ji is computed including in eq 30 all nonzero
overlap volumes after the application of the switching
function from eq 7.

In the AGBNP2 formulation the functional form for the
pair descreening function Qji is the same as in the original
formulation (see Appendix of ref 42); however, in the new
formulation this function is evaluated using the van der Waals
radius Ri for atom i (the atom being “descreened”) and the
augmented radius Rj

c for atom j (the atom that provides the
solvent descreening), rather than using the van der Waals
radius for both atoms. Thus if the pair descreening function
is denoted by Q(r,R1,R2), where r is the interatomic distance,
R1 the radius of the atom being descreened, and R2 the radius
that provides descreening, we set in eq 18

The alternative of using enlarged atoms for both atoms and
the inclusion of a properly weighted self-descreening term
(to take into account the SEV of the atom being descreened)
was also tried and judged to be less accurate than eq 33
relative to numerical integration.

2.2.2. Short-Range Hydrogen Bonding Correction Func-
tion. In this section we present the analytical model that
implements the short-range hydrogen bonding correction
function for AGBNP2. The model is based on a geometrical
procedure, described below, to measure the degree to which
a solute atom can interact with hydration sites on the solute
surface. The procedure is as follows. A sphere of radius Rs

representing a water molecule is placed in a position that
provides near-optimal interaction with a hydrogen bonding
donor or acceptor atom of the solute. The position rs of this
water sphere s is function of the positions of two or more
parent atoms that compose the functional group including
the acceptor/donor atom:

where {rps} represents the positions of the set of parent atoms
of the water site s. For instance, the water site position in
correspondence with a polar hydrogen is

where rD is the position of the heavy atom donor, rH is the
position of the polar hydrogen, and dHB is the distance
between the heavy atom donor and the center of the water
sphere (see Figure 4). Similar relationships (see the Ap-
pendix) are employed to place candidate water spheres in
correspondence with hydrogen bonding acceptor atoms of
the solute. These relationships are based on the local topology
of the hydrogen bonding acceptor group (linear, trigonal, and
tetrahedral). This scheme places one or two water spheres
in correspondence with each hydrogen bonding acceptor
atom (see Table 1).

The magnitude of the hydrogen bonding correction cor-
responding to each water sphere is a function of the predicted
water occupancy of the location corresponding to the water
sphere. In this work the water occupancy is measured by
the fraction ws of the volume of the water site sphere that is
accessible to water molecules without causing steric clashes
with solute atoms (see Figure 4)

where Vs ) (4/3)πRs
3 is the volume of the water sphere and

is the “free” volume of water site s, obtained by summing
over the two-body, three-body, etc. overlap volumes of the
water sphere with the solute atoms. Note that the expression
of the free volume is the same as the expression for the self-
volume (eq 12) except that it lacks the fractional coefficients
1/2, 1/3, etc. The overlap volumes in eq 36 are computed
using radius Rs for the water site sphere (here set to 1.4 Å)
and augmented radii Ri

c for the solute atoms. Equation 36 is
derived similarly to the expression for the self-volumes by
removing overlap volumes from the volume of the water
sphere rather than evenly distributing them across the atoms
participating in the overlap.

Given the water occupancy ws of each water sphere, the
expression for the hydrogen bonding correction for the solute
is

where hs is the maximum correction energy which depends
on the type of solute-water hydrogen bond (see Table 1),
and S(w;wa,wb) is a polynomial switching function which is
0 for w < wa, 1 for w > wb, and smoothly (with continuous
first derivatives) interpolates from 0 to 1 between wa and wb

(see Figure 5). The expression of S(w;wa,wb) is

Figure 3. Graphical construction showing the volume sub-
tracted from the atomic self-volume to obtain the surface area
corrected atomic self-volume. R is the van der Waals radius
of the atom; R′ ) R + ∆R is the enlarged atomic radius. dA
is the volume of the region (light gray) subtended by the
solvent-exposed surface area between the enlarged and van
der Waals atomic spheres.

Qji ) Q(rij, Ri, Rj
c) (33)

rs ) rs({rps}) (34)

rs ) rD +
rH - rD

|rH - rD|
dHB

ws )
Vs

free

Vs
(35)

Vs
free ) Vs - ∑

i

Vsi + ∑
i<j

Vsij - ∑
i<j<k

Vsijk (36)

∆Ghb ) ∑
s

hsS(ws;wa, wb) (37)

S(w;wa, wb) ) {0 w e wa

fw( w - wa

wb - wa
) wa < w < wb

1 w g wb

(38)
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where fw(x) is a switching function given by eq 9. In this
work we set wa ) 0.15 and wb ) 0.5. This scheme establishes
(see Figure 5) that no correction is applied if more than 85%
of the water sphere volume is not water accessible, whereas
maximum correction is applied if 50% or more of the water
sphere volume is accessible.

2.3. Molecular Dynamics of Miniproteins. We con-
ducted molecular dynamics simulations of what we will refer

to as miniproteins (Figure 6), that is, peptides that have been
shown to form stable secondary structures in solution: the
23-residuetrp-cagepeptideofsequenceALQELLGQWLKDG-
GPSSGRPPPS [Protein Data Bank (PDB) ID 1RIJ],101 the
28-residue cdp-1 peptide of sequence KPYTARIKGRTFS-
NEKELRDFLETFTGR (PDB ID 1PSV),102 and the 28-
residuefsd-1peptideofsequenceQQYTAKIKGRTFRNEKEL-
RDFIEKFKGR (PDB ID 1FSD).103 The structure of trp-
cage (see Figure 6) is characterized by a tryptophan side
chain enclosed in a cage formed by an R-helix on one side
and a proline-rich loop on the other. The cdp-1 and fsd-1
miniproteins (Figure 6) adopt a mixed R! conformation and
are particularly rich in charged residues. The trp-cage
miniprotein was chosen because it has been the target of
several computational studies.104-107 The cdp-1 and fsd-1
peptides were of interest because they showed in preliminary
tests with AGBNP1 solvation a significant tendency to
deviate from the experimental structures.

Molecular dynamics simulations were conducted for 12 ns
starting with the first NMR model deposited in the PDB. The
temperature was set to 300 K with the Nosé-Hoover
thermostat,108,109 a molecular dynamics (MD) time step of 2
fs was employed, and covalent bond lengths involving hydrogen
atoms were fixed at their equilibrium positions. Backbone
motion was restricted by imposing a positional harmonic
restraint potential with a force constant of 0.3 kcal/mol/Å2 on
the positions of the CR atoms, which allows for a range of
motion of about 5 Å at the simulation temperature. These
restraints are sufficiently weak to allow substantial backbone
and side chain motion while preserving overall topology.

Molecular dynamics simulations were conducted with the
OPLS-AA potential97,110 with explicit solvation (SPC water
model with 2450, 3110, and 3250 water molecules for trp-
cage, cdp-1, and fsd-1, respectively) and with both AGBNP1
and AGBNP2 implicit solvation. The DESMOND pro-
gram111 was used for the explicit solvent simulations, and
the IMPACT program15 was used for those with implicit
solvation. Identical force field settings were employed in
these two programs. The explicit solvent simulations were
conducted in the NPT ensemble using the Martyna-Tobias-
Klein barostat112 at 1 atm pressure and employed the smooth
Particle Mesh Ewald (PME) method113 for the treatment of
long-range electrostatic interactions with a real-space cutoff
of 9 Å. Equilibrium averages and energy distributions were
obtained by analysis of the latter 10 ns of saved trajectories.
Convergence was tested by comparing averages obtained
using the first and second halves of simulation data.
Hydrogen bonds were detected using a minimum hydrogen-
acceptor distance of 2.5 Å and a minimum donor angle of
120°.

3. Results

3.1. Accuracy of Born Radii and Surface Areas. The
quality of any implicit solvent model depends primarily on
the reliability of the physical model on which it is based.
The accuracy of the implementation, however, is also a
critical aspect for the success of the model in practice. This
is true in particular for models, such as AGBNP, based on

Figure 4. Schematic diagram for the placement of the water
sphere (w, light gray) corresponding to the hydrogen bonding
position relative to the a polar hydrogen (white sphere) of the
solute (dark gray). The dashed line traces the direction of
the hydrogen-parent heavy atom (circled) bond along which
the water sphere is placed. The magnitude of hydrogen
bonding correction grows as a function of the volume (light
gray) of the water site sphere not occupied by solute atoms.

Table 1. Optimized Surface Tension Parameters and
Hydrogen Bonding Correction Parameters for the Atom
Types Present in Protein Moleculesa

atom type γ (cal/mol/Å2) geometry Nw h (kcal/mol)

C (aliphatic) 129
C (aromatic) 120
H on N linear 1 -0.25
H on N (Arg) linear 1 -2.50
H on O linear 1 -0.40
H on S linear 1 -0.50
O (alcohol) 117 tetrahedral 2 -0.40
O (carbonyl) 117 trigonal 2 -1.25
O (carboxylate) 40 trigonal 2 -1.80
N (amine) 117 tetrahedral 1 -2.00
N (aromatic) 117 trigonal 1 -2.00
S 117 tetrahedral 2 -0.50

a γ is the surface tension parameter, Nw is the number of water
spheres, and h is the maximum correction corresponding to each
atom type (eq 37). Atom types not listed do not have hydrogen
bonding corrections and are assigned γ ) 117 cal/mol/Å2.

Figure 5. Switching function S(w;wa,wb) from eqs 38 and 9
with wa ) 0.15 and wb ) 0.5.
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the generalized Born formula. It has been pointed out, for
instance, that approximations in the integration procedure
to obtain the Born radii may actually be of more significance
than the physical approximations on which the GB model is
based.114 It is therefore important to test that the conforma-
tional-dependent quantities employed by AGBNP2 are a
good approximation to the geometrical parameters that they
are supposed to represent. The present AGBNP2 formulation
relies mainly on three types of conformational-dependent
quantities: Born radii (eq 18), solvent accessible surface areas
(eq 10), and solvent accessibilities of hydration sites (eq 38).
In this section we analyze the validity of the AGBNP2
analytical estimates for the Born radii and surface areas
against accurate numerical results for the same quantities.

We employ the GEPOL program90 to compute numerically
atomic solvent accessible surface areas with a solvent probe
diameter of 1 Å, the same probe diameter that defines the
solute-solvent boundary in the AGBNP model. Figure 7A
shows the comparison between the surface area estimates
given by the present formulation of AGBNP and the
numerical surface areas produced by GEPOL for a series of

native and modeled protein conformations. In Figure 7B we
show the same comparison for the surface areas of the
original AGBNP1 model. These representative results show
that the present analytical surface area implementation, which
as described above employs a weaker switching function for
the overlap volumes, produces significantly more accurate
atomic surface areas than the original model. These improve-
ments in the computation of the surface areas, introduced
mainly to obtain more accurate Born radii through eq 31,
are also expected to yield more reliable cavity hydration free
energy differences.

Figure 8 illustrates on the same set of protein conforma-
tions the accuracy of the inverse Born radii, Bi

-1, obtained
using the AGBNP2 pairwise descreening method using the
SEV model for the solute volume described above (eq 18),
by comparing them to accurate estimates obtained by
evaluating the integral in eq 17 numerically on a grid. The
comparison is performed for the inverse Born radii because
these, being proportional to GB self-energies, are more
reliable accuracy indicators than the Born radii themselves.
The grid for the numerical integration was prepared as

Figure 6. Graphical representations of the NMR structures of the three miniproteins investigated in this work: trp-cage (PDB ID
1RIJ), cdp-1 (PDB ID 1PSV), and fsd-1 (PDB ID 1FSD). In each case the first deposited NMR model is shown. Backbone ribbon
is colored from the N-terminal (red) to the C-terminal (blue). Charged side chains are shown in space-filling representation.

Figure 7. Comparisons between numerical and analytical molecular surface areas of the heavy atoms of the crystal structures
(1ctf and 1lz1, respectively) of the C-terminal domain of the ribosomal protein L7/L12 (74 aa) and human lysozyme (130 aa),
and of four conformations each of the trp-cage, cdp-1, and fsd-1 miniproteins extracted from the corresponding explicit solvent
MD trajectories. (A) Analytical molecular surface areas computed using the present model and (B), for comparison, analytical
surface areas computed using the original model from ref 42.
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previously reported,42 except that the solvent excluded
volume (SEV) of the solute was employed here rather than
the van der Waals volume. The integration grid over the SEV
was obtained by taking advantage of the particular way that
the GEPOL algorithm describes the SEV of the solute;
GEPOL iteratively places auxiliary spheres of various
dimensions in the interstitial spaces between solute atoms
in such a way that the van der Waals volume of the solute
plus the auxiliary spheres accurately reproduces the SEV of
the solute. Therefore in the present application a grid point
was considered part of the SEV of the solute if it was
contained within any solute atom or any one of the auxiliary
spheres placed by GEPOL. The default 1.4 Å solvent probe
radius was chosen for the numerical computation of the SEV
with the GEPOL program to assess the accuracy of the model
with respect to a full representation of the solute solvent
excluded volume as in the GBMV series of models.93,94 The
results of this validation (Figure 8) show that the analytical
SEV pairwise descreening model described above is able to
yield Born radii which are not as affected by the spurious
high dielectric interstitial spaces present in the van der Waals
volume description of the solute. With the van der Waals
volume model (Figure 8B) the Born radii of the majority of
solute atoms start to significantly deviate from the reference
values for Born radii larger than about 2.5 Å (B-1 ) 0.4
Å-1). Born radii computed with the analytical SEV model
instead (Figure 8A) track the reference values reasonably
well further up to about 4 Å (B-1 ) 0.25 Å-1). Despite this
significant improvement most Born radii are still underes-
timated by the improved model (and, consequently, the
inverse Born radii are overestimatedssee Figure 8), par-
ticularly those of nonpolar atoms near the hydrophobic core
of the larger proteins. These regions tend to be loosely packed
and tend to contain interstitial spaces too large to be correctly
handled by the present model. Because it mainly involves
groups of low polarity, this limitation has a small effect on
the GB solvation energies. It has however a more significant
effect on the van der Waals solute-solvent interaction energy

estimates through eq 23, which systematically overestimate
the magnitude of the interaction for atoms buried in
hydrophobic protein core. While the present model in general
ameliorates in all respects the original AGBNP model, we
are currently exploring ways to address this residual source
of inaccuracy.

3.2. Small Molecule Hydration Free Energies. The
validation and parametrization of the hydrogen bonding and
cavity correction parameters have been performed based on
the agreement between experimental and predicted AGBNP2
hydration free energies of a selected set of small molecules,
listed in Table 2, containing the main functional groups
present in proteins. This set of molecules includes only small
and relatively rigid molecules whose hydration free energies
can be reliably estimated using a single low energy repre-
sentative conformation115 as was done here. Table 2 lists
for each molecule the experimental hydration free energy,
the AGBNP2 hydration free energy computed without
hydrogen bonding (HB) corrections and the default γ ) 117
cal/mol/Å2 surface tension parameter, denoted by AGBNP2/
SEV, as well as the hydration free energy from the AGBNP2
model including the HB correction term and the parameters
listed in Table 1. For comparison, the corresponding predic-
tions with the original AGBNP142 model are reported in the
Supporting Information.

Going down the results in Table 2, we notice a number of
issues addressed by the new implementation. With the new
surface area implementation and without corrections (third
column in Table 2), the hydration free energies of the normal
alkanes are too small compared to experiments; furthermore,
in contrast with the experimental behavior, the predicted
hydration free energies incorrectly become more favorable
with increasing chain length. A similar behavior is observed
for the aromatic hydrocarbons. Clearly this is due to the rate
of increase of the positive cavity term with increasing alkane
size which is insufficient to offset the solute-solvent van
der Waals interaction energy term, which becomes more
negative with increasing solute size. We have chosen to

Figure 8. Comparisons between numerical and analytical inverse Born radii for the heavy atoms of the same protein conformations
as in Figure 7. (A) Analytical Born radii computed using the present SEV model. (B) Analytical Born radii computed using the
van der Waals volume model (ref 42).
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address this shortcoming by increasing by 10.2% and 2.5%
respectively the effective surface tensions for aliphatic and
aromatic carbon atoms rather than decreasing the corre-
sponding R parameters of the van der Waals term since the
latter had been previously validated against explicit solvent
simulations. We have chosen to limit the increases of the
surface tension parameters to aliphatic and aromatic carbon
atoms since the results for polar functional groups did not
indicate that this change was necessary for the remaining
atom types. With this new parametrization we achieve
(compare the second and fourth columns in Table 2) excellent
agreement between the experimental and predicted hydration
free energies of the alkanes and aromatic compounds. Note
that the AGBNP2 model, regardless of the parametrization,
correctly predicts the more favorable hydration free energies
of the cyclic alkanes relative to their linear analogues.
AGBNP2, thanks to its unique decomposition of the nonpolar
solvation free energy into an unfavorable cavity term and
an opposing favorable term, is, to our knowledge, the only

analytic implicit solvent implementation capable of describ-
ing correctly this feature of the thermodynamics of hydration
of hydrophobic solutes.

The AGBNP2 model without corrections markedly un-
derpredicts the magnitudes of the experimental hydration free
energies of the compounds containing carbonyl groups
(ketones, organic acids, and esters). The hydration free
energies of alcohols are also underpredicted but by smaller
amounts. Much better agreement with the experimental
hydration free energies of these oxygen-containing com-
pounds (see Table 2) is achieved after applying hydrogen
bonding corrections with h ) -1.25 kcal/mol for the
carbonyl oxygen and h ) -0.4 kcal/mol for both the
hydrogen and oxygen atoms of the hydroxy group (Table
1). Note that the same parameters employed individually for
carbonyl and hydroxy groups in ketones and alcohols are
applied to the more complex carboxylic groups of acids and
esters as well as amides and carboxylate ions. The thiol
groups of organic sulfides required similar corrections as the
hydroxy groups (Tables 1 and 2). The AGBNP2 model
without corrections also markedly underpredicted the mag-
nitude of the experimental hydration free energies of amines
and amides and, to a smaller extent, of compounds with
nitrogen-containing heterocyclic aromatic rings. The addition
of HB corrections of -0.25 kcal/mol for amine hydrogens
and h ) -2.0 kcal/mol for both amine and aromatic nitrogen
atoms yields improved agreement (Table 2), although the
effect of N-methylation is still overemphasized.

3.3. Miniprotein Results. As described in section 2.3,
we have performed restricted MD simulations of a series of
so-called miniproteins (trp-cage, cdp-1, and fsd-1) to study
the extent of the agreement between the conformational
ensembles generated with the original AGBNP implementa-
tion (AGBNP1) and the present implementation (AGBNP2)
with respect to explicit solvent generated ensembles. The
results of earlier studies4,54,55 suggest that the AGBNP/
OPLS-AA model correctly reproduces for the most part the
backbone secondary structure features of protein and pep-
tides. The tests in the present study are therefore focused on
side chain conformations. The backbone atoms were har-
monically restricted to remain within approximately 3 Å CR
root-mean-square deviation of the corresponding NMR
experimental models. We structurally analyzed the ensembles
in terms of the extent of occurrence of intramolecular
interactions.

As shown in Table 3, we measured a significantly higher
average number of intramolecular hydrogen bonds and ion
pairing in the AGBNP1 ensembles relative to the explicit
solvent ensembles for all miniproteins studied. The largest
deviations are observed for cdp-1 and fsd-1, two miniproteins
particularly rich in charged side chains, with on average
nearly twice as many intramolecular hydrogen bonds com-
pared to explicit solvent. Many of the excess intramolecular
hydrogen bonds with AGBNP1 involve interactions between
polar groups (polar side chains or the peptide backbone) and
the side chains of charged residues. For example, for cdp-1
we observe (see Table 3) approximately eight hydrogen
bonds between polar and charged groups on average
compared to nearly none with explicit solvation.

Table 2. Experimental and Predicted Hydration Free
Energies of a Set of Small Molecules

molecule exptla,b AGBNP2/SEVa,c AGBNP2a,d

n-ethane 1.83 0.98 1.80
n-propane 1.96 0.92 1.97
n-butane 2.08 0.88 2.14
n-pentane 2.33 0.78 2.26
n-hexane 2.50 0.70 2.40
cyclopentane 1.20 0.34 1.63
cyclohexane 1.23 0.05 1.50
benzene -0.87 -1.50 -1.14
toluene -0.89 -1.66 -0.94
acetone -3.85 -1.09 -3.83
acetophenone -4.58 -2.74 -5.07
ethanol -5.01 -4.77 -5.30
phenol -6.62 -4.51 -5.38
ethanediol -9.60 -7.99 -9.87
acetic acid -6.70 -2.73 -7.05
propionic acid -6.48 -2.58 -6.38
methyl acetate -3.32 -0.10 -3.92
ethyl acetate -3.10 -0.02 -3.60
methyl amine -4.56 -2.39 -4.37
ethyl amine -4.50 -2.24 -3.95
dimethyl amine -4.29 -1.95 -3.21
trimethyl amine -3.24 -1.78 -2.39
acetamide -9.71 -6.81 -10.45
N-methylacetamide -10.08 -4.75 -7.51
pyridine -4.70 -3.62 -5.30
2-methylpyridine -4.63 -2.94 -4.22
3-methylpyridine -4.77 -2.82 -4.13
methanethiol -1.24 -0.61 -1.46
ethanethiol -1.30 -0.57 -1.22
neutral AUEa,e 1.90 0.45
acetate ion -79.90 -77.32 -87.70
propionate ion -79.10 -76.29 -86.29
methylammonium ion -71.30 -73.21 -73.54
ethylammonium ion -68.40 -70.63 -70.75
methyl guanidinium -62.02f -57.30 -69.81
ions AUEa,g 2.85 5.47

a In kcal/mol. b Experimental hydration free energy from ref 116
except where indicated. c AGBNP predicted hydration free
energies with the default γ parameter for all atoms types (γ ) 117
cal/mol/Å2) and without HB corrections. d AGBNP predicted
hydration free energies with optimized parameters listed in Table
1. e Average unsigned error of the AGBNP predictions for the
neutral compounds relative to the experiments. f From ref 117.
g Average unsigned error of the AGBNP predictions for the ionic
compounds relative to the experiments.
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Despite the introduction of empirical surface tension
correction to penalize ion pairs,55 AGBNP1 overpredicts ion
pair formation. We found that ion pairing involving arginine
was particularly overstabilized by AGBNP1 as we observed
stable ion pairing between arginine and either glutamate or
aspartate residues during almost the entire duration of the
simulation in virtually all cases in which this was topologi-
cally feasible given the imposed backbone restrains. In
contrast, with explicit solvation some of the same ion pairs
were seen to form and break numerous times, indicating a
balanced equilibrium between contact and solvent-separated
conformations. This balance is not reproduced with implicit
solvation, which instead strongly favors ion pairing. In any
case, the relative stability of ion pairs appeared to depend
in subtle ways on the protein environment as, for example,
the two ion pairs between arginine and glutamate of cdp-1
were found to be stable with either explicit solvation or
AGBNP1 implicit solvation whereas other Arg-Glu ion pairs
in trp-cage and fsd-1 were found to be stable only with
implicit solvation.

This analysis generally confirms quantitatively a series of
past observations made in our laboratory indicating that the
original AGBNP implementation tends to be biased toward
conformations with excessive intramolecular electrostatic
interactions, at the expense of more hydrated conformations
in which polar groups are oriented so as to interact with the
water solvent. During the process of development of the
modifications to address these problems, we found it useful
to rescore with varying AGBNP formulations and param-
etrizations the miniprotein conformational ensembles ob-
tained with AGBNP1 and explicit solvation, rather than
performing simulations with each new parametrizations. An
example of this analysis is shown in the first row of plots of
Figure 9, which compare the probability distributions of the

AGBNP1 effective potential energies over the conformational
ensembles generated with AGBNP1 implicit solvation and
with explicit solvation. These results clearly show that the
AGBNP1/OPLS-AA effective potential disfavors conforma-
tions from the explicit solvent ensemble relative to those
generated with implicit solvation. The AGBNP1 energy
scores of the explicit solvent ensembles of all miniproteins
are shifted toward higher energies than those of the AGBNP1
ensemble, indicating that conformations present in the
explicit solvent ensemble would be rarely visited when
performing conformational sampling with the AGBNP1/
OPLS-AA potential. AGBNP1/OPLS-AA assigns a substan-
tial energetic penalty (see Figure 9A-C) to the explicit
solvent ensemble relative to the AGBNP1 ensemble (on
average 3.3, 4.4, and 5.7 kcal/mol per residue for, respec-
tively, the trp-cage, cdp-1, and fsd-1 miniproteins). This
energetic penalty, being significantly larger than thermal
energy, rules out the possibility that conformational entropy
effects could offset it to such an extent so as to equalize the
relative free energies of the two ensembles. Detailed analysis
of the energy scores shows that, as expected, the AGBNP1
implicit solvent ensemble is mainly favored by more favor-
able electrostatic Coulomb interaction energies due to its
greater number of intramolecular electrostatic contacts rela-
tive to the explicit solvent ensemble (see above). Conversely,
the AGBNP1 solvation model does not assign sufficiently
favorable hydration free energy to the more solvent-exposed
conformations obtained in explicit solvation so as to make
them competitive with the more compact conformations of
the AGBNP1 ensemble.

Similar energetic scoring analysis with the AGBNP2
model (see Figure 1 of the Supporting Information) with and

Table 3. Average Number of Some Types of
Intramolecular Electrostatic Interactions in the Explicit
Solvent Conformational Ensembles, and the Ensembles
Generated from Simulations Using the AGBNP1 and
AGBNP2 Effective Potentials for the trp-cage, cdp-1, and
fsd-1 Miniproteins

miniprotein explicit AGBNP1 AGBNP2

Intramolecular Hydrogen Bonds
trp-cage 13.5 18.3 15.3
cdp-1 12.6 24.5 15.4
fsd-1 14.1 24.6 14.3
all 40.2 67.4 45.0

Polar-Polar Hydrogen Bonds
trp-cage 12.9 17.1 13.9
cdp-1 12.5 16.4 14.1
fsd-1 12.0 15.0 12.9
all 37.4 48.5 40.9

Polar-Charged Hydrogen Bonds
trp-cage 0.6 1.2 1.4
cdp-1 0.1 8.1 1.3
fsd-1 2.1 9.6 1.4
all 2.8 18.9 4.1

Ion Pairs
trp-cage 0.3 1.0 1.0
cdp-1 2.5 2.9 2.7
fsd-1 1.4 4.6 4.0
all 4.2 8.5 7.7

Figure 9. Potential energy distributions of the conformational
ensembles for the trp-cage (first column, panels A, D), cdp-1
(second column, panels B, E), and fsd-1 (third column, panels
C, F) miniproteins obtained using the AGBNP1/OPLS-AA (first
row, panels A-C; full line) and AGBNP2/OPLS-AA (second
row, panels D-F; full line) effective potentials and explicit
solvation (dashed line). The distributions are shown as a
function of the energy gap per residue (∆u) relative to the
mean effective potential energy of the implicit solvent en-
semble distribution.
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without hydrogen bonding to solvent corrections showed that
the introduction of the SEV model for the solute volume
significantly reduced the energetic gap between the explicit
solvent and AGBNP1 conformational ensembles, and that
the introduction of the hydrogen bonding corrections further
favors the explicit solvent ensemble. We proceeded to vary
the AGBNP2 parameters to achieve the best possible scoring
of the explicit solvent ensembles relative to the AGBNP1
ensembles while maintaining an acceptable level of agree-
ment with the small molecule experimental hydration free
energies. This procedure eventually yielded the parameters
listed in Table 1, which produce small molecule hydration
free energies in good agreement with the experiments (Table
2), as well as energy distributions for the three miniproteins
that, while still favoring the AGBNP1 ensembles, displayed
energy gaps between the explicit and AGBNP1 implicit
solvation ensembles comparable to thermal energy and
smaller than the spread of the energy distributions.

The energy scoring experiments on the explicit solvent
and AGBNP1 ensembles described above were very useful
for tuning the formulation of the AGBNP2 model without
requiring running lengthy MD simulations. They do not,
however, guarantee that the conformational ensembles gener-
ated with the AGBNP2 solvation model will more closely
match the explicit solvent ensembles than those generated
with AGBNP1. This is because the new solvation model
could introduce new energy minima not encountered with
AGBNP1 or explicit solvation that would be visited only
by performing conformational sampling with AGBNP2. To
validate the model in this respect, we obtained MD trajec-
tories with the AGBNP2 implicit solvent model and com-
pared the corresponding probability distributions of the
effective energy with those of the explicit solvent ensembles
similarly as above. The results for the three miniproteins,
shown in Figure 9D-F, indicate that the AGBNP2-generated
ensembles display significantly smaller bias (mean energy
gaps per residue of 2.0, 2.1, and 2.5 kcal/mol for, respec-
tively, the trp-cage, cdp-1, and fsd-1 miniproteins) than
AGBNP1 (Figure 9A-C), which yielded energy gaps of 3.3,
4.4, and 5.7 kcal/mol per residue, respectively. This observa-
tion shows that AGBNP2 produces conformational en-
sembles with energy distributions that more closely match
on average that of the explicit solvent ensemble without
producing unphysical minima that deviate significantly from
it.

We have analyzed structural features of the conformational
ensembles obtained with the AGBNP1 and AGBNP2 models
to establish the degree of improvement achieved with the
new model with respect to intramolecular interactions. The
salient results of this analysis are shown in Table 3. This
table reports for each miniprotein the average number of
intramolecular hydrogen bonds and ion pairs. The number
of hydrogen bonds is further decomposed into those involv-
ing only polar groups (including the backbone) and those
involving a polar group and the side chain of a charged
residue (arginine, lysine, aspartate, and glutamate). As noted
above, it is apparent from these data that the AGBNP1 model
produces conformations with too many hydrogen bonds and
ion pairs. The majority of the excess hydrogen bonds with

AGBNP1 involve residue side chains. Similarly, too many
ion pairs are observed in the AGBNP1 ensemble particularly
for the fsd-1 miniprotein (4.6 ion pairs on average with
AGBNP1 compared to only 1.4 in explicit solvent). The
AGBNP2 ensembles, in comparison, yield considerably
fewer intramolecular hydrogen bonds. For instance, the
average number of hydrogen bonds for cdp-1 is reduced from
24.5 with AGBNP1 to 15.4 with AGBNP2, which is to be
compared with 12.6 in explicit solvent. With AGBNP2 the
number of polar-polar hydrogen bonds is generally in good
agreement with explicit solvation. However, the greatest
improvement is observed with polar-charged interactions.
For example, the number of polar-charged hydrogen bonds
of fsd-1 is reduced by almost 10-fold in going from AGBNP1
to AGBNP2 to reach good agreement with explicit solvation.
Importantly, a significant fraction of the excess polar-charged
interactions observed with AGBNP1 corrected by AGBNP2
are interactions between the peptide backbone and charged
side chains that would otherwise interfere with the formation
of secondary structures.

With AGBNP2 we observe small but promising improve-
ments in terms of ion pair formation. The average number
of ion pairs of cdp-1 consistently agrees between all three
solvation models, and the only possible ion pair in trp-cage
is more stable in both implicit solvent formulations than in
explicit solvent (it occurs in virtually all implicit solvent
conformations compared to only 30% of the conformations
in explicit solvent). However, the average number of ion pairs
for fsd-1 is reduced from 4.6 with AGBNP1 to 4.0 with
AGBNP2. We observe good agreement between the number
of ion pairs involving lysine with either AGBNP1 or
AGBNP2 and explicit solvation. However, ion pairs involv-
ing arginine are generally more stable with implicit solvation
than with explicit solvation. The agreement in the number
of ion pairs with cdp-1 is due to the fact that for this
miniprotein the two possible ion pairs involving arginine
result stable with explicit solvation as well as with implicit
solvation. For the other two miniproteins, however, ion pairs
involving arginine that are marginally stable with explicit
solvation are found to be significantly more stable with
implicit solvation, although less so with AGBNP2 solvation.

4. Discussion

Modern implicit solvent models for biomolecular simulations
are generally based on the uniform dielectric continuum
representation of the solvent which is accurately modeled
by the Poisson-Boltzmann (PB) equation.9 Generalized Born
(GB) models,10 which approximate the PB formalism, are
applicable to molecular dynamics thanks to their low
computational complexity. GB models have reached a high
level of accuracy compared to PB following the introduction
of more realistic solute volume descriptions87,100 and of
higher order corrections to the Coulomb field approxi-
mation.118-120 However, at the molecular level water is
sometimes poorly described by uniform continuum models.
Even the best GB models have been found to deviate
considerably from, for example, explicit solvent bench-
marks.121,127 The nonlinear and asymmetric dielectric re-
sponse of water stems primarily from the finite extent and
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internal structure of water molecules.1 The modeling of
effects due to water granularity is important for the proper
description of molecular association equilibria. Integral
equation methods122 provide an accurate implicit solvation
description from first principles; however, despite recent
progress,123 they are not yet applicable to molecular dynam-
ics of biomolecules. The primary aim of the present study
has been to formulate an analytical and computational
efficient implicit solvent model incorporating solvation
effects beyond those inherent in standard continuum dielec-
tric models and, by so doing, achieving an improved
description of solute conformational equilibria.

In this work we have developed the AGBNP2 implicit
solvent model which is based on an empirical (but physically
motivated) first solvation shell correction function param-
etrized against experimental hydration free energies of small
molecules and the results of explicit solvent molecular
dynamics simulations of a series of miniproteins. The
correction function favors conformations of the solute in
which polar groups are oriented so as to form hydrogen bonds
with the surrounding water solvent, thereby achieving a more
balanced equilibrium with respect to the competing intramo-
lecular hydrogen bond interactions. A key ingredient of the
model is an analytical prescription to identify and measure
the volume of hydration sites on the solute surface. Hydration
sites that are deemed too small to contain a water molecule
do not contribute to the solute hydration free energy.
Conversely, hydration sites of sufficient size form favorable
interactions with nearby polar groups. This model thus
incorporates the effects of both water granularity and
nonlinear first shell hydration effects.

The GB and nonpolar models in the AGBNP2 implicit
solvent model provide the linear continuum dielectric model
basis of the model as well as a description of nonelectrostatic
hydration effects.42 In this work the GB and solute-solvent
dispersion interaction energy models are further enhanced
by replacing the original van der Waals solute volume model
with a more realistic solvent excluded volume (SEV) model.
The new volume description improves the quality of the Born
radii of buried atoms and atoms participating in intramo-
lecular interactions which would otherwise be underestimated
due to high dielectric interstitial spaces present with the van
der Waals volume description.88 GB models with these
characteristics have been previously proposed. The GBMV
series of models87,93,94 represent the SEV on a grid which,
although accurate, is computationally costly and lacks frame
of reference invariance. The pairwise descreening based
GBOBC model120 introduced an empirical rectifying function
to increase the Born radii of buried atoms in an averaged,
geometry-independent manner. The GBn model100 introduced
the neck region between pairs of atoms as additional source
of descreening, dampened by empirical parameters to account
in an average way for overlaps between neck regions and
between solute atoms and neck regions. The approach
proposed here to represent the SEV consists of computing
the atomic self-volumes, used in the pairwise descreening
computation, using enlarged atomic radii so as to cover the
interatomic interstitial spaces. The self-volume of each atom
is then reduced proportionally to its solvent accessible surface

area (see eq 31) to subtract the volume in van der Waals
contact with the solvent. We show (Figure 8) that this model
reproduces well Born radii computed from an accurate
numerical representation of the SEV, noting that improve-
ments for the Born radii of atoms in a loosely packed
hydrophobic interior, while significant, are still not optimal.
Although approximate, this representation of the SEV
maintains the simplicity and computational efficiency of
pairwise descreening schemes, while accounting for atomic
overlaps in a consistent and parameter-free manner.

The new AGBNP2 model has been formulated to be
employed in molecular dynamics conformational sampling
applications, which require potential models of low compu-
tational complexity and favorable scaling characteristics, and
with analytical gradients. These requirements have posed
stringent constraints on the design of the model and the
choice of the implementation algorithms. In the formulation
of AGBNP2 we have reused as much as possible well-
established and efficient algorithms developed earlier for the
AGBNP1 model. For example, the key ingredient of the
hydrogen bonding correction function is the free volume of
a hydration site, which is computed using a methodology
developed for AGBNP1 to compute atomic self-volumes.
Similarly, the SEV-based pairwise descreening procedure
employs atomic surface areas (see eq 31), computed as
previously described.42 AGBNP2 suffers additional compu-
tational cost associated with the SEV-based pairwise de-
screening procedure and the hydrogen bonding correction
function. This handicap, however, is offset by having only
one solute volume model in AGBNP2 rather than two in
AGBNP1. AGBNP1 requires two separate invocations of the
volume overlaps machinery (eq 2) for each of the two volume
models it employs, corresponding to the van der Waals
atomic radii for the pairwise descreening calculation and
enlarged radii for the surface area calculation.42 AGBNP2
instead employs a single volume model for both the pairwise
descreening and surface area calculations. A direct CPU
timing comparison between the two models cannot be
reported at this time because the preliminary implementation
of the AGBNP2 computer code used in this work lacks key
data caching optimizations similar to those already employed
in AGBNP1. Given the computational advantages of the new
model discussed above, we expect to eventually obtain
similar or better performance than with AGBNP1.

The AGBNP2 model has been parametrized against
experimental hydration free energies of a series of small
molecules and with respect to the ability of reproducing
energetic and structural signatures of the conformational
ensemble of three miniproteins generated with explicit
solvation. These data sources are chosen so as to ensure that
the resulting model would be applicable to both hydration
free energy estimation and conformation equilibria, which
are fundamental characteristics for models aimed at protein-
ligand binding affinity estimation. On the other hand,
experimental hydration free energies and explicit solvent
conformational ensembles are to some extent incompatible
with one another given the limitations of even the best fixed-
charge force fields and explicit solvation models to reproduce
experimental hydration free energies of small molecules with
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high accuracy.41,124,125 Mindful of this issue we did not seek
a perfect correspondence with the experimental hydration
free energy values. We first obtained parameters by fitting
against the small molecule experimental hydration free
energies and then adjusted the parameters to improve the
agreement with the explicit solvent data, making sure that
the predicted small molecule hydration free energies re-
mained within a reasonable range relative to the experimental
values. In practice this procedure yielded predicted hydration
free energies in good agreement with the experimental values
with the exception of the carboxylate and guanidinium ions
(see Table 2), for which AGBNP2 predicts more favorable
hydration free energies than the experiments, a consequence
of the large hydrogen bonding corrections necessary to
reduce the occurrence of intramolecular electrostatic interac-
tions in the investigated proteins. As discussed further below,
limitations in the description of hydration sites adopted for
carboxylate and guanidinium ions may be partly the cause
of the observed inconsistencies for these functional groups.

The parametrization and quantitative validation of the
model, which is the primary focus of this work, has been
based on comparing the effective potential energy distribu-
tions of implicit solvent conformational ensembles with those
of explicit solvent ensembles. We observed that the AGBNP1
solvation model energetically ranked explicit solvent con-
formations significantly less favorably than implicit solvent
conformations. The AGBNP2 model is characterized by
smaller energetic bias relative to the explicit solvent en-
sembles, indicating that conformational sampling with the
AGBNP2/OPLS-AA energy function produces conforma-
tions that more closely match those obtained with explicit
solvation. This result is a direct consequence of employing
the more realistic solvent excluded volume description of
the solute, which yields larger Born radii for buried groups,
as well as the hydrogen bonding to solvent corrections, which
favor solvent exposed conformations of polar groups.
Furthermore, comparison of the energy distributions of the
AGBNP2 and explicit solvent ensembles for the three mini-
proteins (Figure 9D-F) shows, in contrast to the AGBNP1
results, that the AGBNP2 bias for the two more charge-rich
miniproteins (cdp-1 and fsd-1) is similar to that of the least
charged one (trp-cage). This suggests that the residual
energetic bias of the AGBNP2 model is probably related to
the nonpolar model rather than the electrostatic model. Future
studies will address this particular aspect of the model.

The energy scoring studies conducted in this work indicate
that AGBNP2 is a significant improvement over AGBNP1.
They also show, however, that the new model falls short of
consistently scoring explicit solvent conformations similarly to
implicit solvent conformations. Although an optimal match
between energy distributions is a necessary condition for
complete agreement between implicit and explicit solvation
results, it is unrealistic to expect to reach this ultimate goal at
the present level of model simplification. Increasing the
magnitude of the hydrogen bonding corrections can improve
the agreement between the explicit and implicit solvation energy
distributions, albeit at the expense of the quality of the predicted
small molecule hydration free energies. It seems likely that the
no parametrization of the current model would yield both good

relative conformational free energies and hydration free energies.
Future work will pursue the modeling of additional physical
and geometrical features, such us the use of variable dielectric
approaches to model polarization effects,126 necessary to
improve the agreement between implicit and explicit solvation
energy distributions. The energy gap between the implicit
solvent and explicit solvent energy distributions used here is,
we believe, a meaningful measure of model quality and could
serve as a useful general validation tool to compare the accuracy
of implicit solvent models.

The excessive number of intramolecular electrostatic interac-
tions involving charged groups has been one of the most
noticeable shortcomings of GB-based implicit solvent mod-
els.127 To correct this tendency, we have in the past adopted in
the AGBNP1 model ad hoc strategies aimed at either destabiliz-
ing electrostatic intramolecular interactions54 or, alternatively,
stabilizing the competing solvent-separated conformations.55

This work follows the latter approach using a more robust and
physically motivated framework based on locating and scoring
hydration sites on the solute surface as well as adopting a more
realistic volume model. Structural characterization of the
conformational ensembles has shown that AGBNP2 produces
significantly fewer intramolecular interactions than AGBNP1,
reaching good agreement with explicit solvent results. The
reduction of intramolecular interactions has been the greatest
for interactions between polar and charged groups. We believe
the excessive tendency toward the formation of intramolecular
interactions to be the root cause of the high melting temperatures
of structured peptides64 predicted with AGBNP1. Given the
reduction of intramolecular interactions achieved with AG-
BNP2, we expect the new model to yield more reasonable
peptide melting temperatures, a result which we hope to report
in future publications.

Less-visible improvements have been obtained for ion
pairs involving arginine side chains which remain more stable
with implicit solvation than with explicit solvation. However,
significantly, with AGBNP2 we observed a more dynamic
equilibrium between ion-paired and solvent-separated con-
formations of arginine side chains that was not observed with
AGBNP1. This result is promising because it indicates that
the AGBNP2 solvation model, although still favoring ion-
paired conformations, produces a more balanced equilibrium,
which is instead almost completely shifted toward contact
conformations with AGBNP1. Nevertheless it is apparent
that the AGBNP treatment of the guanidinium group of
arginine is not as good as for other groups. This limitation
appears to be shared with other functional groups containing
sp2-hybridized nitrogen atoms as evidenced, for example, by
the relatively lower quality of the hydration free energy
predictions for amides and nitrogen-containing aromatic
compounds (Table 2). Similar implicit solvent overstabili-
zation solvation of arginine-containing ion pairs has been
observed by Yu et al.85 in their comparison of Surface
Generalized Born (SGB) and SPC explicit solvation with
the OPLS-AA force field. Despite quantitative differences,
the explicit solvent studies (with the TIP3P water model) of
MasunovandLazaridis128 andHassan,129 using theCHARMM
force field, and that of Mandell at al.,130 using the OPLS-
AA force field, have confirmed that arginine forms the
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strongest ion pairing interactions, especially in the bidentate
coplanar conformation. These observations are consistent
with the present explicit solvent results using OPLS-AA and
the SPC water model, where we find that most of the ion
pairs of the miniproteins were found to involve arginine side
chains. In contrast to our present implicit solvent results,
however, the work of Masunov and Lazaridis128 indicated
that the GB-based implicit solvent model that they analyzed14

produced potentials of mean force for arginine-containing
ion pairs in general agreement with explicit solvation.

To rationalize the present implicit solvent results concern-
ing ion pair formation, it has been instructive to analyze the
potentials of mean force (PMFs) of ion pair association with
the AGBNP model. As an example, Figure 10 shows the
PMF for the association of propyl guanidinium (arginine side
chain analogue) and ethyl acetate (aspartate and glutamate
analogue) in a bidentate coplanar conformation (similar to
the arrangement used previously)85,128-130 for various AG-
BNP implementations. The corresponding explicit solvent
PMF obtained by Mandell et al.130 is also shown in Figure
10 for comparison. The original AGBNP1 parametrization42

clearly leads to an overly stable salt bridge with the contact
conformation scored at approximately-19 kcal/mol relative
to the separated conformation, compared with -8.5 kcal/
mol with explicit solvation. The AGBNP1 parametrization
analyzed here, which includes an empirical surface area
correction to reduce the occurrence of ion pairs,55 yields a
contact free energy (-11 kcal/mol) in much better agreement
with explicit solvation, although the shape of the PMF is
not properly reproduced. The present AGBNP2 model
without hydrogen bonding corrections (labeled “AGBNP2-
SEV” in Figure 10) yields a PMF intermediate between the
original and corrected AGBNP1 parametrizations. The AG-
BNP2 model with hydrogen bonding corrections yields the
PMF with the closest similarity to the one obtained in explicit
solvent. Not only the contact free energy (-6.5 kcal/mol) is
in good agreement with the explicit solvent result, but,
importantly, it also reproduces the solvation barrier of the

PMF at 5 Å separation, corresponding to the distance below
which there is insufficient space for a water layer between
the ions.

It is in this range of distances that the greatest discrepancies
are observed between PMFs with explicit solvation and some
GB-based implicit solvation models85,128 that do not model
effects due to the finite size of water molecules. Both the
hydrogen bonding correction and the SEV volume description
employed in AGBNP2, which are designed to take into account
the granularity of the water solventsthe hydrogen bonding
correction through the minimum free volume of water sites (eq
37) and the SEV model through the water radius offset (eq
28)smake it possible to reproduce the solvation barrier typical
of molecular association processes in water.

It is notable in the PMF results shown in Figure 10 the lack
of a free energy maximum with the AGBNP2/SEV model
(AGBNP2 without HB corrections), which would be expected
on the basis of results with the GBMV model, indicating that
a SEV treatment of the GB model leads to a higher and much
broader PMF maximum relative to explicit solvent.88 There are
two possible factors contributing to this discrepancy. The first
is that the OPLS-AA force field used in this work seems to
consistently produce stronger ionic interactions than the
CHARMM force field (on which the GBMV model is based)
as suggested by the relatively small free energies of salt bridge
formation obtained with CHARMM-based implicit solvent
models88,128 relative to OPLS-AA-based ones (see for example
ref 85 and the present results with AGBNP1). Because the shape
of the PMF at intermediate separations is determined by a
delicate balance between attractive electrostatic interactions and
repulsive desolvation forces, stronger electrostatic interactions
with OPLS-AA are potentially responsible in part for a missing
or smaller PMF maximum. The lack of the PMF maximum
with AGBNP2/SEV is most likely also due to the reduced radius
offset used in AGBNP42 used to construct the SEV. The small
probe radius leads to a smaller reduction, compared to a full
SEV treatment, of the high dielectric volume surrounding the
ionic groups as they approach each other. The consequence is

Figure 10. Potential of mean force of ion pair formation between propyl guanidinium and ethyl acetate in the coplanar orientation
with AGBNP implicit solvation (A) and explicit solvation (B; ref 130). In (A) “AGBNP1 (orig.)” refers to the original AGBNP1
parametrization,42 “AGBNP1” refers to the AGBNP1 model used in this work which includes a surface tension parameter correction
for the carboxylate group aimed at reducing the occurrence of ion pairs,55 “AGBNP2” refers to the current model, and “AGBNP2-
SEV” refers to the current model without hydrogen bonding and surface tension corrections. The potentials of mean force are
plotted with respect to the distance between the atoms of the protein side chain analogues equivalent to the C! of arginine and
the Cγ of aspartate.
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a smaller rate of increase of the desolvation penalty which in
turn leads to a smaller or absent PMF maximum.

Increasing the magnitude of the AGBNP radius offset is
not feasible as we observed that the Gaussian overlap
approximation for the overlap volumes (eq 10 of ref 42)
breaks down for atomic radii much larger than the van der
Waals radii. On the other hand, as the results in Figure 10
show, the added desolvation provided by the short-range HB
function is able to properly correct this deficiency, yielding
a PMF maximum in good correspondence with explicit
solvation. This shows that the HB function as parametrized
is likely taking into account not only short-range nonlinear
hydration effects but also inaccuracies in the GB and
nonpolar models, as well as approximations in the imple-
mentation such as the small probe radius discussed above.

The good correspondence between the AGBNP2 and
explicit solvent PMFs for propyl guanidinium and ethyl
acetate (Figure 10) stands in contrast with the residual
AGBNP2 overprediction of arginine salt bridges compared
to explicit solvation (Table 3). We observed that, in the
majority of arginine salt bridges occurring with AGBNP2,
the guanidinium and carboxylate groups interact at an angle
rather than in the coplanar configuration discussed above.
We have confirmed that the PMF of ion pair formation for
an angled conformation (not shown) indeed shows a sig-
nificantly more attractive contact free energy than the
coplanar one. This result indicates that the in-plane placement
of the hydration sites for the carboxylate groups (see the
Appendix) does not sufficiently penalize angled ion pair
arrangements. This observation is consistent with the need
for introducing an isotropic surface area based hydration
correction for carboxylate groups (the reduced γ parameter
for the carboxylate oxygen atoms in Table 1), which showed
some advantage in terms of reducing the occurrence of salt
bridges. Future work will focus on developing a more general
hydration shell description for carbonyl groups and related
planar polar groups to address this issue.

5. Conclusions

We have presented the AGBNP2 implicit solvent model, an
evolution of the AGBNP1 model we have previously
reported, with the aim of incorporating hydration effects
beyond the continuum dielectric representation. To this end
a new hydration free energy component based on a procedure
to locate and score hydration sites on the solute surface is
used to model first solvation shell effects, such as hydrogen
bonding, which are poorly described by continuum dielectric
models. This new component is added to the generalized
Born and nonpolar AGBNP models which have been
improved with respect to the description of the solute volume
description. We have introduced an analytical solvent
excluded volume (SEV) model which reduces the effect of
artifactual high dielectric interstitial spaces present in
conventional van der Waals representations of the solute
volume. The new model is parametrized and tested with
respect to experimental hydration free energies and the results
of explicit solvent simulations. The modeling of the granu-
larity of water is one of the main principles employed in the
design of the empirical first shell solvation function and the

SEV model, by requiring that hydration sites have a
minimum available volume based on the size of a water
molecule. We show that the new volumetric model produces
Born radii and surface areas in good agreement with accurate
numerical evaluations. The results of molecular dynamics
simulations of a series of miniproteins show that the new
model produces conformational ensembles in much better
agreement with reference explicit solvent ensembles than the
AGBNP1 model with respect to both structural and energetics
measures.

Future development work will focus on improving the
modeling of some functional groups, particularly ionic groups
involving sp2 nitrogen, which we think are at the basis of
the residual excess occurrence of salt bridges, and on the
optimization of the AGBNP2 computer code implementation.
Future work will also focus on further validation of the model
on a wide variety of benchmarks including protein homology
modeling and peptide folding.
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Appendix A: Hydration Site Locations
Figure 11 shows the location of the hydration sites for the
functional groups listed in Table 1. Each hydration site is
represented by a sphere of 1.4 Å radius. The distance dHB

between the donor or acceptor heavy atom and the center of
the hydration site sphere is set to 2.5 Å.

There is a single linear geometry for HB donor groups. The
corresponding hydration site is placed at a distance dHB from
the heavy atom donor along the heavy atom-hydrogen bond.

Acceptor trigonal geometries have one or two hydration
sites depending on whether the acceptor atom is bonded to,
respectively, two or one other atom. In the former case the
water site is placed along the direction given by the sum of
the unit vectors corresponding to the sum of the NR1 and
NR2 bonds (following the atom labels in Figure 11). In the
latter case the W1 site (see Figure 11) is placed in the R1CO
plane forming an angle of 120° with the CO bond. The W2

site is placed similarly.
Acceptor tetrahedral geometries have one or two hydration

sites depending on whether the acceptor atom is bonded,
respectively, to three or two other atoms. In the former case
the water site is placed along the direction given by the sum
of the unit vectors corresponding to the sum of the NR1,
NR2, and NR3 bonds. In the latter case the positions of the
W1 and W2 sites are given by

where O is the position of the acceptor atoms, θ ) 104.4°,
and u1 and u2 are, respectively, the unit vectors corresponding
to the OR1 and OR2 bonds.

w1 ) O + dHB(cos θu1 + sin θu2)

w2 ) O + dHB(cos θu1 - sin θu2)
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Appendix B: Gradients of GB and van der
Waals Energies
The component of the gradient of the AGBNP2 van der
Waals energy at constant self-volumes is the same as in the
AGBNP1 model (see Appendix C of ref 42). In AGBNP2
the expression for the component of the gradient correspond-
ing to variations in the atomic scaling factors, sij, includes
pair corrections at all overlap levels because of the presence
of multibody volumes in V′′ij. In addition, a new component
corresponding to the change in surface areas appears:

Equation 39 leads to the same expression of the derivative
component as in the AGBNP1 model (eq 72 in ref 42)
(except for the extra elements in the two-body terms due to
the inclusion of the 1/2Vkj correction term). Equation 40
corresponds to the component of the derivative due to
variations in V′jk, the volume to be added to the self-volumes
of j and k to obtain the sjk and skj scaling factors. In the

AGBNP1 model this component included only two-body
overlap volumes; in AGBNP2 this term instead includes all
overlap volumes greater than zero. Finally, eq 41, where Ak

is the surface area of atom k, leads to the component of the
derivatives of the GB and vdW terms due to variations of
the exposed surface area. The latter two terms are new for
AGBNP2.

B.1. Component of Derivative from eq 40. From eq 63
in ref 42 and eq 40 we have

where Wkj has the same expression as in eq 69 in ref 42. In
working with eq 42 it is important to note that, whereas V′kj

is symmetric with respect to swapping the j and k indices,
Wkj and Wjk are different from each other. Substituting eq
30 into eq 42 and expanding over symmetric terms we obtain

Equation 43 is simplified by noting that

Equation 44 is inserted in eq 43 and sums are reduced
accordingly; then symmetric terms are collected into single
sums by reindexing the summations, obtaining

The corresponding expression for the gradient of ∆GGB is
similar but employs the Uij factors of eq 78 of ref 42 rather
than Wij.

B.2. Component of Derivative from eq 41. Inserting eq
41 in eq 63 of ref 42 gives

which is the same expression as that for the gradient of∆Gcav

(see Appendix A of ref 42) with the replacement

The corresponding expression for the gradient of ∆GGB

follows from the substitution:

Figure 11. Diagram illustrating the hydration site locations
for each of the functional group geometries used in this work.
Linear, hydrogen bond donor; trigonal(1) and trigonal(2),
trigonal planar geometries with, respectively, one and two
covalent bonds on the acceptor atom; tetrahedral(2) and
tetrahedral(3), tetrahedral geometries with, respectively, two
and three covalent bonds on the acceptor atom. Representa-
tive molecular structures are shown for each geometry.

(∂!j

∂ri
)

Q
) - 1

4π ∑
k

∂skj

∂ri
Qkj ) - 1

4π ∑
k

1
Vk

∂V'k
∂ri

Qkj

(39)

- 1
4π ∑

k

1
Vk

∂V'kj

∂ri
Qkj (40)

+ 1
4π ∑

k

1
Vk

pk

∂Ak

∂ri
Qkj (41)

-4π(∂∆GvdW

∂ri
)

Q2
) ∑

jk

Wkj

∂V'kj

∂ri
(42)

-4π(∂∆GvdW

∂ri
)

Q2
) 1

2 ∑
jk

Wkj

∂Vkj

∂ri
- 1

3 ∑
jkl

Wkj

∂Vjkl

∂ri
+

1
2

1
4 ∑

jklp

Wkj

∂Vjklp

∂ri
- ... (43)

∂Vjk...

∂ri
) δij

∂Vik...

∂ri
+ δik

∂Vji...

∂ri
+ ... (44)

-4π(∂∆GvdW

∂ri
)

Q2
) 1

2 ∑
j

(Wij + Wji)
∂Vij

∂ri
-

1
3 ∑

j<k

[(Wij + Wji) + (Wjk + Wkj) + (Wik + Wki)]
∂Vijk

∂ri
+

1
4 ∑

j<k<l

[(Wij + Wji) + (Wik + Wki) + (Wil + Wli) +

(Wjk + Wkj) + (Wjl + Wlj) + (Wkl + Wlk)]
∂Vijkl

∂ri
- ...

(45)

4π(∂∆GvdW

∂ri
)

Q3
) ∑

jk

Wkjpk

∂Ak

∂ri
) ∑

k

Wkpk

∂Ak

∂ri

γk f
1

4πWkpk

AGBNP2 Implicit Solvation Model J. Chem. Theory Comput., Vol. 5, No. 9, 2009 2561



 

 

50 

 
 

 

B.3. Derivatives of HB Correction Energy. From eq 37
we have

Inserting eqs 35 and 36 in eq 46 gives

where

where the first term on the right-hand side represents the
derivative of the overlap volume with respect to the position
of atom i keeping the position of the water site s fixed, and
the second term reflects the change of overlap volume due
to a variation of the position of the water site caused by a
shift in position of atom i. The latter term is nonzero only if
i is one of the parent atoms of the water site.

Supporting Information Available: Figure showing
potential energy distributions of the AGBNP1 and explicit
solvent conformational ensembles for the the trp-cage, cdp-
1, and fsd-1 miniproteins scored with the AGBNP2-SEV/
OPLS-AA and AGBNP2/OPLS-AA effective potentials;
table listing experimental and AGBNP1 predicted hydration
free energies of the set of small molecules in Table 2. This
material is available free of charge via the Internet at http://
pubs.acs.org.
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(108) Nosè, S. J. Chem. Phys. 1984, 81, 511–519.

(109) Hoover, W. Phys. ReV. A 1985, 31, 1695–1697.

(110) Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen,
W. L. J. Phys. Chem. B 2001, 105, 6474–6487.

(111) Bowers, K.; Chow, E.; Xu, H.; Dror, R.; Eastwood, M.;
Gregersen, B.; Klepeis, J.; Kolossváry, I.; Moraes, M.;
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Chapter 4 

Introduction to Receptor Reorganization in Protein-

Ligand Binding 

 

4.1 Folding Funnels and Ligand Binding 

 Prediction of receptor-ligand affinities is one of the key tasks for computer-aided 

drug design.  The overall affinity of a ligand for a receptor can be expressed as a balance 

between the strength of the interactions of the ligand for a particular binding-competent 

conformation of the receptor and the probability of occurrence of that conformation in the 

absence of a ligand.  This concept can be seen in the proposed thermodynamic cycle for 

binding in Figure 4.1 where one portion of the cycle focuses on the interactions between 

Figure 4.1.  Thermodynamic cycle for binding.  “Induced fit” starts in the top left and proceeds to the 
right where the ligand binds to the receptor and then incurs a conformational change in the receptor.  
Conformational selection starts in the top left and proceeds down where the receptor adopts a 
conformation to which the ligand binds. 
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the protein and ligand and another focuses on the conformational change of the receptor.  

Much work has been done on the former part of the problem of determining the strength 

of interactions between a ligand and receptor (Friesner et al., 2004; Halgren et al., 2004; 

Friesner et al., 2006; Ewing and Kuntz, 1997; Lang et al., 2009; Jones et al., 1995; 

Verdonk et al., 2008; Kramer et al., 1999; Jain, 2007; Venkatachalam et al., 2003; Zhou 

et al., 2007; Ferrara et al. 2004).  The latter part of the problem has recently come back 

into focus with the idea of conformational selection (Boehr et al., 2009; Bakan and 

Bahar, 2009; Ma et al., 2002; Ma et al., 1999; Frauenfelder et al., 1991; Miller and Dill, 

1997).  Previously, ligand binding was often approached via either Fischer’s “lock-and-

key” model (Fischer, 1894) or Koshland’s “induced fit” hypothesis (Koshland, 1958).  In 

the “lock-and-key” model, the free and ligand-bound proteins have the same rigid 

conformation whereas in the “induced fit” model, the ligand induces a complementary 

conformational change in the protein.  The conformational selection hypothesis 

approaches binding from a “folding funnel” point of view where protein folding is 

viewed as a parallel process where an ensemble of molecules goes downhill through an 

energy funnel (Dill and Chan, 1997; Lazaridis and Karplus, 1997; Becker and Karplus, 

1997; Martinez et al., 1998; Onuchic et al., 1997; Ravindranathan et al., 2005).  Folding 

funnels are rugged in the vicinity of the native fold of the protein, suggesting 

energetically competitive and similar conformations that provide an enhanced means of 

interactions between the protein and either ligands or other proteins.  The model of 

conformational selection takes into account this rugged terrain and argues that ligand 

binding can shift the populations towards the weakly populated, higher energy 

conformations that are more suitable for binding.  (Ma et al., 1999)   Figure 4.2 gives a 
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cartoon before and after “landscape” comparison of induced fit and conformational 

selection.  Both conformational selection and induced fit appear to play roles in ligand 

binding (Boehr et al., 2009; Bakan and Bahar, 2009). 

 4.2 Receptor Reorganization in Ligand Binding 

 As shown above, receptor reorganization can potentially be an important part of 

the measure of the affinity of a ligand for that particular receptor.  Receptors that undergo 

little to no conformational change upon binding can be handled in a “lock-and-key” 

fashion where the receptor is held rigid as a ligand is docked.  Receptors that do undergo 

conformational change upon binding may require inclusion of receptor reorganization or 

strain energy to properly model the binding of ligands to that protein.  Many medically 

relevant receptors undergo conformational changes upon binding, including several of the 

human immunodeficiency viral enzymes as well as a variety of kinases that have been 

implicated in certain cancers and other diseases.  There is no cookbook recipe for 

modeling receptor reorganization in ligand binding and several methods have been 

attempted.  These include MD and MC methods (Armen et al., 2009; Cheng et al., 2008; 

Figure 4.2.  Cartoon receptor conformational landscapes for changes due to “induced fit” and 
conformational selection theories.  Black lines represent the landscape prior to binding; blue lines represent 
the landscape after binding.  It the “induced fit” model, binding causes a conformational change in the 
receptor.  In the conformational selection model, binding causes a population shift, deepening a well that 
was not previously as populated.  Both models are thought to play roles in binding (Boehr et al., 2009). 
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Bowman et al., 2007; Carlson, 2002; Hart and Read, 1992; Dixon and Oshiro, 1995), use 

of rotamer libraries (Schaffer and Verkhivker, 1998; Desmet et al., 1992; Leach, 1994; 

Trosset and Sheraga, 1999), protein ensemble docking (Armen et al., 2009; Totrov and 

Abagyan, 2008; Knegtel et al., 1997; Ferrari et al., 2004; Claussen et al., 2001), and soft-

receptor modeling (Ferrari et al., 2004; Osterberg et al., 2002; Knegtel et al., 1997).  MD 

and MC methods can be computationally expensive and have the drawback of potentially 

introducing significant error and “noise” that could decrease docking accuracy.  Methods 

based on rotamer libraries represent the receptor as a set of experimentally observed and 

preferred rotameric states for side chains that surround the binding pocket.  However, this 

technique does not include backbone flexibility.  Ensemble docking methods, where the 

ligand is docked to an ensemble of receptors with varying structures, have been explored 

but some studies have shown that docking to an ensemble may give worse results than 

rigid docking (Polgár and Keserü, 2006; Barril and Morley, 2005).  Soft-receptor 

modeling combines information from several protein conformations to generate a single 

weighted average grid to which the ligand is docked.  Another version of “soft” docking 

employs reduced van der Waals radii or deleting side chains of residues predicted to be 

flexible, thus potentially eliminating close contacts (Carlson and McCammon, 2000).  A 

study in 2006 rather successfully combined the “soft” docking technique with iterations 

of rigid receptor docking using reduced vdW radii and protein structure prediction 

techniques (Sherman et al., 2006).  However  “soft” techniques are not able to handle 

large changes in conformation.   

The subsequent chapters delve into several plausible methods for modeling 

receptor reorganization through clustering, simulation and QSAR-like techniques.  
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Chapter 5 

Introduction to the Human Immunodeficiency Virus 

and Reverse Transcriptase 

 

5.1 The Human Immunodeficiency Virus 

 Human immunodeficiency virus (HIV) infection has reached near-global 

pandemic proportions in the past few years.  At the end of 2008, the Joint United Nations 

Programme in HIV/AIDS (UNAIDS) and the World Health Organization (WHO) 

reported 31.1-35.8 million infections worldwide with 1.7-2.4 million deaths (UNAIDS 

and WHO, 2009).  There is no cure or vaccine for HIV, only medication that can slow the 

process of acquired immune deficiency syndrome (AIDS) formation and, eventually, 

death.  AZT, which was introduced in 1987, was the first drug to show some success in 

combating HIV infection.  Significant chemotherapeutic progress was not achieved until 

1996 with the advent of combination therapy, Highly Active Antiretroviral Therapy 

(HAART) (Kaufman and Cooper, 2000). Though further improvements have made the 

dosing more tolerable, HAART is only palliative, it is not globally available, and serious 

side-effects are common (Kallings, 2008).  Coupled with the lack of success in vaccine 

development (Walker and Burton, 2010), it is essential to seek new anti-HIV agents that 

feature efficacy against a broad spectrum of HIV variants, low cost, easy storage and 

administration, and reduced side effects. Therefore, the ability to discover drugs for HIV 

treatment is at the forefront of scientific research and combines a number of fields 

including chemistry, biology and computer science. 
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Figure 5.1 Life cycle of HIV-1. 

 
 HIV is a retrovirus that attacks the human immune system by infecting CD+4 T 

cells (white blood cells), microphages, and dendrite cells.  The decrease in CD+4 T cells 

marks progression to AIDS, a state in which the human body can no longer defend itself 

from disease.  Study of the life cycle of the virus has led to several pathways to control 

the replication that leads to infection of additional cells.  Figure 5.1 outlines the viral 

replication cycle.  The virus enters the cell via a pathway thought to be initiated by the 

interaction of the HIV glycoprotein gp120 and CD4 on the target cell and the injection of 

the viral genomic material into the target cell.  Once inside the cell, an enzyme called 

reverse transcriptase (RT) liberates the single strand RNA from the viral proteins and 

copies it, creating a vDNA that is transported into the cell nucleus.  Integration of the 
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proviral DNA into the host genome is carried out by the viral enzyme integrase, leading 

to what is called the latent stage of HIV infection.  HIV provirus may lie dormant within 

a cell for a long time.  When the cell becomes activated, it treats HIV genes in much the 

same way as human genes: it converts them into copies of the HIV genome and 

messenger RNA (mRNA) using the host cell’s RNA polymerase.  The mRNA is 

transported outside the nucleus, where it is used as a blueprint to make HIV proteins, 

including Tat, Rev, Gag and Env. The HIV enzyme protease cuts the HIV proteins into 

smaller individual proteins that come together with copies of the viral RNA to assemble a 

new virion particle.  The newly assembled virion pushes out ("buds") from the host cell, 

“stealing” part of the cell's outer envelope which is studded with the HIV glycoproteins 

gp41 and gp120 that are necessary for the virus to bind CD4 on a new host cell.  As 

would be expected, the cleavage of the bud from the CD+4 T cell causes cell death. 

(Zheng et al., 2005) 

 Hindrance of the replication process can be achieved at several steps in the viral 

life cycle.  Entry and fusion inhibitors (EIs and FIs) affect the entry of the virus into the 

cell.  Nucleoside reverse transcriptase inhibitors (NRTIs) and non-nucleoside reverse 

transcriptase inhibitors (NNRTIs) slow the replication of the viral RNA.  Integrase 

inhibitors (InIs) target the splicing of the viral genomic material into the host cell DNA.  

Finally, the formation and maturation of the new virion can be inhibited by protease 

inhibitors (PIs).  Typical therapies require a combination of different drug inhibitors in 

what is called HAART (Kaufman and Cooper, 2000).  Currently there are 26 approved 

antiretroviral drugs of which nine are NRTIs, four are NNRTIs, 10 are PIs, one is an EI, 

one is an InI and one is an FI.  12 inhibitors are also currently under investigation. 
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5.2 Inhibition of HIV-1 Reverse Transcriptase 

 The HIV-1 viral enzyme reverse transcriptase is a heterodimer composed of 

subunits p66 and p51.  They share a common sequence although p51 is truncated.  The 

p66 subunit holds two domains: an N-terminal polymerase domain of ~440 residues and 

a C-terminal RNase H domain of ~120 residues.  The N-terminal polymerase domain is 

often described as a “right hand” with fingers, thumb, and palm subdomains. A 

connection subdomain connects the “hand” with the RNase H domain (Kohlstaedt et al., 

1992; Jacobo-Molina et al., 1993; Das et al., 1996).  Nucleic acid binds in a cleft that 

measures 17-18 base pairs in length and is situated in the palm subdomain that extends 

from the polymerase active site (defined by the active site catalytic residues D185, D186, 

D110) to the RNase H active site.  A conformational change, depicted in Figure 5.2, 

occurs upon binding nucleic acid: the thumb and fingers move to “clasp” the nucleic acid 

(Jacobo-Molina et al., 1993; Ding et al., 1998).  The enzyme builds a DNA strand based 

on the viral RNA at the polymerase active site.  The original RNA strand is then cleaved 

into pieces at the RNase H active site at the opposite end of the enzyme. Finally, a second 

DNA strand matched to the one that was just created is built at the polymerase active site 

to form the final DNA double helix.  Both the viral RNA and the single-strand viral DNA 

are believed to be guided by the polymerase primer grip region of the enzyme.  The 

primer grip, situated in the palm subdomain, has been proposed to be essential for 

positioning the primer 3’ terminus at the polymerase active site (Jacobo-Molina et al., 

1993) and movement of the primer grip and associated thumb subdomain are thought to 

be critical for the translocation of nucleic acid following incorporation of nucleotides 

during polymerization (Tantillo et al., 1994).  HIV replicates approximately every two 
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days and this, combined with the high mutation rate (the error rate per nucleotide is 

between 1 in 104 and 1 in 105 errors per base pair per cycle), results in production of a 

large number of viruses that vary by one or more nucleotides (Coffin, 1995). 

 Currently, there are two types of inhibitors that target RT: nucleoside inhibitors 

(NRTIs) and non-nucleoside inhibitors (NNRTIs).  NRTIs are competitive inhibitors that 

mimic normal nucleotides but lack the 3’-OH required for elongation and thus terminate 

chain elongation by preventing addition of more nucleotides.  NNRTIs are non-

competitive, specific inhibitors that bind to a pocket called the non-nucleoside reverse 

transcriptase binding pocket (NNIBP), which lays approximately 10 Å from the enzyme’s 

polymerase active site (Kohlstaedt et al., 1992).  The NNIBP undergoes large structural 

rearrangements upon binding of an NNRTI where the aromatic side chains Y181 and 

Figure 5.2. Rearrangement of HIV-1 RT upon binding.  Upon binding substrates such as DNA or NNRTIs 
such as nevirapine, RT undergoes a global conformational change in the thumb of the enzyme.  Upon 
binding an NNRTI, there is also a shift in the primer grip region shown in the movement from black/light 
gray to dark gray.  Black: Unbound RT (PDB ID 1DLO); Light gray: RT bound to DNA (PDB ID 1RTD); 
Dark gray: RT bound to the NNRTI nevirapine (PDB ID 1VRT). 
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Y188 swivel and the primer grip region moves to create space for the ligand (Hsiou et al., 

1996; Das et al., 2007).  It can be defined as being bounded by the “YMDD loop”-

containing β6-β9-β10 sheet (which also contains the polymerase active site) and the 

primer grip-containing β12-β13-β14 sheet. 

Analysis of crystal structures has suggested three possible mechanisms of 

inhibition (which may or may not work in conjunction) of HIV-1 RT by NNRTIs: 1) 

restriction of the p66 thumb (“molecular arthritis”); 2) distortion of catalytically essential 

residues at the polymerase active site; and 3) displacement of the primer grip.  In each of 

these mechanisms, the binding of NNRTIs is proposed to lead to conformational 

perturbations that, in turn, limit conformational flexibility required for efficient DNA 

synthesis by RT.  In the “molecular arthritis” mechanism, conformational restriction of 

the p66 thumb subdomain has been suggested to limit flexibility of the enzyme required 

for catalysis (Kohlstaedt et al., 1992).  NNRTI binding may restrict the mobility of the 

thumb subdomain (Kohlstaedt et al., 1992; Tantillo et al., 1994; Shen et al., 2003) or may 

change the direction of movement of the thumb subdomain (Temiz and Bahar, 2002), 

thus slowing down or preventing template-primer translocation and inhibiting facile 

elongation of nascent viral DNA.  Binding of an NNRTI causes perturbation of the 

configuration of the RT polymerase active site region, including the catalytically essential 

D110, D185, and D186 residues (Esnouf et al., 1995), and limits conformational changes 

of the ”YMDD loop” containing M184 and D185 (Ding et al.,1998), both of which are 

believed to be important in the activity of the enzyme.  The conserved primer grip, one of 

the boundaries defining the NNIBP, is a structural element in HIV-1 RT that has been 

proposed to be essential for positioning the primer 3’ terminus at the active site (Jacobo-
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Molina et al., 1993), and movements of the primer grip and the associated thumb 

subdomain are thought to be critical for the translocation of nucleic acid following 

incorporation of nucleotides during polymerization (Tantillo et al., 1994).  NNRTI 

binding causes a significant displacement (~4 Å) of the primer grip, leading to possible 

inappropriate positioning of the primer terminus at the active site; this conformational 

alteration and possible restriction of primer grip mobility may be a major contributor to 

inhibition by NNRTIs (Das et al., 1996).  Movement in the primer grip is also thought to 

affect allosteric hinge-bending movements in the position of the thumb subdomain (the 

tip of which lies ~30 Å from the NNIBP) (Kohlstaedt et al., 1992; Ding et al., 1995; 

Hsiou et al., 1996).  Figure 5.2 shows structures superimposed based on the β6-β9-β10 

strands where the thumb subdomain of NNRTI-bound RT is rotated by ~ 40° relative to 

that in the unbound apo enzyme (Hsiou et al., 1996; Rodgers and Harrison, 1995).  

The NNIBP is very flexible, changing conformation when different NNRTIs are 

bound in an effort to optimize stabilizing interactions with the ligand (Das et al., 2004; 

Das et al., 2008).  Although available inhibitors have different shapes, sizes, functional 

groups, and binding modes, they display a number of common features in their 

interactions with the NNIBP residues: aromatic ring(s) capable of forming π-π stacking 

interactions with aromatic residues as well as making hydrophobic contacts with other 

nonpolar pocket residues, and (usually) hydrogen bond (H-bond) donors capable of 

forming an H-bond with the backbone carbonyl oxygen of K101.  This is exemplified in 

Figure 5.3 that depicts several NNRTIs that are currently used or in drug trials.  

As replication of the HIV genome is imperfect (Coffin, 1995), mutation within the 

NNIBP is very common and is a major concern in drug development.  Commonly 
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observed mutations include those that reduce the favorable π-π stacking interactions (e.g. 

Y188C/L and Y181C), cause steric interference within the NNIBP with bulkier side 

chains (e.g. L100I, V108I, G190A/S), cause indirect allosteric conformational changes 

within the binding pocket (V106A/I) and stabilize the “closed” apo form of the enzyme 

(K103N). (Das et al., 2004; Das et al., 2005; Lewi et al., 2003)  Current design of 

inhibitors focuses on developing the "required" interactions in such a way to ensure high 

activity, reasonable solubility, and broad potency against drug-resistant variants 

(Jorgensen, 2009; Jorgensen et al., 2006; Barreca et al., 2007; Wolber and Langer, 2005). 

 

Figure 5.3. Several NNRTIs used for HIV treatment or in clinical trials.  (a) efavirenz; (b) nevirapine; (c) 
etravirine (TMC-125) (d) rilpivirine (TMC-278). 



 72 

References 
AIDS epidemic update; UNAIDS and WHO, WHO Library Cataloguing-in-Publication 
Data: Geneva, Switzerland, 2009. 
 
Barreca, M.L.; De Luca, L.; Iraci, N.; Rao, A.; Ferro, S.; Maga, G.; Chimirri, A. 
Structure-based pharmacophore identification of new chemical scaffolds as non-
nucleoside reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 2007, 17, 1956-60 
 
Coffin, J.M. HIV population dynamics in vivo: implications for genetic variation, 
pathogenesis, and therapy. Science 1995, 267, 483-489. 
 
Das, K.; Ding, J.; Hsiou, Y.; Clark, A.D., Jr.; Moereels, H.; Koymans, L,; Andries, K.; 
Pauwels, R.; Janssen, P.A.J.; Boyer, P.L.; Clark, P.; Smith, R.H., Jr.; Kroeger Smith, 
M.B.; Michejda, C.J.; Hughes, S.H.; Arnold, E. Crystal structures of 8-Cl and 9-Cl TIBO 
complexed with wild-type HIV-1 RT and 8-Cl TIBO complexed with the Tyr181Cys 
HIV-1 RT drug-resistant mutant. J. Mol. Biol. 1996, 264, 1085-1100. 
 
Das, K.; Clark, A.D., Jr.; Lewi, P.J.; Heeres, J.; De Jonge, M.R.; Koymans, L.M.; 
Vinkers, H.M.; Daeyaert, F.; Ludovici, D.W.; Kukla, M.J.; De Corte, B.; Kavash, R.W.; 
Ho, C.Y.; Ye, H.; Lichtenstein, M.A.; Andries, K.; Pauwels, R.; De Béthune, M.P.; 
Boyer, P.L.; Clark, P.; Hughes, S.H.; Janssen, P.A.; Arnold, E. Roles of conformational 
and positional adaptability in structure-based design of TMC125-R165335 (etravirine) 
and related non-nucleoside reverse transcriptase inhibitors that are highly potent and 
effective against wild-type and drug-resistant HIV-1 variants.  J. Med. Chem. 2004, 47, 
2550-2560. 
 
Das, K,; Lewi, P.J.; Hughes, S.H.; Arnold, E. Crystallography and the design of anti-
AIDS drugs: conformational flexibility and positional adaptability are important in the 
design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog. Biophys. Mol. 
Biol. 2005, 88, 209-231. 
 
Das, K.; Sarafianos, S.G.; Clark, A.D., Jr.; Boyer, P.L.; Hughes, S.H.; Arnold, E. Crystal 
structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse 
transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. J. Mol. 
Biol. 2007, 365, 77-89. 
 
Das, K.; Bauman, J.D.; Clark, A.D., Jr.; Frenkel, Y.V.; Lewi, P.J.; Shatkin, A.J.; Hughes, 
S.H.; Arnold, E. High-resolution structures of HIV-1 reverse transcriptase/TMC278 
complexes: strategic flexibility explains potency against resistance mutations. Proc. Natl. 
Acad. Sci. USA 2008, 105, 1466-1471. 
 
Ding, J.; Das, K.; Tantillo, C.; Zhang, W.; Clark, A.D., Jr.; Jessen, S.; Lu, X.; Hsiou, Y.; 
Jacobo-Molina, A.; Andries, K.; Pauwels, R.; Moereels, H.; Koymans, L.; Janssen, 
P.A.J.; Smith, R.H., Jr.; Koepke, M.K.; Michejda, C.J.; Hughes, S.H.; Arnold, E. 
Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor 
alpha-APA R 95845 at 2.8 A resolution.  Structure 1995, 3, 365-379. 



 73 

 
Ding, J.; Das, K.; Hsiou, Y.; Sarafianos, S.G.; Clark, A.D., Jr.; Jacobo-Molina, A.; 
Tantillo, C.; Hughes, S.H.; Arnold, E. Structure and functional implications of the 
polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA 
template-primer and an antibody Fab fragment at 2.8 Å. J. Mol. Biol. 1998, 284, 1095-
1111. 
 
Esnouf, R.; Ren, J.; Ross, C.; Jones, Y.; Stammers, D.; Stuart, D. Mechanism of 
inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Nat. Struct. Biol. 
1995, 2, 303-308. 
 
Hsiou, Y.; Ding, J.; Das, K.; Clark, A.D., Jr.; Hughes, S.H.; Arnold, E. Structure of 
unliganded HIV-1 reverse transcriptase at 2.7 Å resolution: implications of 
conformational changes for polymerization and inhibition mechanisms.  Structure 1996, 
4, 853-860. 
 
Jacobo-Molina, A.; Ding, J.; Nanni, R.G.; Clark, A.D., Jr.; Lu, X.; Tantillo, C.; Williams, 
R.L.; Kamer, G.; Ferris, A.L.; Clark, P.; Hizi, A.; Hughes, S.H.; Arnold, E. Crystal 
structure of Human Immunodeficiency Virus Type 1 reverse transcriptase complexed 
with double-stranded DNA at 3.0 Å resolution shows bent DNA. Proc. Natl. Acad. Sci. 
1993, 90, 6320-6324. 
 
Jorgensen, W.L.; Ruiz-Caro, J.; Tirado-Rives, J.; Basavapathruni, A.; Anderson, K.S.; 
Hamilton, A.D. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse 
transcriptase. Bioorg. Med. Chem. Lett. 2006, 16, 663-7. 
 
Jorgensen, W.L. Efficient drug lead discovery and optimization. Acc. Chem. Res. 2009, 
42, 724-33. 
 
Kallings, L. O.The first postmodern pandemic: 25 years of HIV/AIDS. J. Intern. Med. 
2008, 263, 218– 243. 
 
Kaufman, G.; Cooper, D. Antiretroviral therapy of HIV-1 infection: established treatment 
strategies and new therapeutic options. Curr. Opin. Microbio. 2000, 3, 508-514. 
 
Kohlstaedt, L.A.; Wang, J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Crystal structure at 
3.5 Å resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 
1992, 256, 1783-1790. 
 
Lewi, P.J.; de Jonge, M.; Daeyaert, F.; Koymans, L.; Vinkers, M.; Heeres, J.; Janssen, 
P.A.; Arnold, E.; Das, K.; Clark, A.D., Jr.; Hughes, S.H.; Boyer, P.L.; de Béthune, M.P.; 
Pauwels, R.; Andries, K.; Kukla, M.; Ludovici, D.; De Corte, B.; Kavash, R.; Ho, C. On 
the detection of multiple-binding modes of ligands to proteins, from biological, structural, 
and modeling data. J. Comput. Aided Mol. Des. 2003, 17, 129-134. 
 



 74 

Rodgers, D.W.; Harrison, S.C. The structure of unliganded reverse transcriptase from the 
human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1995, 92, 1222–1226. 
 
Shen, L.; Shen, J.; Luo, X.; Cheng, F.; Xu, Y.; Chen, K.; Arnold, E.; Ding, J.; Jiang, H. 
Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophys 
J, 2003, 84, 3547-63. 
 
Tantillo, C.; Ding, J.; Jacobo-Molina, A.; Nanni, R.G.; Boyer, P.L.; Hughes, S.H.; 
Pauwels, R.; Andries, K.; Janssen, P.A.; Arnold, E. Locations of anti-AIDS drug binding 
sites and resistance mutations in the three-dimensional structure of HIV-1 reverse 
transcriptase. Implications for mechanisms of drug inhibition and resistance. J. Mol. Biol.  
1994, 24, 369-387. 
 
Temiz, N.A.; Bahar, I. Inhibitor binding alters the directions of domain motions in HIV-1 
reverse transcriptase. Proteins 2002, 49, 61-70. 
 
Walker, L.M.; Burton, D.R. Rational antibody-based HIV-1 vaccine design: current 
approaches and future directions. Curr. Opin. Immunol. 2010, 22, 1-9. 
 
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound 
ligands and their use as virtual screening filters. J Chem Inf Model. 2005, 45, 160-9. 
 
Zheng, Y.; Lovsin, N.; Peterlin, B.M. Newly identified host factors modulate HIV 
infection. Immunol. Lett. 2005, 97, 225-234. 
 
 
 



 75 

Chapter 6 

Conformational Landscape of HIV-1 Reverse 

Transcriptase Binding to Non-Nucleoside Inhibitors 

From a Large Data Set of Many Crystal Structures 

 

6.1 Introduction 

 As discussed in the preceding chapters, the HIV-1 reverse transcriptase (RT) non-

nucleoside inhibitor binding pocket (NNIBP) is very flexible, conforming to the shape 

and needs of each bound ligand (Das et al., 2004; Das et al., 2008).  Present day 

crystallization techniques have allowed determination of a large number of X-ray 

structures, which are deposited in the publically available Protein Data Bank (PDB; 

Berman et al., 2000).  As there are many different NNRTIs, it is reasonable to assume 

that the many X-ray structures associated with these NNRTIs offer many possible 

conformations of the NNIBP.  Each X-ray structure can be thought of as a point on the 

conformational landscape for binding NNRTIs to HIV-1 RT.  Previous studies have 

compared and contrasted limited numbers of receptor conformations (Das et al., 2008; 

Das et al., 2005; Das et al., 2007; Ren et al., 2000; Ren et al., 1995; Spallarossa et al., 

2008; Pata et al., 2004) while others have focused on the composition and conformations 

of the ligands without regard to the conformation of the receptor (Xu et al., 2006; 

O’Brien et al., 2005).  The present study infers information about the conformational 

landscape of the NNIBP from a large set of 99 RT crystal structures.   
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6.2 Procedures and Results 

 The procedures and results of this part of the thesis are presented below as a 

reprint of a paper published in the Journal of Medicinal Chemistry 2009, 52, 6413-6420. 
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Clustering of 99 available X-ray crystal structures of HIV-1 reverse transcriptase (RT) at the flexible non-
nucleoside inhibitor binding pocket (NNIBP) provides information about features of the conformational
landscape for binding non-nucleoside inhibitors (NNRTIs), including effects of mutation and crystal
forms. The ensemble of NNIBP conformations is separated into eight discrete clusters based primarily on
the position of the functionally important primer grip, the displacement of which is believed to be one of
themechanisms of inhibition ofRT. Two of these clusters are populated by structures inwhich the primer
grip exhibits novel conformations that differ from the predominant cluster by over 4 Åand are induced by
the unique inhibitors capravirine and rilpivirine/TMC278. This work identifies a new conformation of the
NNIBP thatmay be used todesignNNRTIs. It can also be used to guidemore complete exploration of the
NNIBP free energy landscape using advanced sampling techniques.

Introduction

Current strategies for treatment of HIV involve hindering
different steps in the retrovirus’ life cycle. This study focuses
on the inhibition of the viral enzyme reverse transcriptase
(RTa) by non-nucleoside reverse transcriptase inhibitors
(NNRTIs). NNRTIs are noncompetitive inhibitors that bind
to a pocket called the non-nucleoside reverse transcriptase
binding pocket (NNIBP) which lies∼10 Å from the enzyme’s
polymerase active site.1

Analysis of crystal structures has suggested three possible
mechanisms of inhibition (which are not mutually exclusive)
of HIV-1 RT by NNRTIs: (1) restriction of the p66 thumb
flexibility; (2) distortion of catalytically essential residues at
the polymerase active site; (3) displacement of the primer grip.
In each of these mechanisms, the binding of NNRTIs is
proposed to lead to conformational perturbations and to limit
conformational flexibility required for efficient DNA synth-
esis by RT. In the “molecular arthritis” mechanism, confor-
mational restriction of the p66 thumb subdomain was
suggested to limit flexibility of the enzyme required for
catalysis.1 NNRTI binding may restrict the mobility of
the thumb subdomain1-3 or may change the direction of
movement of the thumb subdomain,4 thus slowing down or

preventing template-primer translocationand inhibiting facile
elongation of nascent viral DNA. NNRTI binding perturbs
the configuration of the RT polymerase active site region,
including the catalytically essential D110, D185, and D186
residues,5 and limits conformational changes of the “YMDD
loop” containing M184 and D185.6 The primer grip is a
structural element in HIV-1 RT that has been proposed to
be essential for positioning the primer 30 terminus at the active
site,7 and movements of the primer grip and the associated
thumb subdomain are thought to be critical for the transloca-
tion of nucleic acid following incorporation of nucleotides
during polymerization.2 NNRTI binding causes a significant
displacement (∼4 Å) of the primer grip, leading to possible
inappropriate positioning of the primer terminus at the active
site; this conformational alteration and possible restriction of
primer gripmobility may be amajor contributor to inhibition
by NNRTIs.8 Movement in the primer grip is also thought to
affect allosteric hinge-bending movements in the position of
the thumb subdomain (the tip of which lies ∼30 Å from the
NNIBP) .1,9,10 If structures are superimposed on the basis of
the β6-β9-β10 strands, the thumb subdomain of NNRTI-
bound RT is rotated by∼40! relative to that in the unbound
apo enzyme10,11 (see Figure 1).

The NNIBP is very flexible, changing conformation when
different NNRTIs are bound.12 This has been described as a
“shrink-wrap” effect where the binding pocket residues
change conformation to form stabilizing interactions with a
ligand.13 Although available inhibitors have different shapes,
sizes, functional groups, and binding modes, they display a
number of common features in their interactions with the
NNIBP residues: aromatic ring(s) capable of forming π-π
stacking interactions with aromatic residues, as well as mak-
ing hydrophobic contacts with other nonpolar pocket resi-
dues, and (usually) hydrogen bond (H-bond) donors capable
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610 Taylor Road, Piscataway, NJ 08854; (phone) 732-445-3947; (fax)
732-445-5312; (e-mail) ronlevy@lutece.rutgers.edu.

aAbbreviations: HIV-1, human immunodeficiency virus type 1; RT,
reverse transcriptase; NNIBP, non-nucleoside reverse transcriptase
inhibitor binding pocket; NNRTI, non-nucleoside reverse transcriptase
inhibitor; PDB, ProteinDataBank;REMD, replica exchangemolecular
dynamics.
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of forming anH-bond with the backbone carbonyl oxygen of
K101. Current design of inhibitors focuses on developing the
“required” interactions in such a way to ensure high activity,
reasonable solubility, and broad potency against drug-resis-
tant variants.

As there are many different NNRTIs, it is reasonable to
assume that there are many different conformations of the
NNIBP. Here, 99 X-ray structures of HIV-1 RT from the
Protein Data Bank (PDB)14 are examined. Of these, 52 are
wild-type (WT) RT bound to NNRTIs, 30 are mutant forms
of RT bound to NNRTIs, 3 are unliganded WT RT, 3 are
unliganded mutant RT, 10 contain DNA or RNA substrates
or ATP, and 1 is bound to the RNase H inhibitor DHBNH.
(Note: In this instance, WT refers to an enzyme with no
mutations within 15 Å of the NNIBP.) These 99 structures
represent an ensemble of observed conformations of the
NNIBP with perturbations created by mutation, binding of
different ligands (induced fit effects), and different crystal
forms and are listed in Table 1.

The conformational elasticity of the binding pocket plays an
important role in drug design. Here we report the analysis
of conformational states of the NNIBP in 99 available crystal
structures of HIV-1 RT. Each X-ray structure represents a
point on the conformational landscape for binding NNRTIs.

The goal of characterizing a conformational landscape and its
corresponding energy landscape has come to occupy a central
role in biophysics.15-19 This study infers information about the
landscape for ligand binding to HIV-1 RT by performing a
cluster analysis of this large data set of X-ray crystal structures.
Our cluster analysis focuses on the conformational states of the
bindingpocket,whereas previouslypublished studies haveused
clustering primarily to characterize the flexibility, chemical
class, and binding mode of the ligand.20,21

The availability of a large data set of HIV-1 RT crystal
structures in the PDB and their clustering provides informa-
tion about the locations of free energy basins and their
shapes. Ideally, the populations of the different X-ray re-
solved conformations of the NNIBP of HIV-1 RT could be
transformed through Boltzmann statistics into a free energy
landscape of the receptor in the spirit of free energy folding
funnels proposed for proteins in general. Folding funnels are
rugged in the vicinity of the native fold of the protein,
suggesting energetically competitive and similar conforma-
tions that provide an enhancedmeans of interaction between
the protein and either ligands or other proteins.15-19 The
landscape provides useful information about both the dif-
ferent means for inhibitors to bind to HIV-1 RT and the
strain free energy required to adopt a particular conforma-
tion for binding.

Highly populated clusters may suggest that the deforma-
tions within the NNIBP are locally elastic with small free
energy penalties. In contrast, sparsely populated clusters are
suggestive ofmore steeply sloped free energybasins.However,
as the 99 X-ray structure data set does not represent a
systematic sampling of the landscape, the populations may
reflect the bias found in the drug design process where
inhibitors are often designed on the basis of earlier inhibitors
or are designed for previously determined structures of the
NNIBP.Even so, theNNIBP conformations representative of
the sparsely populated basins provide opportunities for ex-
ploiting new interactions and ligand conformational freedom
in developing new more potent NNRTIs.

Results

The average root-mean-square deviation (rmsd) of all CR
atoms within 15 Å of any NNRTI across the set of 99 X-ray
structures of RT is only 1.23( 0.48 Å when the superposition
is performed on the same set of CR atoms. This increases to
1.58( 0.59 Å for all CR atomswithin 10 Åof anyNNRTI.An
analysis of the radii of gyration for each of the CR atoms
within 10 Å of any NNRTI across the ensemble of 82 RT/
NNRTI complex conformations shows large variation in

Figure 1. Rearrangement of HIV-1 RT upon binding. Upon bind-
ing substrates such as DNA or NNRTIs such as nevirapine, RT
undergoes a global conformational change in the thumb of the
enzyme. Upon binding anNNRTI, there is also a shift in the primer
grip region shown in the movement from black/light-gray to dark-
gray: black, unboundRT (PDB ID1DLO); light-gray, RTbound to
DNA (PDB ID 1RTD); dark-gray, RT bound to the NNRTI
nevirapine (PDB ID 1VRT).

Table 1. The 99 Crystal Structures of HIV-1 RT Used in This Analysisa

PDB code

WT/NNRTI 1BQM, 1C0T, 1C0U, 1C1B, 1C1C, 1DTQ, 1DTT, 1EET, 1EP4, 1FK9, 1HNI, 1HNV, 1IKW, 1JLQ, 1KLM, 1LW0, 1LW2,
1LWE, 1REV, 1RT1, 1RT2, 1RT3, 1RT4, 1RT5, 1RT6, 1RT7, 1RTH, 1RTI, 1S6P, 1S6Q, 1S9E, 1S9G, 1SUQ, 1TKT, 1TKX,
1TKZ, 1TL1, 1TL3, 1TV6, 1TVR, 1 VRT, 1 VRU, 2B5J, 2B6A, 2BAN, 2BE2, 2OPP, 2 VG5, 2 VG6, 2 VG7, 2ZD1, unpublished

Mut/NNRTI 1FKO, 1FKP, 1HPZ, 1HQU, 1IKV, 1IKX, 1IKY, 1JKH, 1JLA, 1JLB, 1JLC, 1JLF, 1JLG, 1LWC, 1LWF, 1S1T, 1S1U, 1S1
V,1S1W, 1S1X, 1SV5, 2HND, 2HNY, 2HNZ, 2IC3, 2OPQ, 2OPR, 2OPS, 2ZE2, 3BGR

WT unbound 1DLO, 1HMV, 1RTJ
Mut unbound 1HQE, 1JLE, 1QE1
DNA/RNA/ATP
bound

1HYS, 1J5O, 1N5Y, 1N6Q, 1R0A, 1RTD, 1T03, 1T05, 2HMI, 2IAJ

RT/RNase H I 2I5J
aWT/NNRTI: WT RT complexed with an NNRTI. Mut/NNRTI: mutant RT complexed with an NNRTI. WT unbound: Apo WT RT. Mut

unbound: Apo mutant RT. DNA/RNA/ATP bound: RT bound to substrates DNA, RNA or ATP. RT/RNase H I: RT complexed with a RNase H
inhibitor.
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some regions in the vicinity of the NNIBP such as the primer
grip β12-β13-β14 and the loop around P95 through L100
while other regions such as the β6-β9-β10 sheet remain more
static (see Figure 2). This analysis serves to indicate regions on
which to align the ensemble of 99 X-ray structures (the least
variable) and on which to focus clustering experiments (the
most variable).

Analysis of the side chains that point into theNNIBP of the
52 WT NNRTI-bound conformations of RT displays only

three residues that give discrete clusters when clustered in-
dividually: Y181, Y183, and Y188. The remaining side chains
(L100, K103, D186, F227, W229, and L234 from p66; N136
and E138 from p51) fluctuate across the ensemble of struc-
tures, but the distribution is quasi-continuous and therefore
does not allow separation into meaningful clusters.

Further investigation of theNNIBPbackbone (primarily in
the primer grip region) and side chains (residues 181, 183, 188)
utilizing hierarchical clustering techniques elucidates eight

Figure 2. Radius of gyration (Rg) for each CR atom of the residues within 10 Å of any NNRTI over the set of RT/NNRTI complexes
(superposition was based on all CR atoms in the set). The radius of gyration is an estimate for the spread of an atom’s position across the
ensemble of structures. A higher Rg signifies a large spread, whereas a smaller Rg signifies little fluctuation of position of the atom across
different structures. Secondary structure is labeled with arrows for β strands and with curves for R helices. A straight line designates regions
with no evident secondary structure using DSSP.39

Figure 3. Separation of 99 X-ray structures. Structure representatives from each cluster are listed in parentheses. A further description can
be found in Table 2. (A) Stereoview of the primer grip regions of all 99 X-ray structures (only β12-β13 shown) with alignment on β6-β9-β10.
(B) Cluster representatives showing separation in residues 181, 183, and 188.
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basins that depict varying conformations of the flexible bind-
ing pocket. The eight basins include one large cluster of 73
structures, four small clusters composed of 2-14 structures,
and three singletons (Figure 3 andTable 2).The large cluster is
composed solely of NNRTI-bound structures with Y181 and
Y188 side chains both occupying bound “open” conforma-
tions where the two side chains have moved to open a pocket
that accommodates the ligand. The small cluster of 14 (small
cluster 1) includes unliganded structures and those containing
dsDNA, RNA/DNA, and/or dNTP. Since no NNRTI is
bound in these 14 conformations, W229, F227, Y181, and
Y188 fill the space where the ligand would be found. This
difference in positioning of W229 and its connected primer
grip as well as the positioning of the side chains of residues
181 and 188 in the unbound “closed” position allows for
separation from structures that are bound to NNRTIs. The
primer grip conformation seen in this small cluster will be
referred to as NNRTI-, while the primer grip conformation
seen in the large cluster, where there is a shift in the primer grip
of ∼3.4 Å (see Table 2), will be referred to as NNRTIþ.

Most interesting is the identification of a small cluster of
three RT/rilpivirine complexes (small cluster 4; PDB IDs
2ZD1, 2ZE2, 3BGR) and two singletons (1EP4, bound to
the NNRTI capravirine, and 1RTJ, where an NNRTI was
washed out prior to structural determination), which have
different primer grip conformations from those seen in the
large cluster. The small cluster of three RT/rilpivirine com-
plexes will be called NNRTI-Rþ, the singleton 1EP4 will be
called NNRTI-Cþ, and the singleton 1RTJ will be called
NNRTI-1-. The unexpected effect of rilpivirine and capra-
virine on the distortion of the primer grip was discovered
through the cluster analysis performed in this work. These
conformations will be discussed at length in the Discussion.

Inclusion of the side chains of residues 181, 183, and 188 in
the clustering analysis provides separation of several struc-
tures that have the large cluster primer grip NNRTIþ con-
formation but have differing conformations of these side
chains. The small cluster of 5 (small cluster 2 in Table 2) is
composed of RT/NNRTI complexes where Y181 is in the
“closed” position, while Y188 is in the “open” position. The
small cluster of 2 (small cluster 3 in Table 2) displays both
Y181 and Y188 in the “closed” position. Both structures in
this cluster represent interesting cases in which an NNRTI is
not bound but the primer grip is in a bound conformation: an
NNRTI was removed prior to structure determination of
1JLE, and 2I5J is bound to the RNase H inhibitor DHBNH.
DHBNH does not bind in, but instead binds adjacent to, the

NNIBP22 and therefore would not be expected to have a
primer grip conformation similar to the NNRTI-bound large
cluster. This small cluster therefore offers insight into possible
unique interactions near theNNIBP thatmay be exploited for
design of new NNRTIs that can stabilize the primer grip in a
perturbed conformation that disrupts polymerase acti-
vity. The final singleton, 1TV6, bound to the large ligand
CP-94,707, is the only structure in which a different discrete
conformation of Y183 is seen. 1TV6 also is a case in which
both Y181 and Y188 are in the “closed” position.

Additional Cluster Analysis of the RT “Thumb” Region. A
large conformational change occurs upon binding of nucleic
acid where the thumb and fingers of RTmove to “clasp” the
nucleic acid; a similar change in the thumb conformation is
also apparent upon binding of anNNRTI7 (see Figure 1). As
movement in the primer grip is thought to affect allosteric
hinge-bending movements in the position of the thumb
subdomain,1,9,10,23 an additional cluster analysis on three
residues at the tip of the p66 thumb subdomain of the
structures was performed in an attempt to give more infor-
mation about the large cluster. The clustering level with the
largest separation ratio yields nearly identical results to
clustering on the primer grip. Further analysis using a
smaller separation ratio for selection of the cluster level
results in the separation of the 80 RT/NNRTI complexes
that occupy the large cluster into one singleton (1JLE) and
two subclusters of 28 and 51 structures between which a
small shear or twist of the primer grip is seen. The separation
of the two subclusters is due to a shift in position of the tip of
the thumb corresponding to an average rmsd between clus-
ters of 5.7( 1.7 Å. The shift in thumb position is most likely
due to the different crystal forms used in structure determi-
nation, as the structures in the cluster of 51 utilize one crystal
formwhile the cluster of 28 utilize one of two differing crystal
forms. Influence of the crystal packing propagates to the
NNIBP, causing a slight shear or twist seen in the primer
grip. However, these subclusters overlap in the primer grip
region and so are not discernible by clustering on the primer
grip alone; the effect of crystal form on the primer grip
conformation is minimal.

Discussion

The existence of several clusters indicates that structural
variability is present, but sincemostof the structures are inone
cluster, that variability is not evenly distributed across the
NNIBP landscape. Most obvious, the NNRTI-bound struc-
tures are separated from those of RTs not bound toNNRTIs.

Table 2. Clustering Results: Eight Basins with Different Featuresa

rmsd of β12-β13-β14 (Å)

cluster cluster members, PDB IDs residue 181, 188 β12-β13 to large Clust Rep (2OPP) to Apo (1DLO) NNRTI bound

large 2OPP, etc. (73 structures) open, open NNRTIþ 0.0 4.0 y
small 1 2IAJ,1HMV,1RTD, 1HQE,1T05,

1N6Q, 2HMI,1R0A,1T03, 1N5Y,
1J5O,1QE1, 1HYS,1DLO

closed, closed NNRTI- 3.4 1.8 n

small 2 1FKO,1RTI,2BE2, 2B5J,1RT3 closed, open NNRTIþ 1.2 3.3 y
small 3 1JLE,2I5J closed, closed NNRTIþ 2.2 3.8 n
small 4 2ZD1,2ZE2,3BGR open, open NNRTI-Rþ 3.9 6.6 y
1EP4 1EP4 open, open NNRTI-Cþ 4.5 6.2 y
1TV6b 1TV6 closed, closed NNRTIþ 2.6 2.8 y
1RTJ 1RTJ closed, closed NNRTI-1- 4.1 3.6 n

a Structure representatives from each cluster are in bold. A cluster representative is a structure in the cluster that has the smallest rmsdwhen compared
to the collection of centroids of each of the comparison atoms.38 b 1TV6 represents the only case inwhichY183 is in a largely differing position in the ensemble
of structures.
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This was anticipated, as the NNIBP undergoes large structur-
al rearrangements upon binding of an NNRTI where the
aromatic side chains of Y181 and Y188 swivel out of the
binding pocket and the primer grip region moves to create
space for the NNRTI; the non-nucleoside inhibitor binding
pocket only exists in structures with an NNRTI present.10,24

A cluster distribution like that observed for the 82 HIV-1
RT/NNRTI complexes, where the great majority of the
structures are found in one large cluster, suggests the possibi-
lity that the receptor pocket has not been interrogated by as
extensive a variety of ligands as may have been previously
thought. However, a few other basins do emerge from this
analysis of the large data set of (99) RT crystal structures.We
can speculate that the sparsely populated basins are separated
by relatively high free energy barriers from the largest basin
representing 73 structures; otherwise we would expect to have
observed structures populating these “barrier” regions of the
landscape among the large number of RT complexes in the
PDB. The large cluster, on the other hand, appears to
represent a sampling from what is effectively a continuum of
accessible states.

The large cluster can be pictured as a basin within which
there are lowenergybarriers separatingmanyminima.Several
of the residueswithin 10 Å of the ligands sample amore or less
continuous distribution of conformations; the flexible loop
consisting of residues 95-100 is an example. The primer grip
β-sheet displays a “shrink-wrap” effect involving small ad-
justments of position within the large basin to optimize
interactions with different functional groups and chemically
diverseNNRTIs. The average backbone rmsd of theβ12-β13-
β14 strands within the large cluster is 1.4( 0.5 Å; all NNIBP
residues sample somewhat continuous distributions that span
1-3 Å of conformational space. The ligands bound to the
complexes in the large cluster are diverse in their shapes, sizes,
functional groups, and binding modes, creating a large basin
within which many conformations of the binding pocket are
explored.

The most significant new observation to arise from this
cluster analysis of the RT data set is the description of four
basins that are sampled by the functionally important primer
grip β12-β13-β14 sheet: the large NNRTIþ cluster, the small
NNRTI-Rþ cluster of three structures bound to the NNRTI
rilpivirine/TMC278,13 the NNRTI-Cþ singleton bound to
the NNRTI capravirine/S-1153,25 and the NNRTI-1- single-
ton 1RTJ in which a HEPT ligand was washed out prior
to structure determination.5 Whereas the majority of the
β12-β13 strands of the primer grip are repositioned upon
binding a non-nucleoside inhibitor by 3.4 ( 0.5 Å, the
NNRTI-Rþ andNNRTI-Cþ formsdiffer from theNNRTI-
structure 1DLO by>6.2 Å, setting them∼4 Å from the large
NNRTIþ cluster representative (Table 2). All three clusters,
NNRTI-Rþ, NNRTI-Cþ and NNRTI-1-, are also sepa-
rated via clustering on the thumb. The NNRTI-Rþ and
NNRTI-Cþ forms, separated from each other by ∼2.2 Å in
the primer grip and∼6.6 Å in the thumb, can be rationalized
as the interrogation of the NNIBP by larger ligands that
interact with residues in the NNIBP in distinct ways.

The ligand bound to the NNRTI-Rþ form, rilpivirine/
TMC278 (2ZD1, 2ZE2, 3BRG), is a diaryl pyrimidine
(DAPY) analogue. DAPY compounds have been found to
be effective against many mutant forms of RT by utilizing
multiple binding modes.12,26 The binding of the DAPY
rilpivirine differs from that seen in other DAPYs; its cyano-
vinyl group extends into a hydrophobic tunnel formed by the

side chains of Y188, F227, W229, and L234. The extensive
interaction of this cyanovinyl group with the hydrophobic
tunnel is thought to explain why rilpivirine is the most potent
of the DAPY analogues.13 The formation of the tunnel is
apparently also responsible for the shift of the β12-β13-β14
strands over the binding pocket as the positions of F227,
W229, and L234 are reconfigured to make room for the
cyanovinyl group. One other crystallized NNRTI, seen in
2B5J, acts similarly because its cyanovinyl group also extends
into the hydrophobic tunnel.27 However, instead of causing a
displacement of the β12-β13-β14 sheet to form the tunnel,
binding of this NNRTI is accompanied by a displacement of
Y188. The three RT/rilpivirine complexes also correspond to
a new crystal form of HIV-1 RT.13 To examine whether the
crystal contacts in the NNRTI-Rþ structures (2ZD1, 2ZE2,
3BGR) induce changes in the primer grip, a complex of RT
with a non-DAPY ligand in the new crystal formwas included
in the clustering study.28 This structure clusters in the large
cluster, implying that the NNRTI-Rþ conformation is not
due to the crystal contacts in the new crystal formbut rather to
the novel interactions of the inhibitor’s cyanovinyl groupwith
the hydrophobic tunnel of the enzyme.

The ligand found in the NNRTI-Cþ form, the imidazole
capravirine (S-1153), is larger andmore branched than others.
Novel in thisRT/capravirine complex (1EP4) is the formation
of a main-chain hydrogen bond with P236.25 This H-bond
causes the 3,5-dichlorophenyl ring to be in proximity with
W229,which is shifted by∼4 Å over theNNIBP relative to the
large cluster NNRTIþ representative.

The NNRTI-1- form shows a subtler shift in the binding
pocket.Our clustering revealed that the different crystal forms
of RT do not induce significant perturbations of the binding
pocket structure except in the case of the NNRTI-1- form
(PDB ID 1RTJ), where a weakly bound NNRTI was washed
out to obtain an unliganded RT structure.5 Crystal contacts
appear to stabilize the NNRTI-1- structure in the inhibited
“open” form of the primer grip; this suggests that fluctuations
of the binding pocket to the open form may occur even when
no ligand is present.

The conformations of the primer grip β12-β13-β14 strands
that are identified in the cluster analysis as NNRTI-Rþ and
NNRTI-Cþ suggest routes for further exploration of new
ligands that interrogate the NNIBP in ways that sample new
and sparsely populated regions of the conformational land-
scape. Such conformations highlight receptor-ligand inter-
actions such as additional H-bonds and formation of a
stabilizing hydrophobic tunnel that appear resistant to several
common mutations and may not be attainable in other
conformations of the binding pocket. Design strategies based
on the NNRTI-Rþ and NNRTI-Cþ basins can be utilized.
These include further optimization of analogues of the highly
active DAPY and imidazole compounds, focusing on inter-
actions with the hydrophobic tunnel similar to rilpivirine and
focusing on forming main-chain hydrogen bonds with P236
similar to capravirine.

NNIBP Mutations: Conformational Effects. Across the
82 RT/NNRTI complexes, mutations appear to have little
effect on conformational change in the NNIBP but instead
mainly affect the chemical signatures of the binding pocket,
causing energetic penalties in binding of inhibitors. Minor
changes in the NNIBP do occur in response to repositioning
of the ligands, but these changes are minimal, causing
mutants to be found in the conformational basins associated
with their WT counterparts.
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Interestingly, the ligands associated with both the
NNRTI-Rþ and NNRTI-Cþ conformational basins, ca-
pravirine and rilpivirine, are highly active not just against the
WT form of RT but also against many mutant forms. Both
capravirine and rilpivirine have lower EC50 values than
many of the other NNRTIs, showing greater activity toward
WT and commonly mutated forms of HIV-1 RT.29,30 The
higher activities have been attributed to the interactions with
the enzyme for these ligands as discussed above.

Energy Landscape View of NNRTI Binding to HIV-1 RT.
The overall affinity of a ligand for a receptor can be
expressed as a balance between the strength of the inter-
actions of a ligand for any particular binding-competent
conformation of the receptor and the probability of occur-
rence of that conformation in the absence of the ligand.
Another name for these receptor conformation probability
distributions is the free energy landscape of the receptor from
which the strain free energy required to move from one
conformation to another in the absence of a ligand may be
estimated.

Clustering of the 99 available X-ray RT structures based
on the functionally important primer grip residues has
identified five clusters or strain free energy basins. These
basins are depicted in Figure 4 where the rmsd of the primer
grip β12-β13 strands, relative to the apo structure 1DLO and
relative to the large cluster representative 2OPP, were chosen
as order parameters. These coordinates best describe the
degree to which the primer grip has moved due to binding of
an inhibitor. The clusters described in the previous section
are further illustrated by Figure 4: the main large cluster
(80 structures), a cluster of 10 substrate-bound and 4 apo
RTs, a cluster of 3 RT/rilpivirine complexes with 1 RT/
capravirine complex (separated in the above section into a
cluster of 3 and a singleton, respectively), and a singleton
represented by 1RTJ (NNRTI-1-). The large cluster
(NNRTIþ) is described by a broad and rugged region of
the landscape corresponding to fine-tuning of the NNIBP to
fit various inhibitors. The region corresponding to the RT/
capravirine (NNRTI-Cþ) and RT/rilpivirine (NNRTI-Rþ)
complexes reflects inhibitors that have stretched the primer
grip region, creating novel conformations of the NNIBP.

The populations of the different NNIBP conformational
basins shown in Figure 4 cannot be directly inverted to
estimate receptor strain free energies. The observed locations
and populations of the basins depend not only on the
receptor strain free energies but also on the averaged inter-
action energies of the ligandswith the receptor.Additionally,
the crystal structure database represents a nonsystematic
sampling of the landscape, as many of the inhibitors have
been designed on the basis of an earlier inhibitor through
QSAR techniques31 or designed for previously determined
structures of the receptor. Both design approaches limit the
potential to discover novel conformations of the receptor
and partially explain why the cluster analysis produces a
large cluster of NNIBP structures with similar inhibitors and
similar receptor conformations.

One possible route to construct the receptor strain free
energy landscape for the binding of NNRTIs to the NNIBP
is to integrate information from the cluster analysis with
molecular simulations. We can use structures representative
of the different basins as “landmarks” to guide and test
physics-based simulations using modern effective potentials
and advanced sampling techniques like replica exchange
molecular dynamics (REMD).19,32,33 As the enzyme is very

large, performing simulations using the whole protein may
not be the most effective way to carry out free energy
simulations of the binding pocket. Information about flex-
ibility acquired from the cluster analysis of the X-ray struc-
tures described here can be used to both create a suitable
fragment of the enzyme and develop constraints on the
system to limit the computational time needed while opti-
mizing the sampling of the conformational landscape of the
NNIBP. For example, the regions of theNNIBP that pertain
to areas of little flexibility, e.g., the β6-β9-β10 strands, can be
held fixed while the highly variable regions such as the β12-
β13-β14 strands of the primer grip and neighboring residues
can be allowed tomove. The clustering results presented here
also provide a benchmark for the performance of the con-
formational sampling of the landscape. Initial simulations
appear promising, as all of the basins illustrated in Figure 4
are found to have substantial statistical weight in the physics-
based exploration of the receptor free energy landscape using
temperature replica exchange molecular dynamics. How-
ever, several of the basins are not fully explored. Incorpora-
tion of umbrella sampling and/or utilization of distance
restraints will allow for a more complete picture.

Conclusion

Previous structural studies have compared and contrasted a
limited number of HIV-1 RT NNIBP receptor con-
formations,13,23-25,34-36 while other studies have focused on
the composition and conformations of the ligands (NNRTIs)
without regard to the conformation of the NNIBP. This
study, the first to take a comprehensive look at the conforma-
tional fluctuations of the NNRTI receptor pocket, fills in
missing pieces by utilizing a clustering algorithm to compare

Figure 4. Populations based on rmsd (to apo 1DLO and large
cluster representative 2OPP) of the primer grip with alignment on
β6-β9-β10. Red designates a higher population, with tones progres-
sing to dark blue being regions with lesser occupancy. The 99
experimental X-ray structures are as follows: locations of apo RT,
substrate bound RT, the large NNRTIþ cluster, the NNRTI-1-
singleton (1RTJ) and the RT/rilpivirine and RT/capravirine com-
plexes (NNRTI-Rþ and NNRTI-Cþ, respectively). The large
cluster (NNRTIþ) is descibed as broad and rugged.
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and contrast 99 available conformations of the non-nucleo-
side inhibitor binding pocket. The cluster analysis reported
here has identified the locations of several conformational
basins of the receptor pocket. The separation found is very
similar across multiple clustering algorithms and, as such,
suggests that the results reported here are intrinsic to the data
and represent a “natural” clustering of the experimentally
determined NNIBP conformations. The different basins re-
flect the variation in the NNIBP; however, the basins are not
evenly populated. The sparsely populated basins provide
opportunities for the design and/or optimization of potent
ligands that inhibit RT in conformations of the NNIBP that
exhibit varied positions of the functionally important primer
grip. Two of the sparsely populated basins highlight recep-
tor-ligand interactions that may not be attainable in other
conformations of the binding pocket and that may be
exploited in drug design strategies. These include main-chain
hydrogen bonds with P236 and interactions with the hydro-
phobic tunnel surrounded by Y188, F227, W229, and L234
and formed by repositioning the primer grip.

Information from this study also serves as an essential guide
for theoretical studies to map the free energy landscape of the
NNIBP using modern all atom effective potentials and ad-
vanced sampling techniques like replica exchange molecular
dynamics (REMD). A free energy landscape for the NNIBP
would allow calculation of the strain free energy of the
receptor required to adopt the ligand-bound conformation.
Simulations may also highlight previously unexplored con-
formations of the NNIBP that may be suitable for ligand
design and lead to novel potent NNRTIs. The construction of
a model for the free energy landscape of the NNIBP using
REMD guided by the cluster landmarks described in this
paper will be the subject of a future communication.

Experimental Section

Selection and Preparation of X-ray Structures. Careful pre-
paration of the structural data set was essential, as simply
clustering on the unedited set revealed mostly noise. X-ray
crystal structures from the Protein Data Bank14 were first
analyzed to determine an atom sequence common to all struc-
tures. Entries that were found to be missing a large amount of
structural information were removed to leave the data set of
99 structures used in this study. The 99 structures were then
renumbered and reordered to follow the common atom seq-
uence discovered from the analysis of each entry. This allowed
for a normalization of the entries. Residues that experienced
mutations were stripped of their side chain atoms that were not
shared by each residue type. For example, as residue 103 is found
as either a lysine or an asparagine, only the backbone atoms and
Cβ and Cγ of the side chain were included. Regions where many
structures were found to be missing atoms were also removed.

Analysis of Backbone and Side Chain Fluctuation. A fluctua-
tion analysis of the backbones of residues within 10 Å of any
NNRTI in RT/NNRTI complexes (residues 91, 93-111, 161,
168, 177-193, 195, 198, 202, 205, 223-240, 242, 316-322, 343,
381-384 from p66 and 28, 134-138 from p51) was performed
by aligning the ensemble of structures based on theCR of each of
the 81 residues and calculating the radius of gyration (Rg) of the
point cloud of all the positions for each CR atom in the entire
ensemble of structures. A low Rg coincides with little move-
ment of the position of the atom across conformers, whereas a
high Rg coincides with an atom that takes on many different
positions in the ensemble.

Fluctuation of the side chains within 10 Å of any NNRTI that
point into the NNIBP was analyzed by clustering on each side
chain individually using single-linkage hierarchical clustering.37,38

The best clustering was chosen as that which gave the highest
minimum separation ratio (MSR), an empirical measure of the
degree of separation.

Alignment of RT Structures. Clustering results are partially
dependent on the alignment of conformers. In this study, the
structures were aligned on the CR atoms of residues 105-111,
178-183, and 186-191 that correspond to β6, β9, and β10,
respectively. This alignment was chosen on the basis of the
backbone analysis above, since their CR atoms have low Rg

values across the 82 RT/NNRTI complexes (see Figure 2).
Superposition on the β6-β9-β10 is also often used in the litera-
ture to show movement within the NNIBP as well as global
changes in conformation due to binding different ligands and
substrates. Results using alignment on β6-β9-β10 were com-
pared to alternative alignments, including alignment on the
backbone atoms of all residues within 15 Å of the NNIBP,
and were shown to give similar results. However, alignment on
β6-β9-β10 was found to give the best separation of primer grip
conformations with respect to the minimum separation ratio
and minimum distances between clusters.

Clustering of NNIBP Conformations. Clustering was per-
formed using two different techniques: single-linkage hierarch-
ical clustering and complete linkage hierarchical clustering.37

Single linkage forms clusters that are more connected, while
complete linkage forms clusters that are optimally compact.
However, in this case, both algorithms gave very similar results,
which points to a clustering that is intrinsic to the data and not
an artifact of the chosen method.

Several initial clustering experiments using different align-
ments, different atoms on which to perform the clustering
analysis, and clustering of only torsion angles (which does not
require alignment) were attempted.However, the results of these
experiments were clouded by a large amount of noise.

Therefore, a more systematic approach to determine the
alignment and clustering parameters was employed. The choice
of atoms on which clustering was performed was based on the
analysis of the backbone and side chain fluctuations above. The
CR atoms of residues associatedwith the primer grip region gave
the highest radii of gyration across the 82 RT/NNRTI com-
plexes (see Figure 2) and were therefore chosen for clustering.
This corresponds to the CR atoms of residues 224-242. Side
chains were also chosen by reviewing their fluctuation analysis
above. Side chains that gave clustering levels with both high
minimum separation ratios and minimum distances between
clusters were picked. This corresponds to the side chains of
residues 181, 183, and 188. As all of these residues are tyrosines
in the WT form of RT and either cysteines or leucines when
mutated, the χ1 dihedral angle was chosen for clustering these
side chains. Clustering on a dihedral angle also alleviates the
need for alignment of the structures. The best clustering was
chosen as that which gave the highest MSR and a minimum
rmsd between clusters of greater than 1 Å.

Acknowledgment. This work was supported by NIH
Grants AI27690 (MERIT award to E.A.) and GM30580
(to R.M.L.).

References

(1) Kohlstaedt, L.A.;Wang, J.; Friedman, J.M.;Rice, P.A.; Steitz, T.A.
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Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 6320–6324.

(8) Das, K.; Ding, J.; Hsiou, Y.; Clark, A. D., Jr.; Moereels, H.;
Koymans, L.; Andries, K.; Pauwels, R.; Janssen, P. A. J.; Boyer, P.
L.; Clark, P.; Smith, R.H., Jr.; Kroeger Smith,M. B.;Michejda, C.
J.; Hughes, S. H.; Arnold, E. Crystal structures of 8-Cl and 9-Cl
TIBO complexed with wild-type HIV-1 RT and 8-Cl TIBO com-
plexed with the Tyr181Cys HIV-1 RT drug-resistant mutant.
J. Mol. Biol. 1996, 264, 1085–1100.

(9) Ding, J.; Das, K.; Tantillo, C.; Zhang,W.; Clark, A.D., Jr.; Jessen,
S.; Lu,X.;Hsiou,Y.; Jacobo-Molina,A.; Andries,K.; Pauwels, R.;
Moereels, H.; Koymans, L.; Janssen, P. A. J.; Smith, R. H., Jr.;
Koepke, M. K.; Michejda, C. J.; Hughes, S. H.; Arnold, E.
Structure of HIV-1 reverse transcriptase in a complex with the
non-nucleoside inhibitor alpha-APA R 95845 at 2.8 A resolution.
Structure 1995, 3, 365–379.

(10) Hsiou, Y.; Ding, J.; Das, K.; Clark, A. D., Jr.; Hughes, S. H.;
Arnold, E. Structure of unliganded HIV-1 reverse transcriptase at
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Chapter 7 

Exploration of the HIV-1 Reverse Transcriptase Non-

Nucleoside Inhibitor Binding Pocket With the 

Advanced Sampling Method Replica Exchange 

Molecular Dynamics 

 

7.1 Replica Exchange Molecular Dynamics as a Sampling Method 

 Replica exchange molecular dynamics (REMD; Sugita and Okamoto, 1999; Felts 

et al. 2004) is an advanced sampling algorithm that may allow efficient sampling of the 

conformational and associated free energy landscape of biomolecular systems.  REMD 

simulations have been used to study peptide folding (Paschek et al. 2007; Rhee and 

Pande, 2003; Nymeyer et al. 2004), NMR structure refinement (Chen et al. 2005), loop 

modeling (Felts et al. 2008; Velez-Vega et al. 2009) and ligand binding (Okumura et al. 

2010; Ravindranathan et al. 2006).  In this method, a number of simulations (replicas) are 

run in parallel over different specified temperatures.  An exchange of adjacent replicas (Ti 

and Tj) is attempted periodically and is accepted based on the following Metropolis 

transition probability: 

€ 

W Ti,Tj{ }→ Tj ,Ti{ } =min 1,exp − β j −β i( ) E j − Ei( )[ ]( )         (7.1) 

where   

€ 

βi( j ) =1/KTi( j ) and Ei( j ) is the potential energy of the ith (jth) replica.  The 

exchanges allow rapid interconversion between stable conformations through high energy 
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intermediates sufficiently populated only at higher temperatures.  Thus, REMD allows 

efficient exploration of the free energy landscape while giving a canonical (NVE) 

distribution of conformations at each temperature.  REMD has been implemented in the 

IMPACT simulation package (Banks et al. 2005).  Here, we perform simulations using 

the AGBNP implicit solvent model (Gallicchio and Levy, 2004) and the OPLS-AA force 

field (Jorgenson et al. 1996; Kaminski et al. 2001).  

 Based on the clustering study of the human immunodeficiency virus type 1 (HIV-

1) enzyme reverse transcriptase (RT) non-nucleoside inhibitor binding pocket (NNIBP) 

in the previous chapter, two conformations were chosen as starting structures: the 

substrate-bound 2HMI and the capravirine-bound structure with the largest deviation in 

the primer grip region: 1EP4.  Two temperature ranges were also utilized.  Starting from 

1EP4, 20 temperatures (and therefore 20 replicas) were used: 298, 313, 328, 344, 360, 

376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536, 552, 568, 584, and 600 K.  

Starting from 2HMI, 30 temperature (and therefore 30 replicas) were used: 298, 307, 316, 

326, 335, 345, 356, 366, 377, 388, 400, 412, 424, 437, 450, 464, 477, 492, 506, 521, 537, 

553, 570, 587, 604, 622, 641, 660, 680, and 700K.  The higher temperatures were utilized 

for 2HMI since it exhibits a closed NNIBP and may require higher temperatures to 

breach the barriers necessary to open the pocket.   

 As the HIV-1 RT enzyme is very large, it was truncated for simulation using a 

simple distance restriction: only residues within 20 Å of any ligand studied in Chapter 6 

were included.  This was further simplified for simulation by designation of free, 

buffered (harmonically restrained), and fixed atoms.  The 2HMI simulations used a 

distance cutoff from Trp229: 81 residues within 15 Å of W229, including all of the 
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primer grip region, were free; 21 residues between 15 - 17 Å of W229 were placed in 

harmonically constrained buffer; and 97 residues that were greater than 15 Å from W229 

were held fixed.  The 1EP4 simulation was designed based on the NNIBP X-ray structure 

clustering in Chapter 6.  Regions shown to be very variable were labeled as free and 

those that were shown to be rather rigid were held fixed.  This resulted in 55 free residues 

which include the primer grip, residues in the β15 strand that backs the primer grip, the 

P95 loop, which includes important residues 100-103 and side chains that stick into the 

 

Figure 7.1.  Designation of free, buffered and fixed regions for REMD starting from PDB id 1EP4.  
Regions were designed based on information obtained from clustering of 99 X-ray structures.  Dark blue: 
fixed; Cyan: buffer; Red: free. 
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binding pocket: V106, V108, Y184, Y183, Y181, Y188, W266, Q269, and I270 in p66 

and D136 and E138 in p51.  162 residues were held fixed including the β6-β9-β10 sheet 

that was used for superpositioning of X-ray structures in Chapter 6.  Lastly, seven 

residues in regions between free and fixed were harmonically restrained in buffer.  Figure 

7.1 diagrams the constraints for 1EP4.  The 1EP4 simulation was run for 5ns while the 

2HMI simulation was run for only 1ns as it includes higher temperatures, which were 

expected to speed up the sampling of the conformational landscape. 

7.2 Comparison With a Benchmark 

 1EP4 2HMI 
Average RMSD from start 2.03 2.31 
Min RMSD from start 0.62 1.11 
Max RMSD from start 5.02 3.13 
RMSD to 1DLO  3.30 1.77 
RMSD to 2OPP  1.48 2.09 
RMSD to 2ZD1 1.50 4.83 
RMSD to 1TV6 1.40 1.40 
RMSD to 1S9E 0.77 3.14 
RMSD to 2I5J 1.28 1.46 
RMSD to 1RT1 1.99 3.54 
RMSD to 1EP4 0.62 4.29 

Table 7.1. Comparison of simulation results with experimental representative structures.  Representative 
structures include 1DLO, an apo structure; 2OPP, the representative structure from the large cluster; 2ZD1, 
RT bound to the novel TMC278 inhibitor with an extended primer grip orientation; 1TV6, 1S9E, 2I5J, 
1RT1, all members of the large cluster that sit on one of the outer skirts of the smear of conformations 
exhibited in that cluster; and 1EP4, the capravirine-bound structure with the largest observed deviation in 
primer grip conformation.  RMSD fluctuation from the starting structures is also presented. 

 Results form both simulations were compared with the benchmark X-ray structure 

clustering from Chapter 6 to test whether REMD is capable, under the restrictions placed 

on the simulations listed above, to sample important conformations of the HIV-1 NNIBP.  

Root mean square deviation was calculated between each resulting conformation at any 

temperature from each simulation to selected representative structures chosen from the 

experimental landscape: 1DLO, an apo structure; 2OPP, the representative structure from  
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the large cluster; 2ZD1, RT bound to the novel TMC278 inhibitor with an extended 

primer grip orientation; 1TV6, 1S9E, 2I5J, 1RT1, all members of the large cluster that sit 

on one of the outer skirts of the smear of conformations exhibited in that cluster; and 

1EP4, the capravirine-bound structure with the largest observed deviation in primer grip 

conformation.   

Landscape cartoons like that created for the X-ray clustering are shown in Figure 

7.2 and show results from the lowest temperature and highest temperature used.  Both 

simulations appear to sample large areas of the NNIBP.  Starting from 2HMI, regions 

close to the substrate-bound and ligand bound are highly populated at both high and low 

temperatures.  The 1EP4 simulations offer a broader sampling for the NNIBP than that 

from 2HMI.  The low temperature results show two highly populated basins in the area of 

the starting structure and close to (and partially overlapping) the large cluster seen in 

experiment.  High temperature displays a highly populated valley in between the two low 

temperature basins.  Using a cutoff of 1.5 Å rmsd, the 1ns 2HMI REMD was able to 

sample two experimentally-determined conformations found in the large cluster while the 

5ns 1EP4 REMD “found” four out of the five representative X-ray structures in the large 

cluster as well as one of the TMC278-bound conformations (2ZD1) and the capravirine-

bound 1EP4 conformation.  

These “test” simulations show the need for the careful choice of starting structure 

as well as constraints and temperatures.  Starting from 2HMI results in a large population 

of structures in a region not sampled by experiment.  It is possible that with a longer 

simulation time, this population will shift to either the ligand-bound large cluster or back 

to substrate or apo form.  Starting from 1EP4 shows a shift from the very open form of 
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the NNIBP seen in 1EP4 and the TMC278-bound conformations to a sampling of the 

outer regions of the large cluster region.  With longer simulations, other conformations of 

the NNIBP may be found, such as the substrate and apo forms and the large cluster may 

be sampled more efficiently.  It is interesting that these two experiments that start from 

essentially opposite sides of the NNIBP spectrum - the Closed and the most Open 

conformations - both manage to sample regions of space close to or overlapping the large 

cluster found experimentally.  With 2HMI we see an opening of the pocket while with 

1EP4 we see a partial closing of the pocket.  It should be noted that previous restraints 

tested on 1EP4 where the β15 strand that backs the primer grip region was held fixed 

caused the structure to be “stuck” in the well surrounding the starting conformation.  

Therefore, it was with careful selection of freed regions surrounding and within the 

NNIBP that we were able to see larger conformational changes and the ability to climb 

the potential energetic barrier between the very open 1EP4 conformation and the large 

cluster. 
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Figure 7.2. Conformation landscape cartoons for primer grip fluctuation from experiment and from 
simulations with coordinates selected to separate primer grip conformations as discussed in Chapter 6.  
RMSD in Å calculated from the representative X-ray structures  2OPP and 1DLO.  (a) Experimental 
landscape created from analysis of 99 X-ray structures.  The majority of the structures are found in the 
large, bound cluster.  (b)  Results from 5ns simulation starting from restricted 1EP4 at 298 K.  (c) Results 
from 1ns simulation starting from substrate-bound 2HMI at 298 K. (d)  600 K structures from 1EP4 
simulation.  (e)  700 K structures from 2HMI simulation. Relative populations are colored from white (no 
population) to red (sparsely populate) to fuscia (high population). 
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Chapter 8 

Introduction to HIV-1 Protease Structure and 

Inhibition 

 

8.1 HIV-1 Protease Structure 

 As discussed in Chapter 5, the viral enzyme protease (PR) plays an essential role 

in the life cycle of the human immunodeficiency virus (HIV).  It generates mature virion 

particles through cleavage of the viral Gag and GagPol precursor proteins (Kohl et al., 

1988).  HIV-1 PR is composed of 99 amino acids and is a member of the aspartic acid PR 

family (Oroszlan and Luftig, 1990).  However, unlike cellular PRs, this viral PR requires 

symmetric dimer formation for catalytic activity (Wlodawer and Erickson, 1993). PR is 

generally described as having the shape of a bull dog’s head, with eyes, ears, nose and 

cheek (see Figure 8.1).  The active site is formed along the dimer interface and the two 

active site residues (D25 and D25’) are contributed by each monomer (Oroszlan and 

Luftig, 1990).  Water acts as a nucleophile, in conjunction with the well-placed aspartic 

acids, to hydrolyze the scissile peptide bond to cleave viral peptides (Jaskólski et al., 

1991).  Binding of substrate causes the flaps of the dimer to move by as much as 7 Å in 

an opening and closing motion (Miller et al., 1989).  To date, there are no X-ray 

structures demonstrating the completely open conformation of the flap but NMR data 

suggests that there are rapid fluctuations between open and closed forms of the flap in 

solution (Freedburg et al., 2002; Hornak and Simmerling, 2007).   
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As PR recognizes the asymmetric shape of peptide substrates rather than  amino acid 

sequence, it does not require a particular amino acid sequence for cleavage.  Instead, it 

cleaves peptides that have similar secondary structures that fit in a defined “substrate 

envelope” (Prabu-Jeyebalan et al., 2002).  When PR binds a substrate, the structural 

symmetry of the homodimer is broken as the monomers adjust to accommodate the 

substrate.  The substrate binding pocket or substrate envelope conformation can be 

divided into four main pockets: P1/P3, P2, P1’/P3’ and P2’ shown in Figure 8.1.   

 

 

Figure 8.1.  Cartoon of “semi-open” HIV-1 PR and substrate bound “closed” PR .  Blue: PR bound to 
substrate with PDB id 1F7A.  Substrate is shown in gray and gray mesh.  Red: “Semi-open” unbound PR 
with PDB id 1PC0.  PR is often seen as a bull-dog’s face, with eyes, ears, cheek and nose as labeled.  The 
active site residues D25 and D25’ are shown in orange.  Important regions P1, P1’, P2, P2’, P3, P3’ and the 
P1 loop are labeled as well. 
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Figure 8.2. Inhibitors of HIV-1 PR.  (a)  Amprenavir (b) Atazanavir (c) Darunavir (d) Indinavir (e) 
Lopinavir (f) Nelfinavir (g) Ritonavir (h) Saquinavir (i) Tipranavir. 
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8.2 Mutation 

Despite its critical function in the viral life cycle, HIV has shown great plasticity 

and mutations have been observed at one third of the 99 amino acid sites (Rhee et al., 

2003).  Some polymorphisms have been seen to occur naturally while keeping some 

regions invariant: the dimer interface, the active site floor, the P3-P3’ substrate binding 

region and the β-hairpin loops of the flaps.  However, upon exposure to various 

inhibitors, the enzyme develops a number of mutations to combat the ability of inhibitors 

to bind.  The drug-resistant mutations are especially observed in the flap region and parts 

of the P1 loop and P3-P3’ binding cleft (Galiano et al., 2009).   

Only a subset of mutations affect inhibitor binding via alteration of a direct point 

of contact: D30N, G48V, V82A, I84V, I50V, and I50L.  Some of these mutations are 

primarily associated with particular inhibitors.  D30N is generally associated with 

nelfinavir, G48V with saquinavir, I50V with amprenavir and Darunavir, and I50L with 

atazanavir.  V82A and I84V impact almost all inhibitors.  Patients treated with a variety 

of PR inhibitors often experience between 5 and 15 mutations in the PR gene (Wu et al., 

2003; Rhee et al., 2005).  These mutations are often in specific combinations of 

mutations in the active site and compensatory mutations outside the active site (Shafer et 

al., 1999; Rhee et al., 2007; Hoffman et al., 2003).  Some common sites outside the active 

site are L10I, I54V/T, A71V/T, V77I, and L90M.  These mutations may not only impact 

inhibitor binding through allosteric conformational changes but may also compensate for 

the viability and fitness of the enzyme. 
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8.3 Inhibition 

 Detailed knowledge of the enzyme’s structure and its interactions with substrate 

has led to the development of a number of PR inhibitors.  Currently, there are nine PR 

inhibitors: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, lopinavir, atazanavir, 

tipranavir, and Darunavir.  These ligands are depicted in Figure 8.2.  They bind 

competitively, mimicking natural substrates.  Generally, they contain a central hydroxyl 

group that increases affinity by interacting with the catalytic residues D25 and D25’.  In 

addition, large hydrophobic groups on either side of the hydroxyl group bind in 

hydrophobic subsites and polar groups form hydrogen bonds with the enzyme.  First 

generation inhibitors such as saquinavir and indinavir maximize hydrophobic interactions 

and their binding is entropically driven while most second 

Figure 8.3. Illustration of the “substrate envelope” hypothesis. (a) In the wild-type receptor, the inhibitor 
(bottom) makes more contacts and occupies more space in the binding pocket than the substrate (top).  (b) 
A mutation occurs in the receptor binding pocket that enlarges the pocket.  The inhibitor suffers from lack 
of the contacts it once made while the substrate loses negligible affinity since it did not interact with that 
portion of the binding pocket in the wild-type form (Prabu-Jeyabalan et al., 2002; Altman et al., 2008). 
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generation inhibitors such as Darunavir have been designed to maximize polar 

interactions with main chain PR atoms and binding of these inhibitors is generally 

enthalpically driven (Velazquez-Campoy et al., 2000a,b; Freire, 2008).     

 The large degree of potential drug-induced mutation in PR makes drug design of 

PR inhibitors very difficult.  One strategy is to design drugs that mimic the structural 

features of substrates (Prabu-Jeyabalan et al., 2002; King et al., 2004; Tuske et al., 2004; 

Atlman et al., 2008).  Ideally, mutations would then render the enzyme inactive.  The 

“substrate envelope hypothesis” illustrated in Figure 8.3 has taken the front row in this 

argument.  Studies of substrate-PR complexes have shown a consensus substrate 

envelope (Prabu-Jeyabalan et al., 2002).  Following the idea of mimicking substrate 

binding, inhibitors that are designed into this envelope-defined boundary should be less 

likely to induce resistant mutations than those that jut out from the envelope and provide 

regions where mutations could occur (Altman et al., 2008; Prabu-Jeyabalan et al., 2002).  

Design strategies using the substrate envelope hypothesis have been promising (Nalam et 

al., 2010; Altman et al., 2008).  A recent study compared over 130 HIV-1 PR inhibitors 

designed with and without substrate-envelope constraints and found that those nanomolar 

to picomolar inhibitors that fit within the substrate envelope have flatter resistance 

profiles than those that do not fit within the substrate envelope (Nalam et al., 2010).  

Knowledge of structural fluctuations of a target enzyme has been shown to be 

important for the understanding of the enzyme’s function and for drug design (Nalam et 

al., 2010; Altman et al., 2008; Hornak and Simmerling, 2007; Prabu-Jeyabalan et al., 

2002; Yang et al., 2008; Kurt et al., 2003; Zoete et al., 2002).  The substrate envelope 

hypothesis discussed above was introduced based on a study of six complexes bound to 
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six decameric peptides that correspond to the cleavage sites within the Gag and Pol 

polyproteins (Prabu-Jeyabalan et al., 2002).  In the study, the side chains of the P1/P3 

pocket (R8, I47, F53, V82’, and I84’) were found to adopt a variety of conformations, but 

the P1’/P3’ pocket side chains remain rather static with the exception of V82. There is 

also a larger backbone rearrangement in residues 45-50 (the flap region) and 78’-82’ (the 

P1’ loop).  The P2 and P2’ pockets (defined by N/D25, G27, A28, D29, and D30) also 

remain rather rigid (Prabu-Jeyebalan et al., 2002).   

Other studies have also utilized multiple crystal structures in an effort to analyze 

PR flexibility and motions (Zoete et al., 2002; Kurt et al., 2003; Yang et al., 2008).  A 

combination of comparison of 73 X-ray structures, molecular dynamics simulations, 

normal mode analyses, and X-ray B-factor analyses pointed toward a potential energy 

surface for HIV-1 PR that is characterized by many local minima with small energy 

differences (Zoete et al., 2002).  The backbone root mean square deviation (rmsd) of the 

73 inhibitor-bound structures was found to be unevenly distributed, with rigid regions 

around the active site triplet (residues 25-27) having an rmsd of 0.25 Å while most 

variable regions located in loops around residues 18, 40, 52-53 (the flap region), 68 and 

82 have rmsds closer to 1 Å.  Mutation was shown to have a minimal effect on structural 

fluctuation; location of the average structure only varied slightly with mutation (Zoete et 

al., 2002).  A similar study in 2008 used principle component analysis (PCA) and an 

elastic network model (ENM) with 156 X-ray structures to obtain information about 

motions within the PR enzyme (Yang et al., 2008).  Results suggested that the similar 

variations among the observed structures from PCA and the corresponding 

conformational changes from the normal modes from the ENM are facilitated by low-
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frequency, global motions that are intrinsic to the enzyme.  It also showed that a large 

number of experimental structures could directly provide important information about 

protein dynamics (Yang et al., 2008)   

The global motions of PR have been studied in detail using computational 

methods such as MD and with analytical tools such as PCA, ENM, and Gaussian network 

models (GNM) (Kurt et al., 2003; Hornak and Simmerling, 2007; Piana et al., 2002a; 

Piana et al., 2002b; Perryman et al., 2004; Damm et al., 2008; Hornak et al., 2006a; 

Hornak et al., 2006b).  Classical and ab initio MD simulations of various mutants reveal 

that PR flexibility modulates the activation free energy barrier of the enzymatic cleavage 

reaction.  Active-site mutations are often associated with compensatory mutations that 

enhance the catalytic rate of the mutant by affecting the flexibility of the protein (Piana et 

al., 2002a; Piana et al., 2002b).  MD simulations of ligand-bound and unliganded apo 

structures have shown that the overall modes of motion of different conformations are 

generally conserved but the most mobile and least flexible regions differ between bound 

and unbound structures.  The flaps and loop containing residue 40 of the unliganded 

structure are the most mobile regions. In the ligand-bound structure these regions lose 

mobility while the terminal regions become more flexible (Kurt et al., 2003).  Later all-

atom simulations of PR showed that introduction of a ligand to an open apo structure 

caused the enzyme to spontaneously close to the bound conformation (Hornak et al., 

2006b) and removal of the ligand favored the semi-open conformation of the enzyme 

(Hornak et al., 2006a).  Discussion of the changes in flexibility upon binding has led to 

the possibility of utilizing allosteric inhibitors to control flexibility within PR (Perryman 

et al., 2003).  Various promising regions are currently being studied including the Ear-
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Cheek (or Elbow) region (Perryman et al., 2003; Perryman et al., 2006), the dimer 

interface (Hwang et al., 2005; Shultz et al., 2004), and the Eye region (Damm et al., 

2008). 
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Chapter 9 

Estimation of the Conformational Landscape for 

Binding of HIV-1 Protease 

 

9.1 Introduction 

 Present day crystallization techniques have allowed determination of a large 

number of X-ray structures, which are deposited in the publically available Protein Data 

Bank (PDB; Berman et al., 2000).  As there are many different HIV-1 protease (PR) 

inhibitors, as well as many mutational variations of the enzyme, it is reasonable to 

assume that the many associated X-ray structures may be used to construct a rough 

conformational landscape for binding to HIV-1 PR as was previously done for HIV-1 

reverse transcriptase (RT) in Chapter 6.  Unlike RT, much work has been done in 

attempts to study ligand binding to PR, especially on the front of receptor reorganization 

(Prabu-Jeyebalan et al., 2002; Yang et al., 2008; Zoete et al., 2002, Kurt et al., 2003; 

Piana et al., 2002; Damm et al., 2008; Hornak et al., 2006a; Hornak et al., 2006b; Hornak 

and Simmerling, 2007).  This is most likely a result of the high frequency of mutation of 

the enzyme that has the potential to drastically change the atmosphere of the binding 

pocket.   

 An important study by Prabu-Jeyabalan et al. compared and contrasted six 

substrate-bound PR and found that main chain hydrogen bonds and much of the binding 

pocket conformation is conserved (2002).  However, no substrate side chain hydrogen 

bond is conserved.  Several regions of the receptor pocket are also distorted, including the 
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flap regions, P1/P3 pocket and P1 loop.  This led to the development of the “substrate 

envelope” hypothesis where it is believed that ligands that form less interactions with the 

receptor and occupy less space within the binding “envelope” are preferred as they will 

be less effected by potential mutational variation (Altman et al., 2008; Prabu-Jeyabalan et 

al., 2002). 

 Analysis of multiple conformations has also assisted in understanding the 

dynamics and function of HIV PR.  It has been proposed by use of a combination of 

molecular dynamics (MD) simulations, X-ray structures and a Gaussian network model 

(GNM) that binding of ligands reduces the mobility in the flap and 40’s loop regions 

(Kurt et al., 2003).  Several studies have focused on identifying essential motions and 

regions of flexibility of PR.  Zoete et al. examined 73 X-ray structures and compared the 

flexible regions reported by experimental B factors to MD predicted regions using root 

mean square deviations (rmsds) and normal mode analysis (NMA) as tools (2002).  In 

2008, a further study looked at 150 available X-ray structures, an NMR ensemble of 28 

models and structures from a 10ns MD simulation and identified key motions of the 

enzyme using principle component analysis (PCA) and an elastic network model (ENM)  

(Yang et al., 2008).   Both studies found that the observed motions are intrinsic to the 

nature of the enzyme. 

 In this current work, we look at 327 available experimental (X-ray and NMR) 

structures in an attempt to produce a rough conformational landscape for binding to HIV-

1 PR using hierarchical clustering techniques.  All forms of PR were included: apo, 

substrate-bound and ligand-bound.  The PDB ids and class (bound, apo) are listed in 

Table 9.1.  As the many complexes of PR bound to asymmetric inhibitors do not uniquely 
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orient the crystal cell, we separated dimers into monomers so that 327 structures became 

629 monomers.  (There is not an exact doubling in number as several of the original 327 

structures only included chain A and several others included more than two differing 

chains in the PDB entry).  Careful preparation of the structural data set was essential as 

simply clustering on the unedited set produced mostly noise.  X-ray crystal structures 

from the PDB were first analyzed to determine an atom sequence common to all 

structures.  Entries that were found to be missing a large amount of structural information 

were removed to leave the data set of 629 monomeric structures used in this study.  The 

629 structures were then renumbered and reordered to follow the common atom sequence 

discovered from the analysis of each entry.  This allowed for a normalization of the 

entries.  Residues that experienced mutations were stripped of their side-chain atoms that 

were not shared by each residue type.  For example, if a residue is found as either a lysine 

or an asparagine, only the backbone atoms and Cβ and Cγ of the side chain were 

included. 

 A fluctuation analysis of the backbones of all 99 residues was performed by 

aligning the ensemble of structures based on the Cα of each of the 99 residues and 

calculating the radius of gyration (Rg) of the point cloud of all the positions for each Cα 

atom in the entire ensemble of structures.  A low Rg coincides with little movement of the 

position of the atom across conformers whereas a high Rg coincides with an atom that 

takes on many different positions in the ensemble.   

 Fluctuation of the side chains that point into the binding pocket (residues 8, 23, 

25, 29, 32, 45, 47, 50, 54, 56, 58, 76, 81, 84, and 87) was analyzed by clustering on each 

side chain individually using single-linkage hierarchical clustering (Shenkin and 
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McDonald, 1994; Johnson, 1967).  The best clustering was chosen as that which gave the 

highest minimum separation ratio (MSR), an empirical measure of the degree of 

separation. 

Clustering results are partially dependent on the alignment of conformers.  In this 

study, the structures were aligned on the Cα atoms of residues 10-14, 20-24, 31-34, and 

87-93 that correspond to β1, β2, β3, and αA respectively.  This alignment was chosen 

based on the backbone analysis above since their Cα atoms have low Rgs across the PR 

structures.  (See Figure 9.1).  Clustering was performed using two different techniques: 

single-linkage hierarchical clustering and complete linkage hierarchical clustering 

(Johnson, 1967). Single linkage forms clusters that are more connected while complete 

linkage forms clusters that are optimally compact.  However, in this case, both algorithms 

gave very similar results, which points to a clustering that is intrinsic to the data and not 

an artifact of the chosen method.   

The choice of atoms on which clustering was performed was based on the 

analysis of the backbone and side chain fluctuations of residues surrounding the binding 

pocket above.  The Cα atoms of residues associated with the flap and P1 loop region 

gave the highest radii of gyration across the 629 structures (see Figure 9.1) and were 

therefore chosen for clustering.  This corresponds to the Cα atoms of residues 49-51 and 

80-82, respectively.  Side chains were also chosen by reviewing their fluctuation analysis.  

Only one side chain demonstrated a clustering level with both high minimum separation 

ratio and minimum distance between clusters: that of R8, a highly conserved residue that 

is important for dimer formation. A manufactured dihedral angle was chosen for 

clustering R8 using the C, Cα, Cβ and Cζ.  Clustering on a dihedral angle also alleviates  
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 PDB ids 

Apo 
 
1hhp_a; 1rpi_a,b; 2g69_a; 2hb4_a; 2pc0_a; 3hvp_a; 3phv_a 
 

Bound 

1a30_a,b; 1a8g_a,b; 1a8k_a,b; 1a94_a,b; 1a9m_a,b; 1aaq_a,b; 1aid_a,b; 1ajv_a,b; 
1ajx_a,b; 1axa_a,b; 1b6j_a,b; 1b6k_a,b; 1b6l_a,b; 1b6m_a,b; 1b6p_a,b; 1bdl_a,b; 
1bdq_a,b; 1bdr_a,b; 1bv7_a,b; 1bv9_a,b; 1bvg_a,b; 1bwa_a,b; 1bwb_a,b; 1c6x_a,b; 
1c6y_a,b; 1c6z_a,b; 1c70_a,b; 1cpi_a,b; 1d4h_a,b; 1d4i_a,b; 1d4j_a,b; 1d4k_a,b; 
1d4l_a,b; 1d4s_a,b; 1d4y_a,b; 1dif_a,b; 1dmp_a,b; 1ebw_a,b; 1eby_a,b; 1ebz_a,b; 
1ec0_a,b; 1ec1_a,b; 1ec2_a,b; 1ec3_a,b; 1f7a_a,b; 1fb7_a, 1fqx_a,b; 1g2k_a,b; 
1g35_a,b; 1gnm_a,b; 1gnn_a,b; 1gno_a,b; 1hbv_a,b; 1hih_a,b; 1hiv_a,b; 1hos_a,b; 
1hpo_a,b; 1hps_a,b; 1hpv_a,b; 1hpx_a,b; 1hsg_a,b; 1hte_a,b; 1htf_a,b; 1htg_a,b; 
1hvh_a,b; 1hvi_a,,b; 1hvj_a,b; 1hvk_a,b; 1hvl_a,b; 1hvr_a,b; 1hvs_a,b; 1hwr_a,b; 
1hxb_a,b; 1hxw_a,b; 1iiq_a,b; 1izh_a,b; 1izi_a,b; 1k1t_a,b; 1k1u_a,b; 1k2b_a,b; 
1k2c_a,b; 1k6c_a,b; 1k6p_a,b; 1k6t_a,b; 1k6v_a,b; 1kj4_a,b; 1kj7_a,b; 1kjf_a,b; 
1kjg_a,b; 1kjh_a,b; 1kzk_a,b; 1lzq_a,b; 1m0b_a,b; 1mer_a,b; 1mes_a,b; 1met_a,b; 
1meu_a,b; 1mrw_a,b; 1mrx_a,b; 1msm_a,b; 1msn_a,b; 1mt7_a,b; 1mt8_a,b; 1mt9_a,b; 
1mtb_a,b; 1mtr_a,b; 1mui_a,b; 1n49_a,b; 1nh0_a,b; 1npa_a,b; 1npv_a,b; 1npw_a,b; 
1odw_a,b; 1odx_a,b; 1ody_a,b; 1ohr_a,b; 1pro_a,b; 1qbr_a,b; 1qbs_a,b; 1qbt_a,b; 
1qbu_a,b; 1rl8_a,b; 1rq9_a,b; 1rv7_a,b; 1sbg_a,b; 1sdt_a,b; 1sdu_a,b; 1sdv_a,b; 
1sgu_a,b; 1sh9_a,b; 1sp5_a,b; 1t3r_a,b; 1t7i_a,b; 1t7j_a,b; 1t7k_a,b; 1tcx_a,b; 1tsq_a,b; 
1tsu_a,b; 1tw7_a,b; 1u8g_a,b; 1upj_a; 1vij_a,b; 1vik_a,b; 1w5v_a,b; 1w5w_a,b; 
1w5x_a,b; 1w5y_a,b; 1wbk_a,b; 1wbm_a,b; 1xl2_a,b; 1xl5_a,b; 1yt9_a,b; 1z1h_a,b; 
1z1r_a,b; 1z8c_a,b; 1zbg_a,b; 1zj7_a; 1zlf_a,b; 1zp8_a; 1zpa_a; 1zpk_a,b; 1zsf_a,b; 
1zsr_a,b; 1ztz_a,b; 2a1e_a,b; 2a4f_a,b; 2aid_a,b; 2aoc_a,b; 2aod_a,b; 2aoe_a,b; 
2aof_a,b; 2aog_a,b; 2aoh_a,b; 2aoi_a,b; 2aoj_a,b; 2aqu_a,b; 2avm_a,b; 2avo_a,b; 
2avq_a,b; 2avs_a,b; 2avv_a,b; 2az8_a; 2az9_a; 2azc_a,b; 2b60_a,b; 2b7z_a,b; 
2bb9_a,b; 2bbb_a,b; 2bpv_a,b; 2bpw_a,b; 2bpx_a,b; 2bpy_a,b; 2bpz_a,b; 2bqv_a,b; 
2cej_a,b; 2cem_a,b; 2cen_a,b; 2f3k_a,b; 2f80_a,b; 2f81_a,b; 2f8g_a,b; 2fdd_a,b; 
2fde_a,b; 2fgu_a,b; 2fgv_a,b; 2fle_a,b; 2fns_a,b; 2fnt_a,b; 2fxd_a,b; 2fxe_a,b; 
2hb3_a,b; 2hc0_a,b; 2hs1_a,b; 2hs2_a,b; 2i0a_a,b; 2i0d_a,b; 2i4d_a,b; 2i4u_a,b; 
2i4v_a,b; 2i4w_a,b; 2i4x_a,b; 2idw_a,b; 2ien_a,b; 2ieo_a,b; 2j9j_a,b; 2j9k_a,b; 
2je4_a,b; 2nmw_a,b; 2nmy_a,b; 2nmz_a,b; 2nnk_a,b; 2nnp_a,b; 2nph_a,b; 2nxd_a,b; 
2nxl_a,b; 2nxm_a,b; 2o4k_a,b; 2o4l_a,b; 2o4n_a,b; 2o4p_a,b; 2o4s_a,b; 2p3a_a,b; 
2p3b_a,b; 2p3c_a,b; 2p3d_a,b; 2pk5_a,b; 2pk6_a,b; 2pqz_a,b; 2psu_a,b; 2psv_a,b; 
2pwc_a,b; 2pwr_a,b; 2pym_a,b; 2pyn_a,b; 2q3k_a,b; 2q54_a,b; 2q55_a,b; 2q5k_a,b; 
2q63_a,b; 2q64_a,b; 2qak_a,b; 2qci_a,b; 2qd6_a,b; 2qd7_a,b; 2qd8_a,b; 2qhc_a,b; 
2qhy_a,b; 2qhz_a,b; 2qi0_a,b; 2qi1_a,b; 2qi3_a,b; 2qi4_a,b; 2qi5_a,b; 2qi6_a,b; 
2qi7_a,b; 2qmp_a,b; 2qnn_a,b; 2qnp_a,b; 2qnq_a,b; 2r5p_a,b; 2r5q_a,b; 2rkf_a,b; 
2upj_a,b; 2uxz_a,b; 2uy0_a,b; 2z4o_a,b; 2z54_a,b; 3aid_a,b; 3b7v_a,b; 3b80_a,b; 
3bva_a,b; 3bvb_a,b; 3bxr_a,b; 3bxs_a,b; 3cyw_a,b; 3cyx_a,b; 3d1x_a,b; 3d1y_a,b; 
3d1z_a,b; 3d20_a,b; 3dck_a,b; 3dcr_a,b; 3hvp_a, 3phv_a, 3tlh_a, 4hvp_a,b; 4phv_a,b; 
7hvp_a,b; 7upj_a,b; 8hvp_a,b; 9hvp_a,b; 1daz_d; 1dw6_d; 1fej_d; 1ff0_d; 1fff_d; 
1ffi_d; 1fg6_d; 1fg8_d; 1fgc_d; 1hef_e; 1heg_e 

Table 9.1. HIV-1 PR PDB ids analyzed with clustering.  If more than one chain was available in the PDB, 
they are designated after the underscores. 

 
 



 114 

 

Figure 9.1. Radius of gyration for each HIV-1 PR residue (1-99) after superimposition on β1 (residues 10-
14), β2 (20-24), β3 (31-34) and αA (87-93). 

 
 
the need for alignment of the structures.  The best clustering was chosen as that which 

gave the highest MSR and a minimum RMSD between clusters of greater than 1Å. 

 

9.2 Having Many Structures Does not Denote an Abundance of 

Discrete Conformational Variability 

 Analysis of backbone and side chain configurations across the 629 monomeric PR 

structures results in 10 clusters as shown in Figures 9.2a,b and Table 9.2 using both 

single linkage (SLC) clustering and complete linkage clustering (CLC).  However, the 

majority of the structures (586 out of 629) are found in one cluster.  Other clusters 

include: three small clusters of seven, four, and 26 structures and 6 singletons.  

Separately, the flap region is separated into four clusters which correspond to a “closed” 

conformation, and three expanded semi-open conformations; the P1 loop is separated into 

2 clusters where only one structure is found to have an expanded conformation; and the 
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side chain conformation of R8 is separated into 2 clusters, one of which points into the 

binding pocket (“in”) while the other points away from the binding pocket (“out”).   

The majority of the structures (613) sample the “closed” flap conformation.  As 

expected, all of the “closed” structures are either substrate-bound or inhibitor-bound.  The 

expanded semi-open conformations of the flap are split into three classifications: 

expanded-1 (Exp-1), expanded-2 (Exp-2) and expanded-M (Exp-M) and are shown in 

 

Figure 9.2a.  Four conformations of the HIV-1 PR flexible flap.  Gray: Large cluster representative. Blue: 
Apo semi-open Exp-1.  Green: Apo and mutated ligand-bound semi-open Exp-2. Red: Metallocarborane-
bound Exp-M.  (a) Side view of HIV-1 PR. (b) Top view of PR shows a change in the “handedness” 
between apo and bound structures. 
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Figure 9.2a.  Exp-1 includes only apo structures.  Exp-2 includes both apo and ligand 

bound structures that have been described as having expanded binding sites.  1TW7 has 

been described as a “wide-open” structure that results from a large degree of mutation in 

residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90 (Martin et al., 2005).  In 2009 it was 

demonstrated via both experimental techniques and simulation that the “wide open” 

structure seen in 1TW7 is in fact a result of extensive crystal contacts.  Simulations have 

shown that, if allowed to relax, 1TW7 takes on a semi-open form (instead of the 

 

Figure 9.2b. Variations in the P1 loop and conserved side chain Arg8.  (a) Gray: Large cluster 
representative or the “common” conformation. Orange: singleton 2FXD_a.  (b) Fluctuations in the 
conformation of the Arg8 side chain.  Red: “out” conformation. All other colors: “in” conformations.  

 
described “wide open” form) (Lexa et al., 2009).  Therefore, the mutations may still be 

somewhat responsible for this semi-open, expanded form of the flap.  1RV7 and 1RQ9 

are also highly mutated with mutations at residues 10, 36, 46, 54, 63, 71, 82 or 84, and 
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90.  The active sites are deemed “expanded” sites as a result of the reduced size of side 

chains due to the V82A and I84V mutations.  They are also reported as having semi-open 

flap configurations possibly as a result of the novel binding modes of the inhibitor MDR-

769 (Logsdon et al., 2004). Finally, the Exp-M is a novel conformation of the flaps that is 

a result of binding to a set of metallocarboranes.  It experiences an odd crystal formation  

Cluster Cluster Member PDB ids Flap  P1 Loop  Arg8  
Large [586] Closed 

 
Common IN 

Small 
Cluster1 

1rpi_b 1tw7_a 1tw7_b 1rv7_a 1rq9_a 1rq9_b 
1rv7_b 
 

Exp-2 Common IN 

1rpi_a 1rpi_a   
 

Exp-2 Common OUT 

Small 
Cluster 2 

1hhp_a 3hvp_a 3phv_a 2g69_a 
 

Exp-1 Common IN 

2hb4_a 2hb4_a 
 

Exp-1 Common OUT 

1ztz_a  1ztz_a  
 

Exp-M Common IN 

1ztz_b 1ztz_b 
 

Exp-M Common OUT 

2pc0_a 2pc0_a 
 

Exp-2 Common OUT 

2fxd_a 2fxd_a 
 

Closed Expanded IN 

Small 
Cluster 3 

1bvg_a 1bvg_b 3dcr_b 2rkf_a 2rkf_b 2avm_b 
2avq_b 2aod_b 2aog_b 1htf_a 2nnp_a 3dck_b 
2idw_a 1mt7_a 3d1x_a 3dcr_a 3cyx_a 1sh9_b 
1tsu_b 3bva_b 1sgu_a 2avv_b 2b60_a 2p3c_a 
2p3c_b 1c70_b 

Closed Common OUT 

Table 9.2. Ten conformational basins from clustering of 629 HIV-1 PR monomers.  Combinations of 
structural features are given for each cluster or singleton.  There are four conformations of the flap: one 
Closed and three semi-open or expanded (Exp-1, Exp-2, Exp-M).  There are two conformations for the P1 
loop: the Common conformation that presides in all but one structure and the Expanded conformation 
which is found only in chain A of PDB id 2FXD.  Finally, there are two conformations for the conserved 
Arg8 sidechain: “In,” where the side chain faces into the binding pocket and “out,” where it faces solvent.  
PDB ids are given for singletons and small clusters.  There are 586 structures populating the large cluster.  

 
where four metallocarboranes are situated in a new pocket defined as a tetramer instead 

of the typical dimer (Cígler et al., 2005).  It should also be pointed out that the 
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conformations of the semi-open expanded flaps for the apo structures in Exp-1 display 

the typical opposite handedness of the bound structures, including those bound structures 

in Exp-2 and Exp-M, as shown in Figure 9.2a. 

Clustering of R8 results in 2 “smears” of conformations that are separated by 

about 20°.  599 PR monomers display the “in” conformation of R8; 30 PR monomers 

display the “out” conformation.  Apo, substrate bound and ligand bound structures may 

exhibit either conformation.  Finally, only one structure, a M46I, V82F, I84V, and L90M 

mutant, is separated based on the conformation of its P1 loop: 2FXD_a.  The other 2FXD 

monomer has a “common” configuration of the P1 loop.  This is a result of the 

asymmetric inhibitor that is bound, which forms π-π stacking interactions with the 

mutated F82 (Klei et al., 2007).    

 Information from the clustering was used to create a conformational landscape 

that maps the fluctuation of the flap region.  Coordinates were chosen as the large cluster 

representative and an apo Exp-1 conformation.  Structures were binned based on these 

quantities and the resulting populations are shown in Figure 9.3.  All four conformations 

of the flap are separated using these coordinates.  Even though there are many structures, 

the majority are found in the large cluster, suggesting a rugged landscape in that region 

where conformations are separated by small energy barriers.  This is consistent with the 

trends seen in previous studies (Zoete et al., 2002; Yang et al., 2008).  As discussed in 

Chapter 6, these populations may not be directly converted to free energies as biases exist 

in the dataset from different ligands and substrates, crystal contacts, and mutations.  

However, this conformational landscape does offer a comprehensive rough estimate for 

possible locations of energy basins and can serve as a benchmark for computational 



 119 

modeling of the HIV-1 PR “substrate envelope” or a variety of possible “substrate 

envelopes” for use in inhibitor design. 

 

 

Figure 9.3. Sample conformational landscape for HIV-1 PR showing the four clusters of the flexible flap 
region. The closed Large Cluster, and the semi-open Exp-1, Exp-2, and Exp-M. are labeled.  Colors scale 
with the population in that region with white being zero structures, red being a small number and fuchsia 
being the highest population observed.  Most of the structures fall into the Large Cluster region around 4-
6.5 Å rmsd from the semi-open apo structure and around 0-2 Å rmsd from the large cluster representative. 
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Chapter 10 

Modeling Receptor Strain Energy in Protein-Ligand 

Binding 

 

10.1 Introduction to Protein-Ligand Binding and GLIDE 

 An understanding of molecular recognition and its principles would result in more 

efficient applications in medicinal chemistry.  Drug discovery, in principle, should 

capture the physical properties that are responsible for recognition of the drug by its 

target protein.  As illustrated in chapters 6 and 9, the amount of available structural data 

is ever-growing as experimental techniques improve.  This large amount of structural 

data along with a large amount of available inhibition data (as shown in Appendix A.1) 

allows computer-aided structure-based ligand design to serve as an alternative strategy to 

experimental high-throughput screening to find novel leads in drug development.  

 Computer-aided drug design methods take aim at two tasks: predicting the 

binding mode of the ligand in the binding pocket and estimating the binding affinity.  The 

estimation of the binding affinity is important to correctly rank possible lead molecules.  

For example, in virtual screening, weak binders should be distinguishable from strong 

binders and non-binders.  Predicting binding modes and estimating affinities are 

generally accomplished in two steps: docking and scoring.  In the docking step, multiple 

protein-ligand configurations, called poses, are generated.  Then, the poses are scored 

using a scoring function to calculate the binding affinity of the ligand in that pose for the 

receptor.  Conformations of the ligand close to the  “native” conformation should be 
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ranked above (have more favorable binding energies than) those farther from the 

“native.” 

 Scoring functions can be grouped into three classes: force-field based, knowledge 

based and empirical scoring functions.  Force-field based scoring functions, such as those 

found in CHARMm (Momany and Rone, 1992) and Dock-chemical (Ewing and Juntz, 

1997), apply classical molecular mechanics energy functions where they approximate the 

free energy of binding as a sum of van der Waals and electrostatic interactions.  

Knowledge based scoring functions like DrugScore (Gohlke et al. 2000) and PMF 

(Muegge and Martin, 1999) represent the binding affinity as a sum of protein-ligand atom 

pair interactions. These potentials utilize distance-dependent interaction free energies of 

protein-ligand atom pairs derived from probability distributions of interatomic distances 

from protein-ligand complexes with known structures.  Empirical scoring functions like 

ChemScore (Eldridge et al. 1997), Gold (Jones et al. 1995; Jones et al. 1997), AutoDock 

(Morris et al. 1998; Goodsell and Olson, 1990; Morris et al. 1996) and Glide (Friesner et 

al. 2006; Friesner et al. 2004; Halgren et al. 2004) estimate the binding free energy by 

summing interaction terms derived from fitting the scoring function to experimental 

binding constants of a training set of protein-ligand complexes.  The archetypical 

empirical scoring function consists of five main terms that represent hydrogen bonds, 

ionic and lipophilic interactions, and the loss of external and configurational entropy 

upon binding (Böhm, 1994; Böhm, 1998). 

 Glide from Schrödinger, Inc. (Grid-based Ligand Docking with Energetics) has 

recently been shown to outperform other powerful empirical scoring functions in both 

correct pose identification and in virtual screening (Zhou et al. 2007; Cross et al. 2009; Li 
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et al. 2010; Friesner et al. 2006).  The Glide XP algorithm uses a series of hierarchical 

filters to search positions, orientation and conformations of the ligand in the receptor’s 

binding site (Friesner et al. 2006; Friesner et al. 2004; Halgren et al. 2004).  The shape 

and properties of the receptor are represented on a grid by varying sets of fields that are 

computed prior to docking.  The ligand’s translation ability is limited by the box that 

defines the binding site.  Initially, a set of ligand conformations is generated through an 

exhaustive torsional search which is clustered in a combinatorial fashion.  In the first 

stage, the clusters which are characterized by a common “core” conformation and a set of 

rotamer group conformations are docked as single objects (Friesner et al. 2004).  Rough 

positioning and scoring allows a reduction of the possible poses that will be considered in 

the next step.  Step two minimizes selected poses using precomputed van der Waals and 

electrostatic grids for the receptor.  The precomputed values were acquired with the 

OPLS-AA force field (Jorgenson et al. 1996; Kaminski et al. 2001).  Finally, the five to 

ten lowest energy poses are subjected to a Monte Carlo procedure that examines nearby 

torsional minima to refine the peripheral groups of the ligand.  The minimized poses are 

then rescored using the XP GlideScore function  shown below in equations 10.1-3 

(Friesner et al. 2006): 

       (10.1) 

where     (10.2) 

and          (10.3) 

The XP GlideScore is an expanded ChemScore (Eldridge et al. 1997) function with force-

field components and additional terms accounting for solvation and repulsive 

interactions.  The Glide XP scoring function applies desolvation penalties by docking 
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explicit waters into the highest scored docked complexes and evaluating the solvation of 

polar and charged ligand and protein groups by counting the number of neighboring 

waters and comparing these values to statistics extracted from a database of correctly 

docked ligands.  Incremental increases in binding affinity are added to the ligand score 

when appropriate motifs are recognized.  Additional terms that take into account 

hydrogen bonding, treatment of salt bridges π-cation interactions and other specialized 

medicinal chemistry motifs are described by Friesner et al. (2006).  The XP scoring 

function was parametrized using a training set of 15 receptor structures and affiliated 

“fitting” ligands (Friesner et al. 2006). 

10.2 Advantages and limitations in utilizing structural descriptors for 

characterization of receptor reorganization free energy in protein 

ligand binding 

An understanding of molecular recognition and its principles leads towards more 

efficient applications in medicinal chemistry.  Drug discovery should capture the physical 

properties that are responsible for recognition of the drug by its target protein.  The 

amount of available structural data is ever-growing as experimental techniques improve.  

This, along with a large amount of available inhibition data, allows computer-aided 

structure-based ligand design to serve as an alternative strategy to experimental high-

throughput screening to find novel leads in drug development.  Computer-aided drug 

design methods take aim at two tasks: predicting the binding mode of the ligand in the 

binding pocket and estimating the binding affinity.  The estimation of the binding affinity 

is important to correctly rank possible lead molecules.  For example, in virtual screening, 

weak binders should be distinguishable from strong binders and non-binders.   
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The overall affinity of a ligand for a receptor can be expressed as a balance 

between the strength of the interactions of the ligand for a particular binding-competent 

conformation of the receptor and the probability of occurrence of that conformation in the 

absence of a ligand.  Much work has been done on the former part of the problem of 

determining the strength of interactions between a ligand and receptor. (Friesner, et al. 

2004; Halgren, et al. 2004; Friesner, et al. 2006; Ewing and Kuntz 1997; Moustakas, et 

al. 2006; Jones, et al. 1995; Verdonk, et al. 2008; Kramer, et al. 1999; Jain 2007; 

Venkatachalam, et al. 2003; Zhou, et al. 2007; Ferrara, et al. 2004)  The latter part of the 

problem has recently come back into focus with the idea of conformational selection or 

binding funnels. (Boehr, et al. 2009; Bakan and Bahar 2009; Ma, et al. 2002; Ma, et al. 

1999; Frauenfelder, et al. 1991; Miller and Dill1997)   Previously, ligand binding was 

often approached via either Fischer’s “lock-and-key” model (Fischer 1894) or Koshland’s 

“induced fit” hypothesis. (Koshland 1958)  In the “lock-and-key” model, the free and 

ligand-bound proteins have the same rigid conformation whereas in the “induced fit” 

model, the ligand induces a complementary conformational change in the protein.  The 

conformational selection hypothesis approaches binding from a “folding funnel” point of 

view where protein folding or binding is viewed as a parallel process in which an 

ensemble of molecules goes downhill through an energy funnel. (Dill and Chan 1997; 

Lazaridis and Karplus 1997; Becker and Karplus 1997; Martinez, et al. 1998; Onuchic, et 

al. 1997; Ravindranathan, et al. 2005)  Folding funnels are rugged in the vicinity of the 

native fold of the protein, suggesting energetically competitive and similar conformations 

that provide an enhanced means of interactions between the protein and either ligands or 

other proteins.  The binding funnel model takes into account this rugged terrain and 
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argues that ligand binding can shift the populations towards the weakly populated, higher 

energy conformations that are more suitable for binding. (Ma, et al. 1999)  Both 

conformational selection and induced fit appear to play roles in ligand binding. (Boehr, et 

al. 2009; Bakan and Bahar 2009) 

Receptor reorganization can potentially be an important part of the measure of the 

affinity of a ligand for that particular receptor.  Receptors that undergo little to no 

conformational change upon binding can be handled in a “lock-and-key” fashion where 

the receptor is held rigid as a ligand is docked.  However, receptors that do undergo 

conformational change upon binding may require inclusion of receptor reorganization or 

strain free energy to properly model the binding of ligands to that protein.  Many 

medically relevant receptors undergo conformational changes upon binding, including 

several of the human immunodeficiency viral enzymes as well as a variety of kinases that 

have been implicated in certain cancers and other diseases.  The problem of receptor 

reorganization in protein-ligand binding represents the most difficult challenge; there is 

no cookbook recipe for modeling receptor reorganization in ligand binding and several 

methods have been attempted.  These include MD and MC methods, (Armen, et al. 2009; 

Cheng, et al. 2008; Bowman, et al. 2007; Carlson 2002; Hart and Read 1992; Oshiro, et 

al. 1995) use of rotamer libraries, (Schaffer and Verkhivker 1998; Desmet, et al. 1992; 

Leach 1994; Trosset and Scheraga 1999) protein ensemble docking, (Armen, et al. 2009; 

Totrov and Abagyan 2008; Knegtel, et al. 1997; Ferrari, et al. 2004; Claussen, et al. 

2001) and soft-receptor modeling. (Knegtel, et al. 1997; Ferrari, et al. 2004; Osterberg, et 

al. 2002)  MD and MC methods can be computationally expensive and have the 

drawback of potentially introducing significant error and “noise” that could decrease 
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docking accuracy.  Methods based on rotamer libraries represent the receptor as a set of 

experimentally observed and preferred rotameric states for side chains that surround the 

binding pocket.  However, this technique does not include backbone flexibility.  

Ensemble docking methods, where the ligand is docked to an ensemble of receptors with 

varying structures, have been explored but some studies have shown that docking to an 

ensemble may give worse results than rigid docking. (Polgar and Keseru 2006; Barril and 

Morley 2005)  Soft-receptor modeling combines information from several protein 

conformations to generate a single weighted average grid to which the ligand is docked.  

Another version of “soft” docking employs reduced van der Waals radii or deletion of 

side chains of residues predicted to be flexible, thus potentially eliminating close 

contacts. ( Carlson and McCammon 2000)  A study in 2006 rather successfully combined 

the “soft” docking technique with iterations of rigid receptor docking using reduced vdW 

radii and protein structure prediction techniques. (Sherman, et al. 2006)  However,  “soft” 

techniques are not able to handle large changes in conformation.   

While progress is being made in generating new receptor conformations for 

binding in connection with docking, we will use ensembles of experimentally determined 

receptor conformations to test our model for receptor reorganization free energy.  A 

linear response model for incorporation of receptor strain in combination with a modern 

protein-ligand binding affinity estimator is proposed.   For the majority of targets, most 

scoring functions perform rather well.  However, receptors that undergo large 

conformational changes present problems in both the estimation of binding affinities and 

in ranking of ligands.  Here, we study a set of five targets in an effort to develop a 

protocol for adding receptor strain estimators to the scoring function included in Glide 
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(Grid-based Ligand Docking with Energetics) by Schrödinger, Inc. (Friesner, et al. 2004; 

Halgren, et al. 2004; Friesner, et al. 2006): HIV-1 reverse transcriptase (HIV RT), HIV-1 

protease (HIV PR), p38 mitogen-activated protein kinase kinase (p38), Abl kinase (Abl), 

and phosphodiesterase 4 (PDE4).  The PDB ids associated with each target are given in 

Table 1 and structures are shown in Figure 1.  Each target undergoes a significant 

conformational change upon binding, has significant errors (greater than 1.5 kcal/mol) 

between their associated estimated scores and experimental binding energies, has low 

rank-order correlations (lower than 0.5), and offers a large number of crystallographically 

determined structures with different ligands bound.  They also allow for easy definition 

of a receptor binding pocket and show flexibility within said binding pocket.  

HIV RT, the HIV-1 viral enzyme responsible for the replication of the viral 

genomic material, experiences a large conformational change, depicted in Figure 1, upon 

binding nucleic acid as the enzyme moves to “clasp” the nucleic acid. (Jacobo-Molina, et 

al. 1993; Ding, et al. 1998)  One type of HIV RT inhibitor, the non-nucleoside inhibitor 

(NNRTI), is a non-competitive, specific inhibitor that binds to a pocket called the non-

nucleoside reverse transcriptase binding pocket (NNIBP), which lays approximately 10 Å 

from the enzyme’s polymerase active site. (Kohlstaedt, et al. 1992)  The NNIBP 

undergoes large structural rearrangements upon binding of an NNRTI where the aromatic 

side chains Y181 and Y188 swivel and the primer grip region (contained in the β12-β13-

β14 sheet) moves to create space for the ligand (as shown in Figure 1). (Hsiou, et al. 

1996; Das, et al. 2007)  As NNRTIs come in many shapes and sizes, the NNIBP has been 

found to be quite flexible, and has been likened to “shrink wrap” that changes form to 

optimize interactions with different ligands (Das, et al. 2008). 
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The viral enzyme HIV PR, an aspartic acid protease shown in Figure 1, plays an 

essential role in the life cycle of HIV in generation of mature virion particles through 

cleavage of the viral Gag and GagPol precursor proteins. (Kohl, et al. 1988)  It is 

composed of 99 amino acids and requires symmetric dimer formation for catalytic 

activity. (Wlodawer and Erickson 1993)  The active site is formed along the dimer 

interface and the two active site residues (D25 and D25’) are contributed by each 

monomer. (Oroszlan and Luftig 1990)  Binding of substrate causes the flaps of the dimer 

to move by as much as 7 Å in an opening and closing motion. (Miller, et al. 1989)  To 

date, there are no X-ray structures demonstrating the completely open conformation of 

the flap but NMR data suggests that there are rapid fluctuations between open and closed 

forms of the flap in solution. (Freedberg, et al. 2002; Hornak and Simmerling 2007)  As 

protease recognizes the asymmetric shape of peptide substrates rather than amino acid 

sequence, it does not require a particular amino acid sequence for cleavage.  Instead, it 

cleaves peptides that have similar secondary structures that fit in a defined “substrate 

envelope.” (Prabu-Jeyabalan, et al. 2002)  When protease binds a substrate, the structural 

symmetry of the homodimer is broken as the monomers adjust to accommodate the 

substrate. 

P38 is a mitogen-activated protein kinase (MAPK) kinase and is a target for anti-

inflammatory therapy for treatment of rheumatoid arthritis, psoriasis, multiple sclerosis 

and inflammatory bowel disease. (Han, et al. 1994; Saklatvala 2004)  Abl kinase is a 

tyrosine kinase that has been linked to chronic myelogenous leukemia (CML). 

(Lombardo, et al. 2004; Tokarski, et al. 2006; Wong and Witte 2004)  Inhibition of p38 

and Abl can be accomplished with two variations of inhibitors that target two very 
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different conformations of the enzyme as shown in Figure 1.  Type I kinase inhibitors 

bind at the ATP binding site in the active conformation while type II kinase inhibitors 

target the inactive (non phosphorylated) conformation and bind to the ATP binding cleft 

and an adjacent hydrophobic pocket created by the aspartate-phenylalanine-glycine 

(DFG) loop being in an “out” conformation.  The DFG loop is the kinase’s activation 

loop where the conserved DFG motif is found at the start of the loop.  The active 

conformations of both p38 and Abl are often referred to as DFG-“in” whereas the 

inactive conformations are often referred to as DFG-“out.” (Liu and Gray 2006; Munoz, 

et al. 2010) 

Phosphodiesterase 4 (PDE4) is the major enzyme that degrades cAMP in cells and 

is a therapeutic target of high interest for central nervous system, inflammatory and 

respiratory diseases. (Houslay, et al. 2005; Spina 2008; Burgin, et al. 2010)  Currently 

explored inhibitors bind the active site competitively with cAMP; the upstream conserved 

region 2 (UCR2), a signature regulatory domain, is necessary for the binding of at least 

one of these inhibitors, rolipram. (Burgin, et al. 2010; Bolger, et al. 1993; Jacobitz, et al. 

1996)  UCR2 has also been found to be partially responsible for the regulation of cAMP 

hydrolysis as it can adopt a “closed” conformation that blocks the active site; it is 

possible that the binding of inhibitors serve to stabilize this “closed” conformation.  The 

PDE4 inhibitor binding site is the least flexible of the five targets explored in this study 

and is similar to that of the apo structure (as shown in Figure 1); the primary source of 

conformational variation is in the side chains of UCR2 as well as other side chains 

surrounding the binding pocket.  
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In an effort to refine estimated binding free energy scores with an addition of 

receptor strain free energy using a linear response model, we postulate that most of the 

errors between the scores and experimental binding energies are due primarily to the 

neglect of receptor strain free energy and that there exists a response between the strain 

energies and the geometry of the receptor pockets.  A brute-force, general semi-

automated procedure is introduced that uses pair-wise residue-residue contacts in a 

defined binding pocket as descriptors for changes in receptor conformation and, 

therefore, a possible measure of receptor strain.  Residue-residue contact information can 

be easily assembled without detailed knowledge of the receptor and has the ability to 

account for all receptor conformational changes.  Increases and decreases in residue-

residue contacts may be both favorable or unfavorable as they can account for ligand-

induced repacking of the receptor binding pocket through breaks in contacts between 

residues on opposite sides of the pocket and creation of contacts between neighboring 

residues.  As such, they can be useful for evaluating nonbonded interaction energies.  

Residue-residue contact counts are used as a basis for several highly simplified models 

for protein motion and dynamics, such as the anisotropic network model (Atilgan, et al. 

2001; Eyal, et al. 2006) and the Gaussian network model. (Haliloglu, et al. 1997; Bahar 

and Jernigan 1998; Yang, et al. 2009; Lin, et al. 2008)  These motions are generally 

characterized by a high degree of collectivity and are defined by the overall architecture 

or topology of interresidue contacts in the native structure. (Tama and Brooks 2006; 

Nicolay and Sanejouand 2006)  Applications of such simplified models have become 

increasingly popular in modeling protein-ligand intereactions, especially in cases where 

the receptor is flexible. (May and Zacharias 2008; Floquet, et al. 2006; Cavasotto, et al. 
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2005)  However, moving from the study of protein motion to a quantification of a 

resulting energy term has proven difficult and far from straightforward.  The linear model 

here is an attempt at pairing a simplified model of receptor motion and the concept of 

receptor reorganization free energy.  It is constructed to fit the strain free energy, defined 

by the difference between the experimental binding free energy and the estimated score 

from Glide (GlideScore), to a combination of pair-wise receptor-receptor contacts.  

Analysis of the selected combinations of residue-residue contact counts may offer 

valuable information as to the type of conformational changes, if any, that may contribute 

to the receptor reorganization free energy.  Ligand reorganizational energies and entropic 

loss are ignored here as they are partially accounted for in the estimated GlideScores. 

As we are using such a large number of potential descriptors, it is possible that the 

fits produced are simply by chance and have no real structural meaning or implications.  

Several statistical tests including jack-knife “leave one out” and the Bonferroni ad hoc 

test are utilized to test the fits.  A more sophisticated null hypothesis test is also 

introduced and constructed where random data was generated and fit via linear regression 

to the difference between the experimental binding free energy and the estimated 

GlideScore, here defined as the GlideScore “error,” in the same manner as the real data.  

Since the use of fewer variables will more likely avoid over-fitting and fitting by chance 

alone, an alternative to using receptor residue-residue contact counts as potential 

descriptors is offered for sample difficult targets. 

Results and Discussion 

Correlation of the GlideScores and the experimental binding free energies are 

depicted in Figure 2 and in the Spearman rank order correlations (ρ’s) listed in Table 2.  
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The rank order correlations of the GlideScores to experiment are very low (no 

correlation) for Abl, HIV RT and p38 and marginal for HIV PR and PDE4.  In four out of 

the five cases, the majority of the complexes have GlideScores lower than the 

experimental binding free energy.  This may suggest that a positive energy penalty due to 

receptor strain can be added to improve the scores.  For PDE4, which has a smaller 

unsigned error of 1.53 kcal/mol, a marginal rank order correlation, and the majority of 

GlideScores greater than corresponding experimental binding free energies, it is still 

interesting to test the concept of receptor reorganization where there is less ligand-

induced variation in the binding pocket and where the bound conformations sample a 

more rugged landscape about a conformation close to the inactive apo structure. 

Figure 2 and Table 2 give the results of the optimal linear model.  Comparison 

can be made to the errors and correlations of the initial GlideScores numerically and by 

eye from Figure 2.  Comparison can also be made to a very simple regression of the 

GlideScores to the experimental energies where errors in the binding free energies are 

reduced but the rank order correlation does not improve.  It should be reinforced that the 

linear model proposed here does not fit the GlideScore directly to the experimental 

energies as is done in the simple linear regression; only contact descriptors have 

coefficients in the linear model.  For all five targets, the linear response model provided 

apparent improvement in reducing the error and increasing the rank order correlations.  

The largest improvement in predicting binding free energies is found in Abl where the 

error decreases from 3.78 to 1.10 kcal/mol while the rank order correlation increases 

slightly.  HIV RT, p38, HIV PR and PDE4 experience reductions in binding free energy 
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error of close to 1 kcal/mol while also increasing the Spearman rank order correlation to 

significantly higher values. 

Conformational contributions to receptor reorganization free energy.  The 

contact pairs that were selected for the linear model may offer useful information about 

each targets’ free energy landscape for binding in the spirit of free energy folding funnels 

proposed for proteins in general.  Folding funnels are rugged in the vicinity of the native 

fold of the protein suggesting energetically competitive and similar conformations which 

provide an enhanced means of interaction between the protein and either ligands or other 

proteins. (Dill and Chan 1997; Becker and Karplus 1997; Onuchic, et al. 1997; 

Ravindranathan, et al. 2005; Tsai, et al. 1999)  The landscape provides useful information 

about both the different means for inhibitors to bind a receptor and the strain free energy 

required to adopt a particular conformation for binding.  Limited fluctuation of the 

receptor reorganization free energies may suggest that the deformations within the 

binding pocket are locally elastic with small free energy penalties.  In contrast, large 

changes in reorganization free energies are suggestive of more steeply sloped free energy 

basins.  One of the challenges of exploring a free energy landscape is the determination 

of useful order parameters.  This study may offer some insight into which parameters 

may be useful to describe the receptor reorganization free enery landscape for binding to 

each target through examination of the receptor contact pairs selected in the linear model.   

The selected Abl kinase descriptors describe receptor changes that are evident to 

the naked eye.  One pair, E286 and F382 tracks the “in” and “out” conformations of the 

enzyme.  All structures with zero contacts made between this pair are in the “out” 

conformation while all structures with at least one contact are “in” conformations.  F382 
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is also an important conserved residue and makes up the “F” of the DFG motif.  The 

other pair, I293 and F359 track a rotation in the χ1 dihedral angle of F359.  Estimated 

reorganization free energies for Abl are positive and have a large range from 0.66 

kcal/mol to 6.55 kcal/mol with ~70% of the structures having reorganization free 

energies within the first standard deviation (stdev; 1.88 kcal/mol) from the mean (3.68 

kcal/mol); all reorganization free energies fall within two standard deviations from the 

mean. The largest reorganization free energies are associated with the DFG “out” 

conformations while those with smaller energies are associated with DFG “in” 

conformations, suggesting a possible free energy barrier between the two conformations.  

The two pairs from the linear model for HIV RT also describe large changes in 

the binding pocket of the enzyme.  The Y188 and W229 pair scales with the distance 

between the conserved primer grip region and the β6-β9-β10 sheet, which accounts for an 

expansion of the NNRTI binding pocket via movement of the biologically important 

primer grip (Jacobo-Molina, et al. 1993) in response to different ligands.  The Y181 and 

E138 (on p51) pair track conformational changes seen in the χ1 angle of Y181 as the 

residue swivels between “Closed” and “Open” conformations.   These descriptors mirror 

those from a previous study that utilized clustering to probe the conformational landscape 

for binding NNRTIs. (Paris, et al. 2009)  The estimated reorganization free energies 

experience a large unevenly distributed range from -0.29 kcal/mol to 5.36 kcal/mol; 80% 

are within the first stdev (1.02 kcal/mol) from the mean (2.00 kcal/mol) but one structure 

is found over three stdevs from the mean: 1TV6.  1TV6 was found to be a singleton in 

the clustering study (Paris, et al. 2009) and experiences “Closed” conformations of the 

Y181 and Y188 side chains with a primer grip region in a more open position than most 
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of the other structures.  As 1EP4, which has the most expanded positioning of the primer 

grip (Paris, et al. 2009), demonstrates a reorganization free energy close to the mean, it 

can be suggested that the largest influence on HIV RT’s reorganization free energy may 

not be the change in conformation of the primer grip alone but instead the swiveling of 

the Y181 side chain in combination with primer grip movement.  

The three pairs found for p38 take aim at side chain fluctuation.  M109-D112 and 

I141-I147 scale with the χ1 angles of M109 and I141, which sample conformations that 

are separated by 100° to180°, respectively.  The third pair, R67 and R70 changes with 

fluctuations in R67, which is quite variable throughout the set of X-ray structures.  The 

range of reorganization free energies is quite large, from -3.67 kcal/mol to 7.58 kcal/mol 

but 78% are within the first stdev (2.59 kcal/mol) from the mean that is closer to 0 (0.77 

kcal/mol).  For most of the complexes, the addition of reorganization free energy is very 

small and is found to be less than 1 kcal/mol.  However, there are two structures where 

the contributed energy is at the upper limit (close to 7.5 kcal/mol); one of these structures 

is a DFG “out conformation with a rather large ligand and the other represents a unique 

conformation that has its DFG loop in an “in” position but has a large DFG “out” type 

ligand bound.  It is interesting to note that, although p38 and Abl are from the same 

family and display similar conformational changes of their DFG loops upon binding, the 

large backbone rearrangements are only found to be contributors to the reorganization 

free energy of Abl and not p38.   

Finally, both PDE4 and HIV PR’s contact pairs are associated with more subtle 

reorganizations in small fluctuations of side chains throughout the structure.  Linear 

regression for PDE4 selects residue pairs: M347/273-L393/319, M347/273-I450/376, 
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I410/336-M411/337 (where the first residue number is for PDE4B and the second is for 

PDE4D).  HIV PR fitting results in T12_a-I66_a, D25_a-D25_b, L5_a-P9_a, R8_a-P9_a 

pairs (where the a’s and b’s designate the chain/monomer).  PDE4 samples energies from 

-3.54 kcal/mol to 1.22 kcal/mol with an average of -1.34 kcal/mol while HIV PR samples 

energies from -1.92 kcal/mol to 3.56 kcal/mol with an average of 1.22 kcal/mol.  Both 

targets sample small near-evenly distributed ranges in reorganization free energy that 

point to rugged energetic basins around their averages. 

The analysis of the selected residue pairs used for fitting offers valuable 

information as to the type of conformational changes, if any, may contribute to the 

receptor reorganization free energy.  Both HIV RT and Abl kinase pairs track large 

changes in back bone and side chains.  P38 pairs select for large side chain fluctuations, 

and HIV PR and PDE4 pairs select for smaller, subtle side chain variations.  For PDE4, 

this was expected as the backbone of the binding pocket has been described as rather 

rigid.  The HIV PR structures included in this study also do not include large backbone 

changes; all flaps are in the closed, bound conformation. 

Statistical examination of the linear response model.  As we are using a large 

number of potential descriptors and selecting them based on experimental data, it is 

possible that the fits produced are simply by chance and have no real structural or 

energetic meaning or implication.  This problem of statistical significance is oftentimes 

probed by jack-knife or “leave one out” tests and calculation of p-values for the linear 

fits.  Jack-knife tests successively leave one data point out during fitting and 

determination of the linear model.  Errors of each successive model are then averaged 

and compared with errors in the initial all-inclusive model.  The p-value for the linear fit 
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is defined as the probability, under the assumption of no effect (the null hypothesis), of 

obtaining a result equal to or more extreme than what was actually observed.  Low p-

values (less than 0.05 or 0.01) are argued to provide evidence against the null hypothesis 

( Fisher 1950) but this practice has found itself highly contested. (Neyman and Pearson 

1933; Sterne and Davey Smith 2001)  The Bonferroni ad hoc test calls for a reduction in 

the acceptable p-value by 1/n where n is the initial number of variables.  In this case, the 

number of initial values for each receptor is represented by the number of contact pairs 

within 5 Å of any associated ligand and ranges from 27 to 153 depending on the target 

and size of the ligands.  Both jack-knife and Bonferroni tests are shown in Table 2 and, 

for the most part, point toward good fits that are likely not produced by chance alone.  

Jack-knife tests result in expected small increases of the binding free energy error except 

in the case of p38.  In three of the five cases (Abl, HIV PR and PDE4), the p-values for 

the fits are more than three orders of magnitude less than the Bonferroni threshold.  The 

remaining two (HIV RT and p38) are slightly less than the threshold. 

A further, more sophisticated null hypothesis test was constructed where data was 

randomly generated and fit via linear regression to the difference between the 

GlideScores and experimental binding free energies in the same manner as the real data 

(see the Experimental Section).  This null model works as a test to see if structural 

knowledge is necessary to model the reorganization free energy of binding or if random 

numbers could be selected to produce similar results.  Outcomes and significance tests 

from the null model and comparison with the real model are shown in Table 2.  The null 

model was able to give comparable fits to those generated with real data.  Jack-knife tests 

on the null model produce similar results to those for the real model; however, the real 
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model performs better (has a lower jack-knife error) than the null model in three out of 

five cases (Abl, PDE4, and HIV PR).  Again, the jack-knife test for p38 produces 

unfavorable results.  Only two of the five targets pass the Bonferroni ad hoc test with the 

null model in comparison with the real contact descriptors where all five targets produce 

p-values lower than the Bonferroni threshold. 

The apparent success of the null model is most likely a consequence of the 

method chosen where the first pass pares down the large number of contact counts to a 

smaller set based on Spearman rank order correlations.  Selection of the contact counts 

for the linear regression was also done using different ρ cutoff values (shown in Table 2; 

ρ cutoffs are described in the Experimental Section below) for random versus real and, in 

all five cases, the cutoffs were lower for the random data than for the real.  This is 

especially prevalent in Abl where the cutoff used for real data is 0.7 while that used for 

the random is 0.3.  The different cutoff values were thought to be necessary to provide 

similar numbers of contact counts for each target as input to the linear model.  In other 

words, the “random” data used for the null model regression was inadvertently chosen to 

mimic the real data and thus was able to produce comparable fits.  Use of the Bonferroni 

test and comparison of the jack-knife results between the null model and the real model 

allow for a clearer picture of which targets benefit from the reorganization free energy 

model posited here (PDE4, Abl, HIV PR), which results are not truly structurally 

significant (p38), and those that are borderline (HIV RT).  

An alternative route: structurally significant intrareceptor distance 

descriptors.  In the two cases where the model utilizing residue-residue contact counts 

produce structurally insignificant (p38) or borderline results (HIV RT), an alternative 
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route using intrareceptor distances was attempted.  This method also has the ability to 

overcome the possibility of over-fitting or fitting by chance alone as a smaller set of 

variables, in the form of hand-selected distances that describe some of the structural 

variation of the receptors, is utilized.  HIV RT is described by Y181cz-E138cd, Y188ca-

W229ca, V108ca-186ca, and L228cg-F227cg (residue type, residue number, PDB atom 

type; E138 is located on the p51 monomer while the others are located on p66).  These 

distances were chosen based on a previous study. (Paris, et al. 2009)  The distance 

descriptors for p38 were selected by observations of several superimposed structures and 

focus on variations of the DFG loop along with possible fluctuations of the DFG “in” and 

“out” binding pockets.  As they must include fluctuations in both binding regions, there 

are more potential descriptors for p38 than for HIV RT, which only has one binding 

pocket; they include: F169_M109ca, F169-I84ca, F169-A51ca, M109ca-V30ca, D112ca-

V30ca, T106ca-I84ca. 

Unlike the previous fits, no descriptors were thrown out prior to determination of 

the linear model; all descriptors were used as input for the linear model.  The “best” fit 

combination of distance descriptors was determined as was done previously in the contact 

count model discussed in the Experimental Section below.  One of the targets – p38 – 

showed no improvement over the initial GlideScores while HIV RT showed considerable 

improvement with a binding free energy error reduction from 2.13 kcal/mol to 1.21 

kcal/mol and an increase in the Spearman rank order correlation from 0.25 to 0.66.  A 

null model was again constructed where data was randomly generated and then fit to the 

difference in GlideScore and experimental binding free energy in the same fashion as the 

real data.  In this case, since there are fewer descriptors and no need for a ρ cutoff filter 
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that may inadvertently choose “random” numbers that mimic the real data, the null model 

produced results that showed no improvement over the initial GlideScores shown in 

Table 2. 

As the model assumes that the difference between experimentally observed and 

computationally predicted binding affinities is due primarily to the reorganization free 

energy and that there is a linear response between the reorganization free energy and the 

geometry of the pockets, it may not be beneficial in cases in which these assumptions are 

not valid.  One such case may be p38 where the large backbone fluctuations found 

between the DFG “in” and DFG “out” conformations are not correlated with the 

difference between observed and predicted energies.  Other targets such as HIV RT, 

where the energy errors are correlated with large structural fluctuations, are largely 

improved with incorporation of reorganization free energy. 

The use of selected structurally significant intrareceptor distance descriptors does 

show some promise in the use of the proposed fitting protocol for modeling receptor 

strain in ligand binding for more difficult targets such as HIV RT.  However, whereas use 

of contact counts to estimate receptor reorganization is statistically limited by the large 

volume of data used as input to the protocol, selected distance descriptors are limited by 

the human intuition needed to make the descriptor choices and the method is not easily 

transferrable to other receptor pockets. 

Conclusion 

Accounting for receptor reorganization free energy is one of the most difficult 

problems in modeling protein-ligand binding.  Development and application of a semi-

automated protocol that makes use of a set of descriptors based on a large set of available 



 

 

143 

structural data to model receptor reorganization in combination with commercially 

available docking programs shows promise in reduction of binding free energy errors and 

in increasing rank-order correlation.  A major potential pitfall of such a model is the 

possibility of producing fits purely by chance that may not have any structural 

significance.  The sophisticated null hypothesis test presented here in combination with 

the Bonferroni ad hoc test offers a possible solution for examination of the significance of 

models based on culling from large data sets.  As use of a linear response model for 

receptor reorganization is founded on the assumption that the difference between the 

experimentally observed and computationally predicted binding affinities is due primarily 

to receptor reorganization, such a model may not be valid in some cases where 

conformational variability does not correlate well with errors in predicted binding 

affinities.  However, this model does have the potential to allow for coarse-grained 

investigation of the conformational landscapes for binding inhibitors and may offer 

insight into which structural features may influence receptor reorganization free energy 

as well as information about the characteristics of the receptor strain free energy 

landscape. 

Experimental Section 

Data preparation.  Each structure listed in Table 1 was prepared using 

Schrödinger, Inc.’s Protein Preparation Wizard which enumerates bond orders, 

determines optimal protonation states for both protein and ligand, and adds missing 

hydrogen atoms.  It also allows for optimization of the protein’s hydrogen bond network 

by means of a systematic, cluster-based approach.  After preparation, each structure 

underwent a restrained minimization that allows hydrogen atoms to be freely minimized 
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while allowing some heavy atom movement to relax possible strained bonds and angles 

as well as possible clashes.   

Docking and calculation of binding affinities.  Glide 5.0 XP, the current version 

of Glide (Friesner, et al. 2004; Halgren, et al. 2004; Friesner, et al. 2006) available in 

Schrödinger’s 2009 suite, was used to dock the ligands into their respective receptors to 

provide an optimally docked complex for analysis.  Glide has recently been compared to 

other powerful empirical scoring functions and has been shown to perform well in both 

correct pose identification and in virtual screening. (Friesner, et al. 2006; Zhou, et al. 

2007; Li, et al. 2010; Cross, et al. 2009)  The Glide XP algorithm uses a series of 

hierarchical filters to search positions, orientation and conformations of the ligand in the 

receptor’s binding site. (Friesner, et al. 2004; Halgren, et al. 2004; Friesner, et al. 2006) 

The XP GlideScore function is an expanded ChemScore (Friesner, et al. 2006; Eldridge, 

et al. 1997) function with force-field components and additional terms accounting for 

solvation and repulsive interactions.  The Glide XP scoring function applies desolvation 

penalties by docking explicit waters into the highest scored docked complexes and 

evaluating the solvation of polar and charged ligand and protein groups by counting the 

number of neighboring waters and comparing these vales to statistics extracted from a 

database of correctly docked ligands.  Incremental increases in binding affinity are added 

to the ligand score when appropriate motifs are recognized.  Additional terms that take 

into account hydrogen bonding, treatment of salt bridges π-cation interactions and other 

specialized medicinal chemistry motifs are described by Friesner et al. (2006).  The XP 

scoring function was parametrized using a training set of 15 receptor structures and 

affiliated “fitting” ligands. (Friesner, et al. 2006)   
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Estimation of binding modes and energies was performed using three different 

protocols:  score in place (SIP), where the prepared complex is scored without docking; 

refined docking, where the ligand is refined based on its initial condition (using the XP 

version of Glide, this means that the ligand is regrown in place); and flexible docking, 

where Glide generates different conformations of the ligand by varying acyclic torsional 

angles and sampling low-energy ring conformations.  The complex with root mean 

square deviation (rmsd) less than 2 Å from the starting structure and with the lowest 

energy was chosen as the representative structure whose energy served as input for the 

linear regression model.  (In the majority of cases, the refined docking gave the lowest 

energy structure.)  Correlation of the lowest GlideScores and the experimental binding 

energies are depicted in Figure 2 and in the Spearman rank order correlations (ρ’s) listed 

in Table 2. 

Contact count determination.  The binding pockets for each target were defined 

as all residues within 5 Å from any included ligand bound to that target.  Receptor-

receptor contact maps were generated for each receptor utilizing the defined binding 

pockets for each target.  The contact count between a pair of residues was calculated as 

the sum of contacts between each atom i in residue 1 and each atom j in residue 2.  A 

contact was defined as any two atoms i and j that had a ratio 

                         (10.4) 

where Dij is the distance between the centers of atoms i and j and Ri and Rj are the 

Lennard Jones radii of atoms i and j, respectively.  In this way, we hoped to be able to 

catch any possible conformational variability between structures without having to decide 

on a set of coordinates for superimposition of the receptors.  It should be noted that the 



 

 

146 

issue of HIV PR’s possible asymmetry due to the binding of asymmetric inhibitors was 

treated prior to determining contact counts.  Monomers were relabeled based on the 

number of interactions they create with their bound ligands.  Monomers within the dimer 

that have the greater number of receptor-ligand contacts are labeled as chain A whereas 

those with less are labeled B.  Symmetric dimers that displayed no differences in 

monomeric interaction with bound symmetric ligands retained their original chain name 

designation.  This method was utilized in an attempt to include interactions between 

monomers. 

Estimation of receptor reorganization free energy.  Receptor strain was 

estimated using linear combinations of residue-residue contact counts as conformational 

descriptors.  Each target started with between 27 (HIV RT) and 153 (HIV PR) residue 

pair contact counts.  This initial selection was first pared down to a more manageable 

number (4 to 12) by calculating the Spearman rank order correlation ρ between each 

pairwise contact count and the “error” of the GlideScore (ddG = experimental dG – 

predicted GlideScore dG), ordering the pairwise contact counts based on ρ and selecting 

a threshold to be used for the first round of contact count selection.  The chosen threshold 

for each target is listed in Table 2 as ρ CO and was chosen as the optimal threshold that 

provided as close to 10 descriptors as possible.  The ρ CO’s and number of filtered 

descriptors differ between targets primarily as a result of the differing sizes of the 

receptor pockets (larger pockets have more descriptors).   A linear model is then 

constructed as in equation 2 with the smaller filtered set of 4 to 12 contact counts Ci, and 

optimal weights wi and intercept b.  The best fit to the difference of the experimental 

binding free energy and the GlideScore is then determined. 
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         (10.5) 

The model is sequentially tested to acquire the optimal contact count combination 

using the Mallow’s Cp value as a test. The Mallow’s Cp is often used to remove 

collinearity or variable redundancy and to reduce the chance of overfitting in a regression 

model. ( Hocking 1976)  All combinations of the contact count regressors are tried and 

the combination with the lowest Cp value is chosen as the “best” model.  The Cp is 

defined in equation 3 as: 

         (10.6) 

where SSEp is the error sum of squares for the model with P regressors, N is the sample 

size (number of receptors for the said target), and S2 is the residual mean square after 

regression on the complete set of regressors. ( Mallows 1973)  Table 2 shows the final 

number of regressors chosen for each target. 

After determining the “best fit” linear model, new predicted binding energies are 

calculated and the new mean absolute error is calculated along with the new Spearman 

rank order correlation ρ between the new predicted scores and the experimental binding 

energies.  Table 2 gives the results of the optimal linear regressions with associated errors 

and ρ’s.  Comparison can be made to the errors and correlations of the initial 

GlideScores.   
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Figure 10.1. Targets for reorganizational free energy analysis. (a) Abl. Green: DFG “in,” 
PDB id 2V7A; Orange/Gray: DFG “”out,” PDB id 1OPJ. Ligands are shown in ball and 
stick with mesh surfaces.  Light green ligand: DFG ”in” ligand; Yellow ligand: DFG 



 

 

149 

“out.” Active site residue Y393 is shown in CPK space fill.  DFG motif is shown as 
tubes. The activation loop is colored dark green (DFG “in”) or orange (DFG “out”).  (b) 
p38. Green: DFG “in,” PDB id 1W84; Gray/Orange: DFG “out,” PDB id 1W83.  Ligands 
are shown as ball-and-stick with mesh surfaces; yellow: DFG “out” ligand, green: DFG 
“in” ligand which sits in the ATP binding site.  DFG motif is shown as tubes.  The 
activation loop is colored dark green (DFG “in”) or orange (DFG “out”). (c) PDE4.  
Green: Apo, PDB id 1F0J; Gray: Inhibitor-bound, PDB id 1W84.  Orange: portion of 
UCR2 that acts as a gate to the active site (also inhibitor binding site).  One active site 
residue is shown in dark green CPK space fill: M439.  A sample ligand is shown in ball-
and-stick with yellow mesh. (d) HIV PR. Green: Apo, PDB id 2PC0; Gray/Orange: 
Substrate-bound, PDB id 1F7A.  Substrate is shown with yellow mesh surface and active 
site residues D25, D25’ are shown in orange space-fill. (e) HIV RT.  Gray/Orange: Apo, 
PDB id 1DLO; Green: NNRTI-bound, PDB id 1VRT.  NNRTI nevirapine is shown with 
yellow mesh surface and active site residues D185, D186 and D110 are shown in dark 
green space-fill.  Primer grip region and Y181 and Y188 are colored dark green (bound) 
and orange (apo) to show changes in the NNRTI binding pocket due to ligand binding.  
The thumb region connected to the primer grip also exhibits a large conformational 
change from closed (apo; gray) to open (NNRTI bound; green). 
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Figure 10.2. Comparison and correlation of experimental binding free energies and 
GlideScores or binding free energies estimated from the linear model. The black line is 
the 1-to-1 line and points represent each target complex.  Gray points represent initial 
GlideScores before fitting with the linear model and the gray dotted line represents the 
linear fit of the GlideScores to the experimental binding free energies.  Percent of 
complexes with GlideScore < experimental binding free energy for each target are: 94% 
(Abl), 72% (HIV PR), 84% (HIV RT), 50% (p38; this does not coincide with DFG “in” 
vs. DFG “out” conformations although DFG “out” conformations have a slightly higher 
percentage of 62%), and 14% (PDE4).  Green points represent scores after incorporation 
of receptor reorganization free energies from the linear model and the green dashed line 
depicts the linear fit to the experimental values.  Spearman rank order correlation 
coefficients for each target before and after fitting with the linear model are listed in 
Table 2.   
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Table 1.  Targets and PDB ids included in receptor reorganization study 

Target PDB ids 

Abl 1IEP_A, 1IEP_B, 1M52_A, 1M52_B, 1OPJ_A, 1OPJ_B, 1OPK_A, 1OPL_A, 
1OPL_B, 2E2B_A, 2E2B_B, 2F4J, 2FO0, 2GQG_A, 2GQG_B, 2HIW_A, 
2HIW_B, 2HYY_A, 2HYY_B, 2HYY_C, 2HYY_D, 2HZ0_A, 2HZ0_B, 2HZ4, 
2HZI_A, 2HZI_B, 2HZN, 2QOH_A, 2QOH_B, 2V7A_A, 2V7A_B, 2Z60_A 

HIV 
PR 

1A30, 1A9M, 1AAQ, 1AJV, 1AJX, 1B6J, 1B6L, 1B6M, 1BDQ, 1BV7, 1C6Y, 
1C70, 1CPI, 1D4I, 1D4J, 1DIF, 1DMP, 1EBW, 1EBY, 1EBZ, 1EC0, 1EC2, 
1EC3, 1G2K, 1G35, 1HIH, 1HPO, 1HPV, 1HSG, 1HVC, 1HVI, 1HVJ, 1HVK, 
1HVL, 1HVR, 1HWR, 1HXW, 1IIQ, 1IZH_A, 1IZH_B, 1IZI, 1K6C, 1K6T, 
1KZK, 1LZQ_A, 1LZQ_B, 1M0B_A, 1M0B_B, 1MER, 1MES, 1MET, 1MEU, 
1MRW, 1MRX, 1MSM, 1MSN, 1N49, 1NPA, 1NPV, 1NPW, 1ODW, 1ODY, 
1OHR, 1PRO, 1QBS, 1QBT, 1RL8_A, 1RL8_B, 1S65, 1S6S, 1SBG, 1SDU, 
1SDV, 1SGU, 1T3R, 1T7J, 1T7K, 1TCX, 1W5V, 1W5W, 1W5X, 1W5Y, 
1WBK, 1WBM, 1XL5, 1Z1H, 1Z1R, 2AVO, 2AVS_A, 2AVS_B, 2BB9, 
2BPY, 2BPZ, 2BQV, 3AID 

HIV 
RT 

1C0T, 1C0U, 1C1B, 1C1C, 1DTQ, 1EET, 1EP4, 1FK9, 1FKO, 1FKP, 1HNI, 
1HQU, 1IKX, 1JKH, 1JLF, 1JLG, 1KLM, 1LWE, 1REV, 1RT1, 1RT2, 1RT4, 
1RT5, 1RT6, 1RTH, 1S1T, 1S1V, 1S1W, 1S1X, 1S6P, 1S9E, 1S9G, 1SV5, 
1TKT, 1TKX, 1TKZ, 1TL1, 1TL3, 1TV6, 1VRT, 1VRU, 2B5J, 2B6A, 2BAN, 
2BE2, 3HVT 

p38 1A9U, 1BL6, 1BL7, 1BMK, 1DI9, 1IAN, 1KV1, 1KV2, 1M7Q, 1OUK, 1OUY, 
1OVE, 1W7H, 1W82, 1W83, 1W84, 1WBN, 1WBO, 1WBS, 1WBT, 1WBV, 
1WBW, 1YQJ, 1YW2, 1ZYJ, 1ZZ2, 1ZZL, 2BAJ, 2BAK, 2BAL, 2BAQ, 2GFS 

PDE4 1Q9M_B, 1Q9M_C, 1Q9M_D, 1RO6_AA, 1RO6_AB, 1RO6_BA, 1RO6_BB, 
1XLX_A, 1XLX_B, 1XLZ, 1XM4, 1XMU_A, 1XMU_B, 1XMY_A, 
1XMY_B, 1XN0_A, 1XN0_B, 1XOM_A, 1XOM_B, 1XON, 1XOQ, 1XOR_A, 
1XOR_B, 1XOS, 1XOT_A, 1XOT_B, 1Y2C_A, 1Y2C_B, 1Y2E_A, 1Y2E_B, 
1Y2H_A, 1Y2H_B, 1Y2K_A, 1Y2K_B, 1ZKN 

_A , _B, _C, _E refer to different binding modes for the same ligand/receptor. 
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Chapter 11 

Conclusions, Implications and Future Directions 

 

 We have applied various methods to describe the conformational fluctuation of 

flexible receptors in ligand binding.  The ideas behind our studies are centered in the 

conformational selection or landscape model where the ligand binds to a conformation of 

the receptor that, in absence of the ligand, is not highly populated.  This notion leads to 

the idea of receptor reorganization or strain energy which can be defined as the free 

energy required to access the conformational states to which ligands bind.  Several “hot” 

targets are studied, including HIV-1 reverse transcriptase (RT), HIV-1 protease (PR), 

Abelson kinase (Abl), Phosphodiesterase 4 (PDE4), and p38 MAPK kinase using the 

large amount of structural data available today in the Protein Data Bank (PDB).   

 Detailed descriptions of conformational variability through clustering of both 

HIV-1 RT and PR offer rough looks at the conformation landscapes for binding and 

illuminate regions of the landscape that are not highly sampled by inhibitors.  These 

regions offer conformations of the binding pockets that can be further explored by drug 

discovery processes, including optimization of the few ligands that are currently found to 

bind to these sparsely populated configurations.  The clustering studies also can double as 

benchmarks for computational simulations to explore flexibility, motions and functions 

of these enzymes. 



 

 

162 

 Replica exchange simulations on HIV-1 RT show the possibility of developing 

complete conformational landscapes that could be used to calculate receptor strain.  

However, a shift from temperature REMD to Hamiltonian REMD or a combination of 

other sampling methods may greatly decrease the amount of time required to acquire said 

landscape. 

 Finally, use of a set of descriptors, such as receptor-receptor contact counts or 

“hand-picked” internal distances that are based on the large set of available structural 

data, to model receptor reorganization in combination with commercially available 

docking programs show some promise.  This experiment also highlights potential pitfalls 

of such an exercise where large sets of parameters are used to fit observables.  It is also 

possible that the method may only work with some targets as it assumes that the error 

between the experimental binding affinity and the predicted binding affinity determined 

by a docking program is mostly due to receptor reorganization.  This may be the case for 

some targets such as HIV-1 RT, which showed the best results with structurally 

significant intrareceptor distance descriptors for reorganization, but may be incorrect for 

cases such as p38 MAPK kinase where conformational variability does not appear to be 

well correlated with the errors in the binding affinities.    
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Appendix 

A.1.  Analysis of the Binding DB for Ligand-Binding Data 

The BindingDB (www.bindingdb.org; Liu,T., et al., 2007) is a free web-

accessible database of experimentally determined protein-ligand binding affinities, with 

focus on proteins that are drug targets or candidate drug targets and for which structural 

data are present in the Protein Data Bank (PDB; Berman et al., 2000).  As of October 

2009, the BindingDB contains ~58,800 experimentally determined binding affinities for 

protein-ligand complexes, ~31,300 small molecule ligands and ~619 protein targets, 168 

of which have at least one structural match in the PDB (where both the protein sequence 

and the ligand associated with the binding affinity matches that of the PDB structure).  

The data are extracted from the scientific literature and can be queried by chemical 

structure, chemical similarity, protein sequence, ligand name, protein name, affinity 

range, molecular weight and PDBID (which searches by protein sequence and ligand 

similarity).  Links are provided from the data in the BindingDB to structural data in the 

PDB, to the literature in PubMed, and to UniProt. 

2115 PDBs were found to match BindingDB data based on 85% sequence 

similarity and 0.9 ligand similarity; 1184 were found to match based on 100% sequence 

similarity and exact ligand match.  As many targets may contain mutations that do no 

effect binding, the larger set of 2115 PDB IDs was searched for structures which had an 

exact ligand match and at least 99% sequence similarity with any mutations present being 

those which do not effect binding.  This led to 1658 instances that span 168 targets in 

which there is structural data paired with affinity data in the Binding DB.   
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 Schrödinger 
Binding 

DB Common 
Schrödinger 

Only 
Binding DB 

Only 
ABL 36 13 13 19 0 
ALR2 36 49 34 2 15 
CDK2 80 90 58 22 32 
ER-A 14 22 9 5 13 
ER-B 13 7 2 11 5 
fVIIa 18 8 6 12 2 
fXa 31 37 20 11 17 
HIV PR 91 107 56 35 51 
HIV RT 44 36 22 22 14 
HSP90 19 16 8 11 8 
JNK1 8 8 8 0 0 
JNK3 9 5 4 5 1 
OppA 27 0 0 27 0 
p38 31 30 20 11 10 
PDE4B 16 18 16 0 2 
PDE4D 16 22 15 1 7 
PKA 38 38 25 13 13 
PPAR-g 19 12 6 13 6 
PTP1B 23 38 12 11 26 
Thrombin 49 30 20 29 10 
      
Total 618 586 354 260 232 

Table A.1. Binding affinity data points in the Binding DB versus the Schrödinger dataset. 

The Schrödinger data set includes a total of 618 data points that span 17 targets 

(see Table A.1) where there is both structural and affinity data.  Of these 17 targets, 16 

are found in the BindingDB (OppA is not included in the BindindDB).  For the 16 

targets, the Binding DB offers 586 data points.  Table A.1 gives the counts for the 

number of data points available for each target within the Schrödinger set, the Binding 

DB set and combinations of the two sets.  The information available from each of the two 

sets is comparable.  

 The BindingDB offers 232 additional structures which may be added to the 

Schrödinger set or may be utilized as a test set for docking calculations using algorithms 

trained on the Schrödinger set.  It also offers additional targets that have both structural 

and binding affinity data.  Of the 168 available targets, for which there is both binding 
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and structural data, in the BindingDB, five stand out with a large number of data points 

across different ligands and mutant forms: androgen receptor (39 data points), β-secretase 

beta-site APP-cleaving enzyme-1 (BACE-1: 39 data points), dihydrofolate reductase 

(DHFR: 32 data points), thymidylate synthase (33 data points), and trypsin (88 data 

points). 

The BindingDB binding affinities are given in the form of IC50 values, inhibitor 

constant Ki values, and isothermal titration calorimetry (ITC) measurements.  The 

Schrödinger set includes solely IC50 value data.  The binding free energies or dGs are 

then calculated from the IC50 values using dG= RT ln(IC50).  As this transformation is not 

perfect, the dGs from the Schrödinger IC50s has been compared to the dGs from the 

BindingDB’s Ki values (dG= RTln(Ki)) and ITC measurement.  The comparison is done 

for the 158 data points which lie in the “Common” region of the Schrödinger + 

BindingDB set that have Ki or ITC values available in the BindindDB.  The average of 

the unsigned difference between the two is 0.40 kcal/mol, with the max difference of 5.47 

kcal/mol and min difference of 0 kcal/mol.   The distribution over the 158 data points is 

shown in Figure A.1.  The distributions by target are shown in Figure A.2.  The use of 

IC50 values to estimate the binding free energy appears sound as the differences between 

these values and values calculated using other methods are, on average, very small.  

Looking closer at each target, no target stands out as an instance in which the estimation 

of dG from IC50 values “fails” or strays greatly from the other experimentally determined 

dGs.   
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  Figure A.1. Distribution of |dG(Ki or ITC) – dG(Schrödinger)| 

 

 
  Figure A.2. Distribution of |dG(Ki or ITC) - dG(Schrödinger)| over 15 targets 
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