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The high number, heterogeneity, and inadequate integration of drug information resources 

constitute barriers to many drug information usage scenarios.  In the biomedical domain there is a 

rich legacy of knowledge representation in ontology-like structures that allows us to connect this 

problem both to the very mature field of library and information science classification research 

and the very new field of ontology matching/merging (OM).  We argue for a broad view of OM 

that makes room not only for the "pre-formal" phase/type of multi-ontology integration 

exemplified by RxNorm and the UMLS Metathesaurus, but also for an even earlier phase/type 

when "What is there?" in a domain has to deal with implicit and poorly structured "ontologies" 

that barely qualify as such.  Such is the case in the drug domain.  We introduce dimensions of 

drug information as an approach to early, pre-formal OM in the drug domain that draws 

inspiration and incorporates principles from facet analysis, domain analysis, and Semantic Web 

research on linked data and mashups.  By surveying 23 publically available drug information 

resources, we identified 39 dimensions relevant to four drug (sub)domains - pharmacy, chemistry, 

biology, and clinical medicine - and mapped them to the resources   An arbitrary four-domain, 

monohierarchical classification of the dimensions produced, by extension, a reasonable four-

domain resource classification.  Correspondence analysis and hierarchical cluster analysis also 

produced evidence of its partial validity.  Detailed analysis of information on nine parent drug 

compounds from 15 resources refined this high-level dimensional mapping and identified 

hundreds of subdimensions which could be expressed as a six-level hierarchy.  Based on these 
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dimensions, we integrated this information in an experimental database and showed that it was 

useful (1) as a training set for automating the normalization of additional raw data from the same 

15 sources, bringing the important goal of building an integrated, comprehensive (all drugs) 

database within reach, and (2) for satisfying a variety of use cases, some quite complex, derived 

from published literature representing the user types corresponding to our domain focus. 
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Chapter 1.  Introduction 

1.1  Problem Statement 

 A central problem in information science, systems, and technology has been and remains 

the integration of data, information, and knowledge represented in different ways.  Early 

information retrieval (IR) systems counted on human indexers to translate the free text of 

documents into concise sets of keywords or their codes, as much because of purely technical 

storage and search limitations as because of the uncontrolled semantics of free text.  This is a 

sensible, productive integration solution and therefore continues to be widely used in practice.  

However, it has limited scalability, imperfect consistency across indexers, and even less 

consistency across keyword lists, indexes, and the like.  Advances in IR research and computer 

technology have opened the way to more automated solutions, raising the possibility that human 

indexes and indexing could become obsolete.  Yet a central tenet of the Semantic Web, widely 

regarded as the latest major IR breakthrough, is the assignment of meaning to web objects 

(including documents) by keyword-like tags in a human-like (if not literally human-mediated) 

way.  For better or worse, this development seems to signify a kind of surrender to the 

inevitability of human-generated semantic codes (keyword lists, indexes, and the like) and 

judgments (document interpretation).  Thus the problems associated with manual indexes and 

indexing remain important targets for research and technology development. 

 We investigated a new approach to this general issue of resolution between different 

representations of "reality" that can be considered a type of ontology matching/merging (OM).  

The connection to the preceding paragraph consists of the historical and conceptual links between 

ontologies and traditional IR keyword lists, indexes, and the like, especially in the biomedical 

domain.  We focused on drug information for this reason, because drug information is important, 

and because of our extensive experience with it.  Existing drug ontologies are generally not as 

"formal" as their counterparts in most OM research, reflecting the poor state of drug information 

integration across resources.  Assuming such "informal" ontologies can be "formalized," they can 
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be seen as "pre-formal."  By extension, since many practical drug information resources do not 

employ any kind of explicit ontology, yet the way they organize or display their information 

implies one, their representations can be seen as being in an even earlier stage of ontology 

formalization. 

 We assert that the problem of early, pre-formal OM within a domain is a general one.  

Our research aims to address this problem by developing a specific method for resolution 

between different representations of "reality" across information resources in practical use within 

the drug domain.  At its core this method depends on an ontology-like representation we call 

dimensions of drug information.  Our specific objectives were to provide a plausible, empirical 

definition of the dimensions of drug information, and to test its validity and usefulness.  Test 

methods included professional subjective judgments of information quality, correspondence 

analysis, cluster analysis, and building a model database that satisfied realistic use cases better 

than other existing resources according to objective, quantitative IR performance measures.  We 

claim that our results will advance not only the state of drug information, but also provide a 

general framework for addressing the larger problem of early, pre-formal OM of which the drug 

information case is but one example. 

1.2  Rationale 

 An ontology is an agreed upon, formal specification of a conceptualization within a 

domain; it is an answer to the question "What is there?"1 in a domain.  The "more formal"2 an 

ontology is, the more powerful it is, not just at organizing and representing knowledge, but for 

automating tasks like integration and discovery.  In many respects, ontologies resemble keyword 

                                                 
1 Attributed to Willard Quine (1908-2000), Harvard professor of philosophy and mathematics.  There does 
not seem to be a canonical published reference. 
2 The issue of "formal" vs. "informal" ontologies is examined in detail in Section 2.4.  Here we offer a brief 
preview by quoting Mika, Iosif, Sure, and Akkermans (2004, pp. 461-462): "The term formal indicates the 
grounding of representation in some sort of well understood logic; i.e., ontologies go beyond simple 
vocabularies (terminologies) by providing definitions of concepts based on how they relate to other 
concepts and relationships.  Lastly, formal also refers to the fact that ontologies may be expressed in 
machine processable formats, which makes them applicable to information systems." 
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lists, indexes, thesauri, faceted hierarchies, and other such traditional IR indexing tools.  Like 

ontologies, these tools can become valuable information artifacts in their own right, organizing 

and representing vast amounts of raw text, bringing order and heightened comprehensibility to 

entire knowledge domains.  Like ontologies, generating them can involve analyzing the structure 

of knowledge in a domain.  In fact, many traditional thesauri and quasi-thesauri are increasingly 

being called "ontologies"; this is especially true in the biomedical domain. 

 Like their IR predecessors, ontologies are still overwhelmingly human-made and 

therefore diverse, even within domains.  OM seeks to overcome the resulting barriers to 

integration, not just of the ontologies themselves but of the information bases they represent.  But 

OM is hard, so practical shortcuts such as linked data and mashups are being investigated.  

However, even these require some semblance of ontological formality.  What about domain 

knowledge that is not yet expressed in this way?  What about the earlier, "pre-formal"3 state when 

"What is there?" might have to be answered by informal ontologies or even free text?  We 

propose that OM be understood to include such approaches. 

 In the case of drug information, multiple disparate resources are still the rule.  

"Disparate" refers to the resources' coverage (which drugs), scope (what kinds of drug 

information), presentation tactics (terms and relations, data tables, free text, …), and intended 

users (patients, clinicians, pharmacists, researchers, …).  None present a comprehensive, fully 

integrated view, and no common directory is available to locate resources appropriate to a given 

purpose or user type.  The high number, heterogeneity, and inadequate integration of drug 

information resources constitute barriers to many drug information usage scenarios.  

 One way to conceptualize this problem is that there is a need for OM in the drug domain.  

That is, the disparities across drug information resources can be viewed as differences in what 

they consider to be drug information/knowledge and how they represent it ontologically, whether 

                                                 
3 This term derives from the foregoing footnote and the idea that "informal" ontologies can be "formalized" 
also reviewed in Section 2.4. 
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explicitly or implicitly.  Examples of explicit ontologies include the Medical Subject Headings 

(MeSH), RxNorm, National Drug Formulary Reference Terminology (NDFRT), and World 

Health Organization Anatomic-Therapeutic-Chemical (WHO-ATC) drug classification.4  An 

example of part of an implicit ontology would be one database's practice of populating a column 

named brand name with values such as "Tylenol"; "Bayer Aspirin"; "Proscar"; and "Viagra"; 

while another database puts the same values into a column named trademark.5  Another example 

is the drug relationships to indications, contraindications, interactions, side effects, mechanisms, 

and chemistry specified as free text in their package inserts.  If these disparate ontologies (and we 

will address the controversy of calling them that) could be somehow rationalized - unified, 

merged, cross-mapped, reconciled, or otherwise integrated - it would help to lower drug 

information usage barriers. 

 In the drug and related biomedical domains there is a rich legacy of a pre-formal, less-

technical-than-conventional-OM phase or type of multi-ontology integration exemplified by 

RxNorm and the UMLS Metathesaurus.  We assert an even earlier phase/type when "What is 

there?" is more about surveying the knowledge in a domain than formalizing it.  Here ontologies 

may be implicit and poorly structured yet contain valuable knowledge that, as a consequence, 

resists integration.  This "early 'what-is-there?'" phase/type of OM is what is now needed in the 

drug domain. 

1.3  Research Questions and Strategy 

 We introduce the idea of dimensions of drug information as an approach to early OM in 

the drug domain.  Like facets and other traditional classification constructs, dimensions' 

overarching practical mission is to bring order, or at least some measure of consistency, to 

knowledge abstraction, organization, representation, and integration.  However, we wish to define 

                                                 
4 Details and references for these and other resources will be supplied later in this document; see, e.g., 
Table 4. 
5 In this document we will follow this convention of italicizing the names of semantic types, variables, 
categories, dimensions, etc., while expressing examples of their values or instances in quotation marks. 
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it primarily by extension in the ontological sense; i.e., by what we find "out there" in the world of 

drug information.  Therefore, our first challenge was to identify the dimensions of drug 

information.  Restated as a research question, 

    Q1.  What are the6 dimensions of drug information?   

 To answer this question we inventoried a variety of information resources by examining 

database schemas, web pages, and query results.  Their drug-related data elements (intensional 

content) and values (extensional content) were normalized into a set of dimensions of drug 

information.  For example, the categories brand name and trademark and sets of values such as 

{"Proscar", "Propecia", "Bayer Aspirin", "Tylenol", …} are all evidence of a source's coverage of 

the trade names dimension. 

 Next we tested the set of dimensions we identified.  We used two kinds of tests: 

adequacy/face validity, and usefulness.  To test the adequacy/face validity of our research answer 

to Q1, we investigated this research question: 

    Q2.  Do dimensions lead to valid groupings of resources?   

 To answer this question, we manually classified the Q1 dimensions into four domains 

(pharmacy, chemistry, biology, and clinical medicine) and submitted the dimensions-by-resources 

mapping/matrix to correspondence analysis.  We also submitted the unclassified dimensions-by-

resources mapping/matrix to cluster analysis for comparison. 

 To test the usefulness of our research answer to Q1, we investigated this research 

question: 

    Q3.  Can dimensions facilitate these integration/OM tasks?   

        A.  Classifying sources 

                                                 
6 While striving for generality we recognize the impossibility of universality in answering this question.  
This question should be understood as shorthand for "What comprehensive set of dimensions of drug 
information can we discover given our limited focus, and how might they be qualified to illuminate, in a 
general way, the bigger universe of all dimensions of drug information?" 
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 This is basically a usefulness version of Q2; i.e., are the resource groupings suggested by 

the correspondence analysis and cluster analysis useful as well as valid?  The criterion here is 

professional judgment. 

        B.  Selecting sources appropriate to a given information need 

 Given the dimensions-by-resources mapping/matrix from Q1 and an equivalent 

mapping/matrix of dimensions to information needs, resources can be mapped, via dimensions, to 

information needs.  This was demonstrated and its usefulness assessed by professional judgment. 

        C.  Pooling data from different sources 

 We built a model database of integrated drug information from diverse sources on a small 

sample of drugs.  The basis of integration is the normalized dimensions and their values, and we 

demonstrate how this facilitates data pooling by (1) quantifying, at several levels of granularity, 

the scatter of raw data relative to normalized dimensions and values (an example being the trade 

name example given earlier); (2) demonstrating how additional raw data could be added to the 

database and automatically normalized based on mechanized pattern-matching; and (3) testing the 

effectiveness of the database for satisfying a variety of “real world” use cases representing three 

user types: health care professionals, drug discovery research scientists, and consumers.  Some of 

these use cases represent more complexity than pooling per se, such as cross-source search, 

clustering, cross-referencing, and interface reduction (querying one source and making use of the 

knowledge in others).  The criteria here include objective measures of query efficiency (numbers 

of commands, queries, interfaces, keystrokes, …) and retrieval quality (volume, 

consistency/variety, …). 

 Our model database is valuable not just for defining (Q1) and demonstrating the validity 

(Q2) and usefulness (Q3) of dimensions of drug information, but also as a model or prototype for 

a much larger database of something closer to all drug information capable of satisfying many 

kinds of information needs.  This is arguably the most important potential future extension of this 

work. 
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Chapter 2.  Literature Review 

 A central problem in information science, systems, and technology has been and remains 

the integration of data, information, and knowledge represented in different ways.  We will 

examine library and information science (LIS) classification research which led to the practice of 

indexing information from human-created keyword/term/code lists including thesauri, a practice 

which remains widespread despite known drawbacks.  One such drawback is the contradiction 

between the ever-changing nature of data, information, and knowledge, versus the practical need 

to keep the thesaurus stable.  Post-coordinate thesauri address this problem by limiting terms to 

fundamental concept representations that can then be combined to represent more complex topics.  

Facet analysis builds on this insight by providing theory and methodology for organizing such 

terms in a consistent, logical, powerful way, resulting in faceted thesauri.  Ontologies purport to 

take terminology to an even higher level by mapping it to concepts and relationships7 that can 

represent the meaning of information artifacts more precisely, and can be computed upon to 

discover new knowledge.  Since human world views and information system functional 

requirements are inherently variable, there will always be differing ontologies which need to be 

merged or otherwise integrated.  Ontologies are only one means to the end of integration, 

however, so we also examine others including the Semantic Web, linked data, and mashups.  

Throughout these surveys we will review both general and biomedical/drug-domain-specific 

work. 

2.1  Classification 

 Our work can be seen as an extension of LIS classification research.  Classification fits 

into the grand scheme of LIS under Ranganathan's (1957) fourth law: save the time of the reader.  

By creating a concise index of all the books in the library (or, nowadays, other information 

                                                 
7 In this document, "relationship" means the predicate in a subject-predicate-object triple such as 
(aspirin,treats,pain) while "relation" means the entire triple.  Thus a relation (usually) contains two 
concepts and their relationship, and often a back or inverse relation contains the same two concepts 
reversed and a back or inverse relationship such as (pain,is treated by,aspirin). 
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objects in other repositories, such as web pages on the web) classified by their topics, one 

empowers users to find the information objects they want more rapidly by consulting the index, 

rather than having to depend on cross-references, grope around at random, or, potentially, look at 

every information object in the repository.  (See Renear and Palmer, 2009, for a current, science-

centered treatment.)  Furthermore, the index can become a valuable information artifact in its own 

right, a kind of abstract, summary, or schema of the entire repository's information contents, 

bringing order and heightened comprehensibility.  (See Soergel, 1999, for an extension of this 

idea to specific applications.)  Thus a good index accurately represents and organizes. 

 Like libraries, early information retrieval (IR) systems counted on human indexers to 

translate the free text of documents into concise sets of keywords or their codes, as much because 

of purely technical storage and search limitations as because of the uncontrolled semantics of free 

text.  The goal of indexing in IR is to group like objects (by assigning common index 

terms/codes) while differentiating them (with unique terms/codes or combinations) enough for 

individual retrieval.  The thesaurus (Joyce & Needham, 1958; Foskett, 1980; Aitchison & Clarke, 

2006) became the gold standard for structuring such term/code lists in a consistent, powerful way 

to accomplish these goals.  Perhaps the best known biomedical thesaurus is the U.S. National 

Library of Medicine's (NLM) Medical Subject Headings (MeSH; NLM, 2009), which is 

essentially the modern descendent of the index to the first hardcopy Index Medicus (Billings, 

1879, as cited by Wyman, 1999, p. 67), and is still used for manual indexing of NLM's massive 

Medline literature database. 

This approach's problems soon became apparent (e.g., Shera, 1970, pp. 90-91).  They 

include lack of scalability (too much information, too few indexers), lack of consistency 

(different document interpretations by different indexers), and a stubborn tendency of "standard"8 

thesauri and other quasi-indexes to mutate, proliferate, and clash (different human world views 

                                                 
8 "The great thing about [vocabulary] standards is that there are so many of them." - Doris Schlichter, 
Merck vocabulary manager, late 1990's. 
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and preferences).  Advances in computer technology opened the way to full text storage and 

search, permitting large-scale application of automation schemes, some of them quite old, 

including keyword extraction (Luhn, 1961), indexing (Doyle, 1961, 1962), relevance ranking 

(Maron & Kuhns, 1960; Salton & Buckley, 1988), machine learning of user preferences 

(Rocchio, 1966; Salton & Buckley, 1990), and natural language processing (Rau, 1988; Allen, 

1995; Jurafsky & Martin, 2000). 

These advances raised the possibility that human indexes and indexing could become 

obsolete, despite well-informed skepticism about the machine-centric approach to IR (Saracevic, 

1975; Belkin, 1978; Salton, 1987; Swanson, 1988).  Yet a central tenet of the Semantic Web, 

widely regarded as the latest major IR breakthrough, is the assignment of meaning to web objects 

(including documents) by keyword-like tags in a human-like (if not literally human-mediated) 

way.  For better or worse, this development seems to signify a kind of surrender to the 

inevitability of human-generated semantic codes (thesauri, indexes, keyword lists, etc.) and 

judgments (document interpretation).  Thus the problems associated with manual indexes and 

indexing remain important targets for research and technology development. 

2.2  Facet Analysis 

 Early thesauri were designed for "post-coordinate" indexing.  That is, an attempt was 

made to limit terms to fundamental concept representations that could then be combined to 

represent more complex topics.  Ironically, this seemed to make the terms harder to organize 

hierarchically. 

A subject overview, or systematic display, if it existed at all, was of secondary 
importance in most thesauri in the early days. A detailed classified arrangement, as in an 
enumerative classification scheme, was considered too complex and outdated to have a 
role in postcoordinate information retrieval, where clear and simple terms were needed to 
be used in combination for optimum results… An exception was … MeSH, that from 
early editions in the 1960s, placed value on its tree structures. (Aitchison & Clarke, 2006, 
pp. 9-10) 
 

The need for detailed pragmatic hierarchies may have been one factor pulling later thesauri 

toward enumerative, "pre-coordinated" terminology. 



 

 

10

 

 Concurrently, Ranganathan's ideas about faceted classification were being refined, 

primarily by the Classification Research Group in England (CRG;  e.g., B. C. Vickery) (Spiteri, 

1998;  Aitchison & Clarke, 2006).  Facet analysis (FA) retains the insight of the early post-

coordinate thesaurus designers (that there are inherent advantages to limiting terms to 

fundamental concept representations that can then be combined to represent more complex 

topics) and attempts to solve the classification problem by rigorous semantic analysis. 

The technique analyses complex subjects into constituent categories of the same inherent 
type. These fundamental categories include actions, comprising processes and operations; 
entities, such as natural objects, products, materials; agents, including personnel and 
equipment; and time and place. In the field of education, for instance, there would be a 
teaching methods facet, arising from the operations category; an educational personnel 
facet from the personnel category; a teaching aids facet from the equipment category, and 
so on. The facets are mutually exclusive, and the terms within each facet share a common 
characteristic. A ‘facet indicator,’ or ‘node label,’ is often inserted to name that common 
characteristic. The terms so grouped tend to be short and simple, and may then be used in 
combination with other simple terms to express compound subjects, either 
postcoordinately when indexing using a thesaurus, or as precoordinated class marks in 
the context of a faceted classification scheme.  (Aitchison & Clarke, 2006, p. 11) 
 

 The two threads intersected in 1969 as Thesaurofacet, the first thesaurus to use FA.  

Unlike some faceted thesauri to follow, Thesaurofacet managed to reconcile the practical need for 

polyhierarchality (concepts with multiple broader concepts) with the FA maxim of mutual 

exclusivity. 

 Kwasnik (1999) implicitly ties FA to ontologies by situating the former within 

knowledge representation structures based on entities and their relationships, with the goal of new 

"knowledge discovery and creation" (p. 22).  She describes the process of classification as the 

"clustering of experience" (p. 24), one of many processes that contribute to knowledge 

accumulation, representation, and expansion. 

The process of classification can be used in a formative way and is thus useful during the 
preliminary stages of inquiry as a heuristic tool in discovery, analysis, and theorizing…  
A good classification [structure] functions in much the same way that a theory does, 
connecting concepts in a useful structure. (p. 24) 
 

FA yields one type of such a structure; a given instance is "good" if it is useful; i.e., "descriptive, 

explanatory, heuristic, fruitful, and perhaps also elegant, parsimonious, and robust" (p. 24). 
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 Other parallels between FA and ontologies are striking.  Both are concerned with 

abstracting, representing, organizing, and formalizing knowledge, especially the essence of "what 

things are" (e.g., blue is a color).  Both acknowledge the domain-dependence of knowledge and 

the consequent need for diversity and flexibility while striving for unification.  Both have 

practical goals which often conflict with the yearning for order, logical rigor, theoretical 

coherence, and universality.  Both communities aspire to have their models become "the basis of 

all" - IR in the case of faceted classification (Broughton, 2006, p. 49), web-based integration in 

the case of ontologies.  Both have a classical, specific meaning (and its defenders) which is 

threatened (or even, at least in the case of ontologies, already eroded) by popular usage.  The 

CRG backed away from Ranganathan's universal top categories (Personality, Matter, Energy, 

Space, and Time [where "Personality" should be understood as "Entities" {Broughton, 2006}]) 

but universal "upper ontologies" are still quite respectable in some quarters (Sowa, n.d.; Pease, 

2009).  For that matter, "a classification by any other name is still a classification" (Soergel, 1999, 

p. 1120) and ontologies in some ways represent a wasteful reinvention of what that larger field of 

LIS has already learned (Soergel, 1999).  Vickery (1997) and Broughton (2006) explicitly address 

some FA-ontology parallels from a CRG perspective. 

 Given these parallels, it is surprising how rarely FA is mentioned in the ontology 

literature and vice versa.  The obvious boolean AND search produced zero hits on PubMed9 and 

only one hit (Tudhope & Binding, 2008) on ISI Web of Knowledge10 in September, 2009.  

Exceptions (discovered using Google Scholar11) include (Vickery, 1997; Soergel, 1999; Aitchison 

& Clarke, 2006; Broughton, 2006). 

 Spiteri (1998) summarizes Ranganathan's highest level description of FA, the Three 

Planes of Work.  In the Idea Plane one analyzes a subject field into its component parts.  In the 

Verbal Plane one chooses appropriate terminology for the component parts.  The Notational 

                                                 
9 http://www.ncbi.nlm.nih.gov/pubmed/  
10 http://isiwebofknowledge.com/  
11 http://scholar.google.com/ 
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Plane deals with expressing the component parts using a "notational device."  Clearly these are 

tasks we undertook with regard to drug information.  In that general sense, and in the exploratory 

knowledge engineering spirit conveyed by Kwasnik, we perhaps did a kind of facet analysis.  But 

consider the following excerpt from the NISO standard for thesaurus construction: 

Facet analysis is particularly useful for: 
• new and emerging fields where there is incomplete domain knowledge, or where 

relationships between the content objects are unknown or poorly defined; 
• interdisciplinary areas where there is more than one perspective on how to look at a 

content object or where combinations of concepts are needed; 
• vocabularies where multiple hierarchies are required but can be inadequate due to 

difficulty in defining their clear boundaries; or 
• classifying electronic documents and content objects where location and collocation 

of materials is not an important issue.  (NISO, 2005, p. 14) 
 

This sounds even more like our situation with drug information, yet Broughton (2006) implies that 

NISO ("rather typically US" p. 61) has misunderstood facet analysis, perhaps further implying that 

we are not doing it.  

 Facet analysis is the topic of a current ARIST review (La Barre, 2010). 

2.3  Domain Analysis 

 In the information science (IS) context, domain analysis was put forward by Hjørland and 

Albrechtsen (1995) as the methodological correlate of a more sociological alternative to other IS 

metatheories, paradigms, and viewpoints. 

The domain-analytic paradigm in information science (IS) states that the best way to 
understand information in IS is to study the knowledge-domains as thought or discourse 
communities, which are parts of society’s division of labor. Knowledge organization, 
structure, cooperation patterns, language and communication forms, information systems, 
and relevance criteria are reflections of the objects of the work of these communities and 
of their role in society... The domain-analytic paradigm is thus firstly a social paradigm... 
The domain-analytic paradigm is secondly a functionalist approach, attempting to 
understand the implicit and explicit functions of information and communication and to 
trace the mechanisms underlying informational behavior from this insight. Thirdly it is a 
philosophical-realistic approach, trying to find the basis for IS in factors that are external 
to the individualistic subjective perceptions of the users... (p. 400) 
 

 Among their intellectual forerunners the authors credit Saracevic (1975) whose analysis 

of relevance included a "subject literature view of relevance" and "subject knowledge view of 
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relevance," the latter being "fundamental to all other views of relevance, because subject 

knowledge is fundamental to communication of knowledge" (Saracevic, 1975, p. 333).  Hjørland 

and Albrechtsen go on to note that "the focus on domain-specific cognitive functioning represents 

a very strong current tendency" (p.405) and "[t]here is neither a simple dichotomy between 

structure and content nor between relevant and irrelevant information" (p.406).  The following 

example (credited to Putnam) is illustrative: 

Everyone to whom gold is important for any reason has to acquire the word "gold"; but 
he does not have to acquire the method of recognizing if something is or is not gold. He 
can rely upon a special subclass of speakers. The features that are generally thought to be 
present in connection with a general name - necessary and sufficient conditions for 
membership in the extension, ways of recognizing if something is in the extension 
(“criteria”), etc. - are all present in the linguistic community considered as a collective 
body; but that collective body divides the labour of knowing and employing these various 
parts of the “meaning” of “gold.” This division of linguistic labour rests upon the division 
of non-linguistic labour (Putnam, 1975, 245). (Hjørland and Albrechtsen, 1995, p. 408) 
 

 That is, "classifications of knowledge domains cannot be regarded as independent of 

knowledge claims" (Hjørland and Albrechtsen, 1995, p.409) and "subject representation/ 

classification (the inner side of information systems)" is the "best example of applications" of the 

domain-specific view (p. 412). 

According to the domain-analytic framework, the meaning of a term can only be 
understood from the context in which it appears. The meaning of a term such as gold can 
only be understood by an interpretation of the discourse in which that term appears. Gold 
has at least one chemical meaning (a heavy metal, difficult to dissolve by acids, electrical 
leading, etc.), one economic meaning (conventional economic measurement and reserve), 
one fictional meaning (related to wealth, happiness, the half kingdom and princess), etc. 
What other terms would be related to gold in a thesaurus depends entirely on the function 
served by a particular thesaurus. Whether documents retrieved by that term in an 
algorithm would be relevant to a question depends entirely upon whether that term has 
one or another of its possible meanings. (p. 413) 
 
One line of research should occupy itself with the use of language in different domains. 
What kind of culture exists concerning the form of titles, the pattern of citations, etc.? 
What are the consequences for the informational value of titles, subject terminology, 
descriptors, and citations in IR? What important transdisciplinary tendencies and 
concepts exist in the disciplines? (p. 419) 
 

 We did not (intentionally) do sociological research, but many of the concepts and ideas 

mentioned by Hjørland and Albrechtsen are relevant, including "[k]nowledge organization, 
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structure" (p. 400); "language and communication forms" (p. 400); "implicit and explicit 

functions of information" (p. 400); "factors that are external to the individualistic subjective 

perceptions of the users" (p. 400); "[no] simple dichotomy between structure and content" (p. 

406); "necessary and sufficient conditions for membership in the extension, ways of recognizing 

if something is in the extension" (p. 408); classifications' dependence on knowledge claims; 

thesaurus relations dependence on function; "informational value of titles, subject terminology, 

descriptors, and citations" (p. 419); and "transdisciplinary tendencies and concepts" (p. 419).  

Domain analysis was used as the basis for a recent ARIST review on pharmaceutical information 

(Bawden & Robinson, 2010). 

 Regarding Saracevic (1975), certainly we are implicitly concerned with relevance (of 

domains to usage scenarios, of dimensions to domains, of resources to domains and usage 

scenarios, of query results to information needs), and our methodology depends on both my 

"subject knowledge" and the "subject literature" represented by the drug information we 

examined. 

2.4  Ontologies 

 The most widely cited definition of ontology in this context if that given by Gruber 

(1993): "An ontology is an explicit specification of a conceptualization" (p. 199).  

"Conceptualization" in this context is at least quasi-synonymous with "knowledge"; hence 

ontologies are a kind of knowledge representation (KR).  However, ontology has a long and 

varied history and lately has become a buzzword in information technology, so other definitions 

abound.  Three basic senses may be distinguished in the literature: 

1.  Ontologies as sets of categories (also called types, classes, or concepts).  An ontology 

is one such set; ontology is the study of such sets (Sowa, n.d.).  Categories are distinct from the 

symbols (e.g., words) that represent them, and also from the instances or objects that they in turn 

represent.  The set of categories in an ontology are related to each other by relationships, usually 

pairwise, that form a lattice, tree structure, or hierarchy conveying subdivision and inheritance of 



 

 

15

 

properties.  This sense of ontologies is the narrowest and the oldest, having changed little from its 

origins in nineteenth century western philosophy.  It is the sense employed by computer scientists 

who reserve the term “ontology” for the highest (i.e., most general, fundamental, immutable, 

consequential) levels of knowledge specification (e.g., Powers, 2004). 

2.  “Formal ontologies.”  There is nothing informal about the classical sense #1 but it can 

be made more powerful by adding such information as class and relationship attributes, 

constraints, and compositional syntax for creating new categories by logical combination of 

existing categories.  There is clearly an overlap between this sense of ontologies and the computer 

science notion of conceptual models (CMs), although at some point a CM clearly can become 

more than an ontology (e.g., after the addition of instances or event definitions).  This sense of 

ontologies is represented in the writings of Franconi.  Two views of CMs are given by Boman, 

Bubenko, Johannesson, and Wangler (1997) and Borgida and Brachman (2002). The appellation 

“formal ontologies” may be odious to those who disagree that anything “informal” should be 

called an ontology, but it is becoming common to refer to this sense in that way. 

3.  Terminological ontologies (Sowa, n.d.).  Justly or not, the term “ontologies” is being 

co-opted and applied increasingly to what used to be called thesauri, controlled vocabularies, 

subject heading lists, and just about any other form of organized terminology (e.g., Bard & Rhee, 

2004).  This sense is distinct from sense #2 in that the so-called ontologies were not constructed 

to support conventional computerized logical reasoning and probably in most cases are not 

adequately specified to do so (e.g., Kashyap & Borgida, 2003).  However, calling them ontologies 

anyway conveys respect for their knowledge content and a kind of faith that they can be 

“formalized” (e.g., Hahn, 2003; Williams & Anderson, 2003). 

 A pragmatic centrist view was offered by Mika, Iosif, Sure, and Akkermans (2004). 

By their most common definition, ontologies represent a shared and formal understanding 
of a domain.  In this definition, the term shared refers to the fact that ontologies embody a 
consensus among members of a given community.  The term formal indicates the 
grounding of representation in some sort of well understood logic; i.e., ontologies go 
beyond simple vocabularies (terminologies) by providing definitions of concepts based 
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on how they relate to other concepts and relationships.  Lastly, formal also refers to the 
fact that ontologies may be expressed in machine processable formats, which makes them 
applicable to information systems.  (pp. 461-462). 
 

We can incorporate these ideas into Gruber's definition as follows: an ontology is an agreed 

upon, formal, explicit specification of a conceptualization within a domain.  Formal signifies both 

rigorous standardization and machine processability, while agreed upon and within a domain 

clarify the human, social (i.e., arbitrary) nature of any conceptualization.  The key idea here is 

that ontologies should go beyond "simple vocabularies" (including traditional thesauri) by 

specifying how concepts relate to other concepts. 

2.5  Bio-ontologies 

 In a high-profile review, Bard and Rhee (2004) coined the term "bio-ontologies" and 

gave strong voice to a growing movement to refer to traditional pragmatic biomedical thesauri, 

controlled vocabularies, and classification systems as ontologies despite their obvious differences 

from the more formal ontologies of philosophy, logic, and computer science.  Debate over this 

tendency (Smith & Welty, 2001; Ceusters, Smith, & Flanagan, 2003; Bodenreider, Smith, & 

Burgun, 2004; Goble & Wroe, 2004; Stevens, Wroe, Lord, & Goble, 2004; Soldatova & King, 

2005; Charlet, 2007) seems to be subsiding as it becomes more entrenched (Cimino & Zhu, 2006; 

Mabee et al., 2007; Noy et al., 2009) and historically rationalized (Bodenreider & Stevens, 2006).  

Another research thread attempts to reconcile the differences by attempting to "formalize" the 

knowledge contained in bio-ontologies.  Such efforts have targeted the UMLS Metathesaurus 

(Hahn & Schulz, 2004), UMLS Semantic Network (Kashyap & Borgida, 2003), Gene Ontology 

(Williams & Andersen, 2003), National Cancer Institute Thesaurus (Golbeck et al., 2003), MeSH 

(Soualmia, Golbreich, & Darmoni, 2004), International Classification of Diseases (Heja, Surjan, 

Lukacsy, Pallinger, & Gergely, 2007), Systematized Nomenclature of Medicine Clinical Terms 

(Bodenreider, Smith, Kumar, & Burgun, 2007), and Foundational Model of Anatomy (Golbreich, 

Zhang, & Bodenreider, 2006).  Some of these and other ontologies have been collected under an 

umbrella named Open Biomedical Ontologies (Smith et al., 2007). 
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 The premier (biggest and most widely known, researched, and used) bio-ontology is the 

U.S. National Library of Medicine's (NLM) Unified Medical Language System® (UMLS) (NLM, 

2007b).  Although commonly called an ontology, UMLS is actually three distinct tools for 

dealing with biomedical terminology.  The Semantic Network comes closest to being a formal 

ontology but contains only 189 (2009AA version) very high level concepts.  The Specialist 

Lexicon is not an ontology at all, but rather a set of natural language processing tools tailored to 

biomedical text.  The Metathesaurus is what most users mean by the "UMLS ontology."  It covers 

names and inter-relationships for millions of concepts but is more properly viewed as an 

integrated cross-mapping of over 100 distinct biomedical terminological ontologies.  NLM, 

therefore, by producing, maintaining, and expanding the UMLS Metathesaurus, has nearly two 

decades of practical experience with "pre-formal" ontology matching/merging (OM). 

2.6  Drug Ontologies 

 The "unique nature of pharmaceutical information … [its] breadth of scope, plus its 

economic and social importance, lends pharmaceutical information a unique place within 

information science" (Bawden & Robinson, 2010, pp. 63, 66).  "[B]ecause of its numerous and 

diverse users and sources, its technical advances, and its economic and social significance, [it] 

has played a major role in advancing information science itself" (p. 94).  The advance of 

ontology-intensive information systems from bio-ontologies into the pharmaceutical domain has 

been much anticipated (Meyer, 2002; Hug et al., 2004; Aronson & Ferner, 2005; Feldman, 

Dumontiera, Linga, Haider, & Hogue, 2005; Gardner, 2005; Mendrick, 2006). 

 NLM supports such research in the context of development of drug data interchange 

standards and information resources.  Its best-known product is RxNorm (Bodenreider & Nelson, 

2004; Liu, Ma, Moore, Ganesan, & Nelson, 2005; Zeng, Bodenreider, Kilbourne, & Nelson, 

2006; Zeng, Bodenreider, Kilbourne, & Nelson, 2007).  RxNorm is a compendium of drug 

information (primarily terminology) from different sources such as First DataBank, Micromedex, 

Medi-Span, and Multum.  It is designed to mediate messages between computerized systems that 
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use different drug vocabularies so as to ease inter-operability in recording or processing data 

dealing with clinical drugs.  RxNorm contains standard names for clinical drugs, both branded 

and generic, with cross-references to their active ingredients, drug components, related brand 

names, National Drug Codes (NDCs), and nomenclature from other drug vocabularies (NLM, 

2007a).  This RxNorm (mixed case) must be distinguished from RXNORM (all caps), the "Level 

0" (unrestricted) source of normalized drug names in UMLS.  RxNav is NLM's web-based 

RXNORM browser and is freely available at http://mor.nlm.nih.gov/download/rxnav/ . 

 RXNORM can be thought of as an ontology of drug concepts and their relationships.  

"An [RXNORM] description can be understood as a graph whose nodes are UMLS concepts 

corresponding to ingredients, drug forms, dose forms, etc. The relationships among these 

elements [are the] edges in the graph" and RxNav employs this graphical representation to 

facilitate browsing of RXNORM (Bodenreider & Nelson, 2004, p. 1530).  The semantic types of 

the concepts found in RXNORM are shown in Table 1 and the relationship types in Table 2, and 

a RxNav screenshot in Figure 1. 

 A current research focus at NLM is on adding more (than RXNORM terminology) drug 

information to RxNav, including pharmacologic action, drug-drug interactions, indications, 

contraindications, and adverse reactions (Zeng et al., 2007).  This is a nucleus around which may 

crystallize our conceptualization of dimensions of drug information; that is, examples of such 

dimensions include terminology, pharmacologic action, drug-drug interactions, indications and 

contraindications, and adverse reactions.   Furthermore, this NLM research effort can be viewed 

as enhancing RxNav based on dimensions, evidence that our thesis addresses an important topic. 
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Table 1.  Semantic types of concepts in RXNORM. 
The semantic types are expressed as (combinations of) dimensions we found in an initial study (Table 9, 
Table 10), showing that only IN, DF, and BN map one-to-one to them. There does not appear to be a pure 
combination generic name semantic type in RXNORM. 
 

Semantic type Concept example 
Liu et al. 

(2005) 
terma 

Zeng et al. 
(2007) 
count 

generic name Aspirin IN 5,604 
dose form Oral Solution DF 140 
generic name + dose Aspirin 100 MG SCDC 13,509 
generic name + dose form Aspirin Oral Solution SCDF 8,311 
generic name + dose + dose form Aspirin 100 MG Oral Solution SCD 17,726 

trade name Platet 
AA&C BN 11,363 

trade name + dose Platet 100 MG SBDC 13,460 
trade name + dose form Platet Oral Solution SBDF 11,033 
generic name + dose + dose form + 
trade name 

Aspirin 100 MG Oral Solution 
[Platet] SBD 14,064 

combination generic name    
combination generic name + dose    
combination generic name + dose 
form 

Acetaminophen / Aspirin / 
Caffeine Oral Tablet 

  

combination generic name + dose + 
dose form 

Aspirin 100 MG / Caffeine 32 
MG Oral Tablet 

  

combination generic name + dose + 
trade name 

Aspirin 400 MG / Caffeine 32 
MG [AA&C] 

  

combination generic name + dose 
form + trade name 

Acetaminophen / Aspirin / 
Caffeine Oral Tablet [Excedrin 
Geltab] 

 
 

combination generic name + dose + 
dose form + trade name 

Aspirin 400 MG / Caffeine 32 
MG Oral Tablet [AA&C] 

  

 
a • IN ingredient. This is a compound or moiety that gives the drug its distinctive clinical properties. 
Examples: Fluoxetine, Insulin, and Isophane.  • DF dose form. Example: Oral Solution.  • SCDC semantic 
clinical drug component. This represents the ingredient plus strength. Example: Fluoxetine 4 MG/ML.  • 
SCDF semantic clinical drug form. This represents the ingredient plus dose form. Example: Fluoxetine 
Oral Solution.  • SCD semantic clinical drug. This represents the ingredient plus strength and dose form. 
Example: Fluoxetine 4 MG/ML Oral Solution.  • BN brand name. This is a proprietary name for a family of 
products containing a specific active ingredient. Example: Prozac.  • SBDC semantic branded drug 
component. This represents the branded ingredient plus strength. Example: Prozac 4 MG/ML.  • SBDF 
semantic branded drug form. This represents the branded ingredient plus dose form. Example: Prozac Oral 
Solution.  • SBD semantic branded drug.  This represents the ingredient, strength, and dose form, plus 
brand name. Example: Fluoxetine 4 MG/ML Oral Solution [Prozac]. 
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Table 2.  Relationships in RXNORM. 
In this document, "relationship" means the middle part of a declarative triple while "relation" means the 
entire triple; e.g., for the relation (Aspirin, has_tradename, Bayer Aspirin), the relationship is 
(has_tradename).  Note that relations and relationships are usually directional (exceptions include 
"has_synonym") and come in inverse pairs such as 

 
has_tradename         . 

Aspirin  -------------------------  Bayer Aspirin 
 tradename_of          . 

 
This terminology is distinct from the UMLS terms "relationship" (rel) for traditional thesaurus relationships 
and "relationship type" (rela) for the more specific relationships shown in this example.  RxNav uses only 
the latter.  The numbers count both directions (  and ) and were computed using UMLS 2007AC.  RN 
related narrower, RB related broader, RO related other, SY synonym. 
 

rel  rela   rel  rela count 
RO reformulation_of RO reformulated_to 58 
SY    160 
RN form_of RB has_form 3030 
RO has_precise_ingredient RO precise_ingredient_of 1586 
RN has_precise_ingredient RB precise_ingredient_of 4990 
RN isa RB inverse_isa 98856 
RB has_tradename RN tradename_of 156248 
RO has_dose_form RO dose_form_of 156732 
RO constitutes RO consists_of 182974 
RO has_ingredient RO ingredient_of 199606 

 
 
 NLM is experimenting with three additional RxNav sources: DailyMed, MedMaster, and 

the National Drug Formulary Reference Terminology (NDFRT, a UMLS source terminology).  

The first two use a mostly free text knowledge representation that differs markedly from 

RXNORM's standardized relationships that RxNav is designed to visualize, so these will be 

integrated (or "pseudo-integrated") by a "linkout" strategy whereby clicking on a drug term in the 

RxNav display allows the user to navigate to the DailyMed or MedMaster webpage about that 

drug.  NDFRT uses standardized relationships (Carter et al., 2006) and so is amenable to 

knowledge base (KB) warehouse integration and RxNav directed graph display, but screen clutter 

may force it to be displayed separately (via a "tab" to another screen view) from the RXNORM 

knowledge (O. Bodenreider, personal communications, 2007-2008). 
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Figure 1.  RxNav as of October 4, 2007.   
"Ingredient" and "Ingredient Variant" correspond to the generic name dimension. Other dimensions 
represented here include dose ("5 MG"), dosage form ("Oral Tablet"), and trade name ("Proscar"). 
 
 
 Aside from RXNORM and RxNav, precedent for a comprehensive drug ontology is 

rather thin.  The University of Manchester group behind the GALEN medical ontology also 

developed a separate Drug Ontology based on information from the British National Formulary 

(Solomon et al., 1999) but it is no longer being maintained or promoted on the web.  I attempted 

to extract a drug ontology from the UMLS with limited success (Sharp, 2005).  The science 

publisher Elsevier has sponsored a Drug Ontology Project for Elsevier (DOPE) (de Waard, Fluit, 

& van Harmelen, 2007).  NDFRT is the only drug ontology among 166 bio-ontologies listed by 

BioPortal12 (Noy et al., 2009).  Specialized chemical ontologies are beginning to appear (Ben-

                                                 
12 http://bioportal.bioontology.org/ontologies as of October 1, 2009. 
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Miled et al., 2002; de Matos et al., 2004; Feldman et al., 2005; Taylor et al., 2006; Degtyarenko et 

al., 2008) but their acceptance and utility remain open questions. 

2.7  Ontology Matching/Merging (OM) 

 Multiple ontologies are inevitable both within and across domains due to the variability 

of human world views and information system functional requirements.  This is not only a logical 

assertion but also a lesson of decades of incomplete-to-nonexistent ontological hegemony.13  To 

obtain additive benefits one must find ways to integrate multiple differing ontologies; that is, 

combine or merge them so that common concepts and relations are represented in a unified way 

while the non-overlapping pieces "go where they should" and conflicts are resolved 

democratically, if not to everyone's satisfaction.  In other words, one hopes to approach the ideal 

result where the merged ontology combines all the knowledge, usefulness, and consensus of its 

component ontologies without losing any of their coherence or logical rigor.  We see this generic 

process as a legitimate view of OM which can include efforts such as our own, RxNorm, and the 

UMLS Metathesaurus, in addition to the more algorithmic approaches that dominate the current 

literature on ontology (or schema) matching, mapping, merging, or alignment per se. 

 Hameed, Preece, and Sleeman (2004) use the term ontology reconciliation.  This article 

stands out from the rest of the OM literature in giving serious consideration to "why people and 

organizations will tend to use different ontologies, and why the pervasive adoption of common 

ontologies is unlikely" (p. 231).  The authors' reasons include multiple competing ontologies that 

purport to serve the same purpose, legacy data/systems that depend on diverse ontologies, 

differing human "perspective[s] on the world" (p. 232) and their multiple levels (personal, 

corporate, national, etc.), and the need for growth and change (i.e., ongoing struggle to preserve 

whatever reconciliation can be achieved now).  To this list I would add proprietary knowledge 

that corporations need in their ontologies but don't want to divulge to outsiders (regardless of 

                                                 
13 e.g., the U.S. National Cancer Institute's NCI Thesaurus, itself a breakaway derivative of MeSH, still has, 
by NCI's own admission, no less than 14 competing cancer-related ontologies 
(http://bioportal.nci.nih.gov/ncbo/faces/pages/ontology_list.xhtml ). 
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shared world views), and the usual politics of anything human (protecting jobs, reputations, 

bureaucratic turf, etc.). 

 Lambrix and Tan (2006) give a particularly good example of the OM literature in the 

biomedical domain.  They review and classify existing OM systems using the following 

framework (1-4) and similarity-computing ("matcher") strategies (a-f): 

1. Automated computation of similarity values between terms. 

2. Automated suggestion of term-term alignments based on (1.). 

3. Human review and acceptance/rejection of (2.). 

4. Automated conflict/redundancy checking of (3.). 

Step 1 employs various similarity-computing ("matcher") strategies, including: 

a. Linguistic approaches make use of textual descriptions of the concepts and relations such 

as names, synonyms and definitions. Similarity is measured by string matching (n-gram, 

stemming, edit distance, etc.) and sometimes frequency counting or other IR tactic.  Most 

systems use these strategies. 

b. Structure-based approaches use the graph structure or equivalent (is-a, part-of, or other 

relations). The similarity of concepts is based on their environment (e.g., two concepts 

with the same hierarchical parents and/or children would have high similarity). 

c. Constraint-based approaches are based on axioms, a characteristic of the most formally 

specified ontologies.  For example, similarity may be defined by common domain/range 

(what can be a superclass/subclass; e.g. female/mother) or disjointness (nonoverlap; e.g., 

female/male).  This approach has limited power and applicability but is used by a few 

systems. 

d. Instance-based: For example, Lambrix and Tan's system, SAMBO, uses the co-

occurrence of terms and annotations in biomedical literature (PubMed) to suggest 

alignments between Gene Ontology (GO) and Signal Ontology (SigO) terms.  However, 
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there is often a gray area between instances and subclasses, potentially making this 

approach a subtype of (b.). 

e. Use of auxiliary information such as dictionaries, thesauri, intermediate ontologies, or 

prior OM experience that provide knowledge to interpret the meaning of the concepts and 

relations to be aligned.  Many systems use auxiliary information.  SAMBO uses the 

UMLS Metathesaurus' conceptual ("CUI") conflation of terms from different biomedical 

ontologies. 

f. Combination approaches: "Although most systems combine different approaches, not 

much research is done on the applicability and performance of these combinations" (p. 

199). 

 

 An exception to the foregoing statement (f) was presented by Zhang, Mork, Bodenreider, 

and Bernstein (2007).  They evaluated two approaches to aligning two anatomy ontologies.  Both 

approaches used a combination of lexical and structural techniques.  In addition, the first 

approach used supplementary domain knowledge, while the second employed principles of 

schema matching.  Lessons for improvement were learned, but only 33% of the possible one-to-

one concept matches were identified by the two approaches together. "New directions need to be 

explored in order to handle more complex matches" (p. 227).  Performance evaluation was also 

addressed by Giunchiglia, Yatskevich, Avesani, and Shvaiko (2009) who created a large 

(thousands) test dataset called TaxME2 by combining the Google, Yahoo, and Looksmart web 

directories using "almost two-dozen state-of-the-art ontology matching systems" (p. 137).  

Ontology alignment evaluation is institutionalized as the Ontology Alignment Evaluation 

Initiative (OAEI; http://oaei.ontologymatching.org/ ).  The "OM bible" is (Euzenat & Shvaiko, 

2007) (O. Bodenreider, personal communication, September 14, 2009). 

 Thus, the OM of the OM literature is a phase or subtype of our more generic view of OM.  

The former is characterized by heavy algorithmic/computational assistance, suitable for dealing 
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with explicit, well-structured ontologies where the domain is well defined and benchmarks 

(UMLS, Google, etc.) are available for reference and result evaluation.  Logically, this leaves 

room for an earlier, less algorithmic/computational phase/subtype exemplified by the UMLS 

Metathesaurus and RxNorm.  We assert an even earlier phase/subtype when "What is there?" is 

more about surveying the knowledge in a domain than formalizing it.  Here ontologies may be 

implicit and poorly structured ("informal") yet contain valuable knowledge that, as a 

consequence, resists integration.  A clear example is the drug relationships to indications, 

contraindications, interactions, side effects, mechanisms, and chemistry specified as free text in 

their package inserts.  This is the early, pre-formal phase/type of OM that is now needed in the 

case of drug ontologies, and to which we see our work contributing. 

2.8  Semantic Web 

 The Semantic Web (SW) is a vision (widely credited to Berners-Lee, Hendler, and 

Lasilla, 2001) of a future World Wide Web (WWW) where IR will be enhanced by being based 

more on meaning (semantics) than it is today.  The construct has been attacked (Shirky, 2003) 

and defended (Bray, 2003; Wright, 2003) and continues to stimulate interest and work, including 

in the biomedical domain (e.g., Schroeder & Neumann, 2006, and accompanying articles) and 

debate (Legg, 2006; Lenz, Beyer, & Kuhn, 2007).  The biomedical domain effort is now 

represented by the Semantic Web Health Care and Life Sciences (HCLS) Interest Group 

(http://www.w3.org/blog/hcls). 

 The SW involves many technologies that are beyond the scope of this review.  A 

comprehensive overview of the biomedical SW is given by Bodenreider (2009).  We have already 

alluded to the irony that the SW seems to be re-discovering manual indexing from human-created 

thesauri.  SW-related ontology research is in part motivated by this irony; i.e., it hopes to improve 

upon traditional thesauri.  Our work is part of this thread in the "early 'what is there?'" sense of 

ontologies.  Two other SW technologies are relevant: linked data and mashups. 
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2.9  Linked Data 

 In contrast to the WWW, where links are between documents/webpages based on 

hypertext (HTML), the idea behind linked data is to link "arbitrary things described by RDF."14  

The arbitrary things can be any kind of object or concept; like webpages, they are represented by 

URIs.15  "With linked data, when you have some of it, you can find other, related, data" (Berners-

Lee, 2006) without having to wade through the irrelevant parts of the webpages where the data 

resides.  That means machines (software "agents") can find the related data in a more 

straightforward and reliable way, potentially leading to advances in automation of tasks such as 

"plan and set up my vacation" or "invent new drugs for disease X."  A centralized information 

resource is http://www.linkeddata.org . 

 For example, RxNav's developers would like to be able to link the RXNORM drug names 

to their approved indications, contraindications, interactions, side effects, mechanisms, and 

chemistry in the same way that it links generic names to trade names within RXNORM.  Then a 

user could, for example, start from drug A, retrieve drug A's indication, then retrieve the names of 

all the other drugs approved for that indication.  However, these relationships are currently 

available only as specified in free text in the drugs' package inserts (this is one of my findings).  

The closest RxNav can come is to link each drug name to its entire package insert via the latter's 

URI on the DailyMed website, which does not link to any other drug names.  What is needed is to 

translate the insert text into RDF "triples" such as {"aspirin"; has_indication; "headache"}, where 

"aspirin"; has_indication; and "headache" are all represented by URIs that may include other 

information such as synonyms, definitions, permitted relationships, etc.   

 Ideally, NLM would like to map the DailyMed data to a ready-made, universally 

accepted drug ontology made up of (or convertible to) such RDF triples based on (and linked to) 

all other drug information information resources.  Since such an ontology does not exist, a 

                                                 
14 RDF = resource description framework, a formal ontology language. 
15 URI = universal resource identifier; i.e., a web address; e.g., http://www.rutgers.edu . 
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reasonable compromise would be to make up a new ontology adequate to cover the knowledge in 

DailyMed.  This would permit RxNav to improve upon its current functionality (users could then 

find all the drugs in DailyMed with the same indication), but in a limited way (they would miss 

drugs not in DailyMed with the same indication).  Such pragmatic gradations allow developers to 

balance tangible progress with universality.  That is, data linking, like traditional bio-ontologies, 

does not entirely avoid the formalization problem in OM, but allows for pragmatic flexibility so 

that useful advances can be made incrementally.  Data linking can be considered a type of early, 

pre-formal OM (O. Bodenreider, personal communication, December 21, 2010). 

2.10  Mashups 

[A mashup is] a web page or application that combines data or functionality from two or 
more external sources to create a new service.  The term mashup implies easy, fast 
integration, frequently using open APIs16 and data sources to produce results that were 
not the original reason for producing the raw source data.17  
 

Mashups are thought to be a potential replacement for portals, the current leading content 

aggregation technology.  Some differences are shown in Figure 2.  

Of interest to us is the ability of mashups to operate on pure XML18 content, and their 

"melting pot" as opposed to "salad bar"/side-by-side presentation style.  Using the foregoing 

example, if DailyMed could translate its free text information into an XML ontology, a 

DailyMed-RxNav mashup could result in all their common drugs' relationships "melted" together 

in a virtual queryable database, as contrasted to the current, minimally integrated, side-by-side 

display which cannot be queried by indications, contraindications, side effects, etc. 

                                                 
16 API = application programming interface, a kind of software for extracting information from websites. 
17 http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)  
18 XML = eXtensible markup language, a formal ontology language, more versatile than RDF. 
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Figure 2.  Differences between portals and mashups. 
Source:  Wikipedia (http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid ) September 18, 2009. 
 
 
 The IEEE First International Workshop on Socio-Technical Aspects of Mashups was 

held in April, 2010.  Its announcement stated, in part, 

Mashups can bring data and functionality together in different ways and for different 
purposes. Many would argue that their greatest potential is for addressing transient 
problems for specific groups of users in dynamically changing business, social or 
political contexts. Mashups can be created by people, who may or may not be skilled in 
programming, to test out ‘self-service’ whenever needed through integrating 
heterogeneous information across the boundaries of different organizations over the Web. 
The implication of such an end-user development approach is far-reaching and hence 
deserves extensive scientific investigation. However, beyond all the hype, studies of the 
actual development and use of mashups for delivering business, social or political value 
are extraordinarily rare. While previous studies have focused on the technical side of 
constructing the Mashups infrastructure, little has been reported to demonstrate the real 
value or identify the problems, practicalities and pitfalls of their construction. Essentially, 
we need to understand how mashups emerge and change, succeed or fail, in settings 
where people, policies, systems, and data are intertwined with each other, forming a 
complex yet dynamic system…19 
 

 Thus mashups, like data linking, are (1) an approach to achieving practical increments in 

knowledge integration in advance of full formalization of domain ontologies, and (2) a 

technology for implementing the kind of "early 'what is there?'" OM we did in the drug domain. 

                                                 
19 http://www.aina2010.curtin.edu.au/workshop/stamashup/  
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 In the biomedical domain, mashups were the topic of a March 2008 special issue of the 

Journal of Biomedical Informatics (volume 41, number 5).  Cheung et al. (2008) pointed out that 

mashup toolkits such as Dapper, Google Maps, and Yahoo! Pipes do not actually perform "most 

of the system integration" (p. 683); that is, the semantic part.  "There is a need for creating 

mashups that better enable computers to help people achieve more powerful and complex data 

integration involving semantic mappings across multiple information models, terminologies, and 

ontologies.  The term for such machine-based integration of data is 'semantic mashups.'" (p. 683). 

 Another term for a semantic mashup is semantically integrated resources (Sahoo, 

Bodenreider, Rutter, Skinner, & Sheth, 2008), precisely our goal.  The mashup presented by 

Sahoo et al. (2008) could identify  "hub genes" whose gene products participate in many 

pathways or interact with many other gene products.  This utility of this is illustrated in Figure 3 

(from Bodenreider, 2009).  The user is able to discover a mechanistic connection between a 

disease represented in one ontology, database, or information resource (OMIM = Online 

Mendelian Inheritance in Man), and an enzyme represented in another (GO = Gene Ontology), 

due to their common association with the same gene.  If Sahoo et al.'s mashup "works" for a 

particular instance of this use case, it is because the two ontologies happen to use the same name 

for the hub gene, and because their gene name dimensions (by whatever name) are immediately 

identifiable as equivalent.  Thus "ontology-driven integration represents a flexible, sustainable 

and extensible solution to the integration of large volumes of information.  Additional resources, 

which enable the creation of mappings between information sources, are required to compensate 

for heterogeneity across namespaces" (p. 752).  That is, if the two ontologies in Figure 3 do not 

happen to use the same gene name value for the hub gene, or their gene name dimensions are not 

immediately identifiable as equivalent, the mashup needs these additional mappings. 
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Figure 3.  High-level illustration of a mashup. 
OMIM = Online Mendelian Inheritance in Man; GO = Gene Ontology.  Source: Bodenreider (2009). 
 
 
 Our research aims to provide such additional resources.  The gene that a drug interacts 

with (often, in pharmacology, lumped together with enzymes, receptors, and other such molecular 

targets) could be a dimension of drug information.  Mechanistic connections between molecular 

targets and diseases (which can be indications, contraindications, or side effects) drive much 

pharmaceutical discovery research.  To supplement traditional chemical and biological "wet 

bench" laboratory approaches, such research is beginning to experiment with ontology-driven 

knowledge base integration and discovery prototypes that resemble mashups in many respects.   

2.11  Pharmaceutical Discovery Research 

 Castle, Shah, Avila, Derry, and Rohl (2007) enhanced a Target and Gene Information 

Network Analysis Visualization (TGI-NAV) tool to better support drug discovery research; 

specifically to help "connect diseases/phenotypes to genes, and, through genes, disease states to 
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existing drugs."  NAV graphically displays information from the TGI knowledge base, a 

synthesis of public and Merck proprietary information.  Castle et al. added three new sets of 

nodes (phenotypes/disease states, drugs, and drug therapeutic activity classifications) and five 

sets of edges (phenotype-to-gene mappings, drug-to-target gene mappings, and drug-to-

therapeutic activity classifications, plus compound-to-compound structural and protein-to-protein 

sequence similarity mappings).  The high-level ontology is illustrated in Figure 4.  The similarity 

to a mashup (Figure 3) is striking.  Castle et al. showed the utility of their enhancements by 

discovering a possible relationship between anti-nauseant drug activity and abnormal pain 

threshold, and that the target gene set associated with cardiovascular drugs is enriched in 

phenotypes associated with heart disease.  Two of Castle et al.'s resources, DrugBank and WHO-

ATC, are included in our work as well. 

 

 

Figure 4.  High-level illustration of a mashup-like drug discovery tool. 
Conceptual diagram of data types available in TGI NAV, where green boxes and arrows denote new data 
types described in Castle et al. (2007).  JAX MP KO: Jackson Labs Mammalian Phenotype Knockouts; 
FDA: U.S. Food and Drug Administration; MK EVOC: Merck Electronic Vocabularies; ATC: WHO's 
Anatomical Therapeutic Chemical drug classification.  Phenotypes are associated with genes based on 
sequelae when the gene is mutated (knocked out).  Gene-gene relationships reflect sequence similarities 
while compound-compound associations reflect chemical similarities.  Associations between genes and 
drugs include the intended targets of FDA-approved and FDA-experimental drugs (DrugBank) and Merck 
(MK) drug candidates.  Drugs classification relationships are based on ATC.  Gene-trait relationships are 
from Genetics Bayesian Networks.  From Castle et al. (2007). 
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 Almost identically, Yildirim, Goh, Cusick, Barabási, and Vidal (2007) built a bipartite 

graph of drugs and proteins linked by drug-target binary associations from DrugBank and drug 

therapeutic classifications from WHO-ATC.  The resulting network (Figure 5) was considered a 

model for the "global set of relationships between protein targets of all drugs and all disease-gene 

products in the human protein-protein interaction or ‘interactome’ network" (p. 1119).  It showed 

a strong local clustering of drugs of similar types according to WHO-ATC.  Topological analyses 

of this network showed an overabundance of "follow-on" drugs (drugs that target already targeted 

proteins) but, by including drugs currently under investigation, a trend toward more functionally 

diverse targets ("polypharmacology") was seen.  Etiological (disease-mechanism-based) and 

palliative (symptom-based) drugs were independently differentiated by a shortest distance 

measure. 

 
 

 

Figure 5.  Drug-target network derived from a mashup-like drug discovery tool. 
The network is generated by using the known associations between FDA-approved drugs and their target 
proteins (DrugBank). The area of the drug node (circles) is proportional to the number of targets 
(rectangles) that the drug has and vice versa.  Drug nodes are colored according to their WHO-ATC 
classification, and the targets according to their cellular component obtained from the Gene Ontology 
database.  From Yildirim et al. (2007).
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In a third study of this type, Campillos, Kuhn, Gavin, Jensen, and Bork (2008) used 

graphical cluster analysis to discover new indications and therapeutic classes for existing drugs 

based on their common side effects by inferring (from side effect clusters) unknown molecular 

targets that are unexpected from indication, therapeutic class, or chemical structure similarity.  By 

effectively "mashing up" (my phrase) DrugBank, WHO-ATC, UMLS, and other drug information 

resources according to what we call the dimensions of generic name, therapeutic class, 

indication, side effect, molecular target, and chemical structure/similarity, Campillos et al. 

created a database of 1018 "side effect driven drug-drug relations" for 746 marketed drugs and 

discovered 261 unexpected target predictions (Figure 6).  Some of these predictions were tested 

by biochemical and physiological wet bench experiments, confirming 13/20 and 9/11, 

respectively. 

These three papers represent a "warehouse" integration approach.  In this approach, drug 

information in the form of terminologically controlled drug relations with other entities (targets, 

therapeutic classes, diseases, …) is proactively copied from other sources' KB's and integrated 

into a local KB which can then be queried, visualized graphically, or cluster analyzed.  Thus they 

do not fully follow the distributed data ideal of the Semantic Web, data linking, or mashups, 

which prefers to use APIs and other techniques to assemble the data dynamically at query time. 

In contrast, Quan (2007) advocated a true Semantic Web approach and built a prototype 

drug discovery "dashboard" called "BioDash" as an example.  Rather than controlled terminology 

and relation KBs, BioDash uses RDF "to access data from various heterogeneous data sources as 

if they had come from a single source.  The user interface taps into this unified view of these data 

sources to display diagrams that show the cross-connections that exist within these data" (p. 175).  

To avoid information overload, "semantic lenses" (a form of computer-assisted query refinement) 

group together pieces of information that are relevant to a specific task.  An example might be 

[my interpretation, not Quan's]: "find physical properties of X" translates to "find all Y where X p 
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Y and p = {has_melting_point, has_boiling_point, …}."  The semantic lenses are then assembled 

into "powerful information displays" (Figure 7).  Quan's semantic lenses (target overview, 

primary disease, alternative diseases, and group [people] members), like the network node and 

edge types of the prior three papers, are comparable to our dimensions. 

 

Figure 6.  Another drug-target network derived from a mashup-like drug discovery tool. 
(A) 424 drugs (nodes) form 1018 pairs with strong side-effect similarity and above 25% probability of 
sharing a target (edges, width proportional to probability). Drug subnetworks around the antiulcer drug 
rabeprazole and other experimentally confirmed predictions are magnified. (B) Selected drug-target 
relations in the subnetwork around rabeprazole.  Predicted drug-target relations that were experimentally 
validated are shown with green arrows; dashed red arrows indicate that the predicted targets could not be 
confirmed.  The confirmed relations are sufficient to prove the predicted drug-drug relations in the 
rabeprazole subnetwork.  From Campillos et al. (2008). 
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Figure 7.  Single target network derived from a web-based drug discovery tool. 
Drug, disease, and human stakeholder relations are shown in this "topic view" of the molecular target 
GSK3beta from Bio-Dash corresponding to "semantic lenses" (target overview, primary disease, 
alternative diseases, and group members) which can be magnified to show greater detail (Quan, 2007). 
 
 
 

The application to finding new indications for existing drugs was highlighted by Boguski, 

Mandl, and Sukhatme (2009).  The authors call this goal "repurposing" and propose that it can 

play a major role in the "major overhaul of the R&D paradigm" (p. 1394) that many believe is 

needed in the drug industry.  Past examples include successful "off-label" uses of drugs 

discovered by serendipity or, in some cases, using knowledge about the biological pathways and 

mechanisms of drug effects and diseases. 

Because of our increasingly sophisticated understanding of human biology and the 
molecular pathways of disease, one would expect there to be increasing opportunities for 
expanding off-label use based on fully elucidated pathways and mechanisms of action, a 
situation that has been called a 'new grammar of drug discovery.' (p. 1394) 
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The authors call for a more concerted, systematic approach to repurposing discovery 

involving a new use of postmarketing surveillance information, consumer-driven data, and 

advanced information technology to discover beneficial as well as adverse side effects.  In the 

foregoing two sentences, italics are added to highlight potential dimensions of drug information.  

In the case of side effects, Boguski et al. are in effect calling for a comprehensive national or 

international database comparable to, but much larger than, the manually created prototype of 

Campillos et al. (2008). 

2.12  Drug Information User and Resource Research 

 User studies in IR system research date back to the dawn of modern IR itself (Wilson, 

1981).  Nevertheless, giving equal consideration to "the human in the loop" (Kantor, n.d.) was 

considered a "user-centered" alternative to traditional, technology-centered IR research when 

Belkin (1978) and others began to develop it in the 1970's.  This view later evolved into a so-

called "cognitive approach" to IR which attempts to integrate the user- and system-oriented 

traditions.  This approach places user-system interaction (rather than query-artifact matching) at 

the center of its IR situation model (Dervin & Nilan, 1986; Belkin, 1993; Saracevic, 1996). 

Even within the biomedical domain, communities differ significantly in their IR needs 

and practices with special regard to negotiating meaning, provenance and ownership, group 

identity, and common knowledge.  Advancing biomedical knowledge depends on accommodating 

these differences to allow inter-community knowledge sharing and "standing on shoulders" 

(Neumann & Prusak, 2007, p. 145). 

 A task-centric approach can be considered an extension of the user-centric approach.   

The Web succeeded in large part because it allows users to download information from 
an ever-broadening range of sources through a single tool, the web browser… However, 
one area in which the Web is still lacking is in enabling users to consume information in 
aggregate… A more task-centric approach to information retrieval is required in order for 
our ability to consume information on the Web to scale with the growth of the Web 
itself…The naive approach to aggregation is to simply take all available information and 
put it onto one page.  This approach may work for small information spaces, but for most 
life science problems, the naïve approach readily leads to information overload, since 
much of this information is bound to be extraneous to the task at hand.  The key to 
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eliminating extraneous information - and hence addressing information overload - is to 
make use of knowledge of the task at hand.  (Quan, 2007, p. 172) 
 

  Specific user-type-centric drug information resource evaluations have included clinical 

decision support (Clauson, Marsh, Polen, Seamon, & Ortiz, 2007; Clauson, Polen, & Marsh, 

2007), pharmacy students, faculty, and librarians (Kupferberg & Jones Hartel, 2004), and 

consumers (Plovnick & Zeng, 2004; Scott-Wright, Crowell, Zeng, Bates, & Greenes, 2006; Zeng, 

Crowell, Plovnick, Kim, Ngo, & Dibble, 2006; Keselman, Logan, Arnott Smith, Leroy, & Zeng-

Treitler, 2008).  We use the query sets developed by Kupferberg and Jones Hartel (2004) and 

Plovnick and Zeng (2004) in some of our evaluations. 

2.13  Basis for Current Work 

 The foregoing introduction and literature review situate dimensions of drug information 

as an approach to early OM, and thus a legitimate topic for LIS as well as drug informatics.  That 

is, our research fills a gap in both literatures.  The rationale can be summarized as follows. 

• Ontologies (an offshoot, in some respects, of LIS classification research), are a preferred 

tool for integrating the kind of heterogeneous resources that now characterize drug 

information. 

• There is no single, comprehensive, generally accepted drug ontology and may never be 

one due to drug information's large volume, rapid turnover, and diverse user needs and 

viewpoints. 

• Drug discovery researchers are attempting to integrate disparate information resources 

based on the partial ontologies implicit in databases such as DrugBank and WHO-ATC, 

but this approach fails to capture canonical knowledge contained in such resources as 

DailyMed. 

• Dimensions of drug information are, in some ways, an attempt to extract a comprehensive 

drug ontology from available drug information resources.  The ways that these resources 
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represent drug information are "ontology-like" to varying degrees (hence unifying them is 

a kind of OM) but only in a primitive way (hence "early, pre-formal OM"). 

• This approach can be seen as a kind of domain analysis in the sense of analyzing how the 

drug information community of practice "sees" drug information, as suggested by their 

resources' early, pre-formal ontologies.  The connection between domain analysis and 

OM is novel, as far as we know. 

• Following most of the bio-ontology and drug informatics literature, Semantic Web, 

mashups, and linked data, we have a practical focus on information integration, as 

opposed to formal ontology development. 

• Therefore our evaluations focus on the adequacy/face validity and usefulness of 

dimensions from an integration perspective. 
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Chapter 3.  Methods 

 For a brief overview of methods, please see the Research Strategy section (1.3). 

3.1  Q1: What are the Dimensions of Drug Information? 

3.1.1  User warrant / domain focus.  We focus on a subset of drug information relevant 

to four domains: pharmacy, chemistry, biology, and clinical medicine.  This focus was driven by 

a set of queries, applications, and information needs (Appendices A-B) that reflect the needs of 

specific user types - consumers, clinicians (physicians, nurses, etc.), pharmacists, and biomedical 

researchers - known to us through decades of study and professional experience.  Examples 

include: finding equivalent drug names (e.g., generic name version of a brand name, or the 

chemical name of the active ingredient); finding alternative drugs for a given indication or vice 

versa; identifying drug contraindications, precautions, warnings, side effects, and interactions; 

and finding other drugs with the same or related chemical properties or biological mechanisms.  

Not considered are queries, applications, and information needs from manufacturing, marketing, 

legal, regulatory, financial, and other domains involving dimensions such as drug pricing, 

retailers, packaging, and patents.  The italicized terms in this paragraph and in Appendices A-B 

represent our user-driven preconceptions of dimensions of drug information.  Our breakdown of 

drug information user types and domains closely and independently parallels that of Bawden and 

Robinson (2010, pp. 65-66). 

3.1.2  Literary warrant.  In Appendix A, it can be seen that some of the applications are 

represented in published literature, giving them an additional "real world" legitimacy independent 

of our professional experience.  The "proto-dimensions" in Appendix A are evident because they 

conform to our intuitive intensional definition: like facets, categories, features, and other 

traditional classification constructs, dimensions' overarching practical mission is to bring order, or 

at least some measure of consistency, to knowledge abstraction, organization, representation, and 

integration.  The proto-dimensions similarly evident from our literature review can be 

summarized as follows. 
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• RxNorm (Bodenreider & Nelson, 2004; Liu et al., 2005; Zeng, Bodenreider, et al., 2006; 

Zeng et al., 2007): terminology, generic names, active ingredients, drug components, 

brand names, National Drug Codes (NDCs), ingredients, drug forms, dose forms.  Also 

see Table 1, Table 2, and Figure 1. 

• Zeng et al. (2007): pharmacologic action, drug-drug interactions, indications, 

contraindications, adverse reactions. 

• Castle et al. (2007): diseases/phenotypes, genes, disease states, drug [names], drug 

therapeutic activity classifications [WHO-ATC], compound structure, protein [target] 

sequence.  

• Yildirim et al. (2007): drug [names], proteins, drug-target associations, drug therapeutic 

classifications [WHO-ATC], diseases, etiological drugs, palliative drugs.  

• Campillos et al. (2008): generic names, side effects, molecular targets, indication, 

therapeutic class, chemical structure. 

• Quan (2007): target, primary disease, alternative diseases, group [people] members. 

• Boguski et al. (2009): indications, off-label indications, biological pathways, mechanisms 

of drug effects/action, mechanisms of diseases, molecular pathways of disease, adverse 

side effects. 

3.1.3  Resource survey.  We considered approximately 30 drug information sources 

(Table 3) identified through our experience or their cross-references.  In addition to dimensions, 

we assessed some of the technical characteristics of each source with implications for usage and 

integration, such as cost, database availability and update frequency, presentation (terms and 

relations, tables, free text, etc.), integration options such as application programming interfaces 

(API), and number and overlap of single-component generic names covered (Appendix C-D).  

Overlap was determined by lexical matching using the Merck drug name dictionary and 
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autoencoding system (which includes generic name, trade name, synonym, and Chemical 

Abstracts Service [CAS] registry number relations). 

This resource set was narrowed to 23 (Table 4) based on criteria such as electronic 

availability, presence of explicit data elements, and balancing our desired domain and user-type 

coverage.  We inventoried the 23 sources' features, derived from drug-related data elements 

(intensional content), or from their values (extensional content).  This was done by examining 

database schemas, web pages, and query results.  These tests often consisted of probing the 

source with a term representing some prototypical drug with certain expected results.   Next we 

normalized the features into a set of dimensions of drug information.  For example, categories 

such as brand name and trademark and sets of values such as {"Proscar", "Propecia", "Bayer 

Aspirin", "Tylenol", …} are all evidence of a source's coverage of the trade names dimension.  

Finally, we grouped the dimensions by the four domains of interest and mapped them to the 

sources as a matrix of mostly binary (1 or 0) scores. 
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Table 3.  Initial resource evaluations. 
"Coverage" refers to the number of drug concepts equivalent to an RxNorm "ingredient" (~generic name). 
"Info+" is a preliminary judgment of whether the source offers a desirable (for our purposes) information 
increment over UMLS and the other sources.  "Extract" and "link" are preliminary judgments of whether it 
is feasible and desirable to integrate the information into RxNav explicitly (requiring extracting it from the 
source) or via some kind of API or hyperlink.  See Table 4 for website references. 
 

source version coverage cost($) avail. info+ extract link 
RXNORM Zeng et al. 

(2007) 
5,604 0 yes   

UMLS Nov-2007 (AC) tbd 0 yes n/a yes n/a 
DailyMed/SPL 11/12/2007 3,440 a 0 yes yes no yes 
Drugs@FDA 11/18/2007 1,689 0 yes no   
DrugDigest 11/18/2007 >5,000 b ? ? yes yes yes 
Medline+/MedMaster 11/18/2007 ? ? ? no   
WHO-ATC 2005 ~2,800 116 yes yes yes n/a 
WHO-DRUG 9/7/2007 9,899 13,446 yes yes ? n/a 
Int'l Pharmacopoeia 4th ed. (2006) 420 180 yes no   
INN's 1953-2007 >8,000 c 0 yes no   
EphMRA 2006 0 0 yes no   
USP/USAN Oct-2007 3,968 5,000? ? no   
PubChem Nov-2007 ? 0 yes yes no yes 
ChemiIDplus 11/15/2007 95,640 d 0 yes yes no yes 
DrugBank Feb-2006 ~4,300 0 yes yes some yes 
NDFRT 2007 data 10/3/2007 0 0 yes no  
KEGG Nov-2007 Tbd 0 yes tbd tbd tbd 

 
a package inserts (mix of generic & trade names) 
b "drugsand herbals" 
c "names" in Latin, English, French, and Spanish 
d "Drug / Therapeutic Agent" 
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Table 4.  Resources for systematic dimension analysis. 
FDA [U.S.] Food and Drug Administration; WHO World Health Organization; ATC Anatomic-
Therapeutic-Chemical [classification]; Phar.Int. International Pharmacopoeia; INN International 
Nonproprietary Names; USP U.S. Pharmacopeia; USAN U.S. Adopted Names; AMA American Medical 
Association; MeSH Medical Subject Headings; MH Main Headings; UMLS Unified Medical Language 
System; ChEBI Chemical Entities of Biological Interest; KEGG Kyoto Encyclopedia of Genes and 
Genomes; C consumers; CP clinical/pharmacy workers; R researchers, # INs number of drugs equivalent to 
a RXNORM "ingredient" (IN; single-compound approved generic name). 
 

source name Website users # INs 
MedMaster http://www.nlm.nih.gov/medlineplus/druginformation.

html  
C ? 

DrugDigest http://www.drugdigest.org/DD/Home C ~1,000 
DailyMed http://dailymed.nlm.nih.gov C,CP 1,117 
ClinicalTrials.gov http://clinicaltrials.gov/  C,CP 924 
DrugInfo http://druginfo.nlm.nih.gov/ C,CP,R ">12,000" 
RXNORM http://mor.nlm.nih.gov/download/rxnav/  CP 5,592 
Drugs@FDA http://www.accessdata.fda.gov/scripts/cder/drugsatfda/  CP 1,689 
WHO-ATC http://www.whocc.no/atcddd/  CP ~3,000 
WHO-DRUG http://www.umc-

products.com/DynPage.aspx?id=2829&mn=1107  
CP 9,899 

Phar.Int. http://www.who.int/medicines/publications/pharmacop
oeia/en/index.html  

CP 420 

INN http://www.who.int/medicines/services/inn/en/index.ht
ml 

CP ~2,000 

USP Dictionary http://www.uspusan.com/usan/login CP >4,317 
USAN via AMA http://www.ama-assn.org/ama/pub/category/2956.html  CP 689 
MeSH MH http://www.nlm.nih.gov/mesh/meshhome.html CP,R ~2,000 
MeSH all http://www.nlm.nih.gov/mesh/meshhome.html  CP,R ~5,000 
UMLS http://www.nlm.nih.gov/research/umls/  CP,R ~9,000 
PubChem http://pubchem.ncbi.nlm.nih.gov/  R ? 
ChemiIDplus http://chem.sis.nlm.nih.gov/chemidplus/  R ? 
ChEBI http://www.ebi.ac.uk/chebi/  R >7,000 
DrugBank http://redpoll.pharmacy.ualberta.ca/drugbank/  R 1,835 
KEGG DRUG http://www.genome.jp/kegg/drug/  R 6,848 
Reactome http://www.reactome.org/  R <100? 
HumanCyc http://humancyc.org/  R 20 
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3.1.4  Experimental database.  We built a database containing information on nine 

fundamental drug compounds extracted from 15 resources: MedMaster, DrugDigest, DailyMed, 

DrugInfo, RXNORM, ClinicalTrials.gov, Drugs@FDA, WHO-ATC, MeSH, UMLS, PubChem, 

ChemiIDplus, ChEBI, DrugBank, and KEGG DRUG.20  The nine drugs are: 

1. doxazosin / doxazosin mesylate 

2. dutasteride 

3. finasteride 

4. leuprolide / leuprolide acetate 

5. prazosin / prazosin hydrochloride 

6. saw palmetto 

7. tamsulosin / tamsulosin hydrochloride 

8. terazosin / terazosin hydrochloride 

9. ticlopidine / ticlopidine hydrochloride 

The various salts, derivatives, formulations, trade names, combination products, etc., of these 

nine drugs (in the single-component generic name parent compound sense) populate the 

corresponding dimensions, so the database covers many more drugs in that larger sense.  For 

comparison, the universe of U.S.-approved single-component generic name parent compound 

drugs may number about 5,000.21  Also shown in this list are the salts (mesylate, acetate, 

hydrochloride) distinguished by separate records in the resources we used, bringing the number of 

drugs in that sense up to 15. 

                                                 
20 Referenced in Table 4. 
21 This number is based on the coverages of RXNORM and MeSH.  There is no exact consensus on what 
constitutes the universe of drugs (Table 11).  In earlier work on this thesis topic, we attempted to make 
construction of a 5000-drug database feasible by narrowing the scope to sources with pre-normalized data 
applicable to a narrow set of use cases related to drug-indication relations (Appendix B).  One problem 
with this was that the considered dimensions had little or no generality across the considered sources.  
Another was that the only available normalized indication data appeared to be a poor reflection of 
canonical approved indications (Table 7).  The same was found to a lesser degree for contraindications 
(Table 8). 



 

 

45

 

 These drugs were selected as follows:  Finasteride was chosen for its interesting split into 

two trade names ("Propecia" and "Proscar") corresponding to two unit doses (1 mg and 5 mg) for 

two different indications (male pattern hair loss and benign prostatic hyperplasia).  Ticlopidine 

hydrochloride was chosen at random to compare some data in UMLS to equivalent data in 

DailyMed.  The other drugs were selected to support demonstration of utility for the general 

application "Find multiple drugs for the same indication"; specifically, one of finasteride's 

indications, benign prostatic hyperplasia (BPH).  Their names were obtained from the 

UMLS/NDFRT Other related/may_treat relations for "Prostatic Hypertrophy" which is NDFRT's 

preferred term for BPH. 

 The database was built in a Microsoft Excel spreadsheet.  The raw data was loaded by 

manually copying and pasting individual character strings (words, phrases, sentences, paragraphs, 

lists, etc.) from the source's display (usually a web page) into designated columns of a structured 

Excel spreadsheet (see next paragraph).  Normalized translations of the raw data were then added 

to separately designated columns.  The normalization process is described in Appendix E.  The 

potential for automation of this laborious process is addressed below under Q3.C.2.  Excel's built-

in search, sort, string matching, and other functions were used to facilitate and enhance 

normalization, to extract an expanded set of normalized dimensions (Q1) for cluster analysis 

(Q2), and to simulate a human-computer IR interface for purposes of testing the database's 

effectiveness in use cases as a function of its dimension-based integration (Q3). 

 The Excel columns are designated as follows.  Example cell values are given in quotes. 

A. Original sort order - line numbers to recover original context if needed. 

B. Normalized generic name - e.g., "finasteride" 

C. Normalized source - e.g., "DailyMed" 

D. Raw drug (record) name - e.g., "Propecia (Finasteride) Tablet, Film Coated 

[Merck & Co., Inc.]" 
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E. Raw drug (record) URI - e.g., 

"http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=6926" 

F. Raw dimension name - e.g., "Brand Names" 

G. Raw dimension URI if available. 

H. Raw value - e.g., "PROPECIA" 

I. Raw value URI if available. 

J. Dimension-dimension clue.  This and the other "clue" fields were added to 

clarify, systematize, and document complex normalizations.  An example of a 

non-complex dimension normalization is from the raw "Brand Names" to trade 

name.22  An example of a complex dimension normalization is from the raw 

"What side effects may I notice from this medicine?" to side effect.  In the second 

case, it may be helpful to know that the clue is the raw substring "side effects".  

Other examples will be given in the Results section. 

K. Dimension-value clue.  Sometimes raw dimension-value pairs were normalized 

in ways where raw dimension clues ended up in the normalized value and/or raw 

value clues ended up in the normalized dimension.  For example, the raw 

dimension "Precautions - Nursing Mothers" and value "Finasteride is not 

indicated for use in women. It is not known whether finasteride is excreted in 

human milk." were normalized to precaution - contraindication and "breast 

feeding".  Thus the dimension-dimension clue is "Precautions"; the dimension-

value clue is "Nursing Mothers"; and the value-dimension clue is "not indicated". 

L. Value-dimension clue.  See K. 

                                                 
22 In the database, the normalized indication terms include their domain classification; e.g., pharmacy - 
trade name, clinical - indication, biology - biological effect.  For better readability, these will be omitted 
from this narrative unless specifically relevant. 
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M. Flag for whether the value-value clue (N) has been parsed in any way.  That is, 

does it differ23 from the raw value (H)?  This field was added for consistency 

checking purposes. 

N. Value-value clue.  Except for UMLS, most of the raw values are free text.  Thus 

the need for normalization substrings is even greater than for the dimensions (J). 

O. Normalized dimension.  See J and K. 

P. Flag for whether the value-value clue (N) has been normalized in any way.  That 

is, does it differ24 from the normalized value (Q)?  This field was added for 

consistency checking purposes. 

Q. Normalized value.  See J and K. 

R. Linked to dimension(s).  See S. 

S. Linked to value - Sometimes there are interlinkages of data between a given 

source's dimension-value pairs about a given generic drug.  For example, in some 

sources, within generic name="finasteride", dose="5 mg" is specific to 

indication="benign prostatic hyperplasia" and trade name="Proscar", while 

dose="1 mg" is specific to indication="male pattern hair loss" and trade 

name="Propecia". 

 Table 5 exemplifies the incorporation of data from a source such as UMLS/NDFRT 

which employs knowledge representation (KR) based on local ontology structure and controlled 

terminology.  Such KR usually enables non-complex normalizations, hence most of the clue and 

flag fields (J-N, P) are blank in these examples.  The UMLS/NDFRT relationship Other 

related/may_be_treated_by is normalized to the dimension indication - treatment25 (meaning 

                                                 
23 Case-insensitive 
24 ibid. 
25 See footnote 7 on page 7.  One difference between dimensions and relationships is that we are not 
dealing with directionality because the drug is always the subject.  The NDFRT relationship 
may_be_treated_by reported here is somewhat of an artifact of our UMLS database.  Our dimension 
indication - treatment actually corresponds better to the NDFRT reverse relationship may_treat. 
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treatment is a subtype of indication).  In contrast to the example in Table 6 (next paragraph), 

UMLS/NDFRT does not distinguish between approved and other indications.  The raw values - 

"Prostatic Neoplasms"; "Hirsutism"; "Alopecia"; and "Prostatic Hyperplasia" - are simply 

converted to dictionary case and singular form.  The data was extracted from downloaded UMLS 

files so there are no URIs (E, G, I).  UMLS/NDFRT does not link these indications to specific 

drug doses, trade names, etc., hence the linkage fields (R, S) are blank. 

 Table 6 exemplifies the incorporation of data from a source such as MedMaster which 

employs free text KR.  Free text KR usually requires complex normalizations, hence the clue 

field values, highlighted to show their context in the natural language text.  MedMaster 

indications can be assumed to be approved, hence the additional subtype qualifier (indication - 

treatment - approved).  Note the discrepancies with the UMLS/NDFRT indication values for 

finasteride (Table 5).  Two of these involve granularity ("male pattern hair loss" is a subtype of 

"alopecia" and "benign prostatic hyerplasia" is a subtype of "prostatic hyerplasia").  The other 

two UMLS/NDFRT values might be considered non-approved indications but there is no 

independent (i.e., other than comparing them to known approved indications) way to distinguish 

or grade these or infer the original (pre-normalized) term, which probably also is of finer 

granularity (e.g., "Prostatic Neoplasms" probably refers to "prostate cancer" which finasteride has 

been postulated to help prevent based on its mechanism of action).  Table 6 also illustrates the 

URI fields (E, G) and the linkage of one dimension/value to another dimension/value within a 

given source/drug (R, S). 
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Table 5.  Experimental database schema with structured data examples. 
For display clarity, the columns and rows (1449, 1451, …) are inverted relative to the actual database 
(http://comminfo.rutgers.edu/~msharp/XKB/DB6.xls). 
 
Column column name example 1 example 2 example 3 example 4 

A original sort order 1449 1451 1454 1455 

B normalized generic 
name finasteride finasteride finasteride finasteride 

C normalized source UMLS/NDFRT UMLS/NDFRT UMLS/NDFRT UMLS/NDFRT 

D raw drug (record) 
name Finasteride Finasteride Finasteride Finasteride 

E raw drug (record) 
URI     

F raw dimension name 
Other related/ 

may_be_ 
treated_by 

Other related/ 
may_be_ 

treated_by 

Other related/ 
may_be_ 

treated_by 

Other related/ 
may_be_ 

treated_by 
G raw dimension URI     

H raw value Prostatic 
Neoplasms Hirsutism Alopecia Prostatic 

Hyperplasia 
I raw value URI     

J dimension-
dimension clue treated treated treated treated 

K dimension-value clue     
L value-dimension clue     
M value parse flag     
N value-value clue     

O normalized 
dimension 

clinical -
indication - 
treatment 

clinical -
indication - 
treatment 

clinical -
indication - 
treatment 

clinical -
indication - 
treatment 

P value normalization 
flag N    

Q normalized value prostatic 
neoplasm hirsutism alopecia prostatic 

hyperplasia 

R linked to 
dimension(s)     

S linked to value     
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Table 6.  Experimental database schema with free text examples. 
For display compaction and clarity, repeated identical values are merged for columns B-I, columns (A-S) 
and rows (3, 4, …) here are inverted relative to the actual database 
(http://comminfo.rutgers.edu/~msharp/XKB/DB6.xls). 
 

column column name example 1 example 2 example 3 example 4 
A original sort order 3 4 5 6 

B normalized generic 
name finasteride 

C normalized source MedMaster 
D raw drug (record) name Finasteride 

E raw drug (record) URI http://www.nlm.nih.gov/medlineplus/druginfo/meds/a698016.ht
ml  

F raw dimension name Why is this medication prescribed?  

G raw dimension URI http://www.nlm.nih.gov/medlineplus/druginfo/meds/a698016.ht
ml#why  

H raw value 

Finasteride (Proscar) is used alone or in combination with another 
medication (doxazosin [Cardura]) to treat benign prostatic hypertrophy 
(BPH, enlargement of the prostate gland). Finasteride improves 
symptoms of BPH such as frequent and difficult urination and may 
reduce the chance of acute urinary retention (suddenly being unable to 
pass urine). It also may decrease the chance of needing prostate surgery. 
Finasteride (Propecia) is also used to treat male pattern hair loss (a 
common condition in which men have gradual thinning of the hair on 
the scalp, leading to a receding hairline or balding on the top of the 
head.) Finasteride (Propecia) has not been shown to treat thinning hair at 
the temples and is not used to treat hair loss in women or children. 
Finasteride is in a class of medications called 5-alpha reductase 
inhibitors. Finasteride treats BPH by blocking the body's production of a 
male hormone that causes the prostate to enlarge. Finasteride treats male 
pattern hair loss by blocking the body's production of a male hormone in 
the scalp that stops hair growth. 

I raw value URI  

J dimension-dimension 
clue 

Why is this 
medication 
prescribed?  

Why is this 
medication 
prescribed? 

  

K dimension-value clue     

L value-dimension clue Is used to treat is used to treat is in a class of 
medications treats by 

M value parse flag P P P P 

N value-value clue benign prostatic 
hyperplasia 

male pattern hair 
loss 

5-alpha 
reductase 
inhibitors 

blocking the 
body's 
production of 
a male 
hormone 

O normalized dimension 
clinical - 
indication - 
treatment - 
approved 

clinical -
indication - 
treatment - 
approved 

biology - 
therapeutic 
class 

biology -
biological 
effect 

P value normalization flag  N N N 

Q normalized value benign prostatic 
hyperplasia 

male pattern 
alopecia 

5-alpha 
reductase 
inhibitor 

androgen 
synthesis 
decrease 

R linked to dimension(s) trade name trade name   
S linked to value Proscar Propecia   
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3.2  Q2: Do Dimensions Lead to Valid Groupings of Resources? 

"Information resources may be categorized in various ways, so that an extensive set of 

diverse resources, as certainly exists for the pharmaceutical domain, may be better understood 

and organized" (Bawden & Robinson, 2010, p. 79).  Of the ways listed by these authors, our 

approach corresponds most closely to by "subject"; "type of material"; and "intended audience" 

(p. 80). 

3.2.1  Face validity.  Using the initial survey domain-dimension-resource matrix (Table 

9 in Results), domain scores were computed for each resource by summing the matrix scores 

(●=1; ±=0.5).  Each resource thus has a score for each of the four domains consisting of the 

number of that domain's dimensions covered by the source, divided by the total number of 

dimensions covered by the source, expressed as a percentage.  The sources can then be grouped 

by their domain scores according to any desired criteria (highest, lowest, >50%, most equitable, 

etc.), and the validity of these groupings evaluated.  For example, do all the sources with "Chem" 

in their names group together under chemistry? 

3.2.2  Correspondence analysis.  Correspondence analysis (Greenacre, 1984) provides a 

method for representing both the row and column categories of the domain-dimension-resource 

matrix in the same space, so that the results can be visually examined for structure.  To reduce 

dimensionality, only the first two axes of the new space are plotted.  The overall quality of 

representation of the points is expressed as a proportion of the total variation ("inertia").  

Weighting schemes reflect the sources' differing numerical coverage of generic names (Table 4) 

and chemical entities (not shown) and give credit for partial coverage.  We used the statistical 

software package MVSP for this analysis. 

3.2.3  Cluster analysis.  We also submitted the resource-by-dimension matrix without 

the domain groupings to hierarchical cluster analysis using the statistical software package SPSS 

(Norusis, 2005).  Such an analysis was expected to yield a more objective picture of how the 

resources and dimensions cluster for comparison to our manual domain-dimension groupings; 
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that is, to evaluate our four-domain classification hypothesis.  Cluster analysis was also applied to 

the expanded set of dimensions from the experimental database. 

3.3  Q3: Can Dimensions Facilitate Integration/OM Tasks? 

3.3.1  Classifying sources.  This is basically a usefulness version of Q2; i.e., are the 

classifications implied by the grouping, correspondence, and clustering results for Q2 useful as 

well as valid? 

3.3.2  Selecting sources appropriate to a given information need.  Given a 

dimensions-by-resources matrix (Table 9) and a mapping of the same dimensions to usage 

scenarios,26 the matrix can be used to select the resources most likely to satisfy the user's 

information need because they cover the relevant dimensions.  For example, a user (consumer, 

clinician, pharmacist, or biomedical researcher) wants to find the drugs corresponding to a given 

indication or vice versa.  This scenario minimally requires coverage of the generic names and 

indications dimensions.  In addition, dimensions such as therapeutic class, mechanism of action, 

biological effect, molecular target, experimental applications, and chemical superclass, may also 

be useful in determining alternative or possible indications.  Each resource's hypothetical 

effectiveness score for this scenario is obtained by summing its matrix scores for these 

dimensions (Table 9; ●=1; ±=0.5). 

3.3.3  Pooling data from different sources.  The experimental database represents an 

application of dimensions to pooling data from different sources.  Its usefulness was evaluated 

from three perspectives: data reduction, automatic normalization of additional raw data, and 

satisfying use cases. 

3.3.3.1  Data reduction.  The normalization process (Appendix E) was designed to 

conflate different strings representing the same drugs, dimensions, or values in the raw data as 

illustrated in Table 5 and Table 6.  Thus we expected that the number of unique raw 

                                                 
26 A scenario is a description of interactions between types of users and the system. 
http://en.wikipedia.org/wiki/Scenario_(computing)  
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representations would always be greater than the number of unique corresponding normalized 

representations within any cross-section of the database, and that the size of this difference would 

be a good measure of the effectiveness of our method at integrating the data.  Ratios of unique27 

normalized to unnormalized representations in the experimental database, expressed as 

percentages, were computed for drugs (columns D versus B), dimensions (F versus O), values (H 

versus Q), and drug-dimension-value "triples" across the entire database and within each source.28  

In addition, the effect of dimensional hierarchical aggregation (Appendix G) was computed for 

selected dimensions such as pharmacy - generic name where the dimension and its sub-

dimensions all take values of the same semantic type.  Finally, case-specific examples of data 

reduction were computed from the use case results. 

3.3.3.2  Automatic normalization of additional raw data.  The experimental database 

constitutes a potential training dataset for automatic addition and integration of more data.  Three 

scenarios were considered: (i) addition of more data about the same drugs from the same 

resources; (ii) addition of more data about the same drugs from different resources; and (iii) 

addition of more data about different drugs from the same resources.  (i) was ruled out because 

we essentially loaded all the data available about our chosen sample of drugs in our chosen 

sample of resources.  (ii) was ruled out for three reasons.  The first is that our chosen sample of 

resources comes close to exhausting the universe of relevant resources which are freely available 

for study.  Secondly, even if more were available, the time required for preliminary analysis 

makes this goal impractical.  Thirdly, the model adopted for addition of data about more drugs 

(below) depends on our specific mapping of raw to normalized dimensions, which does not 

generalize well across the sources we examined (that is, they tend to have diverse representations 

                                                 
27 The number of unique values in an Excel column is given by copying the column to column A of a 
scratch worksheet, sorting it, entering "0" into B1 and the formula "=if(A2=A1,1,0)" in cell B2, copying B2 
to all B cells to the end of the A data, copying and pasting "special" the values in B, sorting all on B, and 
recording the last row number with a "0" in B. 
28 The unique normalized dimensions were taken from the fourth hierarchical level for comparability across 
sources.  These calculations did not exclude data representing unparsed links and summaries, database IDs 
and cross-references, compound dimensions, or information for the patient subtypes. 
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of the same dimension) and so would not be expected to generalize well to other resources. 

 To integrate additional data about more drugs from the same resources, one needs to  

a. Parse the raw data into source-drug-dimension-value "quadruples."  Each quadruple 

defines a new record (row) in the database and the raw strings go into columns C, D, F, 

and H.  For each new row, 

b. Normalize the raw drug name and load the normalized drug name into column B. 

c. Normalize the dimension name and load the normalized dimension name into column O. 

d. Normalize the value name and load the normalized value name into column P. 

An example of a raw quadruple is: ChEBI-"tamsulosin hydrochloride"-"Brand Names - Source"-

"Flomax - KEGG DRUG".  The corresponding normalized quadruple is: ChEBI-"tamsulosin 

hydrochloride"-"pharmacy - trade name"-"Flomax". 

 Substantively addressing automation of steps a, b, and d is out of scope for this 

dissertation.  Step a is basically a data access issue, while steps b and d are basically 

autoencoding (mechanized mapping of uncontrolled to controlled terminology) issues. 

 For step c, we derived a table of probabilities based on the experimental database.  Based 

on the data we manually processed, any hypothetical new row of data from one of our resources 

has a "prior" probability of mapping to one of our normalized dimensions which is equal to the 

fraction of all rows with the same raw source-dimension (columns C and F) pair mapped to that 

normalized dimension (column O).  For example, all the rows with the raw (C,F) pair ChEBI-

"Brand Names - Source" have the normalized dimension "pharmacy - trade name", hence the 

probability is 1.0 (100%).  All the data we processed is consistent with that mapping, so we 

expect all additional ChEBI data to follow the same pattern.  In contrast, for the raw (C,F) pair 

ChemIDplus-"Names and Synonyms - Synonyms", only 100/262 (0.38) of the data rows are 

mapped to "pharmacy - trade name"; the probability is 38% that a new row from that section of a 

ChemIDplus page would be correctly normalized this way.  These probabilities can also be 

viewed as a kind of precision score for the query "Find all cases (drug-value pairs) of the 
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normalized dimension when the latter is specified only as the raw source-dimension pair."  

ChEBI's precision for retrieving trade names via "Brand Names - Source" is 100%, while 

ChemIDplus' via "Names and Synonyms - Synonyms" is 38% (the false 62% being generic 

synonyms, abbreviations, chemical names, etc.).29 

For cases with probability less than 100%, additional probabilities were computed based 

on dimensional hierarchical aggregation and/or identification of clues within the value.  For 

example, the raw (C,F) pair ChemIDplus-"Names and Synonyms - Synonyms" also maps to a 

variety of pharmacy - generic name subtypes (see Appendix G), none with a probability greater 

than 6%.  However, if they are all aggregated "up" to "pharmacy - generic name" the combined 

probability is 31%.  If the clue "[INN-Latin]" in the value "Ticlopidinum [INN-Latin]" is added 

to the (C,F) pair (making it a C,F,H-clue triple), its probability of mapping correctly to 

"pharmacy - generic name - INN/Latin" jumps from 5% to 100%.  Of course, using the whole 

value (i.e., the C,F,H triple) guarantees 100% precision across the entire database, and there is no 

formal boundary between our clues and their whole values in our ad hoc prototype.  

Formalization and automation of value clue derivation go along with formalization and 

automation of value normalization, which we leave to future extensions.  We merely wish to note 

its potential relevance to dimension normalization. 

3.3.3.3  Satisfying use cases.   

3.3.3.3.1  Criteria for usefulness. 

 The use cases were adapted from "real world" information needs represented in published 

literature as described below.  Therefore the criteria for usefulness are comparative: our 

                                                 
29 The same raw dimension-value pair may be mapped to multiple normalized dimension-value pairs.  This 
happens frequently with nonspecific raw dimensions such as "Description" or "Scope Note" and values in 
free text format.  Therefore these probabilities should be understood as the probability of picking a given 
normalized dimension at random from among all the normalized dimensions associated with a given raw 
dimension in the database, not the probability that a given raw dimension's family of normalized 
dimensions includes a particular normalized dimension.  The latter may be of interest as well as a kind of 
semantic recall measure.  Later (in Results) we make the distinction between the semantic precision 
measured by our dimension probabilities, versus pharmaceutical precision, which entails the values. 
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experimental database should perform as well or better than the system in the literature or, if that 

cannot be assessed, better than the individual, unintegrated resources in the paper's system or 

ours.  

 1.  Comprehensive coverage.  A mapping of these papers' classes and resources of drug 

information (Section 3.1.2) to our equivalent dimensions and resources should show that our 

database covers the aggregate set of dimensions better (higher %) than the paper's collection if 

comparable, otherwise by any one resource alone, and integrates additional information 

(dimensions, values, and resources) that the paper's system or single resources do not cover. 

 2.  Literary warrant fidelity.  Each specific use case should represent, with minimal value 

substitution, an example of a need or test query expressed in these papers. 

 3.  IR performance.  Retrieval based on searching, clustering, etc., the normalized generic 

name, dimension, and value fields (B,O,Q) of the database should be larger, more robust, and 

more efficient than what could be achieved using the paper's system, if comparable, otherwise the 

raw data fields (D,F,H) or the original disparate, scattered information resources.  Operationally, 

"larger" means more records.  "More robust" means representing more information and its 

consistency (and inconsistency, which can also be informative) across sources; that is, if the 

answer is based on information from multiple sources, it is more likely to pass a truth test based 

on one or a subset of them.  Robustness also refers to linkages to additional information (e.g., 

indication:molecular target).  "More efficient" refers to the effort and complexity of the search 

process (number of databases, commands, queries, time, etc.) operationalized as data reduction 

(reduction in the number of unique strings representing the same concept). 

 Note that we are not using precision/recall or other measures of truth/accuracy.  The 

reason is that such measures do not reflect on the dimensions per se so much as the accuracy of 

the sources (which is beyond our control and not our goal to evaluate) and our specific mappings.  

For example, UMLS/NDFRT's "incorrect" indications for ticlopidine (Table 7) depend on our 

mapping of the local may_treat relationship to our indication dimension.  This does not invalidate 
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the indication dimension, just (perhaps) our mapping of may_treat.  Following Plovnick and 

Zeng's "gold standard" evaluation model would entail evaluating additional resources or enlisting 

independent human subject experts.  The marginal relevance of truth/accuracy measures to our 

main thesis was judged not worthy of the required effort and expense. 

3.3.3.3.2  Health care and related personnel.  This set of use cases is based on Liu et al. 

(2005), Zeng et al. (2007), and Kupferberg and Jones Hartel (2004).  Liu et al. (2005) defined 

RXNORM's intended users as "health care personnel including prescribing physicians and nurses, 

and hospital personnel involved with drug ordering, inventory management, recording dose 

adjustments, checking drug interactions, or pharmacy management."  Zeng et al. (2007) identified 

the general problem that RXNORM does not cover all the dimensions of drug information of 

interest to these users "such as pharmacologic action, drug-drug interactions, indications, 

contraindications, and adverse reactions."  In our terms, these two papers suggest that health care, 

hospital, and pharmacy personnel wish to search, cluster, and/or distinguish drugs based on their 

values for these dimensions at the same level of detail and comprehensiveness as RXNORM's 

coverage of generic name, trade name, dose, and dosage form.  The core of the unmet 

information need is of two types: where X is a dimension not covered by RXNORM,  

 Health Use Case A.  For a given value of generic name find alternate values of X,  

 Health Use Case B.  For a given value of X find alternate values of generic name.   

To develop this set of use cases, we simply need to plug into X our normalized dimensions 

corresponding to Zeng et al.'s wish list, as given by our database columns O and F respectively. 

• pharmacologic action: clinical - therapeutic class … 

• drug-drug interactions: clinical - precaution - drug interaction … 

• indications: clinical - indication … 

• contraindications: clinical - precaution - contraindication 

• adverse reactions: clinical - precaution - side effect … 
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"…" signifies that all normalized dimensions should be understood to include their hierarchical 

sub-dimensions (Appendix G); retrieving these will allow finer granularity searches such as for 

approved indications (clinical - indication - … - approved).  An example of query type (1) is 

"Find all indications for finasteride" which translates to generic name = "finasteride" and X = 

"clinical - indication …".  Executing this query to our database (Appendix F) yields the 

normalized values "benign prostatic hyperplasia" and "male pattern alopecia".  Keeping X = 

"clinical - indication …" and plugging "benign prostatic hyperplasia" into query type (2) as 

"value of X" yields "finasteride"; "dutasteride"; and 13 of the other 15 unique normalized generic 

names in the database as "values of generic name" (since 13/15 of our drug sample was selected 

on that basis).  The results could then be refined by indication sub-dimension and/or used to 

formulate follow-up queries to compare the different drugs' pharmacologic actions, drug-drug 

interactions, contraindications, or adverse reactions, according to the above mapping, other 

dimension-specific values, or combinations thereof. 

 Kupferberg and Jones Hartel (2004) enlisted "pharmacy students, faculty, and librarians" 

to help develop a list of 10 test queries to compare evaluations of five full-text drug databases 

(Figure 8).  Our model database does not support these 10 specific test queries due to its small 

generic drug sample.  However, we can simulate most of them using other specific values.  

Numbers 3, 4, 5, and 9 require only substituting one of our nine normalized generic parent names 

(finasteride, dutasteride, doxazosin, …} for the drug name. Others can be adjusted as follows, 

where strikeout signifies deleted original text and bold our substitution or addition. 

1. Your patient complains about taking daily Alendronate leuprolide doses. Is there an 

alternative dosage form where frequency of administration < 1/day? 

7.  What is the pediatric dose dosing regimen of Acyclovir {finasteride, dutasteride, 

doxazosin, saw palmetto, …} for chicken pox {BPH, hypertension}? 
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8.  A 24-year-old pregnant woman has Trichomonas vaginalis alopecia.  Can 

Metronidazole {finasteride, dutasteride, doxazosin, saw palmetto, …} be safely 

used? 

10.  What percentage of patients receiving Methyldopa doxazosin mesylate develop a 

positive Coombs test hypotension? 

These eight queries constitute our Health Use Cases C, D, E, F, G, H, I, and J. 

 

 
 
Figure 8.  Test queries to evaluate drug databases (Kupferberg & Jones Hartel, 2004). 
 
 
 

3.3.3.3.3  Pharmaceutical discovery researchers.  This set of use cases is based on Castle 

et al. (2007), Vogel (2007), Campillos et al. (2008), and Boguski et al. (2009).  Castle et al.'s 

examples involve finding clusters of chemically related drug compounds and their molecular 

targets.  The corresponding biological correlates (of the drugs and the targets) are then mined for 

co-occurrences that suggest plausible, novel, interesting, testable hypotheses.  One example 

concerns phenotype:disease relations.  These are what Vogel (2007) is looking for, where the 

disease is cancer and the phenotypes are faster endpoints than overt cancer and death, to speed 

and reduce the cost of anti-cancer drug research.  Campillos et al. (2008) basically did the same 
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thing as Castle et al. but added a side effect dimension to the initial clustering.  This paper was 

specifically motivated by prediction of novel hypothetical indications and therapeutic classes for 

existing drugs, which Boguski et al. (2009) called "repurposing." 

 Where our model database can improve, in principle, on these prototypes is in the 

richness of the set of drug biological correlates.  These prototypes' requirement for already-

normalized data limited them in this regard to WHO-ATC.  In contrast, both prototypes used 

DrugBank's rich set of molecular target biological correlates.  Our database has much more on the 

drug side.  In addition to WHO-ATC, it has alternative therapeutic class values from many of our 

14 other resources, plus additional drug indication, biological effect, and mechanism of action 

correlates.  The volume of this data is equivalent to over 1.4 million rows of data if extrapolated 

from our small sample to our estimate of the U.S.-approved generic drug universe.30 

 The following use cases can be inferred from these papers.  (See Appendix F for content 

adaptations and query formulations.) 

 Research Use Case A.  A cluster of structurally similar compounds targeting the TACR1 

gene product (known to be associated with abnormal pain threshold ) was found that points to the 

WHO-ATC class "antiemetics and antinauseants", suggesting that TACR1 modulation may 

produce antinauseant activity, and/or that there is a possible connection between antinauseant 

activity and abnormal pain threshold (Castle et al., 2007). 

 Research Use Case B.  The WHO-ATC class "cardiovascular system" points to a list of 

cardiovascular drugs whose gene targets map to a smaller list of phenotypes.  The highest ranking 

phenotype is "decreased heart rate" which is consistent with the WHO-ATC class.  This suggests 

that other WHO-ATC drug gene target phenotype mappings might be mined for 

phenotype:disease hypotheses (Castle et al., 2007). 

                                                 
30 2548 rows of data on these dimensions and their sub-dimensions, times 5000/9 = 1.42 million.  The 
comparable figure for WHO-ATC (all four levels) is 88 x 5000/9 = 0.05 million.  For all molecular target 
sub-dimensions it is 1239 x 5000/9 = 0.7 million.  For the specific biological correlate sub-dimensions 
general function, specific function, pathway, and GO biological process, it is 180 * 5000/9 = 0.1 million. 
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 Research Use Case C.  Campillos et al. (2008) extracted specific sets of drugs with 

common side effects but different WHO-ATC therapeutic classes, and used the drugs' molecular 

target and chemical structure/similarity values to predict previously unknown shared targets, 

which were tested by in vitro and cell assays.  The validated shared targets predict novel 

hypothetical indications and therapeutic classes for existing drugs.  For example, a set of nervous 

system drugs was found to have side effects in common the antiulcer drug rabeprazole.  Four of 

their targets were predicted to bind rabeprazole, and two - the dopamine receptor DRD3 and the 

serotonin receptor HTR1D - were validated.  This suggests that rabeprazole may be therapeutic 

for the indications of zolmitriptan (migraine), pergolide (Parkinson's disease), and paroxetine and 

fluoxetine (psychiatric disorders31). 

 Research Use Case D.  Boguski et al. (2009) also address finding novel hypothetical 

indications and therapeutic classes for existing drugs ("repurposing") but do not present a 

prototype on which to base a use case, so we made this one up.  A researcher wonders if any 

existing drugs might be "repurposed" to prevent prostate cancer.  She searches ClinicalTrials.gov 

and gets a list of clinical trials which link the Condition "Prostate Cancer" to various 

Interventions including drug names.32  She thinks this is a good start, but what she really needs is 

to find other, chemically related drugs and chemicals which are not on this list or already 

approved for prevention of prostate cancer. 

3.3.3.3.4  Consumers.  Actual examples of consumer/patient drug information queries are 

surprisingly hard to find, given the proliferation of consumer-oriented resources such as 

MedMaster and DrugDigest, U.S. government patient health information empowerment efforts,33 

and scholarly literature on health information seeking behavior and medical informatics.  One 

                                                 
31 fluoxetine: depression, obsessive-compulsive disorder, some eating disorders, panic attacks, premenstrual 
dysphoric disorder; paroxetine: depression, panic disorder, social anxiety disorder, obsessive-compulsive 
disorder generalized anxiety disorder, posttraumatic stress disorder, premenstrual dysphoric disorder. 
Source: MedMaster. 
32 http://clinicaltrials.gov/ct2/results?term=prostate+cancer  
33 E.g., http://www.hhs.gov/healthit/healthnetwork/background/  
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reason for this may be that consumers' drug information queries are generally ill-formed and 

ineffective (Plovnick & Zeng, 2004; Scott-Wright et al., 2006; Zeng, Crowell, et al., 2006; 

Keselman et al., 2008). 

 Plovnick and Zeng (2004) collected consumer queries and search goals from patients and 

visitors recruited from public areas of a large hospital.  Subjects described their health-

information needs to an interviewer and were then given the opportunity to search the internet on 

a laptop. The subjects' queries were recorded for further analysis.  We adapted these queries to 

our database's model content much like we did the Kupferberg and Jones Hartel (2004) queries. 

1. Are there any natural [herbal] substitutes for the hormone replacement BPH therapy agent 

Prempro {Proscar, Flomax, Avodart, Ticlid, Viadur …} ? 

6. How are arrhythmias BPH treated? 

9. Is there treatment for restless legs syndrome baldness ? 

10. What are scientifically validated [approved] treatments for cancer BPH? 

10. What are scientifically validated experimental treatments for prostate cancer? 

12. What are the side effects of Lexapro {Proscar, Flomax, Avodart, Ticlid, Viadur …} ? 

14. What foods should be avoided to prevent cavities in children interactions with alpha 

blockers ? 

These seven queries constitute our Consumer Use Cases A, B, C, D, E, F, and G.  In addition, we 

invented this one to highlight human-computer interaction issues. 

Consumer Use Case H.  A patient is taking Ticlid (ticlopidine hydrochloride) to prevent 

blood clotting on an implanted coronary stent.  She is having difficulty breathing and wonders if 

it might be a side effect of the drug.  She looks up Ticlid on MedMaster but the monograph 

section "What side effects can this medication cause?"34 does not say anything about respiratory 

problems.  She wishes that MedMaster had a "Search More Resources" button next to each 

section heading.  (See Appendix F for database mappings.) 
                                                 
34 http://www.nlm.nih.gov/medlineplus/druginfo/meds/a695036.html#side-effects  
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Table 7.  UMLS vs. DailyMed indications for ticlopidine hydrochloride. 
UMLS covers the DailyMed indication "thrombotic stroke" (bold) but incorrectly as treatment rather than 
prevention, and has 13 other indications not verified by DailyMed. Normalizing the other DailyMed 
indication "subacute stent thrombosis" via UMLS leads to the wrong concept ("Vascular stent thrombosis" 
[crossed out] rather than "Coronary stent thrombosis" neither of which is covered as a ticlopidine 
indication). DailyMed's finer grained indication restriction information for ticlopidine is not covered at all 
by UMLS. 
 
1.  Treatment. 

DailyMed extracted value DailyMed normalized 
value (source) 

UMLS (NDFRT) 
related concept 

(none) (none) may_treat 
• Bacterial Vaginosis 
• Dermatomycoses 
• Eye Infections, Bacterial 
• Eye Infections, Viral 
• Intracranial Embolism and 

Thrombosis [~"thrombotic stroke"] 
• Leg Ulcer 
• Radiation Injuries 
• Renal tubular acidosis 
• Skin Diseases, Bacterial 
• Skin Diseases, Parasitic 
• Skin Diseases, Viral 
• Staphylococcal Infections 
• Surgical Wound Infection 
• Urination Disorders 

 
2. Prevention. 

DailyMed extracted value DailyMed normalized value (source) UMLS (NDFRT) 
related concept 

• reduce the risk of 
thrombotic stroke   

• reduce the incidence of 
subacute stent 
thrombosis 

• Thrombotic stroke (Meddra, SNOMED, 
DXplain) 

• Vascular stent thrombosis (Meddra) 
• Coronary stent thrombosis (Meddra) 

may_prevent 
 
(none) 

 
3.  Restrictions. 

DailyMed extracted value DailyMed normalized value 
(source) 

UMLS (NDFRT) 
related concept 

• thrombotic stroke - patients who have 
experienced stroke precursors 

• thrombotic stroke -- patients who have 
had a completed thrombotic stroke.  

• subacute stent thrombosis -- patients 
undergoing successful coronary stent 
implantation 

• [general] -- for patients who are 
intolerant or allergic to aspirin therapy or 
who have failed aspirin therapy 

• (nothing for "stroke 
precursors"?) 

• Thrombotic stroke 
(Meddra, SNOMED, 
DXplain) 

• Insertion of coronary 
artery stent (SNOMED) 

 
• Aspirin allergy 

(SNOMED) 
 

 
(none) 
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Table 8.  UMLS vs. DailyMed contraindications for ticlopidine hydrochloride. 
Of the 15 DailyMed contraindications, warnings, and precautions, five are covered by UMLS/NDFRT 
has_contraindication relations (checked boxes).  UMLS/NDFRT has four other such relations (question 
marks) not verified by DailyMed.  
 

DailyMed extracted value DailyMed normalized 
value (UMLS) 

UMLS (NDFRT) 
related concept 

Contraindications 
• Hypersensitivity to the drug 
• Hematological Adverse Reactions / hematopoietic 

disorders 
• Neutropenia  
• Thrombocytopenia  
• hemostatic disorder 
  
• active pathological bleeding / bleeding risk [e.g. 

surgery]  
• bleeding peptic ulcer  
• intracranial bleeding 
• severe liver impairment / hepatically impaired 
 
• Thrombotic Thrombocytopenic Purpura (TTP) 
• Aplastic Anemia 
 
Additional Warnings 
• Anticoagulant Drugs 
• Cholesterol Elevation 
 
Additional Precautions 
• GI Bleeding 
 
• Renally Impaired Patients 

 
 Drug Allergy 

• Hematological 
Disease  

• Neutropenia 
• Thrombocytopenia  

 Blood Coagulation 
Disorders 

 Hemorrhage 
• Peptic Ulcer 

Hemorrhage  
• Intracranial 

Hemorrhages  
 Liver diseases 

• Purpura, Thrombotic 
Thrombocytopenic  

• Aplastic Anemia 
 
• Anticoagulants 
• Hypercholesterolemia  
 
 
• Gastrointestinal 

Hemorrhage 
 Kidney Failure 

 
 Drug 

Allergy 
 
 
 

 Blood 
Coagulation 
Disorders 

 Hemorrhage  
 
 
 

 Liver 
diseases 

 
?    Addison's 
disease 
?    Anuria 
?    Dehydration 
?    hyperkalemia 
 
 
 

 Kidney 
Failure 
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Chapter 4.  Results 

4.1  Q1: What are the Dimensions of Drug Information? 

4.1.1  Resource survey.  Initial resource survey results are shown in Table 3 and 

Appendix B.  The 23 resources selected for further dimensional analysis with their websites and 

generic name coverages are shown in Table 4.  The initial 4-domain-by-39-dimension-by-23-

resource matrix is shown in Table 9 and the 39 dimensions are defined in Table 10.  A generic 

name coverage overlap analysis is shown in Table 11.  The overlap analysis was undertaken to 

give more meaning to the coverage estimates shown in Table 3 and Table 4, but also addresses a 

corollary research question, "What is the size of the drug universe?"; i.e., "How many 

fundamental drug compounds are there?" which involves "What is a drug?"  Surprisingly, 

RXNORM and MeSH, despite covering approximately 5,000 generic names each (the source of 

our canonical generic drug universe estimate), only overlap each other about 60%.  Furthermore 

they do not cover all the drugs in three resources with much smaller coverages, and RXNORM 

only covers 33% of USANs.  However, the much larger (~16,000) Merck generic names 

dictionary does not cover all of RXNORM or even DrugBank (~1,800).  This means that drug 

information resources do not agree on extensionally defining even the most fundamental 

dimension, generic name.  That is, they do not agree on the most fundamental ontological 

question, "What is a drug?" 
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Table 9.  Dimensions of drug information by resources. 
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dose/form   ± ● ±  ● ● ± ±          ● ●       ±       
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empirical 
formula 
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InChI                              ● ● ● ●       

SMILES                              ● ● ● ●     ● 
similar structures                              ● ●   ● ●     

H bond donors                              ●             

H bond 
acceptors 

                             ●             

molecular 
weight 
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melting point                  ●             ●   ●       
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Table 10.  Dimensions of drug information definitions. 
 

 
generic names the most common general purpose drug names after they become public 

knowledge, usually corresponding to single chemical compounds as opposed to 
specific products such as a bottle of pills.  Other definitions include the words 
"nonproprietary", "official", or "approved" but these do not always apply. We 
exclude chemical names but admittedly there is a gray area (e.g., acetic acid).  
Aspirin is a case in point of the nuances since it started out as a proprietary 
trademark.  Synonyms include common name and ingredient. 

trade names proprietary names for marketed drug products; synonyms include trademark 
and brand name; e.g., "Bayer Aspirin" and "Bufferin" are both trade names for 
the generic name "aspirin." 

dose/form a combination of two dimensions usually specified together.  Dose is the 
quantity (e.g., 50 mg) of active ingredient in one unit (e.g., a tablet), and "form" 
(short for "dosage form" or "formulation") is the physical unit or medium, often 
including route of administration information (e.g., oral tablet, oral liquid). 

combo products more than one active ingredient specified by generic name; e.g., aspirin + caffeine 
manufacturer company that manufactures the product; e.g., Merck. 
manuf. code 
name 

e.g., L-644,128 and MK-733, Merck code names for the compound that 
eventually became simvastatin (Zocor). 

ph
ar

m
ac

y 

approval info. lumps several different dimensions since approval can apply to name, 
indication, usage, marketing, and country/agency, and it can have temporal 
boundaries. 

chemical name one of (usually) many ways to express a chemical name for the same 
compound; standards include CAS (Chemical Abstracts Service) and IUPAC 
(International Union of Pure and Applied Chemistry); e.g., simvastatin's CAS 
name is "[1S-[1(alpha),3(alpha),7(beta),8(beta)(2S*,4S*), 8a(beta)]]-2,2-
dimethylbutanoic acid 1,2,3,7,8,8a-hexahydro-3,7-dimethyl-8-[2-(tetrahydro-4-
hydroxy-6-oxo-2H-pyran-2-yl)ethyl]-1-naphthalenyl ester." 

CAS# the Chemical Abstracts Service number uniquely assigned to the generic name; 
e.g., 79902-63-9. 

structure graphic 2D or virtual 3D representation of the spatial arrangement of atoms and bonds 
in a molecule. 

empirical formula shows the number of atoms of each element in a compound; e.g., C28H38O5 
InChI IUPAC Chemical Identifier; enables coding of structures as ASCII text without 

graphics or arbitrary chemical names. 
SMILES Simplified Molecular Input Line Entry Specification; another way to code 

structures as ASCII text. 
similar structures other chemical compounds with similar structure based a matching algorithm 

involving atomic composition, 3D bond structure, polarity, etc. 
H bond donors 
H bond acceptors 
molecular weight 
solubility 

Lipinsky's Rule of Five is a rule of thumb in drug development.  It posits that, 
for reasons of absorption, distribution, metabolism, and excretion (ADME), a 
good drug candidate compound must have not more than 5 hydrogen (H) bond 
donors, not more than 10 H bond acceptors, molecular weight under 500 
daltons, and good aqueous solubility (octanol-water partition coefficient log P 
of less than 5).  The name comes from the recurrence of multiples of 5. 

chem. superclass typically a substructure; e.g., Valium (diazepam; 7-chloro-1,3-dihydro-1-
methyl-5-phenyl-2H-1,4-benzodiazepin-2-one) is a benzodiazepine. 

physical descr. e.g., "white crystalline powder at room temperature." 
melting point temperature at which the pure substance melts, determination of which is a 

common initial method of chemical identification. 
pKa acid dissociation constant, a measure of a compound's acidity. 
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other chemistry includes other identification information, synthesis recipes, references, … 
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Table 10.  Dimensions of drug information definitions (continued). 
 

molecular target primary endogenous site of action of a drug, usually a macromolecule it binds to 
and inhibits or stimulates, such as an enzyme, receptor, or gene. 

mech. of action how the drug works; e.g., by inhibiting the enzyme HMG-CoA reductase, 
simvastatin reduces liver production of cholesterol which lowers blood 
cholesterol and thereby reduces cardiovascular risk.  These various levels may 
overlap the molecular target, biological effect, anatomy, pathway, and/or 
therapeutic class dimensions, and/or be inferable from one of their ontologies 
such as WHO-ATC. 

biological effect the more macroscopic end of the mechanism of action continuum; e.g., "lowers 
blood cholesterol." 

metabolism macroscopic site (liver, etc.)  and molecular pathway information (enzymes, 
derivatives, …) about chemical transformation of the drug in body. 

other ADME other absorption, distribution, metabolism, and excretion (ADME) info 
toxicity doses and interactions that are toxic, and in what way. 
anatomy macroscopic or organ system site of action of the drug; e.g., "dermatological" 

(skin). 
bioassay bio-identification and -quantitation methods and criteria. 

bi
ol

og
y 

pathways metabolic pathways in which the drug's molecular target are involved; often 
useful for linking the pharmacology of two drugs with different targets. 

therapeutic class what the drug does, often expressed in anatomic or indication terms, and 
sometimes chemical; e.g., Valium (diazepam) is a neuropharmacologic agent, 
an anxiolytic, and a benzodiazepine.  See also mechanism of action. 

indication disease or other medical reason for taking the drug; an important subtype is 
approved indications.  Often semantically equivalent to therapeutic class; e.g., 
aspirin is an analgesic, meaning it's indicated for pain. 

contraindication disease or other medical reason for not taking the drug; "pregnancy" is a 
common one. 

side 
eff/prec/warn 

side effects, precautions, and warnings are distinguished on package inserts and 
should probably be considered separate dimensions. 

drug interactions drug effects, usually undesired, resulting from taking two or more drugs 
concurrently. 

patient info "Information for Patients" appears to be a mandated package insert section with 
the five foregoing clinical dimensions populated with information in lay 
language. 

research lit. research literature references behind the other clinical assertions. 

cl
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experimental 
app's 

potential, not-yet-approved indications and other uses; e.g., use of taxol (an 
approved antineoplastic) to inhibit microtubule formation in cell biology 
experiments. 
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4.1.2  Experimental database.  The experimental database described in the Methods 

section may be downloaded here http://comminfo.rutgers.edu/~msharp/XKB/DB6.xls .  Without 

separator lines and headings, the database contains 17,901 rows, meaning each of the 15 

compounds is represented by approximately 1,200 rows of data on average.  The database schema 

and some examples are displayed in a more legible way in Table 5 and Table 6 as discussed in 

Methods.  The set of 550 normalized dimensions we found by this method are given by the 

unique values in column O of the database.35  Excluded from further Q1 analysis were 

dimensions representing unparsed links and summaries, database IDs and cross-references, 

compound dimensions (e.g., generic name + unit dose + dosage form), and information for the 

patient subtypes.36  The remaining 375 are shown in Appendix G as a six-level hierarchy, with 

the four domains (pharmacy, chemistry, biology, clinical) comprising the top level.  The second 

level contains 54 dimensions comparable to the 39 found in the initial study (Table 12).  The 

biology domain, despite covering only 17% of the database rows, accounts for 42% of the unique 

dimensions, including almost all of the fifth and sixth level splitting (Table 13).  This is primarily 

due to the tabular toxicity data in ChemIDplus, which includes route and species subdimensions, 

the numerous subtypes of ADME measures mentioned in the DailyMed "Pharmacokinetics" and 

"Pharmacodynamics" sections, and the various parameters associated with drug metabolizing 

enzymes in DrugBank.  At the opposite extreme, the clinical top-level dimension accounts for 

35% of the data but only 14% of the dimensions. 

   
                                                 
35 Extracted by copying column O to a scratch worksheet, sorting, and removing duplicate values.  The 
duplicate removal method was: For a sorted list in column A starting on row 1, enter "0" into cell B1 and 
"=if(A2=A1,1,0)" into B2.  Then copy B2 into all B cells down to the end of the A values.  Then copy all 
the B values, right-click B1, and "Paste Special > Values".  Then sort both columns on B and delete all 
rows with "1" in B. 
36 These excluded dimensions were identified by the Excel function "=search(X,A#)" in an adjacent 
column, where X is a substring of the value in cell A# (for example, " ID"), or by visual scanning.  The 
coding and number of unique dimensions excluded were: unparsed links and summaries: REF/LINK, 11; 
database IDs and cross-references: ID, 85; compound dimensions: COMPOUND, 77; and information for 
the patient: INFO, 4.  The list is included on the "dimensions" sheet of the database.  After their removal, 
two dimensions had to be added to the working list because they were only represented in compound 
dimensions in the data. 
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Table 12.  Dimensions found in experimental database - 2-level hierarchy. 
Red signifies coverage at a lower hierarchical level; e.g., pharmacy - generic name - combination product. 
Blue signifies results shown in the database but not in Appendix G. 
 

Experimental database results (Appendix G) Initial results  
(Table 9, Table 10) Equivalent to initial results New 2nd level dimensions 

 generic names pharmacy - generic name pharmacy - administration 
trade names pharmacy - trade name pharmacy - DEA schedule 
dose/form pharmacy - dose  

pharmacy - dosage form 
pharmacy - drug type 

combo products pharmacy - generic name pharmacy - generic availability 
manufacturer pharmacy - approval info pharmacy - herbal source biology 
manuf. code name pharmacy - manufacturer code pharmacy - inactive ingredient 
approval info. pharmacy - approval info pharmacy - lexical class 
   pharmacy - packaging 
   pharmacy - product type 
   pharmacy - storage conditions 

ph
ar

m
ac

y 

   pharmacy - unit appearance 
molecular target biology - molecular target biology - organism affected 
mech. of action biology - mechanism of action  
biological effect biology - biological effect  
metabolism biology - ADME  
other ADME biology - ADME  
toxicity biology - toxicity  
anatomy clinical - therapeutic class  
bioassay   

bi
ol

og
y 

pathways biology - pathway  
chemical name chemistry - chemical name chemistry - atmospheric OH rate 

constant 
CAS# chemistry - CAS number chemistry - charge 
structure graphic chemistry - formula chemistry - chemical class 
empirical formula chemistry - formula chemistry - chemical complexity 
InChI chemistry - formula chemistry - chemical type 
SMILES chemistry - formula chemistry - covalently bonded unit 

count 
similar structures chemistry - formula chemistry - heavy atom count 
H bond donors chemistry - Lipinski chemistry - Henry's law constant 
H bond acceptors chemistry - Lipinski chemistry - isoelectric point 
molecular weight chemistry - Lipinski chemistry - isotope atom count 
solubility chemistry - solubility chemistry - polarity 
chem. superclass chemistry - chemical superclass chemistry - related chemical 
physical descr. chemistry - physical properties chemistry - rotatable bond count 
melting point chemistry - physical properties chemistry - stereocenter count 
pKa chemistry - pKa chemistry - tautomer count 

ch
em

is
try

 

other chemistry  chemistry - vapor pressure 
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Table 12.  Dimensions found in experimental database - 2-level hierarchy (continued). 
Red signifies coverage at a lower hierarchical level; e.g., clinical - precaution - contraindication. 
Blue signifies results shown in the database but not in Appendix G. 
 

Experimental database results (Appendix G) Initial results  
(Table 9, Table 10) Equivalent to initial results New 2nd level dimensions 

therapeutic class clinical - therapeutic class clinical - clinical trial comparison 
therapy 

indication clinical - indication clinical - clinical trial co-therapy 
contraindication clinical - precaution clinical - lab test 
side eff/prec/warn clinical - precaution clinical - storage conditions 
drug interactions clinical - precaution  
patient info clinical - info for patients  
research lit.   

cl
in

ic
al

 

experimental app's clinical - indication  
 
 
Table 13.  Distribution of data and dimensions by top term and hierarchical level. 
 

domain data  
rows 

unique dimensions at hierarchical level = 

  2 3 4 5 6 total 
biology 3079 7 41 42 54 13 157 
chemistry 1910 17 23 20 0 0 60 
clinical 6208 6 34 10 2 0 52 
pharmacy 6705 15 55 29 6 0 105 

total 17902 45 153 101 62 13 374 
        
        
biology 17% 16% 27% 42% 87% 100% 42% 
chemistry 11% 38% 15% 20% 0% 0% 16% 
clinical 35% 13% 22% 10% 3% 0% 14% 
pharmacy 37% 33% 36% 29% 10% 0% 28% 

 

4.2  Q2: Do Dimensions Lead to Valid Groupings of Resources? 

4.2.1  Face validity.  Table 14 illustrates a computationally simple extension of the 

domain classification from the dimensions to the resources.  It can be seen that the lexical test 

described in the Methods section (ChEBI, PubChem, and ChemIDplus being classified under 

chemistry) is passed.  One might also interpret the trend toward equitable all-domain coverage 

(no domain >50%) by the richest (highest number of dimensions and/or database records)  
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Table 14.  Classifying resources by domains. 
Table 9 data.  The percentages represent how many of the dimensions covered by the source ("# 
dimensions") were grouped by each domain.  Sources have been sorted and color-coded to highlight their 
predominate domain. 
 

source # dimensions pharmacy chemistry biology clinical 
RXNORM 3 100%       
Drugs@FDA 5 100%       
WHO-DRUG 4.5 56%   22%   22% 
DrugInfo 4 50% 25%   25% 
USP Dictionary 9 44% 44%   11% 
MeSH all 7 43% 43%   14% 
INN 3   100%     
Int'l Pharm. 11   91%   9% 
ChEBI 11 9% 82%   9% 
HumanCyc 5   80% 20%   
PubChem 17 18% 71% 6% 6% 
ChemIDplus 15 20% 67% 7% 7% 
KEGG DRUG 9.5 16% 63% 11% 11% 
USAN via AMA 9.5 32% 53%   16% 
MeSH MH 6 33% 50%   17% 
DrugBank 29.5 12% 44% 20% 24% 
Reactome 4 13% 25% 63%   
WHO-ATC 6 25% 17% 42% 17% 
MedMaster 7 29%     71% 
DrugDigest 8.5 29%     71% 
ClinicalTrials. gov 5 40%     60% 
DailyMed 21 19% 24% 24% 33% 
UMLS 17.5 23% 17% 29% 31% 

 
 
"all-purpose" resources (DrugBank, WHO-ATC, DailyMed, and UMLS) as being a kind of 

validation.  On the other hand, RXNORM's 100% pharmacy classification is inconsistent with 

Liu et al.'s (2005) claim of utility for "health care personnel including prescribing physicians and 

nurses" which would seem to correspond better to our clinical domain. 

4.2.2  Correspondence analysis.  In the correspondence analysis, the first two principal 

axes accounted only for about 30% of the total inertia, which means that some points may not 

have been correctly represented with respect to these two axes.  Regardless of the particular 

weighting schemes used, there was a consistent distinction between clinical and chemistry 

domain-classified dimensions (i.e., sources tending to cover clinical dimensions tended not to 

also cover chemistry dimensions), while the pharmacy and biology were more diffuse (i.e., they 
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lacked discriminating power).  In a joint plot (Figure 9), chemistry-oriented sources (e.g., ChEBI) 

can be seen polarized to the right and clinical-oriented sources (e.g., MedMaster) to the left.  

Sources tending to cover all four domains (e.g., DrugBank and WHO-DRUG) are not effectively 

categorized, and therefore tend toward the center.  Similarly, the therapeutic class dimension is 

close to the center because it tends to be covered by the resources we examined regardless of their 

domain leanings; this might be interpreted as suggesting that therapeutic class is important in all 

four domains. 
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Figure 9.  Correspondence analysis between drug information sources and dimensions. 
 
 
 

4.2.3  Cluster analysis. 

4.2.3.1  Initial resource survey.  To test our four-domain classification of the dimensions 

and resources (Table 9, Table 14), the Table 9 matrix was subjected to hierarchical cluster 

analysis (Norusis, 2005).  Table 9 was converted to a SPSS dataset with the sources constituting 

the cases, the dimensions constituting the variables, and scores of 1 (●), 0.5 (±), or 0 (blank). The 

resulting dendrograms are shown in Figure 10 and Figure 11. 
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Figure 10.  Cluster analysis of initial survey dimensions. 
Nominal (Table 9) domain classifications are indicated by the leading letter: B biology, C 
chemistry, K clinical, P pharmacy. 

K.sideff/prec/warn 
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Figure 11.  Cluster analysis of initial survey resources. 
Nominal (Table 14) domain classifications are indicated by the leading letter: B biology, C 
chemistry, K clinical, P pharmacy. 

 
 

 In Figure 10, at a source co-occurrence similarity distance of five or less, the top cluster - 

other ADME, research literature, mechanism of action, biological effect, molecular target, 

metabolism - corresponds closely (5/9) to the biology domain dimensions of Table 9.  A second 

such cluster - contraindication, drug interaction, patient info, side effect/precaution/warning, and 

indication - includes 5/8 of Table 9's clinical dimensions.  Both of these clusters coalesce in a 

super-cluster at similarity distance seven which also includes two more clinical dimensions - 

experimental applications and research literature.  The eighth clinical dimension - therapeutic 

C.USAN 13 
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class - does not strongly cluster with any other dimension, supporting the correspondence 

analysis' implication that it is important to all four domains.  The next two clusters at distance 

seven coalesce into a super-cluster at distance eight which contains 10/16 of Table 9's chemistry 

dimensions, along with three biology dimensions (bioassay, pathways, and toxicity) and one 

pharmacy dimension (approval info).  Another small cluster at distance eight contains three more 

chemistry dimensions.  Of the four domain-dimension groupings hypothesized in Table 9, only 

pharmacy failed to be supported by this analysis. 

 In Figure 11, four source clusters may be distinguished at a dimension co-occurrence 

similarity distance of nine or less.  The first one includes MeSH, USP Dictionary, USAN, INN, 

and HumanCyc, a mixture of pharmacy and chemistry resources according to Table 14.  The 

second includes ChEBI, KEGG DRUG, and Int.Pharm., all nominal chemistry resources.  The 

third includes MedMaster, DrugDigest, RXNORM, Drugs@FDA, DrugInfo, WHO-DRUG, 

WHO-ATC, ClinicalTrials.gov, and Reactome, a mixture of pharmacy, biology, and clinical.  

The fourth includes PubChem and ChemIDplus, both chemistry.  The close similarity (distance of 

three or less) of MeSH MH and MeSH all, USP and USAN, MedMaster and DrugDigest, 

RXNORM and Drugs@FDA, and WHODRUG and WHO-ATC, is consistent with each pair's 

organizational overlap, scope, and/or mission.  PubChem and ChemIDplus also form a sensible 

cluster, albeit at distance seven.  The close clustering of INN and HumanCyc, and DrugInfo and 

WHODRUG, is more perplexing.  The nonclustering resources - UMLS, DailyMed, and 

DrugBank - are distinguished in Table 14 by their high number of dimensions and lack of a 

dominant (>50%) domain; that is, both analyses support their distinction as "all-purpose" 

resources. 

4.2.3.2  Experimental database.  We also subjected the resource-by-dimension matrix 

implied by the experimental database to hierarchical cluster analysis.  Unlike the (mostly) binary 

(0 or 1) scores of the Table 9 matrix, raw scores in the database matrix are how many times the 

normalized dimension (column O) is represented with a given source (column C) in the same row 
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in the database.37  Cluster analysis was performed on the raw score matrix and also, to correct for 

possible effects of varying resource richness, scores as a percentage of each resource's total 

number of records in the database.  Compound and other dimensions of uncertain semantics were 

eliminated (see Section 4.1.2), leaving a set of 399 similar to the 375 shown in Appendix G, and a 

second level compression of 57 similar to the 54 shown in Table 12. 

The second-level dimension dendrograms are shown in Figure 12.  (With 399 

dimensions, the full six-level dendrograms cannot be legibly displayed on a single page; they are 

roughly the same "shape" as the second-level dendrograms.)  In marked contrast to Figure 10, 

both the raw score and percentage versions show almost all of the 57 second-level dimensions in 

a single, flat, tail-like cluster at the top of the dendrogram, and just a few "outsiders" at the 

bottom, notably indication and precaution.  It is interesting that, in Figure 10, contraindication, 

drug interaction, side effect/precaution/warning, and indication form a tight, purely clinical, 

almost exclusive cluster.  In the experimental database, contraindication, drug interaction, side 

effect, and warning are subsumed as third-level dimensions under precaution.  That is, the 

database cluster analysis result is the opposite of the initial survey result for indication and 

precaution. 

The source dendrograms are shown in Figure 13.  The raw score dendrograms have 

somewhat the same skewed appearance as the dimensions clusters in Figure 12 but it is not as 

extreme.  The nominal (Table 14) biology, chemistry, and pharmacy sources tend to cluster 

tightly in the long "tail" at a distance of two or less, while the nominal clinical sources (and 

DrugBank) tend not to cluster.  The percentage source dendrograms are not so skewed; their 

overall "shape" is more like that of the Table 9 analysis (Figure 11).  The aforementioned 

sensible, pairwise, close clustering of DrugDigest and MedMaster is apparent, but not that of 

RXNORM and Drugs@FDA.  The six-level percentage dendrogram shows the tightest clustering 

                                                 
37 Computed using Excel by sorting on C and O, summing consecutive duplicates, and converting this 3-
column format to a matrix using the Data > Pivot Table function. 
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Figure 12.  Cluster analysis of experimental database dimensions (2-level hierarchy). 
Nominal (Table 12) domain classifications are indicated by the leading letter: B biology, C 
chemistry, K clinical, P pharmacy.  Upper panel: raw scores.  Lower panel: percentage of each 
source's records.  The tops have been cropped for legibility. 
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of nominal chemistry sources.  In all four Figure 13 dendrograms, ClinicalTrials.gov's lack of 

similarity to other sources is strikingly unlike its position in Figure 11, perhaps due to its unusual 

pairing of few dimensions with large row counts in the database. 

4.3  Q3: Can Dimensions Facilitate Integration/OM Tasks? 

4.3.1  Classifying sources.  As stated in Methods, this is basically a usefulness version of 

Q2; i.e., are the classifications implied by the grouping, correspondence, and clustering results for 

Q2 useful as well as valid?  The Table 9 "framework" was judged to be "useful for comparing 

resources" by Sharp, Bodenreider, and Wacholder (2008).  These authors' reporting of the results 

of the correspondence analysis (closely paraphrased above) implies that the framework was 

effective at classifying predominantly chemistry, clinical, and all-four-domain resources, but 

ineffective at classifying predominantly biology and pharmacy resources. 

Cluster analysis of Table 9 supported its hypothetical domain classification of biology, 

chemistry, and clinical dimensions, but not pharmacy.  An exception is therapeutic class, 

nominally a clinical dimension, which does not strongly cluster with any other dimension, 

supporting the notion that it is important to all four domains.  The biology and clinical clusters 

formed a sensible super-cluster corresponding the well-accepted biomedical domain.  Source 

clustering in the Table 9 analysis did not, in general, follow Table 9's (via Table 14) predictions, 

but did confirm, based on our dimensions, six sensible pairs - MeSH MH and MeSH all, USP and 

USAN, MedMaster and DrugDigest, RXNORM and Drugs@FDA, WHODRUG and WHO-

ATC, and PubChem and ChemIDplus - consistent with each pair's organizational overlap, scope, 

and/or mission.  The nonclustering resources - UMLS, DailyMed, and DrugBank - are 

distinguished by their high number of dimensions and lack of a dominant (>50%) domain; that is, 

cluster analysis supports their distinction as "all-purpose" resources. 

4.3.2  Selecting sources appropriate to a given information need.  Using the Table 9 

matrix as described in Methods to select the best resources to satisfy the general indications usage 

scenario, we identified UMLS (7), DrugBank (6), DailyMed (5), WHO-ATC (3.5), and 
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ClinicalTrials.gov (3) as having the highest scores and thereby being the best candidates to satisfy 

the user's information need.  This result was judged to have "demonstrated that this framework is 

useful for … selecting sources most relevant to a given use case" by Sharp et al. (2008). 

4.3.3  Pooling data from different sources. 

4.3.3.1  Data reduction.  We expected that the number of unique raw representations 

would always be greater than the number of unique corresponding normalized representations 

within any cross-section of the database, and that the size of this difference would be a good 

measure of the effectiveness of our method at integrating the data.  However, because diverse raw 

data formats (terms, relations, items in a list, whole paragraphs, etc.) were loaded into the 

spreadsheet the same way, there is an antagonism between conflation of short strings representing 

a single concept (which lowers the ratio of unique normalized to unnormalized representations), 

versus parsing of longer strings into multiple dimension-value pairs (which raises the ratio). 

 Our observed ratios of unique normalized to unnormalized representations, expressed as 

percentages, are shown in Table 15.  Overall, the number of unique normalized drug-dimension-

value "triples" is 70% of the number of unique raw triples.  Thus overall data reduction was 

achieved, even by this conflicted measure.  Individual sources varied from a high of 234% (i.e., 

2.34 times as many unique normalized triples as unique raw triples) for MedMaster to 72% for 

UMLS, basically reflecting a gradient of low-to-high raw dimensionality and high-to-low free-

text formatting.  (That is, MedMaster has few raw dimensions and lots of free text, while UMLS 

has many raw dimensions and little free text.)  The 50% score for DailyMed, which has lots of 

free text, appears to contradict this pattern, but is suspect due to internal and practical 

inconsistencies (not all values were thoroughly parsed and normalized).  Note that the 70% 

overall figure relative to the 72%-234% range suggests that single-concept normalization across 

sources would have been more dramatically illustrated by this measure without the antagonistic 

parsing artifact. 
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 When one focuses on the three parts of the triples individually, for the drug part the 

overall figure is 12% and the range is 22%-117%, basically reflecting how closely each source 

adheres to standard generic drug naming conventions for defining a set of related drug 

information.  The outliers are PubChem (117%) which has more of a chemical compound view, 

and DailyMed (22%) which has a commercial product view.  The overall dimension figure is 

71% and the range is 54%-900%, basically reflecting a gradient of high-to-low raw 

dimensionality and low-to-high free text.  The exceptions to this pattern are WHO-ATC (75%) 

which has only 8 dimensions but they are not well differentiated by their values' semantic types, 

and PubChem (358%) which has many well-differentiated chemistry dimensions but also some 

free text and undifferentiated "synonym" lists.  The overall value figure is 76% and the range is 

69%-181%.  All but three sources fell within 88%-108%, suggesting that their value terminology 

is at least internally consistent.  The three exceptions are: ClinicalTrials.gov (69%) and DailyMed 

(76%), reflecting the diverse authorship of their free text content (study titles in the case of 

ClinicalTrials.gov); and MedMaster at 181% . 

The raw primary drug names tend to be terms, index entries, web page titles, and the like, 

and so are not as vulnerable to the antagonistic parsing artifact as triples, dimensions, or values.  

Hence 12% is probably a better estimate than 70, 71%, or 76% for the degree of single-concept 

normalization across sources we achieved. 

Additional data reduction of the dimensions was achieved by hierarchical aggregation 

(Figure 14 top).  At the second hierarchical level (Table 12), the overall normalization ratio is 

22%.  Except for the outliers DrugInfo and ClinicalTrials.gov, which have only three 

unnormalized dimensions each, the most dramatic single-source hierarchical effect is seen on 

ChemIDplus, apparently due to the fifth and sixth level chemistry and toxicology splitting 

mentioned earlier.  However, the same hierarchical aggregation does not lead to significant data 

reduction of the drug-dimension-value triples by this measure (Figure 14 bottom). 
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Case-specific examples of data reduction are perhaps more indicative of the effectiveness 

of our integration method.  These will be given in the use case results below. 

Table 15.  Data reduction in the experimental database. 
The unique normalized dimensions were taken from the fourth hierarchical level for comparability across 
sources (cf. Figure 14 and Appendix G).  Unlike Appendix G, these calculations did not exclude data 
representing unparsed links and summaries, database IDs and cross-references, compound dimensions, or 
information for the patient subtypes. 
 

drug-dimension-value 
triples 

drug source 

unnorm norm % n/u 

source 

unnorm norm % n/u 
ALL 12421 8671 70% ALL 123 15 12% 
MedMaster 301 705 234% PubChem 12 14 117% 
DrugDigest 639 795 124% ChEBI 11 11 100% 
ChemIDplus 618 694 112% ClinicalTrials.gov 9 9 100% 
DrugInfo 268 280 104% DrugBank 8 8 100% 
MeSH 280 290 104% KEGG DRUG 12 12 100% 
PubChem 1105 1115 101% MedMaster 9 9 100% 
ChEBI 274 271 99% MeSH 9 9 100% 
DrugBank 1988 1860 94% UMLS 16 15 94% 
RXNORM 296 273 92% DrugInfo 15 14 93% 
KEGG DRUG 406 357 88% WHO-ATC 9 8 89% 
WHO-ATC 80 66 83% ChemIDplus 16 14 88% 
ClinicalTrials.gov 884 713 81% DrugDigest 16 11 69% 
Drugs@FDA 428 318 74% RXNORM 21 10 48% 
UMLS 1442 1033 72% Drugs@FDA 25 9 36% 
DailyMed 3425 1717 50%  DailyMed 36 8 22% 

 
dimension value source 

unnorm norm % n/u 
source 

unnorm norm % n/u 
ALL 690 490 71% ALL 6517 4978 76% 
DrugInfo 3 27 900% MedMaster 231 417 181% 
ClinicalTrials.gov 3 19 633% DrugDigest 322 348 108% 
PubChem 36 129 358% RXNORM 259 259 100% 
ChemIDplus 21 69 329% ChemIDplus 485 484 100% 
RXNORM 11 28 255% MeSH 272 266 98% 
MeSH 17 32 188% DrugInfo 214 206 96% 
KEGG DRUG 21 36 171% DrugBank 980 935 95% 
MedMaster 31 50 161% ChEBI 230 217 94% 
UMLS 58 88 152% Drugs@FDA 248 227 92% 
ChEBI 23 34 148% PubChem 835 761 91% 
DrugDigest 30 43 143% UMLS 819 736 90% 
Drugs@FDA 13 15 115% KEGG DRUG 222 199 90% 
DailyMed 172 150 87% WHO-ATC 43 38 88% 
WHO-ATC 8 6 75% DailyMed 1574 1199 76% 
DrugBank 256 139 54%  ClinicalTrials.gov 820 568 69% 
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Figure 14.  Data reduction in the experimental database by hierarchical aggregation. 
X axis: dimension hierarchical level.  Y axis: percent unique normalized/unnormalized.  Top: dimensions 
alone.  Bottom: drug-dimension-value triples.  Not shown in top are DrugInfo and ClinicalTrials.gov curves 
which are offscale (>600% at level 4) due to having only 3 unnormalized dimensions each.  The <ref> 
point in the bottom is to force comparable Y axis ranges.  For terminological representation of the 
dimension hierarchy see Appendix G (all levels) and Table 12 (level 1-2). 
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4.3.3.2  Automatic normalization of additional raw data.  The table of probabilities of 

dimension normalization based on source, unnormalized dimension, and value clues can be 

viewed at http://comminfo.rutgers.edu/~msharp/XKB/dimension_prediction.xls .  The "table" 

sheet has 1679 rows (not counting the headers in row 1) and 10 columns derived from the 

experimental database columns as follows: 

A. source (C) 

B. raw dimension (F) 

C. value-dimension clue (L) 

D. normalized dimension (O) 

E. fraction (probability) of A,B (C,F) pairs associated with D (O), p(C,F O) 

F. fraction (probability) of A,B,C (C,F,L) triples associated with D (O), p(C,F,L O) 

G. fraction (probability) of A,B (C,F) pairs associated with hierarchically aggregated D 

(Ohier), p(C,F Ohier) 

H. hierarchical level of aggregation used for G 

I. fraction (probability) of A,B (C,F) pairs associated with another hierarchically 

aggregated D (Ohier), p(C,F Ohier) 

J. hierarchical level of aggregation used for I 

The full database content (all columns) corresponding to the "table" sheet is given in the "data" 

sheet, so that examples of the other columns' corresponding content may be viewed. 

 Many of the observed p(C,F O)'s are 1.0, reflecting the preponderance of semantically 

well-differentiated raw dimensions in our sources, and their influence on our choice of 

normalized dimensions.  That is, we could not improve upon the semantic differentiation of a raw 

dimension such as "Molecular Weight", so we essentially imported it wholesale (as chemistry - 

molecular weight) and made sure that this normalization was consistent throughout the database.  

At the opposite extreme (low p(C,F O)) are raw dimensions which seem well-specified but 

sometimes contain values belonging to a different dimension.  For example, KEGG DRUG's 
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"Activity" dimension contains 16 values, 15 of which are consistent with clinical - therapeutic 

class (p(C,F O) = .94), but one of which is "Treatment of benign prostatic hyperplasia", clearly 

a clinical - indication - treatment value (p(C,F O) = .06).  In between are general "catch-all" 

raw dimensions such as DailyMed's "Description" or MeSH's "Scope Note" which may contain a 

wide variety of kinds of information about a drug.  Nearly all of these low-to-mid-range 

p(C,F O)'s can be dramatically raised (usually to 1.0) based on clues in the value (e.g., 

"Treatment" in the foregoing example) (p(C,F,L O)).  Alternatively, smaller but useful gains 

can be obtained by dimensional hierarchical aggregation (p(C,F Ohier)). 

 These results could be used to identify a subset of high-precision source-dimension pairs 

for rapid expansion of the experimental database to encompass the corresponding subset of 

information (e.g., molecular weights) for all the drugs covered by our resources.  However, it 

does not seem meaningful to count or average these scores across source-dimension pairs as a 

measure of overall source or dimensional precision because such a measure would not reflect the 

varying relevance of dimensions to use cases, provenance issues, difficulties around parsing, etc. 

 Instead, in Table 16 we present a small sample of these results relating to the clinical - 

indication dimension which has been identified as of special interest by prior research in this area.  

The best precision (as p(C,F O)) for this dimension and its hierarchical sub-dimensions clinical 

- indication - treatment and clinical - indication - treatment - approved was exhibited by 

DrugDigest's "Learn how <this drug> is/are used to treat:"; UMLS's "Other 

Related/may_be_treated_by"; DailyMed's "Indications and Usage"; MedMaster's "Other uses for 

this medicine"; and DrugBank's "Indication" dimensions.  Following these are an assortment of 

nonspecific "catch-all" dimensions such as "Description"38 in the 44-59% range, followed by a 

variety of lower precision source-dimension pairs, the lowest being KEGG DRUG's "Activity" as 

described above.  The best-precision DrugDigest and UMLS dimensions also have the advantage 

                                                 
38 Values for DrugInfo's "Description"; PubChem's "Compound Summary"; MeSH's "Scope Note"; and 
ChemIDplus's "Notes - Note" are the same for any given drug.  DrugBank's "Description" and DrugDigest's 
"What is/are <this drug>?" are independent. 
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of having values in controlled terminological format (i.e., no parsing needed), but UMLS does not 

cover the fourth (approved) hierarchical level.  

 
Table 16.  Probabilities of correct automatic dimension normalization by source. 
This example shows p(C,F O) for the normalized dimension clinical - indication - treatment - approved 
at the three levels of hierarchical aggregation shown, as explained in the text.  Blank cells mean the source 
does not cover those indication subdimensions for any of our sample of drugs. 
 

source raw dimension 
normalized dimension  

hierarchical level 
        2                   3                   4 

  indication treatment approved 
DrugDigest Learn how <this drug> is/are used to treat: 1.00 1.00 1.00 
UMLS Other Related/may_be_treated_by 1.00 1.00  
DailyMed Indications and Usage 1.00 0.68 0.68 
MedMaster Other uses for this medicine 1.00 0.50  
DrugBank Indication 0.93   
DrugInfo Description 0.59 0.35 0.02 
DrugDigest What is/are <this drug>? 0.59 0.46 0.46 
PubChem Compound Summary 0.58 0.40 0.05 
MeSH Scope Note 0.56 0.32  
ChemIDplus Notes - Note 0.54 0.38 0.04 
DrugBank Description 0.44 0.28  
MedMaster Why is this medication prescribed? 0.43 0.39 0.39 
MeSH Note 0.33 0.33 0.11 
MeSH Indexing Information 0.29   
DrugBank Pharmacology 0.23   
MedMaster About your treatment 0.20 0.20 0.20 
DrugDigest Who is this for? - Uses 0.11 0.11  
MedMaster Background 0.08 0.08  
KEGG DRUG Activity 0.06 0.06  

 
 
 However, these data do not take into account the superior provenance of the DailyMed 

information.  Disagreements between the associated DrugDigest, UMLS, and DailyMed values 

(e.g., Table 7 and Table 8) remind us that p(C,F O) is really measuring semantic (as opposed to 

pharmaceutical) precision.  That is, all UMLS values associated with "Other Related/ 

may_be_treated_by" may be valid treatment indications for some drug, but they are not 

necessarily the correct indications for the specific drug at the other end of the triple (Table 7).  

This is not necessarily an indictment of UMLS' data quality; it could simply mean that we erred 

in equating "Other Related/may_be_treated_by" with clinical - indication - treatment.  On the 
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other hand, the low p(C,F O)'s for MedMaster's "Why is this medication prescribed?" (the 

quintessential definition of indication) do not necessarily mean that the approved indications in 

MedMaster are inconsistent with those in DailyMed (this was not investigated), rather that other 

kinds of information can also be extracted from that section of the MedMaster drug pages.  This 

may help to explain the MedMaster's anomalously high ratio of normalized to unnormalized 

drug-dimension-value triples and values (preceding section and Table 15). 

 Although the pattern-matching algorithms used here are primitive compared to true 

natural language processing, this exercise demonstrated the important principle of leveraging 

mechanization to expand the database to a truly practical size for professional drug information 

users.  

4.3.3.3  Satisfying use cases. 

4.3.3.3.1  Health care and related personnel. 

Health Use Case A.  "Find all indications for finasteride." 

 This query translates to {(B) = finasteride; (O) = clinical - indication …}39 which 

retrieved 101 rows40 containing 25 clinical trial IDs (see below) and 21 other unique normalized 

values (Q): alopecia, benign prostatic hyperplasia, chronic central serous chorioretinopathy, 

healthy,41 hematospermia, hematuria, hirsutism, idiopathic hirsutism, infertility, male 

hypogonadism, male pattern alopecia, muscle atrophy, prostate cancer, prostatic disorder, 

prostatic hyperplasia, prostatic hypertrophy, prostatic neoplasm, retinal disease, sarcopenia, 

sexual dysfunction, and transurethral resection of prostate.  The two approved indications - 
                                                 
39 To summarize the relevant Methods discussion, query translation was accomplished by ad hoc manual 
parsing of the natural language query and mapping its components first to the database schema (columns), 
and then to specific values within those columns.  In this case "indications" maps to the normalized 
dimension (column O) value "clinical - indication …" (i.e., any string starting with "clinical - indication ") 
and "finasteride" maps to the normalized generic name (column B) value "finasteride."  Value mappings 
may be accomplished in Excel by sorting/browsing and/or string searching.  See Appendix F for details on 
selected use cases.  The bracketed expression is a shorthand for a search in our database for a boolean AND 
co-occurrence of values on the same row; here "finasteride" in column B and any string starting with 
"clinical - indication" in column O.  See 
Table 5 and Table 6 for column definitions and value examples. 
40 http://comminfo.rutgers.edu/~msharp/XKB/Health_usecaseA.xls  
41 "Healthy" is a ClinicalTrials.gov Condition signifying normal control subjects. 
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benign prostatic hyperplasia and male pattern alopecia - can be identified by their row co-

occurrence with {(O) = clinical - indication - treatment - approved}. 

  Criteria for usefulness 

 1.  Comprehensive coverage.  RXNORM's dimensional coverage maps to ours as 

follows: "Ingredient":generic name; "Brand Name":trade name; "Dose Form":dosage form.42  In 

addition, the equivalent of our unit dose can be mapped to substrings of RXNORM terms; e.g., 

the "100 MG" in "Aspirin 100 MG" (Table 1, Table 2, and Figure 1).  These mappings account 

for RxNorm's coverage of "generic names"; "brand names"; and "dose forms" (Bodenreider & 

Nelson, 2004; Liu et al., 2005; Zeng, Bodenreider, et al., 2006; Zeng et al., 2007).  

"Terminology" roughly corresponds to our pharmacy domain.  "Active ingredients"; "drug 

components"; and "ingredients" appear to be quasi-synonyms for "generic names" and likewise 

"drug forms" for "dose forms."  Only RxNorm's "National Drug Codes (NDCs)" is unequivocally 

not covered by our UMLS-based integration of RXNORM.  In addition, Zeng et al. (2007) 

mention five clinical dimensions mappable to our therapeutic class, indication, drug interaction, 

contraindication, and side effect (see Methods).  Our experimental database covers all these at the 

second or third dimensional hierarchical level, plus  

• 12 additional second-level pharmacy dimensions,  

• 5 additional second-level clinical dimensions,  

• 13 additional third-level clinical - precaution dimensions (along with contraindication, 

drug interaction, and side effect), 

• 7 second-level biology dimensions, 

• 23 second-level chemistry dimensions. 

                                                 
42 We follow RXNORM's convention of including route of administration in dosage form whenever 
possible; e.g., "oral tablet". 
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In addition, our database has hundreds of sub-dimensions representing finer granularity 

classifications, including 88 under the dimensions mappable to RXNORM's and Zeng et al.'s 

(2007) (Appendix G). 

 The resources covered by RXNORM and our database seem to be disjoint (no overlap) 

except, of course, for RXNORM itself, implying that we have 15 times as many resources, but 

this is not relevant to this use case since RXNORM does not cover indications.  If it did, the most 

likely source would be the UMLS/NDFRT may_be_treated_by relations, so our advantage would 

still be 15-to-1 overall, 10-to-1 for indications.  RXNORM's drug coverage is, of course, much 

higher (5592/9 = 621 times) but does not account for all known drugs (Table 11). 

 2.  Literary warrant fidelity.  "Indications" is one of the desired RXNORM enhancements 

named by Zeng et al. (2007).  This paper gives no specific value examples. 

 3.  IR performance.   

  a.  Larger retrieval.  Restricting the retrieval to rows with the substrings 

"finasteride" and "indication" in the raw drug name (D) and dimension (F) columns, as opposed 

to the normalized equivalents (B and O), reduces it from 101 to 8 rows (8%). 

  b.  More robust.  The same (D,F)-based retrieval excludes information from 9 of 

the 10 (B,O)-based retrieval's sources, leaving only DailyMed (10%) and the two approved 

treatment indications (10%).  The linkages to clinical trials are lost.  These results apply to the 

query "Find all indications for finasteride."  For the query "Find all approved [in the U.S.] 

indications for finasteride" DailyMed, DrugDigest, and MedMaster are more competitive with 

our database.  The other sources, including RXNORM and UMLS, would fail completely. 

  c.  More efficient.  Data reduction (reduction in the number of unique strings 

representing the same concept) exhibited by the initial 101 row retrieval was: drug name (B/D) 

1/12 (8%); dimension name (O/F) 6/16 (38%); value (Q/H) 21/48 (44%); drug-dimension-value 

triple 33/54 (61%).  (The value and triple figures do not include the clinical trial IDs.)  The 

number of databases was reduced from 10 to one (10%), implying an even greater reduction in 
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the number of commands, queries, keystrokes, and time.  These results apply to the query "Find 

all indications for finasteride."  For the query "Find all approved [in the U.S.] indications for 

finasteride" MedMaster and DrugDigest remain competitive with our database, but DailyMed 

compares unfavorably due to the need to read the entire free-text "Indications and Usage" 

sections of eight different package inserts retrieved by the query "finasteride".  Data reduction for 

the "approved" query is shown as the retrieval in Table 17. 

 

 
Table 17.  Data reduction in query results for Health Use Case A. 
In all cases the normalized generic name is "finasteride" and the normalized dimension is clinical - 
indication - treatment - approved.  "…" indicates additional free text not shown here. 
 

source un-
normalized 
drug name 

un-
normalized 
dimension 

un-normalized value normalized 
value 

MedMaster Finasteride Why is this 
medication 
prescribed? 

Finasteride (Proscar) is used alone or in 
combination with another medication 
(doxazosin [Cardura]) to treat benign 
prostatic hypertrophy (BPH, enlargement of 
the prostate gland). …. 

benign 
prostatic 
hyperplasia 

MedMaster Finasteride Why is this 
medication 
prescribed? 

… Finasteride (Propecia) is also used to treat 
male pattern hair loss (a common condition 
in which men have gradual thinning of the 
hair on the scalp, leading to a receding 
hairline or balding on the top of the head.) ... 

male 
pattern 
alopecia 

DrugDigest Finasteride 
Tablets 
(Alopecia) 

What is/are 
<this 
drug>? 

FINASTERIDE (fi NAS teer ide) is used to 
treat male pattern baldness in men only. This 
medicine is not for use in women. This 
medicine may be used for other purposes; 
ask your health care provider or pharmacist 
if you have questions. 

male 
pattern 
alopecia 

DrugDigest Finasteride 
Tablets 
(Alopecia) 

Learn how 
<this 
drug> 
is/are used 
to treat: 

Benign Prostatic Hyperplasia (BPH) benign 
prostatic 
hyperplasia 

DrugDigest Finasteride 
Tablets 
(Benign 
Prostatic 
Hyperplasia) 

What is/are 
<this 
drug>? 

FINASTERIDE (fi NAS teer ide) is used to 
treat benign prostatic hyperplasia (BPH) in 
men. This is a condition that causes you to 
have an enlarged prostate…. 

benign 
prostatic 
hyperplasia 

DailyMed Finasteride 
(Finasteride) 
Tablet, Film 
Coated 
[Actavis 
Elizabeth 
LLC.] 

Indications 
and Usage 

Finasteride is indicated for the treatment of 
symptomatic benign prostatic hyperplasia (BPH) 
in men with an enlarged prostate to: -Improve 
symptoms ; -Reduce the risk of the need for 
surgery including transurethral resection of the 
prostate (TURP) and prostatectomy. 

benign 
prostatic 
hyperplasia 
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Table 17.  Data reduction in query results for Health Use Case A (continued). 
 

source un-
normalized 
drug name 

un-
normalized 
dimension 

un-normalized value normalized 
value 

DailyMed Finasteride 
(Finasteride) 
Tablet, Film 
Coated 
[Aurobindo 
Pharma 
Limited] 

Indications 
and Usage 

Finasteride tablets are indicated for the 
treatment of symptomatic benign prostatic 
hyperplasia (BPH) in men with an enlarged 
prostate to: - Improve symptoms - Reduce the 
risk of the need for surgery including 
transurethral resection of the prostate (TURP) 
and prostatectomy. 

benign 
prostatic 
hyperplasia 

DailyMed Finasteride 
(Finasteride) 
Tablet, Film 
Coated [Mylan 
Pharmaceuticals 
Inc.] 

Indications 
and Usage 

Finasteride tablets are indicated for the 
treatment of symptomatic benign prostatic 
hyperplasia (BPH) in men with an enlarged 
prostate to: - Improve symptoms - Reduce the 
risk of the need for surgery including 
transurethral resection of the prostate (TURP) 
and prostatectomy. 

benign 
prostatic 
hyperplasia 

DailyMed Finasteride 
(Finasteride) 
Tablet, Film 
Coated [Teva 
Pharmaceuticals 
USA] 

Indications 
and Usage 

Finasteride tablets are indicated for the 
treatment of symptomatic benign prostatic 
hyperplasia (BPH) in men with an enlarged 
prostate to: - Improve symptoms - Reduce the 
risk of the need for surgery including 
transurethral resection of the prostate (TURP) 
and prostatectomy. 

benign 
prostatic 
hyperplasia 

DailyMed FINASTERIDE 
Tablet, Film 
Coated 
[Dr.Reddy's 
Laboratories 
Limited] 

Indications 
and Usage 

Finasteride 5 mg Tablets, USP are indicated for 
the treatment of symptomatic benign prostatic 
hyperplasia (BPH) in men with an enlarged 
prostate to: Improve symptoms Reduce the risk 
of acute urinary retention Reduce the risk of the 
need for surgery including transurethral 
resection of the prostate (TURP) and 
prostatectomy…. 

benign 
prostatic 
hyperplasia 

DailyMed FINASTERIDE 
Tablet, Film 
Coated 
[Northstar Rx 
LLC] 

Indications 
and Usage 

Finasteride is indicated for the treatment of 
symptomatic benign prostatic hyperplasia 
(BPH) in men with an enlarged prostate to: -
Improve symptoms ; -Reduce the risk of the 
need for surgery including transurethral 
resection of the prostate (TURP) and 
prostatectomy. 

benign 
prostatic 
hyperplasia 

DailyMed Propecia 
(Finasteride) 
Tablet, Film 
Coated [Merck 
& Co., Inc.] 

Indications 
and Usage 

PROPECIA is indicated for the treatment of 
male pattern hair loss (androgenetic alopecia) in 
MEN ONLY. Safety and efficacy were 
demonstrated in men between 18 to 41 years of 
age with mild to moderate hair loss of the vertex 
and anterior mid-scalp area ... 

male 
pattern 
alopecia 

DailyMed Proscar 
(Finasteride) 
Tablet, Film 
Coated [Merck 
& Co., Inc.] 

Indications 
and Usage 

PROSCAR is indicated for the treatment of 
symptomatic benign prostatic hyperplasia 
(BPH) in men with an enlarged prostate to: -
Improve symptons -Reduce the risk of acute 
urinary retention -Reduce the risk of the need 
for surgery including transurethral resection of 
the prostate (TURP) and prostatectomy. ... 

benign 
prostatic 
hyperplasia 
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  Summary of Health Use Case A 

The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized generic name and dimension.  The corresponding 

normalized values (answers to the query) included 25 clinical trial IDs and 21 indications, mostly 

experimental/unapproved.  The two approved indications - benign prostatic hyperplasia and male 

pattern alopecia - could be identified by exploiting the hierarchical details of the normalized 

dimension {(O) = clinical - indication - treatment - approved}.  Our system satisfied the criteria 

for usefulness as follows: more dimensions and resources than the reference system (RXNORM 

and Zeng et al.'s (2007) wish list); fidelity to reference's information need; larger retrieval and 

more resources with normalized than raw value search; and data reduction. 

 

Health Use Case B.  "Find all drugs indicated for benign prostatic hyperplasia." 

This query translates to {(O) = clinical - indication …; (Q) = benign prostatic 

hyperplasia} which retrieved 187 rows 43 containing 10 unique normalized drug names (B): 

doxazosin, doxazosin mesylate, dutasteride, finasteride, prazosin, saw palmetto, tamsulosin, 

tamsulosin hydrochloride, terazosin, and terazosin hydrochloride.  Three of the other five 

normalized drug names in our database (leuprolide, leuprolide acetate, prazosin hydrochloride) 

are not retrieved because, unlike finasteride, their related term "Prostatic Hypertrophy" from 

UMLS/NDFRT (the reason for their inclusion in our database) does not correspond to "benign 

prostatic hyperplasia" in any of our other sources.  The other two (ticlopidine and ticlopidine 

hydrochloride) were included for other reasons.  The dissociation of prazosin and prazosin 

hydrochloride is noteworthy; is it an artifact or due to a rare substantive pharmacological effect of 

hydrochloridation?  Of the ten normalized generic names retrieved, all but saw palmetto are 

approved, and it is for treatment {(O) = clinical - indication - treatment - approved}.  

Interestingly, the saw palmetto hit comes not only from (C) ClinicalTrials.gov, but also 
                                                 
43 http://comminfo.rutgers.edu/~msharp/XKB/Health_usecaseB.xls  
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MedMaster, DrugDigest, DrugInfo, MeSH, PubChem, and ChemIDplus.44  DailyMed.does not 

cover saw palmetto. 

If the intent of "drugs" in the query includes trade names and other types of drug names, a 

few can be inferred from the retrieval's content in the raw drug name column (D): Cardura, 

Avodart, Proscar, Serenoa repens, Permixon, Flomax, and Hytrin.  Many more could be obtained 

by the follow-up whole database query {(O) = pharmacy - trade name …; (B) = [doxazosin, 

doxazosin mesylate, dutasteride, finasteride, prazosin, saw palmetto, tamsulosin, tamsulosin 

hydrochloride, terazosin, terazosin hydrochloride]}.45  Drugs involved in clinical trials involving 

BPH are signified in the retrieval by {(O) = clinical - indication … clinical trial condition}.  

Although the involvement is not necessarily the (B) drug as a BPH treatment, users seeking 

experimental treatment options may wish to pursue these leads.  This task is facilitated by our 

clinical trial ID links in column S which can be used to hyperlink to additional clinical trial 

information on ClinicalTrials.gov; such hyperlinks are of the form 

http://clinicaltrials.gov/ct2/show/NCT00736645 where the bold italics signify an ID.  

  Criteria for usefulness 

 In addition to the relevant subset of the foregoing data on Health Use Case A… 

  a.  Larger retrieval.  Restricting the retrieval to rows with the substrings "benign 

prostatic hyperplasia" and "indication" in the raw value (H) and dimension (F) columns, as 

opposed to the normalized equivalents (Q and O), reduces it from 187 to 28 rows (15%). 

  b.  More robust.  In general (not just for benign prostatic hyperplasia), within our 

resource sample, only ClinicalTrials.gov, DrugDigest, and UMLS enable searching for drugs by 

indication.46  UMLS does not link any drugs to "benign prostatic hyperplasia" (only to "Prostatic 

                                                 
44 DrugInfo, PubChem, and ChemIDplus re-use MeSH's "Scope Note" or "Note" as their "Description", 
"Summary", and "Note". 
45 In this shorthand the semicolon signifies boolean AND and the commas signify boolean OR. 
46 WHO-ATC is self-defined as a therapeutic class classification system, and we have honored that, even 
though some of the classes are quasi-indication dimensions, including "G04C drugs used in benign 
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Hypertrophy").  These results apply to the query "Find all drugs indicated for benign prostatic 

hyperplasia."  For the query "Find all drugs approved [in the U.S.] as indications for benign 

prostatic hyperplasia" only DrugDigest succeeds at all, retrieving 8/10 normalized generic names 

(80%), missing only tamsulosin hydrochloride and terazosin hydrochloride. 

 Restricting the retrieval to rows with the substrings "benign prostatic hyperplasia" and 

"indication" in the raw value (H) and dimension (F) columns, as opposed to the normalized 

equivalents (Q and O), excludes information from 8/10 sources, leaving only DailyMed and 

DrugBank (20%).  However, only three normalized generic names (doxazosin, prazosin, and saw 

palmetto) are lost, leaving the other seven (70%).  The linkages to clinical trials are lost. 

 Like {(O) = pharmacy - trade name …; (B) = […]} for trade names, other follow-up 

queries could select on other dimension-value pairs to, for example, eliminate products with 

certain dosage forms, inactive ingredients, or precautions (side effects, contraindications, 

warnings, drug interactions, food interactions, …).  This type of query will be illustrated in the 

next use case.      

  c.  More efficient.  Data reduction exhibited by the initial 187-row retrieval was: 

drug name (B/D) 10/50 (20%); dimension name (O/F) 7/23 (30%); value (Q/H) 1/95 (1%); drug-

dimension-value triple 31/150 (20%).  The number of databases was reduced from 10 to five 

(50%), implying an even greater reduction in the number of commands, queries, keystrokes, and 

time. 

  Summary of Health Use Case B 

The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized dimension and value.  The corresponding normalized 

generic names (answers to the query) included 10 of the 15 in the database because the sample 

was largely chosen to satisfy this use case based on UMLS/NDFRT's broader category of 

                                                                                                                                                 
prostatic hypertrophy" which can be used to identify dutasteride, finasteride, tamsulosin, and terazosin 
(and, by extension, tamsulosin hydrochloride and terazosin hydrochloride). 
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prostatic hypertrophy.  Three of the other five are not retrieved apparently because they are for 

some other kind of prostatic hypertrophy, and the other two were put into the database for other 

reasons.  A parent/salt dissociation was noted which could have pharmacodynamic implications.  

The only unapproved drug - saw palmetto - could be identified by exploiting the hierarchical 

details of the normalized dimension.  The query could be easily expanded to retrieve associated 

trade names and clinical trials.  Our system satisfied the criteria for usefulness as follows: more 

dimensions and resources than the reference system (RXNORM and Zeng et al.'s (2007) wish 

list); fidelity to reference's information need; larger retrieval and more resources with normalized 

than raw value search; and data reduction. 

 

 Health Use Case C.  "Your patient complains about taking daily Alendronate leuprolide 

doses. Is there an alternative dosage form where frequency of administration < 1/day?" 

 This query translates to two database searches.  The first is {(B) = leuprolide …; (O) = 

pharmacy - administration - frequency} which retrieved two rows.  The corresponding raw drug 

names (D) and normalized values (Q) were {(D) = LUPRON DEPOT (leuprolide acetate) 

injection, powder, lyophilized, for suspension [Abbott Laboratories]; (Q) = 1/month} and {(D) = 

Viadur (leuprolide acetate) [Bayer Pharmaceuticals Corporation]; (Q) = 1/yr}.  The second search 

is {(O) = pharmacy - dosage form; (D) = [LUPRON DEPOT …, Viadur …]} which retrieved 

two rows with the value {(Q) = implant} for both.  That is, the answer is "yes, there is an 

implantable form of leuprolide (acetate) available as a once a month (Lupron Depot) or once a 

year (Viadur) implant." 

 To be sure they are approved for the same indications as other forms of leuprolide, one 

may search on {(B) = leuprolide …; (O) = clinical - indication - treatment - approved}.  The 

resulting values (Q) are central precocious puberty, endometriosis, prostate cancer, and uterine 

fibroids.  {(D) = LUPRON DEPOT…} co-occurs only with endometriosis and uterine fibroids, 

and {(D) = Viadur…} co-occurs only with prostate cancer.  Therefore, if age and gender of the 
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patient in question are known, they can be used to qualify the initial result.  If the patient is a 

child, the indication must be central precocious puberty, so the answer changes to "no or 

unknown."  If the patient is an adult female, the indication must be endometriosis or uterine 

fibroids, therefore "yes, Lupron Depot monthly implant."  If the patient is an adult male, the 

indication must be prostate cancer, therefore "yes, Viadur yearly implant." 

  Criteria for usefulness 

 Health Use Cases C-J are pharmacy use cases (queries) adapted from Kupferberg and 

Jones Hartel (2004) as described in Methods.  This satisfies the literary warrant criterion for 

usefulness for all of them.  These authors ranked the overall performance on these queries of five 

drug information resources but did not present the query results, hence we cannot compare them 

to ours.  Their five resources47 have no overlap with ours.  The specificity of the queries usually 

resulted in much smaller retrievals from our database than for Health Use Cases A-B, making the 

quantitative data reduction results somewhat meaningless.  Therefore we will present our 

observations on usefulness for Health Use Cases C-J in a briefer, less structured way.  Any 

individual source not mentioned may be assumed to fail the use case completely. 

 For Health Use Case C, all our definitive data on Lupron Depot and Viadur came from 

DailyMed.  Unlike our database, it is not possible to search DailyMed by dosage form, frequency 

of administration, or indication.  One would have to read the free-text "Dosage and 

Administration" and "Indications and Usage" sections of all 11 package inserts retrieved by the 

query "leuprolide". 

  Summary of Health Use Case C 

 The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized generic name, dimension, and value.  The corresponding 

raw drug names and values were equivalent to the answer "yes, there is an implantable form of 

                                                 
47 AHFS Drug Information (STAT!Ref); DRUGDEX (Micromedex); eFacts (Drug Facts and 
Comparisons); Lexi-Drugs Online (Lexi-Comp); and the PDR Electronic Library (Micromedex). 
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leuprolide (acetate) available as a once a month (Lupron Depot) or once a year (Viadur) implant."  

The query could be easily expanded to verify that these products are approved for the same 

indications as other forms of leuprolide, leading to the refinement that, if the patient is a child, the 

the answer changes to "no or unknown"; if the patient is an adult female, the answer is "yes, 

Lupron Depot monthly implant"; and if the patient is an adult male, the answer is "yes, Viadur 

yearly implant."  Except for literary warrant, the criteria for usefulness could not be evaluated for 

Health Use Cases C-J because there was no reference system or results.  For Health Use Case C, 

one may consider DailyMed to be the reference system since all our definitive data came from it.  

Dailymed cannot be searched on the relevant dimensions.  Instead the user would have to read the 

free-text "Dosage and Administration" and "Indications and Usage" sections of all 11 package 

inserts retrieved by the query "leuprolide". 

 

 Health Use Case D.  "What condition is Pyridiate {finasteride, dutasteride, doxazosin, 

saw palmetto, …}  used to treat?" 

 Health Use Case E.  "What is Canthaxanthin {finasteride, dutasteride, doxazosin, saw 

palmetto, …} used for? Is it approved for use in the U.S.?" 

 These are essentially the same as Health Use Case A above and so would result in similar 

evidence of usefulness. 

 

 Health Use Case F.  "Is there an interaction between Warfarin and Fluconazole 

{finasteride, dutasteride, doxazosin, saw palmetto, …}?" 

 This query translates to {(O) = clinical - precaution - drug interaction; (Q) = warfarin} 

which retrieved 11 rows containing five normalized drug names (B): saw palmetto, tamsulosin, 

tamsulosin hydrochloride, ticlopidine, and ticlopidine hydrochloride.  That is, the answer is "yes" 

for these five normalized generic names and "no or unknown" for the other 10 in our database.  

Extension of this result to trade and other alternative names could be done via {(O) = pharmacy - 



 

 

100

 

trade name …; (B) = […]} as discussed under Health Use Case B. 

  Criteria for usefulness 

 This result pools information from four sources.  DrugDigest covers 4/5 of the 

normalized generic name hits (80%), MedMaster 3/5 (60%), DrugBank 2/5 (40%), and DailyMed 

1/5 (20%).  Only DrugDigest provides a comprehensive way to search for specific drug 

interactions with efficiency comparable to our database's design principle.  Of course, due to our 

small drug sample, it might be possible to obtain more hits on other sources by searching on (in 

this case) "warfarin".  But for the query "Which anti-BPH drugs interact with warfarin?" all 

would compare unfavorably to our database by our usefulness criteria since DrugDigest's 

indication and drug interaction search features are not integrated. 

  Summary of Health Use Case F 

 The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized dimension and value.  The corresponding normalized 

generic names were equivalent to the answer "yes" for five of them and "no or unknown" for the 

other 10 in our database.  Extension of this result to trade and other alternative names could be 

done as in Health Use Case B.  Our database pooled information from four sources, none of 

which covered all five warfarin interactions by itself, and only one of which permits comparably 

efficient dimension-based searching  

 

 Health Use Case G.  "What is the pediatric dose dosing regimen of Acyclovir 

{finasteride, dutasteride, doxazosin, saw palmetto, …} for chicken pox {BPH, 

hypertension}?" 

 This query translates to {(O) =  pharmacy - dose - dosing regimen …; (Q) = 

[hypertension, benign prostatic hyperplasia]}.  The retrieval includes 18 rows with {(B) = 

doxazosin mesylate; (O) = pharmacy - dose - dosing regimen - indication-specific; (Q) = [1-16 

mg 1/day [hypertension]], 1-8 mg 1/day [benign prostatic hyperplasia]]}.  Each of the two 
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different (Q) values corresponds to the same nine DailyMed package inserts for the product 

names (D) Cardura and eight generic versions of doxazosin mesylate produced by different 

manufacturers.  The same 18 rows account for all the pharmacy - dose - dosing regimen … values 

for doxazosin and doxazosin mesylate in our database.  The other drugs in our database require 

two queries: one to retrieve (B) with {(O) = clinical - indication - … - approved; (Q) = 

[hypertension, benign prostatic hyperplasia]}, and one to retrieve (Q) with {(B) = <first query 

results>; (Q) =  pharmacy - dose - dosing regimen …}. 

  Criteria for usefulness 

 All the {(Q) = pharmacy - dose - dosing regimen …} data in our database comes from 

DailyMed but, unlike our database, it is not possible to search DailyMed by dosing regimen.  One 

would have to first know which drugs to look up (Health Use Case B), then query DailyMed on 

them individually and read the free-text "Dosage and Administration" sections of all package 

inserts retrieved.  For Cardura this would not be burdensome, but for doxazosin it would.  For the 

other drugs in our database there would be the additional problem that it is not possible to search 

DailyMed by indication. 

  Summary of Health Use Case G 

 The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized dimension and value.  The corresponding normalized 

generic name and values were equivalent to the answer (for doxazosin mesylate only) "1-16 mg 

once a day for hypertension and 1-8 mg once a day for benign prostatic hyperplasia."  The other 

drugs in our database require an additional query for indications.  Again using DailyMed as a 

reference system, it is not possible to search DailyMed by dosing regimen.  One would have to 

first know which drugs to look up (Health Use Case B), then query DailyMed on them 

individually and read the free-text "Dosage and Administration" sections of all package inserts 

retrieved.  For all the relevant drugs besides doxazosin mesylate there would be the additional 

problem that it is not possible to search DailyMed by indication. 
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 Health Use Case H.  "A 24-year-old pregnant woman has Trichomonas vaginalis 

alopecia.  Can Metronidazole {finasteride, dutasteride, doxazosin, saw palmetto, …} be safely 

used?" 

 This query translates to two searches, the first to identify drugs indicated for alopecia, the 

second to evaluate their safety for pregnant women.  The first search {(O) = clinical - indication - 

…; (Q) = alopecia} retrieved three rows, one with {(B) = dutasteride; (C) = ClinicalTrials.gov} 

and two with {(B) = finasteride; (C) = UMLS}, thus identifying dutasteride and finasteride as the 

only two relevant drugs in our database.  The string "safely used" does not occur in our database, 

but a health care or pharmacy professional would presumably be able to map this query to our 

dimension contraindication or its higher-level dimension precaution.  Therefore the second 

search is {(B) = [dutasteride, finasteride]; (O) = clinical - precaution - contraindication; (Q) = 

pregnancy}.  It retrieved 28 rows, 8 with {(B) = dutasteride} and 20 with {(B) = finasteride}.  

Thus the answer is "no"; finasteride and dutasteride are both contraindicated for pregnant women, 

which means they cannot be safely used. 

  Criteria for usefulness 

 UMLS is the only one of our sources that covers both the alopecia (as opposed to male 

pattern alopecia) indication and pregnancy contraindication relations of finasteride, but it does not 

cover either one for dutasteride.  ClinicalTrials.gov only covers the alopecia indication for 

dutasteride.  DailyMed, DrugBank, and DrugDigest cover the pregnancy contraindication for both 

drugs but not the alopecia indication.  DrugBank allows the most straightforward lookup by 

generic name and its raw dimension "Contraindications" but this only works for finasteride; for 

dutasteride DrugBank lists pregnancy under "Interactions" instead.  DrugDigest's raw dimension 

that lists pregnancy is consistent for both drugs but its name is even more cryptic: "What should I 

tell my health care providers before I take this medicine?"  DailyMed consistently has this 

information under "Contraindications" but has its usual disadvantage of having to retrieve and 

read multiple package inserts for the same normalized generic name (8 in the case of finasteride).  
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DailyMed, DrugBank, and DrugDigest all require dealing with free text and only DrugDigest 

allows searching by indication (but not contraindication). 

  Summary of Health Use Case H 

 The query translates to two searches, the first to identify drugs indicated for alopecia 

(dutasteride and finasteride), the second to evaluate their safety for pregnant women.  The string 

"safely used" does not occur in our database, but a health care or pharmacy professional would 

presumably be able to map this query to our dimension contraindication or its higher-level 

dimension precaution, producing the answer "no"; finasteride and dutasteride are both 

contraindicated for pregnant women, which means they cannot be safely used.  Our database 

performed this use case more completely and efficiently than any contributing individual source 

(UMLS, ClinicalTrials.gov, DailyMed, DrugBank, or DrugDigest) alone. 

 

 Health Use Case I.  "Is Heparin {finasteride, dutasteride, doxazosin, saw palmetto, …} 

excreted in breast milk?" 

 Searching on "breast milk" throughout the database hit on the unnormalized value (H) 

"Studies in lactating rats given a single oral dose of 1 mg/kg of [2-14C]-CARDURA indicate that 

doxazosin accumulates in rat breast milk with a maximum concentration about 20 times greater 

than the maternal plasma concentration. It is not known whether this drug is excreted in human 

milk. Because many drugs are excreted in human milk, caution should be exercised when 

CARDURA is administered to a nursing mother."  This (H) value corresponded to {(O) = clinical 

- precaution; (Q) = breast feeding}.  The search {(O) = clinical - precaution …; (Q) = breast 

feeding} retrieved 58 rows, 24 with {(O) = clinical - precaution} and 32 with {(O) = clinical - 

precaution - contraindication}.  The combined list of corresponding normalized generic names 

(B) included 14 of the 15 normalized generic names in our database, missing only tamsulosin 

hydrochloride.  
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 Here the user had to do some reading and interpretation of the 58 raw (H) values.  Only 

two, both pointing to prazosin hydrochloride, specifically said that the drug "has been shown to 

be excreted in small amounts in human milk."  Others, like the first search hit, specifically 

affirmed the query for rat breast milk; these pointed to {(B) = [doxazosin mesylate, ticlopidine 

hydrochloride]}.  These and others stated that it is not known whether the drug is excreted in 

human milk.  Others simply advised caution or non-use by breast feeding women.  Any of these 

details could be the intent of the query and so define which of the 15 retrieved normalized generic 

names are true hits.  In any case, our database successfully answered the query in a few minutes. 

 Criteria for usefulness 

 The initial "breast milk" to {(O) = clinical - precaution; (Q) = breast feeding} mapping 

came from DailyMed, as did the specific narrowly affirmative results for prazosin hydrochloride, 

doxazosin mesylate, and ticlopidine hydrochloride.  The remaining data came from DrugDigest 

(12 normalized generic names), MedMaster (6), DailyMed (2), UMLS (2), and DrugBank (1).  

Only UMLS enables searching on "breast feeding" as a contraindication but offers no way to map 

"excreted in breast milk" to it.  DailyMed's contribution  was specifically identifiable as coming 

from its raw sub-dimension (F) "Precautions - Nursing Mothers" but has its usual disadvantage of 

having to deal with free text from multiple package inserts for the same normalized generic name. 

 Data reduction exhibited by the 58-row retrieval was: drug name (B/D) 14/53 (26%); 

dimension name (O/F) 2/10 (20%); value (Q/H) 1/23 (4%); drug-dimension-value triple 20/58 

(34%).  The number of databases was reduced from five to one (20%), implying an even greater 

reduction in the number of commands, queries, keystrokes, and time. 

  Summary of Health Use Case I 

Searching on "breast milk" throughout the database hit on an unnormalized value 

mapping the query to the normalized dimension-value pair precaution-"breast feeding" which 

could be used to retrieve 14 of the 15 normalized generic names in our database.  Then the user 

would have to read and interpret the 58 raw free-text values.  Only two specifically said that the 
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drug has been shown to be excreted in human milk.  Others specifically affirmed the query for rat 

breast milk, others stated that it is not known whether the drug is excreted in human milk, and 

others simply advised caution or non-use by breast feeding women.  Any of these details could be 

the intent of the query and so define which of the 14 retrieved normalized generic names are 

relevant.  Our database performed this use case more completely and efficiently than any 

contributing individual source (DailyMed, DrugDigest, MedMaster, UMLS, or DrugBank) alone. 

 

 Health Use Case J.  "What percentage of patients receiving Methyldopa doxazosin 

mesylate develop a positive Coombs test hypotension?" 

 This query translates to {(O) = clinical - precaution - side effect; (Q) = hypotension} 

which retrieved eight rows, all with {(B) = doxazosin mesylate; (C) = DailyMed; (F) = Adverse 

Reactions; (H) = Hypotension 1.7%* 0.0%}.  Using the hyperlink in column G of any of these 

rows, the user could link to the original DailyMed webpage's Adverse Events section and 

ascertain that the "0.0%" is the corresponding placebo score, the asterisk means "p ≤0.05 for 

treatment differences," and that the data came from clinical trials.48 

 Criteria for usefulness 

 This clinical trial figure of 1.7% does not really answer the query about patients, which 

requires post-marketing surveillance data, but it's the best DailyMed or our database can do for 

the prevalence of hypotension as a side effect of doxazosin mesylate.  DailyMed might well be 

able to answer the same query better for other drugs, but our database cannot since many of the 

long text and table content of the DailyMed package inserts was not loaded and/or normalized 

due to the time/effort burden; these are signified by a blank (Q) value.  Some of these might yield 

results based on string searches in the (H) values (e.g., for "hypotension" and "%"); this was not 

investigated.  DailyMed would also be expected to be more robust than our database for different 

side effects other than hypotension for the same reason. 
                                                 
48 http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=6702#nlm34084-4  
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 Our database, DailyMed, MedMaster, DrugDigest, DrugBank, and to some extent UMLS 

are much better at answering the true/false query "Does drug X have side effect Y?"; Health Use 

Case A-B-like queries "Find side effects for drug X"49 and "Find drugs that exhibit side effect Y"; 

and the latter's negative "Find drugs that do not exhibit side effect Y."  In addition, our database, 

DailyMed, MedMaster, and DrugDigest make some attempt to sub-classify side effects as 

common, rare, major, serious, etc. 

  Summary of Health Use Case J 

 The query could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized generic name, dimension, and value.  The corresponding 

raw values were equivalent to the answer "1.7% of subjects in clinical trials of doxazosin 

mesylate developed hypotension."  This does not really answer the query about patients, which 

requires post-marketing surveillance (rather than clinical trial) data, but it's the best DailyMed or 

our database can do for the prevalence of hypotension as a side effect of doxazosin mesylate.  

DailyMed might well be able to answer the same query better for other drugs and/or different side 

effects.  Our database, DailyMed, MedMaster, DrugDigest, DrugBank, and to some extent UMLS 

are much better at answering the true/false query "Does drug X have side effect Y?"; Health Use 

Case A-B-like queries "Find side effects for drug X" and "Find drugs that exhibit side effect Y"; 

and the latter's negative "Find drugs that do not exhibit side effect Y." 

 

4.3.3.3.2  Pharmaceutical discovery researchers. 

 Research Use Case A.  A cluster of structurally similar compounds targeting the TACR1 

gene product (known to be associated with abnormal pain threshold ) was found that points to the 

WHO-ATC class "antiemetics and antinauseants", suggesting that TACR1 modulation may 

produce antinauseant activity, and/or that there is a possible connection between antinauseant 

activity and abnormal pain threshold (Castle et al., 2007). 
                                                 
49 See Consumer Use Case F below. 
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 Adaptation:  A cluster of structurally similar (quinazoline) compounds targeting the 

TACR1 alpha1 adrenergic receptor gene product (known to be associated with abnormal pain 

threshold 12 unique target biological correlates) was found that points to the WHO-ATC class 

"antiemetics and antinauseants" 127 independent drug biological correlates, suggesting that 

TACR1 alpha1 adrenergic receptor modulation may produce antinauseant activity affect the 

latter, and/or that there is a are possible unknown connections between antinauseant activity and 

abnormal pain threshold among the 12 x 127 pairs. 

 We searched on {(O) = chemistry - chemical superclass} and identified a cluster of 38 

rows with {(Q) = quinazoline} pointing to six normalized generic names (B): doxazosin, 

doxazosin mesylate, prazosin, prazosin hydrochloride, terazosin, and terazosin hydrochloride.50  

A follow-up search {(B) = [doxazosin…, prazosin…, terazosin…]; (O) = biology - molecular 

target} retrieved {(Q) = [alpha1A adrenergic receptor, alpha1B adrenergic receptor, alpha1C 

adrenergic receptor, alpha1D adrenergic receptor]}.  These targets' biological correlates were then 

identified by searching on {(S) = [alpha1A adrenergic receptor, alpha1B adrenergic receptor, 

alpha1C adrenergic receptor, alpha1D adrenergic receptor]; (O) = [biology - molecular target - 

general function, biology - molecular target - specific function, biology - molecular target - GO 

biological process, biology - molecular target - pathway]}, resulting in 12 unique values 51 ( 

Table 18). 

 For the next step, we first reproduced exactly the method of Castle et al. (2007) by using 

{(B) = [doxazosin…, prazosin…, terazosin…]; (O) = clinical - therapeutic class - WHO-ATC 5th 

level code}, resulting in {(Q) = antihypertensives; (B) = [doxazosin…, prazosin…]} and {(Q) = 

drugs used in benign prostatic hypertrophy; (B) = terazosin…}.52  Since both of these are well-

known correlates of alpha1 adrenergic receptor activity, we cast a wider net for drug biological 

                                                 
50 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_cluster.xls  
51 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_bio_target.xls  
52 The actual Q values were C02CA and G04CX; "antihypertensives" and "drugs used in benign prostatic 
hypertrophy" are the decodes. 
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correlates based on {(B) = [doxazosin…, prazosin…, terazosin…]; (O) biology - biological effect, 

biology - mechanism of action, clinical - indication …, clinical - therapeutic class}, resulting in 

127 unique drug biological correlates53 (Table 19).  Thus, our system's "answers" in this use case 

are these 127 hypothetical effects of alpha1 adrenergic receptor modulation, and the 1,524 (=127 

x 12) hypothetical connections between them and Table 18's list of 12 target biological correlates. 

 

 
Table 18.  Target biological correlates for Research Use Cases A and B. 
 

alpha1 adrenergic receptor activity 
carbohydrate transport and metabolism 
cell communication 
cell surface receptor linked signal transduction 
cellular process 
extracellular calcium influx 
G protein coupled receptor protein signaling pathway 
G protein mediated activation of a phosphatidylinositol calcium second messenger system 
G(11) protein mediated activation of a phosphatidylinositol calcium second messenger system 
G(q) protein mediated activation of a phosphatidylinositol calcium second messenger system 
phosphatidylinositol-calcium second messenger system 
signal transduction 

 
 
 

                                                 
53 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_bio_drug.xls  
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Table 19.  Drug biological correlates for Research Use Case A. 
  
acute urinary retention 
adrenergic agent 
adrenergic antagonist 
alcohol craving 
alcohol dependence 
alcoholism 
allergic rhinitis 
alpha adrenergic antagonist 
alpha blocker 
alpha1 adrenergic antagonist 
alpha1 adrenergic contraction 

antagonist 
alpha1 adrenergic pressor  

antagonist 
alpha1A adrenergic 

antagonist 
alpha1B adrenergic 

antagonist 
alpha1D adrenergic 

antagonist 
alpha2A adrenergic 

antagonist 
alpha2B adrenergic 

antagonist 
alpha2C adrenergic 

antagonist 
Alzheimer disease 
Alzheimer disease-related 

agitation 
anti-benign prostatic 

hyperplasia agent 
antidepressant induced 

excessive sweating 
antihypercholesterolemic 

agent 
antihypertensive 
antineoplastic 
anxiety disorder 
arterial vasodilation 
atrial fibrillation 
autonomic dysreflexia 
benign prostatic hyperplasia 
bladder smooth muscle 

relaxation 
bladder sphincter tone 

decrease 
blood pressure decrease 
cardiovascular disease 
cardiovascular disorder 
catecholamine 

vasoconstrictor 
inhibition 

catheter ablation 
chronic heart failure 
chronic hepatitis C 
cirrhosis 
cirrhosis complications 
cocaine abuse 
cocaine craving 
cocaine dependence 
combat disorder 
combat stress symptoms 
complicated hypertension 
congestive heart failure 
coronary heart disease 
diabetes mellitus 
diabetic nephropathy 
erectile dysfunction 
essential hypertension 
falling 
female voiding dysfunction 
fibrosis 
G protein coupled receptor 

ligand 
gastrointestinal hemorrhage 
heart disease 
heart failure 
hepatitis C - chronic 
hypercholesterolemia 
hyperhidrosis 
hypertension 
hypertension - mild 
hypotensive 
hypotensive agent 
insomnia 
kidney failure 
lower urinary tract symptoms 
lowers serum cholesterol 
microvascular angina 
microvascular angina pectoris 
mood disorder 
morning surge 
myocardial infarction 
myocardial ischemia 
nephrolithiasis 
neurogenic bladder 
neurotransmitter agent 
nightmare 
nocturia 
orthostatic hypotension 
overactive bladder 
peripheral adrenergic 

antagonist 
peripheral vasodilation 

peripheral vasodilator 
pheochromocytoma 
platelet aggregation inhibitor 
portal hypertension 
postsynaptic adrenergic 

inhibition 
post-traumatic stress disorder 
post-traumatic stress disorder 

- civilian 
post-traumatic stress disorder 

- combat trauma 
post-traumatic stress disorder 

- noncombat trauma 
prostatic disorder 
prostatic hyperplasia 
prostatic hypertrophy 
psychomotor agitation 
Raynaud disease 
Raynaud syndrome 
resistant hypertension 
rhinitis medicamentosa 
rhodopsin family amine 

receptor ligand 
scorpion envenomation 
sleep disorder 
smooth muscle relaxation 
spinal cord injury 
stress-induced 

cocaine/alcohol craving 
and relapse 

stroke 
supine hypertension in 

autonomic failure 
systemic vascular resistance 

decrease 
tachyphylaxis 
uncontrolled hypertension 
unknown 
untreated hypertension 
ureterolithiasis 
urethral resistance decrease 
urinary obstruction 
urinary retention 
urological agent 
variceal bleeding 
vascular disease 
vascular smooth muscle 

inhibition 
vasodilation 
vasodilator 
venous vasodilation 
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  Criteria for usefulness 

 1.  Comprehensive coverage.   

 Table 20 shows the dimensions covered by our model database that are equivalent to 

those used or mentioned by Castle et al. (2007), Yildirim et al. (2007), Campillos et al. (2008), 

Quan (2007), and Boguski et al. (2009).  Of the composite set of 17 dimensions, our model 

covers 14 (82%) compared to 23-47% by these papers.  Those that our model does not cover are 

etiological vs. palliative drugs (Yildirim et al., 2007) and "group members" (Quan, 2007).  

Conversely, our model covers 46 additional second-level dimensions (4 biology, 4 clinical, 16 

pharmacy, and 22 chemistry; Table 12) and hundreds of sub-dimensions (Appendix G) not 

covered by these papers. 

 Of the nine data resources (other than for drug chemical structure/similarity) used by 

Castle et al. (2007), Yildirim et al. (2007), and Campillos et al. (2008), we used four: DrugBank, 

WHO-ATC, DailyMed, and UMLS.  We did not use Castle et al's custom Merck development 

compound data, Jackson Labs Mammalian Phenotype Ontology, BLAST for target sequence, or 

Matador and PDSP-Ki for targets.  We relied mainly on DrugBank (Yildirim et al. relied 

exclusively on it) for target information, and our diverse-source clinical - indication … data for 

phenotypes.  For drug chemical structure/similarity our database provides 16 sub-dimensions of 

chemistry - formula … (see Appendix G) populated with values from ChemIDplus, ChEBI, 

DailyMed, DrugBank, KEGG DRUG, and PubChem, in contrast to Castle et al's and Campillos et 

al's single highly abstracted measures.  In addition, our database provides 22 other second-level 

chemistry dimensions; biology - ADME, - biological effect, - mechanism of action, and - pathway 

data; and more diverse and robust clinical - therapeutic class … data besides WHO-ATC.  Most 

importantly, we provide the genuine clinical - indication … data (for which all these papers are 

using WHO-ATC as a weak substitute) from diverse resources ranging from strictly approved-

only (DailyMed) to experimental (UMLS; ClinicalTrials.gov), classified that way and by 

treatment vs. prevention. 



 

 

111

Table 20.  Research use cases dimensional coverage. 
Semantically equivalent dimensions across models (row 1) are represented on the same row starting on row 
3.  Row 2 is the number of dimensions in the column. 
 

Our database Castle et al. 
(2007) 

Yildirim et al. 
(2007) 

Campillos et 
al. (2008) 

Quan  
(2007) 

Boguski et 
al. (2009) 

14 8 6 6 4 7 
pharmacy - 
generic name 

drug [names] drug [names] generic names   

  etiological 
drugs 

   

  palliative 
drugs.  

   

chemistry - 
formula - 
structural formula 
OR … 

compound 
structure 

 chemical 
structure. 

  

clinical - 
indication 

disease states diseases indication  indications 

clinical - 
indication 

diseases/ 
phenotypes 

   mechanisms 
of diseases 

clinical - 
indication - … - 
approved 

   primary 
disease 

 

clinical - 
indication [not 
approved] 

   alternative 
diseases 

off-label 
indications 

clinical - 
therapeutic class - 
WHO-ATC 5th 
level code 

drug 
therapeutic 
activity 
classifications 
[WHO-ATC] 

drug 
therapeutic 
classifications 
[WHO-ATC] 

therapeutic 
class [WHO-
ATC] 

  

clinical - 
precaution - side 
effect 

  side effects  adverse side 
effects 

biology - 
molecular target 

<protein 
[target]> 

proteins; drug-
target 
associations 

molecular 
targets 

target  

biology - 
molecular target - 
protein sequence 

protein [target] 
sequence.  

    

biology - 
molecular target - 
gene name 

genes     

biology - 
mechanism of 
action 

    mechanisms 
of drug 
effects/action 

biology - pathway     biological 
pathways 

biology - pathway     molecular 
pathways of 
disease 

    group 
[people] 
members. 

 



 

 

112

 2.  Literary warrant fidelity.  Our {(O) = chemical superclass ; (Q) = quinazoline} cut is a 

weak substitute for Castle et al.'s chemical similarity measure, but this was necessitated by our 

limited chemistry knowledge and our database's small drug sample size, not its dimensional 

coverage.  As stated in the preceding paragraph, our database has numerous alternative chemistry 

data types which could be used by a subject expert to compute chemically similar drug clusters in 

ways more equivalent to Castle et al.'s, given an equivalent drug sample size.  All our other 

adaptations/results are semantically equivalent to Castle et al.'s: "alpha1 adrenergic receptor" to 

"TACR1 gene product"; "antihypertensives" and "drugs used in benign prostatic hypertrophy" to 

"antiemetics and antinauseants"; Table 18's list of 12 target biological correlates to "abnormal 

pain threshold"; and Table 19's list of 127 drug biological correlates to "antinauseant activity." 

 3.  IR performance.   

  a.  Larger retrieval.  Clearly, Table 19's list of 127 hypothetical effects of alpha1 

adrenergic receptor modulation is larger than the single {TACR1:antinauseant activity} 

hypothesis generated in Castle et al.'s example.  Some of these are trivial (e.g., alpha1 adrenergic 

antagonist) or well known (heart disease) but others might be productive (Alzheimer disease; 

spinal cord injury).  Similarly, the same list of 127 drug correlates multiplied by Table 18's list of 

12 target correlates produces 1,524 hypothetical connections, clearly more than the example's 

single {antinauseant activity:abnormal pain threshold}.  Again, some are trivial ({alpha1 

adrenergic antagonist:alpha1 adrenergic receptor activity}) or well known ({diabetes 

mellitus:carbohydrate transport and metabolism}) but others might be productive ({cocaine 

abuse:extracellular calcium influx}). 

  b.  More robust.  Our 12 target correlates, like Castle et al's one, all came from 

data in DrugBank, so it is likely an effect of our expanding the range of fields used from 

DrugBank's equivalent of biology - molecular target - specific function to also include biology - 

molecular target - general function, biology - molecular target - GO biological process, and 

biology - molecular target - pathway.  In contrast, our 127 drug correlates came from 13 of our 
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sources (all but Drugs@FDA and RXNORM).  If all but WHO-ATC are eliminated, the retrieval 

is reduced to 2 (<2%), comparable to Castle et al's one.  If all but WHO-ATC and DrugBank are 

eliminated, this figure is 16 (13%).  That is, even if Castle et al. had exploited DrugBank more 

fully as we did, our more diverse resource collection would still generate six times more 

hypotheses. 

  c.  More efficient.  Data reduction exhibited by the combined target (451 rows) 

and drug (367 rows) correlate retrieval was: drug name (B/D) 6/28 (21%); dimension name (O/F) 

14/41 (34%); value (Q/H) 139/150 (93%); drug-dimension-value triple 348/372 (94%).  (The 

value and triple figures do not include the clinical trial IDs.)  The number of databases was 

reduced from 13 to one (8%), implying an even greater reduction in the number of commands, 

queries, keystrokes, and time.  The 139 normalized values are shown in Table 20 and Table 21. 

  Summary of Research Use Case A 

 The goal here was to combine known drug-function, drug-target, and target-function 

relations to produce a set of hypothetical function-function and novel target-function relations.  

The required queries could be efficiently translated to Excel operations to retrieve the relevant 

database rows based on the normalized generic name, dimension, and value.  Our system's answer 

was the 1,524 hypothetical function-function connections between Table 18 and Table 19 and the 

127 hypothetical target-function relations between the alpha1 adrenergic receptor and Table 19.  

Our system satisfied the criteria for usefulness as follows: more dimensions and resources than 

the reference system; fidelity to reference's information need; larger retrieval and more resources 

with normalized than raw value search; and data reduction.  Most importantly, we provide the 

genuine indication data for which the reference system used WHO-ATC as a weak substitute.  

Our chemical superclass cut is a weak substitute for the reference system's chemical similarity 

measure, but this was necessitated by our limited chemistry knowledge and our database's small 

drug sample size, not its dimensional coverage. 

 



 

 

114

 Research Use Case B.  The WHO-ATC class "cardiovascular system" points to a list of 

cardiovascular drugs whose gene targets map to a smaller list of phenotypes.  The highest ranking 

phenotype is "decreased heart rate" which is consistent with the WHO-ATC class.  This suggests 

that other WHO-ATC drug gene target phenotype mappings might be mined for 

phenotype:disease hypotheses (Castle et al., 2007). 

 The search {(O) = clinical - therapeutic class - WHO-ATC 5th level code; (Q) = C…} 

retrieved {(B) = [doxazosin, doxazosin mesylate, terazosin, terazosin hydrochloride]}.  In our 

first simulation, these drugs' "gene targets" were identified by the search {(B) = [doxazosin…, 

terazosin…]; (O) = biology - molecular target} yielding {(Q) = [alpha1A adrenergic receptor, 

alpha1B adrenergic receptor, alpha1D adrenergic receptor]} and "phenotypes" was replaced by  

Table 18's list of 12 biological correlates of the alpha1 adrenergic receptor. 

 This simulation failed to produce the desired results.  The target biological correlates  

(Table 18) were of a semantic type that might more accurately be called "bioprocesses" rather 

than phenotypes, and so resulted in a set of bioprocess:disease rather than phenotype:disease 

hypotheses (e.g., "heart rate:cardiovascular" rather than "decreased heart rate:cardiovascular").  

Furthermore, all 12 of them had to do with processes which, unlike "decreased heart rate," are not 

specific to the cardiovascular system.54  Therefore we performed a second simulation where 

"gene targets" was removed from the logic and "phenotypes" was replaced by the 74 drug 

biological correlates of doxazosin and terazosin as defined under Research Use Case A (Table 

22). 

                                                 
54 Ten of them have to do with cell-level processes not specific to the cardiovascular system.  One 
(carbohydrate transport and metabolism) is an entirely different body system corresponding to parts of the 
A section of WHO-ATC.  Only the trivial "alpha1 adrenergic receptor activity" maps to the cardiovascular 
section of WHO-ATC, and, unlike "decreased heart rate," it can also be mapped to other body systems, 
even by WHO-ATC's standards (G04 - urologicals … G04CA - alpha-adrenoceptor antagonists; R - 
respiratory system ... R03AA - alpha- and beta-adrenoceptor agonists). 
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 "Disease[s]" were identified by the search {{(B) = [doxazosin…, terazosin…]; (O) = 

clinical - indication …} yielding 42 unique (Q) values (Table 21).55  Interestingly, these 42 

drug:disease correlates also included non-cardiovascular concepts, perhaps suggesting that they 

should not be discounted from the phenotype simulation results, since the goal of generating 

credible hypotheses is not restricted to the cardiovascular system.  For example, Table 21's 

"stroke" matches up credibly with Table 22's "platelet aggregation inhibitor."  If all results are 

considered, the first simulation generated 12 x 42 = 504 bioprocess:disease hypotheses (Table 18 

x Table 21), and the second generated 32 x 42 = 1,344 phenotype-like:disease hypotheses (Table 

22 x Table 21).56  This constitutes our system's "answer" in this use case. 

 Criteria for usefulness 

 1.  Comprehensive coverage.  Same as Research Use Case A. 

 2.  Literary warrant fidelity.  Our database was able to produce a list of cardiovascular 

drugs based on their WHO-ATC classifications and map them to their molecular targets, but it 

does not cover phenotypes per se.  As a substitute for phenotypes, our first simulation used target 

biological correlates to remain as true as possible to the target-based approach of Castle et al.  

However, this simulation failed to produce any matches comparable to their "decreased heart 

rate:cardiovascular" match.  Our second simulation used drug biological (effect, mechanism, and 

pathway) correlates as a substitute for phenotypes.  This produced a set of matches which looked 

more like "decreased heart rate:cardiovascular" but in so doing it strayed from the target-based 

approach of Castle et al. 

                                                 
55 Does not include "<negative>" or clinical trial IDs. 
56 The latter 1,344 = 42 (Table 21) x 32, where 32 = 74 (Table 22) - 42 (Table 21).  That is, since indication 
(Table 21's "disease" substitution) was also one of the drug biological correlates used for "phenotype" 
(Table 22), Table 21 is a subset of Table 22 and the 42 x 42 self pairings in the matrix do not count as 
hypotheses. 
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Table 21.  Drug indications ("disease") for Research Use Case B. 
WHO-ATC body system classification: black: cardiovascular; red: not cardiovascular.  "Kidney failure" 
maps to "C03 diuretics" while "nephrolithiasis" and lower urinary tract concepts map to "G04 urologicals." 
 
acute urinary retention 
essential hypertension 
nephrolithiasis 
antidepressant induced 

excessive sweating 
heart disease 
nocturia 
atrial fibrillation 
heart failure 
overactive bladder 
benign prostatic hyperplasia 
hypercholesterolemia 
prostatic disorder 
cardiovascular disease 
hyperhidrosis 

prostatic hyperplasia 
cardiovascular disorder 
hypertension 
prostatic hypertrophy 
catheter ablation 
hypertension - mild 
resistant hypertension 
cocaine abuse 
kidney failure 
stroke 
cocaine dependence 
lower urinary tract symptoms 
uncontrolled hypertension 
complicated hypertension 
microvascular angina 

untreated hypertension 
coronary heart disease 
microvascular angina pectoris 
ureterolithiasis 
diabetes mellitus 
morning surge 
urinary obstruction 
diabetic nephropathy 
myocardial infarction 
urinary retention 
erectile dysfunction 
myocardial ischemia 
vascular disease 

 
 
 
 3.  IR performance.   

  a.  Larger retrieval.  Castle et al. only report the highest ranking phenotype, so we 

do not know how many phenotypes their method retrieved or what fraction of them were of a 

cardiovascular nature.  Our first simulation retrieved 12 target biological correlates, none of 

which are uniquely cardiovascular (Table 18).  Our second simulation retrieved 74 drug 

biological correlates (Table 22).  Of the latter, 34 are uniquely cardiovascular according to  

WHO-ATC (e.g., cardiovascular disease, heart disease, hypertension), 28 are not cardiovascular 

(e.g., antineoplastic, cocaine abuse, nephrolithiasis), and 12 are cardiovascular and other (e.g., 

adrenergic agent, neurotransmitter agent, smooth muscle relaxation).  Thus our second simulation 

is more competitive with Castle et al.'s phenotype-based approach by this criterion. 

 For the disease axis, our multi-source, indication-based search produced 42 drug:disease 

correlates (Table 21), far more than the Castle et al.'s single cardiovascular [disease], and more 

even than the 20 semantically unique disease or bioprocess terms contained in the 163 WHO- 
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Table 22.  Drug biological correlates ("phenotype") for Research Use Case B. 
WHO-ATC body system classification: black: cardiovascular; red: not cardiovascular; blue: multi-system 
including cardiovascular.  "Kidney failure" maps to "C03 diuretics" while "nephrolithiasis" and lower 
urinary tract concepts map to "G04 urologicals." 
 
acute urinary retention 
cocaine dependence 
overactive bladder 
adrenergic agent 
complicated hypertension 
peripheral adrenergic 

antagonist 
adrenergic antagonist 
coronary heart disease 
perihtpheral vasodilation 
alpha adrenergic antagonist 
diabetes mellitus 
platelet aggregation inhibitor 
alpha blocker 
diabetic nephropathy 
postsynaptic adrenergic 

inhibition 
alpha1 adrenergic antagonist 
erectile dysfunction 
prostatic disorder 
alpha1 adrenergic contraction 

antagonist 
essential hypertension 
prostatic hyperplasia 
alpha1 adrenergic pressor 

antagonist 
heart disease 
prostatic hypertrophy 
alpha1A adrenergic 

antagonist 

heart failure 
resistant hypertension 
anti-benign prostatic 

hyperplasia agent 
hypercholesterolemia 
smooth muscle relaxation 
antidepressant induced 

excessive sweating 
hyperhidrosis 
stroke 
antihypercholesterolemic 

agent 
hypertension 
systemic vascular resistance 

decrease 
antihypertensive 
hypertension - mild 
uncontrolled hypertension 
antineoplastic 
hypotensive 
untreated hypertension 
arterial vasodilation 
kidney failure 
ureterolithiasis 
atrial fibrillation 
lower urinary tract symptoms 
urethral resistance decrease 
benign prostatic hyperplasia 
lowers serum cholesterol 
urinary obstruction 

bladder smooth muscle 
relaxation 

microvascular angina 
urinary retention 
bladder sphincter tone 

decrease 
microvascular angina pectoris 
urological agent 
blood pressure decrease 
morning surge 
vascular disease 
cardiovascular disease 
myocardial infarction 
vascular smooth muscle 

inhibition 
cardiovascular disorder 
myocardial ischemia 
vasodilation 
catecholamine 

vasoconstrictor inhibition 
nephrolithiasis 
vasodilator 
catheter ablation 
neurotransmitter agent 
venous vasodilation 
cocaine abuse 
nocturia 
 

 
 
 

ATC cardiovascular section classes (Table 23).57  If all results are considered, the first simulation 

generated 12 x 42 = 504 bioprocess:disease hypotheses and the second generated 32 x 42 = 1,344 

phenotype-like:disease hypotheses. 

 

                                                 
57 The remaining 143 WHO-ATC "C" classes are of a chemical nature (e.g., "C01AA - digitalis 
glycosides), arbitrary subclasses and combinations (e.g., "C02L - antihypertensives and diuretics in 
combination"), or redundant (e.g., "C02K - other antihypertensives" given "C02 - antihypertensives"). 
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Table 23.  WHO-ATC cardiovascular classes with disease/bioprocess equivalents. 
The remaining 143 WHO-ATC "C" classes are of a chemical nature (e.g., "C01AA - digitalis glycosides), 
arbitrary subclasses and combinations (e.g., "C02L - antihypertensives and diuretics in combination"), or 
redundant (e.g., "C02K - other antihypertensives" given "C02 - antihypertensives"). 
 

WHO-ATC  class equivalent disease/bioprocess 
C - cardiovascular system cardiovascular disease 
C01 - cardiac therapy heart disease 
C01B - antiarrhythmics, class I and III arrhythmia 
C01D - vasodilators used in cardiac diseases vasconstriction 
C02 - antihypertensives hypertension 
C02A - antiadrenergic agents, centrally acting central adrenergic activity 
C02B - antiadrenergic agents, ganglion-blocking ganglionic adrenergic activity 
C02C - antiadrenergic agents, peripherally acting peripheral adrenergic activity 
C02D - arteriolar smooth muscle, agents acting on arteriolar smooth muscle activity 
C03 - diuretics diuresis 
C04 - perpheral vasodilators peripheral vasoconstriction 
C05 - vasoprotectives vascular disease 
C05A - antihemorrhoidals for topical use hemorrhoids 
C05B - antivaricose therapy varicose veins 
C05C - capillary stabilizing agents capillary disease 
C07 - beta blocking agents beta adrenergic activity [vasodilation] 
C08 - calcium channel blockers calcium channel activity 
C09 - agents acting on the renin-angiotensin system renin-angiotensin activity 
C10 - serum lipid reducing agents hyperlipidemia 
C10A - cholesterol and triglyceride reducers hypercholesterolemia / hypertriglyceridemia 

 
 
  b.  More robust.  In our first simulation, the 12 target correlates, like Castle et al's 

phenotypes, all came from a single source, DrugBank in our case, the Mammalian Phenotype 

Ontology in theirs.  In our second simulation, the 74 drug biological correlates came from 13 of 

our sources (all but Drugs@FDA and RXNORM), in contrast to Castle et al's one (the 

Mammalian Phenotype Ontology).  In both simulations, our 42 drug:disease correlates came from 

seven sources (ClinicalTrials.gov, DailyMed, DrugBank, DrugDigest, DrugInfo, MedMaster, and 

UMLS), in contrast to Castle et al's one (WHO-ATC).  Not only was our contributing resource 

collection larger and more diverse, the relevant data are true indication values and thus represent 

a much richer lexicon that is semantically closer to "diseases" than the few WHO-ATC 

therapeutic class values that can be so mapped (e.g., Table 23) 
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  c.  More efficient.  Data reduction exhibited by the Table 21 drug correlate 

("disease") retrieval (207 rows) was: drug name (B/D) 4/11 (36%); dimension name (O/F) 6/9 

(67%); value (Q/H) 42/50 (84%); drug-dimension-value triple 83/65 (128%).  For the Table 22 

drug correlate ("phenotype") retrieval (486 rows) it was: drug name (B/D) 4/20 (20%); dimension 

name (O/F) 9/26 (35%); value (Q/H) 74/86 (86%); drug-dimension-value triple 190/139 (137%).  

That is, in the case of the triples, the normalization effect was swamped out by the antagonistic 

multi-value parsing effect discussed previously.  (The value and triple figures do not include the 

clinical trial IDs.)  The Table 21 retrieval is the indication subset of Table 22's; the difference in 

the drug (B/D) and dimension (O/F) figures reflects the additional non-indication dimensions, 

sources, and source diversity that contributed to Table 22, producing a greater data reduction 

effect of normalization.  The number of databases was reduced from seven to one (14%) and 13 

to one (8%), respectively, implying an even greater reduction in the number of commands, 

queries, keystrokes, and time. 

  Summary of Research Use Case B 

 The goal here was to combine known drug-disease, drug-target, and target-phenotype 

relations to produce a set of hypothetical phenotype-disease relations.  The required queries could 

be efficiently translated to Excel operations to retrieve the relevant database rows based on the 

normalized generic name, dimension, and value.  In our first simulation, our system's answer was 

the 504 disease-phenotype relations between Table 18 and Table 21.  This result was 

unsatisfactory because the Table 18 entities are of a semantic type that might more accurately be 

called bioprocesses rather than phenotypes, and because they are not specific to the 

cardiovascular system.  Therefore we performed a second simulation where targets were removed 

from the logic and drug-phenotype relations were simulated with drug biological correlates, 

producing the 1,344 phenotype-disease connections between Table 22 and Table 21.  Our system 

satisfied the criteria for usefulness as follows: more dimensions and resources than the reference 

system; larger retrieval and more resources with normalized than raw value search; and data 
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reduction.  Fidelity to the reference's information need was compromised by having to substitute 

other semantic types for phenotypes.  On the other hand, we provide the genuine indication data 

for which the reference system used WHO-ATC as a weak substitute. 

 

 Research Use Case C.  Campillos et al. (2008) extracted specific sets of drugs with 

common side effects but different WHO-ATC therapeutic classes, and used the drugs' molecular 

target and chemical structure/similarity values to predict previously unknown shared targets, 

which were tested by in vitro and cell assays.  The validated shared targets predict novel 

hypothetical indications and therapeutic classes for existing drugs.  For example, a set of nervous 

system drugs was found to have side effects in common with the antiulcer drug rabeprazole.  Four 

of their targets were predicted to bind rabeprazole, and two - the dopamine receptor DRD3 and 

the serotonin receptor HTR1D - were validated.  This suggests that rabeprazole may be 

therapeutic for the indications of zolmitriptan (migraine), pergolide (Parkinson's disease), and 

paroxetine and fluoxetine (psychiatric disorders58). 

 Our database was able to support the general query for drugs with common side effects 

but different WHO-ATC therapeutic classes as described in Appendix F.59  The result was all 

nine parent drugs in our database;60 that is, our entire drug sample constitutes such a set of 

drugs.61  Using {(O) = chemistry - chemical superclass} for chemical structure/similarity as in 

Research Use Case A, we identified two drug clusters: {(B) = [finasteride, dutasteride]} and {(B) 

                                                 
58 fluoxetine: depression, obsessive-compulsive disorder, some eating disorders, panic attacks, premenstrual 
dysphoric disorder; paroxetine: depression, panic disorder, social anxiety disorder, obsessive-compulsive 
disorder, generalized anxiety disorder, posttraumatic stress disorder, premenstrual dysphoric disorder. 
Source: MedMaster. 
59 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_SE_TC.xls  
60 All salts were lumped with their parents due to the initial WHO-ATC class cut, hence in this paragraph 
"terazosin" means "terazosin and terazosin hydrochloride"; etc. 
61 Since our entire drug sample was retrieved by the initial common-side-effect-different-therapeutic-class 
query, given that our sample was based on the drugs' common indication (benign prostatic hyperplasia), 
one wonders if that more straightforward dimension (indication) could be effectively substituted for the 
initial drug set selection in Campillos et al.'s method, given a robust database of normalized drug-indication 
relations.  If so, Campillos et al.'s method constitutes evidence supporting our assertion of the latter's 
practical nonexistence. 
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= [prazosin…, terazosin…, doxazosin…]}.62  Following Campillos et al.'s logic, the non-

overlapping {(O) = biology - molecular target; (Q) = …} values for the drugs within each cluster 

constitute hypothetical cross-targets; i.e., the targets of one drug not common to a second drug in 

the same cluster predict previously unknown targets of the second drug.  These hypothetical 

targets were: {(B) = dutasteride; (O) = biology - molecular target; (Q) = [5-beta reductase, 

androgen receptor]} and {(B) = terazosin…; (O) = biology - molecular target; (Q) = alpha1C 

adrenergic receptor}. 

 These targets were then mapped to their existing known drugs' {(O) = [clinical - 

indications …, clinical - therapeutic classes …]} and the non-overlapping (Q) values for 

dutasteride and terazosin identified.  In this way we generated for dutasteride 14 hypothetical new 

indications and 7 hypothetical new therapeutic classes (Table 24), and for terazosin 73 

hypothetical new indications (Table 25) and 14 hypothetical new therapeutic classes (Table 26).  

Narrowing the resource collection to more closely simulate Campillos et al's system (i.e., 

eliminating the ClinicalTrials.gov, ChemIDplus, and KEGG DRUG results) gave two indications 

and five therapeutic classes for dutasteride, and seven indications and five therapeutic classes for 

terazosin. 

 In addition, we tried substituting the targets' biological correlates (as defined under 

Research Use Case A) for Campillos et al.'s target:drug relations for deriving target:indication 

and target:therapeutic class links.  Our small database sample size prevented this approach from 

adding any new results to those given in the preceding paragraph.  Only the androgen receptor 

was identified as a hypothetical new target (for dutasteride), and the only drug its biological 

correlates points to in our database is finasteride.  In addition, these biological correlates (Table 

27) are perhaps too general to be useful for this purpose.  The exception was "HINK3 activation" 

which a cursory Google search linked to Down syndrome.63 

                                                 
62 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_MT_CS.xls  
63 https://www.wikigenes.org/e/gene/e/10114.html  
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Table 24.  Hypothetical new indications and therapeutic classes for dutasteride (Research Use Case 
C). 
Red: resources not used by Campillos et al. (2008). 
 

source dimension value 
UMLS clinical - indication - treatment hirsutism 
UMLS clinical - indication - treatment prostatic neoplasm 
ClinicalTrials.gov clinical - indication - treatment - clinical trial 

condition 
chronic central serous 
chorioretinopathy 

ClinicalTrials.gov clinical - indication - treatment - clinical trial 
condition 

idiopathic hirsutism 

ClinicalTrials.gov clinical - indication - clinical trial condition hematospermia 
ClinicalTrials.gov clinical - indication - clinical trial condition hematuria 
ClinicalTrials.gov clinical - indication - clinical trial condition infertility 
ClinicalTrials.gov clinical - indication - clinical trial condition muscle atrophy 
ClinicalTrials.gov clinical - indication - clinical trial condition prostatic disorder 
ClinicalTrials.gov clinical - indication - clinical trial condition retinal disease 
ClinicalTrials.gov clinical - indication - clinical trial condition sarcopenia 
ClinicalTrials.gov clinical - indication - clinical trial condition sexual dysfunction 
ClinicalTrials.gov clinical - indication - clinical trial condition transurethral resection of 

prostate 
ChemIDplus clinical - therapeutic class alpha reductase inhibitor 
UMLS clinical - therapeutic class androgen antagonist - 

synthetic 
UMLS clinical - therapeutic class antineoplastic 
WHO-ATC clinical - therapeutic class - WHO-ATC 5th 

level code 
D11AX10  
[D11AX other 
dermatologicals] 

DrugBank  
[WHO-ATC] 

clinical - therapeutic class - body system dermatological agent 

ChemIDplus clinical - therapeutic class - body system reproductive agent 
DrugBank clinical - therapeutic class - body system skin and mucous membrane 

agent 
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Table 25.  Hypothetical new indications for terazosin (Research Use Case C). 
MeSH contributions also appear in other NLM sources.  In the lower table, the source is ClinicalTrials.gov 
for all data. 
 

source dimension value 
DrugBank clinical - indication - treatment chronic heart failure 
MedMaster clinical - indication - treatment congestive heart failure 
MeSH clinical - indication - treatment heart failure 
MedMaster clinical - indication - treatment pheochromocytoma 
MedMaster clinical - indication - treatment Raynaud disease 
MeSH clinical - indication - treatment Raynaud syndrome 
DrugBank clinical - indication - treatment urinary obstruction 

 
dimension value 

clinical - indication - treatment - clinical trial condition Alzheimer disease-related agitation 
clinical - indication - treatment - clinical trial condition cardiovascular disorder 
clinical - indication - treatment - clinical trial condition complicated hypertension 
clinical - indication - treatment - clinical trial condition female voiding dysfunction 
clinical - indication - treatment - clinical trial condition post-traumatic stress disorder - 

noncombat trauma 
clinical - indication - treatment - clinical trial condition supine hypertension in autonomic failure 
clinical - indication - treatment - clinical trial condition untreated hypertension 
clinical - indication - clinical trial condition alcohol craving 
clinical - indication - clinical trial condition alcohol dependenceb 
clinical - indication - clinical trial condition alcoholism 
clinical - indication - clinical trial condition allergic rhinitis 
clinical - indication - clinical trial condition Alzheimer disease 
clinical - indication - clinical trial condition anxiety disorder 
clinical - indication - clinical trial condition autonomic dysreflexia 
clinical - indication - clinical trial condition cardiovascular disease 
clinical - indication - clinical trial condition chronic hepatitis C 
clinical - indication - clinical trial condition cirrhosis 
clinical - indication - clinical trial condition cirrhosis complications 
clinical - indication - clinical trial condition cocaine abuse 
clinical - indication - clinical trial condition cocaine craving 
clinical - indication - clinical trial condition cocaine dependence 
clinical - indication - clinical trial condition combat disorder 
clinical - indication - clinical trial condition combat stress symptoms 
clinical - indication - clinical trial condition coronary heart disease 
clinical - indication - clinical trial condition diabetes mellitus 
clinical - indication - clinical trial condition diabetic nephropathy 
clinical - indication - clinical trial condition erectile dysfunction 
clinical - indication - clinical trial condition essential hypertension 
clinical - indication - clinical trial condition falling 
clinical - indication - clinical trial condition fibrosis 
clinical - indication - clinical trial condition gastrointestinal hemorrhage 
clinical - indication - clinical trial condition heart disease 
clinical - indication - clinical trial condition heart failure [clinical trial] 
clinical - indication - clinical trial condition hepatitis C - chronic 
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Table 25.  Hypothetical new indications for terazosin (Research Use Case C) (continued). 
 

dimension value 
clinical - indication - clinical trial condition hypercholesterolemia 
clinical - indication - clinical trial condition insomnia 
clinical - indication - clinical trial condition kidney failure 
clinical - indication - clinical trial condition microvascular angina 
clinical - indication - clinical trial condition microvascular angina pectoris 
clinical - indication - clinical trial condition mood disorder 
clinical - indication - clinical trial condition morning surge 
clinical - indication - clinical trial condition myocardial infarction 
clinical - indication - clinical trial condition myocardial ischemia 
clinical - indication - clinical trial condition nephrolithiasis 
clinical - indication - clinical trial condition neurogenic bladder 
clinical - indication - clinical trial condition nightmare 
clinical - indication - clinical trial condition orthostatic hypotension 
clinical - indication - clinical trial condition overactive bladder 
clinical - indication - clinical trial condition portal hypertension 
clinical - indication - clinical trial condition post-traumatic stress disorder 
clinical - indication - clinical trial condition post-traumatic stress disorder - civilian 
clinical - indication - clinical trial condition post-traumatic stress disorder - combat 

trauma 
clinical - indication - clinical trial condition prostatic disorder 
clinical - indication - clinical trial condition psychomotor agitation 
clinical - indication - clinical trial condition resistant hypertension 
clinical - indication - clinical trial condition rhinitis medicamentosa 
clinical - indication - clinical trial condition scorpion envenomation 
clinical - indication - clinical trial condition sleep disorder 
clinical - indication - clinical trial condition spinal cord injury 
clinical - indication - clinical trial condition stress-induced cocaine/alcohol craving 

and relapse 
clinical - indication - clinical trial condition stroke 
clinical - indication - clinical trial condition tachyphylaxis 
clinical - indication - clinical trial condition uncontrolled hypertension 
clinical - indication - clinical trial condition ureterolithiasis 
clinical - indication - clinical trial condition variceal bleeding 
clinical - indication - clinical trial condition vascular disease 
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Table 26.  Hypothetical new therapeutic classes for terazosin (Research Use Case C). 
Red: resources not used by Campillos et al. (2008). 
 

Source dimension value 
KEGG DRUG clinical - therapeutic class alpha1A adrenergic antagonist 
KEGG DRUG clinical - therapeutic class alpha1B adrenergic antagonist 
KEGG DRUG clinical - therapeutic class alpha1C adrenergic antagonist 
KEGG DRUG clinical - therapeutic class alpha1D adrenergic antagonist 
KEGG DRUG clinical - therapeutic class alpha2A adrenergic antagonist 
KEGG DRUG clinical - therapeutic class alpha2B adrenergic antagonist 
KEGG DRUG clinical - therapeutic class G protein coupled receptor 

ligand 
DrugBank clinical - therapeutic class antihypercholesterolemic agent 
UMLS clinical - therapeutic class hypotensive agent 
WHO-ATC clinical - therapeutic class peripheral adrenergic antagonist 
KEGG DRUG clinical - therapeutic class rhodopsin family amine receptor 

ligand 
UMLS clinical - therapeutic class vasodilator 
ChemIDplus clinical - therapeutic class - organism human 
WHO-ATC clinical - therapeutic class - WHO-ATC 5th level 

code 
C02CA01    [C02CA - alpha-
adrenoreceptor antagonists] 

 
 
 

Table 27.  Hypothetical new target biological correlates for dutasteride (Research Use Case C). 
 

dimension value 
biology - molecular target - general function DNA binding 
biology - molecular target - GO biological process regulation of biological process 
biology - molecular target - GO biological process regulation of cellular metabolism 
biology - molecular target - GO biological process regulation of metabolism 
biology - molecular target - GO biological process regulation of nucleobase, nucleoside, 

nucleotide and nucleic acid metabolism 
biology - molecular target - GO biological process regulation of physiological process 
biology - molecular target - GO biological process regulation of transcription 
biology - molecular target - GO biological process regulation of transcription, DNA-dependent  
biology - molecular target - specific function cellular differentiation 
biology - molecular target - specific function cellular proliferation 
biology - molecular target - specific function eukaryotic gene expression 
biology - molecular target - specific function HIPK3 activation 
biology - molecular target - specific function steroid hormone receptor activity 

 
 

 Criteria for usefulness 

 1.  Comprehensive coverage.  Same as Research Use Case A. 

 2.  Literary warrant fidelity.  Our database was able to support Campillos et al.'s general 

query for drugs with common side effects but different WHO-ATC therapeutic classes, and our 
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methodology for populating these two dimensions was very similar to that of Campillos et al. Our 

chemistry - chemical superclass dimension is a weak substitute for their chemical 

structure/similarity measure, but this is not due to any fault in database design, as discussed under 

Research Use Case A.  Furthermore, this simulation did produce two drug clusters which had 

enough relational data to predict three previously unknown shared targets, 87 novel hypothetical 

indications, and 21 novel hypothetical therapeutic classes for two existing drugs by following 

Campillos et al.'s logic.  When the resources were restricted to those more like the ones used by 

Campillos et al., our simulation still produced three novel hypothetical targets, nine novel 

hypothetical indications, and ten novel hypothetical therapeutic classes, roughly equivalent to the 

3-10 hypothetical new indications for rabeprazole that can be inferred from the four drugs 

Campillos et al. found to share targets with it.  Of course, we are missing the in vitro and cell 

assay target validation step. 

 3.  IR performance.   

  a.  Larger retrieval.  Of the nine parent compounds in our database, we generated 

for two of them: three novel hypothetical targets, 87 novel hypothetical indications, and 21 novel 

hypothetical therapeutic classes.  Extrapolated to 5,000 known generic parent compounds, our 

results are equivalent to 7,500 novel hypothetical targets, 217,500 novel hypothetical indications, 

and 52,500 novel hypothetical therapeutic classes.  If the ClinicalTrials.gov, ChemIDplus, and 

KEGG DRUG results are eliminated to more closely simulate Campillos et al.'s system, the 

numbers fall to nine (10%) indications and ten (48%) therapeutic classes for two drugs, roughly 

equivalent to the 3-10 hypothetical new indications for rabeprazole that can be inferred from the 

four drugs Campillos et al. found to share targets with it. 

  b.  More robust.  Our clinical - precaution - side effect … dimension is populated 

with values from five sources (DailyMed, DrugDigest, MedMaster, UMLS, and 

ClinicalTrials.gov) compared to Campillos et al.'s one (DailyMed or equivalent).  Our database's 

1,255 {(O) = clinical - precaution - side effect …}  rows contain 431 unique {B,Q} parent 



 

 

127

drug:normalized value pairs; DailyMed accounts for 52% of the rows and 31% of the unique 

{B,Q} pairs,64 DrugDigest 30% and 41%, MedMaster 16% and 25%, UMLS 1% and 3%, and 

ClinicalTrials.gov 0.3% and 1%, giving credit in that order.  In addition, we have about half of 

the side effects subclassified by whether they are common, major, or minor, which might help 

narrow the initial drug clusters to those which are most productive, given a larger drug sample. 

 Our simulation of this use case, like Campillos et al., used only WHO-ATC for the 

therapeutic class cut.  However, we have additional therapeutic class data from ten other sources 

(ChEBI, ChemIDplus, DailyMed, DrugBank, DrugDigest, DrugInfo, KEGG DRUG, MedMaster, 

MeSH, PubChem, UMLS) which might help narrow (or widen) the initial drug clusters to those 

which are most productive, given a larger drug sample.  Our database's 728 {(O) = clinical - 

therapeutic class …} rows contain 168 unique {B,Q} parent drug:normalized value pairs; WHO-

ATC accounts for 6% of the rows and 21% of the unique {B,Q} pairs. 

 For drug:target relations, Campillos et al. used the Matador65 and PDSP Ki (Psychoactive 

Drug Screening Program inhibition constant)66 databases in addition to DrugBank, so their 

hypothetical shared target step should be more stringent than ours.  In addition, they further 

refined their shared target hypotheses to those that were supported by wet bench in vitro and cell 

assay results. 

 However, Campillos et al.'s empirical results stop at the shared target point.  To complete 

this use case inferred from their introduction and discussion, one needs to map the drugs which 

share the target to their indications and therapeutic classes.  For the latter they had WHO-ATC, 

but do not report using it for this purpose in the manner of Castle et al. (2007).  Had they done so, 

our database would show a large robustness advantage not only for therapeutic classes per se (ten 

additional resources), but also for genuine indications as discussed under Research Use Case B.  

                                                 
64 DailyMed's share of the unique drug:value pairs is underestimated because we did not parse and 
normalize all the raw data, so column Q is blank for those rows. 
65 http://matador.embl.de  
66 http://pdsp.med.unc.edu/kidb.php  
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In fairness to Campillos et al. and Castle et al., drug development research does not typically leap 

straight from hypotheses to direct testing of drug:disease efficacy, even in animal or in vitro 

models, but rather proceeds through the kind of molecular-level validation phase their systems 

support more robustly.  However, mapping novel drug:target relations to disease endpoints is 

important from the perspective of program management, funding, public relations, etc. 

  c.  More efficient.  Data reduction exhibited by the initial {(O) = [clinical - 

precaution - side effect…, clinical - therapeutic class - WHO-ATC 5th level code]} retrieval 

(1,277 rows) was: drug name (B/D) 9/70 (13%); dimension name (O/F) 5/17 (29%); value (Q/H) 

258/200 (129%); drug-dimension-value triple 524/467 (112%).  It is possible that, in the case of 

the values and triples, the normalization effect was swamped out by the antagonistic multi-value 

parsing effect discussed previously.  However, these numbers are distorted by the fact that not all 

the relevant DailyMed raw (H) values were loaded into the database.  For the {(O) = [biology - 

molecular target, chemistry - chemical superclass]} retrieval (240 rows) the data reduction was: 

drug name (B/D) 8/58 (14%); dimension name (O/F) 2/29 (7%); value (Q/H) 58/127 (46%); drug-

dimension-value triple 80/203 (39%).  For a general {(O) = [clinical - indication …, clinical - 

therapeutic class …]} with salt terms (acetate, mesylate, hydrochloride) lumped with their parents 

in column B, the retrieval (2,272 rows) was: drug name (B/D) 9/96 (9%); dimension name (O/F) 

26/55 (47%); value (Q/H) 380/799 (48%); drug-dimension-value triple 655/1340 (49%).  (The 

value and triple figures do not include the clinical trial IDs.)  For these three retrievals, the 

number of databases was reduced from six to one (17%), nine to one (11%), and 13 to one (8%), 

implying an even greater reduction in the number of commands, queries, keystrokes, and time. 

 It seems that the novel hypothetical indications generated by our method would be more 

useful than the novel hypothetical therapeutic classes, the latter tending to be too general (e.g., 

"dermatological agent") or inferable from known classes (e.g., "peripheral adrenergic 

antagonist").  On the other hand, most of the novel hypothetical indications came from 

ClinicalTrials.gov Conditions which means that (1) they include false positives (co-occurrences 
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of a drug and condition in a trial other than for treatment or prevention) and (2) even the true 

positives are "doubly hypothetical" in the sense that the target-sharing drug's efficacy has not 

been proven.  Removing the therapeutic classes and ClinicalTrials.gov data resulted in smaller 

retrieval size more like that of Campillos et al.: two novel hypothetical indications for dutasteride 

(from UMLS) and seven for terazosin (from DrugBank, MedMaster, and MeSH). 

  Summary of Research Use Case C 

 The goal here was to combine drug-side effect, drug-therapeutic class, drug-target, and 

drug-chemical structure/similarity relations to predict novel drug-target, drug-indication, and 

drug-therapeutic class relations.  Our database was able to support the general query for drugs 

with common side effects but different therapeutic classes, yielding all nine parent drugs in our 

database.  This surprising result seems to imply that indication could be effectively substituted for 

the reference system's complicated same-side-effect-different-therapeutic-class clustering 

approach, further implying that a robust, normalized drug-indication database was not available to 

the authors, as we have asserted.  Follow-up queries to our database produced for 87 hypothetical 

new indications and 21 hypothetical new therapeutic classes for two drugs.  Our system satisfied 

the criteria for usefulness as for Research Use Case A.  The reference system had a more robust 

collection of drug:target relations, but ours allowed a more empirical extension from drug:target 

relations to disease endpoints.  It seems that the novel hypothetical indications generated by our 

method would be more useful than the novel hypothetical therapeutic classes.  However, the 

novel hypothetical indications include false positives and "doubly hypothetical" values derived 

from ClinicalTrials.gov.  Removing the therapeutic classes and ClinicalTrials.gov data from our 

results made the reference system compare better. 

 

 Research Use Case D.  A researcher wonders if any existing drugs might be "repurposed" 

(Boguski et al., 2009) to prevent prostate cancer.  She searches ClinicalTrials.gov and gets a list 

of clinical trials which link the Condition "Prostate Cancer" to various Interventions including 
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drug names.  She thinks this is a good start, but what she really needs is to find other, chemically 

related drugs and chemicals which are not on this list or already approved for prevention of 

prostate cancer.   

 We retrieved data on 1,823 clinical trials on prostate cancer and extracted 723 raw drug 

names as described in Appendix F.  Comparison of this list to the (D) raw drug names in our 

database yielded four normalized (B) generic parent names: dutasteride, finasteride; leuprolide, 

and tamsulosin.  The chemical characteristics of these drugs were retrieved as the values (Q) 

corresponding to {(B) = [dutasteride, finasteride; leuprolide…, tamsulosin…]; (O) = [chemistry - 

chemical complexity, chemistry - chemical superclass, chemistry - heavy atom count, chemistry - 

Lipinski …, chemistry - physical properties - melting point, chemistry - polarity - TPSA, 

chemistry - rotatable bond count, chemistry - solubility …, chemistry - stereocenter count …, 

chemistry - tautomer count]}.67  The most parsimonious resource collection (C) that supplied this 

data was DrugBank, PubChem, and UMLS. 

 Of the four drugs, tamsulosin had the most typical values for these dimensions across all 

drugs in our database, so, hoping to find other drugs with similar values, we chose to make it our 

model prostate cancer drug.68  We retrieved drugs (B) with similar values (Q) to those of 

tamsulosin for the above chemistry … dimensions (O).  Surprisingly, seven out of the nine parent 

drug compounds in our database qualified; in order of number of closest values to tamsulosin's, 

finasteride (8), prazosin (7), terazosin (6), doxazosin (4), dutasteride (4 ), leuprolide (1), and 

ticlopidine (1) (Table 28).69  The difference between the four drugs in clinical trials and these 

seven (plus tamsulosin) constitutes our retrieval of tamsulosin-like compounds not currently in 

clinical trials on prostate cancer: prazosin, terazosin, doxazosin, and ticlopidine. 
 

                                                 
67 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet1 
68 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet2 
69 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 column G 
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Table 28.  Chemical characteristics of tamsulosin-like compounds in our database (Research Use 
Case D). 
Data are from DrugBank (rows 1-6), MeSH/UMLS (7), and PubChem (8-19). (DB) across whole database. 
 

parent compound dimension 
tamsulosin finasteride prazosin terazosin 

closest to 
tamsulosin 

(DB) 
chemistry - physical 
properties - melting point 
[°C] 

227 250 279 273 242-250°C 
dutasteride; 
250°C 
finasteride 

chemistry - solubility - 
logP - predicted 

3.06 3.53 1.93 1.12 2.53 
doxazosin; 
3.53 finasteride 

chemistry - solubility - 
logP hydrophobicity - 
experimental 

2.3 4.7 1.3 1 2.1 doxazosin 

chemistry - solubility - logS 
- predicted 

-4.79 -5.27 -2.74 -2.41 -4.57 
leuprolide 

chemistry - solubility - 
water - experimental 
[mg/ml] 

sparingly 
soluble in 

water 

0.012 0.5 0.024 a  

chemistry - solubility - 
water - predicted [mg/ml] 

0.0066 0.022 0.69 1.5 .022 finasteride 

chemistry - chemical 
superclass 

sulfonamide androstene; 
azasteroid 

piperazine;  
quinazoline 

piperazine;  
quinazoline 

 

chemistry - chemical 
complexity 

539 678 544 544 544 prazosin;  
544 terazosin 

chemistry - heavy atom 
count 

28 27 28 28 27 finasteride;  
28 prazosin; 
28 terazosin 

chemistry - Lipinski - H 
bond acceptor 

7 2 8 8 8 dutasteride; 
8 prazosin; 
8 terazosin 

chemistry - Lipinski - H 
bond donor 

2 2 1 1 2 doxazosin; 
2 dutasteride; 
2 finasteride 

chemistry - Lipinski - 
solubility logP octanol-
water 

2.7 3 2 1.4 2.5 doxazosin;  
3 finasteride 

chemistry - Lipinski - 
molecular weight [- 
average] 

408 372 383 387 383 prazosin;  
387 terazosin 

chemistry - polarity - TPSA 100 58 107 103 103 terazosin;  
107 prazosin 

chemistry - rotatable bond 
count 

11 2 4 4 2 dutasteride; 
2 finasteride;  
4 prazosin; 
4 terazosin 

 
a DrugBank's value of 29.7 is clearly for the hydrochloride, so it has been replaced here with this value 
from the SRC PhysProp Database http://esc.syrres.com/interkow/webprop.exe?CAS=63590-64-7 
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Table 28.  Chemical characteristics of tamsulosin-like compounds in our database (Research Use 
Case D) (continued). 
 

parent compound dimension 
tamsulosin finasteride prazosin terazosin 

closest to 
tamsulosin 

(DB) 
chemistry - stereocenter 
count - defined atom 

1 7 0 0  

chemistry - stereocenter 
count - defined bond 

0 0 0 0 0 all 

chemistry - stereocenter 
count - undefined atom 

0 0 0 1 0 finasteride; 
0 prazosin; 
0 ticlopidine 

chemistry - stereocenter 
count - undefined bond 

0 0 0 0 0 all 

 

 We attempted to compare these results to the "similar compound" searches available on 

PubChem, ChemIDplus, DrugBank, and KEGG DRUG.  Surprisingly, they all retrieved 

completely different sets of top hits for tamsulosin.  We wished to compare compounds identified 

by conventional generic names for equivalency to prazosin, terazosin, doxazosin, and ticlopidine. 

From DrugBank we selected three of the top four hits: dofetilide, bumetanide, and piretanide.  

From KEGG DRUG we selected the top three: amosulalol, formoterol, and isoxsuprine.  

PubChem's and ChemIDplus' tools offered no obvious, easy way to filter the results down to such 

compounds and so were not used. 

 Using the original resources' (DrugBank, UMLS, and PubChem) web interfaces, we 

looked up the values for the above chemistry dimensions for dofetilide, bumetanide, piretanide, 

amosulalol, formoterol, and isoxsuprine (Table 29).70  To estimate the nine other compounds' 

chemical similarity to tamsulosin, we devised a similarity measure based on the deviation of a 

given drug's values from the corresponding values for tamsulosin.  For example, given the 

melting points of 227oC for tamsulosin and 250oC for finasteride, the melting point deviation of 

finasteride is |(227-250)/227| = 10%.  For each drug we averaged the deviations over three groups 

of dimensions: physical behavior (melting point and solubility), chemical complexity (including 

the Lipinski parameters, polarity, and rotatable bonds), and stereocenter counts.  The latter is 
                                                 
70 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 columns H-M 
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actually another measure of chemical complexity but we wanted to segregate the low raw scores 

(typically 1 or 0) and consequent high deviations (1 vs. 0  100%).  Finally, we averaged the 

three averages for each drug to obtain an overall measure of its similarity to tamsulosin (Table 

30).71 

 In Table 30, it can be seen that finasteride has the highest overall deviation (i.e., lowest 

similarity to tamsulosin), 72%, due primarily to its high number of defined atom stereocenters 

characteristic of steroids.  Next highest is isoxsuprine (66%).  The other seven are fairly evenly 

 spread between 17% and 40%, with one of our database's retrievals, prazosin, at 28%.  The same 

general pattern holds for the chemical complexity and stereocenter subset averages: finasteride 

and two of the KEGG DRUG candidates having the highest deviations, all DrugBank candidates 

having low deviations, and prazosin and terazosin in between.  The physical subset average, 

however, shows KEGG DRUG's single candidate for which data was available to have a lower 

deviation than any of our database's three candidates.  Nevertheless, it seems clear that prazosin 

and terazosin are competitive with DrugBank's and KEGG DRUG's top tamsulosin-similar 

compounds by these measures.  Moreover, these measures were able to clearly discriminate 

prazosin and terazosin from the very un-tamsulosin-like steroid finasteride. 

                                                 
71 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 rows 33-60 
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 Criteria for usefulness 

 1.  Comprehensive coverage.  Same as Research Use Case A. 

 2.  Literary warrant fidelity.  Our database was able to support Boguski et al.'s (2009) 

general objective of "repurposing" existing drugs; specifically, for use against prostate cancer 

with selection based on their chemical similarity to tamsulosin.  Chemical similarity is not one of 

the dimensions suggested by Boguski et al. (Table 20), but we wanted to explore our database's 

ability to support a use case involving it more intensively than the other Research Use Cases, as 

warranted by Castle et al. (2007) and Campillos et al. (2008). 

 3.  IR performance.   

  a.  Larger retrieval.  This criterion is not apt for this use case due to our model 

database's small compound sample.  Of the nine parent compounds in our database, we were able 

to rank seven for chemical similarity to an eighth, tamsulosin.  Of the top three, one (finasteride) 

is known to have therapeutic potential against prostate cancer, and the other two (prazosin and 

terazosin) are competitive with the top three tamsulosin-similar-structure-search retrievals from 

DrugBank and KEGG DRUG according to our measure of chemical similarity. 

  b.  More robust.  The chemistry dimensions we used for this use case were 

covered most parsimoniously by DrugBank, PubChem, and UMLS.  In addition, our database 

integrates the same and other potentially useful chemistry information from ChEBI, ChemIDplus, 

ClinicalTrials.gov, DailyMed, DrugDigest, DrugInfo, KEGG DRUG, and MeSH, as well as 

toxicology data under {(O) = biology - toxicity …}.  The latter is comparable to the side effect 

innovation of Campillos et al. (2008) with the additional advantage that such data is available for 

nondrug chemicals.  That is, toxicological characteristics of known drug clusters (say, drugs for a 

given indication) could be determined using a database with our design and scope, then used 

(along with their chemical characteristics) to search for toxicologically (and chemically) similar 

nondrug chemicals on ChemIDplus and other sources which enable such searches. 
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  c.  More efficient.  Data reduction exhibited by the chemistry subset used to 

compute chemical similarity {(O) = [chemistry - chemical complexity, chemistry - chemical 

superclass, chemistry - heavy atom count, chemistry - Lipinski …, chemistry - physical properties 

- melting point, chemistry - polarity - TPSA, chemistry - rotatable bond count, chemistry - 

solubility …, chemistry - stereocenter count …, chemistry - tautomer count]}72   (523 rows) was: 

drug name (B/D) 14/69 (20%); dimension name (O/F) 28/35 (80%); value (Q/H) 191/200 (96%); 

drug-dimension-value triple 370/363 (102%).  For the entire {(O) = chemistry …} subset of our 

database (1,909 rows) it was: drug name (B/D) 15/83 (18%); dimension name (O/F) 93/121 

(77%); value (Q/H) 763/884 (86%); drug-dimension-value triple 1245/1529 (81%).  For these 

two retrievals, the number of databases was reduced from eight to one (12%) and 11 to one (9%), 

implying an even greater reduction in the number of commands, queries, keystrokes, and time.  

Given the closeness of these two data reduction result sets, the numbers for intermediate 

chemistry subsets73 would be expected to be similar. 

 Interestingly, tamsulosin also shares with prazosin, terazosin, and doxazosin its molecular 

targets, the A, B, and D isoforms of the alpha1 adrenergic receptor.  If tamsulosin were truly 

being tested in clinical trials for treatment or prevention of prostate cancer,74 and its relevant 

mechanism of action were through the alpha1 adrenergic receptor, this would be evidence for the 

usefulness of these results. 

  Summary of Research Use Case D 

 The goal here was to find novel drug candidates for an indication (prostate cancer) based 

on their chemical similarity to drugs already approved or under study for that indication.  Our 
                                                 
72 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet1 
73 The purpose of the dimension set used was to focus on descriptive ("natural") as opposed to nominal 
values.  Therefore other database's ID's, nomenclature, and formulas were not used.  It could be argued that 
the latter also are naturally descriptive, but the requisite drill down, parsing, and clustering challenges 
exceed our Excel string-matching capabilities.  We also eliminated dimensions with predominantly null or 
homogeneous values (e.g., charge; all values = 0) attributable solely to our small drug sample. 
74 Unfortunately, it appears that tamsulosin is a false hit in the original ClinicalTrials.gov search, which 
cannot discriminate between the various reasons a drug and a condition co-occur in a trial.  In the case of 
tamsulosin and prostate cancer, it appears that tamsulosin is only being tested to relieve urinary side effects 
of brachytherapy. 
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database contained four normalized generic parent names in common with the 1,823 linked to 

clinical trials on prostate cancer, and one of these, tamsulosin, was deemed to be a suitable model 

compound based on our normalized chemistry dimensions and values.  Searching for drugs with 

similar (to tamsulosin) normalized chemistry dimension-value pairs retrieved the other three 

already in clinical trials plus four new ones.  Two of the latter compared well to the top six drugs 

retrieved by the similar structure searches available on DrugBank and KEGG DRUG according to 

an objective measure of tamsulosin similarity based on our chemistry dimensions and publicly 

available values.  Moreover, these measures were able to clearly discriminate these two, prazosin 

and terazosin, from the very un-tamsulosin-like steroid finasteride.  Interestingly, tamsulosin also 

shares with prazosin and terazosin its molecular targets, the A, B, and D isoforms of the alpha1 

adrenergic receptor. 

 

4.3.3.3.3  Consumers. 

 Consumer Use Case A.  "Are there any natural [herbal] substitutes for the hormone 

replacement BPH therapy agent Prempro {Proscar, Flomax, Avodart, Ticlid, Viadur …} ?" 

 Like Health Use Case B, the goal of this query is to find the names of drugs indicated for 

BPH (benign prostatic hyperplasia).  This query adds a constraint that the drug must be an herbal 

product, and uses trade names to exemplify non-herbal BPH drugs.  A search in our database for 

{(O) = clinical - indication - …; (Q) = benign prostatic hyperplasia} and "herbal" in any column 

produced one row with {(B) = saw palmetto; (C) = MedMaster; (O) = clinical - indication - 

herbal evidence grade A75}.  The co-occurrence of {(B) = saw palmetto; (O) = clinical - 

indication - …; (Q) = benign prostatic hyperplasia} was confirmed by 15 additional data rows 

representing {(C) = [ChemIDplus, ClinicalTrials.gov, DrugDigest, DrugInfo, MedMaster, MeSH, 

PubChem]}.  The herbal constraint was confirmed by 14 additional rows with {(B) = saw 

                                                 
75 The meaning of "grade A" can be obtained from the MedMaster dimension link in column G: "*Key to 
grades: A: Strong scientific evidence for this use …" 
http://www.nlm.nih.gov/medlineplus/druginfo/natural/patient-sawpalmetto.html#Evidence   
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palmetto; (O) = pharmacy - drug type; (Q) = [alternative medicine, complementary medicine, 

herbal medicine, homeopathic preparation, medicinal plant, plant extract, plant product, western 

herb/natural substance]} representing {(C) = [ClinicalTrials.gov, MedMaster, MeSH, UMLS]}.  

Trade names comparable to Proscar, Flomax, Avodart, Ticlid, Viadur … were found by {(B) = 

saw palmetto; (O) = pharmacy - trade name …}; they were {(Q) = [Cobra Powerful Men's 

Performance Enhancer, Elusan Prostate, Herbal Breast Enhancement, Herbal Mens Performance 

Enhancer, Mens Herbal Enhancement, Permixon, Prosta Urgenin, Prostagutt, Prostaserine, 

Prostata, Strogen]} and came from {(C) = [ChemIDplus, DrugInfo, MedMaster, MeSH, 

PubChem, UMLS]}.  

 Criteria for usefulness 

 1.  Comprehensive coverage.  Plovnick and Zeng (2004) used UMLS to normalize these 

queries, then executed them on MedlinePlus76 (of which MedMaster is the "Drugs & 

Supplements" subsite) and Google, and compared the retrieval quality against a "gold standard 

answer" based on MD-oriented information from Harrison's Online and MDConsult.  Our 

database's overlap with this collection is only partial (UMLS and MedMaster).  However, we do 

integrate information from an additional consumer-oriented source (DrugDigest), plus clinical 

professional-oriented information from DailyMed, RXNORM, and ClinicalTrials.gov, plus 

research professional-oriented information from DrugBank, PubChem, ChEBI, ChemIDplus, and 

KEGG DRUG (clinicians may also be researchers).  The {(B) = saw palmetto} subset consists of 

568 rows of data representing a wide diversity of clinical, pharmacy, biology, and chemistry 

dimensions which would support follow-up queries to obtain more information about saw 

palmetto (such as the trade name query described above).  This will be true in general for all our 

Consumer Use Cases. 

 2.  Literary warrant fidelity.  Consumer Use Cases A-G were adapted from Plovnick and 

Zeng (2004) as described in Methods.  This satisfies the literary warrant criterion for all of them. 
                                                 
76 http://www.nlm.nih.gov/medlineplus/  
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 3.  IR performance.   

  a.  Larger retrieval.  Saw palmetto was retrieved from our database because it, 

along with finasteride, is one of UMLS/NDFRT's Other related/may_be_treated_by relations for 

"Prostatic Hypertrophy" and it happens to be an herbal.  Nevertheless, despite their coverage of 

over 900 more drug compounds (Table 11), DrugDigest and ClinicalTrials.gov (the only other 

two of our resources that enable searching for drugs by indication) produce the same answer; that 

is, our database performs as well as they do on this query.  With regard to Plovnick and Zeng's 

system, UMLS does not link saw palmetto or any other drugs to BPH (as opposed to "Prostatic 

Hypertrophy") and so would retrieve nothing.  In contrast, the top hit for the Google search 

"herbal BPH" listed "Western herbs: saw palmetto, pygeum, pumpkin seeds, nettle root; Chinese 

herbs: vacarria, plantago seed, rehmannia; Chinese formulas: Guizhi Fuling Wan, Niu Che 

Shenqi Wan, Jingui Shenqi Wan, Tonglong Tang, Dahuang Mudan Tang."77 

  b.  More robust.  Plovnick and Zeng used four resources compared to our 15.  Of 

the latter, eight contributed to satisfying this specific use case (ChemIDplus, ClinicalTrials.gov, 

DrugDigest, DrugInfo, MedMaster, MeSH, PubChem, and UMLS) and a ninth (RXNORM) 

contributes additional information about saw palmetto.  This suggests that the Google hit 

described above (a likely facsimile of what Plovnick and Zeng's system would produce), although 

larger in the sense of more drugs, would largely fail to be confirmed by their gold standard 

validity test. 

  c.  More efficient.  Data reduction exhibited by the {(O) = clinical - indication 

…; (Q) = benign prostatic hyperplasia} subset (178 rows) was: drug name (B/D) 15/50 (30%); 

dimension name (O/F) 5/21 (24%); value (Q/H) 1/93 (1%); drug-dimension-value triple 29/141 

(21%).  For the entire {(O) = clinical - indication…} subset of our database (1,544 rows) it was: 

drug name (B/D) 15/81 (19%); dimension name (O/F) 19/31 (61%); value (Q/H) 620/904 (69%); 

drug-dimension-value triple 882/1087 (81%).  For these two retrievals, the number of databases 
                                                 
77 http://www.itmonline.org/journal/arts/bph.htm  
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was reduced from ten to one (10%) and 11 to one (9%), implying an even greater reduction in the 

number of commands, queries, keystrokes, and time. 

  Summary of Consumer Use Case A 

 Like Health Use Case B, the goal of this query is to find the names of drugs indicated for 

BPH (benign prostatic hyperplasia).  This query adds a constraint that the drug must be an herbal 

product, and uses trade names to exemplify non-herbal BPH drugs.  Our database produced an 

answer consisting of the normalized generic name "saw palmetto" and all of its related alternative 

names, including 11 trade names.  Our system satisfied the criteria for usefulness as follows: 

more dimensions and resources than the reference system; fidelity to reference's information 

need; larger retrieval and more resources with normalized than raw value search; and data 

reduction.  The reference system produced a larger retrieval because its sources included Google, 

but the provenance/validity of the result is suspect. 

 

 Consumer Use Case B.  "How are arrhythmias BPH treated?" 

 Consumer Use Case C.  "Is there treatment for restless legs syndrome baldness?" 

 Consumer Use Case D.  "What are scientifically validated [approved] treatments for 

cancer BPH?" 

 Consumer Use Case E.  "What are scientifically validated experimental treatments for 

prostate cancer?" 

 Consumer Use Case F.  "What are the side effects of Lexapro {Proscar, Flomax, 

Avodart, Ticlid, Viadur …} ?" 

 Our database's ability to answer these queries was demonstrated and discussed under 

prior use cases.  "Treat" and "treatment" map to {(O) = clinical - indication - treatment…} and 

"approved treatment" to {(O) = clinical - indication - treatment - approved}.  "Experimental 

treatment" could be defined as the (B) drug name result set difference between them for any 

given value (here {(Q) = prostate cancer}) or, more conservatively, as {(O) = clinical - indication 
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- clinical trial condition}.  Non-drug (surgical, etc.) treatments are not covered by our dimensions 

of drug information, but a cluster of 11 rows was found with {(O) = [clinical - clinical trial 

comparison therapy, clinical - clinical trial co-therapy]; (Q) = [laser transurethral prostatectomy, 

luteal phase ganirelix, retrospective non-intervention, androgen ablation therapy, photoselective 

vaporization of the prostate, radiation therapy, testosterone replacement]}.  These (Q) values 

could be mapped to their corresponding indications (BPH, baldness, prostate cancer, etc.) through 

their clinical trial ID links in column S.  For Case F, "side effects" maps to {(O) = clinical - 

precaution - side effect…} and trade names to {(O) = pharmacy - trade name}. 

 Criteria for usefulness 

 1.  Comprehensive coverage.  Same as Consumer Use Case A.  In addition, side effect 

coverage was discussed under Research Use Case C. 

 2.  Literary warrant fidelity.  Same as Consumer Use Case A. 

 3.  IR performance.  Not analyzed. 

 

 Consumer Use Case G.  "What foods should be avoided to prevent cavities in children 

interactions with alpha blockers ?" 

 Searching on "food interaction" throughout the database found it mapped to three non-

null normalized dimension-value sets: {(O) = [biology - ADME - absorption - food effect - 

bioavailability; (Q) = 20% increase}, {(O) = clinical - precaution - food interaction - 

administration with food; (Q) = [optional, recommended]}, and {(O) = clinical - precaution - 

food interaction; (Q) = [alcoholic beverage, grapefruit juice, natural licorice]}.  The first two 

(from {(C) = DrugBank; (F) = Food Interaction} and {(C) = DailyMed; (F) = Precautions - Food 

Interaction}) have to do with how oral administration of the drug with food affects its absorption 

into the bloodstream and so is recommended, not recommended, or optional; these are not 

relevant to the use case.  The last set links {(B) = [doxazosin, prazosin]; (C) = DrugBank; (F) 

Food Interaction; (H) = [Avoid alcohol., Avoid natural licorice.]} and {(B) = dutasteride; (C) = 
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MedMaster; (F) = What special dietary instructions should I follow?; (H) = Talk to your doctor 

about drinking grapefruit juice while taking this medicine.}.  Searching on {(Q) = alpha blocker} 

found it mapped to {(B) = [doxazosin…, prazosin, tamsulosin, terazosin]; (O) = clinical - 

therapeutic class}.  Thus dutasteride is not an alpha blocker, so grapefruit juice is eliminated, and 

our system's "answer" to the query is "alcohol and natural licorice." 

 Criteria for usefulness 

 1.  Comprehensive coverage.  Same as Consumer Use Case A. 

 2.  Literary warrant fidelity.  Same as Consumer Use Case A. 

 3.  IR performance.  Not analyzed. 

  Summary of Consumer Use Case G 

 Searching on "food interaction" throughout the database found it mapped to three 

normalized dimension-value sets, only one of which was relevant this use case; it produced the 

answer "alcohol and natural licorice."  Of the criteria for usefulness, comprehensive coverage and 

literary warrant were satisfied and the others were not analyzed. 

 

Consumer Use Case H.  A patient is taking Ticlid (ticlopidine hydrochloride) to prevent 

blood clotting on an implanted coronary stent.  She is having difficulty breathing and wonders if 

it might be a side effect of the drug.  She looks up Ticlid on MedMaster but the monograph 

section "What side effects can this medication cause?"78 does not say anything about respiratory 

problems.  She wishes that MedMaster had a "Search More Resources" button next to each 

section heading. 

 We imagined a hypothetical MedMaster clone with such a button next to each section 

title, and that clicking on the button does a search in our database for the section title; in this case 

{(C) = MedMaster; (D) = Ticlid; (F) = What side effects can this medication cause?}.  The 

resulting cluster of data rows map to {(O) =  clinical - precaution - side effect}.  Executing the 
                                                 
78 http://www.nlm.nih.gov/medlineplus/druginfo/meds/a695036.html#side-effects  
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implied normalized search for all side effects of Ticlid across sources, {(D) = Ticlid...; (O) =  

clinical - precaution - side effect}, retrieved 94 rows; 64 from DailyMed and 30 from DrugDigest 

(Table 31).  This data could be displayed to the user, perhaps via an option to subset by user type 

(DailyMed for clinicians, DrugDigest for consumers), and with hyperlinks (contained in columns 

E and G of our database) to the original source display. 

 The user would be able to see right away that we classified "breathing difficulty" as a 

"major" side effect of Ticlid ({(D) = Ticlid...; (O) =  clinical - precaution - side effect - major}).  

With the hyperlinks, she could click on "breathing difficulty" in the data summary table and be 

taken to DrugDigest's Ticlid information page's section entitled "What side effects may I notice 

from this medicine?"  There she would learn that "breathing difficulty" is one of Ticlid's "[s]ide 

effects that you should report to your doctor or health care professional as soon as possible" 

(which we normalized as {(O) =  clinical - precaution - side effect - major}).  Here on 

DrugDigest's Ticlid page, as well as in the data summary table (Table 31 or subset), the user 

could also be advised of numerous other major side effects of Ticlid to be watchful for. 

The normalized side effect search could have been broadened from {(D) = Ticlid...; (O) =  

clinical - precaution - side effect} to {(B) = ticlopidine...; (O) =  clinical - precaution - side 

effect}.  Executing this search retrieved 397 rows: 320 from DailyMed, 60 from DrugDigest, 15 

from MedMaster, 1 from ClinicalTrials.gov, and 1 from UMLS.  In this case such a strategy was 

not needed to find ":breathing difficulty" and did not add significantly to the list of side effects of 

Ticlid shown in Table 31.  In other cases it might be a useful "Broaden the search" option. 

 Criteria for usefulness 

 1.  Comprehensive coverage.  Side effect coverage: see Research Use Case C. 

 2.  Literary warrant fidelity.  None. 

 3.  IR performance.   

  a.  Larger retrieval.  Table 31 contains 88 unique side effects of Ticlid, compared 

to 15 that can be found via MedMaster.   Broadening the normalized side effect search from {(D) 
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= Ticlid...; (O) =  clinical - precaution - side effect} to {(B) = ticlopidine...; (O) =  clinical - 

precaution - side effect} produces 95. 

  b.  More robust.  Our database's {(O) =  clinical - precaution - side effect} subset 

(1,255 rows) is informed by five sources including the use case's imagined one (MedMaster) and 

the FDA-vetted gold standard for U.S.-approved drugs (DailyMed). 

  c.  More efficient.  This use case illustrates how our model database's design 

could facilitate search (i.e., make it more efficient), not just in the classical IR query-result sense, 

but also from a Semantic Web (linked data, mashup) viewpoint.  Our database effectively linked 

(mashed up) data between MedMaster and DrugDigest, allowing the user to find relevant 

information in DrugDigest using the MedMaster interface; indeed, without prior awareness of 

DrugDigest.  Data reduction was not analyzed for this use case due to the distorting effect of not 

parsing and normalizing all the long DailyMed raw side effect values (H) as discussed under 

Research Use Case C.  Data reduction exhibited by all use case retrievals with more than 50 rows 

of data is summarized in Table 32. 

  Summary of Consumer Use Case H 

The goal here was to expand a search for side effects of a given drug without having to 

interact with multiple resource interfaces.  We showed that the MedMaster interface could be 

linked to our database such that the normalized generic name and dimension could be inferred 

from the MedMaster drug name and section heading, used to find additional corresponding values 

from other resources in our database, and (optionally) hyperlink to the other resource's relevant 

information in situ and/or broaden/narrow the search by telescoping up and down our dimensions 

hierarchy.  This use case illustrates how our model database's design could facilitate search, not 

just in the classical IR query-result sense, but also from a Semantic Web (linked data, mashup) 

viewpoint.  Our database effectively linked (mashed up) data between MedMaster and other 

resources, allowing the user to find relevant information in DrugDigest using the MedMaster 

interface; indeed, without prior awareness of DrugDigest. 
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Table 31.  Side effects of Ticlid (Consumer Use Case H). 
The "severity" values are the right-most lexical components of our subdimensions of clinical - precaution - 
side effect; e.g., "major"  clinical - precaution - side effect - major. 
 

side effect severity source source's drug name 
abnormal liver function test  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
agranulocytosis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
allergic pneumonitis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
allergic reaction major DrugDigest Ticlid 
allergic reaction  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
anaphylaxis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
angioedema  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
anorexia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
aplastic anemia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
appetite decreased major DrugDigest Ticlid 
arthropathy  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
asthenia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
black tarry stools  major DrugDigest Ticlid 
bleeding increased  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
bone marrow depression  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
breathing difficulty major DrugDigest Ticlid 
cholestatic jaundice  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
conjunctival hemorrhage  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
diarrhea major DrugDigest Ticlid 
diarrhea common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
dizziness  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
dyspepsia common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
ecchymosis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
eosinophilia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
epistaxis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
erythema multiforme  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
exfoliative dermatitis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
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Table 31.  Side effects of Ticlid (Consumer Use Case H) (continued). 
 

side effect severity source source's drug name 
facial swelling major DrugDigest Ticlid 
fever major DrugDigest Ticlid 
flatulence  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
gastrointestinal bleeding  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
gastrointestinal fullness  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
gastrointestinal pain common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
headache major DrugDigest Ticlid 
headache  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
hematemesis major DrugDigest Ticlid 
hematuria major DrugDigest Ticlid 
hematuria  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
hepatitis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
hepatocellular jaundice  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
hives major DrugDigest Ticlid 
hyponatremia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
immune thrombocytopenia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
intracerebral bleeding  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
itching major DrugDigest Ticlid 
jaundice major DrugDigest Ticlid 
joint pain major DrugDigest Ticlid 
joint swelling major DrugDigest Ticlid 
kidney failure  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
leukemia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
lip swelling major DrugDigest Ticlid 
liver failure  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
liver necrosis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
maculopapular rash  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
myositis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
nausea major DrugDigest Ticlid 
nausea common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
nephrotic syndrome  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
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Table 31.  Side effects of Ticlid (Consumer Use Case H) (continued). 
 

side effect severity source source's drug name 
neutropenia common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
nosebleed major DrugDigest Ticlid 
pain  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
paleness major DrugDigest Ticlid 
pancytopenia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
peptic ulcer  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
perioperative bleeding  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
peripheral neuropathy  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
pruritus  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
purpura common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
rash common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
reticulocytosis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
sepsis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
serum sickness  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
skin rash major DrugDigest Ticlid 
spontaneous posttraumatic 
bleeding 

 DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

Stevens-Johnson syndrome  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

stomach pain major DrugDigest Ticlid 
sudden weakness major DrugDigest Ticlid 
systemic lupus (positive 
ANA) 

 DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

thrombocytopenia  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

thrombocytosis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

thrombotic 
thrombocytopenic purpura 

 DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 
Film Coated [Roche Pharmaceuticals] 

tinnitus major DrugDigest Ticlid 
tinnitus  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
tongue swelling major DrugDigest Ticlid 
unusual bleeding major DrugDigest Ticlid 
unusual bruising major DrugDigest Ticlid 
urination difficulty major DrugDigest Ticlid 
urination pain major DrugDigest Ticlid 
urticaria  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
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Table 31.  Side effects of Ticlid (Consumer Use Case H) (continued). 
 

side effect severity source source's drug name 
urticarial rash  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
vasculitis  DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
vomiting major DrugDigest Ticlid 
vomiting common DailyMed Ticlid (ticlopidine hydrochloride) Tablet, 

Film Coated [Roche Pharmaceuticals] 
wheezing major DrugDigest Ticlid 

 
 
Table 32.  Data reduction in use case query results. 
Only analyses based on >50 rows of retrieved data are shown. 
 

% normalized values/raw values Use case # rows 
drug name 

(B/D) 
dimension  

(O/F) 
value    
(Q/H) 

triple 
(BOQ/DFH) 

database 

Health A 101 8 38 44 61 10 
Health B 187 20 30 1 20 50 
Health I 58 26 20 4 34 20 
Research A 818 21 34 93 94 8 
Research B 
"disease" 

207 36 67 84 128 14 

Research B 
"phenotype" 

486 20 35 86 137 8 

Research C side 
effect + ATC 
class 

1,277 13 29 129 112 17 

Research C 
target + chem. 
class 

240 14 7 46 39 11 

Research C 
indication + 
ther. class 

2,272 9 47 48 49 8 

Research D 
chem.subset 

523 20 80 96 102 12 

Research D 
chem.all 

1,909 18 77 86 81 9 

Consumer A 
indic.=BPH 

178 30 24 1 21 10 

Consumer A 
indic.all 

1,544 19 61 69 81 9 

 



 

 

150

Chapter 5.  Discussion 

 We investigated a new approach to drug information integration that can be considered a 

type of ontology matching/merging (OM).  Existing practical drug information representations 

are both diverse and in an early, pre-formal stage of ontology development.  Integrating them can 

therefore be seen as early, pre-formal OM.  This is not only an urgent practical issue because of 

drug information's scientific, medical, and economic importance, but also a good test case for the 

general problem of early, pre-formal OM within a domain.  Our method for resolving/integrating 

diverse representations of drug information depends on the ontology-like representation we call 

dimensions of drug information.  Our specific objectives were to provide a plausible, empirical 

definition of the dimensions of drug information (5.1 below), and to test its validity (5.2) and 

usefulness (5.3). 

5.1  What are the Dimensions of Drug Information? 

 We focused on a subset of drug information relevant to four domains: pharmacy, 

chemistry, biology, and clinical medicine.  In our initial survey of 23 relevant information 

resources, we found 39 dimensions that corresponded well to those that we expected based on 

domain-specific (1) typical queries, applications, and information needs of users, and (2) literary 

warrant.  In a corollary generic name coverage overlap analysis, we found 5,000 to be a 

reasonable estimate of the U.S.-approved generic parent drug name universe, but were surprised 

by the low degree of overlap between sources.  This means that drug information resources do not 

agree on extensionally defining even the most fundamental dimension, generic name.  That is, 

they do not agree on the most fundamental ontological question, "What is a drug?" 

The more detailed analysis contained in our experimental database discovered over 500 

normalized dimensions in 15 of the initial 23 resources.  Even when narrowed to those most 

relevant to our use case focus, there were still 375 which could be expressed as a six-level 

hierarchy with the four domains (pharmacy, chemistry, biology, clinical) comprising the top 

level.  This result is consistent with Bawden and Robinson's (2010) statement, "We may expect, 
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therefore, that pharmaceutical information will be of a diverse nature but will follow healthcare 

knowledge in having a generally clear and consistent structure, in the form of a complex 

hierarchy with many levels" (p. 65).  The second level contains 54 dimensions comparable to the 

39 found in the initial study.  All of the initial 39 were confirmed at the second or third level of 

the database hierarchy.  The biology domain seemed to account for a disproportionately high 

number of dimensions and hierarchical splitting, while clinical was disproportionately low.  This 

could imply that our dimension hierarchy has an inter-domain imbalance in conceptual splitting, 

whether as a result of domain, source, or our own bias. 

5.2  Do Dimensions Lead to Valid Groupings of Resources? 

The matrix score extension of our arbitrary four-domain classification of the initial 

survey's 39 dimensions to its 23 resources produced a reasonable resource classification that 

could be considered passing the test of face validity.  For example, ChEBI, PubChem, and 

ChemIDplus were classified under chemistry in accordance with their names, and the richest 

resources (DrugBank, WHO-ATC, DailyMed, and UMLS) had the most equitable all-domain 

coverage.  Anomalous/unexpected classifications included USAN under chemistry rather than 

with USP under pharmacy, and the failure of the two MeSH sources to score at all under biology.  

RXNORM's 100% pharmacy classification is inconsistent with Liu et al.'s (2005) claim of utility 

for "health care personnel including prescribing physicians and nurses" which would seem to 

correspond better to our clinical domain; however, we regard this as a case of cross-domain 

usage, not evidence against our classification. 

Correspondence analysis of the initial survey matrix also produced evidence of its partial 

validity.  Chemistry- and clincal-oriented sources were effectively polarized in the joint plot 

because sources tending to cover clinical dimensions tended not to also cover chemistry 

dimensions.  The pharmacy and biology dimensions lacked discriminating power.  Like sources 

tending to cover all four domains, the therapeutic class dimension was least polarized.  That is, 
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therapeutic class tends to be covered by all the resources we examined, suggesting that it is 

important in all four domains. 

 Hierarchical cluster analysis of the initial survey matrix also produced evidence of its 

partial validity.  The top dimension cluster corresponded closely to our biology domain-classified 

dimensions, and a second tight cluster to our clinical dimensions.  These two clusters coalesced at 

a close similarity distance with two more clinical dimensions, evoking the well-known super-

domain of biomedical knowledge.  The only remaining clinical dimension - therapeutic class - 

did not strongly cluster with any other dimension, supporting our correspondence analysis 

interpretation that it is important to all four domains.  Cluster analysis also produced strong 

evidence for the validity of our initial chemistry-classified dimensions, along with the reasonable 

suggestion that bioassay, pathways, and toxicity should be considered chemistry instead of 

biology.  Of our four initial hypothetical domain-dimension groupings, only pharmacy failed to 

be supported by this analysis. 

 When viewed "sideways" (i.e., by source), the matrix produced hierarchical source 

clusters supporting our initial chemistry classifications, but not those of the other domains.  The 

close similarity of MeSH MH and MeSH all, USP and USAN, MedMaster and DrugDigest, 

RXNORM and Drugs@FDA, and WHODRUG and WHO-ATC, is consistent with each pair's 

organizational overlap, scope, and/or mission.  PubChem and ChemIDplus also formed a sensible 

cluster, but it was missing ChEBI.  Three of the four "all-purpose" resources - UMLS, DailyMed, 

and DrugBank - again were distinguished, in this analysis by failure to cluster with other sources.  

These small, sensible clusters, combined with the lack of support for three out of four domains, 

suggest that hierarchical cluster analysis of the initial survey matrix was statistically robust, but 

did not validate its extension from domain classification of dimensions to domain classification of 

sources.  Cluster analysis of the resource-by-dimension matrix implied by the experimental 

database, on the other hand, did not produce any sensible dimension or source clusters, and so 
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may not be statistically robust due to inappropriate use of continuous scores as opposed to the 

mostly binary scores of the initial survey matrix. 

5.3  Can Dimensions Facilitate Integration/OM Tasks? 

We provided some evidence that dimensions are useful (as well as valid) for classifying 

resources and selecting sources appropriate to a given information need.  In general, however, we 

leave these questions up to further study requiring implementation of our data model in a more 

refined IR system and evaluation by human subject experts and other end users.  We provide 

much more evidence that dimensions can facilitate pooling data from different resources. 

5.3.1  Data reduction. 

Logically, it seems almost trivial to assert that our normalization process should result in 

data reduction; that is, the number of unique raw representations should always be greater than 

the number of unique corresponding normalized representations within any cross-section of the 

database.  However, because diverse raw data formats (terms, relations, items in a list, whole 

paragraphs, etc.) were loaded into the spreadsheet the same way, there was an antagonism 

between conflation of short strings representing a single concept (which lowers the ratio of 

unique normalized to unnormalized representations), versus parsing of longer strings into 

multiple dimension-value pairs (which raises the ratio).  Therefore, although overall data 

reduction was achieved, it was much less than expected.  Additional data reduction of the 

dimensions was achieved by hierarchical aggregation, but it did not lead to significant overall 

additional data reduction of the drug-dimension-value triples.  However, use-case-specific 

examples of data reduction were generally more impressive. 

5.3.2  Automatic normalization of additional data. 

Our experimental database contains over 17,000 unnormalized source-dimension-value 

triples mapped to normalized dimension-value pairs which can be regarded as a training set for 

automating the normalization of additional raw data from the same 15 sources, bringing the 

important goal of building an integrated, comprehensive (all drugs) database within reach.  The 
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probability of getting an accurate new normalization, based on "priors" (the current data), 

p(C,F O), reflects how semantically well-differentiated are the raw dimensions in our sources, 

and their influence on our choice of normalized dimensions.  Many of the ~1700 p(C,F O)'s are 

1.0, and of those that are significantly lower, nearly all can be dramatically raised (usually to 1.0) 

based on further parsing of the raw value (e.g., "treatment" implies that the normalized dimension 

is clinical - indication - treatment…).  Alternatively, smaller but useful gains can be obtained by 

dimensional hierarchical aggregation, which would not require free text parsing. 

For the specific goal of integrating more indication data, we showed that the best 

precision was exhibited by DrugDigest's "Learn how <this drug> is/are used to treat:"; UMLS's 

"Other Related/ may_be_treated_by"; DailyMed's "Indications and Usage"; MedMaster's "Other 

uses for this medicine"; and DrugBank's "Indication" dimensions.  DrugDigest and UMLS also 

have the advantage of having values in controlled terminological format (i.e., no parsing needed).  

However, these data do not take into account the superior provenance of the DailyMed 

information.  Disagreements between the associated DrugDigest, UMLS, and DailyMed values 

remind us that p(C,F O) is really measuring semantic (as opposed to pharmaceutical) precision.  

That is, all UMLS values associated with "Other Related/ may_be_treated_by" may be valid 

treatment indications for some drug, but they are not necessarily the correct indications for the 

specific drug at the other end of the triple. 

 Although the pattern-matching algorithms used here were primitive compared to true 

natural language processing, this exercise demonstrated the important principle of leveraging 

mechanization to expand the database to a truly practical size for real-world drug information 

users.  Thus our model database is valuable not just for defining (Q1) and demonstrating the 

validity (Q2) and usefulness (Q3) of dimensions of drug information, but also as a model or 

prototype for a much larger database of something closer to all drug information capable of 

satisfying many kinds of information needs.  This is arguably the most important potential future 

extension of our work. 
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5.3.3  Satisfying use cases. 

 Finally, we demonstrated that our experimental database could satisfy a variety of use 

cases derived from published literature representing the user types corresponding to our domain 

focus, and that this success depended on the dimensional basis of the data's multi-resource 

integration.  The nature and degree of success varied by use case, and were reported in detail in 

the Results section.  In each case, our database's perfomance was compared to the publication's 

information system if possible, otherwise to our individual unintegrated sources, according to 

specific criteria for usefulness: comprehensive coverage (more dimensions, values, and/or 

resources), literary warrant fidelity, and better IR performance defined as larger, more robust, and 

more efficient (data reduction).  We did not evaluate precision/recall or other measures of 

truth/accuracy because such measures do not reflect on the dimensions per se so much as the 

accuracy of the sources (which is beyond our control and not our goal to evaluate) and our 

specific mappings.  This we leave up to further study requiring implementation of our data model 

in a more refined IR system and evaluation by human subject experts and other end users.  Of 

particular note were the following results. 

 In Research Use Case C, since our entire drug sample was retrieved by the initial 

common-side-effect-different-therapeutic-class query, given that our sample was based on the 

drugs' common indication (benign prostatic hyperplasia), one wonders if that more 

straightforward dimension (indication) could be effectively substituted for the initial drug set 

selection in Campillos et al.'s (2008) method, given a robust database of normalized drug-

indication relations.  If so, Campillos et al.'s method constitutes evidence supporting our assertion 

of the latter's practical nonexistence prior to our work. 

In Research Use Case D, our system retrieved prazosin, terazosin, and doxazosin as novel 

drug candidates for treating prostate cancer on the basis of their similarity to tamsulosin.  

Prazosin and terazosin compared well by an objective measure of chemical similarity to 

tamsulosin to the top compounds retrieved by the DrugBank and KEGG DRUG similar structure 
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searches.  Interestingly, all four share the same molecular targets, the A, B, and D isoforms of the 

alpha1 adrenergic receptor.  If tamsulosin were truly being tested in clinical trials for treatment or 

prevention of prostate cancer, and its relevant mechanism of action were through the alpha1 

adrenergic receptor, this would be evidence for the usefulness of these results. 

Consumer Use Case H illustrates how our model database's design could facilitate search 

not just in the classical IR query-result sense, but also from a Semantic Web (linked data, 

mashup) viewpoint.  Our database effectively linked (mashed up) data between MedMaster and 

DrugDigest, allowing the user to find relevant information in DrugDigest using the MedMaster 

interface; indeed, without prior awareness of DrugDigest. 

5.4  Limitations 

Compression of the 550 normalized dimensions in the experimental database to the 375 

in Appendix G involved weeding out "pseudo-dimensions" such as other database IDs.  This 

needs reconsideration.  Our thinking was that, at least for the purpose of OM, dimensions should 

be restricted to those whose values have some kind of natural or general significance.  Database 

IDs would seem to be an example that does not meet this requirement.  Yet the CAS number is a 

gold standard for distinguishing unique chemical compounds, and we left in patent number (as 

pharmacy - approval info - patent number) thinking that the patent could be parsed into valuable, 

natural, general information.  Perhaps we should consider database IDs and other excluded 

dimensions to be placeholders for information not yet processed. 

Contrary to the way we have represented both in the same morphosyntactic way in 

Appendix G, the monohierarchical mapping of the second dimensional level to biology, 

chemistry, clinical, or pharmacy represents an entirely different semantics than the breakdown of 

the second level into subtypes represented by the lower levels.  In a sense, for example, clinical - 

indication means "indication-type clinical [information]" similarly to how indication - treatment - 

approved means "approved-treatment-type indication."  But clinical users, professionals, 

resources, enterprises, etc., do not have a monopoly on the use of indication information anything 
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like the way that an approved treatment indication is inherently an indication.  Analogous 

statements could be made even for highly specialized dimensions such as biology - molecular 

target - gene name or chemistry - Lipinski's Rule of Five - molecular weight.  The face validity of 

the first-to-second-level mappings was only partly supported by correspondence analysis and 

cluster analysis, did not extend appreciably to classifying resources, and contributed little if 

anything to satisfying our test use cases. Perhaps the top level should be dropped. 

The dimension-value boundary may be fuzzier than we have indicated.  Appendix G does 

not show the dimension-value matchups.  These are much more numerous, of course, and can be 

examined in the database.  As noted previously, the same value may apply to widely different 

dimensions; e.g., medical conditions ("prostate cancer"; "thrombosis"; "pregnancy"; etc.) may be 

indications, contraindications, or side effects.  We also know that some of the lower-level 

subtype qualifiers in Appendix G are also values for other dimensions.  An obvious example is 

approved, a subtype of clinical - indication but a value for pharmacy - approval status.  Others 

are oral, a subtype of biology - toxicity but a value for pharmacy - route of administration, and 

rat, mouse, and monkey, subtypes of biology - toxicity but potential values for biology - organism 

affected.  Thus our normalized dimension-value pair 

{dimension = biology - toxicity - LD50 - oral - rat ; value = "418 mg/kg"} 

could be alternatively represented as 

{dimension = biology - toxicity - LD50 ; value = "418 mg/kg [oral; rat]"}  

or even  

{dimension = biology - toxicity ; value = "LD50=418 mg/kg [oral; rat]"}. 

This is beginning to look like facet analysis, where, rather than stringing together 

qualifiers to create hundreds of dimension subtypes, we would consider the data in terms of 

combinations of facets such as approval status, organism/species, route of administration (or 

even body site), and indication (or even condition plus drug effect [prevents, treats, causes, 
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exacerbates, ...]).  The question is, what will best support OM of the drug information we have 

sampled, operationalized as pooling data from different sources? 

 Our research use cases are perhaps more "professional grade" than our health care 

professional and consumer use cases, naturally reflecting our own prior interests and experience, 

but weakening our case for having provided a drug information integration strategy and database 

that can serve all three user types simultaneously.  This is an area for improvement in follow-up 

research.  In addition to recruiting appropriate human participants (e.g., focus groups to think up 

use cases), a possible resource is web blogs and forums targeted to physicians, pharmacists, 

patients, etc.  

 Research Use Case B had trouble with literary warrant fidelity.  Our database was able to 

produce a list of cardiovascular drugs based on their WHO-ATC classifications and map them to 

their molecular targets, but it does not cover phenotypes per se.  As a substitute for phenotypes, 

our first simulation used target biological correlates to remain as true as possible to the target-

based approach of Castle et al. (2007).  However, this simulation failed to produce any matches 

comparable to their "decreased heart rate:cardiovascular" match.  Our second simulation used 

drug biological (effect, mechanism, and pathway) correlates as a substitute for phenotypes.  This 

produced a set of matches which looked more like "decreased heart rate:cardiovascular" but in so 

doing it strayed from the target-based approach of Castle et al.  However, it was able to produce 

over 1,000 phenotype-like:disease hypotheses based on a larger and more diverse resource 

collection and true indication values that are semantically closer to "diseases" than the few WHO-

ATC therapeutic class values that can be so mapped. 

In Research Use Case C, it seemed that the novel hypothetical indications generated by 

our method would be more useful than the novel hypothetical therapeutic classes, the latter 

tending to be too general or inferable from known classes.  On the other hand, most of the novel 

hypothetical indications came from ClinicalTrials.gov Conditions which means that (1) they 

include false positives (co-occurrences of a drug and condition in a trial other than for treatment 
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or prevention) and (2) even the true positives are "doubly hypothetical" in the sense that the 

target-sharing drug's efficacy has not been proven.  Removing the therapeutic classes and 

ClinicalTrials.gov data resulted in smaller retrieval size more like that of Campillos et al. (2008).  

In our first public presentation, an interesting point was made concerning the over-

representation of U.S. FDA-approved information in our work.  We do include non-U.S. sources 

(WHO-ATC, ChEBI, DrugBank, KEGG, and others).  The international aspect was one of our 

earliest proto-dimensions, since approval of drugs' names, indications, target populations, etc., 

can vary widely by country.  Although our focus later turned elsewhere, the subdimension 

approved has independently come out of our data analysis under indication.  One can imagine it 

also under trade name, among others, and further qualified by geopolitical qualifiers such as 

country names, FDA, USAN, INN, BAN, JAN, etc.  This point deserves additional research.  

Overcoming the international heterogeneity of drug information, in fact, may be drug OM's 

biggest and most rewarding challenge. 
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Chapter 6.  Conclusions 

 This dissertation has investigated a new approach to the general issue of resolution 

between different representations of "reality"; that is, the different classifications, thesauri, 

indexing methods and similar schemes that have been developed to characterize one domain by 

different communities.  We were particularly concerned with the situation in which the 

representations within a specific domain are not, in general, particularly well formed.  

The method that was investigated can be considered a type of ontology matching/merging (OM), 

specifically early, pre-formal OM.  This method was tested in one specific domain, drug 

information.  Because drug information representations are both diverse and in an early, pre-

formal stage of ontology development, their resolution is not only an urgent issue in its own right, 

but also a good test case for the general problem of early, pre-formal OM within a domain.  We 

claim that our results will advance not only the state of drug information, but also provide a 

general framework for addressing the larger problem of which the drug information case is but 

one example.  Such extensions would follow the historical pattern of advances in pharmaceutical 

information "play[ing] a major role in advancing information science itself" (Bawden & 

Robinson, 2010, p. 94). 

6.1  Contributions to Drug Information 

We have demonstrated a novel, coherent, literature-grounded, useful technique for early, 

pre-formal OM in the drug domain.  Our most important contribution was to provide a plausible, 

empirical answer to the question "What are the dimensions of drug information?" relevant to 

pharmacy, biology, chemistry, and clinical medicine.  Such a "standard framework for describing 

drug information sources is a necessary step towards improving the discoverability of such 

resources by humans and agents." (Sharp et al., 2008, p. 664).  We have tested our framework's 

usefulness for classifying resources, pooling data from diverse resources, and satisfying diverse 

use cases, with generally (but not universally) positive results.  In so doing we made another 

potentially valuable contribution in the form of a model database with mappings/ probabilities for 



 

 

161

its rapid expansion to a truly practical size ("all drugs") and "rough-cut" clues for seeding NLP-

based improvements.   

Our attempt to estimate the size of the generic name universe by resource coverage 

overlap analysis is novel, as far as we know.  We found 5,000 to be a reasonable estimate of the 

U.S.-approved generic parent drug name universe, but this number is both very rough and 

inevitably dated.  Our methods need to be refined, applied to larger resource collections, and 

automated so that updated estimates can be obtained over time. The low degree of overlap 

between sources was surprising, even alarming.  Major public drug information resources do not 

agree on extensionally defining even the most fundamental dimension, generic name.  That is, 

they do not agree on the most fundamental ontological question, "What is a drug?"  This is a 

serious obstacle to development of a standard drug ontology. 

6.2  Contributions to Library and Information Science 

Ultimately, we could not clearly distinguish our approach from facet analysis or domain 

analysis.  The fuzzy dimension-value boundary we observed could imply the need for a more 

facet analytic approach as discussed in Section 5.4.  It also evokes the domain analytic principle 

that "[t]here is [no] simple dichotomy between structure and content" (Hjørland & Albrechtsen, 

1995, p.406).  Facet analysis would not have permitted the four-domain top level of our 

dimensions hierarchy (molecular weight is a facet of a chemical, not a facet of chemistry), 

consistent with our findings of only equivocal support for it by correspondence analysis and 

cluster analysis.  Domain analysis similarly could have predicted our conclusion that evaluation 

by human subject experts is needed to reinforce some of our demonstrations of our dimensions' 

usefulness. 

The long-string parsing artifact which compromised our data reduction metrics is likely 

to be a general problem whenever our method is applied to diverse raw data formats (terms, 

relations, items in a list, whole paragraphs, etc.)  Some kind of preprocessing may be indicated.  
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If NLP is not feasible, perhaps some incremental improvement could be had with purely 

numerical approaches such as "n-grams" to break up long strings into arbitrary short ones. 

Similar considerations apply to the "pseudo-dimensions" such as other database IDs that 

need reconsideration as placeholders for information not yet processed (also discussed in Section 

5.4).  There is, in fact, no clear boundary between terms, short strings, long strings, lists, and links 

to structured information; they all represent arbitrary (user- and/or system-sensitive) subdivisions 

of a continuum.  Thus, like the dimension-value boundary and "what is a drug [or any other entity 

defining a domain]?", the distinction between integrating a single unit of information into a 

database or ontology and integrating whole databases or ontologies may be counterintuitively 

fuzzy. 

6.3  Contributions to Semantic Web 

 Extrapolating from our model database's sample of nine generic parent names to our 

estimate of all such drug names predicts a database of 9-18 million rows if limited to the 15 

resources we employed.  Expanding the resource collection, making it more international in 

scope, updating it over time, and improving the parsing of long strings and external links, would 

make it even bigger.  Our data warehouse approach was adopted as an expedient, since the main 

challenge was to get a grip on "what is there?" and put some of it into a consistent human-read-

write format.  Once this prototyping phase is finished, our data warehouse model will have served 

its purpose.  It was never our goal to replicate/integrate anything like "all" drug information in a 

centralized database. 

 Given web availability of the required resouces, linked data and/or mashup models would 

seem to be preferable for a variety of reasons, both principled and pragmatic, and in general, not 

just for drug information.  However, as discussed in Sections 2.9 and 2.10, these technologies do 

not entirely avoid the OM problem.  "Additional resources, which enable the creation of 

mappings between information sources, are required to compensate for heterogeneity across 

namespaces" (Sahoo et al., 2008, p. 752).  We see our model database precisely as one such 
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additional resource with immediate applicability to drug information.  This was illustrated by 

Consumer Use Case H; our imaginary user was enabled to find relevant information in 

DrugDigest using the MedMaster interface; indeed, without prior awareness of DrugDigest.   

Future extensions may address the general applicability of our methodology to other domains 

with Semantic Web aspirations hindered by early, pre-formal ontologies. 

6.4  Further Research 

Further refinement of our model is needed based on a larger drug sample.  The foregoing 

remarks notwithstanding, this can be accomplished most expeditiously by expanding our database 

with information on more drugs from the same 15 resources based on our table of mappings and 

probabilities at http://comminfo.rutgers.edu/~msharp/XKB/dimension_prediction.xls .  The 

results should be evaluated periodically to recompute this table, leading to iterative improvements 

in the automated normalization of additional data. 

The most dramatic improvements, however, await the application of advanced NLP 

techniques to the parsing and normalization of long free-text raw values.  We offer our "rough-

cut" clues in columns J-N for seeding such an effort.  If NLP is not feasible, perhaps some 

incremental improvement could be had with purely numerical approaches such as "n-grams" to 

break up long strings into arbitrary short ones. 

Our estimate of the size of the generic name universe by resource coverage overlap 

analysis is very rough and inevitably dated.  Our methods need to be refined, applied to larger 

resource collections, and automated so that updated estimates can be obtained over time.  

Sustained, systematic study of this issue may encourage resources to improve their consensus on 

it. 

We provided some evidence that dimensions are useful (as well as valid) for classifying 

resources and selecting sources appropriate to a given information need.  In general, however, we 

leave these questions up to further study requiring implementation of our data model in a more 

refined IR system and evaluation by human subject experts and other end users. 
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 Finally, we would like to see our work recognized and expanded upon in the larger 

pharmaceutical research, biomedical informatics, OM, and Semantic Web communities.  We 

offer our model database as a resource with immediate applicability to data linking and mashups 

of drug information.  Additional extensions may address the general applicability of our 

methodology to other domains with Semantic Web aspirations hindered by early, pre-formal 

ontologies. 
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Appendix A.  Potential Applications of a Drug Information System 

1. Health care personnel including prescribing physicians and nurses, and hospital personnel 

involved with drug ordering, inventory management, recording dose adjustments, checking 

drug interactions, or pharmacy management (Liu et al., 2005).   

1.1. Applications that can be satisfied by the current RxNav (containing RXNORM only): 

1.1.1. Finding other trade names of the same generic name and vice versa. 

1.1.2. Finding alternative dose/forms of the same generic name or trade name. 

1.1.3. Finding alternative combination drugs (combo products) containing a generic 

name (say, to avoid an allergic reaction to a another component). 

1.2. Applications that cannot be satisfied by the current RxNav: 

1.2.1. Finding alternate generic names or combo products for the same indication 

(disease or other medical condition). 

1.2.2. Finding alternate generic names with a common chemical structure or chemical 

superclass (e.g., benzodiazepines). 

1.2.3. Finding alternate generic names with a common biological mechanism of action. 

1.2.4. Identifying contraindications (medical conditions that make use of a given drug 

dangerous). 

1.2.5. Identifying potentially dangerous or useful drug interactions when two drugs are 

given simultaneously to the same patient. 

2. Consumers. 

2.1. Applications that can be satisfied by the current RxNav: 

2.1.1. Finding other trade names of the same generic name and vice versa. ("How can I 

get this drug cheaper?"  "I can't find this drug by name; what are some equivalent 

alternatives?") 

2.2. Applications that cannot be satisfied by the current RxNav: 

2.2.1. Finding indications.  ("Why am I being given this drug?") 
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2.2.2. Finding side effects.  ("I have symptom X - is it caused by my drug?") 

3. Pharma scientists wishing to discover new candidate chemical compounds for drug 

development, and/or new indications for existing drugs (Castle et al., 2007; Quan, 2007; 

Campillos et al., 2008). 

3.1. Applications that can be satisfied by the current RxNav: 

3.1.1. Clustering various trade names, combo products, NDCs, and other quasi-

synonyms of the same generic name. 

3.2. Applications that cannot be satisfied by the current RxNav: 

3.2.1. Clustering other quasi-synonyms of the same generic name such as chemical 

names, manufacturer code names, and CAS79 numbers. 

3.2.2. Clustering various generic names by therapeutic class (a combination of 

chemical and biological attributes; e.g., "topical anesthetic"). 

3.2.3. Clustering generic drug compounds by indication, contraindication, or other 

medical attribute. 

3.2.4. Clustering generic drug compounds by chemical substructures or attributes 

(acidity, solubility, molecular weight, etc). 

3.2.5. Clustering generic drug compounds by biological targets (enzymes, receptors, 

genes, metabolic or regulatory pathways, etc). 

4. Basic researchers wishing to see overall trends in pharma development in a drug-target 

network representing the "interactome" of "polypharmacology" (Yildirim et al., 2007).  

Applications same as #3 

5. Cancer researchers interested in faster, cheaper endpoints (than mortality/morbidity in human 

clinical trials) for initial screening of anti-cancer drugs; for example, "inhibits cellular 

proliferation" or "induces apoptosis" (Vogel, 2007).  Such knowledge is easily recognizable 

as following the drug-predicate-object "triple" syntax of the envisioned ontology-like KB. 
                                                 
79 Chemical Abstracts Service 
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6. Vocabulary managers, ontology engineers, medical data coders, etc., seeking content or 

authoritative validation for drug terminology, dictionaries, ontologies, etc., in support of 

above applications.  Chen, Perl, Geller, & Cimino (2007) found that the UMLS, which can be 

viewed as RXNORM with additional dimensions of drug information (among many others!), 

is widely used as a terminology even though it was not designed as one. 
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Appendix B.  Potential Test Cases for System Evaluation 

1. Consumer. 

1.1. Find some alternative approved drugs beyond interchangeable trade names for the 

same indication that meet specific requirements (e.g., local availability; price; foreign 

travel; dissatisfaction with current drug).  Example test case: finasteride [5 mg oral 

tablet] 80 indication = benign prostatic hypertrophy [; therapeutic class = 

testosterone 5-alpha reductase inhibitors]  {dutasteride [0.5 mg oral capsule]; 

epristeride [?form]; ...}. 

1.2. Find some drugs for an experimental indication due to, e.g., no approved therapy; 

dissatisfaction with current therapy.  Example test case: Bartter syndrome  

spironolactone. 

1.3. Find an open clinical trial due to, e.g., last recourse for relief of illness.  Example 

test case: Bartter syndrome / spironolactone  Clinical Trial NCT00276289, 

"Spironolactone to Decrease Potassium Wasting in Hypercalciurics on Thiazides 

Diuretics" (ClinicalTrials.gov, 2008). 

2. Clinical/pharmacy worker.   

2.1. Same as (to support) consumer. 

2.2. To support consumer in especially desperate situations clinicians may want to 

expand their search to preclinical experimental therapies.  Example test case: 

pulmonary hypertension  sildenafil (Liu, Liu, & Guan, 2007). 

2.3. Find all alternative approved drugs to support clustering for, e.g., stock 

management; sales tracking/reporting. 

3. Researcher. 

                                                 
80  signifies "is related to"; square brackets signify optional details or additional information; curly braces 
signify a set of multiple values.  
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3.1. Find possible alternative therapies for an indication.  Example test case: pulmonary 

hypertension  (experimental drug) sildenafil  (approved indication) erectile 

dysfunction  {avanafil, dasantafil, vardenafil, …}. 

3.2. Vice versa; i.e., find possible new indications for known drugs: {avanafil, 

dasantafil, vardenafil, …}  …  sildenafil  pulmonary hypertension. 

3.3. Combine therapeutic class with other chemical and biological relations to identify 

clusters of related drug compounds and infer new knowledge.  Example test case #1: 

structurally similar compounds targeting TACR1 gene product (known to be 

associated with abnormal pain threshold)  WHO-ATC class "antiemetics and 

antinauseants"  TACR1 modulation produces antinauseant activity   connection 

between antinauseant activity and abnormal pain threshold. Example test case #2: 

WHO-ATC class "cardiovascular system"  list of cardiovascular drugs  

associated gene targets  phenotype gene sets  highest ranking phenotype gene 

set is "decreased heart rate"  gene targets of drugs with cardiovascular activity are 

enriched in phenotypes associated with heart disease (Castle et al., 2007). 
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Appendix C.  Resource Evaluation Checklist 

"RxNavPlus" is a nickname for a hypothetical, experimental, integrated drug information system. 

1. Name of source 

1.1. Intro 

 (website )  and other general info 

1.2. Initial/common/general questions 

1.2.1. How does this source compare to the others with regard to: 

1.2.1.1.   Info quality 

1.2.1.1.1. Semantic range / kinds of info 

1.2.1.1.2. Targeted users 

1.2.1.1.3. Accuracy 

1.2.1.1.4. Currency / update frequency 

1.2.1.1.5. Authority 

1.2.1.1.6. Completeness / comprehensiveness 

1.2.1.1.6.1.    Number of drug concepts cf. RXNORM 

1.2.1.1.6.1.1. Coverage ≡ Number of IN (N~5600) -like concepts 

(~single approved generic names) 

1.2.1.1.7. Granularity 

1.2.1.1.8. Format (technical) 

1.2.1.1.9. Format (lexical/semantic)   

1.2.2. Is the info content (≡KB) available for my use?   

1.2.2.1.    At what monetary cost?   

1.2.1. Other initial questions (may be unique to one or more sources) 

1.3. Desired integration 

1.3.1. What info do we want to extract from this source and integrate into RxNavPlus? 
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1.3.2. What sort of integration is desired?  I.e., how do we want the info to "look & 

feel" in RxNavPlus? 

1.3.2.1.    Integration modes.  For each source, choose one, both, or neither. 

1.3.2.1.1. Simple linkout ≡ user can click on a concept term (e.g., a drug name) 

displayed on RxNavPlus to open a new web browser window on the 

other source's native webpage with info about that concept, or as close 

to it an API can get (might be a generic search page or even the source's 

home page; permission/licensing might also be a factor).  The user is 

then "on his own" to navigate the other source in this window.  This 

capability is already being added to RxNav for some sources and could 

easily be expanded to others. 

1.3.2.1.2. Extract & import ≡ terms or other strings representing concepts and 

their relations are copied from the other KB, normalized to RXNORM 

or other preferred terminology, and displayed "seamlessly"on 

RxNavPlus like RXNORM relations on RxNav (as a directed graph with 

semantic types = boxes/nodes, concepts = terms in boxes, relationships 

= arcs between boxes; see Figure 1). 

1.3.2.1.2.1.    Primary extract & import access options.  Choose one.  See 

below for definitions and decision criteria. 

1.3.2.1.2.1.1. Database option  

1.3.2.1.2.1.2. Linking option   

1.3.2.1.2.2.    Secondary extract & import processing.  See below for details. 

1.4. Simple linkout 

1.4.1. Do we want a simple linkout to this source? 

1.4.2. If so, from which kinds of RxNavPlus display terms? (e.g., IN, BN, CD,…) 
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1.4.3. Which kinds of RxNavPlus display terms "work" in the following 2x2 matrix of 

linking/API strategies to linking levels? 

1.4.3.1.    Linking/API strategies 

1.4.3.1.1. Search ≡ the API must use a search interface the same way a human 

user would; i.e., type a search term into a box, hit a "Search" button, 

select a hit, etc. 

1.4.3.1.2. Direct-link URL ≡ a stereotyped URL pattern into which a term or 

equivalent ID number can be inserted to yield a working URL that, 

when pasted into a web browser's address box, will yield the desired 

webpage. 

1.4.3.2.    Linking levels 

1.4.3.2.1. Hitlist ≡ webpage containing a list of other, multiple, potentially 

relevant webpages. 

1.4.3.2.2. Drug info ≡ webpage containing more detailed info, typically on a 

single drug or other concept. 

1.5. Extract & import: Database option 

1.5.1. Is the KB available as a database that can be locally replicated and manipulated 

at will? 

1.5.1.1.    If so, what is the version/update frequency? 

1.5.2. How feasible is this integration strategy?  May be impacted by  

1.5.2.1.    Desired info 

1.5.2.2.    DB complexity, format, etc., effect on extractability of desired info 

1.5.2.3.    Version/update importance 

1.5.2.4.    Version/update frequency 

1.5.3. For the desired integration, is the DB option the only feasible option (cf. linking), 

or is it preferable to linking?  If so, supply  
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1.5.3.1.    Website or other method for obtaining DB 

1.5.3.2.    Local DB update schedule. 

1.5.3.3.    Secondary extract & import processing 

1.5.3.3.1. Database file, field, value specs (DB option only)  E.g., Perl scripts 

for UMLS, spreadsheet for WHO-ATC, … 

1.5.3.3.2. Text processing / parsing / NLP 

1.5.3.3.3. Normalization  

1.5.3.3.3.1.    Preferred terminology 

1.5.3.3.3.2.    Relation triples 

1.5.3.3.4. RxNavPlus display 

1.6. Extract & import: Linking option 

1.6.1. Is the KB available via a website or web service that can be queried dynamically 

(at RxNavPlus query time), thus obviating DB version/update concerns? 

1.6.2. How feasible is this integration strategy?  May be impacted by  

1.6.2.1.    Desired info 

1.6.2.2.    Webpage/service complexity, format, etc., effect on extractability of 

desired info 

1.6.3. For the desired integration, is linking the only feasible option (cf. DB), or is it 

preferable to DB? 

1.6.4. Which kinds of RxNavPlus display terms "work" in the following 2x2 matrix of 

linking/API strategies to linking levels?  (defined above) 

1.6.4.1.    Linking/API strategies 

1.6.4.1.1. Search  

1.6.4.1.2. Direct-link URL  

1.6.4.2.    Linking levels 

1.6.4.2.1. Hitlist  
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1.6.4.2.2. Drug info  

1.6.4.3.    Secondary extract & import processing 

1.6.4.3.1. Text processing / parsing / NLP 

1.6.4.3.1.1.    HTML context (linking option only) 

1.6.4.3.2. Normalization  

1.6.4.3.2.1.    Preferred terminology 

1.6.4.3.2.2.    Relation triples 

1.6.4.3.3. RxNavPlus display 
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Appendix D.  Resource Evaluation Summaries 

 UMLS.  The UMLS Metathesaurus® contains a great deal of drug information from 

several open sources including RXNORM, CSP (CRISP Thesaurus), MSH (Medical Subject 

Headings), NCI (National Cancer Institute Thesaurus), NDFRT (National Drug File Reference 

Terminology), PDQ (Physician Data Query), USPMG (United States Pharmacopeia Model 

Guidelines), and VANDF (Veterans Health Administration National Drug File), as well as 

limited-use sources such as SNOMEDCT (Systematic Nomenclature of Medicine Clinical Terms) 

and NDDF (National Drug Data File Plus Source Vocabulary).  This information scores well on 

availability and integration potential, being already "owned" by NLM and terminologically 

parsed and normalized.  However, there are accuracy, completeness, precision, and currency 

issues (see "Preliminary Results" below).  Research question: Is UMLS information quality good 

enough for prototyping?  How do the individual contributing sources compare?  What do the 

limited-use sources add to the open sources?  How can the Metathesaurus be subsetted to 

optimize information quality and open access? 

 DailyMed/SPL.  (Structured Product Labels) (http://DailyMed.nlm.nih.gov )  Also 

already owned by NLM, this is a database of about 3,600 drug labels (also called "package 

inserts") containing gold-standard-quality information about each drug's chemistry, biology, and 

medicine - exactly what we are looking for, as will be explained below.  Unfortunately, the 

"structure" in SPL is at a very high level.  The specific conceptual relations we would like to 

capture for UMLS-like integration with RXNORM are expressed as free text, presenting a 

formidable natural language processing (NLP) barrier to that level of integration.  However, for a 

simple linkout to the unparsed label, SPL is already integrated into RxNav, as mentioned above.  

A possible attraction of adding such an "SPL dimension" to RxNav, besides the high information 

content and quality, is that SPL is also a new U.S. Food and Drug Administration (FDA) 

standardization initiative which may become mandatory for the industry.  A possible integration 
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plus is reported work on translating the labels into SNOMEDCT terms [ref.].  But even if we 

can't integrate it that way, SPL can still play a role as gold standard for spot-checking the 

information quality from other sources.  Research question: Is the SPL information quality 

increment (over UMLS) big enough to justify added integration effort of extracting descriptors 

from text?  Note there are two factors here: information quality and effort of extracting 

descriptors from text.  [Basically, our preliminary results already answered this: no.  The quality 

is impeccable but the effort prohibitive.  Using NLP to normalize SPL appears to be another 

Ph.D. thesis in its own right.]  Other questions: How do UMLS or other sources compare to SPL 

quality-wise?  [See the "Preliminary Results" section below.]  Are there better ways to linkout 

from RxNav to SPL than the current right-click link based on a potentially inaccurate mapping of 

unique identifiers? 

 Drugs@FDA.  (http://www.fda.gov/cder/drugsatfda/datafiles/default.htm )  The poor 

match between SPL's and UMLS' indications (Table 7) and contraindications (Table 8) raises the 

urgency level of finding another source that can provide this information accurately and in a 

terminologically normalized way.  ChemIDplus (see below) alerted me to two possibilities, 

Drugs@FDA and DrugDigest.  This download site of Drugs@FDA offers nine well-structured 

tables covering 23,465 FDA-approved and -submitted drugs (1,689 unique single "activeingred" 

values).  The table descriptions tantalizingly include a field named "THER_POTENTIAL" but I 

could not find any specific drug-indication relationships in the data.  However, there may be 

useful links to NDA (New Drug Application) numbers of interest to some users. 

DrugDigest.  (http://www.drugdigest.org/DD/Home )  "DrugDigest is the consumer 

health and drug information website of Express Scripts, Inc. (ESI), the nation's largest 

independent pharmacy benefit manager (PBM)."  So there would be licensing issues.  But the 

database clearly has enough structure (in addition to natural language text) to provide what we are 

looking for, at least at a consumer level of knowledge.  Clicking on "Conditions & Treatments" > 

"Health Conditions" brings up a list of 71 indications such as Acne, Allergy, Alzheimer's Disease, 
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Anxiety, Arthritis, Asthma, Atrial Fibrillation, Attention Deficit- Hyperactivity Disorder 

(ADHD), Bacterial Infection, Benign Prostatic Hyperplasia (BPH), Bipolar Disorder, Breast 

Cancer, Cancer, …, each hyperlinked to a text description with a "How is it treated" link that can 

be followed to one or more "Drug Classes" links and thence to drug names.  For example, Benign 

Prostatic Hyperplasia (BPH) > 5-Alpha Reductase Inhibitors > Finasteride (Proscar) [note that 

Finasteride and Proscar are two separate links].  There is also a "database of more than 5,000 

drugs and herbals and 11,500 potential interactions."  Side effects and contraindications appear as 

bulleted free text suggesting possible terminological normalization; for example:  

What side effects may I notice from taking finasteride? 

• breast enlargement or tenderness 

• skin rash 

• sexual difficulties (less sexual desire or ability to get an erection) 

• small amount of semen released during sex 

What should I tell my health care provider before I take this medicine? 

• if you are female (finasteride is not for use in women) 

• kidney disease or infection 

• liver disease 

• prostate cancer 

• an unusual or allergic reaction to finasteride, other medicines, foods, dyes, or 

preservatives 

 If the licensing issues prove prohibitive, perhaps ESI would at least permit us to 

hyperlink from an RxNav display page to their corresponding generic or trade name page 

following this URL pattern: 

http://www.drugdigest.org/DD/DVH/Uses/0,3915,262|Finasteride,00.html  



 

 

178

 MedlinePlus/MedMaster. (http://www.nlm.nih.gov/medlineplus/druginformation.html )  

MedMaster contains consumer information similar to DrugDigest's, but with less structure (one 

can only search on drug names; there are no other hyperlinks).  So, in addition to licensing issues 

(the information is copyrighted by the American Society of Health-System Pharmacists), 

MedMaster would, like SPL, require extensive text mining to parse and normalize.  Neither 

MedMaster nor DrugDigest list the finasteride drug Propecia, nor does DrugDigest list baldness 

or alopecia as an indication; as suspected, these consumer-oriented services could have a 

significant coverage gap relative to RXNORM and our other potential sources.  Nevertheless, 

NLM is adding a right-click linkout to MedMaster to development versions of RxNav. 

WHO-ATC.  (http://www.whocc.no/atcddd/ )  This is the widely used (by pharma) 

World Health Organization Anatomic-Therapeutic-Chemical drug classification ontology.  

Despite its ontological imperfections, there is interest in having it integrated with other chemical, 

biological, and medical knowledge for use by basic researchers (Castle et al., 2007; Yildirim et 

al., 2007) in addition to its traditional use by the pharma clinical/regulatory sector.  The 2005 

edition has 4,068 specific drug-by-class entries equivalent to about 2,800 unique, specific, single-

ingredient generic names, the remainder being about equally split between duplicates (drugs that 

map to multiple classes) and other entries.  These "other entries" warrant a closer look as they 

include specific combination and other terms which could be usefully mapped onto RXNORM, 

although many of them are out-of-scope (e.g., "Zinc bandages").  Even the "duplicates" may 

correspond to different doses or dosage forms of the same drug.  In January I will have access to 

Merck's copy of the 2008 edition for pilot work.  The full-price subscription is 160 euros ($233), 

reduced by half "after July" for the January release, so cost and licensing for WHO-ATC are not 

problematic.  WHO-ATC will be our first example of direct, UMLS-like, terminologically 

normalized integration of a non-UMLS source into RxNav. 

 WHO-DRUG.  Properly referred to as the WHO Drug Dictionary Enhanced 

(http://www.umc-products.com/DynPage.aspx?id=2829&mn=1107 ), this is WHO's 
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comprehensive but flawed and expensive cross-mapping of generic names ("Ingredients" in 

RXNORM), trade names, combination products, and ATC codes.  For our purposes we only need 

the drug-ATC code relations of which WHO-DRUG appears to cover about four times as many 

as WHO-ATC, which appears to cover only about half of RXNORM's lexicon.81  Getting an 

exact ATC-RXNORM coverage number is a research question.  Research questions for WHO-

DRUG: Can we get a free or cheap research license?  Does additional (relative to WHO-ATC) 

coverage of RXNORM's lexicon justify additional cost and effort?  The regular cost (85,000 

Swedish kroners = $13,446 for a single-user, one-shot copy) is prohibitive unless assumed by 

NLM or negotiated downward by >10x.  I inquired on November 5, 2007, and have not yet 

received a reply. 

 INN (International Nonproprietary Names).  

(http://www.who.int/medicines/services/inn/en/index.html )  WHO oversees this effort to give 

standard generic names in several languages to all approved drugs.  The database is claimed to 

cover more than 8,000 names and is available online for free in the form of 153 "lists" (58 lists of 

"recommended INN's" and 97 lists of "proposed INN's") in PDF format 

(http://www.who.int/druginformation/general/innlists.shtml ).  A screenshot of a sample record is 

shown in Figure 15 (top) where it can be seen that the data elements are the INN in Latin, 

English, French, and Spanish; the chemical name in English, French, and Spanish; the empirical 

formula; and the chemical structure graphic.  INN's typically follow the British Approved Name 

(BAN) more often than the USAN, whereas RXNORM presumably follows USAN, so some 

mapping would be required.  The biggest problem, of course, is the PDF format, which loses its 

structure when copied and pasted as ASCII text (Figure 15 bottom).  So the free online access is 

useless for our purposes and the thinness of the metadata we are interested in (English chemical 

names only) does not seem to justify the required effort. 

                                                 
81 As of September 7, 2007, WHO-DRUG claimed to contain 189,284 unique names; 1,123,194 different 
medicinal products (trade names, form and strength subtypes, etc.); and 9,899 different ingredients (generic 
names). 
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cevipabulinum 
cevipabulin 5-chloro-6-{2,6-difluoro-4-[3-(methylamino)propoxy]phenyl}- 
N-[(1S)-1,1,1-trifluoropropan-2-yl][1,2,4]triazolo[1,5-a]pyrimidin- 
7-amine 
cévipabuline 5-chloro-6-{2,6-difluoro-4-[3-(méthylamino)propoxy]phényl}- 
N-[(1S)-1,1,1-trifluoropropan-2-yl][1,2,4]triazolo[1,5-a]pyrimidin- 
7-amine 
cevipabulina 5-cloro-6-à2,6-difluoro-4-[3-(metilamino)propoxi]fenil}- 
N-[(1S)-1,1,1-trifluoropropan-2-il][1,2,4]triazolo[1,5-a]pirimidin- 
7-amina 
C18H18ClF5N6O 
N 
N 
N 
N 
HN 
Cl 
F 
O F 
HN H3C CF3 
H CH3 
 

Figure 15.  Online INN excerpt (top) and resulting copy-and-paste ASCII text format (bottom). 
 
 

 International Pharmacopoeia.  

(http://www.who.int/medicines/publications/pharmacopoeia/en/index.html )  This is another 

WHO publication which contains drug metadata of interest for our purposes (molecular weight, 

chemical name, chemical structure graphic, solubility, and therapeutic class ("Category"), in an 



 

 

181

Index Nominum-like semi-structured monograph format.  The drug names and "Category" terms 

would have to be normalized, and the solubility information would have to be parsed from free 

text and also normalized.  Given these and potential licensing issues (although the standard cost is 

only $180 for the CD-ROM), the low coverage (420 drugs) does not justify further consideration 

of this source. 

 eEphMRA Anatomical Classification of Pharmaceutical Products.  

(http://www.ephmra.org/main.asp?page=465 November 9, 2007)  This lesser known but free and 

WHO-ATC-like ontology is produced by the European Pharmaceutical Market Research 

Association and might be a serviceable substitute for WHO-ATC.  However, I don't see any 

actual drug classifications (A-box) on their web site, just the "guidelines" (T-box).  It has been 

mapped to WHO-ATC (EphMRA, 2007) so some combination of EphMRA T-box and WHO A-

box is possible, but then what's the point?  EphMRA also publishes a dosage form coding system 

called "New Form Codes" (NFC) (http://www.ephmra.org/main.asp?page=466 ). 

 USP/USAN.  The U.S. Pharmacopeia is the official U.S. drug naming authority, and the 

USP Dictionary of USAN and International Drug Names (USAN = United States Adopted 

Names) is its continually updated reference available for sale as a hardcopy or online book 

(http://www.usp.org/products/dictionary/ ) or (maybe) as a custom-formatted database.82  This is 

the best source of U.S. generic name links to their corresponding chemical names, chemical 

structure graphics, and Chemical Abstract Service (CAS) registry numbers, but the "therapeutic 

claim" (~class) terminology is uncontrolled, almost chaotic.  Chemical names and structure 

graphics are more easily available from MeSH, PubChem, and ChemIDplus, but we might revisit 

USP/USAN for CAS numbers and/or "lab number" manufacturer codes (details later). 

 PubChem.  (http://pubchem.ncbi.nlm.nih.gov/ )  PubChem provides information on the 

biological activities of small molecules, and has been suggested as a candidate for UMLS and/or 

                                                 
82 At least in 2001 Merck was able to negotiate a one-time purchase of the XML file from which the book 
was printed, and reformat it as a database. 
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RxNav integration by a Merck bioinformatics research group (J. Castle, personal communication, 

2007).  It is already owned by NLM but poorly structured (O. Bodenreider, personal 

communication, 2007).  This information is readily extractable without NLP from the XML 

download format at the :PubChem FTP site.  In addition, PubChem online links each compound 

to related "Substance"; "Substance category"; "Synonyms"; "Structure search / Related 

Structures"; "Bioassay / Assays"; "Protein3D"; "Rule of 5"; "Literature"; and "Other [non-NLM] 

Links" (e.g., Ingenuity Pathways Analysis, which is used extensively at Merck).  All of this 

information is potentially interesting to pharma basic researchers for reasons discussed below 

under the SPL-UMLS comparison ("Quality assessment (2)").  However, the volume and 

complexity of it are daunting, so perhaps we can settle for simply linking to it rather than 

extracting and replicating it (with or without terminological normalization).  Linking from an 

RXNORM "Ingredient" to the PubChem search result page is trivial, following the pattern  

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=pccompound&term=Finasteride      

To link directly to the "Compound" data page, we would need a map of RXNORM Ingredients to 

their corresponding PubChem CID's.  Then the link becomes 

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=57363    

 ChemIDplus.  This is a free, open-access web service from NLM Specialized 

Information Services (SIS) (http://sis.nlm.nih.gov/ ).  There are two versions, Advanced and Lite 

(http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp )  From either, the search result page has a 

"Full Record" option which follows the URL pattern   

http://chem.sis.nlm.nih.gov/chemidplus/ProxyServlet?objectHandle=Search&actionHandle=getA

ll3DMViewFiles&nextPage=jsp%2Fcommon%2FChemFull.jsp%3FcalledFrom%3Dlite&chemi

d=098319267&formatType=_3D  where 098319267 is a reformatting of an RXNORM 

Ingredient's Chemical Abstract Service (CAS) registry number, in this case finasteride's, 98319-

26-7.  Mappings of generic names to CAS numbers are readily available from MeSH and 

elsewhere.  One cannot link directly to this URL as currently engineered, but presumably that 
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could be negotiated between the RxNav and SIS teams at NLM.  ChemIDplus' structure similarity 

search is on a different page.  Assuming both cover RXNORM Ingredients equally, I found 

ChemIDplus to be roughly equal to PubChem content-wise but much easier to use.  So the 

ChemIDplus Full Record is a third candidate (in addition to the SPL label and the PubChem 

Compound page) for RXNORM Ingredient-specific hyperlinkage on RxNav. 

 DrugBank.  (http://redpoll.pharmacy.ualberta.ca/drugbank/ )  This is a free, open-access 

database of biological data about drugs provided by the University of Alberta.  It was used by 

both Castle et al. (2007) and Yildirim et al. (2007).  Research questions: How does it compare to 

UMLS and PubChem for target and pathway coverage?  What other kinds of drug information 

does it have and how well-structured is it for integration with RXNORM?  DrugBank appears to 

be the ultimate "top of the hourglass" trying to cover all medical (SPL-like), chemical (PubChem- 

and ChemIDplus-like), and biological concepts related to a given drug, including a structure 

similarity search and outlinks to numerous other public databases.  So it is certainly equally 

deserving of at least a hyperlink from RxNav.  The direct-link URL pattern for the "Ingredient" 

search result is http://redpoll.pharmacy.ualberta.ca/drugbank/cgi-

bin/webglimpse.cgi?ID=16&whole=ON&cache=yes&query=Finasteride  

and for the data display is  

http://redpoll.pharmacy.ualberta.ca/drugbank/cgi-bin/getCard.cgi?CARD=APRD00632.txt where 

APRD00632 is the DrugBank accession number for Finasteride, so a map would be needed for 

the latter.  As for extracting specific Ingredient relations to display in an enhanced RxNav, 

DrugBank has the same problems as SPL, PubChem, and ChemIDplus: volume, complexity, and 

need for text mining and terminological normalization.  The only information which might be 

worth extracting and linking to "Finasteride" in RXNORM is which, compared to UMLS's is 

more precise, terminologically robust, and integratable with molecular biology and pathway 

databases (GenBank, SwissProt, IPA, etc.) used by pharma basic researchers. 
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Table 33.  DrugBank vs. UMLS structured molecular target data. 
 
 DrugBank 
 

dimension value 
Drug Target 1 Name 5-alpha reductase 1 
Drug Target 1 Gene Name SRD5A1 
Drug Target 1 Synonyms 3-oxo-5-alpha-steroid 4-dehydrogenase 1 
Drug Target 1 Synonyms EC 1.3.99.5 
Drug Target 1 Synonyms Steroid 5- alpha-reductase 1 
Drug Target 1 Synonyms SR type 1 
Drug Target 1 Synonyms S5AR 

 
 UMLS 
 

source rel rela value 1 value 2 
SNOMEDCT PAR inverse_isa Finasteride 5-Alpha reductase 

inhibitor 
NDFRT RO mechanism_of_ 

action_of 
Finasteride 5-Alpha reductase 

inhibitor 
 

 NDFRT 2007 data.  (ftp://ftp1.nci.nih.gov/pub/cacore/EVS/FDA/ndfrt/ )  At NLM, the 

rap against the otherwise very impressive contribution of NDFRT to UMLS's drug knowledge is 

that it hasn't been updated since 2004.  The tables available for download at this ftp site are dated 

June 2007.  Research question: How do these tables compare to 2004 NDFRT data in UMLS with 

respect to structure/syntax, coverage, and quality?  The data are just dictionaries linking abstract 

codes of the form "N0000000206" to various Mechanism of Action, Physiologic Effect, and 

Structural Class descriptors.  There are no links to drug concepts.  The latest update for 

Mechanism of Action (10/3/2007) contains 361 unique terms, as compared to 181 NDFRT 

"has_mechanism_of_action" non-drug arguments in UMLS 2007AB.  So clearly there has been 

substantial growth in these terminologies and, in addition, a close analysis shows that 31 UMLS 

Mechanism of Action terms have been expired or changed.  But without the drug concept links 

these files are useless to us. 

 KEGG (Kyoto Encyclopedia of Genes and Genomes).  This is a bioinformatics 

resource for linking genomes to biological systems and environments (www.genome.jp/kegg/ ) 

including drugs (O. Bodenreider, personal communication, 2007); to be investigated. 
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Appendix E.  Normalization 

We used an ad hoc normalization process that was informed by our past and current 

experience with the drug information literature ("literary warrant"), resources ("community 

warrant"), and professional work in biomedical terminology ("user warrant").  Along with 

addressing our research questions, the goal was to let the resources "speak for themselves" as 

much as possible and leave open a variety of paths forward, such as facet analysis, choosing a 

particular preferred target terminology (MeSH, SNOMEDCT, NDFRT, etc.), or employing 

automation aids such as the Merck autoencoder or NLM's MetaMap Transfer.83 

Intensional content.  For an example of intensional content normalization, 

UMLS/NDFRT's relationship Other related/may_be_treated_by was normalized to the dimension 

indication - treatment.  This dimension name is based on this line of reasoning. 

• Indications are mentioned in the literature as a desirable class of drug information to 

integrate (literary warrant).  

• There is a standard,package insert section heading "Indications & Usage" (community 

warrant).  

• Indications are usually dichotomized into prevention and treatment  (community 

warrant);  

• Approved indications are a distinct and crucial (medically, legally, marketing-wise, etc.) 

subset, hence we also inferred the more specific dimensions indications - treatment - 

approved and indications - prevention - approved (user warrant). 

• However, UMLS/NDFRT does not distinguish approved from other indications 

(community warrant). 

                                                 
83 http://mmtx.nlm.nih.gov/  
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• Finally, we impose a morphosyntactic preference for dictionary case, singular form, and 

rotation of subtype qualifiers separated by " - " to yield a pseudo-hierarchy (user 

warrant). 

 Other examples of raw relationships and hyperlink/headings which were normalized to 

indication and its subtypes are  

• UMLS/NDFRT's Other related/may_be_prevented_by 

• ClinicalTrials.gov's Condition 

• DailyMed's Indications & Usage 

• DrugDigest's Learn how <this drug> is used to treat: 

• MedMaster's Why is this medication prescribed? 

• MedMaster's Other uses for this medicine 

 Extensional content.  One purpose of normalizing the values is to validate the 

intensional dimension mappings.  That is, for example, do all the values corresponding to 

ClinicalTrial.gov's Condition relationship represent concepts that can be considered indications?  

Our results suggests that they are.  In future extensions of our work, if this pattern continues to 

hold for more drugs, it reinforces our confidence in the source-relationship-dimension mapping.  

Normalizing the value names facilitates their semantic typing by manual review and/or automated 

classification by, for example, UMLS semantic types (e.g., Disease or Syndrome, a kind of 

indication) or MeSH tree headings (e.g., Diseases). 

Another purpose of normalizing the values is to support search, retrieval, and pooling of 

data.  We want to be able to query the database across resources for drugs that have certain values 

for certain dimensions, or combinations of dimension-value sets, regardless of how the values (as 

well as dimensions) are expressed in the raw source data. 

The third reason for normalizing the values is to extract dimensional information not 

given by nonspecific relationships/headings such as  



 

 

187

• UMLS/MeSH's isa  

• DailyMed's Description  

• DrugDigest's What is/are <this drug>?  

We know that these are nonspecific because of their lexical makeup and the fact that under them 

we have found a mixture of different dimensional types of values.  In these cases, the 

relationship/heading provides inadequate clues for mapping the value to a dimension since.  

Normalization facilitates semantic typing, which may suffice.  However, the same value/semantic 

type may map to multiple, very semantically different dimensions.  Medical  conditions, for 

example, can be indications, contraindications, or side effects; enzymes can be molecular targets, 

metabolism - enzymes, or (with "deficiency") medical conditions; "500 mg" can be a unit dose 

(amount of drug in the pill), daily dose, twice daily dose, lethal dose, etc.  In such cases a "value-

dimension clue" must also be extracted and normalized, as discussed in the Methods section (see 

also Table 6). 

Dimension-value mismatches.  What if a value is found under the "wrong" dimension in 

the raw source data?  For example, the KEGG DRUG Target value for finasteride is "5alpha-

reductase inhibitor [KO:K00250] [EC:1.3.99.5] [PATH:map00120] [PATH:map00150]."  Target 

intensionally normalizes to molecular target but "5alpha-reductase inhibitor" normalizes to "5-

alpha reductase inhibitor", finasteride's canonical therapeutic class.  Should we normalize the 

value to "5-alpha reductase" and map it to molecular target, "5-alpha reductase inhibitor" and 

map it to therapeutic class, or both?  Such semantic type fittings are reminiscent of the range 

concept in formal ontologies.  Sharp et al. (2008) characterized this issue as a lack of 

independence among the dimensions.84 

                                                 
84 "Some of the dimensions are not independent from each other. In particular, a drug's therapeutic class, 
molecular target, mechanism of action, and biological effect can often be inferred from a single one of 
them. For example, a drug whose therapeutic class is '5-alpha reductase inhibitor' has '5-alpha reductase' as 
its molecular target and '5-alpha reductase inhibition' as its mechanism of action" (Sharp et al., 2008, p. 
664). 
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 Consistency.  Excel's built-in sort and string-matching functions were used to identify 

and correct normalization inconsistencies in the database.  For example, since the data was 

initially loaded in "drug order," a given resource's dimension mappings were widely separated in 

time and space.  By sorting on resource (column C), raw dimension (F), and normalized 

dimension (O), one may pull like dimension mappings together for examination across drugs.  

Such examinations may use string-matching formulae in a separate (dummy) column to highlight 

inconsistencies.  Similarly, the consistency of raw value (H) clue parsing (N) and normalization 

(Q) can be checked across resources and drugs.  Consistent clue annotation (J, K, L, N) and 

normalization (O, Q) are also amenable to this approach. 
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Appendix F.  Use Case Adaptation and Query Execution 

Excel is convenient for prototyping because of its flexibility and transparency (no 

programming or formal query language needed), but it is not a particularly user-friendly database 

technology.  We leave better database technology to future extensions.  Following are examples 

of the use case adaptations and Excel query simulations underlying some of our research findings. 

Health Use Case A.  Where X is a dimension not covered by RXNORM,  

  (1) for a given value of generic name find alternate values of X,  

  (2) for a given value of X find alternate values of generic name.   

Example:  (1) "Find all indications for finasteride"  generic name = "finasteride"; X = "clinical 

- indication …".   

1. Sort on column B (normalized generic name) and column O (normalized dimension). 

2. Search column B for "finasteride" and then column O for "clinical - indication". 

3. Copy all the rows that have "finasteride" in column B and "clinical - indication …" (… = any 

subtype) in column O (N=101) to a scratch worksheet. 

4. The normalized indication values will be given in column Q of the scratch worksheet, and 

their intra-generic linkages, if any, in columns R and S.85 

To refine the results to approved indications: 

5. In the scratch sheet cell T1 write a formula to code for the occurrence of the string 

"approved" in column O: '=search("approved",O1)' without the single quotes. 

6. Copy cell T1 to cells T2:T101. 

7. Sort the scratch sheet on column T.  This will bring all the "approved"/O hits (N=13) to the 

top. 

Health Use Case B.  The converse query -- (2) "Find all generics indicated for BPH"  

X = "clinical - indication …"; "value of X" = "benign prostatic hyperplasia" -- would be executed 

                                                 
85 http://comminfo.rutgers.edu/~msharp/XKB/Health_usecaseA.xls  
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identically only substituting column Q for B and "benign prostatic hyperplasia" for 

"finasteride".86 

Research Use Case A.   A cluster of structurally similar compounds targeting the TACR1 

gene product (known to be associated with abnormal pain threshold ) was found that points to the 

WHO-ATC class "antiemetics and antinauseants", suggesting that TACR1 modulation may 

produce antinauseant activity, and/or that there is a possible connection between antinauseant 

activity and abnormal pain threshold (Castle et al., 2007). 

 Clustering. 

1.  Sort the database on column O (normalized dimension). 

2.  Copy all rows with O equal to "chemistry - chemical superclass" or "biology - molecular 

target" (N=240) to a scratch worksheet. 

3.  Sort the scratch worksheet on columns B (normalized generic name), O (normalized 

dimension), and Q (normalized value), and remove duplicates of those triples (remaining N=103). 

4.  Sort the scratch worksheet on Q.  This brings together clusters of values independent of 

dimension.  One such cluster is "quinazoline" corresponding to the chemistry - chemical 

superclass of a set of six normalized generic names (B): doxazosin, doxazosin mesylate, prazosin, 

prazosin hydrochloride, terazosin, and terazosin hydrochloride.87  This is our substitution for 

Castle et al.'s chemical similarity measure.88 

5.  Sort the scratch worksheet.on B and O and look up the biology - molecular target of these six 

drugs.  In all cases it is an isoform of the alpha1 adrenergic receptor.  This is our substitution for 

the TACR1 gene product. 

6.  Alternatively, in step 4 one could identify the cluster of alpha1 adrenergic receptor molecular 

target values and trace it through the same set of drugs to the chemical superclass quinazoline. 

                                                 
86 http://comminfo.rutgers.edu/~msharp/XKB/Health_usecaseB.xls  
87 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_cluster.xls  
88 Our database contains numerous representations of each drug's chemical structure under chemistry - 
formula and its sub-dimensions.  Perhaps someone with more domain knowledge could devise a way to use 
this data for better chemical similarity clustering. 
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 Finding biological associations of the molecular target. 

7.  These are given in the database under the normalized dimensions (O) biology - molecular 

target - general function, biology - molecular target - specific function, biology - molecular target 

- GO biological process, biology - molecular target - pathway.  Copy these rows (N=180) to a 

new scratch worksheet. 

8.  Sort the scratch worksheet on the linked target value (column S) and remove all rows where S 

is not equal to one of the alpha1 adrenergic receptor isoforms (remaining N=112).89 

9.  Sort the scratch worksheet.on the normalized value (Q) and remove duplicates.  This will 

produce a list of 13 non-trivial target biological correlates.  This list is comparable to "abnormal 

pain threshold" in the example. 

 Finding biological associations of the drug. 

10.  To simulate Castle et al.'s example using only WHO-ATC, sort the database on normalized 

dimension (O) and normalized generic name (B) and look up prazosin's, doxazosin's, and 

terazosin's clinical - therapeutic class - WHO-ATC 5th level code's.  For prazosin and doxazosin 

the first five digits are C02CA.  The first biological (as opposed to molecular) descriptor in the 

ATC hierarchy for this code is (C02) "antihypertensives."  (This inference requires some WHO-

ATC experience but can be discovered within the source (column C) = WHO-ATC records of our 

database, or on the web by various means.)  For terazosin the code is G04CA, whose closest 

biological ATC descriptor is (G04C) "drugs used in benign prostatic hypertrophy."  These two 

descriptors are comparable to "antiemetics and antinauseants" in the example. 

11.  A much richer list of these drugs' biological associations can be extracted from our database 

based on these normalized dimensions ("…" means including sub-dimensions): biology - 

biological effect, biology - mechanism of action, clinical - indication …, clinical - therapeutic 

class.  Sort the database on O and copy all such records to a new scratch worksheet (N=2430). 

                                                 
89 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_bio_target.xls  
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12.  Sort the scratch worksheet on B and delete all rows not containing one of the drugs of interest 

(prazosin, etc.) (remaining N=802). 

13.  Sort the scratch worksheet on B,O,Q and remove duplicate triples (remaining N=367). 

14.  Copy column Q to column V, sort it, and remove duplicates, "<negative>", and NCT 

numbers.  This list of 127 drug biological correlates is comparable to "antinauseant activity" in 

the example.90 

Research Use Case B.   The WHO-ATC class "cardiovascular system" points to a list of 

cardiovascular drugs whose gene targets map to a smaller list of phenotypes.  The highest ranking 

phenotype is "decreased heart rate" which is consistent with the WHO-ATC class.  This suggests 

that other WHO-ATC drug gene target phenotype mappings might be mined for 

phenotype:disease hypotheses (Castle et al., 2007). 

 Our biology - molecular target dimension can substitute for "gene targets," but we do not 

have phenotypes independently mapped to molecular targets.  We can simulate this use case in 

two ways.  The first is basically the same as the prior use case, only narrowing the drug biological 

correlates to indication and its sub-dimensions for "disease" and substituting the target biological 

correlates for "phenotypes".  This would produce a set of bioprocess:disease rather than 

phenotype:disease hypotheses (e.g., "heart rate:cardiovascular" rather than "decreased heart 

rate:cardiovascular").  The second is to leave "gene targets" out of the loop and substitute the 

drug biological correlates for "phenotypes" and indication and its sub-dimensions for "disease."  

This would produce a set of hypotheses which would be closer semantically to phenotype:disease 

hypotheses (e.g., "decreased heart rate" could be a biological effect, mechanism of action, or 

pathway as well as a phenotype or indication). 

Research Use Case C.   Campillos et al. (2008) extracted specific sets of drugs with 

common side effects but different WHO-ATC therapeutic classes, and used the drugs' molecular 

target and chemical structure/similarity values to predict previously unknown shared targets, 
                                                 
90 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseA_bio_drug.xls  
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which were tested by in vitro and cell assays.  The validated shared targets predict novel 

hypothetical indications and therapeutic classes for existing drugs.  For example, a set of nervous 

system drugs was found to have side effects in common the antiulcer drug rabeprazole.  Four of 

their targets were predicted to bind rabeprazole, and two - the dopamine receptor DRD3 and the 

serotonin receptor HTR1D - were validated.  This suggests that rabeprazole may be therapeutic 

for the indications of zolmitriptan (migraine), pergolide (Parkinson's disease), and paroxetine and 

fluoxetine (psychiatric disorders91). 

 Finding drugs with common side effects but different therapeutic classes. 

1.  The relevant mappings are "drugs":normalized generic name  (column B) and these 

dimensions: "side effects":clinical - precaution - side effect …, "therapeutic classes":clinical - 

therapeutic class …, "molecular target":biology - molecular target, "chemical 

structure/similarity":chemistry - chemical superclass, and "indications":clinical - indication …. 

2.  Sort the database on column O and copy all rows with "clinical - precaution - side effect …" or 

"clinical - therapeutic class - WHO-ATC 5th level code" to a scratch worksheet (N=1277). 

3   For this exercise we can pool the salts with their parents since in our sample they always have 

the same WHO-ATC classes.  Highlight column B of the scratch worksheet and delete all 

("replace all") occurrences of the following strings: " hydrochloride"; " mesylate"; " acetate" 

[note the leading blank]. 

4.  Sort the scratch worksheet on B,Q and remove duplicate doubles (remaining N=440). 

5.  Sort the scratch worksheet on O and bring the 9 WHO-ATC rows to the top. 

6.  Delete the last two digits of all nine WHO-ATC values (e.g., "C02CA04"  "C02CA"). 

7.  Pool the two finasteride WHO-ATC values in one cell ("D11AX ; G04CB") and delete the 

other finasteride WHO-ATC row. 

                                                 
91 fluoxetine: depression, obsessive-compulsive disorder, some eating disorders, panic attacks, premenstrual 
dysphoric disorder; paroxetine: depression, panic disorder, social anxiety disorder, obsessive-compulsive 
disorder, generalized anxiety disorder, posttraumatic stress disorder, premenstrual dysphoric disorder. 
Source: MedMaster. 
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8.  Change the WHO-ATC rows' font color rows to red and copy their column Q contents to 

column U. 

9.  Sort the scratch worksheet on B and copy all the WHO-ATC codes in column U to the 

following set of empty U cells down to the cell preceding the next drug's WHO-ATC row. 

10.  Sort the scratch worksheet on O and delete all the WHO-ATC rows (remaining N=431). 

11.  Sort the scratch worksheet on Q,U and flag all adjacent rows with "common side effects but 

different therapeutic classes" (equal Q but unequal U92) (N=214). 

12.  Copy column B of the flagged rows to column W, sort, and remove duplicates.  This will 

leave 9 "drugs with common side effects but different therapeutic classes"; i.e., all nine parent 

drugs, and therefore our whole database, constitute such a set of drugs.93 

 Predicting previously unknown shared targets based on chemical structure/similarity. 

13.  Sort the database on column O and copy all rows with biology - molecular target or 

chemistry - chemical superclass to a new scratch worksheet (N=240). 

14   Pool the salts with their parents as above. 

15.  Sort the scratch worksheet on B,Q and remove duplicate doubles (remaining N=80). 

16.  Concatenate multiple Q values pertaining to the same B,O pair and put the concatenated 

string in the first U cell of each B,O pair. 

17.  Sort the scratch worksheet on U.  This will bring the 16 concatenated values to the top. 

18.  Sort those 16 rows on O.  To a chemist, the eight chemical superclass rows contain two 

chemical structure/similarity clusters: {finasteride, dutasteride}and {prazosin, terazosin, 

doxazosin}.94 

                                                 
92 Enter "=if(or(and(q9=q10,u9<>u10),and(q9=q8,u9<>u8)),0,1)" into cell V9, then copy V9 to V10:V431, 
then copy and paste-special-values V9:V431, then sort on V. 
93 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_SE_TC.xls  
94 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_MT_CS.xls  
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19.  Comparing the eight molecular target concatenated U values for each suggests the following 

hypothetical ("unknown") targets (e.g., finasteride targets not common to dutasteride would be 

hypothetical dutasteride targets): 

 dutasteride: 5-beta reductase; androgen receptor95 

 terazosin:  alpha1C adrenergic receptor 

20.  Like Campillos et al., we do not have the targets mapped directly to indications or therapeutic 

classes, so we can either go through the targets' known drug ligands, as they did, or substitute the 

target biological correlates for indications and therapeutic classes. 

 Finding novel hypothetical indications and therapeutic classes for existing drugs based 

on hypothetical targets known drugs. 

21.  To do the first option, sort the database on {O,Q,B} and look up the normalized generic 

name (B) corresponding to biology - molecular target (O) = "5-beta reductase", "androgen 

receptor", or "alpha1C adrenergic receptor" (Q).  For "5-beta reductase" and "androgen receptor" 

it is finasteride; for "alpha1C adrenergic receptor" it is {doxazosin, prazosin}. 

22.  Copy the clinical - indication … rows to a scratch worksheet, remove duplicate (B,O,Q) 

tiples, delete the clinical trial IDs, then sort on (B). 

23.  Separate, pool, and sort the dutasteride and finasteride (B) rows on (Q).  Flag any (Q) value 

for finasteride (B) which is not also a value for dutasteride (B).  These are the hypothetical 

indications for dutasteride resulting from this simulation of Campillos et al. (N=14). 

24.  Repeat the prior step substituting {terazosin, terazosin hydrochloride} for dutasteride and 

{doxazosin, prazosin} for finasteride.  The results are the hypothetical indications for {terazosin, 

terazosin hydrochloride} resulting from this simulation of Campillos et al. (N=73).96 

25.  Copy the clinical - therapeutic class … rows from step 21 to a new scratch worksheet, 

remove duplicate (B,O,Q) tiples, then sort on (B). 

                                                 
95 The nonoverlapping target pair {finasteride: 3-oxo-5-alpha-steroid 4-dehydrogenase 2} and {dutasteride: 
5-alpha reductase type II} are synonyms. 
96 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_MT_drug_ind.xls  
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26.  Separate, pool, and sort the dutasteride and finasteride (B) rows on (Q).  Flag any (Q) value 

for finasteride (B) which is not also a value for dutasteride (B).  These are the hypothetical 

therapeutic classes for dutasteride resulting from this simulation of Campillos et al. (N=7). 

27.  Repeat the prior step substituting {terazosin, terazosin hydrochloride} for dutasteride and 

{doxazosin, doxazosin mesylate, prazosin, prazosin hydrochloride} for finasteride.  The results 

are the hypothetical therapeutic classes for {terazosin, terazosin hydrochloride} resulting from 

this simulation of Campillos et al. (N=14).97 

 Finding novel hypothetical indications and therapeutic classes for existing drugs based 

on hypothetical targets' biological correlates. 

28.  To do the second option of #20, sort the database on {O,Q,B} and the target biological 

correlates as defined in Research Use Case A Step 7 [(O) = {biology - molecular target - general 

function, biology - molecular target - specific function, biology - molecular target - GO 

biological process, biology - molecular target - pathway}].  Copy all such rows to a new scratch 

worksheet (N=180). 

29.  Sort the scratch worksheet on the linked-to value (S) and delete all rows where this value is 

not one of {5-beta reductase, androgen receptor, alpha1C adrenergic receptor} (N=14 remaining; 

14 for androgen receptor and 0 for alpha1C  adrenergic receptor). 

30.  All 14 of the androgen receptor correlates are mapped only to finasteride, so they constitute 

hypothetical new drug biological correlates for dutasteride according to this model.  One is null 

("<no data>"), leaving 13. 

31.  The corresponding indications and therapeutic classes would be obtained by mapping these 

13 values (Q) to their normalized generic names (B) in the whole database, and then the resulting 

normalized generic names to their clinical - indication … and clinical - therapeutic class … (O) 

                                                 
97 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_MT_drug_TC.xls  
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values (Q).  In our database, the only (B) hit is finasteride, so the results are the same as in the 

first approach (#23 and #26).98 

Research Use Case D.   A researcher wonders if any existing drugs might be 

"repurposed" (Boguski et al., 2009) to prevent prostate cancer.  She searches ClinicalTrials.gov 

and gets a list of clinical trials which link the Condition "Prostate Cancer" to various 

Interventions including drug names.  She thinks this is a good start, but what she really needs is to 

find other, chemically related drugs and chemicals which are not on this list or already approved 

for prevention of prostate cancer.   

 Finding drugs in clinical trials on prostate cancer. 

1.  Go to http://ClinicalTrials.gov and search for "prostate cancer" without the quotes. 

2.  Download all 1823 retrieved trials in the default format (N=14,586 txt file lines). 

3.  Open the txt file with Excel and sort on column A. 

4.  Remove all rows that do not have the string "Drug: " (remaining N=1356). 

5.  Copy the data into a new Word document as text only. 

6.  Replace "Drug: " with "^pDrug: ^t" in all and "|" with "^t" in all. 

7.  Copy the data into a new Excel worksheet and sort on column A descending.  This will bring 

all the drugs to the top of column B (N=1830).  Delete the other rows and columns. 

8.  Sort and remove duplicates (remaining N=723).  This is the desired list of drugs in clinical 

trials on prostate cancer. 

9.  Match this list with the column D raw drug names in the database.  (This can be done by 

sorting and visually scanning, among other ways.)  The results are Dutasteride [dutasteride], 

ELIGARD [leuprolide acetate], Finasteride [finasteride], Leuprolide [leuprolide], Leuprolide 

Acetate [leuprolide acetate], Leuprorelin [leuprolide], LUPRON [leuprolide acetate], and 

Tamsulosin [tamsulosin].  Reduced to normalized generic parent names (B): dutasteride, 

finasteride; leuprolide, and tamsulosin. 
                                                 
98 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseC_MT_targ.xls  
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 Finding chemical characteristics of drugs in clinical trials on prostate cancer.  

10.  Sort the database on (O,B) and look up the values corresponding to (B) = {dutasteride, 

finasteride; leuprolide, tamsulosin} and informative99 chemistry … dimensions; i.e., (O) = 

{chemistry - chemical complexity, chemistry - chemical superclass, chemistry - heavy atom count, 

chemistry - Lipinski …, chemistry - physical properties - melting point, chemistry - polarity - 

TPSA, chemistry - rotatable bond count, chemistry - solubility …, chemistry - stereocenter count 

…, chemistry - tautomer count}.100  The most parsimonious resource collection that supplies this 

data is DrugBank, MeSH/UMLS, and PubChem. 

11.  Of the four drugs, tamsulosin had the most typical values for these dimensions across all 

drugs in our database, so, hoping to find other drugs with similar values, we chose to make it our 

model prostate cancer drug.101 

 Finding drugs with chemical characteristics of drugs in clinical trials on prostate 

cancer. 

12.  Continuing from #11, find drugs (B) with similar values (Q) to those of tamsulosin for the 

above chemistry … dimensions (O).  Surprisingly, seven out of the nine parent drug compounds 

in our database qualified; in order of number of closest values to tamsulosin's, finasteride (8), 

prazosin (7), terazosin (6), doxazosin (4), dutasteride (4 ), leuprolide (1), and ticlopidine (1).102 

13.  The difference between #10's four drugs and #12's seven (plus tamsulosin) constitutes our 

retrieval of tamsulosin-like compounds not currently in clinical trials on prostate cancer: prazosin, 

terazosin, doxazosin, and ticlopidine. 

                                                 
99 The idea here was to focus on descriptive ("natural") as opposed to nominal values.  Therefore other 
database's ID's, nomenclature, and formulas were not used.  It could be argued that the latter also are 
naturally descriptive, but the requisite drill down, parsing, and clustering challenges exceed our Excel 
string-matching capabilities.  We also eliminated dimensions with predominantly null or homogeneous 
values (e.g., charge; all values = 0) attributable solely to our small drug sample. 
100 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet1 
101 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet2 
102 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 column G 
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14.  Compare these results to the "similar compound" searches available on PubChem, 

ChemIDplus, DrugBank, and KEGG DRUG.  Surprisingly, they all retrieved different top hits for 

tamsulosin.  From DrugBank we obtained dofetilide, bumetanide, and piretanide.  From KEGG 

DRUG we obtained amosulalol, formoterol, and isoxsuprine.  PubChem's and ChemIDplus' 

utilities offered no obvious, easy way to filter the results down to such approved drugs 

comparable to prazosin, terazosin, doxazosin, and ticlopidine. 

15.  Using the original resources' (DrugBank, UMLS, and PubChem) web interfaces, look up the 

values for the dimensions given in #10 above for dofetilide, bumetanide, piretanide, amosulalol, 

formoterol, and isoxsuprine.103 

16.  Compute the nine other compounds' chemical (dis)similarity to tamsulosin as the percent 

deviation of a given drug's values from the corresponding value for tamsulosin.  For example, 

given the melting points of 227oC for tamsulosin and 250oC for finasteride, the melting point 

deviation of finasteride is |(227-250)/227| = 10%.  For each drug, average the deviations over 

three groups of dimensions: physical behavior (melting point and solubility), chemical 

complexity (including the Lipinski parameters, polarity, and rotatable bonds), and stereocenter 

counts.  The latter is actually another measure of chemical complexity but has outlier low raw 

scores (typically 1 or 0) and consequent high deviations (1 vs. 0  100%).  Finally, average the 

three averages for each drug to obtain an overall measure of its similarity to tamsulosin.104 

 

                                                 
103 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 columns H-M 
104 http://comminfo.rutgers.edu/~msharp/XKB/Research_usecaseD_chem_tamsu.xls Sheet3 rows 33-60 
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Appendix G.  Dimensions Found in Experimental Database - 6-Level Hierarchy 

biology - ADME 

biology - ADME - absorption 

biology - ADME - absorption - AUC 

biology - ADME - absorption - AUC - accumulation ratio - first dose 

biology - ADME - absorption - AUC - accumulation ratio - steady state 

biology - ADME - absorption - bioavailability 

biology - ADME - absorption - bioavailability - intravenous 

biology - ADME - absorption - bioavailability - oral 

biology - ADME - absorption - bioavailability - subcutaneous 

biology - ADME - absorption - C(steady state) 

biology - ADME - absorption - Cmax 

biology - ADME - absorption - fasting 

biology - ADME - absorption - food effect 

biology - ADME - absorption - food effect - AUC 

biology - ADME - absorption - food effect - bioavailability 

biology - ADME - absorption - food effect - Cmax 

biology - ADME - absorption - food effect - Tmax 

biology - ADME - absorption - T(steady state) 

biology - ADME - absorption - Tmax 

biology - ADME - absorption - Tmax - evening dosing 

biology - ADME - absorption - Tmax - morning dosing 

biology - ADME - demographic interaction 

biology - ADME - demographic interaction - geriatric 

biology - ADME - demographic interaction - geriatric - absorption - AUC 

biology - ADME - demographic interaction - geriatric - absorption - Cmax 



 

 

201

biology - ADME - demographic interaction - hepatic impairment - absorption - AUC 

biology - ADME - distribution 

biology - ADME - distribution - crosses blood-brain barrier 

biology - ADME - distribution - multiple dose accumulation 

biology - ADME - distribution - plasma protein binding 

biology - ADME - distribution - plasma protein binding - albumin 

biology - ADME - distribution - plasma protein binding - alpha-1 acid glycoprotein 

biology - ADME - distribution - semen 

biology - ADME - distribution - steady-state volume 

biology - ADME - dose proportionality 

biology - ADME - excretion 

biology - ADME - excretion - % in feces 

biology - ADME - excretion - % in urine 

biology - ADME - excretion - % unchanged drug 

biology - ADME - excretion - plasma clearance 

biology - ADME - excretion - predominant route 

biology - ADME - half-life 

biology - ADME - half-life - after repeated dosing 

biology - ADME - half-life - elimination 

biology - ADME - half-life - elimination - delayed release form 

biology - ADME - half-life - elimination - immediate release form 

biology - ADME - half-life - initial dose 

biology - ADME - half-life - plasma 

biology - ADME - half-life - range 

biology - ADME - half-life - terminal 

biology - ADME - half-life - terminal elimination 
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biology - ADME - half-life - terminal elimination - steady state 

biology - ADME - metabolism 

biology - ADME - metabolism - % metabolized 

biology - ADME - metabolism - biotransformation 

biology - ADME - metabolism - conjugate 

biology - ADME - metabolism - enzyme 

biology - ADME - metabolism - enzyme - phase 1 

biology - ADME - metabolism - enzyme - phase 1 - gene name 

biology - ADME - metabolism - enzyme - phase 1 - protein sequence 

biology - ADME - metabolism - enzyme - phase 1 - SNP 

biology - ADME - metabolism - enzyme - primary 

biology - ADME - metabolism - enzyme - secondary 

biology - ADME - metabolism - extent 

biology - ADME - metabolism - interactions 

biology - ADME - metabolism - mean systemic clearance 

biology - ADME - metabolism - mechanism 

biology - ADME - metabolism - metabolite 

biology - ADME - metabolism - metabolite - major 

biology - ADME - metabolism - metabolite activity 

biology - ADME - metabolism - organ 

biology - ADME - metabolism - relative peak metabolite plasma concentration - after repeated 

dosing 

biology - ADME - metabolism - relative peak metabolite plasma concentration - initial dose 

biology - ADME - metabolism - time to peak metabolite plasma concentration 

biology - ADME - time to baseline after discontinuation 

biology - ADME - time to maximal effect 
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biology - ADME - time to steady state 

biology - ADME - time to substantial effect 

biology - biological effect 

biology - mechanism of action 

biology - molecular target 

biology - molecular target - cellular location 

biology - molecular target - chromosome locus 

biology - molecular target - chromosome number 

biology - molecular target - essentiality 

biology - molecular target - gene name 

biology - molecular target - gene sequence 

biology - molecular target - gene sequence - length 

biology - molecular target - general function 

biology - molecular target - GO biological process 

biology - molecular target - GO cellular component 

biology - molecular target - GO molecular function 

biology - molecular target - molecular weight 

biology - molecular target - number of residues 

biology - molecular target - pathway 

biology - molecular target - Pfam domain function 

biology - molecular target - Pfam domain function code 

biology - molecular target - protein sequence 

biology - molecular target - reaction 

biology - molecular target - signal 

biology - molecular target - SNP 

biology - molecular target - specific function 



 

 

204

biology - molecular target - structure 

biology - molecular target - structure - 3D 

biology - molecular target - synonym 

biology - molecular target - theoretical pI 

biology - molecular target - transmembrane region 

biology - molecular target - UniProtKB/Swiss-Prot name 

biology - organism affected 

biology - pathway 

biology - toxicity 

biology - toxicity - carcinogenicity 

biology - toxicity - CNS 

biology - toxicity - developmental 

biology - toxicity - LD50 - intramuscular - mouse 

biology - toxicity - LD50 - intramuscular - rat 

biology - toxicity - LD50 - intraperitoneal - monkey 

biology - toxicity - LD50 - intraperitoneal - mouse 

biology - toxicity - LD50 - intraperitoneal - rat 

biology - toxicity - LD50 - intravenous - mouse 

biology - toxicity - LD50 - intravenous - rat 

biology - toxicity - LD50 - oral - dog 

biology - toxicity - LD50 - oral - monkey 

biology - toxicity - LD50 - oral - mouse 

biology - toxicity - LD50 - oral - mouse/rat 

biology - toxicity - LD50 - oral - rat 

biology - toxicity - LD50 - oral - rat/mouse 

biology - toxicity - LD50 - rat 
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biology - toxicity - LD50 - subcutaneous - mouse 

biology - toxicity - LD50 - subcutaneous - rat 

biology - toxicity - LDLo - oral - human - man 

biology - toxicity - LDLo - oral - mouse 

biology - toxicity - lethal dose - oral - mouse 

biology - toxicity - lethal dose - oral - rat 

biology - toxicity - mutagenicity 

biology - toxicity - reproductive 

biology - toxicity - TDLo - oral - human 

biology - toxicity - TDLo - oral - human - man 

biology - toxicity - TDLo - oral - human - woman 

biology - toxicity - toxic effect - intramuscular - mouse 

biology - toxicity - toxic effect - intramuscular - rat 

biology - toxicity - toxic effect - intraperitoneal - monkey 

biology - toxicity - toxic effect - intraperitoneal - mouse 

biology - toxicity - toxic effect - intraperitoneal - rat 

biology - toxicity - toxic effect - intravenous - mouse 

biology - toxicity - toxic effect - intravenous - rat 

biology - toxicity - toxic effect - oral - dog 

biology - toxicity - toxic effect - oral - human 

biology - toxicity - toxic effect - oral - human - man 

biology - toxicity - toxic effect - oral - human - woman 

biology - toxicity - toxic effect - oral - monkey 

biology - toxicity - toxic effect - oral - mouse 

biology - toxicity - toxic effect - oral - mouse/rat 

biology - toxicity - toxic effect - oral - rat 
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biology - toxicity - toxic effect - overdose symptom 

biology - toxicity - toxic effect - subcutaneous - mouse 

biology - toxicity - toxic effect - subcutaneous - rat 

chemistry - atmospheric OH rate constant 

chemistry - charge 

chemistry - chemical class 

chemistry - chemical complexity 

chemistry - chemical name 

chemistry - chemical name - CAS type 1 

chemistry - chemical name - derivative 

chemistry - chemical name - IUPAC 

chemistry - chemical superclass 

chemistry - chemical type 

chemistry - covalently bonded unit count 

chemistry - formula - amino acid sequence 

chemistry - formula - empirical formula 

chemistry - formula - InChI 

chemistry - formula - InChIKey 

chemistry - formula - SMILES 

chemistry - formula - SMILES - canonical 

chemistry - formula - SMILES - isomeric 

chemistry - formula - structural formula 

chemistry - formula - structural formula - 2D 

chemistry - formula - structural formula - 3D 

chemistry - formula - structural formula - JMOL 

chemistry - formula - structural formula - KCF file 



 

 

207

chemistry - formula - structural formula - KEGGdraw 

chemistry - formula - structural formula - MOL file 

chemistry - formula - structural formula - SDF file 

chemistry - formula - structural formula - similar structure search 

chemistry - heavy atom count 

chemistry - Henry's law constant 

chemistry - isoelectric point 

chemistry - isotope atom count 

chemistry - Lipinski - H bond acceptor 

chemistry - Lipinski - H bond donor 

chemistry - Lipinski - molecular weight 

chemistry - Lipinski - molecular weight - average 

chemistry - Lipinski - molecular weight - exact mass 

chemistry - Lipinski - molecular weight - monoisotopic 

chemistry - Lipinski - solubility logP octanol-water 

chemistry - physical properties - melting point 

chemistry - physical properties - physical state 

chemistry - pKa 

chemistry - polarity - TPSA 

chemistry - related chemical - broader 

chemistry - rotatable bond count 

chemistry - solubility 

chemistry - solubility - Caco2 permeability - experimental 

chemistry - solubility - logP - predicted 

chemistry - solubility - logP hydrophobicity - experimental 

chemistry - solubility - logP octanol-water 
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chemistry - solubility - logS - experimental 

chemistry - solubility - logS - predicted 

chemistry - solubility - water 

chemistry - solubility - water - experimental 

chemistry - solubility - water - predicted 

chemistry - stereocenter count - defined atom 

chemistry - stereocenter count - defined bond 

chemistry - stereocenter count - undefined atom 

chemistry - stereocenter count - undefined bond 

chemistry - tautomer count 

chemistry - vapor pressure 

clinical 

clinical - clinical trial comparison therapy 

clinical - clinical trial co-therapy 

clinical - indication 

clinical - indication - clinical trial condition 

clinical - indication - herbal evidence 

clinical - indication - herbal evidence grade A 

clinical - indication - herbal evidence grade C 

clinical - indication - herbal evidence methodology 

clinical - indication - herbal summary 

clinical - indication - herbal untested 

clinical - indication - patient selection criteria 

clinical - indication - patient type 

clinical - indication - prevention 

clinical - indication - prevention - approved 
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clinical - indication - prevention - approved - combo 

clinical - indication - prevention - clinical trial condition 

clinical - indication - treatment 

clinical - indication - treatment - approved 

clinical - indication - treatment - approved - combination 

clinical - indication - treatment - clinical trial condition 

clinical - lab test - drug level 

clinical - lab test - drug level in blood/serum/plasma 

clinical - lab test - drug level in urine 

clinical - precaution 

clinical - precaution - contraindication 

clinical - precaution - disease history 

clinical - precaution - drug interaction 

clinical - precaution - food interaction 

clinical - precaution - food interaction - administration with food 

clinical - precaution - food interaction - diet 

clinical - precaution - GI retention time 

clinical - precaution - handling 

clinical - precaution - herbal 

clinical - precaution - herbal/supplement interaction 

clinical - precaution - in case of overdose 

clinical - precaution - indication specification 

clinical - precaution - lab test interaction 

clinical - precaution - lab test interference 

clinical - precaution - lab test monitoring 

clinical - precaution - side effect 
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clinical - precaution - side effect - common 

clinical - precaution - side effect - major 

clinical - precaution - side effect - minor 

clinical - precaution - unproven indication 

clinical - precaution - warning 

clinical - precaution - warning - boxed 

clinical - storage conditions 

clinical - therapeutic class 

clinical - therapeutic class - body system 

clinical - therapeutic class - herbal mild property 

clinical - therapeutic class - historical 

clinical - therapeutic class - organism 

pharmacy - administration 

pharmacy - administration - frequency 

pharmacy - administration - route 

pharmacy - approval info - approval status 

pharmacy - approval info - company 

pharmacy - approval info - company - distributor country 

pharmacy - approval info - company - distributor name 

pharmacy - approval info - company - manufacturer country 

pharmacy - approval info - company - manufacturer name 

pharmacy - approval info - country 

pharmacy - approval info - FDA approval date 

pharmacy - approval info - FDA chemical type 

pharmacy - approval info - FDA drug type 

pharmacy - approval info - FDA review classification 
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pharmacy - approval info - marketing status - FDA 

pharmacy - approval info - RLD 

pharmacy - approval info - TE code 

pharmacy - DEA schedule 

pharmacy - dosage form 

pharmacy - dosage form - dilution 

pharmacy - dose - daily total 

pharmacy - dose - dosing regimen 

pharmacy - dose - dosing regimen - indication-specific 

pharmacy - dose - dosing regimen - initial 

pharmacy - dose - dosing regimen - maintenance - total daily 

pharmacy - dose - dosing regimen - maximum 

pharmacy - dose - dosing regimen - monotherapy 

pharmacy - dose - dosing regimen - restart 

pharmacy - dose - unit dose 

pharmacy - dose - unit dose - by unit 

pharmacy - dose - unit dose - by volume 

pharmacy - dose - unit dose - free acid/base equivalent 

pharmacy - dose - unit dose - herbal untested 

pharmacy - dose - unit dose - herbal untested - daily total 

pharmacy - drug type 

pharmacy - generic availability 

pharmacy - generic name 

pharmacy - generic name - abbreviation 

pharmacy - generic name - combination chemotherapy 

pharmacy - generic name - combination product 
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pharmacy - generic name - derivative 

pharmacy - generic name - derivative - tritiated 

pharmacy - generic name - free acid/base 

pharmacy - generic name - free acid/base - combination product 

pharmacy - generic name - free acid/base - isomer 

pharmacy - generic name - herbal physical form 

pharmacy - generic name - herbal physical form - combination product 

pharmacy - generic name - herbal synonym 

pharmacy - generic name - herbal synonym - Danish 

pharmacy - generic name - herbal synonym - French 

pharmacy - generic name - herbal synonym - German 

pharmacy - generic name - herbal systematic name - family 

pharmacy - generic name - herbal systematic name - genus 

pharmacy - generic name - herbal systematic name - species 

pharmacy - generic name - herbal systematic name - species - misspelling 

pharmacy - generic name - herbal systematic name - species - synonym 

pharmacy - generic name - herbal systematic name - subspecies 

pharmacy - generic name - hydrate 

pharmacy - generic name - hydrate - synonym 

pharmacy - generic name - INN 

pharmacy - generic name - INN/BAN 

pharmacy - generic name - INN/English 

pharmacy - generic name - INN/French 

pharmacy - generic name - INN/Latin 

pharmacy - generic name - INN/Spanish 

pharmacy - generic name - isomer 
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pharmacy - generic name - JAN 

pharmacy - generic name - JAN/USP 

pharmacy - generic name - JP15/USAN 

pharmacy - generic name - misspelling 

pharmacy - generic name - salt 

pharmacy - generic name - salt - abbreviation 

pharmacy - generic name - salt - abbreviation - misspelling 

pharmacy - generic name - salt - French 

pharmacy - generic name - salt - hydrate - synonym 

pharmacy - generic name - salt - misspelling 

pharmacy - generic name - Spanish 

pharmacy - generic name - synonym 

pharmacy - generic name - USAN 

pharmacy - generic name - USAN/INN/BAN 

pharmacy - generic name - USAN/JAN 

pharmacy - generic name - USAN/JP15 

pharmacy - generic name - USP/INN 

pharmacy - generic name - word order variant 

pharmacy - herbal source biology 

pharmacy - inactive ingredient 

pharmacy - lexical class 

pharmacy - manufacturer code 

pharmacy - manufacturer code - derivative 

pharmacy - packaging 

pharmacy - packaging - NDC package description 

pharmacy - product type 
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pharmacy - storage conditions 

pharmacy - trade name 

pharmacy - trade name - combination chemotherapy 

pharmacy - trade name - combination product 

pharmacy - trade name - derivative 

pharmacy - unit appearance 

pharmacy - unit appearance - coating 

pharmacy - unit appearance - color 

pharmacy - unit appearance - imprint code 

pharmacy - unit appearance - score 

pharmacy - unit appearance - shape 

pharmacy - unit appearance - size 

pharmacy - unit appearance - symbol 
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