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ABSTRACT OF THE THESIS

Doppler-Based Localization for Mobile Autonomous

Underwater Vehicles

by William Somers

Thesis Director: Professor Dario Pompili

A novel algorithm for localization of Autonomous Underwater Vehicles (AUVs) oper-

ating in under-the-ice environments is proposed along with a mathematical analysis

for the same. The objective is to accurately predict the position of a mobile AUV via

cooperation with neighboring vehicles by utilizing a Doppler-based approach. Current

existing localization techniques require either an anchor or surfacing AUV to acquire

a GPS fix or rely on a system of expensive and difficult to deploy hardware. Our

Doppler-based approach is based on observed Doppler shifts, which are measured op-

portunistically from ongoing communications between AUVs. These observed Doppler

shifts can be used to project the subsequent positions of the AUV and limit the inter-

nal uncertainty associated with traditional localization techniques. An AUV’s internal

uncertainty is the uncertainty in the position of a mobile vehicle as estimated by itself,

e.g., via localization techniques. In addition, this Doppler-based approach has minimal

network overhead when compared to traditional localization techniques and does not

require synchronization between AUVs. The main focus of this thesis is to quantify

(via simulations) the solution behavior as well as its sensitivity to possible sources of

errors.
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and fiancé. The countless hours of support and guidance provided by these individuals

have been essential in my journey. It feels like just yesterday that I was starting the

graduate program at Rutgers University. The time has passed so quickly. After two

years of coursework and research I have come to appreciate and will sorely miss the aca-

demic atmosphere provided by the Electrical and Computer Engineering Department

of Rutgers University.

iii



Dedication

To my father John

my mother Dianne

my sisters, Courtney and Brianna

and my fiancé Rae
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Chapter 1

Introduction

Over the last century, robots and autonomous vehicles have allowed mankind to explore,

survey and conduct research in some of the most extreme and remote environments

known to man. These environments are now routinely investigated via unmanned

air, land, space, and sea explorations. As a result, unmanned explorations have had

unprecedented growth in recent years and are becoming commonplace. The majority of

these unmanned missions were typically accomplished with simple drones and remotely

operated vehicles (ROV). However, over the years the sophistication and capabilities of

these vehicles has increased and many are becoming autonomous in nature.

Unmanned aerial vehicles (UAVs) are aircraft which have the ability to fly either

autonomously or via control from a remote location. Currently UAVs are primarily

utilized in military applications for a variety of purposes, particularly surveillance and

reconnaissance. A great deal of research has been conducted into UAVs and a number

of UAVs are either in development or currently in use. One UAV currently under devel-

opment by BAE systems is Taranis [2], which is an autonomous stealth combat aircraft.

While Northrop Grumman’s RQ-4 Global Hawk [3], which is currently deployed, is ca-

pable of flying completely autonomous high altitude long endurance missions. UAVs

generally utilize the Global Positioning System (GPS) and inertial sensors to achieve

full autonomy.

Unmanned land missions using robotic vehicles has been around for several decades.

However, recent developments have led to the replacement of human controlled and

driven vehicles with fully autonomous ones. Several famous competitions have been

held by various government defense departments including the United States’ DARPA

Grand Challenge and Germany’s European Land-Robot Trial. Similar vehicles are
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also currently being developed for use by the general public. General Motors (GM)

announced back in 2008 that they plan to begin testing driverless cars by 2015 and

that they could be on the road by 2018 [4]. These vehicles typically rely on a large

number of integrated sensors and guidance systems to achieve autonomy. These systems

typically include GPS, infrared detectors, laser ranging, radar, and sometimes primitive

cameras.

Space has always been an environment conducive to robotic and autonomous ex-

ploration. One of the most famous robotic space explorations has been the Mars Ex-

ploration Rover Mission (MER). This ongoing research mission currently involves two

rovers, Opportunity and Spirit. These rovers have gained an unprecedented amount of

notoriety and press over the last decade. This can be attributed to their unparalleled

success in exploring the martian surface, in fact the range of the rovers was predicted

to be limited to a few meters but they have traveled several kilometers with extended

life spans. These rovers have and continue to achieve much more than their originally

intended missions. These rovers initially utilized both a star scanner and sun sensor

for navigation when landing on the martian surface. These sensors enabled the vehi-

cles to know their orientation in space via the positioning of the Sun and other stars.

Currently both Opportunity and Spirit are capable of navigating autonomously via

an auto-navigation system. This system utilizes dual stereo camera pairs which take

pictures of the surrounding terrain. 3-D maps are then applied to the terrain and the

rover evaluates its current position and its best future route for travel [5].

Robotic submersibles have been around for the better part of the last half century.

However, very little attention has been directed toward the oceanic exploration done

by these submersibles. Oceans cover nearly 71% of the earth’s surface and still 95% of

the world’s oceans remain unexplored. The lack of attention can be attributed to the

apparent lack of success. In 1960, the Bathyscaphe Trieste reached Challenger deep

with a two-man crew [6]. Challenger deep is the deepest surveyed point in the oceans,

with a depth of approximately 35,800 feet or approximately 6.8 miles. The Trieste crew

remains the only human beings to ever reach the bottom of Challenger Deep. However,

two robotic submarines have recently revisited that depth in order to conduct research.
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The most successful vessel being Nereus, which was the first remote vehicle to reach

the depth since Trieste. Nereus over the course of 10 hours collected data and sent

live video back to the ship through a fiber-optic tether [7]. This was accomplished in

spite of great difficulties associated with underwater exploration, such as extraordinary

pressures and subzero temperatures.

A common feature among all of these technological achievements is the ability of

these robotic vehicles to accurately determine and report back their coordinates or

current position in an environment. This process is known as localization. Robotic

and autonomous vehicles use a variety of techniques to localize their position; most

terrestrial techniques utilize GPS while space based applications use various optical

techniques, such as cameras and laser tracking. These techniques do not apply to

an underwater environment due to the high absorption of electromagnetic waves and

scattering of light. Acoustic waves are used in underwater applications, and while

terrestrial electromagnetic waves propagate at the speed of light, 3 · 108, the speed of

sound in an underwater environment is approximately 1500 m/s. This means acoustic

communication is five orders of magnitude slower than terrestrial radio frequencies.

This greatly increases the propagation delay and severely complicates network routing

and localization protocols. Therefore the implementation of an effective, accurate, and

efficient localization technique is often of crucial importance.

1.1 Autonomous Underwater Vehicles

Autonomous Underwater Vehicles (AUVs) are underwater robotic devices that are

driven through water by a propulsion system and are controlled by an onboard com-

puter. AUVs contain their own power supply and usually control themselves while

attempting to accomplish a defined task. AUVs are maneuverable in three dimensions

and have typical speeds ranging from 0.5 to 4.0 m/s with a battery life lasting anywhere

from 8-50 hours [8]. Sensors onboard the AUV take time correlated measurements as

the AUV follows its designed trajectory. In order for this sensor data to be statistically

relevant, the location of the AUV must be determined with a high degree of certainty.
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AUVs can operate remotely in underwater environments with varying degrees of

autonomy. The level of autonomy chosen is an interesting dilemma. Completely au-

tonomous AUVs utilize a preprogrammed trajectory and can only be redirected by its

own algorithm while a mission is underway. GPS (when surfaced), an acoustic position-

ing system or some other localizing technique is used to ensure the AUV is following its

programmed path. Partially autonomous AUVs allow for the active redirection of the

AUV. However this comes with an inherent drawback, the less autonomous the AUV

is, the higher the operational cost [8]. It is important to note that an AUV differs

drastically from an Unmanned Undersea Vehicle (UUV), which requires constant and

consistent communication to achieve its mission.

AUVs are widely believed to be revolutionizing oceanography and are enabling re-

search in environments that have typically been impossible or difficult to reach [9].

Given recent advances in processing power, data storage and batteries, AUVs are now

extraordinarily capable and also affordable to deploy. The increasing commercialization

of these vehicles will lead to expanded system reliability and cost-effective components

in the near future [10]. As a result these vehicles have become exceedingly useful and

crucial in a growing number of mission critical oceanic applications [11].

The following paragraphs will cover the two main classes of AUVs along with their

specific benefits, drawbacks, and capabilities. Following that we will go into depth on

the various applications of these AUVs. The choice of the application will strongly

influence the necessitated accuracy for localization.

1.1.1 Classes

AUVs are comprised of two main classes of vehicles: Propeller Driven Vehicles (PDVs)

and buoyancy-driven gliders. These classes of vehicles are usually positively buoyant

so that in the case of a catastrophic failure the AUV will surface. This means that in

order for the AUV to stay submerged it must be traveling forward with some velocity.

The cruising velocity of an AUV can vary anywhere from 1 to 4 m/s. The choice of the

AUV platform strongly depends on the end user’s application.
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Figure 1.1: Two Bluefin AUVs awaiting deployment.

Propeller Driven Vehicles

PDVs were initially the first AUVs developed. They have a long slender body, closely

resembling that of a torpedo, and are driven by a smaller propeller located on the rear

of the craft. Their primary drawback is their limited lifespan and coverage. PDVs

have a life span ranging from several hours to a few days and can traverse distances

of several hundred kilometers. These distances and life spans are limited due to the

powered propeller and limited battery capacity. The main benefit to using PDVs is that

they have the ability to cover a large amount of distance in a short amount of time. In

addition, their trajectory can also be adjusted on the fly by an onboard computer.

Gliders

Gliders have been a relatively recent development and closely resemble PDVs minus the

propeller. They have allowed for missions spanning several months and thousands of

kilometers. Gliders follow a saw tooth like trajectory underwater and travel at speeds

of 0.4 m/s horizontally and 0.2 m/s vertically [12]. Glider movement is accomplished

by manipulating its internal mass, which causes the glider to ascend or descend, while

wings on the glider control its direction and trajectory. The main benefits to gliders

are their range, operating life, and low cost deployment. Several drawbacks to gliders

are their low velocities and lack of maneuverability.
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Figure 1.2: A SLOCUM glider being deployed.

Table 1.1: Commercial AUVs

Name Manufacturer Class Type Run Time Max Speed Max Depth

Bluefin-9 (Sea Lion II) Bluefin Robotics PDV 12 hrs 2.60 m/s 200 m

Bluefin-12 Bluefin Robotics PDV 20 hrs 2.60 m/s 200 m

Bluefin-21 Bluefin Robotics PDV 18 hrs 2.60 m/s 3000 m

Gavia AUV Hafmynd Ehf PDV 7 hrs 3.08 m/s >1000m

SeaOtter MK II Atlas Maridan ApS PDV 24 hrs 4.12 m/s 1500 m

SeaWolf Atlas Maridan ApS PDV 3 hrs 2.60 m/s 300 m

REMUS 100 Hydroid, Inc. PDV 17 hrs 2.60 m/s 100 m

REMUS 600 Hydroid, Inc. PDV 20 hrs 2.32 m/s 600 m

REMUS 6000 Hydroid, Inc. PDV 20 hrs 2.32 m/s 6000 m

Explorer Intl. Submarine Engin. PDV 28-83 hrs 2.60 m/s 5000 m

HUGIN 1000 Kongsberg Maritime PDV 17-30 hrs 3.09 m/s 1000 m

HUGIN 3000 Kongsberg Maritime PDV 60 hrs 2.06 m/s 3000 m

HUGIN 4500 Kongsberg Maritime PDV 60 hrs 2.06 m/s 4500 m

Iver2-580 OceanServer Tech., Inc. PDV >24 hrs 2.06 m/s 200 m

Spray Glider Bluefin Robotics Glider >4000 hrs 0.35 m/s 1500 m

SLOCUM Electric Webb Glider 4 wks 0.40 m/s 1000 m

SLOCUM Thermal Webb Glider 3-5 yrs 0.40 m/s 1200 m

APEX Webb Glider 4 yrs - 2000 m

SAUV II Falmouth Scientific Glider Unlimited 1.54 m/s 500 m

Seaglider iRobot Glider Months 0.25 m/s 1000 m
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1.1.2 Role in Underwater Sensor Networks

Underwater Sensor Networks (UWSNs) consist of a number of nodes that interact to

collect data and perform tasks in a collaborative manner underwater. These nodes

can be either mobile or stationary, and are typically comprised of AUVs, which are

equipped with numerous sensors for sampling. Nodes in UWSNs are dependent upon

a high degree of inter-vehicular communication in order to achieve goals requiring col-

laboration. Designing energy-efficient and accurate localization protocols for this type

of network is essential and challenging. In addition, nodes are powered by batteries,

which have limited life spans. For example, REMUS-class AUVs can generally operate

from 5-20 hours underwater before recharging is necessary [13].

1.1.3 Communication Techniques

Underwater communications are usually accomplished acoustically while terrestrial

communications typically utilize various Radio Frequencies (RF) for communication.

The characteristics of underwater sensor networks are fundamentally different from that

of terrestrial networks. The speed of acoustic signal propagation in underwater acous-

tic channels is around 1.5 · 103 m/sec, which is approximately five orders of magnitude

slower than radio propagation speed (3.0 · 108 m/sec) in air. In addition, the acous-

tic propagation speed in water varies significantly with temperature, density, salinity,

flow, acidity, conductivity and turbidity. This can cause the acoustic waves to travel

on curved paths, also referred to as multipath [13] [14].

The use of radio frequencies is impractical for AUVs operating in an underwater

environment. An extra low RF signal (30Hz - 300Hz) will propagate in water but it

requires an enormous antennae and a significant amount of transmission power. This

makes it unsuitable for low-power AUVs and sensor nodes [14]. In addition, GPS uses

radio waves in the 1.5GHz band which do not propagate in water. This is due to the

high attenuation of RF in an underwater environment, thus UWSNs employ acoustic

communication [13] [14] [15].

Underwater communication utilizing the transmission of optical signals has been
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studied, but is impractical for long distances and typical water clarity. Optical com-

munication requires light be transmitted with remarkably high precision in blue-green

wavelengths over short distances and in near perfect water clarity [13]. This is because

light is quickly scattered and absorbed by water.

Acoustics is the most viable means of communication, but it is severely affected

by network dynamics, large propagation delays and high error probability. Significant

progress has been made to overcome these challenges in the last two decades. A general

performance limit of acoustic communications is provided as 40 km·kbps for the range

rate product [16]. It is important to note that this estimate applies to vertical channels

in deep water and not shallow-water or horizontal channels [13]. Generally acoustic

communications have limited bandwidth due to increasing attenuation that occurs with

higher frequencies.

It is important to note that acoustic communications usually require forward error

correction, also referred to as error correction coding, to lower the bit error rate (BER).

UWSNs suffer from a high bit error probability since phase shifts and amplitude fluc-

tuations are common in an underwater environment [13]. Once an acoustic waveform

is sent it is impacted severely by currents, turbulence, temperature gradients, salinity

discrepancies and other related phenomena that can distort the waveform [17].

In underwater communications spanning long distances, it is common for shadow

zones to exist or develop over time. Shadow zones are defined as geometric regions

with unusually high transmission loss [13] [17]. In shadow zones, frequency specific

attenuation occurs leading to a state where acoustic communication is nearly impossible.

Automating repeat requests for packets in addition to spatial and frequency diversity

can be used to overcome shadow zones [17].

It is important to note that propagation delays can be estimated in underwater

communications. This is due to the fact that propagation delays are relatively constant

for a given depth, salinity and temperature [13].
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1.1.4 Applications

Over the last several decades AUV technology has shifted from proof of concept to

routine operational use. Current research is now focusing on new sampling and lo-

calization strategies. A characteristic S curve can be associated with the evolution of

AUV technology over the last three decades [18]. AUVs reached an operational state

nearly ten years ago, and as the technology has matured they have become a part of

the commercial mainstream in the ocean industry [18]. The forecast for AUV demand

over the next decade is expected to approach 1,144 AUVs, resulting in a 2.3 billion

dollar market value [19].

Critical Missions

Critical missions are defined as those in which failure is not an option. These missions

can include but are not restricted to missions that safeguard human and marine life,

property, and national interests. UWSNs monitoring mine locations is one such ap-

plication. It is crucial for AUVs in this mission to locate, coordinate and collaborate

effectively. In order for this to happen, effective communication and accurate localiza-

tion is necessary [11]. A swarm of AUVs can investigate a known mine field prior to a

ship or submarine entering the vicinity. These AUVs act as a team to quickly identify,

denote and transmit back accurate locations of the mines. The United States Navy has

developed and deployed such a system called the Long Term Mine Reconnaissance Sys-

tem (LMRS), which is a UWSN consisting of several AUVs used for mine monitoring

and discovery [10].

British Petroleum’s (BP) historic oil spill in the Gulf of Mexico emphasizes the role

of critical response AUVs. Woods Hole Oceanographic Institute (WHOI) deployed an

Sentry AUV in the wake of the events in the Gulf [20]. This AUV sampled the amount

of hydrocarbons in the ecosystems surrounding the Deep Water Horizon rig. Detailed

chemical analysis from the AUV showed that there was relatively little deterioration in

oil cloud plumes surrounding the rig. These estimates and their corresponding under-

water locations contradicted initial government estimates. WHOI’s data was utilized to
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limit the damage and help in the recovery from such an unprecedented environmental

disaster.

Defense

Despite AUVs recent commercial success, many AUVs are currently deployed and be-

ing developed primarily for defense purposes. The need to secure vital sea ports and

passages has led to the development of AUVs capable of detecting and monitoring in-

truders in these acute areas. One such AUV is the United Kingdom’s Talisman L. This

vessel currently being built by BAE systems uses high definition forward and sideways

looking sonar as well as a suite of multi-view cameras. It has high maneuverability and

can operate for 12 hours at depths up to 100 meters with velocities approaching 2.60

m/s. The Talisman is capable of monitoring confined ports and harbors.

Germany plans on purchasing several Sea Otter Mk II AUVs. The Sea Otter AUV

would primarily be utilized for surveillance and reconnaissance purposes, but could see

an expanding role in the future. The Sea Otter has a modular design that allows its

sensors and payload to be completely altered. With just a few extension modules the

Sea Otter can be transformed to carry a Sea Fox mine disposal vehicle or transport

divers to and from an attack submarine.

General Industrial Applications

The oil and gas industry has dominated the commercial AUV market. This industry has

used AUVs as a surveying tool to evaluate pipe routes and drilling locations [10] [21].

The use of AUVs has enabled a cost savings of 59% and an order of magnitude reduction

in the amount of time necessary for deep water surveys [10]. AUVs utilized in surveys

were predicted to exceed $200 million dollars in revenue by the year 2004 [10]. In

addition, SeeByte and Subsea 7 have developed an AUV capable of inspecting and

repairing offshore oil pipelines, risers, and mooring. These systems have been developed

to lower costs associated with performing tasks formerly performed by remote operating

vehicles (ROVs).

The use of AUV data for hydrographic surveys and mapping is becoming an accepted
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standard in many countries. Hydrographic surveys are allowing industries and countries

around the globe to map vast underwater territories using high resolution precision

cameras. In addition, these AUVs are being used to identify strange or unknown objects

in harbors or ports, national seabed boundaries, and possible oil and gas reserves.

Oceanic Monitoring and Research

The Arctic is one of the most inhospitable and unexplored regions in the world. Year

round ice coverage with temperatures approaching −50 ◦C (−58 ◦F) make it all but im-

possible to use conventional oceanographic techniques for surveying, mapping, tracking,

sampling and exploring this hostile region [22]. In addition, the risks and costs associ-

ated with deploying manned submersibles in the arctic region are substantial so AUVs

are used extensively [22]. In 1996, an AUV known as Theseus was able to lay a fiber

optic cable over a distance of 200 km (124 mi) under Arctic sea-ice [23]. Theseus also

demonstrated extraordinary navigational capability and achieved an error of less than

0.5% of the distance traveled. However, this additional navigational capability came at

a cost. It was comprised of several expensive precision systems including: INS, Doppler,

sonar and surface transponders.

Non-arctic mapping and sampling is an equally critical process that is also being

accomplished via AUV. Rutgers University recently completed a cross-Atlantic voyage

with a SLOCUM autonomous underwater glider. The glider successfully traveled 7,300

kilometers over the course of 201 days [24]. The purpose of this effort was to map

and track changes in large ocean ecosystems such as carbon fluctuations. Many other

institutions are also pursuing similar ambitions such as Woods Hole Oceanographic In-

stitute, which launched Spray in conjunction with Scripps Institution of Oceanography

in California. This AUV is expected to gather data on temperature, currents and salin-

ity in order to better understand the role oceans are currently playing in the global

warming process.
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1.2 Thesis Contributions

In this thesis, we evaluate several localization techniques that have been proposed in

previous papers and promote a novel Doppler-based approach. This is carried out in

an under-the-ice simulation with four specific scenarios, in which all AUVs are fully

mobile. In our approach, Doppler shifts are opportunistically measured from ongoing

communications and the AUV’s position is projected. Currently, no literature has

reported this Doppler-based approach.

This approach is used to minimize localization error in several situations. Doppler

can be used to limit the error associated with lateration by correcting for RTT and

currents. In underwater environments with sufficiently high packet error rates, Doppler

can be used to accurately localize the AUV. In addition, this Doppler approach limits

associated network overhead by utilizing sensed Doppler shifts in place of performing

lateration.

1.2.1 Problem Statement

A multitude of localization techniques have been proposed for terrestrial sensor net-

works, but there are relatively few localization algorithms for UWSNs and even fewer

for under-the-ice scenarios. We are interested in evaluating a Doppler-based approach

in order to achieve suitable localization results. Current localization techniques re-

quire either the expansive deployment of beacons and anchors or expensive navigation

systems, which need synchronization to perform localization. Our Doppler-based sys-

tem outperforms these localization techniques without requiring additional hardware

or synchronization.

1.2.2 Mobile Localization Algorithm

In this Doppler-based approach, Doppler shifts are opportunistically measured from on-

going communications and the AUV’s position is projected. This projection minimizes

error due to a wide variety of sources, such as round-trip time (RTT), currents, and

channel conditions. In addition, this approach does not require time synchronization
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between AUVs and has a limited network cost. As a result, network overhead is reduced

and the battery life of the AUV is extended. This allows for a greater operating range

and allows an AUV to stay submerged for longer periods of time, which is crucial when

exploring an under the ice environment.

The AUV attempting to localize its position broadcasts its ID number and an indi-

cator that it is performing localization. Neighboring AUVs, also referred to as reference

AUVs, reply to the broadcast with their ID, current coordinate position, and uncer-

tainty. It is important to note that the localizing AUV keeps a log of each reference

AUV’s previous two positions. Once the localizing AUV hears from at least three

reference AUVs, it performs lateration with a Doppler correction. By utilizing the ob-

served Doppler shift and logged positions, the localizing AUV can minimize the error

associated with traditional localization techniques.

Underwater communications suffer from large propagation delays, multipath, and

shadow zones. If packets are lost because of the channel and the localizing AUV fails to

hear from at least three references, the AUV can still be localized using our Doppler-

based algorithm. This is accomplished by utilizing available Doppler data from previous

communications and the last two logged positions for each reference AUV. In this

situation we can usually project the current coordinate position of enough references

to perform localization.

1.2.3 Simulation Results

The simulation results clearly show the performance gain of our Doppler-based ap-

proach versus previously proposed techniques. In all four scenarios, our Doppler-based

approach outperforms other cooperative localization algorithms and nears the perfor-

mance of an expensive inertial navigation system (INS). This system utilizes a DVL and

several quality inertial navigation sensors whose costs are approximately $50,000 [25] a

piece.
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1.2.4 Outline

The remainder of this thesis is organized as follows. In Chapter II, we provide an

overview of related work for AUV capabilities, in particular sensors, navigation systems

and localization algorithms. We present the motivation and underwater communication

model in Chapter III. The proposed solution is in Chapter IV, followed by performance

evaluation and analysis in Chapter V. Conclusions are discussed in Chapter VI.
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Chapter 2

AUV Capabilities

Traditionally ocean monitoring has been accomplished via static sensors that record

data and are collected after a mission is completed. This setup does not allow for real-

time monitoring, system reconfiguration, or failure detection [26]. Therefore a great

deal of research has been directed towards AUVs with integrated sensor suites. These

AUVs allow for the real-time monitoring of oceanic regions. In addition, these AUVs

can adjust their destination, speed, and trajectory based on specific data and a mission’s

needs at the time. AUVs’ capabilities are limited by two major factors: batteries and

vehicle navigation [21]. We are going to deal with vehicle navigation extensively in this

thesis.

2.1 Underwater Communications

Achieving effective and efficient communications in an underwater environment is a

challenging and difficult task. With this in mind, our localization protocols and algo-

rithms have been designed and written for the Woods Hole Oceanographic Institute

(WHOI) Micro-Modem. This acoustic modem is available as an integrated device with

Hydroid Inc. vehicles or can be purchased as a standalone system, which can be used in

experiments or integrated into an AUV [27]. This modem has been utilized in a multi-

tude of underwater experiments [20] [28] [29] [30] and has served as an emulator/testbed

for the development of team formation and routing protocols in [31] [32].

Depending on the selected packet type and the modulation scheme the bit rate of the

WHOI Micro-Modem can vary significantly. The acoustic Micro-Modem has 4 primary

packet types and can transmit these packet types at 4 different data rates and in 4

different frequency bands, which range from 3 to 30 kHz. The maximum achievable bit



16

Table 2.1: The major packet types utilized by the WHOI acoustic Micro-Modem.
Packet Type bps Max. Frames Bytes per Frame Modulation Coding Scheme

0 80 1 32 FH-FSK

1∗ 250 PSK 1/31 spreading

2 500 3 64 PSK 1/15 spreading

3 1200 2 256 PSK 1/7 spreading

4∗ 1300 PSK 1/6 rate block code

5 5300 8 256 PSK 9/14 rate block code
The two packet types denoted by a ∗ indicate an unimplemented scheme.

Table 2.2: Transmission Delay time for the major packet types implemented on the
WHOI Micro-Modem. Data is calculated for a PSK bandwidth of 5kHz and an FSK
bandwidth of 4kHz. [1]

Packet Type Transmission Delay

0 12.15 s

1∗ 3.38 s

2 3.25 s

3 3.65 s

4∗ 3.45 s

5 3.34 s
The two packet types denoted by a ∗ indicate an unimplemented scheme.

rate is 5300 bps, which illustrates the limited data rate of an underwater environment.

The range of the WHOI modem depends on the frequency selected typically 10kHz

works out to 6km to 12km, 15kHz works out to 5km-8km, and 25kHz works out to 2km-

4km depending on acoustic conditions [33] [34] [35] [36]. The modem’s power amplifier

is a class-D topology and was selected due to its efficient and simplistic characteristics,

as a result the power output of the Micro-Modem is fixed at 50 Watts [27]. Control

of the WHOI Micro-Modem is achieved via NMEA commands [37]. Each modem is

programmed via serial port (RS-232) and has an OpenEmbedded Linux system. Each

of these systems is equipped with a Gumstix Motherboard (GM) and has a Marvell

PXA255 400 MHz processor, 64 MB RAM, and 1 GB of SD disk storage [38]. In

addition, each modem is designed for an operating temperature ranging from −40oC

to +70oC [35].

2.1.1 Communications Cost

The average number of localization messages sent per node in an UWSN is commonly

referred to as communication overhead. In order to localize the position of an AUV,

the AUV must receive a broadcast of each anchor node’s current calculated position.
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The communication cost per node becomes critical as the number of anchor nodes and

AUVs in the UWSN increases. The number of messages sent per node have been ana-

lyzed for Dive and Rise Localization (DNRL), Proxy Localization (PL) and Large-Scale

Localization (LSL), but it was done without any suggestions for minimizing associated

network costs [39]. Minimizing the number of localization messages sent to and from

the AUV can extend an AUVs operating time in an underwater environment. This

communication overhead is proportional to the total energy spent. Therefore, an effi-

cient localization scheme which limits the number of localization messages is necessary.

This proposed Doppler-based approach satisfies these requirements.

2.2 Sensors

AUVs are typically equipped with several sensors, which vary based on the price and

application of the AUV. These sensors are utilized in data collection, localization and

other mission critical processes. Given the significant number of sensors available for

AUVs we will concentrate on sensors used in aiding navigation.

Pressure Sensors

A pressure sensor, also known as a depth sensor, provides the pressure readings for the

depth of an operating AUV. This pressure corresponds to a specific depth and has an

accuracy range that varies from 0.01 to 1.0 m depending on the quality of the sensor. In

addition, pressure sensors have a relatively high update rate of 1 Hz [40]. This allows a

three dimensional problem to be transformed into two dimensions. Therefore all UWSN

localization problems with respect to AUVs are stated in two dimensions.

Doppler Sensing

The WHOI Micro-Modem is capable of detecting Doppler shifts during communications

between a transmitter and receiver. The Doppler shift is calculated by the modem and

given in m/s. This is the calculated relative speed between the receiver attached to

the modem and the transmitting transducer [37]. The main drawback is that the
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modem detects the cumulative Doppler shift, so the Doppler shift is susceptible to

ocean currents and other oceanic phenomena.

Flow Meters

Flow meters are used to calculate a vehicle’s relative speed in an underwater environ-

ment. Typically a propeller fixed to the AUV is rotated by the vehicle moving through

the water. A sensor attached to this propeller detects the number of rotations per

minute (RPMs), flow speed is then calculated, and therefore the vehicle’s speed in the

underwater environment can be deduced [28].

Magnetic and Gyro Compasses

A compass is usually a part of the basic navigation suite of an AUV. These devices

typically consume little power and are able to provide the local magnetic fields’ 3-D

vector [28]. The primary drawback of a magnetic compass is that in order to locate true

north, which is a point on the Earth’s rotational axis as opposed to magnetic north,

the compass requires calibration to the vehicle’s region of operation. In addition the

performance of the compass is affected by its position on the AUV and the presence

of local magnetic fields [28]. A standard magnetic compass was not reliable enough for

use in several experiments in the Arctic due to near vertical magnetic field lines [41].

A gyrocompass is an electrically powered compass capable of finding true north

while being impervious to external magnetic fields which deflect normal compasses.

This is accomplished by exploiting the rotation of the earth. This rotation deflects the

compass via gyroscopic precession, which is defined as a change in the orientation of the

gyro’s rotational axis. Modern gyrocompasses typically implement an orthogonal triad

of fibre optic or ring laser gyroscopes, which use an optical path difference to determine

the Earth’s rate of rotation [42].

Attitude Heading Rate Sensor

An Attitude Heading Rate Sensor (AHRS) typically consists of a 3-axis linear accelerom-

eter in addition to the aforementioned gyrocompass and magnetic compass. An AHRS
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system uses the compasses to detect the vehicle’s attitude and heading while using an

accelerometer to compute the three linear and angular accelerations [28]. In addition,

since the acceleration, heading, and attitude are known the vehicle’s velocity can be

computed.

Inertial Navigation System

Inertial Navigation Systems (INS) are comparable to AHRS except that they include

information from absolute position sensors [28]. INS systems utilize the information

from these absolute sensors in coordination with data provided by the rate sensors

to derive a vehicle’s position. INS systems tend to be more expensive than AHRS

systems, but they generally have sensors less susceptible to noise [28]. INS systems

are constrained by error growth over time and/or distance traveled; this error is also

known as INS drift [43] [28]. The most accurate INS systems are controlled by the

military and are highly classified, but their accuracy is estimated to be approximately

0.01 km/hr [28].

Doppler-Velocity Log

Doppler-Velocity Log (DVL) units provide an estimate of an AUV’s velocity relative

to the ocean floor. These DVL units utilize at least three but typically four downward

facing transducers [40]. The sensed Doppler shifts are then used to calculate the AUVs

velocity underwater. In addition if the starting position is known, the AUV’s velocity

can be integrated over time to calculate its subsequent position. This method when

used in combination with an INS unit is accurate to less than 5 meters per hour of

operation. However, this comes with an additional hardware cost and the integration

of DVL data leads to a cumulative error.

Sensor Performance at Arctic Latitudes

There are many other constraints to consider when examining AUV exploration in

the Arctic. Equipment at such extreme latitudes tends to not operate as originally

designed. Three systems underwent a thorough testing at Arctic latitudes: Ring-laser
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gyroscopic INS with DVL assistance, gyro-compass AHRS, and a traditional magnetic

AHRS system [41]. The magnetic AHRS struggled due to the nearly vertical magnetic

field lines. The inertial instruments also became increasingly difficult as a function of

the secant of latitude [41]. In addition to those constraints, gyro-compasses tend to be

less accurate at high latitudes.

2.3 Localization

In underwater sensor networks (UWSNs), determining the location of each sensor is of

critical importance and is often done by utilizing localization techniques. Localization is

the process of estimating the location of each node in a sensor network. While various

localization algorithms have been proposed for terrestrial sensor networks, there are

relatively few localization schemes for UWSNs and even fewer for polar environments

under ice.

Numerous localization protocols currently exist for terrestrial applications. How-

ever, there are prohibitive obstacles which prevent the application of terrestrial-oriented

localization techniques to an underwater environment. UWSNs have a substantially

higher propagation delay. These delays are experienced by acoustic channels and are

not present in Radio Frequency (RF) terrestrial channels. Most terrestrial localization

techniques have been designed for a fast and reliable channel. Despite these shortcom-

ings it is still essential to understand the fundamental localization techniques utilized

in a terrestrial RF network.

2.3.1 Terrestrial Sensor Network Localization

Global Positioning System

The Global Positioning System (GPS) is a space based navigation system composed of

a constellation of 24 medium earth orbiting (MEO) satellites [44]. Each GPS satellite is

equipped with an atomic clock, typically composed of Rubidium [45]. These satellites

transmit the time, orbital information, system health and an almanac, which estimates

the orbits of all other GPS satellites. A GPS receiver then calculates its position by
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correlating the time of flight (TOF) for the signal transmitted from each satellite in

orbit. There are three numerical methods are utilized in the computation of position

for a GPS receiver: 1) trilateration and one dimensional numerical root finding 2)

multidimensional Newton-Raphson calculations 3) Using more than four GPS satellites

leads to an overdetermined system and no unique solution, which requires least-squares

method or a similar technique [46] [47]. Terrestrial applications often make use of GPS

since it is easy to use, available, and accurate.

Convex Optimization

The Convex Optimization localization technique was proposed to estimate the position

of unknown nodes based on connectivity constraints of given seed nodes [48]. In this

centralized technique, geometric constraints between nodes are represented as Linear

Matrix Inequalities (LMIs). The LMIs for the entire network are combined to form

a single semi-definite program. The semidefinite program is mathematically solved

for each node position. The advantage of this scheme is in its relative simplicity and

elegance. However, high delay, computational cost and inability to use range data limit

the practical applications of this centralized scheme.

Sequential Monte Carlo Method

A Sequential Monte Carlo (SMC) method to achieve localization for mobile nodes has

been studied in [49] [50]. The SMC method is a recursive Bayes filter that estimates

the posterior distribution of a node’s positions conditioned on sensor information. It

is a two-step process. In the prediction step, the node uses a motion model to predict

its possible location based on previous sample and its movement. In the filtering step,

the node uses a filtering mechanism to eliminate those predictions that do not match

the sensor information. This scheme requires no ranging hardware on the nodes. An

improved version of a range-free SMC algorithm has been proposed for a heterogenous

network of static and mobile nodes [51]. However, the effects of different mobility

models on location estimates were not considered.
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Dual and Mixture Monte Carlo Methods

Dual Monte Carlo (DMC) and Mixture Monte Carlo (MMC) methods for sensor lo-

calization on static and mobile nodes have been studied in [52]. DMC method is the

logical inverse of the SMC method. The DMC uses a prediction step and the dis-

tributed filtering mechanism in SMC, while the second filtering step uses the prediction

step distribution in SMC. The MMC method is the combination of both SMC and DMC

methods [49]. Simulation results showed that localization estimation was improved in

DMC and MMC methods compared to SMC method. This improvement comes at the

expense of increased computation time. This is primarily due to the detailed sampling

process employed in DMC and MMC methods. In addition, all Monte Carlo schemes

suffer from two short-comings: 1.) A high density of nodes are required for each

method. This density cannot be assumed in an UWSN due to the sparse deployment

of sensors [26] [53]. 2.) Monte Carlo methods have a slow convergence time.

2.3.2 Localization in UWSN

A number of localization schemes have been proposed to date which take into account

a number of factors like the network topology, device capabilities, signal propagation

models and energy requirements. However, most localization schemes require the lo-

cation of some nodes in the network to be known. There have been a few UWSN

localization protocols proposed [2][3][4], but none of these protocols are designed with

any consideration on how localization can be used to estimate subsequent positions of

AUV.

Range-based Schemes

In range-based schemes, in order to estimate the location of nodes in the network,

measurements are made. These measurements need to be precise in order for the

localization results to be accurate and useful. Range based schemes include distance

and angle measurements. These schemes, use Round-Trip Time (RTT), Time of Arrival

(ToA), Time Difference of Arrival (TDoA), Received-Signal-Strength (RSS), or Angle
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of Arrival (AoA) to estimate their distances to other nodes in the network. Any scheme

that relies on ToA or TDoA requires tight time synchronization between the transmitter

and the receiver clocks, whereas RTT does not. However, RTT comes with a higher

network cost and associated error. RSS has been implemented in [54], but it comes

with an additional network cost.

In order to calculate locations, range based protocols can estimate the absolute

point-to-point distance (i.e., range) or angle estimates [55] [56] [57] [58] [59] [60] but at

the cost of external hardware which in turn increases the network cost.

An hierarchical localization scheme involving surface buoys, anchor nodes and ordi-

nary nodes was proposed in [61]. Surface buoys are GPS based, and used as references

for positioning by other nodes. Anchor nodes communicate with surface buoys while

ordinary nodes only communicate with the anchor nodes. This distributed localization

scheme applied 3D Euclidean distance and recursive location estimation method for the

position calculation of ordinary nodes. However, mobility of the sensor nodes was not

considered in the position estimate.

A relative position estimate was proposed in [15] [57] [62] [63] [64] [65] [66] through

a combined process of node discovery and localization. In this technique, a seed (orig-

inator) node broadcasts discovery messages to determine neighbors and eventually all

other nodes in the network. Once an unknown node has attained three seed nodes

as neighbors, its location is estimated. This node can now become a seed for other

unknown nodes. Coverage increases as nodes with newly estimated positions join the

reference node set, which is initialized to include anchor nodes. However, there are sev-

eral short-comings of this proposal such as the criteria for selecting the first seed, the

method applied for measuring the distance between nodes, the effect of node mobility

and inherent delay in node discovery as a result of high message exchange.

A recent proposal uses surface based signal reflection for underwater localization [54].

This approach attempts to overcome limitations imposed by line of sight (LOS) range

measurement techniques such as RSS, TOA, and AoA. These limitations are caused by

multipath, line of sight attenuation and required reference nodes. The receiver in this

approach accepts only signals that have been reflected off the surface. It accomplishes
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this by applying homomorphic deconvolution to the signal to obtain an impulse re-

sponse, which contains RSS information. The algorithm then checks the RSS and com-

pares it to calculated reflection coefficients [54]. This algorithm has several strengths,

in that it allows for mobility and has a high accuracy. The main drawback is that this

algorithm can not be applied to an under the ice environment since icebergs tend to

have varying depths below the water surface. In addition, this algorithm is computa-

tionally intensive and has a large amount of communication overhead associated with

it.

In submarines and other related vehicles positioning system, localization systems are

based on Short Baseline systems (SBL) and Long Baseline systems (LBL) [67]. External

transducer arrays are employed in both systems to aid localization. In SBL system,

position estimate is determined from measurement of the range and angle of acoustic

transponder beacon to the vehicle. In addition, these vehicles can randomly interrogate

the beacon from which distance is computed. In LBL systems, array of transponders

are tethered in the ocean bed with fixed location. Any vehicle interrogation is returned

by transponder beacons enabling position computation. UWSN nodes are bounded by

cost-constraints, hence both SBL and LBL schemes with their added signal processing

and hardware complexity are not suitable.

Anchor-based and anchor-free localization schemes are sometimes referred to as

beacon-based or seed-based localization. In these schemes unknown nodes estimate

their position from anchor nodes, which have known positions. Once unknown nodes

have estimated their position within a specified region, they too can become anchor

nodes. In anchor-free localization systems, nodes exchange packets with neighbors to

generate a relative map for node positions [68].

A bounding box algorithm defines a rectangular region with the intersection of the

distance estimates (w.r.t node and anchor positions) [15]. It requires two messages from

positions that are non-aligned. The performance of this algorithm is strongly dependent

on anchor-node position. In order to achieve an accurate localization, messages are

required to be sent from either side of the box. The algorithm achieves localization for

a large number of nodes but with a substantially high error rate.
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A proposal that studied underwater localization in both static and mobile nodes

was described in [69]. A Dive-N-Rise (DNR) beacon obtains coordinates while on

the ocean surface and then sinks, while simultaneously distributing its coordinates

to unknown nodes. This scheme assumes synchronized nodes in which nodes listen for

several beacons before applying message TOA scheme for range measurement. However,

the results are incomplete since a random model depicting high variability of shallow

and deep water scenarios were not incorporated in the study [14] [69].

In [70], AUV Aided Localization (AAL) was proposed to address node mobility,

limited message exchange and 3D coverage. This approach utilizes two-way ranging

and does not require synchronization. In this approach, a timer begins when the packet

is sent and stops when the packet is received. This timer value is then multiplied by the

speed of sound and then divided by two for the distance estimate. The response packet

includes AUV coordinates so when a node hears three localization messages that are

non-coplanar it performs lateration.

Comparisons for the performance of three localization techniques known as Dive

and Rise Localization (DNRL), Proxy Localization (PL) and Large-Scale Localization

(LSL) have been carried out in [39]. DNRL, PL and LSL are distributed, range-based

localization schemes, which are suitable for three dimensional, mobile UWSNs. How-

ever, since PL and LSL techniques are primarily for large scale localization so we focus

on DNRL. In DNRL, an anchor (originator) node broadcasts localization messages to

neighbors and all other nodes in the network. Once an unknown node has attained

three anchor nodes as neighbors, its location is estimated. If the node receives updated

coordinates, these coordinates overwrite old records and localization is performed again.

An AUV serving as an Communication and Navigation Aid (CNA) is proposed

in [29]. This proposed approach attempts to predict the location of an AUV by using

ranging information acquired via RTT. This is a linear prediction technique in which

previous position estimates are utilized. In addition, this approach has an online cor-

rection technique but is strongly dependent upon receiving ranging information from

the support AUV.
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Range-free Schemes

Range-free schemes do not use range or bearing information; that is, they do not make

use of any of the techniques mentioned above (RTT, ToA, TDoA and AoA) to estimate

distances to other nodes. The centroid scheme [64], DV-Hop [68] and Density aware

Hop-count Localization (DHL) [71] fall under this category. The area in which the node

is located is computed by a server or anchor to determine the sensors location. The

granularity of the scheme is determined by the size of areas, which the sensor nodes

fall within and this is adjusted by varying a number of power levels used. Range-free

schemes make no assumptions about the availability or validity of range information

[64] [68] [72] [73]. Range-free schemes can only provide coarse position estimates, but

do not need additional hardware support.

Dead reckoning makes use of an AUV’s onboard sensors in order to predict a vehi-

cle’s location. It accomplishes this by integrating the vehicle’s heading and speed over

time. An AUV is assumed to be surfaced at the start of the mission and its coordinates

are known via GPS. Once an AUV is submerged its speed can be measured directly

with a flow meter, estimated with accelerometers, or determined experimentally. The

vehicle’s heading is extracted from either a compass, AHRS, or INS with varying de-

grees of accuracy. In order for dead reckoning to be effective it requires a suite of highly

accurate sensors, especially since magnetic navigation systems are subject to local vari-

ations in the magnetic field and gyro’s are subject to drift over time. Quality inertial

navigation sensors cost approximately $50,000 [25] a piece. In addition, dead reckoning

is subject to error propagation over time since its velocity is integrated with respect to

time. Extended Kalman Filters (EKF) can be used to minimize system noise, but dead

reckoning is typically only accurate for a short period of time [74] [75].

Bathymetry localization matches the depths of an underwater terrain to available

bathymetric maps in order to better localize an AUVs position [43]. Traditional INS

suffer from drift, and the authors attempt to overcome this by exploiting available

bathymetric data. This technique generates a position estimate based on two primary

systems: a maximum likelihood estimator which uses in-situ measurements of ocean
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Figure 2.1: Bathymetry map of the Earth from the National Geophysical Data Center’s
TerrainBase Digital Terrain Model.

depth and an INS and/or DVL system [43]. These systems when used in combination

can greatly constrain INS drift and lead to an accurate localization that does not decay

with time. The primary problem with this localization method occurs when there are

limited geographic features on the ocean bottom, in other words there is a limited

variation of the sea floor’s depth.

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM), also known as Concurrent Mapping

and Localization (CML), attempts to merge two traditionally separated concepts, map

building and localization. SLAM has been investigated using an imaging sonar and

DVL in combination with dead reckoning [76]. However, despite recent research efforts

this technology is still in its infancy and many obstacles still need to be overcome. As

of November 2010, there have been several simulations carried out [77], but currently

there is no operating solution to the AUV SLAM problem.

Probabilistic Localization

Several proposals have utilized a particle filter approach as an estimating technique

for Bayesian models. A particle filter is used to represent the vehicle state, which can

then be used to estimate an AUV’s position via Bayes filter, which is essentially a

probability distribution [78]. The particle filter approach has two distinct advantages.

The first being that it can handle errors that are not modeled as gaussian. The second
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is the particle filter does not require any knowledge of an AUVs initial position or

orientation. Particle filters are not easily implemented in real missions with small scale

AUV networks. This is due to a particle filter’s required computational complexity and

the large number of particles necessary to define a sample space, which may not be

available in a real mission. Particle filters struggle to perform localization in regions

with limited or unknown maps.

2.3.3 Under the Ice Localization

Relatively few under the ice localization techniques have been proposed and many

standard underwater localization techniques do not apply to an under the ice envi-

ronment. Recent efforts have been made by Kongsberg Maritime and Wireless Fibre

Systems (WFS) to develop an effective wireless communication system for locating

and communicating with AUVs under the ice wirelessly [79]. Despite these efforts the

technology remains expensive and out of reach for most universities and industries. Cur-

rent techniques employed in an under ice environment include: combinations of either

dead-reckoning using inertial measurements [23] [41] [80], sea-floor acoustic transponder

networks such as SBL or LBL [81], and/or a DVL that can be either seafloor or ice

relative [23] [41] [80] [82]. These current approaches require external hardware, are cost

prohibitive, and suffer from error propagation. Therefore an accurate and affordable

localization technique is needed in an under the ice environment.

In our simulation, we implement an INS system with a DVL to constrain error over

time. This serves as our performance baseline. An INS system equipped with quality

sensors and a DVL can achieve suitable localization results with an error of about 8

meters over the course of 4,000 seconds [83].

A major barrier to entry for under the ice exploration is the risk of losing an AUV

vehicle. Suggestions toward reducing the risks associated with under the ice exploration

have been made in [84]. Accurate navigation is considered one of the important pre-

requisites for achieving safe under the ice operations. Modern AUVs, such as the

HUGIN 1000, use a sophisticated INS system that must be supported/aided by either

DVL, SBL, LBL, or terrain referenced navigation in order to constrain error due to
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drift [84]. Our proposed Doppler approach consistently constrains the error in localizing

AUVs in under the ice environments.



30

Chapter 3

Mobile Localization

3.1 Motivation

In this thesis, we are interested in performing the localization of a mobile UWSN

comprised of several AUVs. Our motivation is that few localization techniques exist

for mobile sensor networks, and most are not designed with any consideration for how

mobility can be exploited to achieve localization. We designed a localization scheme

that utilizes a Doppler-based approach in tandem with the lateration technique to

perform localization. Currently, no literature has reported this approach.

Currently the only Doppler-aided localization technique leveraging Doppler shifts

is known as bottom lock Doppler or DVL. DVL works by bouncing sound waves off

either the seafloor or the bottom of an ice pack [82]. The sound waves are emitted

by an external transducer array. It then senses the Doppler shifts observed in the

sonar signal. This provides the AUV with its velocity, which when combined with a

heading, can be integrated over time to get position. There are several drawbacks to

this approach. It requires a close proximity to the seafloor or ice pack to operate. In

addition, the external transducer array used in this approach increases the energy use,

costs, and complexity of the AUV. Our proposed approach has no external hardware

requirement since Doppler functionality is built into modern underwater modems, such

as the WHOI modem [37].

We make comparisons to several other localization approaches in our simulation.

The approaches that were implemented in our simulation were DNRL, AAL, CNA,

and INS. These techniques were covered with greater detail in Chapter II, but we will

summarize each approach and how it was implemented in our simulation.
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A major detail in any localization scheme is the selection of anchors or reference

AUVs. In any of the localization schemes, an unlocalized AUV may hear from a number

of reference AUVs. It is assumed that three references are enough, but perhaps the node

hears from five. It is possible to use all of these referenced locations when performing

lateration to better localize position. However, Erol’s two major localization algorithms’

(DNRL & AAL) prefer to implement the simplest lateration, which is trilateration. In

other words, these approaches are using three reference AUVs. So, the selection of

references becomes the next problem. It is possible to chose references randomly or

first arrival or last arrival. Here both DNRL and AAL utilize the last three references

to arrive, since all AUVs are mobile the latest information has less possibility to be

outdated.

Here is how we implemented DNRL. There are three mobile anchor AUVs that will

serve as references for all other (non-anchor) AUVs. When the total number of AUVs

in the system is greater than six then four mobile anchor AUVs are utilized and not

three. Each mobile anchor AUV is equipped with an expensive INS system with DVL

to keep track of their position. These references are referred to as ‘mobile anchors’,

because they have the same purpose as a Dive’N’Rise anchor with a GPS fix except

they are mobile. These anchor AUVs serve to localize all other AUVs in the system.

Unlocalized AUVs record every new anchor AUV coordinate and the related distance

estimate in a table unless it comes from a coplanar anchor. When the number of entries

reaches three it does lateration. If the AUV receives new coordinate updates from an

anchor AUV already stored, then the new message overwrites on the old records. The

limited number of anchor AUVs limits the overall accuracy and coverage of this scheme.

Over time if the AUVs are not kept in a formation they will travel and drift further

and further apart. This can cause a disconnected network and creates issues of lost

packets and inaccurate localization, especially if there are relatively few AUVs serving

as anchors. Additionally, the INS system onboard the anchor AUVs use expensive

inertial sensors that can cost upwards $50,000 [25].

AAL differs from DNRL in several distinct ways. The first is that anchor AUVs

are no longer utilized and all mobile AUVs are eligible to be used as references in
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localization. In addition, two-way ranging is utilized to relax any synchronization re-

quirements. The process starts when an AUV hears a broadcasted localization message

(short message to indicate that an AUV is in their transmission range and performing

localization), when the reference AUV hears this message it replies with its current

coordinates and ID number. The localizing AUV stops an internal timer when the

response is received. The timer value is multiplied by the speed of sound and divided

by two to get a distance estimate. When a localizing AUV receives three messages

from reference AUVs it checks if the coordinates are non-coplanar, and if so proceeds

to lateration. If three references are not received the localizing AUV utilizes stored

coordinates for an additional reference so that lateration can be performed. This in-

troduces a great degree of error. In addition, since a two-way approach is utilized the

localizing AUV will travel tens of meters before its position can be determined. At this

point the position determined is no longer the localizing AUV’s current position.

The CNA approach attempts to predict the location of an AUV by using ranging

information acquired via RTT. This is a linear prediction technique in which previous

position estimates are utilized. This alternative approach considers a system in which

a single submerged AUV (with accurate dead reckoning instrumentation, such as an

INS/DVL system) communicates with a fleet of much less accurately localized AUVs

so as to improve the positioning of the latter [29]. This is very similar to the moving

long base line (MLBL) approach, which utilizes several submerged vehicles to serve as

mobile anchors for one or more AUVs [85]. The CNA technique also bears a striking

resemblance to the previously covered DNRL approach, which uses three mobile anchor

AUVs to constrain localization error. The CNA approach also implements an online

correction technique but it is strongly dependent upon receiving ranging information

from reference AUVs.

3.2 Underwater Model

In this section we introduce the UWSN environment that our proposal is based on and

state related assumptions. Suppose the network is composed of a number of AUVs that

are collecting data in a collaborative manner. Barring currents these vehicles travel at
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fairly constant horizontal speeds, ranging from 0.20-0.40 m/s see Table 1.1.1 and know

their heading via a magnetic compass or gyroscope. However, these instruments perform

poorly at extreme latitudes [41]. Therefore the ability of these vehicles to complete

tasks collaboratively depends on their ability to locate and communicate effectively.

Underwater communications are impacted severely by path loss, propagation delay,

temperature, salinity, and pressure see section 1.1.3 for more details.

A coarse approximation for underwater acoustic wave propagation is the Urick

model. The Urick model provides path transmission loss TL(l, f) in dB and can be

modeled as,

TL(l, f) = κ · 10log(l) + α(f) · l, (3.1)

where κ is the spreading factor, l is the distance between the transmitter and receiver,

and f is the carrier frequency. κ is taken to be 1.5 for practical spreading, and α(f)

[dB/m] represents an absorption coefficient that increases with f [86]. The spreading

of sound energy caused by the expansion of the wavefronts is known as geometric

spreading1 and is accounted for in the first term, κ · 10log(l), of (3.1). Geometric

spreading is independent of frequency, but increases with propagation distance. It is

important to note that a spreading factor of κ = 2 is used for spherical spreading,

κ = 1 for cylindrical spreading, and κ = 1.5 for the so-called practical spreading. The

second term, α(f) · l, accounts for medium absorption, where α(f0) [dB/m] represents

an absorption coefficient. This absorption coefficient defines the dependency of the

transmission loss on frequency.

In reality, acoustic propagation speed varies with water temperature, salinity, and

depth. These acoustic waves can travel on curved paths and are also reflected from the

water’s surface and off the sea floor. Such an uneven propagation of waves results in

shadow (convergence) zones which may receive much more (or less) transmission loss

than predicted by the Urick model. A detailed description is provided in the paragraph

1There are two kinds of geometric spreading: spherical (omni-directional point source, spreading
coefficient κ = 2), and cylindrical (horizontal radiation only, spreading coefficient κ = 1). Cases that
are in-between show a spreading coefficient κ in the range of (1, 2), depending on link length and water
depth.
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below, but more details can be found in [87].

A surface duct is a zone below the sea surface where sound rays are refracted toward

the surface and then reflected back downward. These rays alternate between being

refracted and reflected along the duct and are carried out to relatively far distances [88].

Regions in a water column where the speed of sound initially decreases to a minimum

and then increases due to pressure is known as a sound channel. Above the depth

of minimum value, sound rays are bent downward while below the depth of minimum

value, rays are bent upward. This results in the rays being trapped in the channel,

which permits their detection at quite a large distance from the source, also called

SOFAR [88]. A convergence zone is a region in the deep ocean where sound rays,

refracted from the depths, return to the surface. They are focused at or near the

surface in successive intervals. A shadow zone is a region in which very little sound

energy penetrates. This depends on the strength of the lower boundary of the surface

duct and is usually bounded by the aforementioned lower boundary and a limiting ray.

There are two shadow zones: 1) the sea surface, in which a shadow is cast beneath the

surface in the sound field of a shallow source. 2) deep-sea bottom, in which a shadow

zone is produced by the upward-refracting water above it.

It is due to these phenomena that the Urick model is insufficient to represent the

underwater channel for AUV communications. To overcome these shortcomings in our

simulation, a Bellhop model has been implemented. This model is a complete ray trac-

ing tool for underwater environments and can accurately model the aforementioned

phenomena [89]. Once the Bellhop model is provided with a sound speed depth pro-

file, transmission loss can be calculated via three-dimensional acoustic ray tracing. A

numerical solution to the Bellhop is provided by HLS Research, which solves the dif-

ferential ray equations to provide the transmission loss [89]. The Bellhop model is

only used to simulate the underwater acoustic environment since it requires extensive

environmental information that an AUV will not be able to provide.

An additional important characteristic of underwater environments are currents.

While the majority of ocean currents can be mapped and accounted for in most sit-

uations [90], it is still crucial to understand each localization technique’s performance
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in these scenarios. These underwater currents have a profound impact on localiza-

tion techniques and can be mitigated by utilizing observed Doppler shifts. The main

situation in which currents go un-detected is one in which the majority of AUVs are

under the influence of the same current. Two customized current models are utilized

throughout our simulation, one with variable currents of 1 to 3 cm/s and another with

extreme currents of 4 to 6 cm/s. These current models are based off data provided for

the Bering Strait [91] and Arctic [90] [92].

We also implement an empirical ambient noise model in our simulations similar

to that implemented by Baozhi Chen in [32]. This empirical model is calculated by

integrating the power spectrum density (psd) over the current frequency band. The

power spectrum density (psd) implemented is a ‘V’ type structure, as shown in [86].

A propagating sound wave underwater creates changes in pressure, which are detected

at the receiver. A pressure level of 1µPa, serves as relative reference for the power

(source) level, which is expressed in decibels (dB). The power level (dB) at a distance

of 1 m, SL re µPa is given by

SL = 170.77 + 10 logP, (3.2)

where P is a compact source of power in watts.
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Chapter 4

Proposed Approach

This proposed localization solution is for a distributed UWSN comprised of several mo-

bile AUVs performing a collaborative task under ice. Initially all AUVs were deployed

at the surface in a two dimensional volume of 1250 by 1250km. Each AUV has an

initial velocity between 2.5 and 4 m/s and varies over time. Our proposed approach is

a novel Doppler-based algorithm for the localization of AUVs in an UWSN, specifically

under-the-ice scenarios.

We make following assumptions:

1. There are N reference AUVs : n = 1, 2, ... N

2. Each AUV is assumed to have a unique integer ID and an onboard clock

3. An AUV’s ID in this thesis is provided as, AUV1 for AUV 1, AUV2 for AUV 2,

etc. and to simplify notation we use AUVi for the localizing AUV and AUVn for

any reference AUV

4. The localizing AUV coordinates are provided as

Pi = (xi, yi, zi)

5. Reference (neighboring) AUVs are considered to be at position

Pn = (xn, yn, zn)

6. Subscripts indicate the AUV’s ID number (Ex : P1 indicates the position of AUV

1)

7. Superscripts indicate the time instants (Ex : P k indicates position at time ‘k’)

8. Thus Pn
k+1, would signify the position of reference AUV ‘n’ at a time instant

‘k+1’
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Figure 4.1: Overview of Localization Protocol

9. All AUVs are equipped with storage capabilities, such that a localizing AUVi

maintains a log of its references’ AUV sn last two positions

This typically three dimensional localization problem can be transformed into two

dimensions since each AUV is assumed to have a pressure sensor, which provides the

z distance or depth of the AUV. We utilize RTT to calculate the distance from the

localizing AUVi to a reference AUVn. This alleviates the need for synchronization

between AUVs. When AUVi broadcasts that it is performing localization, it starts

an internal timer or records the current time from its internal clock. As localization

messages are received from references they are timestamped with the time they were

received. The difference in time between when the message was sent and received is

the RTT of the message.

The RTTin from AUVi to a reference AUVn is given as

RTTin =

(
‖
−−→
PiPn‖
c

+ (Tp + Tt)

)
· 2 (4.1)

where ‖
−−→
PiPn‖ is the distance between the AUVs, Tp is the time needed for processing, Tt

is the transmission delay given by Table 2.2, and c is the speed of sound. It is important
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to note that the speed of sound fluctuates as a function of several variables, in particular

temperature, salinity, and depth. Mackenzie developed an empirical equation for the

speed of sound in sea water [93] given as

c(T, S, z) = a1 + a2T + a3T
2 + a4T

3 + a5(S − 35) + a6z + a7z
2 + a8T (S − 35) + a9Tz

3

where a1=1448.96, a2=4.591, a3=-5.304·10−2, a4=2.374·10−4, a5=1.340, a6=1.630·10−2,

a7=1.675·10−7, a8=-1.025·10−2, a9=-7.139·10−13. This simple empirical equation was

utilized in the simulation for a more accurate modeling of the speed of sound. Macken-

zie’s model, assumes a water temperature and salinity that varies with depth. A tem-

perature range of -2 to 2oC and a salinity between 32.5-35% was implemented in our

simulation.

The distance between AUVi and AUVn can now be calculated as

dp =
RTTin − 2 · (Tp + Tt)

2
· c (4.2)

where RTTin is the measured round trip time, Tp is the time needed for processing, Tt is

the transmission delay given by Table 2.2, and c is the estimated speed of sound. This

provides the total distance, dp, between AUVi and AUVn. However, by the time AUVi

receives the positional information from reference AUVn, AUVn has already moved at

a rate of υn · (RTTin/2).

The Doppler-shifted frequency fn observed at AUVi can be expressed as

fn = fs

(
1±

υ(R)

c

)
(4.3)

where

± is representative of whether the source and reference are moving towards or away

from each other, υ(R) is the inter-vehicular velocity of the AUVi w.r.t to the reference

AUVn, fs is the frequency of the source, and c is the speed of sound.
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Figure 4.2: Localization packet structure in bytes.

∆f = fn − fs =
(υ(R)

c

)
· fs (4.4)

where ∆f is the frequency shift. In UWSNs, Doppler shifts can be observed for AUVs

whose inter-vehicular velocity differs only slightly. This is in stark comparison to ob-

served terrestrial Doppler shifts, which require a substantial inter-vehicle velocity. This

characteristic can be attributed to the speed of sound underwater, which is five orders

of magnitude slower than terrestrial RF. In terrestrial applications, c (3 ·108m/s) dom-

inates in equation 4.4 unless υ(R) is sufficiently large. The WHOI Micro-Modem is able

to provide an inter-vehicular Doppler velocity in terms of m/s [37]. This velocity is

utilized by our Doppler-based algorithm.

In this approach, the localizing AUVi broadcasts its ID and an indicator that it

is performing localization to other neighboring AUVs in range. Each AUV in the

UWSN does this broadcast periodically every 60 s defined as ∆T . Neighboring AUVs

who successfully receive the broadcast reply to the message with their ID, current

coordinates, and positional uncertainty see Figure 4.2. All localization messages are

assumed to be transmitted and received by a WHOI Micro-Modem aboard the AUVs.

These modems are rated for an operating temperature of −40oC and have been used in

deep cold water experiments such as Nereus’ exploration at a depth of 11,000 m [35] [94].

All communications are done at a frequency of 10kHz since the AUVs are sparsely

deployed in the UWSN and communications span great distances. Communications
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using 10kHz work out to 6km to 12km depending on acoustic conditions [33] [36]. In

addition 10kHz is part of the modem’s standard band (Band A) [33] [94]. Since we

are transmitting less than 32 bytes, we need not worry about sending multiple frames

when dealing with the various packet types available with the Micro-Modem. The

Micro-Modem’s Packet Type 2 with a phase-shift keying (PSK) modulation scheme is

utilized for our localization messages. Type 2 was chosen given its minimal packet error

rate at a relatively low Signal-to-Interference-plus-Noise Ratio (SINR) [32].

If the localization message sent from a reference is successfully received by the

localizing AUVi, this information is then stored until AUVi hears from at least three

references, AUV sn. The pseudocode can be found in the General Localization Protocol

at the end of the chapter. Please note that it is possible to hear from more than three

AUV references. In this case the next crucial element of the algorithm is reference

selection.

We adopt a weighted framework where the localizing AUVi ranks the received ref-

erences AUV sn in terms of their associated uncertainty. The pseudocode for this un-

certainty calculation can be found at the end of the chapter. Our model implements an

acceptable threshold and discards all references who are below it, we perform this as

long as we have at least three references. The time window to receive references from

the point of broadcast is sixty seconds.1 The pseudocode can be found in Reference

Selection Algorithm at the end of the chapter.

If packets are lost due to the channel and the localizing AUVi fails to hear from at

least three references, the AUVi can still be localized using our Doppler-based algorithm.

This is accomplished by utilizing the latest Doppler data from previous communications

and the last two logged positions for each reference AUVn. Since the logged coordinates

for each reference AUVn has an associated timestamp2, we are able to sort the AUV sn

in order of those with the most recently logged coordinates, essentially a last in first

out (LIFO) scheme. The algorithm then ensures there are enough reference AUV sn to

1The time between receiving a localization message and performing lateration is stored as TLn.

2An associated timestamp is defined as the time a localization message was received from a reference
AUVn.
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perform lateration.

Once reference selection has taken place we can calculate AUVi’s current position.

The range vector from AUVi to its reference AUVn is
−−→
PiPn where the range dn =

PiPn = ‖
−−→
PiPn‖ = [(x− xn)2 + (y − yn)2 + (z − zn)2]

1
2 From the reference AUV sn we

can formulate an overdetermined system of equations.

The general equation between the AUVi and reference AUV sn can be written in 3D

as a system of equations,

d2
1 = (x− x1)2 + (y − y1)2 + (z − z1)2

.

.

d2
n = (x− xn)2 + (y − yn)2 + (z − zn)2


where dn is the distance between AUVi and AUVn, (x, y, z) are the coordinates of the

localizing AUVi and (xn, yn, zn) are the coordinates of the nth reference AUV, referred

to as AUVn. The only unknowns are x and y since the z position is provided by the on

board pressure sensor, the dn between the AUVs can be accurately estimated, and the

AUVn’s coordinate position is known.

Since the AUVs travel at different speeds and the inter-vehicular velocity between

AUVi and AUVn is not zero, we can utilize the Doppler velocity to compute an up-

dated distance estimate between them. Each AUV is assumed to be equipped with a

modem, capable of detecting the Doppler-shift associated with a reply message, such

as the Woods Hole Oceanographic Institute’s Micro-Modem [37]. AUVi’s modem de-

tects the Doppler-shift associated with the received signal and calculates the AUV’s

relative inter-vehicle velocity, υ(R) (this value is positive or negative based on whether

the AUVs are moving toward or away form each other). This inter-vehicle velocity

when multiplied by half the RTT (transmission, processing, and propagation delay)

plus TLn (the time between receiving the reference AUVn’s localization message and

performing lateration) provides the difference in distance, ∆dd, between the distance
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prior to Doppler correction, dp, and the current distance, dn.

∆dd = υ(R) · TLn (4.5)

where υ(R) is the inter-vehicle velocity and TLn is the time between receiving the ref-

erence AUVn’s localization message and performing lateration. The current distance

between the localizing AUVi and the reference AUVn can now be updated as

dn = dp + ∆dd (4.6)

where ∆dd is the difference in distance between the distance prior to Doppler correction,

dp, and the current distance, dn.

It is assumed that each AUV stores the last two positions for all other AUVs in

the UWSN, which is realistic given that the WHOI Micro-Modem provides SD storage

[32] [37]. The localizing AUVi now uses the current position x′n
k, y′n

k, z′n
k and stored

position xk−1
n , yk−1

n , zk−1
n for each reference AUVn to compute AUVn’s component

velocities, υxn , υyn , and υzn .

−̂→υn =

−−−−−−→
P k−1
n P ′n

k

∆Tr
=

(x′n
k − xk−1

n , y′n
k − yk−1

n , z′n
k − zk−1

n )

∆Tr
(4.7)

where ∆Tr is the time difference in seconds between the last time localization was

performed and the time the coordinates for the reference were received. We now end

up with the component velocities for the reference AUV

υxn =
x′n

k − xk−1
n

∆Tr

υyn =
y′n

k − yk−1
n

∆Tr

υzn =
z′n

k − zk−1
n

∆Tr

These velocity components when multiplied by TLn and added to the coordinates re-

ceived from the reference AUVn provide the current coordinates at each localization
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interval. The coordinates received by the reference AUV are x′n
k, y′n

k, z′n
k. The cor-

rected current coordinates are computed as

xkn = x′n
k + υxn ·

(
RTTin

2
+ TLn

)

ykn = y′n
k + υyn ·

(
RTTin

2
+ TLn

)

zkn = z′n
k + υzn ·

(
RTTin

2
+ TLn

)
Now that we have the updated coordinates and distances, the previous system of

equations can be linearized.

(x− xn−1)2 + (y − yn−1)2 + (z − zn−1)2 − d2
n−1

= (x− xn)2 + (y − yn)2 + (z − zn)2 − d2
n

(4.8)

2x(xn−1 − xn)2 + 2y(yn−1 − yn)2

= xn−1
2 − xn

2 + yn−1
2 − yn

2 + zn−1
2 − zn

2 − 2z(zn−1 − zn)2 + d2
n − d2

n−1

(4.9)

This can be expressed in matrix form as a linear system ,

Aφ = b (4.10)

where

A =



2(x1 − xn) 2(y1 − yn)

. .

. .

2(xn−1 − xn) 2(yn−1 − yn)
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b =



x1
2 − xn

2 + y1
2 − yn

2 + z1
2 − zn

2 − 2z(z1 − zn)2 + d2
n − d2

1

.

.

xn−1
2 − xn

2 + yn−1
2 − yn

2 + zn−1
2 − zn

2 − 2z(zn−1 − zn)2 + d2
n − d2

n−1



φ =

x̂
ŷ



where φ can be solved for.

The Least Squares (LS) solution corresponding to Aφ = b is given by

φ =
(
ATA

)−1
ATb (4.11)
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General Localization Protocol 1 General localization protocol utilized by the AUVs.
Here T is total time underwater, Tend in our simulation is 10600s, ∆T is the localization
interval of 60s, Twind is the time to start listening for replies, ∆Twind represents the
time window to receive replied localization messages and is set to 60s

1: while T ≤ Tend do
2: Broadcast request for information to neighboring AUVs
3: Twind=T
4: for Twind ≤ Twind + ∆Twind do
5: Listen for incoming replies
6: Store replies from references
7: Twind = Twind + 1s
8: end for
9: Estimate distances via RTT

10: Run reference selection algorithm
11: Perform localization
12: Determine uncertainty
13: Update positional coordinates
14: T = T + ∆T
15: end while

Reference Selection Algorithm 2 Reference selection algorithm. Here Nref rep-
resents the number of reference AUVs (essentially the number of neighboring AUVs
who’s localization message have been received successfully), AUVn represents the ref-
erence AUVs, ωn represents each reference’s uncertainty, ωa represents the average
uncertainty for the top three references, and τd represents the defined threshold which
is 5% (0.05) in our simulation.

1: if Nref > 3 then
2: Sort reference AUV sn by their uncertainties (ωn)
3: Select the top three and calculate

ωa = 1
3

3∑
i=1

(ωn)

4: for Nref not in the top three do

5: if 1−
(
ωn
ωa

)
≤ τd then

6: if i == 1 then
7: Write top three AUV sn to a references list
8: end if
9: Append AUVn to the list

10: i=i+1
11: end if
12: else
13: Write top three AUV sn to a references list
14: end for
15: else
16: Use all available AUV sn
17: end if
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Uncertainty Algorithm 3 Uncertainty algorithm. Here T is total time underwater,
∆T is the localization interval of 60s, Nref represents the number of reference AUVs,
ωi is the current AUV’s uncertainty, and ωn represents each reference’s uncertainty.

1: if T ≤ ∆T then
2: Initial uncertainty
3: if Nref ≥ 3 then
4: ωi = 100
5: else
6: ωi =

Nref

3
7: end if
8: end if
9: if T > ∆T then

10: if Nref ≥ 3 then

11: ωi = 1
Nref

Nref∑
i=1

(ωn)

12: else

13: ωi = 1
3

Nref∑
i=1

(ωn)

14: end if
15: end if
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Chapter 5

Performance Evaluation

5.0.1 Evaluation Metric

The difference in position for Euclidean 3D space is used to evaluate performance.

Localization error is defined as the distance between the actual AUV position and the

estimated AUV position. Real time (one simulation run) localization results can be

found in Figures 5.3-5.6 (a). The deviation for the AUVs is also computed. This

deviation is the amount the localization error deviates from the total averaged error

and is modeled as,

σ =

√√√√ 1

N

N∑
i=1

(
Ei − Ē

)2
(5.1)

where N is the number of AUVs in the UWSN, Ei represents the localization error1 for

each AUV operating in the UWSN at that particular time. Ē represents the average

localization error over the course of the simulation (10,600s) for all AUVs and is given

by,

Ē =
1

Lt

Lt∑
j=1

(
1

N

N∑
i=1

(Ei)

)
(5.2)

here Lt is the number of times the localization is performed, such that Lt = Tend
∆T , N is

the number of AUVs in the UWSN, and Ei represents the localization error for each

AUV at that time.

The deviation plotted over time can found in Figures 5.3-5.6 (b) down below. In

addition, in order to obtain results of statistical significance, 250 trials were conducted

for varying numbers of AUVs. In all trials, the localization error was accumulated and

1Localization error is defined as the 3D Euclidean distance between the AUV’s estimated position
and its actual position.
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Figure 5.1: Scenario 1

then averaged for each simulation and over all runs. The average errors for the AUV’s

predicted location can be found in Figures 5.3-5.6 (c).

5.0.2 Specific Scenarios

The developed simulation allows for the adjustment of the number of AUVs, scenarios,

runs, 3D deployment region, time interval, total time, water temperature, salinity, and

currents all of which can be found in Table 5.1. We utilize two specific scenarios with

two different underwater currents in our simulation.

• Scenario One with Typical Currents: This scenario involves a team of AUVs

who collaboratively explore an underwater region located under ice. These AUVs

remain under-the-ice for the duration of the mission and do not return to the

surface until the mission is completed. Typical currents ranging in speed from

0.01-0.03 m/s [90] [92] were implemented.

• Scenario One with Severe Currents: This is scenario one with severe currents

implemented. These currents range in speed from 0.04-0.06 m/s [90] [92].

• Scenario Two with Typical Currents: The second scenario is similar to the first
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Figure 5.2: Scenario 2

except that individual AUVs will periodically surface to update their positioning

via GPS. These AUVs take turns returning to the surface according to a prede-

fined interval, which is 1800s in our simulation. In order to avoid ice cover, these

AUVs return to the edge of the ice sheet where they were deployed. Once an

AUV surfaces, it acquires a GPS fix and updates its current coordinate position.

The number of AUVs that return to the surface depends on the number of AUVs

deployed. If there are six or fewer AUVs then only one AUV will surface period-

ically. If there are more than six AUVs deployed, then teams of two will return

to the surface periodically. The order in which the AUVs return to the surface is

sequential according to the AUV’s ID number. Typical currents ranging in speed

from 0.01-0.03 m/s were implemented.

• Scenario Two with Severe Currents: This is scenario two with severe currents

implemented. These currents range in speed from 0.04-0.06 m/s.
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Table 5.1: Simulation Parameters
AUV Localization

Number of Simulated Runs 250

Total Time 10600 s

Scenario 2 Surface Interval 1800 s

Time Interval, ∆T 60 s

Deployment 3D Region 1250(L)x1250(W)x0(H)m3

Confidence Parameter, α 0.05

AUV Velocity 0.25-0.40 m/s

AUV Depth Range [0,1000] m

Typical Currents 0.01-0.03 m/s

Severe Currents 0.04-0.06 m/s

Water Temperature Range [-2,2]oC

Salinity Range [32.5,35] %

5.0.3 Evaluation Results

Scenario One

It can be seen that our Doppler-based technique performs closely in terms of localization

error over time to the expensive INS hardware system 2. In addition, as the number of

AUVs increases the localization error drops across the board for all techniques. This

can be attributed to the fact that as the number of AUVs increases there are more

references to chose from when performing localization. Also the number of localization

messages lost due to path loss, channel conditions, and etc. is minimized since the

number of AUVs has increased, thus enhancing coverage. AAL clearly outperforms

all other cooperative localization approaches other than the Doppler-based technique.

This AAL approach also performs dramatically better with a larger number of AUVs.

It is not surprising to see DNRL and CNA perform the worst in terms of localization

error. Their poor performance can be attributed to their use of a limited number of

AUVs equipped with expensive dead reckoning systems. All the algorithms perform the

same for the first half hour or so, but as time passes and the AUVs travel further and

further, DNRL and CNA begin to struggle. Since only a select number of AUVs are

designated as anchors in these two approaches, it has limited coverage and it is clear

2This INS system serves as a performance baseline. An INS system is composed of several INS sensors
in combination with a DVL to constrain error over time. INS sensors cost upwards of $50,000 [25].
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why they would struggle over longer periods of time. DNRL and CNA are best served

in team formation techniques with reliable underwater channels (few lost packets). The

performance of all the localization techniques perform at an acceptable level even with

severe currents. It is interesting to see that the localization error can not be minimized

by increasing the number of AUVs in the UWSN as was the case with typical currents.

Stronger currents limit the effectiveness of adding more AUVs to the UWSN. Currents

take place in specific underwater regions and adding more AUVs just increases the

number of AUVs influenced by the currents not necessarily bettering the localization.

Scenario Two

The results for the second scenario closely resemble the results attained for the first.

However, the second scenario clearly limits the error for each localization technique.

This second scenario shares many of the same characteristics as the first scenario; all

localization schemes fail to significantly minimize error with an increasing number of

AUVs when the currents are severe. This changes dramatically for typical currents,

where the performance for all techniques is greatly improved with a larger number of

AUVs. Once again DNRL and CNA performed comparably, and our Doppler-based

scheme was similar to the INS approach.

5.0.4 Error Analysis

There are several uncertainties that are associated with the localization techniques

presented: propagation delay, anchor positions and channel conditions, hardware, un-

derwater acoustic speed, and Doppler shift all play a key role in affecting localization

accuracy.

• Propagation Delay : RTT errors are prevalent for message transmission due to

non-determinism in the latency estimate of message delays.Propagation latency,

encoding/decoding time and receiving time all contribute to RTT error. This is

mitigated by our Doppler-based approach since we can project the position of the

reference AUV.
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• Channel Conditions: Multipath, shadow zones, path loss, geometric spreading,and

poor reliability all hamper underwater communications.

• Transmission Time: Transmission time in underwater environments is on the or-

der of several seconds. Specifically the WHOI Micro-Modem takes approximately

3 seconds depending on packet type to transmit [37].

• Hardware Measurement : The depth, z, is measured by a pressure sensor which is

known to be accurate to 0.01%.

• Speed of Sound : The speed of sound, c, is a complex function of water temper-

ature, salinity, and depth. Mackenzie’s empirical formula is used to model this.

It provides a relatively accurate speed of sound for each time increment while

minimizing processor cost.

• Error in Doppler-shift : Doppler-based errors include sensor error in echo detection

and measurement, which affects Doppler’s long term accuracy [95]. The precision

and accuracy of a Doppler sensor is a complex function of signal power, frequency,

pulse length, velocity of sound accuracy, transducer alignment and spectral esti-

mating techniques. The variance of a frequency shift estimate is given in [95].

These errors were modeled in Python using the equations and methods mentioned

above.
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Figure 5.3: Scenario 1 with Typical Currents: Routine under the ice mission with
no resurfacing. Figure c was plotted with 95% confidence intervals for 250 runs.
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Figure 5.4: Scenario 1 with Severe Currents: Routine under the ice mission with
no resurfacing. Figure c was plotted with 95% confidence intervals for 250 runs.
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Figure 5.5: Scenario 2 with Typical Currents: Under the ice mission with resur-
facing and typical currents. Figure c was plotted with 95% confidence intervals for 250
runs.
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Figure 5.6: Scenario 2 with Severe Currents: Under the ice mission with resurfac-
ing. Figure c was plotted with 95% confidence intervals for 250 runs.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In our approach we utilize a Doppler-based approach to compute the velocity of the

AUV and project subsequent positions of the AUV. In addition, we have taken into

account uncertainties associated with channel conditions over time and variations in

the speed of sound due to water temperature, depth, and salinity. We have success-

fully developed a simulation that implements an effective Doppler-based localization

algorithm and studies error propagation.

This thesis discusses several localization techniques: AAL, DNRL, CNA and our

novel Doppler-based approach. These techniques have been discussed in depth and are

utilized in our UWSN simulation. This simulation was developed in Python and pro-

vides a detailed insight into the propagation of errors for each localization technique. An

accurate Doppler-based localization algorithm has been implemented and shown to be

effective when compared to other comparable localization techniques. Our approach is

advantageous against other localization techniques, as it achieves excellent localization

results while minimizing the number of necessary localization messages sent and re-

ceived by the AUV. This alleviates some associated network overhead and lowers power

consumption. It is also important to note that as the number of AUVs in the UWSN in-

creases, the accuracy improves, but communication overhead also increases. The main

benefit to using our Doppler-based approach is that it effectively limits localization error

by opportunistically utilizing observed Doppler shifts from ongoing communications.
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6.2 Future Works

Further development of this protocol will eventually lead to the implementation of

the Doppler-based localization algorithm on the Woods Hole Oceanographic Institute

(WHOI) emulation testbed developed by [32]. This emulation would provide the oppor-

tunity to test this Doppler-based approach on the actual WHOI Micro-Modem, which

would be used during actual AUV deployment. The next logical step after emula-

tion would be to implement our Doppler-based localization technique in actual field

experiments. Many of the localization protocols have been written with the intent of

implementing localization in actual underwater experiments. This modem has been

utilized in several underwater experiments and has served as an emulator/testbed for

the development of localization, team formation and routing protocols in [28] [31] [32].
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