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Abstract of the Thesis 

 

Nonsmooth Impact Mechanics of a Free Falling Body 

by Alexey Titovich 

Thesis Director: Dr. Haim Baruh 

 

In this study, several models are developed for analyzing the oblique impact of a 

container dropped from a height above the impacting surface.  The governing equations 

for impact of rigid bodies in the presence of friction are developed. A clear relationship 

for determining sliding behavior is presented. For both frictional regimes, the dependence 

of the energy loss on the initial parameters is analyzed. Several vibrational impact models 

are presented and analyzed. These models produce a transient description of the impact 

force and aid in the determination of the ratio of the cushion and cargo stiffness which 

produce the best impact outcome. The effect of aerodynamic drag prior to impact is also 

analyzed. The equations governing the aerodynamics form a set of coupled nonlinear 

differential equations. The numerical solution of these equations illustrates that there 

exists a point where the object’s velocity reaches a favorable minimum, which is 

substantially below the terminal velocity. An approximate solution, obtained by 

decoupling the aerodynamic equations, is presented and validated. Both the rigid body 

impact mechanics and the aerodynamics are combined in a simulation code capable of 

analyzing subsequent impact. The simulated tumbling distances for a container, which 

was designed for the U.S. Army, are compared to experimental drop test data. The results 

validate the use of the rigid body model for this type of container. 
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Chapter 1 

Introduction 

 

hysical impact of bodies can be found in almost every aspect of life. Impact 

occurs in something as simple as a finger striking a key on the keyboard to 

something as complex as multi car collisions and everything in the middle. All 

sports involving balls, such as basketball soccer and tennis as well as physical contact 

among players, are governed by laws of impact and mastering how impact takes place 

can lead one to victory. At the other side of the spectrum, scientists in biomedical 

disciplines study impact in order to prevent failure of bones under impulsive loading. It 

would be impossible to list all processes in which impact occurs, but one can look at it 

this way. In our everyday lives, things do not just move on their own, but are rather fixed 

as to prevent this. However, at some point these things had to be placed into that position, 

and since people, in general, are not very patient, impact almost certainly occurred. 

 The reason why impact is so important is that unlike static loads or other types of 

dynamic loads, the magnitude of impact forces is much larger. The forces exerted during 

impact can be characterized as having large amplitudes and a very short time duration. 

This is the reason why many devices fail under impact loading, and also what makes it 

such an important field of study. During impact the position of the body changes slightly, 

but the velocity changes dramatically. This formulates the typical impact problem: 

determine the velocities after impact having specified the initial velocities.  

P 
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 Due to the complexity of accurately modeling the behavior of a solid undergoing 

impact, numerous facets of mechanics have been employed to describe the impact 

phenomena. From the mechanics of solids, the field utilizes rigid body dynamics, 

vibrational analysis, elastic wave propagation, contact mechanics, and the theory of 

plasticity among others. Also computational tools such as the finite element method are 

often used. Besides solid mechanics, fluid mechanics is also used to describe the flow of 

material for high energy impacts. Similarly, thermodynamics is used to analyze the heat 

dissipation during impact. The sound wave propagation due to the percussion of impact is 

modeled using acoustics. And, of course, aerodynamics plays a crucial role in 

determining the pre-impact velocities. In this thesis we will restrict our analysis to certain 

aspects of solid mechanics. 

 Rigid body impact is thought to have been introduced by Galileo, according to W. 

Goldsmith [13]. The first rigorous impact study was published in the late seventeenth 

century. Newton later used these developments in his manuscripts. As a result, the rigid 

body impact model that we still use today came into existence. In this model, energy 

dissipated through impact is modeled by a parameter called the coefficient of restitution. 

The original definition of the coefficient of restitution is attributed to Newton, and 

defines the ratio of initial to final vertical velocity of the contact point. Over the years, 

other definitions have been proposed by Poisson, and more recently by W.J. Stronge [37-

40]. Also, a large collection of coefficients of restitution, some of which are empirical, 

has been compiled by B. Brogliato [8]. However, the analysis of impact is not complete 

without the study of friction. The tribology of rigid body impact has also been thoroughly 

studied over the years [6, 7, 9, 11, 13, 16, 20, 25, 29, 40, 41, 44]. Friction is typically 
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modeled using the Amonton - Coulomb Law of dry friction. A useful graphical method 

of analyzing the behavior of the friction force during impact was introduced by E.J. 

Routh [35]. This method is typically used in analyzing the friction force for rigid body 

impacts, where the transient description of this force cannot be ascertained directly [6, 13, 

23, 27, 37, 41]. Impact analysis has been extended to multi–body systems as well, 

partially due to the advancements in robotics [3, 12, 23, 27, 37]. The rigid body impact 

model depends on the knowledge of certain coefficients. Due to this, numerous 

experiments have been devised to study the behavior of the coefficient of restitution [10, 

33, 36] and the coefficient of friction [9, 28, 29] during impact. Along with friction, 

resistance to rolling has also been investigated [43].  

Another way of modeling impact is enabled by vibrational models. These consist 

of differential equations, which are often nonlinear due to the nonlinear nature of the 

impact force. The solution of such differential equations produces the transient 

description of the impact force, something the rigid body model is not capable of. 

Numerous articles have been published on this topic [15, 18, 21, 24, 32, 34, 39, 42].  

The developments in the theory of elasticity allowed the study of multi-

dimensional wave propagation due to impact in elastic solids. A rather complete study of 

longitudinal and transverse waves in rods was presented by St. Venant and Boussinesq. 

Modern texts by J.A. Zucas [45] and W. Goldsmith [13] provide an extensive review of 

this type of impact analysis. The next improvement in the analysis of impact mechanics 

was the due to the advancement of contact mechanics. The theory of the mechanics of 

contact is compiled by K.L. Johnson [19]. In his text Johnson derives Hertz’s solution for 

the contact of two elastic spheres. This way of modeling the contact stiffness allowed 
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K.H. Hunt and F.R.E. Crossley to develop a nonlinear vibrational impact model, which, 

due to its structure, can be easily applied to experiment [15]. The study of plasticity came 

next and allowed the analysis of plastic effects during impact. Karman with Duwez, as 

well as others, formulated complete theories on the topic.  

In more recent times, the improvements in the speed of computers increased the 

interest in computational methods to solve impact problems. This area is dominated by 

the finite element method. It presents an approximate solution to the deformation of solid 

objects during impact. The power of this method is in its ability to approximately solve 

the most complex problems in solid mechanics, analytical solutions to which do not exist. 

Numerous texts and articles have been published on this topic and are readily available. 

Several commercial finite element packages have been developed for impact analysis, but 

all have certain limitations. 

The problem which this thesis attempts to solve is the impact of a cargo container 

with the ground. The container analyzed in this thesis was developed for the U.S. Army 

Logistics Innovation Agency to provide aerial resupply in hard to reach areas. Lack of 

runways and security issues associated with hostile forces or bandits in such areas 

requires that supplies be dropped from the aircraft. Instead of using parachutes, which are 

susceptible to large drift distances and are notoriously unreliable, the containers are to be 

dropped from a height of 50 to 100 feet, allowing them to free fall to the ground. The 

cargo is placed in the middle of the container which is comprised of an array of cushions. 

As the impact takes place the cushion absorbs some of the impact energy and the 

container continues to tumble across the impact surface. As was pointed out before, it is 

next to impossible to describe such an impact exactly because of the, hard to predict, 
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nonlinear behavior of the impact force. There also many uncertainties associated with the 

orientation of the container at impact, buckling of cushion layers, as well as the cushion-

cargo interaction.  This is why this type of impact is perfect for the rigid body analysis.  

 This thesis begins with an analysis of the frictional oblique impact of a rigid body 

with a rigid plane. In Chapter 2 we formulate the rigid body impact model for both two 

and three dimensional motion. We then analyze the frictional regime of the impact 

(sliding or not sliding) and compare the energy loss for each case. We also show that the 

rigid body impact model can be formulated in several ways and relate them. The chapter 

is concluded with a comprehensive example. Chapter 3 presents linear vibrational impact 

models and their application for investigating the cushion-cargo interaction. This chapter 

also analyzes a popular nonlinear vibrational model, namely its dependence on certain 

parameters. Chapter 4 presents a study of the aerodynamics of free fall. The equations 

governing the object’s trajectory are derived and a numerical solution is presented. We 

show that there exists a favorable minimum resultant velocity of the center of gravity. An 

approximate solution to the nonlinear governing equations is also presented and 

validated. Lastly, Chapter 5 compiles the aerodynamics of free fall together with the rigid 

body impact analysis in order to analyze subsequent impacts. Simulations of the 

subsequent impacts of a container are presented. The simulated tumbling distances are 

then compared to experimental data. 
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Chapter 2 

Rigid Body Impact Mechanics 

 

aced with an impact problem, one often begins the analysis with the rigid 

body model of impact. The rigid body assumption is primarily made to obtain 

a simple model. However, one should not underestimate its utility. We will 

show here that a great deal of useful information can be ascertained from this model. The 

simplicity comes from lumping all of the pertinent impact parameters into a few so called 

coefficients. There is no question about the suitability of defining these coefficients for a 

given set of initial conditions. One’s main concern is whether single-valued coefficients 

can be used for a range of initial conditions. In the literature, numerous experiments have 

been devised to study the applicability of the model and will be discussed later in this 

chapter. As the name suggests, we are assuming that the impacting bodies do not deform 

through impact and that the impact itself is instantaneous. It thus becomes impossible to 

determine the motion of the bodies during impact and our solutions consist of post impact 

velocities and angular velocities. But, no matter how constricting the limitations of this 

model might seem, one can still apply it to a plethora of useful problems. 

 

2.1    Nonsmooth Oblique Planar Impact 

 In this subsection we will concentrate on developing the tools to analyze 

nonsmooth oblique impact. By nonsmooth impact we mean that frictional effects can no 

longer be neglected. A good example of such an impact occurs in almost every sport 

which utilizes a ball. The planar impact assumption restricts the initial angular velocity to 

F 
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only have a component about an axis parallel to a tangent of the impact surface and 

perpendicular to the plane defined by the components of the initial velocity.  

 Let us begin the analysis by introducing an arbitrary body in a Cartesian 

coordinate system oriented such that the horizontal or x-axis coincides with the tangent to 

the surface at the point of impact.  

 

Figure 2.1: Orientation of the impacting body. 

Since the impact is two dimensional there will be only two forces between the object and 

the impacting surface. Figure 2.1 shows the vertical impact force as well as the horizontal 

friction force acting at the contact point C. We will neglect the gravitational force on the 

body because it is non-impulsive and in most instances its magnitude is miniscule 

compared to the large impact force. Note that the direction of the tangential force 

indicates that the object is traveling in the positive x direction, since friction always 

opposes motion. The previous statement becomes less clear when the object has an initial 

rotation. The position vector of the contact point with respect to the center of mass is 
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defined by an angle   from the positive y-axis. This angle will be taken positive 

counterclockwise. We can therefore express this position vector as follows. 

jRiRR yx
ˆˆ 


        (2.1a) 

 sinRRx           (2.1b) 

 cosRRy          (2.1c) 

  We will now formulate the kinematics of this impact problem. Let us define the 

initial velocity of the center of mass, point G in Fig. 2.1, and angular velocity as 

jViVV yx
ˆˆ 


         (2.2) 

kz
ˆ 


         (2.3) 

Therefore the contact point velocity CV


 at the beginning of impact will be  

   iRjRjViVRVV yxzyx

C ˆˆˆˆ  


    (2.4) 

Similarly the post-impact or final velocity, angular velocity and contact point velocity 

will be denoted by a prime in the superscript and are 

jViVV yx
ˆˆ 


        (2.5) 

kz
ˆ 


         (2.6) 

   iRjRjViVV yxzyx

C ˆˆˆˆ  


      (2.7) 

Writing the conservation of linear momentum for this problem we obtain 

xxx VmFmV  ˆ         (2.8) 

yyy VmFmV  ˆ         (2.9) 

where xF̂ and yF̂  are the impulses in the x and y directions, respectively, and m  is the 
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impacting body’s mass. Consider the conservation of angular momentum about the center 

of mass G, which is expressed by the following equations 

 


GG IFRI ˆ         (2.10a) 

zGxyyxzG IRFRFI   ˆˆ        (2.10b) 

where GI  is the moment of inertia about the center of mass, G.  

2mRIG           (2.11) 

The coefficient   in equation (2.11) depends on the geometry of the impacting body. 

 One can greatly improve the understanding and parameterization of the governing 

equations of rigid body impact by nondimensionalizing. The question in this situation is 

what would be a good quantity to nondimentionalize the velocity. One of the answers, the 

one used in this thesis, will be to nondimensionalize all velocity quantities with respect to 

the vertical component of the initial velocity. This allows the use of these equations for 

vertical impacts, even when the horizontal component of the initial velocity vanishes. Let 

us define the following dimensionless pre-impact quantities. 

y

x
x

V

V
   

y

z
z

V

R
        (2.12a,b) 

Similarly, we will nondimensionalize the post-impact quantities and denote them with a 

double prime in the superscript. 

y

x
x

V

V
V


   

y

y

y
V

V
V


   

y

z
z

V

R



    (2.13a,b,c) 

The dimensionless representations of the impact impulses are 

y

x
x

mV

F
F

ˆ
ˆ    

y

y

y
mV

F
F

ˆ
ˆ        (2.14a,b) 
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Lastly, let us also define the following dimensionless components of the position vector 

between the points C and G. 

 sin
R

R
R x

x    cos
R

R
R

y

y     (2.15a,b) 

Dividing equation (2.8) and (2.9) by ymV  we obtain the dimensionless representations. 

xxx VF  ˆ          (2.16a) 

yy VF  ˆ1          (2.16b) 

Dividing equation (2.10b) by ymRV  we get  

zxyyxz RFRF   ˆˆ        (2.16c)  

We have obtained the governing equations for the rigid body impact. The three equations 

(2.16a,b,c) do not form a closed system because there are five unknowns: 

xV  , yV  , z  , xF ˆ , yF ˆ . The two equations that we still need will be derived in the following 

subsections.  

 

2.2    Coefficient of Restitution 

 One of the hardest feats to accomplish in any impact analysis is to accurately 

represent the impact force. The simplest way is to model the gross effects of the impact 

force rather than try to obtain its transient representation. This is where we introduce the 

coefficient of restitution as the ratio of final to initial vertical velocity of the contact 

point. This definition is attributed to Newton [13] and can be stated mathematically as 

jV

jV
e

C

C

n ˆ

ˆ




 



          (2.17) 
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where ne  is the coefficient of restitution, and the subscript  
n
 denotes the direction 

normal to the impacting surface, in this case the ĵ  direction. The negative sign in 

equation (2.17) guarantees a positive value for the coefficient of restitution in the case 

when velocity reversal occurs. This coefficient can take on values in the range 10  ne ; 

a value of 1 denotes a completely elastic impact and a value of 0 denotes a completely 

plastic impact. Also note that if the object penetrates the impacting surface, the 

coefficient can take on negative values 01  ne [6]. In this thesis we will concentrate 

on the positive spectrum of the coefficient of restitution. 

 The coefficient of restitution depends on the mechanical properties of both the 

impacting body and the impacting surface, which in general can vary with temperature 

[33]. It can also vary with the initial velocity [13] as well as the orientation of the 

impacting body if it is not axis-symmetric. When faced with an impact problem one 

should decide whether a constant valued coefficient can be used to determine the post-

impact behavior.  

 Let us now obtain a nondimensional expression for the coefficient of restitution. 

Substituting (2.4) and (2.7) into (2.17), we obtain  

    
     xzy

xzy

yxzyx

yxzyx

n
RV

RV

jiRjRjViV

jiRjRjViV
e



















ˆˆˆˆˆ

ˆˆˆˆˆ
   (2.18) 

Equation (2.18) can be nondimensionalized by dividing all quantities by the initial 

vertical velocity yV . 























R

R

V

R

R

R

V

R
V

e
x

y

z

x

y

z
y

n




1
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Using the definitions (2.11), (2.12), and (2.14) we arrive at the nondimensional form of 

the coefficient of restitution. 

xz

xzy

n
R

RV
e










1
        (2.19) 

Equation (2.19) is the fourth equation in the system, discussed in the previous subsection, 

required to solve a rigid body impact problem. One more relation remains to be 

determined before one can solve the impact problem. This expression will come from 

analyzing the friction forces developed during impact. 

 

2.3    Tribology of Impact 

 Friction is an important part of rigid body impact. It governs the transfer of linear 

momentum to angular momentum and hence all post-impact quantities. Friction effects 

will be defined by the Coulomb Law [1] of friction as absolute value of the ratio of 

horizontal to vertical impulse components. This relationship is depicted below 

y

x

F

F

ˆ

ˆ
          (2.20) 

where  is called the coefficient of friction. The above expression governs the 

relationship between the impulses if sliding occurs; it will also be shown to be the 

condition required for sliding to initiate. We can nondimensionalize the right hand side of 

definition (2.20) with respect to ymV  obtaining equation (2.21). 

y

x

F

F






ˆ

ˆ
          (2.21) 
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Once again, our solution will assume a constant value of the coefficient of friction. The 

coefficient of friction is a function of the mechanical properties of both contacting 

surfaces. It has also been shown that for some objects [9] it can depend on the sliding 

velocity, the relative speed between the contact point and the impact surface. But, in the 

general case, it has been argued that the coefficient of friction is independent of the 

sliding velocity unless it is very small, in which case thermal processes must be 

considered [29]. Furthermore the friction force can even reverse its direction during 

impact [28, 35]. But, as was stated previously in the rigid body analysis of impact we are 

only concerned with the gross effects of friction.  

 In this thesis we will consider the two extremes of frictional effects during impact. 

One possibility will be that the impacting body rolls or pivots during impact, which 

corresponds to the case when the impulse ratio is less than the critical value governed by 

equation (2.20) and hence the object does not slide. The major difference between rolling 

and pivoting during impact is that for rolling the magnitude of the position vector, R , 

between points C to G, seen in Fig. 2.1, can change during impact, while for pivoting it is 

assumed to remain constant. In this thesis we will assume that R  remains constant 

throughout the impact.  In the case when no sliding occurs, the remaining mathematical 

condition will come from the equations for rolling [1], namely 

0ˆ  iV CP


         (2.22) 

Equation (2.22) requires that the horizontal component of the contact point velocity 

vanishes if no sliding occurs during impact. Substituting equation (2.7) into (2.22) yields 

     0ˆˆˆˆˆ  iiRjRjViV yxzyx         

0 yzx RV           (2.23) 
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Nondimensionalizing equation (2.23) with respect to yV  and using definitions (2.13) and 

(2.15) we get the following expression. 

0 yzx RV           (2.24) 

 The second possibility occurs when the impulse of the frictional force cannot 

prevent sliding. This corresponds to an impulse ratio which exceeds the coefficient of 

friction  . In this rigid body analysis we will not consider the cases of the object initially 

sticking and then sliding or vice versa.  We will concentrate on the scenario that if the 

impacting body slides at the instant of impact it will continue to slide until the end of 

impact. Therefore, according to Coulomb Law of friction, if sliding occurs then the ratio 

of the impulsive forces will be governed by equation (2.20) or the dimensionless form 

(2.21).  

 Now that we have closed the system of equations for rigid body impact with 

(2.24) for no-sliding and (2.21) for sliding, we need to determine when to use which. This 

required condition can be stated mathematically as 

y

x

F

F






ˆ

ˆ
          (2.25) 

that is, if the absolute value of the ratio of the impulses exceeds the value of the 

coefficient of friction then sliding will occur. One question arises is whether to use the 

static or kinetic coefficient of friction. It has been shown through experiment [6] that, due 

to the short duration of impact, the kinetic coefficient of friction should be used in this 

analysis.  

 

2.4    Post-Impact Quantities 
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 The rigid body model of impact is good for approximating the velocities and 

rotation immediately after impact. In the next two subsections we will discuss the 

solution to the planar impact problem for two distinct regimes of impact. The two 

possible impact scenarios are: sliding or no sliding during impact. Also, the condition that 

determines the regime of impact will be derived. 

 

2.4.1 No Sliding Case 

 In this subsection we will solve the impact problem for the case when no sliding 

occurs during impact. The five dimensionless governing equations have been derived in 

the previous subsections and are (2.16a,b,c), (2.19), and (2.24). Putting them in matrix 

form can be computationally useful, but we will also solve them directly. Doing this 

gives 

 






















































































0

1

1

ˆ

ˆ

0001

0010

00

10010

01001

xzn

z

x

y

x

z

y

x

y

x

xy

Re

F

F

V

V

R

R

RR







    (2.26) 

We will begin by solving equations (2.16a) and (2.16b) for xF ˆ  and yF ˆ , respectively. 

Substituting these expressions into equation (2.16c), we eliminate the impulsive forces 

and are left with 

    zxyyxxz RVRV   1      (2.27) 

Solving (2.19) for yV  and (2.24) for xV   

 xznxzy ReRV   1        (2.28a) 

yzx RV            (2.28b) 
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Substituting (2.28a,b) into (2.27) 

     zxxznxzyyzxz RReRRR   11  

Combining terms 

       zxyzxnyxxnz RRReRRe  
222

1     

Solving for z   

    
 22

2
1

xy

xnzxnyx

z
RR

ReReR









  

Recall the definitions (2.15a) and (2.15b) and substitute them into the above 

         


 2sinsin1cos
1

1
nznxz ee 










   (2.29) 

Equation (2.29) gives the dimensionless expression for the final angular velocity in an 

impact where no sliding occurs. Substituting equation (2.29) into equation (2.28b) and 

using equation (2.15b) we obtain 

             


cossinsincos1cos
1

1 22

nznxx eeV 









  (2.30) 

Equation (2.30) is the expression for the final horizontal component of velocity for the no 

sliding case. Similarly substituting (2.29) into (2.28a) gives 

                


sin1sinsinsin1sincos
1

1 22

znnznxy eeeV 









  

Simplifying further 

                nnnznxy eeeeV 









 


sin1sinsin1sincos

1

1 22  

                 nnnznxy eeeeV 









 


sinsin11sin1sincos

1

1 22  
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Recalling the trigonometric identity     1sincos 22   we arrive at 

                nnnznxy eeeeV 









 


sincos1sin1sincos

1

1 22  

          (2.31) 

Equation (2.31) is the expression for the final vertical velocity. We have therefore solved 

the rigid body impact problem for the case of no sliding during impact. We can also put 

the final solution in matrix form as 

      
          

    

     
    
    








































































































 sin1

cossin

sincos1

sincos

sincos1sincos

cossincos

1

1 22

2

2

22

n

n

n

z

x

n

nn

n

z

y

x

e

e

e

e

ee

e

V

V

 

          (2.32) 

 

2.4.2 Sliding Case 

 We will now solve the problem of rigid body impact for the case when sliding 

occurs during impact. As for the no sliding case, the system of equations consists of 

(2.16a,b,c) and (2.19), but the last required equation will now be (2.21). Let us re-express 

equation (2.21) as follows. We can further simplify the expression by noting that the 

vertical component of the impact force will always act in the positive direction. 

yx FF  ˆˆ           (2.33) 

On the other hand, the direction of the horizontal component of the impact force will 

depend solely on the direction of the horizontal component of the initial contact point 

velocity. 

     y

C

x FiVF  ˆˆsgnˆ 


       (2.34) 

Substituting (2.4) into above we obtain the following expression  
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     yyzxx FRVF  ˆsgnˆ   

which we will now nondimensionalize with respect to yV . But, one must keep in mind 

that, in the specified coordinate system, in order for the object to strike the impacting 

surface it must initially have a negative vertical component of velocity; therefore the 

quantity inside the  sgn  term must be negated to preserve its purpose. 

     yyzxx FRF  ˆsgnˆ         (2.35) 

 In order to simplify the calculation let us restate equation (2.35) as follows 

   yx FF  ˆˆ           (2.36) 

where  yzx R  sgn . 

 This full system of equations can once again be expressed in matrix form for 

computational convenience. Hence, 

 






















































































0

1

1

ˆ

ˆ

1000

0010

00

10010

01001

xzn

z

x

y

x

z

y

x

x

xy

Re

F

F

V

V

R

RR











     (2.37) 

But we will also work out the analytical expressions for the post-impact velocities and 

angular velocity. As in the previous section, we can solve equation (2.16a) for xF ˆ  and 

equation (2.16b) for yF ˆ  and substitute into (2.16c) to obtain (2.27). Thus, 

    zxyyxxz RVRV   1      (2.27) 

xxx VF  ˆ          (2.38a) 

1ˆ  yy VF          (2.38b) 
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Substituting equation (2.38a,b) into (2.36) 

   1 yxx VV          (2.39) 

Solving equation (2.39) for xV   gives 

 1 yxx VV          (2.40) 

Solving equation (2.19) for z   yields 

  yxzn

x

z VRe
R

  1
1

       (2.41) 

Substituting equations (2.40) and (2.41) into equation (2.27) results in 

        








 yxzn

x

xyyyxxz VRe
R

RVRV  1
1

11  

Multiplying through by xR  and simplifying gives 

      yxznxyxyyxz VReRVRRVR   111
2

 

Combining terms yields 

     22
1 xxyyxxynxnz RRRVRRReRe    

Solving for yV   we have that 

   
2

2
1

xxy

xnznxxy

y
RRR

ReeRRR
V









     (2.42) 

Equation (2.42) is the final vertical velocity for the impact during which sliding takes 

place. Upon substituting the above into equation (2.40) we obtain the horizontal 

component of the post-impact velocity, 

   


















 1

1

2

2

xxy

xnznxxy

xx
RRR

ReeRRR
V




  
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Simplifying this expression, 

   



















2

11

xxy

xnzn

xx
RRR

Ree
V




      (2.43) 

Combining terms we arrive at the following, 

     
2

2
11

xxy

xnznxxyx

x
RRR

ReeRRR
V









   (2.44) 

In order to simplify the calculation of the final angular velocity let us consider the 

following quantities which will utilize equations (2.42) and (2.43): 

 
   




















2

11ˆ

xxy

xnzn

xxx
RRR

Ree
VF




     (2.45) 

     



















2

11
1ˆ

xxy

xnzn

yy
RRR

Ree
VF




    (2.46) 

Substituting equations (2.45) and (2.46) into equation (2.27) gives 

       
zx

xxy

xnzn

y

xxy

xnzn

z R
RRR

Ree
R

RRR

Ree









 







































22

1111
 

      
2

11

xxy

xnznxy

zz
RRR

ReeRR









     (2.47) 

Combining terms we obtain 

      
2

2
11

xxy

xxyxxynzxyn

z
RRR

RRRRRReRRe









  

     
2

1

xxy

xxynzxyn

z
RRR

RRReRRe









    (2.48) 
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Equation (2.48) is the expression for the post-impact angular velocity for the case when 

sliding occurs during impact. Using definitions (2.15a,b) we can obtain the expression for 

the final quantities in terms of the orientation angle  . Hence, 

          

      


2

2

sinsincos

sin1sinsincos




 nzn

y

ee
V    (2.49) 

            

      


2

2

sinsincos

sin11sinsincos




 nznx

x

ee
V  (2.50) 

              
      




2sinsincos

sinsincossincos1




 nzn

z

ee
 

          (2.51) 

Expression (2.52) shows the solution in matrix form. 

   

      
   

      
      

      

 

      
      

      
      

       















































































































































































































2

2

2

2

2

2

2

sinsincos

sincos1

sinsincos

sinsincos

sinsincos

1

sinsincos

sinsincos
0

sinsincos

sin1
0

sinsincos

sin1
1

n

n

n

z

x

n

n

n

z

y

x

e

e

e

e

e

e

V

V

 

          (2.52) 

Now that we have solved both problems of sliding and no sliding during impact, we need 

to determine when to use which set of equations. The sliding condition is given by 

equation (2.25) and is based on the idea that sliding will commence if the force ratio 

exceeds the value of the coefficient of friction. We will use this idea to obtain a general 

expression for the sliding condition in terms of the initial impact parameters. 

Nondimensionalizing equation (2.25) we get 

 
 









1y

xx

V

V
         (2.53) 
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Substituting equations (2.30) and (2.31) into above 

             

               





















































1sincos1sin1sincos
1

1

cossinsincos1cos
1

1

22

22

nnnznx

nznxx

eeee

ee

 

Combining terms and simplifying, 

             
               











sincos11sin1sincos

cossinsincos1cos1
22

22

nnznx

nznx

eee

ee
 

Further simplifying 

             
               











sincos1cos1sincos

cossinsincos1sin
22

22

nnznx

nznx

eee

ee
  

          (2.54) 

Substituting the expression for   into (2.54) and simplifying we get the final sliding 

condition. 

                 
                




sincos1cos1sincos

cossinsincos1sincossgn
22

22

nnznx

nznxzx

eee

ee




  

          (2.55) 

 

2.5    Comparison of the  ,ne  and  xy ee ,  Models 

 Another way of posing the impact problem is to define vertical and horizontal 

coefficients of restitution ye  and xe , rather than define the coefficient of restitution ne  

and the coefficient of friction  . The vertical coefficient of restitution ye  will be defined 

the same way as ne , via equation (2.19). The horizontal coefficient of restitution will be 



23 

 

 

defined as the negative ratio of final to initial horizontal components of the contact point 

velocity and is given by the following. 

iV

iV
e

CP

CP

x ˆ

ˆ




 



         (2.56) 

Substituting equations (2.4) and (2.7) into above we obtain the following: 

yzx

yzx

x
RV

RV
e








         (2.57) 

Nondimensionalizing (2.57) by dividing with yV  gives 

yzx

yzx
x

R

RV
e








         (2.58) 

Defining ye  using (2.19) gives 

xz

xzy

y
R

RV
e










1
        (2.59) 

Once again we now have five equations, (2.16a,b,c), (2.58), and (2.59), and five 

unknowns, xV  , yV  , z  , xF ˆ , yF ˆ . We will now solve this system for the post-impact 

quantities using the  xy ee ,  model.  Solving equations (2.16a) and (2.16b) for the 

impulses and substituting into equation (2.16c) we get equation (2.27). Now, solving 

equation (2.58) for xV   and equation (2.59) for yV   and substituting them into eq. (2.27)  

  yzyzxxx RReV          (2.60) 

  xzxzyy RReV   1        (2.61) 

      zxxzxzyyyzyzxxxz RRReRRRe   11    

          (2.62) 
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Combining terms in equation (2.62) yields 

        zxyxyyxzxyyxx RRReReReRe  
2222

11  

Recalling that 1
22
 xy RR and solving for z  we get the final angular velocity, 

      22
11

1

1
xyyxzxyyxxz ReReReRe 










 


   (2.63) 

Substituting equation (2.63) into (2.60) gives 

         yxyyxzxyyxxyzxxx RReReReReReV
22

11
1

1











 


  

Simplifying the above, we have 

         yxyyxzyxyyxxyzxxx RReReRReReReV
222

111
1

1











 


 

Combining terms 

          yxxyyxzyxyxyxxx ReReReRReeReV 1111
1

1 222











 


 

        yxxxyzyxyxxyxx RReReRReReRV
2222

1
1

1











 


 

          (2.64) 

Equation (2.64) is the expression for the final horizontal velocity using this impact 

model. 

We will obtain the final vertical velocity by substituting (2.63) into (2.61). This gives 

         xxyyxzxyyxxxzyy RReReReReReV
22

11
1

1
1 










 


  

Simplifying the above gives, 

          yxxyyxzxyyxxxxzyy eRReReReRReReV 











222
111

1

1



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After combining terms we have 

        yxyxyyxzxyyxxxy eReReReReRReV 









 111

1

1 222



 

Finally we obtain the expression for the final vertical velocity. 

        yxyyyxzxyyxxxy eRReReReRReV 











222
11

1

1



 

          (2.65) 

 Comparing this  xy ee ,  model to the  ,ne  model, we see that the no sliding 

case corresponds to 0xe . This statement guaranties that the final horizontal velocity of 

the contact region will be zero. Substituting 0xe  into equations (2.63), (2.64), and 

(2.65), results in the following system of the equations. 

    2
1

1

1
xyzxyyxz ReReR 










 


     (2.66a) 

    yxyzyxyyxx RReRReRV
22

1
1

1











 


   (2.66b) 

      yxyyzxyyxxy eRReReRRV 











2
1

1

1



  (2.66c) 

For easier comparison, let us use equations (2.15a,b) to simplify equations (2.66) 

         


 2sinsin1cos
1

1
yzyxz ee 










   (2.67a) 

             


cossinsincos1cos
1

1 22

yzyxx eeV 









  (2.67b) 

               yyzyxy eeeV 









 


sincossin1sincos

1

1 2   

          (2.67c) 
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Comparing equations (2.67a,b,c) to equation (2.29), (2.30), and (2.31) we see that they 

are identical. We can also obtain the general expressions for the final velocities of the 

 xy ee ,  model in terms of the orientation angle  . Substituting equations (2.15a,b) into 

equations (2.63), (2.64), and (2.65) results in the following. 

       

     

































22 sincos

sin1cos1

1

1

yxz

yxx

z
ee

ee
    (2.68a) 

           

        
































 cossinsin

sincos1sincos

1

1
22

22

xyz

yxx

x
ee

ee
V   (2.68b) 

         

       
y

yxz

yxx

y e
ee

ee
V 


































 sincoscos

sin1sincos1

1

1
22

2

  (2.68c) 

Putting equations (2.68a,b,c) in matrix form gives 

     
 

       

 

     
 

       

 

   
 

    
 

     

 
     

 
   

  


















































































































































































































1

sin1

1

1sin1

1

sincos1

1

sincos

1

cos1

1

sincoscos

1

sincos1

1

cossinsin

1

sincos

2

22

22

2222










































y

yy

y

z

x

yxx

yxx

xyx

z

y

x

e

ee

e

eee

eee

eee

V

V

 

          (2.69) 

Now we need to compare the coefficient of friction,  , to the horizontal coefficient of 

restitution, xe . Let us begin by substituting equations (2.60) and (2.61) into equation 

(2.39) to obtain 

     11  xzxzyyzyzxxx RReRRe     (2.70) 

Solving equation (2.70) for  and simplifying gives 



27 

 

 

  
  xzxyzy

yzyxzxx

RRee

RRee











1

1
      (2.71) 

Substituting the expression for the final angular velocity equation (2.63) into equation 

(2.71) results in 

        

         











































xxyyxzxyyxxxyzy

yxyyxzxyyxxyxzxx

RReReReReRee

RReReReReRee

22

22

11
1

1
1

11
1

1
1











  

          (2.72)  

Simplifying equation (2.72) gives 

           
           xxyyxzxyyxxxxyzy

yxyyxzyxyyxxyxzxx

RReReReRReRee

RReReRReReRee

222

222

11111

11111











Combining terms 

          
          xxyyxyzxyyxxx

yxyyxxzyxyyxx

RReReeReRRe

RReReeRReRe
222

222

11111

11111









  

Further simplifying 

          
          xyxyyzyyyxxx

yxxyxzyxyxxx

RReeeReRRe

RReeeRReRe
22

22

111

111









  

Upon substituting equations (2.15a,b) into the above, we obtain the expression in terms of 

the orientation angle  . Hence, 

                    
                    




sincos1cos1sincos1

cossin1sincos1sin1
22

22

xyyzyxx

xyxzyxx

eeeee

eeeee




  

          (2.73) 

Equation (2.73) is the final link between the two impact models we are considering. Note 

that if xe  is equal to zero,   is not necessarily equal to zero. For that case, equation 
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(2.73) gives the force ratio as a function of the orientation angle,  , if all other 

parameters are held constant. 

 

2.6    Energy Loss 

 A very important indicator of the survivability and/or damage of the object is the 

energy which it absorbs. The emphasis of this subsection is to develop a relationship for 

the energy loss during impact for both the sliding and no sliding cases. These expressions 

can then be used to determine the initial parameters which will yield the smallest energy 

loss. Typically, a smaller energy loss during impact corresponds to the object absorbing 

less energy, which is favorable. 

 The initial and final kinetic energies of the object can be expressed as follows 

  222

2
1

2
1

zGyxinitial IVVmK        (2.74a) 

  222

2
1

2
1

zGyxfinal IVVmK        (2.74b) 

The difference in potential energy immediately before and after impact will be assumed 

to be negligible. The energy lost during impact can be stated mathematically as 

finalinitialloss KKK          (2.75) 

Let us nondimensionalize equation (2.75) with respect to the initial kinetic energy. 

Hence, 

 
  222

222

2
1

2
1

2
1

2
1

1

zGyx

zGyx

initial

loss

IVVm

IVVm

K

K








  

Recall that 2mRIG  . Then, 

   
   2222

2222

1
RVV

RVV

K

K

zyx

zyx

initial

loss








       (2.76) 
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Multiplying equation (2.76) by
2

2

1

1

y

y

V

V
 

22

222

1
1

zx

zyx

initial

loss
VV

K

K








       (2.77) 

Equation (2.77) gives the ratio of the energy lost during impact. All that remains is to 

substitute equations (2.29), (2.30), (2.31) for the no sliding case, or equations (2.49), 

(2.50), (2.51) for the sliding case into equation (2.77). We will not do this here in the 

complete form because the analytical expressions get rather cumbersome and the analysis 

is thereby hindered. In the next section we will obtain the energy loss expressions for two 

simplified cases: axis-symmetric objects and initially irrotational objects. 

 

2.7 Simplifications 

 Now that we have finished the general solution to the planar impact problem we 

can see that the derived expressions are not easily analyzed by visual inspection. In order 

to gain insight about the behavior of the derived solution we will investigate a few special 

cases. The first simplification will be based on the assumption that the body is 

axisymmetric about the axis of rotation, such as a disk or a sphere. This will greatly 

simplify the derived expression for the final impact quantities and allow us to obtain a 

manageable expression for the kinetic energy loss during impact. The second 

simplification that will be used to abridge the solution is the assumption that the 

impacting body has no initial angular velocity. These two limiting cases of planar impact 

can be used to quickly obtain approximate solutions to more complex problems. 
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2.7.1 Axisymmetric Body 

 We know that for an axisymmetric body the impact force will have a line of 

action going through the center of mass, and hence that the orientation angle,  , is zero. 

We will use this to simplify the no sliding and sliding equations, derive the energy loss 

for each case and lastly determine the simplified connection between the  ,ne  and 

 xy ee ,  models. Let us begin by substituting 0  into the no sliding equations for the 

final quantities defined in equations (2.29), (2.30), and (2.31). Doing this gives 

 


 zxz 











1

1
       (2.78a) 

 


zxxV 











1

1
       (2.78b) 

ny eV           (2.78c) 

Substituting equations (2.78) into the energy loss expression given by equation (2.77), we 

arrive at 

     

22

2

2

2

1

1

1

1

1

1
zx

zxnzx

initial

loss

e

K

K


















































   

Simplifying gives 

   

22

2222

1

1

1
1

zx

nzxzx

initial

loss

e

K

K






















  

Simplifying further we have that 

   

22

22

1

1
1

zx

zxn

initial

loss

e

K

K






















      (2.79) 
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Looking at the RHS of equation (2.79) we see that the first term in the numerator is the 

energy lost in the vertical direction. The second term depends on  zx   , which is the 

horizontal component of the initial contact point velocity, and is therefore the energy lost 

in the horizontal direction. 

 Let us now determine the energy loss if the axisymmetric object slides during 

impact. After substituting 0  into equations (2.49), (2.50), and (2.51), we get the 

following set of final velocities and angular velocity, 

ny eV           (2.80a) 

 1 nxx eV          (2.80b) 

 



 zn

z

e 


1
        (2.80c) 

Substituting equation (2.80) into (2.77) we find the energy lost during a planar impact 

when sliding occurs. 

    
 

22

2

22

1

1
1

1
zx

zn
nnx

initial

loss

e
ee

K

K






















 


  

Simplifying 

       
22

22222

1

1
1

11

zx

znnnxzx

initial

loss

eee

K

K












  

Simplifying further 

     
 

 

22

222

1

1
1

121

zx

nnzxn

initial

loss

eee

K

K
















    (2.81) 
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We can also substitute the expression for   into equation (2.81) in order to obtain the 

energy loss in terms of the actual coefficient of friction  . Recall the definition of  , 

 zx   sgn , where  zx    is once again the contact point velocity for an 

axisymmetric object. Note that 22

  , therefore equation (2.81) becomes 

 

       
 

 

22

222

1

1
1

sgn121

zx

nzxnzxn

initial

loss

eee

K

K
















  (2.82) 

The first term in the numerator of equation (2.82) is once again the energy lost in the 

vertical direction. The second term is the energy lost in the horizontal direction because 

of its dependence on the contact point velocity. The last term can be viewed as coupling 

the energy loss in the horizontal and vertical directions. 

 In order to know when to use the no sliding equations and when to use the sliding 

equations we need to once again consider the critical value of the force ratio. Substituting 

0   into the sliding condition given by equation (2.55) we have the sliding condition 

for the impact of an axisymmetric body. 

 
 
 11

sgn















n

zx

zx
e






       (2.83) 

We can also apply this energy loss derivation to the  xy ee ,  impact model. Substituting 

0  into equation (2.73) we obtain the relationship between the two models. 

 
 

 zx

y

x

e

e





 














11

1
      (2.84) 

Equation (2.84) allows us to formulate the solution given by equation (2.81) in terms of 

xe , rather than  . 
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 We shall now graphically ascertain the behavior of the energy loss functions as 

we vary the initial parameters. The independent variable will be the initial rotation, z , 

and we will vary the angle of approach  , the coefficient of the radius of gyration  , the 

coefficient of restitution ne , and lastly the coefficient of friction  . In order to 

differentiate when to use equation (2.79) and when to use equation (2.82), we will utilize 

the sliding condition given by equation (2.83). Table 2.1 shows the variation of the 

impact parameters for the following figures.  

Table 2.1: Impact parameters for Fig. 2.2 through Fig. 2.5. 

Figure     
ne    

2.2 30 – 90 deg
 

3/4 0.7 0.7 

2.3 45 deg 1/4 - 1 0.7 0.7 

2.4 45 deg 3/4 0.3 - 0.9 0.7 

2.5 45 deg 3/4 0.7 0.5 - 0.9 

 

Note that in the following figures the solid red curves indicate the no sliding 

regime, while the dashed blue curves indicate the sliding regime. From Fig. 2.2, we see 

that the angle of approach,  , affects the energy loss only for positive values of z . Also 

increasing the coefficient of the radius of gyration,  , decreases the energy loss as is 

seen in Fig. 2.3. The range of the no sliding regime is also decreased with increasing  . 

Fig. 2.4 demonstrates an interesting phenomenon that the energy loss can increase with 

increasing coefficient of restitution. Moreover, it shows that with an increasing 

coefficient of restitution, the energy loss increases in the sliding regime and decreases in 

the no sliding regime. From equation (2.79) we see that the coefficient of friction does 

not affect the energy loss in the no sliding regime. This is depicted in Fig. 2.5, along with 

the increase in the energy loss with increasing coefficient of friction in the sliding regime. 
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Figure 2.2: Influence of the angle of approach on the energy loss; axisymmetric body. 
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Figure 2.3: Influence of inertia on the energy loss; axisymmetric body. 
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Figure 2.4: Influence of the coefficient of restitution on the energy loss; axisymmetric 

body. 
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Figure 2.5: Influence of the coefficient of friction on the energy loss; axisymmetric body. 
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2.7.2 Initially Irrotational 

 Another simplification that can be made to the general impact equations is when 

the object has no angular velocity before impact. Substituting 0z  into equations 

(2.29), (2.30), and (2.31) we obtain  

      


 sin1cos
1

1











 nxz e      (2.85a) 

        


sincos1cos
1

1 2 









 nxx eV     (2.85b) 

         nnxy eeV 









 



2sin1sincos
1

1
    (2.85c) 

Substituting equations (2.85) into the nondimensional energy loss expression (2.77) 

        
          

      

1

sin1cos

1sin1sincos

sincos1cos

1

1

1
2

2
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22

2




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































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x

nx

nnx

nx

initial

loss

e

ee

e

K

K











    

Multiplying out the quadratic terms and simplifying we arrive at 

           
  11

cos1sincos2sin
2

2222






x

nxx

initial

loss e

K

K




 (2.86) 

Equation (2.86) is the kinetic energy loss for the no sliding case of an initially irrotational 

body. Similarly let us substitute 0z  into equations (2.49), (2.50), and (2.51) in order 

to derive the energy loss for the sliding case.  

      
      


2

2

sinsincos

sinsincos




 n

y

e
V      (2.87a) 

        

      


2

2

sinsincos

1sinsincos




 nx

x

e
V     (2.87b) 
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      
      




2sinsincos

sincos1




 n

z

e
      (2.87c) 

Substituting the final quantities (2.87) into the energy loss expression (2.77) yields 

      

         
      
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Simplifying gives 

 
         
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We can now use the definition of    cossgn zx   to simplify the above 

expression. Also note that 22

   and since 0z , we get   x sgn . 
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          (2.88) 

The sliding condition from equation (2.55) becomes the following, for an initially 

irrotational object. 

           
         




2

2

cos1sincos

sincos1sinsgn






nx

nxx

e

e
    (2.89) 

Lastly, if one prefers the  xy ee ,  formulation of the impact problem, they can use the 

following conversion which was obtained by simplifying equation (2.73). 
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           
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
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

yxx

yxx

ee

ee
    (2.90) 

 Now that we have derived the energy loss expressions for an initially irrotational 

body, we can see how it varies with the orientation angle  . This will be done 

graphically, where the variation of the impact parameters for the following figures is 

given in Table 2.2. 

Table 2.2: Impact parameters for Fig. 2.6 through Fig. 2.9. 

Figure     
ne    

2.6 30 – 90 deg
 

3/4 0.7 0.7 

2.7 45 deg 1/4 - 1 0.7 0.7 

2.8 45 deg 3/4 0.3 - 0.9 0.7 

2.9 45 deg 3/4 0.7 0.5 - 0.9 

 

The change in the energy loss due to a change in the angle of approach   is given in Fig. 

2.6 for an initially irrotational body. We see that increasing the angle of approach causes 

the energy loss to decrease in the no sliding regime for negative values of the orientation 

angle, while the behavior becomes more complex in the sliding regime. Unlike Fig. 2.3, 

Fig. 2.7 shows that increasing the coefficient of the radius of gyration causes the object to 

lose more energy. The predictable result that increasing the coefficient of restitution will 

cause a drop in the energy loss is shown in Fig. 2.8. Lastly, Fig. 2.9 shows the 

dependence of the energy loss on the coefficient of friction. We can see that more energy 

is lost with an increasing coefficient of friction if sliding occurs during impact. 
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Figure 2.6: Influence of the angle of approach on the energy loss; irrotational impact. 
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Figure 2.7: Influence of the inertia on the energy loss; irrotational impact. 
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Figure 2.8: Influence of the coefficient of restitution on the energy loss; irrotational 

impact. 
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Figure 2.9: Influence of the coefficient of friction on the energy loss; irrotational impact. 



41 

 

 

2.8    Nonsmooth Three Dimensional Impact 

 Thus far, we have presented a complete analysis and solution of a planar rigid 

body impact, and considered a few special cases. In this section, we extend the 

formulation to three dimensional impact. The primary difference is that now we will be 

dealing with three components of impulsive force, three components of velocity, and 

three components of angular velocity. This brings the total number of unknowns to nine, 

therefore we will require at least that many governing equations in order to close the 

system. 

 For consistency, let us define a coordinate system which is identical to that which 

was used for the planar analysis. The (x,z) plane is the plane of impact. The position 

vector between the center of mass and the contact point will now be a three dimensional 

vector, whose orientation will be defined by the angles from the coordinate axes. These 

direction angles from the x-axis, y-axis, and z-axis are  ,  , and , respectively. 

 

Figure 2.10: Orientation of the impacting body in three dimensions. 
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The magnitude of the position vector from the contact point to the center of mass will be 

defined as R  and assumed to remain constant. We can now express the position vector in 

terms of its components. 

kRjRiRR zyx
ˆˆˆ 


        (2.91a) 

 cosRRx           (2.91b) 

 cosRRy           (2.91c) 

 cosRRz           (2.91d) 

Paralleling the formulation for planar impact we can express the initial velocity and 

angular velocity in terms of their components as follows. 

kVjViVV zyx
ˆˆˆ 


        (2.92) 

kji zyx
ˆˆˆ  


        (2.93) 

The initial contact point velocity can be calculated as follows. 

     kRjRiRkjikVjViVRVV zyxzyxzyx

C ˆˆˆˆˆˆˆˆˆ  


 

     kRRVjRRViRRVV xyyxzzxxzyyzzyx

C ˆˆˆ  


 (2.94) 

Similarly we can define the final velocity, angular velocity, and contact point velocity. 

kVjViVV zyx
ˆˆˆ 


        (2.95) 

kji zyx
ˆˆˆ  


        (2.96) 

     kRRVjRRViRRVV xyyxzzxxzyyzzyx

C ˆˆˆ  


 (2.97) 

 Figure 2.10 illustrates the impulsive forces acting at the contact point during 

impact. Note that the selected direction of the tangential impact forces, xF̂  and zF̂ , is 

somewhat arbitrary since they both depend on the direction of the contact point velocity. 
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Recall the general principle of linear momentum conservation VmdtFVm

t

t

 
 2

1

. Using 

this we can write down the following equations. 

xxx VmFmV  ˆ         (2.98) 

yyy VmFmV  ˆ         (2.99) 

zzz VmFmV  ˆ         (2.100) 

The general expression for the conservation of angular momentum for three dimensional 

motion is FRMH
dt

d
GG


 , where F


 is the impact force. We can also express the 

conservation of angular momentum as follows 

   FRdtFRHH

t

t

GG

ˆ
2

1


   

 where now F
̂

 is the impulsive force. The general expression of angular momentum will 

be cumbersome, therefore we will calculate the terms separately. Let us first consider the 

FR
̂

  term.  

   kFjFiFkRjRiRFR zyxzyx
ˆˆˆˆˆˆˆˆˆˆ




 

     kFRFRjFRFRiFRFRFR xyyxzxxzyzzy
ˆˆˆˆˆˆˆˆˆˆ




   (2.101) 

The initial angular momentum of a rigid body in general three dimensional motion can be 

shown to be as follows, where pqI  for zyxqp ,,,  defines the inertia matrix for the 

body. 

     kIIIjIIIiIIIH zzzyzyxzxzyzyyyxyxzxzyxyxxxG
ˆˆˆ  


 

          (2.102) 
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Similarly the final angular momentum is 

     kIIIjIIIiIIIH zzzyzyxzxzyzyyyxyxzxzyxyxxxG
ˆˆˆ  


 

          (2.103) 

Substituting (2.101), (2.102), and (2.103) into the conservation of angular momentum we 

arrive at the relation 

      
      
     kFRFRjFRFRiFRFR

kIIIjIIIiIII

kIIIjIIIiIII

xyyxzxxzyzzy

zzzyzyxzxzyzyyyxyxzxzyxyxxx

zzzyzyxzxzyzyyyxyxzxzyxyxxx

ˆˆˆˆˆˆˆˆˆ

ˆˆˆ

ˆˆˆ











 

Equating components and separating known and unknown quantities 

     yzzyzxzyxyxxxzxzyxyxxx FRFRIIIIII ˆˆ     (2.104a) 

     zxxzzyzyyyxyxzyzyyyxyx FRFRIIIIII ˆˆ    (2.104b) 

     xyyxzzzyzyxzxzzzyzyxzx FRFRIIIIII ˆˆ     (2.104c) 

Using the basic concepts of rigid body dynamics we derived six equations (2.98), (2.99), 

(2.100), and (104a), (104b), and (104c), but have total of nine unknowns: xV  , yV  , zV  , x , 

y , z , xF̂ , yF̂ ,and zF̂ . Therefore we need three more equations which will come from 

considering restitution and friction. 

 The coefficient of restitution will once again be introduced in order to describe 

the change in vertical velocity of the contact point through impact. Recall equation (2.17) 

jV

jV
e

C

C

n ˆ

ˆ




 



         (2.17) 

Substituting equations (2.94) and (2.97) into (2.17) we arrive at the following definition: 
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 
 

zxxzy

zxxzy

n
RRV

RRV
e








        (2.105) 

or 

   zxxzynzxxzy RRVeRRV       (2.106) 

We have introduced one more equation which will be utilized in obtaining the solution to 

a three dimensional impact problem. This inclusion gives us a total of seven equations. 

The last two equations will depend on whether the object slides or pivots through impact. 

 

2.8.1 No Sliding Case in Three Dimensions 

 As was discussed in previous sections, if the impacting body does not slide during 

impact its final velocity components of the contact point, tangential to the impact surface, 

will be zero. For the three dimensional case this can be stated as 

0ˆ  iV C


         (2.107a) 

0ˆ  kV C


         (2.107b) 

Substituting equation (2.97) into equations (2.107) 

  0 yzzyx RRV         (2.108a) 

  0 xyyxz RRV         (2.108b) 

The system of equations for three dimensional impacts for the case when no sliding 

occurs is now closed. The nine equations are: (2.98), (2.99), (2.100), (2.104a), (2.104b), 

(2.104c), (2.106), (2.108a), and (2.108b). We can put these equations in matrix form. 
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 
 
 

 










































































































































0

0

ˆ

ˆ

ˆ

0000100

0000010

0000001

0000

0000

0000

10000000

01000000

00100000

zxxzyn

zzzyzyxzx

zyzyyyxyx

zxzyxyxxx

z

y

x

z

y

x

z

y

x

z

y

x

xy

xz

yz

xyzzzyzx

xzyzyyyx

yzxzxyxx

RRVe

III

III

III

mV

mV

mV

F

F

F

V

V

V

RR

RR

RR

RRIII

RRIII

RRIII

m

m

m














 

          (2.109) 

System (2.109) can be inverted to obtain the post-impact quantities for this type of 

impact. We can also express system (2.109) as follows 





































































































































































z

y

x

z

y

x

xnznn

zzzyzx

yzyyyx

xzxyxx

z

y

x

z

y

x

z

y

x

xy

xz

yz

xyzzzyzx

xzyzyyyx

yzxzxyxx
V

V

V

ReRee

III

III

III

m

m

m

F

F

F

V

V

V

RR

RR

RR

RRIII

RRIII

RRIII

m

m

m












000000

000

000000

000

000

000

00000

00000

00000

ˆ

ˆ

ˆ

0000100

0000010

0000001

0000

0000

0000

10000000

01000000

00100000

 

          (2.110) 

In matrix notation, system (2.110) can be expressed as 

     
16691999 

 VBVA         (2.111) 

where the coefficient matrices  A  and  B  are seen in equation (2.110) and the column 

matrices  V   and  V  contain the final and initial quantities, respectively. Therefore the 

solution can be expressed as  

      
1669

1

9919 





 VBAV         (2.112) 
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In the general case the coefficient matrix    
69

1

99 





BA  in equation (2.112) provides no 

physical insight due to its complexity. But, we do obtain a manageable matrix for the 

three dimensional impact of a sphere. For a sphere, the components of the position vector 

between points C and G are 0 zx RR , and RRy  , where R  is the sphere’s radius. 

The inertia matrix for a solid sphere is diagonal and unaltered by any rotation due to its 

symmetry. Its components are 2

5

2
mRIII zzyyxx  . Substituting these values into 

system (2.112), we get the following relationship between the initial and final quantities 

for the impact of a sphere when no sliding occurs. 

 

































































































































z

y

x

z

y

x

n

n

z

y

x

z

y

x

z

y

x

V

V

V

mRm

em

mRm

R

R

R

e

R

F

F

F

V

V

V












00
7

2

7

2
00

000010
7

2
0000

7

2
7

2
0000

7

5
010000

00
7

2

7

5
00

00
7

2

7

5
00

00000
7

2
0000

7

5

ˆ

ˆ

ˆ

   (2.113) 

 

2.8.2 Sliding Case in Three Dimensions 

 Now let us consider the impact when the body slides. Using the Coulomb Law of 

friction we will now define two coefficients of friction, one for each coordinate direction.  

y

x

x
F

F

ˆ

ˆ
    

y

z
z

F

F

ˆ

ˆ
      (2.114a,b) 
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In general, the frictional properties of the impacting surface can be directionally 

dependent, which is the reason for defining two distinct coefficients of friction.  From 

Fig. 2.10, we see that the vertical component of the impact force will act in the positive 

direction, while the direction of the two horizontal components will depend on the 

direction of the initial contact point velocity. We can therefore restate equations (2.114) 

as 

 iV
F

F C

y

x
x

ˆsgn
ˆ

ˆ



     kV

F

F C

y

z
z

ˆsgn
ˆ

ˆ



    (2.115a,b) 

Substituting equation (2.94) into equations (2.115) we obtain 

  
yzzyx

y

x

x RRV
F

F
  sgn

ˆ

ˆ
      (2.116a) 

  
xyyxz

y

z

z RRV
F

F
  sgn

ˆ

ˆ
      (2.116b) 

To simplify the algebra let us define the following 

  yzzyxxx RRV   sgn       (2.117a) 

  xyyxzzz RRV   sgn       (2.117b) 

Rearranging equations (2.116) and using equations (2.117) we obtain the following 

0ˆˆ  yxx FF          (2.118a) 

0ˆˆ  yzz FF          (2.118b) 

Equations (2.118a) and (2.118b) complete the system of equations required to solve the 

three dimensional impact problem with sliding, the other seven equations being (2.98), 

(2.99), (2.100), (2.104a), (2.104b), (2.104c), and (2.106). Putting this system in matrix 

form we obtain 
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

 

          (2.119) 

System (2.119) can be used to determine the post-impact quantities for a body that slides 

during impact. We can also express the above system in the following form 
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


























































































































































z

y

x

z

y

x

xnznn

zzzyzx

yzyyyx

xzxyxx

z

y

x

z

y

x

z

y

x

z

xz

x

xyzzzyzx

xzyzyyyx

yzxzxyxx
V

V

V

ReRee

III

III

III

m

m

m

F

F

F

V

V

V

RR

RRIII

RRIII

RRIII

m

m

m
















000000

000

000000

000

000

000

00000

00000

00000

ˆ

ˆ

ˆ

10000000

0000010

01000000

0000

0000

0000

10000000

01000000

00100000

 

          (2.120) 

System (2.120) can be written in matrix notation as 

     
16691999 

 VDVC         (2.121) 

where  C  and  D  are the coefficient matrices,  V  is the column matrix of initial 

quantities, and  V   is the column matrix of post-impact quantities seen in equation 

(2.120). The solution for the final quantities is given by  

      
1669

1

9919 





 VDCV         (2.122) 
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Once again the matrix    
69

1

99 





DC  is very cumbersome for the general case, but it does 

simplify for the impact of a sphere. Recall that for a sphere 0 zx RR , RRy  , and 

2

5

2
mRIII zzyyxx  , where R  is the sphere’s radius. Substituting these values into 

the system (2.122) we obtain  

 

 

 

 

 
 
 

































































































































z

y

x

z

y

x

nz

n

nx

n

x

n

z

nz

n

nx

z

y

x

z

y

x

z

y

x

V

V

V

em

em

em

e
R

e
R

e

e

e

F

F

F

V

V

V

























000010

000010

000010

10001
2

5
0

010000

00101
2

5
0

000110

00000

000011

ˆ

ˆ

ˆ

     (2.123) 

Equation (2.123) is the relationship between the initial and final quantities for the three 

dimensional impact of a sphere if siding occurs. 

  In this study we will consider contact surfaces which can be defined by a single, 

constant-valued, coefficient of friction  . We can also say that for this problem, sliding 

will occur if the maximum tangential impulse RF̂  is large enough to overcome friction, 

which is defined by its components xF̂  and zF̂ . 
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Figure 2.11: Tangential impulses. 

From Fig. 2.11 we can see that the components, magnitude, and orientation of the 

maximum tangential impulse are 

     kFiFkiFF zxRR
ˆˆˆˆˆcosˆsinˆˆ

 


     (2.124) 

22 ˆˆˆ
zxR FFF          (2.125) 


















 

kV

iV
C

C

ˆ

ˆ
tan 1 



         (2.126) 

Therefore if the object slides, the ratio of the maximum tangential impulse to the vertical 

impulse is equivalent to the coefficient of friction  . 

y

R

F

F

ˆ

ˆ
          (2.127) 

Using equation (2.124) we can state the following 

 sin

ˆ
ˆ x

R

F
F           (2.128a) 
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 cos

ˆ
ˆ y

R

F
F           (2.128b) 

Note from Fig. 2.11 and equation (2.124) we see that the angle   has a range of 

2/0   , and therefore the  cos  and  sin  terms cannot take on negative values. 

Substituting equations (2.128) into (2.127) 

 
y

x

F

F

ˆ

ˆ

sin

1


          (2.129a) 

 
y

z

F

F

ˆ

ˆ

cos

1


          (2.129b) 

Comparing equations (2.129) to equations (2.114) we can define the following values for 

the directional coefficients of friction x  and z . 

  sinx          (2.130a) 

  cosz          (2.130b) 

To summarize, when dealing with a problem having a single-valued coefficient of 

friction, equations (2.128) should be substituted into equations (2.114) in order to obtain 

the solution. 

 We have now derived the systems of equations required to solve both the sliding 

and no sliding cases. But we must once again determine when to use which set of 

equations. As was stated earlier, if a single valued coefficient of friction can be used, the 

sliding regime will be initiated by the maximum tangential impulse.  The sliding 

condition becomes 

y

zx

F

FF

ˆ

ˆˆ 22


         (2.131) 
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The object will slide if the force ratio exceeds the value of the prescribed coefficient of 

friction. 

 

2.9    Three Dimensional Impact of a Rod 

 As an example of a three dimensional impact we will solve the problem for a 

cylindrical rod. The ends of the rod will be assumed to have a property such that the 

radius between the contact point and the center of mass is constant.  

 

Figure 2.12: Three dimensional impact of a rod. 

From the above figure we see that that this assertion is equivalent to saying RR 1 . Also 

note that in the figure, the XYZ coordinate system is attached to the body, while the xyz 

coordinate system is inertial. This distinction will be required in the calculation of the 

inertia matrix. The problem is to determine the post-impact quantities for this impact if 

the rod’s mass m , length L , radius r  are  

1m kg 
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1L m 

20

L
r  m 

and the orientation, initial velocity, and angular velocity are 

45 , 45 , and 90  

kjiV ˆ2ˆ7ˆ3 


       

kji ˆ4ˆˆ12 


 

Also the coefficient of restitution and the coefficient of friction are 

4.0ne  

7.0  

Beginning the solution by using equation (2.91), the components of the position vector 

between the contact point and the center of mass are 

4

2
xR , 

4

2
yR , and 0zR   

The inertia matrix for a rod in its principal, XYZ, coordinate system is 

 





















































4800

403
00

0
800

1
0

00
4800

403

12

1

4

1
00

0
2

1
0

00
12

1

4

1

22

2

22

Lr

r

Lr

mI G  

Due to their small relative size we are neglecting the contribution of the spherical caps on 

the ends of the rod to the inertia properties of the rod. From the figure above we see that 

the inertia matrix must be rotated by an angle   about the z-axis to coincide with the 

inertial coordinate system. The rotation matrix is therefore 
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 
   
   













































100

0
2

2

2

2

0
2

2

2

2

100

0cossin

0sincos





Q  

The rotated inertia matrix  GI   is calculated by 

     TGG QIQI   

 














































































100

0
2

2

2

2

0
2

2

2

2

12

1

4

1
00

0
2

1
0

00
12

1

4

1

100

0
2

2

2

2

0
2

2

2

2

22

2

22

Lr

r

Lr

mIG  

and the resulting matrix is 

 








































































4800

403
00

0
9600

409

2400

197

0
2400

197

9600

409

GI  

We can now solve the no sliding case. Substituting all pertinent values into matrix 

(2.109) 



56 

 

 

 



















































































































































































0

274.0

0
1200

403

9600

409

200

197

2400

197

800

409
2

7

3

ˆ

ˆ

ˆ

0000
4

2

4

2
100

000
4

2
00010

000
4

2
00001

0
4

2

4

2

4800

403
00000

4

2
000

9600

409

2400

197
000

4

2
000

2400

197

9600

409
000

100000100

010000010

001000001

z

y

x

z

y

x

z

y

x

F

F

F

V

V

V






 

The solution to the above system is shown below. 



























































































928.1

102.17

868.10

253.22

957.1

159.2

072.0

102.10

868.7

ˆ

ˆ

ˆ

z

y

x

z

y

x

z

y

x

F

F

F

V

V

V







 

Substituting the calculated impulsive forces into the slip condition (2.131) 

   
7.0645.0

102.17

038.11

ˆ

928.1868.10

ˆ

ˆˆ 2222







yy

zx

FF

FF
 

The impulse ratio does not exceed the value of the coefficient of friction; therefore the 

rod will not slide during impact and our solution is correct. Note that if now we change 

the initial vertical velocity from 7yV m/s to 4yV m/s, the matrix (2.109) would 

look like 
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 



















































































































































































0

244.0

0
1200

403

9600

409

200

197

2400

197

800

409
2

4

3

ˆ

ˆ

ˆ

0000
4

2

4

2
100

000
4

2
00010

000
4

2
00001

0
4

2

4

2

4800

403
00000

4

2
000

9600

409

2400

197
000

4

2
000

2400

197

9600

409
000

100000100

010000010

001000001

z

y

x

z

y

x

z

y

x

F

F

F

V

V

V






 

and the solution will be 



























































































928.1

649.6

615.4

567.4

957.1

159.2

072.0

649.2

615.1

ˆ

ˆ

ˆ

z

y

x

z

y

x

z

y

x

F

F

F

V

V

V







 

Substituting the impulses into equation (2.131) we get 

   
7.0752.0

649.6

002.5

ˆ

928.1615.4

ˆ

ˆˆ 2222







yy

zx

FF

FF
 

Now the force ratio exceeds the value of the coefficient of friction, hence the object will 

slide during impact. This tells us that we must resolve the problem using the appropriate 

equations, system (2.119). We begin by calculating the components of the initial contact 

point velocity by equation (2.94). 
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    kjiV C ˆ2
4

11
2ˆ24ˆ23 











 

From equation (2.124) the angle defining the maximum tangential impulse is 

  071.15

2
4

11
2

23
tan 1 






























    

The directional coefficients of friction are calculated by equations (2.130) 

182.0x     676.0z  

From equations (2.117) 

182.0 xx     676.0 zz       

We are now ready to substitute the directional coefficients of friction along with all other 

impact parameters into matrix (2.119). 
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Solving the above system we obtain the post impact quantities for this impact. 



59 

 

 



























































































221.3

765.4

867.0

715.27

531.13

415.9

221.1

765.8

133.2

ˆ

ˆ

ˆ

z

y

x

z

y

x

z

y

x

F

F

F

V

V

V







 

If we now check the maximum ratio of the impulses using equation (2.131) we see that it 

is equal to the coefficient of friction. 

700.0
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ˆ

ˆˆ 22
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

y

zx

F

FF
 

One might be concerned about the validity of the last solution because the vertical 

component of the post-impact velocity of the center of mass is negative. How can the 

rod’s center of mass be going down after impact? We will answer this question by 

considering the final velocity of the contact point. The post-impact contact point velocity 

is obtained from equation (2.97). 

     kRRVjRRViRRVV xyyxzzxxzyyzzyx

C ˆˆˆ  


 

Substituting the values form our solution 

kjiV C ˆ892.6ˆ034.1ˆ666.7 


 

From the above expression we see that there is no reason for concern since the final 

vertical velocity of the contact point is positive which reassures the correctness of our 

solution. 
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 Now that we have solved the problem of a rod impacting a surface in three 

dimensions, we can formulate the general procedure of solving a three dimensional 

impact problem. Assuming that the object’s orientation and physical parameters are 

known, one can begin the analysis by determining the inertia matrix in the coordinate 

system of the impact point. In the previous example, this was done using one rotation, but 

in the general case two rotations might be needed. The components of the position vector 

can be calculated by using equation (2.91). All of these parameters as well as the initial 

velocities and rotations should then be substituted into matrix (2.109). Once the solution 

is obtained, the components of the impact impulses should be substituted into equation 

(2.131) in order to check the validity of the no sliding assumption. If this criterion is 

satisfied the solution is valid, otherwise we must resolve the problem using the equations 

for the sliding case. If the sliding condition is not satisfied we need to calculate the 

directional coefficients of friction. This will be done by calculating the direction of the 

maximum tangential impulse using equation (2.126) and then substituting these values 

together with the value of the coefficient of friction into equations (2.130). After using 

equation (2.116), the directional coefficients of friction can then be substituted into the 

system (2.119). This system gives the solution for the three dimensional impact when 

sliding occurs during impact. In the general case, the solution to the problem of the three 

dimensional impact is not simple to obtain by hand. However, the use of computational 

software renders the problem much easier to manage. 
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2.10    Three Dimensional Impact of a Rectangular Container 

In this section we will analyze the three dimensional impact of a rectangular 

container. The container will impact the surface with some initial velocity and angular 

velocity. The solution will be obtained by following the procedure outlined in previous 

sections. The main goal of this example is to ascertain whether it is adequate to use the 

two dimensional impact model to solve certain three dimensional problems. 

Let us begin the analysis by defining the dimensions and orientation of the 

container. The side lengths of the container along the x, y, and z axes are 1L , 2L , and 3L , 

respectively. Figure 2.13 shows the container, where the (x,y,z) coordinate system is 

fixed to the container and the (X,Y,Z) coordinate system is at the contact point such that 

the Y axis is normal to the impact plane.  

 

Figure 2.13: Three dimensional impact of a rectangular container. 

The distance from the contact point to the center of gravity, R  is  

2
3

2
2

2
1

2

1
LLLR   

Let us also define the following face angles for the container, which will be used later. 
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2
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L
s  

The orientation of the container will be defined using two rotations. These 

rotations are shown in Fig. 2.14. The first rotation will be by an angle f  about the z-

axis, and the second will be by an angle s  about the new x-axis denoted as the X  - 

axis. 

 

Figure 2.14: Rotations of the rectangular container. 

The purpose of the second rotation is to effectively tilt the container back such that 

impact occurs at a corner rather than a side. 

 

Figure 2.15: Calculations of the components of R


. 
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Now that we know the magnitude of R


 we need to determine its components. Figure 

2.15 shows both rotations as well as the relevant angles. We will begin by projecting R


 

onto the (X,Y) plane, via a rotation by an angle  ss   . Then we can express the 

components in the (X,Y) plane using the angle  ff   . The resulting components are 

   ffssx RR   coscos  

   ffssy RR   sincos  

 ssz RR   sin  

Note that these expressions are only valid for the following ranges of the angles 

ss    

ff   2/  

We are now ready to formulate the two rotation matrices denoted as  zQ  and  xQ . 
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The inertia matrix for this container is as follows 

 
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where   2

3

2

212/ LLmI xx  ,   2

3

2

112/ LLmI yy  , and   2

2

2

112/ LLmI zz  . 
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Since all calculations are carried out in the coordinate system of the contact point, the 

inertia matrix must be rotated. The rotated inertia matrix is given by 

        Tx

T

zGzxG QQIQQI   

We are now ready to solve the impact problem. The dimensions of the container will be  

321 L in 

252 L in 

5.223 L in 

The weight of the container will be specified as 100 lb. Also, the coefficients of 

restitution and friction are 32.0ne  and 7.0 , respectively. We can substitute the 

defined values into the above equations to obtain 

038f  

042s  

 


















9636.200

07502.20

000331.2

GI 2ftslug   

Next we need to specify the initial velocities and angular velocities and solve for 

the final quantities. From here on, the analysis will be identical to that of the previous 

section. We will use the matrix equation (2.109) to solve for the final quantities for the 

case when no sliding occurs. Then, we need to check whether the sliding condition given 

by equation (2.131) is satisfied. If it is not, the matrix equation (2.119) needs to be solved 

for the final velocities. Matrix equation (2.119) uses the directional coefficients of 

friction, which should be calculated using equations (2.94), (2.124), (3.130) and (2.117). 
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We will begin the impact analysis of this container by specifying the initial velocity and 

angular velocity as follows  

kjiV ˆ1ˆ75ˆ60 


 

0


  

The X and Y components of the initial velocity are representative of those observed 

during drop tests of such a container. The Z component is assumed to be small and can be 

attributed to the effects of wind since the container is released from an altitude above the 

impacting surface. We will study the aerodynamics of free fall in Chapter 4. In Fig. 2.16 

we plot the Z component of velocity after impact while varying the angles  f  and s .  
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Figure 2.16: zV   as a function of f  and s ; kjiV ˆ1ˆ75ˆ60 


, 0


 . 
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The above figure shows that for various values of s , the Z component of velocity after 

impact, remains small, and can be neglected when compared to the other components of 

velocity. This validates the analysis of three dimensional impact using the two 

dimensional formulation when the container impacts the surface almost on a side, 

meaning that the angle s  is small. Note that the final velocity in the Z direction 

increases with an increasing s . This tells us that if the angle s  is large, the three 

dimensional formulation must be used. 

We would also like to determine how the existence of an initial angular velocity 

not perpendicular to the general plane of motion, (X,Y) plane, affects the post-impact 

velocities. Consider the following initial velocities 

kjiV ˆ1ˆ75ˆ60 


 

44.19310

V

R

V



  

The resulting variation of the post-impact Z component of velocity is shown in the 

following figure. We see that the resulting Z component of velocity remains on the order 

of the initial velocity of the contact point in the Z direction. Therefore, if this component 

of velocity is small, then the two dimensional approximation remains valid. Just like Fig. 

2.16, Fig. 2.17 also shows an increase in the Z component of the post-impact velocity 

with an increasing s . Therefore the second criteria for using the two dimensional 

formulation remains the condition that s  is small. These results agree with experiment. 

For the quasi-planar impact of such a container, drop test have shown that the container 

continues to travel along the direction of the velocity at release. This will be studied in 
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greater detail in Chapter 5, where we will analyze the subsequent impacts of a rectangular 

container and use the two dimensional formulation in the analysis. 
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Figure 2.17: zV   as a function of f  and s ; kjiV ˆ1ˆ75ˆ60 


, 
44.193

V



 . 

Lastly, it should be noted that the range of s  analyzed in this section produces sliding 

during impact.  

We have hereby concluded our discussion of rigid body impact and will now turn 

our attention to other models. In the following chapter we will study vibrational impact 

models and their applications. 
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Chapter 3 

Vibrational Impact Mechanics 

 

o far in our discussion of impact mechanics we have resorted to describing the 

energy dissipation during impact with the coefficient of restitution. The way it 

has been presented, this coefficient is more of a kinematical convenience 

rather than a material property of the impacting body. This chapter will be devoted to 

presenting material models for which the coefficient of restitution will be determined. 

These models will be viewed as linear and nonlinear vibratory systems. We will begin the 

analysis by looking at linear single degree of freedom oscillator, which will render a first 

approximation of the transient impact force. Multi-degree of freedom linear systems will 

also be used to model the interaction of cargo with its cushioning material. The stiffness 

properties between the cushion and cargo play a vital role in how the energy is absorbed 

during impact. The chapter will conclude with the analysis of a nonlinear vibratory model 

which will produce a more accurate representation of the impact force. 

 

3.1    One Degree of Freedom Linear Oscillator 

 The aim of this section is to analyze a one degree of freedom linear mass spring 

damper system as it undergoes impact. The material modeled by this system is assumed 

to behave as a linear spring and damper in parallel. The coefficient of restitution will be 

obtained by first determining the governing differential equation and solving it subject to 

specified pre-impact conditions. The resulting solution will give the post-impact velocity 

and the impact duration as functions of the system parameters. 

S 
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Consider the one degree of freedom system shown in Fig. 3.1, where m  is the 

 mass of the body, c  is the damping coefficient, and k  is the stiffness coefficient. The 

displacement of the mass is denoted by  ty . We know that the spring force is ky  and the 

damping force is yc , where y  indicates the first time derivative of the displacement. 

 

 

Figure 3.1: One degree of freedom oscillator. 

Summing the forces acting on the on the mass we arrive at the following equation of 

motion 

0 kyycym          (3.1) 

where y  is the second derivative of the displacement with respect to time or the 

acceleration. To obtain a solution to (3.1), let us assume a solution of the form 

vtCety )(          (3.2) 

and substitute it into the differential equation leading to  

02  vtvtvt kCecvCeCemv  

Simplifying we get the following characteristic equation 

02  kcvmv  

Therefore the two roots are 
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m

kmcc
v

2

42

2,1


        (3.3) 

Since we are interested in determining the coefficient of restitution, we will not consider 

the over damped and critically damped cases. For the under damped case ( kmc 42  ) the 

roots of the characteristic equation are of the form: 

 iv 2,1          (3.4) 

m

c

2
   

m

ckm

2

4 2
      (3.5a,b) 

Substituting equation (3.4) into solution (3.2) we get the following solution 

    tCtCety t  sincos)( 21         (3.6) 

The two constants 1C  and 2C  are determined using the initial conditions on position and 

velocity. The initial condition on position is 

0)0( y          (3.7) 

Applying equation (3.7) to equation (3.6) we get 

01 C           (3.8) 

The solution (3.6) now becomes 

 tCety t  sin)( 2

         (3.9) 

The initial velocity of the impacting body is specified as 

0)0( Vy           (3.10) 

In order to apply equation (3.10) to equation (3.9), we first need to differentiate it. 

    ttCety t  sincos)( 2         (3.11) 

Apply the initial condition on velocity we get 
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The final expressions for the position, velocity, and after differentiating again, 

acceleration are: 

 t
V

ety t 


 sin)( 0








         (3.13a) 

    tt
V

ety t 


 sincos)( 0 







       (3.13b) 

      tt
V

ety t 


 cos2sin)( 220 







      (3.13c) 

In order to determine the coefficient of restitution we have to specify when the restitution 

phase ends. One way of doing this is by allowing the system to go through one half of an 

oscillation and analyzing it afterwards. A different approach is to define the end of 

impact as the time when the impact force reaches a zero value. The first approach seems 

more appropriate since the inherent problem with the linear mass spring damper model is 

that the initial velocity causes a nonzero initial impact force. This can be seen from the 

governing equation (3.1) where the initial damping force is non-zero.  

 Let us begin by considering the first approach. If we allow the mass spring 

damper system to go through one half of an oscillation the resulting impact duration is  




*t           (3.14) 

where   is the damped natural frequency given by equation (3.5b). In order to obtain the 

coefficient of restitution we need to determine the velocity at time *t . Substituting 

equation (3.14) into equation (3.13b) we get 
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0

* )( Vety 




         (3.15) 

The coefficient if restitution is defined as the negative ratio of final to initial impact 

velocities 

 
0

*

V

ty
en


          (3.16) 

Substituting equation (3.15) into equation (3.16) 






 een          (3.17) 

Using expressions (3.5a,b) we get the coefficient of restitution in terms of stiffness 

coefficient and the damping coefficient. 




















24
exp

ckm

c
en


       (3.18) 

Note that the coefficient of restitution is not a function of the initial velocity but only 

depends on the stiffness and damping coefficients. The next figures demonstrate the 

variation of the impact duration and the coefficient of restitution with respect to the 

impact parameters. 
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Figure 3.2: Impact duration and coefficient of restitution for 1m , 1iV , and 1c . 
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Figure 3.3: Impact duration and coefficient of restitution for 1m , 1iV , and 10k . 

From Fig. 3.2 we see that an increase in the stiffness coefficient decreases the impact 

duration and increases the coefficient of restitution. An increasing damping coefficient 

slightly increases the impact duration, leaving it essentially unchanged, and decreases the 

coefficient of restitution seen in Fig. 3.3. This is intuitive since a larger value of the 

damping coefficient corresponds to more energy loss and hence a smaller coefficient of 

restitution. Smaller, more realistic, impact duration is presented in the following figure.  
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Figure 3.4: Impact duration as a function of stiffness and damping coefficients. 
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The value of the damping coefficient has less of an effect on the impact duration. The 

stiffness coefficient has a more profound affect. Let us conduct a thought experiment to 

see why an increase of the stiffness coefficient causes the impact duration to drop. A 

stiffer material will have a larger natural frequency and therefore a smaller period of 

oscillation, which is essentially the impact duration. 
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Figure 3.5: Coefficient of restitution as a function of stiffness and damping coefficients. 

Figure 3.5 shows the expected behavior of the coefficient of restitution, namely its 

decrease with increasing damping. The thing to note is that the coefficient of restitution 

increases at a decreasing rate with an increasing stiffness coefficient. This tells us that in 

impact scenarios where the stiffness coefficient is substantially large varying its value 

will have little effect on the coefficient of restitution. This behavior will be more evident 

at higher damping coefficients. 

 For the sake of comparison let us now solve for the impact duration and the 

coefficient of restitution for the one degree of freedom linear oscillator using the second 
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approach. This method is different because rather than considering a half oscillation of 

the system, we define the end of impact as the instant when the impact force goes to zero. 

Since this model is presented with a purely vertical impact, the impact force is equal to 

the inertial force of mass times the acceleration. Note that we have neglected the 

contribution of the gravitational acceleration because its magnitude is miniscule in 

comparison with the impact force. A similar discussion which includes gravitational 

effects was done by Benaroya [2]. Let us begin our analysis by setting the acceleration 

given by equation (3.13c) equal to zero and solving for the impact duration. 

 












22

* 2
arctan

1






t        (3.19) 

Substituting the expressions (3.5a) and (3.5b) into above we get  
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
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m
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2
4arctan

4

2
2

2

2

*     (3.20) 

The coefficient is obtained by using equations (3.13b) and (3.16). 

   







  ** sincos

*

ttee t

n 



       (3.21) 

This will not be done in this thesis, but equation (3.20) can now be substituted into 

equation (3.21) in order to obtain the coefficient of restitution in terms of the system 

parameters. The following figures compare the zero force model to the half oscillation 

model discussed earlier in this section. 
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Figure 3.6: Comparison of the models varying stiffness, with 1m , 10 V , and 1c . 
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Figure 3.7: Comparison of the models varying damping, with 1m , 10 V , and 10k . 

Figure 3.6 shows that the impact duration and the coefficient of restitution only differ by 

a small offset between the two models. From Fig. 3.7 we also see that the curves of the 

coefficient of restitution are very close, but the impact duration curves deviate from each 

other with an increasing damping coefficient. Let us now consider the force versus 

displacement curves for the impact scenarios discussed in this section. 
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Figure 3.8: Hysteresis curves for the impacts analyzed in section 3.1. 

The hysteresis curves presented in Fig. 3.8 show the impact force being negative; this is 

because the direction of positive displacement was taken downwards in Fig. 3.1. The zero 

force model having a larger coefficient of restitution can be explained by looking at Fig. 

3.8 (displacement vs. force) which shows that the energy loss (enclosed area) will of 

course be larger for the half oscillation model. This difference in the energy loss of the 

two models is outlined by a red rectangle.  Now that we have obtained a topical 

understanding of the impact behavior of the one degree of freedom linear oscillator we 

can turn our attention to multi degree of freedom systems. 

 

3.2    Two Degree of Freedom Linear Oscillator 

 In this section we will consider a two degree of freedom mass spring damper 

system. This model can be useful in analyzing the response for impacts when the material 

properties of the cargo and the cushion are different. The cushion will be modeled by 

having a mass, stiffness, and damping properties similar to the cargo. One should keep in 

mind that this is a linear model as opposed to most impact phenomena which tend to be 

highly nonlinear. Consider the schematic of the cushion-cargo system shown in Fig. 3.9. 
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Figure 3.9: Two degree of freedom oscillator. 

The mass, damping coefficient, stiffness coefficient, and the displacement of the cushion 

are 1m , 1c , 1k , and  ty1 , while for the cargo they are 2m , 2c , 2k , and  ty2 . The kinetic 

diagram for both masses is shown below. 

 

Figure 3.10: Kinetic diagram of the two degree of freedom oscillator. 

Summing the forces for both masses we get 

    111112212211 ykycyykyycym       (3.22a) 

   12212222 yykyycym         (3.22b) 

Note that we have once again disregarded the contribution of the gravitational force 

because it is non-impulsive and therefore its contribution is negligible. Rearranging and 

putting equation (3.22) into matrix form we arrive at 
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          0 ykycym         (3.23b) 

, where  m ,  c , and  k  are the mass, damping and stiffness matrices. In this model we 

are interested in analyzing the effects of the stiffness and mass ratios on the behavior of 

the system; therefore we will assume that the damping is proportional to the stiffness. 

This is a special case of proportional damping, or more accurately Rayleigh Damping [5], 

and can be stated mathematically as 

   kc           (3.24) 

, where  is the proportionality constant. 

Substituting equation (3.24) into (3.23) we get  
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          0 ykykym          (3.25b) 

In other words what we are saying is 

11 kc    22 kc        (3.26a,b) 

We will use modal analysis to solve the system of differential equations given by (3.25). 

We therefore need to first solve the undamped problem. The problem to be solved is now 
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    (3.27a) 

       0 ykym          (3.27b) 

Assuming a solution of the form  

     rteYty           (3.28) 

Substituting equation (3.28) into equation (3.27b) we get 

       02  Ykrm         (3.29) 
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In order to render the matrix linearly dependent we require that the determinant is zero. 

     0det 2  krm         (3.30) 

Using equation (3.27a) the determinant in equation (3.30) becomes 

 
0

2

2

22

221

2

1 




krmk

kkkrm
 

Working out the above determinant we get the following characteristic equation. 

     021

2

21221

4

21  kkrkkmkmrmm     (3.31) 

For arbitrary values of mass and stiffness, equation (3.31) is used to determine ir  in our 

undamped solution given by (3.28). The corresponding modal vectors are obtained by 

substituting the values of ir  back into equation (3.29). 

     iii
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kkrm
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2

21
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1
2


        (3.32) 

Note that the superscript specifies the modal vector, while the subscript denotes the 

components of the modal vector. The modal vector can now be arranged in column form 

into a matrix as follows: 

        
   

    




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


2
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2

1

1

121

YY

YY
YYT       (3.33) 

To reiterate, the reason for obtaining the undamped solution first was to be able to 

construct the  T  transformation matrix. This matrix will now be used to diagonalize the 

mass and stiffness matrices as follows 

      TmTm
T

~         (3.34a) 

      TkTk
T


~

        (3.34b) 

Let us also define the modal displacement variable as 
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       tTty          (3.35) 

Pre-multiplying equation (3.25b) by  TT  and substituting equation (3.35) we get 

                         0 tTkTtTkTtTmT
TTT

       

Applying equations (3.34) to the above equation, we get 

               0
~~~  tktktm         (3.36) 

The modal mass and stiffness matrices in equation (3.36) are diagonal; we have therefore 

just decoupled the governing equations. Defining the position along the diagonal of the 

matrix as j , we get the following equation to solve as many times as there are degrees of 

freedom, in this case twice. 

      0
~~~  tktktm jjjjjj         (3.37) 

We will now assume a solution of the form 

  tCet            (3.38)   

Substituting equation (3.38) into equation (3.37) we arrive at 

0
~~~ 2  jjj kkm          (3.39) 

The roots of equation (3.39) are 
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j
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
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
       (3.40) 

Once again we are interested in the underdamped case, because in this model it 

corresponds to the restitution phase of impact. The necessary condition for this case 

becomes   jj km
~

4
~ 2  , therefore equation (3.40) can be rewritten as follows. 

iii i           (3.41) 
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Using Euler’s formula the modal solution is 
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, where jC  and jD  are constants. In order to obtain the response of the system we have 

to transform the above solution back to the original displacement coordinates  ty .  

Substituting equation (3.33) into equations (3.35) we have 
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Multiplying out the above equation  
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Substituting the solution (3.43) into above 
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          (3.45a,b)  

Besides the displacements, we will also need the velocities and accelerations of both 

masses, which are obtained by differentiating equations (3.45) with respect to time. 
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          (3.45e,f)  

We still need to determine the constants jC  and jD . This will be done by specifying the 

initial conditions on position and velocity. Without loss of generality let us take the initial 

displacements as zero and the initial velocity of both masses to be the same, such that 

there is no relative motion between the masses prior to impact. Applying these conditions 

to equations (3.45) we arrive at the following 
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Putting the four equations above into matrix form we get 
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In matrix notation equation (3.46) becomes 

    CGy 0          (3.47) 
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, where  0y  is the vector of initial conditions,  C  is the vector of the constants to be 

determined, and  G  is the matrix seen in equation (3.46). The unknown constants are 

therefore  

     0

1
yGC


         (3.48) 

We have now solved the problem of a two degree of freedom linear oscillator impacting a 

surface with an initial velocity. A question which still needs to be answered is what 

marks the end of impact. For a two mass system there is no single frequency which can 

be used to obtain the period of half of an oscillation as we have done in the previous 

section. Instead we take the end of impact as the time when the acceleration of 1m  

reaches its initial value. Recall that the initial accelerations of the masses are non-zero in 

this linear model due to the initial condition on velocity. The initial accelerations can be 

obtained from equations (3.45e,f) as follows 

         2

2

22222

2

2

2

11

2

11111

2

1

1

11 220 CDCYCDCYy      

         2

2

22222

2

2

2

21

2

11111

2

1

1

22 220 CDCYCDCYy    

          (3.49a,b) 

The end of impact, *t , is defined as the time when the acceleration of the cushion is 

   01

*

1 yty            (3.50) 

This definition of the impact termination time might seem random, but other definitions 

do not differ by much because of the large amplitude of the maximum acceleration 

compared to the value of the initial acceleration. 

 In order to analyze the behavior of this system in a dimensionless manner we need 

to define the mass and stiffness ratios as follows.  
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1

2

m

m
m 


   
1

2

k

k
k 


     (3.51a,b) 

The following figures depict the variation of the impact duration as well as the coefficient 

of restitution with the mass and stiffness ratios. The reference mass and stiffness of 1m  

were taken as unity. The impact duration shown in Fig. 3.11 decreases with an increasing 

stiffness ratio, while the mass ratio, in the range shown, has little effect on it.  
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Figure 3.11: Impact duration for 2.0 . 

As was shown in the previous section, the coefficient of restitution plotted in Fig. 3.12 

increases with increasing stiffness coefficient. This might not look so from the figures, 

but that is because they are plotted as a function of the ratio of stiffness coefficients. The 

figure showing the coefficients of restitution of both masses is the key in understanding 

the interaction between the cushion and the cargo, which is what we are trying to model 

by this system. The coefficient of restitution of the cargo, mass 2m , is calculated using 

the impact duration defined by the cushion, mass 1m , meaning that the value of the final 
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velocity is taken at the end of impact defined earlier. We see that the coefficients of 

restitution of the cargo and the cushion are quite different for small values of the stiffness 

ratio. This is undesirable since the acceleration experienced by the cargo will be larger 

than that of the cushion. We therefore want the stiffness of the cushion to be smaller than 

the stiffness of the cargo. 
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Figure 3.12: Coefficient of restitution for 2.0 . 

The cushion-cargo interaction depends on the difference in the coefficients of restitution. 

If this difference is large then one of the masses must have experienced a larger 
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acceleration because the release velocities are the same. This means that a lower stiffness 

of the cargo causes it to oscillate faster than the cushion and absorb more energy than the 

cushion. For comparison, the next two figures show the same plots with proportionality 

constant of 7.0  rather than 2.0 used previously. 
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Figure 3.13: Impact duration for 7.0 . 

Comparing Fig. 3.13 to Fig. 3.11 we see a decrease in the impact duration for a larger 

value of  . Figure 3.14 shows the plots of the coefficient of restitution for both the cargo 

and the cushion when 7.0 . We see that overall behavior has not changed by 

increasing the proportionality constant. However, the value of the coefficient of 

restitution for the same values of mass and stiffness ratios has decreased. This is expected 

since a larger damping coefficient corresponds to more energy absorbed during the 

impact. We once again see that the behavior of the two masses is more synchronized for 

larger values of the stiffness ratio. These results are supported by experimental evidence. 
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Experiments have shown that a cushion which is designed to soften the impact of a 

slightly stiffer metallic object, does not fare well in cushioning a softer plastic object. 

Also note the decrease in the similar values of the coefficients of restitution in the 

combined figure for a ratio of stiffness larger than 1.5. 
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Figure 3.14: Coefficient of restitution for 7.0 . 

We have hereby completed our discussion of linear vibratory systems and their 

applications. The coefficient of restitution as defined in Chapter 2 has a more physical 

meaning now. If the object has material properties which can be modeled as a linear 
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spring damper system, then the coefficient of restitution can be determined form these 

properties and be applied to the impact analysis presented in the previous chapter. In the 

next section we will discuss a nonlinear model used to describe the impact phenomenon. 

 

3.3    Nonlinear Oscillator, Hunt-Crossley Model 

 As we stated earlier, most impact phenomena are highly nonlinear, but so far we 

have only analyzed linear models. In this section we will investigate a commonly used 

nonlinear impact model. This impact model was proposed by K.H. Hunt and F.R.E. 

Crossley [15] and has the following governing equation 

  0 nn yyyym           (3.52) 

where  ,  , and n  are constants and m  is the mass. 

The model is derived analytically by assuming a nonlinear stiffness force and a 

coefficient of restitution which decreases linearly with initial velocity. A typical power 

used in equation (3.52) is 2/3n , because then the stiffness force is identical to the 

Hertz’s Law of Contact of two spheres [6, 13, 19]. But, of course, the main advantage of 

this model is that the impact force is zero at the beginning of impact. This is because the 

damping term involves not only the velocity, but also the displacement which is zero at 

the beginning of impact.  

 Equation (3.52) is highly nonlinear and must be solved numerically. We used 

MATLAB’s ordinary differential equation solver, ode45, but we will discuss solutions to 

such equations in much more detail later in this thesis. For this model, the end of impact 

is simply the time when the impact force decreases to a value of zero. This time gives us 

the impact duration, the final velocity, and therefore the coefficient of restitution. Just as 
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we have done for the linear system, we will now analyze the behavior of this system 

subject to varying the model parameters  ,  , and n . 
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Figure 3.15: Impact duration and coefficient of restitution; 1m , 10 V , 2/3n , 

1 . 

The above figure shows the decrease of the impact duration and the increase of the 

coefficient of restitution with an increase in the value of  . We therefore know that   

must be a measure of stiffness because the stiffness coefficient for the linear model 

produced the same results in Fig. 3.2. One must keep in mind that the units of   will 

depend on the exponent n . Figure 3.16 shows that the impact duration increases and the 

coefficient of restitution decreases with increasing  . This behavior is similar to that of 

the linear system to the damping coefficient in Fig. 3.3.  
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Figure 3.16: Impact duration and coefficient of restitution; 1m , 10 V , 2/3n , 

1 . 

However, calling   the effective damping coefficient would be misleading. The damping 

coefficient leads the y  term and is therefore  ny . We now see that the actual damping 

coefficient is not constant but changes with the displacement. Similarly the stiffness 

coefficient is defined as leading the y  term and is therefore  1ny  , as can be seen in 

equation (3.52). These two coefficients are plotted for a typical impact as functions of 

time in Fig. 3.17. Looking at the damping and stiffness coefficients, their maximum 

values are achieved at maximum deflection.  
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Figure 3.17: Damping and stiffness coefficients for 1m , 10 V , 2/3n , 1 , 1 . 
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We also need to look at the dependence of the impact duration and the coefficient of 

restitution on the exponent n . This exponent is the third parameter of this nonlinear 

model, which is quite different from the linear model where only two parameters needed 

to be specified. The dependence of the impact outcome on n  is plotted in Fig. 3.18, 

which shows an increase in the impact duration with an increase in the value of n . Aside 

from this, Fig. 3.18 also shows that the value of the coefficient of restitution is unaffected 

by the power n . This behavior of the model will become clearer when we analyze the 

hysteresis curves. 
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Figure 3.18: Damping and stiffness coefficients for 1m , 10 V , 1 , and 1 . 
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Figure 3.19: Hysteresis curves for the impacts analyzed in section 3.3. 

 The above figure shows the hysteresis curves for the impacts presented in this 

section as functions of  ,  , and n . From Fig. 3.19 we see the expected increase in the 

area encompassed by the hysteresis curve with an increasing  . This correlates with an 

increasing energy loss and a decreasing coefficient of restitution seen in Fig. 3.16. On the 

other hand, increasing the coefficient   does not have such a dramatic effect on the area 

encompassed by the hysteresis curve, but it does substantially decrease the maximum 

deflection and increase the maximum acceleration. The last figure above shows the effect 

of varying the value of n  on the hysteresis curve. We see that the curve moves up in a 

way that increases the maximum deflection and acceleration. But the interesting fact is 
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that the value of n  has no influence on the area encompassed; this was already seen in 

the plot of the coefficient of restitution in Fig. 3.18. 

 Typical applications of this model require that the coefficients be determined 

experimentally. This will, of course, only happen if the behavior of the material analyzed 

is similar to that discussed in this section. If this model is fitted to one’s impact scenario, 

they gain a transient model of the impact which can be used to describe and, more 

importantly, predict all impact outcomes. If it so happens that this model cannot be fitted, 

there are other material models that one can try, such as the Maxwell model or the 

Kelvin-Voigt model. These, as well as other nonlinear models, are discussed in some 

detail by Polushko, Jiba, Krononova, and Sokolova [32]. But the Hunt-Crossley model 

does seem to remain a popular choice because it has three parameters allowing for a more 

accurate fit to the experimental results.  
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Chapter 4 

Aerodynamics of Free Fall 

 

ow that we have analyzed the mechanics of rigid body impact and 

considered vibrational impact we realize that the solutions we obtained 

depend strongly on the initial parameters, such as the velocity. We now 

need to consider the general case when the body travels along a trajectory prior to 

impacting the surface. Ascertaining this path and the pre-impact velocity requires the 

analysis of the aerodynamic drag experienced by the object. This chapter is dedicated to 

determining the pre-impact parameters for a body that travels through air prior to impact.  

 

4.1 Two Dimensional Formulation 

 The goal of this section is to determine how aerodynamic effects, during free fall, 

influence the initial impact parameters. Let us first define the orientation and the direction 

of motion for the object. Note that in Fig. 4.1 the coordinate system is setup such that the 

plane of motion coincides with a coordinate plane, in this case the (x,y) plane. 

 

Figure 4.1: Formulation of aerodynamics. 

N 
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Also, the y-axis is selected as positive downwards because the forcing is gravitational and 

it will prove advantageous when we set up the governing equations of motion. Figure 4.1 

also shows the projected area, that is orthogonal to the direction of motion, which we will 

assume remains constant throughout the fall. This assumption is valid for blunt bodies as 

well as small angular velocities. We will actually assume that the angular velocity is 

unaffected by the aerodynamics throughout the descent, effectively treating our object as 

a particle. This assumption has been validated through experiment by observing drop 

tests of large blunt bodies. The direction of motion will be defined by an angle   relating 

the velocity components as follows.  

jViVV yx
ˆˆ 


         (4.1) 

    jiVV ˆsinˆcos  


       (4.2) 

22

yx VVV          (4.3) 

The angle   is a function of time and its trigonometric functions can be expressed as 

 
V

Vxcos          (4.4a) 

 
V

Vy
sin          (4.4b) 

Substituting equation (4.3) into (4.4a) and (4.4b) we obtain 

 
22

cos

yx

x

VV

V


         (4.5a) 

 
22

sin

yx

y

VV

V


         (4.5b) 
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Let us now formulate the kinetics of this problem, which will be used to determine the 

equations of motion for a body falling through air. Since we are once again dealing with a 

planar problem, Fig. 4.2 depicts all of the forces acting on the body during free fall 

without loss of generality. 

 

Figure 4.2: Kinetics of free fall. 

The drag force retards motion and acts in the direction opposite the direction of motion. 

The direction of motion depends on time and will be defined by the velocity components 

which will change during the descent.  

 From the literature we know that, for high Reynolds numbers flows, the drag 

force varies with the square of the velocity [22]. This relationship also depends on a 

number of constants and can be expressed as 

2

2

1
AVCF DairD          (4.6) 

where air  is the density of air, DC  is the coefficient of drag, and A  is the projected area 

perpendicular to the direction of motion called the planform area. In this study, we are 

considering drops from a relatively low altitude, therefore we can safely neglect changes 
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in density during the fall. Generally, the coefficient of drag depends on the object’s 

geometry, surface roughness and even the free stream air velocity. We will assume that 

we are dealing with a blunt object and therefore neglect any changes in projected area, 

A , or the coefficient of drag, DC , during the descent. This assumption is valid since it 

has been shown [4, 22] that, for a wide range of Reynolds numbers, the coefficient of 

drag on basic geometries such as a sphere or a cylinder remains constant. 

 We can separate the drag force into its components along the x and y axes, using 

the angle  .Writing Newton’s second law along both coordinate directions, for an object 

of mass m ,  we obtain 

  xDx maFF  cos        (4.7a) 

  yDy mamgFF  sin       (4.7b) 

The components of acceleration can be described in terms of the velocity components as 

dt

dV
a x

x           (4.8a) 

dt

dV
a

y

y           (4.8b) 

Turning our attention to the drag force, we can substitute equation (4.3) into equation 

(4.6) to obtain  

 22

2

1
yxDairD VVACF          (4.9) 

We can now put everything together. Substituting equations (4.4), (4.8) and (4.9) into 

equations (4.7) we obtain the following: 

 
dt

dV
m

VV

V
VVAC x

yx

x
yxDair 




22

22

2

1
      (4.10a) 
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 
dt

dV
mmg

VV

V
VVAC

y

yx

y

yxDair 



22

22

2

1
     (4.10b) 

Dividing through by the mass and simplifying we get the following set of coupled 

nonlinear differential equations relating the transient velocity components. 

0
2

22









 yxx

Dairx VVV
m

AC

dt

dV 
      (4.11a) 

0
2

22









 gVVV

m

AC

dt

dV
yxy

Dairy 
     (4.11b) 

 We can see from equation (4.11a) that the horizontal velocity xV  decreases with 

time, and, if allowed to continue indefinitely, will approach zero. On the other hand, 

equation (4.11b) states that the vertical component of velocity increases with time, but 

eventually reaches a limit. This limit is known as the terminal velocity and it is reached 

when the drag force and the weight are in equilibrium. We will determine the terminal 

velocity termV  by setting the acceleration in equation (4.11b) equal to zero. As we have 

just mentioned, the horizontal velocity approaches zero after a long time. We will 

therefore, set it equal to zero as well. Hence, 

    0
2

2









gVV

m

AC
termterm

Dair
 

Solving the above for termV  gives 

AC

mg
V

Dair

term


22
         (4.12) 

AC

mg
V

Dair

term


2
         (4.13) 
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Figure 4.3: Terminal velocity. 

Equation (4.13) is plotted in Fig. 4.3, which shows that the terminal velocity decreases 

with an increasing coefficient of drag and projected area. This is intuitive since a large 

value of the coefficient of drag corresponds to a larger drag force which decreases the 

terminal velocity. Similarly a large projected area increases the resistance to motion, 

thereby decreasing the terminal velocity. 

 We can obtain a more compact form of the differential equations (4.11) by using 

equation (4.12). This gives 

0
22

2















 yxx

term

x VVV
V

g

dt

dV
      (4.14a) 

0
22

2















 gVVV

V

g

dt

dV
yxy

term

y
      (4.14b) 
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Now that we have determined the differential equations relating the velocity components, 

we also want to express them in terms of the position variables x  and y . 

The components of velocity can be expressed as 

xV
dt

dx
          (4.15a) 

yV
dt

dy
          (4.15b) 

Substituting equation (4.15) into equations (4.16) results in 
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     (4.16a) 
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


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dt
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dx

dt
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V

g

dt

yd

term

     (4.16b) 

Equations (4.14) and (4.16) can be solved to obtain the velocity and the position of the 

object as a function of time. The solution to these coupled nonlinear differential equations 

will be obtained numerically using the Runge-Kutta method later in this chapter. Solution 

of these equations requires that we specify a set of initial conditions. Since equations 

(4.16) are second order, we will need to define at least two initial conditions for each. 

These will be the initial position and velocity. Thus, 

  00 xtx           (4.17a) 

  00 yty           (4.17b) 

 
  00

0 xx V
dt

tdx
tV 


        (4.17c) 

 
  00

0 yy V
dt

tdy
tV 


        (4.17d) 

where 0x  and 0y  define the initial position, and 0

xV  and 
0

yV  define the initial velocity. 
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 An interesting solution to the differential equations governing free fall can be 

obtained by making some simplifications. Let us consider the case when the object falls 

vertically, which corresponds to the case when 0xV  throughout the descent. Upon 

substituting 0xV  into equations (4.14) we see that equation (4.14a) is identically zero, 

while equation (4.14b) becomes 

0
2

2















 gV

V

g

dt

dV
y

term

y
       (4.18) 

We can now drop the subscript on the vertical velocity component and just keep in mind 

that the problem is one dimensional. Simplifying equation (4.18) gives 

0
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






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
 g

V

V
g

dt

dV

term

       (4.19) 

Similarly we can substitute 0xV  into equations (4.16). Once again equation (4.16a) is 

satisfied identically and equation (4.16b) becomes 
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












 g

dt

dy

V

g

dt

yd

term

      (4.20) 

We now have our equations of motion for an object that free falls vertically. As we said 

previously, we are mostly interested in the velocity of the object prior to impact. Due to 

the complexity of the calculations we will not go through the exercise of solving for the 

impact velocity, but rather discuss the procedure and present the solution. We begin the 

solution by first solving equation (4.20) for the position of the object as a function of 

time. This will be done by incorporating the initial conditions (4.17b) and (4.17d). The 

solution was obtained by using a symbolic manipulator and is given below as 
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           (4.21) 

where termV  is the terminal velocity, g  is the gravitational constant, 0y  is the drop height 

and 0V  is the initial velocity. From the position of the object as a function of time, 

equation (4.21), we can determine the time when impact occurs since we know the initial 

drop height 0y . Solving the parallel differential equation (4.18) and using the initial 

condition (4.17d) we obtain the velocity as a function of time, 
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Substituting the impact time obtained from solving equation (4.21) into the velocity 

solution of equation (4.22) we arrive at the impact velocity, impactV , for an object released 

from rest from a height of 0y  and an initial velocity 0V . Thus, 
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          (4.23) 

Note that we have defined the positive y-axis downward with the origin fixed at the 

release point. Therefore, the drop height, 0y , in equation (4.23) should be a negative 

quantity. This equation is the general solution, and is quite cumbersome. Note that all 

ratios inside the parenthesis are dimensionless quantities, which is expected when dealing 
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with natural logarithms. The following figure shows the dependence of the impact 

velocity on the dimensionless initial parameters. 

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

y
0
(g/V

term
2 )

V
0
/V

term

V
im

p
a
c
t/V

te
rm

 

 Figure 4.4: Impact velocity for vertical free fall. 

From Fig. 4.4 we see that if the object is released with an initial velocity equal to the 

terminal velocity it will impact with that velocity regardless of the drop height. Also, as 

the drop height is increased, the impact velocity approaches the terminal velocity. Note 

that in plotting equation (4.23) we have defined the drop height as 0y , but it is 

presented as a positive quantity in the figure. Lastly, if we state that the object is released 

from rest, we can set 00 V arriving at  
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where, once again, 0y  must be a negative quantity according to our convention. 
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Figure 4.5: Impact velocity for an object released from rest. 

The figure above shows the dimensionless impact velocity as a function of the 

dimensionless drop height for an object which is released from rest. This is compared to 

the case with no aerodynamic drag where the impact velocity is given by the following 

2

02

termterm

impact

V

gy

V

V 
   

For the case where a drag force acts on the object we once again see that the impact 

velocity approaches the terminal velocity as the drop height is increased while, for the 

case without drag, the impact velocity increases indefinitely with increasing drop height. 
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4.2 General Solution Via The Runge-Kutta Method 

 The governing equations for an object which falls freely though air were derived 

earlier where we constructed a system of coupled nonlinear ordinary differential 

equations. This system of equations cannot be solved analytically; therefore we must turn 

to numerical methods. A useful method for solving such a system is the Runge-Kutta 

method. We will use a fourth order Runge-Kutta (RK4) method due to its accuracy and 

stability [14, 26]. This method approximates the value of a function at a subsequent time 

tt   by using the functions value at time t  and the variation of the function with time.  

 Let us now present the general method and then extend it to a system of 

equations. If we have a function  ts  whose value is known at some time t , then 

according to the RK4 method, its value at time tt   will be given by the following. 

 huuuuss ii 43211 22
6

1
       (4.25) 

where i  is the iterative variable,  ttss ii 1 ,  ii tss  , th  , and iu  are defined as 

 ii stsu ,1
          (4.26a) 









 12

2
,

2
k

h
s

h
tsu ii        (4. 26b) 









 23

2
,

2
k

h
s

h
tsu ii        (4. 26c) 

 34 , hkshtsu ii         (4. 26d) 

with  
 
dt

stds
sts

,
,   
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The general solution is obtained by repeating the calculation, where for the second 

iteration  hts  becomes the new reference value and we march out the solution in order 

to calculate  hts 2 and so on.  

 This methodology is designed for first order differential equations; we must 

therefore restate the governing equations as a system of first order differential equations. 

Using equations equation (4.14) and (4.15) we obtain 

 
 tV

dt

tdx
x          (4.27a) 

 
 tV

dt

tdy
y          (4.27b) 

 
     22

1 tVtVtVC
dt

tdV
yxx

x        (4.27c) 

 
      2

22

1 CtVtVtVC
dt

tdV
yxy

y
      (4.27d) 

where 















21

termV

g
C  and gC 2 . 

Using the RK4 method, the values of position and velocity at time ht   will be given by  

    ktVhtV xx


         (4.28a) 

    ltVhtV yy


         (4.28b) 

    mtxhtx


         (4.28c) 

    ntyhty


         (4.28d) 

where 

 4321 22
6

1
kkkkk


        (4.29a) 
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 htVm x1


         (4.31b) 

  hktVm x 22
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  hltVn y 44
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A question arises: what is an adequate size of the time step? As a first indicator one can 

use the fact that the error associated with each step of the RK4 method is on the order of 

 4hO  [26]. But, decreasing the time step will cost a lot of computational power. An 

alternative way of decreasing the error is to use an adaptive step. These include variations 

of the RK4 method such as the Fehlberg (RKF45), Cash-Karp (RKCP), as well as the 

Dormand-Prince (RKDP) methods. These methods approximate the value of the function 

using both a fourth order method and a fifth order method. The two values are compared 

and if the difference exceeds some prescribed tolerance the step is decreased and the 

value of the function is recalculated. 

 In order to completely grasp the behavior of this system of differential equations 

we will now turn to graphical means of representing our numerical solution. We must 

begin by nondimensionalizing the governing differential equations in order to obtain a 
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parametric solution to the free fall problem. Let us begin by defining the following 

dimensionless time, position, and velocity variables. 
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Substituting equations (4.33) and (4.34) into equations (4.14) and (4.16) we obtain 
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Since we are primarily interested in the pre-impact velocity of the object, we will only 

seek a solution to equations (4.35). The numerical solution to these equations was 

obtained using the aforementioned Runge-Kutta method and is displayed in the following 

figures. Figure 4.6 shows the general behavior of the velocity components of a free 

falling body for the given initial conditions. As predicted, we see that the horizontal 

component of velocity decays to zero, while the vertical component of velocity 

approaches the terminal velocity with increasing time. Note the clearly visible minimum 

of the resultant velocity, shown by the heavy solid line, which is at a value of about 0.5 

on the horizontal axis. In other words, the minimum resultant velocity occurs soon after 

the release and far from steady state conditions. Theoretically, this is a very powerful 
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result, which shows that there exists a time at which all forces acting on the object are in 

equilibrium.  
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Figure 4.6: Behavior of the nonlinear solution for termx VV 0  and 00 yV . 

For the given initial conditions, the magnitude of the total velocity at this minimum is 

about 23% smaller than the value of the terminal velocity. Having the object impact the 

surface with this minimum velocity would greatly increase its survivability.  

 Now, let us consider how the initial conditions influence the position and 

magnitude of the minimum resultant velocity. From Fig. 4.7 and Fig. 4.8, we can see that 

changing the initial conditions significantly alters the position and magnitude of the 

minimum resultant velocity. For some initial conditions, this minimum will be essentially 

at the terminal velocity, thereby losing its significance. In the following section we will 
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further discuss this result and provide relationships between the velocity components at 

this extremum. 
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Figure 4.7: Effects of increasing the initial vertical velocity 0

xV . 
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Figure 4.8: Effects of increasing the initial vertical velocity 0

yV . 
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4.3 Minimum Kinetic Energy 

 In Chapter 2 we have showed the energy loss for a rigid body impact varies with 

many parameters. But, we can also make a general statement that if the object has a small 

pre-impact kinetic energy, then any damage that it suffers should be less than for the 

same impact with a higher kinetic energy. Since it is assumed in this chapter that the 

aerodynamic forces do not affect the rotation we will try to minimize the translational 

kinetic energy. In the previous section, we graphically showed that there exists a 

favorable minimum of the resultant velocity. We will now derive a relationship between 

the transient components of velocity xV  and yV  at this minimum. We can begin by 

restating equation (4.3) which is 

22

yx VVV   

Differentiating equation (4.3), with respect to time gives 

  











dt

dV
V

dt

dV
VVV

dt

dV y

y

x

xyx 22
2

1 2
1

22
 

Upon rearranging we have 

22

yx

y

y

x

x

VV

dt

dV
V

dt

dV
V

dt

dV













        (4.37) 

Solving equations (4.14) for the accelerations yields 

22

2 yxx

term

x VVV
V

g

dt

dV















       (4.38a) 

gVVV
V

g

dt

dV
yxy

term

y

















22

2
      (4.38b) 
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Substituting equations (4.38) into equation (4.37) 

22

22

2

22

2

yx

yyxy

term

xyxx

term

VV

VgVVV
V

g
VVVV

V

g

dt

dV













































































  

Dividing through by 
22

yx VV   and simplifying 

 


































22

22

2

2 yx

yx

termy

term

VV
VV

VV

V

g

dt

dV
     (4.39) 

Setting the derivative equal to zero we obtain  

  22
3

22

termyyx VVVV   

Lastly, solving for xV  gives 

  23
2

2

ytermyx VVVV         (4.40) 

Equation (4.40) is the relationship between the components of velocity at an extremum of 

the transient total velocity.  

 The most favorable time for impact to take place is when the total velocity of the 

impacting object is minimal. If the impact is designed such that the object impacts with 

this minimum velocity, the components of the velocity are related by equation (4.40). 

Now, we can obtain an expression for the initial velocity ratio, x , which we defined in 

our discussion of rigid body impact. Recall equation (2.12a), 

y

x
x

V

V
  

Substituting equation (4.40) into the above gives 
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 
y

ytermy

x
V

VVV
23

2
2


  

Simplifying, we get the initial velocity ratio at the minimum resultant velocity as 

1

3
4

















y

term
x

V

V
     (4.41) 

This value can be used to solve the inverse problem, such as that of determining the 

release parameters which would result in the most favorable value of x . 

 

4.4 Approximate Model 

 The behavior of the velocity components and the total velocity with time is 

similar to that of the thermal resistance of an insulated rod as a function of the radius of 

insulation [17]. The convection resistance behaves like the horizontal component of 

velocity and the conduction resistance behaves like the vertical component of velocity. 

The total thermal resistance has a minimum value analogous to that of the total velocity 

during free fall. In this section we will show that one can obtain a solution to the free fall 

problem similar to the known solution for the heat transfer in an insulated rod. This will 

be done by decoupling the equations of motion. 

 From the equations of motion (4.14) we note that the coupling term is
22

yx VV  . 

We can rearrange this term as follows, 

2

1

2

22
1



























x

y

xyx
V

V
VVV       (4.42) 

Expanding equation (4.42) using the Binomial Theorem we obtain 
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
























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


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


















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








 ...

8

1

2

1
11

422

1

2

x

y

x

y

x

x

y

x
V

V

V

V
V

V

V
V  

Simplifying gives 

...
8

1

2

1
1

3

422

1

2




























x

y

x

y

x

x

y

x
V

V

V

V
V

V

V
V      (4.43a) 

We can also obtain a similar expression by factoring the yV  term rather that the xV  term 

in equation (4.42). 

...
8

1

2

1
1

3

422

1

2































y

x

y

x

y

y

x

y
V

V

V

V
V

V

V
V      (4.43b) 

If we only retain the first term in expansions (4.43) we obtain the following 

approximation which effectively decouples the governing equations. 

x

x

y

x V
V

V
V 



























2

1

2

1         (4.44a) 

y

y

x

y V
V

V
V 






























2

1

2

1         (4.44b) 

Substituting equation (4.44a) into equation (4.14a) and equation (4.44b) into equation 

(4.14b) we obtain the following decoupled governing equations 

0
2

2















 x

term

x V
V

g

dt

dV
       (4.45a) 

0
2

2















 gV

V

g

dt

dV
y

term

y
       (4.45b) 
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We have already obtained the solution to equation (4.45b) when analyzing vertical free 

fall. It is as follows, 

 






































 

term

y

term

termy
V

V
t

V

g
VtV

0

1tanhtanh      (4.46) 

The solution to equation (4.45a) subject to boundary condition (4.17c) is  

 

02

1

1

xterm

x

V
t

V

g
tV















        (4.47) 

Note that the horizontal velocity varies with inverse of time which is identical to the 

variation of convection resistance to the insulation radius. 

 Equations (4.46) and (4.47) should not be used as a means of producing accurate 

values for the transient velocity components as a function of time. However, these 

solutions do contain the essence of the behavior and can be used to approximate the 

velocity of the object soon after release. After a longer time, the lack of coupling effects 

results in larger deviations from the exact solution. Also, the resultant or total velocity for 

this decoupled system does exhibit a minimum which is near the actual minimum, but 

should only be used as a first approximation.  

 The figure below compares the approximate solution presented in this section to 

that obtained in a previous section using the Runge-Kutta method. The y component of 

velocity is closely approximated by this solution, while the x component deviates 

drastically. Also note that the resultant velocity for the approximate solution does not 

approach the terminal velocity from below. It rather overshoots the terminal velocity and 

then approaches it from above. 
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Figure 4.9: Comparison of the approximate solution to the exact solution. 

 

4.5 Three Dimensional Formulation Including Effects of Wind 

 Up to now, we discussed the planar motion of a body in a viscous fluid, namely 

air. The equations governing this two dimensional motion were derived and then solved 

numerically as well as approximately. The question that we will try to answer in this 

section is what affect wind has on the motion of the body. The velocity vector specifying 

the direction of the wind will, in general, have components in all three coordinate 

directions. Therefore, our two-dimensional aerodynamic model will no longer suffice and 

we must develop a new three-dimensional model.  
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Figure 4.10: Three dimensional formulation, including wind. 

The wind velocity vector will be defined as kUjUiUU zyx
ˆˆˆ 


, which is shown acting 

on the object in Fig. 4.10. The velocity of the body will now also have three components 

and take the following form kVjViVV zyx
ˆˆˆ 


. Recall that the drag force depends on 

the velocity of the air past the container. This relative velocity can be written in vector 

form as  

     kUVjUViUVV zzyyxxrel
ˆˆˆ 


     (4.48) 

where the velocity components of the wind are subtracted because, for example, a 

tailwind will decrease the relative velocity of the air past the object. We are now ready to 

define the drag force acting on the body. 

 As in the two dimensional formulation the magnitude of the drag force is given by 

2

2

1
relDairD AVCF          (4.49) 

Substituting equation (4.48) into above  
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     
2

222

2

1





  zzyyxxDairD UVUVUVACF     (4.50) 

The direction of the drag force is defined by the direction of the relative air velocity 

vector. We can now sum the forces which act on the body in flight under the action of 

wind. 

  xxDx maFF         (4.51a)  

  yyDy mamgFF          (4.51b) 

  zzDz maFF         (4.51c) 

Where, for example,  
xDF is the component of the drag force along the x-axis and can be 

expressed using the components of the relative air velocity. 

 
 

     222

zzyyxx

xx
DxD

UVUVUV

UV
FF




     (4.52) 

Using equations (4.48), (4.50), (4.52), and (4.8) we can write equations (4.51) as 

        0
2

222









 zzyyxxxx

Dairx UVUVUVUV
m

AC

dt

dV 
 (4.53a) 

        gUVUVUVUV
m

AC

dt

dV
zzyyxxyy

Dairy











222

2


 (4.53b) 

        0
2

222









 zzyyxxzz

Dairz UVUVUVUV
m

AC

dt

dV 
 (4.53c) 

Remember that the coefficient of drag, DC , and the planform area, A , are assumed to be 

invariant of the coordinate direction. This assumption is valid for blunt bodies. Equations 

(4.53) can be expressed in terms of the terminal velocity as follows 
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        0
222

2















 zzyyxxxx

term

x UVUVUVUV
V

g

dt

dV
  (4.54a) 

        gUVUVUVUV
V

g

dt

dV
zzyyxxyy

term

y

















222

2
  (4.54b) 

        0
222

2















 zzyyxxzz

term

z UVUVUVUV
V

g

dt

dV
  (4.54c) 

The position of the container is governed by 

xV
dt

dx
          (4.54d) 

yV
dt

dy
          (4.54e) 

zV
dt

dz
          (4.54f) 

The six equations (4.54) can now be solved numerically to obtain the position and 

velocity of the body during its descent. The required initial conditions are  

  00 xtx           (4.55a)   

  00 yty           (4.55b) 

  00 ztz           (4.55c) 

  00 xx VtV           (4.55d) 

  00 yy VtV           (4.55e) 

  00 zz VtV           (4.55f) 

In order to present the solution in the most general form we will now nondimensionalize 

equations (4.54) using definitions (4.33) and (4.34). The nondimensional velocity 

components will be  
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     (4.55a,b,c) 
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term
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y
V

U
U 
~

 
term

z
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U
U 
~

     (4.56a,b,c) 

The nondimensional time will be defined as  













termV

g
tt

~
         (4.57) 

Lastly, the dimensionless position variables will take the form 


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
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
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~

termV
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xx   
















2

~

termV

g
yy   
















2

~

termV

g
zz    (4.58a,b,c) 

Substituting equations (4.55) through (4.58) into equations (4.54) we arrive at 

        0
~~~~~~~~

~

~
222

 zzyyxxxx

x UVUVUVUV
td

Vd
   (4.59a) 

        1
~~~~~~~~

~

~
222

 zzyyxxyy

y
UVUVUVUV

td

Vd
   (4.59b) 

        0
~~~~~~~~

~

~
222

 zzyyxxzz

z UVUVUVUV
td

Vd
   (4.59c) 

xV
td

xd ~
~

~
          (4.59d) 

yV
td

yd ~
~

~
          (4.59e) 

zV
td

zd ~
~

~
          (4.59f) 

The equations were solved using the techniques presented earlier in this chapter and a 

typical result is shown in Fig 4.10. This figure clearly depicts the sideways drift due to a 

crosswind. 
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Figure 4.11: Position of an object under the action of wind at 6.0,4.0,2.0,0
~

zU , 

released from 1.0~ y  with 1
~
xV . 

Tables 4.1 and 4.2 present the drift for various initial drop heights as well as release 

speeds. The increase in the amount of drift with increasing initial velocity is nonlinear 

and increases at an increasing rate.  

Table 4.1: Drift due to crosswind of magnitude 2.0
~

zU . 

Drop Height ( 0
~y ) Release Velocity ( 0~

xV ) Sideways Drift ( z~ )  

0.1 0 0.0053 

0.2 0 0.0121 

0.1 0.5 0.0106 

0.2 0.5 0.0218 

0.1 1 0.0184 

0.2 1 0.0349 

 



124 

 

 

Table 4.2: Drift due to crosswind of magnitude 4.0
~

zU . 

Drop Height ( 0
~y ) Release Velocity ( 0~

xV ) Sideways Drift ( z~ )  

0.1 0 0.0169 

0.2 0 0.0360 

0.1 0.5 0.0244 

0.2 0.5 0.0499 

0.1 1 0.0382 

0.2 1 0.0739 

 

Analyzing sideways drift is of utmost importance in problems where the magnitude of the 

crosswind is on the order of the terminal velocity. 
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Chapter 5 

Subsequent Impacts 

 

n most impact cases the initial impact is the most damaging, but this is not always 

true when dealing with non-spherical objects. Subsequent impact of such objects 

will be investigated in this chapter, especially the presence of velocity components 

along the plane of impact, where the position of the center of gravity with respect to the 

contact point plays a crucial role. In such cases, It is possible for more energy to be 

absorbed during the second impact than during the first, which is the reason why 

analyzing subsequent impacts is vital in any impact analysis. We are also interested in 

determining the distance that an object tumbles after the initial impact. This distance is of 

great importance in designing an impact scenario where the object would have to be 

retrieved after impact.  

 

5.1    General Formulation 

 Hitherto in this thesis we have discussed the theory of rigid body impact 

mechanics as well as aerodynamics of free fall, both of which will be employed when 

analyzing subsequent impacts. One way of modeling subsequent impacts is to split the 

problem into aerodynamics and impact mechanics. These will be analyzed separately in 

order to obtain the object’s position and velocity throughout its motion. 

 A typical impact occurs when the object is released form some initial position 

above the impacting surface given some initial velocity and angular velocity. These 

initial conditions have to be used with the equations governing the aerodynamic drag, 

I 
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which were derived in the third chapter of this study. As was proposed earlier, numerical 

integration can be used to obtain the velocity as well as the position of the object during 

its descent. Recall that we assumed that the object’s angular velocity is unaffected by the 

aerodynamics and thereby remains constant. The trajectory of the object through the air is 

terminated at the first impact. The object’s geometry plays an important role in 

determining the exact time and orientation when impact begins.  

 Once the initial velocity and orientation of the box have been ascertained, the 

impact can be analyzed. In this chapter, we will use the rigid body model of impact to 

describe the impact phenomenon. Therefore according to the formulation in Chapter 2, 

we must begin by determining whether the object will slide or not slide during impact. 

This is to be done by evaluating the force ratio and comparing it to some predefined 

coefficient of friction. Depending on whether the object slides or does not, the 

appropriate set of equations can then be used to obtain the post-impact components of 

velocity and the angular velocity. Since the time of impact is typically very small, the 

position and orientation of the box will be assumed not to change during impact. The 

analysis is now complete and the post-impact position and velocities can be applied to the 

aerodynamics equations to calculate the object’s path leading to the second impact. 

 The iterative nature of this problem, and the fact that the aerodynamic equations 

can only be solved numerically, suggests that the solution can be easily obtained using 

computational software.  In fact, we will formulate and solve the subsequent impacts 

problem in this manner. One must keep in mind, that because the equations governing the 

aerodynamics must be solved numerically, an exact position of the body prior to impact 

cannot be obtained, but we can obtain this position to within an acceptable tolerance.  
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5.2    Subsequent Planar Impacts of a Rectangular Container 

 In this section, we will apply the general theory of subsequent impacts to analyze 

the impact of a rectangular container. The dimensions of the container are defined by the 

distance from the center of mass to a corner, R , and the angle   as seen in the Fig. 5.1. 

 

Figure 5.1: Orientation angles of the container. 

The orientation of the container is specified by the angle that the longer side makes with 

the horizontal, which will be denoted by  . The angle which the line between the contact 

point and the center of mass makes with the vertical will be denoted by  . This is all the 

necessary information to completely describe the orientation of this container. The 

moment of inertia of this rectangular object about the axis of rotation through the mass 

center G is 

       222

3

2
sin2cos2

12

1
mRRRmIG       (5.1) 

 The motion of the container will begin with some initial velocity and angular 

velocity from a given initial position. The required initial conditions can be expressed as: 

  00 xtx           (5.2a) 



128 

 

 

  00 yty           (5.2b) 

 
  00

0 xx V
dt

tdx
tV 


        (5.3c) 

 
  00

0 yy V
dt

tdy
tV 


        (5.3d) 

Using these initial conditions we can now numerically solve the aerodynamic equations 

which will yield the trajectory of the center of mass of the container. As were derived in 

Chapter 4, these equations are 
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xV
dt

dx
          (5.5a) 

yV
dt

dy
          (5.5b) 

where 
AC

mg
V

Dair

term


2
 . 

Note that, since we are dealing with a blunt body and short flight duration, we can 

assume that the planform area and the coefficient of drag remain constant. Once we know 

the flight path we need to determine when the first impact occurs. Using the path of the 

center of mass and the angular velocity we can calculate the position of each corner 

throughout the flight. Figure 5.2 shows the initial trajectory of the falling container, 

which was released from ft50  with a horizontal velocity of sft /80  and an initial 
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orientation angle o35 . The angular velocity was taken to be 1  srad /  and the 

initial vertical component of velocity was zero. 
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Figure 5.2: Initial flight. 

Knowing the position of the corner throughout the trajectory is essential for this analysis. 

Because the probability of the container impacting on its side is extremely small it is 

more likely that impact will occur at a corner. It is a bit difficult to obtain the exact 

position of the impacting corner when it makes contact with the ground due to the 

iterative nature of the aerodynamic solution. A very close approximation to the position 

of the container can be determined by re-solving the aerodynamic equations near the 

point of impact with a smaller time step. The initial solution of the flight path is 

terminated when one of the corners goes below the impacting surface. In our case, this is 
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the positive x-axis. The idea is to then take the second to last coordinates of the container 

in the position array and proceed to recalculate the equations with a smaller time step. 

Once again this second loop will break once one of the corners passes the impacting 

surface. An interesting point is that, depending on the magnitude of the angular velocity, 

the corner of the container that terminated the first loop need not be the same as that of 

the second; therefore the algorithm must be written to account for this. The following two 

figures show this procedure. 
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Figure 5.3: Initial impact.                   Figure 5.4: Recalculation of the corner’s position. 

Figure 5.3 shows the larger view of the first impact, while Fig. 5.4 clearly depicts the 

recalculation of the aerodynamic equations with a substantially smaller time step. This 

can be done several times until the container is within a tolerable distance from the 

impact surface. This last position will provide the quantities necessary to conduct the 

impact analysis. 

 Now that we have the determined the pre-impact position and velocity, we are 

ready for the impact analysis. Using the rigid body impact model, we begin by 

calculating the force ratio which will determine whether the object slides during impact. 
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This expression for the force ratio was derived in Chapter 2, equation (2.55), and is 

shown below. Hence, 
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   are dimensionless pre-impact parameters. The above 

condition states that if the force ratio, which is the ratio of the horizontal to vertical 

components of the impact force, exceeds the value of the coefficient of friction,  , 

sliding will occur during impact. Once the impact regime is ascertained, the appropriate 

set of equations will give the post-impact velocity and angular velocity. If no sliding 

occurs, the post-impact velocities and angular velocity are given by these equations 
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If the container slides through impact, then the post-impact quantities are given by the 

following equations, which were also derived in Chapter 2: 
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where  yzx R  sgn  is the coefficient of friction, the sign of which depends on 

the direction of the horizontal velocity of the contact point. As we can see, all impact 

equations require the use of the angle   introduced in Chapter 2 and shown in Fig. 5.1. 

Caution should be taken in the calculation of this angle since it plays such a vital role in 

the impact dynamics. The post-impact quantities now become the initial conditions for 

the new interval of flight leading to the second impact. The same methodology is to be 

applied here and for all subsequent impacts. The first seven impacts of the impact 

scenario discussed so far in this section are shown below in Fig. 5.5. 
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Figure 5.5: Trajectory for the first seven impacts. 

At a first glance, it does not seem that the container has undergone seven impacts, but it 

has. Some of the impacts are double impacts, meaning that after the container impacts the 



133 

 

 

ground, it then impacts it again prior to completing a full rotation. These impacts are 

shown in the following Fig. 5.6. 
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Figure 5.6: Double impacts. 

Fig. 5.7 shows the kinetic energy of the container throughout its motion, normalized with 

respect to the initial kinetic energy. The double impacts shown in Fig. 5.6 could also have 

been spotted in the energy plot as secondary discontinuities at 1.8 and 5.6 seconds. 
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Figure 5.7: Kinetic energy ratio for the first seven impacts. 
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The parabolic-like variation of the kinetic energy with time is due to the flight of the 

container between impacts while being acted upon by aerodynamic drag and gravity. It is 

sometimes observed that the kinetic energy at the end of flight is larger than at the 

beginning. This is due to the position of the container’s center of mass which can be 

closer to the impacting surface at the end of the flight than at the beginning. The 

discontinuities in the kinetic energy ratio plot are due to the impacts themselves. 

 We know that eventually the container will come to rest and the question that 

remains to be answered is what criteria should be used to define the last impact. When 

the number of impacts to be calculated is increased and one looks at the later ones, we 

observe that the container undergoes a number of micro impacts.  
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Figure 5.8: Container’s corner experiencing micro impacts. 
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The container’s corner experiencing micro impacts is shown in Fig. 5.8 above. These are 

impacts with a very small change in position, which occur because the rigid body model 

used to describe the impact phenomenon states that the post-impact vertical contact point 

velocity decreases by the value of the coefficient of restitution, indefinitely. This is the 

point where we need to select a cutoff value for the contact point velocity to be taken as 

zero, which should be based on the accuracy of the calculations made for the position of 

the container’s impacting corner, previously demonstrated in Fig. 5.5. Once the final 

impact has been calculated, we know that the container will either pivot or slide and 

rotate until one of the sides comes into contact with the impacting surface. Which 

scenario takes place is governed by the force ratio which has already been evaluated in 

the calculation of the final quantities.  
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Figure 5.9: Initial pivot. 
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The initial pivot for the impact of the container analyzed so far in this section is shown in 

Fig. 5.9. At this point the container can still oscillate from corner to corner with 

decreasing amplitude. This decrease is attributed to energy loss every time a side of the 

container impacts the ground while it is pivoting. Note that this is a different type of 

impact than the one analyzed in this section and therefore might require a different 

approach in modeling the energy absorption. The motion ceases when all of the energy is 

absorbed. Regardless of how many times the container oscillates after the last impact, 

which even for rigid materials would not be many, its center of mass will essentially 

remain in one place. Therefore, if one is simply concerned with the distance that the 

container travels while tumbling, the subsequent impact analysis is complete after the 

initial pivot. 

 One should note that, prior to beginning this analysis, a large number of 

parameters must be specified. For the aerodynamics we must specify the density of air, 

the mass of the container, its planform area, coefficient of drag, as well as the 

gravitational acceleration. Then for the impact mechanics we need to indicate the 

dimensions of the container, its moment of inertia, the coefficient of friction, and the 

coefficient of restitution. For the problem presented in this section, the dimensions of the 

container were taken as 32 inches by 25 inches, therefore 3.20R  inches and o38 . 

The density of air was taken as 002362.0air  3/ ftslugs , the planform area as 

213.5 ftA  , and the coefficient of drag as 1DC . The weight of the container is 100 lb  

with a gravitational acceleration of 2/2.32 sft . The coefficient of friction is 7.0  and 

the coefficient of restitution is 25.0ne . 
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5.3    Comparison With Experiment 

 In this section we validate the use of the subsequent impact model introduced in 

this chapter by comparing it to experimental results. The model is applied in a manner 

that requires the input of the coefficient of restitution, which is accurately determined 

through comparison. The quantity analyzed is the tumbling distance which is defined as 

the distance from the initial impact until the container ceases to move. This distance is 

highly erratic as a function of the orientation of the container, but an interesting, 

repeatable behavior has been observed. 

 The test data used in the calculation was obtained from experiments designed to 

test the impact characteristics of certain cushioning materials. The container was 

constructed such that the cushioning material shrouded the cargo, which was much 

heavier. The two cushioning materials used were the chevron and the honeycomb 

patterned cardboard cushions. An open chevron cushion container which has undergone a 

corner impact is shown in Fig. 5.10.  

 

Figure 5.10: Container with cargo after corner impact. 

The dimensions of the container were the same as those used in the previous section, with 

3.20R  and o38 . Once again the density of air, planform area and the coefficient of 

drag were taken as 002362.0air  3/ ftslugs , 213.5 ftA  , and 1DC . The coefficient 
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of friction was taken as 7.0 . Also, the initial angular velocity was taken as zero. The 

reason for this will be explained in detail later in this section.  

 These containers were dropped via helicopter from heights of 50 and 65 feet 

above the ground. At the time of release the helicopter was traveling with a constant 

horizontal speed of either 50 or 65 knots (85.39 or 109.71 ft/s). The event, form the time 

the container impacted the ground to the time it came to rest, was recorded by a video 

camera from a safe distance. This video was then analyzed to determine the tumbling 

distance, accurate up to the nearest meter. The actual experimental data is shown in 

Appendix B. Due to the unpredictable variation in the tumbling distance we only analyze 

the averages for each or the four impact scenarios using each of the cushioning materials.  

 The computational model of subsequent impacts was presented in the previous 

section. The impacts were all taken to be planar, that is, we assumed that impact occurred 

at an edge rather than at a corner. This assumption is valid because, even in the case 

when impact occurs at a corner, the trajectory will still follow the direction of motion 

defined by the initial velocity. Since the container free falls to the ground, one has no 

control over the orientation angle. This is the reason why, for all impact scenarios, the 

tumbling distances are plotted as functions of all possible impact orientations. These 

results are then averaged to facilitate the comparison with the experimental results 

discussed earlier. The drop height, initial horizontal velocity, and the mass of the 

container were the three parameters which were given for each impact scenario. Once 

these parameters were entered and the computation completed, the average tumbling 

distances were determined and compared to the experimental values. If the value of the 

tumbling distance was too small, the coefficient of restitution had to be increased until 
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the accurate value was determined or vice versa. As a secondary check, this was done for 

all impact scenarios for each given material. As shown in Fig. 5.1, the orientation angle, 

 , can take on 180 degrees of possible values. The next question that arose was how 

small of an increment in this angle is required to achieve accurate results. For this reason 

we carried out the calculation, first using a one degree interval, and then using a one tenth 

of a degree interval. The experimental data, as well as the computational results of these 

calculations for the chevron cushioned container, are presented in Table 5.1 below. 

Table 5.1: Tumbling distances for the chevron cushion container. 

Drop Altitude 

(ft) 

Horizontal 

Velocity (ft/s) 

Mass (lb) Tumbling 

Distance (ft) 

STD of 

Tumbling (ft) 

Experimental results 

50 85.4 103.8 77.4 32.0 

50 109.7 105.2 96.5 28.2 

65 85.4 110.6 68.6 18.0 

65 109.7 112.5 93.5 30.3 

Computational results: 32.0ne , 1799 impacts. 

50 85.4 103.8 69.4 40.7 

50 109.7 105.2 96.2 47.1 

65 85.4 110.6 69.9 45.5 

65 109.7 112.5 95.1 52.2 

Computational results: 32.0ne , 179 impacts. 

50 85.4 103.8 68.3 38.3 

50 109.7 105.2 96.2 48.8 

65 85.4 110.6 72.1 47.0 

65  109.7  112.5 93.6 51.0 

 

 The results show that average tumbling distances were predicted to within 15 

percent of the actual value in the worst case (altitude 50 ft, velocity 50 knots), other cases 

being much better. We have also determined the value of the coefficient of restitution for 

this container and material, it is 32.0ne . The increase in the number of increments of 

the orientation angle from one per degree to ten per degree did not show a significant 
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change in the average tumbling distance, nor the standard deviations. This is an important 

result because the computational time required is also increased tenfold with the 

increased increment of the orientation angle, because for each increment the program 

calculates the position of the container during the entire event arriving at a value of the 

tumbling distance. This procedure was then repeated up to 1799 times, a calculation 

which took between 1.5 and 3.5 hours depending on the computational machine used. A 

good measure of the distribution of the data is the standard deviation. The standard 

deviation (STD) of both the experimental and computational data was calculated and is 

also presented in Table 5.1. We see that the STD of the computational results is quite 

larger than that of the experimental data. This discrepancy in the standard deviations can 

be explained by the container either having aerodynamically favorable orientations at 

impact or since the container is released from a helicopter in a similar manner every time, 

the range of possible values of the orientation angle at impact is diminished. Note that in 

some cases, there was a minor angular velocity at first impact due to the nature of the 

release, which was not accounted for in this simulation, because of the complexity of 

predicting its magnitude. 
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Figure 5.11: Flight and tumbling distances for the chevron cushion, 179 impacts. 
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Figure 5.12: Flight and tumbling distances for the chevron cushion, 1799 impacts. 

 The actual plots of the computational results for each of the four impact scenarios 

and for both increments of the orientation angle are shown in Fig. 5.11 and 5.12. As was 

discussed earlier, Fig. 5.11 and 5.12 show a lot of variation in the tumbling distance of 

the container for even a small range of values of the orientation angle. Despite this, we do 

observe an almost sinusoidal general behavior. The maximum tumbling distances occur 

at initial orientation angles of about 35 and 115 degrees. These values agree with Fig. 2.6 

through Fig. 2.9 developed in Chapter 2 which indicate that the smallest energy loss 

occurs at the appropriate values of the angle  , which is related to angle   as is shown 

in Fig. 5.1. What this suggests is that, since very little energy is absorbed for these 

orientations during the first impact, a large amount of kinetic energy is left over to propel 
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the container further along the impacting surface. Note the discontinuity in the tumbling 

distance at 90 degrees, this is due to the fact that the computational model discussed in 

this chapter requires that only one corner impacts the surface, therefore it cannot handle 

the calculation when the impact occurs on a side. Along with the tumbling distance, the 

horizontal distance that the container flies until the first impact is also plotted in each 

figure. This value depends on the drop height, initial velocity, and the mass of the 

container.  

 One of the things that come to mind when one sees data such as that presented in 

Fig. 5.11 and Fig. 5.12 is to use the Fourier transform in order to obtain the frequency 

spectrum of the seemingly erratic variation. The fast Fourier transform of the first plot in 

Fig. 5.12 is shown below. 
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Figure 5.13: Power spectrum (50ft, 50 knots, and 1799 impacts). 
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We see that there is no outstanding frequency that can be used to predict the behavior of 

the tumbling distances. This leads to the conclusion that, besides the general sinusoidal-

like behavior of the tumbling distances, there is no simple model that can be devised by 

observing the frequency spectrum.  

 The same subsequent impact procedure was conducted for the honeycomb 

cushion material. The following table compares the computational data to the recorded 

experimental data. 

Table 5.2: Tumbling distances for the honeycomb cushion container. 

Drop Altitude 

(ft) 

Horizontal 

Velocity (ft/s) 

Mass (lb) Tumbling 

Distance (ft) 

STD of 

Tumbling (ft) 

Experimental results 

50 85.4 78.9 63.7 23.0 

50 109.7 77.2 65.0 19.4 

65 85.4 92.3 43.6  15.2 

65  109.7  85.5 58.4 19.4 

Computational results: 15.0ne , 1799 impacts. 

50 85.4 78.9 45.0 27.8 

50 109.7 77.2 62.1 33.6 

65 85.4 92.3 46.8 30.8 

65  109.7  85.5 60.4 36.1 

 Computational results: 15.0ne , 179 impacts. 

50 85.4 78.9 45.5 28.6 

50 109.7 77.2 61.4 33.6 

65 85.4 92.3 46.6 30.7 

65  109.7  85.5 60.1 35.9 

 

In Table 5.2, we see that once again the tumbling distance is accurately predicted by the 

computational model except for the impact dropped from 50 feet with a velocity of 50 

knots, or sft /4.85 . This tells us the accurate value of the coefficient of restitution has 

been established and it is 15.0ne . It should be noted that this value is less than half of 

that for the chevron cushion. Once again we see that there is very little change between 
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the average tumbling distance obtained by calculating 179 impacts and those obtained by 

calculating 1799 impacts. Also, the standard deviations of the computational results are 

much higher than those of the experimental data.  

 The actual plots of the tumbling distances as functions of the orientation angle for 

all of the impact scenarios using the honeycomb cushioned container are given by Fig. 

5.14 and Fig. 5.15.  
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Figure 5.14: Flight and tumbling distances for the honeycomb cushion, 179 impacts. 
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Figure 5.15: Flight and tumbling distances for the honeycomb cushion, 1799 impacts. 

The above figures show that the tumbling distance exhibits the same behavior that was 

observed for the chevron cushioned container. Namely, we observe that once again the 

tumbling distance looks sinusoidal-like, with the maximum occurring at 40 and 115 

degrees. Besides this pattern, the local behavior is erratic and cannot produce an accurate 

model to be used in predicting the tumbling distance. This is the reason why the 

comparison presented in this chapter is based on statistical quantities such as the average 

and standard deviation of the tumbling distance.  

 In conclusion, we see that a number of interesting behaviors can be determined by 

analyzing subsequent impacts. If one has the ability to somehow control the orientation of 

the container at first impact, then they can somewhat control the tumbling distance or 
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“place” the container at a given position. The reason for saying somewhat in regards to 

the control is because of the unpredictable variation of the tumbling distance, even for a 

small range of values of the orientation angle. Initially, this might seem incorrect, but 

think about it this way, a small difference in the orientation angle for the first impact will 

have little effect on that impact, but the difference for the subsequent impacts will grow 

and change unpredictably thereby changing the total tumbling distance. From all the 

figures showing the computational results of the tumbling distance presented in this 

section, we see a region between 160 and 180 degrees of the orientation angle which is 

relatively smooth and can be predictable. This region also happens to be the place where 

the tumbling distance is at a minimum, a fact which is indeed advantageous if one desires 

that the container does not tumble far from the point of initial impact.  

 Many improvements can be made to this model. As we have stated earlier, we are 

considering the impact to be planar. This assumption can be removed by allowing the 

container to move in three dimensions. This would require a more complex algorithm to 

determine the position of the corner which impacts the ground. Another assumption made 

was that the initial orientation of the container was equal to zero. As far as the 

aerodynamic analysis is concerned, the assumption made was that the coefficient of drag 

and planform area remain constant. This is a valid assumption for a blunt body such as 

that presented here. An interesting addition that can be made to this model is making the 

impact surface non-flat and model the rotation of the container during flight. However, 

the non-flat surface can be too much for the rigid body model to handle because in real 

life the impact takes place on a non-flat surface and over a contact area as opposed to a 

contact point. Besides the numerous validated assumptions, we have shown that 
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modeling something as complex as subsequent impacts of objects can be done quite 

accurately using this methodology. 
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Chapter 6 

Conclusions and Future Work 

 

he main goal of this work was to be analyze the impact of a container with 

the ground. The complicated structure of the given container suggested that 

the rigid body impact model should be used, because it provides a better 

understanding of this type of impact than do other more complicated approximations. 

Nevertheless, we explored vibrational impact models as well. A substantial effort was 

also put into developing an accurate aerodynamic model, capable of describing the 

effects of the drag force during descent to impact. The aforementioned models were then 

combined to simulate the subsequent impacts of the actual container.  

 

6.1 Summary of Key Results 

We began this thesis by formulating the rigid body impact model and deriving the 

post-impact quantities for a planar oblique impact. These were then used to obtain the 

dimensionless kinetic energy loss expressions for both the sliding and no sliding impact 

regimes. By analyzing the behavior of the kinetic energy loss for axisymmetric as well as 

initially irrotational bodies, we obtained its dependence on the impact orientation and the 

initial angular velocity. This allowed us to specify the initial orientation and angular 

velocity which would yield the lowest energy loss. We then analyzed three dimensional 

rigid body impact by formulating the governing equations. The rigid body impact 

T 
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analysis was concluded with an example which validated the use of the two dimensional 

model for analyzing certain three dimensional impacts. 

Our discussion of the vibrational impact provided a transient description of the 

impact force, something that the rigid body impact model is not capable of. The linear 

two degree of freedom oscillator was used to model the interaction between the cushion 

and the cargo. This relationship allowed us to determine the stiffness ratio of the cushion 

and the cargo, which produced the best impact outcomes. We showed that a lower 

stiffness of the cargo causes it to oscillate faster than the cushion and to absorb more 

energy than the cushion. Therefore in order to have the best energy absorption, the 

stiffness of the cushion must be less than that of the cargo. This result was confirmed by 

experiment. We also investigated a nonlinear vibrational impact model which used the 

Hertzian contact stiffness. The model parameters were varied and the resulting behavior 

was analyzed. The energy lost during impact, which is the area enclosed by the hysteresis 

curve, behaved in a non-trivial fashion. However, this ease of manipulating the model 

proves its utility for fitting experimental data.  

We then turned our attention to the aerodynamics of free fall prior to impact. 

After formulating and solving the nonlinear governing equations we were able to 

ascertain the pre-impact quantities for an object which was released with an initial 

velocity from some height above the impact surface. Several analytical solutions were 

presented for the nonlinear equations, but the general solution was obtained by numerical 

methods. When analyzing the behavior of the resultant velocity of the object during free 

fall we discovered that this velocity has a favorable minimum. This minimum resultant 

velocity is in most cases much less than the terminal velocity and occurs shortly after 
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release. This is an important result for someone designing a powered drop since the 

object’s kinetic energy is also minimized at this time. An approximate solution to the 

aerodynamic equations was also presented and validated. The discussion of the 

aerodynamics was concluded with the three dimensional simulation of the object’s 

trajectory under the influence of wind. This analysis showed that the amount of sideways 

drift was relatively small as long as the velocity of the wind was small compared to the 

terminal velocity.  

The models developed were compiled in a simulation code capable of analyzing 

the subsequent impacts of the container which has been developed for the U.S. Army 

Logistics Innovation Agency for aerial resupply. We discussed and validated the 

subsequent impact model and the assumptions made during its formulation. This code 

was used to simulate the multiple collisions occurring after the object initially makes 

contact with the ground. The results showed that the tumbling distance, the total distance 

that the container traveled from the initial impact until its motion ceased, depends 

strongly on the orientation angle at the initial impact. Besides the small scale erratic 

behavior of the tumbling distance as a function of the initial orientation, the general shape 

of the function was almost sinusoidal. Using statistical methods to compare these 

simulations to actual drop test data, we were able to determine the coefficient of 

restitution for the given container. This value of the coefficient of restitution was then 

applied to different impact scenarios which accurately predicted the tumbling distances, 

thereby validating our analysis.  
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6.2 Future Work 

Despite the long history of the study of impact mechanics there are still many 

questions that need to be answered. There are no impact models which can accurately 

describe the impact process for complex objects such as the container discussed in this 

thesis. This field of impact mechanics needs an analytical model stemming from physical 

principles capable of describing the impact of a container with the ground. These 

principles should include elasto-dynamics, buckling of cushion layers, contact of the 

cushion with the ground, as well as the tribology of impact. Such a model would close the 

gap between the theoretical models and experimental evidence. It will allow us to design 

a container capable of maximizing its energy absorbing capabilities while at the same 

time decreasing the required amount of cushioning material, thereby reducing cost. 

Furthermore, a closer study of friction during impact would be an essential part of this 

model. Early experiments suggest that one type of frictional regime, sliding as opposed to 

not sliding at time of impact, is more advantageous than the other, resulting in less 

damage. Therefore, instigating the onset, of one regime during impact has the potential of 

reducing the impact damage. A complete analysis of the appropriate range of the stiffness 

ratio between the cargo and the cushioning material would be essential, because it has 

been observed that this ratio plays a crucial role in the cargo’s survivability. It would also 

be imperative to investigate the aerodynamics of free fall more rigorously. A closer look 

at the effect of the container’s size, shape, and orientation at release could allow us to 

control its pre-impact velocities and orientation. Even with small flight duration of this 

container, the rotational motion during flight needs to be modeled. Note that the 
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aerodynamics, during the 2-2.5 seconds of impact are transient, while we are using a 

steady state model.  

 A mathematically rigorous model which anyone can apply will be the main goal 

of future work. The model’s user-friendliness will speed up the progress in cushion 

design and further research in economic packaging. It will not only improve our 

understanding of impact mechanics, but also positively affect many aspects of the world 

around us. 
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Appendix A 

MATLAB Code, Simulation of the Subsequent Impacts 

 

 This appendix presents the MATLAB code used to simulate subsequent impacts 

of a container. Figure A.1 shows the diagram of the code and how the functions are 

interrelated. The six functions are shown below. 

 

Figure A.1: Schematic of the simulation code. 
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impact.m 

 

%%% function impact 

  
clear; 
runtime1 = cputime; 

  

  
%%% Number of impacts to be calculated  
N = 5; 
%%% Number of impact scenarios to be analyzed 
M = 1;  % 179 for one degree increments 

  

  
for ii = 1:M; 

  
    %%% Initial horizontal position 
    xi = 0; 
    %%% Initial vertical position 
    yi = 65;  
    %%% Initial horizontal velocity 
    Vxi = 84.39;    % 50 Knots=84.39 ft/s, 65 Knots=109.71ft/s 
    %%% Initial vertical velocity 
    Vyi = 0; 
    %%% Initial rotation 
    omi = 0; 
    %%% Initial rotation angle, evenly incremented 
    thetai = ((ii*10)/180)*pi; 
    %%% Time begins at ti seconds 
    ti = 0; 

  

  
    global R phi a Ki; 
    %%% Distance from the corner to the center of gravity 
    R = 20.3/12; 
    %%% Angle representative of the container's dimensions 
    phi = (38/180)*pi; 
    %%% Coefficient of the radius of gyration 
    a = 2/3; 
    %%% Initial Kinetic Energy 
    Ki = (Vxi.^2)+(Vyi.^2)+(a.*(R.^2).*(omi.^2)); 

  

  
    figure(1); 
    clf; 
    figure(2); 
    clf; 
    figure(3); 
    clf; 
    figure(4); 
    clf; 
    figure(5); 
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    clf; 
    figure(6); 
    clf; 
    figure(6); 
    clf; 

  
    %%% Specifying the initial pivoting decision variable 
    pivoting = 0; 

  

     
    %%% Analysis of the subsequent impacts 
    for k = 1:N 

         
        [xt, yt, x1t, y1t, x2t, y2t, x3t, y3t, x4t, y4t, Vxt, Vyt,... 
            thetat, tt, xf, yf, x1f, y1f, x2f, y2f, x3f, y3f, x4f, 

y4f,... 
            Vxf, Vyf, thetaf, omf, tf] = rungekutta(xi, yi, Vxi, Vyi,... 
            ti, omi, thetai); 

     
        [gam, gamdeg, p] = anglegamma(xf, yf, x1f, y1f, x2f, y2f, 

x3f,... 
            y3f, x4f, y4f); 

     
        [xi, yi, Vxi, Vyi, thetai, omi, ti, pivoting, ompivoti] =... 
            impactmechanics(xf, yf, Vxf, Vyf, thetaf, omf, tf, gam, k); 

     

         
        %%% Post impact position and velocity 
        pos(k) = xf; 
        VelocityX(k) = Vxf; 
        VelocityY(k) = Vyf; 
        VelocityR(k) = Vxf/Vyf; 

         

         
        %%% Pivoting 
        if pivoting == 1 
            break; 
        else 
            clear xf yf Vxf Vyf thetaf omf tf gam 
        end 
    end 

  

  
    %%% Number of pivots to be calculated  
    H = 1; 

  
    for q = 1:H 

     
        [xf, yf, x1f, y1f, x2f, y2f, x3f, y3f, x4f, y4f, gam, thetaf,... 
            tf, omf, Vxf, Vyf, p] = pivot(xf, yf, x1f, y1f, x2f, y2f,... 
            x3f, y3f, x4f, y4f, tf, gam, ompivoti, p); 

         
        pospiv(q) = xf; 
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    end 

  

  
    %%% Initial orientation angle for each impact scenario 
    THETA(ii) = (ii*10); 

     
    %%% Flight and tumbling distances for each impact scenario 
    Flight(ii) = pos(1); 
    Roll(ii) = pos(k) - pos(1); 
    Rollwpiv(ii) = pospiv(H) - pos(1); 

  
end 

  

  
%%% Plotting the tumbling distances 
if M>1 
    figure(6); 
    plot(THETA,Flight,'k'); 
    hold on 
    plot(THETA,Roll,'r'); 
    grid on 
    title('Flight and Tumbling Distances With a Drop Height of 65ft and 

Velocity of 50 Knots, en=0.32.') 
    xlabel('Initial Orientaion Angle \chi (deg)'); 
    ylabel('Distance Traveled (ft)'); 
    legend('Distance to First Impact', 'Tumbling After First Impact'); 

  

  
    %%% Power spectrum of the tumbling distance 
    Y = fft(Roll,1024); 
    Pyy = Y.* conj(Y) / 1024; 
    f = 1000*(0:512)/1024; 
    figure(7); 
    plot(f,Pyy(1:513)); 

  
else 
end 

  
runtime2 = cputime; 
runtime = runtime2 - runtime1 

     

 

 

rungekutta.m 

 

function [xt, yt, x1t, y1t, x2t, y2t, x3t, y3t, x4t, y4t, Vxt, Vyt,... 
    thetat, tt, xf, yf, x1f, y1f, x2f, y2f, x3f, y3f, x4f, y4f, Vxf,... 
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    Vyf, thetaf, omf, tf] = rungekutta(xi, yi, Vxi, Vyi, ti, omi, 

thetai); 

  

  
format long; 

  
%%% Initial Kinetic Energy and other parameters 
global R a Ki; 

  
%%% Density of air 
rho = 0.002362; 
%%% Object's mass 
m = 110.6/32.2; 
%%% Object's planform area 
A = 5.13; 
%%% Gravitational acceleration 
g = 32.2; 
%%% Coefficient of drag 
Cd = 1; 

  

  
C = (.5).*(1./m).*(rho).*Cd.*A; 
D = g; 

  
%%% Terminal velocity 
Vterm = ((m.*g)./(0.5.*rho.*Cd.*A)).^(1/2); 

  

  
%%% Time increment 
h = 0.001; 
%%% Maximum number of iterations 
N = (15)/h; 

  
%%% Initial Conditions 
x(1) = xi; 
y(1) = yi; 
VX(1) = Vxi; 
VY(1) = Vyi; 
t(1) = ti; 
theta(1) = thetai; 

  
%%% Determining the initial position of the container's corners 
[x1(1), y1(1), x2(1), y2(1), x3(1), y3(1), x4(1), y4(1)] =... 
    rotation(x(1), y(1), theta(1)); 

  

  
%%% The first loop will determine the general path of the object 
for i = 1:N; 

     
    %%% Runge-Kutta solution for a system of equations 
    k1(i) = h*(-C.*VX(i).*sqrt((VX(i).^2) + (VY(i).^2))); 
    l1(i) = h*(-D - C.*VY(i).*sqrt((VX(i).^2) + (VY(i).^2))); 

     
    k2(i) = h*(-C.*(VX(i)+(k1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) +... 
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        ((VY(i)+(l1(i)/2)).^2))); 
    l2(i) = h*(-D - C.*(VY(i)+(l1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) 

+... 
        ((VY(i)+(l1(i)/2)).^2))); 

     
    k3(i) = h*(-C.*(VX(i)+(k2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) +... 
        ((VY(i)+(l2(i)/2)).^2))); 
    l3(i) = h*(-D - C.*(VY(i)+(l2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) 

+... 
        ((VY(i)+(l2(i)/2)).^2))); 

     
    k4(i) = h*(-C.*(VX(i)+(k3(i))).*sqrt(((VX(i)+(k3(i))).^2) +... 
        ((VY(i)+(l3(i))).^2))); 
    l4(i) = h*(-D - C.*(VY(i)+(l3(i))).*sqrt(((VX(i)+(k3(i))).^2) +... 
        ((VY(i)+(l3(i))).^2))); 

     
    k(i) = (1/6)*(k1(i)+(2*k2(i))+(2*k3(i))+k4(i)); 
    l(i) = (1/6)*(l1(i)+(2*l2(i))+(2*l3(i))+l4(i)); 

     
    t(i+1) = t(i) + h; 
    VX(i+1) = VX(i) + k(i); 
    VY(i+1) = VY(i) + l(i); 

  
    m1(i) = h*(VX(i)); 
    n1(i) = h*(VY(i)); 

     
    m2(i) = h*(VX(i)+k2(i)); 
    n2(i) = h*(VY(i)+l2(i)); 

     
    m3(i) = h*(VX(i)+k3(i)); 
    n3(i) = h*(VY(i)+l3(i)); 

     
    m4(i) = h*(VX(i)+k4(i)); 
    n4(i) = h*(VY(i)+k4(i)); 

     
    m(i) = (1/6)*(m1(i)+(2*m2(i))+(2*m3(i))+m4(i)); 
    n(i) = (1/6)*(n1(i)+(2*n2(i))+(2*n3(i))+n4(i)); 

     
    x(i+1) = x(i) + m(i); 
    y(i+1) = y(i) + n(i); 

     
    theta(i+1) = theta(i) + (omi*h); 

     

     
    %%% Position of the corner's after a time increment h 
    [x1(i+1), y1(i+1), x2(i+1), y2(i+1), x3(i+1), y3(i+1), x4(i+1)... 
        , y4(i+1)] = rotation(x(i+1), y(i+1), theta(i+1)); 

  

     
    %%% The following statement will break the loop when 
    %%% one of the corners hits the impact surface 
    if (y1(i+1)<0 | y2(i+1)<0 | y3(i+1)<0 | y4(i+1)<0);      
        break; 
    else 
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    end 

    
end 

  

  

  

  
%%% The next loop will take the last term in the position arrays prior 

to 
%%% hitting the ground and continue to calculate more points using a 
%%% smaller time interval. 

  
j = i; 
h = h/1000; 

  
while (y1(j)>0 & y2(j)>0 & y3(j)>0 & y4(j)>0); 

     
    i = j; 

     
    %%% Runge-Kutta solution for a system of equations 
    k1(i) = h*(-C.*VX(i).*sqrt((VX(i).^2) + (VY(i).^2))); 
    l1(i) = h*(-D - C.*VY(i).*sqrt((VX(i).^2) + (VY(i).^2))); 

     
    k2(i) = h*(-C.*(VX(i)+(k1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) +... 
        ((VY(i)+(l1(i)/2)).^2))); 
    l2(i) = h*(-D - C.*(VY(i)+(l1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) 

+... 
        ((VY(i)+(l1(i)/2)).^2))); 

     
    k3(i) = h*(-C.*(VX(i)+(k2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) +... 
        ((VY(i)+(l2(i)/2)).^2))); 
    l3(i) = h*(-D - C.*(VY(i)+(l2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) 

+... 
        ((VY(i)+(l2(i)/2)).^2))); 

     
    k4(i) = h*(-C.*(VX(i)+(k3(i))).*sqrt(((VX(i)+(k3(i))).^2) + 

((VY(i)+... 
        (l3(i))).^2))); 
    l4(i) = h*(-D - C.*(VY(i)+(l3(i))).*sqrt(((VX(i)+(k3(i))).^2) +... 
        ((VY(i)+(l3(i))).^2))); 

     
    k(i) = (1/6)*(k1(i)+(2*k2(i))+(2*k3(i))+k4(i)); 
    l(i) = (1/6)*(l1(i)+(2*l2(i))+(2*l3(i))+l4(i)); 

     
    t(i+1) = t(i) + h; 
    VX(i+1) = VX(i) + k(i); 
    VY(i+1) = VY(i) + l(i); 

  
    m1(i) = h*(VX(i)); 
    n1(i) = h*(VY(i)); 

     
    m2(i) = h*(VX(i)+k2(i)); 
    n2(i) = h*(VY(i)+l2(i)); 
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    m3(i) = h*(VX(i)+k3(i)); 
    n3(i) = h*(VY(i)+l3(i)); 

     
    m4(i) = h*(VX(i)+k4(i)); 
    n4(i) = h*(VY(i)+k4(i)); 

     
    m(i) = (1/6)*(m1(i)+(2*m2(i))+(2*m3(i))+m4(i)); 
    n(i) = (1/6)*(n1(i)+(2*n2(i))+(2*n3(i))+n4(i)); 

     
    x(i+1) = x(i) + m(i); 
    y(i+1) = y(i) + n(i); 

     
    theta(i+1) = theta(i) + (omi*h); 

     

     
    [x1(i+1), y1(i+1), x2(i+1), y2(i+1), x3(i+1), y3(i+1), x4(i+1),... 
        y4(i+1)] = rotation(x(i+1), y(i+1), theta(i+1)); 

     

     
    j = i + 1; 
end 

  

  

  

  
%%% This following loop will take the last term prior to hitting the 

ground 
%%% in the position array of the previous loop and recalculate the  
%%% position with an EVEN SMALLER time interval. 

  
j = i; 
h = h/1000; 

  
while (y1(j)>0 & y2(j)>0 & y3(j)>0 & y4(j)>0); 

     
    i = j; 

     
    k1(i) = h*(-C.*VX(i).*sqrt((VX(i).^2) + (VY(i).^2))); 
    l1(i) = h*(-D - C.*VY(i).*sqrt((VX(i).^2) + (VY(i).^2))); 

     
    k2(i) = h*(-C.*(VX(i)+(k1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) +... 
        ((VY(i)+(l1(i)/2)).^2))); 
    l2(i) = h*(-D - C.*(VY(i)+(l1(i)/2)).*sqrt(((VX(i)+(k1(i)/2)).^2) 

+... 
        ((VY(i)+(l1(i)/2)).^2))); 

     
    k3(i) = h*(-C.*(VX(i)+(k2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) +... 
        ((VY(i)+(l2(i)/2)).^2))); 
    l3(i) = h*(-D - C.*(VY(i)+(l2(i)/2)).*sqrt(((VX(i)+(k2(i)/2)).^2) 

+... 
        ((VY(i)+(l2(i)/2)).^2))); 
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    k4(i) = h*(-C.*(VX(i)+(k3(i))).*sqrt(((VX(i)+(k3(i))).^2) +... 
        ((VY(i)+(l3(i))).^2))); 
    l4(i) = h*(-D - C.*(VY(i)+(l3(i))).*sqrt(((VX(i)+(k3(i))).^2) +... 
        ((VY(i)+(l3(i))).^2))); 

     
    k(i) = (1/6)*(k1(i)+(2*k2(i))+(2*k3(i))+k4(i)); 
    l(i) = (1/6)*(l1(i)+(2*l2(i))+(2*l3(i))+l4(i)); 

     
    t(i+1) = t(i) + h; 
    VX(i+1) = VX(i) + k(i); 
    VY(i+1) = VY(i) + l(i); 

  
    m1(i) = h*(VX(i)); 
    n1(i) = h*(VY(i)); 

     
    m2(i) = h*(VX(i)+k2(i)); 
    n2(i) = h*(VY(i)+l2(i)); 

     
    m3(i) = h*(VX(i)+k3(i)); 
    n3(i) = h*(VY(i)+l3(i)); 

     
    m4(i) = h*(VX(i)+k4(i)); 
    n4(i) = h*(VY(i)+k4(i)); 

     
    m(i) = (1/6)*(m1(i)+(2*m2(i))+(2*m3(i))+m4(i)); 
    n(i) = (1/6)*(n1(i)+(2*n2(i))+(2*n3(i))+n4(i)); 

     
    x(i+1) = x(i) + m(i); 
    y(i+1) = y(i) + n(i); 

     
    theta(i+1) = theta(i) + (omi*h); 

     

     
    %%% Position of the corner's after a time interval 
    [x1(i+1), y1(i+1), x2(i+1), y2(i+1), x3(i+1), y3(i+1), x4(i+1),... 
        y4(i+1)] = rotation(x(i+1), y(i+1), theta(i+1)); 

     

     
    j = i + 1; 
end 

  

  

  
%%% The following loop will remove the last term from all of the arrays, 
%%% because this y-position, of the lowest corner, is negative. 

  
rr = (length(x)-1); 

  
for jj = 1:rr 
    xt(jj) = x(jj); 
    yt(jj) = y(jj); 
    x1t(jj) = x1(jj); 
    y1t(jj) = y1(jj); 
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    x2t(jj) = x2(jj); 
    y2t(jj) = y2(jj); 
    x3t(jj) = x3(jj); 
    y3t(jj) = y3(jj); 
    x4t(jj) = x4(jj); 
    y4t(jj) = y4(jj); 

     
    Vxt(jj) = VX(jj); 
    Vyt(jj) = VY(jj); 

     
    thetat(jj) = theta(jj); 

     
    tt(jj) = t(jj); 
end 

     
xf = xt(rr); 
yf = yt(rr); 
x1f = x1t(rr); 
y1f = y1t(rr); 
x2f = x2t(rr); 
y2f = y2t(rr); 
x3f = x3t(rr); 
y3f = y3t(rr); 
x4f = x4t(rr); 
y4f = y4t(rr); 
Vxf = Vxt(rr); 
Vyf = Vyt(rr); 

  
tf = tt(rr); 

  
omf = omi; 

  
%%% KInetic energy during flight 
Kf = (Vxt.^2)+(Vyt.^2)+(a.*(R.^2).*(omf.^2)); 
KR = Kf./Ki; 

  
Kft = Kf(rr); 
KRt = Kft./Ki; 

  
thetaf = thetat(rr); 

  

     
%%% Transient velocity 
figure(1); 
hold on 
plot(tt,Vxt,'r'); 
hold on 
grid on 
plot(tt,Vyt,'b'); 
xlabel('Time (s)'); 
ylabel('Velocity (ft/s)'); 

  
%%% Transient resultant velocity 
VR = sqrt((Vxt.^2)+(Vyt.^2)); 
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plot(tt,VR,'k--'); 
legend('Horizontal Velocity', 'Vertical Velocity','Resultant Velocity') 

  
%%% Transient position of the center of gravity 
figure(2); 
hold on 
plot(tt,xt,'r'); 
hold on 
grid on 
plot(tt,yt,'b'); 
xlabel('Time (s)'); 
ylabel('Position (ft)'); 
legend('Horizontal Position','Vertical Position'); 

  
%%% Transient angular velocity 
figure(3); 
hold on 
plot(tt,omi,'k.'); 
xlabel('Time (s)'); 
ylabel('Angular Velocity (rad/s)'); 
grid on 

  

  
%%% Transient position of the container's corners 
figure(4); 
skip = 100; 
skipint = length(xt)/skip; 

  
for oo = 1:skipint; 

     
    o = skip*oo; 
    hold on 
    plot(xt(o),yt(o),'k.',[x1t(o) x2t(o)],[y1t(o) y2t(o)],'b',... 
        [x2t(o) x3t(o)],[y2t(o) y3t(o)],'b',[x3t(o) x4t(o)],... 
        [y3t(o) y4t(o)],'b',[x4t(o) x1t(o)],[y4t(o) y1t(o)],'cyan'); 

  
end 

  
xlabel('Horizontal Position (ft)'); 
ylabel('Vertical Position (ft)'); 
grid on 
axis equal 

  
%%% Transient kinetic energy plot 
figure(5); 
plot(tt,KR,'r','LineWidth',2); 
hold on 
grid on 
xlabel('Time (s)'); 
ylabel('Kinetic Energy Ratio');  

  

  
end 

anglegamma.m 
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function [gam, gamdeg, p] = anglegamma(xf, yf, x1f, y1f, x2f, y2f, 

x3f,... 
    y3f, x4f, y4f) 

  

  
%%% finla vertical position of the corners 
Ycorners = [y1f y2f y3f y4f]; 
%%% Determination of the lowest corner 
Ymin = min(Ycorners); 
p = find(Ycorners == Ymin); 

  

  
%%% Calculation of the orientation angle gamma 
if p == 1; 
    gam = atan((x1f - xf)/(yf - y1f)); 
    gamdeg = (gam*180)/pi; 
elseif p == 2; 
    gam = atan((x2f - xf)/(yf - y2f)); 
    gamdeg = (gam*180)/pi; 
elseif p == 3; 
    gam = atan((x3f - xf)/(yf - y3f)); 
    gamdeg = (gam*180)/pi; 
else 
    gam = atan((x4f - xf)/(yf - y4f)); 
    gamdeg = (gam*180)/pi; 
end 

  
end 

 

 

impactmechanics.m 

 

function [xi, yi, Vxi, Vyi, thetai, omi, ti, pivoting, ompivoti, Ki] 

=... 
    impactmechanics(xf, yf, Vxf, Vyf, thetaf, omf, tf, gam, k); 

  

  
global a en mu; 
%%% Coefficient of the radius of gyration 
a = 2/3; 
%%% Coefficient of restitution 
en = 0.32; 
%%% Coefficient of friction 
mu = 0.7; 
%%% Distance from corner to center of gravity 
global R; 
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%%% Angle representative of box dimensions 
global phi; 

  

  
%%% Definitions and abbreviations 
Vx = Vxf; 
Vy = Vyf; 
om = omf; 

  
rho = Vx/Vy; 
lam = (omf*R)/Vy; 

  
cg = cos(gam); 
sg = sin(gam); 
cg2 = cos(gam)^2; 
sg2 = sin(gam)^2; 

  

  
%%% Calculation of the force ratio 
ForceRatio = abs(((rho*(a+sg2))-((1+en)*cg*sg)+(lam*(a-(en*sg2))*cg))... 
    /((rho*cg*sg)-((1+en)*(a+cg2))-(lam*((a*(en+1))+(en*cg2))*sg))); 

  

  
if ForceRatio>mu 
    %%% Sliding occurs 
    fprintf('The object exibited SLIDING during impact number %2d 

!\n',k); 

     
    %%% Calculation of the final velocities and rotations 
    %%% Ls*Qs = Ms 
    Ls = [1 0 0 1 0; 0 1 0 0 -1 ; 0 0 a cg -sg ; 0 1 sg 0 0 ; 0 0 0 1 -

mu]; 
    Ms = [rho ; 1 ; a*lam ; -en*(1 + (lam*sg)) ; 0]; 
    Qs = (Ls^-1)*Ms; 
    Vxx2 = Qs(1); 
    Vyy2 = Qs(2); 
    omm2 = Qs(3); 

     

  

     
else 
    %%% No Sliding occurs 
    fprintf('The object exibited NO SLIDING during impact number %2d 

!\n',k); 

     
    %%% Calculation of the final velocities and rotations 
    %%% Lns*Qns = Mns   
    Lns = [1 0 0 1 0; 0 1 0 0 -1 ; 0 0 a cg -sg ; 0 1 sg 0 0 ; 1 0 cg 0 

0]; 
    Mns = [rho ; 1 ; a*lam ; -en*(1 + (lam*sg)) ; 0];  
    Qns = (Lns^-1)*Mns; 
    Vxx2 = Qns(1); 
    Vyy2 = Qns(2); 
    omm2 = Qns(3); 
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end 

  

  
%%% Final dimensional velocities and angular velocities 
Vxi = Vxx2*Vy; 
Vyi = Vyy2*Vy; 
omi = omm2*(Vy/R); 

  

  
%%% Check of the FINAL contact point velocities 
Vcx = Vxi + (omi*R*cos(gam)); 
Vcy = Vyi + (omi*R*sin(gam)); 

  
%%% Angular velocity for the first pivot 
ompivoti = omi; 

  

  
if Vcy<0.001;      %%% Minimum velocity, user specified 
    pivoting = 1; 
    fprintf('The object will now pivot !\n'); 
    beep; pause(0.35); beep; pause(0.35); beep; 
else 
    pivoting = 0; 
end 

  

  
%%% Post-impact position and orientation of the container 
xi = xf; 
yi = yf; 
thetai = thetaf; 
ti = tf; 

  

  
end 

 

 

 

 

 

 

rotation.m 

 

function [x1, y1, x2, y2, x3, y3, x4, y4] = rotation(x, y, theta);  

  
global R phi 

  
 %%% Position of the container's corners as it moves through the air 
for ii = 1:length(theta); 

     



171 

 

 

    x1pre(ii) = + (R*cos(phi)); 
    y1pre(ii) = + (R*sin(phi)); 

  
    x2pre(ii) = - (R*cos(phi)); 
    y2pre(ii) = + (R*sin(phi)); 

  
    x3pre(ii) = - (R*cos(phi)); 
    y3pre(ii) = - (R*sin(phi)); 

  
    x4pre(ii) = + (R*cos(phi)); 
    y4pre(ii) = - (R*sin(phi)); 

  

     
    x1(ii) = x(ii)+(x1pre(ii)*cos(theta(ii)))-

(y1pre(ii)*sin(theta(ii)));  
    y1(ii) = 

y(ii)+(x1pre(ii)*sin(theta(ii)))+(y1pre(ii)*cos(theta(ii))); 

  
    x2(ii) = x(ii)+(x2pre(ii)*cos(theta(ii)))-

(y2pre(ii)*sin(theta(ii))); 
    y2(ii) = 

y(ii)+(x2pre(ii)*sin(theta(ii)))+(y2pre(ii)*cos(theta(ii))); 

  
    x3(ii) = x(ii)+(x3pre(ii)*cos(theta(ii)))-

(y3pre(ii)*sin(theta(ii))); 
    y3(ii) = 

y(ii)+(x3pre(ii)*sin(theta(ii)))+(y3pre(ii)*cos(theta(ii))); 

  
    x4(ii) = x(ii)+(x4pre(ii)*cos(theta(ii)))-

(y4pre(ii)*sin(theta(ii))); 
    y4(ii) = 

y(ii)+(x4pre(ii)*sin(theta(ii)))+(y4pre(ii)*cos(theta(ii))); 

  
end 

  
end 

 

 

pivot.m 

 

function [xf, yf, x1f, y1f, x2f, y2f, x3f, y3f, x4f, y4f, gam, 

thetaf,... 
    tf, omf, Vxf, Vyf, p] = pivot(xf, yf, x1f, y1f, x2f, y2f, x3f, 

y3f,... 
    x4f, y4f, tf, gam, ompivoti, p); 
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clear  x y x1 y1 x2 y2 x3 y3 xy y4 tt o; 

  

  
global R a phi Ki; 
g = 32.2; 

  
%%% The container's position during pivot will be calculated this many 

times 
parts = 200; 
%%% The corresponding angular increment 
delt = (pi/abs(ompivoti))/(parts); 
%%% Angle range for the calculation 
N = 1e4; 
t = [0:delt:N*delt]; 

  

  
%%% Pre-pivot orientation and angular velocity 
gampivot(1) = gam; 
ompivot(1) = ompivoti; 

  
for pp = 2:N 

     
    gampivot(pp) = gampivot(pp-1) + (ompivot(pp-1).*delt); 
    ompivot(pp) = ompivot(pp-1) + ((g.*sin(gampivot(pp-

1)).*delt)./(a*R)); 

    
end 

         

  

  
%%% Pivot calculation if impact occurs at CORNER 1 
if p == 1 
    for qq = 2:N; 

         
        x(qq) = x1f - (R*sin(gampivot(qq))); 
        y(qq) = y1f + (R*cos(gampivot(qq))); 

     
        x2(qq) = x1f + (2*R*cos(phi)*sin(phi - gampivot(qq))); 
        y2(qq) = y1f + (2*R*cos(phi)*cos(phi - gampivot(qq))); 

  
        x3(qq) = x1f - (2*R*sin(gampivot(qq))); 
        y3(qq) = y1f + (2*R*cos(gampivot(qq))); 

         
        x4(qq) = x1f - (2*R*sin(phi)*cos(phi - gampivot(qq))); 
        y4(qq) = y1f + (2*R*sin(phi)*sin(phi - gampivot(qq))); 

     

     
        if (y2(qq)<0 | y3(qq)<0 | y4(qq)<0);    
            break; 
        else 
        end 
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        figure(4); 
        hold on 
        plot(x(qq),y(qq),'cyan.',[x1f x2(qq)],[y1f y2(qq)],'r',... 
            [x2(qq) x3(qq)],[y2(qq) y3(qq)],'g',[x3(qq) x4(qq)],... 
            [y3(qq) y4(qq)],'b',[x4(qq) x1f],[y4(qq) y1f],'yellow'); 

     
    end 

     
tt = (length(x)-1); 

     
for ww = 1:tt; 

     
    xpiv(ww) = x(ww); 
    ypiv(ww) = y(ww); 
    x1piv(ww) = x1f; 
    y1piv(ww) = y1f; 
    x2piv(ww) = x2(ww); 
    y2piv(ww) = y2(ww); 
    x3piv(ww) = x3(ww); 
    y3piv(ww) = y3(ww); 
    x4piv(ww) = x4(ww); 
    y4piv(ww) = y4(ww); 
    tpiv(ww) = tf + t(ww); 
    ompiv(ww) = ompivot(ww);  
    Kf(ww) = (a.*(R.^2).*(ompiv(ww).^2)); 

  
end 
xf = xpiv(tt); 
yf = ypiv(tt); 
x1f = x1piv(tt); 
y1f = y1piv(tt); 
x2f = x2piv(tt); 
y2f = y2piv(tt); 
x3f = x3piv(tt); 
y3f = y3piv(tt); 
x4f = x4piv(tt); 
y4f = y4piv(tt); 
tf = tpiv(tt); 

  
Gampivot = gampivot(tt); 

  
thetaf = 0; 

  
omf = ompiv(tt); 

  
Vxf = omf*R*cos(phi); 
Vyf = -omf*R*sin(phi); 

  
%%% Next corner to pivot about 
if (x2f - x1f) > (x1f - x4f) 
    p = 2; 
    gam = (pi/2) - phi; 
else 
    p = 4; 
    gam = -phi; 
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end 

  

  

     

        
%%% Pivot calculation if impact occurs at CORNER 2 
elseif p == 2 
    for qq=1:N; 

  
        x(qq) = x2f - (R*sin(gampivot(qq))); 
        y(qq) = y2f + (R*cos(gampivot(qq))); 

     
        x1(qq) = x2f - (2*R*cos(phi)*sin(phi + gampivot(qq))); 
        y1(qq) = y2f + (2*R*cos(phi)*cos(phi + gampivot(qq))); 

     
        x3(qq) = x2f + (2*R*sin(phi)*cos(phi + gampivot(qq))); 
        y3(qq) = y2f + (2*R*sin(phi)*sin(phi + gampivot(qq))); 

     
        x4(qq) = x2f - (2*R*sin(gampivot(qq))); 
        y4(qq) = y2f + (2*R*cos(gampivot(qq))); 

     

     
        if (y1(qq)<0 | y3(qq)<0 | y4(qq)<0);    
            break; 
        else 
        end 

     
        figure(4); 
        hold on 
        plot(x(qq),y(qq),'cyan.',[x1(qq) x2f],[y1(qq) y2f],'r',... 
            [x2f x3(qq)],[y2f y3(qq)],'g',[x3(qq) x4(qq)],... 
            [y3(qq) y4(qq)],'b',[x4(qq) x1(qq)],[y4(qq) 

y1(qq)],'yellow'); 

     
    end 

  

     
tt = (length(x)-1); 

     
for ww = 1:tt; 

     
    xpiv(ww) = x(ww); 
    ypiv(ww) = y(ww); 
    x1piv(ww) = x1(ww); 
    y1piv(ww) = y1(ww); 
    x2piv(ww) = x2f; 
    y2piv(ww) = y2f; 
    x3piv(ww) = x3(ww); 
    y3piv(ww) = y3(ww); 
    x4piv(ww) = x4(ww); 
    y4piv(ww) = y4(ww); 
    tpiv(ww) = tf + t(ww); 
    ompiv(ww) = ompivot(ww);  
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    Kf(ww) = (a.*(R.^2).*(ompiv(ww).^2)); 

  
end 
xf = xpiv(tt); 
yf = ypiv(tt); 
x1f = x1piv(tt); 
y1f = y1piv(tt); 
x2f = x2piv(tt); 
y2f = y2piv(tt); 
x3f = x3piv(tt); 
y3f = y3piv(tt); 
x4f = x4piv(tt); 
y4f = y4piv(tt); 
tf = tpiv(tt); 

  
Gampivot = gampivot(tt); 

  
thetaf = 0; 

  
omf = ompiv(tt); 

  
Vxf = omf*R*cos(phi); 
Vyf = -omf*R*sin(phi); 

  

  
%%% Next corner to pivot about 
if (x2f - x1f) > (x3f - x2f) 
    p = 1; 
    gam = -((pi/2) - phi); 
else 
    p = 3; 
    gam = phi; 
end 

  

  

  

  
%%% Pivot calculation if impact occurs at CORNER 3 
elseif p == 3 
    for qq = 1:N; 

  
        x(qq) = x3f - (R*sin(gampivot(qq))); 
        y(qq) = y3f + (R*cos(gampivot(qq))); 

         
        x1(qq) = x3f - (2*R*sin(gampivot(qq))); 
        y1(qq) = y3f + (2*R*cos(gampivot(qq))); 

         
        x2(qq) = x3f - (2*R*sin(phi)*cos(phi - gampivot(qq))); 
        y2(qq) = y3f + (2*R*sin(phi)*sin(phi - gampivot(qq))); 

         
        x4(qq) = x3f + (2*R*cos(phi)*sin(phi - gampivot(qq))); 
        y4(qq) = y3f + (2*R*cos(phi)*cos(phi - gampivot(qq))); 
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        if (y1(qq)<0 | y2(qq)<0 | y4(qq)<0);    
            break; 
        else 
        end 

     
        figure(4); 
        hold on 
        plot(x(qq),y(qq),'cyan.',[x1(qq) x2(qq)],[y1(qq) y2(qq)],'r',... 
            [x2(qq) x3f],[y2(qq) y3f],'g',[x3f x4(qq)],[y3f 

y4(qq)],'b',... 
            [x4(qq) x1(qq)],[y4(qq) y1(qq)],'yellow'); 

  
    end 

     
tt = (length(x)-1); 

     
for ww = 1:tt; 

     
    xpiv(ww) = x(ww); 
    ypiv(ww) = y(ww); 
    x1piv(ww) = x1(ww); 
    y1piv(ww) = y1(ww); 
    x2piv(ww) = x2(ww); 
    y2piv(ww) = y2(ww); 
    x3piv(ww) = x3f; 
    y3piv(ww) = y3f; 
    x4piv(ww) = x4(ww); 
    y4piv(ww) = y4(ww); 
    tpiv(ww) = tf + t(ww); 
    ompiv(ww) = ompivot(ww);  
    Kf(ww) = (a.*(R.^2).*(ompiv(ww).^2)); 

  
end 
xf = xpiv(tt); 
yf = ypiv(tt); 
x1f = x1piv(tt); 
y1f = y1piv(tt); 
x2f = x2piv(tt); 
y2f = y2piv(tt); 
x3f = x3piv(tt); 
y3f = y3piv(tt); 
x4f = x4piv(tt); 
y4f = y4piv(tt); 
tf = tpiv(tt); 

  
Gampivot = gampivot(tt); 

  
thetaf = 0; 

  
omf = ompiv(tt); 

  
Vxf = omf*R*cos(phi); 
Vyf = -omf*R*sin(phi); 
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%%% Next corner to pivot about 
if (x4f - x3f) > (x3f - x2f) 
    p = 4; 
    gam = (pi/2) - phi; 
else 
    p = 2; 
    gam = -phi; 
end 

  

     

  

     
%%% Pivot calculation if impact occurs at CORNER 4     
else 
    for qq = 1:N; 

  
        x(qq) = x4f - (R*sin(gampivot(qq))); 
        y(qq) = y4f + (R*cos(gampivot(qq))); 

         
        x1(qq) = x4f + (2*R*sin(phi)*cos(phi + gampivot(qq))); 
        y1(qq) = y4f + (2*R*sin(phi)*sin(phi + gampivot(qq))); 

         
        x2(qq) = x4f - (2*R*sin(gampivot(qq))); 
        y2(qq) = y4f + (2*R*cos(gampivot(qq))); 

         
        x3(qq) = x4f - (2*R*cos(phi)*sin(phi + gampivot(qq))); 
        y3(qq) = y4f + (2*R*cos(phi)*cos(phi + gampivot(qq))); 

         

     
        if (y1(qq)<0 | y2(qq)<0 | y3(qq)<0);    
            break; 
        else 
        end 

         
        figure(4); 
        hold on 
        plot(x(qq),y(qq),'cyan.',[x1(qq) x2(qq)],[y1(qq) y2(qq)],'r' 

,... 
            [x2(qq) x3(qq)],[y2(qq) y3(qq)],'g',[x3(qq) x4f],... 
            [y3(qq) y4f],'b',[x4f x1(qq)],[y4f y1(qq)],'yellow'); 

     
    end 

     
tt = (length(x)-1); 

     
for ww = 1:tt; 

     
    xpiv(ww) = x(ww); 
    ypiv(ww) = y(ww); 
    x1piv(ww) = x1(ww); 
    y1piv(ww) = y1(ww); 
    x2piv(ww) = x2(ww); 
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    y2piv(ww) = y2(ww); 
    x3piv(ww) = x3(ww); 
    y3piv(ww) = y3(ww); 
    x4piv(ww) = x4f; 
    y4piv(ww) = y4f; 
    tpiv(ww) = tf + t(ww); 
    ompiv(ww) = ompivot(ww);  
    Kf(ww) = (a.*(R.^2).*(ompiv(ww).^2)); 

  
end 
xf = xpiv(tt); 
yf = ypiv(tt); 
x1f = x1piv(tt); 
y1f = y1piv(tt); 
x2f = x2piv(tt); 
y2f = y2piv(tt); 
x3f = x3piv(tt); 
y3f = y3piv(tt); 
x4f = x4piv(tt); 
y4f = y4piv(tt); 
tf = tpiv(tt); 

  
Gampivot = gampivot(tt); 

  
thetaf = 0; 

  
omf = ompiv(tt); 

  
Vxf = omf*R*cos(phi); 
Vyf = -omf*R*sin(phi); 

  
%%% Next corner to pivot about 
if (x4f - x3f) > (x1f - x4f) 
    p = 3; 
    gam = -((pi/2) - phi); 
else 
    p = 1; 
    gam = phi; 
end 

  
end 
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Appendix B 

Experimental Data of the Tumbling Distances 

 

The data below presents the tumbling (roll) distances from drop tests conducted at 

various drop heights and release velocities. The weight of each container is also shown. 

Table B.1: Raw tumbling distances for the chevron cushion container. 

CHEVRON CUSHION 

EVENT 
ALTITUDE (FT. 

AGL) 
AIRSPEED 

(KIAS) 
WEIGHT 

(LBS) 
ROLL 

(METERS) 

11 50 50 87.6 32 

9 50 50 78.0 15 

9 50 50 78.0 9 

10 50 50 82.8 17 

10 50 50 81.5 19 

9 50 50 95.3 25 

10 50 50 93.4 13 

10 50 50 93.3 15 

9 50 50 98.3 31 

9 50 50 110.0 31 

9 50 50 105.0 10 

9 50 50 122.9 35 

9 50 50 127.7 33 

10 50 50 130.7 17 

10 50 50 124.5 40 

10 50 50 130.4 29 

10 50 50 125.3 31 

11 50 65 87.8 19 

11 50 65 85.1 23 

11 50 65 92.4 21 

11 50 65 89.2 23 

11 50 65 93.4 27 

11 50 65 85.3 17 

11 50 65 86.3 12 

11 50 65 118.2 37 
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11 50 65 116.4 33 

11 50 65 124.1 20 

9 50 65 79.0 31 

10 50 65 82.0 27 

10 50 65 82.8 41 

10 50 65 81.3 48 

9 50 65 95.4 25 

9 50 65 86.0 38 

10 50 65 95.1 16 

10 50 65 95.2 19 

10 50 65 94.0 19 

10 50 65 95.4 34 

9 50 65 98.8 28 

9 50 65 110.6 31 

10 50 65 108.1 37 

10 50 65 109.2 29 

10 50 65 111.7 24 

9 50 65 122.7 36 

9 50 65 127.9 34 

9 50 65 124.0 41 

10 50 65 129.8 29 

10 50 65 123.4 33 

10 50 65 129.5 33 

10 50 65 130.9 38 

10 50 65 125.9 40 

10 50 65 125.5 37 

9 65 50 92.0 19 

9 65 50 91.0 20 

10 65 50 96.0 28 

9 65 50 98.2 15 

9 65 50 110.1 23 

9 65 50 105.0 15 

10 65 50 101.8 19 

10 65 50 109.1 16 

9 65 50 122.1 22 

10 65 50 130.0 16 

10 65 50 124.4 19 

10 65 50 129.7 29 

10 65 50 124.3 33 

10 65 50 115.0 19 

11 65 65 97.3 16 



181 

 

 

11 65 65 114.1 21 

11 65 65 115.8 18 

11 65 65 116.7 12 

11 65 65 128.2 32 

9 65 65 93.8 27 

9 65 65 91.0 18 

9 65 65 91.0 27 

10 65 65 94.6 20 

9 65 65 99.4 37 

9 65 65 110.5 33 

9 65 65 106.0 26 

10 65 65 109.3 31 

10 65 65 108.8 26 

9 65 65 122.6 45 

9 65 65 127.3 35 

10 65 65 131.1 42 

10 65 65 123.9 22 

10 65 65 129.8 32 

10 65 65 125.4 38 

10 65 65 125.2 41 

 

 

Table B.2: Raw tumbling distances for the honeycomb cushion container. 

HONEYCOMB CUSHION 

EVENT 
ALTITUDE (FT. 

AGL) 
AIRSPEED 

(KIAS) 
WEIGHT 

(LBS) 
ROLL 

(METERS) 

11 50 50 58.5 10 

11 50 50 68.4 22 

11 50 50 61.3 18 

11 50 50 58.8 14 

11 50 50 100.4 18 

11 50 50 104.4 32 

11 50 50 100.3 22 

11 50 65 68.6 18 

11 50 65 69.5 27 

11 50 65 57.8 22 

11 50 65 65.2 17 

11 50 65 58.9 17 
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11 50 65 65.3 17 

11 50 65 68.3 18 

11 50 65 62.3 15 

11 50 65 70.3 18 

11 50 65 67.7 16 

11 50 65 64.8 23 

11 50 65 69.2 15 

11 50 65 57.2 3 

11 50 65 83.9 13 

11 50 65 58.4 18 

11 50 65 68.0 18 

11 50 65 58.3 16 

11 50 65 84.9 32 

11 50 65 89.2 21 

11 50 65 90.7 31 

11 50 65 86.5 16 

11 50 65 104.6 18 

11 50 65 103.7 26 

11 50 65 105.9 22 

11 50 65 104.4 23 

11 50 65 99.9 27 

11 50 65 99.7 19 

11 65 50 75.6 8 

11 65 50 84.9 7 

11 65 50 87.6 18 

11 65 50 104.3 15 

11 65 50 100.4 16 

11 65 50 100.8 16 

11 65 65 73.5 11 

11 65 65 68.6 13 

11 65 65 69.6 18 

11 65 65 70.3 17 

11 65 65 85.4 18 

11 65 65 89.1 13 

11 65 65 90.5 14 

11 65 65 85.2 17 

11 65 65 104.5 26 

11 65 65 99.6 18 

11 65 65 103.8 31 
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