

A HIERARCHICAL TASK ANALYSIS SOFTWARE TOOL BASED ON

THE MODEL-VIEW-CONTROLLER ARCHITECTURE PATTERN

By Ateet Vora

A Thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Ivan Marsic

and approved by

New Brunswick, New Jersey

January, 2011

ii

ABSTRACT OF THE THESIS

A Hierarchical Task Analysis Software Tool Based on the Model-View-Controller

Architecture Pattern

By ATEET VORA

Thesis Director:

Prof. Ivan Marsic

Hierarchical Task Analysis is a systematic method of describing how work is organized

in order to meet the overall objective of the job. It involves identifying, in a top-down

approach, the overall goal of the task, then the various sub-tasks and then the conditions

under which they should be carried out to achieve the goal.

 In this thesis, we set out to design and develop a simple, robust and flexible

hierarchical task analysis software tool. We provide an intuitive user interface to create

hierarchical tasks, additionally we provide features which are not available in existing

tools like - the ability to reuse the task analysis data as templates, import or export Xml,

store task and sub-tasks for reusability. These new features serve to improve time

efficiency, compatibility with applications developed using other platforms and the ease

with which the tool can be extended by adding new features.

We use the Model-View-Controller (MVC) software architecture pattern since it

is suitable for applications with a user-interface and at the same time aids in developing

highly scalable and extensible applications.

 We produce simulation results to project the functionalities of our tool and also

discuss some non-functional requirements, such as usability, scalability and extensibility.

iii

Acknowledgement

First of all, I would sincerely like to thank my advisor Prof. Ivan Marsic for his constant

guidance and support throughout the duration of my thesis work. He has provided me a

wonderful opportunity to work in the field of my interest, and at the same time, helped

me make the correct decisions and generate results.

 I would also like to thank all my friends at Rutgers University from the past three

years who have helped me become a better researcher. I would like to thank my family

for providing me with the strength and support to remain dedicated to my research work.

Last but not the least, I would like to thank the love of my life, Surbhi, for the

constant motivation and help in shaping my master’s thesis work. She has been my

strength and my guide; I would like to dedicate my work to her.

iv

Table of Contents

ABSTRACT OF THE THESIS ... ii

Acknowledgement .. iii

1. Introduction .. 1

2. Related Work ... 6

2.1 Hierarchical Task Analysis Tools .. 6

2.1.1 The HTA Tool .. 6

2.1.2 VIP Task Manager ... 7

2.1.3 TaskAnyone ... 8

2.1.4 TaskArchitect ... 8

2.2 Software Patterns ... 11

2.2.1 Properties ... 11

2.2.2 Categories of Patterns .. 13

2.2.3 Architectural Patterns ... 14

2.2.4 Model-View-Controller Architecture... 15

3 Technical Approach ... 20

3.1 Variations of the MVC Pattern .. 22

3.1.1 The Passive MVC Model ... 23

3.1.2 The Active MVC Model .. 24

3.1.3 The Observer Model .. 24

4 Implementation .. 29

4.1 Objective .. 30

4.2 Requirement Analysis .. 31

4.3 Architectural Design .. 32

4.4 Coding .. 47

v

4.5 Testing ... 48

4.6 Release ... 49

5 Results .. 51

5.1 Functional Requirements ... 51

5.2 Non-Functional Requirements ... 52

5.2.1 Usability ... 53

5.2.2 Open Source ... 54

5.2.3 Scalability .. 54

5.2.4 Extensibility ... 56

6. Conclusion ... 60

7. Future Work ... 62

Requirement Analysis Document .. 63

Wireframes: ... 66

Appendix B .. 76

Appendix C .. 78

Tree Architect Application Screenshots .. 78

Process Maps ... 91

References .. 100

vi

Table of Figures

Figure 1: Model View Controller .. 16

Figure 2: Passive MVC Model [12] ... 23

Figure 3: Active MVC Model [13] .. 24

Figure 4: The Observer Model [14] ... 25

Figure 5: Technical Architecture ... 37

Figure 6: Tree Architect Class Diagram .. 45

Figure 7: Basic Tree Control (Currently used in the system) .. 58

Figure 8: New View ... 59

Figure 9: VIBlend tree view .. 59

vii

List of Tables

Table 1: View Classes ... 34

Table 2: Controller Classes ... 38

Table 3: Model Classes - Data Access Layer ... 42

Table 4: Model Classes - Business Layer ... 43

Table 5: Functional Requirements .. 63

1

1. Introduction

Task Analysis (TA) analyses what a user is required to do in terms of actions and/or

cognitive processes to achieve a task. A detailed TA can be conducted to understand the

current system and the information that flows within it. These information flows are

important for the maintenance of the existing system and must be incorporated or

substituted in any new system.

 Nearly all TA techniques provide as a minimum, a description of the observable

aspects of operator behavior at various levels of detail, together with some indications of

the structure of the task. These will be referred to as Action Oriented Approaches (AOA).

Other techniques focuses on the mental processes which underlie observable behavior

e.g. decision making and problem solving. These will be referred to as Cognitive

Approaches.

 TA tools can be used to eliminate the preconditions that give rise to errors before

they occur. They can be used as an aid in the design stage of a new system, or in the

modification of an existing system. We shall keep focus on Hierarchical Task Analysis

(HTA) which belongs to the category of Action Oriented Approach and is the type of task

analysis our tool performs.

HTA is a systematic method of describing how work is organized in order to meet

the overall objective of the job. It involves identifying, in a top-down approach, the

overall goal of the task, then the various sub-tasks and then the conditions under which

they should be carried out to achieve the goal. In this way, complex planning tasks can be

2

represented as a hierarchy of operations – different things which people must do within a

system, and plans – the conditions which are necessary to undertake these operations.

HTA commences by stating the overall objective that the person has to achieve.

This is then re-described into a set of sub-operations and the plan specifying when these

operations are carried out. The plan is an essential component of HTA since it describes

the information sources that the worker must attend to, in order to signal the need for

various activities. Each sub operation can be re-described further, if the analyst requires,

again in terms of other operations and plans.

 The question whether it is necessary to break down a particular operation to a

finer level depends on whether the analyst believes a significant error mode is likely to be

revealed by a more fine grained analysis.

 Our efforts in trying to provide a tool which can perform hierarchical task

analysis are based on the advantages which can be offered to the analyst such as:

1. HTA is an economical method of gathering and organizing information since the

hierarchical description needs only to be developed up to the point where it is

needed for the purpose of analysis.

2. When used as an input to design, HTA allows functional objectives to be

specified at the higher levels of analysis prior to final decisions being made about

the hardware. This is important when allocating functions between personnel who

are responsible for the effective operation of the system.

3. HTA is best developed as collaboration between the task analyst and people

involved in operations. Thus, the analyst develops the description of the task in

3

accordance with the perceptions of line personnel who are responsible for

effective operation of the system.

4. HTA can be used as a starting point for various error analysis methods to examine

the error potential in the performance of the required operations.

Our aim in this thesis is to incorporate most of the qualities of hierarchical task

analysis mentioned above in our task analysis tool which allows analysts to freely apply

their creativity to the project at hand. There are a number of task analysis tools available

in the market which supports hierarchical task analysis, but we have planned to build a

tool which not only supports hierarchical task analysis, but can be used to perform

additional operations within the scope of task analysis.

Some of the additional features which we would like our tool to support are:

1. Provide a number of reusable templates to create task analysis flow diagrams,

including the provision to add more templates.

2. Ability to store newly added tasks, sub-tasks or state variables. This saves

tremendous amount of development time for the task analyst, since these can be

used as components to build a new hierarchical task.

3. Ability to import and export XML documents, which is a W3C Standard. It is

widely regarded as the future of the internet, since it is a standard which can

seamlessly integrate with any system.

4. Ability to connect our system with a data store like the Microsoft SQL Server

which would boast the storage capabilities of the tool and can be used to

integrate with other systems in a professional development environment.

4

5. Develop a standard XML Document Type Definition (DTD), since we will be

using an XML data source. This definition will help other applications to

understand and efficiently integrate with our HTA tool.

On successful implementation of these exciting new features we will increase the

capabilities and power of a hierarchical task analysis tool. This tool though simple, will

be packed with many more features than any other HTA tool freely available in the

market.

 We would be facing challenges while designing and developing this application

because of a number of reasons, which being the inclusion of the set of new features

mentioned above. The design would also require our application to be lightweight,

extremely scalable, and able to integrate with other systems.

Because of the set of preferences like writing optimal code and developing reusable

programming components, we will be forced to consider the various design patterns

before developing the tool. Software design patterns are solution to a recurring software

problem. If this approach is followed we could be successful in developing the HTA tool

with the qualities discussed above.

The rest of the thesis is organized as described below. Chapter 2 discusses the prior

works in terms of architectures and design patterns developed, and various kinds of HTA

tools available in the open market. In Chapter 3, we provide a brief overview of the tools

and design pattern we will use to develop our tool. In Chapter 4, we shall describe how

exactly we implemented the software system based on our selection of the software

development process and methodology. In Chapter 5, we provide the results we have

5

achieved on successful completion of the thesis work. In the last chapter, we conclude by

summarizing the salient features of our work, and enumerate a few implementation

options as a part of future work for other researchers to improve the hierarchical task

analysis software tool.

6

2. Related Work

In this chapter, we shall have a look at the previous work accomplished in the two most

important categories related to our thesis work. Firstly, we will look at some of the TA

tools available in the market as of today and the various features they have to offer.

Next, we will also look into the various architecture design patterns available to

develop our software system. We will closely look into the Model View Controller

architecture pattern since it suits a software system which involves human computer

interface. We will also describe the variants of the MVC pattern and conclude with the

valid reasons on why we chose the MVC architecture pattern and also why a particular

variant of the pattern!

2.1 Hierarchical Task Analysis Tools

In this section we discuss the various task analysis software tools that have been

developed for both commercial and non-commercial purposes. In our discussion, we will

mention some of the salient features of these software tools and will end the discussion

with some of the shortcomings which we have addressed in our task analysis tool.

2.1.1 The HTA Tool

The HTA tool [1] was developed by The Human Factors Integration (HFI) Defense

Technology Center (DTC), which is an initiative by the UK Ministry of Defense. The

HTA tool was developed for non-commercial purposes. Traditionally, task analysis was

carried out with the erroneous use of pencil and paper. The HTA tool represents a start

7

towards the development of a computer based toolset, encompassing task analysis

methods currently in existence and eventually including methods to assist in the analysis

of both observable and cognitive tasks. Cognitive task analysis will consider not only the

nature of time critical task performance, but also the influences on work emanating from

society, culture and organizations [2]. Cognitive task analysis is the extension of

traditional task analysis techniques to yield information about the knowledge, thought

process and goal structures that underline observable task performance. Some of the

features of the HTA Tool are listed below:

1) The tool allows the development of a sub-goal hierarchy in different formats like

the list, diagrams and tables

2) It allows automatic renumbering of the tasks and plan updates

3) The tool provides an option to provide color code to different sections of the

analysis to distinguish important branches from the others.

4) It supports multiple printing formats like XML, CSV or Excel.

5) The tool provides an analysis wizard which helps novices through the creation

process of complex hierarchical tasks.

6) The tool includes the functionality of allowing the definition of new task

properties and the creation of new extension templates that may be shared with

colleagues.

2.1.2 VIP Task Manager

VIP Task Manager is developed by VIP Quality Software, which is based out of Odessa,

Ukraine. The Task Manager is based on a client-server technology which allows the users

8

to create a centralized database and keep all the information for hierarchical task analysis

available to all the users logged in to a single Local Area Network (LAN) [3]. The

various features of the tool are listed below:

1) It is a client-server type of software tool with a centralized database to store our

task analysis data.

2) The tool provides us with only two separate types of views to create our

hierarchical tasks, namely tree view and a panel view.

3) It allows us to set priority and order to the sub-tasks, and also allows the user to

update the task with progress reports.

4) It allows us to set task permissions and user roles.

2.1.3 TaskAnyone

TaskAnyone is an online task analysis and management tool developed by TaskAnyone

based in Ontario, Canada [4]. This software can be used from any widely available web

browser and can create tasks and sub-tasks into easy to use checklists. This tool provides

the user with the ability to use the menu to add, delete and update a task; drag and drop a

task to create an ordered list. This software lacks a number of features which other task

analysis tools described in our thesis provide, including the one we have developed as a

part of our thesis work.

2.1.4 TaskArchitect

TaskArchitect [5] is a commercially available tool to perform hierarchical task analysis,

developed by Task Architect, Inc which is based out of Ottawa, Canada. This tool is the

9

most comprehensive tool we came across while investigating the various commercially

available task analysis tools in the market as of today. Some of the most attractive

features of the tool are listed below:

1) The tool allows point and click creation of tasks and sub-tasks. Tasks could be

new or developed using already existing templates for various business domains.

2) It allows for additions of plans to the main task, which could be either a simple

plan or an advanced plan with various permutations and combinations.

3) It supports automatic renumbering of sub-tasks and plans with a parent task.

4) It provides support to export a task document into various formats like XML, Text

and Excel.

5) The tool has various attractive features like drag and drop support, color coding

text inside a task, short-cut keys to perform simple copy paste functions and a

spellchecker.

6) This tool also supports various views like a tabular view, timeline view, vertical

slice view and a left-right view.

7) TaskArchitect also captures logical and combinational functions while creating

plans for a task and illustrates the plan both graphically and verbally.

Based on the salient features of the task analysis software tools we studied and

explained above, we can reach to a consensus that each software, either commercially or

non-commercially available, lacked some feature which the other tool provided and vice-

versa. A valid explanation for such contrasting capabilities among the above mentioned

tools could be attributed to the cost of developing the software tools, resources at disposal

and the different domains where they have been applied to and developed for.

10

On the other hand we decided to build a comprehensive hierarchical task analysis

tool which combines most of the features provided by the listed tools and also include

some more attractive capabilities which we will elaborate below. This will allow our tool

to be used freely across different domains. Some of the additional features which we will

provide are:

1. Provide a number of reusable templates to create task analysis flow diagrams,

including provision to add more templates.

2. Ability to store newly added tasks, sub-tasks or state variables. This saves

tremendous amount of development time for the task analyst, since these can be

used as components to build a new hierarchical task.

3. Ability to import and export XML documents, which is a W3C Standard. It is

widely regarded as the future of the internet, since it is a standard which can

seamlessly integrate with any system.

4. Ability to connect our system with a data store like the Microsoft SQL Server

which would boast the storage capabilities of the tool, and can be used to integrate

with other systems in a professional development environment.

5. Develop a standard XML Document Type Definition (DTD), since we will be

using an XML data source. This definition will help other applications to

understand and efficiently integrate with our HTA tool.

However, we decided to not incorporate some of the aesthetic features due to our

specific requirements, technical expertise, and available time on hand. Another important

reason for not decorating our tool was that we did not plan to sell it as a product

11

commercially in the market, but allow it to be freely download-able and usable from the

internet.

2.2 Software Patterns

 A pattern for software architecture describes a particular recurring design problem that

arises in specific design contexts, and presents a well-proven generic scheme for its

solution. The solution scheme is specified by describing its constituent components, their

responsibilities and relationships, and the ways in which they collaborate. [6]

2.2.1 Properties

There are several properties of patterns for software architecture which help us

understand them better:

1) A pattern addresses a recurring design problem that arises in specific design

situations. The design problem in our case is the one which arises when

developing applications with human-computer interaction.

2) Patterns document existing, well-proven design experience. They are not invented

or created artificially. Rather they distill and provide means to reuse the design

knowledge gained by experienced practitioners. The Model-View-Controller

pattern for example, presents experience gained over many years of developing

interactive systems.

3) Patterns identify and specify abstractions that are above the levels of single

classes and instances, or of components. Typically, a pattern describes several

12

components, classes or objects, and details their responsibilities and relationships,

as well as their cooperation. For example, the Model-View-Controller pattern

describes a triad of three cooperating components.

4) Patterns provide a common vocabulary and understanding for design principles.

The Model-View-Controller and the associated pattern have been well known to

the Smalltalk community since the early ‘80s, and are used by many software

engineers.

5) Patterns are a means of documenting software architectures. They can describe

the vision you have in mind when designing a software system. This helps others

to avoid violating this vision when extending and modifying the original

architecture, or when modifying the system’s code.

6) Patterns support the construction of software with defined properties. Patterns

provide a skeleton of functional behavior and therefore help to implement the

functionality of your application. In the case of Model-View-Controller pattern,

support for the changeability of user interfaces and reusability of core

functionality are the important properties.

7) Patterns help us build complex and heterogeneous software architectures.

However, although a pattern determines the basic structure of the solution to a

design problem, it does not specify a fully detailed solution. A pattern provides a

scheme for a generic solution to a family of problems, rather than a prefabricated

module that can be used ‘as is’.

8) Patterns help you to manage software complexity.

13

2.2.2 Categories of Patterns

A closer look at the different types of patterns reveals that they cover various ranges of

scale and abstraction. Some patterns help in structuring a software system into

subsystems. Other patterns support the refinement of subsystems and components, or the

relationships between them.

The patterns are grouped into three categories:

• Architectural patterns

An architectural pattern expresses a fundamental structural organization or schema

for software systems. It provides a set of predefined subsystems, specifies their

responsibilities, and includes rules and guidelines for organizing the relationships

between them.

• Design patterns

A design pattern provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes commonly recurring

structure of communicating components that solves a general design problem within a

particular context.

• Idioms

An idiom is a low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the relationships

between them using the features of the given language.

14

The difference between these three kinds of patterns is in their corresponding levels of

abstraction and detail. Architectural patterns are high-level strategies that concern large-

scale components and the global properties and mechanisms of a system. They have

wide-sweeping implications which affect the overall skeletal structure and organization

of a software system. Design patterns are medium-scale tactics that flesh out some of the

structure and behavior of entities and their relationships. They do not influence overall

system structure, but instead define micro-architectures of subsystems and components.

Idioms are paradigm-specific and language-specific programming techniques that fill in

low-level internal or external details of a component's structure or behavior.

2.2.3 Architectural Patterns

Architectural patterns represent the highest level patterns in the pattern system. They help

us determine the fundamental structure of an application. We determine the architectural

pattern to use based on the properties of the application at hand. Patterns that help support

similar properties can be grouped into categories – for example, Distributed systems can

be developed using either the Microkernel and Pipes and Filters patterns. An interactive

system comprises the Model-View-Controller (MVC) and Presentation-Abstraction-

Control (PAC) pattern.

 Since in our case we are developing an interactive system, the MVC or the PAC

does suit us the most. One major difference is in the control function of MVC and PAC.

The MVC controller does not mediate between model and view. At best one might think

that the controller passes messages between the view and model. The PAC control

15

function on the other hand is clearly an explicit mediator. This can be helpful in very

complex software.

On the other hand, MVC does a much better job of keeping input and output

independent and separate. For smaller, less complex implementations, MVC is seen as a

superior choice [7]. Secondly, most good desktop applications use the MVC pattern. We

will now dive into understanding the Model-View-Controller architecture in detail and go

over some of the advantages of this design while developing our software system.

2.2.4 Model-View-Controller Architecture

The model-view-controller is an architectural pattern which is used in software

engineering. This pattern isolates the application logic from the input and presentation,

permitting independent development, testing and maintenance of each.

Model – The model holds all the data, state and application logic. The model is oblivious

to the view and controller, although it provides an interface to manipulate and retrieve its

state and it can send notifications of state changes to observers.

View – Gives us a presentation of the model. The view usually gets the state and data it

needs to display directly from the model.

Controller – The controller takes the user input and figures out what it means to the

model.

16

Figure 1: Model View Controller

1. You are the user – you interact with the view. [8]

The view is your window to the model. When you do something to the view (like

click a button or a link), then the view tells the controller what you did. It’s the

controller’s job to handle that.

2. The controller asks the model to change its state.

The controller takes your actions and interprets them. If you click on a button, it’s

the controller’s job to figure out what that means and how the model should be

manipulated based on the action.

3. The controller may also ask the view to change.

When the controller receives an action from the view, it may need to tell the view

to change as a result. For example, the controller could enable or disable certain

buttons or menu items in the interface.

4. The model notifies the view when its state has changed.

When something changes in the model, based either on some actions you took

(like clicking a button) or some other internal change, the model notifies the view

that its state has changed.

5. The view asks the model for state.

17

The view displays the state it gets directly from the model. The view may also ask

the model for state as the result of the controller requesting some change in the

view.

2.2.4.1. MVC – A Compound Pattern

Understanding the MVC architecture pattern top down is difficult. We consider the MVC

as a compound pattern – a collection of other patterns.

 The model implements the Observer Pattern to keep interested objects updated

when state changes occur. Use of the Observer software pattern keeps the model

completely independent of the view and controllers. It allows us to use different views

with the same model, or even multiple views at once.

 The view and the controller implement the classic Strategy Pattern: the view is an

object that is configured with a strategy. The controller provides the strategy. The view is

concerned only with the visual aspects of the application, and delegates to the controller

any decisions about the interface behavior. Using the strategy pattern also keeps the view

decoupled from the model because it is the controller that is responsible for interacting

with the model to carry out user requests. The view knows nothing about how this gets

done.

 The display consists of a nested set of windows, panels, buttons, textboxes, and

labels and so on. Each display component is a composite (like a window) or a leaf (like a

button). When the controller tells the view to update, it only has to tell the top view

component, and the Composite Pattern takes care of all the controls within the top

18

component. Composite pattern allows a group of objects to be treated in the same way as

a single instance of an object.

2.2.4.2. Benefits of the MVC pattern

1. Multiple views of the same model - MVC strictly separates the model from the

user-interface components. Multiple views can therefore be implemented and

used with a single model. At run-time, multiple views may be opened at the same

time, and views can be opened and closed dynamically.

2. Synchronized views - The change-propagation mechanism of the model ensures

that all attached observers are notified of changes to the application's data at the

correct time. This synchronizes all dependent views and controllers.

3. 'Pluggable' views and controllers [9] - The conceptual separation of MVC allows

you to exchange the view and controller objects of a model. User interface objects

can even be substituted at run-time.

4. Exchangeability of 'look and feel' - Because the model is independent of all user-

interface code, a port of an MVC application to a new platform does not affect the

functional core of the application. You only need suitable implementations of

view and controller components for each platform.

5. Parallel development - The MVC architecture pattern promotes on parallel

development of the components, since they are completely separate code

components.

19

2.2.4.3. Shortcoming of the MVC pattern

1. Complexity - The MVC pattern introduces new levels of indirection and therefore

increases the complexity of the solution slightly. It also increases the event-driven

nature of the user-interface code, which can become more difficult to debug.

2. Cost of frequent updates - Decoupling the model from the view does not mean

that developers of the model can ignore the nature of the views. For example, if

the model undergoes frequent changes, it could flood the views with update

requests. Some views, such as graphical displays, may take some time to render.

As a result, the view may fall behind update requests. Therefore, it is important to

keep the view in mind when coding the model. For example, the model could

batch multiple updates into a single notification to the view.

Since now we have a clear understanding of what the Model-View-Controller

architecture pattern is based on the previously accomplished results, in the next chapter

we will dive in to describing and reasoning the approach we took in solving our design

problem, what flavor of the MVC did we choose and why and also what other software

tools and programming languages were a part of the software development cycle.

20

3 Technical Approach

The task analysis software tool which we have developed is a Windows Based

Application. It is a standalone application which can be installed and used on any

computer with a Microsoft based Windows Operating System.

The most obvious and easy option to aid us in developing this software was using

the Microsoft .NET Framework to develop a Windows-based-application. The windows

form application which we developed is an event-driven application which waits for a

user to perform an action like, entering data in to a text box or clicking a button, and then

responds by performing the appropriate action like changing the contents of the form or

manipulating the data existing in a separate data source.

Debugging and development of applications is extremely efficient and easy using

the .NET framework than using any other programming language. Above all the final

deployment of the application literally is accomplished in a single click by the end-user.

The .NET framework is an integral windows component that supports building

and running the next generation of applications and XML web services. The .NET

framework provides us with a consistent object oriented programming environment

where object code is stored and executed locally or remotely. The .NET framework can

be used to develop varying types of applications, such as Web-based applications and

Windows-based applications. [10]

The application we have developed follows the industry standards and thus helps

us to integrate it with other applications. We opted to develop our tool using C# based on

some of the exciting features the .NET platform, when used with the C# language,

provides us with; like:

21

• Garbage Collection: The .NET Framework's garbage collector manages the

allocation and release of memory for your application. Each time you create a

new object, the common language runtime allocates memory for the object from

the managed heap. As long as address space is available in the managed heap, the

runtime continues to allocate space for new objects. However, memory is not

infinite. Eventually the garbage collector must perform a collection in order to

free some memory. The garbage collector's optimizing engine determines the best

time to perform a collection, based upon the allocations being made. When the

garbage collector performs a collection, it checks for objects in the managed heap

that are no longer being used by the application and performs the necessary

operations to reclaim their memory. [11]

• Exception Handling: Exception handling in .NET is a structured form or error

handling that differs from the unstructured error handling such as On Error Goto

of Visual Basic. In structured error handling, any number of different error

filtering conditions can be set in place for a block of code. Structured error

handling allows you to dictate proper programming to those who use your code.

• Type Safety: Type-safe code is code that accesses types only in well-defined,

allowable ways. Given a valid object reference, type-safe code can access

memory at fixed offsets corresponding to actual field members. However, if the

code accesses memory at arbitrary offsets outside the range of memory that

belongs to that object's publicly exposed fields, it is not type-safe. Type safety is

important for assembly isolation and security. When code is type-safe, the

common language runtime can completely isolate assemblies from each other.

22

This isolation ensures that the assemblies cannot adversely affect each other, and

thus increase application reliability.

• Caching: .NET automatically caches classes when they are compiled, so that they

can be delivered extremely fast when they are called. But the Framework also

offers some other cool types of caching, such as output caching, where certain

parts of web pages that are dynamically generated can be stored on the hard drive

in static form, so that they can be delivered directly instead of being generated

every time.

After considering the software tools and technologies we are going to use in developing

our software system, we will now proceed further by explaining the software design

which we choose to use in developing our system, the alternatives available and the

advantages of our choice.

We have already mentioned that we shall be using the MVC architecture pattern

in developing our system. Now we will briefly explain the different flavors of the MVC

architecture patterns available at hand and the one we decided to incorporate is our

system design.

3.1 Variations of the MVC Pattern

There are 3 main variations of the MVC pattern, namely the Passive model, the Active

model and the Observer model. In this section we will briefly describe them.

23

3.1.1 The Passive MVC Model

The passive model is employed when one controller manipulates the model exclusively.

The controller modifies the model and then informs the view that the model has changed

and should be refreshed (see Figure 2). The model in this scenario is completely

independent of the view and the controller, which means that there is no means for the

model to report changes in its state.

The HTTP protocol is an example of this. There is no simple way in the browser

to get asynchronous updates from the server. The browser displays the view and responds

to user input, but it does not detect changes in the data on the server. Only when the user

explicitly requests a refresh is the server interrogated for changes.

Figure 2: Passive MVC Model [12]

24

3.1.2 The Active MVC Model

The active model is used when the model changes state without the controller's

involvement. This can happen when other sources are changing the data and the changes

must be reflected in the views.

Consider a stock-ticker display. You receive stock data from an external source

and want to update the views (for example, a ticker band and an alert window) when the

stock data changes. Because only the model detects changes to its internal state when

they occur, the model must notify the views to refresh the display.

Figure 3: Active MVC Model [13]

3.1.3 The Observer Model

One of the motivations of using the MVC pattern is to make the model independent from

of the views. If the model had to notify the views of changes, you would reintroduce the

dependency you were looking to avoid. Fortunately, the Observer pattern [9] provides a

25

mechanism to alert other objects of state changes without introducing dependencies on

them. The individual views implement the Observer interface and register with the

model. The model tracks the list of all observers that subscribe to changes.

Figure 4: The Observer Model [14]

When a model changes, the model iterates through all registered observers and

notifies them of the change. This approach is often called "publish-subscribe." The model

never requires specific information about any views. In fact, in scenarios where the

controller needs to be informed of model changes (for example, to enable or disable

menu options), all the controller has to do is implement the Observer interface and

subscribe to the model changes. In situations where there are many views, it makes sense

to define multiple subjects, each of which describes a specific type of model change.

Each view can then subscribe only to types of changes that are relevant to the view.

Based on all the different MVC variations we described above, we planned to pursue the

Passive MVC Model. Since we have already mentioned the event driven approach of the

.Net framework when developing windows based applications, the passive MVC

approach fits in perfectly with the software and technologies which we are using to

develop the task analysis tool.

26

 In the Passive MVC approach, the role of the View is simply reduced to that of

container of all controls that exist to provide the visual graphics. Thus the user interface

is split into two parts, the view that handles the display and the controller that responds to

the user actions. The controller does not only handle the response to the user actions, but

also updates the view based on the changes in the model.

Thus our technical design approach is different from the typical MVC approach

since we now have a completely passive view that is no longer responsible for updating

itself from the model. All of the logic is contained in the controller and there is no

dependency in either direction between the view and the model.

The View, in our case is the windows form which is the container of all the

windows controls that aid in creating hierarchical tasks. The event driven programming

approach allows us to code the Controller that responds to the user actions performed on

the Controller and update the Model and/or update the View based on the change in the

model. The actions performed on the View are hard wired with the event handlers in the

Controller. The Controller code resides in code behind C# language files whereas the

View is the designer.

The Model contains all of the application logic and is oblivious of the View and

how the data is reported back to the user. The entire application logic again resides in

separate C# files.

The data generated and used by our software system is also a part of the Model.

We choose to store our data in XML files. We choose to use XML files over using a

traditional relational database or flat files for that matter. The XML has many advantages

27

for the exchange of information between the Model and the View. Some of the benefits

of using XMLs are stated below:

• XML is a platform independent language. XML is fully compatible with various

applications in Java or .NET, and it can be combined with any application which

is capable of processing XML irrespective of the platform it is being used on.

• XML uses human language tags and thus is extremely easy to read and

understand. It also is an extendable language, meaning that we can create our own

tags or use already existing ones.

• XML files are the best way to represent hierarchical or tree structured data. In our

case this is extremely important because of the nature of our task analysis tool

which processes and creates hierarchical tasks.

• Since we decided to use C# as a language with the .NET platform to develop our

application, the C# language has an extremely powerful, easy to use and flexible

XML parser. This makes it extremely easy to manipulate data stored in XML files

for our system.

We agreed to develop our software system using the Passive MVC pattern based on some

of the benefits as listed below:

• Speed and Ease of Testing – We can drastically reduce the testing time of our

software system when using the passive approach since we can isolate the

controller from the view and the model, and use mock objects to test the system

as a whole. This is possible since the view is a dumb entity and does not contain

any code logic.

28

• Incorporate Multiple Views – Since the event handling is separated from the

view, it becomes easier to have the same controller target multiple views. Not

only that but we can use the same controller logic to implement windows forms,

web forms and even windows mobile forms. This would enable us to develop a

windows and a web based version of our software tool using nearly the same

code.

• Varied Models – Since the controller decouples the view and the controller, we

can switch between various types of data stores like flat files, XML files and

Relational Databases.

29

4 Implementation

To succeed in our endeavor, it was imperative that we followed a structured approach in

developing the software product. So we explain the process of implementation of our

thesis by explaining the software development methodology and processes we followed.

A software development methodology refers to the framework that is used to

structure, plan and control the process of developing an information system. There are a

wide variety of frameworks to choose from, each with their own strengths and

weaknesses. Based on the technical expertise and software tools available we decided to

follow the Object Oriented approach. The object oriented programming model uses

“objects” - data structures consisting of data fields and methods together with their

interactions – to design applications and computer programs.

Object oriented approach to system analysis enables very helpful projections of

the system structure to the common sense perception based on communicating objects.

One more level of abstraction has been created - between subsystems with data and

procedures; there are objects which cluster data and functions into structures.

The advantage of this is encapsulation and data hiding. The concept of grouping

objects into object classes enables extended code reuse. Functionality and data of the

entire system is distributed among objects building up the system. Functionality

distribution and partitions improve maintainability, reparability, resolvability and

reusability of software.

Each software development methodology has more or less its own software

development process. We have implemented our software system using one of the most

common software development processes know as the “Waterfall Model”. The Waterfall

30

Model is a sequential software development process, in which progress is seen as flowing

steadily downwards through the phases of Requirement Specification, Design,

Construction, Integration, Testing and Debugging, Installation and Maintenance. But

based on the complexity of the software system, we can skip some of the steps or merge

some activities.

Thus while developing the hierarchical task analysis software tool, the sequential

steps we followed were: Requirement Analysis, Architectural Design, Coding, Testing

and Release. The steps which lay focus on the object oriented methodology are analysis,

design and coding.

Before we actually dive into the details of requirement analysis, it is important to

understand the objective we are trying to achieve while developing this software system.

4.1 Objective

The hierarchical task analysis tool which we have developed will be used in a project to

improve the outcome of injured patients by increasing the efficiency of trauma

resuscitation. This project is expected to identify factors associated with deviations from

Advanced Trauma Life Support (ATLS) which is a standard protocol for trauma

resuscitation, and to develop novel technology for tracking and validating evaluation and

treatment steps during trauma resuscitation. [15]

 To develop a theoretical model of trauma teamwork based on activities

observable during trauma resuscitation, it is important to identify and construct the

hierarchical goals. Thus a goal tree is used for the top down methodology to determine

quantitative parameters for the modeling of human activity during trauma resuscitation.

This goal tree starts with the high-level goals of trauma resuscitation and derives sub-

31

goals as well as input parameters needed to achieve them. So, our hierarchical task

analysis tool is used to construct this goal tree.

It is extremely important for this tool to be user friendly, efficient and accurate.

The output of our software tool, will then work as an input to a probabilistic model of the

ATLS compliant team activities to detect any deviation from the protocol itself. This

probabilistic model will be a software program.

4.2 Requirement Analysis

This is an extremely important phase of the software development process with the main

focus oriented towards deep and complete understanding of user needs and expected

functionality of the system. Close cooperation between user and designer is necessary

which very often has the form of a series of recorded sessions.

 We performed requirement analysis step and as a result delivered two important

documents: A Use case document and a User Interface design in the form of wireframes

– which is a visual representation of the software user interface with key page elements,

such as headers, footers, navigation content and other controls which hold system data.

The Use case document tables the potential requirements of a new software system. Each

use case provides one or more scenarios that convey how the system should interact with

the end user or another system to achieve a specific business goal. We have created a use

case document using simple language and avoiding technical jargons. The use cases do

not describe the internal working of the system. They simply show the steps that a user

follows to perform a task. Appendix A shows the Use case document for our software

32

system. This document is one of the first steps in the software development process since

it functions as a contract between the client and the software provider.

 During the requirement analysis phase, we also performed software prototyping,

which allows people who have stake or interest in the system get an overview of how the

user interface will look like. We created wire frames as our approach to software

prototyping. Wireframes are useful early stage techniques to depict the UI even though

they are non-interactive and usually very broad. Though often simplistic, this style of

prototyping is useful because they can be very quick to create and don’t require too much

technical expertise to put together. In Appendix A, we have shown all the wire frames

which we developed. The wireframes also helped us in reducing the actual development

time since we already had model designs to follow during coding.

4.3 Architectural Design

In the architectural design phase, the software requirements are transformed into

definitions of software components and their interfaces to establish the framework of the

software. We developed the design based on the requirement documents we created

previously. In this phase we built a complete physical model which describes the solution

in concrete, implementation terms. This physical model is used to produce a structured

set of component specifications that are consistent, coherent and complete. Each

specification defines the functions, inputs and outputs of the component.

 Usually during the design phase, two separate documents are produced, namely

the Top-Level Design document and a Detailed Design Document. The aim of the top

level design document is to identify the modules that should be in the system, the

33

specifications of these modules, and how they interact with each other and generate the

desired results.

 During detailed design the internal logic of each of the modules specified in the

top level design is decided. The algorithms, logic and the data structure are decided. In

our system design phase, we came up with just the high level design. Since our system

does not contain a very large number of components, or a complicated logic and data

structure, it was possible to depict the system using just a high level architecture diagram.

Along with the architecture diagram, we also created a Class Diagram for our system. In

this section, we will describe in detail both the architecture diagram and the class

diagram.

 The technical architecture diagram below provides a high level overview of the

goals of the architecture, the use cases supported by the system and the architectural style

and components that have been best selected to achieve the use cases. The architecture

diagram complements the code that we have written to develop the system.

 But before we start explaining our architecture diagram; it is important to learn

some terms which are specific to the hierarchical task analysis tool that we have set out to

develop. These terms will be very helpful while interpreting the technical architecture

diagram and the class diagram of our system. These terms with their definitions are

documented in Appendix A.

 The Hierarchical Task Analysis Tool uses a Passive MVC architecture approach

and we explain the different layers of the architecture diagram below:

34

View:

The View in our software system is the topmost layer represented in our software

architecture diagram. This is the layer with which the user interacts. The View gives us a

representation of the Model. This layer consists of various Windows Forms which act as

containers of numerous Windows controls like textboxes, buttons, labels, panels and

listboxes.

 The View is extremely important to the user, since it is this layer which

determines the ease with which the user can use our software system. Thus, designing

this layer required us to put in considerable thought and iterations before finalizing the

graphical user interface. We used wireframes, which are visual guides that help the

programmer in developing the user interface of any software application that requires

human intervention. These helped provide a structure and flow to the software system.

The Tree Architect user interface consists of the following forms:

Table 1: View Classes

Form Name Description

Main This is the main form where the Processes can be viewed and

edited. It presents the Process to the user in the form of a

TreeView control. It also consists of a Menu that allows the user

to make appropriate selections to load and create new Processes,

edit Processes by adding, editing and ordering Goals and State

Variables, and add and edit Plans in the Process.

LoadProcesses This loads a list of existing Processes. User can select one of

35

these Processes to view, edit or use as a template for creating a

new Process. It is presented as a list in a Listbox control.

ProcessName This is used to give a unique name to the new Process.

AddGoals This screen has controls that are used to add and remove Goals

in a Process or a Process Goal. A new Goal can also be created

using this screen. Available and Selected Goals are shown in 2

respective Listboxes to the user and user can select and unselect

Goals using buttons.

AddStateVariables This screen has controls that are used to add and remove State

Variables to a Goal. A new State Variable can also be created

using this screen. Available and Selected State Variables are

shown in 2 respective Listboxes to the user and user can select

and unselect State Variables using buttons.

PlanDetails This is used to add Plans to Processes and Goals. 3 types of

Plans can be added here and they are Straight Forward Plan,

Freeform Narrative Plan and Plans with Alternatives. These are

presented to the user in the form of a Radio Buttons Group

control.

EnterCondition This is used to add an “If” condition to a set of Order and Range

values in “Plan with Alternatives” type of Plan.

36

AddAlternative This is used to provide the name of the alternative when the user

tries to add a new alternative to the “Plan with Alternatives”

type of plan.

OrderTasks This is used to order Goals and State Variables in a Process.

AddEditDescription This is used to add and edit descriptions to a Process, Goal or a

State Variable.

37

Figure 5: Technical Architecture

38

Controller:

The architecture diagram above depicts the Controller as the layer between the Model

and the View. That is exactly what it does in our software system. It prevents the View to

be tightly coupled to the Model. Each of the forms in the View has a code-behind file

which contains all the code logic regarding handling the user input. These code-behind

files become the Controller in our system.

 Whenever a user performs any action in the View or the windows

forms by either clicking a button or typing some text into a textbox, an event takes place

and these events are handled by event handlers, which are a part of the controller code

logic. Thus controller not only interprets the user input, it also manipulates the model

based on the input. By keeping the View and the Model loosely coupled our system

remains flexible and scalable enough to replace the View and Controller with an alternate

View and an alternate Controller. The details of all the controllers shown in the

architecture diagram are given below:

Table 2: Controller Classes

Class Name Description

Main.cs The Main Form allows the user to view and edit the Processes

in Tree architect. All the user actions like loading and

creating new Processes, adding and editing Goals, State

Variables and Plans are captured in Main.cs class and

appropriate forms are displayed to the user. Like when the

user wants to Add or Edit Goals to the Process, he selects

39

Add/Edit Goals option from the Menu and this event is

captured in the Main.cs class. This class responds by

displaying the AddGoals Form to the user with Available and

Selected Goals populated in the respective List boxes.

LoadProcesses.cs This loads the list of existing Processes. The Load event of

this class queries the database (with the help of the Model

which will be explained in the next section) and loads all the

existing Processes in the List Box on the LoadProcesses

Form.

ProcessName.cs This is used to give a unique name to the new Process. The

OK button click triggers the event which checks that the

Process name entered by the user is unique and when this

validation is done, adds the process name to the Process

object.

AddGoals.cs The Load event of this Form is handled to retrieve the

selected Goals of the Process in context and load them in the

Selected Goals List Box. The remaining system Goals are

populated in the Available Goals List Box. The “>>” and

“<<” button events have been handled to move the Goals

from Available Goals List box to Selected Goals list box and

vice versa. The class also handles events to add totally new

40

Goals to the system.

AddStateVariables.cs As explained for AddGoals.cs class above, this class handles

displaying and addition of State Variables to the Process or

system.

PlanDetails.cs As mentioned before, 3 types of Plans can be added here and

they are Straight Forward Plan, Freeform Narrative Plan and

Plans with Alternatives. These are presented to the user as a

Radio buttons group control. The Radio Button’s

CheckedChanged event has been handled to display controls

related to the selected plan.

EnterCondition.cs This is used to add an “If” condition to a set of Order and

Range values in Plan with Alternatives type of plan. Click of

Ok button on this Form adds the condition to the Process

object.

AddAlternatives.cs This is used to add the alternative name in Plan with

Alternatives type of plan. Click of OK button on this form

adds the alternative to the

Alternatives listbox on the Plan Details screen.

OrderTasks.cs On Load event of this form, the selected Goals or State

Variables are populated in the Available Goals / State

Variables Listbox. User inputs for ordering of the tasks are

41

captured when the user clicks on “>>” and “<<” buttons, and

the button clicks are handled to populate the 2 Listboxes as

per user need.

AddEditDescription.cs This is used to add and edit descriptions to a Process, Goal or

a State Variable. OK button click event of this class adds the

description to the appropriate Process, Goal or State Variable

object.

Model:

The Model comprises of the data, state and application logic. The Model in our

architecture diagram contains three separate layers, namely the Business layer, Data

Access Layer and the Information Layer. The details of all these 3 layers are given

below:

Datasource Layer: The Datasource layer stores the data which our system creates,

manipulates, and displays to the user. The list of XML files which are present in the

Datasource layer as follows:

• ProcessList.xml - Contains list of all the Processes created by the user along with

their descriptions.

• GoalsList.xml - Contains list of all the Goals created by the user along with their

descriptions.

• StateVariablesList.xml - Contains list of all the State Variables created by the user

along with their descriptions.

42

• Individual Process details XMLs - these are XMLs of all the Processes listed in

ProcessList.xml. Each xml contains the details of the Process, the Goals and State

variables in the Process and the Plans associated with it.

Data Access Layer: The Data Access layer consists of classes which are used to

manipulate, retrieve and store data in to the various XML files described in the

Datasource layer.

Table 3: Model Classes - Data Access Layer

Class Name Description

AccessProcesses.cs This has methods like UpdateProcess and ListAllProcesses

to interact with the individual Process XMLs and

ProcessList.xml. It is used to add and update Processes to

Tree Architect. It also has the method GetProcessDetails

which is used to populate the Process object with the

Process in context. The Process object is then used to

populate the TreeView.

AccessGoals.cs This has methods to add and edit Goals to Tree Architect.

AccessStateVariables.cs This has methods to add and edit State Variables to Tree

Architect.

43

Business Layer: This layer of the Model has classes which take care of the core business

logic related to Processes and various Plans associated with these Processes. The details

about the classes in this layer are as follows:

Table 4: Model Classes - Business Layer

Class Description

HandleProcessView.cs This has methods that are used to populate the control which

shows the Process details on the Main screen. Currently, it

populates the TreeView control. It can be used to populate a

different control also with slight modifications. We have

incorporated 2 different flavors of TreeView control easily

available on internet, namely AdvancedDataGridView and

VIBlendTreeView, to depict this feature of Tree Architect.

HandlePlans.cs This has methods that are used to manage the Plan panel of

the PlanDetails screen. The Plan panel changes based on the

type of plan selected by the user.

Constants.cs It has various common methods that are used to manage the

whole Process creation feature of Tree Architect. It has

abilities to generate the unique id to differentiate each Process

object, and internal Goals and State Variable objects in the

Process.

44

The class diagram is an essential diagram within the Unified Modeling Language (UML).

The class diagrams are a major building blocks used in the object oriented programming

methodology. They describe the structure of the system by showing the system’s classes,

their attributes, and their relationships between the classes.

 The class diagram shown below represents both the main objects and

their interactions in the application and the objects to be programmed. The class diagram

box has been divided into three parts:

• The upper part holds the name of the class

• The middle part contains the attributes of the class

• The bottom part gives the methods or operations the class can take or undertake

Each class member, be it either the attribute or the method of the class has a “-” or a “+”

sign at the beginning of its name. These symbols represent the visibility of the

components of the class. The “+” sign means that it is a public member of the class and

so it can be accessed from within the same namespace and from classes belonging to

other namespaces as well. The “-” sign is meant for private class member, which can only

be accessed inside the same namespace.

45

Figure 6: Tree Architect Class Diagram

46

 The solid line connecting the two classes shows a unidirectional

association. At the end of each connection, we show the multiplicity value. In our class

diagram, there also exist Composite Aggregation relationships, which is a special type of

association. In a composite aggregation relationship, the child class’ instance lifecycle is

dependent on the parent class’s instance lifecycle. This relationship is depicted in the

class diagram with a solid diamond at the parent class`s end.

 From the diagram we can determine that single instances of the

Process class will always have one or more instances of the Goal class. And single

instances of the Goal class could have zero or more instances of the State Variable class.

At the same time a Goal class could hold zero of more instance of the Goal class as Child

Goals. The Process class and the Goal class instances can also have zero or one instance

of the Plan class.

 There also exists a composite aggregation relationship between

instances of the Plan class with instances of the Plan Condition class. Since each plan can

comprise of user defined conditions, a single plan instance can contain zero of more plan

conditions. The plan condition is defined using parameters like order, range and an if-

condition. An instance of the plan condition class would contain at least one or more

instances of the Plan Detail class.

 The architecture diagram and the class diagram function as inputs to

the Coding phase of our software development process.

47

4.4 Coding

During this phase, based on all the ideas and design documents we had in hand, we begun

the actual task of coding the software system. The two most critical documents which we

used were the architecture diagram and the class diagram.

 In earlier chapters, we had decided on the programming platform and

the software language which we will be using based on several conditions. We coded the

entire system by following a well thought and systematic set of steps. Firstly, we created

the system code template. This template included class definitions along with method

signatures.

 In the next step, we designed the actual screens using the wireframes

that we created during the requirement analysis phase. This involved adding various

controls and components to the screens like textboxes, labels, and listboxes and

dropdown menus. During the UI design phase, we also added other aesthetic features we

had described in the wireframes, like colors and background images.

 Finally, when the UI design is complete, we turned our attention to

coding the templates we had defined in the first step. Here, we wired up the events raised

by the UI controls with handlers in the Controller, and also added code to the method

signatures we had created in the Model. We spent most of our coding time in this step,

since it involved writing complicated algorithms and data manipulation code. We also

spent time debugging incorrect code logic during this phase.

48

4.5 Testing

Software testing is an activity aimed at evaluating an attribute or capability of a program

or a system and determining that it meets the requirements. The difficulty in testing arises

from the complexity of the software. The purpose of testing can be quality assurance,

verification and validation, or reliability estimation.

 While developing our system, we performed testing in two separate

phases. The first phase of testing was Unit Testing. The primary goal of unit testing is to

take the smallest piece of testable software in the application, isolate it from the

remainder of the code, and determine whether it behaves exactly as you expect. Each unit

is tested separately before integrating them into modules to test the interfaces between

modules. Unit testing has proven its value in that a large percentage of defects are

identified during its use. We performed unit testing during the time of developing

individual components of our software system. In case of error, we performed debugging

operations on the code logic and fixed errors. This procedure helped us reduce the logical

errors in the individual models present in the Model, View and the Controller. Unit

testing saves time while fixing defects that arise after integrating all the components,

since error debugging becomes more tiresome in an integrated system.

 In the next phase, we performed Integration Testing – which is a

logical extension of unit testing. In its simplest form, two units that have already been

tested are combined into a component and the interface between them is tested. A

component, in this sense, refers to an integrated aggregate of more than one unit. We

49

performed integration testing to identify bugs in the software systems which are

otherwise difficult to detect in standalone components.

 To make sure all the functional logic in our software system is

correct; we used the use case description which we created in the requirement analysis

phase. We performed integration testing in multiple cycles using different sets of data and

following separate process flows. At the end of each testing cycle, we fixed the noted

defects and after repeating this procedure, we were able to drastically reduce the bugs in

the system. Software testing is always a trade-off between time, budget and quality. We

stopped testing our system after determining the fact that all our major functionalities

which were a part of the requirements document were working as desired.

4.6 Release

Release is the last step of our software development process. As a part of the software

release, we deploy our software application at a file path location on the local system. We

have used ClickOnce deployment technology from Microsoft to solve the deployment

problem of our software system.

 We have configured our software application to be self updating, thus

the ClickOnce application will automatically check for updates from the location it was

installed and will automatically download the updates if they exist. For now, we have

deployed our application from a file share, but we also have the option on hand to deploy

it from a file server or a website. So for multiple users to be able to install our software

system and use it, we can specify the publishing location to be a network share, A Hyper

text Transfer Protocol (HTTP) address or a File Transfer Protocol (FTP) address. We also

50

configured our application as a Full Trust Application, but we have the option for it to be

partial and customizable for the security permissions.

51

5 Results

In this section, we will present the user with the results that we have achieved based on

the functional and non-functional requirements of the system. The functional

requirements of our software have been documented in the requirements document in

Appendix A.

 In chapter 2 – Related Work, we listed all the functional requirements

which would be incorporated in our software system. Some of the features we provided

were already a part of the software tools discussed, along with some additional features.

 A functional requirement is one that specifies a function that a

system/software or system/software component must be capable of performing. These are

software requirements that define the behavior of the system, that is, the fundamental

process or transformation that software and hardware components of the system perform

on inputs to produce outputs.

5.1 Functional Requirements

We have added snapshots of simulation results in Appendix C which prove pictorially the

functional requirements that have been met while designing our software. The

functionalities that have been successfully implemented and now are a part of our

software are listed below:

• The software tool allows us to add and update Processes. We can also reuse an

already existing Process as a template to create new Processes.

52

• The software tool allows us to add goals, sub-goals and state variables to the process.

It also has the ability to allow the user to provide additional description or comments

to each individual goal or state variable.

• The tool provides us with the ability to logically sequence the goals, sub-goals and

state variables.

• The tool stores the goals and state variables as xml data to increase reusability.

• The software tool allows us to import and export processes in the form of xml data.

• The software tool can be used to add plans to the hierarchical task tree. The three

variations of the plans are namely: Straight forward plan, Freeform narrative plan and

an Advanced plan with alternatives.

5.2 Non-Functional Requirements

A non-functional requirement in system software engineering is a software requirement

that describes not what the software will do, but how the software will do it, for example,

software performance requirements, software external interface requirements, software

design constraints and software quality attributes.

 The non-functional requirements are system wide qualities, and these

system wide qualities are closely related to the software architecture we choose. We feel

our system architecture is robust, simple and efficient. Thus our software architecture

incorporates a number of non-functional requirements.

53

 Since non-functional requirements are difficult to test, we will

evaluate them subjectively. Below, we list down and explain the non-functional

requirements our software system meets and discuss them in details.

5.2.1 Usability

ISO defines usability as “the extent to which a product can be used by specified users to

achieve goals with effectiveness, efficiency, and satisfaction in a specified context of

use”. Usability is a qualitative attribute that assesses how easy user interfaces are to use.

 Our software tool has been designed while keeping in mind the

casual users and by providing intuitive controls and features. Some of the factors that

prove the exceptional usability of our software are: learnability, efficiency, errors and

memorability. Our software is extremely easy to learn based on the process maps we

have created. These process maps work as a user guide and visually depict each step that

can be followed to achieve desired results in timely manner. We have included the

process maps in the Appendix C. We have separate process maps to cover all the

functional requirements, and thus it is extremely easy to remember each step while

creating hierarchical task trees using our software.

 To improve the efficiency and error-handling capabilities of the

software, we have provided descriptive pop-up messages when a system error is

generated due to user action. The error messages are in simple language with a brief

solution. Some of the benefits of usability are: Higher revenue through sales, increased

user efficiency and satisfaction, reduced development costs and reduced support costs.

54

5.2.2 Open Source

Open source software is computer software that is available in the source code form. The

distribution rights also play an important role in determining whether the software is

really open source or not. We have decided to release our software tool as open source

software since we see the potential in our software tool to evolve in to a more creative,

faster and portable version. We have decided to allow free distribution and redistribution

of our software. Thus we will provide users with the option to download the source code

in compiled and non-compiled form, while performing the software installation.

 Some of the characteristics that turn into advantages of open source

models are the availability of the source code and the right to modify it, the right to

redistribute modifications and improvements to the code, and the right to use the software

in any way one desires.

5.2.3 Scalability

In software engineering, scalability is a desired property of a system, a network, or a

process, which indicates its ability to either handle growing amounts of work in a

graceful manner, or to be readily modified. For example, it can refer to the capability of

the system to increase total throughput under an increased load when resources are added.

 A software system can be scalable in many different dimensions; we

believe our software tool is load scalable and is also functionally scalable. Load

scalability is the ability for a distributed system to easily expand and contract its resource

pool to accommodate heavier and lighter loads. Alternatively, the ease with which a

55

system or component can be modified, added or removed to accommodate changing load

also determines whether a software system is scalable or not.

 Functional scalability is the ability of a software system to improve

the system by adding new functionality at minimal effort.

5.2.3.1 Load Scalability

Currently we have an xml database, and since the software is a single user tool, the xml

data is stored locally on the user’s computer. Hence in this case we have a sizeable

constraint on the size of data store we have available.

 But we can change the location of the data store to a centrally located

file server with a very large memory capacity. This would just require us to have a LAN

connection, and a minimal change in the code. Thus this will provide us with a large and

improved data storage capability. It will also de-centralize our software system, making it

possible to access data from various work stations. Thus this discussion proves that our

software system has been designed to be load scalable.

 Thus by adding some extra hardware resource, we can improve the

throughput of our software system. The example which we have provided is an example

of horizontal scaling or scaling-out. Horizontal scaling means adding more than one node

to the already existing software system. This scale-out mode is frequently used to satiate

the increased demand for shared data storage.

56

5.2.3.2 Functional Scalability

Our software tool is also scalable from the functional perspective. We have designed the

software based on the MVC architecture pattern, which basically provides us with an

extremely scalable software model.

 In the previous section, we showed how we can increase the

throughput of our system. We showed how it is possible to have a separate file server to

store the xml files. Instead of storing xml files on the file server, we can also use a

relational database which stores our hierarchical task data in tables.

 Basically what we can achieve is, instead of having to store xml files

all by themselves, we can store them in a relational database system like Microsoft SQL

server or in a MySQL database. This would not require a great deal of change in the code

since our MVC architecture allows us to plug in a different Model without changing the

View, since they are isolated from each other.

 Storing our xml files in a relational database table will provide us

with additional features like faster data access and secure data storage. And as mentioned,

the coding effort and required time to implement this feature will not be painstaking

because of our highly scalable system architecture.

5.2.4 Extensibility

Extensibility is a systematic measure of the ability to extend a system and the level of

effort required to implement the extension. Extensions could be through the addition of

new functionality or through modification of existing functionality. A good architecture

57

provides the design principles to ensure that a software system is extensible. Our MVC

architecture pattern just does that.

 As we have already explained in the previous chapters our MVC

architecture pattern separates the User interface design and the application logic. The user

interface design or the presentation logic resides in the View, which is the topmost layer,

whereas the application and data logic reside in the Model. The View and the Model are

loosely coupled and thus can be replaced with another View or a different type of Model.

 To show that our software system is extensible, we have

implemented three different types of views. These are just different techniques which can

be used to represent hierarchical task data. We have been able to achieve this with

minimal code logic change. All the three views use the same model and can be generated

dynamically on run time. This, undoubtedly, is the biggest advantage our software system

has over the others which are available in the market.

 Thus, we have not only provided open source software, but to

complement it, we have developed an architecture model which is extensible to allow

other developer communities to improve and modify the software system based on their

specific requirements, and redistribute them.

 Below, we show the different flavor of views that we have

implemented besides the basic tree control which we developed originally. We generated

all the views using the same xml data available at runtime.

58

View 1 - Basic Tree Control (Currently used in the system)

Figure 7: Basic Tree Control (Currently used in the system)

59

View 2 - New View

Figure 8: New View

View 3 - VIBlend tree view

Figure 9: VIBlend tree view

60

6. Conclusion

In this thesis we had set out to design and develop a simple, robust and flexible

hierarchical task analysis software tool. We studied various tools available commercially

and non-commercially and were able to implement a list of additional functionalities

which were not available in the existing product like a few mentioned below:

• Provide a number of reusable templates to create task analysis flow diagrams,

including the provision to add more templates.

• Ability to store newly added tasks, sub-tasks or state variables. This saves

tremendous amount of development time for the task analyst, since these can be

used as components to build a new hierarchical task.

• Ability to import and export XML documents, which is a W3C Standard. It is

widely regarded as the future of the internet, since it is a standard which can

seamlessly integrate with any system.

• Ability to connect our system with a data store like the Microsoft SQL Server

which would boast the storage capabilities of the tool and can be used to integrate

with other systems in a professional development environment.

We chose the best available architecture pattern to solve our design problem and were

able to incorporate a number of additional non-functional requirements like usability,

open source, scalability and extensibility.

61

These additional features and qualities make our HTA software tool a viable option to

carry out hierarchical task analysis.

62

7. Future Work

The MVC design pattern promotes the idea of extending the software to provide

additional features to the software. Because of time constraints we have not been able to

add many aesthetic features to our software.

 The tool can be improved to include some styles and color coding schemes to

make it look more intuitive to the user. At the same time more sophisticated controls can

be added to simplify the procedure of creating tasks, adding goals and sub-goals.

 This would not require the application logic to change. We would only have to

modify the classes in the controller and the windows forms.

 Another possible upgrade possible would be to converting the entire windows

based application to a web based version. This would make it a multi user application and

eliminate the installation step all together.

63

Appendix A

Requirement Analysis Document

Table 5: Functional Requirements

Id High Level

Requirements

Requirement Description

1

Viewing /

Editing a

Process

As an administrator, I should be able to retrieve all the

existing Processes of the system.

2

As an administrator, I should be able to view and edit any of

the Processes after they have been listed.

3

Creating a new

Process

As an administrator, I should be able to use the existing

system Processes as templates to create new Processes.

4

As an administrator, I should be able to add a new Process to

the system without using a template.

5

The system must ensure that the new Processes created have a

unique name.

6

As an administrator, I should be able to provide a description

to the Process.

7

Managing

Goals

As an administrator, I should be able to add already existing

System Goals to a Process.

8

As an administrator, I should be able to add new Goals to the

current Process in case the already existing list of Goals does

not fulfill the business.

9

As an administrator, I should be able to add sub Goals to the

Process Goals.

10

As an administrator, I should be able to remove Goals from a

Process or from the Process Goals.

11

As an administrator, I should be able to provide a description

to a Goal.

12

Managing State

Variables

As an administrator, I should be able to add already existing

System State Variables to a Process Goal.

13

As an administrator, I should be able to add new State

variables to the current Process Goal in case the already

existing list of Goals does not fulfill the business.

14

As a system, I should ensure that the State Variables are only

added at the Process Goal level and not at the Process level or

a State variable level.

15

As an administrator, I should be able to remove State

Variables from a Process Goal.

16

As an administrator, I should be able to provide a description

to a State Variable.

17 Logical As an administrator, I should be able to order the Goals in the

64

Ordering of

tasks

Process or in the Process Goals in a logical flow.

18

As an administrator, I should be able to order the State

Variables in the Process Goals in a logical flow.

19

As an administrator, I should be able to reset the order of the

Goals or State Variables.

20 Managing Plans

As an administrator, I should be able to add one of the

following plans to the Process or the Goals of the Process:

1. Straight Forward Plan.

2. Freeform Verbal Plan.

3. Plan with Alternatives.

21

As a system, I should ensure that the Plan is not added to a

Process with no Goals.

22

As a system, I should ensure that the Plan is not added to a

Process Goal with no sub Goals or State Variables associated

with it.

23

As an administrator, I should be able to provide Order and

Range rules when I select Straight Forward Plan as the Type

of Plan.

24

As a system, I should provide the following values as the

Order options to the administrator:

1. Do all in sequence

2. Do all in any order

3. Do any one

4. Optionally do any

5. Do concurrently

6. Do not do

25

As a system, I should be able to dynamically populate the

Range dropdown with the appropriate values based on the

number of sub tasks present in the Process or Process Goal to

which the Plan is being added. For ex, if the Plan is being

added to a Goal which had 4 sub Goals, the System should be

able to populate the Range dropdown with the following

values:

> 1 only

> 1 - 2

> 1 - 3

> 1 - 4

26

As a system I should be able to dynamically populate another

row of Order and Range dropdowns based on the Range

selection made by the administrator. For ex. If the

administrator selects the Range value as "1 - 2" in the example

given above in requirement no. 25, the System should

populate a new row of Order and range dropdowns, with the

Range dropdown values dynamically set to

> 3 only

65

> 3 - 4

in case the administrator selects the last value of the Range

dropdown, like "1 - 4" in case of example in the requirement

no. 25, the System should not add a new row of order and

Range dropdowns.

27

As an administrator, I should be able to provide a freeform

text when I select Freeform Verbal Plan as the Type of Plan.

28

As an administrator, I should be able to provide Order and

Range rules when I select Plan with Alternatives as the Type

of Plan.

29

As a System, I should follow same instructions to manage

Order and Range dropdowns as mentioned in requirement " ".

30

As an administrator, I should be able to add an "If" condition

with each pair of Order and Range values indicating that these

instructions should be following only when the mentioned "If"

condition is fulfilled.

31

As an administrator, I should be able add alternatives in the

"Plan with Alternatives" with each alternative having its own

set of If condition, Order and Range rules.

32

As a System, I should be able to dynamically generate the

Plan statement as the administrator makes selections in the

Order and Range dropdowns in case of Straight Forward Plan

and Plan with Alternatives.

33

As a System, I should be able to dynamically set the plan

statement to the freeform verbal text written by the user in

case of the Freeform Verbal Plan.

34

As a System, I should be able to add the generated Plan

Statement to the concerned Process or the Process Goal and

display it to the administrator when he saves his Plan.

66

Wireframes:

Screen Name: Main

Description: This is the first screen presented to the administrator when he starts the

TreeArchitect. The details of the menu items in the screen are explained below.

67

Screen Name: List Processes

Description: When the administrator selects “Open / Edit” option from the File Menu on

the Main screen, he will be presented with this screen with all the existing Processes

populated in the list box.

When the administrator selects “New using Template” option from the File Menu on the

Main screen, he will be again presented with this screen so that he can choose one of the

existing Processes as template to create a new Process.

68

Screen Name: Main (with Process Details populated)

Description: When the administrator selects a Process from the List Process screen, he is

presented with the Process Details screen with the details of the selected Process

populated.

When the administrator selects “New” option from the File Menu on Main screen, he will

be presented with Process Details screen with all the fields empty.

69

Screen Name: Add Goals

Description: This screen is presented to the administrator when he selects the Process or

a Goal on the Main Screen and then selects the Add Goal option from the Add menu on

Main screen. Multiple goals can be added to a parent goal or to the process.

70

Screen Name: Add State Variables

Description: This screen is presented to the administrator when he selects a goal and then

selects the Add State Variable option from the Add menu on Main screen. Multiple state

variables can be added to a parent goal.

71

Screen Name: Order Tasks

Description: This screen allows the user to add/edit the logical ordering of Goals/ State

Variables that exist as sub-tasks to an already existing Process or Goal.

72

Screen Name: Plan Details

Description: When the user selects Add / Edit Plans option from the Main screen, the

Plan Details screen is presented to him. He can then add one of the 3 plan options to his

selected Goal or Process. The options are Straight Forward Plan, Freeform Narrative Plan

and Plan with Alternatives. The screen here depicts the “Straight Forward Plan”

selection.

73

Screen Name: Plan Details

Description: When the user selects Add / Edit Plans option from the Main screen, the

Plan Details screen is presented to him. He can then add one of the 3 plan options to his

selected Goal or Process. The options are Straight Forward Plan, Freeform Narrative Plan

and Plan with Alternatives. The screen here depicts the “Freeform Narrative Plan”

selection.

74

Screen Name: Plan Details

Description: When the user selects Add / Edit Plans option from the Main screen, the

Plan Details screen is presented to him. He can then add one of the 3 plan options to his

selected Goal or Process. The options are Straight Forward Plan, Freeform Narrative Plan

and Plan with Alternatives. The screen here depicts the “Plan with Alternatives”

selection.

75

Screen Name: Enter Condition

Description: When the user clicks on the “If” button on the Plan Details screen with

“Plan with Alternatives” selection, he is presented with this screen. He can associate an

“If” condition here for a combination of Order and range values.

Screen Name: Add Alternative

Description: When the user clicks on the “Add” button of the Alternatives section on the

Plan Details screen with “Plan with Alternatives” selection, he is presented with this

screen. He then adds the name of the Alternative before proceeding to add Order and

Range combinations to this Alternative.

76

Appendix B

Task: A task is regarded as a problem to be solved or a challenge to be met. A task can

be regarded as a set of things including a system’s goal to be met, a set of resources to be

used, and a set of constraints to be observed in using resources.

Task Analysis: Task analysis is treated as the process of obtaining information about a

task in order to generate hypothesis concerning sources of inadequate performance or

about designs that will make things better.

Hierarchical Task Analysis: Hierarchical task analysis is a common form of task

analysis which is read bottom-up. Hierarchical task analysis consists of various levels of

tasks. Each level represents a learning level and the top level is the most complex.

Process: The process is the system`s goal. The process is a statement of what the system

is required to achieve.

Goal: The word goal is used to signify a target. In the case of our system, a goal is an

intermediate step to achieve the system wide goal, which is described as the process. In

our system, the word goal can be used inter changeably with the term task.

Sub-goal: A goal is further disintegrated into subsequent sub-goals. These sub-goals act

as intermediate steps in achieving the larger goal, of which they are child nodes. The

central strategy of our hierarchical task analysis software tool is to re-describe goals in

term of sub-goals. In our system, the word sub-goal can be used inter changeably with the

term sub-task.

77

State Variables: State variables form the leaves or the lowest level of the hierarchical

task tree structure. They usually signify the varying parameters or measurable parameters

of the task system. Goals can also form the leaves of the hierarchical task tree but they

are not varying entities.

Plans: Plans describe the order in which the sub-tasks are performed, and the conditions

that trigger their performance. Plans can be specified for any goal that has child goals,

sub-goals or state variables. Plans can be as simple as sequencing of the sub-goals, or

more advanced involving multiple plans that are initiated depending on the conditions (if

else statements) that the user defines.

78

Appendix C

Tree Architect Application Screenshots

Main Screen with a Process (without any plans)

79

Add Goals Screen

80

Straight Forward Plan

81

Freeform Narrative Plan

82

Plan with Alternatives 1

83

Plan with Alternatives 1

84

Main screen with Process with Plans

85

86

87

88

89

90

91

Process Maps

Adding a New process

92

Creating a new process using template

93

Managing Goals

94

Managing State Variables

95

Order Tasks

96

Adding Plans

97

Adding Straight Forward Plan

98

Adding Freeform Narrative Plan

99

Adding Plan with Alternatives

100

References

[1] Andy Farmilo, Ian Whitworth, Geoff Hone, Using THE HTA TOOL for Agile

Mission Planning, Department of Information Systems, Cranfield University at the

Defence Academy of the United Kingdom.

[2] Iain S MacLeod, Dr Geoff Hone, Steve Smith, Capturing Cognitive Task Activities

for Decision Making and Analysis, Department of Information Systems

Cranfield University, Defence Academy Campus.

[3] VIP Quality Software. http://www.taskmanagementsoft.com/products/taskmanager/

[4] TaskAnyone. http://www.taskanyone.com/contact.html

[5] Task Architect, Inc. http://www.taskarchitect.com/products.html

[6] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996).

Pattern-Oriented Software Architecture. John Wiley and Sons. ISBN 0-471-95869-7.

[7] Hussey, A. and Carrington, D., 1997, Comparing the MVC and PAC architectures: a

formal perspective. IEEE Proceedings – Software Engineering, Vol. 144, No. 4, August

1997. 224-236.

[8] Eric Freeman, Elisabeth Freeman, Kathy Sierra, Bert Bates, Head First Design

Patterns, O’Reilly Publications, 2004.

 [9] Burbeck, S.1986, Applications Programming in Smalltalk-80(TM): How to use

Model-View-Controller (MVC).

[10] .NET Framework Conceptual Overview.

http://msdn.microsoft.com/library/zw4w595w.aspx

[11] Garbage Collection. http://msdn.microsoft.com/en-us/library/0xy59wtx.aspx

[12] [13] [14] Model View Controller. http://msdn.microsoft.com/en-

us/library/ff649643.aspx

[15] ATLS Program. http://www.facs.org/trauma/atls/about.html

