
IMPLEMENTATION AND PERFORMANCE

ANALYSIS OF A MULTI-MESHED TREE ROUTING

PROTOCOL FOR MANETS

BY ROHIT THAREJA

A thesis submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

Written under the direction of

Prof. Ivan Marsic

and approved by

New Brunswick, New Jersey

January, 2011

c© 2011

Rohit Thareja

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

Implementation and Performance Analysis of a

Multi-Meshed Tree Routing Protocol for MANETs

by Rohit Thareja

Thesis Director: Prof. Ivan Marsic

As the importance of mobile data connectivity in our daily lives increases, there

has been an accompanying increase in the demand for rapidly deployable, short-lived

networks which operate without any base infrastructure. This is where Mobile-ad-hoc

Networks step in to turn the dream of getting connected anywhere and at any time into

a reality and are fast being adopted into civilian applications like vehicular networks

and location-based advertising. They have several advantages over infrastructure based

wireless networks (like cellular networks) in terms of cost of deployment, ability to use

unlicensed bands, etc. However, they are still plagued with several constraints mainly

brought about by their dynamic nature. The main concern here is the use of an efficient

routing protocol which must be adaptive and able to maintain routes in spite of the

changing network connectivity.

In this work we investigate a recently-proposed cluster-based routing protocol which

utilizes both mesh and tree concepts and aims at minimizing the control overhead re-

quired in the setup and maintenance of the network while maintaining robust connec-

tivity. This hybrid protocol, called Multi-Meshed Tree routing protocol, has a unique

way of addressing the issues of dynamic adaptation and enhanced connectivity through

ii

a hierarchical cluster-based approach along with Virtual Identifiers. Its main advan-

tage over the various other MANET protocols developed is its algorithm simplicity and

low message complexity suited for these limited bandwidth, limited power, resource

constrained networks.

The focus of this work is implementing this protocol (to work with the ns2 simula-

tor), understanding its advantages and conducting some preliminary simulation based

comparisons with prevalent Mobile ad-hoc network protocols. We looked at comparison

with AODV, DSDV and DSR Protocols and observed MMT to exhibit more resilient

connectivity due to redundant routes, particularly for larger sized networks. Further,

there was roughly a 1/6th reduction in routing overhead when compared to proactive

protocols. We also studied the effects of configurability of clustersize and inherent non-

optimality of routes associated with MMT. We foresee the increased use of MANETS

in our daily lives, and hope that the advantages of this routing protocol are utilized for

future applications.

iii

Acknowledgements

I would like to thank my adviser Prof. Ivan Marsic for his constant guidance and

support throughout the entire duration of my MS research. I am very grateful for the

freedom he gave me to work in the field of my interest while making sure that I was

always on the right path. This work would not have been possible without him.

I would like to thank my Manager at Research In Motion for holding my Job while

I finished my Thesis work.

I would also like to thank my parents and my family for their continuous support

throughout this journey. I would like to dedicate this work to them.

iv

Table of Contents

Abstract . ii

Acknowledgements . iv

List of Figures . vii

1. Introduction . 1

2. Survey of MANET Routing Protocols 7

2.1. Classification of MANET Routing Protocols 8

2.1.1. On-Demand or Reactive Protocols 8

2.1.2. Proactive Protocols . 10

2.1.3. Hybrid Protocols . 10

2.2. Benchmark Routing Protocols . 11

2.2.1. Ad Hoc On Demand Distance Vector Routing Protocol 11

2.2.2. Destination Sequenced Distance Vector Routing Protocol 13

2.2.3. Dynamic Source Routing . 15

2.3. Need for a new Protocol . 17

3. The Multi-Meshed Tree Routing Protocol 19

3.1. The MMT Framework . 19

3.2. Routing Algorithm . 21

3.2.1. Cluster Head Election . 21

3.2.2. Initial Cluster formation . 22

3.2.3. Intra-Cluster Proactive Routing 24

3.2.4. Inter-Cluster Reactive Routing 28

3.3. Advantages of the MMT Framework . 31

v

4. Implementation of MMT . 33

4.1. Protocol Design in ns2 . 33

4.2. The Routing Agent . 38

4.3. Sample Scenario and Network Configuration 41

5. Simulation Setup and Results . 50

5.1. Simulation Setup . 50

5.1.1. Tcl Configuration Script . 50

5.1.2. Trace Support . 56

5.2. Simulation Results . 57

5.2.1. Packet Delivery Ratio . 57

5.2.2. Routing Overhead . 59

5.2.3. End-to-End Delay . 60

5.2.4. Effects of Non-optimality . 61

5.2.5. Configurability . 63

6. Conclusions and Future Work . 66

References . 68

vi

List of Figures

2.1. Categorization of ad hoc routing protocols 8

2.2. AODV Route Discovery . 12

2.3. Creation of the route record in DSR . 16

3.1. Initial Link Assignment and VID Establishment 23

3.2. Sample topology with VID’s assigned . 25

3.3. Overlapping Clusters . 27

3.4. Inter-Cluster Organization . 30

4.1. Components of the Mobile Node . 35

4.2. Sample Network Topology(NAM Screenshot) 42

4.3. Clusterheads Broadcasting their VID’s 42

4.4. Nodes request the clusterhead to assign them a VID 43

4.5. Clusterhead assigns VID’s . 44

4.6. Nodes broadcast their newly acquired VID’s 45

4.7. Path followed for flow of data from node 8 to node 5(Intra-cluster) . . . 47

4.8. Introduction of gateway node 4 . 48

4.9. Path followed for flow of data from node 8 to node 13(Inter-cluster) . . 49

5.1. Simulation Stack . 54

5.2. Packet Delivery Ratio . 59

5.3. Routing Overhead . 60

5.4. End-to-End Delay . 61

5.5. Route Optimality compared to AODV (Benchmark) 62

5.6. Cluster-Size Configurability . 64

5.7. Cluster-Size Configurability 2 . 64

vii

1

Chapter 1

Introduction

A Mobile Ad-Hoc Network (MANET) is an autonomous, self-configuring system of

mobile nodes connected by wireless links and capable of communication without any

static infrastructure like base stations. Nodes in MANETs are free to move and organize

themselves in an arbitrary fashion. Each node has the freedom to roam about while

communicating with others. The communication path between pairs of nodes may

have multiple links and the radio between them can be heterogeneous. This permits an

association of different links to be a part of the same network.

If two hosts are not within radio range of each other, all message communication

between them must pass through one or more intermediate nodes that serve as routers.

As an example, we can think of a group of people with laptops, at a location where

there is no network serice present. They can easily form an ad-hoc network between

their machines to facilitate data communication. This is one of the many examples

where these networks may possibly be used.

Interest in such networks has recently grown due to the plethora of mobile com-

munication devices hitting the market, like mobile phones, palmtops, laptops, tablets,

etc, that can operate in license-free radio frequency bands. Technological advancements

in wireless communication devices have also led to lower prices and higher data rates.

Interest is also partly fueled by increased enthusiasm for running common network pro-

tocols in dynamic wireless environments without the need of specific infrastructures.

The main challenge in the design of ad hoc networks is the development of dy-

namic routing protocols that can efficiently calculate routes between two communicat-

ing nodes. The routing protocol must be able to keep up with the high degree of node

mobility that often changes the network topology drastically and unpredictably.

2

Some of the inherent features of MANETS are:

1. They are rapidly deployable and self configuring.

2. They have no requirement for existing infrastructure.

3. They utilize Wireless links, usually operating in unlicensed bands.

4. Nodes are mobile and hence the topology can be very dynamic.

5. Nodes must be able to relay traffic since communicating nodes might be out of

range.

6. It can be a standalone network or it can be connected to external networks(Internet).

The popularity of these networks has grown, and while typical, traditional applica-

tions of MANETs include Military operation, disaster recovery, etc these networks are

also fast being adapted into civilian applications. These range from simple scenarios

such as people at a conference where their laptops constitute a temporary MANET to

more complicated scenarios such as highly mobile vehicles on the highway which form

a Vehicular ad hoc network to provide traffic management.

Some popular applications for which these MANETS are suited are listed below:

1. Military environments: soldiers, tanks, planes

2. Emergency operations: Disaster recovery, Search-and-rescue, Policing and fire

fighting

3. Civilian environments: Taxi cab network, Conference venues, Meeting rooms,

Sports stadiums , Boats and small aircraft

4. Vehicular Ad Hoc Networks (VANET)

5. Sensor Networks Eg: Disposable sensors which are dropped from high altitudes

and dispersed on the ground for hazardous materials detection. Underwater Sen-

sors.

3

A MANET Protocol Stack ideally consists of

• Physical Layer: 2.4/5.8 Ghz, FHSS/DSSS, OFDM, OFDMA, MIMO, Directional

Antenna, etc

• MAC Layer: CSMA, CSMA/CA, RTS/CTS, TDMA with Scheduling Algorithm

• Routing Layer: Addressing; DSR, AODV, OLSR, TORA, ZRP, LAR, etc. (

Unicast, Broadcast, Multicast, Reliable Multicast, Geocast)

• Transport Layer: UDP, TCP, RTP, etc.

• Cross-cutting functions:

Power-awareness, energy-conservation

Security of control and data packets

There has been a lot of research work on all these Layers of the Protocol Stack,

as well as several cross-layer solutions. The emphasis of this work is on developing a

novel protocol for the Routing Layer. Such networks allow the wireless mobile nodes to

dynamically enter the network as well as leave the network. Due to the inherent limits

in the transmission range of wireless network nodes, multiple hops are usually needed

for a node to exchange information with any other node in the network. Nodes in these

networks act as hosts as well as routers, and hence the most important part of these

networks is having an efficient Routing Protocol capable of supporting these mobile,

multihop networks. The broad requirements of these protocols include:

1. Self starting and self organizing

2. Multi-hop, loop-free paths

3. Dynamic topology maintenance

4. Rapid convergence

5. Minimal network traffic overhead

6. Efficient Address allocation

4

7. Scalable to large networks

There are numerous issues to consider when deploying MANETs. The following are

some of the main issues.

1. Unpredictability of environment: Ad hoc networks may be deployed in unknown

terrains, hazardous conditions, and even hostile environments where tampering

or the actual destruction of a node may be imminent. Depending on the environ-

ment, node failures may occur frequently.

2. Unreliability of wireless medium: Communication through the wireless medium

is unreliable and subject to errors. Also, due to varying environmental conditions

such as high levels of electro-magnetic interference (EMI) or inclement weather,

the quality of the wireless link may be unpredictable. Furthermore, in some

applications, nodes may be resource-constrained and thus would not be able to

support transport protocols necessary to ensure reliable communication on a lossy

link. Thus, link quality may fluctuate in a MANET.

3. Resource-constrained nodes: Nodes in a MANET are typically batterypowered as

well as limited in storage and processing capabilities compared to fixed nodes of

Infrastructure based networks. Moreover, they may be situated in areas where it

is not possible to re-charge and thus have limited lifetimes. Because of these limi-

tations, they must have algorithms which are energy-efficient as well as operating

with limited processing and memory resources. The available bandwidth of the

wireless medium may also be limited because nodes may not be able to sacrifice

the energy consumed by operating at full link speed.

4. Dynamic topology: The topology in an ad hoc network may change constantly

due to the mobility of nodes. As nodes move in and out of range of each other,

some links break while new links between nodes are created.

As a result of these issues, MANETs are prone to numerous types of faults including,

1. Transmission errors: The unreliability of the wireless medium and the unpre-

dictability of the environment may lead to transmitted packets being garbled and

5

thus received in error.

2. Node failures: Nodes may fail at any time due to different types of hazardous

conditions in the environment. They may also drop out of the network when

their energy supply is depleted.

3. Link failures: Node failures as well as changing environmental conditions (e.g.,

increased levels of EMI) may cause links between nodes to break.

4. Route breakages: When the network topology changes due to node/link failures

and/or node/link additions to the network, routes become out of date and thus

incorrect. Depending upon the network transport protocol, packets forwarded

through stale routes may either eventually be dropped or be delayed; packets

may take a circuitous route before eventually arriving to the destination node.

5. Congested nodes or links: Due to the topology of the network and the nature of the

routing protocol, certain nodes or links may become overutilized, i.e., congested.

This will lead to either larger delays or packet loss.

Routing protocols for MANETs must deal with these issues to be effective. There

are a large number of Routing Protocols that have been proposed, each having their own

pros and cons, some of which we will discuss in the next chapter. The Multi Meshed

Tree Routing Protocol,which is the focus of this work, addresses the current major issues

facing MANET Routing protocols, which include Robust Connectivity, Scalalbility and

Dynamic Adaptation to node mobility. These concerns and their proposed solutions

are discussed in more details in the following chapters.

Now that we have an understanding of the important applications of MANETS, as

well as their characteristics and requirements, the next chapter delves further into the

Routing Protocols currently in use, as well as their broad classifications. It also explains

the functioning of the AODV, DSDV and DSR protocols which we use as benchmarks

for performance comparison in Chapter4.

Chapter 3 then explains the detailed working of a novel Multi-meshed Tree Routing

protocol, and discusses its features and advantages.

6

Chapter 4 explains the Simulation framework setup to test the implemented MMT

Protocol and provides a comparative analysis of the Protocol with AODV, DSDV and

DSR protocols.

It is the goal of this work to explain the detailed operation, associated implemen-

tation and algorithms of the Multi-Meshed Tree Routing Protocol. To discuss what

advantages it has over prevelant MANET routing protocols and to conduct simula-

tion based experiments for performance comparisons in key areas such as Robustness,

Overhead and Delay.

7

Chapter 2

Survey of MANET Routing Protocols

The aim of this section is to describe a classification of the different types of Mobile

Ad-hoc Network Routing Protocols with a few examples.

Routing protocols in conventional wired networks are usually based upon either

distance vector or link state routing algorithms. To keep up with topology changes,

both of these algorithms require periodic routing advertisements to be broadcast by

each router. In distance vector routing, each router broadcasts to all of its neighboring

routers its view of the distance to all other nodes; the neighboring routers then compute

the shortest path to each node. In link-state routing, each router broadcasts to its

neighboring nodes its view of the status of each of its adjacent links; the neighboring

routers then compute the shortest distance to each node based upon the complete

knowledge of the network. These conventional routing algorithms are not efficient for

the type of dynamic changes which may occur in an ad-hoc network. This is because,

in conventional networks, routers do not generally move around and only rarely leave

or join the network. In an environment with mobile nodes, the changing topology will

not only trigger frequent re-computation of routes but the overall convergence to stable

routes may be infeasible due to the high-level of mobility. Routing in MANETs must

take into consideration their important characteristics such as node mobility, scalability

as well as resource constraints.

In the remainder of this section, we present an overview of some of the key routing

protocols for MANETs.

8

2.1 Classification of MANET Routing Protocols

There are a large variety of Routing Protocols, which implement vastly different Routing

strategies. It is important for the routing and topology information to be kept up to date

in such a dynamic environment. The means by which the information is updated is a

major characteristic for classification. Figure 2.1 shows the general broad classification

of Routing Protocols. Routing information can be updated:

• Proactively

• On-Demand

• Hybrid: Both proactive and On-demand

Figure 2.1: Categorization of ad hoc routing protocols

A routing protocol can maintain routing information either on-demand (only when

required) or proactively (at all times). Further proactive protocols can be divided into

protocols that update routing information in regular intervals and protocols that update

on certain events. Finally, there are routing protocols that are hybrid and make use of

both methods. These different types of protcols are explained in detail in the coming

sections.

2.1.1 On-Demand or Reactive Protocols

A network using an on-demand protocol will not maintain routing information on all

nodes for all times, but instead will be obtained on demand. If a node wants to transmit

a message, and does not have enough routing information to send the message to the

9

destination, the required information has to be obtained. For Reactive Protocols, this

routing information is not consistently maintained, but instead gathered when data

transfer between nodes is required. The node needs to know, at least the next hop

(among its neighbors) for the packet. Although the node could just broadcast(flood)

the packet to all neighbors this leads to serious congestion in many cases, and usually

adversely affects throughput. However, such broadcasts can be used in a route discov-

ery process, if there is no next-hop information available, yet. This usually is made up

of a broadcast message from the source node, indicating the desired destination. Nodes

which have the desired routing information will respond to the originating node, which

will decide a route from the replies it receives. The broadcast may be limited to prop-

agate to only a few hops first, before a net-wide broadcast is issued (which would flood

the whole network). The route request and selection process must complete, before the

message can be sent. This leads to initial setup delays for messages, if their route is

not known to the node. This is one of the drawbacks of Reactive Protocols as their

delay in data propagation is generally higher, attributed to the initial route discovery

process. To limit the impact of this delay, most protocols will use a route cache for

routes which are already established. The information in this cache will time out, be-

cause in a mobile environment, the routes will be invalid after some time, due to node

mobility and topology changes. This is done to avoid stale route cache data. Clearly,

applications that are used over an on-demand routing protocol need to be tolerant to

the initial setup delay. The advantage of on-demand routing protocols is that the wire-

less channel is not required to carry a lot of routing overhead data for routes,a large

number of which are generally not even used. In high traffic, high mobility scenarios,

having low route-setup overhead can be a great advantage in increasing performance

such as Throughput or Latency.

Examples for on-demand protocols are the following:

ABR :Associativity Based Routing [5], AODV: Ad Hoc On Demand Distance Vector

Routing Protocol [10] , CEDAR: Core-Extraction Distributed Ad Hoc Routing [4] ,

DREAM: Distance Routing Effect Algorithm for Mobility [6] , DSR: Dynamic Source

Routing Protocol[19].

10

2.1.2 Proactive Protocols

Proactive routing protocols will try to maintain correct routing information on all nodes

in the network at all times. This can be achieved in different ways, and thus divides

the protocols into two subclasses: event driven and periodically updated protocols.

Event driven protocols will not send any routing update packets, if no change in

topology occurs. Only if a node detects a change of the topology (usually a change in

the neighbor set, or the reception of a message indicating a change in some other nodes

neighbor set, or a link/node failure), this will be reported to other nodes, according to

the updating strategy of the routing protocol. Protocols that are updated in regular

intervals will always send their topology information to other nodes at periodic intervals,

irrespective of any change in topology. Many link state protocols work in such a manner.

They may vary the maximum distance of an update message with the length of the

interval, so that nodes farther away get updates less frequently than close nodes, thus

balancing the load imposed on the network. This is based on the assumption that

there is higher traffic on closer nodes, and there is no need to flood the entire network

everytime the topology changes. Proactive protocols of either subclass impose a fixed

overhead to maintain the routing tables, even if many of the entries are not used at

all. Their primary advantage is, that the routes can be used at once and there is no

setup delay. Proactive protocols tend to perform best in networks with low to moderate

mobility, fewer nodes, and many data sessions.

Event driven proactive routing protocols are the following: CBRP: Cluster Based

Routing Protocol [12], CGSR:Clusterhead Gateway Switch Routing [7] , DSDV: Desti-

nation Sequenced Distance Vector Routing Protocol [18]

Regular updated protocols are: ,FSR: Fisheye State Routing [14], OLSR:Optimized

Link State Routing [13].

2.1.3 Hybrid Protocols

These are the protocols that utilize both proactive and on-demand routing and attempt

to leverage the advantages of both. Routes are maintained proactively, but only to

11

certain nodes (active receivers), and the size and frequency of the updates is controlled,

usually by dividing the network into zones, such as in ZRP[15]. For nodes not served

by the proactive protocol, there is reactive route discovery.

Some examples are: HWMP (Hybrid Wireless Mesh Protocol): which is the default

mandatory routing protocol for 802.11s. HWMP is inspired by a combination of AODV

(RFC 3561[2]) and tree-based proactive routing. [16] Terminode Routing:Terminode

Routing consists of an on-demand location based component: AGPF (Anchored Path

Geodesic Packet Forwarding) and a proactive local routing component (Terminode Lo-

cal Routing, TLR).[17] ZRP - Zone Routing Protocol The Zone Routing Protocol also

consists of a proactive Intra Zone Routing Protocol (IARP) and an on-demand Inter

Zone Routing Protocol (IERP)[15].

2.2 Benchmark Routing Protocols

In this section, we explain the working of 3 common MANET protocols, which we have

used as benchmarks for Performance comparison with MMT in Chapter 4. These are:

Ad Hoc On Demand Distance Vector Routing Protocol(AODV), Destination Sequenced

Distance Vector Routing Protocol (DSDV) and Dynamic Source Routing(DSR)

2.2.1 Ad Hoc On Demand Distance Vector Routing Protocol

This is one of the most discussed and most advanced routing protocols. It is an impor-

tant part of the work of the MANET IETF working group and is probably the most

mature suggestion for an ad hoc routing protocol. Its main developers are Charles E.

Perkins (Nokia Research) Elizabeth Belding-Royer (UCSB) and Samir Das (University

of Cincinnati)[10]. AODV is discussed in lots of studies and is often used as a reference

to compare other routing protocols such as in [8],[9] It is for this reason that we have

chosen to compare the developed MMT protocol with AODV.

AODV does not need to exchange periodic messages proactively, but works in an

on-demand fashion, instead. If a route to a destination is unknown, a route discovery

process is initiated. Figure 2.2 shows the Route Discovery process in AODV. This

12

consists of broadcasting a Route Request (RREQ) packet throughout the network. To

limit the impact of a net-wide broadcast, these request should be sent with an expanding

ring search technique: the TTL of the packets starts with a small value; if no route has

been found, the TTL will be increased and the request will be resent. Each node that

rebroadcasts this request, adds its address into a list in the packet. If the destination

sees the request, it will reply with a unicast Route Reply (RREP) to the source. Each

intermediate node may cache the learned routes. The routing table entries consist of a

destination, the next hop toward this destination and a sequence number. Routes are

only updated if the sequence number of the updating message is larger than the existing

one. Thus routing loops and updates with stale information are prevented. The amount

of information, which needs to be present at each node, is rather limited: The node is

aware of its neighbors (via link-layer-notification, or explicit HELLO messages). The

node knows route destinations and the next hop. The node has a precursor list for each

destination. This list consists of all nodes, which use the current node as a relay for the

destination in the routing table entry. In case of a route failure to the destination, the

node knows exactly which other nodes to notify, and does so proactively. Each routing

entry also has a lifetime. The authoritative description of AODV is RFC 3561 in [10]

Figure 2.2: AODV Route Discovery
[22]

13

Some of the major disdavantages of AODV are Connection setup delay due to reac-

tive nature. This is the main disadvantage as it leads to high route discovery latency.

Also multiple RouteReply packets in response to a single RouteRequest packet can

lead to heavy control overhead, when compared to other reactive protocols like DSR.

AODV is designed to support the shortest hop count metric. This metric favors long,

low- bandwidth links over short, high-bandwidth links [11]

2.2.2 Destination Sequenced Distance Vector Routing Protocol

This protocol is the result to adapt an existing distance vector routing algorithm (Dis-

tributed Bellman Ford), as used in RIP, to an ad hoc networking environment. This is

a proactive protocol, that updates routing information on a regular basis.

DSDV is one of the first attempts to incorporate an established routing mechanism

to work with mobile ad hoc networks. To avoid routing loops, the concept of destination

sequence numbers has been introduced. Each entry in the routing table contains a

sequence number which are generally even if a link is present, else odd. Every mobile

station maintains a routing table that lists all available destinations, the number of

hops to reach the destination and the sequence number assigned by the destination

node. The number is generated by the destination and sends out the next update with

this number. The sequence number is used to distinguish stale routes from new ones

and thus avoid the formation of loops. Routes with more recent sequence numbers

obsolete older routes. The stations periodically transmit their routing tables to their

immediate neighbors. A station also transmits its routing table if there has been a

significant change in its table from the last update sent. Hence, the update is both

time-driven and event-driven. The routing table updates can be sent in two ways:-

a ”full dump” or an incremental update. A full dump sends the entire routing table

to the neighbors and could occupy many packets whereas in an incremental update

only those entries from the routing table are sent which have a metric change since the

last update and it must fit in a packet. If there is space in the incremental update

packet then those entries may be included whose sequence number has changed since

the last update(This is kept track of internally). This is a method of providing relevant

14

updated routing data in the packet when there is space leftover. When the network is

relatively stable, incremental updates are sent to avoid extra traffic and full dumps are

infrequent, since there would have been little change and the data transmitted would

be redundant. However,in a fast-changing network, incremental packets can grow big,

and since the incremental updates must be limited to one packet, so full dumps will

be more frequent. As mentioned previously, each route update packet, in addition to

the routing table information, also contains a unique sequence number assigned by the

transmitter. The route labeled with the highest (i.e. most recent) sequence number is

used. This mechanism is used to provide freedom from loops and prevents stale routes.

If two routes have the same sequence number, then the route with the best metric (i.e.

shortest route) is used. Based on the past history, the stations estimate the settling

time of routes. It is calculated by maintaining a running weighted average over the most

recent updates of the routes for each destination [18]. A route settling time table is kept

in each node with a time to wait for a route with a better metric before advertising.

This is used to dampen fluctuations caused by hosts with irregular updates, varying

propagation speeds, etc. The stations delay the transmission of a routing update by

settling time so as to eliminate those updates that would occur if a better route were

found very soon.

The routing information is transmitted every time a change in the topology has

been detected (i.e. a change in the set of neighbors of a node). DSDV works only

with bidirectional links. Mobiles also keep track of the settling time of routes, or the

weighted average time that routes to a destination will fluctuate before the route with

the best metric is received. By delaying the broadcast of a routing update by the

length of the settling time, mobiles can reduce network traffic and optimize routes by

eliminating those broadcasts that would occur if a better route was discovered in the

very near future.

Some Disadvantages of DSDV:

DSDV requires a regular update of its routing tables, which uses up battery power

and a small amount of bandwidth even when the network is idle. Network throughput

is affected by this high overhead. Also, whenever the topology of the network changes,

15

a new sequence number is necessary before the network re-converges. Thus, DSDV is

not suitable for highly dynamic networks.

DSDV was presented in [18] in 1994

2.2.3 Dynamic Source Routing

The Dynamic Source Routing (DSR) protocol as presented in [19] and [22] is an on-

demand routing protocol that is based on the concept of source routing. Mobile nodes

are required to maintain route caches that contain the source routes of which the mobile

is aware. Entries in the route cache are updated as new routes are learned. There are

two major phases in this protocol: route discovery and route maintenance. When a

mobile node needs to send a packet to a particular node, it first checks its route cache

to determine if it already has a route to the destination. If there is an unexpired route

to the destination, it will use this route to send the packet. However, if the node does

not have such a route, it initiates the process of route discovery by broadcasting a route

request packet(RREQ). This route request is made up of the address of the destination,

along with the source nodes address and a unique identification number. Each node

which recieves the packet checks whether it is aware of any route to the destination. If

it is not, it adds its own address to the route record of the packet and then forwards

the packet along its outgoing links. To limit the flooding of route requests propagated

on the outgoing links of a node, the node will onl forward the route request if the

request has not yet been seen by the mobile and if the mobiles address does not already

appear in the route record. A route reply (RREP) is generated when the route request

reaches either the destination itself, or an intermediate node which contains in its route

cache an unexpired route to the destination. By the time the packet reaches either

the destination or such an intermediate node, it contains a route record yielding the

sequence of hops taken. Figure 2.3 illustrates the formation of the route record as the

route request travels through the network.

If the destination generates the route reply, it places the route record present in the

route request into the route reply. If the route reply is generated by an intermediate

node, it will append its cached route to the route record and then generate the route

16

Figure 2.3: Creation of the route record in DSR
[22]

reply. To return the route reply, the responding node should have a route to the source.

If it has a route to the source in its route cache, it may use that route. Otherwise,

if symmetric links are supported, the node may reverse the route in the route record.

However, if symmetric links are not supported, the node may initiate its own route

discovery and piggyback the route reply on the new route request. 2.3b shows the

transmission of the route reply with its associated route record back to the source

node. Route maintenance is accomplished through the use of route error packets and

acknowledgments. Route error packets are generated at a node when the data link layer

encounters a fatal transmission problem. When a route error packet is received, the

hop in error is removed from the nodes route cache and all routes containing the hop

are truncated at that point. In addition to route error messages, acknowledgments are

used to verify the correct operation of the route links. Such acknowledgments include

passive acknowledgments, where a mobile is able to hear the next hop forwarding the

packet along the route.

Both AODV and DSR are reactive protocols using RREQ and RREP messages.

The main difference between them is that in DSR, a source routing option is used; i.e.

when a node wants to send something to a destination it sets the whole route for that

packet, indicating the addresses of the terminals it has to pass through. In this sense

all packets have a DSR header included, and it is required that all nodes within the ad

hoc network know the whole network topology.

On the other hand, AODV does not perform source routing at all. When a terminal

17

wants to send something to a destination, it checks its routing table, looking for the

next hop towards that destination, and sends the packet to it, and so on. In this

sense, data packets travel through the ad hoc network without any AODV specific

information. Also, DSR uses routing cache aggressively, and maintains multiple routes

per destination, while AODV uses one route per destination. For application-oriented

metris like delay and throughput, DSR outperforms AODV in less stressful situations

(smaller number of nodes and lower load and/or mobility). AODV outperforms DSR

in more stress situations (more load, higher mobility)[9]

2.3 Need for a new Protocol

So far, we have discussed the general classification of MANET Routing Protocols, seen

some examples and then explained three popular Protocols, AODV, DSDV and DSR

in detail. Although some of these protocols have become well defined and even have

commercial applications, there is still a lot of scope for improvement. The development

of MANET routing protocols is still a subject of constant research interest, and rightly

so, given that there are several inadequacies in current protocols. More importantly

there are several application-specific requirements of MANET’s, each differing in their

Network Performance requirements ranging from Qualtiy of Service to Throughput to

Latency requirements. Some of the inadequacies of Proactive protocols, like DSDV are

that they have large Routing Overheads and do not deal well with route maintenance

when faced with high mobility. Reactive Protocols like DSR and AODV also have

several inadequacies particularly their large setup delays. There has been work done

on Hybrid protocols [43] but the complexity of the algorithms has generally been a

deterring factor. We find the Multi-Meshed Tree Routing protocol to have some unique

features which attempt to bridge this gap of inadequacies of current Protocols. The

advanatges of the MMT protocol are stated clearly in the following chapter, and it is our

goal here to confirm the need for a simple yet robust algorithm capable of delivering

high throughput at a relatively low control overhead. MMT steps in to attempt to

bridge this requirement by providing multiple proactive routes, which is uncommon in

current routing protocols, as well as avoiding expensive routing overhead to maintain

18

connectivity in a dynamic environment.

19

Chapter 3

The Multi-Meshed Tree Routing Protocol

In this section, we describe the operation of the MMT Routing Protocol, the details

of the algorithm used, and some principal advantages over the previously described

Ad-Hoc Routing Protocols.

3.1 The MMT Framework

The Multi-Meshed Tree routing Protocol, as described in [1], is a recently proposed,

unique MANET routing protocol. It has several advantages as explained below and is

the main focus of this work. The protocol deals with solving the challenges of robust

connectivity and increased configurability in data delivery, while addressing scalability

and adaptability to highly dynamic network conditions (due to node mobility and the

wireless environment).

MMT is a single algorithm that facilitates the formation of multiple clusters of

definable size and max hops from an elected cluster head and simultaneously sets up

proactive routes within the clusters without flooding, or routing tables and states main-

tenance. For inter cluster routing, MMT adapts the reactive route discovery process

used in most current reactive routing protocols but based on the meshed tree principles

which avoids flooding discovery messages and reduces the route dependency between

distant communicating nodes to the number of clusters between them, which is very

much less than the number of actual mobile nodes that forward packets between the

communicating nodes.

The hybrid approach hence consists of the proactive MMT Algorithm, used for intra

cluster routing while a reactive MMT (RMMT) is used for inter cluster routing. The

route discovery and route recording scheme using route request and route response

20

messages but has low flooding overheads and exhibits high route stability under high

node mobility conditions.

The algorithm is developed as a Hybrid routing scheme to facilitate high route

robustness with an efficient forwarding approach based on virtual IDs (VID). This

novel approach leverages the combined features of a tree(nodes are able to connect to

multiple tree branches) and a mesh (the tree branches are overlapped for enhanced

redundancy) to facilitate efficient routing.

The MMT based framework has inherent capabilities that provision for:

1. Dynamic adaptation to node mobility and unreliable wireless environment as

nodes connect to multiple tree branches and to better ones as they move. This

results in the availability of multiple non-stale routes and localized repairing of

routes. It facilitates quick joining of mobile nodes to a cluster. In contrast, proac-

tive Protocols like DSDV dont cater for multiple routes, hence their performance

is greatly affected by Link/Node failures and high mobility.

2. Robust connectivity among devices that wish to communicate and the reduction

in dependency on the number of forwarding nodes between distant communicating

nodes. This is achieved through route redundancy and non-fixed routes. Hav-

ing non-fixed routes is an important feature missing in the protocols previously

discussed as it provides more flexibility in the choice of routes to avoid regions

affected by link failures.

3. Scalability to increase network size and number of communicating nodes. This is

because of configurable cluster size, hybrid routing approach (proactive within a

cluster and reactive across clusters) and low overhead due to no flooding. Proac-

tive protocols like DSDV are greatly stunted by their inability to scale, as well

as their large routing overhead. For AODV and DSR, particularly DSR, scaling

leads to exponential delay in setting up routes.

4. Configurable operational aspects to specific application requirements.This is at-

tributed to clustered approach and route selection and traffic prioritization ca-

pability. Configurability is a feature lacking in protocols discussed previously to

21

allow apllication specific flexibility.

5. Simple and robust mechanisms to self organize and self heal.

3.2 Routing Algorithm

The fundamentals of the MMT algorithm build on the knowledge that hierarchy helps

address scalability in large wireless ad hoc networks and hybrid routing with proactive

and reactive routing components helps in reducing routing overheads.

The functionality of the algorithm can be split up into 3 main components:

1. Cluster Formation: This involves the mobile nodes organizing themselves into

clusters with an elected clusterhead. All data traffic must pass through the clus-

terhead, even if the source and destination nodes are within the same cluster.

2. Intra-Cluster Proactive Routing: Algorithm for routing packets within a cluster.It

is a proactive algorithm which constantly checks and updates its state.

3. Inter-Cluster Reactive Routing: Algorithm for routing packets across clusters. It

is a reactive algorithm which kicks in only when a clusterhead acknowledges that

the destination is not within its cluster.

3.2.1 Cluster Head Election

The first aspect of the MMT algorithm is multi-hop multiple overlapped clusters forma-

tion, which involves 1) Cluster head election and 2) Cluster formation. Cluster Head

Election involves determining a suitable cluster head in a locality using criteria like

node IDs, credentials, power level, MAC address and the number of neighbors (i.e. the

most connected and central node) or combinations thereof. We shall be adopting one

such algorithm as explained in [44] that is based on the number of neighbors and use

IDs to resolve a tie. This election process is used only when all nodes are deployed

at the same time or when there is need for resolution. Once elected, a cluster head

continues for a predefined period or till it is disabled or dies. The cluster-head election

algorithm is currently an ongoing work, and will be later integrated into the routing

22

logic. For the purpose of this work, we assume that we have efficiently elected Cluster

heads.

Once a Cluster Head (CH) is elected, the MMT algorithm is used to create the

cluster around it. The CH hence, is the root of the meshed tree and multihop client

feature is inherent in the proactive route set up.

3.2.2 Initial Cluster formation

Cluster Formation is the process by which nodes decide to join a cluster head for reasons

such as better signal and so on. The MMT cluster formation algorithm is different as

it is the cluster head that decides which of the requesting cluster clients will be in its

cluster, based on a defined cluster size and a threshold on the number of hops from the

cluster head. The multi hop cluster formation is achieved in a simple way and built in

a localized fashion without flooding messages in the cluster. This is possible through

the use of Virtual Identifiers (VID). Each node in the network has:

1. A unique Identifier (UID): This is a single identifier unique to each node, and has

a one-to-one relationship (similar to a MAC address) to identify a praticular node

at any moment of time or network state.

2. Virtual Identifiers (VID’s): Each node can have one or multiple (upto a config-

urable limit) number of VID’s. these are assigned by the clusterhead, as explained

below. They are non-unique and change for a particular node depending on which

cluster(s) it is a part of at a snapshot of time.

In figure 3.1, for sake of clarity, only a few nodes are shown. Node B can hear Node

A, and Node C can hear Node B. The figure 3.1(a) shows that node A with a unique ID

(UID) = 100 is elected as a cluster head. The double circle indicates A as a clusterhead

in this and other figures in the text. A advertises its UID as a cluster head VID. Node

B hears this advertisement and sends a request to A to join its cluster. A will allocate a

VID =1001 to B. A parent node is allowed to limit the maximum number of children in

its cluster, to reduce traffic bottleneck at the parent node. Whenever node A accepts a

23

Figure 3.1: Initial Link Assignment and VID Establishment

child, it will allocate the child a VID that is its own VID, appended with a single digit

integer . If another nodes wants to join as a first hop child of cluster head A it will be

given a VID 1002, the following one will be given a VID = 1003 and so on.

In figure 3.1(b), B has acquired its VID from A and now advertises this VID. Node

C hears B’s advertisement and sends a join request to B. B follows a similar procedure

as A in allocating a VID to C and C gets VID = 10011. As part of the protocol, C must

register with A the cluster head. In the registration request C provides its UID and its

newly acquired VID. The path taken by the registration request will be C to B to A,

so that the parent is aware of the registration. Acceptance into cluster is completed by

cluster head A sending registration accept.

Figure 3.1(c) shows that the link has been established between A-B and B-C. C can

now advertise its VID to its own neighbors. The cluster head advertises the maximum

24

clustersize, as explained below, in the advertisement messages, so that when the time

comes its clients will not accept any more new children into the cluster. This is just as

courtesy to reduce extra overhead, since anyway nodes must register with the cluster-

head, and if the cluster has reached it configurable max size, the clusterhead will stop

registering new nodes. NOTE: The VIDs directly provide the number of hops from the

cluster head. Limiting the max VID size defines the max hops from the cluster head.

This is achieved by simply controlling the maximum number of allowed digits in the

assigned VID. This max size is what is sent in the advertisement message, so that a

node can check whether it has reached the max size and make the decision of whether

to broadcast its presence or not. Now, it is important to keep in mind that this is com-

pletely VID dependent. A node can have multiple VID’s and if even one of them has

less digits than the advertised max size, then it may broadcast that particular VID, for

other nodes to link to. The cluster head ID is inherent in all VIDs used by the cluster

clients and hence special cluster head advertisements indicating the cluster ID are not

required. The use of VIDs hence simplifies the process of multi hop cluster creation to

simple arithmetic processing on the nodes and low message overhead both for cluster

formation and maintenance. In [3], which is based on tethered MANET’s(where the

clusterheads are gateways to the internet), but uses a similar clustering approach, it

was observed that the joining time for new mobiles was as low as 28 milliseconds for

mobiles 7 hops away, and dropped down for mobiles closer to the clusterhead. Clus-

tering addresses scalability of the ad-hoc network, as it caters for the organization of

an increasing number of nodes. Within the cluster the MMT proactive routing scheme

will be used. For inter cluster routing, a reactive scheme which extends MMT for route

discovery and inter cluster routing/forwarding is used.

3.2.3 Intra-Cluster Proactive Routing

Using Figure 3.2, the multiple proactive route establishment process is explained as the

clusters are formed. The one hop children of node A for example B gets a VID = 1003,

C gets a VID = 1001, D gets VID = 1002. The second hop children are K, G, H and J,

which have respectively VIDs 10012, 10031, 10043 and 10053, which have been derived

25

from their parents namely C, B, F and E respectively. Note that the VIDs carry the

route information from the cluster clients to the cluster heads. As we can see in Figure

3.2, certain nodes like K, B, G, etc have multiple VIDs. This is where the concept of

Secondary VID’s comes in. Nodes which are assigned more than one VID classify their

VID’s into one Primary VID (Which has the least digits, and hence the shortest hops

to reach the clusterhead), and the remaining as Secondary VID’s. The secondary VIDs

were acquired by these nodes by overhearing the advertisements from their neighbors

and joining as their children. The multiple VIDs thus result in multiple routes (also

known as multiple branches). The dynamic multiple proactive routes establishment

provides robust connectivity with low overhead.

Figure 3.2: Sample topology with VID’s assigned

NOTE: Due to mobility, if a node looses one VID, it can fallback on its Secondary

VID’s for other backup routes. For example in Figure 3.2, assume J moves away from E

and towards H. Although it may lose connectivity with E, it still has connectivity to the

cluster via H. Nodes continually overhear activity by their neighbors and acquire new

and better VIDs (least hops, with least number of digits in the VID), thus eliminating

the possibility for stale routes. The process has been very much simplified and is an

26

integral part of the cluster formation. Setting aside a single digit i.e. 4 bits for every

hop and restricting the maximum hops to 4, the max VID size is limited to length of

UID + 16 bits, which is a very low overhead. No routing tables or states are required

at cluster clients as route information is carried in the VIDs. Though a node has

multiple routes to the cluster head, one VID is associated with the node as a primary

VID and the other VIDs used as fallback or secondary VIDs. This does not preclude

the use of the multiple routes for multiple concurrent paths for forwarding. A mobile

can have M maximum number of routes and hence M VIDs. (The value of M here

is a configurable parameter, and can be changed in accordance with the topology or

application). A mobile uses one of the nodeIDs as the primary - that with the least

number of hops to the clusterhead, the rest are stored in order of preference. These

routes are continually updated. The VIDs indicate a branch from the cluster head in

the cluster. The multiple VIDs help in meshing the tree branches. A mesh and tree

topology have thus been successfully unified to leverage the advantages of both. The

topology will consist of individual tree branches from the clusterheads which are inter-

meshed leading to a larger number of possible routes from node to clusterhead, and

thus improved redundancy. No complex computations are required to avoid loops in

the mesh; a node simply checks its VIDs and compares the integers after the cluster

head VID to determine if a loop will be formed if it were to request for a particular

VID. For example in 3.2 once G has acquired VID 10042 it may broadcast this VID

which will be recieved by F. Before requesting for a VID with a link 10042x, F will do

a check to see if a loop is being formed. Since the digits after the clusterhead match

with its own VID, it will not request G for a VID. This simple arithmetic check avoids

routing loops in the topology.

OVERLAPPING CLUSTERS OF MMT: To further improve route robustness in

the scheme, the clusters are allowed to overlap i.e. cluster clients can be members

under different clusters. In figure 3.3, there are two clusters one with A as the cluster

head and the other with L as the cluster head. The client VIDs under A start with

100, whereas the clients VIDs under L start with 200, the cluster head portion of the

VID is shown underlined. In the figure, nodes B, K and G with the double circle are

27

members of both clusters as they have VIDs that start with 100 and 200. If the mobility

of these nodes causes them to move towards cluster head L, they may lose their VIDs

with A but will be still connected to cluster L and vice versa. Other nodes that move

in between the two clusters will provide the inter cluster connectivity. The branches of

a tree mesh to provide multiple routes or route redundancy to a mobile. The overall

connectivity in the network is thus enhanced, where the branches of the meshed trees

(under different clusters) further mesh across the trees (clusters) leading to the multi

meshed tree concept.

Figure 3.3: Overlapping Clusters

NOTE: Overlapping clusters have been investigated earlier, but the ease with which

it is achieved in this algorithm is worth noting. Nodes that belong to more than one

cluster register their multiple VIDs and UID with all involved cluster heads. What this

is means is that as soon as a node gets a VID (even from a different cluster) it must

register that VID with all the involved clusterhead(s). For example in Figure 3.3, when

B gets VID 20041, it registers that VID with clusterhead A as well.

This leads to some very useful knowledge since the cluster heads are now aware of

the neighboring cluster heads and their VIDs. The border node knowledge is available

at the cluster heads and can be used when a cluster wants to communicate with nodes in

other clusters. When a clusterhead needs to find border nodes, it does a simple check(of

the first 3 digits) through its registered VID’s for nodes also registered on a different

cluster. These are flagged as border nodes. This is very useful in reducing flooding

when route discovery is required for inter cluster communications, as clusterheads only

28

forward to discovered border nodes as opposed to the entire cluster.

MAINTAINING PROACTIVE ROUTES: The maintainance of proactive routes is

an integral part of the efficiency of this algorithm and the procedure as explained in

[2], has been followed consisting of:

Advertisements: Data frames going upstream or downstream could serve as adver-

tisements for mobiles/gateway forwarding them, to indicate the links are alive. If there

are no data frames to forward for an advertisement interval , then nodes will send out a

short advertisement frame periodically at a configurable periodicity. In our implemen-

tation, we have ommitted the use of advertisments piggybacking on data frames and

have used a hardcoded value of 10 seconds as the time period for proactive broadcasts.

Using piggybacking will be an added advantage, to reduce periodic routing overhead.

Implicit Acknowledgements: Another feature could be that the node that has for-

warded a frame listens to mobiles downstream or upstream, which is supposed to for-

ward it further. If it does not hear the frame being forwarded for a certain ACK interval,

it will resend the frame, assuming the frame was lost or faced collisions. It will repeat

this retry times, at the end of which it reports a route failure to the clusterhead.

Route failures and repairs: A mobile that does not hear from its predecessor or

successor for an interval of 3 (3*advertisement interval) reports a failure of that route

of the mobile to clusterhead. The clusterhead then removes that failed route (i.e.

the corresponding VID) for the mobile and for all successor mobiles whose VIDs were

derived from the failed VID. On failing to hear any activity from their predecessor or

successor, a mobile reaches one of following conclusions; that either it has moved or its

predecessor/successor has moved or failed.

3.2.4 Inter-Cluster Reactive Routing

The MMT reactive routing scheme, termed RMMT, for inter cluster forwarding is

an extension of the above explained meshed tree approach. Figure 3.4 shows four

overlapping clusters and will be used to explain the reactive routing using the proposed

scheme when node J wants to communicate with node Q1, in cluster L1. Node J

sends a route discovery message (with Q1s UID) to its cluster head A. Cluster head

29

A first checks its client list and noting that the destination is not in its cluster it will

record its VID in the route record field of the discovery message. As explained in

the previous section, the clusterhead has knowledge of its neighboring clusters and the

shared border node VIDs (in this case 109 and 105). It will forward a copy of the

route discovery message to B (border node between 100 and 109) and to H (border

node between 100 and 105). Border nodes B and H will forward to the cluster heads

A1 and L respectively. Cluster heads A1 and L, check their list of registered clients

and as the destination is not in their cluster they will forward the discovery message

to their neighboring clusters after recording their VIDs in the route record field. As A

was recorded in the route record field no copy is sent to A. In the current scenario,

two route discovery messages may finally reach cluster head L1. L1 forwards the route

discovery message to Q1 using its primary VID from its clients list. The recorded route

from J to Q1 in the discovery messages will be A, A1, L1 and A, L, L1 i.e. only the

cluster head VIDs. Route reply from Q1 to J, follows the recorded path in reverse as

identified by the clusters.

NOTE: The length of the recorded route is that of the clusters along the way and

not all the nodes. A typical path taken by the route discovery message may be J-E-A-

B-P-L-Q-R1- L1-Q1 while the route response message may take the path Q1-L1-K1-

N-L-P-G-F-A-E-J (cluster heads are noted in bold). So, the route between J and Q1

depends on only the change in 3 cluster heads and not on ten or more of the intermediate

nodes that will be actually forwarding the data packets. Hence, the probability of route

failure during data transfer is reduced considerably, as there is dependence on only the

clusterheads, and the other intermediate nodes could change depending on the topology

conditions at the time of transmission. This should result in a significant reduction in

route rediscovery and route maintenance. The routes however are not optimal from

the perspective of the number of hops; this research study will reveal how well the

advantages are able to offset the disadvantages. A detailed investigation regarding

non-optimality is conducted and results are documented in Chapter 5.

Redirection capability of VIDs: In Figure 3.4 after receiving the route discovery

message from A, let node P move away and loose its VID 1094, before forwarding the

30

Figure 3.4: Inter-Cluster Organization

message. However it is aware that the route discovery packet is to be delivered to the

cluster head L. It will use its VID 10931 to deliver the packet to the cluster head L.

This redirection capability can be used while forwarding data packets too and thus the

scheme is highly resilient to node movement and varying link conditions. This may seem

similar to the cached route approach used in several reactive routing schemes, such as

DSR explained in Section 2.2.3. However, the routes in the case of MMT have a high

probability of not being stale as they are updated locally based on the neighborhood

activity.

The reactive route discovery and setup for MMT uses source routing principles

similar to DSR, however the reactive routes are concatenations of the proactive routes in

a cluster based on bidirectional links. As the proactive routes are updated constantly on

changes in link conditions the reactive routes will mostly be updated, which is a distinct

advantage for MMT based reactive routes. The RMMT (Reactive protocol of MMT)

route discovery process involves the standard transmission of ’route discovery’ messages

31

and storage of ’recorded route’ for the distant destination node. However MMT route

discovery messages are transmitted to selected border nodes in the overlapping regions

of the clusters and the recorded routes maintain only the Cluster Head information.

This would lead to reduction of route discovery messages while also reducing route

failure probability to the set of intermediate Cluster Heads and not all the intermediate

nodes that were used for either forwarding the discovery query messages or returning

the route response messages.

3.3 Advantages of the MMT Framework

Now that we have explained the operation of the MMT routing algorithm, we can get

a better understanding of some of the advantages that this framework offers. This list

complements the list provided in Section 3.1 which outlined the inherent features of the

protocol.

• It uses a single algorithm to perform clustering and proactive routing; reactive

routes are concatenation of the proactive routes.

• Reactive routes use a loose source routing concept and are impacted by only the

local changes in a cluster, (which are resolved local to the cluster) and do not

depend on the dynamics of all the nodes that are forwarding.

• The scheme supports the maintenance of multiple proactive routes, which is un-

common in proactive routing as algorithms used until now determine and maintain

one best route and on the failure of this route (which is known through topology

dissemination), recalculate another.

• Unification of tree and mesh topologies is new and helps leverage the advantages

of the two.

• Multi hop multiple overlapped cluster formation is achieved in a simple way with

low overhead.

• Cluster formation and setting up proactive routes are both achieved through one

operation using the concept of VID’s.

32

• Cluster clients do not maintain routing tables and states, except when communi-

cating with nodes outside their cluster.

• No complex algorithms are involved; the simple VID scheme is novel as it facili-

tates all the above.

CAVEAT: One disadvantage is the non optimal routes, which was discussed earlier.

The effects of this are shown quantitatively in Chapter 4.

As mentioned in Chapter 1, MANET routing protocols face a lot of challenges. This

list shows how MMT provides effective solutions for some of them:

• Challenge of Scalability: Addressed by logical clustering.

• Challenge of Low overhead: Addressed by Hybrid routing (proactive and reactive),

to avoid flooding.

• Challenge of Robust connectivity: Addressed by Dynamic routes with non stale

backup.

• Challenge of Robust Routes: Addressed by reducing dependency on the number

of forwarding nodes.

33

Chapter 4

Implementation of MMT

So far we have discussed the detailed operation of the Protocol and seen some of the

advantages that it offers. However, so far to the knowledge of this author, there has

been little work done on simulating the MMT Protocol and analyzing its Performance

with other Ad-hoc Protocols in a Simulation Environment.

The main purpose and achievement of this work is the implementation, from scratch,

of the above described MMT routing algorithm, followed by experiments to evaluate

its performance with AODV, DSDV and DSR Protocols.

4.1 Protocol Design in ns2

We chose ns2 as the simulation tool for the implementation of the MMT Protocol.

Ns2 is a powerful, open-source discrete event simulator written in C++, with an OTcl

interpreter as a frontend [56].The simulator supports a class hierarchy in C++ (com-

piled hierarchy), and a similar class hierarchy within the OTcl interpreter (interpreted

hierarchy). From the user’s perspective, the two hierarchies are closely related to each

other: there is a one-to-one correspondence between a class in the interpreted hierarchy

and one in the compiled hierarchy. The root of this hierarchy is the class TclObject.

Ns2 was chosen as it provides a comprehensive support platform for simulation

of TCP, routing and MAC protocols along with Physical layer configurations. The

simulator encompasses the implementation of a large number of protocols, network

types, traffic models, network elements, etc. known as Simulated Objects.

The implementation of the MMT protocol inherits and utilizes some of the generic

interfaces provided by the simulator, like Agent and node implementations. The sim-

ulator is based on 2 languages: an object oriented simulator, in C++ and an OTcl

34

Interpreter used to execute configuration scripts. NS has a rich library of network and

protocol objects which have been used extensively in the overall development and per-

formance analysis of the MMT protocol. There are 2 class hierarchies: The compiled

C++ hierarchy and the interpreted OTcl one. The former caters for efficiency in the

simulation and faster execution time. This is particularly useful for the detailed def-

inition and operation of protocols. Hence, the implementation of the MMT protocol

has been done almost entirely in C++. C++ is fast to run in the sense of code execu-

tion efficiency, but slower to change(compared to an Interpreted langauge), as it needs

to be recompiled making it unsuitable for varying parameter values. Hence C++ is

suitable for the detailed protocol implementation. OTcl runs much slower but can be

changed very quickly (and interactively), making it ideal for simulation configuration.

Ns2 (via tclcl) provides glue to make objects and variables appear on both languages.

The Otcl scripts are linked with the C++ components and can be used to configure

simulation parameters like network topology, specific layer protocols as well as appli-

cations (The behavior of these is already defined in the compiled simulator hierarchy

). The OTcl can make use of the objects compiled in C++ through OTcl linkages that

creates a matching of OTcl objects for each of the C++. The class Tcl encapsulates

the actual instance of the OTcl interpreter, and provides the methods to access and

communicate with that interpreter. We create new simulator objects through the in-

terpreter; these objects are instantiated within the interpreter, and are closely mirrored

by a corresponding object in the compiled hierarchy. The interpreted class hierarchy is

automatically established through methods defined in the class TclClass. Instantiated

objects are mirrored through methods defined in the class TclObject. As explained in

[56], NS2 is a discrete event simulator, where the advance of time depends on timing of

events maintained by a scheduler. An event is an object in the C++ hierarchy with a

unique ID, a scheduled time and the pointer to an object that handles the event.

The ns2 wireless model essentially consists of the MobileNode at the core, shown

in Figure 4.1, with additional supporting features that allows simulations of multi-

hop ad-hoc networks. The MobileNode object is a split object and the C++ class

MobileNode is derived from parent class Node. It is thus the basic Node object with

35

added functionalities of a wireless and mobile node like ability to move within a given

topology, ability to receive and transmit signals to and from a wireless channel etc.

The mobility features including node movement, periodic position updates, main-

taining topology boundary etc are implemented in C++ while plumbing of network

components within MobileNode itself (like classifiers, dmux , LL, Mac, Channel etc)

have been implemented in Otcl.

Figure 4.1: Components of the Mobile Node

Network Components in a MobileNode

As explained in [56] and shown in 4.1, the network stack for a MobileNode consists

of a link layer(LL), an ARP module connected to LL, an interface priority queue(IFq),

36

a mac layer(MAC), a network interface(netIF), all connected to the channel. These

network components are created and plumbed together in OTcl

• Link Layer: The link layer for MobileNode, has an ARP module connected to

it which resolves all IP to hardware (Mac) address conversions. Normally for all

outgoing (into the channel) packets, the packets are handed down to the LL by

the MMT Routing Agent. The LL hands down packets to the interface queue.

For all incoming packets (out of the channel), the mac layer hands up packets to

the LL which is then handed off at the node entry point.

• ARP: The Address Resolution Protocol (implemented in BSD style) module

receives queries from Link layer. If ARP has the hardware address for destination,

it writes it into the MAC header of the packet. Otherwise it broadcasts an ARP

query, and caches the packet temporarily. For each unknown destination hardware

address, there is a buffer for a single packet. In case additional packets to the

same destination is sent to ARP, the earlier buffered packet is dropped. Once the

hardware address of a packet’s next hop is known, the packet is inserted into the

interface queue.

• Interface Queue: The class PriQueue is implemented as a priority queue which

gives priority to routing protocol packets, inserting them at the head of the queue.

It supports running a filter over all packets in the queue and removes those with

a specified destination address.

• Network Interfaces: The Network Interface layer serves as a hardware interface

which is used by MobileNode to access the channel. The wireless shared media

interface is implemented as class Phy/WirelessPhy. This interface subject to

collisions and the radio propagation model receives packets transmitted by other

node interfaces to the channel. The interface stamps each transmitted packet with

the meta-data related to the transmitting interface like the transmission power,

wavelength etc. This meta-data in pkt header is used by the propagation model

in receiving network interface to determine if the packet has minimum power

37

to be received and/or captured and/or detected (carrier sense) by the receiving

node. The model approximates the DSSS radio interface (LucentWaveLan direct-

sequence spread-spectrum).

• Radio PropagationModel: It uses Friss-space attenuation (1/r2) at near dis-

tances and an approximation to Two ray Ground (1/r4) at far distances. The

approximation assumes specular reflection off a flat ground plane.

• Antenna: An omni-directional antenna having unit gain is used by MobileNodes.

Implementation Structure: As mentioned above, the Implementation of the

MMT protocol was done almost entirely in C++ to facilitate reduced packet and event

processing time. Following is the outline file structure used:

• mmt.h This is the header file where will be defined all necessary timers and the

declaration of the routing agent which performs protocol’s functionality.

• mmt.cc This file contains the important method implementations.

– It provides the important Tcl hooks and handles the split objects(C++/OTcl).

Overloads the command methods which interact with the Tcl Scripts, for

network layered configuration.

– Also overloads Recv() method which control interaction with the other nec-

essary network layers.

– Implementation of methods to deal with sending and receiving of the protocol

packets, as mentioned above.

– Definition of various timers.

– Initialization of nodes (Constructors):

• mmtpkt.h Here are declared all the packets MMT protocol needs to exchange

among nodes in the MANET. The structures used to represent these packets are

defined here as well as header information and how they behave with the other

network layers.

38

Now that we have our physical structure (files), let us continue with the logical

one (classes). To implement a routing protocol in NS2 you must create an agent by

inheriting from the Agent class, which has an implementation partly in OTcl and partly

in C++. It includes enough internal state to assign various fields to a simulated packet

before it is sent and supports packet generation and reception, through states and

methods. Agents may be created within OTcl and an agent’s internal state can be

modified by use of Tcl’s set function and any Tcl functions an Agent (or its base

classes) implements. Some of an Agent’s internal state may exist only within OTcl,

and thus is not directly accessible from C++ [56].

Agents essentially represent endpoints where network-layer packets are constructed

or consumed, and are used in the implementation of protocols at various layers. Class

Mmt inherits from the Agent class. This is the main class representing the implemen-

tation of the MMT routing protocol. In addition, this class offers a linkage with Tcl

interface, to control the MMT routing protocol parameters through simulation scripts

written in Tcl. This scripting control is explained in more detail in Section 4.3.

4.2 The Routing Agent

Agents are used in the implementation of protocols at various layers. For agents used

in the implementation of lower-layer protocols (e.g. routing agents), size and departure

timing is generally dictated by the agent’s own processing of protocol messages.

We define our Routing Agent Inside mmt/mmt.h through a new class called Mmt

containing the attributes and functions needed to assist the protocol in doing its job.

Mmt inherits from the Agent base class two main functions which need to be imple-

mented: recv() and command().

• The recv() function is called whenever the agent receives a packet. This may

occur when the node itself (actually an upper layer agent such as UDP or TCP)

is generating a packet or when it is receiving one from another node.

• The command() function is invoked from Tcl and provides a way to ask the C++

object to do some task from Tcl code.

39

Another function is forwarddata(): So far we have been mainly focused on control

packets, but it is time to deal with data packets. The forwarddata() function decides

whether a packet has to be delivered to the upper-layer agents or to be forwarded to

other node. When it is an incoming packet and destination address is the node itself or

broadcast, then we use the node’s dmux to accept the incoming packet. Otherwise, we

must forward the packet. This is accomplished by properly setting the common header.

Every Packet has a common header called hdrcmn defined in common/packet.h. There

is a macro defined internally in ns2 to access this header. Our implementation returns

IP BROADCAST when there is no route to destination address. In such a case we

print a debug message and drop the packet. If everything goes fine then the packet is

sent.

A node consists of an address classifier and a port classifier. The address classifier is

used to guide incoming packets to a suitable link or to pass them to the port classifier,

which will in turn carry them to appropriate upper layer agent. When it receives data

packets destined to itself it will use dmux in order to give them to the corresponding

agent. The Packet class inherits from the Connector class, which has a reference to a

TclObject called target . This is the handler which will process the above event, and

is passed as an argument to the schedule() function.

The network stack for a MobileNode consists of a link layer(LL), an ARP module

connected to LL, an interface priority queue(IFq), a mac layer(MAC), a network inter-

face(netIF), all connected to the channel. These network components are created and

layered together in Otcl. One of the aims is to let Mmt to be instantiated from Tcl. To

do so we must inherit from the class TclClass, which contains the methods that C++

code will use to access the interpreter. After implementing these methods, we were able

to write Tcl Scripts to run the implemented MMT Protocol Front End, and provide for

the Layer vise configurations.

Private Members of the Routing Agent:

nsaddr t ra addr ; // my node address(UID)

long int vid [5] ; // my VID array

bool clusterhead ; // Clusterhead or not

40

int assignedvidcounter ; // used for assigning new vid’s to my children

long int clustertable [][2] ; // if I am clusterhead, maintain table of UID to VID

mapping.

MobileNode* node ;

PortClassifier* dmux ; // For passing packets up to agents.

Trace* logtarget ; // For logging.

The current implementation also has also been developed with NAM and trace

logging for each node. NAM is the Network Animator and gives a graphical represen-

tation of the network and its activities. The initial setup of development environment

was undertaken to make the necessary changes in the ns2 project to allow for creating

a new protocol. Necessary code links and inheritance hierarchies were setup in order

to integrate the MMT code inside the simulator.

Packet Types:

1. Broadcast VID packet : If I have VID assigned then announce my VID.

2. Request for VID packet : Requests for a VID from the node sending above packet

and provides its UID

3. Assigning VID packet : Contains VID to be assigned.

4. Register with Clusterhead packet :Contains sourceuid and assignedvid.

5. Registration accept packet : From clusterhead.

6. Data Packet.

Packet headers:

Objects in the class Packet are the fundamental unit of exchange between objects

in the simulation. The class Packet provides enough information to link a packet on to

a list (i.e., in a PacketQueue or on a free list of packets), refer to a buffer containing

packet headers, and to refer to a buffer of packet data. The new packet header for MMT

was introduced into the simulator by defining a C++ structure with the needed fields

for the different packet types mentioned above. This was followed by defining a static

class to provide OTcl linkage, and then modifying some of the simulator initialization

code to assign a byte offset in each packet where the new header is to be located relative

41

to others. The static class variable offset is used to find the byte offset at which the

header is located in an arbitrary nspacket. We used the method access() to utilize

this variable to access this header in any packet. We also defined a member function

which creates a new packet to send by calling allocpkt(), which handles assignment of

all the network-layer packet header fields. There were essentially four steps to create

new Packet header types:

• Create a new structure defining the raw fields for the different MMT packet types,

define offset and access methods.

• Define member functions for needed fields.

• Create a static class to perform OTcl linkage, do bind offset() in its constructor.

• Make appropriate changes to ñs/tcl/lib/ns-packet.tcl to enable the new MMT

packet format

4.3 Sample Scenario and Network Configuration

This section provides a walkthrough of how the protocol is run by defining its con-

figuration parameters in Tcl. Also, through a sample network topology, the setup of

the network and the flow of data is explained in accordance with the above mentioned

implementation details. The algorithm pseudocode is provided at appropriate places.

The configuration of the network is done through a Tcl script. For our sample

network topology, we chose 16 nodes in a scattered topology. They were configured

to have unity gain omni directional antenna’s and used the 802.11 MAC. The wireless

propagation model was the Two Ray Ground Propagation Model.

The sample network is shown in Figure 4.2. Here nodes 0 and 15 marked in blue

are chosen as the clusterheads and two independent clusters are formed around them.

At this point there is no gateway node.

The clusterheads register their Unique Id’s (UID) equal to their Virtual ID’s (VID)

and start broadcasting their VID’s periodically through Broadcast VID packets. The

periodicity of this broadcast is a configurable parameter and was kept as 5 seconds in

42

Figure 4.2: Sample Network Topology(NAM Screenshot)

our simulations. Also, clusterheads have only one VID. Here, nodes 0 and 15 broadcast

their VID’s 100 and 115 as shown in Figure 4.3.

Figure 4.3: Clusterheads Broadcasting their VID’s

These Broadcast VID packets are received by nodes which are within range. In this

case nodes 1,2,3 and 7 receive the broadcast from 0 and carry out the following actions.

Pseudocode:

For Broadcast VID packet received :

1. Check if I have a vid

43

• no: send Request for VID packet back to node from where it was received.

• yes: check if any my VIDs is a child of broadcast VID

– yes: Update state flag. Send Confirmation packet to clusterhead.

– no: Check for Loops: If none then send Request for VID packet back to node

from where packet was received.

Nodes 1,2 ,3 and 7 hence send Request for VID packets back to the clusterhead(node0),

as shown in Figure 4.4. The clusterhead then checks to see if it can allocate any more

VID’s. This is where the size of the cluster is defined and controlled(configurable pa-

rameter).

Pseudocode:

For Request for VID packet received:

1. Check if I can allocate more VID’s

• no : do nothing. (Maximum size of the cluster has been reached)

• yes : send Assigning VID packet back to node which sent this packet.

Figure 4.4: Nodes request the clusterhead to assign them a VID

If the maximum size of the cluster is not reached, the clusterhead then sends Assign-

ing VID packet’s back to nodes 1,2,3 and 7 which are assigned VID’s 1001, 1002,1003

44

and 1004 respectively, as shown in Figure 4.5

Pseudocode:

For Assigning VID packet received

1. Assign my new received VID to my VID array.

2. Register with clusterhead by sending Register with Clusterhead packet.

3. Broadcast my newly acquired VID sending Broadcast VID packet.

Figure 4.5: Clusterhead assigns VID’s

So the nodes are assigned their VID’s following which they register with the clus-

terhead (If they are border nodes they register with multiple clusterheads). They

then broadcast their newly acquired VID’s as shown in Figure 4.6. This process occurs

everytime a node receives a new VID.

Pseudocode:

For Register with Clusterhead packet packet received

1. Am i clusterhead?

• yes: update my clusterhead Table.

• no: forward to clusterhead.

45

Figure 4.6: Nodes broadcast their newly acquired VID’s

This informs the clusterheads of which nodes are associated to its cluster through a

table maintained at each clusterhead. The process then continues as VID’s are broad-

cast and new nodes at further hops away, register with the clusterhead. This is shown

in Figure 4.6where, for example node 8 receives a Broadcast VID packet from node 1,

following which it is assigned VID 10011 by node 1 and then registers this VID with the

clusterhead. The final stable network with asssigned VID’s is shown in the Figure 4.7.

Intra-Cluster Proactive Routing:

Once the network initially stabilizes, ie. appropriate allocation of VID’s to the

respective nodes has completed, we can now send Data from one node to another. This

process is outlined below. Data traffic was generated in ns2 through a Constant Bit

rate Traffic application working over a UDP Agent (Best effort service).

Pseudocode:

For Data Packet received

1. Check if I am final destination

• yes : Display Payload contents

• no : Check if I am clusterhead

– yes : Update destination vid by looking at table. Find nexthop which is first

46

4 digits of dvid. Update direction bit.

– no : Check direction

∗ if 0 (towards clusterhead) update nexthop by /10 and resend.

∗ if 1 (away from clusterhead) count no. of digits in my VID. put first

(count+1) digits of destination vid in nexthop.

In our network topology let us supposse that a data packet is sent from node 8 to

node 5. Node 8 does not know where in the network node 5 is and hence forwards

the payload packet to its clusterhead (node 0). This happens through node 1 as

node 8 knows that the VID assigned to it is through node 1 which is the next hop

enroute to the clusterhead. A direction bit is used in the packet to indicate whether

it is travelling towards the clusterhead or away from it. This is required, so that the

appropriate VID arithmetic is carried out at the receiving node to calculate the next

hop. This is explained in the above pseudocode and depends on the direction bit. When

the clusterhead receives the Payload packet it checks its clusterhead table to see if the

destination UID is present. If it is, then the destination node’s VID is obtained and the

next hop is calculated based on VID arithmetic as shown above. In our example, node

with UID 5 is found in the clustertable at node 0. It hence knows that destination has

primary VID 10041. It then calculates the next hop as first 4 digits (1004), updates

the direction bit and sends the Payload packet to node 7. Node 7 then notes that

the direction is away from clusterhead, hence calculates nexthop (as described above)

to be 10041, which is the destination node 5.The path followed by the data for this

Intra-cluster transfer is shown in Figure 4.7

Inter-Cluster Reactive Routing:

Now, let us suppose Node 4 moves down in the topology and comes into range of

both nodes 2 and 10 as shown in Figure 4.8. Hence it is assigned VID’s from both these

nodes which are associated with different clusterheads. Consequently, node 4 now acts a

gateway node to connect the previously disjoint networks. Also, as it registers with the

two clusterheads, the clusterheads consequently are aware that it is a border node and

make note of this in their clustertables. This is done by simply checking the VID’s of

47

Figure 4.7: Path followed for flow of data from node 8 to node 5(Intra-cluster)

the new registered node for a VID starting with a different number indicating a different

cluster. For example, as node 4 moves within range of 2 and 10, it hears their periodic

Broadcast VID packet’s and is assigned a VID of 10022 from node 2 and VID of 11532

from node 10 (node 10 was registered as 1153). So when these VID’s are registered

with the clusterheads, the clusterhead 0 becomes aware that node 4 is a border node as

it has a VID starting with 115 of a different cluster, and so does clusterhead 15. This

is the way by which clusterheads are made aware of which nodes in their clustertables

are border nodes. This is the precursor to the reactive routing process by which nodes

communicate across clusters. Let us take an example to explain this further.

In our sample topology, we have so far looked at the process by which nodes can

communicate with other nodes within the same cluster through the clusterhead with

minimal overhead and simple VID arithmetic. Let us now look at how nodes commu-

nicate with other nodes outside their cluster through the reactive routing process as

described in the previous section. If node 8 wishes to transfer data to node 13, the

payload packets first travel from node 8 to its clusterhead node 0. This is done in

the same way as for the Intra-cluster routing algorithm as explained in the previous

section on the basis of simple VID arithmetic. Now, when the payload packet reaches

node 0, it realizes that the destination UID (13) is not in its clustertable as it is not

48

Figure 4.8: Introduction of gateway node 4

part of its cluster. This is when it forwards the packet out to its bordernodes which

are distinguished from other nodes in the cluster by the method explained above. The

payload packet is hence forwarded to the border nodes which in this case is node 4.

Pseudocode:

At clusterhead if there is no entry for destination UID in cluster table:

• Search clustertable for border nodes: loop through clustertable, if first 3 digits

don’t match my UID, then that is a border node VID

• Send payload packet to the acquired bordernode VID through the approach sim-

ilar to the proactive part.

• At Border node, switch direction and then forward to the other clusterhead(as

specified by the non-matching acquired VID).

So when the packet reaches Border Node 4 it will change the direction and forward

it to clusterhead 15. Clusterhead 15 will then search through its clustertable and

finds the Destination UID 13. It will then forward it to the destination similar to the

proactive process. If it doesn’t find the destination UID, then it must find other border

nodes repeating the process mentioned above. The path followed by the data for this

Inter-cluster transfer is shown in Figure 4.9

49

Figure 4.9: Path followed for flow of data from node 8 to node 13(Inter-cluster)

This is how inter-cluster packet communication through a border node takes place.

Again, this is a reactive process and routes are discovered only when the clusterhead

does not find the destination in its clustertable.

Summary: This chapter has explored in detail the working and implementation

(in ns2) of the Multi Meshed Tree routing algorithm through the use of sample network

topology covering Network setup as well as both Inter and Intra cluster data transfer

protocols.

50

Chapter 5

Simulation Setup and Results

The previous chapter has discussed the core implementation of the MMT Protocol in

ns2. In this section, we describe the test-bench and simulations used to analyze the

performance of the protocol.

5.1 Simulation Setup

The core operation of the MMT Protocol was implemented in C++ as described in

the previous chapter. In order to use and test the operation of the protocol in ns2, we

create configuration scripts in Tcl.

5.1.1 Tcl Configuration Script

In ns2 Tcl simulation scripts are used to define the network topology, the agents used,

output tracing configurations as well as NAM configurations.

Let us take an example Tcl script to explain the various configuration parameters:

• Configurations

set opt(chan) Channel/WirelessChannel // Channel type

set opt(prop) Propagation/TwoRayGround // Radio Propagation Model

set opt(netif) Phy/WirelessPhy //Network Interface Type

set opt(mac) Mac/802 11 // MAC Protocol to be used

set opt(ifq) Queue/DropTail/PriQueue // Drop Tail Queue

set opt(ll) LL

set opt(ant) Antenna/OmniAntenna // Antenna Type

51

set opt(x) 670 ;// X dimension of the topography

set opt(y) 670 ;// Y dimension of the topography

set opt(ifqlen) 50 ;// max packet in ifq

set opt(tr) ”” ;// trace file location

set opt(nam) ”” ;// nam trace file location

set opt(adhocRouting) MMT // Routing Protocol used

set opt(nn) 48 ;// how many nodes are simulated

set opt(cp) ”” ; //Connection Pattern

set opt(sc) ””; //Scenario File

set opt(stop) 500.0 ;// simulation time

• Link Layer settings:

LL set mindelay 50us

LL set delay 25us

• Configure unity gain, omni-directional antennas centered in the node and 1.5

meters above it

Antenna/OmniAntenna set X 0

Antenna/OmniAntenna set Y 0

Antenna/OmniAntenna set Z 1.5

Antenna/OmniAntenna set Gt 1.0

Antenna/OmniAntenna set Gr 1.0

• Initialize the SharedMedia interface with parameters to make it work like the

914MHz Lucent WaveLAN DSSS radio interface

Phy/WirelessPhy set CPThresh 10.0

Phy/WirelessPhy set CSThresh 1.559e-11

Phy/WirelessPhy set RXThresh 3.652e-10

52

Phy/WirelessPhy set Rb 2*1e6

Phy/WirelessPhy set Pt 0.2818

Phy/WirelessPhy set freq 914e+6

Phy/WirelessPhy set L 1.0

As explained in the previous chapter, the MobileNode is at the core of the ns2

wireless model simulations. It is a split object inherited from Node Class with added

functionalities like mobility and interfacing with the wireless channel.Hence for our

simulations we instantiate MobileNode objects:

for{ set j 0 } { $j < $opt(nn)} {incr j} {

set node_($j) [$ns_ node]

$node_($i) random-motion 1

}

The above steps create a mobilenode (split)object, an adhoc-routing agent as spec-

ified, as well as the network stack consisting of a link layer, interface queue, mac layer,

and a network interface with an antenna, using the defined propagation model. It then

interconnects these components and connects the stack to the channel. Each mobilen-

ode is set with a random position and has routine updates to change the direction and

speed of the node, through setdest as explained below. The destination position and

speed values are generated in a random fashion.

Irrespective of the methods used to generate node movement, the topography for

mobilenodes needs to be defined. It should be defined before creating mobilenodes.

Normally flat topology is created by specifying the length and width of the topography

using the following primitive:

set topo [new Topography] $topo load flatgrid $opt(x) $opt(y)

where opt(x) and opt(y) are the boundaries used in simulation.

These mobilenodes move about within an area whose boundary is defined as 670mX670m.

They use Two Ray ground Propagation model and 802.11 MAC.

53

Following these configurations, the Simulator is instantiated and trace objects for

ns tracing and NAM (Network Animator) are created to write logging data to files

specified in the configuration. A topology object is also created that keeps track of

movements of mobilenodes within the topological boundary, as well as a GOD (General

Operations Director) object. This is the object that is used to store global information

about the state of the environment, network or nodes that an omniscent observer would

have, but that should not be made known to any participant in the simulation. God

object stores the total number of mobilenodes and a table of shortest number of hops

required to reach from one node to another. The next hop information is normally

loaded into god object from movement pattern files, before simulation begins, since

calculating this on the fly during simulation runs can be quite time consuming. For

our simulations we enable random motion of the nodes. The setdest program generates

movement pattern files using the random waypoint algorithm. We use this to create

5 different topologies to run in the simulations. A pause time of 10 seconds and Max

speed of 5m/s was chosen and for MMT, 5 appropriate clusterheads were hardcoded.

The node-movement files generated using setdest already include lines to load the god

object with the appropriate information at the appropriate time.

The connection pattern file specifies the Traffic Agents created. The cbrgen.tcl

script provides an easy way of setting up source/destination pairs. For our simulations

we used Constant bit Rate (CBR) Traffic application working over a UDP Agent. Best

effort delivery of packets is suited for a mobile ad-hoc network, which led us to chose

UDP instead of TCP. The overhead of setting up a TCP connection is usually very high

and unsuitable for this dynamic environment.

• Traffic Generator Configurations

set udp (0) [new Agent/UDP] //Instantiate UDP Agent

$ns attach-agent $node (43) $udp (0)

set null (0) [new Agent/Null] // Traffic Sink

$ns attach-agent $node (28) $null (0)

54

set cbr (0) [new Application/Traffic/CBR] // Constant Bit Rate Traffic Ap-

plication

$cbr (0) set packetSize 512

$cbr (0) set interval 4.0

$cbr (0) set random 1

$cbr (0) set maxpkts 10000

$cbr (0) attach-agent $udp (0)

$ns connect $udp (0) $null (0)

$ns at x ”$cbr (0) start”

Simulation Stack:

Figure 5.1: Simulation Stack

Figure 5.1 illustrates the extended network stack that makes simulations of local area

network possible in ns. A packet sent down the stack flows through the link layer (Queue

and LL), the MAC layer (Mac), and the physical layer (Channel to Classifier/Mac).

The packet then makes its way up the stack through the Mac, and the LL.

At the bottom of the stack, the physical layer is composed of two simulation objects:

the Channel and Classifier/Mac. The Channel object simulates the shared medium and

55

supports the medium access mechanisms of the MAC objects on the sending side of the

transmission. On the receiving side, the Classifier/Mac is responsible for delivering and

optionally replicating packets to the receiving MAC objects. Depending on the type

of physical layer, the MAC layer must contain a certain set of functionalities such as:

carrier sense, collision detection, collision avoidance, etc. Since these functionalities

affect both the sending and receiving sides, they are implemented in a single Mac

object. For sending, the Mac object must follow a certain medium access protocol before

transmitting the packet on the channel. For receiving, the MAC layer is responsible

for delivering the packet to the link layer. The IEEE 802.11 MAC, that is used in our

MMT simulations, uses the distributed coordination function (DCF) with both physical

and virtual carrier sense.

Above the MAC layer, the link layer can potentially have many functionalities such

as queuing and link-level retransmission. The need of having a wide variety of link-

level schemes leads to the division of functionality into two components: Queue and LL

(link-layer).

The LL object implements a particular data link protocol, in this case ARQ. By

combining both the sending and receiving functionalities into one module, the LL object

can also support other mechanisms such as piggybacking.

The Channel class simulates the actual transmission of the packet at the physical

layer. The basic Channel implements a shared medium with support for contention

mechanisms. It allows the MAC to carry out carrier sense, contention, and collision

detection. If more than one transmissions overlaps in time, a channel raises the collision

flag. By checking this flag, the MAC object can implement collision detection and

handling. Since the transmission time is a function of the number of bits in the packet

and the modulation speed of each individual interface (MAC), the Channel object only

sets its busy signal for the duration requested by the MAC object. It also schedules

the packets to be delivered to the destination MAC objects after the transmission time

plus the propagation delay. The C++ class Channel includes enough internal state to

schedule packet delivery and detect collisions. OTcl configuration parameter: delay

propagation delay on the channel

56

5.1.2 Trace Support

Tracing support was also provided for the implemented protocol through relevant

changes in the CMU trace classes. The trace support for wireless simulations uses

cmu-trace objects which are of three types - CMUTrace/Drop, CMUTrace/Recv and

CMUTrace/Send. These are used for tracing packets that are dropped, received and

sent by agents, routers, mac layers or interface queues in ns. The type field (described

in Trace class definition) is used to differentiate among different types of traces. For

cmu-trace this is s for sending, r for receiving or D for dropping a packet. A fourth

type f is used to denote forwarding of a packet (When the node is not the originator of

the packet). Similar to the method Trace::format(), the CMUTrace::format() defines

and dictates the trace file format

An example of a trace for a tcp packet is as follows:

r 160.093884945 _6_ RTR --- 5 tcp 1492 [a2 4 6 800] -------

s[65536:0 16777984:0 31 16777984] [1 0] 2 0

Here we see a TCP data packet being received by a node with id of 6. UID of this

pkt is 5 with a common header size of 1492. The MAC details shows an IP pkt

(ETHERTYPE IP is defined as 0x0800, ETHERTYPE ARP is 0x0806), mac-id of

this receiving node is 4. That of the sending node is 6 and expected time to send this

data pkt over the wireless channel is a2 (hex2dec conversion: 160+2 sec). Additionally,

IP traces information about IP src and destination addresses. The src translates (using

a 3 level hier-address of 8/8/8) to a address string of 0.1.0 with port of 0. The dest

address is 1.0.3 with port address of 0. The TTL value is 31 and the destination was a

hop away from the src.

A Trace object is used to write wanted information of a packet everytime it is

received, sent or dropped. To log information regarding our packet type we implement

the format protoname() function inside the CMUTrace class. Appropriate changes are

made in cmu-trace.h, cmu-trace.cc to print the necessary MMT protocol information

like Sorce UID, Destination UID, Nexthop VID and Packet Type.

57

There is also a separate log of changes made to the clusterheads cluster tables. This

helps keep track of the snapshot of a cluster at a particular instant of time. It also logs

any changes in the VID list of a node, including adding a VID, removing a VID and

change in VID priority. Example of a clustertable log:

Displaying Cluster Table for VID: 115

13 1151 0 0 0 0

23 1154 0 0 0 0

14 1156 0 0 0 0

9 1152 0 0 0 0

21 1153 11522 0 0 0

12 1157 0 0 0 0

27 1155 0 0 0 0

The first column represents the UID (particular node). This is followed by the VID

list of that node in order of preference. Multiple VID’s associated with a node represent

the redundant routes responsible for robust connectivity.

5.2 Simulation Results

Once the implementation of the protocol was in place, we looked to evaluate its per-

formance compared to other MANET Protocols. We chose the widely popular DSDV

(Proactive), AODV and DSR (Reactive) protocols as reference. The below results

were averaged over the 5 topologies as created by the setdest function explained ear-

lier. The following sections cover the comparative simulation tests run, as per the TCl

specifications mentioned above.

5.2.1 Packet Delivery Ratio

The first test was with regard to the route robustness of the MMT Protocol compared to

the other MANET protocols. This is an indication of how resilient a route is to change

in topology. Packet delivery ratio is the ratio between the number of packets originated

58

by the application layer Constant Bit Rate (CBR) sources and the number of packets

received by the CBR sink at the final destination. A CBR traffic generator worked

over UDP (Best effort) in a topology with random motion. The number of packets

transmitted to the number of packets received was calculated as the Packet delivery

ratio. This is plotted as a function of optimal number of hops taken from source to

destination. Figure 5.2 shows the comparison of the protocols. We see that the Packet

delivery Ratio decreases as the number of hops increases. The effect of this is worse on

DSDV, and we see that MMT fares much better than the proactive protocol, especially

for large number of hops. This shows the effects of route robustness of the MMT

protocol where redundant routes allow it to drop fewer packets. This is more evident

for the larger number of hops, where the Reactive protocol kicks in, which depends

only on the clusterheads traversed. This reduced route dependency, shows improved

Delivery Ratio. The packet delivery ratio of the proactive protocol is seen to be lower

than the others. This can be attributed to the fact that the routes are pre-calculated

in these scenarios, and as a result of node mobility, the routes become relatively stale

at the time of packet delivery. This reduces the delivery ratio as compared to reactive

protocols wherin the routes are relatively fresher due to their recent discovery. The

MMT protocol is seen to have better results than DSDV owing to the increased route

robustness inherent in the algorithm. The initial packet delivery for 1 hop is seen to

be the same for all protocols, however at 3 hops MMT tends to perform inferior to

AODV. This can be attributed to the fact that nodes at 3 hops from the source will

typically be at the edge of a cluster (as the max cluster size is kept as 3 hops from

clusterhead). Nodes at this position are the most vulnerable to changes in motion

as that would specify which cluster they belong to and are at the transition between

the reactive and proactive componenets. There is also an inherent relative staleness

of routes which depends on the periodicity of updates in the proactive componenet of

MMT (a configurable parameter which was kept as 10 seconds for this simulation).

These factors contribute to the lower Packet delivery ratio at small number of hops.

As the number of hops increases, the MMT results look closer to AODV as the

network stabilizes and the packet delivery enters the reactive part. The routes are

59

robust and more fresh due to their on-demand discovery. As we can see, for higher

number of hops, the MMT packet delivery ratio surpasses that of AODV. This can be

attributed to the more robust nature of MMT brought about by the non-dependence on

individual nodes, but instead on just the clusterheads. This better avoids the posibility

of stale routes due to less dependenceon intermediate nodes keeping routes alive longer.

Figure 5.2: Packet Delivery Ratio

5.2.2 Routing Overhead

Routing overhead is an important metric for comparing these protocols, as it measures

the scalability of a protocol, the degree to which it will function in congested or low-

bandwidth environments, and its efficiency in terms of consuming node battery power.

It is calculated as the total number of routing packets transmitted during the simulation.

For packets sent over multiple hops, each transmission of the packet (each hop) counts

as one transmission. Protocols that send large numbers of routing packets can also

increase the probability of packet collisions and may delay data packets in network

interface transmission queues. We did not include IEEE 802.11 MAC packets or ARP

packets in routing overhead, since the routing protocols could be run over a variety

of different medium access or address resolution protocols, each of which would have

different overhead. Our goal was to compare the routing protocols to each other, not

to find the optimal performance possible in our scenarios. Unlike some other proactive

protocols, the MMT protcol does not engage in flooding of packets which reduces its

60

control overhead.

As shown in Figure 5.3, we see that the routing Overhead of DSDV is the highest

and is relatively constant as expected of a Proactive Protocol. We also see that the

overhead of the MMT protocol is considerably lower than that of DSDV. It increases as

the number of hops increases as a result of Reactive Request packets for the Inter-cluster

communication along with the Intra-cluster Periodic Overhead.

Figure 5.3: Routing Overhead

5.2.3 End-to-End Delay

End-to-end delay is the time taken for a packet to be transferred across a network from

source to destination. It includes transmission delays, propagation delays as well as

processing delays. For this experiment, we varied the number of hops between the source

node and destination and averaged the end-to-end delay over all packets transmitted.

The results of the experiment are shown in Figure 5.4. We see the DSDV, DSR and

AODV protocols having roughly the same end-to-end delay for adjascent nodes, but

the DSDV shows the least end-to-end delay as the number of hops increases. This can

be attributed to the proactive nature of the protocol, wherin routes are pre-calculated,

so the extra time taken to calculate a route is absent. That said it must be kept in

mind that although DSDV exhibits a low delay, it is because only packets belonging

to valid routes at the sending instant get through (The Traffic generator is over UDP,

which is a best effort service). Several packets do get lost until new routing table

61

updates propagate through the network. For the MMT protocol, there is a significantly

larger delay even for data transmission between adjascent nodes. This is because the

protocol is designed so that all traffic must pass through the cluster-head. This leads

to the extra delay for traffic to propagate through to the cluster head, and then to the

destination node. Further, we can see very slight difference for delay between 0 hop

transmissions and 1 hop transmissions. This is because transmission of data to any

node within the cluster will take roughly the same amount of time. This is a useful

feature for scenarios where we require frequent data transfer between a subset of nodes,

with occasional transfer outside the subset. We can control the cluster-size to that of

the subset requiring frequent communication, and have relatively deterministic delay

estimates provided the nodes are not moving out of the cluster too frequently. We see

an expected increase in the end-to-end delay for all protocols as the number of hops

between source and destination increases. It must be noted that in MMT, for higher

number of hops, when the reactive protocol is dominant, the increase in the delay is

more gradual as seen from the line plateauing towards the end.

Figure 5.4: End-to-End Delay

5.2.4 Effects of Non-optimality

It must be kept in mind that although the MMT protocol is highly robust in nature,

provides multiple routes, and has realtively low overhead compared to proactive pro-

tocols, there is an important factor of non-optimality which must be considered. Data

62

transmission is not along the shortest path since all traffic must pass through the cluster

head. The discussion on end-to-end delay showed this effect of non-optimality as one

of the factors increasing the delay in data transfer.

We conducted an experiment to see the effects of Route non-optimality by comparing

the number of hops taken for data to reach from source to destination by MMT versus

AODV as a benchmark. For this experiment, we first identified source-destination

pairs which used a certain number of hops on AODV at a particular snapshot of the

topology. We then ran MMT for the same source-destination pair and noted the change

in the number of hops. We carried this out over 5 different topologies created using the

setdest function described earlier. We varied the number of hops and noted the average

divergence from the AODV benchmark. A max clustersize of 4 was chosen in a 30 node

stationary network.

Figure 5.5: Route Optimality compared to AODV (Benchmark)

The results are shown in Figure 5.5. As we can see, the divergence from AODV is

larger for shorter number of hops and tends to decrease as the number of hops increases.

This is expected, as for a small number of hops, the Intra-cluster proactive protocol is

predominant and all traffic must pass through the clusterhead. This restriction leads

to longer routes and the effects of this would be dependent on the size of the cluster.

AODV does not have this restriction of data having to pass through certain nodes in

63

the network and hence finds more optimal routes. Even at a higher number of hops we

do notice around a 0.6-0.8 increase in number of hops for MMT. This can be attributed

to the overall restriction of including clusterheads in all reactive routes as well.

The effects of non-optimality are more visible for data transfer over shorter hops,

and is dependent on the cluster size. As the cluster-size increases, data will have to

propagate over a larger number of nodes increasing the delay. That said decreasing the

clustersize too much will have the adverse effect of too many reactive protocol route

setups, which also contibute towards delay. A trade-off must be drawn, and the MMT

structure provides that capability by allowing the cluster-size to be changed depending

on the requirements of the network. Different networks are setup for different applica-

tions, and MMT provides the Network deployer with the virtual knobs of controlling

clustersize and maximum number of hops, to tune the networks for tradeoffs in efficiency

of certain application specific parameters, such as delay, throughput or robustness. The

next section describes the aspect of configurability in the MMT protocol.

5.2.5 Configurability

A key feature of the MMT Protocol is its configurability, which includes controlling the

size of the cluster. In this section we explain the effects of changing the cluster size

on the Routing Overhead. This is done by controlling the Maximum number of hops

from the clusterhead at which a node can join that particular cluster. We consider a 50

node network with 3 data sources transmitting packets through a Constant-Bit-Rate

generator. To accomodate all nodes, clusterheads were added as the clustersize reduced.

Effects of varying clustersize is shown in Figure 5.6

As we can see the increase in Routing Overhead is exponential with respect to

increasing clustersize. This is attributed to an increase in Proactive routing traffic

within the cluster. There are a larger number of redundant routes setup requiring more

Request for VID packets, Assigning VID packets, and VID maintainance. This overhead

grows as the clustersize increases, and hence will effect the throughput of the network.

Another important factor to keep in mind is congestion at the clusterheads. Since

all traffic associated with a cluster passes through the clusterhead, as the clustersize

64

increases, there is an increased load through the clusterhead. Bandwidth restrictions,

Queuing limitations and congestion at the clusterheads become important factors to

consider. Figure 5.7 indicates the Average total traffic passing through the clusterheads

for varying size of the cluster. We see a large increase in Traffic for the larger clusters as

the clusterheads are handling a larger number of data sources. The load is transferred

from several clusterheads to a single clusterhead, causing an increase in traffic. These

are important factors to be kept in mind while choosing cluster size and are dependent

on the requirements of the network.

Figure 5.6: Cluster-Size Configurability

Figure 5.7: Cluster-Size Configurability 2

These results show that the Robustness of the MMT protocol is high due to its

route redundancy and low node dependence. It also shows the relatively low overhead

involved due to its algorithm simplicity and non-flooding approach. It must be kept in

65

mind however that the effects of non-optimal routes do play a significant role in end-

to-end delay and the number of hops involved. Hence this protocol should be ideally

chosen for delay-tolerant applications in which route robustness is an important factor.

We also discussed the advantage of cluster size configurability in the MMT protocol.

66

Chapter 6

Conclusions and Future Work

It has been the focus of this work to explore the current challenges that MANET Rout-

ing Protocols face, and propose a novel algorithm to address some of these challenges.

We explained the detailed operation of the Multi-Meshed Tree based Routing protocol

and discussed its main characteristics and how it attempts to solve the issues associated

with dynamic environments through redundant routes and reduced route dependency.

The unique aspects of the algorithm are outlined here:

1. It uses a single algorithm to perform clustering and proactive routing; reactive

routes are concatenation of the proactive routes.

2. Reactive routes use a loose source routing concept and are impacted by only the

local changes in a cluster, (which are resolved local to the cluster) and do not

depend on the dynamics of all the nodes that are forwarding.

3. The scheme supports the maintenance of multiple proactive routes, which is un-

common in proactive routing as algorithms used until now determine and maintain

one best route and on the failure of this route (which is known through topology

dissemination), recalculate another.

4. Unification of tree and mesh topologies is new and helps leverage the advantages

of the two.

5. Multi hop multiple overlapped cluster formation is achieved in a simple way with

low overhead. Proactive routes are setup as clusters are formed i.e. both functions

are achieved in one operation.

67

Cluster clients do not maintain routing tables and states, except when communi-

cating with nodes outside their cluster.

6. No complex algorithms are involved; the simple VID scheme is novel as it facili-

tates all the above.

Through Simulation results and comparative analysis with benchmark MANET

Protocols, certain advantages of the Multi-Meshed tree routing protocol have been

demonstarted such as its low overhead and robust connectivity.

We hope this work is used a base for understanding the advantages of the MMT

protocol, its unique implementation challenges, and its outline performance analysis.

There is scope for Future Work on more advanced Simulation analysis, including effects

of non-optimality of routes. There is also scope for work on a better understanding of

the effects of Cluster-head election algorithms on the MMT Protocol

We foresee the increased use of MANETS is our daily lives and we feel there is

a large untapped potential for these networks in civilian applications as well. The

outcomes of this project can impact several critical civilian MANET applications such

as disaster recovery networks, industry control networks, using of mobile units in a

locality to provide a backbone network facility, all of which are currently constrained

due to the connectivity and reliable data delivery. The outcomes of this study will

clearly help identify civilian MANET application, which desire certain performance

thresholds in terms of connectivity and reliable data delivery. Due to the low complexity

of the proposed scheme the solution should be acceptable to the industry and vendor

community.

68

References

[1] Nirmala Shenoy, Yin Pan, Darren Narayan, David Ross, and Carl Lutzer. Mobile
ad hoc and sensor systems 2008. In MASS 2008 5th IEEE International Confer-
ence, 2008. Atlanta, GA.

[2] Pudlewski S., Shenoy N., Al-Mousa Y., Yin Pan, and Fischer J. Route robustness
of a multi-meshed tree routing scheme for internet manets. In IEEE GLOBECOM
2005, 2005. Atlanta, GA.

[3] Nirmala Shenoy and Yin Pan. Multi meshed tree routing for internet manet’s. In
The 18th Annual Joint Conference of the IEEE Computer and Communications
Societies, INFOCOM ’99, 2005. Atlanta, GA.

[4] Prasun Sinha, Raghupathy Sivakumar, and Vaduvur Bharghavan. Cedar: a core-
extraction distributed ad hoc routing algorithm. In 2nd International Symposium
on Wireless Communication Systems 2005, 1999. New York, NY.

[5] Chai Keong Toh. A novel distributed routing protocol to support ad hoc mobile
computing. In IEEE 15th Annual International Phoenix Conference on Computers
and Communications, 1996. Phoenix, AZ.

[6] Basagni Stefano, Imrich Chlamtac, Violet R. Syrotiuk, and Barry A. Woodward. A
distance routing effect algorithm for mobility (dream). In International Conference
on Mobile Computing and Networking Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and networking, 1998. New York,
NY.

[7] CHING-CHUAN CHIANG, HSIAO-KUANG WU, WINSTON LIU, and MARIO
GERLA. Routing in clustered multihop, mobile wireless networks with fading
channel. In IEEE Singapore International Conference on Networks, 1997. Singa-
pore.

[8] C.E. Perkins, E.M. Royer, S.R. Das, and M.K. Marina. Performance comparison
of two on-demand routing protocols for ad hoc networks. In Personal Communi-
cations, IEEE Feb 2001, 2001. Singapore.

[9] Rajiv Misra C. R. Mandal. Performance comparison of aodv/dsr on-demand rout-
ing protocols for ad hoc networks. In in Constrained Situation, Proceedings of 7th
IEEE International Conference on Personal Wireless Communications (ICPWC-
2005, pages 86–89.

[10] Charles E. Perkins, Elizabeth M. Belding-Royer, and Samir R. Das. Ad hoc on-
demand distance vector (aodv) routing. http://www.ietf.org/rfc/rfc3561.

txt.

69

[11] Krishna Ramachandran. Aodv-st. technical report, university of california, santa
barbara, usa. http://www.cs.ucsb.edu/krishna/aodv-st/.

[12] M. JIANG, J LI, and Y. C. TAY. Cluster based routing protocol. http://tools.
ietf.org/html/draft-ietf-manet-cbrp-spec.

[13] PHILIPPE JACQUET, PAUL MUHLETHALER, AMIR QAYYUM, ANIS
LAOUITI, LAURENT VIENNOT, and THOMAS CLAUSEN. Optimized link
state routing protocol. ,http://www.olsr.net/.

[14] MARIO GERLA, GUANGYU PEI, XIAOYAN HONG, and TSU-WEI CHEN.
Fisheye state routing protocol (fsr) for ad hoc networks. ,http://tools.ietf.

org/html/draft-ietf-manet-fsr.

[15] ZYGMUNT J. HAAS, MARC R. PEARLMAN, and PRINCE SAMAR. The
zone routing protocol (zrp) for ad hoc networks. ,http://tools.ietf.org/html/
draft-ietf-manet-zone-zrp.

[16] Guenael Strutt. Hwmp specification update. the working group for wlan standards
of the institute of electrical and electronics engineers. 14 november 2006. ,https:
//mentor.ieee.org/.../11-06-1778-01-000s-hwmp-specification.doc.

[17] L Blazevic. A location-based routing method for mobile ad hoc networks. ,http:
//icawww1.epfl.ch/TNRouting/.

[18] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination- sequenced
distance-vector routing (dsdv) for mobile computers. In ACM SIGCOMM94 Con-
ference on Communications Architectures, Protocols and Applications, 1994.

[19] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad-hoc wireless net-
works. In Mobile Computing, T. Imielinski and H. Korth, Eds., Kluwer, 1996,
1996.

[20] Geetha Jayakumar and G. Gopinath. Ad hoc mobile wireless networks routing
protocols a review. Journal of Computer science, 2007.

[21] Shima Mohseni, Rosilah Hassan, Ahmed Patel, and Rozilawati Razali. A compara-
tive review study of reactive and proactive routing protocols in manets. 4th IEEE
International Conference on Digital Ecosystems and Technologies (IEEE DEST
2010).

[22] Elizabeth M. Royer and Chai-Keong Toh. A review of current routing protocols
for ad hoc mobile wireless networks. IEEE Personal Communications April 1999.

[23] Qifa Ke, David A. Maltz, and David B. Johnson. Emulation of multi-hop wir-
less ad hoc networks. Proceedings of the 7th International Workshop on Mobile
Multimedia Communications (MoMuC 2000).

[24] C.-C. Chiang. Routing in clustered multihop, mobile wireless networks with fading
channel. In Proc. IEEE SICON 97, 1997.

[25] S. Murthy and J. J. Garcia-Luna-Aceves. An efficient routing protocol for wireless
networks. In ACM Mobile Networks and App. J., Special Issue on Routing in
Mobile Communication Networks, 1996.

70

[26] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm for
mobile wireless networks. In Proc. INFOCOM 97, 1997.

[27] Z.J. Haas and S. Tabrizi. On some challenges and design choices in ad-hoc com-
munications. In Military Communications Conference, 1998. MILCOM 98. Pro-
ceedings., IEEE , vol.1,, 1998.

[28] R. Ramanathan and J. Redi. A brief overview of ad hoc networks: challenges and
directions. In Communications Magazine, IEEE , vol.40,, 2002.

[29] Bandyopadhyay S. and E.J. Coyle. An energy efficient hierarchical clustering al-
gorithm for wireless sensor networks. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies. IEEE ,
vol.3, 2003.

[30] Pudlewski S., Shenoy N., and Al Mousa Y. A hybrid multi meshed tree routing
protocol wireless ad hoc networks. In Second IEEE International Workshop on
Enabling Technologies and Standards for Wireless Mesh Networking, 2008.

[31] Qin L. and Kunz T. Technical report systems and computer engineering. In Survey
on Mobile Ad Hoc Network Routing Protocols and Cross-Layer Design, 2004.

[32] QAbolhasan M., Wysocki T., and Dutkiewicz E. A review of routing protocols for
mobile ad hoc networks. In Journal of ad hoc networks, 2004.

[33] Daniel L. Technical report, department of computer science, technische universitat,
munchen, germany. In A comprehensive overview about selected Ad hoc networking
routing protocols, 2004.

[34] Royer E. M. and C.K. Toh. Ieee personal communications magazine. In A Review
of Current Routing Protocols for Ad Hoc Mobile Wireless Networks, 1999.

[35] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support
in multi-hop wireless networks. In Vehicular Technology Conference, 1999. VTC
1999 - Fall. IEEE VTS 50th , vol.2,, 1999.

[36] C.R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks,. In
Selected Areas in Communications, IEEE Journal on , vol.15, no.7,, 1997.

[37] Chatterjee M., Das S., and Turgut D. Wca: A weighted clustering algorithm for
mobile ad hoc networks. In Journal of Cluster Computing (Special Issue on Mobile
Ad hoc Networks), vol. 5, 2002.

[38] Basagni S., Chlamtac I., and Farago A. Workshop on algorithmic aspects of com-
munication. In Journal of Cluster Computing (Special Issue on Mobile Ad hoc
Networks), vol. 5, 1997.

[39] Chen G. and Stojmenovic I. Clustering and routing in mobile wireless networks.
In Technical Report TR- 99-05, SITE, June 1999, 1999.

[40] Chen Y., Liestman A., and Liu J. Clustering algorithms for ad hoc wireless net-
works. In Ad Hoc and Sensor Networks, 2004.

71

[41] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: a
hybrid, energy-efficient approach. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies , vol.1,, 2004.

[42] Belding-Royer E. M. Multi-level hierarchies for scalable ad hoc routing. In Wireless
Networking (WINET), Vol. 9, No. 5,, 2003.

[43] Ramasubramanian V., Haas Z. J., and Emin G un Sirer. Sharp: A hybrid adaptive
routing protocol for mobile ad hoc networks. In MobiHoc 03 Proceedings of the
4th ACM international symposium on Mobile ad hoc networking and Computing.

[44] Chuan ming Liu and Chuan hsiu Lee. Conf. on wireless networks (icwn’05) 405
distributed algorithms for energy-efficient cluster-head election in wireless mobile
sensor networks.

[45] Li J. et al. A scalable location service for geographic ad hoc routing. In ACM
Mobicom , Boston, MA., 2000.

[46] Pei G. and M. Gerla. Mobility management in hierarchical multi-hop mobile wire-
less networks. In Proceedings of IEEE ICCCN99, Boston, MA,, 1999.

[47] Pei G., M. Gerla, X. Hong, and C. C. Chiang. A wireless hierarchical routing
protocol with group mobility. In Proceedings of IEEE WCNC99, New Orleans,
LA,, 1999.

[48] Chiang C. and M. Gerla. Routing and multicast in multihop, mobile wireless
networks. In IEEE ICUPC97, San Diego, CA,, 1997.

[49] Das S.R., C.E. Perkins, and E. M. Royer. Performance comparison of two on-
demand routing protocols for ad hoc networks. In IEEE INFOCOM 2000, Tel
Aviv, Israel, 2000.

[50] Hong X., Kaixin Xu, and Mario Gerla. Scalable routing protocols for mobile ad
hoc networks. In IEEE Network Journal, July/Aug 2002, Vol 16, issue 4,, 2002.

[51] Vincent D. Park and M. Scott Corson. A performance comparision of tora and
ideal link state routing. In IEEE Symposium on Computers and Communication,,
1998.

[52] Vincent D. Park and M. Scott Corson. Proceedings of infocom97. In A highly
adaptive distributed routing algorithm for mobile wireless networks, 1997.

[53] David B. Johnson. Routing in ad hoc networks of mobile hosts. In Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications, 1994.

[54] Bernd Freisleben and Ralph Jansen. Analysis of routing protocols for ad hoc
networks of mobile comuters. In Proceedings of the 15th IASTED International
Conference on Applied Informatics,, 1997.

[55] Marc Greis. Tutorial for the network simulator ns.
http://www.isi.edu/nsnam/ns/tutorial/index.html.

[56] Kevin Fall and Kannan Varadhan. The ns manual, the vint project.
http://www.isi.edu/nsnam/ns/ns-documentation.html.

72

[57] Kevin Fall. Network emulation in the vint/ns simulator. Proceedings of the Fourth
IEEE Symposium on Computers and Communications (ISCC99), July 1999.

