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Abstract 
 

Research Questions: One way students may develop conceptual understanding is 
through working on strands of related mathematical tasks and thus developing and 
refining their understanding of the underlying mathematical concepts contained in the 
tasks.  The purpose of this study is to illuminate this process by detailing the inherent 
mathematical structures in such a strand and discuss what aspects of it facilitated student 
learning.  The research questions addressed are: (1) What mathematical structures can be 
uncovered by exploring/engaging with the combinatorics tasks used in the Rutgers 
longitudinal study?  (2) In what ways are these mathematical structures revealed during 
students’ problem-solving processes? 

 
Methodology: Ten tasks from the combinatorics/counting strand are selected from 

the Rutgers longitudinal project for this qualitative study.  The data available for analysis 
are in the form of digitized video tapes, verified transcripts, and students’ written work.  
The analysis focuses on decoding students’ solutions into formal mathematical 
definitions and theorems.  Concept maps are used to illustrate the overall hierarchy of the 
presented mathematical structures.   

 
Findings:  There are a total of sixty-three inherent mathematical structures 

extracted from the formal solutions of ten selected combinatorics tasks.  These structures 
are categorized as definitions, notations, axioms, properties, formulas, and theorems.  
When classified with respect to the seven relevant sub-domains of mathematics, these 
structures pertain to: set theory, enumerative combinatorics, graph theory, sequences & 
sets, general algebraic system, probability theory, and geometry.  The analysis suggests 
that the participating students uncovered many of these mathematical structures primarily 
in the following ways: (1) Manipulating a concrete model, (2) Listing all possible 
combinations, (3) Inventing different representations, (4) Seeking patterns, and (5) Making 
connections.   

 
Conclusion and Suggestions:  These findings support the following suggestions 

for practice: (1) Teachers may benefit from studying the underlying structures of a task 
thoroughly before assigning the task to students, (2) In determining the order of related 
tasks within a strand, teachers need to consider the sophistication level and the coherence 
of the underlying structures across tasks, (3) Using concrete models can help students to 
both develop and verify solutions to complex problems, and (4) Tasks whose inherent 
structures belong to a variety of mathematical sub-domains can help students build an 
increasingly interconnected view of mathematics.  

 
Significance:  This study outlined a method of extracting inherent mathematical 

structures from mathematical tasks.  The results suggest that students have natural 
abilities to uncover these structures by themselves.  It is hoped that this will motivate 
mathematics teachers to improve the way they think about using problem solving in their 
teaching. 
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Chapter 1: Introduction 
 
 
1.1  The Importance of Mathematical Structures in Task Analysis 
 

According to the goals of mathematics education reform, “students are expected 

to apply academic knowledge to real-world contexts, communicate effectively and work 

collaboratively” (Ormerod & Ridgway, 1999, p. 401).  To achieve these goals, problem 

solving is listed in the 2008 New Jersey Mathematics Core Curriculum Content Standards 

for Mathematics (NJMCCCS, 2008) as the first strand of the standard of mathematical 

processes, and school teachers are encouraged to allocate part of their instructional time 

to problem solving.  According to the National Council of Teachers of Mathematics 

(NCTM, 2000), “most mathematical concepts or generalizations can be effectively 

introduced using a problem situation,” a claim which is supported by a significant 

number of studies that investigate approaches to instruction focused on problem-solving.   

One of the important aspects of problem solving is to design “worthwhile 

mathematical tasks” (NCTM, 2000, pp. 18-19) through which students can learn 

important mathematical concepts (Ormerod & Ridgway, 1999).  The question is: what 

characterizes a worthwhile task?  Researchers are seeking answers through formal task 

analysis that usually examines a variety of student responses to a particular mathematical 

task.  More specifically, some researchers classify the task based on different level of 

students’ mathematical behaviors (i.e. students’ actions) (Resnick, Wang, & Kaplan, 

1973), based on students’ explanations (Hadas & Hershkowitz, 2002), or based on 

cognitive demand (Stein et al., 2000).  Other researchers do not categorize mathematical 

tasks but examine the task outcomes thoroughly from the perspective of students’ 

reasoning (Powell, 2003), from the perspective of task design (Ainley and Pratt, 2005), 
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and from the perspective of underlying mathematical structures (Torkildsen, 2006).  In 

this study, tasks will be analyzed based on underlying mathematical structures.  

Mathematical structures are defined by the author as a hierarchy of interconnected 

mathematical objects building on one another to produce a coherent whole.        

It is important to note that the analysis of underlying mathematical structures may 

help teachers to see connections between particular tasks and the mathematical ideas 

presented in the curriculum.  Seeing different mathematical objects as a coherent whole 

may help teachers to “move away from teaching unconnected, isolated topics and toward 

teaching mathematical concepts and ideas” (Stein & Kim, 2006, p. 17).  Students as well 

as their teachers will benefit from organizing mathematical concepts as a “knowledge 

package” (Ma, 1999, pp. 17-19) rather than collecting those mathematical ideas as 

discrete pieces.  Evidence shows that “building on connections can make mathematics a 

challenging, engaging, and exciting domain of study” (NCTM, 2000, p. 204).  Integrated 

mathematical knowledge not only helps students to remove the burden of memorizing too 

many unconnected concepts and skills but also helps students to apply mathematics to 

more complex and practical situations across disciplines and of the real world.   

For all of these reasons, it is important and necessary to conduct task analyses 

with regard to mathematical structures so that mathematics can be learned in the 

processes of solving these task problems. 

 
1.2 Statement of the Problem 

It has been established (NCTM, 2000) that a problem solving approach to 

teaching can reflect the creative nature of mathematics and give students opportunities to 

discover important mathematical ideas themselves.  However, not all mathematical tasks 
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require the same level of cognitive ability (Stein et al., 2000).  A task of high level 

cognitive demand probably will not engage the group of students whose cognitive ability 

is low.  Conversely, a task of low level cognitive demand may fail to engage those 

students whose cognitive ability is high.  Presenting students with tasks whose level of 

cognitive demand matches their cognitive ability is crucial for a successful problem-

solving-based approach to instruction.  

Research has shown great benefits from using cooperative learning in 

mathematical problem solving in K-12 mathematics.  It is believed that group work can 

promote students’ creative thinking, mathematical reasoning, and their social relations 

(NTCM, 2000).  However, this cooperative approach may not always be an ideal way of 

learning subject contents (Gillies, 2003; Manouchehri & Goodman, 2000; Whicker, Bol, 

& Nunnery, 1997).  From a student’s perspective, the difficulty level and the design of 

the task determine how group members interact.  A task problem can be either well-

defined or ill-defined.  According to Ormerod (2005), a well-defined problem is one in 

which many features such as the starting point, the ending state, the procedures, and the 

constraints are prescribed.  An ill-defined problem has some or all of these features 

missing from in the problem description.  An ill-defined problem is often referred to as 

“open-ended” because it allows the problem solver to experiment with a variety of 

solution paths.  Gillies (2003) found that with a well-structured (i.e. well-defined) task, 

student interactions tended to be limited to exchanging information, providing 

explanations, or requesting assistance.  When the task was ill-structured (i.e., ill-defined), 

students showed high levels of cooperation as they discussed how they would proceed as 

a group and shared ideas and information (Gillies, 2003).  To make cooperative learning 
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more productive, teachers should be aware of the following.  First, teachers need to 

realize that a performance-based mathematical task is an enriched activity that has 

multiple entry points and pathways leading to a solution.  Such a task requires students to 

use integrated subject knowledge and a variety of strategies during the problem solving 

process (Thomas, Williams, & Gardner, 2007).  Second, teachers ought to choose tasks 

that accommodate students’ abilities and the intended learning goal for students (NCTM, 

2000, p. 53), because “well-chosen problems can be valuable in developing or deepening 

students’ understanding of important mathematical ideas” (NCTM, 2000, p. 257).   

Nowadays, mathematics tasks can be found in many resources outside the 

mathematics textbooks, such as newspapers, magazines, and online resources.  However, 

choosing a good task that “integrates multiple mathematical topics and involves 

significant mathematical ideas” (NCTM, 2000, p. 52) is not as easy as it may seem.  

Teachers need a good understanding both of the mathematical objects and the 

relationship among those objects involved in a task and of their students’ abilities in order 

to determine how appropriate a task is for a particular classroom or group of students. 

Therefore, understanding underlying mathematical structures is crucial to the success of 

selecting appropriate tasks that can promote learning. 

There is more to be considered if problem solving is to be used as a means to 

create new mathematical knowledge for students.  Because most mathematics curricula 

are organized and taught by topics, not by similar methods of solving problems, 

introducing students to a set of coherent mathematical objects requires not only one task, 

but a strand of tasks and the students’ long term involvement with the strand of tasks.  

Researchers at Rutgers have found that students in a longitudinal study had constructed 
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“mathematical problem-solving schema” (Weber, Maher, & Powell, 2006) over time, 

which helped them to relate task problems to one another based on the principles or 

modes of reasoning applicable to each problem rather than the phrasing of each task, and 

that also helped them to solve challenging problems through sophisticated representations 

and modes of reasoning.  Therefore, the questions about which task should be used with 

which topic in the curriculum, and how to sequencing a strand of tasks, deserve a close 

investigation.   

The Rutgers longitudinal project has been continuing for more than 17 years (a 

detailed description of the project can be found in chapter 4 - Methodology).  Many 

studies have been done in regard to this longitudinal project.  Students’ reasoning, 

explanations, the use of representations, and learning of standard notations have been 

analyzed by many Rutgers researchers.  However, the topic of the underlying 

mathematical structures of a task or a strand of tasks has not yet been fully explored.  My 

proposed study aims to address, at least in part of, this gap. 

 
1.3  The Purpose of the Study 
 

The purpose of this study is to explore the mathematical structures uncovered by 

the high school participants as they worked on open-ended tasks that involved 

combinatorial and probability concepts.  The problem-solving sessions took place set in 

settings in which sufficient time was allotted for collaborative learning.  Data available 

for analysis are in the form of digitized video tapes, verified transcripts, and students’ 

written work.  Using an adapted methodology introduced by Torkildsen (2006), the 

analysis will focus on decoding students’ solutions into formal mathematical definitions 

or theorems that are either mathematical objects or structures.  A diagram adapted from 
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concept mapping (Novak & Canas, 2008) will be used to illustrate the overall hierarchy 

of the presented mathematical objects and structures within a task and among tasks.  

Hope that the resulting report will serve as a guide to mathematics teachers interested in 

incorporating open-ended tasks in their teaching.   

 
1.4  Research Questions 
 

The present study is guided by the following two research questions for the strand 

of tasks used in Rutgers longitudinal project and involve combinatorial and probability 

concepts: 

1. What mathematical structures can be uncovered by exploring/engaging with the 

combinatorics tasks used in the Rutgers longitudinal study? 

2. In what ways are these mathematical structures revealed during students’ 

problem-solving processes? 

Given the qualitative nature of the proposed study and the informal after-school 

setting of the Rutgers longitudinal study, the results of this study may not be generally 

applicable to a regular mathematics classroom.  Mathematics teachers may have to tailor 

the tasks to fit their instructional goals.  However, this study provides an in-depth 

exploration of mathematical structures and their connections to student learning as well 

as to New Jersey curriculum standards that can assist teachers in their efforts to design 

instruction focused on problem-solving. 
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Chapter 2:  Literature Review  
 

2.1  Task Analysis 

 Outside of a specific domain, the term Task is generally understood to refer to a 

piece of assigned work that may be hard and that has to be done within a certain time 

frame (Merriam-Webster).  For mathematics educators and researchers, a mathematical 

task may be synonymous to a mathematical activity or a mathematical problem that gives 

students a chance to explore to certain mathematical topics in the curriculum (Ormerod & 

Ridgway, 1999).  In this study, all these three phrases (i.e. mathematical task, activity, or 

problem) will be used interchangeably.  

Mathematical task investigations are often conducted in a cooperative learning 

environment over an extended period of time because the scope and complexity of an 

open-ended task go beyond those of a regular class exercise. Collaborative learning and 

sufficient time allotted for the task are important factors to the success of task 

implementation that produces quality solutions (Francisco & Maher, 2005; Powell, 2003;  

Uptegrove, 2004; Torkildsen, 2006).  Given the little precious class time, how much time 

should be allocated to open-ended mathematical activities?  Is spending time on 

mathematical activities truly worthwhile?  What do students learn from working on these 

mathematical tasks?  What kind of mathematical tasks promote student learning?  To 

answer these questions, task analysis has been tackled by many researches.  Subsequently, 

task design has received a lot of attention. 

Resnick, Wang, and Kaplan (1973) conducted a series of task analyses in the 

context of children’s learning of the concept of number.  Their goal was to identify and 

propose optimal sequences of learning objectives.  In their study, a task was defined as a 
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series of mathematical behaviors.  For example, under the curriculum objective “Counting 

and One-to-One Correspondence,” task C was guided by the sub-objective “Given a fixed 

ordered set of objects, the child can count the objects”.  To conduct task C in the 

classroom, a teacher may give children some concrete objects such as a pile of tiles or 

paper strips and ask children to count them.  Analyzing Task C meant to identify the 

component behaviors and the prerequisite behaviors required to accomplish the objective.  

The following figure 2.1-1 summarizes the analysis of task C:  

 

Figure 2.1-1.  Example of analysis of mathematical behaviors  
                        (Resnick, Wang, & Kaplan, 1973, p.688)   

Ia 
Fixed ordered set of objects 
Count objects 

IIb 
Fixed ordered set 
Touch next object 
and say next 
numeral. 

IIc 
When last object 
has been touched 
State last numeral 
as number in set. 

IIa 
Fixed ordered set 
Touch first object 
and say first numeral 
(“one”). 

IIIa 
Set of objects 
Synchronize touching 
object and saying a 
word. 

IVa 
Word repeated by 
another person 
Touch an object or tap 
each time word is stated. 

IVc 
Row of objects 
Touch each object in 
order beginning at an 
end of the row. 

IIIc 
Fixed set of objects 
Touch each object once and only 
once (i.e., “remember” which 
objects have been touched). 

IVb 
Repeated tap or touch 
by another person 
Say a word each time 
there is a tap. 

IIIb 
 
Recite numerals in 
order. 
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The component behaviors were those steps that needed to be actually performed.  

The prerequisite behaviors were simpler behaviors not actually performed but which the 

learner must have had the ability to perform before engaging in the present task.  For task 

C above, three component behaviors were “Touch first object and say first numeral 

(‘one’),” “Touch next object and say next numeral,” and “When last object has been 

touched, state last numeral as number in the set.”  Examples of prerequisite behaviors 

could be “Recite numerals in order,” or “Synchronize touching object and saying a 

word.”  There could be more than one level of prerequisites behaviors.  To perform 

“Synchronize touching object and saying a word,” a child must be able to “touch an 

object or tap each time the word is stated by another person.”   Resnick, Wang, & Kaplan 

(1973) applied prerequisite analysis first to the curriculum objectives and then to the 

highest level of tasks within each objective.  The resulting hierarchy suggested a 

complete structure of mathematical behaviors and optimal teaching and learning 

sequencing that provided a practical basis for curriculum design.   

In a review of prior literature on task analysis and design, Resnick (1976) pointed 

out that associationists and behaviorists had found that sequencing tasks according to 

difficulty levels and letting students work from easier to more complicated tasks 

optimized learning.  The Gestalt school suggested that the key to effective teaching was 

to let students understand the internal structure of the problem and discover the solution 

by themselves.  Finally, Piagetian approaches focused on the differences between novices 

and experts when they approach certain tasks.  Resnick (1976) evaluated these different 

approaches through four criteria: Instructional relevance, psychological formulation, 

instructability, and recognition of stages of competence.  She indicated that Piaget’s work 
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contributed primarily to the last criteria and led to an information-processing task 

analysis model, which can be characterized as rational analysis and empirical analysis.  

Rational task analysis, according to Resnick (1976), focused on mathematical 

behaviors that were supposed to “succeed in responding to task demands” (p. 22).  The 

goal was to “specify processes or procedures that would be used” in the tasks (p. 23).  It 

was “derived from the structure of the subject matter” (p. 23) and “prescribing what to 

teach” (p. 24).  The analysis of the simple number-sense tasks - task C (Resnick, Wang, & 

Kaplan, 1973) described previously are examples of this type.  When the analysis was 

completed, a hierarchy of ideal mathematical behaviors was built, which would help 

teachers to see the logical sequence of learning in performing the task.   

Do these ideal performances actually occur in the classroom?  Empirical task 

analyses (based on children’s actual performances during task sessions) are meant to 

explore this question.  The goal of the researchers was to develop all possible performing 

models that could be used to describe children’s reactions and thinking processes when 

they worked on specific mathematical tasks.  Resnick (1976) had given an example in the 

context of children developing skills of single-digit addition.  First, an addition algorithm 

of counting blocks was directly taught by teachers.  After children mastered this physical 

model, the blocks were removed and children were forced to find other ways to compute 

the sum of two numbers.  Counting fingers was a typical choice at the beginning.  

Gradually, most children switched to mental processing and “invented” a sum model and a 

min (minimum) model; both models were simpler, improved versions of the original 

taught algorithm.  
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The evidence of children “inventing” simplified models through problem solving 

should have significant pedagogical impact.  However, that does not mean the rational task 

analyses were unnecessary, or initial teaching of algorithms should be omitted entirely.  

Resnick (1976) argued that the structure of the subject matter, teaching routines (i.e. 

pedagogical choices), and children’s performances were intimately intertwined.  Teaching 

basic skills actually provided children with an entry point to develop their discovery and 

invention abilities.  What should be taught directly?  What should be left for children to 

discover?  Resnick (1976) suggested that more empirical analyses of specific tasks should 

be conducted in order for educators to design appropriate teaching routines that would help 

children efficiently acquire underlying structure of the subject matter. 

Many researchers responded to Resnick’s (1976) call for empirical task analyses.  

Students’ performances during task sessions were examined carefully.  Robert B. Davis 

and Carolyn A. Maher directed and conducted a Rutgers longitudinal study beginning in 

the 1980’s.  In the context of this Rutgers project, there are numerous studies that could 

be classified as empirical task analyses.  The present dissertation is based on the data 

collected for this longitudinal project that is thoroughly described in chapter 4 

Methodology.      

In studying mathematics instructional tasks, Stein et al. (2000) developed a Task 

Analysis Guide based on four levels of task cognitive demands.  Memorization tasks and 

Procedures without Connections tasks were classified as being of lower cognitive level, 

which utilized facts, rules, definitions, or previously learned formulas.  Procedures with 

Connections tasks and Doing Mathematics tasks were classified in the higher cognitive 

level category, these being the tasks through which students explored a variety of 
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situations and built deeper understanding of mathematical concepts and relationships.  

The characteristics of these tasks were described in detail (pp. 12-23).  For example, 

students’ prior knowledge was needed for solving any type of tasks.  But memorization 

tasks “involve exact reproduction of previously seen material,” while doing mathematics 

tasks “require students to access relevant knowledge and experiences and make 

appropriate use of them” (p. 16).    

Stein et al.’s (2000) task analysis guide provided teachers with a useful tool in 

matching tasks with their instructional goals to promote student learning.  However, the 

cognitive demand level for a particular task was not easily agreed upon by educators.  

That was because the cognitive level could be easily changed during the task set up or 

implementation phases.  Through analyzing six task sessions conducted by different 

teachers with different students on different mathematics topics, Stein et al. (2000) 

presented six instances of changing of cognitive demand level in the classroom.  Four of 

these cases started with high-level cognitive demands and degenerated into low-level 

mathematical activities.  Various factors contributed to these declines.  Inappropriate task 

selection, too much or too little time, and inappropriate teacher interventions were the 

main reasons.  The other two cases successfully maintained the intended cognitive 

demand levels.  These two cases presented similar characteristics, such as the “task 

building on students’ prior knowledge, high-level performance was modeled, appropriate 

amount of time and teacher scaffolding, and sustained pressure for explanation and 

meaning” (p.31).  Stein et al. (2000) further encouraged all mathematics teachers to 

reflect on these six cases and on their own teaching practices based on the mathematical 

tasks framework introduced above.  By doing so, teachers could gain thorough 
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understanding of the tasks and of students’ thinking, both of which are necessary factors 

for effective teaching and learning. 

Because nowadays technological tools such as Geometer’s Sketchpad and 

computer algebra systems play an important role in mathematic classrooms, Heid et al. 

(2002) developed a Mathematics Task Coding Instrument (MaTCI) for their study of 

students working on conceptually oriented mathematical tasks in the context of 

technology.  They, like Stein and her colleagues, categorized tasks by the cognitive 

demands.  However, unlike Stein et al., their focus was “primarily on the goal state or the 

end product of the activity,” and not on the intricacies of students’ performances.  Heid et 

al. (2002) first divided tasks into three major classes: Concept, Product, and Reasoning.  

The goal of a concept task was to characterize a concept; in the case of a product task, it 

was to generate a mathematical object; for reasoning tasks, it was to give a rationale for a 

conclusion.  Under each major class, there were several subclasses that were ordered by 

cognitive demands from easier to more difficult.  Detailed explanation and examples for 

codes under each subclass were provided.  The following table 2.1-1 summarizes the 

overall structure of Heid et al.’s (2002) MaTCI: 

Category Subcategory Code 
Concept Identify Identify object 
 Describe Observation or procedure 
 Elaborate 

 
Compare/explain/describe phenomenon 

Product Produce Produce a value or an output given an 
input value; 
Input value given an output value; 
Produce a graph  

 Generate Function specifics; 
A procedure 

 Predict Predict 
 Generalize Generalize  
Reasoning Corroborate A procedure or a generalization 
 Justify Justify 

  
Table 2.1-1  MaTCI - Mathematics Task Coding Instrument (Heid et al., 2002) 
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A task that requires students to explain why something is true or false would 

probably be classified as a Reasoning task by Heid et al.’s (2002) MaTCI, and as Doing 

Mathematics by  Stein et al.’s (2000) Task Analysis Guide.  In analyzing a geometric task, 

Hadas & Hershkowitz (2002) further classified students’ explanations into five categories: 

No explanation, Inductive explanation, Partial Deductive explanation, Visual explanation, 

and Deductive explanation.  About 12% (4 out of total 34 explanations) were classified as 

visual explanations and 23% (8 out of 34) as inductive.  Both visual and inductive 

explanations were typical choices for students working in a learning environment such as 

Dynamic Geometry computer software used in this study.  Most students’ explanations 

fell into partial deductive (41%) and deductive (12%).  Hadas & Hershkowitz (2002) 

argued that the study result showed that “students tend to rely on their geometrical 

knowledge and use deductive strategies to explain their conclusions” (p. 55).    

Analyzing students’ explanations was the last stage of task analysis in Hadas & 

Hershkowitz’s (2002) study.  There were three analyses before the explanation analysis.  

The epistemological analysis explored “all possible investigation paths” that students 

might take during the activity.  The didactical characteristics analysis reflected task 

designers’ prediction on students’ actions and subsequently developing “favorable 

conditions” to lead students toward the goal of the activity.  The third one, conjectures 

analysis focused on students’ initial conjectures, examining how these conjectures were 

altered during the study and to what extent they contradicted the findings.  In the context 

of Resnick’s (1976) broad category of information-processing analyses, Hadas & 

Hershkowitz’s (2002) first two analyses, epistemological and didactical characteristics, 



Lo, Chapter 2, 15 

15 

are rational analyses.  The other two (conjectures and explanations analyses) can be 

categorized as empirical analyses.       

Choppin’s (2006) analysis of two similar tasks from two reform curricula was 

purely rational.  These two tasks had almost identical goals but were designed differently.  

Choppin (2006) compared the structure and sequence of these two task designs and 

claimed that one of them “explicitly elicits and builds from multiple interpretations or 

strategies” (p. 6), while the other one, more structured with highly constrained subtasks, 

would reduce “the opportunities for student engagement and interactivity” (p. 7).  For 

task implementation, Choppin (2006) pointed out that the more structured task required 

less teacher expertise.  However, he advised teachers to adapt such tasks for greater 

student interactions, which he claimed may lead to deeper understanding.  To accomplish 

this, the necessary steps include “teachers make conjectures based on prior experience 

and reading of research, test out new adaptations, note how students react to them, reflect 

on the task design, and revise the task for the next iteration” (p. 7).  Choppin (2006) 

concluded that teachers can improve their understandings of student thinking and of the 

underlying mathematics ideas and develop complex practices through this kind of task 

design experiments.  

 One year before Choppin’s study, a group of researchers discussed different 

perspectives on task design and how it could affect student learning at the 29th PME 

(Conference of the International Group for the Psychology of Mathematics Education).  

They chose the topic “proportional reasoning” as examples in their studies.  Gravemeijer, 

van Galen, and Keijzer (2005) introduced three task design heuristics in the Realistic 

Mathematics Education instructional design: guided reinvention, didactical 
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phenomenology, and emergent modeling.  Guided reinvention means that the task should 

guide students’ experiences through a similar process as that through which the 

mathematics was invented.  Didactical phenomenology involves real-world applications 

that challenged students to find situation-specific solutions.  The emergent modeling 

involves a series of similar tasks that initially encourages students to create informal 

context-specific models through making drawings, diagrams, tables, or developing 

notations to solve the problem; then, as students have more experience with similar tasks, 

the student-constructed models become more object-oriented, which lay a foundation for 

more formal mathematical reasoning.  Gravemeijer, van Galen, and Keijzer (2005) 

further argued that the emergent modeling heuristic should be the main focus in the 

instructional task design because it fosters student reasoning in a long-term learning 

processes.  

 Friedlander and Arcavi (2005), the other group of researchers at the 29th PME, 

talked about a particular technology-based activity designed for students to use Excel 

spreadsheets as a tool that enabled students to create emergent models in the sense 

mentioned by Gravemeijer, van Galen, and Keijzer.   Through observing and interpreting 

results generated by the spreadsheet, students were able to see the general pattern and to 

make initial predictions at a very early stage, surprising the task designers.   

Ainley and Pratt (2005) confirmed the benefit of using an Excel spreadsheet as a 

tool through their study of task design based on the aspects of purpose and utility.  They 

pointed out that many real-world activities did not make much sense to pupils who could 

not get a meaningful outcome thereafter.  Ainley and Pratt (2005) stated that “the purpose 

of a task is not the ‘target knowledge’” but “creates the necessity for the learner to use the 
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target knowledge in order to complete the task.”  Ainley and Pratt defined the utility of a 

task as "knowing how, when and why that idea is useful”; the utility “is seen as an 

intrinsic, but frequently unacknowledged, facet of the concept itself” (p. 115).  In Ainley 

and Pratt’s (2005) study, two boys showed the interplay of these two key features when 

they worked on the task.  Recognizing the purpose of the task created needs for inventing 

possible utilities that led the boys to the next step of the path toward the solution.  “Such 

exploration enabled the boys to construct meanings” (p. 118) behind mathematical 

calculations (i.e. utilities).  On the other hand, two girls in the study asked teachers for 

more guidance.  The girls stuck with what they were told to do and “went down a much 

narrower predictable pathway” (p. 119).  Ainley and Pratt (2005) concluded that because 

“no task can offer rich pathways for all children,” (p. 119) issues of task design should be 

considered and explored more.            

De Bock, Van Dooren and Verschaffel’s (2005) reported on a small-scale study 

that required four 11-year old students to examine and sort ten given word problems into 

groups.  Participating students were asked to explain their reasoning for such groupings, 

and to provide different ways of grouping if they could.  The purpose of this task was to 

see if learners could distinguish between proportional and non-proportional situations 

(that is, between word problems that could or could not be solved through the means of a 

proportion).  For example, in the following three out of the ten given word problems, 

problem C is proportional while problems B and F are non-proportional.  

Problem B:  Mama put 3 towels on the clothesline.  After 12 hours they were dry.  
The neighbor put 6 towels on the clothesline.  How long did it take 
them to dry? 

 
Problem C:  Mama buys 2 trays of apples.  She then has 8 apples.  Grandma buys 

10 trays of apples.  How many apples does she have?    
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Problem F:  Today, Bert becomes 2 years old and Lies becomes 6 years old.  

When Bert is 12 years old, how old will Lies be? 
   
The study results were “rather disappointing” (p. 102), as none of the four 

participants came up with what the researchers considered to be the correct grouping.  

One student grouped B, C, and F together, another student grouped C and F together with 

other problems.  De Bock, Van Dooren and Verschaffel (2005) claimed that participants 

“mainly looked for linguistic or other superficial differences between the problem 

formulations and not for an underlying mathematical structure.”   They further argued 

that “the word-problem format is inadequate or insufficient to meaningfully contextualize 

mathematics in the mathematics classroom” (p. 102).   

 Indeed, not many studies can be found that focus on students’ understanding 

about underlying mathematical structure.  Torkildsen (2006) is one of the few.  In his 

dissertation study, he examined what mathematics students could or could not do when 

they were solving open-ended problems.  He focused on uncovering the mathematical 

structures that were inherent in students' solutions.  He examined six tasks associated 

with number theory and combinatorics.  For each task, he first provided solutions in 

every possible approach, found in mathematical textbooks or papers, with mathematical 

structures identified formally and explicitly.  This part could be classified as Resnick’s 

(1976) rational analysis.  Next, he analyzed students’ solutions produced in different class 

sessions.  Then, he discussed the mathematical structures found in students’ solutions.  

This later part matched Resnick’s (1976) description of empirical analysis.   

The present dissertation study will build on Torkildsen’s (2006) efforts in 

examining mathematical structures embedded in the process of solving mathematical 
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tasks.  The goal of the study is to see what mathematical structures can be used to solve 

certain task problems, and to learn how those mathematics structures are emergent when 

students work on the tasks.     
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2.2  Mathematical Structure  
 
 The word structure means “something that is constructed or organized such that 

its parts are dominated by the general character of the whole” (Merriam-Webster, 2008).  

The term mathematical structure was not used by mathematicians until 1930 (Corry, 

1990), and the gradual development of the concept to which it refers changed how 

mathematics was perceived by mathematicians (Corry, 1990, 1992, 2001).  The birth of 

Van der Waerden’s textbook Modern Algebra (1970) significantly changed the content of 

classical algebra and led to “a new consensus as to what algebra as a discipline 

henceforth would be” (Reed, 2000, p. 182).  To examine what is meant by mathematical 

structure, the next two subsections will (1) review its definition and historical evolution, 

and (2) consider its implication for teaching and learning.          

 
2.2.1.  Historical Evolution 
 
 Before discussing the evolution of mathematical structure, Corry (1990, 2001) 

defined and distinguished between two terms he used to describe the knowledge of a 

scientific discipline: 

• Body of knowledge: theories, facts, methods, and claims that address questions 

directly related to the subject matter.   

• Images of knowledge: claims that address questions which express knowledge 

about that discipline such as: What is the legitimate methodology of the discipline?  

What is a good theory?  What is the most efficient technique to solve a certain kind 

of problem in the discipline?  What is the relationship among entities in the 

discipline?  What are the burning issues of the discipline? 
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According to Corry, the idea of a mathematical structure is “a classical example 

of an image of mathematics” (Corry, 2001, p. 1), which had the potential to cause real 

changes in the body of mathematics.  This is because of the unusual characteristics of the 

mathematics as a discipline: 

In most scientific disciplines, facts and theories are continually added to 
and deleted from the body of scientific knowledge, while the images of 
knowledge are affected by these and by a wide variety of other factors.  
But in contrast, claims that enter the body of mathematics through proof 
are seldom if ever rejected.  As a rule, new theorems and new proofs of 
old theorems do not falsified old theorems and proofs.  Still, the process 
of mathematical change is not one of linear accumulation. (Corry, 1990, 
p. 383)  
 

Corry continued to describe the nature of non-linear change in mathematics: 

It is the images of knowledge (which are determined by social and 
philosophical factors, by the interaction with other sciences, etc.) that 
determine the way in which a new item will be integrated to the existing 
picture of knowledge; Eventual changes in the images of knowledge may 
later transform the status of existing pieces of knowledge and produce a 
different overall picture of mathematics. (Corry, 1990, p. 383) 
 

Van der Waerden 
 

This image of mathematics appeared for the first time in van der Waerden’s 

Modern Algebra (Corry, 2001; Dold-Samplonius, 1997; Mac Lane, 1997; Reed, 2000) 

which was considered to be “the watershed event in the rise of mathematical structure” 

and to have significantly “changed the content of algebra” (Reed, 2000, p. 182).  

According to Mac Lane (1997) and Corry (1990, 2001), this book consolidated algebraic 

research and resulting theories from various mathematical branches developed in the 

previous two decades.  The ideas presented in the book such as groups, fields, ideals, and 

rings had been influenced by the work of Emmy Noether, Artin, Gottingen, Hamburg, 

Ernst Steinitz, and others.  For example, the idea of groups was included in the 

mainstream textbook Serret’s Cours in 1866.  The fields and ideals were introduced by 

Dedekind in 1871.  Additionally, David Hilbert “pioneered in finding connections (i.e. 
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structural properties) between different area of mathematics, drawing upon ideas from 

separate and not obviously related disciplines” (Reed, 2000, p. 184).   Also, Hilbert’s 

postulate analysis inspired an axiomatic approach to mathematical theories (i.e. 

mathematical statements are logically derived from self-evident axioms).  However, 

Hilbert and his students neither carried out this structural image of algebra “in its 

completed form, nor suggested that it should be adopted in algebra” (Corry, 2001, p.16).   

It was van der Waerden who attempted to adopt a unified and systematic way to 

define and study each and all of the algebraic branches and “attempted to fully elucidate 

their structure” (Corry, 1990, p.386).  The attempt to define structure was informal.  Van 

der Waerden never explicitly asked questions such as: What is it meant by structure?  

What must be known of a certain algebraic domain in order to claim that its structure is 

known?  But the discussion of the various algebraic domains in his book implicitly 

provided “an account of the essence of the structural image of algebra” (Corry, 2001, 

p.6); and the modern axiomatic method formulated in the book was considered “the most 

essential feature of the structural approach” (p.9).  

In reviewing Corry’s book Modern Algebra and the Rise of Mathematical 

Structures, Reed (2000) pointed out that after van der Waerden, there were three early 

attempts of defining the notion of structure formally.  They are: (1) Oystein Ore’s 

Lattice-theoretic approach, (2) Nicolas Bourbaki’s Theory of structures, and (3) Samuel 

Eilenberg and Saunders Mac Lane’s Category theory. 

Oystein Ore 

The concept of lattice was first studied by Richard Dedekind and Ernst Schröder.  

In 1930, Oystein Ore, a Norwegian mathematician, collaborated with Emmy Noether to 
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edit and publish the Collected Works of Richard Dedekind.  Since then, Ore’s research 

interest had turned to lattice theory (Roman, 2008, p. vii; O’Connor & Robertson, 2005).  

He started a research program at Yale in 1935 with the goal “to develop a general 

foundation for all abstract algebra based on the notion of lattice, which he denoted with 

the term Structure” (Corry, 2004, p. 259).  Ore believed that since many theorems “had 

recurrently appeared in different algebraic domains,” there must be “a single, general 

concept from which equivalent theorems could be derived simultaneously valid in all 

those domains” (p. 268).  He suggested that, in studying the structure of the algebraic 

domain, one should overlook the elements and operations of these domains and focus on 

the relationships among certain distinguished sub-domains.  Ore’s own work on lattice 

led him to the study of equivalence and closure relations, Galois connections, and finally 

to graph theory (O’Connor & Robertson, 2005).  However, Ore’s project only focused on 

a limited framework of abstract algebra.  For this reason it was not given much attention 

among researchers and soon the spotlight moved to Nicolas Bourbaki’s concept of 

structure that incorporated a much larger domain of pure mathematics.  

Nicolas Bourbaki  

 Bourbaki’s name is inseparable from the notion of structure in modern 

mathematics (Cartan, 1980; Corry, 2001).  Bourbaki extended van der Waerden’s 

achievement “in presenting the whole of algebra as a hierarchy of structures” and 

“succeeded in presenting much larger portions of mathematics in a similar way” (Corry, 

2004, p. 306).  In the book Elements of Mathematics: Theory of Sets, Bourbaki (1970) 

explained that the axiomatic method is nothing but a systematic instrument to write and 

read mathematical text unambiguously with rules of syntax of a formalized language so 
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that once a general theorem has been established it may be applied to many different 

contexts with different meanings attached to the words and symbols of the theorem (p.8).  

In regard to the concept of structure, Bourbaki described it through the lens of the 

axiomatic method as follows: 

The axiomatic method allows us, when we are concerned with 
complex mathematical objects, to separate their properties and regroup 
them around a small number of concepts: that is to say, using a word 
which will receive a precise definition later, to classify them according to 
the structures to which they belong.  (Of course, the same structure can 
arise in connection with various different mathematical objects.)  For 
example, some of the properties of the sphere are topological, others are 
algebraic, others again can be considered as belonging to differential 
geometry or the theory of Lie groups.  (Bourbaki, 1970, p. 9)   
 
In the article The Architecture of Mathematics, Bourbaki (1950) had identified 

three mother-structures: order structures, algebraic structures, and topological 

structures, which Bourbaki claimed were the nucleus of the universe of mathematics.  

Within each mother-structure there is a most general structure with the smallest number 

of axioms.  By adding supplementary axioms, this most general structure is enriched and 

new subsequent structures are defined, which possess particular characteristics other than 

the original ones.  In the case of order structures, an ordered set can be either partially 

ordered or totally ordered.  In general, the notation xRy is used to represent a relation R 

between two elements x and y.  A partial ordering has to satisfy three axioms: (1) 

Reflexivity: for every element x, xRx; (2) Antisymmetry: if xRy and yRx, then x = y; and 

(3) Transitivity: if xRy and yRz, then xRz.  Besides these three axioms, a total ordering 

has to satisfy an additional axiom - Comparability: for every pair of elements x and y, 

either xRy or yRx holds.  If every subset of a totally ordered set has a “least” element, 

then the set is said to be well-ordered (Bourbaki, 1950, p.226-229; Artin, 1991, p.588; 

Hungerford, 1997, p.420-421).  Thus, a vertical hierarchy is constructed: ordered set  
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partially ordered set  totally ordered set  well-ordered set.  Under this structure, 

every well-ordered set is totally ordered and every totally ordered set is partially ordered.  

However, the converse statements are not true.   

To illustrate through particular examples, the set of integers under the relation 

“divides” is partially ordered.  Here, “x divides y” means "x is a divisor of y" or "x is a 

factor of y" (Hungerford, 1997, p. 7).  The set is partially ordered because (1) for every 

integer x, x divides x; (2) if x divides y and y divides x, then x = y; and (3) if x divides y 

and y divides z, then x divides z.  However, this set is not totally ordered because, for 

instance, 3 and 5 are not comparable (i.e., neither “3 divides 5” nor “5 divides 3” holds).  

On the other hand, the set of real numbers under the relation “≤” is totally ordered but not 

well-ordered because many subsets of the real numbers do not have a least element; the 

set of positive real numbers is such a subset.  Nevertheless, the set of positive integers 

with the relation “≤” is a well-ordered set because each of its subsets has a least element.  

A hierarchy can also be constructed horizontally.  Any two or more of these 

mother-structures and constructed-structures might be “combined organically by one or 

more axioms which set up a connection between them” to form another layer called 

multiple structures (Bourbaki, 1950, p. 229).  For examples, the theory of divisibility 

that determines whether a number is divisible by other numbers is constructed by 

combining order structures and algebraic structures; the theory of integration (the act or 

operations of finding integrals) is constructed by combining order structures, algebraic 

structures, and topological structures.  Bourbaki used the phase “combined organically” 

(Bourbaki, 1950, p. 229) because most mathematical objects were developed 
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independently from one another.  Structural combinations were not explicitly examined 

until Bourbaki tried to organize all mathematical objects into a large hierarchical system.   

Bourbaki claimed that the construction of multiple structures could keep going 

until reaching particular theories, in which the structures were individually 

characterized.  Thus, the hierarchy of mathematical structures was “going from the 

simple to the complex, from the general to the particular” (Bourbaki, 1950, p. 228).  This 

sketch, Bourbaki continued, was a “very rough approximation of the actual state of 

mathematics” and was “schematic, idealized as well as frozen (i.e. static)” (Bourbaki, 

1950, p. 229).  Bourbaki admitted that his structures were “not immutable” and expected 

that “future development of mathematics may increase the number of fundamental 

structures, revealing the fruitfulness of new axioms or of new combinations of axioms” 

(Bourbaki, 1950, p. 230).   

Bourbaki was later criticized for abandoning the formally defined structures 

outlined in his Theory of Sets  (Corry, 2001) and using only informal ad hoc definitions 

of basic concepts in the subsequent volumes of his book Eléments (Bourbaki, 1970).  

Corry pointed out that, in Eléments, “the only theorems proven in terms of structures are 

the most immediate ones, such as the first and second theorems of isomorphism” (Corry, 

2004, p. 323).  Corry further pointed that “no new theorem is obtained through the 

structural approach” (Corry, 2004, p. 324) and that many of Bourbaki’s assertions 

“belong strictly to Bourbaki’s non-formal images of mathematics” (Corry, 2004, p. 334).  

Nevertheless, Bourbaki’s concepts of mother structures and structural schemes were 

commonly accepted among mathematicians and researches, “implicitly or explicitly, as 

results obtained in the framework of a standard mathematical discipline”, which “was a 



Lo, Chapter 2, 27 

27 

main force in shaping mathematical activity all over the world for several decades after 

its emergence” (Corry, 2001).  One such outgrowth is the current research in Model 

theory (Corry, 2004, p. 330, footnote 90).  In Corry’s opinion:  

Neither Bourbaki’s theory nor any similar attempt have succeeded 
to the present day in fully elucidating the idea of mathematical structure.  
However, since mathematical knowledge is usually granted special status 
of unquestioned certainty, beyond that of other forms of human knowledge, 
the very existence of formal theories dealing with structures has often been 
interpreted at face-value, by mathematicians and non-mathematics alike, 
as though this concept would be unequivocally understood within 
mathematics (Corry, 1990, p. 388).     
 

Samuel Eilenberg and Saunders Mac Lane 

Saunders Mac Lane had studied algebra at Yale University in 1929-30 under 

Oystein Ore’s supervision (Corry, 2004, p. 349; Mac Lane, 2005, p. 32).  In 1943, Mac 

Lane started working on homological algebra with Samuel Eilenberg (Corry, 2004, p. 

339; Mac Lane, 2005, p. 73, 98, 100) who was a Bourbaki member (Corry, 2004, p. 255).  

To answer certain questions in homology theory, Mac Lane and Eilenberg introduced 

category theory in 1945, which is “the general theory of Natural Equivalences” (Mac 

Lane, 2005, p. 209; Reed, 2000).  A category is a fundamental and abstract way to 

describe mathematical entities and their relationships (Marquis, 2007).  Ore proposed to 

concentrate study on the relationship between a given algebraic domain and its sub-

domains in order to understand the essence of its structural nature (Corry, 2004, p. 348).  

This approach was passed down toward the study of category theory, which emphasizes 

the study of morphisms (structure-preserving mappings or simply functions), between 

mathematical objects (Marquis, 2007).    

On the other hand, Bourbaki’s study was primarily focused on the structures of 

algebraic objects.  There was “a debate within the Bourbaki group over whether 
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categories should play an explicit role in the Eléments.”  Unfortunately, Bourbaki “never 

really acknowledged the greater power of category theory in formalizing one of the most 

important aspects of the structural approach, namely its exploitation of mappings between 

structures to reveal their properties” (Reed, 2000, p. 189).   

Mac Lane is well-known for his work on the coherence theorem and the use of 

diagram (McLarty, 2005).  In category theory, a diagram (graph) consists of objects 

(structures, vertices) and morphisms (mappings, functions, arrows, edges).  It is believed 

that this diagrammatic approach had a great impact on contemporary mathematics.  The 

coherence theorem describes a condition when two or more morphisms between two 

given objects are equal.  The following figure 2.2-1 illustrates a generic commutative 

diagram that shows a coherence condition existing between objects A and D because h ◦ f 

= k ◦ g by function compositions. 

 

Figure 2.2-1.  Commutative Diagram showing coherence condition between A and D 

 
The category of Sets is the most basic and commonly used category, in which the 

objects are sets, the morphisms are all functions between sets, and composition is the 

usual function composition.  Nowadays, categories can be found in most branches of 

mathematics, in some areas of theoretical computer science where they are called types, 

and in mathematical physics where they are used to describe vector spaces. Category 
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theory provides a formal way to unify notion and terminology for these disciplines 

(Marquis, 2007; McLarty, 2005). 

Reed (2000) argued that most mathematicians “would probably agree that 

category theory has a decided advantage over” Ore’s and Bourbaki’s attempt to define 

mathematical structures formally.  However, “Corry does not seem to feel that any formal 

definition of structure could do justice to the use of the concept of structures in actual 

mathematical practice” (Reed, 2000, p. 189).  Corry (2004) pointed out that Mac Lane 

once claimed, “The mathematical reality is much more varied than category theory can 

exhaust” (p. 368).  Therefore, Corry (2004) reminded us that Ore’s Lattice theory “played 

an important role in the consolidation of the images of mathematics” (p. 353) and 

Bourbaki’s influence on changing the image of mathematics cannot be contested 

although his formalizing of a structural approach based on an axiomatic method was 

“forced and unnatural” (p. 330).   

Many aspects of the structural approach can hardly be defined in formal terms 

(Corry, 1990).  For the same reason, neither lattice theory nor category theory 

“succeeded in exhaustively encompassing the meaning of the non-formal idea of 

mathematical structure” (p. 386).  The meaning of mathematical structure “significantly 

varies from author to author and even among different texts of the same author” (p. 387), 

which is important to keep in mind as the discussion of mathematical structures and their 

implications for the teaching and learning of mathematics are discussed in the next 

section.    
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2.2.2  In Learning and Teaching 
 
As the focus on structures changed the image of algebra in mathematics 

discipline, school mathematics also shifted its focal points.  “Most of the arithmetic and 

algebraic procedures long viewed as the heart of the school mathematics curriculum can 

now be performed with handheld calculators.  Thus, more attention can be given to 

understanding the number concepts and the modeling procedures used in solving 

problems” (NCTM, 2000, p. 20).  The New Jersey Mathematics Core Curriculum 

Content Standards (NJMCCCS, 2008) contain similar statements, stressing that students 

should learn important mathematical concepts rather than simply memorize and practice 

procedures.  As new technology becomes available, less time is required for lengthy 

computational processes, and “more effort should be devoted to the development of 

number sense, spatial sense, and estimation skills” (p. 2).   

How can one best learn about mathematical concepts?  Constructivism argues that 

mathematical concepts cannot be passed directly from teacher to students, but that with 

the teacher’s help, students themselves must construct concepts and build concept 

images.  Therefore, Problem Solving was recommended by many mathematics educators 

as one of the process standards.  It appears that there is a conflict between problem-based 

instruction and the axiomatic approach discussed in the previous section.  Teachers and 

students may experience difficulties in attempting to extract formal mathematical 

definitions and theorems from problem solving activities.  This makes the construct of 

mathematical structures very important because when students start glimpsing the 

relationships across mathematical content areas, they can view and learn mathematics as 

an integrated whole (NCTM, 2000, p. 355). 
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In the following, the discussion of mathematical structures will be organized 

under four subsections: curriculum reform, teacher knowledge, impact on student 

learning, and structure sense. 

 
Curriculum Reform 

 One of the reasons that students may struggle to learn mathematics is because 

“the curriculum offered does not engage them” (NCTM, 2000, p. 5).  Many students feel 

the traditional curriculum is boring and useless because they can rarely make connections 

between mathematics and the real world.  Additionally, some students think they are 

lacking innate ability to be successful in studying mathematics (NJMCCCS, 2008, p. 1).  

To improve the quality of learning, the mathematical curriculum reform started its long 

journey as early as the 1950’s (Kilpatrick, 2009).  Many reform proposals, projects, 

discussions and debates have been carried on continuously over the past three decades.  

Howard Fehr’s Unified Mathematics Curriculum was part of these reforms 

efforts.  According to Fehr (1976), the study of algebra had evolved from the nineteenth 

century.  By 1910, modern algebra was defined as the study of structures.  These 

algebraic structures had gradually become “a unifying thread which has extended into all 

branches of mathematics” (p. 26) and created “a need to reorganize the mathematics of 

the traditionally separated branches into a unified single study” (p.4).  Fehr (1976) 

reported that the unified mathematics curricula made significant progress from 1950 to 

1965.  The four novel concepts of sets, relations, functions, and operations had become 

common fundamental topics for all mathematics branches.      

Robert B. Davis also contributed significantly to the mathematics curriculum 

reform.  According to Maher (1998), Davis’ Madison Project began at the Madison 
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School in Syracuse, New York.  There were “over 20,000 teachers in New York, 1,800 

teachers in Chicago, and large groups of teachers in other American cities involved in 

this project” (Mayansky, 2007, p. ix).  In the 1950s and 19060s, Davis led participating 

teachers and researchers to create the Madison project curriculum that covered subject 

matters such as elementary algebra, functions, and graphs, with a concern for axiomatic 

development.  (Davis, 1980).  To study students’ mathematical thinking, Davis (1984) 

used the term KRS (Knowledge Representation Structure) to represent the knowledge 

stored in children’s memory and which was retrievable from the memory.  Davis argued 

that these KRSs helped learners to recognize patterns by “matching up input information 

with an appropriate previously-created representation structure” (Davis, 1984, p.125), 

which could lead to the creation of a new KRS.  Thus, ways to enlarge the database of 

KRSs had been considered during the development of the Madison Project curriculum.  

The most current reform efforts that originated in the 1980s resulted in the 

Principles and Standards for School Mathematics published by National Council of 

Teachers of Mathematics (NCTM, 2000).  In this latest version, the goal of reform is to 

achieve equity and excellence in student learning (p. 5) by means of implementing “a 

coherent curriculum” that “effectively organizes and integrates important mathematical 

ideas so that students can see how the ideas build on, or connect with, other ideas, thus 

enabling them to develop new understandings and skills” (p. 15). 

  The construct of structure is not directly addressed in the NCTM standards or the 

New Jersey Mathematics Core Curriculum Content Standards (NJMCCCS, 2008).  

However, the idea of mathematical structures is relevant to many aspects of the 

curriculum standards.  In NCTM 2000, mathematics is described as “a discipline that is 
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highly interconnected” (p. 30).  The Standards are organized into two big categories, 

Process Standards and Content Standards, which are “overlapped and integrated” (p. 30).  

The Content Standards cover five areas in mathematics: number and operations, algebra, 

geometry, measurement, and data analysis and probability.  Process Standards address 

the processes of problem solving, reasoning and proof, connections, communication, and 

representation (p. 7).  The connection between these two set of standards is so rich that 

“processes can be learned within the Content Standards, and content can be learned 

within the Process Standards” (p. 30).   

 The intention of the NTCM Standards is clear.  If connections can be made 

between mathematical entities, between mathematical content and processes, and 

between mathematics and other disciplines, then students can learn mathematics as a 

coherent whole rather than disconnected individual pieces.  Such an approach to learning 

has the potential to engage students more successfully.  However, to implement 

mathematics reform is not all that simple.  “Sometimes the changes made in the name of 

standards have been superficial or incomplete” (NCTM, 2000, p. 5).  The challenges are 

complex.  Being in the position to bring new curricula to life, mathematics teachers are 

usually held responsible for the success of the implementation of mathematical reform.  

Responding to reform efforts, many teachers incorporated more problem based 

activities in their instructions.  Students were often asked to work on designated tasks in 

groups.  More task time was allocated.  Pre- and post- discussions were conducted.   

However, in spite of all these efforts, authentic mathematical discourse did not always 

take place.  Bonnie, a 7th grade mathematics teacher who participated in Manouchehri 

and Goodman’s (2000) study, stated that her students were initially excited to be doing 
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mathematical activities but lost interest later on because the problem solving program 

seemed to drag everyone in different directions and was going nowhere.  Bonnie claimed 

that her students preferred more structured instructions like those presented in the 

traditional curriculum: 

They wanted structure -- They kept asking why they were doing these 
things -- when they were going to do what they were supposed to do -- 
They did not see what we were doing as doing mathematics ……I felt my 
instruction was disjointed -- I was doing different things with different kids 
and this was not good for them -- Some of them felt that if they worked 
on the new curriculum it meant that they could not do the regular math 
stuff and those that wanted more traditional stuff would not working with 
others. (Manouchehri & Goodman, 2000, p. 8)    
 
Manouchehri and Goodman (2000) had carefully observed Bonnie’s classes as 

well as the classes of the other teacher (Gina).  They found that the richness of the 

teacher’s content knowledge had a great impact on how problem based instruction was 

conducted.   Bonnie’s lack of ability to recognize the connections among mathematical 

activities and mathematical structures directly contributed to the unsuccessful outcome of 

her problem solving sessions.  Bonnie was somewhat puzzled when several students 

came up with unexpected solutions, and she was not able to answer students’ questions 

promptly and confidently.  The questions were as simple as “Do you see what I have 

done?” or “Why can all these answers be right?” or “Which answers should I write 

down?” (p. 18). 

In the post-observation interview, Bonnie admitted that “she did not really know 

what the problem was all about when she casually assigned it to groups,” but she felt 

“happy that she had managed to engage nearly all students in discussion” sharing their 

thoughts (Manouchehri and Goodman, 2000, p. 18).  Nevertheless, the discomfort 

situation caused by insufficient understanding of the mathematics involved prevented 

Bonnie from using the activity again: “I am not going to do this with my next class 
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though -- It takes too much of the class time and I think I should get through my lesson” 

(p. 18).   

Bonnie’s reflection was understandable.  It is typical that teachers complain about 

time constraints if they see mathematical activities as separated pieces departing from the 

mathematical topics they are supposed to cover.  Additionally, teachers find themselves 

in a more vulnerable position when engaging students in open-ended mathematical 

activities, as they need to be able to handle student comments or questions that they may 

not necessarily foresee at the beginning of the activity.  However, “teaching is itself a 

problem-solving activity” (NCTM, 2000, p. 341).  With adequate professional 

development, teachers may become good problem solvers in mathematics as well as in 

teaching mathematics.  There is consensus among researchers that the focus of this 

professional training should be enriching teacher knowledge (Anders, 1995; Darline-

Hammond, 2002; Ma, 1999; Manouchehri & Goodman, 2000; Mullens and Murnane, 

1996; NCTM, 2000, p.17; Shulman, 1986, 1987; Wilson, Fernandez, and Hadaway, 

1993).  The following is a brief review of this body of research.    

 
Teacher Knowledge  

According to Wilson, Fernandez, and Hadaway (1993), “To become a good 

problem solver in mathematics, one must develop a base of mathematics knowledge.  

How effective one is in organizing that knowledge also contributes to successful problem 

solving” (p. 6).  In studying problem solvers’ perception of specific mathematics 

problems and their knowledge structure, Schoenfeld and Herrmann (1982) found that 

novices tended to attend to surface features of the problems such as the specific words or 

objects described in the problem statement, whereas experts possessed more richly 
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structured knowledge bases in which relationships among parts were structurally built.  

These findings reinforce the importance of exploring mathematical structures inherent in 

the process of a problem-based activity.  

Shulman (1986) suggested that teachers needed to possess three kinds of 

knowledge, including subject matter content knowledge, pedagogical content knowledge, 

and curricular knowledge.  He proposed that these three kinds of knowledge could be 

organized and represented in forms of propositions, cases, and strategies.  Later, Shulman 

(1987) added four more to the previous list of types of teacher knowledge -- general 

pedagogical knowledge, knowledge of learners, knowledge of educational contexts, and 

knowledge of educational ends, purposes, and values.  He claimed that an effective 

teacher requires a knowledge base that contains these seven types of knowledge.   

Examples of these categories of knowledge can also be found in Anders’ (1995) 

study.  A teacher’s classroom knowledge was analyzed “based on the proposal that 

knowledge is stored in a schematic structure called a script ” (Anders, 1995, p.311).  The 

curriculum script was defined as the combination of Shulman’s subject matter content 

knowledge and curricula knowledge; the classroom script was equivalent to Shulman’s 

knowledge of learners and knowledge of educational context.  Anders (1995) found that 

every teacher possessed a unique classroom script that helped him/her in planning, 

predicting, interpreting, and reflecting on his/her teaching practices.  Three points were 

drawn as conclusion: (1) teachers’ content knowledge is embedded in classroom events 

involving students; (2) the components of a teacher’s script are interconnected and 

significantly affect each other; and (3) a teacher’s script is the effect of the teacher’s 

previous experiences with students on current events.    
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Ma’s (1999) study focused on teachers’ subject matter knowledge; nevertheless, 

she could not avoid talking about teachers’ pedagogical content knowledge.  She 

emphasized the importance of longitudinal coherence throughout a mathematics 

curriculum.  She found that, when preparing to teach a math topic, Chinese teachers 

developed a knowledge package that is “a network of procedural and conceptual topics 

supporting or supported by the learning of the target topic” (p. 124).  These well-

developed, interconnected knowledge packages enable teachers to form a solid network 

that is supported by the structure of the subject.  Ma (1995) introduced the term Profound 

Understanding of Fundamental Mathematics (PUFM) in arguing that the Chinese 

teachers’ understanding of the content is broad, deep, and thorough.  She claimed the 

teaching of a teacher with PUFM has four properties: (1) making connections among 

mathematical concepts and procedures, (2) using multiple approaches to solving a 

problem, (3) Re-visiting and reinforcing basic ideas, and (4) Longitudinal coherence of 

the whole elementary mathematics curriculum.  Here, the first and the fourth properties 

are directly related to mathematical structures.  

“Effective teaching requires knowing and understanding mathematics, students as 

learners, and pedagogical strategies” (NTCM, 2000, p. 17).  Research has shown that 

teacher knowledge can help teachers to make curricular judgments, select and interpret 

textbook contents, answer students’ questions, and make decisions and take actions in the 

classroom, all of which have a considerable impact on student learning.   

 
Impact on Student Learning 

Different teachers teach differently.  It is often the case that “children learn more 

from some teachers than from others” (Mullens, Murnane, & Willett, 1996, p. 141).  In 
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school years, all students probably had, at one point or another, great teachers who 

opened their eyes, polished their minds, motivated their spirits, and inspired them to 

learn.  On the other hand, students also had some teachers who made students fall asleep, 

employed mostly teacher-centered instruction, scared students through homework and 

tests, and failed students with biased grades.  What makes a student hungry for learning?  

Darling-Hammond (2002) found that teacher quality and student achievement were 

highly correlated.  Teachers’ subject matter knowledge had “positive influence on student 

outcome up to some level of basic competence in the subject” (p. 52).   

Similar to the story of mathematics teacher Bonnie in Manouchehri and 

Goodman’s (2000) study, Shulman (1987) gave an example of an English teacher 

Colleen whose teaching behavior varied during classroom instruction, depending on her 

comfort level with different topics:   

When teaching a piece of literature, Colleen performed in a highly 
interactive manner, drawing out student ideas about a phrase or line, 
accepting multiple competing interpretations as long as the student could 
offer a defense of the construction by reference to the text itself.  Student 
participation was active and hearty in these sessions (Shulman, 1987). 
 
However, Colleen was uncertain about the content of prescriptive grammar.  

When she taught that unit, 

Her interactive style evaporated.  In its place was a highly didactic, 
teacher-directed, swiftly paced combination of lecture and tightly-
controlled recitation….  After the session, she confessed to the observer 
that she had actively avoided making eye contact with one particular 
student in the front row because that youngster always had good 
questions or ideas in this particular lesson (Shulman, 1987).              

 

As educators, what can be said to the students in Bonnie’s and Colleen’s classes 

besides ‘sorry’ and ‘good luck’?  Nevertheless, it is not realistic to expect every teacher 

to be all-knowing either.  A more reasonable expectation is for teachers to continuously 

work to improve their subject matter knowledge.      
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Interested in the issue of teacher effectiveness, Mullens et al. (1996) conducted a 

two-stage quantitative study on teaching effectiveness of third grade teachers in Belize.  

Student learning was documented through their pre-test and post-test scores.  Teaching 

effectiveness was analyzed with the use of three characteristics of teachers - teacher's 

pedagogical training, teacher's formal education, and teacher's math content knowledge 

(i.e. represented by teacher’s test scores on a mathematics subject exam).  The study’s 

result suggested that none of these three teacher characteristics had a significant impact 

on student learning of basic concepts.  However, for the learning of advanced concepts, 

the teacher’s mathematical content knowledge was critical.       

One aspect of this critical content knowledge is the ability to make connections.  

The end products of making connections among mathematical objects are mathematical 

structures.  In Ma’s (1999) studies, very few of the U.S. teachers indicated any significant 

PUFM.  She related this finding to U.S. students’ unsatisfactory mathematics 

achievement in the International Mathematics Studies.  She argued that most U.S. 

teachers focused more on procedures and algorithms, rather than on conceptual 

understanding, particularly in division by fractions.  She claimed that the U.S. teachers’ 

subject matter knowledge was fragmented and this fragmentation was an effect of the 

fragmentation of the mathematics curriculum and mathematics teaching in U.S, which 

directly affects student learning (p. 144-146).  Although mathematical structure was not 

explicitly mentioned, Ma’s assertion implied that finding a way to organize these 

fragmented pieces of knowledge was necessary for success in mathematics education.   

Mulligan, Mitchelmore, and Prescott’s (2006) study provided evidence that “early 

mathematics achievement is strongly linked with the child’s development of 
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mathematical structure” (p. 210).  Theoretically, there are four stages of structural 

development: pre-structural, emergent, partial, and structural.  However, not every 

child’s structural sense would be fully developed.  Mulligan et al. found that “children at 

a pre-structural level may not necessarily progress to an emergent stage because they do 

not perceive some structural features with which to construct new ideas” (p. 214).  This 

finding supported their initial hypothesis that “the more that a child’s internal 

representational system has developed structurally, the more coherent, well-organized, 

and stable in its structural aspects will be their external representations, and the more 

mathematically competent the child will be” (p. 214).  They also found that “young 

students can be taught to seek and recognize mathematical patterns and structures” (pp. 

214-215).    

To further explore student learning, some researchers looked into students’ 

structural sense in learning certain mathematical topics. 

 

Structure Sense 

According to Hoch and Dreyfus (2004), structure in mathematics is defined as the 

system of relationships between the component parts of a mathematical entity.  Algebraic 

structures, defined in terms of shape and order, can be represented by algebraic 

expressions or sentences.  The shape is the external appearance of the structures.  For 

example, the structure of quadratic equations has the standard shape 02 =++ cbxax , 

where a, b, and c are real numbers.  The internal order is “determined by the connections 

between the quantities and operations that are the component parts of the structure” (p. 50).  

The internal order may be revealed while transforming an equation into the standard form.     
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On the other hand, structure sense, first introduced by Linchevski and Livneh 

(1999) in describing students’ understanding of structural notions in arithmetic, was 

described, by Hoch and Dreyfus (2004), as a collection of abilities such as the ability to 

see a mathematical entity, the ability to recognize a previously known structure, the 

ability to divide an entity into sub-structures, the ability to know which manipulations to 

perform next, the ability to make connection among structures, etc.  There may be 

different interpretations of the same structures.  For example, the expression 

)52)(13( +− xx  is the product of two linear factors, which is equivalent to the quadratic 

expression 5136 2 −+ xx .  Students will need to possess strong algebraic structure sense 

in order to recognize that the first expression can be transformed into the same quadratic 

structure as the second one.   

Novotná and Hoch (2008) refined the definition of structure sense which was 

considered “to be an extension of symbol sense, which is an extension of number sense” 

(p. 94).  They provided the following examples to illustrate the relationship between a 

mathematical structure and students’ structure sense about that structure.   

Structure of Difference of Squares:  22 ba −  

Structure sense 1: Recognize that 812 −x  is a structure of difference of square. 

Structure sense 2: Recognize that 42 )3()1( +−− xx  is a structure of difference of 

square, where )1( −x  and 2)3( +x  act as the single entities a 

and b in the described structure.  
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Structure sense 3: Recognize that 846 15024 zyx −  has the possibility to be a 

structure of difference of squares.  By factoring, the expression 

is equal to ])5()2[(6 24223 zyx − , where )2( 23yx and )5( 4z  act 

as the single entities a and b in the original structure.  

Novotná and Hoch (2008) declared that structure sense in High School Algebra 

was based on the use of symbols, while structure sense in college-level Algebra was 

based on formal definitions and proof.  They suggested that more emphasis placed on 

algebraic structure would help students make the transition from high school mathematics 

to university mathematics.  They continued to argue that teachers’ unawareness of 

conceptual structure would lead to teaching mathematics by emphasizing memorization, 

and that would cause students to struggle with problem solving.  

The research discussed above indicates that learning individual mathematical 

ideas is no longer considered enough.  Making connections is emphasized as a curriculum 

standard because through mathematical structures teachers and students alike can 

effectively organize isolated mathematical objects into an easily-accessible system of 

mathematics.  Although the research reviewed uses the term “structures” in several 

different contexts related to student reasoning, this study is specifically concerned with 

structure in mathematics itself.  The next section discusses the theoretical framework for 

this study.   
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Chapter 3:  Theoretical Framework 
 
 

The theoretical framework for the proposed study consists of two main categories 

of research literature.  The first category informs the nature of conceptual and procedural 

knowledge and the second category describes how to use concept mapping in organizing 

these two types of knowledge.  The following sections discuss these two categories in 

detail.  

 
3.1  Conceptual and Procedural Knowledge 

In recent reform efforts, a great deal of attention is put on learning mathematics 

with understanding because “conceptual understanding is an important component of 

proficiency” (NCTM, 2000, p. 20).  The distinction between procedural and conceptual 

knowledge needs to be noted here.  Procedural knowledge refers to the knowledge of 

formal language or symbolic representations (i.e., simple mathematical objects or 

structures), of rules, algorithms, and procedures.  Conceptual knowledge is the knowledge 

rich in relationships and understanding (i.e. multiple structures).  It is a connected network 

in which the linking relationships are as conspicuous as its discrete parts of information 

(Haapasalo, 2003; Rittle-Johson, Kalchman, Czarnocha, & Baker, 2002).   To gain 

conceptual understanding, students should, under the teacher’s guidance, be “actively 

building new knowledge from experience and prior knowledge.” (NCTM, 2000, p. 20)  

Researchers are interested in further exploring the relationship between procedural and 

conceptual knowledge.  

Tall (2007) described the long-term development of mathematical thinking as the 

mind operating in three distinct “worlds of mathematics”: (1) conceptual embodiment, (2) 
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proceptual (i.e. process and conceptual) symbolism, and (3) axiomatic formalism.  These 

three worlds are “intertwined” and rooted in “the use of language to compress a complex 

phenomenon into a thinkable concept whose meaning can be refined by experience and 

discussion and connected to other thinkable concepts in rich cognitive schemas” (p. 1-2).  

The first world, conceptual embodiment is “based on perception of and reflection on 

properties of objects” (p. 2).  For example, a triangle is conceptually embodied as a figure 

consisting of three line-segments.  Proceptual symbolism uses symbols flexibly as 

thinkable concepts in a process to be carried out.  For example, BmAm ∠+∠  represents 

the sum of the measurement of an angle with vertex A and the measurement of an angle 

with vertex B.  Third, Axiomatic formalism formalizes concepts based on formal definitions 

and proofs.  For example, in any ∆ABC, o180=∠+∠+∠ CmBmAm .    

Tall (2007) continued to argue that by shifting among these three worlds an 

individual’s mathematical thinking may become more sophisticated and mature.  In 

embodiment and symbolism, definitions are constructed on known concepts that “act as a 

foundation for ideas that are formalized in the formal-axiomatic world” (p. 16) and the 

formally defined axiomatic structure leads to more sophisticated embodiment and 

symbolism.  Tall (2007) also made the following points: 

• The sophisticated level of symbolic compression goes from pre-procedure, 

procedure (step-by-step action), multi-procedure, process (flexible alternative 

choice of actions), to procept (process and thinkable concept). 

• When the focus shifts from the steps of a procedure to the effect of the 

procedure, the sophistication level upgrades from procedure to process. 
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• In the formalism world, a schema may be described as a list of axioms which 

can be an object in a higher theoretical framework. 

• Naming a schema (i.e. “the use of language” (p. 1)) may compress the schema 

into a thinkable concept. 

Unfortunately, not every child can successfully make the transition between 

embodiment and symbolism, which explains why some students have difficulties with the 

shift from arithmetic to algebra.  Therefore, symbolizing mathematical concepts and 

further formalizing them are important, necessary steps towards bringing one’s 

mathematical thinking to more sophisticated levels (Tall, 2007).  This implies that 

procedural knowledge may enhance conceptual understanding if it is learned properly.  

Most mathematics educators probably will not agree on learning procedures solely 

through memorization.  A more efficient tool is needed to help learners organize and 

reflect on what they already know because one’s prior knowledge plays an important role 

in conceptual understanding (Hasemann & Mansfield, 1995; Novak & Cañas, 2008).  To 

this end, the method of concept mapping is recommended by many educators and 

researchers (Brinkmann, 2005; Hasemann & Mansfield, 1995; Leou & Liu, 2004; 

Mwakapenda, 2003; Novak & Cañas, 2008; Woolfolk, 2001).  

  

3.2  Concept Mapping 

In building a mathematical structure, Brinkmann (2005) recommends the use of 

knowledge maps that include mind maps and concept maps to represent mathematical 

knowledge in the form of a graphical network.  Mind mapping refers to “the natural 

thinking process, which goes on randomly and in a nonlinear way” (p. 4).  A mind map 
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has an open structure in which the topic is placed in the center and related main ideas are 

lines branching out from the topic and denoted by keywords written on the lines.  Then 

secondary ideas can be added to the main branches and so on.  Although the principle is: 

“from the abstract to the concrete, from the general to the special” (p. 2), every idea 

should flow freely and be added without any mental effort.   

On the other hand, a concept map is in a top-down hierarchical form in which 

knowledge is organized into categories and sub-categories so that retrieval is easy. 

(Brinkmann, 2005).  Concept mapping was first introduced by Joseph D. Novak as a 

research tool for science education in the 1970s (Hasemann & Mansfield, 1995).  This 

technique can be used to monitor students’ conceptual understanding and to trace 

students’ difficulties with specific concepts over a long period of time.  As children’s 

cognitive development and mathematical knowledge improve, student-constructed 

concept maps can change remarkably.  Hasemann & Mansfield (1995) used four 

characteristics to evaluate concept maps: (1) context-oriented - concepts and figures from 

real-life situations are grouped, (2) domain-oriented - concepts and figures from the 

mathematical realm are grouped, (3) the degree of structure - the number of relationships 

shown, and (4) the reference to actions - to what extent students indicate there is 

something to perform.  Hasemann & Mansfield (1995) found that most fourth graders’ 

concept maps were context-oriented while sixth graders’ concept maps were mostly 

domain-oriented.  This orientation change in concept maps “might be regarded as an 

effect of their cognitive development” and it might be caused by “a certain kind of 

teaching” in which “older students are expected to master concepts, rules and 

procedures” and “informal procedures are banned” (pp. 67-68).  
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McGowen and Tall (1999) were also interested in how students’ concept maps 

may change over time.  In their study, college participants were asked to build and extend 

their concept maps for the concept of function at five-week intervals during a sixteen-

week algebra course.  In analyzing and comparing students’ successive maps, McGowen 

and Tall (1999) used schematic diagrams to highlight items (i.e. concepts) from the 

previous concept map, items moved to other positions, and new items.  They found that 

the lower achievers’ sequence of maps “revealed few stable items” and that “no basic 

structure was retained throughout” (p. 7); on the other hand, higher achievers were able to 

relate new concepts to previous knowledge so that their consecutive maps retained a 

basic structure that “gradually increased in complexity and richness” (p. 1).         

The concept mapping approach not only facilitates meaningful learning but also 

helps teachers in designing their instruction.  Ma (1999) described that most Chinese 

teachers were concerned with how to organize pieces of knowledge into a knowledge 

package of related ideas, which is somewhat similar to concept mapping.  The Chinese 

teachers had different opinions on which and how many knowledge pieces should be 

included in a particular package, but they all agreed that the teacher should be aware of a 

knowledge package while teaching a piece of it.  Teaching will be much more effective if 

the teacher knows the role of the present piece in the package, and knows the relationship 

between the present piece and other ideas or procedures in the package (p. 18).    

 Leou & Liu’s (2004) case study of an experienced junior-high school teacher 

further confirmed the benefit of using concept mapping in professional development.  

The participating teacher’s belief about mathematics teaching has been significantly 

changed after she integrated concept mapping strategy in her geometry class for five 
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months.  The teacher gained a higher level of self-confidence, moved away from citing  

mathematical procedures and rules, and became a facilitator who inspired students to 

conduct meaningful learning.   

This does not mean that direct teaching is worthless.  According to Novak and 

Gowin (1984), “both direct presentation and discovery teaching methods can lead to 

highly rote or highly meaningful learning by the learner, depending on the disposition of 

the learner and the organization of the instructional materials” (p. 4).  Brinkmann (2005) 

also noted that “maps with a great degree of complexity seem to be rather confusing than 

helpful” because “a productive degree of complexity is dependent on the individual, or at 

least on the achievement level of a learning group” (p. 7). 

In evaluating the complexity of a concept map, Novak and Gowin (1984) 

suggested scoring criteria based on the number of (1) meaningful and valid propositions 

(i.e. relationships represented by links and linking words), (2) valid levels of hierarchy, 

(3) meaningful cross links, and (4) specific events or objects shown as examples.  To 

construct a good concept map, Novak & Cañas (2008) emphasized forming a Focus 

Question first, which refers to a problem or issue that the concept map aims to resolve. A 

Focus Question defines the context, limits the domain, and determines the hierarchical 

structure of the map.    Next, it is necessary to identify and build a list of 15 to 25 key 

concepts in this defined domain from the most general, inclusive concept at the top to the 

most specific, least general concept at the bottom.  This ordered list of individual 

concepts is called a parking lot.  Then, a preliminary concept map should be constructed 

by drawing a line to connect any two individual concepts if a relationship is observed 

between them.  Linking words should be added to each line.  If an individual concept 
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cannot be linked to any other concepts, it should stay in the parking lot.  The last step is 

to seek and add cross-links to the map, which are links between concepts in different 

domains or sub-domains.   

Figure 3.2-1 below contains a concept map on the topic of “Concept Maps” 

constructed by Coffey & Hoffman (2003). 

  

Figure 3.2-1.  A concept map of “Concept Maps” (Coffey & Hoffman, 2003) 

 
Novak & Cañas (2008) made a few more important points about the concept map 

as follows: 

(1) The construction of a concept map is never completed.  Three or more 

revisions are usually required for a good map. 

(2) Generally speaking, all concepts are related to one another in some way.  It is 

better to choose the most representative links that clearly serve the goal of the 

concept map. 
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(3) Avoid constructing a string map that only shows a linear hierarchical 

relationship from the top to the bottom. 

(4) The most challenging task is to find proper linking words that precisely 

describe the relationship between concepts.  These linking words show the 

level of the mapmaker’s conceptual understanding about the relationships. 

(5) Use an expert skeleton concept map for difficult topics as scaffold. 

An expert skeleton concept map is a map with a small number of the most general 

key concepts and accurate relationships between these concepts built by an expert on the 

topic.  Then, students or teachers can expand this skeleton map by adding concepts sitting 

in the parking lot (Novak & Cañas, 2008).      

Concept maps can help learners to organize their mathematical knowledge, 

especially when these concept maps are constructed by the learners themselves 

(Brinkmann, 2005).  It is established that the concept mapping approach promotes 

conceptual learning and students’ problem solving ability (Brinkmann, 2005; Hasemann 

& Mansfield, 1995; Novak & Cañas, 2008; Woolfolk, 2001).   

In the present study, a concept map will be constructed for each task, with the 

purpose of identifying the mathematical concepts and the relationships among them 

involved in solving the task problem.  An overall concept map will also be built for the 

totality of the tasks in the study.  Although these concept maps only represent the 

author’s point of view, they can help teachers engage in reflection on the mathematical 

structures associated with these tasks before bringing the tasks to the students.   
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Chapter 4: Methodology 
 
4.1  Setting 
 

The proposed qualitative study is based on data collected from the Rutgers 

University longitudinal study initiated in 1984.  The latter is documented in a number of 

research articles and dissertations (Francisco & Maher, 2005; Kiczek, 2000; Maher, 

2005; Maher and Martino, 1996; Maher, 2002; Martino, 1992; Muter, 1999; Powell, 

2003; Tarlow, 2004 and Uptegrove, 2004).  In the longitudinal study, a group of eighteen 

first-graders was chosen from Harding Elementary School in Kenilworth New Jersey.  In 

the beginning, researchers met with participating students in their regular classes about 

four times a year, for two to three days at a time, in sessions lasting from one to three 

hours.  Later, when the students were in grades 10 through 12, the meetings took place 

after school.  Some of these students continued to meet informally with the Rutgers 

researchers when they were in college.  During the sixteen year span of the study, some 

students left and some students joined the group of participating students.  There were 

seven students who participated in the study for its whole duration. 

The longitudinal study made use of four strands of mathematical tasks: (1) 

combinatorics and counting, (2) probability, (3) algebra, (4) pre-calculus and calculus.  

The proposed study will analyze selected tasks from the combinatorics and counting 

strand.  The students started to work on open-ended counting problems in second grade.  

Gradually, more challenging combinatorics and probability tasks were given to the 

participants through their high school years.  During the problem-solving sessions, the 

students usually worked in pairs or in small groups and were encouraged to share their 

thoughts and to incorporate others’ ideas.  When an agreeable solution and justification 
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were reached within the group, the students were asked to present their solution and 

reasoning to the whole class for further discussion.  The researchers acted as facilitators, 

keeping intervention to a minimum.  There were no set time constraints for any of the 

tasks and the students were encouraged to pursue any direction they deemed relevant to 

the problem at hand.  The students had a chance to revisit problems and to justify their 

reasoning during individual follow-up interviews.   

 
4.2  Data 

The data for the present study comes from three main sources.  The first is the 

digital video recording of every task session.  Each video recording has at least two 

camera views.  One recorded the students and the other recorded their work.  The second 

type of data comes from transcripts of these task sessions, which have been verified and 

used by other researchers working on the Rutgers longitudinal project.  The third source 

of data is the collection of students’ work during the taped sessions.   

The following table lists the selected tasks and data sources for this proposed study: 

 
Task 

 
Problem Title 

Video Date and  
Students’ Grade 

Transcripts and 
students’ work 
used in 

1 Shirts and Jeans May 1990, Grade 2 
October 1990, Grade 3 
 

Martino, 1992 

2 Towers 4-tall with 2 colors October 1990, Grade 3 
December 1992, Grade 5  
November 1998, Grade 10 
 

Martino, 1992 
 
Tarlow, 2004 
 

3 Towers 4-tall with 3 colors March 1992, Grades 4 
January 1998, Grade 10 

Sran, 2010 
Muter, 1999  
 

4 Tower of Hanoi October 1993, Grade 6 Mayansky, 2007 
 

5 Pizza with Halves March 1993, Grade 5 
 

Muter, 1999 
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6 a. 4-topping Pizza 
 
b. 4-topping Pizza with 2 crusts 
 
c. 4-topping Pizza with Halves 
and 2 crusts  
 

April 1993, Grade 5 
March 1999, Grade 11 

Muter, 1999 
Tarlow, 2004  

7 Ankur’s Challenge (i.e. another 
Towers 4-tall with 3 colors) 
  

January 1998, Grade 10 Muter, 1999 
 

8 World Series January 1999, Grade 11 Kiczek, 2000 
 

9 Points February 1999, Grade 11 Kiczek, 2000 
 

10 Taxicab May 2002, Grade 12 Powell, 2003 
 

 
Table 4.2-1  Selected tasks and data resource for the present study   

The complete text of each task problem can be found in Appendix A.   

 
4.3  Method of Analysis 

 
Using an adapted methodology introduced by Torkildsen (2006), the analysis will 

focus on decoding students’ solutions into formal mathematical definitions or theorems 

that are either mathematical objects or structures.  A diagram adapted from concept 

mapping (Novak & Canas, 2008) will be used to illustrate the overall hierarchy of the 

presented mathematical objects and structures within a task and among tasks.  To ensure 

the progression of the overall concept map from the most general concepts toward the 

more specific ones, the analysis will not follow the tasks in the order listed in Table 4.2-

1.  Instead, the tasks with solutions containing the most general structures will be 

analyzed before the tasks with solutions containing particular instances of those 

structures.  The following describes the analysis plan for selected tasks.    
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1.  The problem will first be solved formally by the researcher, using definitions and 

theorems.  The mathematical structures embedded in the solution will be identified.  

This step addresses the first research question of this study. 

2.  Students’ solutions and the way they reached the solutions will be examined and 

decoded into the mathematical structures found in step 1.  During problem solving 

processes, students might or might not “recognize” these structures.  They might 

simply “uncover” these structures through making connections and other strategies.  

This step addresses the second research question. 

3.  Based on the results from step 1 and step 2, the research will make conclusions for 

the task selection and suggest possible research topics for future studies.     

 
4.4  Validity 

To ensure the validity of the results, the following three steps will be taken 

throughout the process of analysis: 

1. Triangulation of data with the use of video recordings, verified transcripts, 

and student work will validate the accuracy of the storyline that is constructed.   

2. The resulting report will contain a rich, detail description of the data, thus 

providing the reader with enough information in order to be able to decide 

whether the interpretations and conclusions are supported by the data. 

3. Formal definitions and theorems will be drawn from published textbooks 

written by mathematicians or from published papers written by mathematical 

educators.  This will ensure the accuracy of the mathematical structures 

identified by the researcher in the solutions given to each of the problems. 
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4. The concept maps produced by the researcher will be verified by third-party 

mathematics education scholars for legitimacy.     

 
4.5  Significance 

It is the hope that the proposed study will bring significant implications to 

mathematical education and research.  This study will investigate the way that the 

participating students uncover elements related to underlying structures of the tasks 

during the longitudinal study.  The results of the proposed study may contribute to a 

larger effort aiming to help teachers improve their subject matter knowledge, students to 

effectively organize the mathematical objects, and researchers to examine the relationship 

among task design, mathematical structures, and the implementation of mathematics 

curriculum reform.  

 
4.6  Limitations 

The qualitative nature of the study reduces the generalizability of the findings.  

However, the insight gained from closely documenting the development of the 

participating students’ structural sense will inform educators with respect to students’ 

potential to construct formal mathematical structures through informal problem solving 

processes. 
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Chapter 5: Analysis and Discussion 
 
5.1  Introduction 

 
In this chapter, ten selected tasks from the combinatorics and counting strand are 

analyzed (see Table 4.2-1 for the complete list of tasks).  Section 5.2 focuses on 

identifying embedded mathematical structures in the researcher’s solutions to these 

problems.  The tasks are solved by the researcher following the order in which they were 

presented to the students.  The embedded mathematical structures are described in terms 

of definitions, axioms, and theorems.  After each task is analyzed, section 5.3 

consolidates all the embedded mathematical structures found in section 5.2 into a 

summative table.  Then, an overall concept map is built to highlight the relationships 

among the structures summarized.  In section 5.4, student solutions are then examined, 

decoded, and compared with the mathematical structures identified in the previous 

sections. 

 

5.2  Formal Solutions and Mathematical Structures 

In this study, mathematical structures are defined as “a hierarchy of 

interconnected mathematical objects building on one another to produce a coherent 

whole.” (see section 1.1, p.2).  The terms “mathematical structure” and “mathematical 

object” have been used in a number of different ways by various researchers.  In this 

study, a mathematical object is seen as an abstract “thing” or “entity” arising in 

mathematics.  Geometric objects such as points, lines, triangles, and circles can be easily 

recognized.  Algebraic objects may include groups, rings, or fields, for example.  Other 

commonly recognized objects may be numbers, matrices, sets, functions, and relations.  
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In the case of most of these objects, each can be seen as a hierarchy of other 

interconnected mathematical objects.  In this sense, the objects that are hierarchies of 

other objects can be thought of as structures built of the relationships among the objects 

in the hierarchies.  For this reason, definitions, axioms, and theorems are considered 

mathematical structures in this study while notations and representations are not.  When 

analyzing the solution to a problem, the focus should not be on trying to differentiate 

between objects and structures, but rather on identifying relationships among their 

components.  

There are many ways to solve a problem task.  In this section, one or more 

methods are used for each task in order to collect enough objects and structures that the 

students’ solutions will be compared against in section 5.5.  Each of these solution 

methods solves the problem independently by its own way that may or may not relate to 

other methods.  Keep in mind that these selected methods do not cover all the possible 

ways to solve the problem.  Further, a method used in solving one task may also be used 

in solving other tasks.  In such a case, different representations for the same mathematical 

structures are introduced.                  

  
5.2.1  Task 1: Shirts and Jeans (Grades 2 and 3) 
 

Stephen has a white shirt, a blue shirt, and a yellow shirt.  He has a pair of blue 

jeans and a pair of white jeans.  How many different outfits can he make?  Convince us 

that you found them all. 

Solution – Method 1 
 
Let W = White, B = Blue, and Y = Yellow. 



Lo, Chapter 5, 58 

58 

Then, the colors of the shirts can be represented by the set {W, B, Y} and the colors of 

jeans can be represented by the set {B, W}. 

An outfit is represented by the ordered pair: (color of the shirt, color of the jeans). 

Then, all possible distinct outfits are the Cartesian product: {(W, B), (W, W), (B, 

B), (B, W), (Y, B), (Y, W)}.     

There are six ordered pairs in total; therefore, there are six different outfits.  All 

possible outfits are found because there is no other ordered pair that is not already listed.     

Mathematical Structure 

 This solution involves the concepts of set, ordered pair, and Cartesian product.  

The formal definitions of these terms are following.  

(T1.1) Definition.  A set is a well-defined collection of objects, and these objects 
are called the elements of the set (Morash, 1991, p. 4; Stewart, Redlin, & 
Watson, 2002, p. 8).  

 
(T1.2) Definition.  A set can be described by the roster method that lists the 

names of the elements, separated by commas, with the full list enclosed in 
braces. Example: {W, B, Y} (Morash, 1991, p. 4).  

 
(T1.3) Definition.  A set S can be described by the set-builder notation that is in 

the form S = {x| x satisfies some property or properties} (Morash, 1991, p. 
5; Stewart, Redlin, & Watson, 2002, p. 8). 

 
(T1.4) Definition.  An ordered pair is a pair of elements x and y from a set, 

written as (x, y), where x is distinguished as the first element and y the 
second (Morash, 1991, p. 21).  

 
Hence, the ordered pairs (W, B) and (B, W) represent different two outfits.  (W, 

B) is white shirt with blue jeans, while (B, W) is blue shirt with white jeans.  

(T1.5) Definition.  Given sets A and B, the Cartesian product A × B (also called 
cross product) is the set },|),{( BbAaba ∈∈  (i.e. A × B consists of all 
possible distinct ordered pairs whose first elements come from A and 
whose second elements come from B.) (Morash, 1991, 21).  

 
The formal representation of the solution is: 

Let A = {W, B, Y} and B = {B, W}, then   
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A × B = },|),{( BbAaba ∈∈  = {(W, B), (W, W), (B, B), (B, W), (Y, B), (Y, 

W)}.  

By definition 5.5, these are all possible distinct ordered pairs (i.e. six distinct 

outfits).    

Solution – Method 2 
 

There are three ways to choose a shirt and two ways to choose a pair of jeans.  

Based on the fundamental counting principle, there are 3 × 2 = 6 ways to choose an 

outfit.  Therefore, there are six different outfits.   

Mathematical Structure  

 To solve a simple counting problem like this task, the easiest way is to 

systematically list and count every possible outcome.  However, when the number of 

outcomes is too large to be completely listed out, then a formula is useful.  

(T1.6) Theorem.  The Fundamental Counting Principle (Product Rule): 
Suppose that two events occur in order.  If the first can occur in m ways 
and the second in n ways (after the first has occurred), the two events can 
occur in order in m × n ways   Further, if kEEEE ,...,,, 321  are events that 

occur in order and if 1E can occur in 1n  ways, 2E can occur in 2n  ways, 
and so on, then the all events can occur in order in 

knnnn ×××× ...321 ways.  (Larson & Hostetler, 2004, p. 663; Morash, 
1991, p. 42; Roberts & Tesman, 2005, p. 16; Ross, 1998, p. 2-3; Stewart, 
Redlin, & Watson, 2002, p. 867). 

   

Solution – Method 3 
 

Shirt:  White,  Blue,  Yellow 
 
   

Jeans:  Blue,  White  
  

Figure 5.2.1-1.  A simple bipartite graph showing six different outfits.  
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In the figure (i.e., graph) above, each line (i.e., edge) represents one different 

outfit, consisting of the shirt and jeans specified by the endpoints (i.e., vertices) of the 

line. There are six lines in total, representing six different outfits. These are all the 

possible outfits because no other lines can be drawn connecting a shirt color and a jeans 

color without repeating an already existing line. Therefore, there are six distinct outfits.  

Mathematical Structure  

 This solution involves many concepts in graph theory.   

(T1.7) Definition.  An unordered pair (i.e. not an ordered pair) is a pair of 
elements x and y from a set, that can be written as {x, y} (defined by the 
researcher based on the (5.4) definition of ordered pair).  

 
(T1.8) Definition.  A graph G (V, E) consists of a set V of vertices, a set E of 

edges, and a mapping associating to each edge an unordered pair of 
vertices called the endpoints (Roberts & Tesman, 2005, p.124-126; Van 
Lint & Wilson, p.1).  

 
(T1.9) Definition.  A graph is simple when it has no loops and no two distinct 

edges have exactly the same pair of endpoints. (Van Lint & Wilson, 2001, 
p.2).  

 
(T1.10) Definition.  In a simple graph, the unordered pair {x, y} represents the 

edge that joins vertices x and y (Roberts & Tesman, 2005, p. 126; Van Lint 
& Wilson, 2001, p. 2).  

 
(T1.11) Definition  A graph is bipartite if and only if the vertices can be 

partitioned into two classes so that all edges in the graph join vertices in 
the two different classes (Roberts & Tesman, 2005, p.155; Van Lint & 
Wilson, 2001, p.24).    

 
Thus, there are five vertices and six edges in the solution graph G (V, E), where   

V = {white shirt, blue shirt, yellow shirt, blue jeans, white jeans}.   

E = {{white shirt, blue jeans}, {white shirt, white jeans}, {blue shirt, blue jeans}, 

{blue shirt, white jeans}, {yellow shirt, blue jeans}, {yellow shirt, white 

jeans}} 

Note that G is simple because there is no loop and every edge joining distinct two 

vertices.  Also the graph is bipartite because the five vertices are split into two classes 
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(“shirts colors” and “jeans colors”) and all edges (outfits) join vertices in these two 

classes.  The edges are represented by unordered pairs, meaning that the pairs {white 

shirt, blue jeans} and {blue jeans, white shirt} are the same outfit. 

 
5.2.2  Task 2: Towers 4-tall with 2 colors (Grades 3 and 5) 
 
 Your group has Unifix cubes of two colors.  Work together and make as many 

different towers four cubes tall as is possible when selecting from two colors.  See if 

you and your partner can plan a good way to find all the towers four cubes tall. 

 
Solution – Method 1 

 
Let W = “White Cube” and B = “Black Cube”.  Under this notation, the choices 

of colors of towers can be illustrated by a tree diagram: 

n-Tall    Color of Towers      Counts 
 
0 • 
   
                                     •                                                       •  
 1   W             B           2 
   
                         •                            •                           •                              •  
 2  W        B           W        B        4 
  W        W            B        B   
 
                •            •                •               •             •              •             •               •   
       W          B              W             B           W             B           W              B 
 3    W          W             B              B           W            W           B               B        8 
    W          W             W            W           B              B           B               B 
 
 
           •        •     •       •       •       •      •       •     •       •      •       •     •        •     •        •    
          W     B   W     B     W     B    W     B    W    B     W     B    W     B    W      B 
 4       W    W   B      B     W    W     B     B    W    W     B   B    W    W    B       B      16 
          W    W   W    W     B      B     B     B    W    W    W     W    B     B     B       B 
          W    W   W    W     W    W    W    W    B     B      B      B    B     B     B       B 
 
 Figure 5.2.2-1.  Tree diagram for 4-tall towers when selecting from 2 colors  
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 The tree “grows” from a root node branching into two distinct nodes – W and B, 

which represent two distinct 1-tall towers.  This binary branching continues for each node 

in the tree until the end nodes have four-letter-high labels, which represent 4-tall towers.  

The number of final nodes (16) represents the number of distinct 4-tall towers. 

Mathematical Structure  

 This solution involves a tree structure, which is commonly studied in graph theory 

courses.  Before formally defining a tree, it is necessary to define a few other related 

terms.  

(T2.1) Definition.  A walk in a graph G is a sequence 

kkk ueuueueu ,,,...,,,,, 122110 − , where ui is a vertex ( ki ,...,2,1,0= ) and ei 

is the edge { ui-1 , ui } ( ki ,...,2,1= ).   

The walk is simple if all the vertices kuuuu ,...,,, 210 are distinct.   
The walk is closed if u0 = uk.   
The walk is called a path from u0 to uk if all the edges keee ,...,, 21 are 
distinct. (Roberts & Tesman, 2005, p. 135; Van Lint & Wilson, 2001, p. 4-
5).  

 
(T2.2) Definition.  A graph is connected if between every pair of vertices u and 

v there is a path (Roberts & Tesman, 2005, p.136; Van Lint & Wilson, 
2001, p. 5).  

 
(T2.3) Definition.  A tree is a graph T that is connected and contains no simple 

closed paths (Roberts & Tesman, 2005, p. 185; Van Lint & Wilson, 2001, 
p. 6).  

 
 
Solution – Method 2 

 
The binary branching of the tree in the previous method gives a so called complete 

binary tree (see figure 5.2.2-2 below).  Instead of labeling the vertices, the edges of the 

tree can be labeled with the two colors of the cubes.  For example, for each vertex, the 

edge branching to the left is labeled “W” and the edge branching to the right is labeled 
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“B.”  Then, the same 16 distinct towers can be found by a procedure commonly known as 

backward traverse.  The following shows the solution method using these representations.    

Let W = “White Cube” and B = “Black Cube”; the complete binary tree is: 

Level     Binary Branching                      # of vertices        
 
0        •           1 
     W   B 
   
 1                                  •                                                       •           2 
  
     W    B   W  B 
   
 2                      •                            •                           •                              •          4 
 
     W       B            W   B     W        B           W   B 
 
 3             •            •                •               •             •              •             •               •               8 
    
          W     B    W     B    W      B    W     B   W      B    W     B   W      B    W      B 
 
4         •       •       •      •       •       •      •       •     •       •      •       •     •        •     •        •        16 
 

Figure 5.2.2-2.  Complete Binary Tree for 4-tall towers selecting from 2 colors 

The 16 towers are outputs from performing backward traverse through the tree, 

which are represented by the following tower strings:  

 WWWW, BWWW, WBWW, BBWW,  
WWBW, BWBW, WBBW, BBBW, 
WWWB, BWWB, WBWB, BBWB, 
WWBB, BWBB, WBBB, BBBB 

Note that the sequence of output towers is exactly in the same order obtained by 

method 1.  All the 16 distinct towers are presented.    
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Mathematical Structure 

 The solution tree can be described as a complete binary tree of four levels with 16 

nodes of degree one (the leaves), the root vertex has degree two, and all other 

intermediate vertices have degree three.  Related structures are:   

(T2.4) Definition.  The degree of vertex u of graph G, denoted as deg(u), counts 
the number of edges incident with u. (Roberts & Tesman, 2005, p. 127; 
Van Lint & Wilson, 2001, p. 4).  

 
(T2.5) Definition.  Each vertex in a tree is associated with a level, 0, 1, 2, …, k.  

The number k is called the height of the tree.  (Roberts & Tesman, 2005, 
p. 202).  

 
(T2.6) Definition.  A tree is called a rooted tree if there is a distinguished vertex, 

the root, at level 0; all adjacent vertices differ by exactly one level; and 
each vertex at level i + 1 is adjacent to exactly one vertex at level i 
(Roberts & Tesman, 2005, p. 202; Van Lint & Wilson, 2001, p. 19).  

 
(T2.7) Definition.  In a rooted tree with root v0, the ancestors of vertex u are the 

vertices traversed by the unique path from u to the root v0.  The first vertex 
other than u on that path is the parent of u (u is a child of this vertex).  If 
vertex u is an ancestor of v, then v is a descendant of u (Roberts & 
Tesman, 2005, p. 202; Van Lint & Wilson, 2001, p. 20).  If u has no 
children, then u is called a leaf (Roberts & Tesman, 2005, p. 196).  

 
(T2.8) Definition.  A rooted tree is called a binary tree if every vertex has two or 

fewer children (Roberts & Tesman, 2005, p. 202).  
 
(T2.9) Definition.  A rooted tree is called complete if every vertex has either no 

children or two children. (Roberts & Tesman, 2005, p. 202).  
 
 

Solution – Method 3 

 Although the binary tree configurations presented in method 1 and method 2 look 

a little different, they are actually the same structures with different representations.  The 

solution to this task can also be obtained inductively by using another kind of 

representation: the two-way tables. For example, in the 2 x 2 table below, starting from 

each side as 1-tall towers one can build four 2-tall towers as follows:    

   1-tall tower 
  W B 

W WW WB 1-tall 
towers B BW BB 
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 Similarly, 3-tall towers can be represented using either a 2 x 4 or a 4 x 2 table.  

Below is a 2 x 4 table showing eight 3-tall towers, which can be seen as obtained by 

placing 1-tall towers on top of 2-tall towers: 

 

  2-tall towers 
  WW WB BW BB 

W WWW WWB WBW WBB 1-tall 
towers B BWW BWB BBW BBB 

 
Finally, sixteen 4-tall towers can be obtained from a 2 x 8, 8 x 2, or 4 x 4 table.  

Below is an example of a 4 x 4 table, whose output towers are built by placing 2-tall towers 

on top of 2-tall towers: 

  2-tall towers 
  WW WB BW BB 

WW WWWW WWWB WWBW WWBB 
WB WBWW WBWB WBBW WBBB 
BW BWWW BWWB BWBW BWBB 

 
2-tall 
towers 

BB BBWW BBWB BBBW BBBB 
 

     

5.2.3  Task 3: Towers 4-tall with 3 colors (Grade 4) 
 
 Your group has Unifix cubes of three different colors.  Work together and make as 

many different towers of four cubes tall as is possible when selecting from three colors.  

See if you and your partner can plan a good way to find all the towers four cubes tall.  

Convince us that you have found them all.   

 
Solution – Method 1 
 
 The tree structure is relevant here as well.  This time every vertex has three 

incident edges linking to three adjacent vertices that are labeled with the designated tower 
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colors.  The solution is represented by a complete 3-ary tree with 81 leaves (see Figure 

5.2.3-1 on the next page).   Thus, there are 81 different 4-tall towers when choosing from 

three colors.  Using the procedure backward traverse (5.22), each of these 81 towers can 

be listed out uniquely by following a path from a leaf to the root.  To illustrate how the 

procedure works, the following list gives the first nine 4-tall towers represented by the 

tower strings, where the leaves are underlined (W = “While”, B = “Black”, R = “Red”): 

WWWW, BWWW, RWWW,  
WBWW,  BBWW,  RBWW,  
WRWW,  BRWW,  RRWW, ……  
 

Mathematical Structure 

 Most terms used in the solution of this task have been introduced in section 5.2.2.  

There is only one more definition here.  

(T3.1) Definition.  A rooted tree is called m-ary if every vertex has m or fewer 
children.  (Roberts & Tesman, 2005, p. 202). 

  
 Therefore, a binary tree is also called a 2-ary tree.  In this task, the tree is a 

complete 3-ary tree because every vertex has three children except for the leaves.  
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Level                                                  Trinary Branching                                                                                 # of Leaves        
   
0                    • 
                                            1 
  
      
   
 1                                         •                                                                •             •                         3 
                                          W                                        B                                             R 
   
      
   
 2                    •                   •                    •                    •                      •                    •                     •                    •                    •                        9 
             W                    B                  R   W                    B                   R        W                    B                   R         
 
  
 
 
 3             •     •     •       •      •     •      •       •     •      •      •      •      •      •     •       •      •     •      •      •     •       •      •     •       •      •     •             27 
              W    B    R     W    B    R     W   B     R    W    B     R     W    B    R    W     B    R    W    B    R     W    B    R     W    B    R   
    
 
 
 
4      • • •  • • •  • • •  • • •  • • •  • • • • • •  • • • • • •  • • •  • • • • • • • • •  • • • • • • • • •  • • • •  • •  • • •  • • • • • • • • • • • •  • • •  • • • • • • • • •       81 
       WBR WBR WBR WBR WBRWBRWBRWBRWBRWBR WBRWBRWBRWBRWBRWBRWBRWBR WBR WBRWBRWBRWBRWBRWBRWBRWBR 

 
Figure 5.2.3-1.  Complete 3-ary tree for 4-tall towers when selecting from 3 colors (not all edges are shown for level 4) 
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Solution – Method 2 

In solving a problem, the method of “Divide into Cases” is often used.  According 

to Morash (1991, p. 164-166), the cases must be mutually exclusive (categories are non-

overlapping) and exhaustive (categories include all possibilities).  For this task, the 

possible combinations of tower colors can be enumerated under three cases:  

Case 1: Towers with only 1 color 

There are 3C1 = 3 ways to choose one color out of three to build towers.    

Case 2: Towers with exactly 2 colors 

 There are 3C2 = 3 ways to choose two colors out of three to build towers.    

Sub-case 1: There are 4C1 = 4 ways to position one cube of the first color, then 

three cubes of the second color complete the tower. 

Sub-case 2: There are 4C2 = 6 ways to position two cubes of the first color, then 

two cubes of the second color complete the tower. 

Sub-case 3: There are 4C3 = 4 ways to position three cubes of the first color, then 

one cube of the second color completes the tower. 

Therefore, the total number of towers built with two colors is: 

3C1(4C1 + 4C2 + 4C3 ) = 3(4 + 6 + 4) = 42  

Case 3: Towers with exactly 3 colors 

Because the tower is 4 cubes tall, one of the three colors must be used twice.   

There are 3C1 = 3 ways to choose one “repeating” color. 

There are 4C2 = 6 ways to choose two positions for the “repeating” color cubes. 

There are 2C1 = 2 ways to choose positions for the remaining two “non-repeating” 

color cubes. 
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So, there are (3C1)(4C2)(2C1) = (3)(6)(2) = 36 ways to build 4-tall towers with 

exactly 3 colors. 

(Note that Case 3 also provides a solution to the task in 5.2.7, Ankur’s Challenge.)  

Summing up the results from the 3 cases presented above, we have  

3 + 42 + 36 = 81 ways to build towers selecting from three different colors. 

Mathematical Structure 

 This solution involves the mathematical structure of combinations and the 

problem-solving heuristic dividing into cases.  The terms used in the explanation above 

are formally defined as follows.  

(T3.2) Definition.  If n is a positive integer, n factorial is denoted by 
nnn ×−×⋅⋅⋅×××= )1(321! .  As a special case, 1!0 =  (Larson & 

Hostetler, 2004, p. 616; Stewart, Redlin, & Watson, 2002, p. 851).  
   
(T3.3) Definition.  A combination of r elements of a set is any subset of r 

elements from the set without regard to order.  If the set has n elements, 
then the number of combinations of r elements is denoted by nCr  or C(n, r) 

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
r
n

, and is called the number of combinations of n elements taken r 

at a time (Larson & Hostetler, 2004, p. 667; Roberts & Tesman, 2005, p. 
35; Ross, 1998, p. 5-6; Stewart, Redlin, & Watson, 2002, p. 875).  

 

(T3.4) Theorem.  
)!(!

!
rnr

nCrn −
=  , where n, r are nonnegative integers and 

nr ≤  (Larson & Hostetler, 2004, p. 667; Roberts & Tesman, 2005, p. 35; 
Ross, 1998, p. 5-6; Stewart, Redlin, & Watson, 2002, p. 876).  

 
 

Solution – Method 3 

According to Polya (1945/1985), there is “very little logical connection” (p. 114) 

between the processes of induction and mathematical induction.  Induction is the process 

of discovering general laws by the observation and combination of particular instances.  

It is used in all sciences, including in mathematics.  On the other hand, mathematical 

induction is a method only used in mathematics to prove a mathematical statement P(n), 
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which is depending on the nature number n, to be true (Abbott, 2001, p. 10; Artin, 1991, 

p. 348; Larson & Hostetler, 2004, p. 644-645; Morash, 1991, p. 171; Stewart, Redlin, & 

Watson, 2002, p. 842-843).  Nevertheless, these two methods are often used together.   

From the solution tree (figure 5.2.3-1) in method 1, it is not hard to see a pattern 

in the number of nodes at first three levels – 30 nodes at level 0, 31 nodes at level 1, 32 

nodes at level 2.  The pattern, discovered by the process of Induction, suggests the 

following claim: there are a total of 3
n
 different n-tall towers when choosing from three 

different colors.  Below is a proof by mathematical induction of this claim: 

Basic step:  

When n = 1, there are 3
1
 = 3 distinct 1-tall towers. 

Induction step:   

Assume that when n = k, there are 3
k 
distinct k-tall towers. 

 Need to show that when n = k + 1, there are 3
k+1

 (k+1)-tall distinct towers. 

 This is true because 333 1 ×=+ kk , where 3
k  

is the number of distinct k-tall 

towers, which we multiply by 3 because of we have three color choices (“W”, “B”, or 

“R”) for the cube to be added on top of a k-tall tower to make it (k+1)-tall (end of proof). 

Therefore, according to the claim that has been proved, there are a total of 3
4
 (81) 

different 4-tall towers when choosing from three different colors. 

Furthermore, taking into account the result from the task “Towers 4-tall choosing 

from two colors” (discussed in 5.2.2), we can conjecture that the total number of different 

n-tall towers when choosing from m different colors is m
n
.  This is indeed true – the proof 

is similar the mathematical induction one described for the case of three colors.   
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5.2.4  Task 4: Tower of Hanoi (Grades 6) 
 

Figure A.A-1 below shows a puzzle with three posts, and there are seven disks 

stacked as a tower on one of the three posts.  You have to move all the disks from the post 

to another post. The rule is: you can only move one disk at a time and you can never put 

a bigger disk onto a smaller disk.  How many moves do you need to complete the task?  If 

this is a 100-disk tower, how many moves do you need?  

            
 Figure A-1.  Tower of Hanoi Puzzle 
 

 
Solution – Method 1 

 
 For someone who has never played this game, it may be a good idea to approach 

the problem by experimenting with a smaller number of disks in order to see what is 

happening.  The results obtained in the first five cases (the number of disks = 1, 2, 3, 4, 

and 5) are summarized below: 

 # of disks   # of moves 
1   1 
2   3 
3   7 
4 15  
5 31 

 
Table 5.2.4-1.  The number of moves for one through five disks. 
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  Observing the numbers in the right hand column (number of moves), they are very 

close to numbers of powers of two.  A pattern can be found as following: 

# of disks   # of moves 
1   1    (= 21 – 1) 
2   3    (= 22 – 1) 
3   7    (= 23 – 1) 
4 15    (= 24 – 1)  
5 31    (= 25 – 1) 

 
Table 5.2.4-2.  The number of moves for one through five disks. 

 
 In general, if number of disks is n, then the number of moves required is 2n – 1.  

Thus, when n = 100, 2100 – 1 moves are needed.  

 
Solution – Method 2 

 
 Using table 5.2.4-1 again, calculating the difference between the numbers in any 

two consecutive rows of this column, a pattern becomes apparent. 

# of disks   # of moves             Difference in # of moves 
1   1     (   20 ) 
2   3     3 – 1   =   2 (= 21 ) 
3   7     7 – 3   =   4 (= 22 )   
4 15   15 – 7   =   8 (= 23 )  
5 31   31 – 15 = 16 (= 24 ) 
 

Table 5.2.4-3.  The differences between numbers of moves form a geometric 
sequence. 

 
This suggests that, if the number of disks is n, where n is any positive integer 

greater then 1, then the difference of moves between the nth and (n – 1)th cases is the 

geometric sequence }2{ 1−n  (this claim can be proved to be true by mathematical 

induction).  The number of moves for the first five cases can now be rewritten as follows: 
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# of disks             # of moves             
1   1 (= 20 )  
2   3  (= 20 + 21) 
3   7  (= 20 + 21 + 22 )   
4            15  (= 20 + 21 + 22 + 23 )  
5            31  (= 20 + 21 + 22 + 23 + 24 ) 

 
Table 5.2.4-4.  The numbers of moves form geometric series. 
 
This suggests that the number of moves for n disks is the sum of the number of 

moves for (n – 1) disks and the difference of moves between the nth and (n – 1)th disks.  

Hence, if the number of disks is n, where n is a positive integer, then the number of 

moves needed is 1210 2...222 −++++ n , which can be written in summation (sigma) 

notation:∑
−

=

1

0
2

n

k

k .  The following is the induction proof for this claim: 

When n = 1, the number of moves needed is 20 = 1.  Assume that when n = k, the 

number of moves needed is 1210 2...222 −++++ k .  Because the difference of moves 

between the kth and (k + 1)th disks is k2 , when n = k +1, the number of moves needed is 

kk 2)2...222( 1210 +++++ − , which fulfill the induction step.  

Thus, when there are seven disks (n = 7), the number of moves needed to move all 

disks is 12764321684212
6

0
=++++++=∑

=k

k .  When there are 100 disks, the number 

of moves needed is  ∑
=

99

0
2

k

k , which is equal to  ∑∑
==

+=+
99

1

99

1

0 2122
k

k

k

k . 
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Note that ∑
=

99

1
2

k

k = S99  is the 99th partial sum of the geometric sequence }2{ 1−n  (or 

the 99th partial sum of the geometric series ∑
∞

=1

2
k

k ) with the first term a = 1 and the 

common ratio r = 2.  Use the formula
r
raS

n

n −
−

=
1

)1(  to find the value of ∑
=

99

1
2

k

k  as follows: 

  688,602,351,748,700,114,114,300,825,63312
21

)21(12 99
99

99

99

1
=−=

−
−

==∑
=

s
k

k     

To get an idea how big this number is, it may be helpful to try to estimate how 

long it would take a person to complete the moves in the case of 100 disks.  Suppose a 

person can make one move per second, it will take 20,098,468,420,665,737,593,491 years 

to move the 100-disk tower to another post. 

Mathematical Structure  

 Through the heuristic pattern recognition, the solution is found by adding one to 

the nth partial sum of a geometric series.  Involved structures are:  

(T4.1) Definition.  A sequence is a set of numbers written in a specific order: 
,...,...,,,, 4321 naaaaa .  It can be seen as a function f whose domain is the 

set of natural numbers.  The values f(1), f(2), f(3),… are called the terms of 
the sequence (Larson & Hostetler, 2004, p. 614; Stewart, Redlin, & 
Watson, 2002, p. 807).    

 
(T4.2) Definition.  A sequence ,...},...,,,,{ 4321 naaaaa  is also denoted by }{ na  

or ∞
=1}{ nna  (Stewart, 1999, p. 693). 

 
(T4.3) Definition.  A geometric sequence is a sequence of the form 

,...,,,, 432 arararara .  The number a is the first term, and r is the 
common ratio of the sequence.  The nth term of a geometric sequence is 
given by 1−= n

n ara  (Larson & Hostetler, 2004, p. 635; Stewart, Redlin, & 
Watson, 2002, p. 824).    

 
(T4.4) Definition.  For the sequence ,...,...,,,, 4321 naaaaa , the partial sums are 

11 aS =   (the 1st partial sum) 

  212 aaS +=   (the 2nd partial sum) 
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 3213 aaaS ++=   (the 3rd partial sum)  

 43214 aaaaS +++=   (the 4th partial sum) 
       … 
 nn aaaaaS +++++= ...4321   (the nth partial sum) 
       …  
 The sequence ,...,...,,,, 4321 nSSSSS  is called the sequence of partial 

sums (Stewart, Redlin, & Watson, 2002, p. 812).    
 
(T4.5) Theorem.  For the geometric sequence 1−= n

n ara , the nth partial sum is 

given by 
r
raS

n

n −
−

=
1

)1(  (Larson & Hostetler, 2004, p. 637; Stewart, 1999, 

p. 706; Stewart, Redlin, & Watson, 2002, p. 826).    
 
(T4.6) Definition.  Summation (Sigma) notation derives its name from the 

Greek letter ∑ (“sum”): n

n

k
k aaaaa ++++=∑

=

...321
1

, where k is the index 

of summation (Larson & Hostetler, 2004, p. 618; Stewart, Redlin, & 
Watson, 2002, p. 813).    

 
(T4.7) Definition.  Given an infinite sequence ∞

=1}{ nna , the infinite series (or 

just a series) is ∑
∞

=1n
na (or just ∑ na ) (Larson & Hostetler, 2004, p. 619; 

Stewart, 1999, p. 704).  
 
(T4.8) Definition.  A geometric series is a series of the form 

...... 1432

1

1 +++++++= −
∞

=

−∑ n

n

n arararararaar   

If |r| < 1, the geometric series is convergent and 
r

aar
n

n

−
=∑

∞

=

−

11

1   

If |r| ≥ 1, the geometric series is divergent (Larson & Hostetler, 2004, p. 
635, 638; Stewart, 1999, p. 706; Stewart, Redlin, & Watson, 2002, p. 829).    

 
 

Solution – Method 3 
 

 When exploring the first five cases, it may be helpful to consider the additional 

moves that one has to make when the number of disks is increased by one.  For example, 

suppose there are four disks stacked on the middle post at the beginning and the number 

to move a 3-disk tower to another post is known to be seven.  Assume that these seven 

moves have already been made and the top three disks have already been moved to the 
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leftmost post.  The next move must be moving the biggest (fourth) disk from the middle 

post to the rightmost post.  Then, another seven moves are necessary to move the three 

disks from the leftmost post to the rightmost post on top of the biggest (fourth) disk.  

Therefore, when the number of disks is four, the number of moves needed must be 7 + 1 

+ 7 = 15.  The number of moves necessary in the other cases can be rewritten as follows:               

# of disks           # of moves 
1    1 
2    3  =   1 + 1 +   1  =  2 ×   1 + 1           
3    7  =   3 + 1 +   3  =  2 ×   3 + 1 
4   15 =   7 + 1 +   7  =  2 ×   7 + 1 
5   31 = 15 + 1 + 15  =  2 × 15 + 1 

 
Table 5.2.4-5. The numbers of moves have a recursive relationship.  

  
Thus, using the relationship between consecutive terms, the sequence {1, 3, 7, 15, 

31, ….} (the number of moves) can be defined recursively as: 11 =a  and 12 1 += −nn aa  

for all n > 1, where n is the number of disks.   

So, the number of moves needed to move a 7-disk tower is:  

1271)1312(21)12(212 567 =++×=++=+= aaa   

It takes a little longer to find 100a , but it is not impossible: 

1221)12(212 98
2

9899100 ++=++=+= aaaa  

        122212)12(2 2
97

3
97

2 +++=+++= aa  

        12222122)12(2 23
96

42
96

3 ++++=++++= aa  

        = …….. 

        1222...222122...2)12(2 239798
1

99297
1

98 +++++++=++++++= aa   

         ∑
=

+=
99

1
21

k

k    (This is the same result as found in solution - method 2.) 
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  Mathematical Structure  

(T4.9) Definition.  A recursively defined sequence is a sequence defined 
in a way such that the nth term of the sequence ( na ) depends on some or 
all of the terms preceding it (Larson & Hostetler, 2004, p. 616; Stewart, 
Redlin, & Watson, 2002, p. 810). 

 

5.2.5  Task 5: Pizza with Halves (Grades 5) 
 

A local pizza shop has asked us to help them design a form to keep track of 

certain pizza sales.  Their standard “plain” pizza contains cheese.  On this cheese pizza, 

one or two toppings could be added to either half of the plain pizza or the whole pie.  

How many choices do customers have if they could choose from two different toppings 

(sausage and pepperoni) that could be placed on either the whole pizza or half of a 

cheese pizza?  List all possibilities.  Show your plan for determining these choices.  

Convince us that you have accounted for all possibilities and that there could be no more. 

Solution  
 

 Let   C = Plain (Cheese only); S = Sausage; 

      P = Pepperoni;     M = Mixed (Sausage and Pepperoni). 
 
 Then, the choices one has for each pizza half are contained by the set {C, S, P, 

M}.  Considering that each pizza is made up of two halves, each pizza can be described 

in one of following two cases:  

Case 1: Two halves with the same topping(s).   

There are four of this kind: {CC, SS, PP, MM}. 

Case 2: Two halves have different topping(s). 

 This is the number of combinations of 4 choices taken 2 at a time.  Calculate by 

formula (T3.4): 6
)12(12
1234

)!24(!2
!4)2,4( =

××
×××

=
−

=C   
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Thus, there are six pizzas of this kind: {CS, CP, SP, CM, SM, PM}  

Therefore, a total of 4 + 6 =10 different types of pizza can be obtained under the 

conditions of this problem.  The following two-dimensional table can be used to display 

all the possibilities.  

 C S P M 

C CC CS CP CM 

S SC SS SP SM 

P PC PS PP PM 

M MC MS MP MM 

 
Table 5.2.5-1. Permutations of 4 choices of toppings taken 2 (2 halves) at a time.  

Note that the table has 12 different entries.  The main diagonal of the table 

(shaded in grey) contains the four choices for which the two halves have the same 

toppings (Case 1).  The six choices of pizza below the main diagonal (shaded in yellow) 

are {SC, PC, PS, MC, MS, MP}, and the six choices of pizza above the main diagonal 

(shaded in blue) are {CS, CP, SP, CM, SM, PM} (Case 2).  The number 12 is the number 

of permutations of 4 choices taken 2 at a time, which is given by the formula: 

1234
)!24(

!4)2,4( =×=
−

=P .    

The difference between permutations and combinations is that in the case of 

permutations, ordered subsets are counted, whereas combinations are concerned with 

unordered subsets.  In this task, SC is considered the same as CS as both refer to a pizza 

which has cheese only on one half and sausage on the other half.  For this reason, 
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combinations (not permutations) represent the mathematical structure relevant to this 

problem.      

Mathematical Structure  

 There is no new structure involved in the solution of this task.  However, given 

that the two-dimensional table displays the list of possible 2-permutations of the set of 

four possible toppings, it seems appropriate to discuss permutations further.  

(T5.1) Definition.  A permutation of a set of distinct elements is an arrangement 
of these elements.  (Larson & Hostetler, 2004, p. 664; Roberts & Tesman, 
2005, p. 25; Ross, 1998, p. 3; Stewart, Redlin, & Watson, 2002, p. 872).    

 
(T5.2) Theorem.  The number of permutations of n elements is n!  (Larson & 

Hostetler, 2004, p. 664; Roberts & Tesman, 2005, p. 26; Ross, 1998, p. 4; 
Stewart, Redlin, & Watson, 2002, p. 872).    

 
(T5.3) Definition.  P(n, r) denotes the number of permutations of n elements 

taken r at a time.  It is also called r-permutation of the n-set (Larson & 
Hostetler, 2004, p. 665; Roberts & Tesman, 2005, p. 32; Stewart, Redlin, & 
Watson, 2002, p. 873).    

 

(T5.4) Theorem.  )1()2)(1(
)!(

!),( +−⋅⋅⋅−−=
−

= rnnnn
rn

nrnP  (Larson & 

Hostetler, 2004, p. 665; Roberts & Tesman, 2005, p. 32; Stewart, Redlin, & 
Watson, 2002, p. 873).    

 
 
5.2.6  Task 6a: 4-Topping Pizza (Grades 5 and 11) 
 

A local pizza shop has asked us to help them design a form to keep track of 

certain pizza choices.  They offer a cheese pizza with tomato sauce.  A customer can then 

select from the following toppings: peppers, sausage, mushrooms, and pepperoni.  How 

many different choices for pizza does a customer have?  List all the possible choices.  

Convince us that you have them all. 

Solution (Task 6a) – Method 1   
 
 Let P = Peppers;   S = Sausage;   M = Mushrooms;   R = Pepperoni; 
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 One can systematically list all the choices a customer has for pizza by listing all 

the possibilities in each of the 0-topping, 1-topping, 2-topping, 3-topping, and 4-topping 

categories.  The left of table 5.2.6-1 below shows all 16 possible choices of pizza 

obtained this way.  The corresponding number of choices for each type of pizzas is 

shown on the right of the table. 

   P S M R  Number of  
Different Choices 

1 Plain      1 
2 X     
3  X    
4   X   
5 

 
1-topping 

   X  

 
4 

6 X X    
7 X  X   
8 X   X  
9  X X   
10  X  X  
11 

 
 
2-topping 

  X X  

 
 
6 

12 X X X   
13 X X  X  
14 X  X X  
15 

 
3-topping 

 X X X  

 
4 

16 4-topping X X X X  1 
     Total  1 + 4 + 6 + 4 + 1 = 16

         
 Table 5.2.6-1. Sixteen choices of pizza when selecting from four toppings.  
 

Solution (Task 6a) – Method 2   

 Similarly to Method 1, one can consider how many choices the customer has 

within each category (i.e. for a fixed number of toppings), but instead of listing them all 

one can use combinations to determine the number of choices associated with each 

category.  The combinations under each type of pizza are:   

104 =C  is the number of choices of pizza with no topping (plain).   
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414 =C  is the number of choices of pizza with 1 topping.   

624 =C  is the number of choices of pizza with 2 toppings.   

434 =C  is the number of choices of pizza with 3 toppings.   

144 =C  is the number of choices of pizza with 4 toppings.   

Notice that the numbers of different choices, namely 1, 4, 6, 4, and 1, match the 

enumeration from Method 1, and they are the numbers in the 4th row of Pascal’s 

Triangle:                                          

0th row                                               1 
1st row                                          1        1 
2nd row                                     1       2        1 
3rd row                                 1       3       3        1 
4th row                            1        4       6       4       1 
5th row                        1       5      10     10       5      1 
Etc.                       1 …………………………………….. 1 

  
 Figure 5.2.6-1.  Pascal’s Triangle (in numbers)  
 

The French mathematician Blaise Pascal (1623-1662) found that the numbers in 

the nth row of this triangle are exactly the same as the coefficients of binomial expansions 

of nba )( + (Larson & Hostetler, 2004, p. 656; Roberts & Tesman, 2005, p. 71-73; 

Stewart, Redlin, & Watson, 2002, p. 848-852).  Therefore, Pascal’s Triangle can also be 

written in the form of binomial coefficients that are defined using the combination 

notation as follows:  

0th row                                                 00C  

1st row                                           01C         11C  

2nd row                                     02C        12C        22C  

3rd row                                 03C        13C        23C       33C  

4th row                            04C         14C        24C        34C      44C  

5th row                        05C        15C        25C         35C        45C      55C  
Etc.                       1 ……………………………………………………….. 1 

  
 Figure 5.2.6-2.  Pascal’s Triangle (in binomial coefficients)  
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 In general, the sum of the numbers in the nth row (starting from n = 0) of Pascal’s 

Triangle is the number of all possible choices of pizzas for a customer if there are n 

toppings to choose from.  For n = 4, by theorem T6.5, 162... 4
441404 ==+++ CCC . 

Mathematical Structure 

 This solution involves a commonly known mathematical object, Pascal’s 

Triangle, and its relationship with the Binomial Theorem:  

(T6.1) Definition.  Pascal’s Triangle is named after the French mathematician 
Blaise Pascal (1623-1662) who rediscovered the triangle that previously 
appeared in a Chinese document titled “The Old Method Chart of the 
Seven Multiplying Powers” by Chu Shi-kie, dated 1303.  The triangle has 
the form shown in Figure 5.2.6-1.  The first and last numbers in each row 
are 1.  Every entry other than a “1” is the sum of the two entries diagonally 
above it.  (Larson & Hostetler, 2004, p. 656-657; Roberts & Tesm:an, 2005, 
p. 39; Stewart, Redlin, & Watson, 2002, p. 849).    

(T6.2) Definition.  The binomial coefficient is 
)!(!

!
rnr

nCrn −
= , where n and r 

are nonnegative integers with r ≤ n (Stewart, Redlin, & Watson, 2002, p. 
851). 

 
(T6.3) Theorem.  The key property of Pascal’s triangle in terms of binomial 

coefficients: for any nonnegative integers r and k with r ≤ n, 

rkrkrk CCC 11 +− =+  (Roberts & Tesman, 2005, p. 38; Stewart, Redlin, & 
Watson, 2002, p. 851). 

 
(T6.4) Theorm.  Binomial Theorem (or Binomial Expansion): For n ≥ 0, 

( ) ∑
=

−=+
n

k

knk
rn

n baCba
0

(Larson & Hostetler, 2004, p. 654, 695; Roberts 

& Tesman, 2005, p. 71; Ross, 1998, p. 8; Stewart, Redlin, & Watson, 2002, 
p. 853). 

       
(T6.5) Theorem.  n

nnnnn CCCC 2...210 =++++ (Roberts & Tesman, 2005, p. 72; 
Stewart, Redlin, & Watson, 2002, p. 877). 

 
    

Solution (Task 6a) – Method 3   
  

Alternatively, check for the presence of each topping.  Each different topping can 

be either added to or not added to a pizza.  That is two different choices for each topping.  
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By (T1.6) the Product Rule (applied repeatedly), for four toppings, there are a total of  

1622222 4 ==×××  choices. 

 
Task 6b:  4-topping Pizza with 2 Crusts (Grade 5) 

 
The pizza shop was so pleased with your help on the first problem that they have 

asked us to continue our work.  Remember that they offer a cheese pizza with tomato 

sauce.  A customer can then select from the following toppings: peppers, sausage, 

mushrooms, and pepperoni.  The pizza shop now wants to offer a choice of crusts: 

regular (thin) or Sicilian (thick).  How many choices for pizza does a customer have?  

List all the possible choices.  Find a way to convince each other that you have accounted 

for all possible choices 

Solution (Task 6b)   

 After selecting one of 16 possible choices of topping combinations (see Task 6a), 

customers have to select one of two types of crusts.  Thus, by the Product Rule (T1.6), 

there are a total 32216 =×  choices of pizza for this problem.    

 
 
Task 6c:  4-topping Pizza with Halves and 2 Crusts (Grade 5) 

 
At customer request, the pizza shop has agreed to fill orders with different choices 

for each half of a pizza.  Remember that they offer a cheese pizza with tomato sauce.  A 

customer can then select from the following toppings: peppers, sausage, mushroom, and 

pepperoni.  There is a choice of crusts: regular (thin) and Sicilian (thick).  How many 

different choices for pizza does a customer have?  List all the possible choices.  Find a 

way to convince each other than you have accounted for all possible choices. 

Solution (Task 6c)   
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Let  C = Plain (with cheese and tomato sauce only),  

P = Peppers;   S = Sausage;   M = Mushrooms;   R = Pepperoni; 

Then, from the solution to Task 6a, there are 16 topping combinations to choose 

from for each of the two halves of a whole pizza.  These 16 choices are: {C, P, S, M, R, 

PS, PM, PR, SM, SR, MR, PSM, PSR, PMR, SMR, PSMR}.  Hence, there are one choice 

for no topping (plain) or 4-topping, four choices for 1-topping or 3-topping, and six 

choices for 2-topping pizzas.   

Using the two-dimensional table that has been introduced in Task 5 (see Table 

5.2.5-1), put the 16 different choices on the leftmost column to represent the choices for 

the first half of pizza, and put the 16 different choices in the top row to represent the 

choices for the second half of the pizza.  Then, the number of choices for both halves is 

the number of entries in either the upper triangle (including diagonal entries) or the lower 

triangle (including diagonal entries) of the table 5.2.6-2 (on the page after the next page).  

As explained in Task 5, entries in the upper triangle are correspondent to entries in the 

lower triangle with reversed ordering of toppings.  This task does not concern about the 

ordering of toppings.  Therefore, only the number of unordered pairs is counted.   

The number of entries of table 5.2.6-2 is 16 × 16 = 256; the number of diagonal 

entries is 16; so the number of entries under (or above) the diagonal is (256 – 16)/2 = 

120. Thus, the number of choices for both halves is 16 + 120 = 136.  Lastly, don’t forget 

the two choices of crust!  Therefore, there are a total of 136 × 2 = 272 choices for pizza 

with halves when selecting from 4 toppings and 2 crusts.  Listing all 272 choices may be 

a boring and meaningless task.  However, as shown in Table 5.2.6-2 (on the next page), it 

can be done systematically.  

 



Lo, Chapter 5, 85 

85 

  C P S M R PS PM PR SM SR MR PSM PSR PMR SMR PSMR 

C C|C C|P C|S … … … … … … … … … … … … C|PSMR 

P P|C P|P P|S             P|PSMR 

S S|C S|P S|S S|M            S|PSMR 

M M|C M|P M|S M|M            … 

R … … … R|M R|R           … 

PS …    … PS|PS          … 

PM …     … …         … 

PR …       …        … 

SM …        …       … 

SR …         …      … 

MR …          …     … 

PSM …           PSM|
PSM 

   … 

PSR …            PSR|
PSR 

  … 

PMR PMR|C             PMR|
PMR 

 PMR|PSMR 

SMR SMR|C              SMR|
SMR 

SMR|PSMR 

PSMR PSMR|C PSMR|P … … … … … … … … … … … … … PSMR|PSMR 

 
Table 5.2.6-2.  Permutations of 16 choices of toppings taken 2 (2 halves) at a time (Incomplete entries). 
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Further checking on the result from the table, it is easy to see that the number of 

entries in the lower triangle including the main diagonal is equal to 16 + 15 + 14 + … + 3 

+ 2 + 1, which is 136.  

 

5.2.7  Task 7: Ankur’s Challenge (Grades 10) 
 
 Find all possible towers that are four cubes tall, selecting from cubes available in 

three different colors, so that the resulting towers contain at least one of each color.  

Convince us that you have found them all.   

Solution – Method 1 

This task is the same as “Case 3: Towers with exactly 3 colors” in the solution 

method 2 of “Task 3: 4-tall Towers when choosing from 3 colors” (section 5.2.3).   

Here’s a copy of the solution presented there: 

Because the tower is 4 cubes tall, one of the three colors must be used twice.  

There are 3C1 = 3 ways to choose one “repeating” color. 

There are 4C2 = 6 ways to choose two positions for “repeating” colored cubes. 

There are 2C1 = 2 ways to choose positions for the remaining two “non-repeating” 

colored cubes. 

So, there are (3C1)(4C2)(2C1) = (3)(6)(2) = 36 ways to build 4-tall towers with 

exactly 3 colors. 

Solution – Method 2 

If the four cubes of a tower are divided into different color groups, there must be 

three groups: two cubes of color-1, one cube of color-2, and one cube of color-3.  By 

formula T7.2 (discussed below), there are 12
!1!1!2

!4
=  distinguishable combinations (once 
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color-1 is fiexed).  Further, there are 3C1 = 3 ways to choose a color to be the “repeating” 

color-1.  So, there are a total of 36123 =×  ways to build 4-tall towers containing at least 

one of each color. 

Mathematical Structure 

 Note that solution method 1 focuses on the positions of different color cubes, 

while solution method 2 focuses on the grouping of different color cubes.  

 (T7.1) Definition.  If a set of n objects consists of k different kinds of objects with 
n1 objects of the first kind, n2 objects of the second kind, n3 objects of the 
third kind, and so on, where nnnn k =+++ ...21 , then the number of 
distinguishable combinations of these objects is denoted as  

),...,,;( 21 knnnnC , which is also called the multinomial coefficient 
(Larson & Hostetler, 2004, p. 666; Roberts & Tesman, 2005, p. 59; Ross, 
1998, p. 10-11; Stewart, Redlin, & Watson, 2002, p. 874). 

 

(T7.2) Theorem.  
!!...!!

!),...,,;(
321

21
k

k nnnn
nnnnnC =  (Roberts & Tesman, 2005, 

p. 61; Ross, 1998, p.5; Ross, 1998, p. 11; Stewart, Redlin, & Watson, 
2002, p. 874). 

 
(T7.3) Theorem.  ),...,,;(),...,,;( 2121 kk nnnnCnnnnP =  (Larson & Hostetler, 

2004, p. 666; Roberts & Tesman, 2005, p. 63). 
 
(T7.4) Theorem.  Multinomial Theorem:                                                                    

For 0,...,,, 21 ≥knnnn and nnnn k =+++ ...21 ,

k

k

n
k

nn

nnn
k

n
k aaannnnCaaa ...),...,,;()...( 21

21

21
),...,(

2121 ∑=+++  (Ross, 1998, p. 

12; Roberts & Tesman, 2005, p. 196). 
 
 

Solution – Method 3 

Alternatively, when choosing from three colors: 

The number of all possible 4-tall towers built with three or less colors is: 3
4
 

The number of all possible 4-tall towers built with exactly one color is:  3 

Next, consider the following in order to find the number of all possible 4-tall 

towers built with exactly two colors: there are 3 ways to choose two colors out of three 
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colors; there are 2
4
 ways to build all possible 4-tall towers with the selected two colors; 

among these 2-color 4-tall towers, two towers are single colored.  Therefore, the number 

of all possible 4-tall towers built with exactly two colors is: 3(2
4
 – 2).  

Therefore, all 4-tall towers built with exactly three colors can be computed as: 

 36342813)]22(3[3 44 =−−=−−−  

 

5.2.8  Task 8: World Series (Grades 11) 
 

In a World Series, two teams play each other in at least four and at most seven 

games.  The first team to win four games is the winner of the World Series.  Assuming 

that both teams are equally matched, what is the probability that a World Series will be 

won: (a) In four games? (b) In five games? (c) In six games? (d) In seven games? 

 
Solution – Method 1  

 
Let the two teams be team A and team B. 

Let E be the event that team A wins the World Series. 

Let F be the event that team B wins the World Series. 

Then E and F are mutually exclusive events.  

Focus on the number of ways that team A can win the World Series, this can be 

denoted as n(E), the number of outcomes in E.  The following table explains how to find 

n(E):   

 Series Ended in Necessary Condition         n(E)  
 4 games  team A won 3 games in the first 3 games 3C3 =   1 

         and won the 4th game  

5 games  team A won 3 games in the first 4 games 4C3 =   4 
           and won the 5th game  



Lo, Chapter 5, 89 

89 

6 games  team A won 3 games in the first 5 games 5C3 =  10 
           and won the 6th game  

7 games  team A won 3 games in the first 6 games 6C3 =  20 
           and won the 7th game  

Table 5.2.8-1.  The numbers of ways that team A can win the World Series. 

 The number of elements in the sample space, denoted by n(S) and representing 

the number of all possible ways that the Series ended in n games (where 4 ≤ n ≤ 7), is 2
n
 

(this is because each game can ends in two ways: either A wins or B wins).  By definition 

T8.2, the probability P(E) of team A to win the Series in n games can be computed as in 

the following table: 

n  n(E)   n(S)      P(E) = n(E) / n(S)    
4     1  2

4
 = 16        1/16 = 0.0625 

5       4  2
5
 = 32        4/32 = 0.125 

6   10  2
6
 = 64      10/64 = 0.15625 

7   20  2
7
 = 128     20/128 = 0.15625 

Table 5.2.8-2.  The probability that team A wins the World Series in n games. 

Similarly, team B can win the World Series in n games exactly like team A does.  

Therefore, n(F) is the same as n(E), n(S) does not changed, and the P(F), the probability 

of team B to win the Series in n games, is the same as P(E).  Assuming there is no tie in 

any game, one of the two teams must win the World Series.  Therefore, event F is an 

complement of E (denoted by E
c
), and P(F) = P(E

c
).  Because both teams are equally 

matched, it must be true that both P(A wins the World Series) and P(B wins the World 

Series) are both equal to 0.5.   
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Because events E and F are mutually exclusive, by theorem T8.6, the probability 

of either team A or team B winning the Series in n games (the World Series ends in n 

games) is P(E or F) = )()()( FPEPFEP +=∪ : 

n  P(E)   P(F)   P(E or F)     
4   0.0625  0.0625  0.125 

5     0.125  0.125  0.25 

6   0.15625 0.15625 0.3125 

7       0.15625 0.15625 0.3125 

Sum:  0.5  0.5  1 

Table 5.2.8-3.  The probability of the World Series ending in n games. 

Note that every probability calculated is between 0 and 1 and that, as expected, 

the probability that team A (or team B) wins the World Series is 0.5.  

Mathematical Structure 

 The solution of this task involves probability-related concepts and terminology: 

(T8.1) Definition.  An experiment is a process that gives definite results, called 
the outcomes of the experiment.  The sample space S of an experiment 
is the set of all possible outcomes.  An event is any subset of the sample 
space S (Larson & Hostetler, 2004, p. 672; Roberts & Tesman, 2005, p. 
42; Ross, 1998, p. 25; Stewart, Redlin, & Watson, 2002, p. 882-883). 

 
(T8.2) Definition.  Let S be the sample space of an experiment in which all 

outcomes are equally likely, and let E be an event.  The probability of E is 

Sinelementsofnumber
Einelementsofnumber

Sn
EnEP

....

....
)(
)()( ==  (Larson & Hostetler, 2004, p. 

673; Roberts & Tesman, 2005, p. 42; Ross, 1998, p. 36; Stewart, Redlin, & 
Watson, 2002, p. 883). 

 
(T8.3) Axiom.  1)(0 ≤≤ EP  (Larson & Hostetler, 2004, p. 673; Roberts & 

Tesman, 2005, p. 42; Ross, 1998, p. 30; Stewart, Redlin, & Watson, 2002, 
p. 883). 

  
(T8.4) Axiom.  1)( =SP  (Ross, 1998, p. 31; Stewart, Redlin, & Watson, 2002, p. 

883). 
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(T8.5) Axiom.  The probability that event E does not occur, which denoted as E
c
 

the complement of E, is )(1)( EPEP c −=  (Larson & Hostetler, 2004, p. 
679; Roberts & Tesman, 2005, p. 44; Ross, 1998, p. 32; Stewart, Redlin, & 
Watson, 2002, p. 883). 

  
(T8.6) Theorem.  If E and F are mutually exclusive events in a sample space 

S, then the probability of E or F is )()()( FPEPFEP +=∪  (Larson & 
Hostetler, 2004, p. 676; Roberts & Tesman, 2005, p. 44; Ross, 1998, p. 31; 
Stewart, Redlin, & Watson, 2002, p. 886). 

 
Solution – Method 2  

 
In table 5.2.8-1, n(E) are written in terms of binomial coefficients (combinations).  

With knowledge acquired through work on previous tasks (4-tall towers), the solution can 

be refined by using Pascal’s Triangle: 

Series Ended in                                       n(E)        (1/2)n(S)   
  n games       (red and framed)            (Sum of the row)       P(E) 
  1 (impossible)                            1               1           0 
  2 (impossible)                   1       1   3C3 4C3  2           0 
  3 (impossible)                1       2       1   4            0 
  4           1       3         3      1      8         1/16 = 0.0625 
  5

            1       4         6        4      1           16         4/32 = 0.125 
  6      1       5       10        10       5      1           32       10/64 = 0.15625 
  7  

               1       6       15       20        15       6     1           64     20/128 = 0.15625 
 
 
    6C3  5C3  
 

Table 5.2.8-4.  The probability that team A wins the World Series in n games. 
                        (using Pascal’s Triangle). 

The sum of each row of Pascal’s Triangle represents only half of the number of 

elements in the sample space, because the entries in the Triangle includes only the  

combinations that team A wins under different conditions.  The other half of the elements 

are those entries in another Pascal’s Triangle that includes the combinations that team B 

wins.  With the same P(E) as found in solution method 1, P(E or F) must also be 

matched.        
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5.2.9  Task 9: Points (Grades 11) 
 

Pascal and Fermat are sitting in a café in Paris and decide to play a game of 

flipping a coin.  If the coin comes up heads, Fermat gets a point.  If it comes up tails, 

Pascal gets a point.  The first to get ten points wins.  They each ante up fifty francs, 

making the total pot worth one hundred francs.  They are, of course, playing “winner 

takes all”.  But then a strange thing happens.  Fermat is winning, eight points to seven, 

when he receives an urgent message that his child is sick and he must rush to his home in 

Toulouse.  The carriage man who delivered the message offers to take him, but only if 

they leave immediately.  Of course, Pascal understands, but later, in correspondence, the 

problem arises: how should the hundred francs be divided? 

Solution – Method 1 
 
Let H = Head (i.e. Fermat wins a point) and T = Tail (i.e. Pascal wins a point). 

 When Fermat got the emergency message, Pascal had 7 points and Fermat had 8 

points already.  This means they had already played a total of 15 rounds of coin flipping. 

To win the game, Pascal needed 3 more tails, or Fermat needed 2 more heads.  The 

following table examines how many more rounds are needed to produce a winner: 

 1 more round  H or T    No winner 

 2 more rounds  HH    Fermat wins  
    HT, TH, TT   No winner 

 3 more rounds  HTH, THH   Fermat wins  
    TTT    Pascal wins  
    HTT, THT, TTH  No winner 

 4 more rounds  HTTH, THTH, TTHH Fermat wins  
    HTTT, THTT, TTHT  Pascal wins  

Table 5.2.9-1.  Number of rounds and corresponding outcomes to produce a winner. 
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 From the analysis above, given the preexisting situation that Fermat has 8 points 

and Pascal has 7 points (abbreviated as “8H7T”), Fermat would win in two, three, or four 

“more” rounds.  The word “more” here indicates that the given situation has been taken 

into account.  This is called conditional probability (T9.2), and P(Fermat wins the game | 

8H7T) is used as standard notation for “the probability that Fermat wins the game given 

that currently Fermat has 8 points and Pascal has 7 points”.   

However, the probability to get an “H” in any round of flipping a fair coin is 0.5, 

which is not dependent on 8H7T or any other preexisting situations.  Therefore, the 

conditional probability P(HH|8H7T) is the same as the simple probability P(HH).  This is 

also the case for the rest of the scenarios under which Fermat wins.  This fact makes the 

calculations easier.  Using the information in table 5.2.9-1, the probability of each case 

that Fermat wins are:    

 2 more rounds: 
4
1

2
1)( 2 ==HHP   

 3 more rounds: 
4
1

2
1

2
1)()()( 33 =+=+=∪ THHPHTHPTHHHTHP   

 4 more rounds:  

16
3

2
1

2
1

2
1

)()()(
)(

444 =++=

++=
∪∪

TTHHPTHTHPHTTHP
TTHHTHTHHTTHP

 

Therefore,  P(Fermat wins the game | 8H7T)  

= P(Fermat wins in 2 more, 3 more, or 4 more rounds)  

= 6875.0
16
11

16
3

4
1

4
1

==++   

Note that because of the H is an independent event, by theorem T9.1, 

)()()()( HPHPHHPHHP =∩= .   Because events HTH and THH are mutually 
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exclusive in the sample space of outcomes of three tosses, by theorem T8.6, 

)()()( THHPHTHPTHHHTHP +=∪ .  The same reason applies in the case of “4 more 

rounds”.    

It is impossible to have a tie in any round.  The only two ways for the game to end 

are either “Pascal wins” or “Fermat wins”. Therefore, the event “Pascal wins” is the 

complement (T.8.5) of “Fermat wins”.  So,   

P (Pascal wins the game | 8H7T) = 1 – P(Fermat wins the game | 8H7T)  

= 1 – 0.6875 = 0.3125  

Hence, the hundred francs should be divided according to the conditional 

probability of each person winning the game if the game continued from the given 

situation: 

 Fermat: 75.686875.0100 =×  francs 

 Pascal:   25.313125.0100 =×  francs 

Mathematical Structure 

 The concept of conditional probability is involved in the solution: 

(T9.1) Theorem.  If E and F are independent events in a sample space S, then 
the probability of E and F is )()()( FPEPFEP =∩  (Larson & 
Hostetler, 2004, p. 678; Roberts & Tesman, 2005, p. 44-45; Ross, 1998, p. 
84; Stewart, Redlin, & Watson, 2002, p. 889). [this theorem is not relevant 
to the solution…] 

 
(T9.2) Definition.  A conditional probability P(E|F) (read as “the probability of E 

given F”) gives the probability of event E under the condition that event F 

has occurred.   If 0)( >FP , then
)(

)()|(
FP

FEPFEP ∩
=  (Bock, 

Velleman, & De Veaux, 2007, p. 349; Moore & McCabe, 1999, p. 350, 352; 
Ross, 1998, p. 67-68). 

 
(T9.3) Definition.  Two events E and F are independent if )()|( EPFEP =  

(Bock, Velleman, & De Veaux, 2007, p. 351; Moore & McCabe, 1999, p. 
357; Ross, 1998, p. 84). 
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Solution – Method 2 
 
Because a fair coin can come up with either Head or Tail in every round, a binary 

tree structure (T2.9) can be used to show the possible ways in which the game can end: 

start with 8 heads (Fermat got 8 points) and 7 Tails (Pascal got 7 points) as the root, 

which has probability 1 because it happened already.  Each of the two branches (edges) 

from the root has probability of 0.5 and produces no winner.  That means the resulting 

nodes have to branch out again.  The next level of the tree has four nodes.  The leftmost 

node 8H7THH represents “Fermat wins the games (10 Hs) in two more rounds” (the 2nd 

level of the tree).  The other three nodes continued to branch out for the third round.  The 

process continues until every end node (leaf) represents a winner.  Note that each edge 

from the binary branching is labeled with the probability of 0.5 because it is equally 

likely to get a Head or a Tail at each toss.   

                      8H7T   
       0.5   0.5 

 
     H           T 
                  0.5          0.5                                         0.5                  0.5    
 
             H              T   H     T  
           (0.25)      0.5          0.5               0.5           0.5                 0.5         0.5    
 
         H                        T    H            T     H  T   
               (0.125)                                 (0.125)                                              (0.125)   
 
                               0.5               0.5            0.5              0.5      0.5               0.5   
 
       H   T                H               T                H              T 
    (0.0625)     (0.0625)     (0.0625)     (0.0625)     (0.0625)     (0.0625) 
 
 Figure 5.2.9-1.  The binary tree with conditional probability of the winner.  

In this tree, there are six Hs (i.e. Fermat wins the game) and four Ts (i.e. Pascal 

wins the game).  The number in “( )” below each winning node is the probability of each 
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winning case based on the general multiplication rule (T9.4).  For example, the leftmost 

winning node on the forth level is HTTH (abbreviation from 8H7THTTH for better 

readability), and P(HTTH) = P(H)P(T|H)P(T|HT)P(H|HTT) = 0.5×0.5×0.5×0.5 = 

0.0625.  Therefore, P(Fermat wins the game|8H7T) = 0.25 + 2(0.125) + 3(0.0625) =  

0.6875. This matches the calculation shown in method 1.    

Mathematical Structure 

(T9.4) Definition.  A General Multiplication Rule for compound events E1, E2, 
E3, …, En that does not require the events to be independent is:  

)...|()...|()|()()...( 121213121321 −= nnn EEEEPEEEPEEPEPEEEEP  
(Bock, Velleman, & De Veaux, 2007, p. 350; Moore & McCabe, 1999, p. 
352; Ross, 1998, p. 71). 

 
Solution – Method 3 

 
Because the edges of each branching in figure 5.2.9-1 are labeled with 

probability of 0.5 (equal chance to get a Head or a Tail in every coin toss), a 

simpler solution method is suggested.  Build a complete binary tree and count the 

number of outcomes of Fermat wins (represented by H): 

                            8H7T   
 
 
     H           T 
                       
 
            H              T   H     T  
             
 
     H         T            H            T      H            T     H            T   
             
 
             
 H    T   H    T     H    T      H    T         H   T          H      T       H      T      H    T   
 
 F     F   F     F     F    F      F                 F     F         F                F               (Fermat wins) 
  
 Figure 5.2.9-2.  The complete binary tree representation for Fermat winning.  
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 In this tree, total number of outcomes (leaves) is 16.  If H appears at any level of the 

tree, the resulting outcomes (leaves) are marked as Fermat winning.  There are 11 leaves 

marked “F”.  So P(Fermat wins) = 
16
11 .     
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5.2.10  Task 10: Taxicab (Grade 12)  
 
A taxi driver is given a specific territory of a town, represented by the grid in the 

diagram below.  All trips originate at the taxi stand, the point in the top left corner of the 

grid.  One very slow night, the driver is dispatched only three times; each time, she picks 

up passengers at one of the intersections indicated by the other points on the grid.  To 

pass the time, she considers all the possible routes she could have taken to each pick-up 

point and wonders if she could have chosen a shorter route.  What is the shortest route 

from the taxi stand to each of three different destination points?  How do you know it is 

the shortest?  Is there more than one shortest route to each point?  If not, why not?  If so, 

how many?  Justify your answers. 

 

Taxi Stand   

       

       

       

     
B

  

  
A

     

      
C

 

       

       

 
Figure A-2.  The map of the town and the taxi stand  
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Solution 

This problem was first proposed by Hermann Minkowski in the beginning of the 

20th century (Gardner, 2007, p. 160).  The term “taxicab” was not used until 1952 by an 

Austrian mathematician Karl Menger (Powell, 2003, p. 5-6).  According to Krause 

(1975/1986), Minkowski’s concept is a good model in the development of a particular 

non-Euclidean geometry named Taxicab geometry that differs from Euclidean geometry 

by just one axiom – the distance function (p. 2).  

In general, on the Cartesian (coordinate) plane (T10.1), a shortest route from the 

taxi stand with coordinates ),( 11 yx  to the destination point with coordinates ),( 22 yx  can 

be found in this way: start at the taxi stand and travel || 12 yy −  (T10.2) blocks vertically 

to the turning point T ),( 21 yx , which lies on the same horizontal line as the destination;  

then, turn the taxicab 90˚ heading toward the direction of the destination point and go 

|| 12 xx −  blocks horizontally.  The Taxicab distance (T10.4) of this shortest route is 

|||| 1212 yyxx −+−  blocks.   

These routes are the shortest because (1) the taxi stand and the turning point are 

on the same vertical line, (2) the turning point and the destination are on the same 

horizontal line, and (3) the shortest route between two points is a line connecting them.   

However, this shortest route is not unique because at each intersection along the 

route, the taxicab can choose to either go southward or eastward but still toward the 

destination point, resulting in a route of equal length with the one described above.  It is 

important to note that this is true only in a city where all the streets run either straight 

northward and southward or straight eastward and westward and all the streets are 

equidistant from one another. 
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Figure 5.2.10-1 below places the Taxi Stand at the origin of the Cartesian 

(coordinate) plane.  The coordinates of each pick-up point are identified.  The light blue 

route is a shortest path from Taxi Stand (0, 0) to point A (1, −4), turning direction at point 

(0, −4).  The red route is a shortest path from Taxi Stand to point B (4, −3) changing 

direction at point (0, −3).  The light green route is a shortest path from Taxi Stand to 

point C (5, −5) passing through the turning point (0, −5).    

Taxi Stand   

       

 (0,0)      

       

 
 

    
B

  

(0,-3)  
A

   (4,-3)  

(0,-4)  (1, -4)    
C

 

(0,-5)       (5,-5) 

       

 
Figure 5.2.10-1.  Three shortest routes on the Cartesian Plane  

Taxicab distances can be found by counting the number of blocks along a shortest 

route.  In the case of a huge city with hundreds of streets, one can use the formula 

described in T10.4 to compute: 

dT (Taxi Stand, A) = 5|04||01| =−−+−  

dT (Taxi Stand, B) = 7|03||04| =−−+−  

dT (Taxi Stand, C) = 10|05||05| =−−+−  
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Note that the taxicab distance is usually longer than the corresponding Euclidean 

distance unless the destination point is located on the same street as Taxi Stand.  This is 

because the taxicab distance (T10.4) is the sum of the lengths of two legs while the 

Euclidean distance (T10.5) is the length of the hypotenuse of the right triangles whose 

vertices are the Taxi Stand, the destination point, and the turning point. 

The last sub-question of this task is: how many shortest routes are there? 

Because all three pick-up points are located southeast of the taxi stand, to find 

other shortest paths, always go either south or east, but never north or west, at each 

intersection.  Let S = “going south” and E = “going east”, then from the taxi stand to 

point A, the taxicab must choose one of five intersections to turn east.  Thus, there are 5C1 

= 5 shortest routes: SSSSE, SSSES, SSESS, SESSS, and ESSSS.    

Similarly, point B is four blocks east and three blocks south from the Taxi Stand.  

Therefore the taxicab must choose four of seven intersections to go eastward.  Thus, there 

are 7C4 = 35 shortest routes (Alternately, in stead of going eastward, the taxicab can 

choose at which three intersections to go southward.  The result is the same because 

353747 == CC (T10.7)).     

Here is a strategy to list all 35 routes systematically: there are 3 “S”s and 4 “E”s 

in the letter strings representing a shortest path.  Hence, there are 5 slots between and 

around the 4 “E”s :  (1) E(2) E (3) E (4) E (5) .  From these 5 slots, choose where to place 

3 “S”s.  The 35 shortest routes can be separately listed by four cases:   

Case 1: SSS is put into one of 5 slots.  There are 5C1 = 5 ways to do this: 

SSSEEEE, ESSSEEE, EESSSEE, EEESSSE, EEEESSS 
 

Case 2: SS_S is put into two of 5 slots.  There are 5C2 = 10 ways to do this: 
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SSESEEE, SSEESEE, SSEEESE, SSEEEES, 
ESSESEE, ESSEESE, ESSEEES, 
EESSESE, EESSEES, 
EEESSES  
 

Case 3: S_SS is put into two of 5 slots.  There are 5C2 = 10 ways to do this: 

SESSEEE, SEESSEE, SEEESSE, SEEEESS, 
ESESSEE, ESEESSE, ESEEESS, 
EESESSE, EESEESS, 
EEESESS 
 

Case 4: S_S_S  is put into three of 5 slots.  There are 5C3 = 10 ways to do this: 

SESESEE, SESEESE, SESEEES, SEESESE, SEEESES, SEESEES,   
 ESESESE, EESESES, ESESEES, ESEESES   

 
By the same reasoning, the number of shortest paths from Taxi Stand to station C 

is 10C5 = 252.   Because point C is five blocks east and five blocks south from Taxi Stand, 

the taxicab must choose five of ten intersections to turn east.  (The complete list of these 

routes is omitted because it is very time consuming.)  

Further, the binary branching resulting from having the option to go either east or 

south at each intersection suggests that the binary coefficients and Pascal’s Triangle that 

appear in many of the previously discussed tasks (e.g., Towers, Pizzas, World Series, and 

Points) may be relevant to this problem as well.  By labeling each intersection on the grid 

with the number of shortest routes one can go from the Taxi Stand to that particular point 

and toward destination points A, B, and C, Pascal’s Triangle can be found “lying” on the 

diagonal of the grid as shown in the following figure: 
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Taxi Stand 
 

 

  
 Figure 5.2.10-2.  Embedded Pascal’s Triangle. 
 
 From this diagram, a general process by which to find the shortest routes from the 

Taxi Stand to any point on the grid is evident.   

Mathematical Structure 

Some elementary terms of the coordinate system are mentioned in the discussion 

of the solution: 

(T10.1) Definition.  The Cartesian (coordinate) plane is represented by drawing 
two intersecting perpendicular real lines called x-axis (horizontal line) 
and the y-axis (vertical line).  Any point P in the plane can be identified 
by an ordered pair (a, b) of real numbers.  The first number a is called x-
coordinate of P, and the second number b is called the y-coordinate of 
P.  The intersection of the x-axis and the y-axis, the point (0,0), is called 
the Origin (Larson & Hostetler, 2004, p. A78; Stewart, Redlin, & Watson, 
2002, p. 89-90).   

  
(T10.2) Definition.  If a is a number, then the absolute value of a is |a| = a if a ≥ 

0 and |a| = −a if a < 0 (Larson & Hostetler, 2004, p. A4; Stewart, Redlin, 
& Watson, 2002, p. 10). 

 
(T10.3) Definition.  If a and b are real numbers, then the distance between the 

points a and b on the real line is ||),( abbad −=  (Stewart, Redlin, & 
Watson, 2002, p.11). 
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Comparing Taxicab geometry with Euclidean geometry, the distance functions 

must be clearly defined:  

(T10.4) Definition.  Given two points P(x1, y1) and Q(x2, y2), the Taxicab 
distance between P and Q, denoted as dT(P, Q), is the count of blocks 
(does not have to be an integer) that a taxicab chooses to travel in either 
horizontal or vertical direction at each intersection it passes through 
along the way and ||||),( 1212 yyxxQPdT −+−=  (Krause 
(1975/1986, p. 4). 

 
(T10.5) Definition.  Given two points P(x1, y1) and Q(x2, y2), the Euclidean 

distance between P and Q, denoted as dE(P, Q), is derived from the 

Pythagorean Theorem and 2
12

2
12 )()(),( yyxxQPdE −+−=  

(Krause, 1975/1986, p. 4; Larson & Hostetler, 2004, p. A80; Stewart, 
Redlin, & Watson, 2002, p. 91). 

 
(T10.6) Theorem.  In a right triangle with a and b as the lengths of two legs and c 

the length of the hypotenuse, the Pythagorean Theorem states: 
222 cba =+  (Larson & Hostetler, 2004, p. 349). 

 
Note that unlike the taxicab distance, the Euclidean distance corresponds to a 

unique route. 

In addition, a fact has shown in Pascal’s triangle and Binomial theorem but never 

formally defined before:    

(T10.7) Theorem.  rnnrn CC −=  (Roberts & Tesman, 2005, p. 36). 
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5.3  Overall Concept Map 

In this study, mathematical concepts are meant to be abstract and unorganized 

mathematical ideas (knowledge) residing in our mind.  Mathematical structures, on the 

other hand, are characterized by the authors as constructed images of mathematics that 

describe and organize mathematical concepts into a hierarchy of interconnected entities 

that are building on one another to produce a coherent whole.  The main focus of this 

section is to organize mathematical structures identified in section 5.2 into a hierarchy.  

Concept mapping is used to construct this hierarchy.  Novak & Cañas (2008) suggested 

that each construction of the concept map should include only 15 to 25 key concepts at a 

time.  However, there are many more structures found from the ten tasks discussed in the 

previous section.  Therefore, these mathematical structures are categorized into seven 

broad, general, and overlapping sub-domains: Set Theory, Enumerative Combinatorics, 

Graph Theory, Sequences & Sets, General Algebraic System, Probability Theory, and 

Geometry.  A concept map is constructed for each sub-domain.  Cross links are added to 

connect related concepts among these sub-domains.   

One may ask, “What is the hierarchy of these seven sub-domains?”  Based on the 

Mathematics Subject Classification 2000 (MSC2000), the highest level concept map, 

called the global map, is structured as follows: 
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          includes              includes            includes        includes        includes           includes    

                                                                         

 

 

 
      includes            includes              includes             includes      

 
 

 

Figure 5.3-0.  The concept map covers seven sub-domains (in blue).  

For easy referencing, the number showing on the first line of each box is the 

section number originally used by MSC2000.  There are many sub-domains in the 

mathematics field; this initial concept map only includes mathematical subjects related to 

the seven designated sub-domains.   

For each sub-domain, a list of related structures is collected from section 5.2, and 

then a concept map is constructed.  The structure code (e.g., T1.1 meaning the first 

structure in task 1) is attached to each entry in the structure list and in each rectangular 

box of the concept maps in order to ease back referencing to the description of each 

mathematical structure.  Some boxes do not contain a structure code because these 

concepts or structures are not embedded in the solutions of the ten tasks.  However, it is 

necessary to add them to the maps as they are commonly used and understood by 

everyone who has studied mathematics.  For example, there are boxes like “Euclidean 

Mathematics 

03 
Mathematical 
Logic & 
Foundation 

05 
Combinatorics 

08  
General 
Algebraic 
Systems

11 
Number 
Theory 

51  
Geometry 

60  
Probability 
Theory 

05A 
Enumerative 
Combinatorics 

05C 
Graph 
Theory 

11B 
Sequences 
& Sets 

03E 
Set 
Theory 
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Geometry” and “Triangle” in the concept map of Geometry.  On the other hand, some 

structures are broken down and put into several boxes in order to increase the clarity and 

understandability.  The structures of each sub-domain are listed in the order of their 

appearance in section 5.2.  Some structures can be listed in more than one sub-domain.  

These are overlapping structures that serve as bridges, connecting pieces of mathematical 

knowledge into a whole.  These structures are listed in italic blue in their primary sub-

domain, and are listed in italic purple when they appear in other sub-domains.  The boxes 

of overlapping concepts are framed with double lines.                     

Bear in mind that the purpose of constructing concept maps is to retrieve 

knowledge more easily and they represent only the author’s point of view.  The look of 

these concept maps may be quite different if they are constructed by other researchers, 

teachers, or students.  Also, because every mathematical concept is somehow related to 

other concepts, only the most representative links are shown.   

(Continued on the next page.) 
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Set Theory 

 Set structures are introduced in Task 1, Shirts and Jeans (5.2.1).  These 

fundamental structures are used in many sub-domains and subsequent task problems.  For 

example, a sequence {an} is defined using the set notation.  Similarly, the set {x, y} may 

represent an edge between vertices x and y.  For this reason, T1.10 and T4.2 are also 

included in the table.      

T1.1 Definition Set 
T1.1 Definition Object 
T1.1 Definition Elements 
T1.2 Definition Roster Method 
T1.3 Definition Set-Builder 
T1.4 Definition Ordered pair (x, y) 
T1.5 Definition Cartesian Product A × B   
T1.5 Definition Cross Product 
T1.5 Definition },|),{( BbAaba ∈∈  
T1.7 Definition Unordered pair {x, y} 
T1.8 Definition Graph G(V,E) 
T1.8 Definition V: Vertices 
T1.10 Definition Edge {x, y} 
T4.2 Definition {an} 
T10.1 Definition point (x, y), x-coordinate, y-coordinate 

 
Table 5.3-1.  List of identified structures of Set Theory.  
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Figure 5.3-1.  Concept map of Set theory.
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Enumerative Combinatorics 

 Because of the isomorphism among the ten tasks of this study, every task can be 

solved by theorems or formulas in this sub-domain.  T6.4 Binomial Theorem and T7.4 

Multinomial Theorem from General Algebraic Systems are counted as overlapping 

structures because binomial coefficients and multinomial coefficients are represented by 

combination numbers. 

T3.3 Definition Then number of combinations of n elements 
            taken r at a time: nCr or C(n, r) 

T3.4 Theorem 
)!(!

!
rnr

nC rn −
=   

T5.1 Definition Permutation 
T5.2 Theorem The number of permutations of n elements is n! 
T5.3 Definition The number of permutations of n elements 

         taken r at a time: nPr or P(n, r) 
T5.4 Theorem )1()2)(1(

)!(
!),( +−⋅⋅⋅−−=

−
= rnnnn

rn
nrnP  

T6.1 Definition Pascal’s Triangle 
T6.2 Definition Binomial Coefficients are rnC  
T6.3 Theorem rkrkrk CCC 11 +− =+  

T6.5 Theorem n
nnnnn CCCC 2...210 =++++  

T7.1 Definition The number of distinguishable combinations 
(Multinomial Coefficients): ),...,,;( 21 knnnnC   

T7.2 Theorem 
!!...!!

!),...,,;(
321

21
k

k nnnn
nnnnnC =  

T7.3 Theorem Distinguishable permutations:  
),...,,;(),...,,;( 2121 kk nnnnCnnnnP =  

T10.7 Theorem rnnrn CC −=  
T1.1 Definition Elements 
T1.6 Theorem Fundamental counting Principle (Product Rule) 
T3.2 Definition nnn ×−×⋅⋅⋅×××= )1(321!  
T6.4 Theorem Binomial Theorem (Binomial Expansion) 
T7.4 Theorem Multinomial Theorem 

 
Table 5.3-2.  List of identified structures of Enumerative Combinatorics. 
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Figure 5.3-2.  Concept map of Enumerative Combinatorics. 
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Graph Theory 

Tree structures are described in tasks 1, 2, and 3.  As it was the case earlier with 

Enumerative Combinatorics, every one of the tasks can also be solved by using tree 

structures.  The use of set notations is considered to an overlapping structure.     

T1.8 Definition Graph G(V, E) 
T1.8 Definition V a set of vertices 
T1.8 Definition E a set of edges 
T1.8 Definition Endpoints 
T1.9 Definition Simple graph 
T1.10 Definition Edge {x, y} 
T1.11 Definition Bipartite graph 
T2.1 Definition Walk 
T2.1 Definition Simple walk 
T2.1 Definition Closed walk 
T2.1 Definition Path 
T2.2 Definition Connected graph 
T2.3 Definition Tree 
T2.4 Definition Degree of vertex u: deg(u) 
T2.5 Definition Level of a tree 
T2.5 Definition Height of a tree 
T2.6 Definition Rooted tree 
T2.6 Definition Root 
T2.7 Definition Ancestors of a vertex 
T2.7 Definition Parent of a vertex 
T2.7 Definition Descendent of a vertex 
T2.7 Definition Leaf of a tree 
T2.8 Definition Binary tree 
T2.9 Definition Complete tree 
T3.1 Definition m-ary tree 
T1.1 Definition Set 
T1.7 Definition Unordered pair {x, y} 
T4.1 Definition Sequence ,...,...,,, 321 naaaa  

 
Table 5.3-3.  List of identified structures of Graph theory.  
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Figure 5.3-3.  Concept map of Graph Theory. 
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General Algebraic Systems 

  General Algebraic Systems covers operation rules of variables and numbers.  

Therefore, some formulas listed in Enumerative Combinatorics and series are also 

included in this sub-domain as overlapping structures because these formulas are most 

likely derived from algebraic operations.      

T3.2 Definition nnn ×−×⋅⋅⋅×××= )1(321!  
T4.6 Definition 

Sigma: n

n

k
k aaaaa ++++=∑

=

...321
1

 

T6.4 Theorem Binomial Theorem (Binomial Expansion)  
T6.4 Theorem ( ) ∑

=

−=+
n

k

knk
rn

n baCba
0

 

T7.4 Theorem Multinomial Theorem 
T7.4 Theorem 

k

k

n
k

nn

nnn
k

n
k aaannnnCaaa ...),...,,;()...( 21

21

21
),...,(

2121 ∑=+++  

T10.1 Definition Cartesian (coordinate) Plane  
T10.1 Definition x-axis, y-axis 
T10.1 Definition point (x, y), x-coordinate, y-coordinate 
T10.1 Definition Origin (0, 0) 
T10.2 Definition Absolute value  
T10.2 Definition |a| = a if a ≥ 0, |a| = – a if a < 0 
T10.3 Theorem Distance between a and b on real line  
T10.3 Theorem ||),( abbad −=  

 
Table 5.3-4.  List of identified structures of General Algebra Systems. 
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Figure 5.3-4.  Concept map of General Algebra System. 
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Sequences & Sets 

The roster method of set notation is often used to define a sequence.  Sigma notation is 

used to define the nth partial sum and series. The structures in this sub-domain are primarily 

extracted from 5.2.4 task 4.       

T4.1 Definition Sequence ,...,...,,,, 4321 naaaaa  

T4.2 Definition {an} 
T4.3 Definition Geometric Sequence ,...,,,, 432 arararara  
T4.3 Definition The nth term of geometric sequence: 1−= n

n ara  

T4.4 Definition The nth partial sum of a sequence: Sn 
T4.4 Definition nn aaaaaS +++++= ...4321  

T4.4 Definition Sequence of partial sums  
T4.4 Definition ,...,...,,,, 4321 nSSSSS  

T4.5 Theorem 
For a geometric sequence, 

r
raS

n

n −
−

=
1

)1(  

T4.7 Definition 
Infinite Series ∑

∞

=1n
na  

T4.8 Definition Geometric Series   
T4.8 Theorem 

r
aar

n

n

−
=∑

∞

=

−

11

1  if |r| < 1 

T4.8 Definition ∑
∞

−1nar  divergence if |r| ≥ 1 
T4.9 Definition Recursively defined sequence 
T4.6 Definition 

Sigma: n

n

k
k aaaaa ++++=∑

=

...321
1

 

 

Table 5.3-5.  List of identified structures of Sequences & Sets. 
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Figure 5.3-5.  Concept map of Sequences & Sets. 
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Probability Theory 

  Fundamental counting principle (Product Rule), already listed in Enumerative 

Combinatorics, primarily resides in this sub-domain, and it is often used in finding the 

number of elements in the set of events or in the set of sample space.      

T1.6 Theorem Fundamental Counting Principle (Product Rule) 
T8.1 Definition Experiment 
T8.1 Definition Outcomes 
T8.1 Definition Sample space 
T8.1 Definition Event  
T8.2 Definition Probability of event E: 

Sinelementsofnumber
Einelementsofnumber

Sn
EnEP

....

....
)(
)()( ==  

T8.3 Axiom 1)(0 ≤≤ EP  
T8.4 Axiom 1)( =SP  
T8.5 Definition E

c
 is the complement of event E 

T8.5 Axiom )(1)( EPEP c −=  
T8.6 Theorem For mutually exclusive events:  

)()()( FPEPFEP +=∪
T9.1 Theorem For independent events: )()()( FPEPFEP =∩  
T9.2 Definition 

Conditional Probability: 
)(

)()|(
FP

FEPFEP ∩
=  

T9.3 Definition Events E and F are independent if )()|( EPFEP =  
T9.4 Definition General Multiplication Rule: 

)...|()...|()|()()...( 121213121321 −= nnn EEEEPEEEPEEPEPEEEEP
T1.1 Definition Set

 
Table 5.3-6.  List of identified structures of Probability Theory.  
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Figure 5.3-6.  Concept map of Probability Theory. 
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Geometry 

Very few geometry entities are identified and they are all in section 5.2.10 

Taxicab.  Pascal’s triangle is not related to Geometry at first sight.  However, its name 

reflects the fact that binomial coefficients can be arranged to form a triangular array, 

which connects and is used as a counter example to a geometry figure “triangle” in the 

concept map.    

T10.4 Definition Taxicab distance 
T10.4 Definition ),( QPdT  

T10.4 Definition ||||),( 1212 yyxxQPdT −+−=  

T10.5 Definition Euclidean distance 
T10.5 Definition ),( QPdE  

T10.5 Definition 2
12

2
12 )()(),( yyxxQPdE −+−=  

T10.6 Theorem Pythagorean Theorem 
T10.6 Theorem  Right triangle 
T10.6 Theorem Legs a and b and hypotenuse c 
T10.6 Theorem 222 cba =+  
T6.1 Definition Pascal’s Triangle 

T10.1 Definition point (x, y), x-coordinate, y-coordinate 

T10.2 Definition Absolute value 

T10.3 Definition ||),( abbad −=  

 
Table 5.3-7.  List of identified structures of Geometry.  
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Theoretically, it is not impossible to put all these seven concept maps together and 

make a big overall concept map on one sheet of paper.  In that way, the connections 

among different sub-domains can be seen all at once.  However, a giant concept map with 

more than fifty or sixty concepts may not be the most effective way of displaying this 

information.  Therefore, in this section, a method of macro/micro maps used by Novak & 

Cañas (2008) is applied.  Figure 5.3-0 can be seen as a global “macro map” displaying 

the main mathematical areas relevant to the analyzed tasks.  Then, seven rather more 

specific “micro maps” are showing mathematical structures in specific sub-domains.  The 

relationships among different sub-domains are shown by the overlapping boxes and the 

cross links connecting these boxes to others.                
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5.4  Student Solutions and Mathematical Structures 
  

In this section, students’ solutions to each task are examined with the goal of 

matching inherent mathematical structures with those found and discussed in sections 5.2 

and 5.3.  As mentioned in chapter 4, video transcripts and students’ written work are 

extracted from Rutgers researchers’ papers and dissertation studies.  Because the main 

focus of this analysis is on mathematical structures, only critical events relevant to this 

topic are discussed. 

   
5.4.1  Task 1: Shirts and Jeans (see Appendix A for task description) 

As early as grade 2, Stephanie and Dana had demonstrated some understanding 

about ideas from set theory (03E).  Working on the task “Shirts and Jeans”, they drew 

pictures to represent the problem data (see Appendix B, Figure B-1, B-2, B-3).  Dana 

clearly drew the set (T1.1) of shirts apart from the set (T1.1) of jeans.  She put three shirts 

in the top row and two pairs of jeans in the bottom row.  Stephanie did not draw shirts 

and jeans into two separate clusters; instead, she listed all three shirts followed by two 

pairs of jeans.     

All three students used the capital letters W, B, Y as labels for the shirts and jeans.  

This is similar to using the Roster Method (T1.2) to list all elements (T1.1) in the set.  

Then, Stephanie and Dana working together used ordered pairs (T1.4), written vertically 

without the “( )”, to list the elements in the Cartesian product (T1.5).  Although 

Stephanie did not list these elements in a systematic way, she would have had all six 

outfits if she had broken her fifth 
B
W
Y  into 

B
Y  and 

B
W . This mistake may have been caused by 
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not clearly separating the shirt set from the jeans set, which made the pairing more 

difficult.   

Besides writing down the pairs, Dana was the first one to draw a line to connect a 

shirt with a pair of jeans, thus representing a possible outfit.  She had a question 

regarding the third outfit, “yellow shirts and white jeans”.  Dana said, “It can’t…yellow 

can’t go with the white.”  Stephanie seemed more mathematically mature about making 

valid outfits in an abstract mathematical context.  She firmly addressed Dana, “No, how 

many outfits can it make?  It doesn’t matter if it doesn’t match as long as it can make 

outfits.  It doesn’t have to go with each other, Dana (Martino, 1992, p. 49-50)”.  Dana 

appeared not convinced.  There was no connecting line between yellow shirt and white 

jeans in her drawing.   

Michael was working alone for the most of time in grade 2.  He drew and labeled 

shirts and jeans for the three pairs of outfits where the colors were the same.  Perhaps his 

understanding of the problem was different than that of Dana and Stephanie.  His work 

did not show any evidence of understanding ideas for set structures.   

In grade 3, Stephanie picked up Dana’s 2nd grade separate-row strategy to 

distinguish the shirt set from the jeans set.  Michael did not bother to draw shirts and 

jeans at all.  He worked with the phrases “white shirt”, “blue shirt”, and “yellow shirt” 

printed on the top row, and “blue jeans”, “white jeans” printed on the second row of the 

original task statements and formed a tree diagram with the words (see Appendix B, 

Figure B-4, B-5, B-6).   

All three students used Dana’s 2nd grade connecting line strategy to show their 

outfits.  The diagrams they drew look almost identical to the simple bipartite graph (T1.9 
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and T1.11) shown in Figure 5.2.1-1 of the solution method 3 in section 5.2.1.  Without 

formally studying graph theory (05C), these young students seemed to possess the ability 

to construct a graph G(V, E) (T1.8) with two sets of vertices (T1.8) and a set of edges 

(T1.8).  They knew how to represent an outfit by drawing an edge (a line) (T1.10) to 

connect two endpoints (T1.8), one from the shirt set and the other from the jeans set.  To 

find the answer to the problem, they counted the number of outfits by counting the 

number of edges.  In grade 3, Stephanie and Dana did not write down ordered pairs of 

outfits at all.  Michael listed all six ordered pairs correctly.  However, it appears that he 

still did not prefer to list outfits systematically.  

Stephanie further demonstrated her ability to use a distribution method in finding 

all the elements in the Cartesian product of two sets.  This happened when the instructor 

added another pair of black jeans to the original problem and asked Dana and Stephanie 

to find the number of possible outfits.  Stephanie used a connecting line strategy again.  

She systematically distributed three pairs of jeans to each of the three shirts and quickly 

determined that the answer was nine possible outfits (Martino, 1992, p. 64): 

Stephanie:  It’s nine. 
Instructor:  How did you get nine? 
Stephanie:  See we drew the shirts and since each one of them could go to 

three pairs of jeans…  three [She pointed to the yellow shirt 
and characterized three outfits, the yellow shirt with each pair 
of jeans.]; six [She pointed to the blue shirt as she referred to 
six outfits, the three with the yellow shirt and the three with the 
blue shirt]; nine. [She continued in the same manner as she 
now pointed to the white shirt.] 

Instructor:  Oh, three, six, nine. 
Stephanie:  Because there’s three pairs of shirts and three pairs of pants. 
 
This kind of distribution – fixing one element in one set and distributing it to all 

elements in the other set, guaranteed that she would include all possible ordered pairs in 



Lo, Chapter 5, 126 

126 

the Cartesian product, and avoided any redundancy.  It also laid a solid foundation for 

understanding the Fundamental Counting Principle (Product Rule) (T1.6).  When the 

instructor asked, “What do you think would happen if I had four pairs of jeans?”  Dana 

stopped Stephanie from drawing a new diagram and said, “You’d just have to do like…3, 

6, 9, 12!  It’d be 12!  3, 6, 9, 12!” (Martino, 1992, p. 65)  This time, with or without 

realizing, Dana seemed to fix each pair of jeans and then distributing it to three different 

shirts.  Nevertheless, she reached the correct answer without writing anything down.   

 

5.4.2  Task 2: Towers 4-tall with 2 colors (see Appendix A for task description) 

When a class of eighteen students was given this task in grade 3, they 

immediately began to manipulate colored cubes, a set (T1.1) of red cubes and a set (T1.1) 

of blue cubes, to build different 4-tall towers.  According to Martino (1992, p. 91), it was 

not until several towers were built that the young students started to feel the need to have 

a system to check for new or duplicate towers.  For example, Stephanie and Dana were in 

a group: 

Stephanie:  I think I have that one … 
Dana:         No you don’t. 
Stephanie:  Hold on.  Let me check.  I think…  oh no I had it the other way.  

Everything we make we have to check.  Let’s make a deal… 
everything we make we have to check… 

Dana:         I’ll always make it and you’ll always check it. 
Stephanie:  Okay, you make it and I’ll check it.       
 
This concern about duplicates seemed to play a significant role in the students’ 

rearranging their already built towers into pairs of “opposite colors”.  Another group, 

Michael and Jaime: 

Michael:  Did you do red, blue, blue, red? 
Jaime:      Red, blue, blue, red… yeah, red, blue… 
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Michael:  We don’t have it. 
Jaime:      Oh, thank you. 
Michael:  And then you could do blue…, red, red, blue.  See! I’m thinking! 
 
Thus, one example of opposite pairs would be “red, blue, blue, red” and “blue, 

red, red, blue”.  Martino (1992, p. 107) reported that five out of nine groups of students 

organized their sixteen 4-tall towers into eight pairs of opposites, like Michael and Jaime 

had done.  Two groups had some towers in pairs of opposites, and the remaining two 

groups had totally random arrangements. 

In constructing these pairs of opposite colored towers, students seemed to realize 

that there were two color choices for each position of the tower (2C1 = 2 (T3.3, T3.4)).  

This realization may have contributed significantly to the later development of solutions 

to generalizations of the fundamental counting principle (T1.6).      

This task was given to participating students again (on November 13, 1998) when 

they were in grade 11, with an extended goal to make a generalization to towers n-tall.  

According to Tarlow (2004, p. 48-49), Michelle and Robert had experiences working on 

this Tower problem in earlier grades.  The other four students, Angela, Magda, Ali, and 

Sherly were new to this task.  Six students were paired up: Michelle with Robert, Angela 

with Magda, and Ali with Sherly. 

All three groups found, in a very short time, the correct solution for 4-tall 

choosing from 2 colors: 16 different towers.  Magda and Angela built their towers by 

cases based on how many cubes were blue: one blue, two blues, three blues, four blues, 

and four yellows.  Robert used the same “cases” strategy, only he named the “four 

yellows” case “zero blue”.  Michelle built her towers in random fashion then organized 
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them in “two’s”, which meant she paired two towers together if they had “opposite 

colors” for every position.  Ali and Sherly also arranged their towers in “opposite colors”. 

Using the “cases” strategy (this strategy was used in solution method 2 in section 

5.2.3), Magda, Angela, and Robert could better explain why they were sure that they had 

built all the possible towers.  For the case of one blue, Magda and Angela said that they 

“had moved the one blue cube down into each of the four possible positions (Tarlow, 

2004, p. 55-56).”  This essentially means choosing one out of four (4C1 (T3.3)) positions 

to place the one blue cube.  Hence, they found 4C1 = 4 (T3.4) different towers with one 

blue and three yellow cubes.  Magda and Angela also did this for the case of three blues, 

by moving the yellow cube.   

To explain the case of two blues, Robert “held the upper blue cube in a fixed 

position beginning at the top, while he moved the lower blue cube down one position in 

each tower.  Each time that the lower blue cube had been moved down to all of the 

possible positions, the upper blue cube was moved down one position (Tarlow, 2004, p. 

58).”  Without using the formal terminology of combinations nCr (T3.3), what Robert had 

done was systematically showing the instances of 4C2 = 6 (T3.4) different combination of 

towers containing exactly two blue cubes.  Tarlow’s analysis suggests that Robert was the 

first student who provided complete justification for the case of two blues (p. 59). 

The remaining time of the session was spent on finding the total number of 

different 3-tall towers and 5-tall towers.  Searching for a pattern, Robert and Michelle put 

the number of towers in a chart from 1-tall up to 5-tall.  Then Robert predicted that there 

would be sixty-four 6-tall towers.  To avoid actually building towers for different heights, 
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Robert looked for and eventually found a formula for calculating the total number of 

towers for any given height h, choosing from any number of color choices x, to be xh. 

None of the tree structures introduced in section 5.2.2 are found in any of the 

students’ solutions.  However, students used the same letter coding scheme (as used in 

section 5.2.2) to represent towers; they justified the solution “by cases” (as done in 

section 5.2.3) and by “opposite colors” strategy; they also found a formula for the 

generalization of the problem.   

This task was briefly discussed again when another cohort of students (Michelle 

was one of them) worked on the Tower of Hanoi with Dr. Davis.  See section 5.4.4 for 

further discussion. 

    

5.4.3 Task 3: Towers 4-tall with 3 colors (see Appendix A for task description) 

There was no problem solving session on this task.  Sran (2010) described a task-

based interview conducted on March 6, 1992 when the participating student Milin was in 

grade 4.  According to Sran (2010, p. 82), by working on towers 1-tall and 2-tall in 

previous sessions, Milin had found that if choosing from two colors, there were two 1-tall 

towers; multiplied this two by two (product rule (T1.6)) could get four 2-tall towers.  If 

choosing from three colors, there were three 1-tall towers; multiplied this three by three 

(product rule (T1.6)) could get nine 3-tall towers (i.e., Induction on the height of the 

tower).  Therefore, when this task was presented to Milin on the date of interview, he had 

no problem to find the answer “three” for 1-tall and “nine” for 2-tall towers choosing 

from three colors.  However, he suggested that this tripling pattern would not work out 

(p. 100).  Even after Milin himself built three 3-tall towers from one of the nine 2-tall 
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towers, and the researcher also built three 3-tall towers from another 2-tall tower, Milin 

still insisted that this tripling pattern must “breaks up somewhere” (p. 101).  He did not 

have time to do 4-tall towers choosing from three colors.         

When the students worked on Ankur’s Challenge (see section 5.4.7) in grade 10, 

they investigated the total number of 4-tall towers choosing from three colors.  Michael 

and Ankur used the numbers 1, 2, and 3 to represent red, yellow, and blue.  They listed 

out all 81 combinations (i.e., using the Roster Method (T1.2) to list all elements (T1.1) in 

the solution set (T.1)) (see Appendix B, Figure B-12).      

 

5.4.4  Task 4: Tower of Hanoi (see Appendix A for task description) 

Dr. Robert B. Davis conducted four problem-solving sessions on this task in 1993 

when the participants were in grade six.  According to Mayansky (2007, p. 50-54), two 

previous sessions before these four occurred about one month earlier, when the students 

worked on Guess My Rule problems, which had great influence on how the students 

solved the Tower of Hanoi task.   

On the Day 1 (10/29/1993), Dr. Davis prepared the students for the new task by 

reviewing three Guess My Rule problems so that students had a chance to practice 

recognizing patterns, generalizing relationships among numbers, and finding a formula.  

Then, he told students an intriguing story about Tower of Hanoi to motivate them to find 

a solution.  Dr. Davis suggested that students play with the puzzle disks and solve the 

problem starting with one, two, and three disks.  He reminded students to record the 

results of their experiments and drew the table used in the Guess My Rule problems to 

record the first three results as follows (Mayansky 2007, p. 58): 
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□ ∆ 
1 1 
2 3 
3 7 

 
Table 5.4.4-1.  The number of moves for one through three disks. 
  
Dr. Davis and the students used the symbol □ to represent the number of disks and 

∆ for the number of corresponding moves required.  When the students found the 

numbers to be listed under ∆ (1, 3, 7, …), they had actually found the first three terms of 

a sequence (T4.1) (although the term “sequence” was not used in their discussion).   

Table 5.4.4-1 seemed to remind Michael of the formula (□ ∆=+× 1)2  they found 

for problem 1 of Guess My Rule at the beginning of the session: “I know what it is, we 

found it.  Is it the number times two, plus one? (Mayansky 2007, p. 58)”  Although 

Michael did not clearly defined what he meant by “the number”, he seemed to recognize 

the recursive relationship between the consecutive numbers of moves at this early stage. 

Dr. Davis invited students to verify Michael’s idea by working with four disks.  

After trying to solve the puzzle with four disks for a while, students agreed that a 

minimum of fifteen moves were required.  With one more entry (term) added to the table 

(the sequence became {1, 3, 7, 15, …}), Michelle and Ankur recognized the recursive 

pattern that Michael claimed earlier.  This time, Michelle explained the idea to the whole 

class in a very clear and confident voice, “OK… You have one and one is two, plus one is 

three; three and three is six, plus one is seven; seven and seven is fourteen plus one is 

fifteen; So then the next one will be fifteen and fifteen is thirty, plus one thirty-one, and so 

on…” (Mayansky 2007, p. 60).       
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Michelle successfully described a way to find the number of moves for n disks to 

be twice of the number of moves for (n – 1) disks plus one.  Using this recursively 

defined sequence (T4.9), Michelle was able to predict the next table entry – thirty-one 

moves for five disks.  Dr. Davis asked students to verify Michelle’s prediction and then 

reminded everyone that the number of moves for 100 disks was what the task problem 

originally was asking for.   

Continuing with Michelle’s pattern, Stephanie expanded the table up to ten disks, 

“Ten (disks) is 1023 (moves).  I already got down to ten (disks)” (Mayansky 2007, 

Transcription, line 519).  Students recognized another pattern (lines 521-524): 

Ankur:   Shelly, this is two to the tenth power. 
Michelle:  Oh my God!  Duh, we had it right there. 
Romina:   What’s two to one hundredth power? 
Ankur:      That’s the answer! 
 
Students were excited about what they found.  From the relationship between the 

number of disks (ten) and the number of moves (1023), they figured out that 100 disks 

required 2100 moves.  They did not subtract one from it; otherwise this solution was the 

same as solution method 1 discussed in section 5.2.4.  Not until later, Stephanie pointed 

out that two to the tenth power is 1024, not 1023.  However, in Day 1 session, no one had 

a chance to further investigate this small difference.   

The correct answer fell into place in the Day 3 (11/12/1993) session when Dr. 

Davis guided students to compare the task “Towers of Hanoi” with the task “Towers 

selecting from two colors”.  He asked students to make a table to record how many 

different towers they could build for different heights of towers, selecting from two 

colors.  When Ankur said, “Seven is one hundred fifty eight, eight is two hundred fifty six, 

ten is one thousand twenty four”, Matt was intrigued, “Hey, aren’t those the same 
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numbers we got for the Tower of Hanoi?  They’re the same numbers!”  Ankur noticed the 

“1” difference this time, “No, they’re not, it’s minus one, it’s one less.  No this is one 

more.”  Michelle confirmed, “It’s one less every time.” (Transcription, lines 1493-1498).  

Students then filled the table up to 10-tall towers.  They also wrote the number of 

different towers (terms of a sequence) as powers of 2: 

How tall How many    

1       2 = 21 
2       4 = 22 
3       8 = 23 
4     16 = 24 
5     32 = 25 
6     64 = 26 
7   128 = 27 
8   256 = 28 
9   512 = 29 
10 1024 = 210 

 
Table 5.4.4-2.  The number of different towers choosing from two colors. 
 
 Comparing this table with the table for the Tower of Hanoi task, students once 

again confirmed the isomorphism between these two tasks.  Ankur was very sure about 

the difference, “The Tower of Hanoi is one less number than building blocks (line 1572).”   

When Dr. Davis asked how many 100-tall towers could be made selecting from two 

colors, Stephanie went to the board and wrote “2100” without hesitation.  How many 

moves it would take to move one hundred disks?  Matt wrote down “2100 – 1”. 

Then, Dr. Davis guided students to use powers of ten to approximate the 

numerical value of 2100.  This was a different approach from the method 2 shown in 

section 5.2.4.  However, students had a chance to work with very big numbers and learn 

some laws of exponents through this activity.            
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5.4.5  Task 5: Pizza with Halves (see appendix A for task description) 

Seven fifth graders, Michael, Ankur, Romina, Brian, Bobby, AmyLynn, and 

Michelle, participated in three thirty-five minute sessions working on this task over three 

consecutive school days – March 1, 2, and 3, 1993.  On day 1, students spent some time 

trying to find appropriate representations to record possible combinations of pizzas.  

Ankur led the group work and found six combinations initially.  However, at the end of 

the session, students came up with varying answers.  According to Muter (1999, p. 58), 

“they were sure that some of the lists contained duplicates”, but they did not have enough 

time to address the conflicting answers. 

On the second day, the teacher/researcher reminded students that they better had 

some way to organize the combinations they found.  So, the students set up a system to 

work on the problem: one person read the combination and the others checked for 

duplicates.  They discussed the validity of some combinations.  For example, is a pizza 

with one half pepperoni and one half a pepperoni/sausage mixture acceptable?  Soon they 

agreed that the solution to the problem was “ten pizzas”.  In order to justify this answer, 

the students classified the ten pizzas into three categories (Muter, 1999, p. 61; also see 

Appendix B, Figure B-7): 

Whole 
1 plain 
1 sausage 
1 pepperoni 
1 mixed (pepperoni and sausage)  
 
Half 
½ pepperoni   ½ plain 
½ sausage      ½ plain 
½ pepperoni   ½ sausage 
 
Mixed 
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½ plain           ½ sausage & pepperoni Mixed 
½ pepperoni   ½ pepperoni & sausage Mixed 
½ sausage       ½ pepperoni & sausage Mixed 
 
Figure 5.4.5-1.  Students’ classification of the ten pizzas into three categories.  
 
The students did not use code words for the pizza toppings.  Their “Whole” 

category was equivalent to case 1 of the solution in section 5.2.5.  Their “Half” and 

“Mixed” categories covered the case 2 of the solution in section 5.2.5.  The students did 

not indicate that they knew the formula 
)!(!

!
rnr

nCrn −
= (T3.4) to find the combinations.  

However, they correctly found all ten possible pizzas with halves.    

 

5.4.6  Task 6a: The 4-topping Pizza (see Appendix A for task description)  

This task was given to the students on April 2, 1993 when they were in grade 5, 

after they had reviewed and discussed Pizza with Halves.  According to Muter (1999, p. 

66), the group of Ankur, Brain, Jeff, and Romina solved the problem in “approximately 

fifteen minutes” using a letter coding scheme to list all possible combinations.  Muter 

stated that students generated 16 pizzas randomly.  However, when Ankur provided a 

justification, he organized these 16 pizzas into categories (see Appendix B, Figure B-8).  

Five whole (i.e., whose two halves were the same) pizzas were P (peppers), S (sausage), 

M (mushroom), PE (pepperoni), and PL (Plain).  Mixed (i.e., having two different halves) 

pizzas included two toppings (P/S, P/M, P/PE, S/M, S/PE, and M/PE), three toppings 

(P/S/M, PE/M/S, P/M/PE, and PE/S/P), and four toppings (P/M/S/PE). 

Using this representation, students decided that the order of toppings (in the 

alphabetic coding) did not make different pizzas (it is combinations (T3.3), not 

permutations (T5.3)).  When the teacher researcher asked, “So why is it you can’t go M 
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with P?”  Ankur pointed to “P/M” and said, “Because you already have it (Muter, 1999, 

p. 67).” 

Task 6b:  The 4-topping Pizza with 2 Crusts  

Students found the answer, 32 pizzas, “within forty-five seconds, without writing 

down a single notation” (Muter, 1999, p. 68).  Michael gave the reasoning, “Since there’s 

sixteen to make with those toppings, you put a Sicilian crust on it.  That’s sixteen.  Plus 

then you put a regular on it and that thirty-two.  Sixteen and sixteen.”  Although Michael 

sounded as if he were adding 16 to 16, this operation was equivalent to doubling the 16 

combinations, which might be viewed as applying the Fundamental Principal of 

Counting (product rule) (T1.6).     

Task 6c:  The 4-topping Pizza with Halves and 2 Crusts  
 
Matt proposed a method that Ankur used to verify the solution of the first 4-

topping pizza problem (Task 6a).  First, Matt chose plain (cheese only) for one pizza half 

and linked it to all sixteen combinations that he found for the first pizza problem to 

represent the other pizza halves (see Appendix B, Figure B-9).  Next, he used the second 

topping PR (peppers) on one pizza half and linked it to the remaining fifteen 

combinations to represent the other possible pizza halves pizzas (see Figure B-10).  Then, 

Matt seemed to recognize the pattern.  So, on the next work sheet, Matt tried to compute 

16 + 15 + 14 + 13 + … + 3 + 2 + 1 and multiplied the sum by two to account for the two 

crust choices (see Figure B-11).  This method was the same as adding the number of 

entries in the lower triangle (including the main diagonal) of the permutation table (Table 

5.2.6-2) used in the solution of Task 6c in section 5.2.6.  Matt did not get the correct 

answer because he made computational mistakes.  
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No other group of students reached the solution with confidence that they had 

found all combinations.  They finally listened and agreed on Matt’s argument after 

neglecting it several times before.    

Tarlow (2004, p. 116) reported that the students were given the Task 6a again 

when there were in 11th grade (on March 1, 1999).  The eight participants were divided 

into two groups.  Robert, Stephanie, Shelly, and Amy-Lynn sat at Table A; Angela, 

Magda, Michelle, and Sherly sat at Table B.  Both groups found the correct answers 

pretty quickly.  There were a total of sixteen different pizzas when choosing from four 

available toppings; and thirty-two for five available toppings.  The students drew tree 

diagrams (similar to what they used in the “Shirts and Jeans” task) to show and count the 

number of different pizzas.  They also listed out these combinations using an alphabetic 

coding scheme.   

  Both groups of students connected their solutions to Pascal’s triangle.  At Table 

A, Shelly and Stephanie grouped pizzas by cases according to the number of toppings.  In 

Pizza with four available toppings problem, they found “1  4  6  4  1” for five cases: 

plain, 1-topping, 2-topping, 3-topping, and 4-topping.  In the Pizza with five available 

toppings problem, these numbers were “1  5  10  10  5  1” for six cases.  Then, Shelly 

seemed to remember something:   

Shelly: One, four, wait a minute.  One, four, six, four, one, so the 
next one will be one,… This is the … 

Stephanie: The triangle. 
Shelly: The triangle. 
Stephanie: Yeah.  [leans over to Shelly’s paper.]  So the next one is one, 

five, ten, five, one. 
Shelly: We’re done. [laughs] (Tarlow, 2004, p.125) 
 
However, this was not enough for Stephanie:  
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Stephanie:    But what does that mean? 
Shelly: I don’t know. 
Stephanie: What does that mean to me? 
Shelly: I don’t know, but that’s the answer. [laughs] Um. 
Stephanie: But what it, like, what does one, four, six, four, one.  That 

means nothing to me. 
Shelly: It means nothing to me either, but it’s the pattern we saw. 
Stephnie: Oh dear Lord… Oh, so we have a pattern, but how do we 

apply it to getting sixteen pizzas? (Tarlow, 2004, p. 125-126) 
 
Seeking the meaning of these numbers in Pascal’s triangle, Stephanie described 

these numbers in terms of pizza combinations, “So, well, okay, let’s figure this is saying 

that we have one plain pizza…. Okay.  So we have four pizzas with one topping… we 

have six pizzas with two toppings, four pizzas with three toppings.”  Shelly added, “And 

one pizza with four toppings.” (Tarlow, 2004, p. 126-127)   

Stephanie, Shelly, and Robert had struggled for a while when the researcher asked 

if they could explain the Addition Property ( rkrkrk CCC 11 +− =+ (T6.3)) on Pascal’s 

triangle in terms of pizzas.  Stephanie said to the researcher, “We have no idea how one 

pizza and three pizza make a whole new category of four pizzas (i.e., 1 + 3 (in “1  3  3  

1”) = 4 (in “1  4  6  4  1”)).  Because this is one plain pizza, right?  Like this one right 

here is plain, and these three, pizzas with one topping…. If you add one plain pizza to 

three pizzas with one topping, you get like one pizza with…no topping and three pizzas 

with one topping…, but like in reality you don’t get four… So I don’t know how to answer 

the question (Tarlow, 2004, p. 136).”   

The researcher asked them to consider what would happen when a new available 

topping was added.  After discussing with Shelly, Stephanie provided an explanation, “… 

Okay, this, to get four pizzas with one topping, you already have three pizzas with one 

topping.  And the plain pizza becomes the pizza with the new topping (Tarlow, 2004, p. 
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138).”  With this understanding, Stephanie was able to explain 3 + 3 (in “1 3 3 1”) = 6 (in 

“1 4 6 4 1”), “So then here, um, you have six pizzas with two toppings.  Now you already 

have three pizzas with two toppings.  So these three pizzas with one topping get an extra 

topping added on (p. 138).”  Stephanie continued to explain 3 + 1 = 4 with the same 

reasoning.           

Robert’s written work (see Appendix B, Figure B-13) showed that he found that 

the sum of numbers in each row of Pascal’s triangle was “two to the number of available 

toppings”, the total number of pizza combinations.  He and Stephnie also connected the 

numbers “1 3 3 1” to towers three high with two available color choices.  Robert added 

that the height of towers was the same as the number of toppings.  When the researcher 

asked how many pizza combinations there were for n available toppings, Robert and 

Stephanie answered: two to the n (Tarlow, 2004, p. 150). 

Before discovering that Pascal’s triangle might be involved, the students at Table 

B found that the number of pizza combinations would be “doubled” by adding one 

available topping.  While they did not further generalize this idea, they were able to 

explain the Addition property of Pascal’s triangle in terms of placing toppings on pizzas.  

Angela said that the Pizza problem did not relate to Towers because “pepperoni, 

mushroom” and “mushroom, pepperoni” were the same thing on the pizza but “yellow, 

red” and “red, yellow” were two different towers.  Sherly agreed.  There was no further 

investigation of this argument.     
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5.4.7  Task 7: Ankur’s Challenge (see Appendix A for task description) 

On January 9, 1998 when participating students were in grade 10, Ankur proposed 

this problem after he and four other students (Brian, Jeff, Michael, and Romina) had 

provided the solution and justification to the problem of 5-tall towers when choosing 

from two colors.   

According to Muter (1999, p. 93-94), the five students were working in two 

groups at first.  From the previously determined total number of towers 5-tall when 

choosing from two colors (25), Michael and Ankur determined that the total number of 

towers 4-tall when choosing from two colors should be 24, and that the total number of 

towers 4-tall when choosing from three colors should be 34.  Then they began to list 

combinations using the numbers 1, 2, and 3 to represent red, yellow, and blue cubes.  

However, they soon found that the list contained many duplicated towers (see Appendix 

B, Figure B-12).  Jeff, Brian, and Romina joined the discussion around this time.  Ankur 

and Jeff explained to Romina why there were eighty one 4-tall towers when choosing 

from three colors (Muter, 1999, p. 95): 

Ankur:  It’s three to the fourth (power). 
Jeff:      To the fourth. 
Ankur:  ‘Cause look… 
Jeff:      Three times three is nine times three is twenty-seven,… 
Jeff & Ankur:  times three is eighty-one. 
Ankur:  You want to know why we multiplied it like that. [pause]  ‘Cause, 

look, you have four spaces (positions).  In the first space you 
have three.  In the second space you can have three [pause] 

 
Ankur and Jeff’s explanation provides evidence regarding their ability to apply 

the Fundamental Counting Principle (T1.6).  Romina also gave evidence of 

understanding.  Then, Jeff said that thirty-six might be the solution to the problem that 

Ankur proposed because he had found thirty-seven towers and that he was sure that he 
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had a duplicate.  Romina gave her consent, “You know, it might be thirty-six.  ‘Cause I’m 

working with “sixes” now.  And okay you put them, like you pair ‘em up.  ‘Cause you’re 

only gonna have …okay… (Muter, 1999, p. 96)”   

What Romina referred to as “sixes” was the six ways to choose two of four 

positions for placing the “repeating” (or “duplicate” as she called them) colored cubes.  

She used “1” to represent the duplicate colored cubes, and used “0” and “x” to represent 

the other two colors in a tower.  She had explained her ideas to the teacher/researcher and 

other students several times.  Her final and best version of the solution that she wrote on 

the chalkboard for Michael is shown in the following figure (Muter, 1999, p. 107): 

                        
   

  

 

 

 
 
 
 
 
 
 
 Table 5.4.7-1.  Romina’s final version of her solution to Ankur’s problem. 
 
 Romina pointed out that in order to use exact three colors in four positions, there 

must be two cubes of the same color, which was represented by “1”.  She first chose two 

positions to put “1” in and she found six possible combinations.  Subsequently, she filled 

the remaining two positions with “x” and “0”, and with “0” and “x”.  Thus, for each fixed 

“1” combination, there were two ways to place the other two different colored cubes.    
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6 · 2 = 12 · 3 = 36  



Lo, Chapter 5, 142 

142 

Therefore, there were 6 · 2 = 12 towers for any one duplicate color “1”.  However, this 

“1” could be any one of the three colors.  So, there were a total of 12 · 3 = 36 towers that 

were 4-tall and had exact three colors.   

Although Romina did not use any terminology of the number of combinations 

(T3.3), her explanation showed that her reasoning was very similar to the solution 

method 1 presented in section 5.2.7.  Her method of fixing repeating colors then filling in 

with the other two colors was a version of splitting four cubes into three different color 

groups described in solution method 2 in section 5.2.7.  In other word, her 6 · 2 = 12 

could be alternatively gotten by using the formula for finding the number of 

distinguishable combinations (T7.1) : 12
!1!1!2

!4)1,1,2;4( ==C  (T7.2).  

Michael and Ankur were interested in finding the complement of Ankur’s 

problem, which meant finding the number of 4-tall towers that did not have exactly three 

colors.  This idea was similar to the approach shown in solution method 3 of section 5.2.7 

except that Michael had considered his cases in a slightly different manner.  Michael’s 

first case was “three cubes of one color and one cube of another color”.  He used the 

numbers 1, 2, and 3 to represent the colors red, blue, and yellow, respectively, while the 

number 0 represented a color other than the color already presented.  Romina, serving as 

the recorder, wrote 12 combinations on the chalkboard as indicated in the table below 

(Muter, 1999, p. 110): 

1   2   3 1   2   3 1   2   3 0   0   0 
1   2   3 1   2   3 0   0   0 1   2   3 
1   2   3 0   0   0 1   2   3 1   2   3 
0   0   0 1   2   3 1   2   3 1   2   3 
      
Table 5.4.7-2.  The first case of the complement of Ankur’s problem: 3 cubes of 

one color and 1 cube of another color. 
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 For each combination listed above, there were two color choices for “0”.  This 

brought the total number of towers up to 24.  Then Ankur added 3 one-color towers and 

said, “red, red, red, red.  Yellow, yellow, yellow, yellow.  And blue, blue, blue, blue.  So 

that’s twenty-seven (Muter, 1999, p. 110).”  The second case of the complement was 

towers with two cubes of one color and two cubes of another color.  There were 18 of this 

kind as indicated in the table below (p. 111): 

 1   1 2   2 3   3 1   1 2   2 3   3 1   1 2   2 3   3 
    1   1 2   2 3   3 2   3 1   3 1   2 2   3 1   3 1   2 

2   3 1   3 1   2 2   3 1   3 1   2 1   1 2   2 3   3 
2   3 1   3 1   2 1   1 2   2 3   3 2   3 1   3 1   2 

 
Table 5.4.7-3.  The second case of the complement of Ankur’s problem: 2 cubes of 

one color and 2 cubes of another color. 
  
 From this, Michael had proved that the answer to the complement of Ankur’s 

problem was 27+18 = 45, and thus that the number of 4-tall towers with exactly three 

colors was 81 – 45 = 36. 

  

5.4.8  Task 8: The World Series Problem (see Appendix A for task description) 

Kiczek (2000) examined how students’ probabilistic thinking developed when 

they worked on the World Series task and the follow-up Problem of Points task in the 

11th grade.  On January 22, 1999, five participants (Ankur, Brain, Jeff, Michael, and 

Romina) worked on this new problem and found the correct solution.  The progress they 

made was parallel to the two solution methods presented in section 5.2.8. 

They interpreted the problem as a collection of four separate cases (one for each 

number of games by which the World Series can be won).  For the case of a win in four 

games, they solved it quickly.  Romina wrote AAAA and BBBB to represent the only 
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two combinations (outcomes (T8.1)) in this case.  Brian pointed out that the probability 

(T8.2) for (the event (T8.1)) “team A wins in four games” or (the event (T8.1)) “team B 

wins in four games” was “the odds of winning one game, times the odds of winning one 

game, times the odds of winning one game”.  Ankur responded, “Look, it’s a fifty percent 

chance of winning the first game”.  Then Brian stated that it was “like flipping a coin” 

and Romina concluded that “Yeah, that’s how you do it: a half times a half times a half 

times a half” (Kiczek, 2000, p. 39-40).  Hence, all five students agreed that the 

probability of a team to win the first four games was
2
1

2
1

2
1

2
1

⋅⋅⋅  ⎟
⎠
⎞

⎜
⎝
⎛=

16
1  (For 

independent events E and F, )()()( FPEPFEP =∩ (T9.1)).    

 To determine the number of total possible combinations (the sample space 

(T8.1)), Jeff and Romina related it to the generalization of the towers and the pizza 

problems.  Jeff conjectured that the total number of possible game combinations in a 

world series would be 2
7
, because in the past they had decided that the total number of 

pizzas with n available toppings was 2
n
; and the total number of n-tall towers when 

selecting from two colors was also 2
n
.  This idea was refined by Ankur when later he 

pointed out that the probability for a four-game world series was 42
2  

(
)(
)()(

Sn
EnEP = (T8.2)) (Kiczek, 2000, p 43): 

Ankur:  It’s two over two to the fourth. 
Jeff: Why is it two to the fourth? 
Ankur:  Because that’s the total, like – two to the fourth will give you the 

total possibilities of four things…  you know what I mean?  It has 
to be over – do you know what I’m talking about or not? 

Jeff: Yeah, it’s gotta be over two to the fourth – four spaces. 
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 Then, Ankur and Jeff confidently claimed that the total number of ways a world 

series could be won in five games was 2
5
 (= 32); in six games, 64 (= 2

6
); in seven games, 

128 (= 2
7
) (Kiczek, 2000, p. 44).   

 Ankur had listed out all possible outcomes for team A to win in four, five, six, or 

seven games (see Appendix B, Figure B-14) to be 1, 4, 10, and 20 respectively.  Then he 

doubled the number of outcomes in order to account for the possibility that team B won 

in each case.  He realized that team A had to win the last game in order to win the World 

Series.  Ankur used the five game series as an example to explain his idea to Jeff (Kiczek, 

2000, p. 42): 

Ankur: It would be eight, for the five… 
Jeff: Yeah, but you’re not going to know if you have them all, though.    

How are you gonna know? 
Ankur: To have – this will be, five games will be eight. 
Jeff: Think so? 
Ankur: ‘Cause like it’d be these four, ‘cause look, you can only lose one 

game, right? … You can’t lose the last one, or, ‘cause, or they 
already won four, you know what I mean? 

Jeff: Yeah, yeah, yeah, yeah. 

Based on Ankur’s list of team A’s winning outcomes and the number of total 

outcomes, the students correctly found the correspondent probability of a four, five, and 

six game World Series to be 
8
1 , 

4
1 , and 

16
5 .  When working on the case of seven games, 

Jeff suggested finding the complement (T8.5): subtract the sum of the other probabilities 

from one ( )(1)( EPEP c −= (T8.5)).  After adding two missed winning outcomes to the 

list for a six game series, Ankur found the probability for a seven game series to be 

also
16
5 .  Jeff had a doubt that the six and the seven games in the series had the same 
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probability, because in the earlier discussion the students expressed their intuition that “it 

should be easier to win when more games are played” (Kiczek, 2000, p. 40).    

Michael worked alone for the first half hour.  He used the binary coding scheme, 

“1” represented a win and “0” a loss.  Similarly to what Ankur had done, Michael fixed 

the last place of each coding string with “1” to show that the team in question must win 

the last game in order to win the series.  Michael also noticed the numbers of possible 

outcomes (1, 4, 10, 20) for a team to win were embedded in Pascal’s Triangle (T6.1) (see 

Appendix B, Figure B-15).  He stated what he discovered, “I just found, like, if you take 

the fourth number in each one (row), that way, if you double each number, ‘cause you 

have two teams, you can get the possibilities of four games.  Four games, um, equals two, 

right?  You got eight, twenty and forty, like they said (Kiczek, 2000, p. 48).”   

Michael continued to explain the entries “1  3  3  1” in Pascal’s triangle in terms 

of the number of pizzas with three choices of toppings.  There were “1” plain, “3” one-

topping, “3” two-topping, and “1” three-topping pizzas.  With respect to the World 

Series, Michael and Ankur jointly explained that the first “1” represented the probability, 

8
1 , of a team, say team A, winning three games in a row.  In other words, there were “1” 

way to get three A’s, “3” ways to get two A’s and one B, “3” ways to get one A and two 

B’s, and “1” way to get three B’s.    

Later, on August 31, 1999, Michael and Robert were given this problem again.  

Robert was presented with this problem for the first time.  Michael remembered that in an 

earlier after-school session (on 5/12/1999), the students had created the formula for rnC , and 

that Robert had proposed to use it in solving combinatorics problems.  However, they both 

forgot the formula.  So Michael and Robert spent some time on recreating the formula for 
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“choose” (
)!(!

!
rnr

nCrn −
=  (T3.4)).  They then tested the formula for the five-game and six-

game series and found that the results matched those obtained by the method of listing all 

outcomes.  They found that the formula worked for the seven-game series too.    

 

5.4.9  Task 9: Points (see Appendix A for task description) 

On February 5, 1999, after solving the World Series problem, Ankur, Jeff, 

Michael, and Romina were given this follow-up task.  By writing letter string (W and L) 

or binary strings (0 and 1) to represent coin flips, the students found ten possible ways 

(outcomes (T8.1)) that the game could be ended: Fermat had six ways to win and Pascal 

four ways.  Then they wanted to decide the sample space (T8.1) (Kiczek, 2000, p.89): 

Ankur:    It should be sixty-forty. 
Romina:  Yeah.  Mike, what are the total possible?  
Michael:  Sixteen. 
Romina:  Sixteen.  So it’s four out of sixteen and eight, six out of sixteen? 
Jeff:         So what happens to the other six things? 
…… 
Romina:  We can just add these up and it’d be ten, and it’d be forty-sixty. 
Jeff:         That would probably be the six that go to nowhere. 
 
Although Jeff raised a question about the missing “six things” (i.e. 16 – 4 – 6 = 

6), the students did not tried to resolve this issue.  They tried to find another way to 

reason that the sample space was sixteen.  Realizing that the winner would be determined 

in four or fewer rounds of the coin flips, Ankur and Jeff suggested reducing the problem 

to “five coin tosses” with the first flap always a head, because Fermat was one point 

ahead of Pascal (Kiczek, 2000, p. 90): 

Ankur:     So there’d be five places and you put Fermat in the first one.  
Then you get the sixteen….   

Jeff:         No, it’s more than sixteen. 
Ankur:     No, you don’t count the first one ‘cause you already won it. 
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Jeff:         Exactly.  Then sixteen. 
 
In spite of what they agreed on (that the total number of possible ways should be 

sixteen), the students reached a consensus that the money should be split “sixty-forty” 

(using ten as the sample space).  Jeff explained, “Six out of the sixteen get crossed out.  

That leaves you with ten… (Kiczek, 2000, p. 89).”  Michael stated that he crossed out six 

combinations from sixteen because “they represented games that would not have 

occurred (p. 92)”. 

Later, Jeff suggested an alternative solution when he and Romina “compared the 

situation to that of the World Series problem (Kiczek, 2000, p.92)”: 

Jeff: In the World Series, they won four, they wouldn’t have gone to the 
next three games. … If we would have said they were gonna flip 
out, no matter what, they were going to keep flipping until the end, 
then it’d just be all the ways for Fermat – it’d be eleven to five. 

 
The teacher/researcher pointed out that in the World Series problem, the 

probabilities would be the same, no matter if the series ended earlier or continued for all 

seven games.  Two different solutions to the Points problem motivated the students to 

further investigate the initial conditions.  Ankur suggested that the second solution 

“eleven to five” resulted from the unequally likely outcomes that might be caused by 

Fermat’s one point lead at the beginning of the reduced problem “five coin tosses” 

(Kiczek, 2000, p. 92-93): 

Ankur:      Because – it’s different because those aren’t all equally as 
likely to happen. 

T/R3: They’re not? 
Ankur:      ‘Cause the first one, look, it’s Pascal winning three in a row 

and that’s supposedly the same chance of happening as Fermat 
winning two in a row. 

… 
Ankur:      ‘Cause one had the advantage – of course, there will be more 

ways Fermat can win – he’ll win quicker, therefore there’ll be 
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more games not played, so all these games not played, these 
possibilities will go to Fermat. 

Michael:    Because Fermat had the advantage at the beginning. 
Jeff: That’s what I’m saying, because no one had the advantage in 

the World Series, that’s why. 
Ankur:       That’s why.  They started off even, so – that goes back to 

Fermat winning the first game. 
 
Thus, the students realized the existence of the uneven preexisting condition and 

indirectly found the conditional probability (T9.2) of “Fermat wins” to be 
16
11  and for 

Pascal, 
16
5 .  However, the first solution (sixty-forty) still made sense to the students.  

They did not know which solution was the correct one.  Therefore, the investigation 

continued.  After a while, the students noticed that each of the winning outcomes had 

different probabilities.  Ankur (without knowing the terminology) applied the General 

Multiplication Rule (T9.4) to calculate the probability of each possible outcome by 

multiplying the individual probabilities (similar to what has been done in solution method 

2 of section 5.2.9).  Then he found the total of these individual probabilities was equal to 

one (P(S) = 1 (T8.4)).    

Although Ankur’s computational results sounded promising, not all the students 

were convinced.  The session ended as follows (Kiczek, Appendix E, lines 4336-4343): 

Michael:   So you’re saying eleven and five is right? 
Ankur:      Yeah. 
Michael:   I disagree with that. 
T/R2:        You –  
Michael:   Disagree. 
T/R2:        You disagree with that. 
Ankur:      Each one doesn’t make sense in its own way – and each one 

does make sense in its own way. 
 
Six months later, on August 31, 1999, Michael had a chance to revisit this task 

with Robert after they solved the World Series problem.  It was Michael who suggested 
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that “It’s just kind of, like, coming back to the World Series one.  Like, all the different 

chances of coming up… (Kiczek, 2000, p. 98).”  Robert agreed and, like Ankur did 

before, he calculated the probability of possible outcomes by multiplying the individual 

probabilities.  The answer was 
16
11  for Fermat to win and 

16
5  for Pascal to win.  Michael 

said, “That’s what we came up with before – another way, a different way of doing it, 

though.  I remember eleven and five (Kiczek, 2000, p. 98).”  This time, Michael accepted 

this solution without any objection.            

 

5.4.10  Task 10: Taxicab (see Appendix A for task description) 

Powell (2003, p. 68) reported that four students (Brian, Jeff, Michael, and 

Romina) joined the problem solving session conducted on May 5, 2000 when they were 

in the 12th grade.  On their grid paper, station A, station B, and station C (Figure A-2) 

were labeled as blue dot, red dot, and green dot respectively.  The students’ first attempt 

was drawing routes on the grid and counting the paths.  Brian quickly declared that there 

were five shortest routes to go to the blue dot (station A).  Romina and Jeff confirmed 

Brian’s claim.  Romina also found that each shortest route contained five blocks.  Jeff 

asked, “Why is it the same every time? (Powell, 2003, Appendix C, Transcript, Line 74)” 

Romina answered, “Ours is a four by one, right? (Line 76)”  Michael explained that “You 

can’t get around going four down and right one (Line 87)” 

( ||||),( 1212 yyxxQPdT −+−= (T10.4)) because “you can’t go diagonal (Line 81)” or 

“backward (Line 77)”. Romina wanted to devise a “four by one” grid as an area.  Jeff and 

Michael disagreed stating, “It’s not area…  It’s the perimeter (Lines 100-102).”  Later, 

Michael followed up on this “perimeter” idea several times.  He often reminded others 
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that the length of the shortest route (Taxicab distance (T10.4)) to a certain pick-up station 

was equals to one half of the perimeter of the rectangle having the taxi stand as the top 

left vertex and the pick-up point as the bottom right vertex.   

Brian observed that the number of shortest routes and the number of blocks to the 

blue dot were both five.  He asked other students to check if this was true for the red dot 

and the green dot.  However, by drawing different routes on the same grid, the students 

soon lost count.  Romina said that she wanted to devise a method to do this.  After several 

times of losing track of what they were doing, Romina said, “Okay, we can’t count.  Like 

we need a – can’t we – can’t we do towers on this? (Transcript, Line 159)”  Then she 

spent some time discussing her idea (of using towers) with Michael.  They also looked 

into the relationships between the number of blocks and the number of shortest routes 

from the taxi stand to each pick-up points. 

Making no significant progress, the students tried to look into the problem from 

different angles that they could think of.  After struggling for a while, Romina suggested, 

“I think we’re going to have to break it apart and draw as many (routes) as possible.”  

Jeff said, “…why don’t we do easier ones? (Transcript, Lines 293, 295)” 

Thus, Romina and Jeff found a way to record the number of shortest routes from 

the taxi stand to each intersection on the grid.  They used one grid sheet for recording the 

numbers of shortest routes, and used many sub-grid rectangular boxes for drawing 

shortest routes.  In each sub-grid rectangular box, the top left point represented the taxi 

stand, and the most bottom right point represented the target intersection.  For each target 

intersection, they drew all possible shortest routes in one sub-grid rectangular box with 

colored markers, counted the number of routes, and wrote this number in the 
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corresponding box on the recording sheet.  The numbers on the recording sheet looked 

like the entries in an array.  Romina filled this recording sheet starting from 1×1, 2×2, 

2×3 (see Powell, 2003, p. 81), 3×3 (p. 82), to 3×4 array (p. 84).  Powell (2003) pointed 

out that Romina and Jeff perceived a symmetrical relationship along the diagonal when 

they had this array (p. 81):  

2 3 4 5  
3 6 9   
4 9    
     

 
Figure 5.4.10-1. The incomplete 2×3 array from which Romina and Jeff perceived 

a symmetrical relationship.    
   
Some entries in these arrays were incorrect because some routes were missed 

while drawing.  Brian and Michael came to join Romina and Jeff.  Brian helped to correct 

the mistakes of entry “9” in row two and row three.  Then the array looked like this 

(Powell, 2003, p. 87):  

2 3 4 5  
3 6 10 12  
4 10 15   
5     
     

 
Figure 5.4.10-2.  Romina and Jeff’s taxicab grid with incorrect entries 12 and 15.    
             

Right away, Romina announced, “All right.  It’s, um, - it’s Pascal’s triangle 

(Transcript, Line 778).”  Soon she saw the entry “12” and said, “No, it’s not.  It doesn’t 

work out (Line 787).”  Jeff noted the other error and said, “That (“12”) should be a 15 … 

that (“15”) should be a 20 (Line 790).”  So the students tried to resolve this issue.  After a 

while Brian found the number of the fourth entry in the second row, “It’s fifteen”, he said.  
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Michael also found and confirmed that the third entry in the third row should be “twenty”.  

So, the recording sheet (the taxicab grid) became this (Powell, 2003, p. 91) :  

2 3 4 5  
3 6 10 15  
4 10 20   
5 15    
     

 
Figure 5.4.10-3.  A portion of taxicab grid containing the number of shortest 

routes to each intersection.    
 

Michael suggested, “It should be ones on all the sides (Transcript, Line 922).”  

Jeff wrote them.  Later, Romina wrote a five-row Pascal’s triangle in the form of top-to-

bottom.  For the rest of the time in this the session, the students tried to make sense of the 

entries in Pascal’s triangle by relating them to the Towers and the Pizza problems.  

Romina used the fourth row of Pascal’s triangle “1  4  6  4  1” as an example.  She 

explained that in the Towers problem, “1  4  6  4  1” represented the number of different 

4-tall towers when choosing from two colors.  In the Taxicab problem, “1  4  6  4  1” 

represented the number of different shortest routes from the taxi stand to pick-up points 

that were four blocks apart, and at each intersection the taxi could choose to either go 

across (east) or go down (south).  The first and the last “1” were towers with all four 

blocks of one color (or routes going either four across or four down).  The first “4” was 

towers with one color-1 and three color-2 (or routes going one across and three down).  

The “6” was towers with two color-1 and two color-2 (or routes going two across and two 

down).  The second “4” was towers with three color-1 and one color-2 (or routes going 

three across and one down).   

Michael explained “1  4  6  4  1” in terms of the number of pizzas with four 

available toppings.  The first “1” was the plain pizza, the first “4” one topping pizzas, “6” 
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two topping pizzas, the second “4” three topping pizzas, and the last “1” four topping 

pizzas.  Michael stated that he related the number of toppings “to the number of times 

going across (Transcript, Line 1420).”  

To explore further, Romina interpreted “1  4  6  4  1” in terms of x’s and y’s (x as 

going across and y going down) and Michael represented “1  4  6  4  1” in terms of 0’s 

and 1’s.  At the end of the session, the students reached a general conclusion that the rth 

row of Pascal’s triangle would represent the number of shortest routes with r moves away 

from the taxi stand.
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Chapter 6: Conclusion 
 
6.1  Introduction 
 

Problem-solving-based teaching and cooperative learning provide opportunities 

for students to discover mathematical ideas by themselves (NCTM, 2000).  However, the 

characteristics of task problems significantly influence the mathematical insight that 

students may gain from working on the tasks.  Teachers have the responsibility to choose 

rich open-ended tasks that require students to integrate knowledge of multiple 

mathematical topics and to practice a variety of strategies (Thomas, Williams, & 

Gardner, 2007).  There is a need for teachers to understand the mathematical structures of 

tasks in order to select or tailor the task problem appropriately for classroom use.  In this 

study, ten tasks are selected from the Rutgers longitudinal project for a close 

investigation of the underlying mathematical structures.  The following sections will 

summarize the answers to the two research questions of this study.  Section 6.2 discusses 

inherent mathematical structures in these ten tasks.  Section 6.3 discusses the ways 

students uncovered these mathematical structures.  Section 6.4 provides conclusions and 

suggestions to teachers.  Section 6.5 addresses the implications of this study and suggests 

topics for future researches. 

       
 

6.2 Inherent Mathematical Structures 

Recall that the first research question of this study is: What mathematical 

structures can be uncovered by exploring/engaging with the combinatorics tasks used in 

the Rutgers longitudinal study?   In section 5.2, this question has been addressed in detail.  

The inherent mathematical structures are grouped in three major categories: definitions, 
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axioms, or theorems.  One may ask, “How can all of these be called mathematical 

structures?”  To answer this question, first of all, the term “mathematical structure” is not 

yet clearly or consensually defined among mathematicians and researchers.  However, 

most people should not object to the idea that a wooden cross, a wooden frame, a wooden 

box, a wooden toy, a wooden desk, or a wooden house can all be called a “wooden 

structure.”  Similarly, considering the meaning of the word “structure”, definitions, 

axioms, or theorems are all mathematical structures in this study because they are all 

constructed by “pieces of mathematics”.   

Usually, high school textbooks, such as Larson and Hostetler (2004) and Stewart, 

Redlin, and Watson (2002), do not classify these “pieces of mathematics” into distinct 

structure types.  In textbooks for college students, the classification of these “pieces of 

mathematics” is somewhat subjective.  In this study, a structure type is assigned to one of 

the three aforementioned categories either based on the original structure type used in the 

textbook or according to the following characterizations formulated by the author:   

 Definition: a statement that describes the meaning or the essential nature of a 

mathematical term. 

 Axiom: a mathematical statement assumed to be true without proof. 

 Theorem: a mathematical statement that is deduced from prior definitions, 

axioms, or theorems. 

To summarize the number of inherent mathematical structures identified in 

section 5.2, the following table provides a break-down in each structure type: 
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Task # of 

Definitions 
# of 
Axioms 

# of 
Theorems 

# of 
Structures 

1 10  1 11 
2 9    9 
3 3  1 4 
4 8  1 9 
5 2  2 4 
6 2  3 5 
7 1  3 4 
8 2 3 1 6 
9 3  1 4 

10 5  2 7 
Total 45 3 15 63 

 
Table 6-1. The number of mathematical structures identified under each structure type.       

Remember that these inherent mathematical structures are not all that can be 

found.  There may be more inherent structures that are not referenced by the limited 

number of solution methods used in section 5.2.  Some of the presented methods can also 

be used to solve other task problems.  This means that some of the identified structures 

may also be present in tasks other than the one under which they were discussed in 

chapter 5.  However, in section 5.2, mathematical structures are described only once in 

the first task embedding it.  In order to include as many structures as possible, for the 

subsequent tasks different methods are offered to solve the problems.  Bearing all these 

limitations in mind, some descriptive statistics can be drawn from table 6-1: 

 Out of a total of 63 identified structures, 71.4% (45/63) are categorized as 

definitions, 4.8% (3/63) as axioms, and 23.8% (15/63) as theorems.  

 The structure type Definition is the largest.  Every task has extracted one or more 

definitions. 

 Except for task 2 (Tower 4-tall choosing from 2 colors), every task has extracted 

one or more theorems. 
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 All three axioms are extracted from task 8 (World Series) and belong to 

probability theory.  

When constructing the concept maps in section 5.3, these inherent structures are 

categorized into seven broad and overlapping sub-domains: Set Theory, Enumerative 

Combinatorics, Graph Theory, Sequences & Sets, General Algebraic System, Probability 

Theory, and Geometry.  Again this classification is somewhat subjective.  Each structure 

is assigned to one primary sub-domain, and may be included in other sub-domain(s) if it 

can be linked to structures in that other sub-domain(s).  Remember that, in general, every 

entity in mathematics is related to other entities in some way.  Therefore, only the key 

relationships (links) are shown in the concept maps.  The following table displays the 

mathematical structures identified in section 5.2 and the primary sub-domain of each: 

        
Task 

Set  
Theory   

Enumerative 
Combinatorics 

Graph 
Theory 

General 
Algebraic 
Systems 

Sequences 
& Sets 

Probability 
Theory 

 
Geometry

1 T1.1 to 
T1.5 
and 
T1.7 

 T1.8 to 
T1.11 

  T1.6  

2   T2.1 to 
T2.9 

    

3  T3.3 
T3.4 

T3.1 T3.2    

4    T4.6 T4.1 to 
T4.9 
except 
T4.6 

  

5  T5.1 to T5.4      
6  T6.1 to T6.5 

except T6.4 
 T6.4    

7  T7.1 to T7.3  T7.4    
8      T8.1 to T8.6  
9      T9.1 to T9.4  

10  T10.7  T10.1 to 
T10.3 

  T10.4 to 
T10.6 

 
Table 6-2. The identified mathematical structures in each sub-domain   



Lo, Conclusion, 159 

159 

Table 6-3 below lists the number of identified mathematical structures in each 

sub-domain: 

       
Task 

Set  
Theory   

Enumerative 
Combinatorics 

Graph 
Theory 

General 
Algebraic 
Systems 

Sequences 
& Sets 

Probability 
Theory 

 
Geometry

 
Total 

1 6  4   1  11 
2   9     9 
3  2 1 1    4 
4    1 8   9 
5  4      4 
6  4  1    5 
7  3  1    4 
8      6  6 
9      4  4 

10  1  3   3 7 
Total 6 14 14 7 8 11 3 63 

 
Table 6-3. The number of identified mathematical structures in each sub-domain       

Notice that the links between and among different sub-domains are not shown in 

this table (see section 5.3 for these links.)  All the limitations described before also affect 

the values of the information shown in tables 6-2 and 6-3.  Nevertheless, descriptive 

statistics are useful in the task analysis: 

 The distribution of inherent structures is: 9.5% (6/63) Set Theory; 22.2% (14/63) 

Enumerative Combinatorics; 22.2% (14/63) Graph Theory; 11.1% (7/63) 

Sequences & Sets; 12.7% (8/63) General Algebraic System; 17.5% (11/63) 

Probability Theory; and 4.8% (3/63) Geometry. 

 A little less than half of the identified structures are categorized as Enumerative 

Combinatorics or Graph Theory, both of which belong to the domain 

Combinatorics. 

 All three structures of Geometry are extracted from task 10 (Taxicab). 

 All six structures of Set Theory are extracted from task 1 (Shirts and Jeans).  
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 All eight structures of Sequences & Sets are extracted from task 4 (Tower of 

Hanoi). 

 Structures embedded in task 2 (Tower 4-tall choosing from 2 colors) are primarily 

categorized as Graph Theory. 

 Structures embedded in tasks 5 and 6 (Pizza problems), are primarily categorized 

as Enumerative Combinatorics.  

 Structures embedded in task 8 (World Series) and task 9 (The Points) are 

primarily categorized as Probability Theory.   

 
 
6.3 Mathematical Structures Uncovered  

Recall that the second research question of this study is: In what ways are these 

mathematical structures revealed during students’ problem-solving processes?  This 

question has been explored in section 5.4.  Students’ written work and the ways they 

approached their solutions are discussed in details.  In summary, the inherent 

mathematical structures were uncovered by students primarily in the following ways: 

(1)  Manipulating the concrete model: This approach was used when the concrete 

model was available.  In the Towers problems, the students used two sets (T1.1) of 

colored cubes to build towers (finding different combinations (T3.3)).  They constructed 

towers in systematic ways.  Strategies like “by cases” or “by induction on the height” 

were used to verify and explain the solutions.  The students realized that there are two 

color choices for each position in the tower (2C1 = 2 (T3.3, T3.4)).  For an already-built 

tower, they chose an opposite color for each position to build another tower.  This laid a 

solid base for understanding the fundamental counting principle (T1.6).   
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In the task Tower of Hanoi, the students also began to play with the puzzle (a 

concrete model) in order to get the first few terms of a sequence (T4.1).     

(2)  Listing all possible combinations: When a concrete model was unavailable, 

the students would begin the task by making a list of all possible outcomes (T8.1) of a 

certain event (T8.1).  In the task Shirts and Jeans, the students demonstrated a natural 

ability to collect similar objects (T1.1) and placed them into a set (T1.1).  Then, without 

knowing the terminology, they applied the Roster Method (T1.2) and listed all possible 

outfits (elements (T1.1) in the Cartesian product (T1.5)) by literally drawing them.   

       In all other tasks, the students used many different coding schemes to list 

combinations they found for the purpose of recording outcomes, checking for duplicates, 

verifying for completeness, or explaining results to others.  Younger students tended to 

use whole words or letter codes.  High school students seemed to prefer the binary code 0 

and 1 since Michael had first introduced it.       

(3)  Inventing different representations:  This approach was usually driven by the 

need to organize information for a better understanding or a better controlling of problem 

situations.  In the Taxicab task, when the students lost track of counts for the shortest 

routes they drew, Romina wanted to devise a method to do it.  She invented a grid 

rectangular box and clearly defined what each position on the grid meant.  In this way, 

she was able to find and record the number of shortest routes for each intersection on the 

grid, one by one.  The counts were much better represented and arranged in this 

rectangular box.  Before long, these number of counts strongly suggested Pascal’s 

triangle (T6.1).                 
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(4)  Seeking patterns: The students were able to see patterns as they were working 

from the simplest case and increasing the number of the control variable by one each 

time.  In the Tower of Hanoi, Michelle and Ankur recognized the recursive pattern after 

they played the concrete puzzle for one, two, three, and four disks.  After they found the 

number of moves were {1, 3, 7, 15,…} (recursively defined sequence (T4.9)) 

respectively, Michelle was able to predict that the moves required for five disks would be 

31. 

Building towers from 1-tall, 2-tall, 3-tall, … also enabled the students to see 

patterns and eventually generalize the total number of different n-tall towers choosing 

from m colors to be nm.     

(5)  Making connections: This approach was extremely powerful when the 

students were facing unfamiliar situations raised by a new task they had not worked on 

before.  Relating the World Series task to the Towers and Pizza problems, Jeff and 

Romina were able to determine that the total number of possible games played (the 

sample space (T8.1)) in an n-game World Series was 2
n
 because the total number of 

pizzas with n available toppings was 2
n
; and the total number of n-tall towers selecting 

from two colors was also 2
n
.  

Making connection also helped the students better understand the Addition 

property ( rkrkrk CCC 11 +− =+ (T6.3)) in Pascal’s triangle (T6.1).  Stephanie explained 

why in Pascal’s triangle 1 + 3 (in “1  3  3  1”) = 4 (in “1  4  6  4  1”) in terms of pizzas, 

and Robert explained this in terms of towers (see section 5.4.6).  This suggests that the 

relationships among the structures involved in these ten tasks may have been an 

instrumental factor in creating an environment that encourages students to capitalize on 
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observed structural similarities among prior and new tasks in order to make progress on 

the new tasks.  

 
 

6.4 Conclusion and Suggestion 

Dr. Maher once indicated that students may not have a language to describe what 

they are thinking, but they possess the mathematical ideas (Mayansky, 2007, Appendix 1, 

Transcript, Lines 497-506).  To prepare students with such a (formal or mathematical) 

language, teachers should deepen their understanding of the underlying mathematical 

structures for each task they are going to use in the classroom.  From the above summary 

along with the detailed discussion in chapter five, conclusions and suggestions are made 

as follows: 

(1)  Mathematical structures are inherent in each of the ten selected tasks analyzed 

in this work from the counting strand of the longitudinal study.  Teachers may benefit 

from studying the underlying mathematical structures of a task thoroughly before 

assigning the task to students.   

(2)  The students in this study often found solutions based on their previous 

knowledge and experiences.  In determining the order of related tasks within a strand, 

teachers need to consider the sophistication level and the coherence of the underlying 

mathematical structures across tasks.   

(3)  Formally defined mathematical structures make more sense to students if 

there is meaning attached to them.  Using concrete models can help students to both 

develop and verify solutions to complex problems.  Teachers should ask students to 
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verify their solutions by making connections, when appropriate, to a concrete model or a 

real-world model.  

(4)  A strand of tasks whose inherent mathematical structures belong to a variety 

of mathematical sub-domains can help students build an increasingly interconnected view 

of mathematics.  Teachers should encourage students to solve problems by different 

approaches and share their thoughts with one another in order to explore whether other 

mathematical structures might be uncovered while working on the tasks.  

 
 
 
        

6.5 Concluding Remarks and Future Research 

The Rutgers longitudinal study is ongoing and currently is in its 23rd year now.  

Recently, Rutgers researchers have traced the development of mathematical ideas and the 

ways of reasoning for participating students’ beyond their high school years.  Pantozzi’s 

(2009) work examines how the students make sense of the Fundamental Theorem of 

Calculus when revisiting it three years later.  Steffero’s (2010) case study explores 

Romina’s mathematical beliefs and behaviors for the development of mathematical ideas 

and reasoning based on interviews from her high school, college, and post-college career, 

spanning seventeen years.  Ahluwalia’s (2010) dissertation, based on the student’s fifth 

grade problem-solving sessions and post-graduate interviews, analyzes how Robert built 

connections among mathematical ideas, while exploring Pascal’s Pyramid and connecting 

and structure of its solution to problems solved in the counting/combinatorial strand.    

This study has demonstrated a way to extract and analyze inherent mathematical 

structures while engaging in the solution of a collection of task problems.  The analysis, it 
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is hoped, will motivate mathematics teachers to better understand the underlying 

mathematical structures of tasks and thus improve the way they prepare students for a 

problem-solving session.  Further investigations on exploring the mathematical structures 

that might be elicited in working on the tasks are strongly recommended.  For example, 

researchers may want to explore the range of definitions offered for mathematical 

structure.  They may also wish to find analysis tools for assessing the value of a task in 

term of the mathematical structures that could be uncovered.  Questions that may arise 

are: How might students be made aware of the underlying mathematical structures in a 

task?  Are there preferable ways to help students uncover connections among 

mathematical structures?  If so, what implications does this have for teachers’ classroom 

practices?   

Another direction for future study may concern the order of the tasks in a 

particular strand used in the Rutgers longitudinal study.  The ten selected tasks from the 

combinatorics/counting strand (i.e., the tasks discussed in this study) were arranged and 

presented to the students in a seemingly logical order.  Does this sequence of the tasks fit 

students’ mathematical background?  How appropriate is the study of these tasks for pre- 

and in-service professional development?  Are there other sequences of the tasks that 

might be effective in building similar mathematical understandings?  The Rutgers 

longitudinal study provides a collection of rich data that has inspired researchers to come 

up with interesting and valuable research questions.  Others are offered for future study.           
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Appendix A: The Task Problems 
 

Task 1:  Shirts and Jeans 
 
Stephen has a white shirt, a blue shirt, and a yellow shirt.  He has a pair of blue 
jeans and a pair of white jeans.  How many different outfits can he make?  
Convince us that you found them all. 

 
 
Task 2:  Towers 4-tall with Two Colors    

 
Your group has two colors of Unifix cubes.  Work together and make as many 
different towers four cubes tall as is possible when selecting from two colors.  See 
if you and your partner can plan a good way to find all the towers four cubes tall. 
 
 

Task 3:  Towers 4-tall with Three Colors    
 
Your group has three colors of Unifix cubes.  Work together and make as many 
different towers four cubes tall as is possible when selecting from three colors.  See 
if you and your partner can plan a good way to find all the towers four cubes tall. 
 
 

Task 4:  Tower of Hanoi    
 
Figure A-1 below shows a puzzle with three posts, and there are seven disks 
stacked as a tower on one of the three posts.  You have to move all the disks from 
the post to another post. The rule is: you can only move one disk at a time and 
you can never put a smaller disk onto a bigger disk.  How many moves do you 
need to complete the task?  If this is a 100-disk tower, how many moves do you 
need?  

             
 Figure A-1.  Tower of Hanoi Puzzle  
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Task 5:  Pizza with Halves  
 
A local pizza shop has asked us to help them design a form to keep track of 
certain pizza sales.  Their standard “plain” pizza contains cheese.  On this cheese 
pizza, one or two toppings could be added to either half of the plain pizza or the 
whole pie.  How many choices do customers have if they could choose from two 
different toppings (sausage and pepperoni) that could be placed on either the 
whole pizza or half of a cheese pizza?  List all possibilities.  Show your plan for 
determining these choices.  Convince us that you have accounted for all 
possibilities and that there could be no more. 
 
 

Task 6a:  4-topping Pizza    
 
A local pizza shop has asked us to help design a form to keep track of certain 
pizza choices.  They offer a cheese pizza with tomato sauce.  A customer can then 
select from the following toppings: peppers, sausage, mushrooms, and pepperoni.  
How many different choices for pizza does a customer have?  List all the possible 
choices.  Find a way to convince each other that you have accounted for all 
possible choices. 
 
 

Task 6b:  4-topping Pizza with 2 Crusts  
 
The pizza shop was so pleased with your help on the first problem that they have 
asked us to continue our work.  Remember that they offer a cheese pizza with 
tomato sauce.  A customer can then select from the following toppings: peppers, 
sausage, mushrooms, and pepperoni.  The pizza shop now wants to offer a choice 
of crusts: regular (thin) or Sicilian (thick).  How many choices for pizza does a 
customer have?  List all the possible choices.  Find a way to convince each other 
that you have accounted for all possible choices. 
 
 

Task 6c:  4-topping Pizza with Halves and 2 Crusts 
 
At customer request, the pizza shop has agreed to fill orders with different choices 
for each half of a pizza.  Remember that they offer a cheese pizza with tomato 
sauce.  A customer can then select from the following toppings: peppers, sausage, 
mushroom, and pepperoni.  There is a choice of crusts: regular (thin) and Sicilian 
(thick).  How many different choices for pizza does a customer have?  List all the 
possible choices.  Find a way to convince each other than you have accounted for 
all possible choices. 
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Task 7:  Ankur’s Challenge 
 
Find all possible towers that are 4 cubes tall, selecting from cubes available in 
three different colors, so that the resulting towers contain at least one of each 
color.  Convince us that you have found them all. 
 
 

Task 8:  World Series 
 
In a World Series two teams play each other in at least four and at most seven 
games.  The first team to win four games is the winner of the World Series.  
Assuming that the teams are equally matched, what is the probability that a World 
Series will be won: a) in four games?  b) in five games?  c) in six games?  d) in 
seven games? 

 
 
Task 9:  The Problem of Points   

 
Pascal and Fermat are sitting in a café in Paris and decide to play a game of 
flipping a coin.  If the coin comes up heads, Fermat gets a point.  If it comes up 
tails, Pascal gets a point.  The first to get ten points wins.  They each ante up fifty 
francs, making the total pot worth one hundred francs.  They are, of course, 
playing “winner takes all.”  But then a strange thing happens.  Fermat is winning, 
8 points to 7, when he receives an urgent message that his child is sick and he 
must rush to his home in Toulouse.  They carriage man who delivered the 
message offers to take him, but only if they leave immediately.  Of course, Pascal 
understands, but later, in correspondence, the problem arises: how should the 100 
francs be divided? 
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Task 10: Taxicab 
 
A taxi driver is given a specific territory of a town, represented by the grid in 

Figure A-2 below.  All trips originate at the taxi stand, the point in the top left corner of 
the grid.  One very slow night, the driver is dispatched only three times; each time, she 
picks up passengers at one of the intersections indicated by the other points on the grid.  
To pass the time, she considers all the possible routes she could have taken to each pick-
up point and wonders if she could have chosen a shorter route.  What is the shortest route 
from the taxi stand to each of three different destination points?  How do you know it is 
the shortest?  Is there more than one shortest route to each point?  If not, why not?  If so, 
how many?  Justify your answers. 

 
Taxi Stand   

       

       

       

     
B

  

  
A

     

      
C

 

       

       

 
 
 

Figure A-2.  The map of the town and the taxi stand  
 

 




































