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ABSTRACT OF THE DISSERTATION

A Computerized Image Analysis Framework for Dynamic

Contrast Enhanced Magnetic Resonance Imaging

(DCE-MRI) with Applications to Breast Cancer

by Shannon Christine Agner

Dissertation Director: Anant Madabhushi

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides a wealth

of information about the anatomy of the breast, particularly in the setting of breast

cancer diagnosis. In addition to the images it provides regarding the architecture of

breast tissue, it also provides functional information about blood flow by means of

the DCE study. The sensitivity of DCE-MRI has been reported at close to 100%, so

the difficult tasks for the radiologist in reviewing breast DCE-MRI are: (1) discerning

between which lesions are benign and which are malignant; and (2) doing so for a

patient study that involves hundreds of images and is 4-dimensional. Because of the

great detail and volume of information DCE-MRI provides, computational methods

for both extracting and analyzing information derived from the images are useful in

distilling the entire patient study down to the most salient images and features for the

radiologist to examine. In this dissertation, computer-based methods developed for

analyzing the data acquired in a breast DCE-MRI patient study are described.

In the first part, pre-processing methods used for aligning the images of the time-

dependent DCE study are explained. Because segmentation is important for describing
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the morphology of the lesion as well as the region of interest for any subsequent quanti-

tative analysis of a lesion, as a second step to pre-processing, a spectral embedding based

active contour (SEAC) method for segmentation of lesions is developed and tested. A

feature developed for extracting the spatiotemporal characteristics of breast lesions,

termed textural kinetics, is then described, and its utility is demonstrated for distin-

guishing benign from malignant lesions as well as in identifying triple negative breast

lesions, a lesion type that is extremely aggressive and has no targeted therapies. Finally,

these quantitative methods are summarized in a computer aided diagnosis framework

that provides insight into the biologic nature of breast lesion subtypes as well as for

directing treatment and determining prognosis.
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Chapter 1

Introduction

Despite the increased use of dynamic contrast enhancement magnetic resonance imag-

ing (DCE-MRI) for breast cancer diagnosis, questions regarding the interpretation of

breast MRI and its appropriate uses persist. The objective of this work is to demon-

strate how the novel computerized image registration, segmentation, feature extraction,

and classification tools we are developing in the context of breast DCE-MRI can con-

tribute to personalized medicine for breast cancer detection, diagnosis, prognosis, and

treatment. This study comprises four specific aims. Aims 1 and 2 are focused on de-

velopment and evaluation of image analysis methods for DCE-MRI while Aims 3 and 4

will leverage the methods developed in Aims 1 and 2 for distinguishing malignant from

benign lesions and for distinguishing more aggressive breast cancer subtypes from those

that traditionally have a positive prognosis. The overarching objective of this study is

to be able to develop a tool set that will allow for early detection of highly aggressive

molecular subtypes of breast cancer based on radiological imaging features alone.

In Aim 1, we develop registration and segmentation methods for DCE-MRI. Our

novel registration method, called spectral embedding based registration (SERg), inte-

grates texture features, spectral embedding, and higher order mutual information to

register post-contrast images to pre-contrast DCE-MR images. This method is par-

ticularly useful in the setting of DCE-MRI because of imaging characteristics inher-

ent to DCE-MRI. We also derive an automated model-free active contour-based lesion

segmentation method, called spectral embedding based active contour (SEAC), which

integrates temporal contrast enhancement information and spectral data embedding.

In Aim 2, we develop novel quantitative lesions features, called textural kinetics, which

measure the changes in texture of the lesion of interest as a function of time, analogous
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to the kinetic contrast versus time curves that radiologists currently use for diagnosis.

However, different from contrast kinetics, textural kinetics provide a measure of the

spatial pattern of contrast uptake as a function of time. Our hypothesis is that our

computational image analysis methods developed in Aims 1 and 2 will provide insight

into breast lesion detection and characterization on DCE-MRI to reveal subtleties of

breast lesions traditionally occult to the radiologist. In Aim 3, we leverage the methods

developed in Aims 1 and 2 for distinguishing benign from malignant breast lesions while

in Aim 4 we focus on distinguishing different molecular subtypes of malignant lesions

such as triple negative, estrogen receptor positive, and human epidermal growth factor

receptor 2 (HER2) positive lesions.

1.1 Significance of proposed work

While there are available targeted treatments for two common types of breast cancer,

there is a third, called triple negative breast cancer that constitutes 10-13% of the

population, yet has no targeted treatment and is extremely aggressive [7]. Since the

American Cancer Society [8] also recently recommended all women with a family history

of breast cancer also have yearly breast MRIs in addition to annual mammograms, the

number of breast MRIs performed will continue to increase. Of note, there is significant

overlap between BRCA1 mutations [7], which are sometimes found in familial breast

cancers, and triple negative breast cancers. In this study, we aim to create a computer-

ized decision support system to assist physicians in assessing suspicious breast lesions

on MRI to help guide time to treatment and noninvasive monitoring of the biological

effects of therapies that target the aggressive triple negative subtype of breast cancer.

The hypothesis of this project is that by finding ways of identifying the aggressive triple

negative subtype of breast cancer on MRI, the time to confirmatory biopsy can be de-

creased, thus increasing likelihood of treatment effectiveness. In addition, by identifying

the biological characteristics on the MRI, treatments that are in the research pipeline

for triple negative breast cancers can be monitored noninvasively to understand their

biological effects. Furthermore, we hope to use the radiologic imaging features devel-

oped in this thesis to correlate appearance on DCE-MRI with diagnosis and prognosis
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derived from histopathology evaluation of breast tissue biopsy, immunohistochemistry

results and molecular assay scores.

The goal of this project is a computerized decision support system that will assist

physicians in assessing breast lesions in a noninvasive manner during all aspects of a

woman’s care: from screening for breast cancer to planning treatment, should she have

breast cancer, to monitoring tumor response to therapy. From a research perspective,

this study will provide a better understanding of the biology of familial types of breast

cancer. In addition, the system could be used as a training tool for medical students

and residents. From a healthcare cost perspective, this system will allow for overall

reduction in cost by earlier diagnosis and subsequent time-to-treatment of aggressive

types of breast cancer.

1.2 Breast Cancer

According to the National Cancer Institute, approximately 207,090 women will be di-

agnosed with breast cancer in the United States in 2010 1, and 1 in 8 women will be

diagnosed with breast cancer during the course of their lifetime. However, it has been

shown that early detection and treatment can reduce the chances of death due to breast

cancer by 15 to 30 percent. In 2005, patients with the BRCA1 gene mutation, which has

significant overlap with the triple negative breast cancers, were recommended to obtain

annual breast MRIs in addition to mammography. As a result, the use of DCE-MRI

for breast cancer diagnosis more than doubled between 2003 and 2008 to a frequency

of over 645,000 breast MRI exams annually in the United States, growing much faster

than the number of MRI exams overall. This demonstrates the potential key role in

the personalized medicine of treating breast cancer may play in the future.

The current guidelines recommend that a woman over the age of 40 begin annual

mammographic screening for breast cancer. If a suspicious lesion is found on the mam-

mogram, follow up ultrasound or MRI is typically done. If the lesion is still deemed

suspicious after secondary imaging, a biopsy is performed, and the tissue sample is sent

1http://www.cancer.gov/cancertopics/types/breast
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to pathology for definitive diagnosis and prognosis. If cancer is found, immunohisto-

chemistry (IHC) or immunofluorescence (IF) staining is done to look for overexpression

of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth

factor receptor (HER2) since targeted therapies for both ER and HER2 positive tumors

exist. The question we aim to answer is whether or not associated radiologic imaging

phenotypes exist that correlate with the cellular protein expression phenotypes.

1.3 Role of DCE-MRI in Breast Cancer Diagnosis

When a typical DCE-MRI is performed, T1-weighted images are acquired before con-

trast injection. A gadolinium-based contrast agent is then injected into the patient’s

bloodstream, and subsequent images are acquired at regular intervals after contrast in-

jection. When a radiologist currently evaluates a breast DCE-MRI, she looks for shape,

heterogeneity of signal intensity, and intensity kinetics within the lesion of interest. All

of these characteristics have been formalized in the BIRADS classification system for

DCE-MRI [9]. A malignant lesion tends to have more irregular borders and be more

heterogeneous in signal intensity than benign lesions. It also has a rapid uptake and

washout of contrast, which differs from benign lesions, which tend to take up contrast

agent more slowly and wash contrast out more slowly.

Although contrast allows lesions to be seen more readily on MRI, making DCE-

MRI the most sensitive of the 3 imaging modalities currently used in breast radiologic

imaging, it also generates many more false positives than ultrasound or mammogra-

phy. As a result, many more biopsies are done on benign lesions than were previously

performed with ultrasound or mammography. This obviates the need for generating

computer-aided image analysis systems that more specifically discern benign lesions

from malignant ones.

Although the increased sensitivity of DCE-MRI can be perceived as a detriment, it

also has its benefits. Radiologists are currently able to see more detail of the breast

than ever before, especially in young women who tend to have more dense breasts [10].

Additionally, in recent years, DCE-MRI has been explored at a radiologic imaging
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modality capable of discerning histologic cancer subtypes such as lobular cancers from

ductal cancers and carcinoma in situ from invasive cancers. It has long been thought

that tumor angiogenesis was correlated with cancer invasiveness based on histologic

analysis [11], and this is the feature that DCE-MRI intends to capture. As we begin

to understand more about breast cancer and its different biological subtypes, there

have also been some qualitative observational studies looking at imaging patterns of

molecular subtypes such as ER positive, HER2 positive, and triple negative breast

cancers [12–14].

The goal of this project is to combine both anatomical and contrast dye uptake

information about highly aggressive breast cancer lesions to develop specific and quan-

titative MRI profiles for these breast cancers. The hope is that identifying these aggres-

sive breast cancers lesions at the time of screening or follow up imaging might allow for

faster time to treatment as well as allow clinicians to noninvasively monitor biological

effects of chemotherapies that are specifically tailored to a particular type of breast

cancer.

1.4 Overview of Dissertation

In this dissertation, new methods for computerized analysis of breast DCE-MRI are

developed. In the first part, pre-processing methods used for aligning the images of the

time-dependent DCE study and a lesion segmentation method that utilizes the DCE in-

formation are described. In the second part, a new feature for quantitatively describing

spatiotemporal patterns of contrast enhancement is developed and explained. In the

final part, a computer-aided diagnosis framework for first distinguishing benign from

malignant and then distinguishing molecular subtypes of breast cancer is constructed.

Image artifacts due to patient movement and anatomical deformation cause inaccu-

racies when comparing one time point to another in a DCE-MRI time series, and these

artifacts are not always rectified by a conventional intensity-based image registration

method. We introduce an alternative image representation called spectral embedding

(SE)- based registration (SERg) that facilitates registration of each post-contrast image
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to the corresponding pre-contrast image. SERg is employed via higher order mutual

information (MI) (i.e., alpha-MI) and a B-spline based elastic registration method in

order to use multiple eigenvectors that result from SE. We demonstrate on 12 synthetic

combinations of noise and image deformations on synthetic brain magnetic resonance

imaging (MRI) that SERg performs better in terms of normalized MI and correlation

ratio than an intensity based registration scheme. We also demonstrate qualitative

improvements using SERg on breast DCE-MRI over intensity-based registration.

Since segmentation is important for describing the morphology of the lesion as well

as the region of interest for any subsequent quantitative analysis of a lesion, as a second

step to pre-processing, a spectral embedding based active contour (SEAC) method for

segmentation of lesions is developed and tested. On a cohort of 50 breast lesions,

the SEAC outperformed fuzzy c-means in terms of both boundary (mean absolute

difference, MAD) and area-based measures (Dice similarity coefficient, DSC); SEAC

had a MAD of 3.2 2.1 pixels and a DSC of 0.74 0.13 compared to FCM which had a

MAD of 7.2 7.4 pixels and a DSC of 0.58 0.32. When using these segmentations for

driving a morphology-based support vector machine classifier, SEAC demonstrated a

classification accuracy of 0.73 whereas FCM demonstrated a classification accuracy of

0.65 in a benign versus malignant lesion classification task.

A feature developed for extracting the spatiotemporal characteristics of breast le-

sions, termed textural kinetics, is then described, and its utility is demonstrated for

distinguishing benign from malignant lesions on a cohort of 41 patients (Area under

the curve (AUC) = 0.91) as well as in identifying triple negative (TN) breast can-

cer (CA), a breast cancer subtype that is extremely aggressive and has no targeted

therapies, amongst a cohort of 76 breast lesions in 65 patients (AUC = 0.73).

Finally, these quantitative methods are summarized in a computer aided diagnosis

framework that provides insight into the biologic nature of breast lesion subtypes. The

attention is focused on distinguishing TN lesions from other molecular subtypes. By

determining a quantitative MR imaging signature for TN CAs that is distinct from

other CA subtypes (e.g., ER+ and HER2+ CAs), as well as from benign TN mimics

(e.g., FAs), CAD algorithms tuned to specific high-risk patient groups (e.g., BRCA1
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mutation carriers predisposed to forming TN CAs) can be developed. TN CAs possess

certain characteristic features on DCE-MRI that can be detected and quantified via

CAD, allowing for highly accurate discrimination of TN CAs from non-TN CAs, as

well as between TN CAs and benign FAs. Such CAD algorithms may provide added

diagnostic benefit in identifying the highly aggressive TN CA phenotype in high-risk

women with DCE-MRI.
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Chapter 2

Spectral Embedding- based Registration (SERg) for the

Alignment of DCE-MR Images

2.1 Introduction

Alternative data representations for improved registration accuracy and efficiency have

been explored with the idea that two images in the transformed space may be more

similar than the corresponding images in the raw intensity space. Nyul et al. [15] used

the ball-scale concept, where a ball of a certain radius defined a region of homogeneity

in an image, to drive registration. Similarly, Saha [16] demonstrated the effectiveness of

tensor scale (t-scale), whereby an ellipsoid defines the region of homogeneity, to improve

image registration.

Although alternative data representations have been developed previously primarily

for motion correction, time-series data involving dynamic contrast enhancement (DCE)

introduces another difference between target and template images: changes in contrast.

Since the post-contrast images are typically registered to pre-contrast images, compar-

ing images whose dynamic intensity ranges change from time point to time point on

the basis of signal intensity may not be an appropriate method for DCE data. This

is illustrated in Figure 2.1, which shows the subtraction images of a breast DCE-MRI

before (Figures 2.1 (a, b, c)) and after (Figures 2.1 (d, e, f)) intensity based registration

at 3 time points.

In this paper, we present a spectral embedding (SE)-based registration (SERg)

method for time series data. SE, a nonlinear dimensionality reduction (DR) method, is

used to transform the images into an alternative data representation that is amenable

to image registration. SE has the advantage over the linear DR method, principle com-

ponent analysis (PCA), which was previously used by Staring et al. [17] for registration
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(a) (b) (c)

(d) (e) (f)

Figure 2.1: Comparison of unregistered post-contrast time point 1 (a), 2 (b), and 3
(c)) and corresponding intensity-based registered ((d), (e) and (f)) subtraction images.
Inset in bottom-right corner of each image highlights misalignment demonstrated by
high signal intensity at breast edge. Note that misalignment is recovered in the first
post-contrast time point and progressively worsens as contrast agent is taken up by the
breast.

of time-dependent data, of having the ability to capture the nonlinearities inherent in

biological data, especially functional data such as DCE-MRI, where noise in the form of

contrast agent is added in a nonlinear fashion to the image. A linear DR method such

as PCA would not be able to take such nonlinearities into account when embedding a

pre-contrast and a post-contrast image in the same space. However, by embedding the

pre- and post-contrast images into the same embedding space, SE allows the embedding

eigenvectors to not only separate salient from non-salient regions in the image, but also

to identify corresponding regions in both images. The registration is then driven by

these areas of correspondence and salience.

Since the SE based transformation of the data allows for a vectorial representation

of the scalar MRI scene in terms of the principle eigenvectors at every voxel, higher

order entropy measures such as α-MI [18] can be leveraged as the registration objective
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function, thereby enabling more accurate capture of the statistics of multivariate data.

We quantify the accuracy of SERg on 12 different combinations of noise and de-

formations of a synthetic brain MRI data set. We also demonstrate the qualitative

accuracy of SERg on breast DCE-MR images.

2.2 Theory and Motivation behind SERg

2.2.1 Formal problem statement

With issues of both motion and changes in image intensity in contrast enhanced MRI

in mind, we pose the following problem statement. Let there exist: (1) a pre-contrast

template image Cpre = (C, fpre), where C is a 2D grid of spatial locations and fpre(c)

is the intensity value at location c; and (2) a similarly defined post-contrast target

image Cpost = (C, fpost). The question then is whether an image transformation can

be determined, Λ(Cpre, Cpost) that yields an alternative image representation, Ĉpre, Ĉpost

such that, given an image similarity measure, φ, φ(Cpre, Cpost) < φ(Ĉpre, Ĉpost)?

2.2.2 Spectral Embedding

Let F = [F(x1),F(x2), . . . ,F(xN ) ∈ R
N×D] be the data matrix of N feature vectors

with dimensionality D. The aim of SE is to reduce F ∈ R
N×D to a low d-dimensional

space where d << D. Let V = [v1,v2, . . . ,vN ∈ R
N×d] be the optimal low dimen-

sional projections [19] and the associated eigenvectors of a given object xi, where

i ∈ {1, . . . , N}, are vi ∈ R
1×d where vi = [v1, v2, . . . , vN ] and vj ∈ R

1×1, j ∈ {1, . . . , d}
is an individual eigenvector for a given vi. The optimal V can be obtained by solving,

V = argmin
v

(

∑
r

∑
s ‖v(r)− v(s)‖2wrs∑

r v(r)
2d(r)

), (2.1)

where wrs is the (r, s) element of the weight matrix W = [wrs] ∈ R
N×N , r, s ∈

{1, . . . , N}, which assigns edge weights to characterize similarities between the pair-

wise observations xr and xs and d(r) =
∑

swrs, r, s ∈ {1, . . . , N}. The graph edge

weight of two nodes, r and s, can be formulated as wrs = e

−‖F(xr)−F(xs)‖22
σ2
I where σ2I is a

scaling parameter. The minimization of Equation 2.1 reduces to a minimum eigenvalue
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decomposition problem,

(D−W )v = λDv, (2.2)

where D is a diagonal matrix, Drr =
∑

sWrs. The 3 eigenvectors of vi = [v1, v2, v3]

where i ∈ {1, . . . , N} associated with the smallest eigenvalues, λ1, λ2, λ3, are used in

conjunction with SERg.

2.2.3 SERg Implementation with α-MI

In the conventional manner, we formulate the registration method as an optimization

problem such that a function [17],

µ̂ = argmax
µ

φ(Tµ(c); CA, CB), (2.3)

describes the optimization, where φ is the objective function, measuring similarity be-

tween CA and CB which is maximized when CA and CB are aligned optimally, and µ̂ is

the vector of coordinates that transforms the target image, CB, to be in alignment with

template image, CA. In the case of 1-dimensional images such as intensity images, MI,

φMI is used to optimize image alignment. MI is typically defined as

φMI(Cpre, Cpost) = H(Cpre) +H(Cpost)−H(Cpre, Cpost), (2.4)

where H(C) = −∑
pf log pf is the Shannon entropy of the intensities of image C,

H(Cpre, Cpost) is the joint entropy, and pf is the intensity probability at intensity f .

However, in the case of multidimensional images, a multivariate approach must be taken

to the objective function. This can be done through two methods: (1) histogram-based

mutual information (MI), or (2) α-MI via entropic graphs [18]. The joint entropy is

typically calculated using a joint histogram; however, issues of sparseness in the joint

histogram can lead to inaccuracies in the computation of joint entropy (JE). The use

of entropic graphs was recently introduced by Neeumuchwala et al. [18] to overcome

issues with using a joint histogram in the calculation of JE, and in this paper, we use

α-MI to estimate image similarity in a multivariate fashion. α-MI is calculated as,

α−MI =
1

α− 1
log

1

Kα

K∑
c=1

(
Γpre,postc (µ)√
Γprec Γpostc (µ)

)2γ (2.5)
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where Γpre,post is neighborhood graph for all points in both the pre- and post-contrast

images, Γpre is the neighborhood graph for the pre-contrast, template image, Γpost

is the neighborhood graph for the post-contrast, target image, K = |c| where | · | is
the cardinality of any set, γ = D(1 − α) where D is the length of the feature vector

describing c, and 0 < α < 1 (α = 0.99 for all experiments herein as was previously

done by Staring et al. [17]). Registration is performed using a free-form deformation

previously described [20].

2.2.4 Algorithm for SERg

Algorithm SERg

Input: Image scenes Cpre, Cpost.
Output: Image transformation, Cpost(Tµ(C)).

begin

0. Initialize Cpre, Cpost;
1. Extract feature scenes, F = F (C);

2. Apply spectral embedding [19] to F = [F(x1),F(x2), . . . ,F(xn) ∈ R
N×d]

to obtain V = [v1,v2, . . . ,vn ∈ R
N×k];

3. Initialize φ(t) = φ0 where t = 0;

4. while |φ(t)− φ(t− 1)| > ε do

5. Maximize φ(Tµ(c); ĈA, ĈB).
6. t = t+ 1;

7. endwhile;

8. Cpost(Tµ(C));

end
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2.3 Experimental Design

2.3.1 Data description

Table 2.3.1 shows a summary of the 3 datasets used which sum to 28 image pairs

for evaluation of SERg. Synthetic brain data was generated from the MNI BrainWeb

database [21]. Contrast dye introduced to the subject can be interpreted as noise in

the images, and as such, the image without noise is considered to be the pre-contrast

image. The 1st post-contrast time point is simulated by the image with 1% noise,

the 2nd post-contrast time point is simulated by the image with 5% noise, and the

3rd post-contrast time point is simulated by the image with 9% noise. Four nonlinear

deformations were imposed on the simulated post-contrast images using control points

and thin-plate splines [22].

Table 2.3.1: Performance measures to evaluate SEAC

Data type Image pairs Data description

Synthetic brain 12 4 different image deformations,

3 different noise levels

Fat-suppressed 10 Peak post-, pre-contrast enhancement

breast DCE-MRI fat-suppression in acquisition

Fat-saturated 6 Peak post-, pre-contrast enhancement;

breast DCE-MRI no fat-suppression in acquisition

Eight 1st order statistical features along with 7 edge detection filters at a window

size of 5 × 5 voxels are calculated for each pre- and post-contrast image. This feature

set plus the original raw intensity image results in a feature vector, F , of length 16 to

be used in conjunction with SE.

2.3.2 Measures of registration accuracy

We compared the registration accuracy obtained by SERg to an intensity based regis-

tration first proposed by Rueckert et al. [20]. Data was evaluated qualitatively by visual

inspection of the difference image resulting from Cpost − Cpre. Quantitative measures

of registration accuracy were correlation ratio (CR) [23] and normalized MI (NMI).
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Quantitative Results

Figures 2.2 and 2.3 show the results of the synthetic experiments of varied noise and

deformation field. Because we have the images before deformation, a ground truth

similarity can be calculated for each image pair. The SERg method was closer to the

ground truth in terms of both NMI and CR.
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Figure 2.2: Plots of NMI as a function of noise level for 3 different deformations. Note
that the intensity-based registration (green line) results in lesser NMI as more noise is
introduced into the deformed image, whereas SERg NMI (red line) remains relatively
robust to noise.
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Figure 2.3: Plots of correlation ratio (CR) as a function of noise level for 3 different
deformations. Note that although CR is comparable for the intensity-based (green line)
registration and SERg (red line) at 1% noise, as more noise is introduced to the image,
the difference in CR between intensity-based registration and SERg grows.

Figure 2.4 shows an example of the recovered deformation using intensity based

registration (Figure 2.4(a)) and SERg (Figure 2.4(b)) for the most severe noise level.

The deformation spans a longer segment of the interface between the skull and the

brain matter in Figure 2.4(a) than in Figure 2.4(b). The eigen image scene that results

from the simultaneous spectral embedding of the feature scences are shown for both
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the simulated pre-contrast (Figure 2.4(c)) and simulated post-contrast (Figure 2.4(d))

images.

(a) (b) (c) (d)

Figure 2.4: An example of the synthetic deformation (bottom, left of image in (a,
b, and d)) imposed on the brain data. Undeformed image subtracted from 9% noise
image containing deformation (a). Undeformed image subtracted from 9% noise image
after SERg registration. Eigen image scenes, generated by representing each of the
first 3 eigenvectors as color channels of color image, of undeformed noise-free image (c)
and 9% deformed image (d) after spectrally embedding in the same space. Note that
cerebrospinal fluid is blue in both images, white matter is yellow and orange hues, and
grey matter is cyan.

Qualitative Results

Figure 2.5 shows difference images for 3 breast DCE-MRI datasets which require reg-

istration. The difference images show that the breast border strongly enhances when

images are not aligned. Although intensity-based registration seems unable to align the

images (Figure 2.5 (b, e, h)), SERg is able to do so (Figure 2.5 (c, f, i)).

2.4 Concluding Remarks

In this paper we demonstrate that an alternative data representation called spectral

embedding (SE) based registration (SERg) can more accurately register images in the

setting of noise like that found during contrast uptake of a dynamic contrast enhanced

magnetic resonance imaging (DCE-MRI) time series. The intuition behind using SERg

is that by maximizing intracluster similarity and minimizing intercluster similarity

through SE, areas of correspondence and salience, respectively are best preserved. We

have demonstrated via synthetic data with 3 noise and 4 deformations levels that SERg
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.5: Comparison of unregistered (a, d, g), signal intensity based registration (b,
e, h), and SERg (c, f, i) and difference images for 3 difference breast DCE-MRI datasets.
Inset in bottom-right corner of each image highlights misalignment demonstrated by
high signal intensity at breast edge.
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is more resilient to these image deficiencies than is an intensity based registration. We

also show that in the presence of different levels of noise, SERg outperforms an intensity

based registration scheme.
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Chapter 3

Spectral Embedding-based Active Contour (SEAC):

Applications to Breast Lesion Segmentation

3.1 Introduction

Active contour (AC) schemes are commonly used for medical image segmentation [24].

AC models can be divided into boundary- based [25], region- based [26], and hybrid [27]

models, which combine boundary- and region- based methods. The success of boundary-

based approaches hinges upon the strength of the image gradient at the boundary

between the region of interest (ROI) and the background. This is often a limitation

of the AC model when applied to grayscale images such as those found in radiology.

Strong image gradients at the lesion border may not always be available, particularly

when the ROI has diffuse boundaries as is demonstrated in Figure 3.1 and which often

occurs in the case of malignant lesions [28]. For region- based methods, region statistics

are computed over the entire image. These statistics may not be very valuable in the

case of grayscale radiologic images, especially because grayscale images only have a

single channel of information from which to derive the image statistics.

The relatively weak image gradients at the lesion boundary and multiple objects

which have similar intensity statistics to the lesion of interest (see Figure 3.1) in the

grayscale image beg the question: Can an alternative image representation be deter-

mined where stronger image gradients and region statistics for driving an AC model

be found? Alternative image representations have been used previously in the context

of noise filtering [29], image registration [15], and fuzzy connectedness based segmen-

tation [30]. Nyul et al. [15] employed ball-scale for multi-protocol image registration,

where ball-scale [15] is a locally adaptive scale definition such that every image pixel

location is parametrized by the radius of the largest ball that satisfies some pre-defined
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(a) (b) (c)

Figure 3.1: A DCE-MR image of a malignant breast lesion (a) and its corresponding
gradient image (b). Note that the gradient is not uniform along the boundary of the
lesion and is very weak in some regions of the lesion boundary. The lesion boundary
delineated by an expert radiologist is illustrated in (c).

local homogeneity criterion. Saha [31] defined tensor scale (t-scale) at every spatial lo-

cation as the largest ellipse that satisfies some pre-defined homogeneity criterion. The

t-scale based representation has been employed in the context of image segmentation

and image filtering [29, 30]. In each of these methods, transforming the data into an-

other image space allowed for an improvement in the corresponding image processing

task. However, to the best of our knowledge, no attempts have been made to explore

the utility of manifold learning (ML) schemes to seek improved image representations

that would be amenable for use in conjunction with an active contour segmentation

scheme.

ML based schemes like spectral embedding (SE) allow for parametrically represent-

ing high dimensional data in a reduced dimensional space [19]. Several researchers

have explored ML for data classification [32–34]. However, while others have employed

SE in the context of image partitioning algorithms such as normalized cuts [19], few

studies have addressed alternative data representations for facilitating segmentation of

time dependent magnetic resonance imaging (MRI) such as dynamic contrast enhanced

(DCE)-MRI. Eyal et al. [32] used the principal eigenvectors derived from principal com-

ponent analysis (PCA) to determine a parametric representation of breast DCE-MRI

data. Since the feature matrix in PCA is a covariance matrix, the eigenvectors asso-

ciated with the largest eigenvalues rotate the data along axes of maximum variance,
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and the gradient functional derived from the PCA eigenvectors would be based on a

gradient of deviation from the mean. Image gradients derived in this fashion would

most likely not be strong enough to serve as the stopping criterion for an active con-

tour formulation. In contrast, SE uses the eigenvectors corresponding to the minimum

eigenvalues based on the eigenvalue decomposition of a weighted affinity matrix, where

the affinity matrix represents the pairwise dissimilarity between all pixels in the image

obtained via a Gaussian, exponential, or polynomial kernel in the original feature space.

Since SE will partition the images in order to maximize intracluster similarity and

minimize intercluster similarity [19], the eigenvectors are oriented along the directions

of fundamental patterns of the data. In the context of DCE-MRI, these fundamental

patterns are related to the time-intensity curves at each pixel in the image. In the

context of DCE-MRI, the time-intensity curves from lesion and non-lesion areas will

have different characteristics as previously shown in multiple different studies [35, 36].

In this work, we present a new spectral embedding based active contour (SEAC) scheme

for segmentation of lesions on breast DCE-MRI. SEAC results in strong gradients at

object boundaries because the AC is evolved on the image scene determined by the

embedding of the time series data. The set of orthonormal eigenvectors obtained via

SE preserve both local and global image similarities [19], so an SE approach might also

yield improved region- based statistics, which in conjunction with stronger boundary

gradients results in an improved hybrid active contour scheme.

3.2 Previous Related Work and Novel Contributions

Several studies have shown that quantitative morphological features extracted from

breast lesions are helpful for distinguishing between benign and malignant breast lesions

[28,37]. Typically, a radiologist’s expert delineation of the lesion boundary is considered

the gold standard for lesion segmentation. However, manual segmentation is notoriously

susceptible to inter-rater variability in breast MRI interpretation [28, 38].

Because accurate lesion segmentation is time consuming, yet necessary for quan-

titative lesion analysis, many groups have explored various automated segmentation



21

methods for breast DCE-MRI [35, 36, 39–41]. Szabo et al. [36] used a pixel-wise classi-

fier that used dynamic contrast signal intensities in conjunction with an artificial neural

network to identify lesion areas of interest. Other methods that have also used pixel-

wise classifiers for segmentation include Twellmann et al. [39], who used the dynamic

contrast signal intensities in conjunction with a support vector machine (SVM) classifier

and Chen et al. [35], who used a fuzzy c-means (FCM) clustering scheme. Additionally,

Wu et al. [40] clustered the time-series data of breast DCE-MRI using Markov random

fields. The drawback of such pixel-wise classification methods is that a continuous lesion

boundary is only implicitly defined by a cluster of similarly classified pixels, and most

of these schemes require post-processing morphological operations such as hole-filling

and dilation to provide a smooth, continuous lesion boundary.

An alternative to pixel based approaches is to use an AC model, which guarantees a

closed contour. In Shi et al. [41], the image data is first transformed from the intensity

space into an alternative data representation by fuzzy c-means. The AC is then initial-

ized and evolved on the resulting FCM clustered space. This allows for incorporation

of the time-intensity curve information, spatial clustering of the data by FCM, and the

guarantee of a continuous lesion boundary by the introduction of the AC. Shi et al. [41]

found that by combining the AC with the FCM method, the lesion segmentation was

closer to the manual radiologist segmentation than the method using FCM alone in a

cohort of breast cancer patients imaged pre- and post- neoadjuvant therapy.

All of the aforementioned methods operate on the scalar grayscale image intensities.

Time-series data such as DCE-MRI contains multiple time points over which the image

of the lesion of interest is captured, and typically, only a single time point (usually the

time point at which the lesion maximally enhances) is used for segmentation. How-

ever, implementations of the AC model have been developed for multi-dimensional

images [42–45]. Chan et al. [43] demonstrated an extension of the original scalar

image-based CV model to use with vector-valued images. Rousson and Deriche [44]

also demonstrated a vector-valued active contour. In a recent application to a medical

imaging problem, Xu et al. [45] developed a tensor gradient based AC for use with

histopathological images by computing the gradient from vectorial images, and hence
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representing the image gradient as tensors. Xu et al. [45] showed that the tensor gradi-

ent more completely captured the gradient information in a multi-channel image than

using a single channel of the image, thus yielding a more discriminating AC scheme.

In this paper, we present a new hybrid AC model, called SE based AC (SEAC), that

employs an alternative data representation derived from SE. In the current study, the

tensor-based gradients are derived from the SE eigenvectors, which are fed into the en-

ergy functional of a hybrid AC model. We leverage the findings in Xu et al. [45] that the

tensor gradient derived from the vectorial image provides stronger gradients for driving

the AC model than the corresponding gradient derived from a scalar image. We also

believe that the SE data representation provides more descriptive region statistics than

could be derived from a scalar grayscale image. Our method for lesion segmentation on

DCE-MRI allows for the use of dynamic time series data in the differentiation between

normal and lesion tissue via SE. This method is not limited to DCE-MRI data alone

and could potentially be used for lesion detection and segmentation on other types of

longitudinal or time-series data as well as other types of multi-parametric imaging (e.g.,

T1-, T2-, and diffusion-weighted imaging).

The remainder of the paper is organized as follows: In Section 3, we describe the

theory and intuition behind computing gradients in the spectral embedding space, In

Section 4 we describe the algorithm and implementation of SEAC. In Section 5, we

discuss our experimental design and our boundary-, area-, and classifier-based methods

for evaluating segmentation accuracy. In Section 6, we report our results and discussion,

and in Section 7, some concluding remarks are presented.

3.3 Theory and Intuition behind Computing Gradients in the Spectral

Embedding Space

In this section, we review the calculation of the pixel-wise SE as well as the subsequent

tensor gradient calculation.
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Table 1: Description of Notation

Symbol Description

C 2D image scene

C 2D Cartesian grid of pixels c = (x, y)

v(c) Eigenvectors associated with pixel c

ρmq Directional component of local structure tensor

C The zero level set C = {c ∈ Θ : φ(c) = 0}
γ(v(c)) Tensor gradient computed on v

H(φ) Heaviside function H(φ) =

⎧⎨
⎩

1, φ(c) ≥ 0;

0, φ(c) < 0.

δ(φ) Delta function δ(φ) =

⎧⎨
⎩

+∞, φ(c) = 0;

0, φ(c) �= 0.

Θh, h ∈ {1, 2} Region membership Θh =

⎧⎨
⎩

Θ1, φ(c) ≥ 0;

Θ2, φ(c) < 0.

φ(t; c) The level set function

3.3.1 Manifold Learning via Spectral Embedding

Let F = [F(x1),F(x2), . . . ,F(xN ) ∈ R
N×D] be the data matrix of N feature vectors

with dimensionality D. The aim of SE is to reduce F ∈ R
N×D to a low d-dimensional

space where d << D. Let V = [v1,v2, . . . ,vN ∈ R
N×d] be the optimal low dimen-

sional projections [19] and the associated eigenvectors of a given object xi, where

i ∈ {1, . . . , N}, are vi ∈ R
1×d where vi = [v1, v2, . . . , vN ] and vj ∈ R

1×1, j ∈ {1, . . . , d}
is an individual eigenvector for a given vi. The optimal V can be obtained by solving,

V = argmin
v

(

∑
r

∑
s ‖v(r)− v(s)‖2wrs∑

r v(r)
2d(r)

), (3.1)

where wrs is the (r, s) element of the weight matrix W = [wrs] ∈ R
N×N , r, s ∈

{1, . . . , N}, which assigns edge weights to characterize similarities between the pair-

wise observations xr and xs and d(r) =
∑

swrs, r, s ∈ {1, . . . , N}. The graph edge

weight of two nodes, r and s, can be formulated as wrs = e

−‖F(xr)−F(xs)‖22
σ2
I where σ2I is a

scaling parameter. The minimization of Equation (1) reduces to a minimum eigenvalue
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decomposition problem,

(D−W )v = λDv, (3.2)

where D is a diagonal matrix, Drr =
∑

sWrs. The 3 eigenvectors of vi = [v1, v2, v3]

where i ∈ {1, . . . , N} associated with the smallest eigenvalues, λ1, λ2, λ3, are used in

conjunction with SEAC.

3.3.2 Tensor gradients in the Spectrally Embedded Space

Following the calculation of the eigenvectors by solving the minimization of Equation

(1), the gradients of the embedding vectors can be subsequently calculated along the

spatial coordinates axes, which results in a tensor gradient function,

∇V = ∇[argmin
v

(

∑
r

∑
s ‖v(r)− v(s)‖2wrs∑

r v(r)
2d(r)

)]. (3.3)

The tensor gradient function employed is inspired by the Cumani operator [46], a

second-order differential operator for for vectorial images, based on the Di Zenzo multi-

valued geometry [47]. For an eigen image Ĉ = (C,v), where v(c) is the associated set

of eigenvectors at pixel c ∈ C, the L2 norm of v at each c ∈ C can be written in matrix

form as

dv2 =

⎡
⎣ dX

dY

⎤
⎦
T ⎡
⎣ ρ11 ρ12

ρ21 ρ22

⎤
⎦
⎡
⎣ dX

dY

⎤
⎦ , (3.4)

where

ρ11 = (
∂v

∂X
)T (

∂v

∂X
) = (

∂v1
∂X

)2 + (
∂v2
∂X

)2 + (
∂v3
∂X

)2

ρ12 = ρ21 = (
∂v

∂X
)T (

∂v

∂Y
) =

∂v1
∂X

· ∂v1
∂Y

+
∂v2
∂X

· ∂v2
∂Y

+
∂v3
∂X

· ∂v3
∂Y

(3.5)

ρ22 is defined similarly to ρ11 along the Y -axis. It is important to note that the gradients,

ρ11, ρ12, and ρ22 are computed on the eigenvectors in the embedding space. The

matrix [ρmq] =

⎡
⎣ ρ11 ρ12

ρ21 ρ22

⎤
⎦ is the first fundamental form in vector eigenspace and

is also referred to as the local structure tensor. For the matrix [ρmq], the maximum

and minimum eigenvalues of the matrix (λ̃+ and λ̃−) representing the extreme rates of
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change in the direction of their corresponding eigenvectors. λ̃+ and λ̃− may be formally

expressed by λ̃± = (ρ11 + ρ22 ±
√�)/2, where � = (ρ11 − ρ22)

2 + 4ρ212. The tensor

gradient is defined as [42],

γ(v(c)) =

√
λ̃+ − λ̃−. (3.6)

From Equations (3.4)-(3.6), it is easy to show that the gray scale gradient

√
∂2vj
∂X2 +

∂2vj
∂Y 2 ,

where j ∈ {1, 2, 3}, (widely employed for edge detection) is a special case of the tensor

gradient γ(·).
Figure 3.2 illustrates the comparison between use of fuzzy c-means (FCM) cluster-

ing [35, 41]to drive the active contour Figure (3.2(b)) with the SE-based image repre-

sentation driven AC (3.2(d)). In comparing Figure 3.2(a) and Figure 3.2(c), one can

observe that the tensor gradient at the lesion boundary (shown in the inset in Fig-

ure 3.2(b), 3.2(d)) is not strong along the entire lesion boundary in the FCM-derived

gradient (Figure 3.2(a)) compared to the gradient computed in the SE space (3.2(c)).

However, the tensor gradient is strong along the entire perimeter of the lesion in the

SE-based gradient image (Figure 3.2(c)). This leads to a more accurate segmentation

of the lesion using SEAC (Figure 3.2(d)) than using the AC in conjunction with FCM

(Figure 3.2(b)).

3.4 Spectral Embedding-based Active Contour (SEAC)

In this section, we briefly describe the hybrid active contour model obtained by com-

bining the boundary and region driven energy terms from the spectrally embedded

space.

3.4.1 Hybrid Active Contour Energy Function

A hybrid AC model can be employed to incorporate both gradient- and region-based

information into the AC model. From the previous section, we can formulate the gra-

dient as g(c) = 1
1+γ2

. The region based component relies on modeling the background

and foreground regions as parametric distributions, p(v(c)|Θh), h ∈ {1, 2}. Here the
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parameters Θh = {µh,Σh} are approximated as multivariate Gaussian distributions.

The energy functional of hybrid AC model can be expressed as,

E(∂C, {Θ1,Θ2}, φ) =
∫
C
{−α [H(φ) log p(v(c)|Θ1) + (1−H(φ)) log p(v(c)|Θ2)]

+βgδ(φ)|∇φ|} dC.
(3.7)

Using calculus of variations, the curve evolution function can be derived by minimizing

the energy function (3.7):

∂φ

∂t
= |∇φ|{α [log p(v(c)|Θ2)− log p(v(c)|Θ1)] + βdiv(g

∇φ
|∇φ|)}, (3.8)

where H(φ) is the Heaviside function, Θ1 and Θ2 are the image foreground and back-

ground, respectively, φ(t; c) is the level set function, α and β are positive constant

parameters, and δ(φ) is the Delta function. From an initial contour φ0, the curve

evolution function in Equation (3.8) is evolved until model convergence.

3.4.2 Algorithm for SEAC

A summary of the tensor gradient and active contour algorithms are outlined here.

Algorithm: SETensorGradient()

Input: Image scene C = (C,F).

Output: Eigen image scene with associated tensor gradient: Ĉ = (C, γ).

begin

0. Initialize C = (C,F);

1. Apply SE [19] to F = [F(x1),F(x2), . . . ,F(xn) ∈ R
N×D]

to obtain V = [v1,v2, . . . ,vd ∈ R
N×d];

2. Compute gradients of the embedding vectors in XY plane, (v1, v2, v3):√
∂2vj
∂X2 +

∂2vj
∂Y 2 , where j ∈ {1, 2, 3} ;

3. Calculate tensor gradient: γ(v(c)) =

√
λ̃+ − λ̃−, ∀c ∈ C;

end

Algorithm: SEAC
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Input: Ĉ = (C, γ).

Output: Final AC: φT .

begin

0. SE Tensor Gradient(Ĉ);
1. Calculate g(c) = 1

1+γ2
;

2. Model p(v(c)|Θh), h ∈ {1, 2} as multivariate Gaussians.;

3. Formulate energy functional using p(v(c)|Θh), h ∈ {1, 2} and g(c).;

4. Initialize φ(t; c) = φ0 where t = 0;

5. while |φ(t; c)− φ(t− 1; c)| > ε do

6. Minimize curve evolution function, ∂φ∂t

7. t = t+ 1;

8. endwhile;

9. φT = φ(t; c);

end

3.5 Experimental Design

3.5.1 Data Description

A total of 50 (40 malignant, 10 benign) breast DCE-MRI studies were obtained from

the Hospital at the University of Pennsylvania. All of these were clinical cases where

a screening mammogram revealed a lesion suspicious for malignancy. All studies were

collected under Institutional Review Board approval, and lesion diagnosis was con-

firmed by biopsy and histologic examination. Sagittal T1-weighted, spoiled gradient

echo sequences with fat suppression consisting of one series before contrast injection of

Gd-DTPA (precontrast) and 3 to 8 series after contrast injection (postcontrast) were

acquired at 1.5 Tesla (Siemens Magnetom). Single slice dimensions were 384×384 or

512×512 with a slice thickness of 3 cm. Temporal resolution between postcontrast

acquisitions was a minimum of 90 seconds. The region of interest (ROI) associated

with the lesion was then manually segmented via MRIcro imaging software [48] by an
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attending radiologist (M.A.R.) with expertise in MR mammography. The radiologist

selected a 2D slice of the MRI volume that was most representative of each lesion, and

the analyses were performed only for that 2D slice.

For each pixel, c, in each image, a dynamic signal intensity vector was created

consisting of the signal intensity values of the pixel and each time point in the time

series. F t is the function that assigns a signal intensity value at every pixel c at each

time point t ∈ {0, 1, 2, . . . , T − 1} where T is the number of time points the DCE-MRI

time series. t = 0 refers to the time at which the precontrast image is acquired and

t ∈ {1, . . . , T − 1} refer to the times at which the subsequent postcontrast images are

acquired.

3.5.2 Comparative Segmentation Strategies

Fuzzy c-means (FCM) clustering as described in Chen et al. [35] is widely used for au-

tomated segmentation of breast lesions on DCE-MRI [49,50]. FCM is a data clustering

scheme similar to k-means in that data are clustered around a prescribed number of

centroids. However, unlike k-means, the resulting class membership is a fuzzy mem-

bership to each cluster. We implement the method in Shi et al. [41] (referred to as

FCM+AC) to compare the AC driven by FCM to that driven by SE in SEAC.

3.5.3 Measures for Evaluating Segmentation Performance

In order to evaluate the accuracy of the automated lesion segmentation resulting from

SEAC, the final SEAC lesion boundaries were compared to the manual segmentation

provided by a radiologist. The manual segmentation was considered here to be the

ground truth (GT) for the lesion boundary. The lesion boundary resulting from the

automated segmentation is denoted as Ga1(Ĉ) and the set of pixels inside Ga1(Ĉ) is

Ga2(Ĉ). The lesion boundary resulting from the manual segmentation is denoted as

Gb1(C), and the set of pixels inside Gb1(C) is denoted as Gb2(C). Lesion boundary accuracy

was evaluated by boundary, area, and classifier based performance measures, described

below.
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3.5.4 Boundary-based

Mean absolute difference (MAD) is calculated by evaluating the mean difference be-

tween each point, cz, on Ga1(Ĉ) = {cz|z ∈ {1, . . . , Z}} (SEAC or FCM+AC) where

Z = |Ga1(Ĉ)| and | · | is the cardinality of any set, and the corresponding closest point

on Gb1(C) = {cψ|ψ ∈ {1, . . . , |Gb1(C)|} such that,

MAD =
1

Z

Z∑
z=1

[min
ψ

‖cz − cψ‖2]. (3.9)

Lower values of MAD reflect a more similar segmentation to the ground truth manual

segmentation.

3.5.5 Area-based

Dice similarity coefficient (DSC) is calculated as follows:

DSC =
2|Ga2(Ĉ) ∩Gb2(C)|
|Ga2(Ĉ)|+ |Gb2(C)|

. (3.10)

The closer the DSC value is to 1, the more similar the automated lesion segmentation

is to the GT segmentation.

3.5.6 Classifier-based

Because an accurate lesion segmentation is necessary for accurate morphological fea-

ture extraction [28, 37], improved classification accuracy would be the ultimate test to

demonstrate SEAC’s improvement over previous methods. Morphological features [2]

based on the lesion contour are extracted and used in conjunction with a support vector

machine (SVM) classifier to determine if morphological features based on SEAC con-

tours can yield similar classifier accuracy to morphological features extracted from (a)

manually segmented boundaries; and (b) determine if morphological features based on

SEAC segmentations will result in higher classifier accuracy compared to morphological

features based on FCM+AC segmentations of breast lesions. We calculated 6 morpho-

logical features [2] on 40 datasets (10 benign fibroadenomas; 13 ER+; 7 HER2+; 10

triple negative, ER-/PR-/HER2-) for which molecular phenotyping on histopathology

had been performed. The features extracted [2] include:
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1. Area overlap ratio;

2. Normalized average radial distance ratio;

3. Standard deviation of normalized distance ratio;

4. Variance of distance ratio;

5. Compactness; and

6. Smoothness.

The morphological feature calculation requires a pre-defined lesion boundary, so the

boundaries resulting from SEAC, FCM+AC, and the manual segmentation were used

for morphological feature extraction. The features for each lesion were then used in

conjunction with a SVM classifier [51] with leave-one-out cross validation to determine

the lesion diagnosis.

Although the SVM classifier typically produces a hard classification [51], a pseudo-

threshold can be generated for the SVM by converting the distance of each object

classified to the SVM decision hyperplane into a soft likelihood of belonging to the

object class [2]. Thus the greater the distance of the object from the hyperplane, the

higher the likelihood that it belongs to a particular class whereas the proximity of an

object to the hyperplane reflects higher ambiguity in the class assignment. The receiver-

operator characteristic curves (ROC) curves for SVMs can be generated by varying the

location of the decision hyperplane. As the distance of the objects from the decision

hyperplane changes, the corresponding object-class probabilities also change. At each

location of the decision hyperplane, classification sensitivity and specificity estimates

are obtained. The trade-off between true positive rate (Y -axis of ROC curve) and false

positive rate (X-axis of ROC curve) obtained at each of the different locations of the

hyperplane is used to generate a ROC curve. The area under the curve (AUC) for

the ROC curves for the extracted morphological features sets derived from each of the

segmentation methods is reported in Table 3.
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3.6 Results and Discussion

3.6.1 Comparing SEAC and FCM + AC via Boundary- and Area-

based Metrics

Figure 3.3 shows the comparison between the ground truth boundary for the lesion

obtained via a radiologist and the two automated segmentation methods. The SEAC

segmentations in Figures 3.3(c), (f), and (i) are more similar to the manual segmenta-

tions in Figures 3.3 (a), (d), and (g) compared to the FCM initialized AC (FCM+AC)

segmentations in Figures 3.3 (b), (e), and (h). In particular, Figure 3.3(f) shows that

the SEAC model was able to capture the spicularity of the lesion whereas the FCM+AC

segmentation (Figure 3.3(e)) was not. The mean and variance of both MAD and DSC

for FCM+AC and SEAC in segmenting lesions over 50 studies are shown in Table 2

and demonstrate that SEAC is closer to the GT segmentation in terms of both MAD,

a boundary-based metric, and DSC, a region-based metric.

Table 2: Evaluation of SEAC vs. FCM+AC

Segmentation Method MAD (µ± σ) DSC (µ± σ)

FCM + AC 7.2±7.4 0.58±0.32

SEAC 3.2± 2.1 0.74± 0.13

3.6.2 Classifier Performance based Comparison of SEAC and FCM +

AC

The AUC values calculated based on the SVM classifier performance in discriminating

between benign and malignant lesions via morphological features extracted (a) man-

ually, (b) via FCM+AC, and (c) via SEAC are shown in Table 3. The AUC for the

manual segmentation was best, whereas the AUC for the SEAC morphological features

was second, and the morphological features based on FCM+AC had the lowest AUC.

In conjunction with the results in Table 2, it is clear that accurate lesion segmentation

leads to better classifier performance when the lesion classifier is based on morphology

features.



32

Table 3: Benign vs. Malignant Lesion Classification

Segmentation Method AUC

Manual Segmentation 0.83

FCM + AC 0.65

SEAC 0.73

3.7 Concluding Remarks

In this paper we presented a new active contour (AC) model (spectral embedding based

AC, (SEAC)) involving use of an alternative image representation obtained via a man-

ifold learning scheme that results in stronger boundary gradients and improved region

statistics, in turn providing improved stopping criteria for the AC. SE transforms the

high dimensional DCE-MRI time series data to a reduced dimensional space that is

comprised of an orthogonal basis set of eigenvectors. This transformed space provides

strong tensor gradients and improved region statistics compared to those that might be

obtained from the original grayscale image alone. On a cohort of 50 breast DCE-MRI

studies, we showed that SEAC outperformed segmentations based on a fuzzy c-means

based AC. We also demonstrated that on a cohort of 40 lesions, the morphological fea-

tures derived from SEAC yielded better lesion classification compared to morphological

features derived from FCM-based segmentation. While in this work we demonstrate the

use of SEAC with breast DCE-MRI data, SEAC could be easily applied to segmenting

structures on other high dimensional, time-series imaging data as well. In future work,

we plan to automatically optimize the parameters of the energy function in the AC and

expand the data cohort to test the robustness of SEAC with a diverse group of lesion

types.
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(a) (b)

(c) (d)

Figure 3.2: Comparison of segmentation using (b) FCM+AC, and (d) SEAC. The ten-
sor gradient associated with the FCM image is shown in (a) and the tensor gradient
associated with SEAC is shown in (b). Note that in regions of the automated seg-
mentation driven by the FCM image, the areas where the contour fails to stop are the
locations where the gradient is weak (a),(b). Conversely, the tensor gradient derived
from SE is strong at all locations along the lesion boundary, resulting in a final auto-
mated segmentation that is very similar compared to the manual segmentation (inset
image in (b) and (d)).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.3: Comparison of segmentation of two different invasive ductal carcinomas
and one benign lesion via (a), (d), (g) manual delineation, (b), (e), (h) FCM+AC, and
(c), (f), (i) SEAC. Note that in (b), (e), and (h) the FCM image does not provide
a strong enough gradient at the lesion boundary and hence is unable to discriminate
between the lesion and the other breast tissue. However, SEAC (c), (f), (i) yields a
lesion segmentation that is very close to the manual delineation of the tumor in (a),
(d), (g). Note that the colormaps displayed for both the FCM and SEAC methods ((b),
(e), (h) and (c), (f), (i), respectively) only reflect the pixel similarities as determined by
the 2 schemes, pixels with similar time-intensity curves being assigned similar colors.
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Chapter 4

Distinguishing Benign from Malignant Breast Lesions

4.1 Introduction

Magnetic Resonance Imaging (MRI) is currently used as a complement to conventional

x-ray mammography in diagnosis of breast lesions [8]. X-ray mammography remains

the gold standard for breast cancer screening and offers high 2-dimensional resolution,

which is advantageous for detecting small variations in tissue composition, such as

microcalcifications [52]. However, due to the constraints of imaging a 3-dimensional

structure in a single plane, ultrasound or breast dynamic contrast-enhanced (DCE)-

MRI is often used as a secondary imaging technique when a suspicious lesion is found

on mammography [52]. Ultrasound is very good at detecting tissue composition and

hence is able to provide additional information to the mammogram in situations where

the breast tissue is dense or a cystic mass needs to be ruled out [53]. DCE-MRI is also

very good at imaging dense breasts, but its major advantages over mammography and

ultrasound are the ability to: (a) image the entire breast as thin slices that comprise

the entire breast volume and (b) measure variations in contrast uptake that provide

information about the vascularity of the breast tissue. Since malignant tumors often

have a high density of blood vessels that are poorly formed and thus leaky, they take up

contrast dye at a different rate from benign lesions, allowing radiologists to distinguish

malignant from benign lesions based on corresponding differences in contrast kinetics

[8, 54].

On account of breast DCE-MRI’s high 3-dimensional resolution and its ability to

acquire kinetic contrast information, its lesion detection sensitivity is close to 100% [10],

much higher than that of either mammography or ultrasound [8]. However, specificity

of breast DCE-MRI is low, with rates of between 30% and 70% [10, 49] having been
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reported. High false positive detection rates on MRI often lead not only to anxiety

for the patient, but may also result in an unnecessary invasive biopsy [8, 10]. In a

review of the literature, Saslow et al. [8] found biopsy rates were between 3 and 15%

when MRI was used for breast cancer screening. In addition to the problem of low

specificity, another shortcoming of breast MRI is that only experienced radiologists

are able to accurately distinguish benign from malignant tumors [8, 28]. This often

leads to high rates of interobserver variability [28]. Ikeda et al. [28] reported this

variability with kappa statistics between 0.21 and 0.40, where 1.0 represents complete

agreement and 0.0 represents no agreement above the level expected by random chance.

Therefore, one of the challenges in facilitating increased acceptance of breast DCE-MRI

as a screening modality is reducing false positive detection errors, thereby boosting

detection specificity. Additionally, the interobserver variability for breast DCE-MRI

must be minimized.

To address the issues of low specificity and high interobserver variability in breast

DCE-MRI, the American College of Radiology proposed the Breast Imaging Reporting

and Data System (BIRADS) [9], a semi-quantitative classification protocol for evalu-

ating breast lesions. Lesions are evaluated on the basis of shape, margin morphology,

internal enhancement, and kinetic or time-intensity curve characteristics [37, 38]. As-

suming that the imaging is complete, the radiologist gives each lesion seen on DCE-MRI

a score between 1 and 6, where 1 is Negative and 6 is Known cancer [9] based on the

combination of lesion characteristics. Although the BIRADS system has helped to stan-

dardize the diagnosis of breast lesions, studies [8, 28, 38] continue to report significant

variability in lesion interpretation among radiologists.

The remainder of this paper is organized as follows. In Section 2, we discuss the

previous work in the analysis of breast DCE-MRI and computer-aided diagnosis (CAD)

for breast DCE-MRI as well as the motivation for the methods proposed in this paper.

In Section 3, we provide a description of the data and notational convention employed

and also describe our feature extraction schemes. We also provide details on the clas-

sifier methods used to quantify feature performance in Section 3. In Section 4, the

experiments performed and the metrics used to evaluate the features are described.



37

Quantitative and qualitative results showing the performance of the individual descrip-

tors are presented in Section 5. Concluding remarks and future directions are presented

in Section 6.

4.2 Previous Work and Motivation

In clinical decision-making, changes in signal intensity kinetics are an important de-

scriptor for breast lesion characterization in DCE-MRI [28,37,38,52,54,55]. DCE-MRI

involves first injecting a contrast agent such as gadolinium diethylenetriamine-pentaacid

(Gd-DTPA) into the patient’s bloodstream and concurrently acquiring a time series of

MR images of the breast. Since malignant lesions tend to grow leaky blood vessels in

abundance, the contrast agent is taken up by tumors preferentially [56]. Kuhl et al. [54]

found that data in the time series MR images could be plotted as single data points on

a temporal curve, where the shape of the curve is reflective of the lesion class. It was

shown [54] that malignant lesions had a characteristic curve with a steep positive initial

slope indicating rapid uptake of contrast agent and a subsequent negative slope indicat-

ing rapid washout. Benign lesions had slow contrast uptake (small positive initial slope)

and then plateaued or did not reach peak intensity during the image acquisition period.

Although signal intensity kinetics offer a great advantage to DCE-MRI for studying the

functional attributes of breast lesions compared to other modalities, features derived

from contrast enhancement data contribute to the high false positive rates reported for

breast DCE-MRI [10]. For instance, while both benign and malignant neoplastic tissue

frequently have contrast enhancement patterns that differ from normal breast tissue, it

is often difficult for radiologists to differentiate between benign and malignant lesions

simply by visually inspecting the contrast-enhanced lesion on the postcontrast MRI.

Consequently, several quantitative and semi-quantitative models have been proposed

to measure the manner in which a lesion takes up the contrast dye [6,35,36,39,55,57–68].

Several computer based image analysis systems have been proposed [35, 36, 39, 57–

67,69,70] with the aim of reducing interobserver variability on breast DCE-MRI. CAD

approaches for breast MRI are typically either for automatically (a) detecting (Com-

puter aided detection, CADe) [35, 36, 39, 57–59, 69, 70] or (b) classifying a lesion as
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benign or malignant (Computer aided diagnosis, CADx) [35, 36, 60–67]. Automated

CADe approaches usually exploit the fact that malignant lesions typically have dif-

ferent signal intensity kinetic profiles on DCE-MRI compared to normal parenchyma

[35, 36, 39, 57–59, 69, 70]. Some of these methods have been shown to have a detection

accuracy comparable to manual detection [35, 36, 39, 57–59, 69, 70]. However, a CADx

system assumes that the lesion detection has been solved either manually or via CADe,

and it is typically comprised of two modules: (1) a quantitative feature extractor and

(2) a classifier that employs the attributes extracted from the lesion to discriminate

lesion classes. Several different CADx classifiers for DCE-MRI have been proposed in-

cluding linear discriminant analysis [58], artificial neural networks [36, 49, 60, 61], and

support vector machine (SVM) classifiers [62]. Feature descriptors employed by CADx

systems have typically included morphological [61], lesion texture [58, 64], contrast en-

hancement [35, 36, 62], or a combination of morphological and contrast enhancement

descriptors [49, 60, 63]. In [61], Meinel et al. found mean volume, area, radial length,

spiculation, perimeter length, and compactness to be among the best morphological

features, and their results with a back-propagation neural network classifier yielded an

AUC of 0.9748 on a dataset of 80 lesions using the leave-one-out method. Zheng et

al. [58] reported an AUC of 0.97 using temporal enhancement texture features on a co-

hort of 36 lesions. Gibbs et al. [64] reported an AUC of 0.80 using co-occurrence texture

features. However, by including patient data in their regression model, they achieved

an accuracy of 92% and an AUC of 0.92. Using contrast enhancement alone, Chen et

al. [35] achieved an AUC of 0.85 over 121 studies, and Levman et al. [62] obtained an

AUC of 0.74 using empirical enhancement features such as signal enhancement ratio

and time to peak enhancement over a cohort of 94 studies.

The three timepoint (3TP) model [65] and the pharmacokinetic model [6] are two

common classifier-based approaches that focus on the kinetic contrast-enhancement

data and have been proposed for automated lesion diagnosis on DCE-MRI. The 3TP

model developed by Degani et al. [65] assigns a color (red, green, or blue) to the slope

of the contrast uptake portion of the kinetic curve and a color intensity between 0.0

and 1.0 to the contrast washout portion of the kinetic curve. The colormaps allow for
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a parametric visualization of the contrast enhancement profile by displaying each pixel

as red if malignant, blue if benign, and green if suspicious for malignancy. Recently

on a dataset of 127 lesions [67], the 3TP model yielded a sensitivity of 75.0% and a

specificity of 83.1%, improving somewhat upon previously reported specificity results

[10, 49], but sacrificing sensitivity. The pharmacokinetic (PK) model differs from the

3TP method in that it attempts to provide a physiologic interpretation of the data by

determining parameters such as Ktrans (the transfer constant between the plasma and

tissue compartments), ve (the extracellular extravascular volume fraction), and kep (the

ratio of Ktrans/ve) [6]. Szabo et al. [36] reported 71% sensitivity and 100% specificity

using features derived from the Hayton PK model. Veltman et al. [71] reported an

AUC of 0.83 with the Tofts PK model. While Ktrans,ve, and kep have been shown

to discriminate between lesion classes [6], the computed values are highly sensitive

to the choice of initial conditions [68]. Moreover, it has been noted in some recent

studies [10,35,52] that the heterogeneity of lesion enhancement poses problems for the

correct selection of pixels for the calculation of signal enhancement features.

The use of signal intensity kinetic profiles for lesion classification is also limited by

other technical hurdles including MR artifacts such as bias field inhomogeneity [72] and

intensity nonlinearity [73]. An alternative to using temporal signal intensity profiles to

characterize the lesion is by quantifying the lesion texture, a somewhat nebulous term

broadly used to refer to localized spatial variations in signal intensity.

Lesion texture has also been acknowledged as an important lesion descriptor as

evidenced the incorporation of internal enhancement as a BIRADS descriptor for breast

MRI lesion classification [9]. While internal enhancement is intended for the assessment

of the MR image at a single timepoint after contrast injection, it may also be useful to

capture a measure of the change in this feature as a function of contrast enhancement.

The concept of studying spatiotemporal textural patterns has been previously explored

in [58] and [59]. Zheng et al. [58] computed the discrete Fourier transform coefficients

of kinetic changes in Gabor filter features to create parametric maps of the lesions.

The authors reported an AUC of 0.97 using a leave-one-out LDA classifier on a cohort

of 36 lesions. Woods et al. [59] computed a 4-dimensional co-occurrence matrix to
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calculate texture features in a pixel-wise fashion to differentiate between normal and

malignant tissue. They were able to distinguish malignant and benign tissue areas with

a sensitivity of 96.22% and a specificity of 99.85% on 4 invasive ductal carcinomas.

In this paper, a scheme is presented to analyze textural kinetic curves which quan-

tify the spatiotemporal patterns of lesion texture during contrast uptake and diffusion.

Instead of reducing the data into a single 2-dimensional image representation as in [58]

and [59], the data here is presented in a manner familiar to radiologists and analogous

to the signal intensity kinetic curves. Hence, the texture measures associated with the

lesion at each pre- and postcontrast enhancement timepoint are plotted on a time series

curve. Unlike [58, 59], the textural kinetic curves can be defined in multiple different

parametric spaces (including Gabor, first order statistical, and Haralick). Parameters

obtained from model fitting these textural kinetic curves are employed in conjunction

with a classifier to distinguish lesion classes. This allows for powerful meta-classifiers

involving parameters from multiple textural and morphological representations to be

easily constructed, unlike in [58, 59], which only consider spatiotemporal changes of

certain attributes (Gabor [58] and co-occurrence [59], respectively). To illustrate the

discriminability associated with the textural kinetic features, the signal intensity and

corresponding textural kinetic curves for a second order textural kinetic feature (Con-

trast Entropy) for 10 benign (blue curves) and 10 malignant lesions (red curves) were

plotted in Figures 1(a) and 1(b), respectively. Each lesion was first manually segmented

by an expert radiologist. The mean signal intensity as well as the texture at each pre-

and postcontrast timepoint were calculated and then plotted. Figures 1(a) and 1(b) re-

veal that the textural kinetic feature was able to separate the benign from the malignant

lesions better than signal intensity kinetics. The improved separation of lesion classes

using the textural kinetic features appears to reinforce the fact that textural represen-

tations of image intensity are robust to bias field and intensity non-standardness [73].

The main components of our methodology for assessing the performance of textural

kinetic features as a lesion classifier on breast DCE-MRI is illustrated in the flowchart

shown in Figure 2. Textural kinetic features are compared to additional signal in-

tensity kinetic, morphologic, and precontrast static texture descriptors of the lesion
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(a) (b)

Figure 4.1: (a) Signal intensity and (b) a second order textural kinetic curves (Con-
trast Entropy) for ten malignant (red) and ten benign (blue) tumors over the course
of contrast administration. Time=0 is precontrast; progression along the Time axis
denotes postcontrast time points. Time is normalized due to variability in the number
of postcontrast timepoints among the datasets.

in distinguishing between benign and malignant breast lesions. The texture operators

used include Gabor filters, first order textural features, and 2nd order textural features.

Gabor filters have been modeled on the patterning of the human visual cortex [74] and

have found widespread application in image analysis [58, 74, 75]. First order textural

features (mean, median) give a global picture of lesion enhancement, whereas standard

deviation and range yield insight into lesion heterogeneity. Second order textural fea-

tures, calculated via co-occurrence matrices [76], reflect regional heterogeneity in the

lesion. This may be particularly important, for example, in deciding if the malignant-

type signal enhancement in a single pixel location in a lesion is an artifact or if there

are neighboring pixels with similar signal intensities that corroborate the enhancement

characteristics of a malignant lesion. The classification performance of each feature is

assessed with both an SVM classifier, which yields a hard benign or malignant classi-

fication, and a probabilistic boosting tree (PBT) classifier, which assigns a probability

of malignancy to each lesion. The SVM classifier is a kernel-based method that has the

ability to capture the nonlinear relationships that occur between biological data [34].

Both the SVM and PBT classifiers have been successfully employed for a variety of

biomedical applications [77]. In addition to the classifiers, graph embedding [19], a
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nonlinear dimensionality reduction method, is used to observe the clustering of data in

a reduced-dimensional embedding space. The separability between the lesion in the re-

duced dimensional embedding space is directly related to the original high dimensional

feature space to which graph embedding is applied.

Figure 4.2: Flowchart illustrating the steps comprising the methodology presented in
this paper. Following manual lesion detection and segmentation, 3 different feature
classes are extracted (morphological, signal intensity kinetics, precontrast texture) to
compare against textural kinetics. Quantitative evaluation of the 4 feature classes is
done via SVM and PBT classifier accuracy while graph embedding is used for qualitative
evaluation.
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4.3 Materials and Methods

4.3.1 Data Description

A total of 41 (24 malignant, 17 benign) breast DCE-MRI studies were obtained from

the Hospital at the University of Pennsylvania. All of these were clinical cases where

a screening mammogram revealed a lesion suspicious for malignancy. All studies were

collected under Institutional Review Board approval, and lesion diagnosis was confirmed

by biopsy and histologic examination. Sagittal T1-weighted, spoiled gradient echo

sequences with fat suppression consisting of one series before contrast injection of Gd-

DTPA (precontrast) and 3-8 series after contrast injection (postcontrast) were acquired

at either 1.5 Tesla or 3 Tesla (Siemens Magnetom or Trio, respectively). Single slice

dimensions were 384×384, 512×512, or 896×896 pixels with a slice thickness of 3cm.

Temporal resolution between postcontrast acquisitions was a minimum of 90 seconds.

The region of interest (ROI) associated with the lesion was then manually segmented

via MRIcro imaging software [48] by an attending radiologist with expertise in MR

mammography. The radiologist selected a 2D slice of the MRI volume that was most

representative of each lesion, and the analyses were performed only for that 2D slice.

4.3.2 General Notation Used

We define a 2D section of a 3D MRI volume as C = (C, f t), where C is a spatial grid of

pixels c ∈ C, and f t is the function that assigns a signal intensity value at every pixel

c ∈ C at each time point t ∈ {0, 1, 2, . . . , T−1} in the DCE-MRI time series. t = 0 refers

to the time at which the precontrast image is acquired and t ∈ {1, . . . , T − 1} refer to

the times at which the subsequent postcontrast images are acquired. The segmentation

performed by the radiologist defines the boundary of the lesion, where the set of bound-

ary points, R = {d(0), d(1), . . . , d(n−1), d(n)}, is a subset of the pixels contained in the

lesion, L, where L ⊂ C. The set of pixels in R = {d(0), d(1), . . . , d(n−1), d(n)} constitute

a closed path such that for i ∈ {0, . . . , n− 1}, d(0) = d(n+1), and ‖d(i) − d(i+1)‖2 ≤ √
2,

assuming unit spacing between the pixels in C. The coordinates of the centroid of L
are defined as c̄ = (x̄, ȳ), where c̄ = 1

|L|
∑
c∈L

c and |L| is the cardinality of set L. A list
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Symbol Description

C 2D MR image scene.

hq(c) Texture feature for c ∈ L, q ∈ {1, . . . , Q}.
C 2D grid of pixels, c ∈ C.

Ns(c) Square neighborhood of length s
associated with each c ∈ L.

c Spatial location of a pixel in C, where c = (x, y).

Φγ Feature operator, where 1≤ γ ≤ K.

L Set pixels corresponding to a lesion.

Fγ Average feature value for operator Φγ

over all c ∈ L.
R A set of pixels defining

the boundary of a lesion, L.
φ ∈ {SVM, 3TP, PBT} Classifier type.

c̄ Centroid of a lesion,
defined by the 2D center of mass.

Vφ Classifier output where Vφ ∈ {−1,+1}.
r Maximum radial distance of the lesion.

{NTP,φ, NTN,φ, NFP,φ, NFN,φ} Number of lesions identified as True Positive,
True Negative, False Positive, and False Negative,

respectively, using classifier φ.

t A time point in the MRI time series,
t ∈ {0, 1, 2, . . . , T − 1}.

Y ∈ {−1,+1} Ground truth label of lesion, L.
f t(c) Signal intensity value associated with a pixel, c,

at timepoint, t ∈ {0, 1, 2, . . . , T − 1}.
E = {L1,L2, . . . ,LM} Dataset comprised of M lesions.

Table 4.1: List of notation and symbols commonly used in this paper.

of notation and symbols commonly used in this paper is shown in Table 1.

4.3.3 Feature Extraction

Texture Features

A combination of 92 precontrast texture features and 92 textural kinetic features are

calculated to describe the texture of each lesion in the dataset. We explore multiple

different texture operators, Φγ , 7 ≤ γ ≤ K, where K = 191 represents the total number

of features. The application of Φγ , γ ∈ {7, . . . ,K} to each lesion L yields a unique

feature, Fγ . Both the texture of the lesion before contrast agent injection (precontrast
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texture) and the textural kinetic feature classes are obtained via application of several

steerable, non-steerable, and statistical filters. Table 2 summarizes all texture features

employed in our work.

A. Gradient Features

Eleven non-steerable gradient features were obtained using Sobel and Kirsch edge filters

and first order spatial derivative operations. The Gabor filters, comprising the steerable

class of gradient features, are defined by the convolution of a 2D Gaussian function with

a cosine [78]. Hence, for every c ∈ L, where c = (x, y) [79, 80], the Gabor filter bank

response can be expressed as,

lΩ,Λ,ϕ(c) = e−
x′2+y′2

2Ω2 cos(2
π

Λ
x′), (4.1)

where Λ is the wavelength of the sinusoid which controls the spatial frequency (scale)

of the oscillations. The width of the Gaussian envelope Ω is used to define filters as

a function of Λ such that Ω = 0.56Λ as derived in [74]. Filter orientation, ϕ, dictates

the coordinate transformations: x′ = x cosϕ + y sinϕ and y′ = −x sinϕ + y cosϕ. Six

different scales (Λ ∈ { π
2
√
2
, π4 , . . . ,

π
16}) and 8 orientations (ϕ ∈ {0, π8 , . . . , 7π8 }) were

considered in constructing the Gabor filter bank.

B. First Order Statistical Features

Four first order statistical features (mean, median, standard deviation, and range) for 3

different square window sizes, s ∈ {3, 5, 7}, were calculated for the gray values of pixels

within the sliding window Ns. At every c ∈ C,Ns(c) = {d ∈ C|d �= c, ‖d−c‖2 ≤ s}, and
‖ · ‖2 is the L2 norm. Hence, average intensity, f̄(c) within window Ns(c) is calculated

as,

f̄(c) =
1

|Ns(c)|
∑

d∈Ns(c)

f(d), (4.2)

where c ∈ C is the center pixel of the square windowNs(c). Median, standard deviation,

and range of image intensities within each Ns(c) for each c ∈ C are also calculated.
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Texture Fea-
ture Class

Individual Attributes Parameters

Gabor Filters 6 scales Λ ∈ { π
2
√
2
, π4 , . . . ,

π
16},

8 orientations ϕ ∈ {0, π8 , . . . , 7π8 }
Kirsch Filters X -direction s = 3

Y -direction
XY -diagonal

Sobel Filters X -direction s = 3
Y -direction
XY -diagonal
YX -diagonal

Grey Level Mean s ∈ {3, 5, 7}
Median

Standard Deviation
Range

x -Gradient
y-Gradient

Magnitude of Gradient
Diagonal Gradient

Haralick Contrast Energy s = 3,
Contrast Inverse Moment g = max

d∈C
[f(d)]

Contrast Average
Contrast Variance
Contrast Entropy
Intensity Average
Intensity Variance
Intensity Entropy

Entropy
Energy

Correlation
Info. Measure of Correlation 1
Info. Measure of Correlation 2

Table 4.2: Summary of all textural features considered in this paper with associated pa-
rameter values. These features were used in the calculation of precontrast, postcontrast,
and kinetic textural features.



47

C. Second Order Statistical Features

To calculate the second order statistical (Haralick) feature scenes [76], a pixel window,

Ns, s = 3 is defined. The parameter s = 3 was chosen to capture spatial variations at

a high resolution because some of the smaller lesions in the dataset have an area just

above 100 pixels. We then compute from each Ns(c), c ∈ C, a g × g spatial gray level

co-occurrence matrix Gc, where g is the maximum grayscale intensity of the image, C

(g = max
d∈C

[f(d)]). The value Gc[u,w] at any location, u,w ∈ {1, . . . , g}, represents the

frequency with which two distinct pixels, d, k ∈ Ns(c) with associated image intensities

f(d) = u, f(k) = w are adjacent (i.e., within the same 8-pixel neighborhood of Ns(c)).

A total of 13 second order statistical [76] features (see Table 2) were extracted within

each Ns(c) for every pixel c ∈ C for s = 3.

Textural Kinetic Features

For each d ∈ L, htq(d) represents each of the Q different pixel-based pre- and post-

contrast texture feature values, where q ∈ {1, . . . , Q} and t ∈ {0, . . . , T − 1}. The

mean feature value, h̄tq, within each lesion L and at each timepoint t is then ex-

pressed as h̄tq = 1
|L|

∑
d∈L

htq(d), q ∈ {1, . . . , Q}, and a corresponding textural kinetic

vector, ĥq = [h̄0q , h̄
1
q , . . . , h̄

T−1
q ] is created. A third order polynomial is fitted to ĥq to

characterize its shape as,

h̃tq = ρq,3t
3 + ρq,2t

2 + ρq,1t+ ρq,0, (4.3)

where [ρq,3, ρq,2, ρq,1, ρq,0] are the model coefficients obtained by minimizing the root

mean squared difference error between ĥq and h̃tq, where t ∈ {0, . . . , T − 1} and q ∈
{1, . . . , Q}.

Signal Intensity Kinetic Feature

Signal intensity kinetic curves are calculated from the mean signal intensity within the

lesion ROI in a manner similar to the curve generated and described in Section 2.3.2.

The average lesion intensity is obtained as [f̄0, f̄1, f̄2, . . . , f̄T−1], t ∈ {0, . . . , T − 1}.
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The model coefficients [η3, η2, η1, η0] of a third order polynomial are obtained by the

minimization procedure described in Section 2.3.2.

Morphological Features

For mass-like lesions, two important lesions descriptors in the BIRADS lexicon are lesion

shape (e.g., round, oval, lobular, irregular) and lesion margin (e.g., smooth, irregular,

spiculated) [9]. In this study, we consider 6 different quantitative descriptors modeled on

the BIRADS attributes (Table 3) [81,82]. The Area Overlap Ratio is a measure of lesion

roundness, and the Normalized Average Radial Distance Ratio, Standard Deviation of

Normalized Distance Ratio, Variance of Distance Ratio, Compactness, and Smoothness

are all descriptors for quantifying irregularity of the lesion boundary.

Morphological feature Description

Area Overlap Ratio |L|
πr2

where r = max
d∈R

[‖d− c̄‖] (See Figure 3(a)).

Normalized Average
Radial Distance Ratio

1
|R|

∑
d∈R ‖d−c̄‖

max
d∈R

[‖d−c̄‖] .

Standard Deviation of
Normalized Distance
Ratio

σΓ =
√

1
|R|

∑
d∈R(Γ(d)− µΓ)2,

where Γ(d) = ‖d−c̄‖
max
d∈R

[‖d−c̄‖] and µΓ = 1
|R|

∑
d∈R

Γ(d).

Variance of distance ra-
tio

Square of standard deviation, σ2Γ

Compactness [D(R)]2

|L| , where D(R) = the perimeter of R,

D(R) =
n−1∑

d∈Ri=0

‖d(i+1) − d(i)‖.
Smoothness

∑
d∈R,i∈{0,...,n−1}

B(d(i)), where:

B(d(i)) = |‖d(i) − c̄‖ − ‖d(i−1)−c̄‖+‖d(i+1)−c̄‖
2 | (see Figure 3(b)).

Table 4.3: List of morphological features and their mathematical descriptions.
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(a) (b)

Figure 4.3: Schematics illustrating the calculation of morphological features: (a) Lesion
boundary (red) and circle enclosing it (green) used to calculate Area Overlap Ratio;
(b) vectors used for calculation of lesion smoothness. c̄ is the lesion centroid, and
d(i−1), d(i), d(i+1), i ∈ {1, . . . , n− 1}, are consecutive points on the lesion boundary.

4.3.4 Classification

Support Vector Machine (SVM):

The SVM classifier, VSVM , is employed to evaluate the ability of the lesion descriptors to

discriminate between benign and malignant breast lesions on DCE-MRI. We construct

the VSVM by using a kernel function (Π) to project training data Etra ⊂ E, where

E = {L1,L2, . . . ,LM} is the set of all lesions, onto a higher-dimensional space. This

higher-dimensional space allows the SVM to construct a hyperplane to separate the

2 data classes (benign and malignant in our case). The VSVM is then evaluated by

projecting testing data, Etes ⊂ E, where Etes ∩ Etra = ∅ into the same space and

recording the location of the newly embedded datapoint with respect to the hyperplane.

In our implementation, the radial basis function (RBF) kernel was employed to project

the attributes with Fγ(Li) and Fγ(Lj), γ ∈ {1, . . . ,K}, where i, j ∈ {1, . . . ,M} and

i �= j, into a higher dimensional space. The functional form of the RBF is given by [83],

Π(Fγ(Li),Fγ(Lj)) = e−δ‖F
γ(Li)−Fγ(Lj)‖22 , (4.4)

where δ is a scaling parameter. The general form of the SVM classifier is given as

Θ(Li) =
τ∑
ζ=1

ξζY (Lζ)Π(Fγ(Li),Fγ(Lζ)) + b, (4.5)
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where ζ ∈ {1, 2, . . . , τ} represents the τ marginal training samples (i.e., support vec-

tors), b is the hyperplane bias estimated for Etra, and ξζ is the model parameter

determined by maximizing an objective function subject to constraints which control

the trade-off between empirical risk and model complexity [34, 51]. Y (Lj) ∈ {+1,−1}
represents the class labels, malignant and benign, respectively. Θ(Li) represents the

displacement from image Li to the hyperplane, and the output of the SVM classifier,

VSVM (Li), is equal to sign[Θ(Li)]× 1.

Probabilistic Boosting Trees (PBT):

AdaBoost [84] is one of the most commonly used ensemble machine learning algorithms

which yields a class label prediction by combining the outputs from several weak classi-

fiers. However, in AdaBoost the weighting scheme sometimes penalizes samples that are

misclassified by a weak classifier even if they were previously correctly classified by a dif-

ferent weak classifier. Additionally, the order of features considered during classification

is not preserved via Adaboost. The probabilistic boosting tree (PBT) algorithm [85]

addresses these issues by iteratively generating a tree structure of length, B, in the

training stage where each node of the tree is boosted with H weak classifiers. The hier-

archical tree is obtained by dividing training samples, Etra into two subsets of Etra,Right

and Etra,Left based on the learned strong classifier at each node using the standard Ad-

aBoost algorithm [84] and recursively training the left and right sub-trees. To avoid

overfitting, the error parameter ε is introduced such that samples falling in the range

[12−ε, 12+ε] are assigned to both subtrees with probabilities p(Fγ(L)|+1) −→ Etra,Right

and p(Fγ(L)| − 1) −→ Etra,Left, where the function p(Fγ(L)|+ 1) represents the pos-

terior class conditional probability of L belonging to class +1 (malignant lesion). The

algorithm stops when misclassification error hits a predefined threshold, θ. ε was set

to 0.1 and θ = 0.45 as suggested in [85]. During testing, the posterior class condi-

tional probability of the sample being malignant is calculated at each node based on

the learned hierarchical tree. The discriminative model is obtained at the top of the

tree by combining the probabilities associated with probability propagation of the sam-

ple at various nodes. The output of the PBT classifier, VPBT , is defined such that if
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p(L|+ 1) > α, then VαPBT = +1, else VαPBT = −1, where α ∈ [0, 1].

For both the VSVM and VPBT , we use leave-one-out strategy for classifier training

and evaluation. The training dataset, Etra, is related to the test dataset, Etes, by

Etes = E − Etra, Etes ∩ Etra = ∅. During each iteration, Etes contains only one lesion,

one that was not considered as Etes during previous iterations.

Three Timepoint (3TP) Modeling

We compared our kinetic texture classifier to the popular 3TP classifier (V3TP ). The

methods described in [65–67] were used to create a parametric map of signal intensity

kinetics in the Hue, Saturation, Value (HSV) color space for each pixel d in each lesion L.
Thus the contrast washout rate (Fwout) is assigned to the Hue channel, and the contrast

uptake rate (Fwin) is assigned twice to both the Saturation and Value channels. Each

pixel, d ∈ L is assigned a red hue when representing highest likelihood of malignancy,

green when representing moderate likelihood of malignancy, or blue when representing

low likelihood of malignancy. At each pixel, d ∈ L, Fwin(d) = f1(d)−f0(d)
t1−t0 and Fwout(d) =

f2(d)−f1(d)
t2−t1 , where t0 is the precontrast timepoint, t1 is the first postcontrast timepoint,

and t2 is the second postcontrast timepoint. Fwin(d) and Fwout(d) were rescaled between

0 and 1 for all d ∈ L. The empirical thresholds for the hue channel were as follows: if

Fwout(d) < 0.4, then d is assigned red (0 radian); if Fwout(d) > 0.5, then d is assigned

blue (π/3); else if 0.4 ≤ Fwout(d) ≤ 0.5 then d is assigned green (2π/3). Both the

saturation and value channels are set equal to the normalized Fwin value. A lesion

was classified as malignant if it contained any red pixels (V3TP = +1) and benign if it

contained no red pixels (V3TP = −1).

4.4 Experiments and Performance Measures

4.4.1 Experiments

3.1(a) Discriminating benign vs. malignant lesions based on individual at-

tributes from morphological, signal intensity kinetics, precontrast texture,

and textural kinetics feature classes.
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A total of 41 images (17 benign, 24 malignant) were analyzed. The separability of

lesion classes (17 benign, 24 malignant) using individual descriptors from the feature

classes (textural kinetic, precontrast texture, morphological, and signal intensity kinet-

ics) was first qualitatively evaluated using graph embedding, a nonlinear dimensionality

reduction technique. We then compared the 191 individual descriptors to discriminate

between benign and malignant lesions using 2 different quantitative classifiers, SVMs

and PBTs. We also compare the SVM and PBT classification results to the 3TP clas-

sifier.

3.1(b) Discriminating benign vs. malignant based on combination of best-

performing features.

Following identification of the top-performing features (Experiment 3.1(a)), these at-

tributes are used to construct both a combined SVM classifier and a combined PBT

classifier. The performance of each combined meta-classifier (SVM, PBT) is then eval-

uated against individual attributes.

4.4.2 Performance Measures

Qualitative Evaluation via Graph Embedding

Graph embedding (GE) is a nonlinear dimensionality reduction scheme that is used to

transform the high-dimensional set of image features into a low-dimensional embedding

while preserving relative distances between images in the original feature space [19,

34]. Given lesions Li and Lj with corresponding feature vectors Fγ(Li) and Fγ(Lj),
where i, j ∈ {1, . . . ,M} and γ ∈ {1, . . . ,K}, an M × M confusion matrix W[i, j] =

e−‖Fγ(Li)−Fγ(Lj)‖2 ∈ R
M×M is constructed. The optimal embedding vector, X, is

obtained from the maximization of the following function:

E(X) = 2(M− 1) · trace
[
XT(A−W)X

XTAX

]
, (4.6)

where A is the diagonal matrix where each diagonal element is defined as A[i, i] =
∑

j W[i, j], ∀a ∈ {1, 2, . . . ,M}. The lower-dimensional embedding space is defined by

the Eigenvectors corresponding to the β smallest Eigenvalues of (A − W)X = λAX.
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The matrix X(E) ∈ R
M×β of the first β Eigenvectors is constructed such that X(E) =

{X(L1),X(L2), . . . ,X(LM)}. In our case, β = 3 so that the embedding basis vectors

can be denoted, e1, e2, e3 for any X(Li), where i ∈ {1, . . . ,M}. Embedding plots of the

data reduced to three dimensions were used to visualize each feature’s ability to cluster

the lesions into their appropriate diagnoses.

Quantitative Evaluation

For all three classifiers, Vφ, where φ = {SVM,PBT, 3TP}, each lesion is identified as

either a true positive (TP), false positive (FP), false negative (FN), or a true negative

(TN) by comparing the classifier output, Vφ(L), to the true label, Y (L). If Vφ(L) =

Y (L) = −1, lesion L is identified as a TN; if Vφ(L) = Y (L) = +1, lesion L is identified

as a TP; if Vφ(L) = +1 and Y (L) = −1, lesion L is identified as a FP error; and if

Vφ(L) = −1 and Y (L) = +1, lesion L is identified as a FN error. For each classifier,

φ ∈ {SVM,PBT, 3TP}, the number of TP (NTP,φ), TN (NTN,φ), FP (NFP,φ), and

FN (NFN,φ) lesions over the entire set E are calculated. Sensitivity (SNφ), specificity

(SPφ), and accuracy (ACφ) for each classifier are then calculated as,

SNφ =
NTP,φ

NTP,φ +NFN,φ
, SPφ =

NTN,φ

NTN,φ +NFP,φ
, and

ACφ =
NTP,φ +NTN,φ

|E| ,

where |E| is the cardinality of set, E.

Receiver Operator Characteristic Curves

Receiver Operating Characteristic (ROC) curves representing the trade-off between

sensitivity and specificity for breast cancer diagnosis can be generated for VPBT since

α can be varied. Each point on the ROC curve corresponds to the sensitivity (SNα
PBT )

and 1-specificity (1 − SPαPBT ) over E for some probability threshold α ∈ [0, 1], where

the interval between α values, ∆α, is 0.05.
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4.5 Results

4.5.1 Qualitative Results

Figure 4 shows the embedding plots for the 2 features that separated the benign from

malignant lesions best. The morphologic features and precontrast texture features did

not cluster the lesions appropriately, whereas the signal intensity kinetic feature and

various textural kinetic features did separate the data reasonably well into benign and

malignant lesion categories. Although signal intensity kinetics produces a clustering

of data classes that is similar to textural kinetic features, the clusters appear better

separated in the textural kinetic embedding space (Figure 4(b)).

(a) (b)

Figure 4.4: Embedding plots obtained by plotting the three graph embedding vectors
(e1, e2, e3) for (a) Signal intensity kinetics and (b) Gradient in the X-direction kinetics.
Note the increased separation of benign (blue) and malignant (red) lesions for the
textural kinetic feature compared to signal intensity kinetics.

Parametric Maps

Figure 5 shows representative images for two types of benign lesions and one type of

malignant lesion. Each row shows (left to right) the precontrast image, the postcontrast

image corresponding to the peak lesion enhancement (maximum signal intensity across

the time series), the 3TP parametric map, and a postcontrast texture image for Intensity

Entropy, a second order statistical (Haralick) feature. Note the differences in internal
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intensity in the postcontrast texture maps (see Fig. 5(d), 5(h), 5(l)), especially between

the malignant lesion and the two benign lesions. The malignant lesion in Figure 5(l)

is overall brighter than the two benign lesions, indicating a higher heterogeneity in

internal lesion enhancement. This is not as easily discernible from the parametric

representations shown in Figure 5(c), 5(g), and 5(k).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.5: Examples of the contrast enhancement patterns associated with (a)-(d)
a benign fibroadenoma; (e)-(h) a benign sclerosing adenosis; and (i)-(l) a malignant
lesion. Figures 5 (a), (e), and (i) show the full precontrast image. Figures 5 (b), (f),
and (j) show the postcontrast timepoint showing peak enhancement. Figures 5 (c), (g),
and (k) show the feature 3TP maps corresponding to the studies in (a), (e), and (i).
Figures 5 (d), (h), and (l) show the postcontrast texture maps for the Intensity Entropy
feature for the peak enhancement timepoint. The 3rd and 4th columns are magnified
to accentuate the lesion. Note that Figures 5(d), (h), and (l) are able to illustrate lesion
heterogeneity (highest in 5(l) as indicated by the brightness of the lesion compared to
5(d) and (h)) by a simple grayscale value, whereas human visual interpretation of the
red, green, and blue values in 5(c), (g), and (k) is required to reach a similar conclusion.
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Feature class Feature ACSVM SNSVM SPSVM AUCSVM

Morphological Smoothness 0.73 0.88 0.53 0.77

1st Order Gabor filter, 0.71 0.67 0.76 0.73
Textural Kinetics Λ = π

8
√
2
, ϕ = π

8

Gabor filter, 0.76 0.75 0.76 0.78
Λ = π

8
√
2
, ϕ = 7π

8

Median gray level 0.76 0.75 0.76 0.78

2nd Order Contrast inverse 0.73 0.88 0.52 0.70
Textural Kinetics moment

Table 4.4: Results of SVM classifier for top 5 performing individual features in distin-
guishing benign from malignant lesions using leave-one-out validation.

4.5.2 Quantitative Results

Classification of Lesions Using Individual Features with a Support Vector

Machine Classifier

Table 4 shows that in conjunction with the SVM classifier the best textural kinetic fea-

ture (X-gradient) had greater values of accuracy than the best-performing morphology

feature, smoothness, and signal intensity kinetics performed worse than smoothness.

For the morphological feature class, smoothness showed higher accuracy than all other

morphological features. We also observed that variants of the X-direction gradient fea-

ture, including the Sobel and Kirsch edge filters and 1st order derivative operations, all

performed comparably. Gradients in the Y - direction and diagonal gradients (results

not shown here) did not perform as well. Note that when the VSVM was employed,

the best-performing 1st and 2nd order (Contrast inverse moment) textural kinetic fea-

tures also outperformed signal intensity kinetics in terms of accuracy, sensitivity, and

specificity (Table 4).

Classification of Lesions Using Individual Features with Probabilistic Boost-

ing Trees

For VPBT , we found similar results to those obtained using VSVM . Using results from

the operating point on the ROC curve (defined by the point on the curve that minimizes
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Feature class Feature ACSVM SNSVM SPSVM AUCSVM

Morphological Smoothness 0.73 0.88 0.53 0.77

Precontrast Gabor filter, 0.63 0.90 0.25 0.65
Texture Λ = π

8
√
2
, ϕ = 7π

8

Postcontrast Intensity 0.68 0.83 0.47 0.70
Texture Variance

Signal Intensity Signal Intensity 0.63 0.67 0.59 0.75
Kinetics

1st Order Gabor filter, 0.76 0.75 0.76 0.78
Textural Kinetics Λ = π

8
√
2
, ϕ = 7π

8

2nd Order Contrast inverse 0.73 0.88 0.52 0.70
Textural Kinetics moment

Table 4.5: Results of SVM classifier for top-performing individual attributes in distin-
guishing benign from malignant lesions using leave-one-out validation.

the Euclidean distance from the feature’s ROC curve to the ideal 100% sensitivity,

100% specificity point on the graph), Table 5 shows that Contrast inverse moment

performed the best from among a Gabor-filtered precontrast image, X-gradient and

smoothness. The ROC curves in Figure 6 show that contrast inverse moment had the

highest accuracy, sensitivity, and specificity at the operating point among the different

feature classes. This was also reflected in the average area under the curve (AUCPBT )

in Table 5.

Classification of Lesions Using 3TP parametric maps

The classification of all lesions in the dataset using the 3TP parametric maps (V3TP )

produced an accuracy of 78%, sensitivity of 92%, and specificity of 59%.

4.5.3 Classification Performance of Combinations of Features

We selected the best performing features from across all feature classes that had an

accuracy rate above 70% to create a combined metaclassifier using the SVM and PBT

classifiers. By combining smoothness and the textural kinetic feature for X-gradient

in conjunction with an SVM classifier (VSVM ), a classification accuracy of 85%, sen-

sitivity of 88%, and specificity of 82% using the leave-one-out strategy was obtained.
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Feature class Feature ACPBT SNPBT SPPBT AUCPBT

Morphological Smoothness 0.85 0.91 0.76 0.91

1st Order Gabor filter, 0.89 0.98 0.76 0.78
Textural Kinetics Λ = π

8
√
2
, ϕ = π

8

Gabor filter, 0.89 0.99 0.74 0.86
Λ = π

8
√
2
, ϕ = 7π

8

Median gray level 0.90 0.97 0.81 0.83

2nd Order Contrast inverse 0.90 0.95 0.82 0.92
Textural Kinetics moment

Table 4.6: Results of PBT classifier for top-performing individual attributes in distin-
guishing benign from malignant lesions using leave-one-out validation. Note that the
ACPBT , SNPBT , and SPPBT values reported here are for the operating point on each
feature’s respective ROC curve.

Feature class Feature ACPBT SNPBT SPPBT AUCPBT

Morphological Smoothness 0.85 0.91 0.76 0.91

Precontrast Gabor filter, 0.84 0.94 0.71 0.86
Texture Λ = π

8
√
2
, ϕ = 7π

8

Postcontrast Intensity 0.70 0.92 0.41 0.58
Texture Variance

Signal Intensity Signal Intensity 0.79 0.94 0.59 0.78
Kinetics

1st Order X-gradient 0.83 0.88 0.76 0.85
Textural Kinetics

2nd Order Contrast inverse 0.90 0.95 0.82 0.92
Textural Kinetics moment

Table 4.7: Results of PBT classifier for top-performing individual attributes in distin-
guishing benign from malignant lesions using leave-one-out validation.
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Figure 4.6: ROC curves generated for VSVM by the decision plane for the top-
performing feature in each feature class. The individual features for which ROC curves
have been plotted are: second order textural kinetic feature, Contrast inverse moment;
first order textural kinetic feature, X-gradient; morphology feature, Smoothness; and
the Gabor filter channel corresponding to Λ = π

8
√
2
, ϕ = 7π

8 for the precontrast image.

Classifier combination AC SN SP AUC

Smoothness + X-direction Sobel filter +VSVM 0.82 0.92 0.71 0.78

Smoothness + Contrast inverse moment + VPBT 0.89 0.99 0.76 0.91

Table 4.8: Results of classifiers obtained by combination of multiple attributes in dis-
tinguishing benign from malignant lesions using leave-one-out validation (N/A: not
applicable).

By combining smoothness and the textural kinetic feature, Contrast inverse moment

kinetics in conjunction with a PBT classifier (VPBT ), a classification accuracy of 89%,

sensitivity of 99%, specificity of 76%, and an AUC = 0.91 using the leave-one-out strat-

egy was obtained. In Figure 7, the embedding plot of the reduced feature space of the

metaclassifier using graph embedding further corroborates the VSVM and VPBT results,

revealing good separation between the lesion classes.
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Figure 4.7: ROC curves generated for VPBT by varying probability threshold, α ∈ [0, 1],
for the top-performing feature in each feature class. The individual features for which
ROC curves have been plotted are: second order textural kinetic feature, Contrast
inverse moment; first order textural kinetic feature, X-gradient; morphology feature,
Smoothness; and the Gabor filter channel corresponding to Λ = π

8
√
2
, ϕ = 7π

8 for the
precontrast image.

4.6 Concluding Remarks

In this paper we presented a new attribute, textural kinetics, for discriminating between

benign and malignant lesions by quantifying the spatiotemporal patterns of lesion tex-

ture during the contrast enhancement time series. We showed that textural kinetic

features outperformed the signal intensity kinetics feature on a dataset of 41 (17 be-

nign, 24 malignant) breast lesions in terms of accuracy, sensitivity, and specificity. An

SVM classifier in conjunction with the textural kinetic descriptors yielded an accuracy

of 83%, sensitivity of 79%, and specificity of 88%, and the PBT classifier yielded ac-

curacy of 90%, sensitivity of 95%, specificity of 82%, and area under the curve (AUC)

of 0.92. Compared to related texture-based approaches for lesion classification [58,86],

textural kinetics perform better than enhancement variance dynamics introduced by

Chen et al. [86], which reported an AUC of 0.85. While the textural kinetic features

performed marginally worse compared to spatio-temporal enhancement profiles intro-

duced in Zheng et al. [58], the study in [58] employed a smaller dataset (36 lesions), and
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Figure 4.8: Embedding plot obtained by plotting the three graph embedding vectors
(e1, e2, e3) for the combination of the morphology feature, Smoothness, with the first
order textural kinetic feature, X-gradient. Note the increased separation between the
lesions compared to Figure 4.

the accuracy of their classifier decreased to less than 90% when the dataset decreased

by 5 lesions, indicating some sensitivity of their approach to the composition of the

dataset. The textural kinetic features yielded consistently good classification perfor-

mance for both the SVM and PBT classifiers. When the textural kinetic attributes

were combined with morphologic descriptors, the resulting SVM classifier yielded an

85% accuracy, sensitivity of 88%, and specificity of 82%, and the resulting PBT clas-

sifier yielded an 89% accuracy, sensitivity of 99%, specificity of 76%, and an AUC of

0.91, demonstrating that pairing of morphology and signal intensity kinetic features

with orthogonal lesion attributes such as textural kinetics could result in improved di-

agnosis of breast cancer on breast DCE-MRI. Based on previous commentary in the

literature [72, 87], textural attributes are likely more robust to MRI artifacts such as

bias field and intensity non-standardness. In addition, textural kinetics provide infor-

mation that is not visually intuitive to the radiologist, yet perform better than any of

the intuitive BIRADS descriptors, suggesting the importance of CAD as a complement

to radiological diagnosis. It is important to note that what is presented here is not a
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full-fledged CAD system, but rather a study in the utility of textural kinetics in dis-

tinguishing benign from malignant lesions. In future work, we plan to more rigorously

test the robustness of the features and combinations of features on a larger cohort. We

also plan to incorporate automated lesion detection and segmentation into the current

workflow.
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Chapter 5

Distinguishing Molecular Subtypes of Breast Cancer

5.1 Introduction

Triple negative (TN) breast cancer (CA) has recently been identified as an important

CA subtype due to its prevalence in the population (10-20% of all diagnosed CA [7]),

lack of options for targeted molecular therapies [88], and poor prognosis [89]. Dynamic

contrast enhanced magnetic resonance imaging (DCE-MRI) has been recently shown

to be sensitive for detecting TN CA [14, 90] and screening BRCA mutation carriers

[8, 14, 71, 91, 92] who often develop TN CA [7], particularly BRCA1 mutation carriers.

Studies comparing phenotypic differences between TN and non-TN CA on DCE-

MRI show that many TN CAs have smooth, round margins compared to the spiculated

borders of the more common ER positive (ER+) CAs [93]. TN CAs also show rim

enhancement on post contrast T1-weighted (T1-w) imaging and central high signal

intensity on T2-weighted (T2-w) imaging [12, 93–95]. Interestingly, the characteristic

features of TN CAs, as identified by Uematsu et al. [93] and Wang et al. [12] do not

conform to the attributes commonly ascribed to malignancies in the BIRADS MRI

lexicon [9]. In fact, Uematsu et al. [93] reported that TN lesions may have morphologic

and kinetic features on DCE-MRI that are similar to those of benign fibroadenomas

(FAs).

Computer-aided diagnosis (CAD) methods, which provide diagnostic information

based on quantitative descriptors of the lesion under inspection, have been proposed

to (a) reduce inter-rater variability [61, 96] and (b) to increase diagnostic specificity

[13, 97–100] on DCE-MRI. Recently, breast CAD solutions have started to move be-

yond solely distinguishing benign from malignant lesions [33, 35, 50, 61] to addressing

more complex diagnostic questions. For instance, Bhooshan et al. [50] proposed the use
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of textural, morphological, and kinetic descriptors for distinguishing ductal carcinoma

in situ (DCIS) from invasive ductal carcinoma (IDC). Makkat et al. [13] similarly pro-

posed the use of imaging descriptors such as the quantification of tumor blood flow for

differentiating between HER2 positive (HER2+) and HER2 negative tumors [13].

In [2], the term textural kinetics was introduced to describe the dynamic varia-

tion of textural features of breast lesions during contrast uptake. Textural kinetics

outperformed standard morphologic, static texture, and kinetic intensity features in

distinguishing benign from malignant lesions [2]. Textural kinetics features are calcu-

lated by computing a series of texture features at each time point in the DCE-MRI

series. For each static texture feature, a statistic such as the mean or median feature

value over all pixels within the lesion at each time point is calculated and then plot-

ted as a function of time. The shape of this curve, akin to the shape of the signal

intensity kinetic curves first described by Kuhl [54] and Kinkel et al. [38], provide a

description of textural variations as a function of contrast uptake within the lesion. In

this study, we introduce a new computerized image analysis, feature extraction, and

classifier framework for describing the imaging behavior of breast lesions on DCE-MRI.

By determining a quantitative MR imaging signature for TN CAs that is distinct from

other CA subtypes (e.g., ER+ and HER2+ CAs), as well as from benign TN mimics

(e.g., FAs), CAD algorithms tuned to specific high-risk patient classes (e.g., BRCA1

mutation carriers predisposed to forming TN CAs) can be developed. In this study, the

success of this framework for evaluating the TN imaging signature using a CAD system

is tested on a cohort 76 breast lesions from 65 patients.

5.2 Materials and Methods

Breast MRI data was prospectively collected in an Institutional Review Board-approved

study at the University of Pennsylvania between 2002 and 2007. In this study, women

underwent MRI either to further investigate a suspicious lesion identified on screening

mammography or for local staging prior to surgery. This study examined MRI char-

acteristics in 76 solid lesions from 65 patients for whom pathology results and, where

applicable, ER, PR, and HER2 results were available. Confirmatory diagnosis was
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made by histopathologic examination of tissue obtained by either core biopsy sampling

or lumpectomy. Of the 76 lesions, 12 were benign (i.e., 12 FAs) and 64 were invasive

carcinomas. All of the carcinomas were immunohistochemically stained for hormone

receptors and HER-2/neu. In cases in which staining for HER-2/neu was inconclu-

sive, amplification was confirmed with fluorescence in situ hybridization, Of the 64

carcinomas, 21 were TN (ER-/PR-/HER2-) CA, 18 were HER2+ (14 ER-/HER2+, 4

ER+/HER2+) CA, and 25 were ER+ (ER+/HER2-) CA. Patient MRIs were acquired

at either 1.5 or 3 Tesla (Siemens Sonata or Trio, respectively). Sagittal imaging in-

cluded fat-saturated three-dimensional T1-w DCE imaging before and after 20 mL/kg

Gd-DTPA (Omniscan) contrast injection. Imaging parameters for DCE-MRI varied

over time and magnet type (matrix size: 256x256-896x896, with in-plane resolution

0.20-0.70 mm/pixel, slice thickness 2-5 mm, TR=7-26 ms, TE=1.8-6.5 ms, flip angle

25-30 degrees). DCE-MRI data sets were acquired once before contrast injection and

at 90 second time intervals upon bolus contrast injection, for a total scan duration of

between 5-8 minutes.

5.2.1 Lesion Segmentation and Feature Extraction

A representative slice of the DCE-MRI volume was chosen and confirmed by a radiol-

ogist with 12 years experience in breast MRI interpretation (M.A.R.) who was blinded

to pathologic diagnosis. The lesion boundary was manually delineated based on the

early post-contrast image demonstrating greatest lesion conspicuity from neighboring

tissues. Morphologic features (i.e. shape features, margins) were calculated based on

this boundary. All other features (e.g. static textural, intensity kinetics, and textural

kinetics) were computed based on the pixels enclosed by the lesion segmentation. Table

1 lists and describes the computer extracted features used in this study. Lesion sizes

were generally evenly distributed among the lesion classes (FA (17.2 12.1 mm), TN

(26.0 17.6 mm), HER2+ (29.0 24.4 mm), and ER+ (29.8 19.4 mm)). Figure 5.1

shows the overall framework.
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Figure 5.1: Flowchart showing workflow of lesion classification for the 5 classification
tasks (TN vs. all non-TN, TN vs. non-TN CA, TN vs. ER+, TN vs. HER2+, TN vs.
benign-FA) addressed in this study.

5.2.2 Morphologic features

Six morphologic features [2, 3] relating to the boundary between the lesion and the

surrounding tissue were determined: 1) area overlap ratio, 2) normalized average radial

distance ratio, 3) standard deviation of normalized distance ratio, 4) variance of distance

ratio, 5) compactness, and 6) smoothness. These morphological features were employed

to analyze the roundness, spiculation, regularity, and smoothness of the lesion boundary

along with lesion shape. In addition, 2 features used previously for breast lesion analysis

on DCE-MRI (margin sharpness and variance in margin sharpness [50, 86]) were also

extracted.

5.2.3 Intensity kinetics

A total of 4 intensity kinetic (maximal uptake, time to peak, uptake rate, and washout

rate) features [50,58,86,101] were calculated in order to measure the amount and rate

of contrast uptake [54].
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5.2.4 Static texture

Static texture features were computed from the peak enhancing image for each lesion

as was done in previous studies [2,50,95]. A set of 22 textural features were calculated

for each lesion, reflecting heterogeneity of tissue types in a lesion based on first order

statistics [2], derivative operations, and grey level co-occurrence matrices (GLCMs) [76].

5.2.5 Textural Kinetics

Textural kinetics, features related to the dynamically changing textural appearance

of the enhancing breast lesion as it passes from pre-, to peak-, to equilibrium-phase

enhancement. The average value of each of the 22 texture features was plotted as a

function of time, and a 3rd order polynomial was fit to the curve, yielding a vector of

four coefficients per kinetic textural feature (see Figure 5.2) [2]. These four coefficients

represent the corresponding textural kinetic feature for each static texture feature.

Textural kinetic features were calculated for each of the 22 textural features described

in the static texture section.

Figure 5.2: Calculation of textural kinetics feature, contrast entropy, for a TN CA.
The mean feature value is calculated and plotted as a function of time. A third order
polynomial is then fit to the curve, and the 4 coefficients resulting from curve fitting are
used to represent the textural kinetics feature for that lesion. ρ(t) represents the vector
of mean texture values at each time point, and r is the vector of 4 coefficients that
results from fitting a cubic polynomial to the texture vs. time plot; TP: time point.
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5.2.6 Support Vector Machine Classifier

In order to determine quantitative imaging features on DCE-MRI (see Table 1) that

best discriminated TN CA from other molecular subtypes of CA and from benign FAs,

feature selection was performed in a feed-forward manner using linear discriminant

analysis (LDA) [102, 103]. The important features identified during the LDA feature

selection process were combined with equal weighting and used in conjunction with an

SVM classifier [51]. The SVM assigned a likelihood value to each lesion of belonging to a

specific class by exploiting the distance of each lesion to the SVM decision hyperplane

[51], defined as a multidimensional decision boundary used to discriminate between

lesion classes: the greater the distance of a lesion from the hyperplane, the higher the

likelihood that the lesion belongs to a particular class. As the distance of the objects

from the decision hyperplane changes, the corresponding object-class probabilities also

change. By varying the position of the decision hyperplane, classification sensitivity and

specificity estimates at each location are obtained, in turn allowing for the calculation

of a receiver operator characteristic (ROC) curve for the classifier. The SVM classifier

mechanism employs a leave-one-out strategy, and area under the ROC curve (AUC) [2]

for each of the 5 classification tasks (TN vs. all non-TN, TN vs. non-TN CA, TN vs.

ER+, TN vs. HER2+, and TN vs. FA) was evaluated.

5.3 RESULTS

LDA for Feature Selection Different textural and morphological image features were

deemed important for each of the different lesion classification tasks (TN vs. all non-TN,

TN vs. non-TN CA, TN vs. ER+, TN vs. HER2+, TN vs. FA). For each classification

task, the most discriminating features with the associated LDA classification accuracies

as each feature is added in the feed-forward feature selection process are shown in Figure

5.3.
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5.3.1 TN vs. all non-TN

For TN vs. all non-TN lesions (FA, HER2+, ER+), the morphology feature compact-

ness (ratio of lesion perimeter to area) and 2 textural features, namely a combination

of static intensity average and kinetic X-direction Sobel filter yielded the best discrim-

inability in the feature selection process. Overall, TN lesions had lower values of the

GLCM feature intensity average indicating more lesion heterogeneity at peak contrast

relative to that of non-TN lesions. Conversely, the kinetic X-direction Sobel filter

feature set indicated that the TN lesions steadily increased in homogeneity of lesion

appearance over time, whereas non-TN lesions varied more across time. In addition,

TN lesions were more compact than non-TN lesions.

5.3.2 TN vs. non-TN CA

For the TN vs. non-TN CA (HER2+ and ER+) task, the static texture intensity

average, and kinetic textures X-direction Sobel filter and GLCM feature, energy, were

identified as the most important features. Consistent with the analysis for the TN vs.

non-TN lesions, non-TN CAs still had higher values of the GLCM feature, intensity

average texture, and the textural kinetic feature, X-direction Sobel filter, had a set of

coefficient values that reflected more variation in contrast uptake across the non-TN

CAs than that of the TN CAs.

5.3.3 TN vs. FA

For the TN CA vs. FA classification task, static texture features, intensity average and

intensity variance appeared to have greatest relevance. FAs had higher localized texture

values for both intensity average and intensity variance than TN CAs, indicating TNs

were far more heterogeneous at peak contrast than were FAs.

5.3.4 TN vs. ER+

For the task of distinguishing TN CAs vs. ER+ CAs, the morphological feature smooth-

ness, the static GLCM texture intensity average and the textural kinetics of X-direction
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Sobel filter were important descriptors. Figure 5.4 illustrates the difference in lesion

shape smoothness between a TN CA and an ER+ CA. The mean feature values for this

comparison indicate that ER+ CAs tend to have more irregular borders and are more

homogeneous at peak contrast based on the higher values of smoothness and higher

intensity average values, respectively. However, the coefficient values for the kinetic

X-direction Sobel filter feature indicate that homogeneity varies more as a function of

contrast uptake in ER+ CAs than in the case of TN CAs.

5.3.5 TN vs. HER2+

In distinguishing TN CAs from HER2+ CAs, a combination of the morphology fea-

ture, compactness, the static texture feature, energy, and the textural kinetics feature

contrast energy appeared to be most relevant. The higher value of compactness for

the TN CAs than HER2+ CAs suggests that TN CAs have smoother borders than

HER2+ CAs. HER2+ CAs are more heterogeneous at peak contrast uptake as demon-

strated by the energy values, but the heterogeneity of contrast uptake in TN CAs varies

more as a function of time than the heterogeneity of contrast uptake in HER2+ CAs,

as reflected by the textural kinetics feature, contrast energy. In Figure 5.5, examples

of contrast energy versus time plots and associated pre-, early post-, and late post-

contrast enhancement are shown for both a HER2+ and a TN CA.

Performance of the feature set for discriminating lesion classes ROC curves corre-

sponding to each of the 5 classification tasks (TN vs. all non-TN, TN vs. non-TN

CA, TN vs. ER+, TN vs. HER2+, TN vs. FA) are shown in Figure 5.6, and the

corresponding AUC values are listed in Table 2. The selected feature set was best able

to distinguish between TN CAs and FAs, with an AUC of 0.97. However, the selected

features were also was able to segregate TN CAs from other CAs (TN vs. non-TN CA:

AUC = 0.74) and distinctly from ER+ (TN vs. ER: AUC = 0.79) and HER2+ (TN

vs. HER2+: AUC = 0.74) cancers.
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5.4 DISCUSSION

A CAD system, based on the aforementioned quantitative DCE-MRI features, was

developed to distinguish TN CAs (a) from different molecular subtypes of CA, and

(b) from benign TN mimics (i.e., FAs), on DCE-MRI. CAD systems, like the one

presented, have the potential to provide insight into the underlying tumor biology

along with providing information about how a patients CA may respond to targeted

therapies [104]. Although differences in lesion appearance on DCE-MRI have been

previously suggested in qualitative comparisons of molecular subtypes of CA [13,93,95],

to our knowledge, this is the first attempt to quantify imaging differences between TN

and ER+ CAs and TN and HER2+ CAs. Furthermore, this is the first systematic

comparison of TN CA and FA, a common benign lesion with morphologic appearance

and intensity kinetics features that resemble those of TN CA, confounding accurate

diagnosis on DCE-MRI [14,93].

The particular lesion classification tasks (TN vs. all non-TN, TN vs. non-TN CA,

TN vs. ER+, TN vs. HER2+, TN vs. FA) were chosen based on (i) distinguishing TN

CAs from FAs and for (ii) relevance to individualized therapy (e.g., TN CA compared to

HER2+ CA or ER+ CA) . As expected, there was significant overlap in the morphologic

features of TN CA and FA. Thus, morphology features were not useful for distinguishing

these lesions. Instead, static texture features were found to differ sufficiently between

these two lesion classes. This result echoes the findings in Schrading and Kuhl [14],

who showed radiologist- determined morphology features did not contribute to the

discernment between FAs and TN CAs on DCE-MRI. In contrast, lesion morphology

was useful for distinguishing TN CAs from both the ER+ and HER2+ CA classes.

This is also consistent with the findings of Wang et al. [12], who showed that TN CAs

have smooth, circumscribed borders, while HER2+ CAs are spiculated and the findings

of Uematsu et al. [93], who showed that TN CAs tend to have smooth borders, while

ER+ CAs tend to have irregular borders.

In all classification tasks except for distinguishing FAs from TN CAs, textural kinet-

ics features in addition to static texture features were identified as important attributes.
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The peak contrast (i.e., static) texture feature intensity average was typically lower for

TN CAs than for ER+ CA. This is similar to the finding in Uematsu et al. [93] that

TN CAs were more likely to demonstrate regional enhancement TN CAs, which can

often be described as rim enhancement. Additionally, the feature selection results via

LDA suggest that kinetic heterogeneity of lesion enhancement described by the textu-

ral kinetics [2] of the X-direction Sobel filter feature also contribute to distinguishing

between TN and ER+ CAs. This finding appears to suggest that in addition to static

texture, which helps to describe lesion heterogeneity, the evolution over time of the ge-

ographic pattern of contrast uptake by the lesion also provides insight into the lesions

molecular identity.

Although HER2+ CAs were found to be more heterogeneous at peak enhancement

(i.e., in static texture), this textural characteristic of HER2+ CAs did not change over

the course of contrast uptake (i.e., in textural kinetics). Conversely, the degree of

textural heterogeneity of TN CAs was more variable over time as demonstrated by

textural kinetics. This finding likely reflects differences in neovascular characteristics

between HER2+ and TN CAs, as suggested by Makkat et al. [13] with TN CAs having a

less uniformly distributed network of blood vessels. Thus, despite the global similarity

in the kinetic contrast behavior of TN and HER2+ CAs (relative to those of ER+

CAs), differences between these classes are revealed by analysis of textural kinetics.

Such a finding may become a useful biomarker of tumor response as vascular- and

other molecularly-targeted therapies are introduced in the neoaduvant setting. Textural

kinetics, a relatively new feature, was previously shown to be useful in distinguishing

benign from malignant lesions [2]. In this paper, it was also useful for discriminating

TN CAs from other breast lesions. It is possible that textural kinetics, which measures

spatio-temporal changes in breast lesion appearance during contrast uptake, capture

unique aspects of the biological heterogeneity of breast cancers. Whereas intensity

(i.e. overall contrast) kinetics features such as contrast uptake, washout, and time to

peakdid not distinguish TN CAs from other molecular subtypes of CA, textural kinetics

provided such discrimination in all comparisons of TN CAs with other CA subtypes. As

modern MR imaging techniques evolve to allow for greater degrees of image acceleration
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without sacrificing image resolution, it is expected that textural kinetic analyses will

provide an even richer source of data to explore the biologic heterogeneity of breast

lesions.

Our study had its limitations. The number of patients studied was small, although

in the same range as analogous studies by Schrading and Kuhl [14] (68 patients) , Wang

et al. [12] (56 patients), or Makkat et al. [13] (57 patients). Both 1.5 T and 3 T exam-

inations, with varying image protocols, were evaluated in this study. However, images

were treated in the same manner by the CAD system, and neither image acquisition

method nor magnet strength appeared to affect the image analysis. While there were no

obvious trends in classification errors, some of the misclassified lesions were those with

diameters less than 10 mm, suggesting that further work is required to determine the

success in classifying small lesions on MRI. However, not all, small lesions were misclas-

sified in our study. In future work, we plan to test this lesion classification framework

on an independent dataset obtained at a different clinical site. In future work, we plan

to quantify rim enhancement, a feature previously shown to be an important descriptor

of TN CAs in the recent paper by Uematsu et al. [93], in order to further refine the

CAD classification of TN CAs.

CAD systems have been previously proposed for distinguishing benign from ma-

lignant lesions on DCE-MRI. This is, to our knowledge, the first CAD study focused

on differentiating molecular subtypes of breast cancer on DCE-MRI. Using these tech-

niques, we have identified morphologic as well as both static and kinetic textural imag-

ing phenotypes via DCE-MRI that may be able to segregate breast cancer subtypes.

The correlation between imaging and histopathologic signatures of TN CA has previ-

ously been suggested in Tchou et al. [105], who correlated fluoro-deoxyglucose uptake

in positron emission tomography scans with proliferation markers in the histopatholog-

ical sections of TN CA. We intend to similarly explore quantitative correlation between

DCE-MRI and analytic histopathologic signatures of breast cancer in future work.
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(a) (b)

(c) (d)

(e)

Figure 5.3: Increase in linear discriminant analysis (LDA) classifier accuracy as a func-
tion of feature inclusion for (a) TN vs. all non-TN lesions, (b) TN vs. non-TN CAs,
(c) TN vs. FA, (d) TN vs. ER+, and (e) TN vs. HER2+ lesions. The best perform-
ing feature (in terms of classifier accuracy) is first chosen and subsequent features are
included based on their ability to improve existing classifier accuracy.
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(a) (b)

Figure 5.4: Morphology of a lobulated TN CA (a) compared to an irregularly bordered
ER positive (b) CA.
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(a) (d)

(b) (e)

(c) (f)

(g) (h)

Figure 5.5: Figure 5. Pre- (a, d), early- (b, e) and late- (c, f) contrast enhancement
of (a-c) TN CA and (d-f) HER2+ CA and their associated (g) intensity vs. time and
(h) textural kinetics (contrast energy) vs. time curves. Note the varying uniformity
in the TN CA compared to the HER2+ CA, which steadily increases in homogeneity
of contrast enhancement. While the intensity vs. time curves for the two lesions are
similar, the contrast energy vs. time curves are drastically different.
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(a) (b)

(c) (d)

(e)

Figure 5.6: Increase in linear discriminant analysis (LDA) classifier accuracy as a func-
tion of feature inclusion for (a) TN vs. all non-TN lesions, (b) TN vs. non-TN CAs,
(c) TN vs. FA, (d) TN vs. ER+, and (e) TN vs. HER2+ lesions. The best perform-
ing feature (in terms of classifier accuracy) is first chosen and subsequent features are
included based on their ability to improve existing classifier accuracy.
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Chapter 6

Future work

Over the course of this dissertation we have presented methods for pre-processing DCE-

MRI data as well as methods for distinguishing benign from malignant lesions and

identifying molecular subtypes of breast cancer on DCE-MRI.

For the spectral embedding based registration (SERg) method, we showed that such

a method is appropriate for settings of increased noise such as that presented by DCE-

MRI. Although simulated brain MRI data demonstrated the resilience and robustness

of SERg to noise compared to using a intensity-based registration [20], demonstrated

improvements by SERg in actual breast MRI data were quite small. The current work-

ing model for SERg has many moving parts such as the α-MI formulation, the method

for image transformation after the registration optimization has been performed, and

the features used as input to the spectral embedding. In addition, a hierarchical or local

(rather than global) registration scheme may be more advantageous in the context of

breast MRI since the ultimate goal is to align time point images most accurately for

kinetic feature analysis.

The spectral embedding based active contour (SEAC) segmentation has produced

excellent results compared to the fuzzy c-means ”state of the art.” A further improve-

ment, however, would be to extract optimal weights for the region and boundary terms

of the hybrid active contour by using image-specific information such as the initial re-

gion and edge information for a particular image. In Chapter 3, we learn the optimal

weights for a given initialization using a brute force method and based on the best

segmentations compared to ground truth for a testing set of data. Due to the computa-

tional cost of such a brute force method, we feel this could be done in a more intelligent

fashion.
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For both SERg and SEAC, the novel aspects are derived from the use of spectral

embedding to transform the DCE-MRI to an alternative image space. The beauty of

this method is that it is model-free and undersupervised (in other words, no domain-

specific information is required such as is needed for a pharmacokinetic model). As has

been demonstrated for many biological applications outside of this thesis [34], spectral

embedding also seems to capture the nonlinearities of biological data better than an

linear dimensionality reduction method like PCA. The disadvantage, however, of spec-

tral embedding is the computational memory required for the large matrices generated

by MR images. For example, for a standard 512 × 512 image, the similarity matrix

alone requires (512)2 × (512)2 × 16 = 109.9GB of memory. For most of the images

analyzed in Chapter 3, we actually had to downsample the images just to calculate the

similarity matrices. Future work should include optimization of the spectral embedding

and the possibilities of using a sparse matrix with some constraints imposed for spatial

or similarity neighborhoods or perhaps even using an approximation to the similarity

matrix such as the Nystrom approximation presented in Chen et al. [106] and Fowlkes

et al. [107]. Importantly, because the ultimate use is in a medical diagnostic test, the

trade-offs in accuracy for using such approximations must also be thoroughly explored.

In Chapter 4, a benign versus malignant lesion classification is presented in which

textural kinetics are first presented. The utility of such features in the context of benign

versus malignant lesion classification is presented. What we see with textural kinetics

is that patterns of internal enhancement have just as much impact on lesion diagnosis

as the more traditional morhpological and kinetic signal intensity features. Future

work in textural kinetics would be in the manner of measuring texture over time. We

empirically chose a cubic fit to the texture versus time curve, but more sophisticated

models to fit the curve could be explored.

In Chapter 5, we take on the most challenging of our proposal specific aims in

identifying molecular subtypes of breast cancer on DCE-MRI. Similar to the benign

versus malignant lesion study, we found that morphology and textural kinetics play a

large role in distinguishing TN CAs from other subtpyes of breast cancer as well as

distinguishing TN CAs from benign mimic lesions (i.e., fibroadenomas). One feature
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type that we were hoping to quantify in this study was rim enhancement. Uematsu et

al. [93] observed this as a highly correlative lesion feature for TN CAs. This feature

would also be interesting from the perspective of linking the MRI signatures to the

histopathologic signatures. Yamaguchi et al. [108] anecdotally demonstrated that such

a ”ring-like appearance,” or rim enhancement is correlated with an acellular center of

the tumor, often thought to be a central necrosis. This feature is also interesting be-

cause it presents the opportunity to also use information from the T2-weighted MRI,

which is typically only used for confirmation of benign lesions such as cysts or fibroade-

nomas. This also provides an interesting segue to the bridge between MRI features and

histopathologic features.

As genotypic and phenotypic information as well as prognosis become more impor-

tant factors in breast cancer diagnosis and treatment, there is increasing interest in

bridging the gap between diagnostic tools and confirmatory diagnosis, or ground truth.

Baltzer et al. [109] recently performed a study in which the kinetic features of invasive

breast carcinomas on DCE-MRI were compared with histologic features. They found

that volume enhancement (defined by fraction of tumor that enhances) was connected

to lymph node status and ER and HER2 status. They also found that total lesion

volume and plateau voxel volume (defined by fraction of tumor that shows plateaued

enhancement) were predictors of ER and HER2 status. Strongest initial enhancement

was most predictive of ER- status, and TTP was most indicative of positive lymph

node status. This connection between diagnosis and prognosis is the next step to forti-

fying DCE-MRI’s position in the breast cancer diagnosis and prognosis spectrum, and

a computer-aided analysis solution including features from DCE-MRI in conjunction

with features from histopathology would lend itself well to this problem. This will

likely come in the form of kinetic texture on MRI combined with cellular architecture

on pathology to reflect a better biological understanding of the phenomena observed on

DCE-MRI. Such analyses will undoubtedly provide insight not only to the biological

architecture of a tumor, but also the prognosis for the tumor as observed on DCE-MRI.
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Appendix A

Additional Experiments on Pharmacokinetic Modeling

A.1 Implementing the Brix model

A.1.1 Introduction

Previous Work

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently used

as a secondary tool to conventional x-mammography in breast lesion evaluation. X-

ray mammography is still the current gold standard for screening and offers high 2-

dimensional resolution, which is advantageous for detecting small variations in tissue

composition, such as microcalcifications. However, due to the constraints of imaging a

3 dimensional structure in a single plane, ultrasound or breast DCE-MRI is often used

as a secondary imaging technique when a suspicious lesion is found on mammography.

Ultrasound is very good at detecting tissue composition, so it is able to provide addi-

tional information to the mammogram in situations where the breast tissue is dense

or a cystic mass needs to be ruled out. DCE-MRI is also very good at imaging dense

breasts, but its major advantages over mammography and ultrasound are the ability

to image the entire breast as thin slices that comprise the entire breast volume and

the ability to measure variations in contrast uptake that provide information about the

vascularity of the breast tissue; because malignant tumors often have a high density of

blood vessels that are poorly formed, and thus, leaky, they take up contrast dye at a

different rate from benign ones, and radiologists are able to observe this difference in

the DCE-MR images [54].

It has been shown in clinical decision-making that signal intensity kinetics are im-

portant for breast lesions classification, and a large body of the research literature
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is devoted to this. Contrast enhancement is performed by first injecting gadolinium

diethylenetriamine-pentaacid (Gd-DTPA) into the patient’s bloodstream and concur-

rently acquiring MRI images of the breast. Since malignant lesions tend to grow leaky

blood vessels in abundance, contrast agent is taken up by tumors perferentially [56].

Kuhl et al. [54] found that data in the temporal MRIs could be plotted as single data

points on a time series curve that was reflective of the lesion type. It was shown that

malignant lesions had a characteristic curve, showing rapid uptake of contrast (steep

positive initial slope) and rapid washout (subsequent negative slope). Benign lesions

had slow contrast uptake (small positive initial slope) and then plateaued or did not

reach peak intensity during the time series. These phenomena are illustrated in Figure

A.1. This description of the DCE-MRI data is now considered convention in radiologic

interpretation of breast DCE-MRI. Although this is a great advantage of DCE-MRI over

the other modalities and contributes to the high sensitivity rates reported for breast

DCE-MRI, both benign and malignant neoplastic tissue frequently have contrast en-

hancement patterns that differ from normal breast tissue, and these abnormalities are

highlighted in the time-dependent MRIs. As such, it is often difficult for radiologists

to differentiate between benign and malignant lesions simply by visually inspecting the

contrast-enhanced lesion on the postcontrast MRI, which can be appreciated from Fig-

ure A.1 in comparing the malignant lesion curve with that of the curve for fibrocystic

changes, a type of benign lesion. Nevertheless, DCE-MRI is a main component of breast

lesion characterization,

One of the ways in which the DCE-MRI data is quantified is by using pharma-

cokinetic (PK) models. PK models assume that the contrast agent used in DCE-MRI

migrates through the bloodstream and the body’s tissues in a manner similar to that of

a drug. In the Hayton pharmacokinetic model [5], a two compartment model based on

diffusion is implemented to determine tissue properties related to the rate of contrast

uptake and washout of the lesion in question. Figure A.2 shows a diagram of the model.

The central compartment represents the blood plasma, or the blood vessels where the

blood and injected contrast agent freely flow. When the contrast agent reaches the
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Figure A.1: Sample signal intensity versus time curves for one malignant and two benign
lesion types.

capillaries, it moves across the capillary wall and into the peripheral compartment, rep-

resenting the body’s tissues. Material also moves from the peripheral compartment into

the central compartment. This exchange of materials is crucial for delivery of oxygen

and nutrients to the tissues and for the elimination of carbon dioxide and waste mate-

rials from the tissues. This is also the exchange of which DCE-MRI takes advantage in

determining tissue composition of suspicious lesions.

Although pharmacokinetic models are popular methods of analysis for DCE-MRI

in tumor analysis, many current softwares used by clinicians are proprietary, making

it difficult to replicate a PK analysis performed by another research group. For this

study, implementing a PK model was undertaken in order to have a commonly used

DCE-MRI model to compare to experimental methods currently being developed in our

laboratory. In this study, we implement the Hayton 2-compartment pharmacokinetic

model and apply it to a dataset of actual clinical breast DCE-MR images. Since PK

models are typically used to differentiate between benign and malignant lesions based
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Figure A.2: Physiologically-based two compartment model used by Hayton [5] to rep-
resent material exchange across capillary.

on parameter values derived from the PK model, these data are then plotted in a 3-

dimensional space to examine differences between derived parameters for different lesion

types.

A.1.2 Materials and Methods

Data Description

A total of 41 (24 malignant, 17 benign) breast DCE-MRI studies were collected at

the University of Pennsylvania in clinical cases where a screening mammogram demon-

strated a lesion suspicious for malignancy. All studies were collected under Institutional

Review Board approval, and lesion diagnosis was confirmed by biopsy and histologic

examination. Sagittal T1 weighted, spoiled gradient echo sequences with fat suppres-

sion consisting of one series pre-contrast injection of Gd-DTPA and three to eight se-

ries post-contrast injection were acquired (Matrix 384×384 512×512, or 896×896, slice

thickness 3cm) at either 1.5 Tesla or 3 Tesla (Siemens Magnetom or Trio, respectively).
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Temporal resolution between post-contrast acquisitions was 45-90 seconds. The lesion

region of interest (ROI) was then manually segmented in MRIcro [48] by an attending

radiologist with expertise in MR mammography. The radiologist selected a lesion slice

most representative of each lesion, and analyses were performed only for that slice of

the lesion volume.

Derivation of the Model

From the two-compartment model, two differential equations describing the diffusion of

materials across the capillary membrane can be written as the following set of equations.

Vc
dCc
dt

= k21VpCp − (k12 + kout)VcCc +Min (A.1)

Vp
dCp
dt

= k12VcCc − k21VpCp (A.2)

where Cc, Cp, Vc, and Vp are the concentrations and volumes of the central and pe-

ripheral compartments, respectively. By substituting k′out = kout+ k12 and X(s) as the

Laplace transform of Min/Vc, we find the transfer function relating the concentration

of contrast agent, Cp(s) to the input function of contrast agent, X(s) to be:

Cp(s)

X(s)
=

A

(s+ a)(s+ b)
(A.3)

We assume a bolus injection of contrast agent, which allows us to set X(s) = L(δ(t)) =
1. By substituting for k1 and k2 parameters and and taking the inverse Laplace trans-

form, the final time-dependent model equation is

C(t) =
A

a− b
(e−bt − e−at) (A.4)

This is the equation that is used to fit the data. See Hayton et al. [5] for full details of

derivation.

Parameter Estimation

To perform a comparison between lesions in the dataset, a single curve is used to

represent each lesion. The mean of the signal intensity within each lesion’s ROI was

calculated at each timepoint before and after contrast injection. The mean signal
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intensity versus time is then plotted for each lesion. Once the exponential equation

needed for curve-fitting is derived, the fit() function in MATLAB is used to obtain A,

a, and b for each lesion.

A.1.3 Results

Figure A.3 shows an example of the curve-fitting perfomeed for each datapoint, using

MATLAB. It was suprising that the model fit the data so well, given the simplicity of

the Hayton model. From these curve-fits, the parameters A, a, and b were determined.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
PK modeling of signal intensity data: A=2.391, b=0.8879, a=0.6438

 

 

Hayton model fit
Data 

Figure A.3: Sample curve-fitting of datapoints using derived exponential model.

Figure A.4 shows a three-dimensional plot of A vs. a vs. b for all lesions in the

dataset. Although the A parameter seemed reasonably different between the benign

and malignant lesions, there was a lot of similarity within a values and b values for

both the benign and malignant lesion classes.
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Figure A.4: Three dimensional plot showing parameters A,a, and b for all lesions in
dataset.

A.1.4 Concluding Remarks

In this study, the Hayton [5] pharmacokinetic model was implemented for quantifying

breast DCE-MRI data in a physiologically-based manner. The model coefficient estima-

tion did not produce any obvious data classifiers. However, since we used a mean signal

intensity value for each timepoint, it might be more useful to calculate these curves

at each pixel to create a parametric map of the lesion rather than using this model

for global lesion characterization. As a preliminary case, we calculated the parametric

maps for one benign and one malignant lesion (see Figure A.5).

It was found in this specific case, that the a and b values for the majority of the pixels

for the benign lesion were an order of magnitude smaller than those of the malignant
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(a) (b) (c)

(d) (e) (f)

Figure A.5: An example of the contrast enhancement of (a-c) a benign fibroadenoma
and (d-f)a malignant lesion are shown. The lesions show (from left to right) the full
precontrast image (a,d), the postcontrast timepoint showing peak enhancement, (b,e),
simulated pharmacokinetic maps,(c,f).

lesion. In addition, Figure A.5(c) and (f) shows an observable difference in the lesion

brightness from the surrounding tissue brightness. This was observed for both the

benign and the malignant lesion. If the trend follows for other lesions in the dataset,

this may prove to be helpful in lesion segmentation in the future rather than targeting

the PK models as a classification tool. Other future directions for this project include

finding ways to increase the speed of computation, since pixel-wise lesion analysis takes

approximately 1-2 hours on a server with a 2.33GHz processor. In addition, it may

also be useful to now explore other PK models such as the Tofts model [6] or the

Kety [6] model, which are more complicated models that take additional physiological

parameters such as vessel leakage into account, to find the best model to fit my dataset.
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A.2 Implementing the Tofts Model

The Tofts model is the most widely used pharmacokinetic model. A biexponential

decay is often used as a standard arterial input function to the system such that [110]:

Cp(t) = D
∑2

i=1 a
T
i e

−mit where D is the dose (mmole/kg), and aT1 = 3.99 kg/L, aT2

= 4.78 kg/L, m1 = 0.144min−1, and m2 = 0.011min−1. These constants are based

on experiments performed by Weinmann [111] for normal control subjects and have

been used in many studies [6, 110, 112]. The pharmacokinetic model is then modeled

as [112]: Ct(t) =
KtransCp0

Kep
= veCp0e

−kept The model is then fitted to the data using the

Levenberg-Marquardt algorithm for curve fitting. From the curve fitting, Ktrans and ve

are extracted. However, pharmacokinetic models tend to have some drawbacks. First,

the most accurate way to approximate the physiologic model is to actually measure

an arterial input function from the patient [113]. In addition, studies have shown that

temporal resolution of the images as well as image artifacts [114] such as bias field can

greatly affect the accuracy of measurements. Di Giovanni et al. [114] showed that on a

3 Tesla scanner, incorrect T1 estimation and radiofrequency (RF) field inhomogeneity

can cause errors ranging from 66% up to 531% for Ktrans and 74-233% for ve. Temporal

resolution seemed to have the least effect, demonstrating errors up to 48% in Ktrans and

negligible errors for ve when decreasing the temporal resolution from 10 to 70 seconds

between time points.

Figure A.7 shows 9 examples of datasets for which the Tofts parameters were cal-

culated in a pixel-wise fashion. The resulting colormaps showed that Kep and Ktrans

were not informative in this setting. However, ve did demonstrate reasonable results.

The parenchyma can be reasonably differentiated from the rest of the breast. In a 2010

ISMRM abstract [1], we also demonstrated the utility of these parameters in a lesion-

wise fashion by comparing the classification accuracy of distinguishing TN lesions from

FAs and then also from ER+ CAs by means of PK parameters and textural kinetics.

It was found that textural kinetics outperform both morphological features and PK

parameters in distinguishing TN lesions from other lesion subtypes see Figure A.6.
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(a)

(b)

Figure A.6: Results of classification of (a) TN CAs versus FAs and (b) TN CAs versus
ER+ CAs using 5 different feature types in conjunction with a support vector machine
classifier.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.7: Nine different examples of the v parameter for the Tofts [6] pharmacokinetic
model.
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Appendix B

Machine Learning Summary

Throughout the course of this dissertation, various methods for computing data rela-

tionships are used. In this appendix, spectral embedding (SE), a manifold learning

technique for understanding data relationships, is reviewed. Support vector machines,

which provide the final measures of lesion classification in Chapters 4 and 5, are also

reviewed.

B.1 Dimensionality reduction

In this thesis, a nonlinear dimensionality reduction method called spectral embedding,

which is calculated via an eigenvalue decomposition of a similarity matrix, is frequently

used. Over the course of this dissertation, we have been asked numerous times why we

do not use principal component analysis (PCA) or how PCA performs compared to SE.

For clarity, we provide a brief review of principal component analysis (PCA) and then

provide a brief comparison.

B.1.1 Pricipal component analysis

PCA [115] attempts to reduce the dimensionality of the data while retaining maxi-

mum variance of the dataset. PCA is most popularly implemented by performing an

eigenvalue decomposition of a covariance matrix generated from the original data. The

resulting eigenvectors are then considered to be the principle components, and the first

few retain the maximum variance in the original dataset. In addition, if the eigenvec-

tors are chosen to be orthonormal, then the variance captured by a given eigenvector

is reflected by the corresponding eigenvalue.

Using the same notation found in Chapter 3 for SE, let F = [F(x1),F(x2), . . . ,F(xN ) ∈
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R
N×D] be the data matrix of N feature vectors with dimensionality D. The aim of

PCA is to reduce F ∈ R
N×D to a low d-dimensional space where d << D. Let

VPCA = [v1,v2, . . . ,vN ∈ R
N×d] be the optimal low dimensional projections [115]

and the associated eigenvectors of a given object xi,PCA, where i ∈ {1, . . . , N}, are
vi ∈ R

1×d where vi,PCA = [v1,PCA, v2,PCA, . . . , vN,PCA] and vj ∈ R
1×1, j ∈ {1, . . . , d} is

an individual eigenvector for a given vi. The optimal VPCA can be obtained by solving

the eigenvalue decomposition of,

ΣPCAvPCA = λPCAvPCA (B.1)

where ΣPCA is the covariance matrix of F . This can be compared to the eigenvalue

decomposition for SE in Equation 3.2: (D−W )v = λDv.

B.1.2 Spectral embedding

SE is a nonlinear dimensionality reduction method that allows one to transform a high-

dimensional data space to a low-dimensional data representation. The implementation

that we chose to use is in the form of normalized cuts first proposed by Shi and Malik

[19]. Normalized cuts was originally designed as a graph partitioning problem, where

the connectivity, or similarity between every point and every other point in the image

space is represented by the similarity between associated feature vectors. The optimal

partition between data is one which minimizes intercluster similarity and maximizes

intracluster similarity.

Although both PCA and SE are derived from an eigenvalue decomposition, PCA

is a linear DR method while SE is a nonlinear DR method. This means that when

performing PCA, any data point in the original data space can be recapitulated as a

linear combination of the principle components. This is an advantage of PCA. However,

PCA is often unable to capture nonlinear relationships between data in the original data

space, and we have found this to be the case, both in performed pixel-wise and lesion-

wise DR. Figure B.2 demonstrates the comparison in a lesion-wise DR using PCA

(FigureB.2(a)) and SE (FigureB.2(b)) where the aim was to distinguish between TN

and non-TN lesions. One can see the improved separation between lesion classes in
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Figure B.1: Post- contrast time point (a) of a breast lesion and (b) associated spectral
embedding manifold (yellow, non-lesion pixels; green, lesion pixels). When associated
with their appropriate spatial locations, a separation between lesion and non-lesion area
can be resolved.

FigureB.2(b).

B.2 Support Vector Machines

The computer-based classifier most frequently used in this dissertation is a support

vector machine (SVM) classifier. SVMs are a kernel-based method that projects the

data from the original space into a kernel space where the data can be separated via a

hyperplane (see Figure B.3). The optimal hyperplane is found by maximizing the dis-

tance between the decision hyperplane and the so-called support vectors [102], which

are determined by the data points in the kernel space which are closest to the decision

hyperplane. At a very simplistic level, SVMs can be thought of as the opposite of di-

mensionality reduction in implementation because the mapping function actually maps

the data into a higher dimensional space in order to separate the data classes optimally.

This is demonstrated in Figure B.3 where the data is projected from a 2-dimensional

to a 3-dimensional space so that a 2-D plane can separate the data.
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(a) (b) (c)

Figure B.2: Embedding plots showing: (a,b) all lesions from first order kinetic texture
feature space (malignant: red squares, benign: blue circles) in (a) SE- reduced dimen-
sional space and (b) PCA- reduced dimensional space; (c) malignant lesions only (TN:
red triangles, non-TN: green circles) using SE from second order kinetic texture feature
space. Note the good separation between lesion classes in the reduced SE space.

Figure B.3: Post- contrast time point (a) of a breast lesion and (b) associated spectral
embedding manifold (yellow, non-lesion pixels; green, lesion pixels). When associated
with their appropriate spatial locations, a separation between lesion and non-lesion area
can be resolved.
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