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ABSTRACT OF THE DISSERTATION

Direct Inference of Location-related Context fromWireless Signal

Strength

by Gayathri Chandrasekaran

Dissertation Director: Marco Gruteser and Richard P. Martin

In this dissertation we derive location-related context like mobility-states, co-mobility, speed

and decelerations directly from the wireless signal strength information. The key insight is that

the time-series of signal strength is robust to environmental factors that typically negatively

affect the RSS-based localization systems. Therefore, inferring these physical properties di-

rectly from the time-series of wireless signal strength is more accurate than deriving them from

location estimates.

We apply correlation and time warping algorithms to the time series of wireless signals

to infer these properties. Our trace-driven experimental approach shows that our inference

techniques can work with minimal infrastructure, are computationally efficient, requires no

explicit user participation and can produce higher accuracies than location-based systems. We

have also experimentally identified the factors that limit the accuracy of indoor localization and

have proved the existing assumptions behind theoretical lower bounds of indoor localization

incorrect.

Our results will enable new context aware applications, because accurate estimates of co-

mobility and speed offer a richer set of primitives available to applications. Such applications

can derive user mobility states like walking, running, driving or social states, such as if a user

is in a meeting or alone.
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Chapter 1

Introduction

The wireless industry has seen a tremendous growth within the last decade to the extent that it

has penetrated into the lives of every human being. The pervasiveness of the wireless devices

have opened up immense opportunities to study user context and provide information relevant

to the user’s current situation/activity. The term “context” has had several definitions in the

past. The most popular definitions are the ones given by Schilit and Theimer [82] which defines

context as Location, Nearby People or Object and Changes to those Objects. Anind K. Dey

redefined context in [26] as Emotional State, Focus of attention, location and orientation, date

and time, nearby objects. He further refined the definition in his thesis [27] to Any information

that characterizes the situation of the person, object or the entity. The common elements in

all these definitions are Who (Identify), When (Time), Where (Location) and What (Activity).

In this thesis, we focus on inferring location-related context, which is defined as, the set of

physical properties that could be derived from accurate location estimates. Figure 1.1 depicts

some of the location-related properties like speed, accelerations, mobility state and co-mobility

information that we consider in this thesis.

Figure 1.1: Location-related Context

All these properties can be derived accurately if we had perfect location estimates. While
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location estimates from GPS have been accurate outdoors, the power drain due to the GPS has

been shown to be two orders of magnitude higher than that of using GSM [59]. Also, GPS

can have very poor accuracy indoors. Other outdoor location estimation techniques like GSM

based localization [18] or Wi-Fi based localization [10] have low accuracies in the order of 60m

and 40m respectively. Due to the noisy nature of the wireless medium, the indoor localization

estimates using Wi-Fi suffer a median error of 3m. While adding more receivers could bring

down the indoor localization errors, there still exists a trade-off between adding more resources

for improving localization accuracy versus reusing the communication infrastructure to sustain

reasonable localization accuracy. Therefore, deriving the other location-related properties from

location estimates that exhibit high errors may not be the most optimal means to deriving them.

My dissertation addresses the above issue by inferring the location-related properties like

speed, co-mobility, mobility states and decelerations directly from the time-series of wireless

signal strength. The RSS-time series exhibits several interesting properties that make them an

attractive candidate for inferring other location-related properties.

• The presence of continuous RSS samples in the time-series ensures that inferences about

the present model the past as well. For example, if the last predicted speed was 40mph,

the current speed cannot differ substantially from 40mph. This property makes the

present inferences more meaningful.

• Analyzing the time-series for deriving location related properties does not require any

environmental modeling and could reuse the minimal communication infrastructure.

• The transient distortions in RSS introduced by shadow fading and small scale fading

do not have a significant impact on the overall shape of the time-series. Therefore, the

location-related properties that are derived from the time-series are robust to these fades.

My thesis is divided into three parts. The first part of my thesis [15] systematically ana-

lyzes the factors that result in indoor location estimation errors. The goal of this work is to

show that the factors that typically result in localization errors indoors cannot be eliminated

even with dense receiver deployments which makes deriving other location-related properties

accurately very challenging. We do this by experimentally evaluating the different Received
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Signal Strength (RSS) based indoor localization techniques in a 400 node (20 × 20) high den-

sity indoor wireless testbed [5]. Through the experiments, we

• Evaluate the different indoor localization algorithms on a common deployment frame-

work with similar number of training and testing points.

• Understand the effect of different environmental/external factors like receiver density,

environmental noise, training density, etc. on the performance of the different classes of

localization algorithms

Our results show that the fundamental performance limitation of any RSS based localization

system stems due to the simplistic assumptions behind modeling the path loss and the envi-

ronmental noise. We show that merely increasing the receiver density without considering the

environmental noise and the resulting path loss model observed at the receiver can degrade

localization accuracy. From our results, the best achievable indoor localization accuracy in an

optimally-placed dense environment was in the order of a 24cm. However, the typical errors

that were observed with just 4 receivers (similar to that of the communication infrastructure)

tends to be close to 3m. Therefore, using these incorrect location estimates as a means to

estimating other properties like speed or co-mobility would be error prone.

The second part of my thesis [13,14] therefore focuses on using a continuous time series of

RSS observations to detect a location-related property called Co-Mobility. The key observation

behind the technique lies in the fact that when environmental factors like shadow fading affect

the SNR observed from the co-moving devices, all co-moving transmitters get equally affected.

So, monitoring a continuous time series of RSS discounts the effects of transient fades that are

very common in the wireless environments and takes advantage of the similarity of the RSS

fades over long durations. I show that this technique does not require environmental modeling,

is more resilient to noise and can function with minimal infrastructure and calibration.

The third part of my thesis [16, 17] extends this observation in co-mobility to a scenario

where the transmitters move along the same path but at different times and different speeds.

Moving along the same paths result in similar fades except in the time axis where the traces

are either stretched or compressed in time depending on the relative speeds of the traces. We
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use this observation, apply correlation and derivative dynamic time warping techniques to de-

termine the speed of one trace relative to the other. Through real experiments, we show that

our technique can achieve speed estimation accuracies close to ±5mph

In Summary, the overall contributions of my dissertation are:

• Analyzing the lower bounds of indoor localization in a high density indoor Testbed [5].

Results show that the main factor influencing the performance of lateration based lo-

calization algorithm is the underlying assumption about the propagation model. It also

demonstrates that increasing the receiver density beyond a limit can have a negative im-

pact on the performance of algorithms.

• Studying the accuracy-infrastructure tradeoff for RSS based localization systems.

• Proposing techniques for detecting transmitter co-mobility. The time series of signal

strength values observed from the transmitters that move together exhibit a very high

correlation ( 0.8) with each other in our results. We generalize this observation for co-

moving transmitters having different radios (802.11 and 802.15.4). We also use RSS

traces from GSM enabled co-moving mobile phones outdoors to show that such an infer-

ence can be extended outdoors.

• Tracking vehicular speed variation with high accuracy ±5mph using GSM enabled mo-

bile phones. We show that the GSM RSS profile (time-series) observed from the mobile

phones on vehicles moving along a given road segment are similar except in the time axis

due to their relative speed up. Using a training GSM RSS trace from a vehicle moving at

known speeds, we apply time warping techniques to estimate the unknown speed of the

moving vehicle.
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Chapter 2

Background

In this section, we classify the related work into three major categories. We begin with a review

of the existing indoor and outdoor localization systems. We then continue reviewing some of

the specific location-related context inference systems, namely, co-mobility detection systems

and vehicular speed detection systems.

2.1 Indoor and Outdoor Localization systems

In this section, we summarize the experimental setting and the reported accuracy limits for

several Wi-Fi based indoor localization algorithms. We then continue to give a brief overview

of the other indoor localization schemes that use other radios such as 802.15.4, UWB, IR,

GSM, etc. We conclude this section with a discussion of the outdoor location determination

algorithms and their reported accuracies.

2.1.1 Wi-Fi based Indoor Localization System

RADAR [11], the first localization algorithm for IEEE 802.11 transmitters in this category,

uses RF Fingerprint information (vector containing known locations of transmitter along with

a measure of the observed signal strength at different receivers) observed at three receivers

and performs a nearest neighbor matching algorithm to determine the location of the transmit-

ters with a three meters median accuracy. Several other systems worked on enhancements to

RADAR. [83] proposed two different localization systems, namely, CMU-PM and CMU-TMI

where the CMU-PM algorithm performed pattern matching similar to RADAR with enhanced

training set while the CMU-TMI performed triangulation, pattern matching and interpolation

by first profiling the environment, interpolating the RSS on locations where the measurements

were not made and finally matching the obtained RSS. The reported median errors were 1m
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Technique Type Area (m2) Num Num Median 75th % Max

APs Training Error(m) Error(m) Error(m)

RADAR [11] Classification(Scene Matching) 22.50× 43.49 3 70 2.93 4.69 24.99

AURA [83]

CMU-PM Classification(Scene Matching) Not Specified 5 17 0.98 3.29 >9.75

CMU-TMI Classification(Scene Matching with
interpolation)

Not Specified 5 17 1.94 3.29 8.50

LEASE [54] Classification(Scene Matching)
with Interpolated Grid

68.58× 43.90 5 100 2.29 n/a n/a

76.20× 53.34 4 100 0.61 n/a n/a

Ref [94] Classification(Probabilistic) 68.28× 35.94 4 110 1.07 1.22 7.32

HORUS [95] Classification(Probabilistic) 68.28× 35.94 21 172 0.39 0.55 4.99

11.80× 33.13 6 110 0.51 0.90 4.99

M1 [60] Lateration(Bayesian inference) 60.96× 24.38 4 115 5.49 6.71 27.43

64.00× 42.67 5 215 5.49 6.1 27.43

Ref [21] Lateration with LLS 60.96× 24.38 4 286 6.1 9.14 42.67

Lateration with NLS 60.96× 24.38 4 286 3.35 6.1 33.53

Table 2.1: Summary of the Reported Experimental Accuracies for Various Localization Algo-
rithms

and 2m for CMU-PM and CMU-TMI respectively. [54] performed RSS interpolation along

with pattern matching with heavy training (more than 100 training locations) on two different

environments and reported median errors of 2m and 0.6m in the two environments. [94, 95]

used the RSS distribution in every location and applied probabilistic techniques to determine

location. [55] was a Wi-Fi based context inference system which first identifies if the trans-

mitter was mobile or stationary and then refines its location determination system to account

for the state using Hidden Markov Model (HMM). [32] uses Bayesian learning algorithm on

RF fingerprints observed at three or more receivers to obtain a median 802.11 localization ac-

curacy of 3-4 meters. The most accurate 802.11 location system to date is [57] which uses

Hidden Markov Model and Bayesian inference derived from observations at nine different re-

ceivers yielding a median accuracy of one meter. While most systems based on Wi-Fi uses

signal strength, AeroScout [1] uses 802.11-based TDOA location solution and [33] uses AOA

based solution.
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2.1.2 Other Indoor Localization Systems

There are several non Wi-Fi based indoor localization systems. SpotON and LANDMARC

systems use RFID tags to determine location and report a median accuracy of 2m. UWB based

systems [8, 72] transmit ultrashort pulses on a wide set of frequencies and use precise Time Of

Arrival measurements to achieve a positioning accuracy of 10cm. [92] used infrared to perform

indoor positioning. However, all the above techniques require specialized infrastructure to be

deployed for performing localization. On the other hand, the Wi-Fi based systems typically

re-use the existing wireless infrastructure. A number of systems [68, 91] use the GSM mobile

cellular network for indoor localization. The key idea that behind this technique is the use of

wide signal-strength fingerprints. The wide fingerprint includes the six strongest GSM cells

and readings of up to 29 additional GSM channels and this can yield a median accuracy of 5m.

2.1.3 Outdoor Localization Systems

Global Positioning Systems [35] is the most widely used outdoor positioning system. The GPS

receiver uses timing information to perform distance measurements to the orbiting satellites and

in turn uses trilateration to determine its location. In indoor environments, the absence of line

of sight between the GPS receiver and the satellites results in poor location estimation accu-

racy. Although GPS is quite accurate outdoors, not every mobile device is equipped with this.

The power consumption of GPS is also quite high which mandates the need for alternate means

of positioning. Cell Phone Positioning is the widely used alternative to GPS. The cell iden-

tification (Cell-ID) method can identify the tower that is closest to the mobile phone thereby

identifying the mobile phone within a 100-200m range depending on the cell size. Better cel-

lular phone based techniques based on RSS fingerprinting were developed by [18] that reports

accuracies in the order of 60m. The Placelab [10] project took a slightly different step where

they tried to use the Wi-Fi beacons captured through War-Driving to locate a Wi-Fi enabled

device outdoors. The accuracies reported by this technique varied from 20 to 40m depending

on the Wi-Fi availability.
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2.2 Co-Mobility detection systems

The previous work on detecting co-located and co-moving objects have either been based on

absolute location of the transmitters obtained using localization indoors and GPS outdoors or

from p can be classified roximity sensing using short range infrared (IR) or Bluetooth devices.

We know of no other work that infers co-location or co-movement directly from signal strength

measurements. In this section we classify the related work into three main categories.

2.2.1 Mobility Detection Systems

Several earlier studies have concentrated on distinguishing mobile and stationary transmit-

ters. [84] determines mobility from GSM traces using seven different metrics one of which

is the variance in Signal Strength which is similar to our approach. Similarly, [63] discusses

detecting mobility from RSSI in WLAN. LOCADIO [55] again used variance to detect mobil-

ity and combined it with a two state Hidden Markov Model (HMM) to eliminate oscillations

between the static and mobile states. We build on this work— detecting mobility is an integral

component of the DECODE technique.

2.2.2 Proximity-based Co-Mobility detection

Proximity based co-location inference techniques mainly consist of using short range IR or

Bluetooth devices to estimate distance between the transmitters. The Reality Mining project

[31] [30] used Bluetooth capable GSM phones to record the other nearby bluetooth devices and

transmit them to the central server for inferring social interaction patterns. SpotOn system [45]

used radio signal attenuation to estimate the relative distance between the special tags. Though

these techniques look attractive for co-location detection, they require tracking software on the

devices themselves and are effective only for detecting devices that have the same technology.

Our scheme is more generic as it involves measurement of RSSI which is common to GSM,

WLAN, Zigbee, Bluetooth.
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2.2.3 Distance Threshold based Co-Mobility Detection

This detection technique involves estimating the locations of different transmitters over time

and deriving conclusions about co-movement based on the distance between the estimated po-

sitions of the transmitters. Recent efforts have resulted in a plethora of methods to determine

the locations of transmitters as discussed in Section 2.1;

As described in Section 2.1.1, there are several Wi-Fi based indoor localization systems [11,

21,54,57,60,83,94,95] that use RSS from fixed wireless APs to derive user positions. Further,

the average localization accuracy employing RSS in a 802.15.4 (Zigbee) network [19] and an

active RFID system [20] is about the same with median errors around 3-4m when using four

receivers. While the recent papers [56, 61] have reported a higher accuracy localization tech-

niques, these techniques require transmitters to perform synchronized communications which

is not common across typical transmitters that we analyze in this work. Further, these papers

have not reported the accuracy in a mobile environment questioning its applicability for the

detection of co-movement.

Intuitively one can derive co-movement information with threshold detection on the dis-

tance between two transmitters. Compared to DECODE (in signal space) all these localization

systems require three or more receivers to work in concert, whereas DECODE can be used

even with just one receiver. In addition, the accuracy results reported for Wi-Fi localization

raise questions about the precision of such a detection approach. We will further address these

question in detail in our work.

2.3 Vehicular Speed Estimation systems

In this section, we review the existing studies on vehicular speed estimation and classify the

existing work on vehicular speed estimation based on the modality of sensing as follows.

2.3.1 Fixed Infrastructure based sensing

By far the most common of highway speed estimation system is the inductive loop detec-

tors [22, 23, 44] which are based on on-road sensors embedded in the pavement. Traffic cam-

eras [28] have also been installed on roads that uses a sequence of image captured on several
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cameras on the road to calibrate the speed of a moving vehicle. [23] has shown that speed esti-

mation errors using loop detectors for a vehicle traveling at over 50mph can be in the order of

20mph to 120mph. Besides that, they suffer from their limited reliability and high installation

cost, which makes it hard to maintain significant coverage on the road network.

2.3.2 Smartphone based sensing

Using GPS enabled smart-phones for sensing [4, 47] has gained huge popularity in the recent

times due to its negligible deployment cost. These techniques, if adopted by a large number

of users, can provide very accurate speed estimation on most roadways. However, frequent

sampling of the GPS unit can result in fast battery drain on the mobile phone. [89] tried to

overcome some of the energy limitations by sub-sampling the GPS and combining the Wi-Fi

outdoor positioning along with map-matching to estimate speeds with high accuracy. Still,

energy consumption remains higher than approaches that use existing phone signals. It also

require software modifications on each handset which makes bootstrapping the service more

difficult.

2.3.3 Cellular phone (GSM) based sensing

Unlike the smartphone based sensing, these techniques rely on the location of the cellular phone

over time calibrated either using triangulation of the GSM signal strength [97] over time or Fin-

gerprint matching of the phone successive signal strength readings [18] or the location where

the cellular phone handsoff between towers [39, 88]. [85] uses the rate of change of RSS be-

tween successive samples to determine the speed. While all of the above techniques can over-

come the bootstrapping (since the provider already has access to the signal strength information

from phone) and energy issues that were present in smartphone based sensing, these can only

estimate average speeds over segment of length typically over 100m. [9] uses the GSM net-

work to infer traffic volume from call volume. None of these techniques can be used to track

small variations in speed that are important for several traffic engineering applications. We

differ from all the above techniques by estimating speeds with high accuracy. In addition, we

are the first to show the possibility of using GSM signal strength for tracking temporary speed

variations (for, example bottlenecks causing slowdowns).
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2.3.4 Doppler shift-based sensing

Finally, [93, 98] makes use of the doppler shift in frequency caused by the moving transmitter

to estimate speed. [93] can only perform coarse speed classification while [98] can predict the

actual speed of the mobile. But the latter assumes the presence of strong Line of Sight(LOS)

component between the transmitter and the receiver which can make this technique impractical.

2.4 Summary of Related Work

In this section, we describe how our work differs from all the above mentioned related works.

First, we do not localize devices over time to infer these location-related properties. Therefore,

our technique does not require infrastructure set up and calibration. Secondly, our work [13]

was the first of its kind to make inferences about co-mobility directly from the signal space with

just a single receiver. While there have been a lot of other proximity based sensing techniques

proposed in the past for inferring social interactions, all these require the end users to upload

their bluetooth traces to a central server in order to infer co-mobility. In contrast, our technique

does not require bootstrapping, since, it works by sensing the existing communications from

the wireless devices. The work that was closest in spirit to ours was [55], which observed

the variance in RSS to infer mobility states but it did not extend its inference for co-mobility

detection. Thirdly, the speed estimation algorithms that have been proposed in the literature

using localization or handoffs can only estimate average speeds over a period of time due to

the inaccuracies associated with localization or handoff zone prediction. Our work on speed

estimation [16] differs from the rest by tracking fine-grained speed variations. While GPS

based techniques could also track speed variations, they require explicit user participation in

uploading the collected traces to a central server and impose a heavy battery drain on the end-

user devices. Our technique, however, senses the existing cellular phone communication signals

to infer vehicular speeds which therefore, does not impose any additional battery drain and

eliminates the need for bootstrapping the system.
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Chapter 3

Analysis of the Accuracy Limits for Signal Strength based

Localization Systems

3.1 Introduction

Location is essential for many emerging applications from a diverse set of areas including asset

tracking, workflow management, geographic routing, and physical security. Wireless networks

offer an unprecedented potential for realizing many of these applications. Given that wireless

devices are carried by many people and attached to many objects and all modern radio chipsets

include the hardware necessary to measure and report the received signal strength (RSS) of

transmitted packets, there is a tremendous cost and deployment advantage to re-using the ex-

isting RSS infrastructure of the communication network for signal strength-based localization

purposes.

Over the past years, algorithmic advances have yielded accuracy improvements from RADAR’s [11]

median 3 m error to less than 1 m median error [54]. A significant further improvement to about

40 cm median error has been obtained using a larger number of landmarks (base stations), 21

instead of the 3–5 used in previous experiments [95]. Since radio environments are becoming

increasingly dense, this points to possible further accuracy improvements through using ad-

ditional measurement nodes. Particularly, cooperative localization techniques [69, 70] where

clients also contribute RSS measurements could provide readings from tens to hundreds of

nodes. The limits of localization performance in such settings remain an open question.

In this chapter, we thus perform an empirical quantification of the accuracy limits of RSS

localization on commodity wireless hardware. We try to understand the important factors that

limit the accuracy of indoor localization by performing experiments in a controlled extremely

dense laboratory environment with a single transmitter and up to 369 landmarks, which rep-

resents an ideal scenario for localization algorithms. Traces were collected using the ORBIT
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testbed, which is a 400 node indoor wireless experimental apparatus placed in a 3600 sq ft.

area. Using the ORBIT platform allowed us to capture long, high quality packet traces in a

dense environment free of major shadowing and with limited multipath effects.

We use a combination of theoretical as well as trace-driven analysis on this dataset. Our the-

oretical work uses a traditional Cramér-Rao Bound (CRB) analysis, which has previously been

used to establish bounds on location estimation variance [69]. We then use a trace-driven emu-

lation to characterize the performance of different algorithms. In order to show the generality of

our results as well as compare localization strategies, we used algorithms with widely divergent

mathematical foundations. They range from classification approaches such as RADAR [11]

over probability density exploration methods such as H1 [34] to multi-lateration such as Non-

Linear Least Squares (NLS) [21].

Specifically, we found that:

• RSS based localization can achieve median errors as low as 0.24 m, with a maximum

error of 1.5 m. Interestingly, while NLS performed the best under perfect synthetic

conditions, it has the worst performance for real RSS observations, with a mean error

of 1.6 m and a maximum error of 5.4 m.

• classification and probability density exploration algorithms had fundamentally worse

performance using perfect synthetic input, because of a combination of their inherent

discretization effects as well as the leave-one-out technique we employ to create our

testing dataset.

• for lateration-based approaches, which assume a signal-to-distance function, quality of

the RSS measurements is more important than the quantity of measurements. A subset of

179 landmarks whose data yield a good signal-to-distance fit provided best localization

performance. Simply increasing the number of landmarks over this actually increased

the median error from 24 cm to 58cm.

• classification algorithms are qualitatively less sensitive to variances and noise in the input

set than lateration-based algorithms. Given RSS measurements that deviate substantially

from standard models, these algorithms maintained good average and worst-case perfor-

mance.
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• accuracy improvements leveled off with about 100 nodes, the lower-bound of localization

performance appears still limited by discrepancies between the underlying algorithmic

models and the actual signal-propagation effects of indoor environments. For example,

individual node differences due to differences in connectors, thermal effects, and local

noise floors, as well as multi-path effects caused by diffraction, reflection and shadowing

are not explicitly accounted for in any of the algorithms and account for the remaining

errors.

Three important implications of our results are the following. First, the CRB for unbiased

estimators [51,70], which is widely used for assessing localization performance limits, does not

represent an actual lower bound on localization performance for all algorithms, likely because

its assumptions of unbiased estimators or normally distributed measurement errors do not hold

for these algorithms. Second, the strategy of minimizing the square root of the sum of the

residuals leaves much room for improved accuracy, so localization systems based on classifiers

or probability density exploration are preferable to least squares. We explore these effects more

in Section 3.4. Third, significant accuracy improvements are still possible, likely by algorithms

that incorporate more accurate models of measurement noise.

3.2 Baseline Algorithms

3.2.1 Lateration Based Algorithms

Lateration-based algorithms [21, 58, 66] explicitly model the signal-to-distance effect on RSS.

They estimate the position of the transmitter by measuring the distance to multiple receivers.

In [60], the authors use a Bayesian graphical model based on lateration to find a location es-

timate. We select our representative subset from lateration-based algorithms as Non-Linear

Least Square (NLS) [21], and Bayesian Networks (M1) [60], and explain them briefly next.

Non-Linear Least Square (NLS)

In NLS, estimating the true location of the transmitter (x, y) can be viewed as an optimization

problem where the actual locations of the reference points (xi, yi) are known apriori and the

distance estimates di are obtained from the signal-to-distance relationship. The problem then
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becomes solving for the optimal (x̂, ŷ) that minimizes the sum of residuals:

(x̂, ŷ) = argmin
x,y

N
∑

i=1

[

√

(xi − x)2 + (yi − y)2 − di

]2
(3.1)

Bayesian Networks (M1)

The M1 algorithm uses Bayes Nets which encode dependencies and relationships among a set

of random variables. The vertices of a Bayes Net graph correspond to the variables and the

edges represent dependencies [41]. The networks used for localization encode the relationship

between the RSS and the (x, y) location using a simple log-distance propagation model.

The M1 strategy describes the joint probability density of (x, y) as a function of the ob-

served RSS. However, in general, there is no closed form solution for the returned joint dis-

tribution. Therefore, we use Markov Chain Monte Carlo (MCMC) sampling to draw samples

from the joint density [37]. The resulting samples allow us to approximate the true PDF of the

(x, y). M1 selects the averages of the drawn samples as the (x, y) location estimate.

3.2.2 Classification Based Algorithms

Classification algorithms, a.k.a matching algorithms, do not rely on a model of signal strength

and distance relationship. Rather, they match RSS observations against an existing signal map.

The term classification, as used in the machine learning sense, implies that the goal of the

classifier is to map a potentially large input space into a much smaller space of labels. In the

case of localization, the labels are a set of discrete (x, y) locations.

Previous approaches [11], [83] and [54] are examples of classical fingerprint matching al-

gorithms. The location of a node is estimated by matching its fingerprints to the closest one

in the signal map. Matching algorithms in [95], and [94] employ probabilistic inference to

estimate the location of a node. Also, [78] uses Bayesian inversion to return the location that

maximizes the probability of the RSS vector. The authors of [40] apply the same technique to

the robotics domain and experimentally show that 83% of the time, the location error is within

5 ft.

Deriving closed form solutions for the lower-bound of most of these algorithms is not triv-

ial, or the bound may not be existent at all. Indeed, framing localization as a map matching
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problem naturally lends itself to machine-learning approaches, for which many algorithms have

provably no closed form solution. We select our representative subset from classification-based

algorithms as RADAR, Gridded-RADAR (GR) and Highest Probability (H1) and continue with

a brief overview of these algorithms.

RADAR

[11] is a classical scene matching localization algorithm where the signal map, a set of fin-

gerprints with known (x, y) locations, is provided as an input to the offline phase of the algo-

rithm. In the online phase, when presented with a fingerprint of a node with unknown location,

RADAR returns the location of the ‘closest fingerprint from the signal map.

Gridded-RADAR (GR)

is an improvisation over RADAR where measurement area is sub-divided into a regular grid

and the signal map provided in the offline phase is interpolated over the entire grid. The online

phase is similar to RADAR with the exception that the “closest” fingerprint in signal space is

chosen from the interpolated signal map. This approach has an advantage of obtaining a much

finer-grained resolution as the regions which are not covered by the signal map can also be

returned as location estimates.

Highest Probability (H1)

Given an area divided into a discrete set of points called tiles, the strategy used by H1 is to

return the most likely (x, y) by finding the highest probable tile using Bayes’ rule over the set

of RSS values. In order to find the likelihood of the RSS-matching for each tile in isolation, H1

assumes that the distribution of the RSS for each receiver follows a Gaussian distribution. This

assumption significantly simplifies the computations with little performance loss. Using Bayes’

rule, H1 computes the probability of being at each tile on the floor, Li, given the fingerprint of

the localized object S̄l as

P
(

Li|S̄l

)

=
P
(

S̄l|Li

)

× P (Li)

P
(

S̄l

) . (3.2)
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However fingerprint S̄l = (slj) is some constant c and with no prior information about the

exact object’s location, H1 assumes that the object to be localized is equally likely to be at any

location on the floor, i.e., P (Li) = P (Lj) ,∀i, j. Thus, Equation 3.2 can be rewritten as

P
(

Li|S̄l

)

= c× P
(

S̄l|Li

)

. (3.3)

Without having to know the value c, H1 can just return the tile Lmax, where Lmax =

argmax(P
(

S̄l|Li

)

), by computing P
(

S̄l|Li

)

for every tile i on the floor. Up to this step H1 is

very similar to the traditional Bayesian approaches [40,94], with the exception of the Gaussian

and variance assumptions.

Finally, [69] and [29] studied establishing theoretical lower bounds for the achievable lo-

calization performance using estimation techniques that employ unbiased estimators. Table 3.1

summarizes the median, 75th percentile and maximum errors for various localization algo-

rithms that were studied experimentally. Overall, we can see that none of the approaches have

experimented with more than 21 access points and the state of the art approach [95] has its

median, 75th percentile and the max errors as 0.39 m, 0.55 m, and 4.99 m, respectively.

In addition to studying RSS-based localization in a high density setting with hundreds of

landmarks, and reporting localization errors an order of magnitude lower than the state-of-the-

art, in this work, we also focus on understanding the factors that limit the RSS-based localiza-

tion performance from achieving near-zero errors.

3.2.3 Cramér-Rao Bound

Localization can be defined as an estimation problem where measurements like wireless signal

strength, angle or time of arrival are provided to an estimator (i.e. the localization algorithm)

to obtain the most likely position in the assumed coordinate system. In estimation theory, the

Cramér-Rao bound (CRB) has been derived as a lower-bound on the variance of an estima-

tor [73]. Although CRB has been applied to certain classes of biased estimators [43, 90], it is

commonly used to bound the variance of unbiased estimators [51]. The CRB has frequently

been used by researchers to assess localization techniques [29, 69, 70].

The CRB for an unbiased estimator is obtained from the inverse of the Fisher Information
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Matrix (FIM) [51], given as

I(θ) = E

{

[

∂ ln f(p|θ)

∂θ

] [

∂ ln f(p|θ)

∂θ

]T
}

, (3.4)

where θ is the unknown parameter to be estimated from measurements p, which follows a

probability density function f(p|θ). Intuitively, the FIM is an estimate of the curvature of the

log likelihood function ln f(p|θ). If the curvature is sharp, the parameter estimation becomes

more accurate making the lower bound on the variance of the estimator(CRB) very small. The

received power at a landmark location (xn, yn) from a transmitter at (x, y) can be modeled

as [36]

P (xn, yn) = P0 − 10γ log10(dn/d0) + Sn (dB), (3.5)

where dn =
√

(xn − x)2 + (yn − y)2 with n = 1...N landmarks; P0 is the received power at

the reference distance d0 from the source; γ is the path loss exponent; and Sn is the random

variation of the signal measurements and assumed to come from an i.i.d. Gaussian distribution

N (0, σ2
RSS). For the case of a single unknown transmitter location and N landmarks, the CRB

for the variance σ2 of an unbiased location estimator is given as

σ2 ≥
I(θ)xx + I(θ)yy

I(θ)xxI(θ)yy − I(θ)2xy
(3.6)

where I(θ)xx and I(θ)yy are the diagonal blocks and I(θ)xy and I(θ)Txy are the off-diagonal

blocks of the FIM in Eq.3.4. Details of the derivation can be found in [70].

Note that the above CRB, for any localization technique using RSS information, critically

depends on:

• the number and topology of the landmarks and the transmitters to be localized,

• the ratio of the RSS standard deviation to the propagation constant (σRSS/γ), character-

izing the signal and the propagation environment

• the assumption of RSS fluctuations due to an i.i.d. Gaussian distribution with a common

variance σ2
RSS .
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Figure 3.1: (a)The movable node (Transmitter) attached to an antenna on a portable mast,
(b)The 400 node ORBIT experimental testbed

3.3 Testbed Experiments

In this section, we begin by describing our experimental objectives and then explain how we

performed experiments in order to fulfill these objectives.

3.3.1 Objectives

The objectives of our experiments are:

• To quantify the limits of different localization algorithms—M1, H1, GR, and NLS—

under a dense, indoor landmark deployment with limited shadowing and multipath fading

• To understand how these limits compare to the CRB

• To understand how variations in RSSI observations limit the localization algorithms from

achieving perfect results in this laboratory environment

3.3.2 Experimental Methodology

We performed our experiments on ORBIT [75], a large scale indoor wireless testbed. The

ORBIT testbed consists of 400 small form-factor PCs, with two IEEE 802.11a/b/g wireless

interfaces per node. The nodes are suspended from the ceiling as shown in Figure 3.1(a) and

are placed in a 20 × 20 regular grid with an inter-node separation of 91.44cm (3ft) spanning a
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total area of 3600 sq ft. We collected packet data traces from a subset of 369 nodes using one

of the identical Atheros 5212 based 802.11a/b/g NIC in every node. The remaining 31 nodes

were down for maintenance.

The data trace collection spanned two days and all 369 fixed ORBIT nodes were configured

as IEEE 802.11a receivers operating at 5GHz, channel 44. The receivers used the Tshark

packet sniffer utility to log the received signal strength indicator (RSSI) for every received

packet. We used a movable ORBIT node attached to a portable antenna mast as our packet

transmitter. Figure 3.1(b) shows the rubber-duck antenna mounted on the mast. The antenna rig

was used to raise the movable node’s antenna to the same plane receiver antennas were located

as well as keeping transmitter antenna orientation the same throughout all transmitter locations.

The transceiver diversity options were disabled in all our radios to eliminate unwanted RSSI

oscillations. The transmitter was placed at 400 different locations, one below each one of the

suspended ORBIT node for collecting the training dataset. The per-packet data trace collected

at each of the receiver was then post processed to yield an average RSSI measurement over 1000

packets for the transmitter at every location. This resulted in a dataset with 400 training Points

and 369 receivers for each training point. Note that our testing point locations overlapped with

the landmark locations.

To evaluate the different algorithms, we use the well-known leave-one-out approach where

the 400 point training set is split into 400 sets of 399 training points and one testing point. The

difference between the known actual location (x, y) of the testing point and the localization

algorithm’s estimate (x̂, ŷ) of the testing point derives the estimation error.

3.4 Results

In this section, we begin by highlighting our important contributions and provide detailed in-

sights into our results. Table 3.1 summarizes our key findings. They are:

1. The M1 algorithm achieved the lowest median localization error of about 0.24 m, ex-

ceeding the best prior experimental result [95] by a factor of two

2. Adding a lot of landmarks can reduce the localization accuracy for lateration based algo-

rithms. The best performance was achieved with a carefully selected cleaned subset of
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Scaled Results Sanitized Results

Median Max Std.Dev. Median Max Std.Dev.
(m) (m) (m) (m) (m) (m)

M1 .58 26.87 1.87 .24 1.60 0.25
NLS 2.01 13.44 2.41 1.62 5.37 0.79
GR .31 1.74 0.30 .36 1.97 0.32
H1 .33 1.82 0.29 .39 1.70 0.33
CRB — — 0.62 — — 0.75

Table 3.1: Summary of Localization Accuracy and Precision

about half the landmarks

3. The general CRB for unbiased estimators is a poor benchmark of localization precision

for the algorithms tested

The following subsection describe each of these results in detail.

Figure 3.2: Error CDF plots representing localization performance of the selected algorithms
from ORBIT experiment using all available 369 landmarks

3.4.1 High-density Localization Performance

Figure 3.2 plots the error CDF for the lateration algorithms (M1 and NLS) and the match-

ing algorithms (GR and H1) with the training data collected from all 400 locations and 369

landmarks in the 20 by 20m space. We call this training set the scaled dataset. This dataset

allows conclusions about how far localization error can be reduced with extreme measurement

resources.
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Figure 3.3: Error CDF plots representing localization performance from ORBIT experiment
using the “sanitized” dataset with 179 Training and 179 Landmarks

GR and H1 have the best performance with median errors of 0.31 m and 0.33 m, respec-

tively exhibiting only an 16% improvement over the best prior reported median accuracy of

0.38 m with 21 landmarks.

Table 3.1 shows the median and maximum errors for all four algorithms. The lateration

algorithms, in particular NLS, show much higher errors both in terms of median and maximum.

M1’s maximum error of about 27 m exceeds that of H1 and Gridded RADAR 15-fold. This

motivates us to further explore the causes for such outliers.

3.4.2 Sensitivity to Data Quality

We define the data quality of a landmark based on how well the signal strength measurements

for the landmarks match a distance to RSS propagation model fitted on the data. The lateration

algorithms estimate the propagation parameters from the measurements based on this distance

to RSS fit. Recall that in free space, the signal power decays linearly with log distance.

Figure 3.4 plots the distance to RSS relationship together with the fitted free-space propa-

gation model for two different landmarks using the same set of training points. We observe that

the quality of the fit in terms of R2 differs significantly.

To investigate the relatively poor performance of the lateration algorithms in the scaled

dataset, we sanitize the data by removing low quality landmarks whose co-efficient of de-

termination R2 < 0.5. We empirically determined that this threshold significantly improves

localization performance. After filtering, 179 landmarks and the corresponding 179 training
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Figure 3.4: Plots showing the co-efficient of determination(R2) for 2 different landmarks (a)
Landmark with Good fit, R2 = 0.778 (b) Landmark with poor fit, R2 = 0.2443

points remain. We refer to this dataset as the sanitized (or cleaned) dataset.

Figure 3.3 plots the performance of different localization algorithms with the sanitized

dataset. We can see that M1 outperforms all other algorithms, it achieves a median error of

0.24 m, about half the error reported by state of the art RSS-based localization algorithms.

The median error for NLS has also improved from 2.01 m for the scaled dataset to 1.62 m for

the sanitized dataset. Note also that the max errors for M1 dropped from 26.87 m to 1.60 m

showing a 94% improvement.

Figure 3.5: Effect of Scaling the Number of APs

Figure 3.5 plots the error CDF for M1 for varying number of landmarks (or access points)

—4,25,100,179 and 400. In each scenario, the access points were deployed in a regular, equally

spaced fashion. Additionally, we also plot M1’s result for the sanitized dataset. While in-

creasing the number of access points significantly reduces the error for M1, the results show

diminishing returns. The reduction in error from 100 to 400 landmarks is minor compared to
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reduction from 4 to 25. Note also that, the sanitized dataset with 179 landmarks significantly

outperforms all results with arbitrary selection of landmarks.

These results suggest that lateration algorithms generally are very sensitive to data from

low-quality landmarks that cannot be fitted on a propagation model. For the lateration al-

gorithms, increasing landmark density is less effective than selecting high-quality landmarks.

The matching algorithms, however, remain very robust to these data quality issues.

3.4.3 Performance with Synthetic Data

We have shown that after data sanitization, a median localization accuracy of 0.24 m is achiev-

able. To explore possibility of further improved localization, we study the localization perfor-

mance starting with an ideal noise-less RSSI dataset, which we create synthetically to conform

to the well-known path-loss model given in Eq. 4.2. Then, by using empirical observations

from our ORBIT experiments, we model two different classes of noise that affect RSSI data

and perturb this perfect synthetic dataset according to the models. Finally we compare the per-

formance of the localization algorithms using the perturbed data with the ORBIT experiments

to validate our modeling.

The parameters used to create the synthetic dataset are given in Table 3.2. These were ob-

tained from a detailed channel measurement study in the ORBIT room [53], which determined

the path gain at reference distance P0, and the path loss exponent γ. To facilitate compar-

isons with the best case ORBIT experiments, our synthetic dataset consists of 179 landmarks

with RSSI information from 179 different locations that fall 30cm away from each landmark.

This replicates the transmitter locations used in the actual ORBIT experiments for the sanitized

dataset.

Parameter Value

Path gain P0 @ 2.4 GHz @ 1 meter -42.934 dB
Path Loss Exponent (γ) 1.96

Transmit Power 10 dB
Antenna Gain 2 dB
Cable Losses 1 dB

Table 3.2: Summary of the Parameters Used in Synthetic Data Generation
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Figure 3.6: Localization performance with synthetically generated noise-less data for 179 land-
marks. The Fig in the left plots the Zoomed-in error CDF to show M1 and NLS performance
and the one on right plots the Error CDF for all five algorithms

Noise-less Performance: Figure 3.6 presents localization performance for five different al-

gorithms using the noise-less dataset. Lateration algorithms M1 and NLS perform very well—

both result in sub-centimeter accuracy for 99% of the time, and strictly below 1.5 cm all the

time. Classification algorithms RADAR and GR are limited with the discrete number of fin-

gerprints (classes) to which a given testing point can be associated. Due to the leave-one-out

method of testing, RADAR can only match a testing point to the nearest possible landmark,

which is 3-feet away in the ORBIT grid setting. Consequently we observe that RADAR has

99% of its error accumulated exactly at 3-feet (about 91 cms). The CDF for GR, which works

with 2 inch (5.08 cm) grid-sizes, shows a step-like behavior and achieves a median error of

15 cm (worth almost 3 grid points). Similarly, the tile-discretization effect inherent to H1 re-

sults in a median error of 12 cm with this ideal noise-less dataset.

The performance discrepancy between Figures 3.3 and 3.6 indicate that the input dataset in

our ORBIT experiments contains significant noise on RSSI observations.

RSSI Noise Analysis: To investigate this discrepancy, we measured the distribution and

stability of RSSI readings on a single transmitter-receiver pair. Without environmental mobility

and a time-invariant channel, the RSSI observations from an ideal pair of transmitter-receiver

should be constant over the time. Figure 3.7(a) shows the RSSI distribution of 300.000 packets
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Figure 3.7: (a) Empirical RSSI distribution from single-link 300K packet experiment and the
normal distribution fit for Type I Noise model (b) Effect of the number of RSSI samples used
for averaging on Type I Noise perturbed synthetic data for Nonlinear LS and Bayesian Network
Algorithms

over a given ORBIT link.1 Clearly, variations of 1–2 dB exist and we categorize this as Type I

noise. Detailed discussions on the potential causes of the noise observed on RSSI are deferred

to Section 3.5.

Type I Noise Case: To understand how this variance affects localization, we have perturbed

our noise-less synthetic dataset according to the variance of the normal distribution fit on the

observed noise of 1.02 db as shown in Figure 3.7(a). The RSS for the synthetic data follows

N (µ(θ), 1.02) where µ(θ) is the mean received power which is P0−10γ log10(dn/d0) as given

1Note that these experiments were conducted remotely 4AM in the morning with no human presence and no
802.11 interference. Our tests with other combinations of off-the-shelf cards (i.e., Atheros 5212 and Intel ProWire-
less 2945) exhibited the same behavior.
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by Eq 4.2. We tested both M1 and NLS localization algorithms with this perturbed dataset.

We observed that using single RSSI measurements resulted in increased median localization

error, from sub-centimeters up to of 14.6 cm and 2.2 cm for M1 and NLS respectively, as

shown in Figure 3.7(b). RSSI averaging, however, reduced this effect—the mean of 1000 RSSI

observations removed nearly all localization error due to this noise. Thus, the Type I noise do

not account for the observed discrepancies, since the high-density experiments were conducted

with the mean of 1000 packet RSS readings.

(a) Three example PDF fits for Landmark #5

(b) Localization Performance with TypeII Noise

Figure 3.8: (a) Example empirical RSSI distributions obtained per landmark at each foot dis-
tance separation for Type II Noise (b) Performance of localization under Type II Noise

Type II Noise Case: Next we model the noise observed in Fig. 3.4, by dividing TX-RX

distance into 1 ft buckets for each receiver and fitting a normal distribution on the data that fall

in each bucket, as illustrated in Figure 3.8(a). We categorize this noise as Type II . Using these

standard deviations(σ̂) obtained from the PDFs, we create another synthetic dataset whose RSS

follows N (µ(θ), σ̂2) and again evaluate the localization performance. Results are depicted in

Figure 3.8(b). Note that these results match the experimental results well, the discrepancy is
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less than 20 cm for all algorithms.

These results suggest that the noise that limits localization performance is not due to short

term measurement noise on individual nodes, but rather due to variations across nodes and

locations. We discuss more on RSSI noise in Section 3.5.

3.4.4 Comparisons with Cramér Rao Lower Bound

Following the Gaussian distribution assumption in Section 3.2.3, we have calculated the stan-

dard deviation (stddev) of the averaged RSS sample residuals (σRSS) from our experimental

dataset of 400 nodes to be 8.880, as illustrated in Figure 3.9(a). Also, the path-loss exponent

γ in the ORBIT room was previously measured to be 1.701, using precise measurement equip-

ment [53] at 5.1GHz UNII band. Using this σRSS/γ ratio of 5.220 together with the 179 (i.e.,

sanitized) and 369 (i.e., scaled) landmark topologies as inputs, we calculated the CRB for each

unknown transmitter position with the help of a Matlab script. The median value of the stddevs

obtained from this CRB calculation is reported in Table 3.1 (in meters) together with stddevs

of errors from the localization algorithms we have evaluated.

In both the scaled and sanitized cases, the CRB does not provide a lower bound on the

variance of the localization error, except for the NLS algorithm (both cases) and M1 algorithm

(only for scaled case). It is important to note that the CRB is only a bound on the variance of

the localization error, but not a bound on the mean of the error. Therefore the CRB should be

used as a benchmark for the precision of various unbiased localization algorithms but not the

accuracy of them.

We identify two reasons why the CRB provided little value in comparing the precision of

localization algorithms we tested.

RSS Distribution: The CRB (Eq.3.6) assumes that the RSS sample residuals come from a

zero mean Gaussian distribution with a stddev of σRSS . To verify if this assumption holds, we

examined averaged RSS samples shown in Figure 3.9(a) with a quantile-quantile (Q-Q) plot

given in Figure 3.9(b). We observe that RSS data fit the normality assumption only between

-2 and +2 quantiles. Also, a chi-square test for the normality of the data indicates that the nor-

mality hypothesis can not be accepted with 95% confidence. It is likely that our RSS samples

come from a more complex composite distribution, similar to the observation in [70]. Since
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Figure 3.9: Investigating Gaussian distribution assumption of RSS samples from 400 node
dataset

the Gaussian distribution assumption does not strictly hold, the CRB can not be expected to

provide a strict bound for the localization error variance. In theory [74], the RSS residual in

the ORBIT testbed environment which has a strong LOS component with minimal shadowing

should be characterized using the Ricean distribution instead of Gaussian.

Estimator Bias: The CRB in the form of Eq.3.6 is not applicable to biased estimators. It is

quite possible that the majority of localization algorithms are biased. In fact, non-linear least

squares is known to generally be a biased estimator. Also, RADAR intuitively appears biased

due to the limited number of training points that positions are matched to. The median error

for biased estimators can be lower than the bound for an unbiased estimator. Deriving a gen-

eral form of the CRB for a biased estimator would require knowledge on the gradient of the

estimator bias [42].

3.5 Discussion

Our results leave unanswered questions with regards to the lower bounds of localization perfor-

mance using RSS. In this section, we discuss how resources, node quality and algorithm choice

impact the lower bounds of localization performance.

First, high accuracy requires a large number of observation points, which is in agreement

with prior work [95]. However, motivation for many of the prior works has been building

a localization system using only minimal additional infrastructure. We have also shown that
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E
Q
U
IP
M
E
N
T Calculation How the RSSI is measured by the card (i.e., exact sampling from the packet training

sequence, before or after AGC elements etc.). How interference and noise affect RSSI
calculation. Details of the particular algorithm running in DSP.

Quantization The way RSSI is quantized (i.e., 0-31, 0-63, 0-100). Averaging used. Non-linearity of
rcvd power vs. reported RSSI

Faults Leaking, or improperly terminated RF circuitry. Broken antenna cable or connectors.

Manufacturing/Design Differences in the manufacturing process. Variance of the quality of the circuit compo-
nents used. Cheap transceiver design with fluctuating TX power and receiver path gains.

E
N
V
IR

. Thermal Noise Observed in the receiver electronics dependent on the ambient temperature. Also other
forms of cyclo-stationary noises.

Shadow Fading Caused by the blocking of direct, reflected, diffracted, and scattered signal copies from
the transmitter.

Multipath Fading Caused by multiple copies of the received signal through (a possible) line-of-sight com-
ponent, and its reflections, diffractions, scattering, each delayed wrt power-delay profile
of the physical environment around TX-RX pair.

Table 3.3: Sources of noise for RSSI relevant to our experiments

the additional infrastructure can leverage the RSS measurements on existing communication

waveforms by re-using the enormous investment in commodity chipsets.

Our results show that high quality RSS measurement is critical to localization performance,

and that the measurement and reporting variances across devices limit the accuracy. Although

the minute-scale averages of RSS observations are found to be stable (Figure 3.7), significant

variance still exists when signal-to-distance fits are considered (Figure 3.8(a)). The exact break-

down for the causes of this distribution remains unknown. Table 3.3 provides a non-exhaustive

list of the sources of noise that might have potentially led to non-ideal RSSI observations for our

experiments. Note that the list omits important items like mobility and external interference as

they were not existent in our controlled experiment. Calculation of RSSI from a received IEEE

802.11 packet is only outlined by the standard [48] and implementation details for any given

wireless card remain the manufacturers’ intellectual property. Nonetheless in our experiments,

we use 369 identical m-PCI Atheros 5212 IEEE 802.11a/b/g cards manufactured at close prox-

imity in time, thus RSSI observations likely come from identical calculation algorithms. Also,

in our experiments, faults are easily detectable as we have close proximity RSSI observations

for every landmark from which outliers could be eliminated. Fading, as demonstrated by pre-

cise measurements in the ORBIT room [53], is time-invariant in the absence of environmental

mobility, thus the multipath profile of the channel in the room is static. In our experiments,

fading is visible not because it varies the received signal power for a given link over the time,
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but because the RSSI is observed from a static transmitter at 179 discrete locations in the room,

each capturing a different fading profile. This makes several of the possible sources unlikely,

pinpointing the exact reasons remains an open problem.

A last open issue is that we believe, there is still room for better algorithmic methods to

extract localization performance from the traditional approach of finding the best fit that min-

imizes the residuals. The M1 algorithm is a first step in exploiting such prior information in a

manner that goes beyond traditional classifiers, but our work raises the question if additional

information could still be extracted by clever algorithms without resorting to classifiers.

3.6 Summary of Key Ideas

To summarize, the key contributions of this chapter are:

• We investigated the lower bound of RSS based localization algorithms through a dense,

high-precision wireless testbed. We found that high average accuracies, on the order of

0.2 m, are possible using commodity hardware in our configuration. We also showed that

the maximum error can be reduced to about 1.6 m, which is also an encouraging result.

However, we have to note that such high accuracies were produced in a very high density

environment with 179 landmarks in a 20m × 20m area and this is not typical in actual

indoors deployments.

• Our results show that the precision of a number of algorithms exceed the theoretical

lower bounds commonly calculated for localization techniques using Cramér-Rao Bound

(CRB) analysis for unbiased estimators. This raises questions about the validity of the

assumptions underlying this analysis, particularly with regard to bias and normally dis-

tributed measurement errors.

• Our results also demonstrate that the choice of algorithms is important, in that we ob-

served least squares approaches have the worst performance on real data sets. We also

found that classification-based algorithms are more robust to poorer quality data than

lateration approaches. Our results also point to the possibility of further improvements

from increasing the quality of the RSS observations, raising the node density in real
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deployments, or adding algorithmic enhancements.

• Finally, our trace driven simulations along with the experimental observations show that

the main cause of localization algorithms indoors is the inability of the algorithms to

model the dynamic multi-path environment. There are several ray-tracing algorithms

proposed in the literature to model multipath indoors but none has been shown to cap-

ture the dynamics of the environment. This leads us to a conclusion that localization

errors cannot be completely removed in an indoor environment and that using localiza-

tion results for deriving other location-related properties may not always be the optimal

means to deriving them. In the next few chapters, we look at the possibility of using the

time-series of RSS for deriving location-related properties.
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Chapter 4

DECODE: DEtecting CO-Moving Wireless DEvices using Signal

Strength

4.1 Introduction

Many location-aware applications benefit from an accurate estimate of the underlying physical

properties of wireless devices. One such physical property is co-movement, which describes

whether a set of wireless transmitters are moving together on a common path. Co-movement

information could be used to infer containment relationships, indicating for example that two

devices are owned and carried by the same person, or that several tagged objects are placed on

the same pallet. It could also be used to infer social relationships if the transmitters are carried

by different persons or for optimizing localization system performance.

While it is straightforward to derive co-movement relationship from position coordinates

and trajectories generated by a localization system, our study in Chapter 3 suggests that suffi-

ciently accurate and precise data is not always available. Indeed, our evaluation of a bayesian

WiFi localization system (M1) [32] shows that the location estimation errors lead to bias and

variance in the Euclidean distance between two co-moving transmitters, making detection of

co-movement difficult. Global Positioning System (GPS) accuracy is also frequently degraded

in urban canyons [25], and even if signals are available, GPS receivers are not commonly used

in portable devices due to their high energy consumption. For indoor environments, localization

systems require the presence of multiple landmarks or receivers, which adds infrastructure cost.

Coarse co-movement information can also be obtained from connectivity through short-range

radios [31]. This, however, requires tracking software to be installed on all mobile devices, it

can not easily be inferred through infrastructure solutions alone.
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4.1.1 Overview of DECODE

In this chapter, we propose the DECODE technique which detects co-movement through cor-

related signal variations over time rather than directly measuring the signal difference between

two transmitters. The technique can either work in signal space, using Received Signal Strength

(RSS) indicator values, or in position space, using location coordinates derived from the sig-

nals.

DECODE can exploit commonalities in signal power variations, because certain fading pat-

terns of co-moving transmitters are similar. The wireless communications literature [77] dis-

tinguishes shadow and multi-path fading effects that attenuate or amplify a signal in addition to

the path loss due to communication distance. Shadow fading refers to obstacles in the environ-

ment that attenuate the transmitted signal, when it travels through the object. The magnitude

of this effect depends on the material and width of the object (e.g., about 10dB attenuation

was observed when an outside antenna was moved inside of a vehicle [46]). Multi-path fading

describes the effect that objects in the environment reflect and scatter the transmitted signal,

so that the signal often arrives at the receiver along multiple paths. The signal components

constructively or destructively interfere, leading to fast changes in received signal strength if

the position of the receiver changes by merely one-half the wavelength of the communication

frequency used (about 59mm for ISM Band 2.4GHz [65] can result in signal strength changes

exceeding 20dB). As transmitters or receivers move, the time varying attenuation due to these

effects will be unique for each path in space. Two receivers co-moving with a separation of less

than one-half wavelength can be trivially detected because they will experience nearly identical

signal power curves, assuming same transmission power and antennas). For high communi-

cation frequencies in the unlicensed band, however, only few transmitters will be sufficiently

close to allow such straightforward detection. Thus co-movement detection has to allow sig-

nificant difference in signals due to multi-path fading.

Thus, this work presents the DECODE technique, which detects co-moving transmitters

by correlated signal changes introduced by the shadow fading component in measured signals.

While the multi-path component of the signal differs, transmitters separated less than a few
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meters will often still observe commonalities in shadow fading since larger objects in the en-

vironment tend to block all direct signal paths to the co-located transmitters. To isolate the

shadow fading component, DECODE first extracts periods of high signal variance from the

observed signal strength traces over time. When operating directly in signal space, DECODE

removes high-frequency multi-path components of the signal and calculates a correlation co-

efficient over the filtered signal. A high correlation coefficient indicates co-movement of the

transmitters. When operating in location space, it calculates correlation over a time-series trace

of coordinates reported by a localization algorithm. Localization algorithms typically average

signals over time and thus also largely filter out multi-path effects. Shadow fading can manifest

itself as errors in the localization output, which DECODE can exploit. One key advantage of

applying DECODE in signal space is that, in typical indoor or urban outdoor environments

where shadow fading exists [49], DECODE requires only one receiver to detect co-movement,

while localization systems require signal measurements from multiple receivers.

4.1.2 Uses of Co-Movement Information

Many applications can benefit from co-movement information. Some of the important ones

are:

• Mapping Devices to Persons: Many location-aware application such as Friend finders

are tracking devices as a proxy to infer the position of the device owner. The proliferation

of mobile devices and distinct radio technologies on each mobile device make monitor-

ing this mapping of devices to their owners increasingly cumbersome. For example, as

a mobile device moves from an outdoor to an in-building location, it may be tracked by

a variety of different technologies each using a different device identifier (usually a ra-

dio MAC address). By monitoring co-movement of different transmitters a localization

system may be able to infer which devices belong to the same owner, or which addresses

represent the same device.
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• Social Network Mining: Recent work [31] has sought to infer social relationships from

mobile device connectivity patterns. Applications for such techniques include automati-

cally determining access control policies and viral marketing. Current techniques mon-

itor Bluetooth advertisement messages to determine when and how long devices from

different owners meet. This requires software on mobile devices. The co-movement tech-

niques could also extract this information through external observations (from a commu-

nications base station).

• Localization Optimizations: Knowing that two mobile devices move together helps

collaborative positioning mechanisms that provide lower energy consumption or better

accuracy. For example, one device could power down its GPS receiver to conserve en-

ergy, while the other device’s receiver still provides accurate position updates. In chal-

lenging environments for localization, position estimates may also be improved through

redundancy.

4.2 Motivation for DECODE

If current indoor localization systems can provide sufficiently accurate location coordinates,

one would detect co-movement based on the distance between the two transmitters remaining

below a threshold of a few meters. To verify this intuition, we conduct an experiment in an

office environment with coordinates reported by a WiFi localization system using the RSS

bayesian localizer M1 [32]. M1 is a lateration-based bayesian algorithm which encodes the

relationship between the RSS and 2-dimensional cartesian location coordinates using a simple

log-distance propagation model. Using a training set (a vector of RSS for different known

(x, y) locations), M1 determines the propagation parameters for each of the receivers. It then

derives the joint probability density of (x, y) as a function of the observed RSS for the point to

be localized and uses the mean of the derived pdf to estimate the unknown location (x, y). M1

has been shown to provide qualitatively comparable accuracy to current state-of-the-art WiFi

localization algorithms [32].

In our experimental setup, two IEEE 802.11g (WiFi) transmitters, send 10 packets per sec-

ond on the same channel, while moving together with about six inch separation within the
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Figure 4.1: Euclidean distance between the localized (X,Y ) positions for a co-moving trans-
mitter pair

office space at a constant speed of 1m/sec. Four receivers recorded the observed Received Sig-

nal Strength (RSS) from this transmitter pair. We localize these co-moving pair of transmitters

in the 85m × 50m cubicle office environment using M1 every second, based on the average

RSS reported over the last second. More details on the testbed setup are provided in Section

4.4.1.

The Figure 4.1 plots the Euclidean distance in geographic space between the localized

points for the pair of co-moving devices over time. We can see that the distance varies between

0.3m and 12m with a mean distance of 2m. This high variance in the Euclidean distance can

be attributed to the following causes.

1. Typical RSS based localization algorithms exhibit a relatively high median localization

error of 3m even under no mobility. This localization inaccuracy can increase with mo-

bility thereby resulting in high distance variance.

2. The Localization algorithm estimates X and Y for every transmitter independently be-

fore the Euclidean distance metric combines the estimated X and Y from each trans-

mitter. It is possible that errors add up temporarily. It is also possible that a bias in the

estimated values for one of the parameters could result in continuously high Euclidean

distance estimates.

These high distance errors suggest that the distance threshold detection approach cannot
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accurately determine co-moving transmitters. This further motivates the DECODE technique,

which we will describe next.

4.3 Decode System Design

The environment in which wireless communication takes place affects the received signal

power (or signal-to-noise ratio). The key idea underlying the DECODE technique is exploiting

shadow fading, signal attenuation due to objects blocking the path of communication. Two

transmitters in close proximity will be similarly affected by surrounding buildings, furniture,

or passing people. Therefore, the observed signal power from these transmitters should be

correlated. This similarity in signal strength in turn should also translate to correlations in

localization errors.

DECODE captures these similarities by calculating the correlation coefficient over a time-

series trace of signal strength or location coordinate values. The correlation coefficient mea-

sures the strength of a linear relationship between two random variables. Thus the correlation

coefficient captures similarities in the changes of two values, even if the absolute values are

different. DECODE uses the Pearson’s product moment correlation coefficient [12], a pre-

ferred method for quantitative measures such as the RSSI traces used. For comparison, we also

evaluated another measure of correlation, Spearman’s Rank correlation coefficient [62]. Unless

otherwise mentioned, correlation coefficient will refer to Pearson’s product moment correlation

coefficient rxy in the remainder of this work. For n samples each from two random variables

X and Y , it is defined as

rxy =

∑

xiyi − nx y

(n− 1)SxSy
(4.1)

where Sx and Sy are the sample standard deviations. The correlation coefficient lies in

the interval [−1, 1], where 0 indicates no correlation, +1 indicates maximum positive correla-

tion, and -1 indicates maximum negative correlation. We empirically determined a correlation

coefficient threshold of 0.6 (see section 4.4.4), values that exceed this threshold indicate co-

movement.

Received signal strength, however, also significantly varies due to multi-path fading. It
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can introduce received signal strength changes of more than 20dB between locations separated

only by half the wavelength of the carrier frequency, if no line-of-sight path to the transmitter

is available. These variations render the similarities due to shadow fading difficult to detect.

To address this challenge, DECODE calculates a moving average over signals, which acts as a

low-pass filter to reduce or remove multi-path effects.

Movement also helps detection of shadow fading similarities, because co-moving transmit-

ters will experience received signal strength changes due to shadowing at similar points in time

(e.g., two co-moving transmitters would pass a building corner at the same time). Intuitively,

higher speed of the transmitters will increase the frequency of these changes and thus facilitate

co-movement detection. Therefore, DECODE will focus on periods of high signal variance,

which typically correspond to movement.

Figure 4.2 illustrates the system design and key processing steps of the DECODE system,

which can use received signal strength or location-coordinates for estimation. Both approaches

share a number of common data collection and preprocessing steps.

In both cases, the receiver measures the received signal strength for packets emitted from

transmitters. It reports a transmitter identifier, signal strength and a reception timestamp for

each observation to the DECODE processing unit, usually over an existing wired network in-

frastructure. In our prototype, we have implemented DECODE by monitoring the RSSI indi-

cators reported for each packet reception by the receiver. RSSI has been shown to be a good

indicator of channel quality [86], hence it should provide adequate information about fading

patterns. RSSI is also available across all wireless technologies, which allows measuring co-

movement across different transmitters. For each transmitter, DECODE first performs time

alignment and interpolation to facilitate later processing in the face of missing samples. It

then extracts periods of high signal variance, which are likely to correspond to movement of

transmitters.

This is followed by RSS- or location-specific processing steps. Finally, correlation coef-

ficients are calculated for each transmitter pair and correlation values exceeding a specified

threshold indicate co-movement of a transmitter pair.

In the following subsections, we give details of the common, RSS-specific, and location-

specific components of DECODE.
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Figure 4.2: System diagram and data flow

4.3.1 Common Components

The common preprocessing steps include time alignment and extraction of high variance peri-

ods.

Time alignment: The following co-movement detection seeks to compare RSSI values ob-

served at the same time from different transmitters. The packets originating from transmitters

attached to different devices may not be synchronized in time. Even if one attempts to syn-

chronize transmitters attached to the same device, the inherent channel access delays will cause

packets from these different transmitters to arrive at the receiver on slightly different times.
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Depending on wireless channel conditions, packets are also lost due to collisions or path loss.

Thus, the time alignment step synchronizes the samples received from two transmitters. Given

the packet traces for two transmitters, our implementation matches every packet from the first

transmitter with the last prior packet transmission from the second transmitter. If a sample is

missing from the second transmitter, this procedure replaces the missing sample with the last

observed sample from the second transmitter.

Extracting high variance periods: Recall that DECODE focuses on periods of mobility

because during these periods it can observe correlated signal changes due to shadow fading, and

during these periods it can filter out multi-path fading. Several techniques have been proposed

to detect mobility [55, 63, 71, 85]. Of these, we choose the straightforward signal-strength

variance threshold-detection technique. DECODE divides the RSSI traces into blocks. It then

extracts and concatenates all blocks where the variance exceeds the specified threshold. We

empirically determined the variance threshold to be three (see 4.4.6 for further discussion) and

a suitable block size of five seconds for variance calculation.

4.3.2 RSS-Estimation Components

If DECODE operates using RSS data, this is followed by filtering out multipath fading and

computing correlation over RSS values.

Filtering out multi-path fading: While fading is common in communication channel, the

fast fading component where the signal varies in amplitude and phase over short periods of

times does not contain useful information about the shadowing profile of the environment. The

variance due to fast fading should thus be removed from the RSSI traces to allow calculation

of correlation primarily over shadow fading components. DECODE uses a moving window

averaging process with a window size of 10 packets ( 1sec). Figure 4.3 shows an example of

this filtering effect. Before filtering the received RSSI values vary by about 10 dB on timescales

of less than 100 ms. After processing, only slow variations remain, which are expected from

shadow fading.

Co-movement detection: The final step involves calculating correlation co-efficient on the

processed signal strength values from the transmitter pair under consideration. If the resulting
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Figure 4.3: Smoothing data to remove fast-fading.

correlation co-efficient exceeds a certain threshold, we classify the transmitter pair to be co-

moving. We give details on determining this threshold in Section 5.6.

4.3.3 Location-Estimation Components

The location based estimation approach calculates the same correlation metric over time-series

location coordinate data, but it requires data from several receivers to be available and a cal-

ibrated localization system. Our localization system relied on an existing signal map of the

building, which discretizes spaces and contains an observed signal strength vector (each value

corresponding to a different receiver) for each known locations.

RSS Fingerprint Generation: The input to the location system is a fingerprint, an R× Ts

matrix containing RSS values, whereR refers to the number of receivers (four in our setup) and

Ts to a time window in seconds. To generate these fingerprints, receivers report the transmitter

identifier, signal strength and a reception timestamp for every transmitted frame to DECODE.

After generating a time aligned sample for the transmitter pairs at each of the receiver and

extracting the high variance periods, the resulting RSS samples for each transmitter-receiver

pair are averaged over one second intervals and entered into the fingerprint matrix (one matrix

per transmitter). If the interval contains no observations for a specific transmitter-receiver pair,

the fingerprint generator fills in a localization algorithm-specific default value of -99.
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Localization: We use a bayesian solver [32] called M1 to perform localization. M1 is

initially provided with a signal map (or training set) containing measurements from 88 different

locations in 2D space within the building we carried out the experiment. M1 then transforms

each fingerprint matrix into a 2 × Ts matrix of cartesian location coordinates over time, one

location estimate per second.

Co-Movement detection: The final step involves detecting co-movement from the (X,Y)

estimations at every second for different transmitters. To verify whether a pair of transmitters

move together, we estimate their similarity in X or Y coordinates using correlation co-efficient.

If the correlation co-efficient for X or Y is over a certain threshold, we declare the transmitter

pairs to be moving together. While it may be possible to combine the inference about the

correlation in X and the correlation in Y, we do not address this in this work.

4.4 Experimental Evaluation

In this section, we begin with a description of our wireless testbed followed by an explana-

tion of the experimental methodology. We then present our results that highlights DECODE’s

performance in the location space. We conclude this section by presenting the detection of

co-moving devices in the location space.

4.4.1 Experimental Methodology

The measured environment is a typical office environment with partitioned cubicle offices.

The experiments were performed during normal office hours where one could expect dynamic

changes in the environment as a result of the mobility of the people within the office. We set

up both IEEE 802.11b and IEEE 802.15.4 receivers within the office space and place them at

strategic locations as shown by stars in Figure 4.4. The WiFi receivers(landmarks) in these

four locations operated in promiscuous mode in 2.4GHz, ISM Band Channel 1 to capture all

the packets in this particular channel. A Tmote Sky mote configured as receiver was attached

to each of the landmarks to capture packets originating from Zigbee transmitters. These motes

operated in 2.4GHz, ISM Band Channel 16.

We used four IEEE 802.11b cards and four Tmote Sky motes as transmitters where a pair
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Figure 4.4: Floorplan of the experiment environment and the node placement

Figure 4.5: Nodes and the transmitters used in experiments

of WiFi cards and a pair of motes were placed together in the first laptop and the other pair

of WiFi cards and motes were placed together in the second laptop as illustrated in Figure 4.5.

The motes were battery powered. The WiFi cards were connected to the configured APs and

pinged the AP at the rate of 10packets/sec with a transmit power of 15dBm. And the motes

were configured to transmit packets at the rate of 10 packets/sec at 0dBm. We use the ORBIT

infrastructure for capturing and logging each IEEE 802.11 and IEEE 802.15.4 packet from these

transmitters to be stored in a SQL database. For each packet, we logged the transmitter’s MAC

address(Mote ID in case of motes), the receiver’s MAC address(Mote ID in case of motes),

RSSI and the time when the packet was captured. We also recorded the ground truth about

which transmitter pairs were moving together along with the speed and the start and the end

times of the different static and mobile periods of these transmitters manually. We note that we
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Figure 4.6: IEEE 802.11 network: Effectiveness of DECODE in terms of detection rate and
false positive rate. The left side plots are for the Walking-Speed Mobility experiment and the
right side plots are for the Slow Mobility experiment.

set up pairwise transmitters in our experiments to show how DECODEworks, but our approach

could be applied to a set of transmitters that are co-moving.

Figure 4.7: The Experimental Procedure

Two experimenters carried one laptop each (that contains two WiFi and two motes) and

conducted the experiment. The total experiment lasted for one-hour with alternating static and

mobile periods as shown in Figure 4.7. The authors were walking at 0.3m/sec(1ft/sec) for about

20 minutes. We call this experiment period Slow Mobility. We chose very slow speeds because

this represents the most challenging case. The same experiment was repeated once more where

the moving speed of the transmitters was increased from 0.3m/sec to 1m/sec (normal human

walking speed). We refer to this second experiment period as Walking-Speed Mobility. We

refer to these experiment traces as the complete traces.

To analyze the effect of mobility on the results, we then also create mobile-only traces by

extracting and concatenating the two 10 minute mobile periods into a 20 minute mobile trace.

Using this technique we both create a slow-mobile and a walk-speed mobile trace. We then use
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a time-based sliding window of time interval Ts seconds to slice each of the above datasets into

overlapping test traces. We vary the time interval Ts from 10 second to 400 seconds in steps

of 10 seconds. For, example Ts = 100s would generate 1101 test traces of duration 100s from

the 1200s of data.We used these different sliced datasets with different time intervals Ts in our

results to report the detection rates and false positives.

4.4.2 Evaluation Metrics

We will evaluate the effectiveness of RSS based DECODE in the following three categories:

(1) performance evaluation in terms of the detection rate of co-moving transmitters and the cor-

responding false positive rate; (2) sensitivity study under different packet sampling rates and

various correlation coefficient thresholds; and (3) generality investigation across different cor-

relation methods and wireless networks. Finally, we will study the effects of mobility detection

on the performance of DECODE.

4.4.3 Effectiveness of DECODE’s RSSI based detector

To evaluate the performance of DECODE, we first examine the detection rate and the false

positive rate of determining the co-mobile transmitters. Figure 4.6 depicts the detection rate

and the false positive rate as a function of time with respect to each receiver for the IEEE

802.11 network for both Slow Mobility as well as Walking-Speed Mobility experiments.

We compute the correlation coefficient for the samples accumulated over the last Ts seconds

and if the computed correlation coefficient is larger than 0.6, the pair of transmitters are declared

to be co-mobile. Otherwise, this pair of transmitters are declared to be not moving together.

A detailed discussion of the choice of the threshold is presented in Section 4.4.4. In our 20

minutes of mobile trace, we repeat the above procedure for all the generated data subsets of

duration Ts seconds. We then estimate detection rate as the percentage of times DECODE

correctly reports co-mobility when the pair of transmitters are indeed moving together and

False positive rate as the percentage of times DECODE incorrectly reports co-mobility when

the transmitters are not moving together.

Figure 4.6 shows that in both the Walking-Speed Mobility and Slow Mobility experiments,
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DECODE is able to detect all co-moving and non-co-moving pairs over all the data subsets

accurately. We can also see that, increasing the observation time Ts improves the co-mobility

detection rate while reducing the likelihood of observing spurious matches.

We found that the mobility speed also has an impact on the time required to achieve high

detection rate and low false positive rate. In the Walking-Speed Mobility experiment, it takes

about 130 seconds to detect all co-moving data subsets. Whereas it takes around 370 seconds to

achieve the same in the Slow Mobility experiment. This suggests that, with higher speed, more

shadow fading effects can be observed within a shorter duration, leading to improved detection

performance.

The results of the Slow Mobility experiment represent detection performance of DECODE

under challenging conditions. For the rest of this section, we provide analysis by using the

Walking-Speed Mobility experiment since it represents more typical scenarios for devices car-

ried by humans.

4.4.4 Sensitivity to Sampling Rate and Correlation Coefficient Threshold

We now study the sensitivity of our scheme with respect to the different correlation coefficient

thresholds and sampling rates, which we define to be the “packet transmission rate per trans-

mitter”. To this end, we further process the Walking-Speed mobile trace and extract 0.5,1,5 and

10 packets every second from the trace to generate datasets corresponding to sampling rates of

0.5,1,5, and 10 pps respectively. These four datasets are further sliced into several data subsets

with time interval Ts seconds similar to our previous study for estimating detection and false

positive rates.

Figure 4.8 presents the detection rate and false positive rate as a function of time for packet

sampling rates of 0.5 packets per second (pps), 1 pps, 5 pps, and 10 pps, respectively, observed

at receiver-2 (we do not present the results from other receivers as the performance is very sim-

ilar). The threshold of the correlation coefficient is empirically determined to be 0.6. We found

that for the sampling rates of 1 pps, 5 pps, and 10 pps, the time taken to achieve 100% detection

rate and 0% false positive rate is similar—about 130 seconds. With the low 0.5 pps the time

to reach 100% detection rate increases marginally to 150 seconds. This is encouraging as it
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Figure 4.8: IEEE 802.11 network: Sensitivity of DECODE vs. sampling rate.

indicates that DECODE is not very sensitive to sampling rates in the 1 pps range. This insen-

sitivity can be because, a higher sampling rate would not provide additional gain compared to

lower sampling rate as long as the lower sampling rate is fast enough to capture the “shadowing

events”.

This insensitivity to sampling rate also allows reducing the overall channel utilization, in

a system design that relies on explicitly transmitted beacons to allow co-movement detection.

The transmission overhead would be negligible. For example, assuming a minimum packet

length of 29 bytes(28 Bytes of Frame and 1 Byte of Payload), an 802.11b station transmitting

one packet per second at 11 Mbits/s PHY rate takes 603.27µsec [3] which accounts only for

0.06% of channel utilization.

We next analyze the sensitivity of DECODE to the correlation coefficient thresholds τ .

Choosing an appropriate threshold will allow our detection scheme to be robust to false detec-

tions. Figure 4.9 presents the detection rate and the false positive rate for τ equaling 0.4, 0.5,

0.6, 0.7 and 0.8, respectively. As expected, we observe that the detection rate takes longer to

reach 100% as the threshold goes up, while the false positive rate drops to 0% quicker. The

threshold τ = 0.6 achieves the best balance with a false positive rate remaining below 10% at

all times and the detection rate reaching 100% nearly as fast as the smaller thresholds 0.4 and

0.5. Hence, we chose a threshold of 0.6 for all other experiments.
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Figure 4.9: Sensitivity of DECODE to Correlation Co-efficient Threshold. We pick a threshold
of 0.6 for Co-Movement.

(a) IEEE 802.11 network (b) IEEE 802.15.4 network

Figure 4.10: Comparison of correlation coefficient methods for WiFi and Mote radio pairs.

4.4.5 Generality of RSSI based DECODE

We now study the generality of DECODE in using different correlation methods to determine

co-moving transmitters and its generality across both IEEE 802.11 as well as IEEE 802.15.4

networks.

Different Correlation Methods: We compare our correlation coefficient method (i.e.,

Pearson’s product moment correlation coefficient) with Spearman’s rank correlation coefficient

in Figure 4.10(a) and 4.10(b) for the IEEE 802.11 network and the IEEE 802.15.4 network re-

spectively. The correlation coefficients are computed for all the co-moving and non-co-moving

pairs of transmitters. Note that we refer to the Pearson’s product moment correlation coefficient
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method as correlation coefficient in the figure.

We observed that both the correlation coefficient methods perform similarly for the co-

moving and the non-co-moving pairs of transmitters. For the co-moving pairs, the correlation

coefficients from both methods are above 0.6, while for the non-co-moving pairs, both have

values of correlation coefficient below 0.2.

Different Wireless Networks: Figure 4.11 presents the results of correlation coefficient

calculated across an 802.11 transmitter and an 802.15.4 transmitter.
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Figure 4.11: Correlation Coefficient for Co-located Mote and Wifi

We found that the correlation coefficients for co-moving pairs for both the 802.11 as well

as for the 802.15.4 are consistently high (larger than 0.6) across all receivers. This is because,

when there is an obstruction to the Line-of-Sight signal component due to walls and other

objects, both theWiFi and the mote transmitters experience similar shadowing effect as they are

placed close enough. Though the actual amount of the degradation of signal differs, the relative

effects are the same. Since Pearson’s correlation coefficient method removes the sample mean

from its estimation, similar relative performance is enough to capture co-moving transmitters.

This result is strong evidence that our approach is generic across different networks.

4.4.6 Significance of Mobility Detection for DECODE

In this section, we examine how mobility detection impacts the performance of DECODE.

Effects of Mobility Detection: Figure 4.12 plots the correlation coefficient at all 4 receivers
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for co-moving transmitters in the Walking-Speed Mobility experiment. The correlation coef-

ficient is computed over the entire duration of the experiment as well as just over the mobile

periods.
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Figure 4.12: 802.11 network: Calculation of the correlation coefficient over the entire experi-
mental period and over the mobile periods only. There is a 20% improvement in the correlation
coefficient values when applied over mobile periods only.
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Figure 4.13: Effects of variance threshold and sample window size on mobility detection.

We found that the mobility detection helps increasing the values of the correlation coeffi-

cient for co-moving transmitters by an average of 20%. During static periods, the co-moving

transmitters do not experience significant changes in shadow fading, but may experience small

scale fading effects that differ from one transmitter to the other (if the separation is more than

about 6cm (λ/2) for 2.4GHz). Thus, including static periods in the calculations tends to reduce

overall detection performance, particularly if the static periods are long compared to the mobile

periods.

These results support our approach of first extracting mobile (high variance) periods.
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Thresholds for Variance and Window Size: For mobility detection, there are several

metrics available as shown in [84]. However, we found that using a simple metric, variance

of RSS, is sufficiently effective. Further, two parameters are important when using the RSS

variance to detect mobility: the threshold of variance and the number of RSS samples on which

the variance is calculated. Figure 4.13 plots the trade off between the detection rate and the false

positive rate for different variance thresholds and different window sizes for the co-moving

WiFi transmitter pair.
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Figure 4.14: Mobility detection of co-moving transmitters under windowsize =50, variance
Threshold = 3.

We observed that the variance threshold of three has the highest detection rate with false

positives less than 10% for all window sizes. We choose a window size of 50, where the

detection rate is over 96% and the false positive is less than 1%. We estimate the correctness

of these parameters across all transmitters to check the result consistency. Figure 4.14 plots

the detection rate and the false positive rate for mobility detection across the rest of the 6

transmitters including both WiFi and mote transmitters. The results from Figure 4.14 proves

that our results are consistent across all the transmitters with high detection rate and less than

10% false positive rate under a window size of 50 and a variance threshold of three.

4.4.7 Co-Movement Detection in Location Space

As pointed out in Section 2.3, the Euclidean distance between the pairs of transmitters is not a

very accurate estimator for co-movement detection. In this section, we evaluate the DECODE
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correlation estimation applied to individual co-ordinates in location space.
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Figure 4.15: Localized X and Y positions for a pair of co-moving wifi devices

Figure 4.15 plots the localized X and Y positions over time for a pair of co-moving WiFi

devices that were attached to the laptop 1 and moving at a speed of 1m/sec. We can observe

that the X and Y co-ordinates estimated by the localization system for the two co-mobile

transmitters are very similar, but some differences exist. These differences can be attributed

to the sensitivity of the localization algorithm to small scale fading, which can affect both

transmitters differently and resulted in the high variance in Euclidean distance, as was shown

in Figure 4.1.

However, by calculating the correlation coefficient over the localized X position and the

correlation co-efficient over the localized Y positions, we can achieve similar detection per-

formance to the signal space technique. This is possible because the correlation co-efficient

can ignore the absolute values and can capture the relative trend in the way the X and Y

co-ordinates vary (e.g, shadow fading is likely to lead to similar localization errors for both

transmitters).

We evaluate the total time taken to achieve a 100% detection rate and 0% false positive rate.

We define the detection rate as the percentage of times the correlation co-efficient computed

for a co-moving pair is above 0.6 and false positive as the percentage of times the correlation

co-efficient for a non-co-moving pair is above 0.6. Figure 4.16 plots the detection rate and

false positives as a function of time. Note that for simplicity, we have calculated correlation

separately for the X and Y coordinates. We can see that it takes nearly 200 and 90 seconds for
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Figure 4.16: Effectiveness of correlation coefficient applied over the localized X and Y loca-
tions for co-movement detection

the X and Y co-ordinates respectively to achieve a 100% detection rate with 0% false positive

rate. The corresponding time taken by DECODE in signal space was 130 seconds. While

these times are comparable, there are several advantages of using signal space DECODE over

location space DECODE—we discuss them in the Section 4.6

4.5 Simulation with Different Channel Parameters

After observing encouraging results in the experimental indoor environment, we evaluate now

whether these experimental results as presented in section 4.4 are consistent with results from

simulation models and whether they can be generalized to indoor and outdoor environments

with different propagation parameters. We also analyze the effect of shadow fading on the

detection time.

Environment PathLoss Expo-

nent

De-Correlation

Distance (m)

σCorrelatedShadowing(db) σNoise(db) Detection Time

(sec)

Indoor-1 2.5 2 2 2.3 108
Indoor-2 2.5 2 4.3 0 81
Outdoor-1 2.8 5 2 2.4 94
Outdoor-2 2.8 5 4.4 0 70

Table 4.1: Summary of the Parameters Used in simulations along with the total detection time

Our simulation methodology involves generating the received power at a receiver from
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three transmitters, two of which are moving together on the same path and the third transmitter

following a different path. To allow comparison with the experimental results, the path taken

by the moving transmitters in the simulation was derived from the experiment paths described

in section 4.4.1.

The simulator generates received power levels as follows. From [36], we know that the

received power at a receiver from a transmitter can be modeled as

P (d) = P0 − 10γ log10

(

d

d0

)

+ Sσ + δ, (4.2)

where d is the distance between the transmitter and the receiver; P0 is the received power

at the reference distance d0 from the transmitter; γ is the path loss exponent; Sσ represents

shadow fading (i.e. correlated shadowing) which follows zero mean and σ standard deviation

Gaussian distribution and δ is the random noise.

To simulate correlated shadowing, the Sσ for different positions must satisfy the following

exponential constraint [38]:

E[Sσ(Pi)Sσ(Pj)] = σ2e−Dij/Dc , (4.3)

where Sσ(Pi) and Sσ(Pj) are the shadow fading at location Pi and Pj , respectively. Dij is

the distance between the positions Pi and Pj . Dc represents the decorrelation distance, which

can range from 1-2m indoors to many tens of meters outdoors. We generate such correlated

Gaussian random variables Sσ by multiplying uncorrelated Gaussian random variables with the

upper triangular matrix from a cholesky decomposition of the correlation matrix [87]. In our

case, the correlation matrix is initialized with the desired correlation values e−Dij/Dc between

each transmitter (position) pair.

As shown in Table 4.1, we considered four scenarios with different propagation parameters,

two for indoor environments and two for outdoor environments. For the indoor environments,

we chose standard deviation of the received power by measuring in our experiment environ-

ment. Since this standard deviation combines both correlated shadowing and random noise, we

simulate two indoor scenario with different assumptions on the level of shadowing and noise.

While Gudmundson’s exponential [38] decay model has been proposed for medium to large

cellular networks in the outdoor environments, [49] has shown that this exponential model can
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be adapted for analyzing the spatial correlation arising from shadowing in the indoor environ-

ments. We obtained the other indoor and outdoor parameters including the propagation expo-

nent from other reported measurements [49, 96]. The last column of the table also shows the

result, the total time taken for detecting co-movement without false positives. The results show

similar detection times across all four scenarios, indicating that DECODE is not very sensitive

to propagation parameters. This is encouraging and shows that DECODE can be expected to

also work in outdoor environments with typical parameter settings.

While the simulation results show slightly lower detection times, 80-108 seconds compared

to 130 seconds in the experiment, the results are on the same order of magnitude. The differ-

ence can be attributed to modeling and measurement inaccuracies. We measured the standard

deviation in power (4.3db) within the office environment several months after conducting the

DECODE experiments. Also, the simulation model assumes that power measurements follow

a Gaussian distribution N (P0 − 10γ log10(dn/d0), σ
2
RSS), which may not be fully accurate.

The indoor results also show that increasing the correlated shadowing reduces the overall

detection time from 110 sec to 81 sec. A similar trend can be observed in the outdoor results.

This indicates that the presence of correlated shadow fading leads to faster detection and is

beneficial for DECODE.

4.6 Discussion

In this section, we discuss the feasibility of detecting transmitters that are static and located

within close proximity. We continue the discussion by giving out the advantages of operating

in the signal space in comparison to the location space. We finally conclude this section by

discussing the impact of missing samples on co-mobility detection.

4.6.1 Feasibility of Detecting Co-Location

The co-movement detection results described so far raise the question whether the DECODE

technique can also be used to detect stationary co-located transmitters. Ostensibly, an environ-

ment with high surrounding mobility could lead to similarly high signal variance even though

the transmitters and receivers are stationary, because the moving objects can temporarily block
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Receiver1 Receiver 2 Receiver 3 Receiver 4
0.4630 -0.1140 0.2753 0.4362

Table 4.2: Correlation Coefficient for the time interval t=3100 seconds to t=5100 seconds.

transmission paths, which changes shadow and multipath fading patterns.

To investigate whether human mobility in a cubicle office environment is sufficient to also

allow detection of co-located stationary transmitters, we performed an experiment where a pair

of mote transmitters were attached to the main doorway within the WINLAB office, which is

an area with frequent human traffic (it is located next to a printer and water cooler providing

additional traffic).

Table 4.2 shows the correlation co-efficients obtained for the stationary transmitter pairs

by each of the receivers over a 2000 seconds interval (the transmitters actually moved when

the door was opened, but this occurred only twice in this period). Note that all correlation

co-efficients are far below the 0.6, our correlation threshold for co-movement detection. Note

also that some of the receivers show correlation coefficient values near zero, which suggests

that reducing the detection threshold would not be very effective. Thus, these results show that

in a typical office environment, surrounding mobility is unlikely to induce sufficient correlated

fading to allow use of the DECODE technique for detecting co-located transmitters (even with

the extended 2000s measurement period, compared to the 130s period that was sufficient for

co-movement detection as shown previously).

4.6.2 RSSI-Based vs. Location-Based Detection

While accuracy of DECODE in both signal and location-space is similar, applying DECODE in

signal-space provides several advantages, particularly if location information is not needed for

other applications. However, there are challenges to be addressed before one could assume

localization systems are sufficient for the purpsohn2006mobilityoses of co-location detection:

• Generality: Most localization systems use the already computed training set to deter-

mine the location associated with any fingerprint. However, this approach requires the

TX power settings during the training and the testing phase to be same in order to esti-

mate the correct location. With a wide variety of wireless devices in the environment,
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this requirement makes localization technique highly sensitive and error prone, while

RSS-based co-movement detection is more agnostic to these issues. Also, different ra-

dio technologies may need different localization systems with different accuracy limits,

making co-location detection for radios belonging to different technologies non-trivial

using these systems, while we showed that the RSS-based technique can be used across

wireless technologies.

• Localization Overheads: Calculating absolute location of a device takes time and re-

quires signal information from multiple points of contact (e.g., three reference points for

trilateration), which may not be available at all times.

• Infrastructure Costs: Investing in the localization infrastructure, including the equip-

ment costs as well as maintaining signal maps, beacon or landmark (receiver) positions

etc., might be costly. The RSS-based co-movement detection techniques only requires a

single receiver, in comparison.

4.6.3 Impact of Missing Samples on Co-Mobility Detection

As explained in section 4.3.1, the time alignment step involves replacing the missing samples

from a transmitter with its last observed sample. While this step aids in comparison of signal

strengths from transmitter pairs, excessive replacement of missing samples could overstate the

correlation between transmitter pairs. To this end, we analyze the percentage of times the

missing samples have been replaced during this step for a Wifi-Wifi pair at Receiver-1.
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Figure 4.17: Histogram of the percentage of consecutive missing samples from a Wifi trans-
mitter observed at Receiver-1

Figure 4.17 shows that, very few consecutive packet losses occur. 80% of packets have

been correctly received. 15% are intermittent single packet losses and only 5% of packets
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are consecutive packet losses. We also verified these packet loss rates across all the other

transmitter receiver pairs and found similar results. Since DECODE uses a moving window

average over 1 second of received packets to remove multipath fading, interpolation of these

packet losses has little effect on the correlation results.

4.7 Summary of Key Ideas

To summarize, the key contributions of this chapter are as follows.

• We presented DECODE, a system that detects co-moving wireless devices by exploiting

the similarity in shadow fading for the packets transmitted from a set of transmitters.

• We showed that our technique can work in both the signal space and its corresponding

location space, but that the signal space approach provides the key advantage that only a

single base station is needed.

• We also demonstrated the generality of our technique by detecting co-movement of wire-

less transmitters having different radios, namely, IEEE 802.11b/g WLAN and IEEE

802.15.4 Mote devices.

• Through real experiments in an indoor office environment, we showed that DECODE can

achieve a true positive rate of 100% with 0% false positive given 130 seconds of signal

strength data from mobile transmitters. Our experiments also demonstrate that DECODE

is insensitive to the sampling rate and a sampling rate as low as 1 packet/sec should be

sufficient for perfect detection.

• We found that DECODE’s effectiveness is quite sensitive to transmitter mobility. We

found that observing RSS variance is sufficient to detect mobility 96% of the times with

a false positive rate of less than 1%. Therefore, detecting mobility has a straightforward

solution and does not limit the DECODE system.

• Finally, the fact that the time-series of RSS is robust to fades brings in a possibility of

extending this idea to deriving other location-related properties. In the next chapter, we

look at two such properties, namely, Speed and decelerations.
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Chapter 5

Tracking Vehicular Speeds using GSM Signal Strength from

Mobile Phones

5.1 Introduction

In this chapter, we consider the problem of estimating average and fine-grained speed variations

of a vehicle from cellular handset signals. While average speed estimates can serve as a good

indicator of traffic congestion, more fine-grained speed traces could benefit a larger number

of transportation applications. For example, fine-grained speed trace could improve estimating

and pinpointing traffic congestion, particularly on arterial roads with traffic signals. Since fine-

grained speed traces reveal where on a road segment vehicles slow down, it becomes easier to

distinguish speed variations due to congestion from slowdowns due to red traffic lights. Fine-

grained speed traces also reveal whether traffic is flowing slow but smoothly or in a stop-and-go

fashion. It can also show where frequent lane changes occur that cause traffic shock waves.

These factors have a significant effect on accident rates and gasoline consumption, and would

therefore be important to monitor on a larger scale. Techniques to determine vehicle speed from

cell phone signals are particularly useful because they do not incur the high infrastructure costs

of traffic cameras or loop detectors embedded into the roadway [22,23,44]. While fine-grained

speed traces can also be obtained through networked in-vehicle GPS devices, cell phone signals

can readily be collected from a much larger number of vehicles. Collecting cell phone signal

strength readings at the base station imposes no energy overhead, since the cell phones that are

active on call periodically transmit Network Measurement Reports (NMR) containing signal

strength readings to the base station.

OurApproach. In this work, we propose two different algorithms to estimate the speed of a

moving vehicle, namely, correlation algorithm and Derivative Dynamic TimeWarping (DDTW)

algorithm. Both these techniques rely on the observation that the received signal strength (RSS)
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from a moving cell phone handset in a vehicle remains similar over multiple passes along a

given road segment except on the time axis since the traces are either stretched(or compressed)

in time depending on the speed with which the vehicle moves. The algorithms then estimate

the relative stretch(or compress) factors with respect to a RSS trace collected from a vehicle

moving at known speeds to derive the speed of the moving vehicle. The correlation algo-

rithm assumes that the compress(or stretch) factor is uniform over the entire length of the trace

whereas the DDTW algorithm accounts for a variability in the compress(or stretch) factor over

the length of the trace.

5.2 Motivation

To illustrate the insights underlying the correlation algorithms, consider the signal traces in

Figure 5.1. These were obtained from a mobile phone passing three times along the same road

segment, twice at the same speed of 25mph and once at 50mph. Note how the two 25 mph

traces are very similar. Also, note how the faster trip produced a similar RSS trace except

for being compressed by a factor of two. This illustrates how despite signal variations due to

fading the signal strength on an average remains relatively stable at the same location, as also

previously reported in [18] for stationary handsets. Thus, if we can algorithmically determine

that the faster trace is a scaled version of the slower trace by a factor of 2 and we are given

the speed of the slower trace, we can calculate the speed of the faster trace. The correlation

algorithm makes use of this observation to determine the speed of a moving vehicle.
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Figure 5.1: Stability of RSS over time

Let us consider another scenario where the vehicles move along the same road segment

with varying speeds (not uniform over the entire segment). In this case, the testing trace may
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not have a uniform scale factor with respect to the reference trace and the stretch factor can

vary over the length of the trace. Fig. 5.2 plots the instantaneous speed and RSS trace from the

associated cell tower for two vehicle trips along the same stretch of a road moving at different

speeds. The vehicle drove roughly at the same speed during the first 150 seconds of both trips,

but then it slowed down in the first trip and sped up in the second.1 The graph shows how the

RSS traces remain similar over the first part of the trace, where the vehicle traveled at the same

speed, and depart when the vehicle varied its speed in the later part of these two trips. Note

also, how the trace from the slower trip is essentially a stretched version of the faster trip in the

second part of the trace. For example, the dip below an RSS value of 20 dB occurs in the same

location in both trips but due to the speed difference, the graph shows them at different times.
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Figure 5.2: Stability of RSS over time

The key idea underlying our technique is to stretch (or compress) the RSS trace until it best

matched the reference trace. Since the instantaneous speed over the reference trace is known,

the algorithm can convert these stretch factors into instantaneous speed estimates for the test

RSS trace. The time-warping algorithm makes use of this observation to estimate instantaneous

speeds.

1The car traveled the same distance in both cases and stopped at the same physical location. However, due to
the speed difference, the first trip took about 300 seconds while the second only lasted 200 seconds.
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For both these techniques, we assume that training RSS profiles and their speeds are avail-

able for road segments under study. These could be collected as part of the service provider

signal measurements to determine coverage. We also assume that the approximate starting lo-

cation and the road segment the vehicle travels on is known, for example by monitoring handoff

locations as shown in prior work [12].

5.3 Baseline algorithms

We choose three representative algorithms - Localization Algorithm, Handoff Algorithm and

Normalized Euclidean Distance Algorithm, that have previously been used for estimating ve-

hicular speed and detecting bottlenecks in road segments, as baseline approaches for comparing

our algorithm with.

Localization Algorithm: This method as implemented by several commercial products [2,

79] estimates the speed of a mobile phone between two points by estimating the phone’s loca-

tions at the two points, calculating the distance the phone has traveled and dividing it by the

time traveled. In this work, we use the fingerprinting [68] algorithm for determining phone’s

location. The algorithm uses the RSS fingerprints obtained from 7 neighboring towers at dif-

ferent known locations as the training. When an RSS fingerprint is obtained from a mobile at

an unknown location, the algorithm estimates the euclidean distance in signal space between

this obtained fingerprint and all the training fingerprints and determines the location to be the

location of the training fingerprint that yields the minimum euclidean distance.

Handoff Algorithm: The Handoff algorithm [39] involves detecting the location of the

mobile based on existing knowledge of handoff zones. A handoff zone is the most probable

location in a given road segment where the mobile switches from the current base station to a

new one. Whenever a handoff occurs in the testing trace, the location of the mobile is estimated

to be the location of the most probable handoff zone. A handoff typically occurs when the

signal to noise ratio (SNR) drops below a certain threshold. It turns out that on any given

road segment, the locations where the SNR drops below the threshold remain stable. The

average speed estimate is then the distance between the previous predicted handoff location

and the current predicted handoff location divided by the total time between the previous and
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the current handoffs.

Normalized Euclidean Distance Algorithm: This algorithm detects speed changes during

speed tracking, e.g., slowdowns, by calculating the normalized euclidean distance between

consecutive GSM measurements and declaring a slowdown when the distance falls beyond a

certain threshold. The normalized Euclidean distance between two RSS measurements A and

B, having n common cell towers is defined as:

√

(a1 − b1)2 + (a2 − b2)2 + ....+ (an − bn)2/n (5.1)

Note that Euclidean distance between successive samples from a mobile phone is directly

proportional to the distance the phone moves in physical space, which in turn depends on how

fast the phone moves. While we cannot derive an accurate speed estimate from this relation,

we can still predict regions where there are slowdowns. We experimented with multiple other

metrics suggested in [84], but found the normalized euclidean distance to work the best. Hence,

we chose to use this algorithm for comparison with our mechanism.

5.4 Speed Estimation Algorithms

Speed estimation algorithms fall under two categories, namely, average speed estimation algo-

rithms and fine-grained speed tracking algorithms. We propose Correlation Algorithm that can

estimate average speeds with high accuracy and Derivative Dynamic Time Warping (DDTW)

algorithm that detects fine-grained speed variations. Though DDTW can be used for estimating

average speeds as well, the correlation algorithm is computationally more efficient than DDTW

when detecting average speeds. The following two subsections explain these algorithms in de-

tail.

5.4.1 Correlation Algorithm

The Correlation algorithm matches a measured received signal strength trace to a training trace

obtained from the same road and infers the speed from the amount of stretching or compression

that yields the best match. It assumes that the approximate starting location and the road seg-

ment the vehicle travels on is known, for example by monitoring handoff locations as shown in

prior work [81].
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Figure 5.3: Generating Virtual training traces from actual training trace.

The Correlation algorithm creates k scaled versions of the training trace in its training

phase. The number of different scaled versions k depends on the desired speed estimation

accuracy. In our implementation we chose 1mph steps up to a maximum speed of 80mph,

yielding k = 80 scaled versions of a training trace. The scaled versions are subsampled or

interpolated, so that each retains a sampling rate of 1 measurement/sec. Figure 5.3 shows an

example of creating two scaled profiles from a training profile of 25mph. Note that the total

time to completion of the 25mph trace is twice as long as that for the 50 mph trace.

In the second step, its matching phase, the algorithm seeks to determine which of the k

scaled versions of the training trace best fit a given measured trace, which we refer to as testing

profile. To this end, it calculates the pearson’s product moment correlation co-efficient [12]

over the t seconds of the testing profile with t seconds of each of the scaled training profiles.

The algorithm chooses the speed associated with the scaled trace that maximizes correlations.

The overall running time of this algorithm is O(k.n) where n is the number of RSS samples in

the input trace and k is typically a constant that we decide ahead of time. Note that the corre-

lation algorithm yields an average speed over the entire length of the road and cannot identify

speed variations within the road segment. To address this issue, we propose an algorithm —

Derivative Dynamic Time Warping (DDTW) which is explained in the following section.

5.4.2 Derivative Dynamic Time Warping Algorithm

Dynamic Time Warping is a classic dynamic programming algorithm which has been widely

used for optimal alignment of two time series datasets and was particularly popular for appli-

cations like speech processing [64, 80], data mining [50, 67], and gesture recognition [24].
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Figure 5.4: DDTW local constraints that restrict the admissible paths to every location within
the matrix:

In particular, we use a variant of the DTW algorithm called Derivative Dynamic TimeWarp-

ing (DDTW) [52], which exploits the same principle as DTW but for the input data, where,

instead of the time-series of RSS, we use the time-series of derivative of RSS. As observed

previously [52], if the two RSS profiles varied only on the time axis and not on the absolute

values of RSS at any given location, DTW would have been sufficient. But RSS in an outdoor

environment typically suffers varying amount of shadow fading under different environmental

conditions which also alters its absolute value in any given location. DDTW can overcome

this difference in the y-axis by working with derivatives of RSS where only the slope of RSS

matters and not the absolute values. For example, if A = (a1, a2, ...aM ) is a time series of RSS

measurements collected over M time points, the input to DDTW is A′ = (a′1, a
′

2, ...a
′

M ), the

derivative of A which is defined as

a′i =
(ai − ai−1) + (ai+1 − ai−1)/2

2
1 < i < M. (5.2)

Given two RSS profiles - A and B with lengths of M and N samples respectively, DDTW

constructs a distance matrix d[M ×N ] which is defined as:

d(i, j) = (a′i − b′j)
2 (5.3)

where a′i and b′j are the ith and jth elements of the derivative of the RSS profiles A and B

respectively. With this d[M ×N ] as the input to the algorithm, DDTW returns a warping path

P = (p1, p2, ....pk) where pl = (x, y) ∈ [1 : M ] × [1 : N ] for l ∈ [1 : k] as shown in Figure

5.5. The warping path must satisfy the following conditions:

1. Boundary Condition: p1 = (1, 1) and pk = (M,N). This ensures that the warping

path always starts at (1, 1) and ends at (M,N).
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2. Monotonicity Condition: If pk−1 = (c, d) and pk = (e, f), we have e − c ≥ 0 and

f − d ≥ 0. The monotonicity condition ensures that the matching always progresses in

the forward direction of time.

3. Global Constraints: Global constraints are constraints that limit the region in which the

warping path can exist. In addition, global path constraints also guarantee the existence

of a path from (1, 1) to (M,N). Figure 5.5 illustrates the region for warping path gener-

ation. The region enclosed within the parallelogram is the region that corresponds to the

global constraints. In Figure 5.5, EMAX is defined as the maximum allowable expansion

(or compression) in time axes of one time series with respect to the other, and is chosen to

be max(2, ⌈max(M,N)/min(M,N)⌉). The ratio ⌈max(M,N)/min(M,N)⌉ defines

the amount of expansion of one trace relative to the other. Accordingly, the sides of the

parallelogram are set to have slope values of EMAX and 1/EMAX .

4. Local Constraints: Finally, Local constraints define the set of admissible step-patterns.

There are three types of step progression: horizontal, vertical and diagonal. As shown in

Figure 5.4, different kinds of local constraints are possible. For example, Figure 5.4(a)

shows the most unrestrictive step constraint where (i, j) can be reached from one of its

three neighbors (i − 1, j − 1), (i − 1, j), (i, j − 1). Whereas Figure 5.4(b) and 5.4(c)

illustrate more constrained progressions where a diagonal progression is forced for every

EMAX horizontal or vertical progressions.

To generate a warping path, DDTW constructs a cost matrix C[M × N ] which represents

the minimum cost to reach any point (i, j) in the matrix from (1, 1) using a dynamic program-

ming formulation. For example, in Figure 5.4(a), (i, j) can be reached from one of its three

neighbors, namely, (i− 1, j− 1),(i− 1, j), and (i, j− 1), and the algorithm picks the neighbor

that has the minimum cost. This relation can be shown as:

C(i, j) = d(i, j) + min(C(i− 1, j − 1), C(i, j − 1), C(i − 1, j)). (5.4)

However, using an unconstrained local constraint as shown in 5.4(a) can lead to an undesir-

able effect called “singularities” [52] where either one sample point in the testing is mapped to

a very large number of samples in training (unrestricted horizontal progression) or many points

in testing map to the same point in training (unrestricted vertical progression). This effect as
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Figure 5.5: Illustration of vehicular speed estimation from DDTW.

observed previously [64] can be minimized by using a more constrained topology for forward

progression. In this work, we thus take an approach of using the constrained DDTW with a

maximum expansion of EMAX . our local constraints resemble the ones in Figure 5.4(b) and

5.4(c). For example, 5.4(b) forces a diagonal progression before every horizontal or vertical

progression, whereas 5.4(c) allows up to (EMAX) horizontal or vertical progressions before

forcing a diagonal progression. For a complete description of local constraints, we refer the

readers to [64]. The local constraints that we use in this work allow up to EMAX vertical

or horizontal progressions before forcing a diagonal progression and the cost matrix C(i, j)

corresponding to this local constraint can be formulated as

C(i,j)=min
[

min1≤r≤EMAX

(

C(i−1,j−r)+
∑j

j1=j−(r−1)
d(i,j1)

)

,

min2≤r≤EMAX

(

C(i−r,j−1)+
∑i

i1=i−(r−1) C(i1,j)
)]

. (5.5)

Note that the optimal path to (i, j) depends only on the values of (i′, j′) where i′ ≤ i and
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j′ ≤ j. From the cost matrix, the algorithm derives a warping path P by back-tracking the

constructed cost matrix from (M,N) to (1, 1). While backtracking, the path that the algorithm

chooses from any point (i, j) will be the (i′, j′) that resulted in optimal C(i, j). We will next

explain how we use the warping path to estimate the speed of the testing trace.

Estimating Vehicular Speed from DDTW’s warping path The DDTW algorithm returns

a warping path P between the points (1, 1) to (M,N). This warping path defines the optimal

alignment between the training and the testing RSS traces, i.e, it maps the RSS samples in the

testing trace to the RSS samples in the training trace. As explained in Section 5.1, there is a

direct correlation between the speed of vehicle and the overall shape of the RSS curve and the

optimal mapping of the RSS-curves can yield a speed estimate for the testing trace relative to

the training.

We define three types of matching between training and testing traces: Type-1, Type-2,

and Type-3. If one point in the testing trace is mapped to k points in the training trace, the

resulting speed estimate for the testing trace is k times that of the training. We call this as

Type-1 matching as shown in Figure 5.5(a). The figures illustrate this for k = 2. Similarly,

Type-3 matching is when k points in the testing trace are mapped to one point in the training

trace, speed of the testing trace is 1/k times the training speed. Finally, Type-2 match is when

one point in testing maps to exactly one point in training trace. In this case, speed of testing

equals speed of training.

We note that the estimated speed from time warping is always a multiple of the training

speed. For example, if the training speed at any instance is 20mph, the resulting testing speed

can only be multiples of 20mph such as 60mph, 40mph, 20mph or 10mph. Figure 5.5(b) plots

the optimal alignment between the training and the testing RSS traces obtained from DDTW

and illustrates the speed derivation procedure for the testing trace. Figure 5.5(c) plots the

estimated speeds for the testing trace given a training trace with a constant speed of 20mph.

We observed that there are speed fluctuations in the estimated speed. In order to remove

these fluctuations, we apply a moving window smoothing filter over the estimated speed which

averages the speed estimates within the entire window to produce a single speed. The choice

for the window size should not be too large since this might smooth out all variations leaving

a very coarse speed estimate. Similarly, having a very small window size may result in the
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overall speed estimation to be highly fluctuating. We will evaluate the length of the optimal

smoothing window in Section 5.6.

5.5 Applications of Fine-Grained Speed Tracking: Slowdown Detection

In practice, most traffic engineering applications do not require the instantaneous speeds of

vehicles and are more concerned about regions of bottlenecks. Such bottlenecks in road net-

works can in turn be detected from vehicular speeds by observing the regions where vehicles

typically slowdown or by observing the normalized euclidean distance where the normalized

euclidean distance between successive samples go below a threshold. We will next provide a

formal definition of slowdown and describe the scheme for slowdown detection.

We define a slowdown as a sudden reduction in the speed of a moving vehicle by more than

τ mph to a value below µ mph. The duration of the slowdown is the period of time the speed

remains below µ mph. A slowdown is detected by sequentially scanning the input trace. The

input trace can be the groundtruth speed data derived from GPS readings, DDTW estimated

speed, speed estimate from the Localization algorithm, or the Normalized Euclidean Distance

from Normalized Euclidean Distance algorithm. Our scheme identifies peaks and dips in the

input trace. A peak occurs in the input trace at any given point when its first derivative (slope)

at that point changes from positive to negative. Similarly dips occur when the slope changes

from negative to positive. Our scheme initially assign a very low value to the first detected peak

and a very high value to the first detected dip. As the scheme proceeds scanning the trace, the

peak value is adjusted to the highest observed peak. Similarly, the dip value is adjusted to the

lowest observed dip. After every adjustment of the peak and the dip, if (peak − dip) > τ , and

dip < µ, a slowdown is declared. The duration of this slowdown is then the period of time

the dip remains below µ. Finally, the peaks and dips are reset to the lowest and highest values

respectively and the scheme repeats until all slowdowns are detected in the specific trace.

The main challenge in identifying slowdowns accurately lies on the choice of τ and µ.

We performed an empirical study on 18 of our GPS traces that lasted for a total of 6.4 hours

and picked a threshold of 25mph for τ since most breaking events involved slowing down the

vehicle from 40-45mph speed limit in arterial roads to a very slow speed of around 5-10mph.
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Our choice for µ is 20mph because most residential regions have a speed limit of 25mph or

more and we do not want to classify those residential regions as bottlenecks.

While a choice of 25mph and 20mph for τ and µ fits the ground truth speed from GPS, these

thresholds need not be the same for the speeds estimated from either DDTW or Localization.

and the normalized euclidean distance estimated by Normalized Euclidean Distance algorithm.

For example, we showed in Section 5.4.2 that the speed estimate from DDTW at every instance

is a multiple of the training speed which in turn requires a moving window smoothing filter to

be applied over the estimated speed to get the speed estimate. However, due to this smoothing,

an actual speed change of 25mph in the ground-truth speed may only correspond to a speed

change of 15mph in the estimated speed.
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Figure 5.6: Least square fit between the ground-truth speed from GPS and the estimated speed
from DDTW.

In order to capture this relationship between the ground-truth speed and the estimates from

other algorithms, we performed a regression analysis using a linear least square fit over the data

sets. The inputs to the regression analysis are the ground-truth speed from GPS and the output

from any of the three estimation algorithms under study: DDTW, Localization and Normalized

Euclidean Distance. For instance, Figure 5.6 shows a scatter plot of the ground-truth speed from

GPS versus the estimated speed from DDTW, and the corresponding fitted line obtained from

linear least square fit. The slope of the fitted line determines that a drop in ground-truth speed

by 25mph corresponds to only 15mph drop in the estimated speed from DDTW. Similarly,

a µ value of 20mph in ground-truth corresponds to 21mph in estimated speed from DDTW.

Table 5.1 summarizes the values for τ and µ obtained using the above process for the different
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slowdown estimation algorithms.
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Figure 5.7: Figure Illustrating the metrics for quantifying the slowdown detection performance,
namely, false negative, true positive and false positive

The slowdown detection algorithm takes any of the four inputs, namely, ground-truth speed

trace, estimated speed trace from DDTW, estimated speed trace from Localization or normal-

ized euclidean distance trace from Norm.Euc.Dist algorithm, along with their respective τ and

µ values. Figure 5.7 illustrates the results of slowdown detection performed on a 1000 seconds

long ground-truth speed trace from GPS and the corresponding estimated speed from DDTW

respectively. We treat the slowdown detection obtained from the GPS data as the ground truth.

The y-axis on the left side corresponds to the speed of the traces, while the y-axis on the right

represents the duration of each of the identified slowdown locations.

Finally, we will use three metrics: True Positive, False Positive and False Negative to quan-

tify how well the the different algorithms detect bottlenecks in Section 5.6. In the slowdown

detection, true positives are the time periods when the ground-truth slowdowns coincide with

τ µ

Ground-Truth Speed from GPS 25 mph 20 mph
Estimated Speed (DDTW) 15.73 mph 21.28 mph
Estimated Speed (Localization) 4.92 mph 20.84 mph
Norm. Euc. Dist.(Norm. Euc.
Distance Algorithm)

4.15 dBm 26 dBm

Table 5.1: Thresholds τ and µ for the slowdown estimation algorithms
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the slowdowns estimated in the result of the algorithm under consideration, i.e.,DDTW or Lo-

calization, or Normalized Euclidean Distance. Whereas false positives occurs when slowdown

is detected in our scheme under consideration but not in the ground-truth. False negative is

when the slowdown exists in the ground-truth, however, is not detected by our scheme.

5.6 Experimental Evaluation

We begin this section with a description of our experimental setup. We then present the speed

estimation performances for the two proposed algorithms — correlation and DDTW and com-

pare their performances with other state of the art speed estimation algorithms.

5.6.1 Experimental Setup

Our evaluation studies the accuracy of our speed estimation algorithms on a received signal

strength dataset collected with serveral handsets over a period of one month both outdoors and

indoors. Outdoors, we used GSM enabled HTC Typhoon phones running the Intel-POLS [6]

software on the AT&T network for all our experiments. The software records the time, cell

tower description (Cell ID, MNC, MCC, LAC, IMEI), and the received signal strength from

the 7 strongest cells once every second. We used Holux GPSlim236 GPS receivers paired with

the mobile phones through bluetooth for logging the ground truth location information for all

the traces. Our outdoor traces were collected under varied driving scenarios, in three different

environments.

1. Highway trace: Two experimenters collected traces while driving from home to work

at varying speeds for over a month. The common route in these drives had a 14 mile

highway stretch without traffic lights, which contributed a total of 36 traces.

2. Constant Speed trace: This experiment involved driving on a 5 mile stretch of road

thrice at three different speeds: 25mph, 40mph and 55mph.

3. Arterial roads trace: This experiment involved 18 drives, with each drive spanning a

distance of 10 miles on arterial roads with traffic lights. We chose the roads with traffic

lights to create traces that have high variability in speeds.
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Our indoor traces were collected on a 802.11b Wi-Fi network. We collected 9 traces in

which the experimenter placed a laptop equipped with 802.11b WG511T Wi-Fi card in a cart

and moved along a corridor measuring 228 ft in length thrice at three different speeds ( 1ft/sec,

2ft/sec, 4ft/sec) while sending out packets at the rate of 2 pkts/sec. Three receivers were placed

along the corridor: one closer to the beginning of the corridor, one in the middle and one closer

to the end of the corridor. The receivers were 802.11b/g enabled, configured to listen on channel

6 in monitor mode and log the packets using Tshark [7] packet sniffer utility. In total, we had

550 seconds of data logged at each of the receivers.

Unless otherwise noted, we used the outdoor datasets for all experiments in this work.

5.6.2 Speed Estimation Accuracy
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Figure 5.8: Speed Estimation Accuracy comparison across four algorithms: DDTW, Correla-
tion, Localization, and Handoff

In this section, we evaluate the accuracy with which DDTW and Correlation algorithms can

estimate speed and compare it to the accuracy achieved by the Localization and the Handoff

algorithms described in Section 2.3. We do not include results for the Normalized Euclidean
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Distance algorithm in this section since the algorithm can be used only to detect speed varia-

tions and cannot be used to estimate speeds. Figure 5.8 plots the CDF of the error between the

actual and the estimated speeds for all the four algorithms — DDTW, Correlation, Localization

and Handoff collected under three different outdoor driving scenarios, namely, constant speed

traces, highway traces and arterial road traces. For the constant speed traces, the correlation al-

gorithm has the least median error of 4mph followed by the DDTW, Localization and Handoff

algorithms respectively. This result is very encouraging since it shows that the correlation algo-

rithm can be very effective for scenarios where speed changes are not too high. DDTW on the

other hand outperforms all the other algorithms under highway and arterial road traces. In the

highway traces, DDTW exhibits a median errors of 5mph whereas the correlation, localization

and handoff algorithms exhibit 7mph, 12mph and 10mph respectively. The performance gain

of DDTW over correlation algorithm is not very significant (±2mph) in the highway traces.

This can be attributed to the fact that vehicles in highway typically move at close to constant

speeds. On the other hand, on arterial roads, DDTWoutperforms the other three algorithms sig-

nificantly, achieving a median error of 6.5 mph, which is almost twice lower than that achieved

by the other three algorithms. This can be attributed to the fact that DDTW has been specif-

ically designed to detect high speed variations (which is the case on arterial roads) whereas,

the remaining algorithms can only estimate average speeds. In evaluations that follow, we will

only present the results of DDTW on the arterial road traces unless otherwise noted since the

other two scenarios – Constant speed and Highway traces do not exhibit a lot of variability in

speeds. We also present comparison of DDTW only with the localization algorithm since cor-

relation and localization algorithms have similar performance on arterial roads and the handoff

algorithm has a poorer performance compared to localization.
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In order to illustrate the effectiveness of DDTW, Figure 5.9 plots the ground truth (actual)

speed of a vehicle obtained through GPS, as well as the estimated speeds of the DDTW and

the Localization algorithms. The drive took 1500 seconds to complete. The figure shows that

the speed estimated by DDTW matches the actual speed very well, whereas the Localization

algorithm performs poorly. To quantify how closely the two algorithms follow the actual speed,

we calculated the Pearson’s product-moment correlation coefficients between each of the algo-

rithms and the actual speed. The Pearson’s correlation coefficient measures a linear dependence

between two variables. The coefficient of 1 means very strong positive correlation. The coeffi-

cient of 0 means no correlation. The Pearson’s correlation coefficients are shown in the upper

left corner of the figure. The actual speed and the DDTW algorithm exhibit very strong corre-

lation of 0.83. The Localization algorithm, on the other hand, has a weak correlation with the

actual speed of 0.34. We also calculated the Pearson’s correlation coefficients for all the testing

traces combined. The correlation between the estimated speed of DDTW and the actual speed

was strong with a correlation coefficient of 0.75, whereas the correlation between the estimated

speed of Localization and the actual speed is poor with a correlation coefficient of just 0.11.

The above results are very encouraging and we believe that the speed estimates from DDTW

would be suitable for a wide range of traffic engineering applications. In the next section, we

will evaluate a method that can be used by an application that detects regions of bottleneck on

a road. This requires detecting when a vehicle significantly reduces its speed.

5.6.3 Slowdown Detection Accuracy

In this section, we evaluate the accuracy with which DDTW, Localization and Normalized

Euclidean Distance algorithms can detect slowdowns, as defined in Section 5.5. Recall that

a true positive occurs when an algorithm correctly predicts that there is a slowdown. A false

positive occurs when an algorithm predicts that there is a slowdown but there is none. A false

negative occurs when an algorithm doesn’t predict a slowdown and there is one. Please refer to

Figure 5.7 for an illustration of all these metrics.

We present our results using Precision, Recall and F-measure [76]. Precision captures

the percentage of correct slowdown predictions and it is defined as the total duration of true

positives divided by the sum of total duration of true positives and false positives. The higher is
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Figure 5.10: The effect of the smoothing interval on the F-measure.

the Precision, the more accurate an algorithm’s estimations are. Recall captures the percentage

of actual slowdowns that were detected and it is defined as the total duration of true positives

divided by the sum of true positives and false negatives. The higher the Recall, the more actual

instances of a slowdown an algorithm has predicted correctly. F-measure is used to estimate

the Precision/Recall tradeoff and it is defined as follows:

F = 2 ·
precision · recall

precision + recall
(5.6)

The higher the F-measure, the better is an algorithm’s slowdown detection accuracy. In

our case, it is possible to trade off Precision for Recall by changing the smoothing interval, as

defined in Section 5.4.2. Figure 5.10 plots the F-measure for different smoothing intervals for

the DDTW, Localization and Normalized Euclidean Distance algorithms.

The figure illustrates that the F-measure for DDTW is almost twice as high as the F-measure

for Localization and Normalized Euclidean Distance algorithms across the entire range of

smoothing intervals. This indicates that the DDTW has higher Precision and Recall compared

to the other algorithms. We pick the smoothing interval that achieved the highest recall value

for each algorithm, which in this case, was 50, 90 and 100 for DDTW, Localization and Norm.

Euc. Dist respectively.

Table 5.2 summarizes the Precision and Recall values for DDTW, Localization and Nor-

malized Euclidean Distance algorithms for their respective optimal smoothing intervals de-

rived from their F-Measure in Figure 5.10. DDTW significantly outperforms the other two

algorithms achieving Precision of 0.68 and Recall of 0.84. Its Precision is 94% higher than that
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Precision Recall
DDTW 0.68 0.84
Localization 0.38 0.63
Normalized Euclidean Distance 0.39 0.59

Table 5.2: Slowdown Detection Performance of DDTW, Localization and Normalized Eu-
clidean Distance Algorithms.

of Localization and 74% higher than that of Normalized Euclidean Distance. Its Recall is 40%

higher than that of Localization and 42% higher than that of Normalized Euclidean Distance.
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Figure 5.11: No. of slowdowns with different durations predicted by (a)DDTW (b)Localization
(c)Normalized Euclidean Distance

Next, we study the impact of the duration of a slowdown on the ability of the algorithms to

detect it. The intuition tells that it should be easier to detect slowdowns of a longer duration.

The duration of a slowdown is defined in Section 5.5 as the total time the speed remains below

the threshold of µ mph.

Figure 5.11 plots a histogram of the number of slowdowns of a given length that appear

in the trace and the number of slowdowns that are correctly detected by each of the three
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algorithms. Although all algorithms can correctly detect all slowdowns of 120 seconds or

more, only DDTW detects all slowdowns that are longer than 30 seconds. The algorithms

cannot detect slowdowns of a short duration because of the smoothing that is applied to average

out the oscillations in speed predictions, which in turn results in smoothing out abrupt speed

changes that last for short durations.

5.6.4 Effect of Alignment Error on Speed Estimation Accuracy

In this section, we study the effect of the alignment error between the training and testing

traces on the speed estimation accuracy of DDTW. Recall from Section 5.4.2 that introducing

an alignment error results in applying DDTW on training and testing traces that are shifted in

time by the value of the alignment error. Note that although we study the effect of alignment

error of up to 500m, a typical GSM based localization system has a median localization error

of less than 100m [18]. Therefore, it is reasonable to assume that, in practice, DDTW would

achieve speed estimation accuracy that is equivalent to the one obtained with a 100m alignment

error.

Alignment Error(m) Median Error (mph)

0 5.2
100 6.5
200 7.12
500 8.57

Table 5.3: Effect of alignment error on speed estimation accuracy

Table 5.3 summarizes the median error in miles per hour for different alignment errors.

When a localization systems provides an accurate location estimate, DDTW suffers from no

alignment errors and has a median speed estimation error of 5.2 mph. When an alignment error

of 100m is present, the accuracy of DDTW degrades slightly to 6.5 mph. Even in this case,

DDTW performs much better than the Localization algorithm that achieves the median speed

estimation accuracy of 13 mph.

5.6.5 Indoor WiFi-based Experiment

We finally verify if DDTW technique can be used across a different wireless technology and

a different environment for the same purpose of speed estimation. To this end, we use the
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Wi-Fi data in which we performed 9 indoor Wi-Fi experiments where the experimenter moved

between the given two points in a long (228ft) corridor thrice at three different speeds 2, namely

: 1ft/sec(0.68mph), 2ft/sec(1.36mph), 4ft/sec(2.72mph) while sending out packets at the rate of

2 pkts/sec. We had three Wi-Fi receivers, each recording the RSS from this transmitter.
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Figure 5.12: Speed estimates from DDTW on indoor environment using RSS from receiver-1

We can see from Figure 5.12 that the estimated speed closely follows the ground truth. The

median error for this receiver is 0.1527mph. The median errors on receiver-2 and receiver-3

were 0.1388mph and 0.1527mph. This result is encouraging since this proves the generality of

the proposed mechanism across different wireless technologies and shows that it is effective at

detecting even very small speed changes indoors.

5.7 Summary of Key Ideas

To summarize, the key contributions of this chapter are

• We proposed two speed estimation algorithms, namely correlation algorithm that was

effective at predicting average speeds and DDTW algorithm that was effective at tracking

fine-grained speed variations. The algorithms used the received signal strength from

mobile phones and exploits the stability of signal strength measurements over time on

any given road segment to optimally align the training and testing signal strength traces

and derive speed.

2The corridor had markers on floor separated by 1ft. The experimenter placed the laptop on a cart and moved
over n markers within a second to generate a RSS trace with a speed of nft/sec
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• We experimentally evaluated our algorithms on real signal strength measurements cap-

tured with mobile phones on various road road-segments and showed that correlation

algorithms is very effective at estimating speeds that do not vary much and DDTW al-

gorithm is effective even at predicting highly varying speeds. We show that the speed

estimated by DDTW has a very high correlation with the ground-truth speed reported by

the GPS and exhibits a median error within ± 6.5mph across the 6.4 hours of driving

traces. The high speed estimation accuracy enables the DDTW algorithm to effectively

predict bottlenecks in road segments with a precision of 68% and a recall of 84%.

• Additionally, to demonstrate the generality of our proposed speed tracking technique

across different environments and radio technologies, we experimented with Wi-Fi RSS

traces from an indoor environment and successfully showed that our technique can be

used to detect walking speeds indoors as well.
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Chapter 6

Conclusions and Future Work

The ubiquity of wireless devices has resulted in a wide variety of location based services (LBS)

being deployed. While the location traces derived from GPS enabled devices seem to be the

dominant source of input to these LBS, the heavy battery drain imposed by the GPS devices

coupled with the increasing privacy concerns at sharing one’s location can make such LBS

impractical in a larger scale. An alternative to using GPS devices would be to either use cellular

phone’s location or location derived from other wireless devices, namely, Wi-Fi or Bluetooth

or 802.15.4, etc. Using this alternative form of location is attractive since they consume an

order of magnitude less energy than GPS and they do not require explicit user participation as

the location estimation can be performed at the infrastructure end. However, these techniques

report a median location accuracy ranging from 3m − 60m. Therefore, using these location

estimates to derive other location-related context like speed, co-mobility, mobility states and

decelerations can result in poor estimates. In this thesis, we address this problem by estimating

the other location-related context directly from the wireless signal strength.

We started with the categorization of the factors that results in location estimation errors for

indoor RSS-based localization schemes. We verified a variety of factors like landmark density,

training density, localization algorithms through extensive experimentation on a high-density

400 node wi-fi testbed. Our results suggested that increasing the landmark density with no

regards to the underlying model in the algorithm can deteriorate the localization accuracy for

lateration based algorithms. Our results also suggested that the most important factor that in-

fluences the localization accuracy is the presence of multi-path that results in the underlying

propagation model to be violated in the lateration algorithms. By choosing the right set of

landmarks that obey the propagation model, we showed that we could achieve a median local-

ization errors as low as 0.24m. However, in practice, such a high density deployment seems
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impractical and the median errors achieved by the different algorithms with the typical 4 land-

mark deployment remained close to 3m. Therefore, we looked at ways to bypass the location

determination step for inferring other location-related properties like co-mobility and speed.

The second part of my thesis dealt with determining co-mobility directly from wireless sig-

nal strength. In our approach, we estimated the correlation between the time series of RSS from

different devices rather than comparing their RSS measurements at discrete time instances.

Therefore, the transient differences in RSS fades experienced by the co-moving devices did not

affect the performance of co-mobility detection. Our results also suggested that our approach

was generic enough at detecting co-moving wireless devices that belonged to different radio

technologies, namely 802.11b and 802.15.4. We note that our technique works with just one

wireless receiver in range without the need for any calibration whereas, localization techniques

require at least 3 receivers in range and would exhibit lower accuracy without calibration. Our

observations also paved a way to extending this framework for inferring more location-related

properties like speed.

The third part of my thesis extended on the observation behind co-mobility detection sys-

tems to a more generic setting where the wireless devices now moved over the same path but

at different times and different speeds. The observation that moving along any given path at

a given speed produces similar RSS fades was the key to speed estimation. If we had an RSS

trace for any given path collected at a known speed (training trace), the speed estimation prob-

lem was reduced to mapping the collected RSS trace (testing trace) to the RSS trace with known

speed. This mapping between the training and the testing traces served as the means to estimat-

ing the speed for the testing trace. We applied correlation and dynamic time warping techniques

to derive this mapping. Our results showed that we could estimate vehicular speed outdoors

using GSM RSS from mobile phones in vehicles within a median error of ±5mph. This result

also encouraged us to verify if our technique was suitable at detecting bottlenecks (decelera-

tions) on road segments and we found that our algorithm could detect bottlenecks that result

in slowdowns lasting longer than 30 seconds. We also showed the generality of our algorithm

by extending it indoors to verify its applicability for detecting walking speed estimation using

802.11b radios instead of GSM. In contrast, the existing systems that used the GSM RSS to lo-

calize phones over time and derive vehicular speeds exhibited errors in the orders of ±12mph.
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Overall, our results suggest that using the time-series of RSS directly to infer location-

related properties is more accurate then deriving the same from location estimates. The argu-

ments that support this observation are as follows:

• Time-series of RSS has a continuous collection of signal strength measurements. When

a continuous time-series is analyzed, the analysis automatically models the history which

can make the inferences about present more meaningful. In contrast, localization systems

make location estimates from discrete fingerprints collected in any given location. The

exception to this rule are localization systems that employ particle filters which estimates

the probability of being at the next position based on the current location. However,

these systems still require a mobility model/building model to capture the transitions that

happen from current location to the next location.

• Secondly, analyzing the time-series does not require any environmental modeling or in-

frastructure set-up whereas the localization systems require at least four access points to

estimate the location of a transmitter within an error of 3m and requires extensive training

to model the propagation parameters.

• Thirdly, the distortions in RSS caused by shadow fading (the changing environment)

cannot typically be modeled in any localization system since these fades change dynam-

ically between the modeling phase and the execution phase. We however showed that

such distortions can actually work to our advantage if we analyzed the time-series.

Our results also bring out another important trade-off that exists between adding more re-

sources to improve localization accuracy versus reusing the existing communication infrastruc-

ture with the detection techniques outlined in this paper. Our results pointed out that increasing

the landmark density from 4 to 25 brought down the median errors of localization from 3m

to 1m. However, the common argument for using RSS for localization in the literature is the

ability to reuse the communication infrastructure. The communication infrastructure is usu-

ally deployed to maximize the coverage with minimal number of access points. Due to this,

finding 25 access points around a given transmitter is not practical unless more access points

were deployed specifically for the purpose of improving localization. Our scheme that utilizes
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the time-series of signal strength makes all its conclusions with measurements at a single ac-

cess point. Therefore, at any point in time, if the transmitter is in communication range to at

least one access point (the same requirement as that of the communication infrastructure), our

scheme can estimate the other location-related properties with high accuracy.

As an extension, we envision using the speed and co-mobility information derived using

RSS to in turn improve the accuracy of localization. Our research could be extended to derive a

new paradigm of indoor localization called Path-based localization where indoor environments

could be modeled as a series of paths rather than discrete locations in space. The problem

now becomes matching time-series of testing RSS with time-series of training RSS for location

determination. Note that using a single receiver is still sufficient for location estimation if we

used the time-series. Doing it this way can also take advantage of the fact that time-series of

RSS are robust to transient fades.

There is also a need to rethink the way we would design the future context aware stacks.

For example, instead of performing localization to derive the state of the transmitter, we could

first derive mobility states from signals which can in turn be used as a trigger for localization

if the transmitter’s state is mobile. We believe that including the other richer set of primitives

that can directly be inferred from signal strength measurements can augment the amount of

information available for the context inference systems and that our work proposes ways to

derive these other primitives with high-accuracy.
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