

2011

Samprita Hegde

ALL RIGHTS RESERVED

Investigating the Use of Autonomic Cloudbursts within the MapReduce Framework

By

SAMPRITA HEGDE

A thesis submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Master of Science

Graduate Program in Electrical and Computer Engineering

written under the direction of

Professor Manish Parashar

And approved by

New Brunswick, New Jersey

May, 2011

 ii

ABSTRACT OF THE THESIS

Investigating the Use of Autonomic Cloudbursts within the MapReduce Framework

By SAMPRITA HEGDE

Thesis Director:

Professor Manish Parashar

Today MapReduce framework is increasingly becoming a popular programming

paradigm for data intensive computing, especially when there is ad-hoc data to be

processed. In MapReduce programming paradigm, computation is done in two stages - a

map stage and a reduce stage. The users simply have to provide a „map‟ and a „reduce‟

function and the underlying framework handles parallelizing and distributing the

computation to worker nodes. Currently, the existing MapReduce frameworks work like

a batch processing system where the cluster size is assumed to be static. We have

developed a new objective-based scheduler which:

1. Provides both deadline and budget based scheduling capability

2. Provides cloudbursting capability where a computation can “burst” out to cloud

whenever the existing datacenter is not capable of meeting the objective.

Using these features, it is possible to run any MapReduce application subject to a user

objective on any existing cluster by leveraging utility cloud resources. In this thesis, we

use the Comet coordination engine and the MapReduce framework which is built on top

of Comet Engine. The new autonomic scheduler works with the MapReduce Framework

 iii

and manages the cluster as well as cloud in order to meet computation requirements. We

have investigated the use of cloudbursting for MapReduce applications. We found that it

is possible to run the application subject to both time and budget based objectives and

successfully complete a job by efficiently using datacenter as well as cloud

infrastructures.

 iv

Acknowledgement and Dedication

I would like to thank my advisor, Dr. Manish Parashar, for giving me an opportunity to

work on such an interesting problem, for his enthusiasm, inspiration and encouragement

during my research at The Applied Software Systems Laboratory (TASSL). I am grateful

to my colleagues at TASSL, all the staff members at the Center for Autonomic

Computing (CAC) and Department of Electrical and Computer Engineering for their

assistance and support. I wish to thank my parents and my brother and my husband, for

their understanding, endless encouragement, and love.

 v

Table of Contents

ABSTRACT OF THE THESIS .. ii

Acknowledgement and Dedication .. iv

Table of Contents .. v

List of Illustrations ... vi

List of Tables .. vii

Introduction ... 1

1.1 Problem Description and Motivation .. 2

1.2 Overview of Comet Based MapReduce Framework and the Autonomic

Scheduler... 5

1.3 Contribution .. 6

Background and Related Work ... 9

2.1 MapReduce Basics .. 9

2.2 MapReduce Execution .. 10

2.3 CometCloud Architecture ... 11

2.4 MapReduce on Comet... 14

2.5 Cloudbursting and Cloud Bridging ... 18

The Autonomic MapReduce Scheduler .. 20

3.1 Overview of Autonomic Cloudbursting in Comet 20

3.2 Autonomic Scheduler for Comet based MapReduce 21

3.2.1. Deadline Based Scheduling .. 22

3.2.2. Budget Based Scheduling ... 26

3.3 Scheduler Implementation .. 27

3.3.1. Scheduler Execution Flow .. 28

Experiments and Results ... 33

4.1 Mining PDB Structures ... 33

4.2 Experimental set up... 35

4.3 PDB Application Baseline .. 36

4.4 Objective Driven Scheduling .. 38

4.4.1. Deadline based scheduling .. 38

4.4.2. Budget Based Scheduling ... 41

Summary, Conclusion and Future work ... 43

5.1 Summary ... 43

5.2 Conclusion .. 44

5.1 Future Work .. 44

References ... 46

 vi

List of Illustrations

Figure 1 MapReduce execution overview [1] .. 11

Figure 2: Schematic representation of Comet Infrastructure 12

Figure 3 MapReduce data flow on comet [14] ... 17

Figure 4 Autonomic Cloud bursts in Comet MapReduce [8] 21

Figure 5 Deadline based scheduling ... 25

Figure 6 Budget Based Scheduling ... 27

Figure 7 Schematic representation of the scheduler with its components 29

Figure 8 PDB File size distribution .. 35

Figure 9: Comparison between Rutgers CAC Cluster and EC2 36

Figure 10 Comparing the Costs involved for EC2.. 37

Figure 11 Hadoop MapReduce and Comet MapReduce .. 38

Figure 12 Runtime for Deadline based scheduling ... 39

Figure 13 EC2 Cost for different deadlines .. 39

Figure 14 Runtime for Budget based scheduling .. 41

 vii

List of Tables

Table 1 EC2 instance Type Specifications ... 36

Table 2 Allocated workers at every scheduling period ... 40

Table 3 Allocation of workers for Budget Based scheduling 42

1

Chapter 1

Introduction

Today, data intensive computing is becoming increasingly prevalent. To meet the

computing needs, various parallelization techniques and parallel algorithms are becoming

key aspects of the modern computing world. Also, as more and more multi-core

processors are emerging it is increasingly becoming necessary to exploit the parallelism

inherent in the processor architecture. Most of these algorithms are Single Program

Multiple Data algorithms (SPMD).

One of the techniques in which these SPMD programs are implemented is MapReduce.

Many computations like processing of web logs, crawled documents, computing inverted

indices, various representations of graph structures of web documents are conceptually

very straight forward. However, input data for these computations is so large that it has to

be distributed across a large number of machines. The issues of parallelization, data

distribution, synchronization, failure handling etc make this conceptually simple problem

a very complex one with large amount of code to deal with these issues. MapReduce

programming framework provides an effective and simple solution to these problems. A

user has to simply provide a „Map‟ and a „Reduce‟ function and the underlying

framework takes care of parallelization and most other issues that arise when the

computation has to be distributed.

2

MapReduce framework was made popular by Google [1] to support distributed

computing of large data. Map-Reduce abstraction is inspired by the map and the reduce

primitives found in Lisp and many other functional languages. In MapReduce, input data

is divided into many logical records. Each record consists of a key-value pair. The Map

function, which is provided by a user, takes an input record of key value pair and

produces an intermediate set of key-value pairs. MapReduce library takes care of

grouping the values belonging to the same key. The Reduce function takes the

intermediate key and the set of values associated with it and does the computation to

possibly form a smaller set of values. From the user‟s perspective the problems now

become simpler and all other complexities that arise out of parallelization are handled by

the MapReduce framework.

1.1 Problem Description and Motivation

In modern computing, MapReduce is widely used to process large volumes of data in

parallel. Although MapReduce framework has been inspired by the functional language

primitives, the purpose of the framework is to enable large scale parallel processing on

commodity machines.

MapReduce libraries are available in Java, C#, Python, C++ etc. One of the popular

implementation which is publicly available is Hadoop [9]. The implementation of

Hadoop MapReduce framework has been inspired by Google MapReduce framework [1].

It makes extensive use of a distributed file system to store all the input, output and

3

intermediate data. Although this strategy makes the framework extremely robust, it

introduces additional overhead in terms of file read/writes. As such, the system is not

very efficient when it comes to small data-sets. At present, all these frameworks

essentially function like batch processing systems. A user submits computations in the

form of jobs and these jobs are scheduled by the MapReduce library based on different

scheduling policies like FCFS (First Come First Serve), Fairshare scheduling etc. But all

of the existing frameworks [9] [16] today assume a static and constant cluster size. The

static scheduler attempts to schedule tasks so as to reduce data transfer on the distributed

file system which is running underneath. It does not attempt to estimate the job

completion time. Also, there is no possibility of setting deadline or any kind of user

objectives for job completion. If a job needs to be completed within a deadline, it is

constrained by the resources available to it. A deadline might be needed for several

reasons.

Consider the following use case:

One of the common jobs in web based organizations is periodic processing of web logs.

Suppose the web logs and click stream logs needs to be processed every hour no matter

how large the data is. Obviously, the size of the data depends on the web traffic at that

hour. Hence in order to meet the deadline, it becomes necessary that sufficient resources

are made available beforehand even for the highest anticipated web traffic so that these

data can be processed within the stipulated time. This is usually done by recording

historical data of maximum web traffic and provisioning more than enough resources for

processing that data. But this happens only occasionally and often it happens that only

4

part of the resources is frequently used. Provisioning for these extra computing resources

and maintaining them is extra overhead in terms of both money and man-hours.

We noticed that if there was a scheduler that dynamically calculates resource

requirements and provisions them for MapReduce computing, then the cost involved in

the extra resource provisioning can be reduced significantly. Availability of Cloud

Computing infrastructure to use computing resources only when needed suits effectively

to these needs.

In this thesis, we have implemented an objective based scheduler for MapReduce

framework which estimates the resource requirements and dynamically provisions the

resources for a job. The objective might be time based or budget based. We have

designed this scheduler to work with a MapReduce framework that is built on the Comet

Co-ordination engine [2] [11].

CometCloud is an existing framework that provides decentralized virtual shared space

coordination for running distributed applications on large clusters. CometCloud also

offers Cloudbursting and Cloudbridging capabilities. Cloudbursting refers to on-demand

scale up and scale down and scale out of the resources. Cloudbridging refers to the ability

to work with different kinds of resources (public cloud and private datacenter) at the

same time. The MapReduce framework is an application built on top of Comet to support

MapReduce applications. We have implemented a scheduler to support autonomic cloud

bridging and cloudbursting for MapReduce framework in CometCloud. We also evaluate

the effectiveness of the scheduler using a real world application for Protein Data Bank

5

mining developed by Bristol Myers Squib. We demonstrate how cloud bursting can be

used to effectively perform large MapReduce computations using the limited data center

resources and scaling out to the clouds when necessary, thus saving a lot of monetary

investment in data center infrastructure.

1.2 Overview of Comet Based MapReduce Framework and the

Autonomic Scheduler

CometCloud [2] is a scalable content based coordination space for distributed

environments. It provides a scalable tuple space abstraction for communication,

synchronization and distributed processes. The Comet space is constructed from a multi

dimensional information space. The application layer provides many programming

paradigms and one of them is a master/worker framework. In this programming

paradigm, the master generates tasks and places them on the comet virtual shared space.

The workers pull such tasks from the space and do the necessary computation. The task

can have different attributes which are specified as a task tuple. A task tuple consists of a

simple XML string describing various attributes.

This programming paradigm has been used in the MapReduce framework as well. The

MapReduce framework built on Comet provides a conceptual architecture model. It

provides a map and a reduce interface, very similar to the Hadoop MapReduce

framework [9] which is a publicly available open source implementation of MapReduce

framework. Both Hadoop and Comet MapReduce require the user to implement the map

and the reduce functions.

6

The main interfaces of the Comet MapReduce framework are

 Input Reader which is responsible for reading the input data

 The Mapper which does the Map computations

 The Reducer which does the reduce computations.

The MapReduce Master gets input from the input reader and generates tasks and inserts

them to the comet space. Workers “pull‟ the tasks from such a comet space. The workers

then determine the type of the task (Map / Reduce) by reading the task attributes in the

task tuple and perform computation accordingly.

1.3 Contribution

The goal of this research is to enable autonomic cloudbursting for Comet based

MapReduce framework using an objective based scheduler. Based on a given objective,

the scheduler has to perform following jobs:

i. Estimation: Based on the objective provided by a user, estimate the time required to

compute a job. Workers may span across clouds. Hence it is necessary to take into

account that different clouds will have nodes with different processing speeds and

memory associated with them.

ii. Scheduling: Based on the estimation, a suitable resource class is selected and the

number of workers needed to complete the job in that resource class is decided.

7

iii. Monitoring: The progress of the job is continuously monitored and it is compared with

the estimated job progress. Its results are sent to the adaptation module.

iv. Adaptation: Based on the results of the monitoring module, the remaining tasks are re-

estimated and the number of workers and the resource class is decided. The remaining

tasks are rescheduled on these resource classes.

In this research, we have implemented a unique scheduler which can effectively fulfill the

scheduling needs of a MapReduce application. We have demonstrated that this

MapReduce application can be seamlessly integrated and run on both public clouds, like

Amazon EC2 and private datacenters, like the Rutgers CAC datacenter. We have also

demonstrated that a MapReduce application can be completed according to user

objectives and without the need for over-provisioning of resources and thus reducing

significant infrastructure costs.

To summarize, the main theme of this thesis are:

i. Understand the need for an objective based scheduler for MapReduce applications and

also understand the challenges involved in developing such a scheduler.

ii. Design and develop a generic scheduler for completing a MapReduce job according to

a given user objective. This scheduler runs within the MapReduce master and

continuously monitors the job progress in order to determine resource needs.

iii. Develop a cloud agent to control different cloud and datacenters.

iv. Evaluate the scheduler by running a MapReduce application subjected to a user

objective and see how efficiently the resources are allocated and computation is

performed.

8

v. Evaluate various scheduling policies which determine how the different clouds and

private datacenters are provisioned during the course of the computation.

9

Chapter 2

Background and Related Work

2.1 MapReduce Basics

MapReduce [12] is a programming framework that enables automatic parallelization of

large scale data processing. It provides efficient parallelization for large clusters of

commodity machines. In MapReduce, computation is done in terms of key value pairs.

The map function provided by a user takes an input pair and provides a set of

intermediate key/value pairs. The MapReduce library groups together all the values

associated with a single key and then passes them to the reduce function which is also

provided by the user. The reduce function accepts an intermediate key and all the values

associated with it. It merges these values to possibly form a smaller set of values.

The most common example sited to illustrate MapReduce is word-count. This problem

involves counting occurrence of each word in a large collection of documents. The

problem is essentially straight forward, but parallelization required to process the large

data makes it a complex problem. This problem can be solved as a MapReduce

application in the following manner.

The Map function might look like as shown below:

map (String Key, String Value)

// key: document file name

10

//value: documents contents

 for each word w in value

 emitIntermediate(w, 1)

The reduce function might look like this:

reduce (String key, Iterator values)

//key: a word

//value: a list of counts

 int sum = 0;

 for each v in values

 sum += v

 emit (result)

2.2 MapReduce Execution

The map and reduce invocations are distributed across a cluster of multiple machines.

The MapReduce framework assumes that data is immutable. In essence, the input data

cannot be changed in the map or reduce function. This makes the framework efficient and

scalable to a large number of nodes.

Figure 1 shows the flow of MapReduce executions.

11

Figure 1 MapReduce execution overview [1]

2.3 CometCloud Architecture

CometCloud [2] is a decentralized (peer to peer) coordination engine that supports

applications with high computing requirements. It provides a decentralized virtual shared

space which can store entities, called tuples, along with an efficient communication and

coordination support. It also provides application framework for master/worker

paradigm.

The virtual shared space is constructed from the semantic information space used by

participating nodes for communication and coordination. The space is deterministically

12

mapped, using a locality preserving mapping technique to a dynamic set to peer nodes.

Figure 2 gives a schematic representation of the Comet engine.

Figure 2: Schematic representation of Comet Infrastructure

In Comet, data is associated with a tuple which is a simple XML string representing the

information relevant to the application. Comet employs the Hilbert Space-Filling Curve

(SFC) [13] to map tuples from a semantic information space to the linear node index.

Each tuple is associated with „k‟ keywords selected from its tag and names. They are

defined as the keys of the tuple in the k-dimensional (kD) information space. If the keys

of a tuple only include complete keywords, the tuple is mapped as a point in the

information space and located on at most one node. If its keys consist of partial

keywords, wildcards, or ranges, the tuple identifies a region in the information space,

13

corresponding to a set of points in the index space. Each node stores the keys that map to

the segment of the curve between itself and the predecessor node.

Comet provides following functional primitives:

 Out(Ts, t) - A non-blocking operation which inserts a tuple t into space Ts.

),(


tTIn s - A blocking operation that removes a tuple t matching the template



t from the space Ts and returns it.

),(


tTRd s - A blocking operation that returns a tuple t matching the template



t from the space Ts and returns it.

Replication:

As seen from Figure 2 comet provides application layer, coordination layer and

communication layer. The Chord [3] overlay service is used to provide a self organizing

overlay. This layer also provides replication as well as load balancing. Each node

maintains the state of its successor node. Successor node will always be its nearest

neighbor. This replica is constantly updated whenever there is a state change in the

successor neighboring node. If the neighboring node undergoes failure then its state is

merged with the nodes where its replica is maintained. The chord layer also provides load

balancing, i.e., whenever a new node joins the overlay, number of task tuples stored in

each node is redistributed accordingly.

Task Monitoring:

14

The programming/application layer which supports the master/worker paradigm provides

task monitoring. When a master generates tasks and inserts them into the comet space,

the task monitoring services periodically queries the space and detects if any tasks are

missing. A task can be considered as missing if it has been consumed but the master has

not got the result for a pre-specified time. When the task monitor determines a certain

task is missing, it regenerates the task and inserts it into the space. If the Master receives

the result multiple times then it ignores the later results. Tasks might go missing due to

various reasons like multiple node failures, network issues etc. In such cases the

communication layer cannot replicate the lost tasks. Thus Task monitor provides

application level resilience towards nodes/task failures.

2.4 MapReduce on Comet

The MapReduce abstraction [8] has been built on top of the Master/Worker programming

paradigm that is explained in the previous subsection. Figure 3 gives the complete

execution flow of the MapReduce framework in Comet. The Comet MapReduce

framework does most of its processing in-memory and hence provides better acceleration

of small to medium data-set when compared to other MapReduce implementations like

Hadoop MapReduce [9]. The Comet map reduce has following components:

i. Input Reader- This is an interface that the user has to implement to determine how

input data has to be read into data records.

ii. MapReduce Master: This class extends the Comet Master framework and is

responsible for generating the task tuples, inserting them into the space. It also monitors

the tasks and regenerates any missing tasks. Initially, the master generates map tasks

and puts them into the comet space then, the tasks are consumed by the workers. It

15

collects results from the workers and merges the results belonging to the same key. It

saves the map results to the disk. If the master‟s memory is insufficient to merge the

map results, it uses the disk cache. Once all Map results have been collected, it

generates reduce tasks and inserts them into the shared space. Once reduce results are

available, they are saved to disk.

iii. MapReduce Worker: This class implements the Comet Worker framework. Worker

nodes continuously query the shared space for available tasks. When a task becomes

available, a worker consumes that task, performs the required computation and sends

the result back to the master. When a worker consumes a task, it invokes the

appropriate application level mapper and reducer methods.

iv. Mapper: This is the interface that the user implements to define the map function.

v. Reducer: This is the interface that the user implements to define the reduce function.

vi. Output collector: This interface is used to collect the outputs of map and reduce tasks.

This interface is also implemented by the user.

The MapReduce execution and dataflow is as shown in Figure 3. When a user submits a

job to the MapReduce master, the master reads the inputs keys with the help of input

reader. It then generates map tasks corresponding to the keys and inserts them into the

comet space. The workers “pull” the tasks from the space and do the required

computation by using the map provided by the user. Once the computation is done the

result is sent to the master. In case of map tasks, the master runs a “Map Merger” where

the results with the same key are merged. After the entire map results are merged, reduce

tasks are generated and inserted to the space. These tasks are picked up by the workers

and the reduce function is applied on the tasks. The results are sent back to the master.

16

When the master collects all the reduce task results. It writes final output in the given

output path.

Map reduce data flow on Comet is as shown in Figure 3

17

Figure 3 MapReduce data flow on comet [14]

18

2.5 Cloudbursting and Cloud Bridging

Cloudbursting[8],[9], as the word suggests is reaching out for the cloud computing

resources when the computing need of an application exceeds the capacity of the existing

datacenter. Today, cloud computing provides a new computing paradigm of on-demand

computing access. It provides an abstraction of unlimited computing capacity available to

be used as when necessary. The payment model of the cloud is essentially “pay-as-you-

go” which means users can now rent computing resources just as they rent utilities like

electricity, water etc. When the cloud computing resources can be integrated with the

existing grid/private datacenter it opens up new opportunity of on-demand scale up and

scale down of computing capacities which is known as Cloudbursts.

Today there are several different cloud computing services available in public. Some of

the popular cloud computing platforms are Amazon EC2 [4], Microsoft Azure [5],

Google App Engine [6], Go Grid [7]. Each of these platforms offers various Service

Level Agreements, quality of Service as well as pricing policy. One of the limitation of

today‟s cloud computing platforms is that it is not easy to integrate the cloud computing

services of different vendors due to the differences in the computing services offered by

them. Hence the users are compelled to select a particular type of service which is suited

to run their application. Autonomic cloud bursting aims at integrating these different

cloud services with the traditional grid and datacenters and on the fly. Cloud bridging

aims at “bridging” different types of clouds so that the services offered by each cloud can

be exploited to efficiently run an application. Cloud bursting provides the application an

19

abstraction of resizable computing capacity and the right mix of datacenter and cloud

resources can be driven by the user defined high level policies.

20

Chapter 3

The Autonomic MapReduce Scheduler

3.1 Overview of Autonomic Cloudbursting in Comet

Today, most of the computing intensive applications are run on cluster-based datacenters.

These datacenters have become ubiquitous in industry and research alike. But as

computing requirements grow, infrastructure costs, cooling and their management costs

also increase. Hence typical strategies, like over-provisioning, no longer become feasible.

As such, autonomic cloudbursts can leverage utility clouds to provide on-demand scale-

out and scale-in capabilities. Figure 4 represents how cloudbursting can be used with

CometCloud. As seen in Figure 4, there are basically three types of computing resources.

The most secure and robust cloud/computing infrastructure is the one where the secure

masters run. The masters are responsible for initiating a computation, scheduling,

monitoring and collecting the results. Second type of computing resource is secure

workers which have special security credentials for accessing secure data. The secure

workers along with the masters form the Comet virtual shared space. Third type of

computing resource consists of unsecured workers which are not part of the comet space,

but they can request for tasks through a proxy and get tasks for computation. Autonomic

Cloudbursts are primarily used for adding/deleting the unsecured workers when the

computing resource requirements change as they are easy and less expensive to add or

delete than the secure comet workers.

A schematic representation of Autonomic cloudbursts is as shown in Figure 4.

21

Figure 4 Autonomic Cloudbursts in Comet MapReduce [8]

3.2 Autonomic Scheduler for Comet based MapReduce

Autonomic scheduler for Comet based MapReduce framework aims to be a generic

scheduler capable of running any MapReduce application. However, designing such a

scheduler is not an easy task. There are certain challenges. One of the main challenges is

the fact that different applications have different computing requirements. For example

computation can have tasks that are linear, logarithmic etc, with respect to space and time

requirements. Hence without the knowledge of the application, it is difficult for the

scheduler to schedule at a fine granular level. The other challenge in a MapReduce

application is that the tasks can be homogenous i.e., each task is of equal size and hence

22

has same computational needs or can be heterogeneous where the tasks are of different

size and hence require different computing needs.

We have developed a scheduler which can schedule the number of nodes required in each

of the available resource class based on user objectives. In this thesis we have considered

the following user objectives.

3.2.1. Deadline Based Scheduling

In deadline based scheduling, the objective is to complete a job within the given deadline.

In order to meet the deadline, the fastest resource class of all the available resource

classes is chosen and based on the initial estimation the number of nodes required for that

resource class is decided.

The tasks that need to be scheduled can be homogenous or heterogeneous. Scheduling

heterogeneous task is much harder than scheduling homogenous tasks. This is because

different tasks have different computation requirements which are not known a priori.

Also when the computation model of the tasks is not known, the scheduling strategy

might not be very accurate.

To design a scheduling algorithm which can schedule each and every task granularly and

very accurately is beyond the scope of this thesis. Hence to simplify things we have

assumed that computational model is linear. This means that the time required to

complete a task is proportional to the size of the data processed by the task. If the

relationship between the data size and the computation time required is known, then the

23

algorithm that we have developed can be easily extended for any type of task. As this

algorithm only provides an approximate estimation of the resource requirements, the

scheduler periodically monitors the job‟s progress and always keeps an updated record of

number of tasks completed and the remaining time.

The algorithm works like this:

i. Send a runtime test task to a node of each cloud and get the time required to complete

the task. Find out the time required to process unit sized data. For example determine the

task time per byte if 1 byte is considered as the unit data size. This step is required only

when an application is run for the first time.

ii. Based on the task time per unit data, find out how many nodes are needed to finish the N

remaining tasks within the given deadline or the remaining time. If this number exceeds

the available number of datacenter nodes, then proceed to step (iii). Or else proceed to

step (v). Number of nodes needed to complete a job is given by the following expression:

emainingTim

ksmainingTasdionOverheaCommunicatksmainingTaskTimeAverageTas
CloudNumNodesIn i

Re

)}Re*()Re*{(


The communication overhead is also considered because each cloud may have different

physical location and thus may take different time for communication.

If Ti is the total time elapsed between the instant Master sends a test task to a worker in

Cloud Ci and gets back the result then,

The communication can be approximately calculated in the following manner

)(

)(

SizeOutputDataizeInputDataS

eTimeTaskComputT
tadPerUnitDaionOverheaCommunicat i

i





24

This basically gives the communication overhead per unit data. When this is multiplied

with the average task size, we get the average communication overhead.

iii. Determine how many tasks can be completed using the maximum available datacenter

nodes. This can be calculated using the following expression

)(

*Re

dionOverheacommunicateAvgTaskTim

CloudNumNodesInemainingTim
edTasksNumComplet i




iv. For each cloud resource class Ci, find out how many nodes are need to complete the

remaining tasks. This can be computed using the expression given in the step (ii). Select

the resource class which is least expensive.

v. Launch/delete the number of nodes in each cloud and datacenter as determined from the

steps ii to iv.

The algorithm can be represented in a flow chart as shown in Figure 5.

25

 Figure 5 Deadline based scheduling

Find the number of datacenter nodes needed to

finish the remaining tasks in remaining time

Is NumNodes > Max-

Available Nodes?

End of

algorithm

false

true

Find the number of tasks that can be completed

using the nodded available in the data center

Find the time required to

complete a task of unit data

size

Remaining Time Remaining Tasks

For each cloud, find the number of nodes

required to complete the remaining tasks

within deadline. Select the least expensive

cloud

Launch/delete the nodes in each resource class

26

3.2.2. Budget Based Scheduling

In budget based scheduling, the number of nodes allocated in each resource is restricted

by the given budget. If the monitor determines the budget is violated then the next

cheapest resource class is scheduled so that the budget limit is met.

The budget based algorithm is as described below:

i. Send a runtime test task to a node of each cloud and get the time required to complete

the task. Find out the time required to process unit sized data.

ii. For each of the cloud resource class, determine the number of nodes that can be

allocated for the given budget.

iii. Based on the estimation in step (i) and number of nodes in step (ii), determine the

runtime for each resource class. Select the fastest resource class.

iv. Launch the datacenter nodes as well as the cloud based on the result in step (iii).

The monitor periodically monitors the job progress. If it finds that the budget limit is

being violated then the scheduler decides to replace the existing resource with the next

cheaper resource class in order to bring the computation cost within the budget limit.

The algorithm can be schematically represented in a flow chart as shown in Figure 6.

27

Figure 6 Budget Based Scheduling

3.3 Scheduler Implementation

The autonomic scheduler for MapReduce has been implemented on the CometCloud‟s

application framework. The scheduler object is initially instantiated within the

MapReduce master and later it forks as a separate thread. Another challenge for a

MapReduce scheduler is that the computation in any MapReduce application takes place

in two stages. The map stage and the reduce stage. The scheduler runs its scheduling

algorithm separately for two stages. The deadline for each stage is decided on the overall

deadline specified by the user and the proportion of time required to complete Map and

Find the time required to

complete a task of unit

data size

For the given budget, determine the number of

nodes that can be allocated for resource

class

Remaining
Budget

Remaining

Tasks

Determine estimated runtime for each resource

class and select the fastest resource class

Launch/delete the nodes in each resource class

End of Algorithm

28

Reduce stages for the application that is being run. This information can obtained based

on initial test runs without the scheduler or else it is provided by the user. The autonomic

scheduler has basically 3 components.

i. Estimator: This module is responsible for the initial task time estimation. It sends a test

task and measures the time required to complete the task for each of the available

resource class. This result is passed on to the scheduling agent.

ii. The scheduling agent: This determines the number of nodes to be provisioned based on

the algorithm explained in the previous section.

iii. The monitoring agent: This component maintains a counter for the number of tasks that

has been completed and also it keeps track of how much input data has been processed so

far.

iv. The cloudburst manager: This component uses the information given by the

scheduling agent to add/delete the nodes in each of the clouds.

A schematic representation of the scheduler and its components is shown in Figure 7.

3.3.1. Scheduler Execution Flow

As mentioned earlier, the scheduler is instantiated as an instance in the MapReduce

master class. The Map-Reduce master after running some initial routine for preprocessing

and setting up the comet environment instantiates the scheduler object.

29

Figure 7 Schematic representation of the scheduler with its components

The scheduler runs in two phases: Runtime estimation phase and Application scheduling

phase. In runtime estimation phase the scheduler starts up a single node in each cloud and

inserts a test task for each of these nodes. The worker nodes then pick up the task and

after doing appropriate computations, they send the result to the master along with

information like time required to do the actual computation. Using this information the

scheduler determines the computation time for each cloud and it also determines the

communication overhead for each of these clouds. It then runs the scheduling algorithm

to determine the number of nodes needed in each of these clouds in-order to complete the

job according to the user objective. Once the number of nodes is decided, the scheduler

then enters the application scheduling phase and the cloudburst manager starts the

appropriate number of nodes in each cloud. Every time the master receives the result

MapReduce Master

 MapReduce Worker

Mapper Reducer

Estimator

Monitoring

Scheduling

Cloud Management

Output Collector

User Policy

Comet Space

Cloud
Agent

Get Tasks

30

from its workers, it updates the counters in the scheduler. The scheduler runs as an

independent thread and it continuously monitors the progress of the job and determines if

the nodes needs to be added or deleted.

Adding a node is fairly a simple task, as it involves just starting up a new node and

running appropriate java process on the node which is essentially a copy of the program.

But deleting a node is not that simple. This is because, when the scheduler decides to

delete a particular node, it might be computing a task and abruptly deleting a node may

result in a lost task. To avoid this situation, the Comet framework has a special task tuple

called as “poison pill”. When a node “consumes a poison pill”, it completes all the

computations that it was doing, sends the results to the master and then kills itself. To

coordinate these operations, the scheduler sends control messages to the RequestHandler

in the CometCloud. The RequestHandler is responsible to delegating the tasks to the

workers.

Comet MapReduce framework has been implemented using java which makes it platform

independent and hence it can be run on both windows and Linux. Following classes are

used for Autonomic scheduling and cloud bursting for map reduce framework.

 MapReduceScheduler.java:

This class is responsible for scheduling and it makes the decision to expand or shrink the

clouds. It extends the java.lang.Thread class and overrides its run() method.

One of the main methods of this class is:

31

 private int[] allocateResourceByDeadline(HashMap<Integer,

Double> taskTimePerByte, int numTasks, long dataSize, double deadline)

This method allocates the resource by running the scheduling algorithm for the remaining

number of tasks as passed by the parameter. The method is invoked periodically by the

run() method which continuously monitors the task and periodically checks if the

cluster size needs to be expanded or shrinked.

 public int[]allocateResourceByBudget(HashMap<Integer, Double>

taskTimePerByte,int numTasks, long dataSize, double budget)

This method allocates the resource based on the given budget. When the user has selected

the budget based policy this method is continuously called by the scheduler thread and

based on the job progress, the node adaptation is determined. The method is also invoked

periodically by the run() method which continuously monitors the task and

periodically checks if the cluster size needs to be expanded or shrinked.

 CustomizedMapReduceTaskSelection.java:

This class is instantiated in the Comet class RequestHandler.java which picks the tasks

and sends it to the unsecured workers in the cloud. This class implements the

CustomizedTaskSelection.java interface from the Comet framework. The

CustomizedMapReduceTaskSelection.java is responsible for handling the MapReduce

specific control messages that are exchanged between the scheduler and the Request

Handler. The communication takes place using TCP sockets. Initially when the scheduler

enters the runtime phase it sends a control message to the Request Handler saying that the

runtime phase has started. This message is passed in to the

32

CustomizedMapReduceTaskSelection class and it then generates suitable task templates

to pick up the runtime tasks appropriate for each cloud. When the runtime phase ends, the

scheduler informs the Request Handler of the same and it then starts querying for the

actual computation tasks. Whenever the scheduler decides to delete the nodes in a cloud,

it sends a control message to the Request Handler informing the cloud-id and the number

of nodes to be deleted. This class then generates the required number of “poison pills”

and sends them to the nodes of that particular cloud.

33

Chapter 4

Experiments and Results

Comet MapReduce framework is specifically suited for applications which have a

medium data size. In [14] it has been shown that Comet based MapReduce out performs

Hadoop when the number of files are large, but the size of each file is very small. In such

cases it has been found that file read/write overhead for Hadoop is much higher than the

computation time. But comet uses local file system and NFS file system and for small

files does most of the processing in-memory. This makes Comet MapReduce framework

perform much better than the Hadoop MapReduce framework.

One such application that has been deployed on Comet MapReduce framework is for

mining Protein Data Bank (PDB) structures for distance information.

4.1 Mining PDB Structures

The Protein Databank is a database of known crystal structures (crystallographic

database) obtained by crystallography or NMR (Nuclear Magnetic Resonance)

spectroscopy. Many of these structures are protein-ligand complexes. By mining the

information generated in this database we generate a scoring function which will

ultimately tell us how well a molecule can bind to a receptor or protein in our body.

When a molecule/ligand binds to a protein or receptor in our body, it evokes a biological

response possibly resulting in pain relief, inflammation reduction etc. Typically there are

a limited number of configurations or poses that a protein-ligand complex can assume.

34

Finding these poses is of immense importance in new drug discovery. Both proteins and

ligands are 3 dimensional structures and are constantly changing shape and it is a multi-

step problem. The goal is to first identify the bioactive conformation of both the ligand

and the protein and then place the ligand in the correct orientation with the protein to

produce the desired results.

There are many ways to do this. Some are expensive and hence possibly more accurate

and some are fairly inexpensive methods. One approach is to generate large number of

potential poses by using the inexpensive method and then use expensive calculation to

rank them in the order of likelihood of being a bio active pose.

This is exactly the idea behind Map Distance application that has been developed as a

MapReduce code. It extracts the potential poses and then it ranks them to decide which

ones to apply the more expensive methods to. As going through the database involves

processing large number of files independent of each other, it can be easily made to an

embarrassingly parallel application. Hence it is also suited to be run as a MapReduce

application.

The file size distribution of the PDB database is as shown in the Figure 8

35

File Distribution

0

2000

4000

6000

8000

10000

12000

14000

16000

0-10 10-20 20-30 30-40 40-50 50-100 100-200 200-500 500-4000

File Size in Kilobytes

N
u

m
b

e
r

o
f

fi
le

s

Figure 8 PDB File size distribution

As seen from Figure 8, the PDB database consists of a large number of files of different

length with an average size of a few kilobytes. As each file is of a different size, the

resulting tasks are heterogeneous in nature. Hence, this application becomes a suitable

candidate to evaluate the Autonomic Scheduler. For our experiments we had a total of

25,914 files. As explained earlier, processing large number of small files is very efficient

in Comet MapReduce framework.

4.2 Experimental set up

All our experiments were conducted on the Rutgers CAC Dell datacenter and Amazon

EC2.

We have a total of 32 machines at Rutgers CAC datacenter. Each machine has 8 cores, 6

GB of RAM and 146 GB disk space. We included 5 instance types for the Amazon EC2.

The specification of each of these instance type are as described in the Table 1.

36

EC2 Instance

Type

Mem

(GB)

ECU Virtua

l

Cores

Storag

e

(GB)

Platfor

m

(bit)

Cost

($ per

hour)

m1.small 1.7 1 1 160 32 0.085

m1.large 7.5 4 2 850 64 0.34

m1.xlarge 15 8 4 1690 64 0.68

c1.medium 1.7 5 2 350 32 0.17

c1.xlarge 7 20 8 1690 64 0.68

Table 1 EC2 instance Type Specifications

4.3 PDB Application Baseline

In order to compare the computing capacity of the Rutgers CAC Dell datacenter and

Amazon EC2, we ran the PDB application separately on both Rutgers cluster and EC2

where only one worker of each resource class was used in each experiment. The results

are as shown in Figure 9.

RunTime Analysis Using Single Worker

0
500000

1000000
1500000

2000000
2500000

3000000
3500000

4000000
4500000

D
ell

M
1.

Sm
al
l

C
1.M

ed
iu
m

M
1.

La
rg

e

M
1.

Xla
rg

e

C
1.X

La
rg

e

Resource Types

T
im

e
 i

n
 m

il
li

s
e
c
o

n
d

s

MapTime

ReduceTime

Comet Overhead

Figure 9: Comparison between Rutgers CAC Cluster and EC2

37

Cost Analysis: The cost for computation for EC2 workers is as shown in Figure 10. For

data transfer, EC2 charges $0.15/GB for all the data transferred out of EC2 and $0.10/GB

for all the data transferred in to the EC2 network. The computation is cost is calculated

based on the total runtime. Even though Amazon EC2 charges are on hourly basis, for

simplicity we have calculated the costs on per second basis.

EC2 Costs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M1.Small C1.Medium M1.Large M1.Xlarge C1.XLarge

EC2 Resource Type

C
o

s
t

in
 $

Data Transfer Cost

Computation Cost

Figure 10 Comparing the Costs involved for EC2

We also compared the performance of the Hadoop Map Reduce framework and Comet

MapReduce framework. For this experiment, we used the Rutgers Dell datacenter. We

used 1 master and 31 workers. The results are as shown in Figure 11. From Figure 11, it

is evident that for applications such as PDB mining, Comet MapReduce is very efficient

compared to Hadoop Map Reduce when it comes to Runtime and disk usage.

38

Hadoop MapReduce Vs Comet Map Reduce

0

100

200

300

400

500

600

700

Hadoop MR Comet MR

T
im

e
 (

 s
e
c
o

n
d

s
)

 o
r

S
to

ra
g

e
(

M
B

)

RunTime

Local Disk Usage

Figure 11 Hadoop MapReduce and Comet MapReduce

4.4 Objective Driven Scheduling

4.4.1. Deadline based scheduling

For our experiments, we used a mix of Rutgers CAC cluster nodes and EC2 nodes.

From the baseline experiment where we ran the PDB application on a single Rutgers

node, we found that the runtime is around 4200 seconds (see Figure 9). Using this

information we decided to set the deadline from a range of 18 minutes to 10 minutes,

where we reduced the deadline by 2 minutes for each of our experiments. We limited the

number of nodes in the Rutgers Datacenter to 5 in order to demonstrate cloud bursting.

Figure 12 shows the runtime for different deadlines. We can see that the user objectives

were successfully met by cloudbursts. However, by decreasing the deadline, more EC2

39

needs to be launched which results in increasing data transfer and hence, increasing

network overhead.

Runtime Analysis

0

100

200

300

400

500

600

700

800

900

1000

1080 960 840 720 600

Deadline (seconds)

T
im

e
(

s
e
c
o

n
d

s
)

Overhead

ReduceTime

MapTime

Figure 12 Runtime for Deadline based scheduling

EC2 Cost Analysis

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1080 960 840 720 600

Deadline (seconds)

C
o

s
t

(
$
)

DataCost

ComputationCost

Figure 13 EC2 Cost for different deadlines

40

Figure 13 shows the EC2 for different deadlines. As we can see from the figure, the EC2

cost increases as the deadline is reduced. The data transfer cost increases with decreased

deadline.

We configured scheduler to monitor the job progress at every minute. The detailed

scheduling decision at every scheduling stage is as shown in Table 2. As seen in the table,

the number of workers is decided to launched/deleted on the fly by the cloud manager.

Table 2 Allocated workers at every scheduling period

Deadline

(Seconds) Time in minutes
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1080

Rutgers

Nodes

5 5 5 5 5 4 4 2 2 1 1 1 1 1 5 5 5 0

EC2

Nodes

2 2 2 1 0 0 0 0 0 0 0 0 0 0 8 7 3 0

EC2-

Instance

Type

c1.medium m1.small

960

Rutgers

Nodes

5 5 5 5 5 5 4 3 2 1 1 1 5 5 0 0

EC2

Nodes

5 4 3 2 1 0 0 0 0 0 0 0 7 4 0 0

EC2-

Instance

Type

m1.small m1.small

840

Rutgers

Nodes

5 5 5 5 5 5 4 2 1 1 1 5 5

EC2

Nodes

5 4 3 2 1 0 0 0 0 0 0 4 5

EC2

Instance

Type

m1.small c1.medium

720

Rutgers

Nodes

5 5 5 5 5 5 5 2 1 1 5 6

EC2

Nodes

6 5 4 3 2 1 0 0 0 0 4 5

EC2

Instance

Type

m1.small c1.medium

600

Rutgers

Nodes

5 5 5 5 5 5 2 1 5 5

EC2

Nodes

14 10 8 6 2 0 0 0 7 10

EC2

Instance

Type

m1.small c1.medium

41

4.4.2. Budget Based Scheduling

 For budget based scheduling we used budgets $0.5, $1, $2, $4 and $8. As the application

for mining PDB data finished within 1 hour, we did not reschedule the workers based on

budget limit. The run obtained when different budgets were used is as shown in the

Figure 14. We can see that the number of EC2 workers used in each of the experiment

increases almost exponentially. However, the speed up achieved is not significant. This is

due to the fact that many of the operation in Comet MapReduce like task insertion, Map

Results merging are carried in the Master and as a result these operations are sequential.

Also, as more and more EC2 workers are used there is a significant network over head

involved in data transfer. The number of EC2 nodes and their type is as shown in Table 3.

Budget Based Scheduling

0

100

200

300

400

500

600

700

800

0.5 1 2 4 8

Budget ($)

R
u

n
ti

m
e
 (

 s
e
c
o

n
d

s
)

0

2

4

6

8

10

12

RunTime

Number of Nodes

Figure 14 Runtime for Budget based scheduling

42

Table 3 Allocation of workers for Budget Based scheduling

The results we have obtained so far clearly indicate that the user objectives can be

successfully met using the Autonomic cloudbursts.

Budget ($) Number of Workers EC2 instance Type

0.5 2 m1.small

1 1 m1.xlarge

2 2 m1.xlarge

4 5 m1.xlarge

8 11 m1.xlarge

43

Chapter 5

Summary, Conclusion and Future work

5.1 Summary

The primary object of this research presented in this thesis is to develop a deadline based

scheduler which enables Cloudbursting and Cloudbridging for MapReduce applications.

A key contribution of this thesis is the new infrastructure for running MapReduce

application subjected to a user policy which leverages the available public clouds to meet

a sudden increase in demand in computing requirements. This research has opened up a

new approach for using MapReduce framework for deadline or budget based

applications. Its feasibility has been investigated using a real world pharmaceutical

application and it has been proved that indeed MapReduce need not be only for a static

cluster size but it can be expanded and shrinked on the fly and effectively meet any

computing demand based on a high level user policy. With a generic scheduler and

periodic monitoring, any computation that can be expressed using map and reduce

functions can now leverage cloudbursting and thus effectively use both existing

datacenter as well as other available cloud resources.

44

5.2 Conclusion

In this research work we have investigated the use of autonomic cloud bursting for

MapReduce framework. Cloudbursting gives an abstraction of single virtual compute

cloud that integrates both public and private clouds on the fly. The policy driven

scheduler provides an innovative approach for running MapReduce applications.

We have deployed a real world application using a combination of private datacenter as

well as public cloud at Rutgers University and Amazon EC2 and have presented the

experimental results with different combination of the nodes in the cloud and using

different user level policies The results have demonstrated the effective use of

cloudbursting for MapReduce and have proved that objective based scheduling is

possible.

Since the interfaces provided by Comet Map-Reduce is very similar to Hadoop

MapReduce, it is very easy to port the existing applications in the Hadoop MapReduce

and use the deadline based scheduling for those applications.

5.1 Future Work

The concept of deadline based scheduling for MapReduce framework is new. Hence

there is scope for future work in this direction. Some of them are listed below.

45

i. The use of this approach needs to be studied in detail for different classes of MapReduce

applications like those that are mainly computational in nature, applications which

involve a lot of File I/O etc.

ii.The behavior of cloud bursting needs to be studied for different types of clouds and data

centers. Currently we have extensively tested on the Rutgers Datacenter as well as

Amazon EC2, but there are many other cloud/grids available today. Hence, it will be

interesting to study the behavior in different types of computing resources.

iii.In situations where data itself is distributed over multiple clouds, then the Map reduce

framework along with the scheduler can be extended so that each cloud has an agent

which is responsible for generating the map tasks. Once the results are obtained, the data

can then be merged in a single cloud and reduce tasks can be sent out to space. This way,

both the master and scheduler can be decentralized.

iv. Investigating if this approach will work for Hadoop map Reduce framework as well

would be an interesting research work in itself. Hadoop MapReduce works very well for

large datasets. If cloudbursting can be leveraged in Hadoop, then it can significantly help

reducing the datacenter costs.

46

References

[1] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on

Large Clusters OSDI 2004

[2] Cristina Schmidt and Manish Parashar. Enabling flexible queries with guarantees in

p2p systems. IEEE Network Computing, Special issue on Information Dissemination on

the Web, (3):19–26, June 2004.

[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable

Peer-To-Peer Lookup Service for Internet Applications. In Proceedings of the 2001 ACM

SIGCOMM Conference, pages 149–160, 2001.

[4] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

[5] Azure service platform. http://www.microsoft.com/azure/.

[6] Google app engine. http://code.google.com/appengine/.

[7] Gogrid. http://www.gogrid.com.

[8] H.Kim, M.Parashar, D.Foran,L.Yang. Investigating the Use of Autonomic

cloudbursts for High-Throughput Medical Image Registration. The 10
th

 IEE/ACM

International Conference on Grid Computing (Grid 2009) , Banff, Canada, Oct 2009

[9] Hadoop Wiki : http://wiki.apache.org/hadoop/

[10] H. Kim, Y. el Khamra, S. Jha, and M. Parashar, “An autonomic approach to

integrated hpc grid and cloud usage,” in e-Science, 2009. e-Science ‟09. Fifth IEEE

International Conference on, Dec. 2009, pp. 366–373

[11] Z. Li and M. Parashar, “A Computational Infrastructure for Grid-based

Asynchronous Parallel Applications,” Proceedings of the 16th International Symposium

on High-Performance Distributed Computing (HPDC), Monterey, CA, USA, pp. 229,

June 2007

[12] Google MapReduce Introduction : http://code.google.com/edu/parallel/mapreduce-

tutorial.html

[13] Bongki Moon, H. V. Jagadish, Christos Faloutsos, and Joel H. Saltz. Analysis of the

clustering properties of the hilbert space-filling curve. IEEE Transactions on Knowledge

and Data Engineering, 13(1):124–141, 2001

http://aws.amazon.com/ec2/
http://www.microsoft.com/azure/
http://code.google.com/appengine/
http://www.gogrid.com/
http://wiki.apache.org/hadoop/
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html

47

[14] “Accelerating Hadoop Map-Reduce for Small/Intermediate Data Sizes using the

Comet Coordination Framework”, Master’s Thesis submitted by S. Chaudhari, Rutgers

University.

[15] APC, “Determining total cost of ownership for data center and network room

infrastructure,” White paper, 2002.

[16] CGL MapReduce - http://www.cs.indiana.edu/~jekanaya/cglmr.html

.

