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Modeling complex process chemistries with complex feedstocks involves several aspects: composition 

modeling of the complex feedstock, reaction modeling of the complex chemistry, and structure property 

correlations to provide feed and product property estimation. This thesis was developed to automate 

these modeling techniques and to provide an integrated approach for combing these modeling aspects 

into a continuous package. 

 

The first contribution of this thesis is the development of an automated composition modeling tool 

called the composition model editor (CME). CME uses a statistical hybrid approach to describe a 

complex feedstock in terms of a set of structural attributes expressed by probability density functions 

(PDF). Through optimizing a limited set of attribute PDF parameters, CME can obtain a molecular 

composition array (MCA) for a feedstock based on limited analytical information.  

 

The second contribution of this thesis is the development of a series of automated techniques that are 

useful for reaction modeling. Firstly, an attribute reaction modeling (ARM) approach is developed for 

complex process chemistries. ARM can condense a kinetic model by allowing the number of ODEs to 

be far less than the number of species for a complex system, while maintaining the full molecular detail 

of the model. Secondly, reaction family and LFER concepts are used to control the number of kinetic 



 iii 

parameters for a complex model. Thirdly, the ability to impose LHHW rate law allows for 

heterogeneous systems involving with catalysts. Last but not least, various process configurations are 

addressed to satisfy the kinetic modeling for complex process chemistries.  

 

The third and final contribution of this thesis is the creation of a structure correlation module used to 

provide data support for kinetic modeling as well as composition modeling. Group contribution 

methods and the quantum chemistry package are applied to estimate thermodynamic properties. A 

supplemental database is developed to manage property data in a high efficient way.   

 

The above contributions were then successfully applied to the development of detailed kinetic and 

feedstock models for complex process chemistries, including complex feedstock characterizations, 

lignin pyrolysis, and resid pyrolysis.   

                            



 iv 

 

Acknowledgement 

My five-year graduate life at Rutgers was truly enjoyable mainly due to the interactions with many great 

people. I am grateful for all of their contributions to this work. 

 

At first, my deepest appreciation goes to Mike Klein, an exceptional advisor and mentor, for his 

continuous guidance, support, encouragement, and trust. What I have learned from Dr Klein is 

invaluable, both scientifically and professionally. Dr Klein would be the best example for me to learn 

how to achieve a fantastic career success in my life. 

 

I would also like to thank my advisory committee, Dr. Ben Glasser, Alex Neimark, and Roland Saeger 

for their contributions to help and insightful comments. 

 

I would like to thank the partners with the Klein research group. They gave me great benefits for the 

interactions between theoretical methodology and practical applications. Special thanks are due to Mr. 

Pyl, Steven from Ghent University, Dr. Tanaka, Ryuzo from Idemitsu, and Dr Cheol-Joong Kim from 

S.K.Energy.  

 

I would also like thank for all members in the Klein research group, past and present, for creating a 

wonderful work environment during my Ph.D life. I particularly appreciated Dr. Craig Bennett for the 

help to reaction modeling and the revision on my thesis. 

 

I would like to extend my appreciation to my parents, for their continuous support and encouragement 

through the years. 

 

Finally, I would show my deepest gratitude to my wife, Lihong, for her continuing love, understanding, 

and respect. This work would not have been possible without her. 



 v 

 

Table of Contents 

ABSTRACT OF THE DISSERTATION ................................................................................................ ii 
Acknowledgement .................................................................................................................................. iv 
Table of Contents .................................................................................................................................... v 
Lists of tables ....................................................................................................................................... viii 
List of illustrations ................................................................................................................................. ix 
Chapter 1 Introduction ..................................................................................................................... 1 

1.1 Motivation ....................................................................................................................... 1 
1.1.1 Role of modeling in energy issues........................................................................... 1 
1.1.2 Limitation of lumped modeling ............................................................................... 1 
1.1.3 Key steps of molecular modeling ............................................................................ 2 
1.1.4 Challenge for complex mixtures and chemistries .................................................... 4 

1.2 Limitations of previous work .......................................................................................... 5 
1.2.1 Limitations of approaches of Froment, EXXONMOBIL, IFP and UMIST ............ 5 
1.2.2 Limitations of previous KMT .................................................................................. 6 

1.3 Thesis contributions ........................................................................................................ 8 
1.4 Thesis Overview .............................................................................................................. 9 

Chapter 2 Automating the Modeling of Composition .................................................................... 12 
2.1 Introduction ................................................................................................................... 12 
2.2 Analytical information of complex feedstocks .............................................................. 13 
2.3 A statistical view of complex feedstocks ...................................................................... 14 
2.4 Determining the identity of the elements of the MCA .................................................. 16 

2.4.1 Bond-Electron matrix representation of molecules ............................................... 21 
2.4.2 Core series’ structure generator ............................................................................. 22 

2.5 Quantitative determination of molecular compositions ................................................. 26 
2.5.1 Probability density functions ................................................................................. 27 
2.5.2 Probability density functions to describe complex mixtures ................................. 30 
2.5.3 Determining appropriate functional forms ............................................................ 31 
2.5.4 Discretization of the probability density functions ................................................ 34 
2.5.5 Renormalization and truncation ............................................................................ 35 
2.5.6 Conditional probability .......................................................................................... 35 
2.5.7 Attribute PDF selection ......................................................................................... 36 
2.5.8 MCA0 generation .................................................................................................. 37 

2.6 Automation of composition modeling-CME ................................................................. 39 
2.7 Integration between CME and INGen ........................................................................... 50 
2.8 Summary and discussions ............................................................................................. 51 

Chapter 3 Automation of reaction equation generation and calculation ........................................ 55 
3.1 Introduction ................................................................................................................... 55 
3.2 Attribute-based reaction model (ARM) ......................................................................... 57 

3.2.1 ARM example: lignin ............................................................................................ 58 
3.2.2 General illustration of ARM .................................................................................. 59 
3.2.3 Automation of ARM in KME................................................................................ 60 

3.3 Reaction family and LFER ............................................................................................ 62 
3.3.1 LFERs.................................................................................................................... 62 
3.3.2 Representative results of LFER ............................................................................. 64 
3.3.3 LFERs and reaction families in KME ................................................................... 70 
3.3.4 Integration between KME and INGen ................................................................... 74 

3.4 LHHW ........................................................................................................................... 75 
3.5 Deactivation calibration ................................................................................................ 79 
3.6 Multiple reactors ........................................................................................................... 82 



 vi 

3.7 Basic product separation ............................................................................................... 83 
3.8 Model analysis ............................................................................................................... 84 

3.8.3 Statistical analysis ................................................................................................. 85 
3.8.4 Sensitivity analysis and model reduction .............................................................. 87 

3.9 Summary and discussion ............................................................................................... 90 
Chapter 4 Structure property correlation module ........................................................................... 94 

4.1 Introduction ................................................................................................................... 94 
4.2 Pure component property estimation ............................................................................. 95 

4.2.1 Structural properties’ estimation ........................................................................... 96 
4.2.2 Thermodynamic property estimation by group contribution ................................. 96 

4.2.2.1 Selected properties calculated by Joback method ......................................... 97 
4.2.2.2 Selected properties calculated by Rafiqul Gani method .............................. 100 
4.2.2.3 Density calculation for a pure component ................................................... 107 
4.2.2.4 Summary of thermodynamic property calculation ...................................... 108 

4.2.3 Selected properties calculated by quantum chemistry ......................................... 109 
4.2.3.1 The molecule’s conversion from 2D BE matrix to 3D structure ................. 109 
4.2.3.2 Selected properties calculated by MOPAC ................................................. 112 

4.2.4 Miscellaneous properties:image and chemical name .......................................... 113 
4.2.5 Supplemental property database .......................................................................... 114 
4.2.6 Automation of SPCM for pure components ........................................................ 115 

4.3 Bulk property estimation ............................................................................................. 117 
4.4 The reaction’s thermodynamic properties of reaction ................................................. 119 
4.5 Summary and discussion ............................................................................................. 120 

Chapter 5 Composition modeling of selected complex feedstocks .............................................. 123 
5.1 Introduction ................................................................................................................. 123 
5.2 Petroleum middle distillates ........................................................................................ 123 

5.2.1 Analytical characterization .................................................................................. 123 
5.2.2 Homologous series determination ....................................................................... 126 
5.2.3 Structural attribute sampling protocol and PDF form ......................................... 126 
5.2.4 Conditional probability ........................................................................................ 127 
5.2.5 Optimization of the PDF parameters ................................................................... 128 
5.2.6 Validation results ................................................................................................. 128 

5.2.6.1 Case 1 validation results .............................................................................. 128 
5.2.6.2 Case 2 validation results .............................................................................. 138 
5.2.6.3 Conclusion ................................................................................................... 145 

5.3 Natural gas condensates .............................................................................................. 146 
5.3.1 Analytical characterization .................................................................................. 146 
5.3.2 Homologous series determination ....................................................................... 147 
5.3.3 Structural attribute sampling protocol and PDF form ......................................... 148 
5.3.4 Conditional Probability ....................................................................................... 149 
5.3.5 Optimization of the PDF parameters ................................................................... 150 
5.3.6 Validation results ................................................................................................. 150 

5.3.6.1 Case 1 validation results .............................................................................. 150 
5.3.6.2 Case 2 validation results .............................................................................. 153 
5.3.6.3 Conclusion ................................................................................................... 155 

5.4 Petroleum heavy gas oil .............................................................................................. 155 
5.4.1 Analytical characterization .................................................................................. 156 
5.4.2 Homologous series determination ....................................................................... 157 
5.4.3 Structural attribute sampling protocol and PDF form ......................................... 157 
5.4.4 Conditional probability ........................................................................................ 158 
5.4.5 Optimization of the PDF parameters ................................................................... 158 
5.4.6 Validation results ................................................................................................. 159 

5.4.6.1 Case 2 validation results .............................................................................. 159 



 vii 

5.4.6.2 Conclusion ................................................................................................... 166 
5.5 Vacuum gas oil ............................................................................................................ 166 

5.5.1 Analytical characterization .................................................................................. 167 
5.5.2 Homologous series determination ....................................................................... 167 
5.5.3 Structural attribute sampling protocol and PDF form ......................................... 168 
5.5.4 Conditional Probability ....................................................................................... 168 
5.5.5 Optimization of the PDF Parameters ................................................................... 169 
5.5.6 Optimization results ............................................................................................ 170 

5.6 Petroleum resids .......................................................................................................... 171 
5.6.1 Analytical characterization .................................................................................. 171 
5.6.2 Homologous series determination ....................................................................... 172 
5.6.3 Structural attribute sampling protocol and PDF form ......................................... 173 
5.6.4 Conditional probability ........................................................................................ 174 
5.6.5 Optimization of the PDF parameters ................................................................... 174 
5.6.6 Optimization results ............................................................................................ 175 

5.7 Summary and discussions ........................................................................................... 176 
Chapter 6 Modeling lignin pyrolysis with ARM ......................................................................... 179 

6.1 Introduction ................................................................................................................. 179 
6.2 The significance of lignin and lignin pyrolysis ........................................................... 180 
6.3 Modeling approach ...................................................................................................... 180 
6.4 Modeling Lignin structure and composition ............................................................... 182 
6.5 Lignin reaction pathways and kinetics ........................................................................ 187 
6.6 Attribute-based reaction modeling for lignin pyrolysis ............................................... 190 
6.7 Results: application to lignin pyrolysis ....................................................................... 195 
6.8 Summary and discussions ........................................................................................... 198 

Chapter 7 Automated modeling of resid pyrolysis with ARM .................................................... 200 
7.1 Introduction ................................................................................................................. 200 
7.2 Modeling approach ...................................................................................................... 200 
7.3 Model development ..................................................................................................... 201 

7.3.1 Resid composition modeling ............................................................................... 201 
7.3.2 Reactive attributes determination ........................................................................ 201 
7.3.3 Resid pyrolysis reaction network ........................................................................ 206 
7.3.4 Equations and rate constants of resid pyrolysis ................................................... 209 
7.3.5 Regeneration of the attribute PDF’s .................................................................... 212 
7.3.6 Product resampling .............................................................................................. 213 
7.3.7 Model predictions ................................................................................................ 213 

7.4 Summary and discussion ............................................................................................. 217 
Chapter 8 Summary and discussions ........................................................................................... 220 

8.1 Summary ..................................................................................................................... 220 
8.1.1 Automating the modeling of momposition (CME) ............................................. 220 
8.1.2 Automation of reaction equation generation and calculation .............................. 222 
8.1.3 Structure property correlation module ................................................................. 224 
8.1.4 Integration of KMT components ......................................................................... 225 
8.1.5 Composition modeling of selected complex feedstocks ...................................... 226 
8.1.6 Modeling lignin pyrolysis with ARM ................................................................. 228 
8.1.7 Automated modeling of resid pyrolysis with ARM ............................................ 228 

8.2 Suggestions for future ................................................................................................. 228 
8.2.1 Automating the modeling of composition (CME) ............................................... 228 
8.2.2 Automation of reaction equation generation and calculation .............................. 230 
8.2.3 Structure property correlation module ................................................................. 230 

 



 viii 

Lists of tables  

Table 1.1 Thesis contributions V.S. previous KMT work .............................................................. 9 
Table 2.1 Quantitative Attribute PDFs Selection of Hydrocarbon Components in Petroleum ..... 16 
Table 2.2 Probability density functions used to model the structural attributes of a complex 

feedstock. .............................................................................................................................. 28 
Table 3.1 LHHW formalism (Yang and Hougen, 1950) ............................................................... 76 
Table 3.2 Multiple reactors in proposed KME .............................................................................. 83 
Table 4.1 Pure component structural properties caculated in SPCM ............................................ 96 
Table 4.2 Thermodynamics properties in Joback method ............................................................. 97 
Table 4.3 The structural groups in Jack method. ........................................................................... 98 
Table 4.4 Thermodynamics properties in Rafiqul Gani method ................................................. 100 
Table 4.5 The first order groups and their contributions in Gani method ................................... 101 
Table 4.6 The second order group and their contributions in Gani method ................................ 104 
Table 4.7 The third order group and their contributions in Gani method .................................... 106 
Table 4.8 The additional parameters in E.q.4.2 ........................................................................... 107 
Table 4.9 Internal coordinate representation of ethane ............................................................... 110 
Table 4.10 Typical atom data as internal coordinate ................................................................... 111 
Table 5.1 Bulk properties for petroleum middle distillates ......................................................... 124 
Table 5.2  Model predictions for the analytical properties of two middle distillates with case 1.

 ............................................................................................................................................. 129 
Table 5.3  Typical weight distribution of branched isomers of C83 ............................................ 130 
Table 5.4 the overall statistical analysis for middle distillate Sample1 and Sample2 with case 1

 ............................................................................................................................................. 130 
Table 5.5  Model predictions for the analytical properties of two middle distillates with case 2.

 ............................................................................................................................................. 139 
Table 5.6 the overall statistical analysis for middle distillate Sample1 and Sample2 with case 2.

 ............................................................................................................................................. 140 
Table 5.7 Bulk properties for natural gas condensates ................................................................ 147 
Table 5.8  Model predictions for the analytical properties of two natural gas condensates with case 

1. .......................................................................................................................................... 151 
Table 5.9  Model predictions for the analytical properties of two natural gas condensates with case 

2. .......................................................................................................................................... 153 
Table 5.10 Bulk properties for the HGO sample ......................................................................... 156 
Table 5.11  Model predictions for the analytical properties of the HGO sample with case 2. .... 160 
Table 5.12 Bulk properties for VGO ........................................................................................... 167 
Table 5.13  Model optimization results for the VGO sample ..................................................... 171 
Table 5.14 Bulk properties for resids .......................................................................................... 172 
Table 5.15  Model optimization results for the resids’ samples .................................................. 176 
Table 6.1 Model Compounds for Lignin Pyrolysis2 .................................................................... 188 
Table 7.1 Reactive attributes for various chemistries1. ............................................................... 202 
Table 7.2 The carbon number ranges of the reactive attributes in a resid pyrolysis model......... 204 
Table 7.3 The statistics of the reaction network for resid pyrolysis with ARM. ......................... 209 
Table 7.4 Product properties of DaQing resid model .................................................................. 215 
Table 7.5 Product properties of ShengLi resid model ................................................................. 216 

 



 ix 

List of illustrations  

Figure 1.1 Molecular-level Modeling steps..................................................................................... 2 
Figure 1.2 KMT automated modeling toolbox ................................................................................ 6 
Figure 2.1 MCA/MCA0 example of reforming feedstock ............................................................ 13 
Figure 2.2 Analytical in order Underlying MCA Representation ................................................. 14 
Figure 2.3 Generically Determine Identities in Hydrocarbon ....................................................... 18 
Figure 2.4 Determine Aromatic/Resin Cores (Series) ................................................................... 19 
Figure 2.5 Determine Identities for light Oil to Gasoil (Expert determination) ............................ 20 
Figure 2.6 Bond-Electron Matrix for pentane ............................................................................... 22 
Figure 2.7 Series Core Generator .................................................................................................. 23 
Figure 2.8 Multiple Attribute PDFs Sampling Defines Molecules ............................................... 27 
Figure 2.9 Examples of probability density functions ................................................................... 29 
Figure 2.10 Relative boiling point intensity for kerosene and vacuum resid petroleum fractions 32 
Figure 2.11 Examples of exponential, gamma and chi-square distributions ................................. 34 
Figure 2.12 Overall logic of CME for composition modeling ...................................................... 40 
Figure 2.13 automation of Core generator in CME ....................................................................... 41 
Figure 2.14 Identity Setup in CME ............................................................................................... 42 
Figure 2.15  Identity and Sampling Setup in CME ....................................................................... 43 
Figure 2.16 an example representation of a feedstock’s footprint ................................................ 44 
Figure 2.17 Selection cases for MCA0 generation in CME .......................................................... 45 
Figure 2.18 Attribute PDF Type Selection .................................................................................... 46 
Figure 2.19 Grouping SC PDFs .................................................................................................... 47 
Figure 2.20 Property Selection in CME ........................................................................................ 48 
Figure 2.21 KME ready results view............................................................................................. 49 
Figure 2.22 PONA Matrix results view ......................................................................................... 50 
Figure 3.1 the structure of lignin ................................................................................................... 58 
Figure 3.2 Attribute-Based Reaction Modeling ............................................................................ 60 
Figure 3.3 Conceptual flow of KME with ARM ........................................................................... 61 
Figure 3.4 LFER correlations of experimental hydrogenation rate constants and heat of reaction for 

aromatic compounds. (Korre10, 1995) ................................................................................... 64 
Figure 3.5 LFER correlation of the experimental isomerization and ring opening rate constants 

with the stability of the carbenium ion intermediates. (Korre10, 1995) ................................. 65 
Figure 3.6 LFER correlation of experimental dealkylation rate constant with the heat of formation 

of the intermediate carbenium alkyl ion. (Data from Mochida and Yoneda4, 1967) ............ 66 
Figure 3.7 LFER correlation of proton affinity (PA) to estimate the adsorption constants K. 

(Neurock9, 1992) ................................................................................................................... 67 
Figure 3.8 LFER for adsorption constants by Klein group. .......................................................... 68 
Figure 3.9 LFER for metal center catalysis by Klein group .......................................................... 69 
Figure 3.10 LFER for acid center catalysis by Klein group .......................................................... 70 
Figure 3.11 LFER & RXN Family in KME .................................................................................. 73 
Figure 3.12 Rate Law by Reaction Family & LFER ..................................................................... 73 
Figure 3.13 Importing an InGen File to KME ............................................................................... 74 
Figure 3.14 Automation of LHHW in KME ................................................................................. 79 
Figure 3.15 the conceptual flow of deactivation in oncethrough model ....................................... 81 
Figure 3.16 the conceptual flow of deactivation in goal seeking model ....................................... 82 
Figure 3.17 Principles of basic separation model .......................................................................... 84 
Figure 4.1 The role of structure property correlation in KMT ...................................................... 94 
Figure 4.2 Structure-Property Correlations for pure Component ................................................ 116 
Figure 4.3 Synchronization of the Property Database via a user friendly interface .................... 117 
Figure 5.1 Comprehensive 2D GC2 ............................................................................................. 125 
Figure 5.2 Selected homologous series for middle distillates ..................................................... 126 
Figure 5.3 sampling protocol for middle distillates ..................................................................... 127 



 x 

Figure 5.4 Predicted and experimental carbon number distribution for the paraffin fraction of 
middle distillate Sample1 with case 1. ................................................................................ 131 

Figure 5.5 Predicted and experimental carbon number distribution for the isoparaffin fraction of 
middle distillate Sample1 with case 1. ................................................................................ 132 

Figure 5.6 Predicted and experimental carbon number distribution for the naphthenic fraction of 
middle distillate Sample1 with case 1. ................................................................................ 133 

Figure 5.7 Predicted and experimentally determined carbon number distributions of the aromatic 
fraction of middle distillate Sample1 with case 1. .............................................................. 134 

Figure 5.8 Predicted and experimental carbon number distribution for the paraffin fraction of 
middle distillate Sample2 with case 1. ................................................................................ 135 

Figure 5.9 Predicted and experimental carbon number distribution for the isoparaffin fraction of 
middle distillate Sample2 with case 1. ................................................................................ 136 

Figure 5.10 Predicted and experimental carbon number distribution for the naphthenic fraction of 
middle distillate Sample2 with case 1. ................................................................................ 137 

Figure 5.11 Predicted and experimentally determined carbon number distributions of the aromatic 
fraction of middle distillate Sample2 with case 1. .............................................................. 138 

Figure 5.12 Predicted and experimental carbon number distribution for the paraffin fraction of 
middle distillate Sample1 with case 2. ................................................................................ 140 

Figure 5.13 Predicted and experimental carbon number distribution for the isoparaffin fraction of 
middle distillate Sample1 with case 2. ................................................................................ 141 

Figure 5.14 Predicted and experimental carbon number distribution for the naphthenic fraction 
of middle distillate Sample1 with case 2. ............................................................................ 141 

Figure 5.15 Predicted and experimentally determined carbon number distributions of the aromatic 
fraction of middle distillate Sample1 with case 2. .............................................................. 142 

Figure 5.16 Predicted and experimental carbon number distribution for the paraffin fraction of 
middle distillate Sample2 with case 2. ................................................................................ 143 

Figure 5.17 Predicted and experimental carbon number distribution for the isoparaffin fraction of 
middle distillate Sample2 with case 2. ................................................................................ 143 

Figure 5.18 Predicted and experimental carbon number distribution for the naphthenic fraction of 
middle distillate Sample2 with case 2. ................................................................................ 144 

Figure 5.19 Predicted and experimentally determined carbon number distributions of the aromatic 
fraction of middle distillate Sample1 with case 2. .............................................................. 145 

Figure 5.20 Selected homologous series for natural gas condensates ......................................... 148 
Figure 5.21 sampling protocol for natural gas condensates ........................................................ 149 
Figure 5.22 Calculated and experimental group composition data for GC 663 for case 1 .......... 152 
Figure 5.23 Calculated and experimental group composition data for GC659 with case 1 ........ 152 
Figure 5.24 Calculated and experimental group GC-MS data for GC 663 with case 2 .............. 154 
Figure 5.25 Calculated and experimental group GC-MS data for GC659 with case 2 ............... 155 
Figure 5.26 Selected homologous series for HGO ...................................................................... 157 
Figure 5.27 Predicted and experimental carbon number distribution for the paraffin fraction of 

HGO sample with case 2. .................................................................................................... 161 
Figure 5.28 Predicted and experimental carbon number distribution for the isoparaffin fraction of 

HGO sample with case 2. .................................................................................................... 162 
Figure 5.29 Predicted and experimental carbon number distribution for the naphthenic fraction of 

HGO sample with case 2. .................................................................................................... 163 
Figure 5.30 Predicted and experimentally determined carbon number distributions of the 

mono,di-aromatic fraction of the HGO sample with case 2. ............................................... 164 
Figure 5.31 Predicted and experimentally determined carbon number distributions of the 

tri+-aromatic fraction of the HGO sample with case 2. ...................................................... 164 
Figure 5.32 Predicted and experimentally determined carbon number distributions of the 

benzothiophene fraction of the HGO sample with case 2. .................................................. 165 
Figure 5.33 Predicted and experimentally determined carbon number distributions of the 

di--benzothiophene fraction of the HGO sample with case 2.............................................. 166 



 xi 

Figure 5.34 Selected homologous series for VGO ...................................................................... 168 
Figure 5.35 Selected homologous series for resids ..................................................................... 173 
Figure 5.36 sampling protocol for resids ..................................................................................... 174 
Figure 6.1 Molecular-level Modeling steps................................................................................. 181 
Figure 6.2 Lignin monomer alcohols .......................................................................................... 182 
Figure 6.3 the Freudenberg model of lignin structure ................................................................. 183 
Figure 6.4 Initial Lignin (Freudenberg) Structure in Terms of MP and PC Attributes ............... 184 
Figure 6.5 Attributes Sampling in CME ..................................................................................... 185 
Figure 6.6 Flow sheet of CME strategy for modeling lignin structure ........................................ 187 
Figure 6.7 VGE Pyrolysis Pathways ........................................................................................... 189 
Figure 6.8 PDF sampling for molecular compositions representation ........................................ 191 
Figure 6.9 the conceptual flowsheet of KME with ARM for lignin pyrolysis ............................ 193 
Figure 6.10 KME options ............................................................................................................ 194 
Figure 6.11 Two ARM Reaction Sets in KME ........................................................................... 194 
Figure 6.12 Pyrolysis products yield profile along PFR ............................................................. 196 
Figure 6.13 Asymptotic yields of key products parametric in the coniferyl/sinapyl alcohol ratio in 

starting lignin ...................................................................................................................... 197 
Figure 7.1 Free radical mechanism of alkyl aromatics pyrolysis ................................................ 206 
Figure 7.2 An alkyl-aromatics pyrolysis pathway model (PentaDecyl Benzene-PDB) .............. 208 
Figure 7.3 PDF sampling for molecular compositions representation ........................................ 210 
Figure 7.4 The product distribution of DaQing resid model. ...................................................... 214 
Figure 7.5 The product distribution of ShengLi resid model. ..................................................... 216 
Figure 8.1 Elements of KMT ...................................................................................................... 226 

 



 

 

1 

Chapter 1  Introduction 

1.1 Motivation 

1.1.1 Role of modeling in energy issues 

Due to the depletion of traditional oil resources, the supply of energy has been regarded as a paramount 

global issue. This impending scarcity has lead to increased interest in the search for alternate feedstocks 

as well as the deep utilization of heavy oil. The use of such feeds is complicated by not only the 

economics of upgrading and conversion, but also the environmental footprint, including the impact on 

CO2 issues. These alternate heavy feeds are commonly complex mixtures of complex molecules often 

including covalent or physically aggregated macromolecules. A US DOE Office of Basic Energy 

Sciences report on basic research needs for catalysis for energy applications1 states that it is critical to 

identify the structures and reaction pathways of these heavy feeds and to develop robust computational 

tools to model their reaction trajectories. Work towards this goal would contribute not only to the 

utilization of these feeds but also to the design of catalysts able to produce efficient and environmentally 

optimal outcomes. Particularly, the role of modeling in the production of these energy and fuels can 

undertake two aspects. One is to achieve general engineering goals such as: the prediction of the product 

species, yields and properties; the help for industrial design; linear programming; advanced process 

control; RT-OPT and so on. The second aspect is that the quantitative understanding of complex 

chemistries can provide help for the development of new catalysts, new solvents and new processing 

strategies. 

1.1.2 Limitation of lumped modeling 

Traditionally, most complex processes were implemented by lumped model schemes, where the 

molecules are grouped by global properties, such as boiling point or solubility. The limitations of these 
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global lumped models prevented the fundamental understanding of the complex process chemistry. A 

lumped model lacks the chemical structure of its species; molecular level information is obscured 

because of the multi-component nature of each lump. Consequently, this approach can not provide 

properties beyond the definition of lump. Thus, un-lumped or molecular modeling solutions will need to 

be employed find this level of detail. 

1.1.3 Key steps of molecular modeling 

As a significant improvement on lumped models, molecular level models will be an optimal starting 

point to understand both process and chemistry research and development. Because molecules are the 

basis for feedstock composition, property calculation, process chemistry, reaction kinetics and 

thermodynamics, molecule-based models can incorporate information from surface and quantum 

chemical calculations all the way to processing issues. Molecular level modeling is composed of the 

four main components listed in Figure 1.1. 

 

1. Structural and Composition Models
– Measurements (GS-MS, NMR, etc.)
– Measurements to Molecules

2. Reaction Modeling
– Computer generated models in seconds

3. Reactivity Correlations
– Fundamentals based Chem Eng LFER kinetics correlations
– Order 10 [O(10)] LFER’s for every process chemistry

4. Property Estimation
– Provides commercially relevant product yields
– Molecules to commercial lumps
– End-use vs. internal-use properties

 
Figure 1.1 Molecular-level Modeling steps 
 

The first component is the structure-composition model for the feed. This information provides the 

initial conditions for the equations that represent the kinetics. For simple feeds, the molecular details 
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usually obtained by a single direct measurement. For complex feeds, this step often involves the 

transformation of a set of measurements into structural representations and quantitative mol fractions. 

For heavy feedstocks, the measurements are often global in nature, such as NMR, elemental and 

SIMDIS analyses. These global measurements are often supported by more detailed analyses, such as 

those from various types of mass spectrometry analyses on separated fractions.  

 

Once the feed stock has been modeled, the second necessary component calls for the creation of a 

reaction model wherein reactants are transformed into products using experimentally discerned reaction 

pathways. After the reaction lists are obtained, each reaction must be converted into a mathematic 

equation which can be compiled into computer code and handled by a numerical solver. Although most 

complex feeds contain thousands of species and reactions, generally there are only of order 10 different 

kinds of reactions or reaction families. These reaction families can be used to organize both the reaction 

pathways and, in favorable circumstances, the reaction kinetics. 

 

Simply applying each of the reaction families to the reactive components of the feed and products can 

create a network of thousands of reactants and rate laws.  In these instances, it is often helpful to reduce 

the number of model parameters by constraining the kinetic, adsorption and occasionally 

thermodynamic constants in the rate laws for each reaction family to follow a correlation based on either 

the Linear Free Energy or van’t Hoff relationships.  These reactivity correlations cover the third 

component of molecular modeling. For very complex systems, these correlations can reduce the 

parameter burden from thousands to of order 10-30. For simpler systems, such reduction may not be 

necessary and independent individual parameters will be sought. 

 

The final component in building a molecular model is the property estimation function, which has two 

key roles.  First, it provides the connection between the molecular composition and the set of end-use 

product properties that motivated the development of the model. Secondly, it also serves to provide 



 

 

4 

intermediate properties that are used in the construction and solution of the model, such as the enthalpy 

of formation for key intermediate species. 

1.1.4 Challenge for complex mixtures and chemistries 

Although the potential advantages of molecule-based modeling are clear, the development and 

operation of molecular models come with large model construction and solution time burdens 

respectively. In addition, a greater understanding of reactivity information is necessary. The essential 

challenge of building detailed kinetic models for heavy feeds arises from the staggering complexity of 

not only the reaction mixtures but the complexity of each molecule within the mixture. Heave complex 

feeds often have low volatility and complete sampling from the current analytical chemistry techniques 

is not possible. Therefore, it is hard to obtain a full set of molecular representations by direct 

measurements for such complex mixtures. In addition, there will often be thousands of 

“multi-functional” component species. The sheer size of the thus-implied modeling problem engenders 

a conflict between the need for molecular detail and the formulation and solution of the model. 

Generally, such a heavy complex mixture like petroleum resid will contain of 50,000 or more molecular 

species. Traditional deterministic reaction models will consist of one differential equation for each 

species, and the numerical burden of solving 50,000 simultaneous ODE’s is beyond the upper limit of 

what is considered practical. For some light-middle end of complex feeds containing O (103-104) 

species, such as VGO oil, the computational burden can be handled by the current computer technique, 

but the solution time is still greater than some practical industrial applications would allow: advanced 

control, RT-OPT, etc. Also, the increasing number of parameters corresponding to the large number of 

equations is also an intractable issue.  

 

Besides the challenge of the complexity of the heavy feed, the variety of data from complex process 

configurations in practical process chemistries is a difficult problem. Unlike the experimental data 

generated by an academic laboratory, the necessary data can come from different catalyst deactivation 

profiles, multiple reactor types, complex process flows, etc.      
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Consequently, the issue of complex feed and process chemistries brings out practical questions for 

molecular level modeling. Can a molecular model be created such that complex process chemistries of 

complex mixtures overcome the computational burden while maintaining the full molecular information 

of the model and still fit the real process specifications of the data source? This thesis is motivated to 

address the above dilemma and provide an integrated approach to fulfill the automation of 

molecular-based complex modeling. 

1.2 Limitations of previous work 

1.2.1 Limitations of approaches of Froment, EXXONMOBIL, IFP and UMIST 

In the area of automated detailed kinetic modeling for complex process chemistries, several research 

groups have addressed various detailed modeling concerns with their comprehensive and elegant works 

such as those of Froment’s group, EXXONMOBIL, IFP and UMIST. Froment 2 and co-workers 

developed a single-event approach via graph theory that can build fundamental kinetic models at the 

mechanistic level. However, the model building is computationally expensive, and the memory demand 

requires that it be limited to a low carbon number range. Quann and Jaffe3, 4 of EXXONMOBIL 

developed the Structure Oriented Lumping (SOL) approach that uses vectors for structural groups. SOL 

does not explicitly represent a molecule’s atoms or the atom’s bond connectivity; it only characterizes 

the hydrocarbon conversion. The SOL approach is thus limited to pathways level modeling and can not 

build mechanistic models. The researchers in UMIST developed a MTHS (molecular type homologous 

series) matrix to represent the species and built kinetics model based on this MTHS representation. The 

UMIST (University of Manchester Institute of Science and Technology)5 approach omits the isomeric 

detail and limits application to only predefined molecular types, which is hard to extend to heavy feeds. 

The researchers at IFP started with Froment’s approach and developed a stochastic kinetic modeling 

based on it. The limitations of the IFP approach are similar to these of Froment’s approach.  



 

 

6 

1.2.2 Limitations of previous KMT 

Since 1994, the Klein group has been developing the Kinetic Modeler’s Toolbox (KMT) software for 

the automated building of molecule based models for complex systems. Figure 1.2  shows the three 

main functional components. 

 

 
 

Figure 1.2 KMT automated modeling toolbox 
 

KMT began with MolGen6,7 for feedstock characterization. MolGen used a set of probability density 

functions (PDF) for the elemental structural attributes to represent the feedstock. MolGen stochastically 

sampled those attributes’ values via Monte Carlo simulation and thus provided a qualitative and 

quantitative representation for complex feedstocks. However, MolGen is entirely dependent on Monte 

Carlo simulation. Monte Carlo simulation is extremely time consuming for complex feedstocks and 

lacks any sort of user interaction or direction. Due to the diversity of feedstocks, each complex 

feedstock would need to be tediously sampled. Since MolGen was not designed as a universal algorithm 
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capable of modeling many types of feedstocks, different feedstock dependent versions of MolGen exist. 

In addition, MolGen is an isolated, hard-coded program and thus difficult for users to change to fit their 

desired feed types. Therefore, it is impractical to use for a large variety of complex feedstocks. As a 

purely stochastic sampling program, MolGen can only use a quadrature approximation to provide a set 

of molecules for kinetic modeling. This tremendously heavy task involves a good deal of further 

programming; and it may lose the necessary molecular information. As a result, MolGen could not be 

automated to work with the other two components of KMT: INGen and KME. Particularly, it can not 

provide the initial conditions for subsequent model calibration. The above obstacles block the practical 

use of MolGen in automating the modeling of complex feedstocks. 

 

NetGen is used to obtain the reaction networks. The reactants are represented by Bond-Electron 

matrices. Chemical transformations, namely the bond-making and bond-breaking processes, are 

implemented as reaction matrices. A reactant to product relationship can be derived by performing a 

matrix addition of the reaction matrix to the reactant matrix in order to obtain a product species matrix. 

NetGen has the ability to automatically generate a reaction network for a specific chemistry. Based on 

the work of Broadbelt8, Joshi9 and Hou10’s work, Bennett11 developed INGen, an improved version of 

NetGen, as an interactive, universal reaction network generator for hydrocarbons. INGen’s 

user-friendly automation of reaction network generating makes it possible to integrate into a suite of 

automated tools for complex feedstocks and reaction modeling. 

 

The final component of KMT is the Kinetics Model Editor (KME)12 which is most frequently used for 

model development. KME parses reaction lists from INGen and user entry into compliable C-code and 

it provides a friendly automated environment for model tuning, simulating and goalseeking. However, 

KME could not handle the complex process chemistries of complex mixtures that are so often found 

outside on an academic laboratory. Generally, complex chemistries will require of order 100 or more 

equations and hundreds of kinetics parameters. Since KME only supported the tuning of individual 

reactions, calibration proved to be too difficult for complex chemistries. In addition, KME could only 
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support a single stochiometric rate law, thereby invalidating it use for most practical process chemistries 

that involved a heterogeneous catalyst system. Finally, the data from real processes often included an 

inherent catalyst deactivation profile, and could possibly be obtained by various types of reactors, 

neither of which could be handled by KME. 

 

Overall, applying these existing tools to heavy feedstocks would bring about tremendous computational 

and temporal burdens when developing a traditional deterministic model that uses one equation per 

species. Modeling a complex process with thousands of species requires not only the implementation of 

reaction equations but the auxiliary acquisition of the necessary data. Creating a simple automated 

system that overcomes these existing shortcomings would prove to be indispensible. 

1.3 Thesis contributions 

Although the previous KMT elements provided an excellent foundation for detailed kinetics modeling, 

they did not satisfy the issues listed above for the complex process chemistries. This thesis approaches 

each of these issues in the context of building an integrated system designed to help automate the 

molecular modeling of complex feedstocks and chemistries. The contributions of this thesis and the 

limitation of the previous KMT are listed in Table 1.1 in terms of the three aspects of molecular 

modeling: automation of composition modeling, automation of reaction equation generation and 

calculation, and structure property correlation modeling. 

 

 

 

 

 

 

 

 



 

 

9 

Table 1.1 Thesis contributions V.S. previous KMT work 
 Limitation Contribution 
Automation 
of 
composition 
modeling 
 

Molgen:  
• Diversity of identities from 

various feedstocks 
• hard coded, isolated program 

for different feedstocks 
• Long time consuming of 

Monte Carlo simulation 
 
• Pure computer simulation, 

lack user interaction 
• Weakly connected with 

INGen and KME ,unable to get KME 
initial data 

 

CME: 
• Generic represent hydrocarbon 
mixtures  
• United bundle tool with excel 
user friendly interface 
• Efficient Combination of fixed 
identity determination and Monte Carlo 
simulation 
• computer aid and expert 
interaction 
•  
• Well communicated with KME 
and INGen, provide KME initial data  
• Enable BE Matrix representation 
of molecules 

Automation 
of reaction 
equation 
generation 
and 
calculation 
 

• Difficulty for complex 
system 

– O(105) equations by 
deterministic model 

• Difficulty derive from a large 
number of parameters to tune  via 
individual reactions 

• Only support micro kinetics 
ratelaw 

•  
• Difficulty derive from 

process configurations 
– Data came from deactivation 

process  
– Data came from various 

reactors (PFR, CSTR, Batch etc.) 

• ARM allows to handle  Nequations 
< Nmolecules 

•  
• Uses reaction family (O(10)) 

parameters for every process 
chemistry  

• Uses LHHW rate law for 
heterogeneous system 

 
 
• Provides Deactivation process 
• Provides multiple reactors 
•  
• Provides model analysis 

Structure 
property 
correlation 
model 

• Lacking feed representation 
properties 

• Lacking end-use properties 
• Lacking reactivity data (dH, 

dS) 

• Structure property correlation 
– Based on molecule structure  
– Provide end-use properties 
– Provide reactivity data( dH,dS 

etc.) 
 

1.4 Thesis Overview 

The thesis is divided into two parts. The first part illustrates the conceptual methodology and tool 

development used for this integrated approach. Specifically, Chapter 2 addresses the user friendly 

automation of composition modeling to obtain both the qualitative and quantitative molecular 

information for a complex feedstock in the presence of limited analytical data. Chapter 3 chronicles the 
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addition of several modeling aspects to the KME tool. Chapter 4 develops the structure property 

correlations used to provide end-use properties and reactivity data by fragmental group contribution and 

quantum chemistry method. In addition, a supplemental property database is addressed.  

 

The second part of this thesis presents various example applications of this modeling approach, 

including: composition modeling of selected complex feedstocks (Chapter 5), lignin pyrolysis with 

ARM (Chapter 6), and resid pyrolysis (Chapter 7). Finally, in Chapter 8, the key contributions of this 

work are summarized and the suggestions for future work in the area of automated detailed kinetic 

modeling of complex processes are discussed. 
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Chapter 2  Automating the Modeling of Composition 

2.1 Introduction 

As mentioned in Chapter 1, the first conceptual step of modeling complex process system with complex 

mixtures is to figure out the representation of composition details that will provide initial data for the 

latter kinetic modeling. This chapter mainly addresses the first contribution of this thesis, which will use 

a generic representation called the molecular composition array (MCA) to characterize the detailed 

molecule-based compositions in a complex process system. The MCA describes the structure of 

molecules as well as the mole fraction in the hydrocarbon mixtures. Particularly, it uses MCA0 as the 

sub-items of MCA to describe the qualitative and quantitative representation of reactants in the 

feedstock, which will serve as the initial conditions to kinetic model bundle such as KME. The MCA0 

later can expand to full MCA details in the post-reaction products as the intermediate elements that 

exchange the full detailed species of complex mixtures in this thesis. An example of MCA0/MCA for a 

reforming naphtha sample is listed in Figure 2.1. The final goal of this chapter is to illustrate the 

determination of MCA0 from data provided by analytical chemistry.  
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Figure 2.1 MCA/MCA0 example of reforming feedstock 
 

2.2 Analytical information of complex feedstocks 

Due to the diversity of complex feedstocks, the available measurements of analytical chemistry are 

feedstock specific. Typical analytical data and techniques for hydrocarbon from light oil to resid are 

shown in Figure 2.2. These measurements can be used to obtain some molecularly critical information 

that can be used to determine the identities of MCA0 of a specific feedstock. Some measurements will 

be directly applicable on a molecule basis (e.g., elemental analysis). Other measurements will be 

applicable by an indirect molecular simulation or correlation (e.g., simulated distillation). In addition, 

some measurements only capture the bulk properties of the feedstock. For these cases, the individual 

MCA 

MCA0 
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molecules’ properties can be calculated and combined in to bulk properties via mixing rules. A much 

more complete overview of this method can be found in Campbell's thesis (1998). 

 
Figure 2.2 Analytical in order Underlying MCA Representation 
 

Ideally, the preferable way of attaining the identities of MCA0 is directly from the analytical 

measurements. However, this method only works for light petroleum fractions, such as naphtha with 

advanced analytical techniques (e.g., Detailed Hydrocarbon Analysis-DHA). Beyond C10, the number 

of possible isomers alone prevents direct identification. Thus, the most direct measurements of MCA0 

for complex feedstocks with a high range of carbon number will be extreme costly if not impossible. 

Therefore, methods to convert indirect analytical information to MCA0 are the essential issue for the 

composition characterization of complex process chemistry. To address this methodology, the 

following section will illustrate how to obtain the qualitative information of MCA first.  

2.3 A statistical view of complex feedstocks 

The first step in determining the qualitative nature of MCA requires a statistical description of the 

feedstock. A useful statistical view of the compositions of a complex feedstock is regarded as a 

collection of elemental structural attributes that indicate irreducible significant chemical criteria. 

Traditional petroleum hydrocarbons can be described as these structural attributes: number of aromatic 
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rings, number of naphthenic rings, numbers of alkyl side chains, length of side chains, etc. For example, 

the alkyl benzene series can be described by number of aromatic rings, numbers of alkyl side chains and 

length of side chains. Detailed information of structural attributes in traditional hydrocarbons is listed in  

Table 2.1. Lignin, a component of biomass, can be described by two attributes: methoxy phenols (MP) 

and propanoid side chains (PC). Any molecule in a feedstock can be viewed as a juxtaposition of those 

structural attributes. From a statistical view, each of these attributes would be represented by a 

probability density function (PDF) that can be either a continuous distribution function or discrete 

values. The PDF provides the probability of finding the value of a given attribute. By sampling those 

attributes with juxtaposition shown in later section, the values of the structural attributes can be 

determined for an individual molecule which in turn specifies the identity of the molecule. Based on this 

statistical view of complex feedstocks, a hybrid approach combing the fixed identity determination and 

stochastic sampling can be employed to determine the identities of MCA0.  
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Table 2.1 Quantitative Attribute PDFs Selection of Hydrocarbon Components in Petroleum  
Light oil Middle-heavy oil Heavy-extreme heavy oil 

A set of discrete molecules: 

• Normal paraffin 

• Iso paraffin with detailed 

isomers 

• Naphthenic ring with 

sidechain and substituent 

• Aromatic ring with 

sidechain and substituent 

A set of discrete values for the 

global fractions of homologous 

series: 

• Normal paraffin 

• Iso paraffin with various   

branches 

• Naphthenic rings with five 

member or six member 

• Aromatic rings 

• Thiophenic rings 

A set of continuous attributes’ 

PDFs: 

• Continuous Attribute PDF for 

different carbon number 

components for each seires 

(sidechains) 

• Continuous Attribute PDF for 

substituents 

Represent molecules by 

structural attributes’s PDFs 

Nine Resid Attributes: 

• Paraffin Length 

• Number of Naphthenic 

Rings 

• Number of Sidechains 

• Length of Sidechains 

• Number of Aromatic Rings 

• Number of Thiophenic 

Rings 

• Number of Naphthenic 

Rings on an Aromatic Core 

• Number of Sidechain 

Sulfurs 

• Asphaltene Degree of 

Polymerization 

 

2.4 Determining the identity of the elements of the MCA 

With the development of analytical chemistry for heavy feeds, such as HPLC, and the increasing 

accumulated experience found in literatures, an increasing number of structures have been fully 

recognized in the complex feedstock. However, for middle to heavy end feedstocks, ring structures and 

aggregated macromolecule with multiple rings and heteroatoms (S, N, and O) are still difficult to 
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identify. Unfortunately, those structures significantly affect on the reactivity of the complex process 

chemistry, while non ring compositions such as paraffin/iso paraffin, alkyl sidechain are relatively easy 

to handle.  

 

Consequently, unlike the pure stochastic approach of MolGen, a hybrid statistical approach is applied in 

this thesis. This approach will combine a “fixed” identity determination with stochastic sampling to 

acquire the qualitative information of feedstocks. This thesis creates a “lumped” structural attribute 

concept called “core series”. A core series is comprised of the elemental structural attributes that 

describe ring structures and aggregated molecules in the complex feedstock. The core series is a set of 

the unique group structures that determines the reaction path and reactivity of the complex system. For 

example, the core series of alkyl-benzene is one single aromatic ring. A complex feedstock can be 

described as a set of homologous core series with different sidechains and substituents. The non-ring 

components can also be considered as a “special” core series in the system. Those core series can be 

acquired from chemists, literatures and predefined reaction networks (e.g. information from INGen).  

 

For extremely complex feeds (resids, coal etc.), the identity of core series can not be determined 

explicitly. However, a sampling rule can be established in order to construct the homologous series for 

the feedstock via the knowledge of chemistry, previous model experience, contemporary analytical 

techniques, the literature and so on. In general, such a sampling rule can also be applied to the case that 

the identities of the core series could have been determined explicitly.  

 

A sampling rule for traditional petroleum hydrocarbon mixtures based on elemental structural attributes 

is listed in Figure 2.3. The first step determines the molecule’s type. Subsequent steps identify the core 

ring structures through several elemental ring structural attributes based on the specific molecule’ type. 

Finally, the side chain length/carbon number and the number of side chains are determined. 
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Figure 2.3 Generically Determine Identities in Hydrocarbon  
 

As an example, an aromatic core will be generated using this structural attribute logic. First, the core 

will be given the number of pure aromatic rings using an attribute PDF. Then the number of heteroatom 

rings (e.g., thiophenic ring) attached to it will be determined also via a PDF. After that, another PDF will 

determine whether any naphthenic rings will be added to the core.  

 

After such a set of various ring attributes are determined, several distinct structures can share the same 

attributes (e.g. naphthalene and biphenyl benzene). Therefore, a further attribute for ring configuration 

is imposed to further identify those structures. An example of the determination of an aromatic core with 

four aromatic rings, one thiophenic ring and one naphthenic ring is showed in Figure 2.4. When the core 

structure is obtained, the full molecule’s identity can be determined by those ring structural attributes, 

the attributes of side chain length/carbon number, and the number of side chains. Non-ring structures are 

treated as a “special case”, wherein only the carbon number and the number of side chains are 

considered. When the full identities of the molecules in a feedstock is determined, each molecule in this 
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feedstock can be built a unique quantitative relationship between the mole fraction and the 

corresponding attributes’ values via juxtaposition as discussed in the later section. 

 

 
Figure 2.4 Determine Aromatic/Resin Cores (Series) 
 

The sampling rule in Figure 2.3 is a generic protocol for petroleum hydrocarbon mixture. It can be 

considered as some special cases such as: naphtha oil, gas oil and resids. 

 

Particularly, if the ring structural attributes in Figure 2.3 can be determined explicitly, this sampling 

logic for that petroleum hydrocarbon mixture can be turned into a set of homologous series with 

different side chain length and the number of side chain addressed before as shown in Figure 2.5.  
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Figure 2.5 Determine Identities for light Oil to Gasoil (Expert determination) 
 

A special case for this fixed identity determination is that a predefined set of molecules is given by an 

existing reaction network such as that generated by INGen. In this case, not only the homologous series 

but also the sampling size of the molecules is predetermined. Therefore, an automated identity 

recognition algorithm can be applied.  

 

Although, the procedures outlined above can handle the creation of fixed identities for feedstocks 

ranging from light to extremely complex, there exists the possibility that the identities or sample rules 

simply can not be determined. Therefore, as a supplemental support, a method of stochastic sampling 

via Monte Carlo simulation can be applied. After having done such, the results of the Monte Carlo be 

added to modelers’ experience and therefore employed as a fixed structure sets in future. 

 

Although, the examples and discussions in above sections focus on petroleum feedstocks, the same 

methodology (with different attributes) can be applied to new feedstocks such as biomass.   
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Overall, this approach can determine the identity of most feedstocks in a straightforward manner. The 

computation involved in feedstock modeling will mainly focus on the optimization of quantitative 

information, as will be discussed later. Although this approach uses a two step method to determine the 

qualitative and quantitative information of a complex feedstock, it avoids the necessity for a 

computationally intense algorithm. 

 

Although the methodology for the determination the identity of MCA has been demonstrated, it is 

necessary to show how a computer system can handle and identify those structures. Each molecule and 

core series group that can be regarded as a specific molecule in MCA will be represented digitally as 

Bond-Electron (BE) matrix. The BE matrix is not only the basis for the communication among the three 

aspects of this thesis as mentioned in Chapter 1, but also provides the key to determining the identity 

such as isomers and ring configurations.  

 

2.4.1 Bond-Electron matrix representation of molecules 

A molecule can be represented by a graph, the atoms being the nodes and the bonds being the edges. A 

more mathematically tractable implementation for a chemical species is through its bond-electron 

matrix, where the ij entries denote the bond order between connected atoms i and j. The BE matrix 

formation of every molecule/ is stored as an adjacency list in its own file. Each atom in the molecule is 

expressed in one row in the adjacency list. The adjacency list indicates the sequence numbers and 

provides the element name for each atom. In addition, it describes the bond connectivity by pairs of data 

in the parenthesis. For atom i in the ith row, each parenthesis represented a bond to atom i: the first value 

is the identification number of the bonded atom, the second value is the bond order of that bond. An 

example of pentane is shown in Figure 2.61.  

 

The BE matrix and adjacency list represent the two dimensional (2D) structure of any given molecule in 

MCA. In addition, they are used to interact with INGen and structure property correlations as will be 
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mentioned later. Because a large identities for core series will need to be determined, it is necessary to 

provide an efficient way to construct the BE Matrix and the adjacent list for those core series.  

 

 
Figure 2.6 Bond-Electron Matrix for pentane1 
 

2.4.2 Core series’ structure generator 

To construct the BE Matrix and the adjacent list of core series, a core structure generator has been 

developed for traditional petroleum hydrocarbon mixtures. It is tremendously difficulty to specify a BE 

Matrix for a complex core structure directly from a user inference. For example, the pentane shown in 

Figure 2.6 contained 17 atoms and thus a 17*17 matrix has to be specified for this simple structure. A 

complex molecule can contain hundreds of atoms and be much more complex than the case of pentane, 

so it is impractical to specify the elements of the BE matrix for the complex molecule. A simplified 

approach must be applied to make it practical.  

 

Based on the accumulated experience of the field over the past few decades2,3, a set of sub BE matrices 

that can be defined as “lumped” incremental vectors in order to describe the typical key structures 

occurring in hydrocarbon mixtures. The full BE matrix is then generated based on the combination of 

incremental vectors selected by the user. ExxonMobil’s SOL2,3 provides the leading example for the use 

Connectivity Matrix Adjacency List 

pentane
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of structural incremental vectors in defining a molecule’s structure. A similar set of structural 

increments has been employed in the core structure generator described in this thesis. As shown in 

Figure 2.7, there are 15 structural increments designed for the description of ring structures and four 

descriptors for non-ring components for the case of petroleum hydrocarbon mixtures.  

 

Figure 2.7 Series Core Generator 
 
The meaning of each incremental descriptor is given as follows: 

 NPAR and NMO are normal paraffin and normal mono-olefin increments used for non-ring 

structures. 

 IPAR and IMO are iso paraffin and iso mono-olefin increments used for non-ring structures. 

The other 15 descriptors are used describe ring structure: 

 aAR is a single six carbon aromatic ring. The molecule defined by an aAR group that exists by 

itself is benzene. All multiple ring aromatic compounds must contain at least one aAR group; the 

other rings may be described by other incremental ring structures as given below. 

 mAR is an incremental structure that must be attached to either an aAR or another mAR and cannot 

exist by itself.  

 zAR is a two carbon aromatic increment that results from a pen-condensed multiple ring structure 
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such as pyrene. This increment can occur when another aromatic ring forms in the “bay region” of 

an angular multiple ring aromatic molecule such as phenanthrene. 

 aHN and aPN are six and five carbon naphthenic ring increments. The aHN and aPN rings are also, 

like aAR, structural increments that can exist independently in this case as cyclohexane and 

cyclopentane respectively. All multiple ring naphthenic molecules contain at least one aHN or 

aPN, where further ring structure is defined by other incremental naphthenic ring structures. 

 mHN, mPN, zHN, and zPN are the additional four, three, two, and one carbon naphthenic ring 

increments that like mAR and zAR above describe attached ring structures. 

 bPH is a biphenyl bridge between any two nonincremental rings (aAR, aHN, or aPN).  

 rSL, rNT, and rOX are respectively sulfur, nitrogen, and oxygen heteroatoms that exist as 

substitutes in a naphthenic ring. 

 aNT is a nitrogen group substitution in an aromatic ring (as in pyridine or quinoline).  

 rND specifies the number of double bonds within a naphthenic ring (as in cycloene or cyclodiene). 

 

To simplify the structures of ring isomers, the following set of conventions is used to determine typical 

ring structures: 

 All benzenoid multiple ring aromatics or their partially hydrogenated and naphthenic analogues 

assume a catacondensed arrangement of rings (e.g., phenanthrene, not anthracene, is represented 

by three condensed aromatic ring cores).  

 The external rings of partially saturated aromatic compounds are saturated first. 

 An mPN ring is always an external ring. 

 Heteroatoms are placed in the smallest naphthenic ring. 

 Double bonds are first associated with the heteroatom-bearing ring. 

 In multiple biphenyl ring sets, condensed rings only appear on the end. Only single ring structure 

ssuch as (aAR, aHN or aPN) can be attached in the middle. Aromatic rings have a higher priority 

than naphthenic rings for inclusion in the middle. 
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Through the configuration of these incremental descriptors via a user interface, the structure of any core 

and its BE matrix can be efficiently specified for hydrocarbon mixtures. Thus a set of homologous 

series’ core structures can be conveniently determined as shown the latter half of Figure 2.7. The 

identities for the entire set of molecules defined by a set of homologous series can be determined by 

adding side chain information based on carbon and branch counts, thereby allowing the BE matrix of 

any molecule to be generated.  

 

The side chain information for a specific homologous series assumes that there is only one side chain 

with carbon length larger than one. The remaining (if any) side chains each only contain a methyl group. 

Consequently, the identities for a set of representative molecules of a complex feedstock and their 

digital format-BE Matrix can finally be obtained finally the approach of fixed identity determination 

addressed in the previous section. The collection of all those identities is called the footprint of the 

feedstock.  

 

The idea behind this core structure generation technique not only was to provide a quick and easy way to 

determine the footprint, but also to provide an integral path forward for the computer based sampling 

rules, for the Monte Carlo simulation of those implicit identities. 

 

The core structure generator works well for general petroleum hydrocarbon mixtures, which have been 

the main source of energy and fuel for the last hundred years. However, its current incremental 

descriptors and rules may not cover new feedstocks (e.g., biomass, coal, shale). One solution would be 

to add new incremental descriptors as they are discovered via accumulated future research. Another 

flexible solution would be to draw out the core structures with third-party chemical software (e.g., 

CambridgeSoft, ChemDraw) that supports the Chemical Markup Language (CML).The integration of 

CML to BE matrix parsing into a toolset exists as a supplemental approach in this thesis.  
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Therefore, the qualitative determination of the footprint for traditional and new feedstocks has been 

successfully outlined. The next step is to determine the quantitative information for those complex 

feedstocks. 

2.5 Quantitative determination of molecular compositions 

 

The quantitative representation of MCA0 will be a combination of multiple attributes’ values as 
juxtaposition shown in  
Figure 2.8.  

 

This example molecule contains five attributes (the number of aromatic rings, the number of thiophenic 

rings attached on aromatic rings, the number of naphthenic rings attached on aromatic rings, the number 

of side chains and the carbon number/length of side chain) and neglects ring configuration. Each 

attribute is described by a continuous PDF function. The number on the X axis shown in parenthesis 

indicates the specific values of those attributes (e.g., X51(1) indicates a single aromatic ring). The value of 

the Y axis is the corresponding probability (P) of a specific attribute PDF of a given X. Through a 

juxtaposition of those attributes, the identity of a specific molecule is determined by various X of 

attributes and simultaneously a unique quantitative information relationship between those attributes’ 

values and the mole fraction of the molecule by the joint probability of the probabilities corresponding 

to those given X values of the attributes. 

 

Since the mole fraction is came from the combination of attributes’ PDFs values, it is important to 

understand these attribute PDF functions. 
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Figure 2.8 Multiple Attribute PDFs Sampling Defines Molecules 

 

2.5.1 Probability density functions 

In order to understand how to represent a feedstock statistically, it is necessary to first understand what 

a probability density function is. A PDF may either be discrete (integer values of x only), or continuous 

(any real value of x).  A discrete PDF is defined by the following equations: 

 1  f(x)0 ≤≤  (2.1) 

     ∑ = 1f(x)      (2.2) 

A is defined similarly, except that Eq. 2.3 is applicable instead of equation  

      ∫
∞

∞−

= 1f(x)dx      (2.3) 

The common functional forms of continuous PDFs are the normal distribution, the gamma distribution, 

and the exponential distribution as shown in Table 2.2.  In addition, a PDF does not need to be defined 

with a statistical continuous distribution, but also can be discrete forms. The common discrete PDFs are 

discrete uniform distribution, the binomial distribution, and the Poisson distribution.  For example, a 
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distribution of test scores is computed simply by counting the number of each score and dividing by the 

population of the class.  Figure 2.9 shows the graphs of some PDFs mentioned above. 

 

Table 2.2 Probability density functions used to model the structural attributes of a complex feedstock14.  
 

Exponential: 2 parameters (γ, Θ)
γ < xi < �
Θ = µ − γ
σ = µ − γ
γ = minimum

Gamma: 3 parameters (γ, α, Θ)
γ < xi < �
Θ = σ2/(µ − γ)
α = (µ − γ)2/σ2

γ = minimum

Chi - Square: 2 parameters (γ, r)
γ < xi < �
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Figure 2.9 Examples of probability density functions14 
 

Besides the understanding of the rigorous definition of a PDF, there are several other important practical 

aspects need to be considered when using them to define a complex feedstock.  The scientific relevant is 

very important as the historical proofs to use these attribute PDFs for defining a complex feedstock by 

the statistical approach mentioned above. How to select an appropriate functional form of those PDFs 
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for modeling the feedstock is quite important too.  Finally, some technical issues such as PDF 

discretion, truncation, and conditional probability must be considered for the accurate representation of 

a complex feedstock.  

 

2.5.2 Probability density functions to describe complex mixtures 

It is a quite long scientific history to describe complex mixtures by using PDFs. It is started from the 

research on polymer chemistry. The products of the formation and degradation of polymers have both 

been modeled with statistical distributions. Flory used a modified gamma distribution to fit the 

molecular size distribution of condensation polymers in 1936 4 .  Similarly, Libanati studied the 

degradation of an infinite polymer 5 by using a log normal distribution to describe the molecular 

weights. 

 

Similarly, this logic was extended to the petroleum field later, since petroleum crude can be viewed as a 

breakdown of the infinite polymer kerogen. Consequently, petroleum reservoirs were studied by this 

idea. Whitson used a gamma distribution to fit the molar and weight distribution of the C7+ fraction of 

crude oil6.  His results showed the shape of a gamma distribution is quite similar to the shape of a log 

normal distribution, which gave a support to represent crude components with PDFs.  In addition, 

Whitson had extended the distribution beyond experimental measurements that demonstrated higher 

accuracy predictions in the equation of state via fitting the molar distribution to a PDF. Similarly, 

Shibata et al. used mixed distributions to enhance phase equilibrium calculations for a petroleum 

reservoir7. 

 

In addition to above modeling works, a direct experimental confirmation showed that those statistical 

PDFs can be used to model petroleum.  Peterson et al. used high-temperature gas chromatography to 

measure the weight percent distribution of carbon number up to C80+ for 17 North Sea oils8.  An 

exponential distribution fit up to C20 showed that it could be used to predict the amount of heavier 
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components with high accuracy. In this model, Peterson used normal paraffin standards for calibration.  

Boduszynski 9  demonstrated that boiling points with increasing carbon number have the wide 

divergence for different compound classes. From Boduszynski’s work, it showed that the boiling point 

distribution may be followed by an exponential distribution after C20. 

 

Trauth extended the use of PDFs to model not only the molecular weights or boiling points, but to the 

structural attributes described in the previous section10,11. A statistical modeling project about the 

depolymerization of coal12 which dealt with the thermal pyrolysis gave the experimental proof for the 

validation of Trauth’s statement. This result showed that a gamma distribution can accurately fit the 

molecular weight distribution of the products as with the degradation of an infinite polymer. Because 

products are formed primarily by bond fission reactions during pyrolysis process, this result indicated 

that the individual structural attributes also would be well represented by gamma distributions. In 

addition, Trauth also demonstrated that using a gamma distribution for each of the structural attributes 

of a petroleum resid yielded a molecular weight distribution that was also gamma13. Campell14 and 

Hou15 extended a gamma distribution to whole petroleum fractions. 

 

2.5.3 Determining appropriate functional forms 

As discussed in the previous section about the introduction of PDFs, there are many different functional 

forms for PDFs. It is very important for an optimal representation of a feedstock to select the appropriate 

forms of these PDFs. The most important factor to be considered is to capture the shape of the object to 

be modeled by the PDF qualitatively. In addition, it is often desirable to select the flexible distributions 

that there are only slight deviations to model a particular functional form accurately. The number of 

parameters for optimization is another considerable factor, which has a great effect on the 

computational burden especially for modeling a complex feedstock with many PDFs.  
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The molecular weight or boiling point distributions generally follow a smooth curve for petroleum 

fractions. Figure 2.10 shows the relative boiling point distributions of a petroleum kerosene and a 

petroleum resid.  Lighter fractions such as the kerosene are constrained by both a minimum and a 

maximum boiling point and generally show a normal or skewed normal distribution of boiling point. 

However, petroleum resid can only be constricted by a minimum boiling point. As shown in Figure 

2.10, a boiling point distribution of petroleum resid generally shows a rapid rise followed by a slow 

decrease that mathematically can be expressed by a gamma type distribution. Gamma distributions or 

exponential distributions can accurately model such both polymers and heavy components of fossil 

fuels, which is investigated from past research works. 
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Figure 2.10 Relative boiling point intensity for kerosene and vacuum resid petroleum fractions14 
 
 

The boiling point distribution is tightly linked to the structure of the molecules in a feedstock.  

Generally, boiling point distributions are very closely correlated to the molecular weight or carbon 

number of the molecules in a feedstock. Moreover, as shown in the previous section, the molecular 

attributes are implicitly related to the carbon number. Therefore the attribute PDFs can use the same 

type of functional forms that are well fitted with boiling point.   

 

The above semi-theoretical arguments have been supported by empirical experience. Trauth8 showed 

good results of modeling a petroleum resid with a set of experimentally determined analytical properties 

by using the structural attributes with gamma and gamma-like distributions. What’s more, this 

flexibility of the gamma distribution made it can express from an exponential distribution to a delta 
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function, and can also approximate a normal distribution, which also allows for the modeling of lighter 

feedstocks, even if the boiling point distributions for such feedstocks may not be considered to be 

typically gamma. 

 

A final factor to be considered when selecting a functional form is the number of parameters for this 

form.  It is true that the gamma distribution shows the advantage in flexibility, but it requires three 

parameters. Besides of gamma distribution, other functional forms as shown in Table 2.2with fewer 

parameters are also tested to model a series of petroleum resids. The comparison results of gamma, 

chi-square and exponential forms are listed in Figure 2.11. The chi-square distribution is a special case 

of the gamma distribution where the standard deviation equals one half of the mean.  As mentioned 

previously, the gamma distribution can match the exponential distribution for certain values of 

parameters. The priority of a chi-square or exponential distribution is that they have one fewer 

parameter than gamma to be optimized. This can be quite important because it can reduce computational 

burden of later optimization. The choice of the PDF form needs to balance the flexibility (gamma) and 

the simplification of calculation (chi-square/exponential) for a real system. This choice will be 

determined during exploring real applications.  

 

Besides the above continuous functional forms, there are two discrete PDFs that can be chosen for 

special attributes. One is the uniform, or equal-molar, distribution shown in Figure 2.9. This simple 

form is used for the attributes that can not be determined from analytical measurements (e.g., isomers of 

a paraffin with the same carbon number and the same number of side chains but different branch 

positions). The other discrete form is that of a histogram distribution, or discrete values, shown in Figure 

2.9. This form can be used for an attribute with a limited number of values or one that is incompatible 

with a continuous function (e.g., global fractions of PONA/SARA for overall molecule types).   
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Figure 2.11 Examples of exponential, gamma and chi-square distributions14 
 

2.5.4 Discretization of the probability density functions 

Although PDFs such as the gamma distribution and the exponential distribution can be used to model 

complex feedstocks accurately, both of these distributions are continuous.  However, real feedstocks are 

composed of attributes with discrete integer values.  Therefore, it is necessary to transform these 

continuous distributions into discrete distributions. 
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In order to transform a continuous distribution into a discrete distribution, it is necessary to divide the 

distribution into intervals and evaluate a representative value for each interval. If the length of the 

interval is sufficiently small, then the midpoint represents the average value of the interval. If not, then 

the transformation results in a poor approximation of the continuous distribution.  Trauth showed that 

the shape of a continuous gamma curve was well maintained using such a discretization10. 

 

2.5.5 Renormalization and truncation 

Just as the attributes of the molecules in a complex feedstock are all discrete integer values, they are also 

finite. Therefore, it is necessary to truncate the distributions at some physically reasonable value.  Once 

a distribution has been truncated, it is also necessary to renormalize the distribution so that the 

probabilities add up to one. 

 

A truncation criterion may be set by specifying the minimum contribution each new interval must make 

to the cumulative distribution expressed on a fractional basis. Trauth found that a value of 0.01 worked 

well10.  Thus, if the value of the current interval divided by the sum of the values of all previous intervals 

is less than 0.01, the distribution is truncated and renormalized.  Eq. 2.4 mathematically shows the 

truncation criterion: 
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2.5.6 Conditional probability 

Conditional probability is the last important consideration on constraining structural attribute PDFs to 

describe the MCA of a complex feedstock. Conditional probability is the constraints from physical 

properties of a feedstock (e.g., boiling point cut, carbon number or molecular weight). Through these 

constraints, the value of one attribute might follow the modification of another attribute PDF. In other 
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words, once an attribute value has been determined, the probability of another attribute having a 

particular value may be altered.    

 

For example, all molecules in a petroleum resid that is physical defined only by a minimum boiling 

point must have the boiling point above that minimum boiling point, which leads some conditional 

probability. The three aromatic series requires the longer length of side chain than the four aromatic 

series to satisfy a given minimum boiling point cut such as 1000°F. Therefore, the PDF for the length of 

sidechains must be different corresponding with the two different attribute values of number of aromatic 

rings. 

 

The implementation of conditional probability with physical constraints is very important in obtaining a 

good molecular representation. In addition to initial boiling point criteria, it may be necessary to apply 

conditional probability to limit the size of a molecule or to limit the number of heteroatoms in a 

molecule. 

2.5.7 Attribute PDF selection 

The selection of attributes can be classified by the complexity of the feedstocks. For simpler feeds such 

as naphtha oil, the attributes can be described as a set of discrete molecules that can be directly attained 

from analytical measurements. For the mid-heavy end of a complex feedstock such as gasoil, the 

attributes can be comprised of a set of homologous core series with different sidechains and 

substituents. The global probability of these series can be represented as a set of discrete values. The 

side chains and substituents of each series will be represented as a set of continuous attribute PDFs. For 

the heavy end of a complex feedstock such as resid, discrete attributes would contain a large number of 

core series. Such a selection would carry a huge computational burden. Instead, the core series can be 

decomposed into a combination of continuous PDFs for the elemental structural attributes by using the 

general sampling rules discussed in the previous section. The side chains and substituents of each series 

would then also be represented as a set of continuous attribute PDFs. This scheme of cascading PDFs 
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for heavy-end oil can also be extended for the whole spectrum of petroleum hydrocarbons from light to 

heavy. 

 

For the identities as sampled stochastically by Monte Carlo simulation, the quantitative information will 

be byproduct of the sampling calculation. Examples of attribute PDFs selections for petroleum 

hydrocarbon conversion are listed in  

Table 2.1 . 

 

Once the PDFs have been selected, the next step is to finally obtain the values of MCA0. 

 

2.5.8 MCA0 generation 

If MCA0 is quantitatively predetermined, it can be used directly for either deterministic modeling or 

parsed into the structural attributes used for Attribute Reaction Modeling (ARM) as described in the 

next section. This attribute parsing follows by a straightforward mathematic method as shown in Eq. 

2.5:  

∑= (2.5)                                                                                          /)()( ,,, jijjijji CxCxP  

Where )(, jji xP   is the probability of attribute value xj for attribute type i and Ci,j (xj) is the 

concentration (mol/L) of the molecule containing attribute i with value j (e.g., length of side chain is the 

attribute type i, and j is the exact value of certain molecule’s length of side chain). 

 

However, the full quantitative molecular compositions of most complex mixtures can not be acquired 

by analytical chemistry directly. Therefore, an optimization loop is employed to find an optimal MCA0. 

As discussed previously, the quantitative molecular information can be found by a combination of 

discrete values and continuous attribute PDFs. Below a chi-square objective function encompassing 

various analytical terms ( Eq. 2.6) can be minimized in order to determine the optimal discrete values 
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and attribute PDF parameters. Thus, the optimal attribute values are determined, and the optimal MCA0 

is set. 
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The analytical items in Eq. 2.6 could be different for various feedstocks (e.g., PONA for 

middle-distillates vs. SARA for resids). Therefore, the optimization parameters and computational 

burden can be different based on various feedstocks. The following discussion analyzes the previously 

mentioned two cases of attribute PDF selection: 1. a set of discrete values for the homologous core 

series and continuous attribute PDFs for the side chain information; 2. a set of continuous elemental 

structural attributes for both the core series and the side chain information. 

 

For case 1, there are #CoreSeries -1 parameters for the global core series fractions and 2*#CoreSeries 

for the side chain carbon number PDFs of each series if each PDF is defined as gamma). In addition, 

there are also 4 parameters for the number of side chains given that there are separate gamma PDFs for 

ring and non ring attributes. Therefore (#CoreSeries -1 +2* #CoreSeries +4) parameters are necessary in 

total. Light-middle oil fractions often have O (10~20) series, and therefore O (30) parameters, which is 

a practical number for optimization. Using discrete values for the homologous series provides more 

flexibility in the discrimination of isomer details than the constraint of continuous attribute PDF 

function. In addition, it is possible that direct measurements of light feedstock can provide help in 

simplifying the optimization. However, this method is not applicable for heavy end oil fractions, as they 

may contain large number of core series. Therefore a given high end fraction can contain over O 

(100-200) parameters and thus not of practical computational burden.  
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For case 2, the core series is derived from several continuous structural attributes (except the fraction of 

overall PONA/SARA that indicates the molecules’ types). If gamma PDFs are selected, the maximum 

number of parameters for core series is O (10~20) (depending on how .many core series there are). The 

number of parameters for side chain information is the same as described in case 1. However, this 

method can use a side chain attribute PDF “family” concept that will lump together PDFs for certain 

core series groups (e.g., all cores with the same aromatic ring number). From a statistical view, this 

concept is applicable for middle-heavy oil. The number of the parameters for side chain information can 

be constrained to O (10). As a result, the total parameters for case 2 can be limited to O (30), which is a 

practical number for optimization. This method provides a feasible solution for complex heavy mixtures 

in which the effect of isomer details is trivial. 

 

For the middle-heavy fractions, both of these two cases may be applicable. Chapter 5 will give further 

the discussion as to which is better while providing validation to both approaches. 

 

2.6 Automation of composition modeling-CME 

Following the methodology laid out in this chapter, a user-friendly program with an excel interface 

called the Composition Model Editor (CME) has been developed for qualitatively and quantitatively 

obtaining MCA0. CME consists of four functional executable modules: CoreGen, FootGen, CompGen 

and PropGen. CoreGen is the core series structure generator. FootGen generates the entire qualitative 

footprint of the complex feedstock from one of three separate aspects: a predefined set of molecules 

from INGen1, Monte Carlo simulation from MolGen13,14, or a homologous core series defined by 

CoreGen. CompGen is the optimization package that determines the quantitative information of the 

feedstock and thus obtains an optimal MCA0. PropGen discussed later in Chapter 4 provides property 

calculations to CompGen. The overall logic of CME is shown as Figure 2.12.  
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Figure 2.12 Overall logic of CME for composition modeling 
 

Upon launch, CME can be run using any of the three footprint generation modes: a predefined set of 

molecules from INGen, a stochastic sample from MolGen (only used for cases containing uncertain 

identities), and generation from CoreGen (provided that a useful set of homologous core series can be 

inferred). For example, if CorGen made is used to create a VGO model, a set of homologous core series 

can be entered by the excel interface shown in Figure 2.13. By specifying the core series’ structural 

increments, CME will generate the BE Matrix and adjacency list for each core series structure. In 

addition, a visualization of the structure is generated in order to provide an intuitive way to view each 

series. 
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Figure 2.13 automation of Core generator in CME 
 
The next step is the selection of the fixed set of core series for this model (Figure 2.14). In addition, to 

simple selection, the maximum number of side chains for each core series must be specified.  
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Figure 2.14 Identity Setup in CME 
 

After core series selection, CME will generate the entire representation for this feedstock as shown in 

Figure 2.15. Conditional probability based on the boiling point range is then specified in order to 

constrict the side chain carbon number range for each core series. 

 

CME will then launch FootGen to automatically recognize the structures generated above. Thus, a 

unique quantitative mapping relationship between attributes and mole fractions can be described for the 

whole footprint and is illustrated in Figure 2.16. 



 

 

43 

 
 
Figure 2.15  Identity and Sampling Setup in CME 
 
 



 

 

44 

 
 

Figure 2.16 an example representation of a feedstock’s footprint 

After the footprint is set up, CME can run in either case mentioned in the previous section. An example 

of this choice is shown in Figure 2.17. If case 2 is selected, CME will continue to the configuration 

screen for the attribute PDF type (Figure 2.18), and the PDF family definition screen shown in Figure 

2.19 (if necessary). 
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Figure 2.17 Selection cases for MCA0 generation in CME 
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Figure 2.18 Attribute PDF Type Selection 
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Figure 2.19 Grouping SC PDFs 
 

After the PDFs have been set up, CME will use PropGen to integrate the properties of each molecule 

into the optimization objective function. Figure 2.20 shows the selection of the objective function, and 

thus the relevant properties, for either Light to VGO or HGO to Resids.  

 

Finally, CME will launch CompGen to compute the optimization and obtain the optimal MCA0. The 

MCA0 shown in Figure 2.21 and Figure 2.22 can then be integrated with KME for kinetic modeling (as 
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discussed in later chapters). Figure 2.21 and Figure 2.22 also demonstrate the visualization and property 

analysis obtained by the structure-property correlations (as addressed in chapter 4) and therefore 

provides window into the species nature of MCA0.  

 

Figure 2.20 Property Selection in CME 
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Figure 2.21 KME ready results view 
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Figure 2.22 PONA Matrix results view 
 
 
Once the MCA0 of feedstock is modeled, it serves as the initial values necessary for reaction modeling. 

The full and final MCA will include the products of those reactions. 

 

2.7 Integration between CME and INGen 

The first goal of composition modeling is the determination of the identities of the system’s species. The 

scale of the model is determined by a mixture of necessary detail, data, and the feasibility of resultant 

computational burden.  

 

As discussed in previous sections, the identities of a feedstock could be either determined by CME or 

imported from INGen. Whether INGen or CME should provide the qualitative determination of the 

model species is a sort of the “chicken” or “egg” problem. If the species’ identities are to come from 

CME first, CME will use the analytical information along with conditional probability to constrain the 
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size of the MCA0. As a result, the MCA0 from CME will provide the seeding information for INGen. 

INGen will then determine the scale and details of the reaction networks.  

 

However, the determination of the core series in CME needs to consider the reactivity characteristics 

used by INGen. In addition, the set of molecules in the reaction network generated by INGen can 

provide more isomeric detail than CME. For instance, CME’s CoreGen specifies the identity of the core 

structure, the sidechain length and the number of sidechains, but not the substituted position. INGen has 

this ability and can provide detailed isomeric information to CME. 

 

As discussed above, CME provides constraint based on analytical information, and INGen provides 

greater structural details and reactivity prerequisites. Therefore, it was necessary to find an appropriate 

way to harmonize them. User knowledge and input through extensive interaction between CME and 

INGen reconciled this issue but required a seamless integration between the two programs. That 

integration was realized through the incorporation of a common set of BE Matrices. 

2.8 Summary and discussions 

It is possible to develop a statistical representation of a complex feedstock by constraining the 

representation to a set of analytical characterizations. The answer for this representation can be defined 

as MCA, a matrix containing both qualitative and quantitative information of the molecules. 

 

However, it is important to consider the computational burden a real world (especially for heavy 

complex feeds) might occur. Although it is clear that a stochastic sampling method can get a statistical 

representation for a complex feedstock, based on previous researchers’ results, it is unnecessary to 

model every feedstock in this way. Moreover, this stochastic method will cast a tremendous 

computational burden and thereby bring a formidable challenge in employing on the complex 

feedstocks found in practical applications. To address this issue, a hybrid statistical approach has been 

developed in this chapter. In most cases, a set of finite molecular identities called the footprint can be 



 

 

52 

determined in a straightforward process. The way to specify qualitative information in a complex 

feedstock can be derived explicitly or implicitly from several aspects, such as: core series determination, 

literature, automated reaction network generation etc.. Stochastic sampling can still be used as a 

supplemental computer aid for the few cases which contain uncertain identities. Therefore, in most of 

cases, non-deterministic methods will only be used for the calculation and optimization of quantitative 

information and will vary from feed to feed. Thus, a huge computational burden is avoided, making this 

approach more feasible for practical application.  

 

To obtain the MCA0 (the initial identities and concentrations) of a complex feedstock, a sampling 

protocol based on structural attributes of molecules has been laid forth in this chapter. In addition, the 

structural attribute PDFs used for quantitative calculation have been extensively discussed in this 

chapter. The combination of attribute sampling with imposed attribute PDF constraints can be used to 

optimize the MCA0 where the objective function is given in terms of available analytical information.  

 

A user-friendly program with an Excel-VBA interface called CME was developed to fulfill this new 

approach. CME automates the composition modeling for complex feedstocks varying from light to 

extremely heavy.  

 

Although the examples of this hybrid approach emphasize on complex petroleum feedstocks, the 

methodology should hold true for others (such as the increasingly important biomass).  

 

A biomass can be modeled in CME via imposing new attribute definition and sampling protocol, 

altering the PDFs, and creating an appropriate objective function. A specific example of biomass 

processing (lignin pyrolysis) is discussed in Chapter 6. Unlike petroleum feedstocks, oxygen containg 

compounds such as alcohols, phenols, etc. are involved in these biofuels. Exploring new oxygen-related 

chemical attributes would be a key outstanding task. In addition, other complex feedstocks such as coal, 

shale oil, etc. should be addressed in future. 
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The final goal of this chapter was to illustrate a method for obtaining the MCA0, a molecular 

representation of a complex feedstock. MCA0 can then be used to provide the input for a reaction 

network generator, or to provide the initial concentrations for a molecular level reaction system model. 

Both aspects will be discussed in detail in the next chapter. 
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Chapter 3  Automation of reaction equation generation and calculation 

3.1 Introduction 

The most important three aspects of a rigorous molecule-based detailed kinetic model for complex 

process chemistries are its reaction network, the equation generation and solution techniques of its 

networks, and the kinetic rates. The construction of the reaction network is discussed in Bennett 

(2009)1. The two aspects will be addressed in this chapter, and will serve as the second proposed 

contribution of this thesis. This chapter will emphasize and to address the dilemma of the complexity of 

the reaction modeling including attribute-based reaction model, reaction family and LFER, LHHW 

support, deactivation calibration, multi reactor support and model analysis. The automation techniques 

of these aspects have been employed on the Kinetic Modeler’s Editor (KME) software introduced in 

chapter1.  

 

A traditional deterministic model has N + 2 equations, one material balance for each of the N 

components along with energy and momentum balances.  This downside has been addressed through 

the development of software tools for the construction, solution and editing of large models.  At a 

certain level of complexity, however, the number of components N (e.g. over 50,000) is so large that 

even automated construction tools will not overcome the hardware and software barriers and execution 

time demanded.  In these instances the essential question is whether the N-component mixture can be 

modeled with fewer than N material balance equations.  An approach called attribute-based reaction 

modeling (ARM) has been developed toward this end and will be discussed in later section. 

 

Another inherent problem associated with detailed kinetic modeling is that thousands of reactions 

require thousands of rate constants associated with the reaction network. It is impractical, if not 

impossible, to experimentally determine the rate constant for each reaction through thousands of model 
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compound experiments. In addition, the concurrent reconciliation of so many rate constant parameters 

with experimental data falls outside the scope of any currently available optimization algorithms. It is 

thus clear that approaches aiming at reducing the complexity and number of model parameters would be 

of great value in the formulation and use of detailed molecular models of complex mixtures. 

 

There are various levels of approaches to handle this problem. A first approximation is that each 

reaction family is assumed to have the same kinetic parameters since all the reactions undergo similar 

intra-molecular rearrangement. However, this is generally insufficient considering the perturbation on 

the reaction rates of a wide range of molecular structures even for the same reaction family. The other 

extreme is the direct computation of rate constants from first principles through the implementation of 

quantum chemical calculations. While the quantum mechanics theory has grown into an unprecedented 

level, the molecular size it can handle or calculate in a feasible amount of time is thus far still limited. A 

practical resolution of this conflict emerges from a further scrutiny of the composition and reactions of 

complex feedstocks. Much of the complexity is statistical. Each of the O (105) species in the complex 

mixture falls into one of a handful of compound classes (e.g., paraffins, olefins, naphthenes, aromatics, 

alkylaromatics); and these in turn react in a manageable set of reaction families (e.g., hydrogenation, 

isomerization, dealkylation). Thus, the complexity is really the simultaneous reaction of sets of many 

similar compounds. Within each set, compounds differ only in substitutes, and differences in reactivity 

are attributable to these substituents. This suggests the use of linear free energy relationship (LFER) 

corresponding with reaction families, as an organizational and predictive technique for organizing or 

assembling kinetic rates for detailed kinetic modeling. An automation technique of this will be 

discussed in this chapter. 

 

The organization of rate laws for the reaction equations in complex process chemistries is another issue 

to be addressed in this chapter. Most complex process chemistries are heterogeneous phase and 

involved with a catalytic process. An efficient way to describe the rate laws of these chemistries is the 
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Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism. An automation technique of LHHW in 

KME will be addressed in later section. 

 

Ultimately, the detailed kinetic model must be able to model the system and process configurations that 

are found onside of bench scale including: catalyst deactivation, multiple reactors, and separate process. 

An automation technique for these advanced configurations is also covered in this chapter. 

 

Finally, when modeling a complex system, it is necessary to provide auxiliary analytical tools such as: 

statistical analysis, sensitivity analysis and model reduction. These auxiliary tools will be discussed in 

the last section of this chapter.  

3.2 Attribute-based reaction model (ARM) 

As addressed in Chapter 1, a deterministic model comprising one equation per species will bring about 

an impractical computational task when dealing with complex process chemistries with complex 

mixtures of numerous species. To address this dilemma, an Attribute-based Reaction Model (ARM) has 

been developed for the kinetic modeling of heavy hydrocarbon conversion. This is a hybrid 

statistical-molecular approach to represent the reactions as well as the molecular structures of heavy 

hydrocarbon mixtures.  Unlike the deterministic model, this approach models the dynamics of the 

molecular composition with fewer than one equation per molecule.  For that purpose, attention is turned 

to the reactions of attributes instead of species. The molecular compositions of the feedstock parse to a 

set of structural attributes as illustrated in Chapter 2. The reactant attributes derive from those structural 

attributes directly and can be modified based on the characteristics of reactivity. The conversion 

pathways and kinetics are subsequently modeled in terms of the reactions of these attributes. The 

molecular composition of the converted mixture is assembled by sampling the updated PDF’s of the 

post-reaction attributes. This provides the molecular basis for the estimation of the properties of the 

upgraded mixture.  
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3.2.1 ARM example: lignin 

For example, lignin pyrolysis is a good case to show how ARM works. The structure of lignin can be 

reduced to a set of single-ring aromatics each with two attributes as shown in Figure 3.1. The first 

attribute is the type of propanoid side chain (PC) attached to each aromatic ring and the second attribute 

is the nature of the phenolic or methoxyphenol (MP) substituent on each aromatic ring. 

 

OH

OH

OH

OH
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OH
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OO

SINAPYL CONIFERYL COUMARYL  

Figure 3.1 the structure of lignin 
 

During lignin pyrolysis, the aromatic rings remain unchanged and the conversion is derived from the 

independent reactions of the PC and MP attributes. Therefore, it is possible to use PC and MP attributes 

as the reactants in ARM. The equations of reaction can be written as Eq. 3.1. 
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          (3.2) 

 

The classic Freudenberg model2 of lignin contained 24 values of MP attributes and 26 values of PC 

attributes. ARM will use only 24+26=50 equations instead of the 24*26=624 equations required by 

deterministic modeling, and thus it reduces the computation burden significantly. The detailed 

illustration of this lignin example will be discussed in Chapter 6. 

 

3.2.2 General illustration of ARM 

A general illustration of the ARM approach is shown in Figure 3.2, where a molecular composition with 

N attribute types with M attribute values will have M*N molecules.  The associated deterministic 

reaction model will thus have MN balance equations. This number can exceed 50,000 for petroleum 

resids and similar large feed stocks and is too large for current practical applications.  The essential idea 

behind the ARM approach is to treat the reactions of the attributes independently.  The ARM is thus a 

hybrid model of N submodels, each submodel having the number of equations equal to the number of 

values the attribute can take.  Therefore, the overall problem scales as N×M instead of MN, which leads 

to a considerable savings of CPU time.  This is the approach followed in the lignin pyrolysis model, 

where N = 2. 
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Figure 3.2 Attribute-Based Reaction Modeling 
 

3.2.3 Automation of ARM in KME 

This ARM approach was implemented in KME. The previous versions of KME were basic 

one-dimensional model bundles of tools used only for deterministic modeling. Essentially, extension to 

include the ARM strategy involves the creation of N independent kinetic models with shared 

information, such as reaction conditions, inlet flows, and the like, and a final product parser that creates 

the molecular composition as the juxtaposition of attributes. The computational flow of KME is 

illustrated in Figure 3.3.  
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Figure 3.3 Conceptual flow of KME with ARM 
 

The ARM model in KME comprises the following steps.  First, the reactions of each attributes are set up 

independently. It then generates the ODE’s for all attributes’ submodels. KME obtains the initial 

attributes’ values from CME. The user then enters the input and output data, along with the reaction 

conditions and rate parameters, which allow the model to be run. The submodels of each attribute types 

will be run respectively. The reaction-altered attributes are then juxtaposed to create the conversion 

mixtures and thus attain the properties of the final product. 
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3.3 Reaction family and LFER 

Detailed kinetic modeling for complex process often contains thousands of reactions and therefore 

thousands of rate constants associated with the reaction network. It is impossible, or merely impractical, 

to either evaluate the rate constant for each reaction through thousands of model compound experiments 

or reconcile so many rate constant parameters at the same time with the experimental data using any 

currently available optimization algorithm. A conceptual approach to this problem is the use of reaction 

family and LFERs in order to reduce the complexity and number of model parameters. A reaction 

family is a series of analogous reactions that share the same reaction mechanism.  

 

In general, the concept that there is a relationship between the properties of compounds and their 

molecular structures is inherent to chemistry. It is the basic tenet of chemistry to attempt to identify 

these relationships between molecular structure and property or activity and to quantify them. 

Hammett 3  organized reaction families and substituent effects for homogeneous systems. The 

Evans-Polyani4 relationship is another classical example. Mochida and Yoneda 5,6,7 first demonstrated 

the use of LFERs for catalytic reactions. Klein and coworkers (Neurock 8,9,10; Korre11; Broadbelt12) 

have extensively developed the LFERs to correlate reaction rates of various metal-, acid-catalytic 

chemistries as well as free-radical chemistry. LFERs have also been developed as a convenient way to 

organize the equilibrium and adsorption constants (Ho, 1994; Korre10). 

 

3.3.1 LFERs 

A linear free energy relationship (LFER) can be derived from transit ion state theory, wherein a general 

kinetics rate expression of reaction i in a reaction family can be expressed as Eq. 3.2. 
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In Eq. 3.2, subscript (0) refers to an arbitrary reference reaction, while subscript (i) refers to any other 

reaction in the family, +∆ iS and +∆ iH are the entropy and enthalpy differences between transition state 

complexes and reactants. Particularly, for the reactions within the same family, as long as the reaction 

center is spatially separated from the substituents (other groups, heteroatoms, alkyl chains), the sterics 

of the transition state will not change significantly. Rather, the substituents will affect only the 

activation energy. Therefore, )( 0
++ ∆−∆ SSi can be considered negligible, and Arrhenius factors, Ai, of 

any reactions in the same family will be equivalent to A0. Therefore, an approximation of Eq. 3.2 is 

given by in Eq. 3.3 which is only a function of activation enthalpy. 
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In E.q.3.3, a and b are correlation constant parameters, )( +∆∆ H , )( +∆∆ S and )( *
iE∆  refer to the 

differences in activation enthalpy, entropy and energy differences between reaction (i) and reaction (0). 

In Eq. 3.3, the rate constant of any reactions in a specific reaction family, ki, can be retrieved via a linear 

relationship with the differences in activation enthalpy. For complex system, )( +∆∆ H  can be 

estimated by a reaction index (RI) that is a quantitative variable inherent to the properties of the 

reactants. A set of representative examples of LFER are shown as the next section. 
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3.3.2 Representative results of LFER  

Figure 3.4 (Korre10, 1995) shows very good correlations between the experimental hydrogenation rate 

constants with the heat of reaction as the reactivity index for various aromatics, including benzenic, 

naphthalenic, and phenanthrenic compounds. The highlighted rings denote the site of hydrogenation. 

Although the hydrogenation of aromatic compounds seems to provide special challenges of accounting 

for the multiplicity of the reaction sites per molecule, the overall heat of reaction has served as a very 

good reactivity index to characterize these reactions. 

 

Figure 3.4 LFER correlations of experimental hydrogenation rate constants and heat of reaction for 
aromatic compounds. (Korre10, 1995) 
 

Figure 3.5 shows LFER correlations for the kinetics of acid center transformation reaction families 

(both isomerization and ring opening) with the heat of formation of the carbenium ion intermediate as 

the reactivity index. Both the isomerization and ring opening reactions share a similar underlying 

reaction mechanism, and both have the same slope in the LFER diagram. However, it is clear that the 

isomerization reaction is much slower than the ring opening reaction. 
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Figure 3.5 LFER correlation of the experimental isomerization and ring opening rate constants with the 
stability of the carbenium ion intermediates. (Korre10, 1995) 
 

Figure 3.6 shows the classical example of LFER correlations by Mochida and Yoneda between the 

dealkylation rate parameters and the stability of the alkyl ion based on a carbenium ion chemistry 

reaction mechanism. Neurock 7,8,9 has also used the heat of reaction of the rate-determining step based 

on the carbenium ion chemistry reaction mechanism as a reactivity index and successfully correlated 

with the dealkylation kinetics. 
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Figure 3.6 LFER correlation of experimental dealkylation rate constant with the heat of formation of the 

intermediate carbenium alkyl ion. (Data from Mochida and Yoneda4, 1967) 

 

Besides using LFER on kinetics rates, the Klein group has also applied this concept to equilibrium 

constants and adsorption constant. 

 

Figure 3.7 (Neurock9, 1992) shows an LFER correlation used to estimate adsorption constants. The 

experimental adsorption coefficients were determined through experiments where competitive 

inhibition data were represented by the LHHW adsorption constant Ki (La Vopa and Satterfield, 198813; 

Neurock and Klein9). The proton affinity (PA) was taken as a measure of gas-phase basicity and 

computed according to the thermochemical cycle: ++ →+ MHHM . Thus, the PA is given by E.q. 

3.4 and can be computed using MNDO (modified neglect of diatomic overlap) calculations. As we can 

see from Figure 3.7, the MNDO calculated PAs correlate linearly with the experimental adsorption 

parameters. 

)()()( 000
++ ∆−∆+∆=∆−= MHHHHMHHPA      (3.4) 
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This good correlation shows the organizational capability of LFERs and suggests an efficient 

methodology for the estimation of kinetic parameters for many similar compounds that have not been 

studied experimentally. In other words, finding the adsorption constant of a similar molecule would 

simply require a PA calculation. From the chemical significance perspective, the correlation between K 

and PA actually points to an acid-base interaction between the catalyst and reactant12. 

 

 

Figure 3.7 LFER correlation of proton affinity (PA) to estimate the adsorption constants K. (Neurock9, 
1992) 
 

The above examples qualitatively demonstrate the feasibility of using LFER concept as a reaction 

engineering tool to organize the rate parameters. The following figures (Figure 3.8, Figure 3.9, and 

Figure 3.10) summarize a comprehensive set of quantitative correlations and LFER parameters 

developed in the past few years by the Klein group. 
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Figure 3.8 LFER for adsorption constants by Klein group14. 
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Figure 3.9 LFER for metal center catalysis by Klein group14 
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Figure 3.10 LFER for acid center catalysis by Klein group14 
 

Based on the above summaries, an automated technique for incorporating LFERs and reaction families 

was developed in KME. 

3.3.3 LFERs and reaction families in KME 

In KME, the kinetic rate of an irreversible reaction is expressed by a function of Arrhenius factors Ai 

and active energy E*
i , as shown in E.q.3.5a. For a reversible reaction, an equilibrium constant Keqi is 

applied to the backward reaction in E.q. 3.5b. 
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In this thesis, the Evans-Polanyi principle will be used as an example of how to apply LFER and 

reaction family in KME. The Evans-Polanyi principle (E.q.3.6) is a classic methodology for activation 

energy via LFER.  

(3.6)                                                                                                     *
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*
i rxnHEE ∆⋅+= α  

Through experimental observations, it was determined that the activation energies of many reactions in 

the gas phase linearly correlate with the enthalpy change during the reaction. *
0E  refers to an arbitrary 

reference activation energy which defines the intercept ; α  is a parameter that indicates the slope. As a 

result, the rate constants in a reaction family can be expressed as a function of the enthalpies of reaction, 

which are more easily accessible since they are differences between heats of formation of stable 

compounds. 
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From Eq.3.7, the rate of reactions in the same family is the function of A0, E0 and rxnH∆ .  

For a reversible reaction, if ki is the forward reaction, the rate of backward reaction can be expressed as 

the combination of ki and equilibrium constant Keq, given by E.q. 3.5b. Keq can be expressed via Van 
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Hoff Law as a function of rxnH∆  , rxnS∆  and temperature , or correlated from an LFER as a function 

of rxnH∆  and temperature as shown in Figure 3.8 to Figure 3.10. 

 

The enthalpy and entropy of a reaction are inherent thermodynamics properties of the reactants and can 

be measured directly or calculated from the structure-property correlation as illustrated in Chapter 4. 

These properties are independent of the catalyst, so for an entire reaction family only three parameters 

will require tuning (A0, E0 and α ). 

 

Generally, every process chemistry contains of order 10 reaction families and thus the number of tuning 

parameters can be of a computationally practical order 10-30 when using the LFER approach. This is a 

practical computational burden. As a product of this thesis, KME now provides an Excel-VBA interface 

for automating reaction family and LFER approximation. First, it will set up the reaction family 

information as shown in Figure 3.11. KME will automatically generate the LFER rate expression for 

each reaction family (Figure 3.12) by applying the expressions given by E.q. 3.5, E.q. 3.6 and E.q. 3.7. 

By default, the equilibrium constant is implemented by Van Hoff equation, but KME provides a flexible 

way to modify it to a LFER expression as a correlation of the species’ reaction index (e.g., rxnH∆ ).  
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Figure 3.11 LFER & RXN Family in KME 
 

 
 
Figure 3.12 Rate Law by Reaction Family & LFER 
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3.3.4 Integration between KME and INGen 

KME can be run in either deterministic or ARM mode based on the critical number of reaction 

equations. INGen provides the reaction network along with each reaction’s family. A function was 

developed for KME wherein the reactions and families can be directly imported from INGen as shown 

in Figure 3.13. For the ARM approach, this communication must be executed for each attribute type.  

 

Figure 3.13 Importing an InGen File to KME 

After showing how reaction families and LFERs can reduce the number of kinetic rate parameters and 

thus the complexity of the model, the next section adds to the complexity by accounting for 

heterogeneous systems by the inclusion of LHHW rate laws. 
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3.4 LHHW 

Most complex process chemistries involve a catalyst and are thus a heterogeneous reaction system. To 

date, the most popular and successful way to describe the kinetics of heterogeneous catalysis is through 

the Langmuir-Hinshelwood-Hougen-Watson (LHHW) formalism. The general formula is shown as Eq 

3.8. 
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For the sake of complete reference of kinetic modeling in this work, we have also quoted the 

LHHW formalism here in Table 3.1. 
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Table 3.1 LHHW formalism (Yang and Hougen, 1950)15 
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Table 3.1 LHHW formalism (Yang and Hougen, 1950) (Continued) 
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This thesis developed a flexible approach to apply LHHW in KME. For example, consider the following 

reaction involved with catalyst site [L]. KME’s automation of LHHW generates the following rate 

equation (E.q. 3.9) for the surface limit case. 

3.9) (                                                                       
)1(
)/(][
2DKCKBKAK

KDCBALKKk
r

DCBA

OBASR

++++
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Where, Ki (i refer to A, B, C, and D) is the adsorption equilibrium constant for each reactants on L, K is 

the overall equilibrium constant of the reaction; and kSR is the rate constant of the surface reaction.  

As shown in Figure 3.14, KME allows a user to enter the pathway reactions of a specific chemistry in an 

excel sheet called “LHHW Reactions”. Then, KME will ask the modeler to determine the catalyst site 

each reaction occurs upon. Finally, KME will automatically generate the LHHW rate expression for 

each reaction with catalyst site [Li], where [Li] is the indexed catalyst site in the model.  KME will use 

the variable “dnom” to indicate the denominator of the equation and Keq to indicate the adsorption 

equilibrium constants for each species. The driving force is assumed to be surface controlled 

automatically, but it is easy to adjust the denominator for other limiting cases by editing the dnom 

expression. In addition, Keq can be edited for certain correlations analogous to the reaction family and 

LFER concepts shown in the previous section. 
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Figure 3.14 Automation of LHHW in KME 
 

The combination of the reaction family and LFER concepts with LHHW can provide a practical 

methodology for providing the kinetic rate organization and evaluation for complex heterogeneous 

process chemistries. 

 

3.5 Deactivation calibration 

Most complex catalytic process chemistries experience the deactivation of the catalyst. Often the data 

acquired from those chemistries are not sampled from a steadystate, but from a deactivation period. 

Thus a detailed molecular kinetic model should consider such situations. A deactivation or catalyst 

coking reaction can be described by a selectivity activity modifier (SAM) reaction, ∑= iic ckr . Such 

reactions express how the chemistry of the system can change the catalyst. Coke deposition is a function 

of both the Time on Stream (TOS) and the local composition of the mixtures in the reactor. Typically, in 

a complex process, the characteristic reaction time of coke deposition or catalyst deactivation (units in 
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months or years) is significantly larger than that of the main reaction network (units in seconds). Due to 

this significant difference in the two time scales, a decoupled model can be used to validly describe the 

coke formation in order to avoid the numerical issues associated with solving PDE equations. During a 

catalyst deactivation model calculation, the total time on stream (TOS) is evenly divided into small time 

zones. During one simulation iteration, at a certain TOS point, the coke deposition rate is considered 

constant, and the concentration profile along the reactor is evaluated. At the next iteration of TOS, the 

coke deposition rate is updated by the SAM model. The coke level can be calculated via Eq. 3.10 and the 

species’ concentration within reactor is updated. Thus, the coke levels can be updated sequentially along 

the TOS. At the end of all the iterations along the time on stream, the model can generate a three 

dimensional coke profile along both the TOS and the reactor length. 

( ) ( ) (3.10)                                         )01()0(01 TOSTOSTOSrTOSCokeTOSCoke c −∗+=  

The observed data of deactivation can be classified into two cases. In the first case, the data are 

comprised of the specific deactivation profile of species during the TOS. The conceptual flow is shown 

as Figure 3.15. The observed data and the weight for tuning are set up first. Then an optimization loop is 

applied. During each iteration, the catalyst site and the observed/weight data are updated from the 

deactivation measurement profile. KME then retrieves the data from inp, cond, obs and weight sheets to 

evaluate the model along the reactor length at this TOS point. The coke profile is then updated after the 

reactor simulation. The optimization process continues as KME enters into the next iteration. By 

minimizing the objection function for the deactivation profile in this optimization loop, KME will 

calculate an optimal set of parameters for this deactivation model.  
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Figure 3.15 the conceptual flow of deactivation in oncethrough model 
 

However, industrial processes will generally not allow an unsatisfactory conversion due to catalyst 

deactivation. In combating such a situation, the operation conditions (such as reaction temperature ) will 

be changed in order to achieve the target conversion. In such a case, the observed deactivation data is 

often a set of operating temperatures over the TOS, along with an optimal product yield, conversion or 

some other properties. The conceptual flow of this case is illustrated in Figure 3.16.  

 

After inputting the observed temperature profile of deactivation, KME employs an optimization loop. 

For each iteration, KME updates the catalyst site and observed goalseeking temperature at this TOS 

point. KME will receive all necessary data and evaluate a goalseeking optimization to get a targeted 

conversion at this TOS point. The coke profile is updated after this optimization. Then KME entered to 
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next iteration. By minimizing the objection function of deactivation temperature profile in this 

optimization loop, KME will calculate an optimal set of parameters. 

 

 

Figure 3.16 the conceptual flow of deactivation in goal seeking model 
 

 

3.6 Multiple reactors 

The measured data used in establishing a model can often came from different reactors. The capability 

to simulate the various reactors listed in Table 3.2 was implemented in KME. Mass balances and the 

corresponding energy balance is automatically generated after the user selects the appropriate reactor 

type. 
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Table 3.2 Multiple reactors in proposed KME 
Reactor Type 
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dC BA

A
A 0)( ×

−−=  
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p

BA
A

A

V
qCr

d
dC 0)( ×

−−=
τ

 for incompressible fluid. 

 

3.7 Basic product separation   

The product data used in detailed kinetic modeling of industrial processes is not often an effluent from 

the reactor, but rather a set of product characterizations after a post-separation process (e.g, gasoline, 

kerosene, diesel and bottom), as is favored in practical industries. It is necessary to consider the 

complexity of process configurations due to the real fractionators’ operation. However, a rigorous 

fractionators’ model involves multiple complex factors which lead to increased computational burden. 

Therefore, it is necessary to balance the complex calculation of this separation and the detailed kinetic 

modeling. As a result, a basic separation model calculation is employed in this thesis instead of a 

rigorous fractionator model. 

 

The concept of this basic separation model16 is derived from an approximated linear relationship 

between the logarithm of the ratio of a component in distillate to bottoms with its boiling point 

temperature (Figure 3.17). So, based on an effective cut point and the component’s normal boiling point 

(provided by a structure property correlation module), the split fraction of a component can be 
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calculated. By using this method for all components in the model, a set of separation fractions of each 

component can be obtained. In Figure 3.17, the model interpolates a value of Ln(Di/Bi) for a given TBi. 

Usually, the model is set with three points representing the two straight lines around the effective cut 

point where Ln(Di/Bi) is zero (meaning a 50% split of the component between top and bottom streams). 

However, to protect from numerical singularities in the model, two more points are defined at the border 

line.  

 

Figure 3.17 Principles of basic separation model  
 

3.8 Model analysis 

To evaluate the fitness of the detailed kinetic modeling, a statistical package was implemented in KME. 

Now, statistical analysis parameters such as stand deviation, Q test, confidence limits, etc. can be easily 

obtained. KME can evaluate the sensitivity analysis of each reaction in a model by calculating the 

differences when a reaction is turned on or off. This simple approach can be used to evaluate the 

sensitivity of kinetics parameters, and as a result, model reduction can be implemented. 
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3.8.3 Statistical analysis 

When a model is calibrated, the statistical analysis of the parameter estimation can show the fitness of 

the model and thus give a summary result that shows whether the model is well tuned. In this thesis, a set 

of critical statistical items are evaluated in KME numerically such as: the total sum of squares of 

variance, the standard deviation of each parameter, the confidence limit of each parameter and so on.  

 

The total sum of squares of variance can be evaluated as E.q. 3.11 

)(.
1 1

∑∑
= =

−=
p

i

n

j
ijij yObsyCalcSS                                        (3.11) 

ijyCalc  and ijyExp  are the model calculated values and observed experiment data. 

 j is the index of experiment and n is the total number of experiments in this model. 

 i is the component index and p is the total number of components in this model. 

 

To calculate the confidence limit and standard deviation of each parameter, the three-dimensional 

Jacobian matrix of the model must be calculated for every parameter. 

A Jacobian matrix is the partial derivatives of predicted value vector (Y) with respect to the parameter 

vector (b) evaluated at all n experiment points. This matrix is three dimensional as there are n 

experiments by v parameters by p components. Each element can be represented as E.q.3.12: 
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i- Experiment index 

j- Component index 

k- Parameter index 

After obtaining the Jacobian matrix of the parameters in the model, the next step is to calculate the 

var-cov matrix. The first step is to define a set of sub matrices that encompass the whole three dimension 

Jacobian matrix of the model (E.q. 3.13): 
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For each component, JJj represents the two dimensional matrix of n experiments by p component 

numbers. 
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Next, the var-cov matrix A is defined as E.q.3.14: 
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jw  is the weight factor of this matrix, which can be evaluated by E.q.3.15 
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The squared standard deviation of the parameter can be attained as E.q.3.16: 
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δ  is the overall standard deviation of the whole model, which can be estimated as given in E.q.3.17, 

where DOF is the degree of freedom of the model. 
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Using a t distribution with n*p-v degrees as E.q.3.18: 
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kb  is the optimized parameter value. 

kβ  is the real parameter value. 
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So the confidence limits can be attained by E.q.3.19: 

kkkpnkkkkkpnk astbastb ),2/1(),2/1( −×−−×− +<<− αα β                    (3.19) 

3.8.4 Sensitivity analysis and model reduction 

ARM as described in the previous section is a model reduction approach derived from insightful 

chemical understanding. Mathematical reduction strategies can also be exploited based on the 

sensitivity analysis of the tuned model.  

 

To understand these methods, it is important to differentiate the types of the species in the model: 

important, necessary, and redundant. Important species are those species of direct importance to the 

user. Necessary species are those species which the model must retain in order to correctly model the 

important species. Redundant species are those that can be eliminated from the model without largely 

affecting the prediction of the important species. The user must define the set of important species and 

an acceptable level of error in those species. The model reduction algorithms then determine the 

necessary and redundant species and thus provide the information necessary in reducing the model 

reaction network. 

 

Turanyi 17 proposed an iterative scheme involving the sensitivity analysis on the rate of production of 

important species with respect to concentrations of all other species as a method of model reduction. He 

defined the vector B to have elements shown in E.q. 3.20 
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Where, rn is the reaction sets involved in Bi and ci is the concentration of species involved in Bi. The sum 

was carried out over the set of important and necessary species. Species possessing the highest Bi values 

were included in the set of necessary species, and the process was repeated until the vector B converged. 

Redundant species are those not considered necessary or important after convergence occurs. A 
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generalized species-based algorithm for model reduction building upon the above method has been 

developed. It is quoted as following description: 

1. Start with an empty set of necessary species. Select the set of important species, a set of times of 

interest, and a fractional cutoff (between 0 and 1) to be used later. Solve the full model for the 

concentrations of each species at each of time of interest. 

2. Calculate the sensitivity of the rates of production of important and necessary species to changes in 

the concentration of all other species in the reaction network. Call this measure of error jΦ for species 

j. 

3. Determine the range of jΦ  and compute a cutoff value cΦ  that is the fractional cutoff (as selected 

in step 1) of the Φj range. Add all species with jΦ > cΦ  to the necessary species set. 

4. Repeat step 2 and 3 until no new necessary species is discovered. 

5. Construct the reduced model using all reactions that consume the important and necessary species. 

 

Similarly, a reaction-based model reduction algorithm is also developed and quoted as follows: 

1. Start with an empty set of necessary species. Select the set of important species, a set of times of 

interest, and a fractional cutoff (between 0 and 1) to be used later. Solve the full model for the 

concentrations of each species at each of time of interest. 

2. Calculate the sensitivity of the rates of production of important and necessary species to changes in 

the rate parameters of each reaction. Call this measure of error jΦ  for reaction j. 

3. Determine the range of jΦ and compute a cutoff value cΦ that is the fractional cutoff (as selected in 

step 1) of the jΦ  range. Add all species that are consumed by reactions with Φj > Φc to the necessary 

species set. 

4. Repeat step 2 and 3 until no new necessary species is discovered. 

5. Construct the reduced model using all reactions that have a jΦ  value greater than a given cutoff. 
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Different species-based or reaction-based model reduction techniques can be applied by defining an 

appropriate function to determine the sensitivity of the important and necessary species to each of the 

other species or reactions as required in step 2 of both algorithms. Two such functions are sensitivity 

analysis and the "on/off" method. Using sensitivity analysis, the function for quantifying the effect one 

reaction has on the set of important and necessary species can be shown in E.q.3.21: 
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j k

r
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2)(          (3.21) 

where the species in the inner sum are the members of important and necessary species. Thus, 

jΦ carries a measure of the instantaneous sensitivity of the rate of production of the important and 

necessary species on the kinetic parameter of reactionj at a specified set of times. The "on/off" method 

sets the kinetic parameter or concentration being analyzed to zero and examines the effect this change 

has on the predictions made by the model. The function to be analyzed is in E.q.3.22: 

∑ −=Φ
speciestimes

iij rr
1

2* )(                                                              (3.22) 

where a superscript * represents the reduced model and the sum over the species is carried over the 

important and necessary ones only. Both the species-based and reaction-based cases use the 

concentration profiles of the full model as a basis when computing *
ir  so the reduced model does not 

have to be solved. 

 

Families of reduced models can thus be created using this methodology by changing the fractional 

cutoff only. Generally, since the implications of a particular choice of the cutoff fraction are not 

apparent a priori, a range of cutoff fractions should be explored to locate the optimal one. A plateau in 

overall error is a general feature of a graph of overall error vs. number of species or number of reactions 

in the reduced model, and the smallest model on this plateau marks an optimum reduced model if no 

target accuracy is available. 
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Baynes (1998)18 has applied these algorithms on an n-hexane acid cracking mechanistic model with 597 

species and 2932 reactions and reduced the model to 390 species and 1342 reactions, which correctly 

models the concentrations of the specified important species and only takes 33% of the time to solve 

compared with the full one. 

 

In this thesis, the automation algorithm in KME is adapted from the reaction-based model reduction 

method rather than the species-based one. If an important species undergoes both fast and slow 

reactions, reaction-based reduction can remove the slower reactions, but species-based reduction 

cannot. The trade-off is that the reaction-based model reduction takes longer to complete because it 

analyzes more possibilities. In summary, the sensitivity analysis in KME is performed as the “on/off” 

method demonstrated above, after which KME can provide a mode reduction strategy.  

 

This algorithm is very useful for the detailed kinetic modeling of a complex system. After tuning and the 

user’s selection of the important species in the system, KME can build a simplified mathematical model 

containing much less computational burden than the full model. This benefit comes at the low cost of 

removing species that are not of interest in the model. Such a reduced model is often required for 

applications which solution time is critical such as: advanced control, real time optimization. In 

addition, the “On/off” method provides a great help for reconciling complex models. For models 

containing thousand of species and equations, it can give an opportunity to divide the model into several 

sub-blocks which can be studied individually. A comprehensive understanding of the full complex 

model can be obtained from the understanding of each block. 

 

3.9  Summary and discussion 

This chapter focused on the methodologies of handling the reaction equation generation and solution in 

the development of detailed kinetic models for the complex system. 
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To address the conflict between the complexity of species and equations and the impractical 

computational burden for a complex process chemistry, a hybrid statistical approach was developed in 

this thesis (ARM). The essential part of ARM is that it will turn a multiple dimensional equations to N 

one dimensional equations. This method can turn tens of thousands of ODE equations into a more 

computationally practical set of ODE equations while maintaining the full molecular details of the 

model.  

 

Besides the ARM approach for the reduction of the computational complexity of a detailed model, other 

the methodologies for reducing the number of parameters were .addressed. The LFER concept of 

organizing kinetic data was reviewed from classical transition state theory and the concept of reaction 

families was introduced along the way. Some representative results developed by the Klein group were 

shown in the thesis. Based on the accuracy of results, an automated algorithm was developed in KME to 

employ the LEFR and reaction family concepts via the Evans-Polanyi principle. The information of 

reactions and reaction families can be imported into KME from INGen via an automated algorithm. 

 

To deal with the heterogeneous systems, e.g., all the catalyzed processes, it was determined that the 

LHHW formalism is still the best rate law in most of the cases. The LHHW formalism has been 

extended to handle multi-species and multi-site cases found in the complex process chemistries. 

Automation of LHHW rate laws was developed for KME. Surface reaction control was chosen as the 

default, but it is easy to alter to other rate-determining steps using the KME LHHW tool. 

 

The complexity from actual process configurations was also considered in this thesis. A two fold 

deactivation process model was developed for KME in this thesis, and it can satisfy the simulation and 

tuning of both laboratory level and industrial plant data. In addition, the balance equations for multiple 

reactor types were integrated into KME as a product of this thesis. Finally, a basic separation model was 

developed for KME to supplement practical industrial demand.   
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The final part of this chapter concentrated on using analytical methods to provide auxiliary tools for 

model tuning in KME. A statistical package was developed, and model sensitivity analysis and 

reduction algorithm were addressed. 

 

The above aspects were used to solve the dilemma of the complexity of real feedstocks and process 

chemistries as well as the complexity of the configurations and the data obtained from practical 

processes. KME now provides a more robust user friendly environment for model tuning and solution. 

Unlike the initial version of KME mentioned in Chapter1, the new KME enhanced by the contributions 

listed in this chapter, shows strong capability to handle modeling the complex systems found in the real 

word.  

 

Chapter2 and this chapter discussed how to transform the analytical information of feedstocks to digital 

molecular information and the techniques used to transform that information to a kinetic model and its 

solution. In those discussions, the acquisition of property data proved a critical part for real world 

applications. The next chapter will address how to obtain property data based on structure correlations. 
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Chapter 4  Structure property correlation module 

4.1 Introduction 

The third proposed contribution towards this thesis is the provision of properties estimation supporting 

the detailed kinetic modeling of complex process chemistries. As stated in Chapter 2 and Chapter 3, 

both composition and reaction modeling require the calculation of intermediate and end-use properties. 

The role of the structure property correlation module (SPCM), as an integrated approach of this thesis, is 

illustrated in Figure 4.1. 

 
Figure 4.1 The role of structure property correlation in KMT 
 

For most heavy complex feedstocks, CME will use an optimization loop to get the optimal MCA0. 

SPCM will evaluate the properties corresponding to the analytical measurements and determine the 

value of objective function during optimization. During reaction kinetics modeling, KME will evaluate 
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the reaction activity properties (such as enthalpy, and entropy) by structure property correlation and 

calculate the end user properties (mixed density, simulated distillation) from the MCA of the products. 

Since the molecules in the MCA0/MCA are already represented by BE matrices. SPCM will use those 

BE matrices as the basis for the 2D structural information for each composition in the feedstock. Thus, 

SPCM acts a fundamental data pool in facilitating the two previous contributions in the detailed 

kinetics.  

 

The calculation of pure component properties is one important part in SPCM. It provides the basis to 

calculate the bulk properties which are used by CME as the objective function for quantitative 

information optimization and by KME as the commercially relevant properties of the final products. In 

addition, the structural and thermodynamic properties of each component are employed as reaction 

indices for LFER parameter estimation. Therefore, the evaluation of pure component properties will be 

elaborated upon in this chapter. 

 

As a supplemental management tool, a pure component property database has been developed for this 

thesis. Such a database not only allows a user to correct data, but also provides a convenient way to 

manage and facilitate the use of properties for a huge number of species.      

 

Based on the pure component property estimation, an algorithm for the mixed property estimation was 

developed based on customizable mixing rules. In addition, the calculation of the thermodynamic 

properties of reaction is addressed and will be illustrated in the last part of this chapter. 

 

4.2 Pure component property estimation 

The property estimation of a pure component is classified into two aspects: structural properties and 

thermodynamic properties. The former is evaluated explicitly from a BE matrix. The later is obtained 

from group contribution methods and semi-empirical quantum chemistry software.  
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4.2.1 Structural properties’ estimation 

Since a BE matrix can provide the full 2D structure of a molecule, SPCM will evaluate structural 

properties in a straightforward process. The structural properties provided by SPCM are shown in Table 

4.1 and can be used to calculate bulk properties based on a mixing rule.  

Table 4.1 Pure component structural properties caculated in SPCM 
Molecular Weight Total Naphthenic Ring Number 
Total Hydrogen Number Five Membered Naphthenic Ring Number 
Total Carbon Number Six Membered Naphthenic Ring Number 
Total Sulfur Number Total Aromatic Ring Number 
Total Nitrogen Number Thiophenic Ring Number 
Aromatic Hydrogen Number The Carbon Number on Aromatic Ring 
Alpha Hydrogen Number The Carbon Number on Naphthenic Ring 
The Number of Side Chains   

 

However, there are crucial thermodynamic properties that can not be obtained directly from a BE 

matrix, but must be evaluated by empirical or semi-empirical methods. Those thermodynamic 

properties are very important to model a complex system. The physical properties (e.g., Boiling Point 

(BP), Density etc) are the basis to the bulk properties estimation and other thermodynamics properties 

(e.g. the heat of formation, Gibbs energy of formation, the entropy of formation, heat capacity etc.) can 

be used as reaction indecies in support of the reaction modeling using an LFER approach. An efficient 

method to calculate those thermodynamic properties is the general fragmental group contribution 

method.  

 

4.2.2 Thermodynamic property estimation by group contribution 

The general fragmental group contribution method is a classic methodology wherein the property of a 

compound is a function of its structural group parameters (as determined by summing the frequency of 

each group occurring in the molecule and multiplying by its contribution). This method provides the 

advantage of obtaining quick estimates without requiring substantial computational resources. Since a 

BE matrix can be scanned for any pre-defined structural group, SPCM can make the use of any existing 
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group contribution method. In this thesis, two group contribution methods were employed: Joback1 and 

Gani2.   

4.2.2.1 Selected properties calculated by Joback method 

The Joback and Reid1 method identified 41 structural groups via the regression of 384 pure chemical 

compounds. These groups can then provide the set of thermodynamic properties listed in Table 4.2. 

Table 4.2 Thermodynamics properties in Joback method 
Critical Pressure Heat Capacity 
Critical Temperature Standard Enthalpy of Formation at 298 K 
Critical Volume Standard Gibbs Energy of Formation at 298 K 
Boiling Point Standard Enthalpy of Fusion 
Melting Point Standard Enthalpy of Vaporization at 298 K 
Viscosity   

 

To elaborate on how the Joback method was implemented in SPCM, Table 4.3 shows the details of the 

41 structural groups. In this table, the rows indicate the functional groups and the columns represent the 

contributions towards each of the properties in Table 4.2 . 
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Table 4.3 The structural groups in Jack method1. 

Group Tc Pc Vc Tb Tm Hform Gform CPa CPb CPc CPd Hfusion Hvap Visa Visb 

-CH3 0.01  0.00  65.00  23.58  -5.10  -76.45  -43.96  19.50  -0.01  0.00  0.00  0.91  2.37  548.29  -1.72  

-CH2- 0.02  0.00  56.00  22.88  11.27  -20.64  8.42  -0.91  0.10  0.00  0.00  2.59  2.23  94.16  -0.20  

>CH- 0.02  0.00  41.00  21.74  12.64  29.89  58.36  -23.00  0.20  0.00  0.00  0.75  1.69  -322.15  1.19  

>C< 0.01  0.00  27.00  18.25  46.43  82.23  116.02  -66.20  0.43  0.00  0.00  -1.46  0.64  -573.56  2.31  

0 0.01  0.00  56.00  18.18  -4.32  -9.63  3.77  23.60  -0.04  0.00  0.00  -0.47  1.72  495.01  -1.54  

=CH- 0.01  0.00  46.00  24.96  8.73  37.97  48.53  -8.00  0.11  0.00  0.00  2.69  2.21  82.28  -0.24  

=C< 0.01  0.00  38.00  24.14  11.14  83.99  92.36  -28.10  0.21  0.00  0.00  3.06  2.14  NA NA 

=C= 0.00  0.00  36.00  26.15  17.78  142.14  136.70  27.40  -0.06  0.00  0.00  4.72  2.66  NA NA 

≡CH 0.00  0.00  46.00  9.20  -11.18  79.30  77.71  24.50  -0.03  0.00  0.00  2.32  1.16  NA NA 

≡C- 0.00  0.00  37.00  27.38  64.32  115.51  109.82  7.87  0.02  0.00  0.00  4.15  3.30  NA NA 

-CH2- 0.01  0.00  48.00  27.15  7.75  -26.80  -3.68  -6.03  0.09  0.00  0.00  0.49  2.40  307.53  -0.80  

>CH- 0.01  0.00  38.00  21.78  19.88  8.67  40.99  -20.50  0.16  0.00  0.00  3.24  1.94  -394.29  1.25  

>C< 0.00  0.01  27.00  21.32  60.15  79.72  87.88  -90.90  0.56  0.00  0.00  -1.37  0.64  0.00  0.00  

=CH- 0.01  0.00  41.00  26.73  8.13  2.09  11.30  -2.14  0.06  0.00  0.00  1.10  2.54  259.65  -0.70  

=C< 0.01  0.00  32.00  31.01  37.02  46.43  54.05  -8.25  0.10  0.00  0.00  2.39  3.06  -245.74  0.91  

-F 0.01  -0.01  27.00  -0.03  -15.78  -251.92  -247.19  26.50  -0.09  0.00  0.00  1.40  -0.67  NA NA 

-Cl 0.01  0.00  58.00  38.13  13.55  -71.55  -64.31  33.30  -0.10  0.00  0.00  2.52  4.53  625.45  -1.81  

-Br 0.01  0.01  71.00  66.86  43.43  -29.48  -38.06  28.60  -0.06  0.00  0.00  3.60  6.58  738.91  -2.04  

-I 0.01  0.00  97.00  93.84  41.69  21.06  5.74  32.10  -0.06  0.00  0.00  2.72  9.52  809.55  -2.22  

-OH(alcohol) 0.07  0.01  28.00  92.88  44.45  -208.04  -189.20  25.70  -0.07  0.00  0.00  2.41  16.83  2173.72  -5.06  

-OH(phenol) 0.02  0.02  -25.00  76.34  82.83  -221.65  -197.37  -2.81  0.11  0.00  0.00  4.49  12.50  3018.17  -7.31  

-O-(nonring) 0.02  0.00  18.00  22.42  22.23  -132.22  -105.00  25.50  -0.06  0.00  0.00  1.19  2.41  122.09  -0.39  

-O-(ring) 0.01  0.00  13.00  31.22  23.05  -138.16  -98.22  12.20  -0.01  0.00  0.00  5.88  4.68  440.24  -0.95  

>C=O(nonring) 0.04  0.00  62.00  76.75  61.20  -133.22  -120.50  6.45  0.07  0.00  0.00  4.19  8.97  340.35  -0.35  

>C=O(ring) 0.03  0.00  55.00  94.97  75.97  -164.50  -126.27  30.40  -0.08  0.00  0.00  NA 6.65  NA NA 

O=CH-(aldehyde) 0.04  0.00  82.00  72.24  36.90  -162.03  -143.48  30.90  -0.03  0.00  0.00  3.20  9.09  740.92  -1.71  

-COOH(acid) 0.08  0.01  89.00  169.09  155.50  -426.72  -387.87  24.10  0.04  0.00  0.00  11.05  19.54  1317.23  -2.58  

-COO-(ester) 0.05  0.00  82.00  81.10  53.60  -337.92  -301.95  24.50  0.04  0.00  0.00  6.96  9.63  483.88  -0.97  

O(other) 0.01  0.01  36.00  -10.50  2.08  -247.61  -250.83  6.82  0.02  0.00  0.00  3.62  5.91  675.24  -1.34  

-NH2 0.02  0.01  38.00  73.23  66.89  -22.02  14.07  26.90  -0.04  0.00  0.00  3.52  10.79  NA NA 

>NH(non-ring) 0.03  0.01  35.00  50.17  52.66  53.47  89.39  -1.21  0.08  0.00  0.00  5.10  6.44  NA NA 

>NH(ring) 0.01  0.01  29.00  52.82  101.51  31.65  75.61  11.80  -0.02  0.00  0.00  7.49  6.93  NA NA 

>N-(nonring) 0.02  0.01  9.00  11.74  48.84  123.34  163.16  -31.10  0.23  0.00  0.00  4.70  1.90  NA NA 

-N=(nonring) 0.03  -0.01  NA 74.60  NA 23.61  NA NA NA NA NA NA 3.34  NA NA 

-N=(ring) 0.01  0.01  34.00  57.55  68.40  93.70  119.66  5.69  0.00  0.00  0.00  3.65  6.53  NA NA 

=NH NA NA NA 83.08  68.91  93.70  119.66  5.69  0.00  0.00  -16.88  0.00  12.17  NA NA 

=-CN 0.05  -0.01  91.00  125.66  59.89  88.43  89.22  36.50  -0.07  0.00  0.00  2.41  12.85  NA NA 

-NO2 0.04  0.01  91.00  152.54  127.24  -66.57  -16.83  25.90  0.00  0.00  0.00  9.68  16.74  NA NA 

-SH 0.00  0.01  63.00  63.56  20.09  -17.33  -22.99  35.30  -0.08  0.00  0.00  2.36  6.88  NA NA 

-S-(nonring) 0.01  0.00  54.00  68.78  34.40  41.87  33.12  19.60  -0.01  0.00  0.00  4.13  6.82  NA NA 

-S-(ring) 0.00  0.01  38.00  52.10  79.93  39.10  27.76  16.70  0.00  0.00  0.00  1.56  5.98  NA NA 
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The calculations of the properties in Table 4.2 can be illustrated in E.q.4.11. 
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In E.q.4.1, Ni is the occurrence of the ith group in a specific component. The values biT  is the property 

contribution of the ith group. 

 

The Joback method was later expanded to 87 groups for boiling point prediction by Stein, who included 

various CH groups for the paraffin, naphthenic ring and aromatic parts of a component. The key factor 

in employing this method is the identification of the structural groups in Table 4.3 given the BE matrix 

of a component. A search algorithm was developed in this thesis to determine those groups and 

subsequently calculate the properties by E.q.4.1.  
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Unfortunately, the Joback method is limited to lighter complex feedstocks, and does not work well with 

heavy feedstocks. To get more accurate results for heavier complex feedstocks, more isomeric details, 

aggregate ring structures and the interactions between multiple groups needed to be considered.   

4.2.2.2 Selected properties calculated by Rafiqul Gani method 

Recently, Rafiqul Gani2 and his coworkers developed a new approach for property estimation that used 

a total of 370 groups based on studying the data set of over 2000 pure compounds ranging from C3 to 

C60. Their method stressed the addition of isomers and multi-functional components and, thus,  will be 

appropriate for heavy feedstocks. The properties provided by this method are listed in Table 4.4. 

Table 4.4 Thermodynamics properties in Rafiqul Gani method 
Critical Pressure  
Critical Temperature Standard Enthalpy of Formation at 298 K 
Critical Volume Standard Gibbs Energy of Formation at 298 K 
Boiling Point Standard Enthalpy of Fusion 
Melting Point Standard Enthalpy of Vaporization at 298 K 

 

In this new method, the molecular structure of a compound is considered to be a collection of three 

types of groups: first-order groups, second-order groups and third-order groups. The first-orders groups 

(Table 4.5) are the basic building blocks intended to describe a wide variety of organic compounds. The 

second level groups (Table 4.6) permit a better description of polyfunctional compounds and 

differentiation among isomers. The third-order (Table 4.7) groups allow for detailed representations of 

systems of fused aromatic rings, systems of fused aromatic and nonaromatic rings, and systems of 

nonfused rings joined by chains of various other functional groups. 
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Table 4.5 The first order groups and their contributions in Gani method2 
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Table 4.6 The second order group and their contributions in Gani method2 
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Table 4.7 The third order group and their contributions in Gani method2 

 

 

The general expression of Gani model is shown in E.q. 4.2. 
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The property contributions of E.q.4.2 are shown in Table 4.8. 
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Table 4.8 The additional parameters in E.q.4.22 
Property f(X): the LHS of E.q.4.2 
Normal melting point(Tm),K                exp(Tm/147.450)      
Normal boiling point(Tb),K            exp(Tb/222.543)      
Critical temperature(Tc),K                    exp(Tc/231.239)      
Critical pressure(Pc),Bar                   (Pc-5.9827)-0.5-0.108998 
Critical volume(Vc),cm3/mol                      Vc-7.95         
Standard Gibbs energy at 298K(Gf ),kJ/mol           Gf+34.967           
Standard enthalpy of formation at 298K(Hf ),kJ/mol Hf-5.549          
Standard enthalpy of vaporization at 298K(Hv),kJ/mol Hv-11.733          
Standard enthalpy of fusion(Hfus),kJ/mol        Hfus+2.806    

 

The Gani method considered not only 182 individual first order functional group structures, but also the 

inter-group effects and ring configurations of 122 second order group structures and 66 third order 

structural groups. Because of overlapping structural groups, it is necessary to prioritize their 

identification within the SPCM code. The priority used in this thesis is: heteroatom ring class > aromatic 

ring class > naphthenic ring class > non ring class. An algorithm to identify those groups from a BE 

matrix was developed for this thesis, whereby following the properties listed in Table 4.8 to be 

calculated by E.q.4.2. As a byproduct, this algorithm also allow for the calculation of the frequency of 

functional groups from compositional analytic data (e.g., methyl, ethyl, phenol, etc.). 

 

Although these two group contribution methods provide most of the properties a given model may need, 

the density of a component is not included. Density plays an important role in bulk property estimation. 

The calculation of density for a pure component can be indirectly derived from the properties obtained 

from the above group contribution methods. 

4.2.2.3 Density calculation for a pure component 

There are two methods to calculate the density of one pure component. One is to first calculate the 

molecular volume by the equation of state (EOS), and then get the value of the density by dividing the 

molecular volume by the molecular weight. The second is to use a correlation model based on critical 

properties. This thesis explored both methods.  
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The first method was employed by using two cubic equations of state: Peng-Robinson (PR) and Soave 

modification of Redlich-Kwong (SRK). The critical properties in the EOS model are found by using the 

above group contribution method as well as other published correlations and parameters such as the 

acentric factor. 

 

The second method applied in this thesis follows that of the Yen-woods correlation model based on 

critical properties shown in E.q.4.3. 
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The methods to estimate the density of a pure component are not as accurate as the other properties 

estimated using the above group contribution methods. Therefore, future work should be done to modify 

or replace the density calculation methods. 

4.2.2.4 Summary of thermodynamic property calculation 

Overall, group contribution methods perform well for the calculation of most of the thermodynamic 

properties required in composition and reaction modeling. However, the accuracy of some 

thermodynamic properties for pure components (e.g., the heat of formation) may not meet the standards 

required when reaction modeling with an LFER approximation because of the sensitivity of some 

reaction indices in LFER. In addition, the group contribution method can not be used to calculate the 

properties of immediate species (e.g., radical, ions), which are important when modeling at a 

mechanistic level. Therefore, quantum chemistry package has been applied for the calculation of those 

properties. 
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4.2.3 Selected properties calculated by quantum chemistry 

The semi-empirical molecular orbital calculation from quantum chemistry can provide a high degree of 

accuracy for some properties, such as heat of formation, deriving from the molecular geometry. It is 

used MOPAC package as quantum chemistry calculation package in this thesis. To apply MOPAC in 

SPCM, it needs to convert the 2D structure of BE matrix to 3D structure first 

4.2.3.1 The molecule’s conversion from 2D BE matrix to 3D structure 

The 3D structure of a molecule provides a preliminary basis to launch the MOPAC calculation. The 3D 

representation of a molecule is determined by its 3D geometry. The geometry can be defined in terms of 

either internal or Cartesian coordinates. Both of these two coordinates can be used as input parameters 

for quantum chemistry calculation. In thesis, it will illustrate the 3D geometry of a molecule by internal 

coordinates since it is a traditional default input format for MOPAC3. In this thesis, it applied two 

2D-3D conversion methods. It has been developed an improved algorithm based on Broadbelt4 for pure 

hydrocarbon mixtures. Moreover, an external package-OpenBabel5 has been employed to get the 3D 

coordinate for a more general complex feedstock. 

 

An internal coordinate of a component can be expressed as following: For any one current atom i in this 

component, there is an interatomic distance (bond length) from an already-defined parent atom j; there 

is an interatomic angle in degrees (bond angle) between atoms i and j and an already defined angle atom 

k, (k and j must be different atoms), and, finally, a torsional angle (dihedral angle) in degrees between 

atoms i, j, k, and an already defined dihedral atom l (l cannot be the same as k or j). An internal 

coordinate example of ethane is shown in Table 4.9. 
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Table 4.9 Internal coordinate representation of ethane 
  Bond length Bond angle Dihedral angle Parent atom Angle atom Dihedral atom 
  1 2 3 4 5 6 7 8 9 
C 0.00  0 0.0  0 0.0  0 0 0 0 
C 1.52  1 0.0  0 0.0  0 1 0 0 
H 1.11  1 111.1  1 0.0  0 1 2 0 
H 1.11  1 111.1  1 -120.0  1 1 2 3 
H 1.11  1 111.1  1 120.0  1 1 2 3 
H 1.11  1 111.1  1 60.0  1 2 1 3 
H 1.11  1 111.1  1 -60.0  1 2 1 3 
H 1.11  1 111.1  1 180.0  1 2 1 3 

 
In Table 4.9, the bond length, bond angle and dihedral angle are tabulated in columns 1, 3 and 5 

respectively. The optimizability of each of these geometric parameters is designated by a number in 

columns 2, 4 and 6 respectively. A zero is specified if the geometric parameter remains constant 

throughout the process of achieving self-consistency. A one is recorded if the geometric parameter is 

allowed to vary as the optimization is carried out. Columns 7, 8 and 9 denote the other atoms with 

respect to which these values are specified, referred to here as the parent atom, angle atom and dihedral 

atom. 

 

For each row of Table 4.9, the indices of the current atom, parent atom, angle atom and dihedral atom 

can be determined by the connectivity of those atoms in the BE matrix. The values of the bond angle, 

bond length and dihedral angle are determined by the stable state structural properties of those atoms. 

 

Broadbelt4 developed an approximation method to parse the 2D structure of the BE matrix to a 3D 

representation based on the experimental data of atom structural properties for pure simple hydrocarbon 

mixtures. However, this algorithm is limited in two key aspects: it lacks the data for five-member and 

heteroatom ring; and the BE matrix connectivity search algorithm ignores the case of cata-condensed 

ring structures (e.g., phenanthrene, pyrene etc.). Therefore, a modified algorithm based on Broadbelts4 

was developed for this thesis.  

 

Typical structural data for internal coordinate are listed below in Table 4.10. 
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Table 4.10 Typical atom data as internal coordinate 
Bond Type Bond length 
C-H 1.11 
C-C 1.52 
C=C 1.32 
C#C 1.13 
Hybridization of parent atom Bond angle 
sp 180 
sp2 120 
sp3 109 
sp3-five member ring 100 
Non cyclic atom 
Hybridization of parent atom Dihedral angle 
Not dependent on parent atom (180,60,-60) 
sp2 (-180) 
sp3 (120,-120) 
cyclic atom 
aromatic (0,0,0,0,0,0,) 
cyclohexadienyl (30,-20,0,10,0,-20) 
cyclohexenyl (40,-10,0,-20,50,-60) 
cyclohexyl (60,-60,60,-60,60,-60) 
cyclopentadienyl (15,-10,-,5,0) 
cyclopentenyl (20,-5,0,-10,25) 
cyclopentyl (30,-30,30,-30,30) 

 

In Table 4.10, the first part indicates bond length. The bond type is listed in left column and the right 

column gives the corresponding value for the bond length. The second part deals with the bond angle. 

The bond angle (right column) is determined by the hybridization of the parent atom (left column). The 

last part indicates the dihedral angle. The value of the dihedral angle is chosen from within the 

parenthesis based on a predefined search order and the properties of the current and parent atoms. The 

current atom is classified as non-cyclic atom and cyclic atom. For a non-cyclic atom, the current atom 

can be dependent or non-dependent upon the parent atom’s hybridization. For a cyclic atom, the 

dihedral angle is determined by the ring type of the cyclic atom. 

 

This built-in algorithm can provide fast conversion from a 2D BE matrix to a 3D coordinate geometry 

for regular hydrocarbon components without any external package. However, the structural data of this 
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algorithm is limited to the bonds between carbons and hydrogen. To extend this conversion to a generic 

context, a general algorithm that can cover various atom and bond types (e.g., C, S, N, O, H, etc.) is 

required. As it was not a goal of this thesis, an external package was employed to solve this problem.  

 

Openbabel5 is a free open-sourced package that converts between over 110 chemical file formats. 

Openbabel has the internal data necessary to convert a 2D file format into a 3D coordinate file for most 

structures in the world. A Openbabel library written in the Python programming language is freely 

available for external development, and, was used for this thesis in order to obtain the 3D coordinates. 

 

 At first, a parser converts the BE matrix “.dat” file to a chemical markup language “.cml” file. The 

“.cml” file can then be converted to a MOPAC coordinate file using the Openbabel library. This external 

method not within the SPCM can handle the most molecules in complex feedstocks, but requires the 

installation of the Openbabel package. 

4.2.3.2 Selected properties calculated by MOPAC 

MOPAC uses the internal 3D coordinate files to calculate the critical thermodynamic properties of 

reaction. MOPAC is a general-purpose, semi empirical-molecular orbital package for the study of solid 

state and molecular structures and reactions. The semi-empirical Hamiltonians MNDO6, AM17, PM38, 

PM6, and MNDO-d9,10, etc. are used for the calculation of molecular orbitals in order to obtain the heat 

of formation and its derivative with respect to molecular geometry. 

 

The heat of formation is the most useful pure component property with regard to reaction modeling. 

E.q.4.4 shows its calculation in MOPAC. 

      (4.4)  
Where, Eelect is the electronic energy, Enuc is the nuclear-nuclear repulsion energy, -Eisol is the energy 

required to strip all the valence electrons off all the atoms in the system, and Eatom is the total heat of 
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atomization of all the atoms in the system. The index i is over all atoms in the system. The MNDO or 

PM3 method was selected for hydrocarbon components based on past experience. 

 

Besides the heat of formation, other thermodynamic properties, such as heat capacity, entropy, and 

internal energy, can be calculated using the vibrational frequencies (energies), moments of inertia, 

symmetry number, and temperature. To calculate these properties, the FORCE method must be 

specified and the symmetry number of a component must be entered.  

 

For the purpose of this thesis, the only calculation of the heat of formation can be automatically 

calculated by the SPCM. The other properties can be evaluated manually. 

4.2.4 Miscellaneous properties:image and chemical name 

An intuitive view of the molecule is very convenient in the development of a complex model. Instead of 

the tedious system of referential names (specie1, specie2, etc.), using a graphical 2D depiction of a 

molecule or even its IUPAC name can provide a highly efficient way to build and analyze composition 

and reaction models. Therefore, an automated algorithm to generate the 2D image of a molecule and its 

IUPAC name was developed for this thesis.  

 

The mechanism of generating a molecule’s image is analogous to the 3D structure parsing. In this case, 

Openbabel is used to generate a 2D coordinate file instead of a three dimensional one. That file can then 

be processed by other Python image libraries to create the graphical image of the molecule. Tis 

methodology was included in the SPCM. 

 

The IUPAC name can be captured by another free, opened-source python library: webel. Webel uses the 

CML file to identify the molecule and then retrieves its IUPAC name from a free NIH web server11.   
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In addition, CambridgeSoft’s ChemDraw and ChemScript can be used to generate the graphical file and 

the IUPAC name respectively. 

4.2.5 Supplemental property database 

Although the combination of the above methods provides a strong basis for property estimation in 

SPCM, each approach has its own limitations. A supplemental scheme was built into the SPCM in order 

to provide an open, flexible database of property estimations. Database entries for specific properties 

can be entered or corrected based on other estimation methods, relevant literature or experimental data. 

If the built-in methods of the SPCM do not provide good estimations, the user can make note in the 

database that further evaluation is needed. Moreover, the property database of the SPCM allows for the 

avoidance of duplicated property estimation calculations. Simply looking up precalculated values will 

eliminate a large computational burden when dealing with large complex molecules (e.g., a resid’s 

molecule). Although kinetic models vary based on chemistry and feedstock, the species in those systems 

are often duplicated. It is unnecessary to evaluate the properties of a molecule that has been calculated 

previously for an existing model. The database stores the calculated property information of a molecule 

the first time it occurs in any model. Any subsequent run of a model will obtain this information directly 

from the database rather than make the calculation again.  

 

Any database should rely on a unique key value to represent each row of data. For this property 

database, the molecule’s SIMILES code was chosen. SMILES code is based on the canonical graph 

representation of the molecule, and uses a system of implicit hydrogens. SIMLES is an open, public 

standard widely used in the field of chemical informatics.  

 

All structural, thermodynamic, and miscellaneous properties are recorded in the database. An 

Excel-VBA based interface allows user to search, edit, update, and delete the information for molecules 

in the database.  
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4.2.6 Automation of SPCM for pure components 

The SPCM flowsheet for pure components is shown in Figure 4.2. It contains two functional programs: 

PropGen and DictGen. PropGen is a C code program that is used to calculate the structural and 

thermodynamic properties of pure components by the group contribution method as discussed in the 

previous sections. DictGen is a Python language program which generates the 3D MOPAC input file, 

the 2D graphical depiction file, and the IUPAC name for pure components via external python libraries 

(e.g., Openbabel, Image Library etc.).  

 

In Figure 4.2, each species in CME’s MCA will first have its BE matrix and SIMLES code generated. 

Then the database is checked for the species existence. 

 

If it already exists, the property information is obtained directly from the database directly and sent to 

CME for further composition modeling. If the molecule does not exist in the database, it is sent to 

PropGen for the calculation of the structural and selected thermodynamic properties. Next, the molecule 

is processed by DictGen in order to obtain the graphical representation, the IUPAC name and the three 

dimensional coordinate file used by MOPAC. MOPAC7 is then launched in order to calculate the final 

selected properties. Finally, The calculated properties are sent back to CME. The SPCM recursively 

follows this logic until all species in the MCA are traversed. Then, CME provides a user-friendly 

interface (Figure 4.3) for updating and correcting the property information before it is synchronize with 

the database. Finally, the database can be used by KME for LFER reaction indices, the heat of reactions 

and product properties. 
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Figure 4.2 Structure-Property Correlations for pure Component 
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Figure 4.3 Synchronization of the Property Database via a user friendly interface 
 

4.3 Bulk property estimation 

Bulk properties serve as the objective function during MCA0 optimization in composition modeling, as 

well as the final product properties in reaction modeling. The estimation of bulk properties is based on 
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the properties for pure components in the system. The SPCM uses two classifications for those 

properties: built-in properties and user-supplied properties. 

 

The built-in properties are a collection of widely used composition modeling properties such as 

molecular weight, H to C ratio, Aromatic Hydrogen fraction, Alpha Hydrogen fraction, the carbon 

fraction on aromatic rings (CA), the carbon fraction on naphthenic rings (CN), global SARA and PONA 

weight/mol fractions, global sulfur weight percent, global nitrogen weight content, density, and 

simulated distillation (volume or weight) and so on. Except for the simulated distillation data, all the 

properties can be calculated with a weight-based or mol-based mixing rule based on the pure 

components’ properties.  The data of simulated distillation is defined by the sorted set of boiling points 

for all the molecules in the system. 

 

Not every feed stock process needs the same bulk properties. For example, gasoil uses a PONA table, 

while resid usually uses SARA fractions. Therefore, the SPCM provides different built-in property 

templates based on different feedstocks. 

 

User-supplied properties attend the practical need for non-standardized measurements. Detailed 

modeling often contains thousands of species with in depth isomeric details. However, realistic data 

available to modeler is usually only of O (20-30). In these cases, lumps of species are simply created 

based on some given constraint. For example, IP8 is a lumped component for all isoparaffins with a 

carbon number of 8. That lump summarizes all the isomers variously branched. These lumped criteria 

can be specified via an intuitive Excel-based interface and will immediately serve as part of the bulk 

property calculation code for both the simulation and tuning modes of reaction modeling. 
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4.4 The reaction’s thermodynamic properties of reaction 

In reaction modeling, the enthalpy change of reaction ( rxnH∆ ) , the entropy change of reaction 

( rxnS∆ ), and the Gibbs energy change of reaction ( rxnG∆ ) are very important, not only because serve 

as reaction indices for the LFER approximation, but also because they can be used to calculate the 

equilibrium constant and energy balance. The estimation of each of these three reaction properties is 

derived from the properties of the reactants and products shown by E.q.4.5. 

producteach  offormation  ofenergy  Gibbs  theis 
reactant each  offormation  ofenergy  Gibbs  theis 
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   (4.5) 

If the components in the reaction are not temperature-sensitive, the standard (298K) enthalpy of 

formation ( θ
fH∆ ) and the standard Gibbs energy of formation ( θ

fG∆ ) of the pure component can be 

used. Otherwise, a departure function can be applied to calculate the enthalpy of formation and the 

Gibbs energy of formation at the given temperature (E.q.4.6). The heat capacity is obtained from the 

Joback method.  



 

 

120 

 eraturegiven temp aat formation  ofentropy   theand

formation  ofenergy  Gibbs  theformation, ofheat   theare  ,  ,

298K at formation  ofentropy  standard  theis 

 formation  ofenergy  Gibbs standard  theis 

formation, ofheat  standard  theis 
298

298

298

T
f

T
f

T
f

f

f

f

T
p

f
T
f

T

pf
T
f

T

pf
T
f

SGH

S

G

H

dT
T

C
SS

dTCGG

dTCHH

∆∆∆

∆

∆

∆

+∆=∆

+∆=∆

+∆=∆

∫

∫

∫

θ

θ

θ

θ

θ

θ

  (4.6) 

4.5 Summary and discussion 

In this chapter, the structure-property correlation is discussed. The SPCM plays a fundamental role in 

supporting the composition modeling in CME as well as the kinetic modeling in KME. 

 

This chapter addresses first the estimation of pure component properties. In this thesis, every molecule 

in the system is represented by a BE matrix, which is a explicit 2D representation of a molecule’s 

structure. Structural related properties are calculated directly from the BE matrix in a straightforward 

process. Thermodynamic properties are evaluated by group contribution methods and quantum 

chemistry software. Two group contribution methods were discussed in this chapter. The Joback 

method was applicable to light feedstocks, and the Gani method with its 370 detailed structural groups, 

was applicable to heavier complex feedstocks. Then the chapter turned to the application of the quantum 

chemistry tool, MOPAC. In order to fulfill MOPAC’s calculation requirements, a conversion from a 2D 

to a 3D structure was addressed. At the same time, the generation of the IUPAC name and a 2D image of 

each species were discussed. Finally, a database of pure component properties was discussed and its 

logic was outlined. 
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The prediction of pure component density was noted as sub-par compared with the other estimated 

physical properties. This deficiency should be addressed by the future incorporation of other advanced 

methods or by user correction at the database level. For the properties calculated by MOPAC, only the 

heat of formation is automatically to the KMT suite. Other properties such as Gibbs energy, heat 

capacity, and entropy could be integrated into the SPCM in a future revision. 

 

The calculation of bulk properties is discussed based on the estimation of the pure components’ 

properties. Besides the predetermined built-in properties, the SPCM allows the modeler to specify 

specific lumping strategies for reaction modeling.  

 

Finally, this chapter is illustrated how to calculate the thermodynamic properties of reaction from the 

pure components’ properties. 
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Chapter 5  Composition modeling of selected complex feedstocks 

5.1 Introduction 

Chapter 2 discussed how a set of analytical data could be transformed into a statistical representation of 

a complex feedstock thereby obtaining the MCA0, the set of initial concentration values necessarily for 

kinetics modeling. The goal of this chapter is to validate this approach by applying it to a variety of 

feedstocks. This methodology has been successfully applied to petroleum middle distillates, natural gas 

condensates, petroleum heavy gas oil (HGO), and petroleum vacuum gas oil (VGO), and petroleum 

resids. 

 

5.2 Petroleum middle distillates 

In order to validate the hybrid approach of representing complex feestocks statistically, a case study of a 

light petroleum fraction-middle distillate was performed. Both bulk properties and detailed composition 

data were measured for this fraction. Bulk properties were used as the optimization criteria, the detailed 

composition data was used for model validation. The analytical data, the CME generated composition 

model, and the model results will be discussed in detail in the following sections. 

 

5.2.1 Analytical characterization 

This modeling method was applied to two dissimilar middle distillates. The analytical properties for 

these two samples were provided by Ghent University 1 . The overall weight PIONA (paraffin, 

isoparaffin, olefin, naphthenic, and aromatic) fraction, density (g/cm3) and ASTM D2887 simulated 

distillation curve (K) were used as the objective function to optimize the attribute PDF parameters for 

the feedstocks are summarized in Table 5.1. 
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Table 5.1 Bulk properties for petroleum middle distillates 
 
 Sample1 Sample2 
WTP_frac: 0.143  0.235  
WTI_frac: 0.211  0.254  
WTO_frac: 0.000  0.000  
WTN_Frac: 0.458  0.341  
WTA_frac: 0.188  0.171  
Density(g/cm3): 0.7987 0.7983 
IBP(K): 386  422  
5BP(K): 408  455  
10BP(K): 416  466  
20BP(K): 438  475  
30BP(K): 450  483  
40Bp(K): 462  489  
50BP(K): 475  498  
60BP(K): 487  503  
70BP(K): 498  511  
80BP(K): 515  521  
90BP(K): 533  533  
95Bp(K): 543  541  
EBP(K): 577  561  

 

The detailed composition data is provided by a comprehensive 2D Gas Chromatography (GC)2 that can 

analyze over 300 components with high accuracy. The detailed description is shown as Figure 5.1. The 

detailed data is shown in a later section for model validation. 
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Figure 5.1 Comprehensive 2D GC2 
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5.2.2 Homologous series determination 

For these two samples, the core series were explicitly determined. Their simulated distillation data 

indicated the max ring number of aromatic cores in these samples is two because the end boiling point 

cut was less than 600 K. Based on analytical literature and previous experience, five saturates and five 

aromatics structures were specified for this model as shown in Figure 5.2.  

 

 

Figure 5.2 Selected homologous series for middle distillates 

5.2.3 Structural attribute sampling protocol and PDF form 

The quantitative optimization was tested as two cases by two different structural attribute sampling 

protocols and attribute PDF forms as discussed in Chapter 2. In case 1, the feedstock was modeled as a 

set of homologous series with side chain information. The global fractions of these series were set as 

discrete values and a gamma distribution was imposed as the attribute PDF for carbon number and the 

number of side chain of each series. In case 2, the set of homologous series was decomposed to several 

elemental structural attributes, and the feedstock was sampled from multiple elemental structural 

attributes covering the core series’ structure and side chain information. Figure 5.3 shows the specific 

sampling protocol for this case based on the general sampling protocol mentioned in Chapter 2. Both 

feedstocks were modeled by each of the above two cases. 
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Figure 5.3 sampling protocol for middle distillates 

 

5.2.4 Conditional probability 

In order to ensure physically realistic molecules, conditional probability distributions were used.  Since 

the petroleum middle distillates were bounded by both an initial boiling point and a final boiling point, it 

was necessary to ensure molecules that were too small or too large were not considered. By constraining 

the boiling point cut range in CME for each series, the range of the carbon number was determined via 

structure property correlation before the optimization. Based on findings in the literature3, iso-paraffin 

and single ring components were limited to one, two or three side chains. Two ring components were 

limited to only one or two side chains.  

 

In addition to the overall carbon constraints, it was necessary to add conditional probability constraints 

on the number and length of sidechains for the isoparaffin, naphthenic, and aromatic fractions.  For 

instance, if a molecule contained only one sidechain carbon, then only one sidechain could possibly be 
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attached to the molecule core.  Furthermore, since each sidechain contains at least one carbon, any one 

sidechain can be no longer than the total number of sidechain carbons minus the number of sidechains 

other than itself. 

 

5.2.5 Optimization of the PDF parameters 

The PDF parameters for selected petroleum middle distillates were optimized using a global simulated 

annealing technique.  The chi square objective function of Eq. 5.1 was a combination of various 

molecular properties that could be easily compared to experimental data: 
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The numerator is the square of the difference between the model prediction and the measurement for 

calibration. The denominator is a weighting factor analogous to the standard deviation of an 

experimentally determined value.  

5.2.6 Validation results 

The model predictions for the petroleum middle distillates are herein discussed for each of the two 

sampling protocols respectively: case 1 and case 2. 

5.2.6.1 Case 1 validation results  

The optimized results of two middle distillate samples with case 1 are shown in Table 5.2. The 

distribution of the number of side chain was excluded from tuning, and was given a fixed distribution 
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based on Ranzi3 as shown in Table 5.3. The branch point locations were assumed to follow a uniform 

distribution. For the most part, the model predictions were accurate to within an experimental standard 

deviation. 

Table 5.2  Model predictions for the analytical properties of two middle distillates with case 1. 
 

  Sample1 Sample2 
  Calc Exp Calc Exp 
WTP_frac: 0.143  0.143  0.238  0.235  
WTI_frac: 0.211  0.211  0.252  0.254  
WTO_frac: 0.000  0.000  0.000  0.000  
WTN_Frac: 0.458  0.458  0.338  0.341  
WTA_frac: 0.188  0.188  0.172  0.171  
Density(g/cm3): 0.8174  0.7987 0.8249  0.7983 
IBP(K): 385  386  422  422  
5BP(K): 406  408  455  455  
10BP(K): 422  416  465  466  
20BP(K): 436  438  475  475  
30BP(K): 451  450  483  483  
40Bp(K): 462  462  492  489  
50BP(K): 475  475  495  498  
60BP(K): 487  487  502  503  
70BP(K): 499  498  512  511  
80BP(K): 515  515  521  521  
90BP(K): 533  533  533  533  
95Bp(K): 544  543  542  541  
EBP(K): 580  577  560  561  
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Table 5.3  Typical weight distribution of branched isomers of C83 
 
Isomers Ponca Occidental Texas Internalweights 
2-Methylheptane 46.3 36.9 42.1 45.8 
3-Methylheptane 15.4 28.5 23.4 22.9 
4-Methylheptane 10.3 10.2 9.3 11.5 
2,3-Dimethylhexane 3.6 5.4 6.3 3.4 
2,4-Dimethylhexane 3.1 5.5 4.2 3.4 
2,5-Dimethylhexane 3.1 5.7 4 3.4 
3,4-Dimethylhexane 6.7 2.6 3.7 3.4 
2,2-Dimethylhexane 0.5 – 0.3 – 
3,3-Dimethylhexane 1.5 1.7 0.4 – 
2,3,4-Trimethylpentane 0.3 – 1.1 1.2 
2,2,3-Trimethylpentane 0.2 – – – 
2,3,3-Trimethylpentane 0.3 – 0.6 – 
3-Ethylhexane 4.6 3.5 3.1 3.8 
2-Methyl-3-ethylpentane 3.1 – 1.5 1.2 
3-Methyl-3-ethylpentane 1 – – – 

 

Table 5.2 shows good model correlation for both of the sample feedstocks, with the model for Sample 1 

slightly outperforming that of Sample2. Each of the analytical properties for these two samples was 

predicted to within one experimental standard deviation except for density. The reason for the larger 

discrepancy in density may be caused its less adequate structure-property estimation However, the 

accuracy of the PIONA weight percents and the simulated distillation curve shows more persuasive 

proof about the model’s precision. 

 

As an additional validation, the experimentally determined and predicted carbon number distributions 

corresponding to each PIONA fraction, were compared via detailed composition data. The overall 

statistical analysis between calculations and experimental data is listed in Table 5.4. 

 

Table 5.4 the overall statistical analysis for middle distillate Sample1 and Sample2 with case 1 
 
  Sample1 Sample2 
  Deviation Deviation 
avg 0.3918  0.5085  
std. 0.4992  0.6842  
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Figure 5.4 shows the experimentally determined and predicted carbon number distribution for the 

paraffin fraction of middle distillate Sample1 with case 1.  The predicted curve matches the 

experimentally determined curve decently well. The predicted values between carbon numbers 10 to 15 

are slightly higher than those of the analytical data. 
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Figure 5.4 Predicted and experimental carbon number distribution for the paraffin fraction of middle 

distillate Sample1 with case 1. 

 

Figure 5.5 shows the predicted and experimentally determined carbon number distributions for the 

isoparaffin fraction of middle distillate Sample1 with case 1. The predicted curve matches the 

experimentally determined curve moderately well. The curve of analytical data is not ideally smooth. 

The predicted values for carbon number larger than 10 show a deviation from the analytical data curve. 

The values for carbon numbers 10-14 are overestimated, while the values of carbon number from 15 

onward end are underestimated. Since the deviation shows an opposite symmetry trend, the influences 

are cancelled out and only contribute a small effect to the overall weight fraction in objective function. 

Analytical data

Modeled data



 

 

132 

 

-1

0

1

2

3

4

5

0 5 10 15 20 25

C#

w
t%

 

 

Figure 5.5 Predicted and experimental carbon number distribution for the isoparaffin fraction of middle 

distillate Sample1 with case 1. 

 
Figure 5.6 shows the predicted and experimentally determined carbon number distribution for the 

naphthenic fraction of middle distillate Sample1 with case 1. The predicted curve matches the 

experimentally determined curve moderately well. The modeled data shows a sharper curve than 

analytical data. The predicted values for carbon number larger than 10 show a deviation from the 

analytical data curve. But opposite to isoparaffin case, the values for carbon numbers 10-14 are 

underestimated, while the values for carbon number from 15 onward end are overestimated. Since the 

deviation also shows as an opposite symmetry trend, the influences are cancelled out and only 

contribute a small effect to the overall weight fraction in the objective function. 
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Figure 5.6 Predicted and experimental carbon number distribution for the naphthenic fraction of middle 

distillate Sample1 with case 1. 

 

Figure 5.7 shows the predicted and experimentally determined carbon number distribution for the 

aromatic fraction of middle distillate Sample1 with case 1. The predicted curve does not show a good 

match with the experimentally determined curve. The modeled data nearly matches the position of the 

peak with the analytical data; however, the curve is quite sharper, and the values around the peak are 

overestimated. Since case 1 uses discrete values for the global fractions of each aromatic core, a 

constraint on these values may need to be imposed by adding additional analytical data for tuning the 

weight compositions of the aromatic rings. Another solution may be to use a structural attribute PDF on 

aromatic ring number, as in case 2.  

Analytical data

Modeled data
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Figure 5.7 Predicted and experimentally determined carbon number distributions of the aromatic 

fraction of middle distillate Sample1 with case 1. 

 

Figure 5.8 shows the experimentally determined and predicted carbon number distribution for the 

paraffin fraction of middle distillate Sample2 with case 1.  The predicted curve matches the 

experimentally determined curve moderately well. The predicted values close to the peak are 

underestimated. 

 

Analytical data

Modeled data



 

 

135 

 

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

C#

w
t%

 

 

Figure 5.8 Predicted and experimental carbon number distribution for the paraffin fraction of middle 

distillate Sample2 with case 1. 

 

Figure 5.9 shows the predicted and experimentally determined carbon number distributions for the 

isoparaffin fraction of middle distillate Sample2 with case 1. The predicted curve matches the 

experimentally determined curve decently well. 
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Figure 5.9 Predicted and experimental carbon number distribution for the isoparaffin fraction of middle 

distillate Sample2 with case 1. 

 
Figure 5.10 shows the predicted and experimentally determined carbon number distribution for the 

naphthenic fraction of middle distillate Sample2 with case 1. The predicted curve matches the 

experimentally determined curve moderately well. The modeled data shows a bit of a right-shift to the 

analytical data, and its peak value is underestimated. 
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Figure 5.10 Predicted and experimental carbon number distribution for the naphthenic fraction of 

middle distillate Sample2 with case 1. 

 

Figure 5.11 shows the predicted and experimentally determined carbon number distribution for the 

aromatic fraction of middle distillate Sample2 with case 1. The predicted curve does not show a good 

match with the experimentally determined curve. The modeled data shows a obvious right-shift to the 

analytical data close to the peak area, but the height of the peak area is consistent. Since case A uses 

discrete values for the global fractions of each aromatic core, a constraint on their values may need to be 

imposed by adding additional analytical data for tuning the weight compositions of the aromatic rings. 

Another solution may be to use a structural attribute PDF on the aromatic ring number, as in case 2.  

Analytical data

Modeled data
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Figure 5.11 Predicted and experimentally determined carbon number distributions of the aromatic 

fraction of middle distillate Sample2 with case 1. 

 

5.2.6.2 Case 2 validation results  

The optimized results of two middle distillate samples with case 2 are shown in Table 5.5. The 

distribution of the number of side chain was excluded from tuning, and was given a fixed distribution 

based on Ranzi3 as shown in Table 5.3. The branch point locations were assumed to follow a uniform 

distribution. For the most part, the model predictions were accurate to within an experimental standard 

deviation. 
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Table 5.5  Model predictions for the analytical properties of two middle distillates with case 2. 
 

  Sample1 Sample2 
  Calc Exp Calc Exp 
WTP_frac: 0.143  0.143  0.234  0.235  
WTI_frac: 0.211  0.211  0.254  0.254  
WTO_frac: 0.000  0.000  0.000  0.000  
WTN_Frac: 0.458  0.458  0.341  0.341  
WTA_frac: 0.188  0.188  0.171  0.171  
Density(g/cm3): 0.8081  0.7987 0.8086  0.7983 
IBP(K): 385  386  422  422  
5BP(K): 411  408  455  455  
10BP(K): 422  416  465  466  
20BP(K): 440  438  476  475  
30BP(K): 454  450  484  483  
40Bp(K): 465  462  489  489  
50BP(K): 475  475  498  498  
60BP(K): 487  487  505  503  
70BP(K): 498  498  512  511  
80BP(K): 512  515  521  521  
90BP(K): 530  533  533  533  
95Bp(K): 544  543  542  541  
EBP(K): 577  577  563  561  

 

 

Table 5.5 shows good model correlation for both of the sample feedstocks. Each of the analytical 

properties for these two samples was predicted to within one experimental standard deviation except for 

density. The reason for this discrepancy in density may be its less adequate structure-property 

estimation method. However, the accuracy of PIONA weight percents and the simulated distillation 

curve shows more persuasive proof about the model’s precision. 

 

As an additional validation, the experimentally determined and predicted carbon number distributions 

corresponding to each PIONA fraction were compared via detailed composition data. The overall 

statistical analysis between calculations and experimental data is listed in Table 5.6. 
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Table 5.6 the overall statistical analysis for middle distillate Sample1 and Sample2 with case 2. 
 
  Sample1 Sample2 
  Deviation Deviation 
avg 0.2015  0.5118  
std. 0.2946  0.4790  

 

Figure 5.12 shows the experimentally determined and predicted carbon number distribution for the 

paraffin fraction of middle distillate Sample1 with case 2.  The predicted curve matches the 

experimentally determined curve decently well. The predicted values close to the peak area are higher 

than the analytical data. 

  

Figure 5.12 Predicted and experimental carbon number distribution for the paraffin fraction of middle 

distillate Sample1 with case 2. 

 
Figure 5.13 shows the predicted and experimentally determined carbon number distributions for the 

isoparaffin fraction of middle distillate Sample1 with case 2. The predicted curve matches the 

experimentally determined curve moderately well. The curve of analytical data is not ideally smooth. 

The predicted values for carbon number larger than 10 shows a deviation from the analytical data curve. 

The values for carbon numbers 10-14 are overestimated, while the values of carbon number from 15 

onward end are underestimated. Since the deviation also shows an opposite symmetry trend, the 
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influences are cancelled out and only contribute a small effect to the overall weight fraction in the 

objective function. 

  

Figure 5.13 Predicted and experimental carbon number distribution for the isoparaffin fraction of 

middle distillate Sample1 with case 2. 

 
Figure 5.14 shows the predicted and experimentally determined carbon number distribution for the 

naphthenic fraction of middle distillate Sample1 with case 2. The predicted curve matches the 

experimentally determined curve decently well. The predicted value at the peak is a bit higher than the 

analytical data. 

 

Figure 5.14 Predicted and experimental carbon number distribution for the naphthenic fraction of 
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middle distillate Sample1 with case 2. 

Figure 5.15 shows the predicted and experimentally determined carbon number distribution for the 

aromatic fraction of middle distillate Sample1 with case 2. The predicted curve matches the 

experimentally determined curve moderately well. The curve of the modeled data is a bit sharper and 

higher than the analytical data close to the peak. Compared to the model of middle distillate Sample1 

with case 1, the results are attained quite an improvement.  

  

Figure 5.15 Predicted and experimentally determined carbon number distributions of the aromatic 

fraction of middle distillate Sample1 with case 2. 

 

Figure 5.16 shows the experimentally determined and predicted carbon number distribution for the 

paraffin fraction of middle distillate Sample2 with case 2.  The predicted curve matches the 

experimentally determined curve decently well. The peak area of the predicted values was a bit of a 

right-shift compared to the analytical data. 
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Figure 5.16 Predicted and experimental carbon number distribution for the paraffin fraction of middle 

distillate Sample2 with case 2. 

 
Figure 5.17 shows the predicted and experimentally determined carbon number distributions for the 

isoparaffin fraction of middle distillate Sample2 with case 2. The predicted curve matches the 

experimentally determined curve decently well although the curve of analytical data is not ideally 

smooth. 
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Figure 5.17 Predicted and experimental carbon number distribution for the isoparaffin fraction of 
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middle distillate Sample2 with case 2. 

Figure 5.18 shows the predicted and experimentally determined carbon number distribution for the 

naphthenic fraction of middle distillate Sample2 with case 2. The predicted curve matches the 

experimentally determined curve moderately well. The predicted values close to the peak are lower than 

the analytical data and show a bit of a right-shift. 
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Figure 5.18 Predicted and experimental carbon number distribution for the naphthenic fraction of 

middle distillate Sample2 with case 2. 

 

Figure 5.19 shows the predicted and experimentally determined carbon number distribution for the 

aromatic fraction of middle distillate Sample2 with case 2. The predicted curve matches the 

experimentally determined curve acceptably. The curve of the modeled data is a bit lower than the 

analytical data and shows a left-shift close to the peak. However, compared to the model of middle 

distillate Sample2 with case 1, the results are quite an improvement.  
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Figure 5.19 Predicted and experimentally determined carbon number distributions of the aromatic 

fraction of middle distillate Sample1 with case 2. 

 

5.2.6.3 Conclusion 

The validation results for two samples using two differently sampling cases show an overall good fit for 

the petroleum middle distillates. For both cases, the shape of the carbon number distribution for both 

samples can be captured so that the continuous attribute PDFs (e.g, gamma) can describe the side chain 

information quite well. For case1, using discrete values for the global fractions of each core series 

showed some limitations, especially with regard to the carbon number distributions for aromatic 

compositions. Additional measurements may need to be worked into the objective function in order to 

obtain a better fit. The method of case 2 naturally constrains these core series’ fractions, so it obtained 

an overall good fit for each of the calibrated items. In conclusion, the method of case 2 requires less 

analytical information than case 1 for calibration, and thus has more compatibility for heavier complex 

feedstocks (which generally have limited analytical information).  
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5.3 Natural gas condensates 

In addition to validating the modeled results of a petroleum middle distillate, this method was also 

applied to the heavier conversion produced by natural gas condensates. Bulk properties were used as the 

optimization targets. Unlike petroleum middle distillates, detailed composition data can not be obtained 

for this fraction, but GC-MS data can be used for the model validation.  The analytical information, the 

composition model, and the model results will be discussed in detail in the following sections. 

 

5.3.1 Analytical characterization 

This modeling method was applied to two dissimilar natural gas condensates. The analytical properties 

for these two samples were provided by Ghent University1. The properties used in the objective function 

were similar to those of the petroleum middle distillates, and are summarized in Table 5.7. The GC-MS 

data is shown in a later section for model validation. 
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Table 5.7 Bulk properties for natural gas condensates 
 
  GC663 GC659 
WTP_frac: 0.175  0.143  
WTI_frac: 0.325  0.149  
WTO_frac: 0.000  0.000  
WTN_Frac: 0.347  0.356  
WTA_frac: 0.152  0.351  
WTSulfur(%): 0.028  0.120  
Density(g/cm3): 0.903 0.738 
IBP(K): 0  0  
5BP(K): 0  0  
10BP(K): 0  0  
20BP(K): 311  329  
30BP(K): 336  342  
40Bp(K): 343  354  
50BP(K): 359  369  
60BP(K): 377  385  
70BP(K): 405  410  
80BP(K): 436  437  
90BP(K): 485  491  
95Bp(K): 0  0  
EBP(K): 629  607  

 

5.3.2 Homologous series determination 

For these two samples, the core series were explicitly determined. Based on analytical literature and 

previous experience, five saturate and ten aromatic structures (including one thiophenic component) 

were specified for this model, and are shown in Figure 5.20.  
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Figure 5.20 Selected homologous series for natural gas condensates 

5.3.3 Structural attribute sampling protocol and PDF form 

Similar to the petroleum middle distillates, quantitative optimization was tested by two different 

structural attribute sampling protocols and attribute PDF forms, as addressed in Chapter 2. In case 1, the 

feedstock was modeled as a set of homologous series with side chain information. The global fractions 

of these series were set as discrete values and a gamma distribution was imposed as the attribute PDF for 

carbon number and the number of side chain of each series. In case 2, the set of homologous series was 

decomposed to several elemental structural attributes, and the feedstock was sampled from multiple 

elemental structural attributes covering the core series’ structure and side chain information. Figure 5.21 

shows the specific sampling protocol for this case based on the general sampling protocol mentioned in 

Chapter 2. Both feedstocks were modeled by each of the two above cases. 
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Figure 5.21 sampling protocol for natural gas condensates 

 

5.3.4 Conditional Probability 

In order to ensure physically realistic molecules, conditional probability distributions were used.  Since 

the natural gas condensates were bounded by both an initial boiling point and a final boiling point, it was 

necessary to ensure that molecules that were too small or too large were not considered. By constraining 

the boiling point cut range in CME for each series, the range of carbon numbers was determined via 

structure property correlation before the optimization. Based on findings in the literature3, iso-paraffin 

components were limited one or two sidechains. The ring components were limited to only one side 

chain.  

 

In addition to the overall carbon constraints, it was necessary to add conditional probability constraints 

to number and length of sidechains for the isoparaffin, naphthenic, and aromatic fractions.  For instance, 

if a molecule contained only one sidechain carbon, then only one sidechain could possibly be attached to 
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the molecule core.  Furthermore, since each sidechain contains at least one carbon, any one sidechain 

can be no longer than the total number of sidechain carbons minus the number of sidechains other than 

itself. 

 

5.3.5 Optimization of the PDF parameters 

The PDF parameters for selected natural gas condensates were optimized using a global simulated 

annealing technique.  The chi square objective function of Eq. 5.2 was a combination of various 

molecular properties that could be easily compared to experimental data: 
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Eq. 5.2 is similar to Eq. 5.1 for petroleum middle distillates, the only difference being the addition of 

sulfur weight content. 

5.3.6 Validation results 

The model predictions for the natural gas condensates are herein discussed for each of the two sampling 

protocols: case 1 and case 2 respectively. 

5.3.6.1 Case 1 validation results  

The optimized results of two natural gas condensates samples with case 1 are shown in Table 5.8.  The 

distribution of the number of side chain was excluded from tuning and was given a fixed distribution 

based on Ranzi3 as shown in Table 5.3. The branch point locations were assumed to follow a uniform 
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distribution. For the most part, the model predictions were accurate to within an experimental standard 

deviation. 

 

Table 5.8  Model predictions for the analytical properties of two natural gas condensates with case 1. 
  GC663 GC659 
  Calc Exp Calc Exp 
WTP_frac: 0.150  0.143  0.177  0.175  
WTI_frac: 0.150  0.149  0.326  0.325  
WTO_frac: 0.000  0.000  0.000  0.000  
WTN_Frac: 0.352  0.356  0.346  0.347  
WTA_frac: 0.347  0.351  0.151  0.152  
WTSulfur(%): 0.12  0.12  0.022  0.028  
Density(g/cm3): 0.7672  0.7380  0.7244  0.7110  
IBP(K): 284.2  - 243.1  - 
5BP(K): 293.0  300.9  272.7  284.6  
10BP(K): 308.0  310.5  288.0  295.0  
20BP(K): 324.8  326.7  312.8  312.5  
30BP(K): 341.9  341.6  331.3  328.8  
40Bp(K): 357.2  356.6  351.5  345.2  
50BP(K): 376.5  372.3  361.6  362.6  
60BP(K): 388.2  389.6  381.5  381.8  
70BP(K): 408.2  409.9  407.2  404.4  
80BP(K): 436.9  435.8  431.7  433.4  
90BP(K): 485.9  475.2  477.8  477.7  
95Bp(K): 511.9  510.6  517.7  517.7  
EBP(K): 623.3  - 633.6  - 

 

Table 5.8 shows good model correlation for both of the sample feedstocks. Each of the analytical 

properties for these two samples were predicted to within one experimental standard deviation except 

for density. The reason for this discrepancy in density may be its less adequate structure-property 

estimation method. However, the accuracy of the PIONA weight percents and the simulated distillation 

curve shows more persuasive proof about the model’s precision. 

 

As an additional validation, the modeled data were compared to the GC-MS data. Figure 5.22 and 

Figure 5.23 show the group wise comparison between the modeled data and the analytical GC-MS data. 

From an overall point of view, the calculations match the analytical data moderately well. Groups that 
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show a greater composition fraction were matched better than those with a slighter composition 

fraction. 
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Figure 5.22 Calculated and experimental group composition data for GC 663 for case 1 
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Figure 5.23 Calculated and experimental group composition data for GC659 with case 1 
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5.3.6.2 Case 2 validation results  

The optimized results of two natural gas condensates samples with case 2 are shown in Table 5.9.  The 

distribution of the number of side chain was excluded from tuning, and was given a fixed distribution 

from Ranzi3 as shown in Table 5.3. The branch point locations were assumed to follow a uniform 

distribution. For the most part, the model predictions were accurate to within an experimental standard 

deviation. 

Table 5.9  Model predictions for the analytical properties of two natural gas condensates with case 2. 
  GC663 GC659 
  Calc Exp Calc Exp 
WTP_frac: 0.144  0.143  0.174  0.175  
WTI_frac: 0.149  0.149  0.325  0.325  
WTO_frac: 0.000  0.000  0.000  0.000  
WTN_Frac: 0.356  0.356  0.348  0.347  
WTA_frac: 0.351  0.351  0.153  0.152  
WTSulfur(%): 0.12  0.12  0.028  0.028  
Density(g/cm3): 0.7805  0.7380  0.7258  0.7110  
IBP(K): 279.4  - 259.1  271.3  
5BP(K): 309.7  300.9  282.8  284.6  
10BP(K): 325.9  310.5  306.0  295.0  
20BP(K): 346.3  326.7  315.8  312.5  
30BP(K): 356.7  341.6  325.9  328.8  
40Bp(K): 361.7  356.6  345.2  345.2  
50BP(K): 373.0  372.3  360.5  362.6  
60BP(K): 387.3  389.6  381.7  381.8  
70BP(K): 400.0  409.9  407.0  404.4  
80BP(K): 435.6  435.8  430.9  433.4  
90BP(K): 486.1  475.2  477.7  477.7  
95Bp(K): 532.0  510.6  514.9  517.7  
EBP(K): 609.5  - 628.0  632.3  

 

Table 5.9 shows good model correlation for both of the sample feedstocks. Each of the analytical 

properties for these two samples was predicted to within one experimental standard deviation except for 

density. The reason for this discrepancy in density may be its less adequate structure-property 

estimation method. However, the accuracy of the PIONA weight percents and the simulated distillation 

curve shows more persuasive proof about the model’s precision. 
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As additional validation, the modeled data were compared to the GC-MS data. Figure 5.24 and Figure 

5.25 show the group wise comparison between the modeled data and the analytical GC-MS data. From 

an overall point of view, the calculations match the analytical data moderately well. Groups that show a 

greater composition fraction were matched better than those with a slighter composition fraction. 

Compared to the modeled data with case 1, the results of naphthenic and aromatic components show 

much better consistent with the experimental data. 
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Figure 5.24 Calculated and experimental group GC-MS data for GC 663 with case 2 
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Figure 5.25 Calculated and experimental group GC-MS data for GC659 with case 2 
 

5.3.6.3 Conclusion 

The validation results for two samples using two different sampling protocols show an overall good fit 

for the natural gas condensates. This additional proof of concept gave a persuasive basis to apply CME 

on much heavier feeds. Over case 1 with fewer constraints and less analytical data, case 2 was 

determined to be more appropriate for heavy feedstocks. The next section will show the validation of 

CME to much heavier feedstocks solely using the sampling protocol of case 2. 

 

5.4 Petroleum heavy gas oil 

In addition to validating the modeled results of two above examples, this method was also applied to the 

much heavier conversion produced by petroleum heavy gas oil (HGO). The compositions of a HVGO 

conversion were much heavier than those of natural gas condensates but had a narrower boiling point 

cut range. For the HGO sample studied in the thesis, bulk properties were measured. In addition, Ghent 

University provided with a detailed composition data obtaining by GC-MS. Bulk properties were used 



 

 

156 

as the optimization criteria, the detailed composition data was used for model validation. The analytical 

information, the composition model, and the model results will be discussed in detail in the following 

sections.  

. 

5.4.1 Analytical characterization 

This modeling method was applied to one sample of HGO. The analytical properties for this sample was 

provided by Ghent University1. The properties used in the objective function is similar to these of the 

above two examples, and are summarized in Table 5.10. 

Table 5.10 Bulk properties for the HGO sample 
 
Name  
MW (g/mol): 300.4 
WTP_frac: 0.156  
WTI_frac: 0.245  
WTO_frac: 0.000  
WTN_Frac: 0.378  
WTA_frac: 0.221  
WTSulfur_%: 0.148 
WTNitrogen_ppm: 0 
Density (g/cm3): 0.8621  
IBP (K): 510 
5BP (K): 560 
10BP (K): 579 
20BP (K): 593 
30BP (K): 606 
40Bp (K): 616 
50BP (K): 626 
60BP (K): 637 
70BP (K): 648 
80BP (K): 661 
90BP (K): 678 
95Bp (K): 689 
EBP (K): 729 
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5.4.2 Homologous series determination 

For this sample, the core series were explicitly determined. Based on analytical literature and previous 

experience, six saturate and ten aromatic structures (including two thiophenic components) were 

specified for this model, and are shown in Figure 5.26.  

 

 

Figure 5.26 Selected homologous series for HGO 

5.4.3 Structural attribute sampling protocol and PDF form 

The quantitative optimization was tested followed case 2 as discussed in Chapter 2 in order to further 

validate the method of case 2 is more appropriate to heavy feedstocks. In case 2, the set of homologous 

series was decomposed to several elemental structural attributes, and the feedstock was sampled from 

multiple elemental structural attributes covering the core series’ structure and side chain information. 

The specific sampling protocol for this HGO sample was the same as that for natural gas condensates as 

shown in Figure 5.21. 

 



 

 

158 

5.4.4 Conditional probability 

In order to ensure physically realistic molecules, conditional probability distributions were used.  Since 

the HGO sample was bounded by both an initial boiling point and a final boiling point, it was necessary 

to ensure that molecules that were too small or too large were not considered. By constraining the 

boiling point cut range in CME for each series, the range of carbon numbers was determined via 

structure property correlation before the optimization. Based on findings in the literature3, iso-paraffin 

components were limited one or two sidechains. The ring components were limited to only one side 

chain.  

 

In addition to the overall carbon constraints, it was necessary to add conditional probability constraints 

on the number and length of sidechains for the isoparaffin, naphthenic, and aromatic fractions.  For 

instance, if a molecule contained only one sidechain carbon, then only one sidechain could possibly be 

attached to the molecule core.  Furthermore, since each sidechain contains at least one carbon, any one 

sidechain can be no longer than the total number of sidechain carbons minus the number of sidechains 

other than itself. 

 

5.4.5 Optimization of the PDF parameters 

The PDF parameters for selected HGO sample were optimized using a global simulated annealing 

technique.  The chi square objective function of Eq. 5.3 was a combination of various molecular 

properties that could be easily compared to experimental data: 
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Eq. 5.3 is similar to Eq. 5.2 for petroleum middle distillates, the only difference being the addition of 

average molecular weight. 

5.4.6 Validation results 

 

5.4.6.1 Case 2 validation results  

The optimized results of the HGO sample with case 2 are shown in Table 5.11. The distribution of the 

number of side chain was excluded from tuning, and was given a fixed distribution based on Ranzi3 as 

shown in Table 5.3. The branch point locations were assumed to follow a uniform distribution. For the 

most part, the model predictions were accurate to within an experimental standard deviation. 

 

 

 

 

 

 

 



 

 

160 

Table 5.11  Model predictions for the analytical properties of the HGO sample with case 2. 
 
Name Calc Exp 
MW (g/mol): 300.4 300.4 
WTP_frac: 0.156  0.156  
WTI_frac: 0.246  0.245  
WTO_frac: 0.000  0.000  
WTN_Frac: 0.378  0.378  
WTA_frac: 0.220  0.221  
WTSulfur_%: 0.150 0.148 
WTNitrogen_ppm: 0 0 
Density (g/cm3): 0.8465  0.8621  
IBP (K): 540 510 
5BP (K): 564 560 
10BP (K): 577 579 
20BP (K): 590 593 
30BP (K): 601 606 
40Bp (K): 612 616 
50BP (K): 620 626 
60BP (K): 630 637 
70BP (K): 639 648 
80BP (K): 650 661 
90BP (K): 666 678 
95Bp (K): 681 689 
EBP (K): 726 729 

 

Table 5.11 shows good model correlation for the HGO sample. Each of the analytical properties for this 

sample was predicted to within one experimental standard deviation except for density. The reason for 

this discrepancy in density may be its less adequate structure-property estimation method. However, the 

accuracy of PIONA weight percents and the simulated distillation curve shows more persuasive proof 

about the model’s precision. 

 

As an additional validation, the experimentally determined and predicted carbon number distributions 

corresponding to each PIONA fraction were compared via detailed composition data.  
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Figure 5.27 shows the experimentally determined and predicted carbon number distribution for the 

paraffin fraction of the HGO sample with case2.  The predicted curve matches the experimentally 

determined curve decently well although the curve of analytical data is not ideally smooth. The peak 

area of the predicted values was a bit of a right-shift compared to the analytical data. 
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Figure 5.27 Predicted and experimental carbon number distribution for the paraffin fraction of HGO 

sample with case 2. 

 
Figure 5.28 shows the predicted and experimentally determined carbon number distributions for the 

isoparaffin fraction of HGO sample with case 2. The predicted curve matches the experimentally 

determined curve moderately well. The predicted values for carbon numbers 18-25 are overestimated, 

while the values for carbon number from 25 onward end are underestimated. Since the deviation also 

shows as an opposite symmetry trend, the influences are cancelled out and only contribute a small effect 

to the overall weight fraction in the objective function. 
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Figure 5.28 Predicted and experimental carbon number distribution for the isoparaffin fraction of HGO 

sample with case 2. 

Figure 5.29 shows the predicted and experimentally determined carbon number distribution for the 

naphthenic fraction of HGO sample with case 2. The predicted curve matches the experimentally 

determined curve moderately well. The predicted values for carbon numbers 20-25 are overestimated, 

while the values for carbon number from 25 onward end are underestimated. Since the deviation also 

shows as an opposite symmetry trend, the influences are cancelled out and only contribute a small effect 

to the overall weight fraction in the objective function. 

Analytical data

Modeled data
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Figure 5.29 Predicted and experimental carbon number distribution for the naphthenic fraction of HGO 

sample with case 2. 

 

Figure 5.30 shows the predicted and experimentally determined carbon number distribution for the 

mono, di-aromatic fraction of the HGO sample with case 2. The predicted curve matches the 

experimentally determined curve moderately well. The curve of the modeled data is higher than the 

analytical data and shows a bit right-shift close to the peak.  
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Figure 5.30 Predicted and experimentally determined carbon number distributions of the 

mono,di-aromatic fraction of the HGO sample with case 2. 

 

Figure 5.31 shows the predicted and experimentally determined carbon number distribution for the 

tri+-aromatic fraction of the HGO sample with case 2. The predicted curve matches the experimentally 

determined curve decently well although the curve of analytical data is not ideally smooth.  
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Figure 5.31 Predicted and experimentally determined carbon number distributions of the tri+-aromatic 

fraction of the HGO sample with case 2. 

 

Figure 5.32 shows the predicted and experimentally determined carbon number distribution for the 

benzothiophene fraction of the HGO sample with case 2. The predicted curve matches the 

experimentally determined curve decently well although the curve of analytical data is not ideally 

smooth. 
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Figure 5.32 Predicted and experimentally determined carbon number distributions of the 

benzothiophene fraction of the HGO sample with case 2. 

 

Figure 5.33 shows the predicted and experimentally determined carbon number distribution for the 

di-benzothiophene fraction of the HGO sample with case 2. The predicted curve does not match the 

experimentally determined curve well. It is hard to catch the analytical data by the continuous PDF 

because the experimental curve shows a scatter manner. In addition, the quantitative amount of 

di-benzothiophene is quite small, therefore, it only contribute a trivial effect to overall model calibration 

effect.  
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Figure 5.33 Predicted and experimentally determined carbon number distributions of the 

di--benzothiophene fraction of the HGO sample with case 2. 

 

5.4.6.2 Conclusion 

The validation results for this sample using the sampling protocol of case2 show an overall good fit for 

the HGO conversion. This additional proof of concept gave a persuasive basis to apply CME on much 

heavier feeds with case 2. The next section will show the application of CME to heavier feedstocks 

using extrapolated predictions based on the approach in Chapter 2. 

5.5 Vacuum gas oil 

This section illustrates a CME generated composition model of vacuum gas oil (VGO). VGO is much 

heavier than three above examples, and as such detailed compositional data was unavailable for the 

purpose of validation. This section details a predictive study of VGO’s composition based solely on the 

measured bulk properties used for model optimization.  

Analytical data

Modeled data



 

 

167 

5.5.1 Analytical characterization 

This method was applied to one sample of VGO. The analytical properties for this sample were 

provided by Ghent University1. The properties used in the objective function is similar to these of the 

above two examples, and are summarized in Table 5.12.  

 

Table 5.12 Bulk properties for VGO 
H/C 1.995 
WTP_frac: 0.061  
WTI_frac: 0.241  
WTO_frac: 0.000  
WTN_Frac: 0.478  
WTA_frac: 0.220  
Density(g/cm3): 0.903 
IBP(K): 543  
5BP(K): 573  
10BP(K): 0  
20BP(K): 0  
30BP(K): 0  
40Bp(K): 0  
50BP(K): 686  
60BP(K): 0  
70BP(K): 0  
80BP(K): 0  
90BP(K): 0  
95Bp(K): 774  
EBP(K): 826  

 

5.5.2 Homologous series determination 

For this VGO sample, the core series were explicitly determined. Based on analytical literature and 

previous experience, five saturate and ten aromatic structures up (to four rings) were specified for this 

model, and are shown in Figure 5.34.  
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Figure 5.34 Selected homologous series for VGO 

5.5.3 Structural attribute sampling protocol and PDF form 

Similar to the previous two examples, the quantitative optimization was tested by two different 

structural attribute sampling protocols and attribute PDF forms, as addressed in Chapter 2. In case 1, the 

feedstock was modeled as a set of homologous series with side chain information. The global fractions 

of these series were set as discrete values and a gamma distribution was imposed as the attribute PDF for 

carbon number and the number of side chain of each series. In case 2, the set of homologous series was 

decomposed to several elemental structural attributes, and the feedstock was sampled from multiple 

elemental structural attributes covering core the series’ structure and side chain information. The 

specific sampling protocol for this VGO sample was the same as that for petroleum middle distillates as 

shown in Figure 5.3. 

 

5.5.4 Conditional Probability 

In order to ensure physically realistic molecules, conditional probability distributions were used.  Since 

the VGO sample was bounded by both an initial boiling point and a final boiling point, it was necessary 

to ensure that molecules that were too small or too large were not considered. By constraining the 
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boiling point cut range in CME for each series, the range of carbon numbers was determined via 

structure property correlation before the optimization. Based on findings in the literature3, iso-paraffin 

components were limited to one or two sidechains. Single ring components were limited to one, two or 

three sidechains. Multiple ring components were limited to only one or two side chain. 

 

In addition to the overall carbon constraints, it was necessary to add conditional probability constraints 

on the number and length of sidechains for the isoparaffin, naphthenic, and aromatic fractions.  For 

instance, if a molecule contained only one sidechain carbon, then only one sidechain could possibly be 

attached to the molecule core.  Furthermore, since each sidechain contains at least one carbon, any one 

sidechain can be no longer than the total number of sidechain carbons minus the number of sidechains 

other than itself. 

 

5.5.5 Optimization of the PDF Parameters 

The PDF parameters for selected VGO sample were optimized using a global simulated annealing 

technique.  The chi square objective function of Eq. 5.4 was a combination of various molecular 

properties that could be easily compared to experimental data: 
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                                      (5.4) 

Eq. 5.4 is similar to Eq. 5.1 for petroleum middle distillates, the only difference being the addition of 

H/C ratio. 
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5.5.6 Optimization results 

The VGO sample was optimized by CME using both case1 and case2 method. The optimized results of 

both methods are shown in Table 5.13.  The distribution of the number of side chain distribution was 

excluded from tuning, and was given a fixed distribution based on Ranzi3 as shown in Table 5.3. The 

branch point locations were assumed to follow a uniform distribution. For the most part, the model 

predictions of both cases were good to within an experimental standard deviation. The method of case2 

had a better fit than the method of case1 for some items such as H to C ratio. As was the case for the 

other two examples, the density did not fit well. This discrepancy might be improved by implementing 

new methods for density calculation. However, the accuracy of the fit of simulated distillation and 

PONA are quite good for both cases, thereby showing show persuasive proof about the model’s 

precision.  

 

This example shows that CME can handle a heavier complex feedstock, such a VGO. Therefore CME 

provides high value in overcoming the formidable difficulty involved in obtaining a full detailed 

compositional analysis that can be used by a detailed kinetic model. The next section covers the 

modeling of extremely heavy feedstocks, specifically petroleum resids. 
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Table 5.13  Model optimization results for the VGO sample  

  Exp CalcbyCase1 CalcbyCase2 
H/C 1.995 1.900  1.963  
WTP_frac: 0.061  0.063  0.054  
WTI_frac: 0.241  0.237  0.250  
WTO_frac: 0.000  0.000  0.000  
WTN_Frac: 0.478  0.478  0.478  
WTA_frac: 0.220  0.222  0.219  
Density(g/cm3): 0.903 0.747  0.842  
IBP(K): 543  546.000  541  
5BP(K): 573  576.000  567  
10BP(K): - 598.000  579  
20BP(K): - 626.000  602  
30BP(K): - 646.000  644  
40Bp(K): - 664.000  669  
50BP(K): 686  682.000  685  
60BP(K): - 697.000  700  
70BP(K): - 714.000  717  
80BP(K): - 732.000  735  
90BP(K): - 758.000  758  
95Bp(K): 774  777.000  774  
EBP(K): 826  808.000  817  

 

5.6 Petroleum resids 

This section illustrates how to model the compositions of an extreme feedstock: resid. Resid is far too 

complex to obtain detailed compositional data. Therefore, this section details a predictive study of 

resid’s composition based solely on the measured bulk properties used for model optimization. The 

purpose of this section is to illustrate the logic necessary to model resids, therefore a selection of light 

resids was used to simplify the model process. 

 

5.6.1 Analytical characterization 

The available analytical information of a resid is different that that of the other feeds discussed above. 

Firstly, the compositional analysis for resid is SARA instead of PIONA, which indicates that the 
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compositions found in resid are mainly multiple aromatic rings and their aggregated ring structures. 

Moreover, simulated distillation can not provide a complete sample for resid’s fractions. The average 

molecular weight is used as a criterion to evaluate how heavy the feedstock is. Finally, heteroatoms take 

a significant role in resids. Proton NMR and other advanced techniques can help understand resids’ 

structures insightfully.  

 

For the model in this chapter, a variety of light resids was selected to simplify the illustration. Petroleum 

resids located in China are much different than those found in other places such as the middle-east. 

These Chinese resids often have lower sulfur (and other heteroatom) contents than others, which will 

help simplify the structures’ determination. Therefore, two Chinese resid samples with lower sulfur 

content were selected: DaQing and ShengLi. Additionally, for the purpose of determining CME’s 

current capability, two higher sulfur-containing resids were selected as: GuDao China and Arabic Light. 

The properties used as the objective function for resids are summarized in Table 5.14. Since NMR data 

was unavailable for the Chinese samples, it was excluded from the measurements. 

Table 5.14 Bulk properties for resids 
 
Name ShengLi DaQing GuDao Arab Light 
MW: 784 1030 913 842 
H/C: 1.63 1.74 1.56 1.42 
WTP_frac: 0.012 0.024 0.01 0.016 
WTN_Frac: 0.185 0.385 0.147 0.147 
WT_Arom.+Resin_Frac: 0.801 0.591 0.815 0.779 
WT_Asphaltene_Frac: 0.002 - 0.028 0.06 
WTSulfur_%: 1.35  0.27  2.43  4.00  
WT_HGOCut: 0.10  0.10  0.10  0.10  
WT_VGOCut: 0.13  0.11  0.90  0.09  
WT_ResidCut: 0.86  0.88  0.90  0.91  

 

5.6.2 Homologous series determination 

Campbell et al4,5 used MolGen and Monte Carlo simulation to study several resid samples. Based on 

this and other experience of the Klein group, the core series was explicitly determined for the resid 
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example in this thesis. As discussed in Chapter 2, the current CME considers side chains as pure 

hydrocarbon mixtures, therefore CME did not create side chain with sulfur such as thiols, sulfides etc. In 

addition, only the “island” model was considered for these resids, so multiple unit sheets were not 

considered in the model. Based on these rules, 89 structures of up to ten rings were specified for this 

model and are shown as Figure 5.35.  

 

 

Figure 5.35 Selected homologous series for resids 

5.6.3 Structural attribute sampling protocol and PDF form 

For the resid model, the method of case1 discussed in Chapter 2 is not applicable, due to the high 

computational burden necessary for this method. Therefore, only the case 2 methodology in Chapter 2 

was applied to these resids. Each feedstock was sampled from multiple elemental structural attributes 

covering the core series’ structure and side chain information. The specific sampling protocol for resids 

is shown in Figure 5.36. In addition, in order to control the complexity of the computation, the side 

chains were lumped into three “families”: paraffin, naphthene, and aromatics. 
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Figure 5.36 sampling protocol for resids 

5.6.4 Conditional probability 

In order to ensure physically realistic molecules, conditional probability distributions were used.  Since 

the resid samples were only bound by an initial boiling point, the minimum carbon number for each 

series was thusly limited. The maximum carbon number for the side chains was determined by the past 

experience. All series in the resid were assumed to have one side chain.  

 

5.6.5 Optimization of the PDF parameters 

The PDF parameters for selected Resids’ samples were optimized using a global simulated annealing 

technique.  The chi square objective function of Eq. 5.5 was a combination of various molecular 

properties that could be easily compared to experimental data: 
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5.6.6 Optimization results 

The four resids’ samples were optimized by CME uisng the method of case2. The optimized results are 

shown in Table 5.15. The results show that the ShengLi and DaQing resids were well modeled by CME. 

All items including SARA, H/C ratio, molecular weight, sulfur content, and incomplete distillation were 

decently optimized. Therefore the resultant compositions could be used for further kinetic model study.  

 

The GuDao and Arab Light resids did not get good results. Although SARA of GuDao looks good, the 

H /C ratio and sulfur content have a large bias. The incomplete distillation agreement was even worse. 

The Arab light resid did not fit the data at all. The reason CME could not match these two feeds is rooted 

in the identity determination discussed in the previous section. The current version of CME does not 

create sufficient sulfur containing side chain structures. The identities selected in the previous section 

work only for low sulfur resids such as ShengLi and DaQing. Therefore, CME could not provide good 

optimization for high sulfur resids that contained more key structures than this model provides. This 

issue could be solved by adding such necessary structure information into future version of CME. 

 

Although the two high sulfur content resids were not well modeled, the good correlations for the two 

low sulfur resids show that, conceptually, CME can model extremely heavy feedstocks by the approach 

addressed in Chapter 2. If more heteroatom structures were incorporated, CME could probably handle 
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heavy resids with high sulfur contents. Therefore, modeling asphaltenes with CME also looks 

promising. 

 

Table 5.15  Model optimization results for the resids’ samples  
Name ShengLi DaQing GuDao Arab Light 
  Exp Calc Exp Calc Exp Calc Exp Calc 
MW: 784 784  1030 1031  913 910  842 810  
H/C: 1.63 1.63  1.74 1.75  1.56 1.44  1.42 1.35  
WTP_frac: 0.012 0.013  0.024 0.025  0.01 0.010  0.016 0.008  
WTN_Frac: 0.185 0.185  0.385 0.384  0.147 0.146  0.147 0.107  
WT_Arom.+Resin_Frac: 0.801 0.801  0.591 0.591  0.815 0.808  0.779 0.870  
WT_Asphaltene_Frac: 0.002 0.001  - 0 0.028 0.036  0.06 0.015  
WTSulfur_%: 1.35  1.35  0.27  0.27  2.43  2.311  4.00  2.674  
WT_HGOCut: 0.10  0.02  0.10  0.00  0.10  0.000  0.10  0.006  
WT_VGOCut: 0.13  0.13  0.11  0.12  0.90  0.009  0.09  0.002  
WT_ResidCut: 0.86  0.85  0.88  0.88  0.90  0.990  0.91  0.992  
 

5.7 Summary and discussions 

This chapter mainly shows specific and varied examples to support the composition modeling approach 

developed in Chapter 2. Three feedstocks were used to validate the approach: petroleum middle 

distillates, natural gas condensates and petroleum HGO. Both of these feeds were modeled with bulk 

properties and validated using their analytical and modeled compositional data. Furthermore, two other 

feedstocks (VGO and resids) were studied to ensure the methodology could be used for heavier 

feedstocks. 

 

The petroleum middle distillate samples included the detailed composition data, so the two optimization 

methods (case1 and case 2) discussed in Chapter 2 could be fully evaluated. The overall good results of 

modeling petroleum middle distillates proved that modeling a complex feedstock statistically with fixed 

identity determination and quantitative structural attribute PDFs sampling is a valid methodology. In 

addition, the results showed that the method of case 2 (where the feedstock was optimized by a set of 

continuous elemental structural attribute PDFs) required less analytical information than the method of 
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case 1 (where the feedstock is optimized by a set of discrete values for the global core series fractions 

and attribute PDFs for the side chain information). Because of the maintenance of accuracy with less 

analytic information, case 2 was shown to be more useful for complex feedstocks. 

 

The further validation of the method using natural condensates and HGO enhanced the above 

conclusion and proved that the method could be used for heavier feedstocks. 

 

The application of the method to VGO showed that CME could handle even heavier complex 

feedstocks. 

 

Finally, the method was applied to petroleum resids. Although a simplified identity model was 

employed on resids, CME showed a good capability to model lighter resids with lower sulfur content . 

More complex resids, such as those with high-sulfur content, could be modeled in the future by adding 

more heteroatoms structures to CME. 

 

In summary, the methods behind CME were verified by analytical data, and it was shown that CME 

could effectively model complex feedstocks with limited analytical information.  
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Chapter 6  Modeling lignin pyrolysis with ARM 

6.1 Introduction 

The worldwide energy crisis has accelerated renewed interest in the search for alternate feedstocks for 

the supply of energy such as biomass. The utilization of such feeds is complicated by not only the 

economics of upgrading and conversion but also the environmental footprint, including the impact on 

CO2 issues. Therefore, the technique to address these feeds needs to be considered. 

 

While each potential resource has its own set of feed-specific technical issues, there are some common 

difficulties.  A significant character of these alternate feeds is a complex mixture of complex molecules 

that are often found as covalent or physically aggregated macromolecules. According to the report1 

from US DOE Office, it is critical to identify the structures and reaction pathways of these heavy feeds 

and to develop robust computational tools to model their reaction trajectories.  This would contribute 

not only to the processes for utilization of these feeds but also to the design of catalysts for providing 

efficient and optimal conversion. 

 

Therefore, the development of a modeling methodology for application to Biomass (such as Lignin, 

Coal, Shale, and Resid is an urgent and significant issue for contemporary energy research. Biomass and 

even Gas Oils differ, only in the quantitative details of the feeds. That is, each of these feeds can be 

characterized, relative to petroleum naphtha, as carbon-rich, hydrogen-deficient resources laden with 

heteroatoms and often found in macromolecular form. As an example of biomass, lignin pyrolysis is 

studied in this chapter.   

 

In this chapter, the significance of lignin and lignin pyrolysis is first considered. Then, a lignin pyrolysis 

model is developed via the set of modeling tools addressed from Chapter 2 to Chapter 4. The model 
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development will consider the structure of lignin, the analysis of reaction paths and kinetics, the 

development of pyrolysis network, and the prediction of pyrolysis products, in turn. 

 

6.2 The significance of lignin and lignin pyrolysis  

Interests in lignin are both as a possible feed in the biomass contribution to new energy supplies and also 

as a relatively well understood model of low-rank coals. There was an intense application in the use of 

coal in liquefaction and gasification processes around 1970’s. Lignin, the microbially resistant 

component of the biomass coal precursor, was examined to explore on the reaction paths and kinetics 

involved in coal utilization. Because the investment of the utilization of lignin as an energy resource is 

less expensive, lignin is widely applied in marginal energy recovery rather than burning as the pulping 

waste product. These interests are also clear in the current energy situation because it can provide useful 

information for further biomass study. Pyrolysis is a fundamental component of the potential conversion 

processes, such as gasification, pyrolysis and liquefaction to bio-oils. Thus the study of lignin pyrolysis 

modeling seemed promising. 

 

More generally, lignin can be described as a macromolecular feed with aromatic rings, ring substituents, 

and heteroatoms. This qualitative information can also describe coal, resids and shales, and thus 

developments in lignin pyrolysis modeling should support the development of models for these other 

feeds as well. 

 

6.3 Modeling approach 

In order to construct a detailed kinetic model of lignin pyrolysis, the four main steps of the 

molecule-based kinetic modeling for complex feeds (listed in Figure 6.1) must be addressed. The 

approaches of these four steps are extensively discussed in previous chapters. The first is the 

structure-composition model for the feed. In this thesis, CME was used as a generic tool to transform a 
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set of measurements into a structural representation and the quantitative mol fractions for lignin. As 

developed below, lignins are optimally complex in that their structures are actually very well known. 

1. Structural and Composition Models
– Measurements (GS-MS, NMR, etc.)
– Measurements to Molecules

2. Reaction Modeling
– Computer generated models in seconds

3. Reactivity Correlations
– Fundamentals based Chem Eng LFER kinetics correlations
– Order 10 [O(10)] LFER’s for every process chemistry

4. Property Estimation
– Provides commercially relevant product yields
– Molecules to commercial lumps
– End-use vs. internal-use properties

 

Figure 6.1 Molecular-level Modeling steps 
 

Once the feed stock has been modeled, the second component creates the reaction model by 

transforming reactants into products using experimentally discerned reaction pathways. To address this 

lignin pyrolysis chemistry, the ARM approach developed in Chapter3 will be used. Unlike a traditional 

deterministic model that has one material balance for each of the N components along with energy and 

momentum balances, the ARM can model a lignin mixture containing N-components with fewer than N 

material balance equations.  

 

The kinetics and reaction pathways of the lignin model were derived from experimental literatures2. For 

this simpler system, independent individual parameters can be used for reactivity estimation. For a 

general lignin pyrolysis system that was a network of thousands of reactants and rate laws, the reaction 

family and LFER concepts of Chapter 3 would have to be applied, thereby reducing the parameters 

burden from thousands to of order 10-30.  
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The final component is the property estimation function, which was committed by the SPCM detailed in 

Chapter 4. 

 

6.4 Modeling Lignin structure and composition 

Native lignin is a phenolic co-polymer formed by a set of enzyme-initiated radicals on the phenolic2 and 

corresponding reactive positions of the three monomers as shown in Figure 6.2. As a result, such a 

co-polymer thus contains single-ring aromatic cores bonded covalently by one of a handful of inter-unit 

linkages. The classic Freudenberg model3 (Figure 6.3) illustrates the types of these links and further 

provides a convenient quantitative distribution of the types. Isolated lignins will deviate from this 

prototype model by various configurations on differing initial distributions of the three monomers (e.g. 

different plant types) and also by structural changes induced by the method of isolation. These changes 

are well known in the biochemistry and pulping literature.  

OH

OH
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OO
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Figure 6.2 Lignin monomer alcohols 

 

The Freudenberg model shown in Figure 6.3 was used as the example to study the composition model 

for the lignin pyrolysis. The Freudenberg model allowed the CME tool to model the structure and 

composition of biomass. The monomer alcohols, the crosslinking mechanism and the lignin pyrolysis 

mechanism gave a statistical view of the lignin structure as a set of single-ring aromatics each with two 
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attributes. The first attribute is the type of propanoid side chain (PC) attached to each aromatic ring and 

the second attribute is the type of the phenolic or methoxyphenol (MP) substituent on each aromatic 

ring. Since pyroylsis keeps the rings unchanged, the ARM model was based on the conservation of rings 

and the reaction of two independent attributes. 

 

 

Figure 6.3 the Freudenberg model of lignin structure3 
 

Parsing the Freudenberg structure (or analogous structural representations) provides quantitative values 

for the statistical distribution of the attributes. The two attributes (PC and MP) can be calculated directly 

by viewing each unit of the Freudenberg model as the statistical probability of the occurrence. As a 

result, the original Freudenberg model can be represented by the joint probability of two attributes as 

shown in Figure 6.4, for both the PC and MP attribute types. Note that both the PC and MP attribute sets 

have “free” and “etherified” subcategories.  The free substituents are bonded to only one aromatic ring 

whereas the etherified substituents are part of an inter-aromatic ring linkage. 
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Figure 6.4 Initial Lignin (Freudenberg) Structure in Terms of MP and PC Attributes2 
 

For other lignin models, CME can get the best-fit optimization of any lignin type. In this manner, an 

optimal set of attribute probabilities would be generated so that the subsequently generated lignin 

structure provided a best fit match with the available analytical chemistry. 

 

As discussed in Chapter 2, CME is an Excel-VBA based program which provides a friendly interface 

for sampling structural attributes and creating a molecular representation for complex feedstocks. 

Engaging CME will, at first, lead to a user-friendly interactive form, such as that shown in Figure 6.5, 

which will allow the user to specify and constrain the attribute types. In addition, a sample rule for lignin 

is implicitly generated. 
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Figure 6.5 Attributes Sampling in CME 

 

As discussed in Chapter 2, CME can represent an attribute PDF as either a set of discrete values or a 

continuous functional form with limited parameters. Either way, it will optimize a chi-square objective 

function with chemical analysis terms Pij
E listed below, to determine the optimal set of attribute PDF 

parameters and probabilities for both the MP and PC sets. 
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Attribute name as Att1-5 represented five attribute types in this example: Att1 refers to PC 
attributes, Att2 refers to MP attributes and Att3-5 refer to free gas molecules: CO2, CH4 and 
CO. PCi and MPi represent different lignin structures in term of PC and MP attributes as see 
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Consequently, CME will provide the optimal set of attributes as an input data list for further reaction 

modeling.  

 

In Chapter 2, the mechanisms behind CME were illustrated using petroleum feedstocks. Here, as a 

biomass example, the computational flow of CME as related to lignin prolysis is illustrated in Figure 

6.6.  At first, CME will provide a form and allow the user to select the MP and PC attribute types of the 

lignin to be modeled. If the quantitative mol fractions can be determined directly, CME will launch a 

straightforward mathematical parser to convert the molecular compositions to the values of each 

attribute types (e.g., the Freudenberg model in this chapter). For cases where the molecular 

compositions cannot be obtained directly, CME will apply the optimization loop of Figure 6.6. In this 

case, the objective function will be optimized by adjusting the parameters of the attribute PDFs. The 

optimized attribute values will be the final representation of the lignin and will be used as the initial 

conditions in the kinetic modeling. 
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Figure 6.6 Flow sheet of CME strategy for modeling lignin structure 
 

6.5 Lignin reaction pathways and kinetics 

The structural analysis provides identities of the initially reactive moieties during lignin pyrolysis. Klein 

and Virk1 studied the set of reactants and associated reaction pathways kinetics and mechanisms as 

listed in Table 6.1. In addition to the MCA0 shown in Figure 6.4, the full MCA can be attained from the 

lignin reaction pathways. The converged data base of Table 6.1 thus provides the basis for the 

subsequent kinetic model: the pathways reveal the reaction network and the rate parameters of the 

kinetics. 
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Table 6.1 Model Compounds for Lignin Pyrolysis2   

 

 

The reactants listed in the first column of Table 6.1 included the PC and MP attributes as well as the 

inter-aromatic unit links (IL) whose fragmentation leads to molecular weight reduction and the 

formation of single-ring phenolic products.  Among the IL models is phenethylphenylether (PPE), a 
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beta-ether mimic to generate the hydrogen-balanced product pair phenol and styrene, whose main 

reaction path is illustrated in column 5 of Table 6.1. It is also shown in Table 6.1 that styrene undergoes 

secondary reaction to toluene, ethylbenzene, benzene and higher molecular weight adducts. A beta ether 

with the PPE backbone and additional lignin-like substituents as shown in Figure 6.7 is called VGE4. Its 

major reaction path is analogous to the dehydration and formation of the PPE with a double bond in the 

linkage. The fragmentation of this PPE analogue would not be in hydrogen balance.  Likewise, the 

cracking reactions of the alpha ether, phenyl ether, diphenyl methane and diphenyl are not in hydrogen 

balance and so their fragmentation to light products consumes hydrogen elsewhere and is thus generally 

accompanied by the formation of an adduct. 

“Beta Ether” Pyrolysis Details

18

 

Figure 6.7 VGE Pyrolysis Pathways4 
 

The key MP mimic is guaiacol, which follows two reaction paths, one to methane and catechol and the 

other to phenol plus CO and H2. The other MP models follow formally similar routes such as 

2,6-Dimethoxyphenol, veratrole and anisole. The key PC mimics in Table 6.1 reveal routes to light 

gases (CO, CO2, H2), water, and various smaller hydrocarbon substituents. 
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In summary, Table 6.1 suggests that lignin pyrolysis products should include light gases (CH4, CO, 

CO2, H2), light liquids (H2O, MeOH), a collection of single-ring phenolics (variously substituted 

phenols, guaiacols and syringols), and a hydrogen-deficient char. The Arrhenius parameters and active 

energies in columns 6 and 7 of Table 6.1 provide an a priori basis for the prediction of the kinetics of the 

formation of these key products when it is employed in the material balance equations for each 

component. Thus Table 6.1 is directly linked to the creation of the lignin pyrolysis reaction network. 

6.6 Attribute-based reaction modeling for lignin pyrolysis 

The reaction products mentioned above arise as the result of the changes in state of the PC and MP 

substituents on the conserved aromatic ring. For this relatively simple lignin model, the number of 

implied molecules exceeds 624. For other feeds and more complex lignins this number will surely grow 

larger. Thus it seems worthwhile to develop methods to model the dynamics of the molecular 

composition with fewer than one equation per molecule. For that purpose we turn to the reactions of the 

attributes via the Attribute Reaction Model approach illustrated in Chapter 3. 

 

As shown in Figure 6.8, a molecular composition containing N attribute types with M attribute values 

will have MN molecules.  The associated deterministic reaction model will thus have MN balance 

equations.  This can exceed 50,000 for petroleum resids and similar complex feed stocks, which is too 

large for many current applications. The essential idea of the ARM approach5 is to treat the reactions of 

the attributes as independent. Therefore, the ARM is a hybrid statistical model of N submodels. Each 

submodel has the number of equations equal to the number of values for a given attribute. Thus, the 

overall problem can scale as N×M instead of MN, which is a considerable savings of computational 

burden. This is the approach followed in the lignin pyrolysis model, which allows convenient 

illustration since N = 2. 
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Figure 6.8 PDF sampling for molecular compositions representation 
 

For lignin pyrolysis modeling, two independent sets of ODEs are used to describe the variations of MP 

and PC attributes. The temporal variations of all MP substituents can be represented by M equations as 

E.q.6.1: 
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Likewise, the variations of all PC substituents (PC) can be represented by N equations as E.q.6.2: 
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Given initial conditions (e.g., from CME), these equations can be solved to obtain a reaction-altered 

distribution of attributes. Sampling these updated PDFs provides molecular information for the products 

with the juxtaposition of all combinations of attributes.  

 

This logic has been incorporated into the Kinetic Modeling Editor (KME). KME with ARM support, as 

illustrated in Chapter3 provided an automated Excel-based graphical interface for modeling lignin 

pryolysis.  

 

The computational flow of modeling lignin pyrolysis via KME with ARM is illustrated in Figure 6.9, 

whereas Figure 6.10 shows the key KME options selected for ARM support. Upon launch, KME opens 

a set of dialog forms that allows the user to setup modeling options such as model type, execution mode, 

reactor type and energy balance. For this lignin model, ARM was selected as the model type. The 

reaction pathways in  Figure 6.7 were then entered in two separated ARM reaction sheets. Then, KME 

built the model and generated the C code for the ODE equations automatically. After the model was 

built, the model data were entered: feed data in the “INP” sheet, conditions in the “COND” sheet, and 

product measurements in the “OBS” sheet.  

 

Essentially, for this lignin ARM strategy, two independent kinetic models (MP and PC) were created 

with shared information, such as reaction conditions, inlet flows, and the like. A final product parser 

created the molecular compositions as the juxtaposition of attributes as illustrated in Figure 6.11. The 

model was then launched to obtain the numerical solutions. After the model was solved, KME provided 

a set of tools to analyze the results.  These included the species’ profiles through the reactor, parity plots, 

statistical analysis, and so on.  
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Figure 6.9 the conceptual flowsheet of KME with ARM for lignin pyrolysis 
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Figure 6.10 KME options 
 

 

Figure 6.11 Two ARM Reaction Sets in KME 
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In summary, the current ARM model of lignin pyrolysis thus comprises the following steps.  First, KME 

obtains the initial MP and PC attribute values from CME.  It then generates the ODE’s for the MP and 

PC submodels.  The user then enters the input and output data, along with the reaction conditions and 

rate parameters, which allow the model to be run.  The reaction-altered attributes are then juxtaposed to 

create the final product slate of light gases, light liquids, phenolics and char. 

6.7 Results: application to lignin pyrolysis 

The Lignin pyrolysis ARM model was constructed using the Freudenberg model for attribute input, the 

database of Table 6.1 for reaction pathways and kinetics, and the KME input sheets illustrated in Figure 

6.11 and supplied separately as supporting material. 

 

The reaction products, i.e., the juxtaposed attributes, are organized into four fractions: 1) light gases, 2) 

light liquids, 3) single-ring phenolics and 4) char, which are defined by difference. Representative 

results, intended only to show the nature of the CME/KME outputs, are shown in Figure 6.12 and Figure 

6.13.  Figure 6.12 depicts the reactor profile of the yields of the key products CH4, CO, phenol, guaiacol 

and syringol.  Figure 6.13, depicting the asymptotic yields of CH4, CO, phenol, guaiacol and syringol as 

a function of the starting lignin’s coniferyl/sinapyl alcohol ratio, shows the integrated nature of the tools 

and the link between CME and KME 
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Figure 6.12 Pyrolysis products yield profile along PFR 
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Figure 6.13 Asymptotic yields of key products parametric in the coniferyl/sinapyl alcohol ratio in 
starting lignin 
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6.8 Summary and discussions 

This chapter used the application of lignin pyrolysis modeling as an example of the ARM approach 

mentioned in Chapter 3. The statistical approach embodied in the ARM paradigm provides a feasible 

solution for maintaining molecular level detail without the burden of one ODE for per a species in the 

model. By integrating the ARM approach with the user-friendly KME and CME tools, the complex 

lignin pyrolysis model can be created, solved and edited quite easily.  This allows for engineering 

simulation of a wide range of lignins as well as for testing “what if” scenarios for lignin structure or 

manipulation strategies.   
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Chapter 7  Automated modeling of resid pyrolysis with ARM 

7.1 Introduction 

As discussed in Chapter 1, a primary motivation for the development of this thesis is the impending 

worldwide energy issues. Two conceptual strategies have been studied to address this energy crisis. One 

is the development of new technology aimed at utilizing alternative feedstocks such as the pyrolysis of 

lignin as discussed in Chapter 6. The second strategy emphasizes the deep utilization of heavy 

hydrocarbon mixtures.  

 

Resid pyrolysis is a heavy oil refining process that converts the heavy-end fractions to a set of 

light-middle fractions such as gasoline, kerosene, LCO and so on. In this chapter, resid pyrolysis is used 

as an example to show a conceptual strategy for developing a detailed kinetic model for such a complex, 

heavy chemistry.  

7.2 Modeling approach 

The challenge of molecule-based modeling of resid pyrolysis is derived not only from the complexity of 

the feedstock, but also from the complexity of the reaction modeling. There will often be thousands of 

“multi-functional” component species, thereby providing a challenge for detalied composition 

characterization in the presence of limited analytical information. In addition, the sheer number of 

ODEs for such a deterministic modeling problem (one ODE per specie) could exceed 50,000. Such 

computational problems carry a burden that can not be practically handled by current computer 

hardware.  

 

To address this conflict, two key techniques have been employed in this chapter. In the first technique,  

CME, as discussed in Chapter 2 and Chapter 5, will provide an automated technique to characterize the 
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detailed compositions found in resids. The second approach will utilize the ARM methodology of KME, 

thereby providing a far fewer ODEs than the number of distinct species, while maintaining the full 

molecular detail of the model.  

 

INGen will be employed to generate the reaction network for this pyrolysis, and finally, all these steps 

will be integrated in an excel-VBA based interface in order to provide an automated modeling 

environment for resid pyrolysis. 

7.3 Model development 

7.3.1 Resid composition modeling 

Unlike the naphtha model discussed in Chapter 7, the complexity of a resid feedstock derives not only 

from isomeric details, but more relevantly from the large number of multiple ring structures and 

“multi-functional” components. In this case, CME’s statistical approach would be the best way to 

address this complexity. The automated composition modeling of two resid samples (ShengLi and 

DaQing) was fully discussed in Chapter 5. These two well modeled resid samples are used in this 

chapter as the feedstocks for modeling resid pyrolysis. In addition to the optimal MCA0, the optimal 

structural attribute PDFs were also obtained. However, those structural attributes are not the same as the 

reactive attributes used in ARM. Therefore, a further study into the reactive attributes for this resid 

pyrolysis modeling was necessary.  

7.3.2 Reactive attributes determination 

The reactive attributes are an extension of the structural attribute concept. In order to understand the 

concept of reactive attributes more clearly, recall the definition of the structural attribute as given in 

Chapter 2. A structural attribute is an element of structure defined by a PDF. The qualitative and 

quantitative information for a molecule can be defined by a collection of these PDFs. If any of these 
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structural attributes can undergo chemical transformation at the reaction conditions, it will be 

considered a reactive attribute. 

 

For example, an alkyl benzene can be considered as having two structural attributes: an aromatic ring 

and an alkyl sidechain.  Under general pyrolysis conditions, the aromatic ring will be stable but the alkyl 

sidechain may undergo a cracking reaction.  Therefore, for such pyrolysis reactions, the alkyl sidechain 

would be considered as a reactive attribute but the aromatic ring would not.  For other types of reactions, 

such as ring opening or ring saturation, the aromatic ring may also be reactive. In such cases, the 

aromatic ring would also be considered to be a reactive attribute.   

 

Campbell1 summarized a set of typical reactive attributes for various chemistries as shown in Table 7.1. 

In this table, only the main reactions of each process chemistry are considered. For example, while it is 

possible for a cracking reaction to occur on a sidechain during hydrotreating, only the reactions 

involving the removal of heteroatoms and the hydrogenation of aromatic rings will be considered. 

 
Table 7.1 Reactive attributes for various chemistries1. 
Attribute Pyrolysis Catalytic 

Cracking 
Hydrotreating Reforming 

Aromatic Rings No Yes Yes Yes 
Naphthenic Rings Yes Yes No Yes 
Alkyl Sidechains Yes Yes No Yes 
Alkyl Sulfur Yes No Yes Yes 
Ring Sulfur No No Yes Yes 
Paraffins Yes  Yes No Yes 
Olefins Yes Yes No Yes 

 

In addition to determining whether an attribute is reactive, the differences in their reactivity are need to 

be considered. Differences in reactivity take into account the relationship between the reaction rate and 

the reactive attribute. For example, although a C5 and a C20 alkyl sidechain are both the same structural 

attribute type, the C20 will crack much quicker. In addition, while the thermal cracking of alkyl benzene 

and the thermal cracking of alkyl chrysene are both examples of alkyl side chain cracking on an 
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aromatic core, the reaction rates of one-ring and four-ring aromatics are quite different. Therefore, the 

reactive attributes corresponding to such reactivity differences must be considered. As a prerequisite, 

the structural attribute identities and the numerical values of the attributes must be defined. Therefore, 

although the resid samples modeled by CME consisted of only nine structural attributes, many more 

reactive attributes needed to be defined. 

 

Resid pyrolysis mainly consist of the thermal cracking of a heavy feed (1000°+ F boiling fraction) to 

lighter products (1000°- F boiling fraction). The main pathways for this thermal conversion are the 

reactions of alkyl ring sidechains, paraffins, olefins, and their corresponding sulfur- containing species. 

As discussed in Chapter 5, the composition models for these two low sulfur feedstocks omitted 

structures where the sulfur was found on a side chain or a paraffin. In order to simplify this prototype 

model, reactions of paraffinic or olefinic species containing sulfur and ring species where sulfur is on a 

alkyl side chain were skipped. Typically, aromatic rings and thiophenic rings are thermally stable. 

Although naphthenic rings may dehydrogenate, this will typically have little effect on the product 

boiling point distribution. Therefore, the reactions of naphthenic rings were also ignored in order to 

simplify this pyrolysis model. In summary, the reactive attributes in this model are the alkyl side chains 

of both aromatic rings and naphthenic rings and the paraffins as shown in Table 7.2 for the two resids: 

ShengLi and DaQing. The carbon number ranges of the initially existing attributes (e.g., paraffins) 

derive from the optimized MCA0 found by CME. In addition, reactive attributes, such as olefins, that 

only exist in the products (MCA) are determined by the reaction network generation discussed in a later 

section.  
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Table 7.2 The carbon number ranges of the reactive attributes in a resid pyrolysis model  
 
    DaQing ShengLi 
Paraffin MaxCarbonNumber 87 43 
  MinCarbonNumber 21 21 
Naphthenics MaxCarbonNumber 99 75 
  MinCarbonNumber 20 20 
Aromatics MaxCarbonNumber 99 75 
  MinCarbonNumber 24 24 

 

Table 7.2 lists the range of the initial length of paraffins (MCA0) for the two sample feeds. The paraffin 

length attributes are defined from (initial) lengths of approximately 21 to 87 carbons for the DaQing 

model and 21 to 43 for the ShengLi model. However, each of these paraffins may crack to form smaller 

paraffins; lighter paraffins can also come from the cracking of alkyl sidechains.  Therefore, as a result of 

reaction, the minimum paraffin length of a product (MCA) is simply one carbon. 

 

Initially, there are no olefins in the system. However, they may be formed from the thermal cracking of 

various alkyl sidechain moieties and paraffins.  

 

The differences in reactivity between naphthenic sidechains and aromatic sidechains were also 

considered. For naphthenic compounds, there were no resonance considerations. Therefore, all alkyl 

side chain reactions for naphthenic rings will be considered as a single reactive attribute type. The initial 

carbon number ranges for naphthenic rings are also shown in Table 7.2.  

 

Aromatic compounds react much differently due to the added stability of the benzylic radicals and the 

instability of phenylic radicals. Therefore, it was necessary to divide the aromatic ring attribute into 

several reactive attributes based on the number of aromatic rings in the system. The hydroaromatic 

components are considered as aromatic components with a corresponding aromatic ring number. From 

the optimal results of CME, the aromatic ring number for the components in these two feeds is mainly 

above four. Therefore, in order to simplify this model, the aromatic components with one, two and three 



 

 

205 

rings are lumped into a single aromatic reactive attribute. In addition, three other reactive attributes for 

aromatics were specified: four rings, five rings, and six plus rings. The ranges of the initial alkyl length 

of these aromatic attributes are also shown in Table 7.2 for two feeds. 

 

A sample calculation for paraffin attribute values is shown in equation 7.1: 

 

(7.1)          )()(

)(

inumbercarbonwithparaffinsofyprobabilitXfractionmoleparaffin

inumbercarbonwithparaffinsofvaluesAttribute =   

The paraffin mole fraction and the probability of a paraffin with a given carbon number or length are 

obtained from the optimal attribute PDFs from CME. 

 

The evaluation of the alkyl sidechain attribute values is a bit more complicated than the species defined 

by only a single attribute. Before the values of the various length sidechains for a given ring number can 

be determined, all components that have this given ring number but different ring configurations must 

be summarized. For instance, the attribute values of sidechains for two-ring naphthenic compounds can 

be computed by the following equation: 

 

(7.2)                                  )(

)()(

)(

inumbercarbonsidechainsnaphthenicofyprobabilit

XringstwowithfractionsAllXfractionmolesnaphthenic

inumbercarbonwithsidechainsnaphthenicringtwoofvaluesAttribute

∑

=−

 

The calculation of sidechain concentrations for aromatics is analogous to those of naphthenics.  The 

only diffence in the calculations for aromatics is that an aromatic core consists of aromatic rings, 

thiophenic rings, and naphthenic rings. Adjustments for these additional attributes are easily calculated 

from the results of CME.   
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7.3.3 Resid pyrolysis reaction network 

After the reactive attributes have been determined, the next step is to obtain the reactions in this 

pyrolysis model. The mechanism of thermal cracking has been well studied in past years. As an example, 

a free radical mechanism for alkyl-aromatics pyrolysis is shown in Figure 7.1. Based on a pyrolysis 

mechanism, INGen2 has the capability to assemble a pathway’s model for resid pyrolysis. Unlike the 

naphtha model built in Chapter 7, the species used in INGen for this ARM model are determined from 

the above reactive attributes’ determination in terms of CME results. Instead of using exact molecules, 

this ARM model uses a set of reactive attributes represented by particular species in INGen.  

 

 
 
Figure 7.1 Free radical mechanism of alkyl aromatics pyrolysis3  

 

For example, an octane molecule can be used to represent a reactive attribute of paraffin with carbon 

number 8. Alkyl side chain reactive attributes can also be represented by certain molecules. For example, 

an alkyl cyclohexane can be used to represent the reactive attributes for any naphthenic alkyl side chains. 

An alkyl benzene can be similarly used to describe an aromatic alkyl side chains. The reactive attributes 
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for various ring numbers can be recursively represented by this alkyl benzene series (through different 

alias names) because the reactions of those attributes will be taken independently according to the 

definition of ARM. 

 

Although the reactive attributes have reduced the number of reactions significantly, the reaction model 

can still be quite large and unwieldy. To simplify this prototype model, several constraints were imposed 

upon INGen: 

 

For paraffinic species, each bond is approximately equally reactive. However, it was assumed that all 

paraffins crack in the middle of the chain.  

 
In addition to breaking at the middle of the chain, aromatic sidechains have thermodynamically favored 

reaction positions. As shown in  

Figure 7.2, the “Highly Facile H-abstraction” and “Highly Facile beta-Scission” sites typically represent 

the two main reaction paths, while other reaction paths, such as reactions at the ring, are typically 

unfavorable. As a result, each alkyl sidechain was allowed to crack at only three positions: alpha to the 

ring, beta to the ring, and at the middle of the chain.   
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Figure 7.2 An alkyl-aromatics pyrolysis pathway model (PentaDecyl Benzene-PDB)8 

 

Naphthenic sidechains were considered to crack the same way as aromatic compounds. The selectivity 

for the various positions (alpha, beta) was considered to be equal. Overall, these rules further reduced 

the number of reactions.  

 

A resid pyrolysis network was thus generated via INGen. The statistics of this reaction 

network are shown in  

Table 7.3. 
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Table 7.3 The statistics of the reaction network for resid pyrolysis with ARM. 
 
      DaQing ShengLi 
Index RxnFamilyName Reactants RxnNumber RxnNumber 
1 ButAMidChainCracking Four rings alkyl-aromatics 272 200 
2 ButASideChainBetaCracking Four rings alkyl-aromatics 91 67 
3 ButASideChainGammaCracking Four rings alkyl-aromatics 91 67 
4 HexAMidChainCracking Six rings+ alkyl-aromatics 272 200 
5 HexASideChainBetaCracking Six rings+ alkyl-aromatics 91 67 
6 HexASideChainGammaCracking Six rings+ alkyl-aromatics 91 67 
7 NapMidChainCracking Alkyl-naphthenics 274 202 
8 NapSideChainBetaCracking Alkyl-naphthenics 91 67 
9 NapSideChainGammaCracking Alkyl-naphthenics 91 67 
10 ParMidChainCracking Paraffins 145 97 
11 PentAMidChainCracking Five rings alkyl-aromatics 272 200 
12 PentASideChainBetaCracking Five rings alkyl-aromatics 91 67 
13 PentASideChainGammaCracking Five rings alkyl-aromatics 91 67 
14 SngAMidChainCracking One to three rings alkyl-aromatics 272 200 
15 SngASideChainBetaCracking One to three rings alkyl-aromatics 91 67 
16 SngASideChainGammaCracking One to three rings alkyl-aromatics 91 67 
Total     2417 1769 

  

There are 145 reactions of paraffins for the DaQing model and 97 reactions of paraffins for the ShengLi 

model; 456 reactions of alkyl side chains of naphthenics for the DaQing model and 336 reactions of 

alkyl side chains of naphthenics for the ShengLi model; 454 reactions of alkyl side chains of aromatics 

(with any ring number) for the DaQing model and 334 alkyl side chains of aromatics (with any ring 

number) for the ShengLi model. Totally, there were 2417 reactions for the DaQing model and 1769 

reactions for the ShengLi model. Thus, instead of the tens of thousands of ODEs produced via 

deterministic modeling, the number of ODEs in this ARM model is much more practical. 

 

7.3.4 Equations and rate constants of resid pyrolysis 

After obtaining the reactions for each reactive attribute, the next step is to convert them to ODEs and 

implement the ARM methodology for model solving as illustrated in Chapter 3. As shown in Figure 7.3, 
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a molecular composition containing N attribute types with M attribute values will have MN molecules.  

The associated deterministic reaction model would thus have MN balance equations.  This can exceed 

50,000 for petroleum resids and similar complex feed stocks, which is too large a number for many 

current applications where solution time is important. The essential idea of the ARM approach4 is to 

treat the reactions of the attributes as independent. Therefore, the ARM is a hybrid statistical model of N 

submodels. Each submodel has a number of equations equal to the number of values for a given 

attribute. Thus, the overall problem can scale as N×M instead of MN, which is a considerable savings of 

computational burden. This approach was followed for the resid pyrolysis model where N = 6 

(paraffins, naphthenics, one-three rings aromatics, four rings aromatics, five rings aromatics and six 

ring+ aromatics). 

 

Figure 7.3 PDF sampling for molecular compositions representation 
 

For the resid pyrolysis modeling, several independent sets of ODEs were used to describe the changes to 

the reactive attributes. For a given reactive attribute type i (e.g., paraffin length), the changes with time 

of all the values of this attribute during thermal cracking can be represented by M equations as shown in 

E.q.7.3: 
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       (7.3) 

Sets of ODE submodels (like that above) were set up by KME for each attribute type in this model. The 

next step was to determine the appropriate kinetic parameters.  

 

The above reaction model contains 2417 reactions for the DaQing model and 1769 reactions for the 

ShengLi model. The number of kinetic parameters for such a model is too huge to handle individually. 

Therefore, the reaction family and LFER concepts discussed in Chapter 3 is applied to this model. 

Nigam developed quantitative structure reactivity relationships (QSRR’s) to mathematically define rate 

constants referenced to some model compound5.  For this model, the complete reaction network can be 

defined by only a small number of reaction families regarding to reactive attributes: paraffin cracking, 

olefin cracking, naphthenic sidechain cracking, and aromatic sidechain cracking. The aromatic 

sidechain cracking is further differentiated according to ring number since the number of aromatic rings 

affects the selectivity of sidechain cracking.  

 

For this reaction model, model compound data were available for each of the reaction families6,7,8,9.  

These QSRR’s were used without modification, so that the reaction model for these two resids was 

purely predictive.  

 

Given the initial values from CME, and the appropriate kinetic parameters discussed above, the ODE 

submodels were solved in KME independently. As a result, reaction-altered distributions of the reactive 

attributes were obtained from the KME solution.  
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7.3.5 Regeneration of the attribute PDF’s 

After the reaction equations had been solved, the following step was to regenerate the values of the 

reactive attribute PDFs in order to obtain the molecular information of the products   

 

For paraffin, olefin, and ring based alkyl side chains, the post reaction PDFs transformation process was 

accomplished through a straightforward renormalization of Eq. 7.4. The updated molar flows ijF  from 

the ARM model were converted to the updated probabilities ijP  for each PDF: 

 
∑

=
ij

ij
ij F

F
P                                                  (7.4) 

 

Where i designates the attribute type and j, the attribute value. 

 

After renormalizing the reactive attribute PDFs, it was necessary to regenerate the structural sidechain 

PDFs for each core series. The side chain PDFs for non-ring core series (e.g., paraffin) were directly 

parsed from the corresponding reactive attribute PDF.  Since the ring structures were kept intact during 

the reaction, the side chain PDFs for each aromatic core series for each given ring number were 

recalculated using a uniform distribution based on the reactive attribute PDFs for the aromatic alkyl 

sidechain with that given ring number. The side chain PDFs for each naphthenic core series were 

calculated similarly.  

 

In addition to updating the structural attribute PDFs, for side chains, it was also necessary to recalculate 

the global fractions for each series. This calculation was accomplished by determining the total values 

of paraffins, and olefins from the reaction model results. The aromatic and naphthenic absolute values 

did not change. The updated global fractions were then calculated by renormalizing the new values. As 

a result, all elemental structural attribute PDFs including ring attributes were calculated by 

renormalizing those new values.  
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7.3.6 Product resampling 

The last step of the ARM resid pyrolysis model was the conversion of the updated information in the 

PDFs back into molecular information. The mapping relationship between those structural attribute 

PDFs and their molecular information was uniquely predefined during the CME composition modeling. 

Therefore, a straightforward mathematical sampling process was used to assemble various 

combinations of structural attributes into molecules as defined by their juxtaposition.  

 

For this resid model, eight products were defined. One was light gases (C1-C5). The other seven 

products were liquid fractions based on the boiling point cut: gasoline (35-91°C), naphtha (91-197°C), 

kerosene (197-284°C), light gasoil (284-312°C), heavy gasoil (312-368°C), vacuum gasoil (368-433°C) 

and residua (433+°C). Through a basic separation calculation as discussed in Chapter 3, the product 

molecules were separated into the above desired product stream. Thus the yields of those products were 

obtained. Consequentially, the desired properties of each separated product were calculated based on a 

molecular basis using the structure property correlations discussed in Chapter4. 

 

7.3.7 Model predictions 

The resid pyrolysis model was used to predict the conversion and product distribution of the DaQing 

and ShengLi resids. These two models were simulated under typical reaction conditions (temperature: 

500 C, pressure: 10MPa) and the representative results are shown in Figure 7.4, Figure 7.5, Table 7.4 

and Table 7.5. The total conversion for the DaQing model was higher than that of the ShengLi model 

under the same conditions because the saturates and non-sulfured contents in the DaQing feed were 

higher than these in the ShengLi feed. These types of compounds were more easily converted when 

compared to the alkyl side chains attached to aggregated aromatics. 
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Figure 7.4 The product distribution of DaQing resid model. 
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Table 7.4 Product properties of DaQing resid model 
 

 

  Gasoline Naphtha Kerosene LGO HGO VGO Residua 
MW(g/mol) 83.2  130.5  168.5  211.5  345.1  469.0  775.1  
H_C 1.97  1.46  1.62  1.64  1.77  1.63  1.39  
C_A 0.05  0.54  0.29  0.29  0.19  0.25  0.41  
C_N 0.07  0.03  0.24  0.16  0.09  0.15  0.08  
WTPONA_P 0.04  0.00  0.00  0.12  0.17  0.03  0.00  
WTPONA_I 0.00  0.00  0.00  0.00  0.00  0.00  0.00  
WTPONA_O 0.85  0.06  0.35  0.23  0.11  0.04  0.00  
WTPONA_N 0.07  0.05  0.28  0.02  0.15  0.28  0.14  
WTPONA_A 0.04  0.89  0.37  0.62  0.57  0.65  0.86  
IBP(K) 297  376  476  545  594  696  853  
5BP(K) 300  434  478  545  617  698  937  
10BP(K) 302  437  479  546  633  705  951  
20BP(K) 306  447  497  546  644  717  951  
30BP(K) 310  460  498  546  653  723  951  
40BP(K) 314  460  498  559  661  734  951  
50BP(K) 318  460  517  559  669  743  951  
60BP(K) 322  461  517  559  674  755  951  
70BP(K) 326  461  517  572  677  791  951  
80BP(K) 330  461  517  583  683  802  951  
90BP(K) 334  461  532  584  690  805  951  
95BP(K) 350  461  533  585  692  808  951  
EBP(K) 358  461  544  588  693  810  955  
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Figure 7.5 The product distribution of ShengLi resid model. 

 
Table 7.5 Product properties of ShengLi resid model 
  Gasoline Naphtha Kerosene LGO HGO VGO Residua 
MW(g/mol) 83.6  122.1  195.7  246.8  381.2  487.8  851.5  
H_C 2.02  2.00  2.00  1.99  2.02  1.83  1.55  
C_A 0.00  0.00  0.00  0.00  0.00  0.13  0.32  
C_N 0.00  0.50  0.04  0.18  0.08  0.11  0.01  
WTPONA_P 0.05  0.02  0.05  0.03  0.36  0.19  0.00  
WTPONA_I 0.00  0.00  0.00  0.00  0.00  0.00  0.00  
WTPONA_O 0.95  0.32  0.87  0.47  0.36  0.04  0.01  
WTPONA_N 0.00  0.66  0.08  0.50  0.28  0.58  0.04  
WTPONA_A 0.00  0.00  0.00  0.00  0.00  0.19  0.95  
IBP(K) 261  370  481  546  600  698  812  
5BP(K) 300  398  483  546  610  699  840  
10BP(K) 302  399  500  546  620  704  872  
20BP(K) 306  401  501  546  645  711  888  
30BP(K) 310  402  517  559  661  715  893  
40BP(K) 314  404  517  560  669  721  899  
50BP(K) 317  406  517  572  677  727  903  
60BP(K) 321  407  520  577  677  735  907  
70BP(K) 325  464  532  588  684  745  911  
80BP(K) 329  465  532  589  687  759  916  
90BP(K) 333  465  532  589  692  798  923  
95BP(K) 335  465  532  592  694  804  928  
EBP(K) 337  466  538  593  695  809  936  
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7.4 Summary and discussion 

Thermal cracking is a classic process for converting heavy oils to lighter products. Although the 

mechanism of pyrolysis has been well studied in the past, it is still a challenge to model petroleum resids 

at molecular level due to the complexity of heavy feedstocks and the associated number of potential 

reactions. This chapter developed a detailed kinetic model for petroleum resid pyrolysis using the 

methodologies addressed in Chapter 2, 3, and 4.  

 

Two samples (as discussed in Chapter 6) were picked up as the examples for this study: DaQing and 

ShengLi resid. At first, the resid feedstocks were statistically represented to obtain detailed molecular 

information. Next, in order to create a detailed kinetic model for resids with a practical computational 

burden, the ARM approach was used. Based on the reactive characteristics of resid pyrolysis, the 

reactive attributes were determined from the results of feedstock characterization.  

 

In order to generate the attribute reaction network by INGen, the reactive attributes were specified as 

self contained molecular chemical structures. Based on a free radical mechanism, the pyrolysis reaction 

criteria was selected in INGen. In addition, in order to simplify the model calculation, only main 

reaction pathways were applied to this model. As a result, 2417 reactions for the DaQing model and 

1769 reactions for the ShengLi model were generated by INGen. 

 

Those reactions were imported to KME which generated the ARM reactions with reaction families 

automatically. By using the rate constants obtained as found in the literature, KME was able to run the 

resid model.  

 

After simulation, the post-reaction attribute PDF results from KME were renormalized and resampled to 

obtain the molecules in the product stream. By a basic separation calculation and structure-property 

correlation, the desired properties and yields of the products were finally obtained. 
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The development of this resid model represents a comprehensive collaboration of the contributions 

addressed in Chapter 2, 3, 4, and INGen. The determination of species in this resid model was 

performed by CME’s feed representation. Based on this information, INGen gave the attribute reaction 

network. Later, KME used INGen’s results to perform the ARM model execution with QSRR and 

reaction family concepts. The logic in this chapter is particular useful for modeling the kinetics of 

heavier feedstocks such as complex resids, coal etc. When incorporated with other chemistries such as 

acid catalytic cracking, this method can be applied to more practical process chemistries. 
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Chapter 8  Summary and discussions 

8.1 Summary 

In order to address the detailed kinetic modeling for the complex feedstocks and chemistries, this 

thesis developed a set of approaches and automated software tools (CME, KME and SPCM). In 

addition, the methodologies were successfully applied to following applications: composition 

model of selected complex feedstocks, ARM model for lignin pyrolysis, and resid pyrolysis. 

8.1.1 Automating the modeling of momposition (CME) 

A hybrid statistical approach for the modeling of a complex feedstock was developed in this thesis 

by optimizing a representation based on structural attributes to a set of analytical characterizations.  

 

In most cases, the entire footprint of a complex feedstock could be straightforwardly determined via 

a set of finite molecular identities. A qualitative composition for the complex feedstock can be 

derived explicitly or implicitly from several aspects, such as: core series determination, literature, 

automated reaction network generation etc.  

 

A functional module, CoreGen, has been developed to provide an interactive interface for the 

determination of the core series. In addition to core series determination based on fixed identities, a 

stochastic sampling program, MolGen, can be used as a supplemental computer aid for cases where 

the identities are uncertain. Non-deterministic methods will only be used for the calculation and 
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optimization of quantitative information, and the necessity of their use will vary from feed to feed. 

Thus, a huge computational burden can be avoided, thereby making this approach more feasible for 

practical applications.  

 

Another functional module, FootGen, has been developed to recognize the core series identities and 

generate the entire footprint of this feedstock via a statistical sampling protocol based on structural 

attributes. As a result, FootGen uniquely maps the relationship between the probabilities of multiple 

attributes and the mol fractions for each molecule in this feedstock. 

 

A third and final functional module, CompGen, has been developed in order to obtain the MCA0 

(the initial identities and concentrations) of a complex feedstock. First, the appropriate forms of the 

structural attribute PDFs are selected, and the conditional probability constraints due to physical 

limitations are imposed. An optimization loop is then employed based on the juxtapositions of the 

mapping between molecules and multiple attributes; the objective function is given in terms of 

available analytical information. A structure property calculation program, PropGen, has been 

implemented to evaluate this objective function. Finally, the MCA0 (containing both quantitative 

and qualitative information of the complex feedstock) is obtained and will later serve as the initial 

concentration values during the kinetic modeling. After reaction modeling, the MCA0 of this 

feedstock will expand to the full MCA including both feed and product identities and 

concentrations. 
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A user-friendly program with an Excel-VBA interface called CME was developed to fulfill this new 

approach. CME automates the composition modeling for complex light to extremely heavy 

feedstocks by integrating the above functional modules.  

 

In addition to applying CME to traditional petroleum feedstocks, biomass can also be modeled in 

CME via imposing new attribute definition and sampling protocols, altering the PDFs, and creating 

an appropriate objective function.  

 

8.1.2 Automation of reaction equation generation and calculation 

In addition to the automated modeling of complex feedstocks, this thesis developed new automated 

methodologies for handling reaction equation generation and solution for detailed kinetic models 

for complex systems. 

 

To address the conflict between molecularly representing complex species and the computationally 

impractical number of equations thereby necessary for complex process chemistries, a hybrid 

statistical approach was developed in this thesis. The Attribute Reaction Model (ARM) uses 

independent reactive attributes to transform a set of multiplicative combinational equation into 

separate sets of additive equations without losing molecular detail. This process can turn the ten of 

thousands of ODE equations for some traditional deterministic models into a smaller, more 

computationally practical set of ODE equations.  
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Besides the ARM approach for the reduction of the number of equations, a methodology for 

reducing the number of parameters for a complex model was also addressed. The LFER concept is a 

way of organizing kinetic data based on transition state theory. Reaction families capitalize on the 

LFER concept by using LFER correlations for each type of reaction. Some representative results 

developed by Klein’s group are shown in the thesis, and based on those results, an automated 

LFER/Reaction family algorithm was developed for KME based on the Evans-Polanyi principle. 

 

When dealing with heterogeneous systems (e.g. all the catalyzed processes) the LHHW formalism 

is still the best rate law in most cases. The LHHW formalism has been extended to handle the 

multi-species, multi-site cases prevalent in complex process chemistries. An automated technique 

for using LHHW kinetics in KME was developed. By default, the rate are surface controlled, but the 

equations can easily be manually set for other rate-determining steps in this technique. 

 

Complex process configurations were also considered in this thesis. A deactivation model was 

developed for KME that can satisfy the simulation and tuning requirements at both a laboratory and 

industrial level. In addition, balance equations of multiple reactor types were implemented in KME. 

Finally, a simple separation model was developed for KME to help serve practical industrial 

demand.   

 

Finally, analytical methods were used to provide auxiliary tools for model tuning in KME. A 

statistical package was developed, and a model sensitivity analysis and reduction algorithm was 

addressed. 
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In summary, this thesis attempts to solve the dilemmas that arrise from the complexity of real 

feedstocks, process chemistries and practical process configurations by implementing solutions 

within the KME framework. Unlike the initial version of KME 1, this new version of KME, 

enhanced with the above contributions, shows a much stronger capability to handle the complex 

model systems found in the real word.  

8.1.3 Structure property correlation module 

In order to provide the necessary property data for composition and reaction modeling, a structure 

property correlation module (SPCM) was developed in this thesis.  

 

The first goal of the SPCM is to estimate the properties of pure components. In this thesis, every 

molecule in the system is represented by a Bond Electron (BE) matrix. A BE matrix is an explicit 

2D representation of a molecule’s structure. Structural related properties can therefore be calculated 

directly in a straightforward process. Thermodynamic properties are evaluated by group 

contribution methods and quantum chemistry software.  

 

Two group contribution methods were applied in this thesis. The Joback method2 is applicable to 

light feedstocks. The Gani method3, which uses totally 370 detailed structural groups, achieves 

better precision for heavier complex feedstocks.  
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The quantum chemistry tool MOPAC provides high precision for critical reactive properties (e.g., 

heat of formation) for both molecules and immediate species (ions, radicals). To use MOPAC’s 

calculations, the 2D structure must first be converted to a 3D structure.  

 

Besides these chemically relevant properties, the IUPAC name and a 2D image of each species can 

be generated. Finally, the properties for the pure components are entered into a database.  

 

Finally, the thesis discussed the calculation of bulk properties based on the estimation of pure 

components’ properties. In addition to the list of built-in properties, the SPCM allows the modeler 

to specify into which lump a component should be included.  

 

8.1.4 Integration of KMT components 

In addition to bringing these three major elements (composition modeling, reaction modeling and 

structure property correlation) to KMT, work was performed towards the integration of CME, 

INGen, KME and SPCM into a single kinetic modeling package. The identities of species in the 

system will be determined by an interaction between CME and INGen. Based on this qualitative 

information, INGen can then build a reaction network for the model. Meanwhile, CME with an 

integrated instance of the SPCM will determine an optimal set of molecular concentrations (MCA0) 

that will be used as the initial values during reaction modeling. KME can then generate the reaction 

equations based on the reaction network received from INGen. The MCA0 from CME will serve as 

the initial values in KME, and the SPCM provides the properties. After setting up a model using all 
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this information, KME will be able to compile and run the model. The new framework of KMT is 

shown in Figure 8.1. Except for the development of INGen, all the other elements were either 

developed or expanded upon in this thesis. 

 
Figure 8.1 Elements of KMT 

 

8.1.5 Composition modeling of selected complex feedstocks 

Three feedstocks were used to validate the approach of automated composition modeling: 

petroleum middle distillates, natural gas condensates and petroleum heavy gas oil. All of those feeds 

were modeled based on their bulk properties, and the results were compared to the analytical 

compositional data. Each feedstock was evaluated using one or both of two optimization methods: 

1. the feedstock was defined by a set of discrete global fractions for the homologous core series and 
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continuous attribute PDFs for side chain information; 2. the feedstock was defined by continuous 

elemental structural attribute PDFs for both core structures and side chain information. 

 

The overall good results for the petroleum middle distillates provided validation for each 

optimization method and the approach in general. In addition, the results showed that the method of 

case 2 required less analytical information than the method of case 1. Therefore case 2 would be 

more useful for complex feedstocks.  

 

The feedstocks of natural gas condensates and heavy gas oil also provided good validation for the 

methodology. The results and conclusions matched those of the middle distillates and also provided 

the first level of verification that the method could work on heavier feeds. 

 

Two heavier feedstocks were also modeled: VGO and resid. The VGO result showed that CME 

could handle modeling such a complex feedstock. For the resid model, a simplified set of identities 

was employed. CME was aptly capable of modeling the light resid with low sulfur content. More 

complex resids, such as those with high-sulfur content, could be modeled by adding more 

heteroatom capability to CME in the future. 

 

In summary, the CME approach was verified by analytical data, and it was able to effectively model 

heavier complex feedstocks with only a limited amount of analytical information. 
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8.1.6 Modeling lignin pyrolysis with ARM  

Lignin pyrolysis was modeled as an example of the ARM approach for biomass. The statistical 

approach ARM paradigm provided a feasible solution for maintaining molecular level detail 

without the burden of one ODE per species in the model. By integrating the ARM approach with the 

user-friendly KME and CME tools, the complex lignin pyrolysis model was easily created, solved 

and edited.  

 

8.1.7 Automated modeling of resid pyrolysis with ARM 

Another conceptual modeling example was developed in this thesis in the form of a petroleum resid 

pyrolysis model using the ARM approach. The species’ identities for this resid model were 

determined by CME. Based on these identities, INGen was able to generate the attribute reaction 

network. KME then used INGen’s network to construct and execute the ARM model with the 

QSRR and reaction family concepts. This logic is particularly useful for modeling the kinetics of 

heavier feedstocks such as complex resids, coal, etc. when incorporated with other chemistries such 

as acid catalytic cracking, this ARM methodology can be applied to more practical process 

chemistries. 

8.2 Suggestions for future 

8.2.1 Automating the modeling of composition (CME) 

Towards the goal of making CME a generic program for modeling the compositions of complex 

feedstocks, here are some suggestions for further study. 
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First, more information needs to be added for heavy feeds such as heavy resid, coal etc. Heteroatom 

(e.g., sulfur) should be added into the possibilities for side chains (thiols, sulfides. etc.). Because the 

multi-core (archipelago) model could be a better approximation than the single-core (island) model 

for extremely complex feedstocks (e.g., asphaltene, coal), the algorithm to sample multiple unit 

sheets should be added to the current sampling protocol. For example, an attribute such as 

“asphaltene polymerization degree” can be implemented by following Campbell4. 

 

Moreover, more key structures should be incorporated for biomass. Unlike petroleum feedstocks, 

oxygen containing compounds such as alcohols, phenols, etc. are involved in these biofuels. 

Exploring new oxygen-related chemical attributes would be a key outstanding task.  

 

In addition, other complex feedstocks such as coal, shale oil, etc. should also be addressed in future. 

 

Finally, in order to facilitate the above extensions, several fundamental hard coding problems need 

to be addressed (such as a memory leak associated with the BE matrix algorithms). As it stands, the 

current graphical algorithm can only construct a complex core with a maximum of 16 rings. In 

addition, the construction of an entire footprint of a complex feed containing O(100) cores (and 

more relevantly their BE matrix representations) may cause current computer hardware to run out of 

memory. To the same point, the search algorithm to parse the functional group from the BE matrix 

representation for an extremely aggregated multi-ring structure is also limited by memory problems.  
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The cause of these problems lies laid in the nature of a BE matrix. Since a BE matrix is a n*n matrix 

for a molecule with n atoms, the size of a molecule dramatically influenced the necessary computer 

memory. To address this issue, two strategies may work. One is to improve the BE matrix operation 

algorithms by optimizing computer memory in a more efficient way. Another is to change the way 

extremely complex molecule (e.g., asphaltene) are described digitally. Since the kinetic modeling of 

these feedstocks will usually be developed by ARM, the molecule could be represented by its 

reactive or structural attributes. Each attribute could be decomposed independently to a smaller BE 

matrix. Since the algorithm for parsing functional groups is based on a single BE matrix, the code 

would need to be to search multiple attribute BE matrices.  

8.2.2 Automation of reaction equation generation and calculation 

Although the improvements to KME developed in this thesis can handle complex process 

chemistries by ARM, LFER, process configurations and so on, further work can still be performed 

to make it better. Improvements to the efficiency of KME could be performed through the redesign 

the KME interface. All modes of deactivation need to be implemented at a C code level rather than 

VBA in order to maintain model independence and execution efficiency. Improvements need to be 

made such that models with O(1000) ODEs are handled faster. More LFER formulations should be 

incorporated in the KME since they can be expressed by functions other than Evan- Polanyi 

correlation. 

8.2.3 Structure property correlation module 

The structure property correlation model could also use a number of improvements. the prediction 

of pure component density should be brought in line with the accuracy of the other physical 
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properties. This shortcoming can be reconciled by adding other advanced methods or requiring  user 

correction of the database level. For the properties calculated from MOPAC, only the heat of 

formation is currently transferred automatically. Other properties (such as Gibbs energy, heat 

capacity, and entropy) should be integrated automatically. 

 

Moreover, significant work can be performed to the SPCM database. Currently, the SPCM database 

only houses pure components’ properties. It is worthwhile to study extending those properties to 

include reactivity data. This extension could immediate species (e.g., ions and radicals) seen during 

reactions, but also be used to illustrate the possible reactive criteria of each molecule for a certain 

reaction mechanism. For example, a set of reactivity data for an iso-octane could be recorded in the 

database for a pathCCracking (beta scission) reaction. This information could include: possible 

protonation sites, possible bonds to break, possible product information, related reactive properties 

(e.g., heat of formation) and so on.  

 

A feasible procedure for this proposed contribution can be analogous to the algorithm for searching 

for multiple functional groups from a BE matrix. The lists of reactive sites and corresponding bonds 

can be regarded as “reactive” functional groups. The only difference between searching for such a 

“reactive” group and a traditional property estimation functional group is that the former requires 

additional information for the site position and bond information based on the canonical numbering 

scheme for the molecule. This work could represent another interaction between INGen and SPCM 

as implemented within CME. Although it entails tedious hard-coding, the upgrade would be a useful 
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for INGen because it would allow a user to configure the reaction through the static data 

manipulation rather than real time hard coding for every reaction type.  

 

Last but not least, the SPCM could use an expanded functionality for use-supplied mixture property 

calculations rather than just a simple lumping function. The current algorithm of mixed property 

calculation is an independent c-coded functional module, and therefore provides a good basis for 

such a feature. 
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