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Currently, there is a lack of an FDA approved bio-equivalence test for generic

aerosol drug products. The prime candidate for such a test is a device known as

the cascade impactor. The cascade impactor uses a momentum-based impaction

mechanism to classify incoming aerosols into different size bins. As the deposition of

an aerosol in the lung is also driven by a momentum-based impaction, in principle,

the cascade impactor is expected to be ideally suited for the task. In practice the

cascade impactor has been limited by a major shortcoming: it does not sharply divide

incoming aerosol into various size bins.

To make impactors as accurate as possible, the current development methodol-

ogy uses data from computational fluid dynamics (CFD) models to produce stages

with maximally sharp cut-off sizes. However, these models do not account for the

propensity for solid particles to rebound off the collection plate. As a result, cascade

impactors have fairly straight impaction curves, but these curves come at the cost of

increased variability.

It is hypothesized that a superior impactor could be created by eliminating particle

bounce, and then developing methods to accurately recover the data for the non-ideal

impactor stage performance. In this work, tools are developed to help make such a

device a reality. First, two inference-based inversion techniques, maximum entropy

and fisher information, are formulated for use with the cascade impactor and tested

with a model Andersen Cascade Impactor. Both techniques are shown to be capable

of recovering accurate distributions from non-ideal impactors. The maximum entropy
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technique is found to be mathematically less complex, but also less accurate. The

fisher information technique demonstrated superior accuracy, but it is much more

mathematically complex and difficult to implement. For both inversion techniques,

the relationship between neighboring impactor stages is found to be important to the

accuracy of the inversion technique. In the second part, the ability of CFD tools to

predict the impactor curve shape was tested. It was found that this approach lead to

an over prediction of the sharpness of the impactor curves.
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Introduction
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1.1 Motivation

The pulmonary pathway for the delivery of drugs is a mainstay of the pharmaceutical

industry. In the year 2008, sales from treatments of Asthma and Chronic Obstructive

Pulmonary Disease (COPD) alone were reported to be $15.2 billion in the US and

$32 billion world wide (Merrill, 2010). In spite of the clear commercial success, it

has been well documented that drug products delivered via the lung lag behind the

more common oral drug delivery pathway in one important aspect: generic drug

competition (Troy, 2003).

The current regulatory framework for the generic drug approval process began in

1984 when Congress passed the Drug Price Competition and Patent Term Restora-

tion Act – commonly referred to as the Hatch-Waxman Act. The main provisions of

this act was to enable generic drug companies to gain the approval for the produc-

tion and sale of an off-patent drug through the filling of an Abbreviated New Drug

Application (ANDA) as opposed to the standard New Drug Application (NDA). The

main advantage of the newly formed ANDA was that it could be approved based on

one more bio-equivalence studies in lieu of expensive clinical trials.

Overall, the Hatch-Waxman Act has been successful in increasing competition

from generics in the pharmaceutical industry. This is evidenced by the fact that

the frequency of generic prescription drug sales rose from 14% in 1984, to 66% in

2006 (Sherwood, 2011). However, the Act does not apply to all drugs equally as

a prerequisite necessary to file an ANDA is an approved in vivo method to prove

bio-equivalence. While proper testing methods for the more conventional tablets and

capsules have long been established and lead to many generic products, to date no

such test has been established for aerosol products.

The lack of a bio-equivalence test is not without reason, as the delivery of drugs via

the pulmonary pathway is a complex process. Indeed, as will be discussed in Section

1.2, the lungs are a dynamic environment with a complex fractal-like geometry. The
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actual uptake of drug within the lungs is dependent not only on whether a particle is

captured, but also ‘how deep’ within the lungs it is captured. The aerosol particles

themselves are never mono-disperse in size, but rather a distribution of sizes typically

spanning more than an order of magnitude from the smallest to the largest parti-

cle diameter. Perhaps most relevant to this work, the momentum-based impaction

mechanism by which the particles are captured by the lungs is not just dependent

on particle size but a combination of properties such as particle density, shape and

surface roughness.

In spite of the considerable technical challenges involved with measuring the bio-

equivalence of aerosols, there is a class of instrument whose design and function

should make it an ideal candidate for such a measurement: the cascade impactor.

First introduced in 1945, cascade impactors, much like the lung, use a momentum

based impaction mechanism to separate an incoming aerosol into different size ranges

(May, 1945). As a result, they do not measure a primary particle property but rather

a lumped parameter, known as aerodynamic diameter, which takes into account all of

the contributing factors for momentum based impaction. Because this device shares

a similar mechanism of particle impaction as the lungs, in theory it should be an

effective way to test bio-equivalence between two aerosols. Unfortunately, the use of

cascade impactors for this important task has been marred by two main issues:

1. Impactors do not sharply cut the incoming aersol aerodynamic size distributions

into neat bins, but rather the particle size range collected in one stage overlaps

with its neighbors, limiting the accuracy of the impactor data.

2. The current design guidelines, tailored to minimize stage overlap, generate an

impaction velocity high enough to cause particles to rebound off of the collection

plate and be re-suspended in the flow, incorrectly skewing the measurement and

increasing the variability of the device.
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The typical response to particle bounce within cascade impactors has been to

soften the impaction surface by coating it with a sticky grease, or using an alternative

impaction surface. While this approach does decrease particle bounce, it does not

eliminate it. More to the point, this approach introduces another source of variability.

For example, the thickness of the grease layer and type of the grease have all been

found to be sources of variability (Pak et al., 1992; Nasr et al., 1997). Perhaps the

most troubling aspect of the particle bounce phenomena, is that it is not a main

consideration of impactor designers. For the past 40 years, impactors have been

designed primarily using data from CFD simulations that do not account for any

type of particle bounce or re-suspension. As a result, nearly all particle bounce

minimization work is done on already designed impactors in an ad-hoc manor.

If an acceptable test for bio-equivalence is going to be developed using cascade

impactors, then an alternative approach must be found. In this work, instead of

producing more precise cut points at the cost of increased particle re-suspensions

issues, attention is focuses on accurately recovering data from impactors with non

precise cut points using advanced data analysis.

1.2 Background

1.2.1 Brief Overview of Particle Capture within the Lungs

While delivery to the lung has a great deal of potential, it is also a complex phenom-

ena. The complexity of pulmonary delivery mainly stems from the intricate geometry

of the lungs (as illustrated in figure 1.1). The respiratory system is commonly grouped

into two sections: the upper and lower respiratory track. The upper respiratory track

contains the mouth, noise, nasal cavity and larynx. The lower respiratory track con-

tains the lungs and is connected to the upper respiratory track by a single airway

known as the trachea. The transition from the trachea to the lungs takes place when
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the trachea splits into two airways known as the primary bronchi. The primary

bronchi leads to the two lungs in the respiratory system. Once a primary bronchi

enters the airway, it will again splits in two (or bifurcate). Figure 1.2 shows a 2D

schematic of the Y-shaped split of a hypothetical airway. As the airways continue

deeper into the lung, they continue to split. The area of the airways between each

split is known as a “generation”. After several more generations of splitting the now

much smaller sized passage ways are called bronchiolies. The bronchiolies continue

to split for several more generations until the terminal bronchiolies lead to alveolar

sacs where the actual exchange of oxygen and carbon dioxide takes place. The goal

of a pulmonary drug delivery system is to deliver the drug containing aerosol bodies1

to this alveolar region which more commonly referred to as the “deep lung”.

Beyond the complex geometry of the lungs, drug delivery to the lungs is further

complicated by the fact that the breathing process itself is not a steady state process,

but it is rather cyclical in nature. The respiration process can be thought of as a

three step process. During the first step, inhalation, the lungs expand to convect

fresh air down to the alveolar sac containing deep lung region. Next, a diffusion-

driven exchange of oxygen for the bulk air through the alveolar sacs to the oxygen

depleted blood takes place. Finally, the lungs contract and expel most of the air from

the deep lungs out of the body.

When an aerosol body is entrained in the air during inhalation, it is convected

through the torturous path on the way to the deep lung. However, as these aerosol

bodies have some momentum, they will tend to resist the change in direction of the air

flow within the bifurcating airways which causes them to collide with the walls of the

bronchi/bronchiolies (as illustrated in figure 1.2). The first splits encountered by an

aerosol body are relatively gentle and only larger aerosol bodies with more momentum

will collide with the walls. However, with each progressive airway generation, the

1The term aerosol bodies will be used from here on to generically refer to both aerosol solid
particles or liquid droplets
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change in the direction of air flow becomes more intense and progressively smaller

aerosol bodies are captured. Particles with too much momentum are filtered out well

before they reach the large surface area of the lungs. They are then excreted by one of

the lungs many clearance mechanisms before they have the chance to be metabolized,

and will not have their desired biological effect.

On the other hand, if an aerosol body is too small, when it is convected into the

deep lung it will not have the necessary momentum to impact with any of the lung

walls. Since the diffusion rate for solid particles greater then 100nm is very small

compared to the duration of one breath, these small particles will simply be respired

out2. The result of these competing forces is the existence of an optimum size range

in which deep lung penetration maximized. It has been well documented that this

optimal size resides in a narrow range of 1 and 5µm, or a mean target size of about

3µm for a sphere of unit density (Hickey, 2003).

1.2.2 Cascade Impactor Shape and Function

Being that it would be prohibitively difficult to measure each of the primary properties

involved in lung impaction individually, it is common practice to perform an experi-

ment that quantifies the net effect of the sum of these properties into one secondary

parameter. The most common lumped parameter is known as the aerodynamic di-

ameter, which is defined as the diameter of a unit density sphere that would have the

same aerodynamic behavior as the particle is question.

For the more then 60 years, cascade impactors have been the instrument of choice

for such a measurement. The devices operate by convecting an aerosol through several

consecutive stages. Each stage of the impactor is designed to retain all aerosol bodies

above a certain cutoff aerodynamic diameter – more commonly called just cutoff

2It is important to note that unit density particles sized 100nm and smaller will be successfully
delivered; however at this size agglomeration is such a strong tendency that a stable concentration
of 100nm particles will be extremely dilute and not have any therapeutic value.
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size. By arranging the stages in descending order of their cutoff size an incoming

distribution can be step-wise separated into various ‘size bins’ (Figure 1.3). The

masses in each of these ‘size bins’ can then be brought together to get an estimation

of the aerosol size distribution.

The individual CI stages function by impinging a jet of aerosol onto a collection

plate (Figure 1.4). As the air in the jet is redirected from an axial flow to a radial

flow, the aerosol bodies in the flow will tend to align with the new direction of the

flow. While the shape of the cascade impactor jet/plate is considerably different than

that of the lungs, the same mechanism is at work. The particles within the jet with

a larger aerodynamic diameter (more inertia) will have too large a turning radius to

avoid colliding with the impaction plate. This fundamental difference in travel paths

is what an impactor designer uses to classify the aerosol bodies (Figure 1.4). Aerosol

bodies of a specific aerodynamic diameter can be targeted by designing a nozzle to

produce the proper air velocity and precise spacing the distance between the jet and

the collection plate.

1.2.3 The History of Cascade Impactors

Origins of the Cascade Impactor

The first cascade impactor, introduced by May (1945), was designed to measure

outdoor aerosol size distribution. It consisted of 4 impaction stages coupled with

an iso-kinetic sampling port to ensure that no sampling bias would take place due

to the inlet design. Being that the first cascade impactor was a novel concept, no

reliable guidance for the design of the impaction stages existed (Ranz and Wong,

1952). Therefore the impaction stages of the devise were designed with the aid of

basic dimensional analysis of an impactor jet combined with an ad-hoc approach.

Over the next 20 years several analytical models were proposed to obtain insight

into the impaction process. These analytical models were used to find impactor jet



8

geometry and flow conditions that would lead to a particular cutoff point3. Most

notably among them were the plane stagnation flow model (Ranz and Wong, 1952;

Mercer and Chow, 1968; Mercer and Stafford, 1969) and the ideal fluid potential

flow model (Davies and Aylward, 1951). These models, while doing an adequate job

of predicting the cutoff point, are not detailed enough to predict the shape of the

corresponding impaction curve. In spite of their limited predictive capacity, these an-

alytical models did lead to the second generation of impactors including the Andersen

(Andersen, 1958, 1966) and Lundgren (Lundgren, 1967) cascade impactors.

Modern Impactor Design: Efficiency Curve Optimization through Digital

Computing

In the early 1970s, the rise of digital computing enabled the computational explo-

ration of flow fields previously too complex for theoretical analysis. The aerodynamic

cascade impaction process is ideal for numerical simulations because the impaction

geometry is too complicated for fully detailed analytical understanding and the fluid

is an ideal gas flowing at a low to moderate Reynolds number. The modern era in

impactor design started with a seminal series of studies on the ideal jet shape (Marple

et al., 1974; Marple and Liu, 1974, 1975) and concluded with a well described general

design process for future impactors (Marple and Willeke, 1976).

The main improvement of the Marple’s digital computing approach was the ability

to predict impactor curve shape as well as cutoff diameter. The Marple studies com-

putationally investigated the effect of jet width to plate distance ratio (S/W), throat

to jet distance ratio (T/W) and Reynolds number on the sharpness of the impactor

curves for both round and rectangular jet impactors (see Figure 1.4). Throughout

these studies four basic assumptions are made:

1. The aerosol concentration is dilute – i.e. the aerosol does not affect flow
3Aerodynamic Diameter at which a stage will capture 50% of the particles by mass; see point at

which ideal efficiency curve crosses typical curve in Figure 1.5
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2. The impaction in the devise is governed by the impaction jet(s) – wall losses

are negligible

3. The jets (rectangular or round) can be modeled as an axi-symmetric 2D system

– no complex 3D flows exist

4. When a particle contacts the surface, it is captured – no particle bounce or

re-suspension is taking place.

A particle’s flight through the jet is not only a function of its aerodynamic diameter

but also of its initial location in the flow. In general, friction between the air and

the walls leads to a reduction in velocity nearer to the wall, meaning that particles

entrained in the center of the jet will have a higher velocity (more inertia) when exiting

the jets than those near the edge. Therefore, in order to construct a calibration curve,

Marple first related the critical stokes number4 to the fraction of flow between the

particle location and the center-line for a impactor jet (as shown in the top plot

of Figure 1.6). This relationship can then be converted into an efficiency curve by

determining what fraction of the particles would impact at each critical Stokes number

(See bottom plot of Figure 1.6).

Marple’s final recommendation stated that the S/W ratio should be no less than

1.0 for round impactors and 1.5 for square impactors, the T/W ratio should be at

least 1 for all jet shapes, and the Jet Reynolds number should be between 500 and

3000 for maximally sharp impactor curves (Marple and Willeke, 1976). It should be

noted that while the Marple series of papers did attempt to produce maximally sharp

calibration curves, the final shape of those curves was far from the ideal step function

shape (see the red curves of plot of Figure 1.6).

4dimensionless number defined as the ratio of the stopping distance of a particle to the charac-
teristic dimension of the impending obstacle
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1.2.4 Particle Bounce: Deviation from the Computational

Design Approach

When a particle bounces in a cascade impactor it can (1) impact on a stage down

stream, shifting the apparent aerosol size distribution to a smaller size, (2) collide

with a non-collection plate wall and not be included in the measurement, leading to

a bias in the relative mass captured in each stages (3) bounce all the way through

the impactor and be captured by the filter or (4) in the case of multi-jet impactors,

clog up the finer jets down stream, changing the downstream impactor performance

envelope.

The original cascade impactor by May was devised to find the aerosol size distribu-

tion of liquid mist droplets contained with-in fog clouds (May, 1945). The assumption

that aerosol contact with the plate is equivalent to collection held well since it was

collecting liquid droplets which are not expected to bounce. Solid particles, on the

other hand, react when they impact on a solid surface and can bounce and be re-

entrained. While the fundamental studies of Ranz and Wong (1952) also used liquid

aerosol as a test case, Mercer and Chow (1968) and Mercer and Stafford (1969) used

solid polymer test aerosols and found that a layer of silicon grease served as a ‘cushion’

for the incoming particles. Indeed, Marple’s design guide for cascade impactor also

recommended the application of a ‘sticky surface’ to the collection plate to prevent

particle bounce (Marple and Willeke, 1976).

While particle bounce is not directly accounted for in the design phase of the

impaction process, significant research has been done on the particle bounce phenom-

ena. This research can be roughly split into two groups: Fundamental research on

the particle impaction process and applied research on reducing particle bounce in

cascade impactors.
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Fundamental Impaction Studies Fundamental impaction work strives to un-

derstand the collision dynamics of a single particle colliding with a smooth/clean

impaction surface. The early works in the field focused exclusively on perpendicular

impaction, and two extensive review articles have been written describing the state

of the field (Brach et al., 2000; John, 1995). Several models have been developed that

correlate well with the data taken from several idealized experiments5 over various

ranges of impaction speeds. However, to date no one model can accurately predict a

particle collision with a clean surface. More recently, research has focused on what

happens to particles impacting at non-perpendicular angles. Specifically, it has been

noted that at oblique angles particles can bounce well below the critical bounce ve-

locity of the perpendicular case (Konstandopoulos, 2006). However, in this case the

prediction of the reduced critical velocity becomes much more difficult as the friction

between the particle and the surface plays an increased role.

Applied particle bounce research In contrast to the applied fundamental

particle bounce studies, applied research focused on reducing particle bounce in real

world cascade impactors by altering the impaction surface. Nearly all of the suggested

impactor alterations can be sorted into two groups, (1) impactor plate coating and

(2) impactor material alteration. Each of the above alterations has advantages and

disadvantages, and on their own none solves the particle bounce problem.

As mentioned above, coating the impactor plates with a ‘sticky layer’ was the first

suggested solution and perhaps the most well studied (Marple and Willeke, 1976).

While coating an impactor stage with grease is a relatively simple procedure, it does

have several drawbacks. Dunbar et al. (2005) showed that in an Andersen Cascade

Impactor, coating the impaction stages with grease reduces particle bounce, but does

not eliminate it. Pak et al. (1992) discovered that thickness of the coating can have

an effect on the ability of the plates to capture a particle. Furthermore, Nasr et al.

5Here, idealized indicates impaction in a vacuum on an atomistically smoothed surface
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(1997) found that greased stage coatings have a limitation to the amount of particles

they can capture, once the impaction layer is saturated. Perhaps most troubling,

the material used to grease the plate can interfere with the chemical analysis of the

captured components.

One possible alternative to simple impactor plate coating is to replace the hard

impaction surface with one more compatible with high speed particle impaction.

Three types of surfaces have been investigated (1) Filters, (2) Liquids and (3) Foams.

Filters have the advantage of providing a large amount of surface area on which

to collect number of particles, however Rao and Whitby (1978) noted that filters

do lessen the steepness of the impaction curves. Later, it was noted that the type

and condition of a filter (wet/dry) can make a difference in the performance of the

substrate (Misra et al., 2002; Lee et al., 2005). Liquid impactors impinge the aerosol

onto the surface of a liquid (Dunbar et al., 2005). While it is believed that this

approach eliminates particle bounce, there can be little doubt that the air jet does

have an effect on the surface of the fluid leading to surface waves and reducing the

sharpness of the impaction curves. Finally, a polyurethane foam was used as an

alternative to filters and liquids (Demokritou et al., 2004; Lee et al., 2005). The

foam can be thought of as a combination of both the filter surface and the liquid

surface; it has both a large amount of surface area for the collection of particles and

a relatively stiff surface component, allowing the collection curves to stay as sharp as

possible. The main draw backs of foam is that it is relatively new (and unexplored)

performance envelope, and the possibility that the foam will interfere with chemical

analysis of the captured material.

1.2.5 Extension of Cascade Impactor Data: Data Inversion

In addition to trying to maximize the sharpness of impactors curves through design

and minimize the amount of particle bounce by substrate modifications, some in-
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vestigators have tried to correct the errors of cascade impactors with advanced data

inversion. Data inversion involves taking discrete measurements of a cascade im-

pactor and combining them with the impactor performance envelope to recover a

smooth particle size distribution.

If an impactor did have maximally sharp efficiency curves it would allow for sim-

plified data inversion (Marple and Willeke, 1976). Usually, an estimation of an ideal

efficiency curve is associated with a 50% cut point (d50), the resulting probability dis-

tribution is obtained by dividing the mass fraction gi = mi/M where, M =
∑7

j=0mj

of the collected particles on the stage i by the particle size interval:

Pi =
gi

d50,i−1 − d50,i
. (1.1)

This distribution is a piecewise constant function and is usually presented as a his-

togram; the corresponding smooth distribution can be approximated by drawing a

curve through the mid-points of the size intervals.

In practice, the accuracy of this simplified approach is compromised because mul-

tiple size ranges get partially collected on a single impactor stage. Consequently,

more complex distributions, such as multimodal ones, can be completely missed. The

collection efficiency curves are typically S-shaped and show a large degree of overlap.

While such overlaps make the simplistic approach mentioned above less accurate, they

provide additional information about the distribution that if properly taken into ac-

count, can help recover the most “realistic” distribution, i.e, the one most consistent

with the measured masses.

A formal description of the inverse problem can be given as follows. Assuming

that a set of S-shaped efficiency curves Si(d) for stages i = 0, 1, ..., n is available from

the impactor calibration, the particle size distribution function (PSDF) P (d) sought

is a solution of the first-kind Fredholm integral equation with a discrete right hand
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side ∫ b

a

P (d)Ri(d) dd+ εi = gi, i = 0, 1, ..., n, (1.2)

where d is the particle aerodynamic diameter, a and b are the size limits within which

the distribution lies, and εi is the instrumental error of the stage (Rader et al., 1991).

The stage response (or kernel) functions are given by the relations:

R0(d) = S0(d), Ri(d) = Si(d)
i−1∏
j=0

[1− Sj(d)], i = 1, 2, ..., n, (1.3)

and are shown in Figure 1.7 along with the corresponding stage efficiency curves based

on the least-square fit of the manufacturer’s calibration data.

Equation (1.2) is a classical case of an under-determined ill-posed problem. A

number of techniques have been developed to recover the distribution from equation

(1.2). One group of methods is based on an a priori assumption about the functional

form of the distribution, for instance a superposition of log-normal and normal, with

further determination of the coefficients of the assumed form. The disadvantage of

this approach is that the parametric form of the PSD is not usually known; in fact,

from a regulatory point of view, it is the very thing that we seek to determine.

In more recent years, several non-parametric regularization methods have been

proposed to overcome the ill-posedness of the data inversion problem. The idea of

regularization is to incorporate some additional information about the solution in

order to compute a unique and stable solution. Thus, the well-known Tikhonov

regularization scheme (Hansen, 1987) reduces to a minimization of the residual with

an additional “smoothing” constraint Ω(P ) ≥ 0

min
P (d)

{
7∑
i=0

[∫ b

a

P (d)Ri(d) dd− gi
]2

+ γ2Ω(P )

}
, (1.4)

which is typically proportional to the second derivative of the solution. Here the
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regularization parameter controls the balance between the allowable residual error

and the smoothness of the resulting distribution. Thus, an optimal choice for the

parameter γ is an important step of the algorithm; it can be determined using the

L-curve method (Hansen, 1987).

Besides the Tikhonov regularization, there are many other inversion techniques

used by the aerosol community to determine the aerosol PSD. A critical survey and

comparison of several popular methods is presented in Kandlikar and Ramachandran

(1999), which includes constrained least squares, truncated singular value decompo-

sition, Twomey’s nonlinear approach, and Bayesian methods. The conclusion of the

survey indicates that there is no single algorithm that can be considered superior

to the others. Also, while different algorithms produce PSD that match the exper-

imental data well, the resulting distributions appear to be quite different from each

other.

Outside of the field of cascade impactors, a class of techniques known as inference-

based inversion has been shown to be capable of recovering probability distribution

from information of a few of its moments (Jaynes, 1984, 1957). One of these inversion

techniques, the maximum entropy technique, was even applied to a device for the

classification of smaller sized aerosol particles known as a diffusion battery (Yee,

1989). Inference based inversion techniques have several features that make them

good candidates for cascade impactor inversion:

1. They do not assume any parametric form, and as such can fit a non-standard

distribution type.

2. They do not require any adjustable parameters.

3. By design, they will only yield positive values, avoiding the non-physical nega-

tive distribution values.

4. Inference techniques typically produce smooth (non-oscillatory) distributions.
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1.3 Focus of this dissertation

In theory, the cascade impactor is a relatively simple device for measuring the aerody-

namic diameter distribution of aerosols. However, in practice the device has a major

flaw which has traditionally limited its utility. Because of the influence of friction

at the walls of the jet, the flow field within the jet does not have a uniform speed

(See Figure 1.4). As a result, the fate of an aerosol body is not dependent on its

aerodynamic diameter alone but also its location within the jet flow. Therefore, real

world impaction efficiency curves are not typically sharp, but rather have sigmoidal

shape (See Figure 1.5). Once the impactor curves deviate from the very sharp ideal

shape, aerosol bodies that fall within this sloped area of the response curve are no

longer fated to be deposited on a particular impactor stage but rather they will be

distributed between two or more neighboring stages. Strictly speaking, this invali-

dates the histogram type re-construction (as was seen in Figure 1.3) as there is no

obvious way to determine where vertical cut points should be placed.

As a response to these non-ideal efficiency curves, a large amount of effort has been

put into developing guidelines for creating impactors with maximally sharp curves.

The standard approach is to use computation fluid dynamics to resolve the flow field

for an individual jet impactor, then track particles of different sizes through the field.

By counting all particles that will contact the walls to be collected, efficiency can be

built for each individual impactor stage. Using this method, the resulting ‘optimized’

operating conditions have jet velocities between 1 and 100m/s, for any reasonable

sized device. This particular velocity range also happens to coincide with the velocity

range at which a solid particle will rebound or bounce off a solid surface. Naturally,

if a particle bounces off a plate which, according to theory, should have captured,

this will negatively affect the accuracy of the experiment. Many ways of minimizing

particle bounce have been applied to the problem (greasing the impaction plates,

using a ‘soft’ impaction surface, etc), however none of these approaches can eliminate



17

particle bounce and all of the approaches introduce new challenges that need to be

dealt with.

The current design scheme results in a irreconcilable conflict: velocities needed to

assure optimally sharp efficiency curves result in particle bounce, which then increases

the instruments variability. Perhaps most relevant, the optimization of the impactor

curves and the minimization of particle bounce are not typically addressed by the

same group of people. The impactor curves are optimized assuming the particles will

stick if they contact the wall, whereas the particle bounce minimization is done on

already built impactors by altering the impaction surface. The result of this disjointed

approach has been the creation of an instrument which has never quite lived upto its

full potential.

The more recent innovation of inference-based inversion techniques offers up a new

tool which could break this stalemate between accuracy and reproducibility. These

new inference-based techniques theoretical have the potential to recover accurate dis-

tributions from devices with non-ideal impactor curves, which could relax the neces-

sity of optimally sharp impaction curves. With this constraint relaxed the designer of

an impactor could focus on eliminating particle bounce by reducing the jet velocities.

The end result of such an approach would be an impactor which would produce very

low variability data without the need for the complexity of special impaction surfaces

or stage coatings.

In this work, the foundation for such a cascade impactor design philosophy is

developed. This work has two distinct aspects. First, inference-based inversion tech-

nique(s) must be formulated and applied specifically to case of the cascade impactor.

These methods must be shown to be robust in the face of actual experimental er-

rors and numerically efficient enough to be implemented by any modern computer.

Second, since it is likely that the degree to which neighboring stages overlap will be

important to the accuracy of the data inversion technique, the modern computational
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fluid dynamics (CFD) approach will be tested to see how well it can predict not just

the d50 of a stage, but also the shape of the impaction curve. Indeed, if it is possible

to accurately predict the shape of an impaction curve with modern CFD tools, then it

would be possible to do the majority of designing and testing in-silico, hence avoiding

the expensive and time consuming tests of building and testing prototypes.

The rest of this work is structured as follows. In Chapters 2 and 3, the information

theory based maximum entropy method and Fisher information inversion methods are

defined and applied to data analysis of a model Andersen Cascade Impactor (ACI).

The ACI is an idea choice of this work as it is a very well studied impactor, currently

a USP test is based on it and it is known to be an impactor with a significant amount

of overlap between neighboring stages. Then in Chapter 4, a computational model of

the ACI is developed and tested for its ability to capture the position and shape of

the efficiency curves. Finally, in Chapter 5, conclusions are made on the feasibility of

this alternative design approach and possible future work is suggested.
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1.4 Figures for Chapter 1

Figure 1.1: Schematic of the Human lung taken from the 1918 edition of Gray’s
Anatomy. Note how the bronchi/bronchiolies form a tree like structure that arises
from splitting multiple times.
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Figure 1.2: Schematic highlighting how particles with more momentum are captured
by the lung during the bronchi/bronchiolies spliting.
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Figure 1.3: A theoretical reconstruction of an Aerosol Size Distribution using an ideal
6 stage impactor (Solid Line - incoming distribution; Dashed Line - reconstructed
distribution; dashed vertical lines - cutoff sizes)
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Figure 1.4: Schematic of particles of different aerodynamic diameters trying to follow
the flow of the air impinging on the collection plate. It should be noted how while
the geometry is different, the mechanism of impact is the same for both the lung
impaction case (as shown in figure 1.2) and the individual cascade impactor stage as
shown in the above figure.
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Figure 1.5: Impactor stage ideal efficiency curve (dashed) vs. actual efficiency curve
(solid)
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Figure 1.6: Top: Fraction of Flow to Center-line vs. the square-root of the critical
stokes number for a round jet of S/W=0.5, T/W=1, taken from Marple and Liu
(1974). Bottom: Efficiency Curves produced from the above plot.
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Cascade Impactor
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Chapter 2

The Maximum Entropy Data

Inversion Technique
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2.1 Data Inversion and Maximum Entropy

The maximum entropy method was originally proposed by Jaynes (1957) as a vari-

ational technique to calculate equilibrium states in statistical physics, as well as for

solving inverse problems (Jaynes, 1984). This method has been demonstrated to be

useful and efficient in many other disciplines for recovering probability distributions

from information of a few of its moments (Kapur, 1990). In the field of aerosol spec-

trometry, the entropy maximization was introduced two decades ago by Yee (1989)

to reconstruct the PSD from diffusion battery measurements, but to our knowledge,

has not been applied to the inversion of the cascade impactor data.

From a technical viewpoint, one of the advantages of the maximum entropy

method is that it can be considered as a special case of the convex optimization

problem, which allows us to rely on general existence and duality theory for this

problem (Borwein and Zhu, 2005) and also simplifies its computational treatment.

However, since the aim of this paper is to describe a reliable and efficient data inversion

procedure with a particular application in mind, we provide only formal (heuristic)

derivations that lead directly to computational schemes. Other interesting details on

the rigorous problem formulations, solution functional spaces, analysis and proofs of

the existence and characterization of the maximum entropy solution can be found in

(Hiriart-Urruty and Lemarchal, 1993; Borwein and Zhu, 2005) and references therein.

In this Chapter, the maximum entropy data inversion technique is formulated and

applied to the cascade impactor problem. The Andersen Cascade Impactor (ACI) has

been selected as a model impactor. The ACI is a multi-jet impactor first introduced

by Andersen (1958) that has several aspects that make it an ideal model for data

inversion studies:

1. The impactor has been around for a long time and calibration data sets are

available for comparison
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2. Since the impactor is known for its non-ideal impaction curves, it is an appro-

priate test case for determining an inversion techniques’ ability to deal with

curve overlap

3. The ACI is currently one of two devices specified in standard USP tests.

In Section 2.2 the classical maximum entropy maximization approach (the primal

problem) using Lagrange multipliers is discussed. Then, exploiting the convexity of

the original problem, an alternative computational scheme based on dual formulation

is described. As a result, the original infinite-dimensional problem reduces to a solu-

tion of finite dimensional nonlinear system in the former case, or to the maximization

of a dual function of a finite number of variables in the latter case.

Next, a modification of primal-dual computational models is presented that allows

imprecise data values in the constraints. Section 2.3 gives details of the algorithmic

implementation and computational results. Finally Section 2.4 contains some con-

cluding thoughts on the maximum entropy approach.

2.2 Maximum Entropy Method

2.2.1 Ideal Case: Noise Free Data

The basic idea of the maximum entropy approach is to obtain a unique and robust par-

ticle size distribution P (d) from the data gi by maximizing the Boltzmann-Shannon-

Jaynes entropy

−
∫ b

a

P (d) logP (d) dd (2.1)

under the constraints represented by equation (1.2) and a normalization condition

∫ b

a

P (d) dd = 1. (2.2)
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The entropy is employed here as a measure that allows one to choose the “most prob-

able” or a “maximally noncommittal” with regard to missing information distribution

among other distributions, having a substantially lower entropies than the maximal

one (Jaynes, 1957). The entropy maximization is a constrained optimization problem

which can be put into the standard form:

minimize H(P ) =

∫ b

a

[P (x) log(P (x))− P (x)]dx

subject to: gi −
∫ b

a

[P (x)Ri(x)]dx = 0, i = 0, . . . , n,

1−
∫ b

a

P (x)dx = 0

(2.3)

and is equivalent to the maximization of the entropy −H; the linear term is included

into the entropy expression mostly for convenience. This is a primal problem, which

is traditionally approached using the method of Lagranges multipliers to recover the

PSDF. We first define the Lagrangian by augmenting the objective functional with

the linear combination of the constraints

L(P ;λ, ν) =

∫ b

a

[P (x) logP (x)− P (x)] dx

+
7∑
i=0

λi

(
gi −

∫ b

a

P (x)Ri(x)dx

)
+ ν

(
1−

∫ b

a

P (x)dx

)
,

(2.4)

where vector λ and scalar ν are the Lagrange multipliers. As a result, minimizing

the Lagrangian by computing the variation of L(P ;λ, ν) with respect to P gives

P (x) = exp

(
ν +

7∑
i=0

λiRi(x)

)
. (2.5)
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The multiplier ν can be eliminated using the normalization constraint in (2.18) and

the resulting PSDF has the form

P (x) =
exp

(∑7
i=o λiR(x)

)∫ b
a

exp
(∑7

i=0 λiR(x)
) . (2.6)

Now, the unknown multipliers λi, i = 0, . . . , 7 can be found as solutions of a non-

linear system obtained by substituting this expression P (x) for into the remaining

constraints in (2.18). This gives a nonlinear system of 8 equations for 8 unknowns

gi −
∫ b
a

exp
(∑7

i=0 λiR(x)
)
R(x)dx∫ b

a
exp

(∑7
i=0 λiR(x)

)
dx

= 0, i = 0, 1 . . . , 7 (2.7)

that, in principle, can be solved numerically. Note that the maximum entropy PSDF

(2.7) is an explicit nonlinear combination of the impactor response functions.

While the formal derivation above usually leads to the solution, an alternative

approach that uses convex duality is often preferred. It allows detailed, rigorous

analysis of the maximum entropy solution and, in certain cases, dual problems are

easier to solve numerically. To illustrate the basic idea of the duality, we define the

(Lagrange) dual function as the minimum value of the Lagrangian (2.21) over P

D(λ, ν) = inf
P
L(P ;λ, ν). (2.8)

The optimization problem in λ, ν

sup
λ,ν

D(λ, ν) (2.9)

is a dual problem associated with (2.18). By denoting the optimal value of H in

(2.18) as p and letting d = supλ,ν D(λ, ν), it is not difficult to show that the weak

duality inequality p ≥ d is always satisfied: the optimal value of the dual problem
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gives an upper bound on the primal optimal value. Due to the special properties of

the entropy maximization, however, it can be shown that for this problem the strong

duality p = d holds. In particular, these properties are the ( strict convexity) of the

entropy P logP − P as a function of P , and the affinity of constraints in (2.18). See

(Hiriart-Urruty and Lemarchal, 1993; Borwein and Zhu, 2005) for further details and

discussion of possible technical difficulties. From a practical viewpoint, the crucial

importance of strong duality is that it allows to obtain a primal optimal solution from

a dual optimal solution. Thus, if λ and ν solve the dual problem (2.9), substituting

these values of λ into (2.7) gives the solution to the primal problem.

To obtain a practical formulation of the dual problem (2.9), the dual function has

to be evaluated by minimizing the Lagrangian (2.21)

D(λ, ν) = inf
p

{∫ b

a

[P (x) logP (x)− P (x)] dx

+
7∑
i=0

λi

(
gi −

∫ b

a

P (x)Ri(x)dx

)
+ ν

(
1−

∫ b

a

P (x)dx

)}

=ν +
7∑
i=0

λigi − sup
p

{∫ b

a

P (x)

(
ν +

7∑
i=0

Ri(x)

)
dx

−
∫ b

a

[P (x) logP (x)− P (x)] dx

}
.

(2.10)

The last expression can be simplified using the formula

∫ b

a

h?(q(x))dx = sup
P

{∫ b

a

p(x)q(x)dx−
∫ b

a

h(p(x))dx

}
, (2.11)

where h?(y) = supz {yz − h(z)} is a convex (Fenchel) conjugate of a function h (Bor-
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wein and Zhu, 2005).

sup
P

{∫ b

a

P (x)

(
ν +

7∑
i=0

λiRi(x)

)
dx−

∫ b

a

[P (x) logP (x)− P (x)] dx

}

=

∫ b

a

exp

[
ν +

7∑
i=0

λiRi(x)

]
dx,

(2.12)

this finally gives

D(λ, ν) = ν +
7∑
i=0

λigi −
∫ b

a

exp

[
ν +

7∑
i=0

λiRi(x)

]
dx. (2.13)

Thus, the dual problem is the unconstrained maximization of the expression 2.13 with

respect to λ and ν

minimize ν +
7∑
i=0

λigi −
∫ b

a

exp

[
ν +

7∑
i=0

λiRi(x)

]
dx. (2.14)

It can be further simplified by maximizing over ν for fixed λ, which results in

ν = − log

(∫ b

a

exp

[
7∑
i=0

λiRi(x)

]
dx

)
. (2.15)

Substituting this value of ν into 2.14 gives the final form of the dual problem

maximize
7∑
i=0

λigi − log

(∫ b

a

exp

[
7∑
i=0

λiRi(x)

]
dx

)
(2.16)

with respect to λ. The resulting PSDF is obtained by substituting these s into the

expression (2.7). Note, that the dual formulation (2.16) is not only more elegant than

the reduction of the primal problem to the nonlinear system, but also provides an

alternative numerical pathway for the entropy maximization treatment.
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2.2.2 Maximum Entropy With Noisy Data

One problem with the analysis presented above is that the stage loadings gi , in most

practical applications, cannot be determined precisely since all measurements will

have some level of uncertainty. A classical way to account for such errors is to apply

a χ2 statistic to define a confidence region about the expected value, assuming that

the observation noise is Gaussian. In the frame of the maximum entropy method, this

can be accomplished by replacing exact constraints on the stage loadings in (2.18) by

a single constraint (Skilling and Bryan, 1984)

χ2 =
7∑
i=0

1

σ2
i

(
gi −

∫ b

a

P (x)Ri(x)dx

)2

= M, (2.17)

where σi is the standard deviation associated with the stage loadings gi, and M is

usually taken as a number of measurements, i.e. the number of impactor stages. A

modified primal problem can now be written as

minimize H(P ) =

∫ b

a

[P (x) log(P (x))− P (x)]dx

subject to:
7∑
i=0

1

σ2
i

(
gi −

∫ b

a

P (x)Ri(x)dx

)2

−M = 0

1−
∫ b

a

P (x)dx = 0.

(2.18)

This problem can be reformulated by introducing new variables

ξi =

∫ b

a

P (x)Ri(x)dx− gi, i = 0, 1, . . . , 7 (2.19)
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and associated equality constraints:

minimize H(P ) =

∫ b

a

[P (x) log(P (x))− P (x)]dx

subject to: ξi + gi −
∫ b

a

P (x)Ri(x)dx = 0

7∑
i=0

ξ2i
σ2
i

= M = 0

1−
∫ b

a

P (x)dx = 0.

(2.20)

whose Lagrangian is

L̃(P, ξ;λ, ν, µ) = L(P ;λ, ν) +
7∑
i=0

λiξi + ν

(
7∑
i=0

ξ2i
σ2
i

−M

)
. (2.21)

Here L(P ;λ, ν) is the Lagrangian (2.21) of the problem with the exact constraints.

Note that L̃ can be minimized separately with respect to P and ξ. The variation

of L̃ with respect to P gives the same expression (2.7) for the PSDF (however, with

different values of λi), and with respect to ξ:

ξi = −λiσ
2
i

2µ
, i = 0, 1, . . . , 7. (2.22)

The value of µ can be found by substituting (2.22) into the second constraint of

equation (2.20). Finally, putting the resulting expressions for the ξi and the PSDF

(2.7) into the first constraint of (2.20) produces a system of 8 nonlinear equations for

the unknowns λi, i = 0, 1, . . . , 7:

−λiσ2
iM

1/2

[
7∑
j=0

λ2jσ
2
j

]−1/2

+ gi −
∫ b
a

exp
(∑7

i=0 λiRi(x)
)
Ri(x)dx∫ b

a
exp

(∑7
i=0 λiRi(x)

)
dx

= 0, i = 0, 1, . . . , 7.

(2.23)
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To find the dual function for the problem (2.20) we minimize L̃ over P and ξ, which

can also be done separately:

D̃(λ, ν, µ) = inf
P,ξ
L̃(P, ξ;λ, ν, µ)

=D(λ, ν)− µM + inf
ξ

7∑
i=0

(
λiξi + µ

ξ2i
σ2
i

)

=D(λ, ν)− µM − 1

4µ

7∑
i=1

λ2iσ
2
i .

(2.24)

The dual problem now reduces to the maximization of the last expression with respect

to λ, ν and µ . The maximization in can µ be carried out explicitly, and using the

result of (2.16) the final form of the dual problem is an unconstrained maximization

with respect to λ:

maximize
7∑
i=0

λigi − log

(∫ b

a

exp

[
7∑
i=0

λiRi(x)

]
dx

)
−M1/2

[
7∑
i=0

λ2iσ
2
i

]1/2
. (2.25)

2.3 Implementation and Results of Computations

As follows from the above discussion, the infinite-dimensional constrained entropy

maximization can be reduced to the solution of the finite (low) dimensional nonlin-

ear system (primal problem) or unconstrained minimization (dual problem). These

finite-dimensional problems can be solved directly using standard numerical analysis

techniques, such as the Newtons method. We implemented both the primal and dual

problems in MATLAB (The MathWorks Inc., Natick, MA) utilizing the Optimiza-

tion toolbox that provides standard routines for the unconstraint minimization and

nonlinear system solvers. We also employed an excellent, recently developed Cheb-

fun system (Trefethen et al., 2009), which allows practically symbolic manipulation

of MATLAB data and functions. This system is particularly convenient for han-

dling recursive computations with the impactor stage response functions internally
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represented as Chebyshev polynomials.

To test how well different PSDF can be reconstructed using the maximum entropy

approach, our computational experiments were performed in the following sequence:

1. assume some initial distribution P (d), such as log-normal, Rosim-Rammler,

etc.;

2. calculate the corresponding stage loadings gi =
∫ b
a
P (x)Ri(x)dx, i = 0, 1, . . . , 7,

where the particle size limits are taken as a = 0.2 and b = 15;

3. perform the inversion and compare with the initial distribution.

Note that in step 2, we initially assume accurate measurements of the stage loadings

without adding noise to the data.

In our first test case, we use the ideal, piecewise constant collection efficiency/ re-

sponse functions to recover a log-normal initial distribution. Figure 2.5 shows the

initial (smooth line), as well as the resulting PSDF (dashed line), which is also a

piecewise constant function. This result can be confirmed analytically in this case,

and the maximal entropy solution is identical to equation 1.1. This test illustrates

both the strength and the weakness of the entropy maximization method. Indeed,

the recovered distribution is not smooth; however, as often argued, it is the one most

objectively consistent with the incomplete available information.

In further tests, we use the manufacturers calibrated efficiency/response data for

the ACI shown on Figure 1.7. We experiment next with the log-normal and the

Rosin-Rammler initial distributions. The Rosin-Rammler (also known as Weibull)

distribution has a density function

κ

λ

(x
λ

)κ−1
e−(x/λ)

κ

, (2.26)

where λ and κ are the scale and shape parameters, respectively. Figure 2.2 demon-
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strates good agreement between the resulting curves and initial distributions, as well

the much higher resolution obtained with the smooth and overlapping impactor re-

sponse functions in comparison with the ideal ones.

Next, we consider more complicated multimodal initial distributions. The bimodal

distribution is a superposition of two log-normal distributions. The trimodal consists

of two log-normal and one normal distribution. Figure 2.3 shows that the bimodal

distribution is recovered quite satisfactorily, giving reasonable estimates of the dis-

tribution peak positions. However, two peaks of the trimodal distribution on the

interval between 6 and 10 micron have not been properly resolved, which reveals that

the resolution quality of the PSDF might not be uniform on the considered particle

size interval. To examine this issue, we define a bimodal distribution and translate it

along the d axis from left to right, applying the maximum entropy method at several

intermediate points. The results are presented in Figure 2.4 and demonstrate the

loss of resolution and larger shifts of the distribution peaks as the original distribu-

tion moves to the right. On the last graph of Figure 2.4, the second peak cannot be

identified at all, which corresponds to a 2µm translation of the original PSDF, which

appeared on the first graph.

The observed resolution problem can be understood by analyzing the approxima-

tion properties of the maximum entropy solution 2.7, which indicates that the log-

arithm of the PSDF is approximated by a linear combination of the impactor stage

response functions. The response functions, however, are not evenly distributed on

the considered particle size interval, as shown on Figure 1.7. Clearly, a larger gap

between them can be seen on the interval from 6 and 10µm, which results in a growth

of the PSDF approximation error on this interval.

The consequences of this observation are clear: if the maximum entropy method

is to be used to invert the distribution, then instead of minimizing overlap between

S-curves, one needs uniform overlap between S-curves.
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In the next test we perform the reconstruction of the PSDF from the stage load-

ings data that contains random measurement errors. Such errors can be simulated by

adding noise to the calculated exact values of the stage loadings gi obtained on step

2 of our numerical procedure. To examine the sensitivity of the inversion, we used

the stage loadings calculated for the initial log-normal distribution shown on Figure

2.5, superimposed with the up to 10% uniformly distributed random noise. However,

we assume that the thus obtained values of gi represent accurate stage loading mea-

surements. Figure 2.5 shows several PSDF recovered from the corresponding noisy

data sets. The perturbation of the stage loadings clearly affects the recovered dis-

tributions, but does not produce high-frequency instabilities and preserves the shape

of the original PSDF. We noticed, however, a slower convergence of the nonlinear

system, as well as the minimization solvers in the course of these computations.

Finally, we performed numerical experiments using the maximum entropy inver-

sion procedures for imprecise data, based on the formulations (2.23) and (2.25), as-

suming the uniform noise level σi = σ for all impactor stages. Here we again attempt

to reconstruct the log-normal distribution shown on Figure 2.5 from the data ob-

tained by adding the Gaussian noise (with a mean and standard deviation of 0 and

0.02, respectively) to the theoretically exact stage loadings data. A particular noisy

data set, generated this way, is presented in Table 2.1 along with the corresponding

“exact” fractional stage loadings.

Stage 0 1 2 3 4 5 6 7
Estimated

Stage 0.0258 0.1571 0.1723 0.3404 0.2384 0.0649 0.0011 0.0000
Loadings

Stage
Loadings 0.0194 0.1868 0.1548 0.3211 0.2478 0.0665 0.0016 0.0019

with Noise

Table 2.1: Fractional impactor stage loadings
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For this noisy loadings data, the classical maximum entropy approach fails to

converge. Figure 2.6 shows the PSDF, recovered using different values of the noise

level σ. Choosing large values of the parameter σ results in over-smoothing of the

distribution; however, reasonably accurate recovery can be achieved even by taking

σ smaller that the actual noise level.

2.4 Summary

The results of our study show that the maximum entropy method is an accurate and

reliable technique for reconstructing the aerosol PSD from the ACI measurements.

The method performed well on the distributions commonly observed in practice, such

as log-normal, Rosin-Rammler, and bimodal distributions. The main advantages of

the entropy maximization are the following:

• The method inverts cascade impactor data using no a-prior assumption about

the shape of the distribution.

• The method is based on sound physical and information theory principles, in

contrast with many other regularization techniques.

• The mathematical theory of entropy maximization is well developed and allows

to transform the original infinite-dimensional problem into a finite dimensional

one.

• The numerical implementation of the method reduces to readily available, effi-

cient algorithms.

The main weakness of the approach was its tendency to oscillate or weave around the

actual solution. Although it should be noted that even with this oscillatory behavior

the method still did a very good job of capturing the global shape.
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Using maximum entropy, it was observed that the accuracy of the inversion cru-

cially depends on the shape and the spatial position of the collection efficiency/response

curves. The maximum entropy technique not only had no problems dealing with non-

ideal curves, it was actually found to perform best when a certain degree of overlap

exists between neighboring stages.

Beyond the possibility of using this technique for a future low variability impactor

design, it actually worked so well with the already existing Andersen Cascade Im-

pactor design that it should also be considered for use with currently available cascade

impactors to extend the value of their results.
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2.5 Figures for Chapter 2
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Figure 2.1: Log-normal distribution recovered using the ideal efficiency/response data;
solid curve - incoming distribution, dashed curve recovered distribution.
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Figure 2.2: Maximum entropy inversion of the log-normal (top) and Rosin-Rammler
(bottom) distributions; solid curve - incoming distribution, dashed curve recovered
distribution.



43

0 5 10 15
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Aerodynamic diameter, (micron)

P
(d

)

0 5 10 15
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Aerodynamic diameter, (micron)

P
(d

)

Figure 2.3: Maximum entropy inversion of the bimodal superposition of two log-
normal (top) and trimodal superposition of two log-normal and one normal distribu-
tion (bottom) distributions; solid curve - incoming distribution, dashed curve recov-
ered distribution.
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Figure 2.4: Demonstration of the effect of spatial nonuniformity of the response
functions. As the incoming biomodal (solid line) is shifted to the right the quality
of the recovered distribution (dashed line) is at first slightly improved and then it
degenerates. This is caused by the shape and spacing variability in the impactors
response functions.
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Figure 2.5: Recovery of noisy data: stage loadings with up to 10% noise.
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Figure 2.6: Recovery of noisy data using different values of the noise level solid line
shows the original distribution without added noise.
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Chapter 3

The Fisher Information Data

Inversion Technique
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3.1 Motivation and Problem Statement

In the previous chapter, the maximum entropy (ME) technique was applied to the

inversion of Andersen Cascade Impactor data. The ME inversion involves the maxi-

mization the Boltzmann-Shannon-Jaynes entropy

−
∫ b

a

P (d) logP (d)dd (3.1)

while constraining the solution to the operational envelope of the impactor. Specif-

ically the Fredholm integral equation of the first kind and a normalization factor to

ensure the area under the solution is equal to one:

gi =

∫ b

a

P (d)Ri(d)dd, i = 0, 1 . . . , 7, (3.2)

1 =

∫ b

a

P (d)dd. (3.3)

The work generated three major findings:

1. The ME approach produced accurate inverted distributions without the need

for any a prior assumptions or smoothing criteria.

2. The ME method could be formulated using the chi-squared distribution to deal

explicitly with noisy data sets.

3. The quality of the inversion is dependent on some overlap existing between

neighboring impactor stages.

While the ME approach does capture the general shape of the inverted distribution in

a convincing and realistic fashion, it does tend to predict distributions which ‘weave’

around the actual solution (Figure 3.1). In other fields where the ME technique

was applied this behavior has been explained by the fact that the Entropy measure

actually is a global measure of the proposed distributions (Frieden, 2004). It has been
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suggested that Fisher Information (FI), could be an attractive alternative inference

inversion technique for eliminating this behavior (Borwein et al., 1995, 1996)

I =

∫ b

a

P ′(d)2

P (d)
dd. (3.4)

In contrast to the ME technique the FI technique explicitly deals with the derivative

of the distribution making it sensitive to local fluctuations and hence it is a local

technique. The goal of this Chapter is to apply the FI inversion technique to the

analysis of ACI data. In particular, the strengths and weaknesses of the method will

be compared to that of the ME Approach.

The structure of this chapter is as follows. In Section 3.2 we derive both a Primal

and Dual approach to the FI-based inversion technique of cascade impactor data for

cases with and without the inclusion of experimental noise. Section 3.3 covers the

specific numerical recipe used in this work. Section 3.4 presents a series of inversion

case studies that are performed on hypothetically formulated distributions for a model

of the Andersen Cascade Impactor. The performance of the inversion technique is

then compared and contrasted to that of the ME technique. Finally, Section 3.5

summarizes the strengths and weaknesses of the FI inversion technique.

3.2 Fisher Information Method

Data inversion by the Fisher Information (FI) approach, like the Maximum Entropy

(ME) Method, can be considered a special subcase of optimization problem known as

convex optimization. As the name implies, convex optimization involves minimizing

functions that are convex in nature. Due to the convex nature of the functions any

local minimum found will also be a global minimum. In addition, convex optimiza-

tion problems can be solved by two mathematically different pathways known as the

primal and dual approach. The more common primal approach uses the technique
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of Lagrange Multipliers find the system extrema. However, the less well known dual

approach offers an alternative solution pathway and in certain cases can be easier to

solve numerically. In the specific case of the FI function, it is a member of a sub-class

of convex optimization problems known as strictly convex. The most relevant aspect

of strictly convex problems is that one and only one extrema exists. Which means

for practical purposes that one and only one optimal solution exists. As was the case

with the ME method, the FI method can also be extended to deal explicitly with

experimental noise using chi-squared theory. As the goal of this work is the study

of the inversion process (and how it compares to that of the already discussed ME

technique) we provide only formal (heuristic) derivations that lead directly to com-

putational schemes. More details on rigorous formulations can be found in Borwein

et al. (1995) and references therein.

3.2.1 Ideal Case: Noise Free Data

The Primal Problem Approach The FI inversion approach can be stated in its

standard form assuming no instrumental noise as

Minimize I(P ) =

∫ b

a

P ′(x)2

P (x)
dx,

Subject to: gi −
∫ b

a

P (x)Ri(x)dx = 0, i = 1, . . . , n,

1−
∫ b

a

P (x)dx = 0

(3.5)

where P (x) is the incoming (unknown) aerodynamic size distribution, gi is the amount

of mass captured on the ith stage and Ri(x) is the response function for the impactor

under investigation (in this case, the ACI see Figure 1.7). For the FI problem, it is

convenient to allow

P (x) = q(x)2. (3.6)
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The corresponding simplified standard form then becomes

Minimize I(q) =

∫ b

a

q′(x)2 dx,

Subject to: gi −
∫ b

a

q(x)2Ri(x)dx = 0, i = 1, . . . , n,

1−
∫ b

a

q(x)2dx = 0.

(3.7)

As was already mentioned, the primal approach involves using the method of La-

grange’s Multipliers in which the function called the Lagrangian is created by linearly

combining the function to be optimized with the constraints which are to be imposed

on it

L(q;λ, ν) = ν +
n∑
i=1

λigi +

∫ b

a

{
4q(x)′2 − q(x)2

(
ν +

n∑
i=1

λiRi(x)

)}
dx (3.8)

where λi and ν are the Lagrange Multipliers for the first and second constraint in

(3.7) respectively. Now, minimizing the Lagrangian by computing the variation of

L(q;λ, ν) with respect to q is not straightforward as q is contained with in the integral

∫ b

a

{
4q′(x)2 − q(x)2

(
ν +

n∑
i=1

λiRi(x)

)}
dx. (3.9)

Therefore, instead of searching for a single optimum value, what is needed is a function

of x that will optimize the value of the integral equation. It can be shown that the

2nd order differential equation

0 = q′′(x) +
q(x)

4

(
ν +

n∑
i=0

λiRi(x)

)
(3.10)

will minimize the Lagrangian L with respect to x. Conveniently, (3.10) is an example

of the Sturm-Liouville problem and is analogous in form to the very well characterized
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time independent Schrodinger’s Equation in one dimension

ψ′′ +
2mψ

~
(E − V (x)) = 0 (3.11)

where, ψ is the wave function, m is the mass of the particle, ~ is Planks constant, E

is the energy level and V (x) is the potential energy. It is well known that (3.11) only

has solutions when the constants E has one of a particular set of real values known

as eigenvalues (Ek). Likewise, (3.10) only has a solution when the scalar ν takes on

one of its eigenvalues νk. Then, for each eigenvalue, a corresponding eigensolution

qk(x) exists. If the eigenvalues are ordered in an increasing sequence, then it is known

that the eigenfunction qk(x) corresponding to the eigenvalue k, will have exactly k

zeros on the interval (a, b) (Pryce, 1994). For this work we are interested in the

eigenfunction that is generated by the smallest eigenvalue. This eigenfunction is

traditionally selected because it has no zeros in its domain.

Thus, a solution to the optimization problem can be found by solving the system

of equations that is generated by taking the variation of the L(q;λ, ν) with respect

to each individual λ and solving it in conjunction with the “Schroedinger-like” differ-

ential equation.

0 = gi −
∫ b

a

q(x)2Ri(x) dx for i = 1, . . . , n

where, 0 = q′′(x) +
q(x)

4

(
ν +

n∑
i=0

λiRi(x)

) (3.12)

It should be noted, that the area under the curve for all of the eigensolutions is equal

to unity, making the second constraint of (3.7) redundant.
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The Dual Problem Approach The dual function can be defined as the minimum

value of the Lagrangian (3.8) with respect to q

D(λ, ν) = inf
q
L(q;λ, ν); (3.13)

the corresponding dual problem associated with (3.7) is then an optimization problem

on the dual function with respect to λ and ν

sup
λ,ν

D(λ, ν). (3.14)

In more detail, the minimum of the Lagrangian with respect to q is (3.8):

D(λ, ν) = inf
p

{
ν +

n∑
i=1

λigi +

∫ b

a

[
4q(x)′2 − q(x)2

(
ν +

n∑
i=1

λiRi(x)

)]
dx.

}

= ν +
n∑
i=1

λigi + inf
p

{∫ b

a

[
4q(x)′2 − q(x)2

(
ν +

n∑
i=1

λiRi(x)

)]
dx

}
.

(3.15)

Interestingly, this is the same classical problem of Calculus of Variation that appeared

in the primal approach (see Chapter 2). Conveniently, Borwein et al. (1996) showed

that

0 = inf
p

{∫ b

a

[
4q(x)′2 − q(x)2

(
ν +

n∑
i=1

λiRi(x)

)]
dx

}
(3.16)

when q(x) is the solution to the Schroedinger like Equation (3.10). So the practical

form of the dual problem can be written as

maximize ν +
n∑
i=1

λigi

where 0 = q′′(x) +
q(x)

4

(
ν +

n∑
i=0

λiRi(x)

)
.

(3.17)
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It should be noted now that the solution to the Sturm-Liouville differential equation

not only supplied the form of the function q(x), but it is also necessary to recover the

eigenvalue ν necessary to solve (3.17).

3.2.2 Fisher Information With Noisy Data

One possible shortcoming of the inversion approaches above is the assumption that the

measured impactor masses have no associated error. Of coarse, this is not a realistic

situation since all experimental measures have some degree of noise associated with

them. These errors can be accounted for by assuming that the errors are Gaussian

and applying a χ2 statistic to define a confidence region about the expected value.

As with the ME method, this can be done by replacing the exact constraints on the

stage loadings (Skilling and Bryan, 1984; Gulak et al., 2010):

χ2 =
n∑
i=1

1

σ2
i

(
gi −

∫ b

a

q(x)2Ri(x) dx

)2

= M, (3.18)

where σi is the standard deviation associated with the stage loadings and M is usually

taken as the number of measurements (number of impactor stages).

By substituting (3.18) into the modified original problem statement (3.7) the new

optimization problem can now be stated as

Minimize I(q) =

∫ b

a

q′(x)2 dx,

Subject to:
n∑
i=1

1

σ2
i

(
gi −

∫ b

a

q(x)2Ri(x) dx

)2

−M = 0

1−
∫ b

a

q(x)2dx = 0.

(3.19)

This problem can be reformulated by introducing new functions ξi =
∫ b
a
q(x)2Ri(x) dx−
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gi, for i = 1, 2, . . . , n and associated equality constraints

Minimize I(q) =

∫ b

a

q′(x)2 dx,

Subject to: ξi + gi −
∫ b

a

q(x)2Ri(x) dx = 0,

n∑
i=1

ξ2i
σ2
i

−M = 0

1−
∫ b

a

q(x)2 dx = 0.

(3.20)

The Primal Problem Approach The same primal approach used for the noise-

free problem statement can now be applied to the reformulated statement. The

Lagrangian of the noise problem statement (3.20) can found to be

L(q, ξ;λ, ν, µ) =

∫ b

a

q′(x)2 dx+ ν

(
1−

∫ b

a

q(x)2 dx

)
+

n∑
i=1

λi

(
gi −

∫ b

a

q(x)2Ri(x) dx

)

+
n∑
i=1

ξiλi + µ

(
n∑
i=1

ξ2i
σ2
i

−M

)
.

(3.21)

When the Lagrangian for the original problem statement (3.8) is compared to the

Lagrangian for the formulation with noise (3.21) it becomes clear that the new La-

grangian is actually equivalent to the original (L(q;λ, ν)) plus two additional terms:

L(q, ξ;λ, ν, µ) = L(q;λ, ν) +
n∑
i=1

ξiλi + µ

(
n∑
i=1

ξ2i
σ2
i

−M

)
, (3.22)

Now these additional terms can be rearranged into a more convenient form

L(q, ξ;λ, ν, µ) = L(q;λ, ν)− µM +
n∑
i=1

(
ξiλi + µ

ξ2i
σ2
i

)
. (3.23)
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The variation of L with respect to ξ must then be done seperately for each function

ξi yielding

ξi = −λiσ
2
i

2µ
, i = 1, 2, . . . , n. (3.24)

Now the value for µ can obtained by substituting (3.24) into the second constraint of

the problem (3.20)

µ =
1

2

(∑n
i=1 λ

2
iσ

2
i

M

) 1
2

. (3.25)

Finally, incorporating (3.24) and (3.25) into the first constraint the full primal prob-

lem with noise can be stated as a mixed system of one differential and n algebraic

equations

0 = −λiσ2
iM

1
2

(
n∑
j=1

λ2iσ
2
i

)− 1
2

+ gi −
∫ b

a

q(x)2Ri(x) dx for i = 1, 2, . . . , n

where, 0 = q′′(x) +
q(x)

4

(
ν +

n∑
i=0

λiRi(x)

)
.

(3.26)

The Dual Problem Approach Formulating the problem while allowing for some

experimental noise follows the same basic procedure as the original dual problem

formulation: First the dual function is defined as the infimum of the Lagrangian

with respect to the independent variable, next the dual problem can be specified by

finding the supremum of the dual function with respect to the Lagrange Multipliers.

However, in this case there are multiple functions of the independent variable (x):

q(x) and ξi(x) within the Lagrangian (3.21). Conveniently, in this case the functions

of q(x) and ξi(x) within the Lagrangian (3.23) can be separated out into individual

terms and as such can be treated individually, so

D(λ, ν) = inf
q
L(q;λ, ν)− µM +

n∑
i=1

inf
ξi

(
ξiλi + µ

ξ2i
σ2
i

)
. (3.27)
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As with the primal case the Variation of L with respect to each individual ξi is found

to be (3.24) and again µ can be shown to be (3.25) by combining (3.24) with the

second constraint of (3.20). Now, by substituting (3.24) and (3.25) into (3.27), one

can find

−µM +
n∑
i=1

inf
ξi

(
ξiλi + µ

ξ2i
σ2
i

)
= −

(
M

n∑
j=1

λ2jσ
2
j

)1/2

(3.28)

Finally the full dual problem can be stated as

maximize ν +
n∑
i=1

λigi −

(
M

n∑
j=1

λ2jσ
2
j

)1/2

where 0 = q′′(x) +
q(x)

4

(
ν +

n∑
i=0

λiRi(x)

)
.

(3.29)

Again it should be noted that the solution to the Sturm-Liouville differential equation

yields not only the function q(x), but also the eigenvalue ν.

3.3 Implementation of Fisher Information Method

In Section 3.2, two approaches were used to convert the general FI inversion problem

(3.5,3.7) into a solvable form. The goal of this section is to describe specific algorithms

used to solve these problems. In both the primal and dual case, finding the inverted

distributions takes three general steps:

1. Determine the optimal set of Lagrange Multipliers that satisfies the chosen

approach: primal noise free (3.12), primal with noise (3.26), dual noise-free

(3.17) or dual with noise (3.27).

2. Next, the “Schroedinger-like” differential equation (3.10) can be solved for q(x)

using the optimal set of Lagrange Multipliers found in step one.
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3. Finally, the recovered distribution function p(x) can be found by taking the

square root of the function q(x).

It should be noted that the “Schroedinger-like” differential equation is not only used

to recover the q(x) function, but is also a key component in the search for the optimal

set of Lagrange Multipliers for both the primal and dual approaches. Therefore the

techniques used to solve this differential equation will be covered first, followed by a

description of the primal noise-free case and the dual noise-free case.

For this work, all computations were implemented in Matlab (The MathWorks

Inc., Natick, MA). In addition to the use of the standard optimization toolbox solver,

the Chebfun/Chebops toolboxs were used to allow symbolic like manipulation of

Matlab data and functions (Trefethen et al., 2009).

Solving the Sturm-Liouville Equation Solving the Sturm-Lioville equation (3.10)

involves finding the function q(x) given a set of Lagrange Multipliers λi. Of coarse, as

was mentioned previously, Sturm-Lioville type problems have an infinite number of

solutions which correspond to an infinite series of eigenvalues. In this case the desired

eigensolution was the one corresponding to the first (or smallest real) eigenvalue. This

was found using the overloaded chebops function eigs.

The Primal Approach The system of equations resulting from the primal ap-

proach (3.12) was constructed into a function. The function takes a set of Lagrange

Mulitipliers λi, and solves the Sturm-Liouville equation to find the q(x) function.

Then, it uses the q(x) function to determine the value of the each of the n equa-

tions. Naturally, if the correct (optimal) set of Lagrange Multipliers is supplied, all

equations should be equal to zero. This correct set of Lagrange Multipliers is found

by suppling the above function (along with an intitial guess of λi) to the Matlab

non-linear solver fsolve.
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The Dual Approach Instead of a system of equations, the dual approach yields

a convex function that is dependent on all n Lagrange multipliers. Finding the value

of this convex function for any set of Lagrange multipliers is a two step process.

First, the Sturm-Lioville problem is evaluated to find the value of the first eigenvalue.

Then, the value of the whole function can be evaluated. The optimal set of Lagrange

multipliers is then found by supplying the above function (along with an initial guess

of λi) to the Matlab unconstrained minimization solver fminunc.

3.4 Results

In order to evaluate the FI inversion process, three case studies have been performed:

(1) Inversion of various known common distribution types, (2) Sensitivity of inversion

method to distribution sharpness, and (3) Study of non-standard distribution shape

by translating one normal distribution over another stationary normal distribution.

In each case, the inversion was done both with the prior established ME approach

as well as with the FI approach established in Section 3.2. The basic inversion testing

process followed a general three step process:

1. assume some initial aerodynamic diameter P (x), such as log-normal, Rosin-

Rammler, normal, etc.,

2. calculate the corresponding stage loadings via the forward problem∫ b
a
P (x)Ri(x)d(x), i = 1, 2, . . . , n where particle size limits are taken as a = 0.1,

b = 20,

3. perform the specified inversion and compare the initial distribution.

When comparing two different inversion techniques or conditions, the error for each

is computed by finding L1-Norm between the original and inverted distribution and
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dividing by two. This metric was selected as it normalizes the error for all possible

inversions between zero (perfect overlap) and one (perfect non-overlap of two curves).

Inversion of Various Known Distribution Types In reality, Aerodynamic Di-

ameter Distributions typically do not have a a-priori known shape. Therefore, in

important aspect of any inversion system is that it can capture distributions of vary-

ing shape. In the first case study, initial Aerodynamic Diameter Distributions were

generated from Log Normal, Wiebull, and Normal Distributions. These distributions

were converted to stage masses (via the forward problem) using the performance pro-

file of an Andersen Cascade Impactor, and then an inverted distribution was recovered

using both the ME and FI approaches. The left panes of Figure 3.2 demonstrate the

weakness of the ME method; while the fit in general is quite good, the distributions

do appear to weave around the their original counterparts. In contrast, the panes on

the right of Figure 3.2 show the FI recovered distributions holding very tight to the

original distribution. Quantitatively, the error found with the FI approach was found

to be an order of magnitude lower then that of the ME Approach.

Sensitivity of inversion method to distribution sharpness: The success of the

FI technique to produce a superior fit on relatively broad distributions (see Figure 3.2)

raises an important questions: How narrow a distribution can the inversion technique

resolve. Indeed, if the FI technique is only good for relatively broad distributions,

then it might be limited in practical applications.

As a test of the ability of the inversion techniques to resolve sharp distributions,

a series of normal distributions were created and inverted. These distributions had

a mean of 3µm and standard deviations ranging from near 1 down to 0.1µm. The

normalized error of inversion versus the various standard deviations can be seen in

Figure 3.3. It was found that, when compared to the ME approach, the FI approach

achieves superior inversion for distributions with Standard Deviations above 0.35µm;
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below this threshold the error of the inversion begins to increase rapidly. The ME

technique, on the other hand; keeps its error fairly constant until around a Standard

Deviation of 0.1µm. Indeed, the effect of the inversion technique type with respect

to the distribution sharpness can be seen in the subplot of Figure 3.3, which details

the inversions at standard deviations of 0.1, 0.24 and 0.97µm (going left to right). In

the 0.97µm case, as with the first case study, the ME solution begins to take on an

under-dampened look as compared to the FI solution which does an excellent job of

overlying the distribution. When the standard deviation gets down to 0.24µm, the

FI solution starts to diverge from the actual distribution as the FI approach starts

to over-smooth the narrow distribution. Finally, the ME approach goes through the

same type of transition around a standard deviation of about 0.1µm.

Inversion and Multimodal distributions: Building on the first two case stud-

ies, a bimodal distribution problem was specified. In this third case study two dis-

tributions with a Standard Deviation of 0.65µm were superimposed. Initially, both

distributions were placed with a mean of 2.25µm, then one of the distributions was

translated increasingly to the right to a maximum mean of 12µm. In all cases, the

distributions were normalized so the area under the combined distribution was equal

to 1. This configuration was selected for several reasons:

1. As the second distribution begins to translate relative to the stationary distri-

bution, the superposition of the two distributions creates a unique non-standard

situation which can be challenging for an inverison technique to capture.

2. As the second distribution separates further, it becomes a completely com-

pletely bimodal distribution. Multimodal distributions are present in real world

aerosols and the ability of the inversion method to capture them should be stud-

ied.
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3. In previous work it was noted that these information theory techniques are

somewhat dependent on the amount of overlap of neighboring stages (Gulak

et al., 2010). By translating the second distribution, an inference can be made

to how sensitive the inversion method is to the shape of the impactor curves.

Interestingly, it was found that the noise-free FI approach did not initially converge

for all of the inversions involved. Specifically the FI approach failed to converge

when the translating distribution initially began to distinguish itself as an individual

distribution and again when its mean was approaching the 1st impactor stage size.

These ranges have been denoted in Figure 3.4 as Area 1 and Area 2 respectively.

As an attempt to deal with these non-convergence inversions, a noise parameter was

introduced in all of the non-converging inversions. The noise-formulated inversion

approach from Section 3.2.2 was then used. Initially the noise factor was set at 10−5

and the inversion was repeated.1 If convergence was not achieved, the noise factor

was increased by an order of magnitude and run again. This process was continued

until either process converged or a maximum allowable noise factor of 0.1 was reached.

Table 3.1 reports the noise parameter for each of the inversions. The ME technique

had no problems with convergence for all the discussed inversions without the need

to incorporate an error parameter.

When the translating distribution’s mean was in the domain marked Area 1 in

Figure 3.4, the two distributions were just beginning to separate and a non-standard

shape was being established (as seen in the top pane of Figure 3.5). It can be seen that

this transition challenged both the ME and FI approaches as the normalized error for

both can be seen to increase (see lower pane of figure 3.4). Perhaps most interestingly,

the distribution recovered from the FI approach with the noise parameter was still

more accurate then the distribution recovered from the ME technique which did not

need to resort to a noise factor to solve the problem. In the top pane of Figure 3.5,

1As is common practice the M factor was set equal to 8; the number of stages
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the inverted distributions for the circled data points in Area 1 of Figure 3.4 is shown.

It should be noted that, as was found in the previous case studies, the ME approach

yields an under-damped situation where the recovered solution oscillates around the

original distribution. This is in contrast to the FI approach actually does appear to

have the correct number of stationary points and inflection points.

As the translating distribution moves up in mean diameter, it enters the region

where two independent normal distributions can be observed. In this region (corre-

sponding to the space between Area 1 and Area 2 in Figure 3.4) the ability of the FI

algorithm to overlay the original solution becomes apparent as it consistently outper-

forms the ME technique. The ME approach does capture the general bimodal nature

of the original distribution, but again an over-shoot/over-correction can be observed

in the central pane of Figure 3.5.

Finally, as the translating peak begins to enter the part of Figure 3.4 marked as

Area 2, the error for both of the inversion approaches starts to increase dramatically.

In the top pane of Figure 3.4, the second distribution is actually up to a size where its

member particles will be captured by the 1st stage. The bottom pane of Figure 3.5

corresponds to the circled point all the way to the right of Area 2 in Figure 3.4. While

the smaller part of the distribution is still being recovered to a reasonable degree, the

larger part has translated to the point where particles can ONLY be captured by the

first stage. As a result, the quality of inverted distribution is deteriorated significantly.

This is a direct result of the Information Theory inversion techniques dependence on

overlapping impactor curves. Indeed, it can be expected that any Information Theory

based inversion techniques will fail in such a situation and all information theory

inversion techniques are first and foremost dependent on the operating envelope of

the impactor, compared to the size the Aerosol Distribution under investigation.
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Translating Noise
Mean (µm) Parameter

Area 1 3.88 10−5

4.28 10−5

4.69 10−4

Area 2 7.53 10−4

7.94 10−2

8.34 10−2

8.75 10−2

9.16 10−2

9.56 10−2

9.97 10−2

10.4 10−2

10.8 10−2

11.2 10−3

11.6 10−2

12.0 10−2

Table 3.1: Mean of the Translated Distribution (see Figures 3.4 and 3.5) vs the noise
factor needed to achieve conversion using the Fisher Information inversion technique.

Note on Computation Effort Numerically, the FI approach is indeed more ex-

pensive than that of the ME approach. As was already noted, the FI approach can

be though of as the same basic structure of system as the ME approach, coupled with

a Strum-Loiville differential equation. In the above, work it was found that the ME

inversion took between 5 and 12 seconds to converge. On the other hand, the FI ap-

proach would take between 60 and 1200 seconds. Of this execution time, it was found

that around 90% of it was dedicated to the solution of the Sturm-Loiville Differential

Equation. However, it should be noted that the Matlab/Chebops approach utilized

in this work to solve the Sturm-Louiville system was chosen for its simplicity and

ease of use, not its inherent speed for solving this particular system. It is likely that

great speed increases could be gained with a more specialized algorithm, however it

is also reasonable to assume that the FI approach will always be significantly slower

then the ME approach.
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3.5 Conclusions

The main goals of this Chapter were to (1) construct a practical formulation of the

Fisher Information approach to data inversion for cascade impactors and to (2) com-

pare and contrast this technique with that of the Maximum Entropy approach to

data inversion. Section 3.2, contains a detailed description of the derivation of the

practical form of the FI approach. Then in Section 3.4 three case studies were per-

formed using both the FI and ME approaches for any non-narrow distribution. From

these case studies, in general, the FI approach was found to produce more accurate

inverted distribution than those of the ME approach. In particular, the improved

accuracy of the FI method was shown to stem from its ability to produce inverted

distribution which practically overlay the original distributions. The ME method, on

the other hand, is able to capture the global shape of the distribution but tends to

oscillate around it at any given position. However, this improved performance comes

at a cost, as the additional complexity introduced by the FI approach did cause the

problem to be computationally significantly more difficult to solve (taking up to 10

to 1000x longer to solve).
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3.6 Figures for Chapter 3
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Figure 3.1: The curve recovered by the Maximum Entropy inversion technique
(dashed line) captures the general shape of the distribution, but can be seen to ‘weave’
along the path of the original distribution (solid line)
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Figure 3.2: Comparison of FI and Maximum Entropy Inversion Techniques for log-
normal, Rosin-Rammler and normal distribution
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Figure 3.3: Normalized error vs normal distributions with a mean of 3µm and a
standard deviation varying from 0.1 to 0.97µm. The three sub-plots correspond with
the three circled data points.
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Figure 3.4: (Top Pane) ACI response functions used for the inversions. (Bottom
Pane) Normalized Error as a one of a two normal distributions is translated to the
right (see Figure 3.5)
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Figure 3.5: Three selected plots of the recovered distributions using both the Maxi-
mum Entropy and Fisher Information technique when one of two normal distributions
is translated to the right.
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Chapter 4

Modeling the Cascade Impactor:

The Forward Problem
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4.1 Introduction

In the previous two chapters inference based inversion techniques were introduced

that can recover accurate, smooth distributions from non-ideal impactors. For both

of these techniques the amount of overlap between neighboring curves was found to

be important factor in determining the success of the inversion technique.

In this Chapter, the computational fluid dynamics (CFD) approach is examined

for its ability to predict impactor performance. As determining the amount of overlap

appears to be an important to the inversion process this work will dedicate special

attention to the ability of this CFD technique to recover the impactor curve shape.

As with the previous two chapters, the Andersen Cascade Impactor (ACI) has been

selected as the model impactor. Currently, the ACI is one of the most commonly used

devices to characterize aerosol size distributions. For comparisons purposes the col-

lection efficiency data as well as the 50% effective cutoff aerodynamic diameters (d50)

are usually available from the ACI manufacturer’s calibrations, typically performed

at a 28.3 liter per minute (lpm) air flow rate (the base case). Furthermore, the results

of extensive experimental studies and the calibration of the ACI operated at the 28.3

lpm flow rate were reported in Mitchell et al. (1988) and Vaughan (1989). Recently,

however, ACI have been used at flow rates considerably different from 28.3 lpm, which

required a corresponding re-calibration of the impactor. Thus, Zhou et al. (2007) em-

ployed the ACI to evaluate a nebulizer at an 18.0 lpm flow rate. The impactor was

calibrated with mono-disperse fluorescent test particles. In a similar study Nichols

et al. (1998) measured retention curves at 60 lpm. Separately, Srichana et al. (1998)

used a different calibration technique to measure flows at both 60 and 28 lpm.

The theoretical prediction of the efficiency and cutoff diameters, however, is more

complex due to the multi-scale geometry and aerodynamics of the ACI. Earlier models

were based on studies of impaction in plane stagnation flows (Ranz and Wong, 1952;
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Mercer and Chow, 1968) or ideal fluid potential flows (Davies and Aylward, 1951),

in which analytical expressions for the velocity field could be obtained. Despite their

simplicity, such models provided an adequate physical description and outlined the

importance of various mechanisms on the impaction. In the early 1970s the applica-

tion of digital computing lead to a more detailed understanding of impactor design

(Marple and Willeke, 1976). It should be noted that the ACI, being designed prior

to the Marple work, does not strictly follow design recommendation; most notable

the ACI is typically operated to with Reynolds number ranging from 50-500 which is

below the suggested range of 500-3000 (Marple et al., 2001). Numerous recent studies

employ computer simulations to obtain more realistic flow fields, but are primarily

dedicated to the case of single-nozzle impactors.

The purpose of this work is to present and justify a reduced model of the ACI, fur-

ther referred to as the single jet model, that can be used to predict and communicate

impactor performance with particular attention given to not just the D50, but also the

shape of the recovered impaction curves. The model is introduced in Section 4.2 and

based on the solution of the Navier-Stokes system for a single jet configuration, with

further particle tracking calculations using the previously determined flow field. This

procedure is applied to each of the 8 ACI stages. In Section 4.3, the resulting particle

collection efficiency curves and corresponding cutoff diameters are compared with the

data found in the literature to check the validity and accuracy of the single jet model

at 18, 28.3, and 60 lpm air flow rates. Special attention is given to how gravity should

be treated when using a single jet model to approximate a multi-nozzle design. Fi-

nally, the impactor stage loadings and response functions, obtained using the single

jet model, are analyzed in Section 4.4. These functions are usually employed in the

inversion of the impactor data.
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4.2 Methods

4.2.1 Model Formulation

A major challenge in modeling the ACI is the multi-scale nature of the device, as

viewed from geometrical and physical perspectives. Indeed, the ratio of the stage plate

to the hole diameter can be as large as 2000, and the flow in the impactor appears to

be laminar in the initial stages and becomes transitional and then turbulent in the

higher stages. The range of the Reynolds number based on hole diameter and defined

as

Re =
UW

ν
, (4.1)

where U is the average nozzle velocity, W is the nozzle diameter, and ν is the air

kinematic viscosity, usually varies from 50 in the lower stages up to 2000 in the higher

impactors stages. In addition, each ACI stage plate has a large number (up to 400)

holes around a millimeter in size.

Despite the increasing power of modern computers, it would be impractical today

to try to resolve the flow field in the whole device, or even in a single stage. There-

fore, in the present work we analyze each impactor stage individually. As a further

necessary simplification, each of the 8 ACI stages are modeled by an averaged single

jet impinging on a collecting plate. Furthermore, as the flow rate through the stages

increases toward transition/turbulent flows the direct numerical simulation technique

used in this work becomes impractical. As such only stages with a Reynolds number

under 550 are simulated.

Previous theoretical and numerical studies on the effect of gravity in single jet

impactors have indicated that the gravitation impaction of the particles cannot be

ignored (Huang and Tsai, 2001). However, the geometry of the ACI is significantly

different from that of single jet impactors; neighboring jet holes almost certainly have

an effect on the flow field in the immediate vicinity of the other jets. Because the
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role of gravity is not explicitly clear in the ACI, cases will be tested both with and

without gravitation impaction and compared with available data

4.2.2 Computational Model

Figure 4.2 shows a the two-dimensional axisymmetric configuration in which air

with aerosol particles enters the inlet plane AB and then accelerates through the

circular nozzle CE. Larger particles with higher inertia impact on the collection plate

GH, while smaller ones follow air streamlines more closely and flow out of the domain

at the FH plane. Geometric dimensions, specific for each ACI stage such as the hole

length and the hole diameter, are given in Table 4.1; other dimensions are shown in

Figure 4.2. It should be noted that all these dimensions are consistent with the real

geometric parameters of the ACI. The exceptions are the inlet radius AB and the

collection plate radius GH that can vary and has to be optimally chosen to simplify

the numerical modeling. The inlet radius should not be too large to avoid particle

losses due to impaction on the wall CD. The collection plate radius, in principle, has

to be close to half of the averaged distance between holes on the ACI stage. It appears,

however, that the air flow develops a recirculation zone between planes EF and GH,

which must be far enough from the outflow boundary FH in order to properly satisfy

the outflow boundary condition. Indeed, the exit flow has to be allowed to leave the

computational domain passively without perturbing the upstream flow. In the present

stage 0 1 2 3 4 5 6 7
L, mm 4.1 4.1 1.5 1.55 1.55 1.15 1.15 1.15
W , mm 2.5 1.8 0.914 0.711 0.533 0.345 0.254 0.254

Table 4.1: The ACI nozzle dimensions, shown in Figure 4.2.

study we employ the Eulerian-Lagrangian model in order to simulate particle-laden

air flow in the impactor, as implemented in the ANSYSr Fluent 6.3.26 CFD package.

A fundamental assumption made in this model is that the concentration of particles
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in the air stream is sufficiently dilute (less than 10% by mass). This assumption

permits us to neglect the effects of particle-particle interactions, as well as the effect

of particle motion on the air flow. It follows that a one-way coupling prevails; namely

the air flow affects particle motion. Thus, the simulation can be performed in two

sequential steps by first solving the Navier-Stokes system to obtain the air flow field

in the Eulerian coordinate system, then particle trajectories are calculated by solving

the equation of particle motion (Lagrangian reference frame) in this flow field.

The governing equations for steady, incompressible axisymmetric air flow without

swirl are the continuity

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0, (4.2)

and the momentum equations, written in the cylindrical coordinate system

(v∇)vr = −1

ρ

∂p

∂r
+ ν
(

∆vr −
vr
r2

)
,

(v∇)vz = −1

ρ

∂p

∂z
+ ν∆vz − g,

(4.3)

where v = (vr, vz), and p are the unknown air flow velocity and pressure respec-

tively. This system is solved using the SIMPLE algorithm with second order spatial

discretization. The Gambit mesh generator is employed to create an unstructured

triangular computational grid in the domain shown in Figure 4.2. The initial mesh is

typically refined at least twice to obtain the grid independent solution with the finest

grid having about 1.2e5 nodes. The flow simulations are performed for different air

flow rates specified on the inlet boundary AB, which are given in the Table 4.2 along

with the corresponding Reynolds numbers based on the average jet velocity. Note

that the range of Reynolds numbers under consideration corresponds to the laminar

flow regime (Re . 550). At the outlet plane FH, the pressure outflow boundary con-

dition is imposed by specifying the gauge pressure and the target flow rate. On all

other walls the no-slip boundary condition is used.
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18 lpm 28.3 lpm 60 lpm
hole flow rate, hole flow rate, hole flow rate,

stages kg/sec× 10−6
Re

kg/sec× 10−6
Re

kg/sec× 10−6
Re

0 3.828 108.9 12.76 171.2 12.76 363.1
1 3.828 151.3 12.76 237.8 12.76 504.3
2 0.919 71.50 3.063 112.4 3.063 238.3
3 0.919 91.91 3.063 144.5 3.063 306.4
4 0.919 122.6 3.063 192.8 3.063 408.7
5 0.919 190.5 3.063 299.6 - -
6 0.919 257.3 3.063 404.5 - -
7 1.828 512.0 - - - -

Table 4.2: Air flow rates and corresponding jet Reynolds numbers.

After obtaining the air flow field, particle trajectories can be calculated by inte-

grating Newton’s second law

mp
dvp
dt

= Fdrag +mg, (4.4)

dxp
dt

= vp, (4.5)

in which mp, vp, and xp and are the particle mass, velocity, and position respectively.

The particles are assumed to be rigid and spherical. The right side of (4.4) is the

sum of physically relevant forces acting on a particle, namely the drag force, and the

gravitational force. In the simplest form the drag force can be given by the Stokes

law

Fdrag =
3πµdp(v − vp)

Cc
, (4.6)

where dp is the particle diameter, µ is air viscosity, v is the velocity of the air-stream

near the particle, and Cc is the Cunningham slip correction factor.

We integrate the equation of particle motion using the variable-order Runge-Kutta

scheme, available in Fluents Discrete Phase Model. The initial positions of the par-

ticles are located along the inlet radius AB and their initial velocities are set to zero.

The integration of their trajectories continues until the particle impacts or escapes
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from the computational domain through the outlet FH.

The collection efficiency of the impactor is usually defined as the fraction of parti-

cles impacted on the collection plate with respect to to the total number of particles

entering the device. Assuming that the particle concentration is uniform at the en-

trance AB (Figure 4.2), the collection efficiency has to be proportional to the entrance

area starting from which injected particles are impacted on the plate GH. It can be

calculated as

collection efficiency =
(rc
r0

)2
× 100%, (4.7)

where rc is the critical particle radial position such that all particles with r < rc

entering the domain would impact on the plate GH, the rest with r > rc would

escape from the computational domain. The radius r0 corresponds to the initial

positions of particles that will enter the jet area and not impact on the plane CD.

4.3 Results and Discussion

Most of the geometric parameters of the single jet model defined in the previous sec-

tion and shown in Figure 4.2 match the corresponding dimensions of the ACI. One

important exception is the effective radius of the collection plate GH that, in prin-

ciple, can vary and affect the particle collection efficiency predicted by the model.

Indeed, excessive values of the collection plate radius would result in additional parti-

cle impaction due to gravity, especially far from the vicinity of a hole. Such impaction

might not take place in the real ACI geometry because of the presence of adjacent

holes and cross flow. Therefore, we investigated the influence of gravity on the parti-

cle impaction predicted by the single jet model and discuss our results below for two

separate cases of computations with and without gravity taken into account.
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4.3.1 Particle impaction without gravity

The calculated collection efficiency curves in the case in which gravity is not taken

into account in the equations of the particle motion (4.4) are shown in Figures 4.3-

4.6 and compared with the available experimental/calibration data. 4.7 compares

the model predicted cutoff diameters against the experimental/calibration data. The

corresponding cutoff aerodynamic diameters are listed in Table 4.3.

The collection efficiency curves of the base case of 28.3 lpm air flow rate compare

well with the experimental work of Vaughan (1989), as shown in Figure 4.3. Working

across Figure 4.3 from stage 0-7 (right to left) stages 0, 1 and 3-6 are in very close

agreement with the Vaughan data set. It is interesting to note that the Vaughan data

set found the performance of stage 1 and 2 to be nearly identical. While the single

hole model does predict the performance of stage 1 and 2 to be similar, the specific

overlay of the two stages is not captured by the model.

The base case is in strong agreement with the calibration data from the manufac-

turer (also supported by Mitchell et al. (1988)) as is evident in Figure 4.4. In all cases,

the calculated impaction curves appear to be somewhat steeper then the calibration

data and the cutoff sizes are in excellent agreement. It should be noted that in nearly

all cases, the single hole model does underpredict slightly the impaction size when

compared to the experimental data. Reasonable agreement in cutoff size extends up

to the 60 lpm air flow rate; unfortunately, a small number of data points combined

with combined with probable bounce and re-entrainment effects Nichols et al. (1998),

as can be seen in Figure 4.5 (top graph), which creates some uncertainty about the

shape of the corresponding efficiency curves. Another experimental data at 60 lpm

is presented in Srichana et al. (1998) (bottom graph), but shows strongly elongated

efficiency curves drastically different from those predicted by the single jet model, as

well as reported in Nichols et al. (1998). It should be noted that in the Srichana et al.

(1998) work a different calibration technique based on an aerodynamic size analyzer
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was used, which also produced elongated calibration curves for the base 28.3 lpm case

(Srichana et al., 1998). The 28.3 lpm cutoff sizes in the Srichana study were in close

agreement with those in the Vaughan and Mitchell work, indicating that the cutoff

diameters can be directly compared for this work as well.

Although there is less data available for 18 lpm case, the single hole model cutoff

sizes still correlate well to the nebulization data of Zhou et al. (2007).

Overall, the precided cutoff values match well with available experimental data.

4.7 is a Q-Q plot of the predicted d50 vs each of the different experimental data sets.

It should be noted that all data sets stay within a fairly tight bound to the x=y line

and do not show any detectable trending toward over or under prediction.

18 lpm 28.3 lpm 60 lpm
Zhou et al. d50 manufact. Vaughan d50 Nichols et al. d50

stages (2007) calc. calibration (1989) calc. (1998) calc.
0 12.2 11.56 9.0 9.0 9.02 5.6±0.3 6.29
1 8.6 6.90 5.8 6.0 5.42 4.3±0.3 3.76
2 5.7 6.19 4.7 5.7 4.55 3.4±0.2 2.89
3 4.2 4.21 3.3 3.1 3.07 2.0±0.1 1.95
4 2.6 2.69 2.1 2.06 1.96 1.1±0.1 1.24
5 1.4 1.35 1.1 0.90 0.97 - -
6 0.8 0.85 0.65 0.60 0.61 - -
7 0.6 0.51 - - - - -

Table 4.3: Cutoff diameters: comparison of experimentally measured with calculated.

4.3.2 Effect of Gravity

When gravity is included in the computation, the overall result is the shifting of the

efficiency curves to the left, primarily for the earlier stages/larger particles. For the

28.3 lpm case (Figure 4.8) the shift in cut-off diameter for stage 0 and 1 is evident.

For stages 2-4 a shift is detectable, however, not to the same extent as in the earlier

stages. When the flow rate is increased to 60 lpm a shift is detectable in the early

stages, but clearly gravity has less of an effect (Figure 4.9).
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The shift from the inclusion of gravity tends to give quite a large underprediction

of the cutoff size when compared with the experimental data. This contrasts with

the case of a single-nozzle impactor, in which models with gravity taken into account

allowed better agreement with the experiment.

An explanation for an opposite effect on impaction curves in these cases as at-

tributable to the inclusion of gravity is illustrated in Figure 4.10. It shows typical

trajectories of particles injected at different radial locations observed at a 28.3 lpm

air flow rate for the earlier stages, using the model with gravity included. Particles

injected close to the center-line would usually impact similarly to particle 1, primarily

due to inertia. However, as the location of the particle injection is moved out away

from the center line where the entrainment velocity is lower the inertia of the particle

lessens. As the inertia decreases, similar sized particles begin to move in the new

direction of flow (paths 2-3) and gravity begins to play an important role.

At a certain critical point away from the center line the particle will not impact

before a weak reticulation (caused by the flow moving radially away from the hole)

will lift the particle upward and it will be allowed to escape (path 5). It is important

to note that the radial interval, from which particles are injected and impact due

to gravity, is large. Consequently, the collection efficiency increases respectively.

Increasing the flow rate (decreasing particle size) would sharply decrease the radial

interval between particle paths 1 and 5 and lower the effect of gravity on the particle

impaction as typically observed in the higher ACI stages.

To complete the argument, note that the outlined impaction process most likely

won’t take place in the multi-hole ACI stage. Indeed, the distance between holes in

the ACI is small, and at least two holes should be present on the scale of Figure 4.2

to properly conform to the real ACI geometry. As a consequence, the air flow field

and particle motion between the nozzle and collection plates will be different from

the ones predicted by the single jet model.
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It seems, that a way to correct the model in order to avoid this problem would be

to make a collection plate GH of a smaller radius, close to the half distance between

the holes of the ACI. This modification, however, would complicate the numerical

solution and especially the treatment of the outflow boundary condition on plane FH

(Figure 4.2).

The single jet model clearly has limitations because of its simplicity and, in the

present form, can adequately represent only the inertial particle impaction. A fairly

good agreement between the experimental data and computations without gravity

indicates that in the vicinity of a hole particles indeed impact primarily due to the

inertia, especially in the base case 28.3 lpm air flow rate. This also demonstrates the

high quality of the ACI design.

4.4 Stage loadings and impactor stage response

functions

As illustrated before, the single jet model provides reasonably accurate estimates of

the cutoff diameters, but predicts calibration curves with steeper shapes in comparison

with the experimentally measured data. Note that in everyday practice, calibration

curves are used directly in the reconstruction of the particle mass/size distribution

from gravimetrically measured stage loadings. It is known that such inversion problem

is ill-posed. To begin examining this issue, we examine how the uncertainties of the

calibration curve shapes affect the stage loadings, which can be calculated assuming

that the particle mass/size distribution P (dp) is provided. Denoting by Si(dp) the

collection efficiency function for stages i = 0, 1, ..., the particle mass/size distribution
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in the air flow leaving the stage i can be found recursively:

P0(dp) = P (dp)S0(dp), P1(dp) = P0(dp)S1(dp), ... , Pi(dp) = Pi−1(dp)Si(dp). (4.8)

Figure 4.11 shows such particle size distributions obtained with the calibrated and

single jet model collection efficiency functions at 28.3 lpm. For the purposes of the

example, the initial distribution of particles entering the impactor is taken as a log-

normal, derived from the normal distribution with mean µ = 1.44 and standard

deviation σ = 0.94. As expected, sharper distribution functions are observed for

calculated efficiency data. The retained particle mass fraction on each stage is given

by the area between adjacent efficiency curves. Shaded areas on Figure 4.11, for

example, visualize the retained masses on stage 1, which do not look much different

for measured and calculated cases.

The corresponding numerical values can be obtained by integration:

m0 =

∫ [
P (dp)− P (dp)(1− S0(dp))

]
ddp =

∫
P (dp)S0(dp)ddp,

m1 =

∫ [
P (dp)(1− S0)− P (dp)(1− S0(dp))(1− S1(dp))

]
ddp =∫

P (dp)S1(dp)(1− S0(dp))ddp,

(4.9)

and in general,

mi =

∫
P (dp)Si(Dp)(1− S0(dp))(1− S1(dp))...(1− Si−1(dp))ddp. (4.10)

For the log-normal initial particle distribution with the parameters given above, these

relations predict 30, 9.9, 16, 16, 16, 4.9 percent of particles retained on staged 0 to

5 respectively, when the calibrated efficiency data is used. The corresponding values

for the calculated efficiency curves are 35, 7.8, 16, 16, 15, 3.7 percent. If the particle

distribution is uniform on the interval from 0.5 to 9 microns, the stage loadings are
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40, 14, 16, 12, 11, 4.4 percent for the calibrated and 48, 9.7, 15, 12, 10, 3.6 percent

for calculated efficiency curves. Clearly, better agreement is observed for the higher

impactor stages.

It is also instructive to compare the stage response functions, which are derived

from the collection efficiency curves Pi(dp) and independent of the particle distribu-

tion. These functions are usually employed for the inversion of the impactor data

(Puttock, 1981). The stage response function is defined as a fraction of all the parti-

cles of aerodynamic diameter dp reaching the impactor, which are collected by that

stage. The relations for the stage response functions follow from the formulas for the

stage loadings (4.9, 4.10):

R0(dp) = S0(dp),

Ri(dp) = Si(dp)
i−1∏
j=0

[1− Sj(dp)],
(4.11)

so that retained masses can be calculated as

mi =

∫
P (dp)Ri(dp)ddp. (4.12)

Alternatively, the recursive formula for the response functions (Puttock, 1981) is given

as

Ri(dp) = Si(dp)
[
1−

i−1∑
j=0

Rj(dp)
]
. (4.13)

For the ideal impactor stage i that collects all particles above a certain size d50,i the

response functions are “top-hat” functions equal to 1 for d50,i < dp < d50,i−1 and

zero elsewhere. In reality, the response functions for stages 1 and higher are bell-

shaped, due to the finite slope of the collection efficiency curves. Figure 4.12 shows

the impactor response functions plotted for the experimentally calibrated (top) and

calculated using the single jet model (bottom) collection efficiency functions at 28.3
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lpm air flow rate. The calibrated responses are far from ideal and always less than 1

because of the strong overlap of the corresponding efficiency curves. In contrast, the

shape of the calculated curves is steeper, with the values of the response functions

close to 1 in the vicinity of their peaks.

4.5 Summary

The purpose of this study was to present and evaluate a reduced single jet model

of the Andersen Cascade Impactor in order to characterize the performance of the

device. In this model, the multiple-hole impactor stage was represented by a single

jet impinging on a collection plate and particle tracking was performed in the viscous

flow field obtained from the numerical simulations. Therefore, it can be viewed as

a compromise between simplified analytical models and possible models in which

multi-hole impactor stage geometry is involved. In the former case, the air flow field

is assumed to be potential, thus neglecting the effect of the viscous boundary layer on

particle motion. The numerical resolution of the 3D flow field in a multi-hole stage,

however, is prohibitively expansive even in the laminar regime.

The model was applied to obtain the collection efficiency curves at 18, 28.3, and

60 lpm air flow rates. The comparison with the corresponding experimental data

demonstrates good agreement for the predicted cutoff diameters. Our results also

indicate that the single jet model can provide reasonably accurate estimates of the

impactor stage loadings. The shape of the efficiency curves, however, is observed to

be sharper than the experimentally calibrated data. This can be attributed to the

adjacent jets interaction and cross-flow effects that are not taken into account by the

single jet model. Further studies are needed to incorporate appropriate corrections

to the model, as well as to examine the wall losses and the effect of particle bounce

on the shape of the efficiency curves.
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4.6 Figures for Chapter 2

Figure 4.1: Cutaway View of geometry of the ACI. The pre-impactor stage and stage
1 are shown without the impactor plates for clarity.
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Figure 4.2: The schematic of the single stage model used in this study.
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Figure 4.3: Computed (solid lines) and measured Vaughan (1989) (dashed lines)
collection efficiency curves for 28.3 lpm air flow rate, without gravity.
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Figure 4.4: Computed (solid lines) and manufacturer’s calibrated (dashed lines )
collection efficiency curves for 28.3 lpm air flow rate, without gravity.
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Figure 4.5: Computed (solid lines) and measured (dashed lines) collection efficiency
curves for 60 lpm air flow rate, without gravity. The measured data is taken from
Nichols et al., 1998 (top graph) and Srichana et al., 1998 (bottom graph).
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Figure 4.6: Computed (solid line) and measured in Zhou et al. (2007) (dashed lines)
collection efficiency curves for 18 lpm air flow rate, without gravity.
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Figure 4.8: Computed (solid lines) and measured Vaughan (1989) (dashed lines)
collection efficiency curves for 28.3 lpm air flow rate, with gravity.
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Figure 4.9: Computed (solid lines) and measured by Nichols et al. (1998) (dashed
lines ) collection efficiency curves for 60 lpm air flow rate, with gravity.
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Figure 4.10: A sketch of particle trajectories injected at different radial locations;
28.3 lpm air flow rate case with gravity.
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Figure 4.11: Particle size distributions for stages from 0 to 6 obtained with the
measured (top) and single jet model (bottom) collection efficiency functions at 28.3
lpm.
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tions at 28.3 lpm air flow rate.
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Chapter 5

Conclusions and Future Work
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5.1 Conclusions

This work has explored an alternative design paradigm for cascade impactors with

the goal of creating a superior bio-equivalence test for aerosol drug products. Tra-

ditionally, cascade impactors are designed to have the sharpest possible impaction

curves. Since this approach is based on computational data sets in which a contacted

particle is considered captured, particle bounce is not a factor in the design. As a re-

sult cascade impactors tend to lack reliability and need stage treatments to minimize

particle bounce.

The main hypothesis of this work is that it would be better to build a device

which focuses on eliminating particle bounce (hence minimizing variability), and then

concentrate on using advanced data inversion techniques to recover high accuracy

smooth impaction curves.

In Chapter 2, the maximum entropy technique was formulated for use with a

model Andersen Cascade Impactor. The technique was formulated to deal with both

noise free data sets as well as data sets that could be associated with some mean noise

level. The maximum entropy technique was found to do a very good job of recovering

accurate distributions from the non-ideal ACI impactor curves. In fact, the technique

could be seen to actually perform best when at least some overlap existed between

neighboring stages. The main advantage of the maximum entropy technique was its

relatively simple mathematical form of a system of non-linear equations. However,

while solutions did tend to capture the overall shape of the original distribution, the

recovered distribution would often ‘weave’ around the original distribution.

As an alternative method, the Fisher information inversion technique was dis-

cussed in Chapter 3. The less well known Fisher information technique has a repu-

tation for recovering more smoothed distributions than the maximum entropy tech-

nique. The Fisher information technique, like the maximum entropy approach, was

formulated for both noise-free data sets as well as data sets that are associated with
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some mean level of noise. The strength of the Fisher information technique is that

it did produce higher accuracy inverted distributions than that of the maximum en-

tropy technique for typical distributions. The majority of the increase in the accuracy

came from the correction of the ‘weaving’ phenomena seen with the maximum en-

tropy approach. However, this improvement of accuracy came with an additional

mathematical complexity as the tractable form of the Fisher information system is a

mixed system of differential and algebraic equations.

If one is going to design a cascade impactor for use with an inference based in-

version technique, it is clear that the degree to which neighboring stage overlap with

each other is going to be important. Therefore, in Chapter 4, modern computational

tools are tested to see if impactor curve shape can be computationally predicted for

a model Andersen Cascade Impactor. The Andersen Cascade Impactor, a multi-jet

impactor, was approximated with a single jet model. Each stage was simulated for 3

different flow rates for which calibration curves could be found in the literature (18,

28 and 60 lpm). In all three cases the approach did a fairly good job of predicting

the d50 cut-off diameter, but in all cases it yielded curves that were sharper than

their real-world counter parts. From this work it is concluded that it is likely that

interactions between neighboring jets lead to deviation from the sharpness predicted

by a single jet model.

Overall, this work demonstrated the capabilities of inference-based inversion tech-

niques to deal with non-ideal cascade impactors, proving, in theory, that the require-

ment for optimally sharp impactor curves could be relaxed so the particle bounce

problem could be minimized or eliminated. The creator of such a device would have

the option of using either the less complicated maximum entropy approach or the

more accurate Fisher information approach. Unfortunately, modern computational

tools do not seem to be able to adequately predict impactor efficiency curve from first

principles again. Thus, any such impactor would likely need to go through several
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prototype designs before a near optimum design could be found.
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