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ABSTRACT OF THE DISSERTATION   

 

A Methodology for Spatial and Time Series Data Mining and Its 

Applications 

 

By YOUNG-SEON JEONG  

Dissertation Director:  

Dr. Myong K. Jeong 

 

 

In this dissertation, we present several methodologies for mining spatial and time-

sequence data obtained in diverse domains. We first propose a new spatial randomness 

test and classification method for binary spatial data with specific application to the 

detection and identification of spatial defect patterns on semiconductor wafer maps. We 

present the generalized join-count (JC)-based statistic as an alternative approach, and 

derive a procedure to determine the optimal weights of JC-based statistics. In the 

proposed methodology, a spatial correlogram, which transforms binary spatial data into 

time-sequence data, is used as a novel feature to detect spatial autocorrelation and 

classify spatial defect patterns on the wafer maps.  
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Secondly, we propose a novel distance measure, denoted weighted dynamic time 

warping (WDTW), for time series classification and clustering problems. The dynamic 

time warping (DTW) algorithm has been extensively used as a distance measure in 

combination with the distance-based classifiers. However, the DTW algorithm ignores 

the relative importance of the phase distance between points in a time series, possibly 

leading to misclassification. Therefore, we propose a WDTW distance measure which 

does account for the relative importance of each point in terms of the phase distance 

between the time series points.  

Thirdly, we propose a wavelet-based anomaly detection procedure to detect any 

possible process fault with time-sequence data that have some local variations even under 

normal working conditions. To handle the large number of parameters in both the mean 

and variance models, we have developed the wavelet-based mean and variance 

thresholding procedure to extract a few important wavelet coefficients that may explain 

local variations in the time domain.  

Finally, we propose a kernel-based regression with lagged dependent variables. 

Kernel-based regression techniques are extensively used for exploring the nonlinearity of 

data in a relatively easy procedure involving the use of various kernel functions. 

However, the major drawback of current kernel-based regression techniques is their 

underlying assumption that there is no autocorrelation in the residuals of observations. To 

avoid this problem, we propose a kernel-based regression model with lagged dependent 

variables (LDVs), considering autocorrelations of both the response variables and the 

nonlinearity of data.  
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1 CHAPTER 1  

 

Introduction 

 

1.1 Overview 

 

Mining spatial and time series data has become increasingly important in various 

fields of research as it provides the means to extract meaningful information and other 

specific characteristics of the data. Examples of spatial and time series data mining are 

the daily pattern analysis of the Dow Jones Index (Alwan and Roberts 1988), spatial 

prediction of ozone concentration profiles (Temiyasathit et al. 2009), fault detection with 

sensing data in manufacturing systems (Lada et al. 2002), incident detection on freeways 

using time series traffic information (Jeong et al. 2010), and the prediction of traffic 

volumes on freeways based on known past events and location information (Zhao and 

Park 2004). However, complicated spatial and time series data with autocorrelated or 

dynamically changing patterns based on contributions from potential change events are 

associated with serious difficulties in dealing with these data in monitoring system 

processes. In this dissertation, we focus on the methodology used for spatial and time 

series data mining and its applications.  

Spatial data can be characterized as topological, distance, and direction information 

organized by multidimensional spatial indexed structures (Cliff and Ord 1981). In 
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addition, spatial data are usually binary in nature. If there are spatial autocorrelations in 

some areas, spatial patterns may exist. As an example of a specific application for mining 

binary spatial data, we investigate the procedure used to determine the presence of spatial 

autocorrelation and to classify spatial patterns on wafer maps. A wafer map is a graphical 

illustration of the locations of defective chips on a wafer. Defective chips are likely to 

exhibit a spatial dependence across the wafer map, which contains useful information on 

the fabrication process of integrated circuits (ICs). We have developed the spatial 

correlogram, which transforms binary spatial data into more informative time-sequence 

data. Based on the proposed spatial correlogram, we present a new spatial randomness 

test procedure for the detection of spatial autocorrelation and a classification method of 

spatial defect patterns on semiconductor wafer maps. 

Time series classification and clustering is a classical problem in pattern recognition, 

with wide applications in the real world. Among the many algorithms used for time series 

classification and clustering problems, the nearest neighbor classifier with dynamic time 

warping (DTW) distance is one of the most extensively used approaches. However, the 

conventional DTW algorithm considers that all points in the time series are of equal value; 

hence, they are weighted equally whether or not there is a phase difference between two 

points. This disadvantage has led us to propose the weighted DTW (WDTW) technique, 

which weights nearer neighbor points more heavily depending on the distance between a 

reference point and a testing point. We show that the proposed WDTW is a generalized 

methodology of DTW and Euclidean distance that is dependent on the choices of weights 

of a phase difference. We also explore several mathematical properties of WDTW. To 

provide a clearer explanation of the rationale underlying the performance advantage of 
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the proposed WDTW, we present a number of examples to graphically illustrate possible 

situations in which WDTW is clearly more effective than conventional DTW. The 

extensive experimental results reported here show that the proposed WDTW can achieve 

an improved accuracy compared to existing approaches, including DTW, Euclidean 

distance measure, and some variants of DTW. 

Multiple sets of complicated time-sequence data have been generated in many 

engineering studies; these have been used for a multitude of purposes, including 

monitoring the quality of manufacturing processes. Due to the high dimensionality of the 

data, it is difficult to detect process change with time-sequence data, especially when 

there are systematic variations in local regions. As an alternative approach, we propose a 

wavelet-based anomaly detection procedure to detect a process fault with time-sequence 

data that display local variations under the normal working conditions. To deal with the 

large number of parameters in both the mean and variance models, we have developed an 

integrated mean and variance thresholding procedure that keeps the model simple and fits 

the data curves well. Guidelines are provided for selecting regularization parameters in 

the penalized likelihood used for parameter estimation. We have also developed process 

monitoring procedures for detecting process changes using the wavelet coefficients 

selected through the wavelet-based mixed effects model. Evaluation with real-life data 

sets shows that the proposed procedure performs better than several techniques 

extrapolated from methods based on single curve-based data reduction. 

Kernel-based regression techniques, such as support vector machines for regression 

and kernel ridge regression (KRR), have been extensively used to explore the 

nonlinearity of data in a relatively easy procedure involving the use of various kernel 
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functions. However, the major drawback of existing kernel-based regression techniques is 

their underlying assumption that there is no autocorrelation in the residuals of the 

observations. To avoid this problem, we propose here a kernel-based regression model 

with lagged dependent variables (LDVs) that considers both the autocorrelations of the 

response variables and the nonlinearity of data. We explore the nonlinear relationship 

between the response and both independent and past response variables using various 

kernel functions. In this specific case, it is difficult to apply existing kernel manipulations 

because of the LDVs. We derive the kernel ridge estimators with LDVs using a new 

mapping concept so that the nonlinear mapping does not have to be computed explicitly 

depending on kernel types. Also, the centering technique of the individually mapped data 

in the feature space is derived in order to consider an intercept term in KRR with LDVs. 

The experimental results show that the proposed approaches perform better than KRR or 

ridge regression, implying that the model can be used as a promising alternative when 

there are autocorrelations between dependent variables. 

 

1.2 Thesis outline 

 

This thesis is organized as follows. Chapter 2 presents the identification methodology 

of spatial defect patterns on binary spatial data with the specific application to a wafer 

map analysis in a semiconductor manufacturing process. A spatial correlogram is used to 

transform binary spatial data into informative time series data that can be used to detect 

the presence of spatial autocorrelations and classify defect patterns on the wafer map. 
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Chapter 3 proposes a weighted dynamic time warping algorithm (WDTW) for automatic 

time series classification and clustering. By considering different weight values that are 

dependent on the distance between a reference point and a test point in a sequence, the 

proposed WDTW has an enhanced accuracy in terms of time series classification and 

clustering problems. Chapter 4 presents a wavelet-based anomaly detection procedure by 

characterizing the variations of multiple curves at certain local regions. Chapter 5 

proposes a kernel-based ridge regression with lagged dependent variables that considers 

both the autocorrelations of the response variables and the nonlinearity of data. Finally, 

Chapter 6 summarizes the research results and describes several research problems for 

future investigations. 
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2 CHAPTER 2 

 

Detection of the Presence of Spatial Autocorrelations and 

Classification of Spatial Patterns with Binary Spatial Data 

 

2.1 Introduction 

 

Spatial autocorrelation and spatial pattern represents a correlation among the 

locations of spatial data and a consistent rule in the locations, respectively. If there is an 

autocorrelation in spatial data, it means that the locations are not independent of each 

other, but somehow linked systematically, i.e., the data are spatially dependent (Cliff and 

Ord 1981). Also if there are spatial autocorrelations in some areas, there may exist some 

spatial patterns. Those properties for spatial data are frequently encountered in ecological 

data, geographical data, environmental data, and even manufacturing data (Cliff and Ord 

1981, Temiyasathit et al. 2009, Cunningham and Mckinnon 1998). In this section, we 

develop the procedure to detect the presence of spatial autocorrelation and classify spatial 

patterns for the binary spatial data with the specific example in the wafer map analysis. 

A wafer is an elementary unit in semiconductor manufacturing. Several hundred 

integrated circuits (ICs) are simultaneously fabricated on a single wafer (Fenner et al. 

2005). After the completion of IC fabrication, each chip is classified as either functional 

or defective. A wafer map is used to display the locations of defective ICs chips on the 
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wafer. A wafer map is likely to exhibit a spatial dependence across the wafer. As 

explained in Hansen et al. (1997), defective chips commonly occur in clusters or display 

some systematic patterns. Such defect patterns contain useful information about 

manufacturing process conditions (Cunningham and McKinnon 1998). For example, 

uneven temperatures or chemical aging lead to spatial cluster on the wafer map. Clusters 

also can be the result of crystalline nonuniformity, photo-mask misalignment or particles 

caused by mechanical vibration. Stepper and/or probe malfunctioning and sawing 

imperfections also are major causes of repetitive patterns. Material shipping and handling 

also can leave a scratch on the wafer map (Cunningham and McKinnon 1998, Hansen 

and Tyregod 1998, Hansen et al. 1997, and Taam and Hamada 1993).  

The defect patterns represented on the wafer map hold important information that 

can assist process engineers in their understanding of the ongoing manufacturing 

processes. Consequently, wafer maps have been widely used in the semiconductor 

industry for process monitoring and yield enhancement. Chen and Liu (2000) and Liu et 

al. (2002) developed intelligent systems that use wafer maps and wafer bin maps, 

respectively, to recognize defect spatial patterns and aid in the diagnosis of causes of 

failures. They adapted a neural network called as adaptive resonance theory network 1 

(ART1) for this purpose. Hsieh and Chen (2004) developed an analytical structure made 

up of a fuzzy rule-based inference system to help identify defect spatial patterns. Tong et 

al. (2005) used the multivariate Hotelling T
2
 control chart that indexes the number of 

defects and defect clusters as a way to monitor the wafer manufacturing process. The 

merit of this method is that it simultaneously monitors the number of defects and the 

presence of the cluster of defects. 
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As a wafer gets larger, a spatial inhomogeneity frequently occurs. According to the 

literature (Bailey and Gatrell 1995), analysis of spatial inhomogeneity is also one of the 

promising approaches for detecting defective clustering. However, there is very little in 

the literature about the use of spatial correlogram to analyze defect patterns on the wafer 

map. This chapter proposes a new methodology based on spatial correlogram to detect 

the presence of spatial autocorrelations and classify defect patterns. This study is the first 

attempt to develop a methodology to detect spatial autocorrelation and to classify defect 

patterns automatically based on a spatial correlogram of a wafer map. After detecting the 

presence of defect patterns, dynamic time warping (DTW) is adopted to classify defect 

patterns into one of known patterns automatically. Spatial correlogram based on the 

proposed method is very robust to random noise, defect location, and defect size on the 

wafer map.  

The remainder of this chapter is organized as follows. Section 2.2 generalizes a 

couple of join-count based statistics and explores their properties. Section 2.3 describes a 

spatial correlogram and proposes generalized joint-count based statistic with optimal 

weights. Section 2.4 contains a visual illustration that uses simulated and real life 

examples and presents a new spatial randomness test. In Section 2.5, we present the new 

automatic defect classification methodology and compare its performance with that of 

neural network. Section 2.6 presents conclusions and some future research topics. 
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2.2. Spatial Dependences in Wafer Map 

 

2.2.1 Defect patterns and join-counts  

The spatial patterns formed by defective chips are broadly categorized into three 

classes. The most elementary of these is the spatially random pattern. Hansen and 

Thyregod (1998) and Hansen et al. (1997) described this basic pattern by the spatially 

homogeneous Bernoulli process (SHBP).  

 

                               (a) SHBP          (b) Clustered effect  (c) Repetitive pattern 

Figure 2.1 Spatial patterns of wafer map 

A constructed example of an SHBP wafer map is illustrated in Figure 2.1(a). 

However, as explained earlier, although this random pattern may be the most basic, the 

more commonly occurring pattern is spatially nonrandom. Figures 2.1(b) and (c) show 

wafer maps with a clustered effect and with a repetitive pattern, respectively. 

As seen in Figure 2.1, the locations of defective chips are represented on the wafer 

map (chip-level). It is also possible to make a wafer map showing the locations of defects 

rather than chips (defect-level). However, this paper does not deal with defect-level wafer 
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maps (see Cunningham and McKinnon (1998) and Jun et al. (1999) for defect-level wafer 

map analysis). The basic idea presented here is to deal with chip-level wafer maps by 

comparing how many functional chips are around a defective chip and how many 

defective chips are around a functional chip. This idea can be implemented using the 

join-count (JC) statistics that are explained below in detail. 

A join is formed when two chips are located in the neighborhood of each other. Let 

H denote a set of neighbors, and let n denote the total number of chips per wafer. The 

notation Hji ),(  implies that two chips i and j are neighbors. Therefore, under a certain 

neighborhood construction system, the number of possible joins is given by  





ji

ijwc  

where  



 


elsewhere  ,0

),(  ,1 Hji
wij  

We have the following three types of join: 0-to-0 join (between functional chips), 0-

to-1 join (between functional and defective chips), and 1-to-1 join (between defective 

chips). To discriminate between the three joins, we introduce an indicator variable for 

chip i as 






functional  ,0

defective  ,1
ix  

Let 00c , 01c  and 11c  denote the numbers of 0-to-0, 0-to-1 and 1-to-1 joins, respectively. 

Then, 
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By the definition of 00c , 01c  and 11c , 110100 cccc  . 

In practice ),,( 110100 ccc  depends on the neighborhood construction rule applied. The 

king-move neighborhood (KMN) and rook-move neighborhood (RMN) construction 

rules are the most popular. KMN is defined as the region in which the king can move on 

the chessboard as shown in Figure 2.2 (a). On the other hand, RMN can be defined as the 

region of one-step rook-moves as shown in Figure 2.2 (b) (Taam and Hamada 1993).  

 

 

(a) King-move neighbors                        (b) Rook-move neighbors 

Figure 2.2 Neighborhood construction rules 

(Ramirez and Taam 2000, Taam and Hamada 1993) 

 

2.2.2 Spatial analysis based upon join-counts 

To measure spatially associative effects on the wafer map, Taam and Hamada (1993) 

proposed the following log odds ratio (LOR) by employing the KMN rule 
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2

01

1100

)2/(
log

c

cc
LOR  . 

Although LOR originally was used to measure the degree of association in a 2-by-2 

contingency table, Taam and Hamada (1993) have insisted that it is also capable of 

investigating spatial patterns formed by process parameters. For example, an attraction of 

chips with identical characteristics produces a positive LOR value, whereas repulsion of 

those with different characteristics produces a negative LOR value. Therefore, a positive 

LOR indicates cluster patterns of defective chips on the wafer map while a negative LOR 

indicates a repetitive one. Small LOR values around zero can be interpreted as indicators 

of no evidence of spatial dependence. Based on numerical simulations, they also showed 

that the expectation of LOR is approximately independent of given yield. For statistical 

details about LOR, consult Agresti (1990). When an individual JC has a zero value, LOR 

is calculated using a correction term as follows: 

2

01

1100

)5.02/(

)5.0)(5.0(
log






c

cc
LOR  

Hansen and Thyregod (1998) have described a LOR test as a procedure to identify 

the statistical significance of spatial patterns. Because the standard error of LOR is 

approximately  

1

01

1

11

1

00 4ˆ   cccLOR  

for a large sample size (Agresti 1990), the following test statistic was proposed under an 

SHBP null hypothesis. 

)1,0(~
ˆ

N
LOR

Z
LOR

LOR


  
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Hansen and Thyregod (1998) concluded through numerical experiments that LOR test 

works well in detecting the presence of spatial dependences, but it is incapable of 

identifying spatial patterns. In addition, chi-squared statistic is also a measure of 

association in a 2-by-2 contingency table (Agresti 1990): 

2

01110100

2

0111002

)2/)(2/(

)2/(














cccc

ccc
c . 

Hansen et al. (1997) developed a statistical hypothesis test to routinely monitor 

wafer maps and also presented an application tool using a classic p-chart. A monitoring 

statistic they used can be written as  

111000 ccT    

where 0  and 1  are weights to be chosen after consideration of the degree of spatial 

clustering. However, it seems that this approach is still at the center of arguments of how 

to construct neighborhood rules and how to choose 0  and 1 . 

The contiguity ratio (CR) proposed by Moran is also known as a measure of spatial 

autocorrelation and is defined as follows (Cliff and Ord 1981): 












2)(2

))((

xxc

xxxxwn

CR
i

ji

jiij

. 

After some mathematical manipulations, CR can be rewritten as  

1)/()( 1100  cpqqcpcCR , 

where nnp /1 , nnq /0  and 0n , 1n  are, respectively, the numbers of functional and 

defective chips on wafer. If the weights in T  are chosen as ),(),( 10 qp , the 

monitoring statistic T  can be rewritten as  
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)1(  CRcpqT  

which indicates that T is equivalent to CR.  

 

2.2.3 Numerical experiments for comparison of spatial clustering  

In the Section 2.2.3, we conduct some numerical experiments to compare JC-based 

statistic: LOR, CR and 2 . Table 2.1 shows these JC-based statistics depend on the 

defective rate p for a constructed set of 20x20-sized wafer maps. The values presented in 

the Table 2.1 are averaged over 100 runs at each level of p. In the experiments, LOR and 

CR are standardized using equations below, respectively. 

LOR

LOR

̂
 

and 

c

nCR

/1

))1/(1( 
. 

As seen from Table 2.1, all statistics are relatively insensitive to the neighborhood 

construction rule. Moreover, they are not far away from 0 and 1, which are their 

respective means. Because there is little difference between the result of KMN rule and 

that of RMN rule, we choose the RMN rule as the neighborhood construction rule in the 

subsequent sections.  
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Table 2.1 Numerical comparison of LOR, CR, and 2  using SHBP wafer maps  

(a) King-Move Neighborhood, c=1482 

p c00 c01 c11 LOR CR 
2  

0.1 1200.89 266.32 14.79 0.05 0.01 0.87 

0.2 947.04 476.69 58.27 -0.06 -0.18 1.03 

0.3 723.35 625.29 132.36 -0.06 -0.16 0.82 

0.4 532.40 715.10 234.50 -0.09 -0.22 1.11 

0.5 367.44 744.31 370.25 -0.07 -0.17 0.96 

0.6 235.10 714.69 532.21 -0.08 -0.19 1.19 

0.7 133.98 621.29 726.73 0.04 0.07 1.13 

0.8 57.69 477.29 946.45 -0.10 -0.27 0.93 

0.9 14.90 266.04 1201.06 0.06 0.04 0.67 

(b) Rook-Move Neighborhood, c=760 

0.1 615.86 139.45 7.69 0.17 0.04 0.98 

0.2 485.77 244.33 29.90 -0.08 -0.12 0.82 

0.3 371.50 320.74 67.76 -0.11 -0.12 0.92 

0.4 272.30 367.99 119.71 -0.25 -0.25 1.13 

0.5 189.08 380.90 190.02 -0.07 -0.07 0.90 

0.6 120.69 366.40 272.91 -0.12 -0.12 1.28 

0.7 68.62 318.81 372.57 0.05 0.04 1.47 

0.8 29.66 244.80 485.54 -0.13 -0.17 0.79 

0.9 7.76 136.26 615.98 0.20 0.07 0.92 

 

2.3 Spatial Correlogram for Representation of Spatial Correlations  

 

As pointed out by Hansen and Thyregod (1998) a single monitoring statistic is 

insufficient to represent a variety of widespread patterns across the wafer map. To 

overcome this drawback, this chapter proposes new approach to identify spatial patterns 

on the wafer map by using a spatial correlogram. A spatial correlogram represents the 

correlation between values of the same variable at different locations. Although spatial 

correlogram has been widely used in diverse fields of science such as geography, ecology, 

and the environment (Cliff and Ord 1981, Pierre and Louis 1998), to our knowledge, no 

study has reported the use of spatial correlogram for analysis of wafer maps. Spatial 

correlogram gives more useful information for the monitoring of defect patterns that 
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appear on wafer maps because this technique can definitively describe spatial dependence, 

a phenomenon known as spatial autocorrelation, for spatial data (Bailey and Gatrell 

1995). Based on illustrative examples, we will show that this new approach has the 

potential to outperform others that are based upon a single statistic.  

Let )(gH  denote a set of gth-order neighbors, defined as chips that are g distant 

from each other. Consequently, )(),( gHji   implies that the two chips i and j are gth-

order neighbors of one another. Moreover, )(gH  is also considered as a set of joins of 

which the length is equal to g. Join length corresponds exactly to the distance between the 

two chips involved. This study uses Manhattan distance which computes the distance 

from the chip ),( 111 yxp to the ),( 222 yxp  as 212121 ),( yyxxppd  to determine 

the distance between two chips because it is consistent to RMN rule used in this work. 

If the distance between two chips is denoted by ),( jid , )(gH  can be written as  

mggjidWjigH ,,2,1for    }),(|),{()(   

where W is a collection of all possible joins within the wafer map and m  is a maximum 

length of join. Therefore, the number of gth-order joins is  





ji

ij gwgc )()( , 

where 



 


elsewhere  ,0

)(),(  ,1
)(

gHji
gwij  

Based on several statistics, as we mentioned in Section 2.2, generalized JC-based 

statistic with gth-order neighbors as a measure of spatial autocorrelation can be written as 

follows: 
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))((  ))(()( 111000 gcfgcfgT    

where )(00 gc  and )(11 gc  are the number of gth-order 0-to-0 and 1-to-1 joins and )(f

stands for a monotonic function such as identity function or log function. We present the 

Lemma 2.1 to find the optimal weights that minimize the variance of T(g). 

 

Lemma 2.1: For a generalized JC-based statistic with gth-order neighbors, i.e. 

))((  ))(()( 111000 gcfgcfgT   , 

the optimal weights that minimize the variance of T(g) when )(f is identity function, are 

given as follows: 

),(),( 10 qp  subject to 110  . 

 

Proof of Lemma 2.1 

Given 0n  and 1n , the first and the second moments of )(00 gc  and )(11 gc , 

respectively, are obtained as follows (Cliff and Ord 1981, Hansen et al. 1997). 

)2()2(

000 /)())(( nngcgcE   

)2()2(

111 /)())(( nngcgcE   

)()(
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2

00 /)())(( kk

k

k nngbgcE 


  

)()(

1

4

1

2

11 /)())(( kk

k

k nngbgcE 


  

)4()2(

1

)2(

041100 /)())()(( nnngbgcgcE   
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where )()()()( 010011 gcgcgcgc  , 0)(1 gb , 4/)()( 12 gsgb  ,

4/))(2)(()( 123 gsgsgb  , 4/))()()(()( 12

2

04 gsgsgsgb   and 

 


k

i

k imm
1

)( )1(  for a positive integer m . See Cliff and Ord (1981) to find )(0 gs , 

)(1 gs  and )(2 gs . Accordingly, we can have the expectation and the variance of )(gT  as 
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respectively. Because kkk qnn )()(

0 /  and kkk pnn )()(

1 /  for a large value of n , the 

variance of T  is approximately derived by  

2

10

2

02

2

10

22

1 )()/)(4)(()()())(( pqpqngsgsqpgsgTVar    

Minimizing the above equation subject to 110  , we can find an optimum solution  

),(),( **

10
qp . 

Based on this result, the corresponding expectation and variance are respectively 

pqgcgTE )())((   

22)())(( qpgcgTVar  . 

 

Remark 2.1: In order to understand a variance reduction gain by the optimal choice of 

weights compared with )5.0,5.0(),( 10  , Figure 2.3 shows the relative efficiency (RE) 
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of the optimal choice of weights. RE is computed as follows: 
0.5)] ,5.0(var[

)],(var[ *

1

*

0

T

T
RE


  

where )],(var[ *

1

*

0 T is the variance of T with optimal weight values *

0  and *

1  and 

)]5.0,5.0(var[T is the variance of T with weight values 5.00   and 5.01  . Figure 2.3 

indicates that the variance reduction gain with the optimum weights becomes large as 

wafer yield becomes higher when RMN is used. However, the difference becomes 

negligible as the size of the wafer increases. 

 

 
Figure 2.3 Relative efficiency of the optimum choice of weights compared with  

),( 10  = (0.5, 0.5) 

 

Based on the Lemma 2.1, the gth-order T(g) can be simplified as follows: 

)()()( 1100 gqcgpcgT  . 

In addition, the mean and variance of statistic T(g) are given by the following equations 

(see the Proof of Lemma 2.1): 

  pqgcgT )()(E   

Defective rate 

Relative 

efficiency 
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  22)()(V qpgcgT   

Based on the central limit theorem, the standardized statistic T(g) approximates the 

standard normal distribution, i.e., 

(0,1)   ~   
)(

)()(
)(

22
N

qpgc

pqgcgT
gZT


   as )(gc ,                              (2.1) 

where g is gth-order neighbor and )()()()( 011100 gcgcgcgc  . 

 

2.4 Illustrative Case Study 

 

This section presents simulated and real-life examples to illustrate the proposed approach. 

 

2.4.1 Simulated examples 

Before investigating spatial correlogram for defect pattern classification, we present 

formal randomness test that combines the test statistic with multiple spatial lags. There 

are several test statistics for spatial randomness testing such as LOR test and CR test as 

mentioned in Section 2.2. However, they are not applicable for spatial randomness test 

using multiple spatial lags because test statistic using multiple spatial lags should take 

into account all test values with different lags simultaneously. As we mentioned in 

Section 2.3, )(gZT  is approximately normally distributed when ( )c g is large. If we let

 (1), (2), , ( )r T T TX Z Z Z r , which is a collection of )(gZT  for the first r spatial lags, 

then rX  follows approximate multivariate normal distribution with mean of zero vector 

of length r and covariance r  under SHBP condition. For spatial randomness test using 

the first r spatial lags, we can use the following test statistic: 
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2 ' 1ˆ( )H r r rT r  x x , 

where ˆ
rr  is the estimated covariance matrix using m samples of wafer maps. Because the 

samples are individual observations (i.e., individual wafer maps), an approximate critical 

limit is given by (Montgomery 2005) 

rmrF
rm

mr





 ,,

)1(
CL  . 

Table 2.2 shows the comparison results of the proposed spatial randomness test for 

150 SHBP wafer maps in terms of test accuracy with popular LOR and CR tests 

( 05.0 ). We have used the total 150 of SHBP wafer maps for each defective rate 

ranging from 0.1 to 0.5. Overall, existing test procedures performed better for low 

defective rate (p=0.1) while our proposed procedure showed the improved performance 

for larger defective rates (p0.2). In our testing procedure, as defective rate (p) is getting 

larger, test statistic using larger spatial lags produced better accuracy. Therefore, 2~4 

spatial lags is recommended for spatial randomness test for smaller defective rate (p≤0.3) 

whereas 5~7 is recommended for larger defective rates.  

 

Table 2.2 Summary of spatial randomness testing for SHBP wafer maps 

p LOR CR )1(2

HT  )2(2

HT  )3(2

HT  )4(2

HT  )5(2

HT  )6(2

HT  )7(2

HT  )8(2

HT  )9(2

HT  )10(2

HT  

0.1 
98.0% 98.0% 96.0% 96.7% 96.7% 98.0% 95.3% 95.3% 98.0% 97.0% 96.0% 96.7% 

0.2 
96.7% 96.7% 97.3% 98.0% 96.0% 97.3% 97.3% 97.3% 97.7% 97.3% 94.7% 94.7% 

0.3 
92.0% 92.7% 94.7% 98.0% 98.0% 96.7% 96.0% 97.3% 96.0% 96.0% 94.0% 96.0% 

0.4 
95.3% 95.3% 96.7% 96.0% 98.0% 96.7% 97.7% 97.3% 96.7% 96.3% 94.1% 93.3% 

0.5 92.7% 94.0% 96.7% 94.0% 94.0% 93.3% 96.0% 96.7% 97.3% 97.3% 94.7% 95.0% 
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However, as mentioned earlier, previous randomness test is insufficient to recognize a 

variety of widespread defect patterns across the wafer map. This study proposes new 

approach to detect spatial defect patterns using spatial correlogram. We construct 20x20-

sized wafer maps as specified SHBP, cluster, circle, repetition, and mixed patterns. The 

generation of the simulated wafer maps is based on the previous literature (DeNicolao et 

al. 2003) except the SHBP. SHBP wafer maps are produced using random number 

generator. Figure 2.4 shows those simulated wafer maps used to create spatial 

correlograms in Figure 2.5. 
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Figure 2.4 Simulated wafer maps 

 

p (a) SHBP (b) Cluster (c)Circle (d) Repetition 
 

(%) 

(e) Mixed 

pattern* 

0.1 

    

S=10 

C=10 

R=10 

 

0.2 

    

S=10 

C=10 

R=20 

 

0.3 

    

S=10 

C=20 

R=20 
 

0.4 

    

S=20 

C=20 

R=10 
 

0.5 

    

S=20 

C=20 

R=20 

 
* S=SHBP, C=cluster pattern, R= repetitive pattern 

 

Figure 2.5 Spatial correlograms of simulated wafer maps 

 

Figure 2.5 illustrates the capability of spatial correlogram in order to discriminate among 

different spatial patterns. In Figure 2.5, the )(gZT  values computed from different 

defective rate p using Eq. (2.1) are displayed along the spatial lag g. In case of SHBP as 
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shown in Figure 5(a), most of the )(gZT  values fluctuate around zero. SHBP has no 

unique shape of the correlogram. In case of the cluster patterns, )(gZT  smoothly changes 

along spatial lag g and its absolute values are relatively larger. The characteristic of a 

spatial correlogram of a circle pattern is that the absolute value of )(gZT  is also large 

like that of cluster pattern, but the circle pattern contains a soft cosine waveform. )(gZT  

values of repetitive pattern are consistently small and no special pattern appears except 

for a frequent crossing around zero.  

 

 

Figure 2.6 Wafer map with mixed effects (C: cluster pattern, R: repetitive pattern)  

 

Finally, we attempt to simulate mixed effects by superimposing three types of wafer 

maps: SHBP, cluster pattern, and repetitive pattern. Figure 2.6 shows some examples of 

wafer maps with mixed effects of cluster pattern and repetitive pattern and their 

corresponding correlograms are shown in Figure 2.5(e). Interestingly, the distinctive 

patterns produced by the cluster and repetitive patterns are preserved under the 

superimposed models. It is indicated that global shape of spatial correlogram is similar to 
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cluster's one and at the same time it locally contains the characteristic of repetitive 

pattern's one. 

 

2.4.2 Real-life examples 

Real-life wafer maps provided by a semiconductor manufacturing company were 

analyzed using the proposed approach. Each of wafer maps consists of 268 chips as 

shown in Figure 2.7 (a). The defective rate p in Figure 2.7 is calculated as followed: 

N

b
p   where b is the number of defective chips and N is the number of total chips on the 

wafer. In Figure 2.7 (b), it is observed that there is a distinction between spatial 

correlograms of cluster pattern and those of SHBP. In case of the clustered effects, 

)(gZT  changes smoothly along spatial lag g, and its absolute values are relatively larger. 

Not so with SHBP in which a frequent crossing around zero occurs. 

Illustrative examples show that a spatial correlogram has the potential to identify 

defect patterns in semiconductor wafers. Information drawn by a spatial correlogram 

includes not only simple examination of spatial dependence for defective chips, but also 

recognition of a defect pattern in a wafer. Moreover, we can discover several benefits of 

our approach. A spatial correlogram is robust to defect location, robustness to defect size, 

and robustness to random noise. More details on the advantage of the proposed method 

will be explained in Section 2.5. 
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(a) Real-life wafer maps  

p SHBP P Cluster 

0.11 

 

0.18 

 

0.15 

 

0.24 

 

0.24 

 

0.25 

 

0.28 

 

0.30 

 

0.29 

 

0.38 

 
 (b) Spatial correlograms 

Figure 2.7 Real-life wafer maps and their corresponding spatial correlograms 
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2.5 Automatic Classification of Defect Patterns 

 

This section presents new classification methodology based on dynamic time warping 

(DTW) using correlogram and compares its performance with that of popular neural 

network approach (Hsu and Chen 2007, Huang 2007, and Palma et al. 2005). 

 

2.5.1 Review of dynamic time warping 

As seen earlier, defect patterns of same class produce similar shapes of correlogram. 

In order to classify defect patterns based on correlogram, we have to first calculate the 

distance among different correlograms and then use the classification techniques that use 

distance measures. In our work, we use the 1-nearest neighbor classifier. However, since 

they are not aligned in the lag axis, linear mapping technique such as Euclidean distance 

that assumes ith point in one correlogram is aligned with the ith point in the other may 

produce higher misclassification rate. Figure 2.8 shows examples of classification based 

on Euclidean distance and DTW distance. To accurately classify each defect pattern 

using correlogram, non linear mapping technique is needed.  

The classification based on DTW distance, which is popular in speech recognition 

applications, finds an optimal match between two sequences by allowing a non linear 

mapping of the one sequence to another by minimizing the distance between the two 

(Ratanamahatana and Keogh 2004a, 2004b).  
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Figure 2.8 Classification of sequence based on Euclidean distance and DTW distance  

(Ratanamahatana and Keogh 2004a) 

 

Let's suppose a sequence S of length m, mi ssssS ,,,,, 21   and a sequence R of 

length n, nj rrrrR ,,,,, 21  . We create n-by-m path matrix where the (i
th 

, j
th

) element 

of matrix contains the distance between the two points is and jr  such as 

2)(),( jiji rsrsd  . The best match between these two sequences is the one for which 

there is the lowest distance path aligning the one sequence to the other. The optimal path 

is the path that minimizes the warping cost 





K

k

kwRSDTW
1

min),( , 

where wk is the matrix element (i, j)k that also belongs to kth element of a warping path W, 

a contiguous set of matrix elements that represent a mapping between S and R (see 

Ratanamahatana and Keogh (2004a) and Ratanamahatana and Keogh (2004b) for detailed 

descriptions of DTW).  
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2.5.2 Experimental results 

In order to evaluate the classification performance of the proposed algorithms, we 

generated a total of 400 wafer maps with 400 chips per wafer (20 by 20-sized map), i.e., 

80 wafer maps for each of five patterns such as SHBP, circle, cluster, repetition and spot. 

We have eight level of random noise ranging from 0.05, 0.1, 0.15, …, 0.4. For each 

combination of noise level and pattern (total 8x5=40 combinations), we generated 10 

wafer maps. Dataset {1} consists of wafer maps with the noise level of 0.05, dataset {2} 

with the noise level of 0.1, and so on. In this experiment, we divided 400 wafer maps into 

four different data sets as shown in Table 2.3.  

Figure 2.9 presents typical four classes of defect patterns. We used the procedure 

proposed by DeNicolao et al. (2003) to generate the simulated data set. Based on our 

proposed spatial randomness test ( =0.05) using spatial lags 3, 98.8% SHBP wafer 

maps were accepted while all wafer maps with spatial defect patterns were rejected. 

 

 

Figure 2.9 Typical defect patterns of wafer map 
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Four-fold cross validation (CV) is implemented for the comparison of classification 

accuracy of different procedures. Binary and multi-lags based supervised multilayer 

perceptron neural network (Huang 2007) is selected for comparison with the proposed 

method. The difference between the binary neural network and multi-lags neural network 

is the input vector. The type of input vector of binary neural network is "1" or "0" while 

that of multi-lags neural network is the )(gZT  values along spatial lag g. For instance, in 

case of wafer map with 20 by 20 size, binary neural networks have 400 (=20x20) binary 

values ("0" or "1") as input vector. On the other hand, multi-lags neural networks have a 

total 38 of )(gZT  as its input vector because a total number of spatial lag under rook-

move neighborhood (RMN) rule of 20 by 20 sized wafer map is 38.  

The architecture of neural network is composed as follows: 400 neurons in the input 

layer for binary neural network and 38 neurons for multi-lags neural network, single 

hidden layer with 10 neurons, and 1 output neurons. Tangent sigmoid function and linear 

transfer function are used for activation function in the hidden and output layer. On the 

other hand, multi-lags DTW utilizes a number of 38 of )(gZT  because a maximum 

number of spatial lag under RMN rule of 20 by 20 sized wafer map is 38 which shows 

best performance.  
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Table 2.3 Summary of classification performance 

Testing set Binary NNet Multi-lags NNet 
Euclidean 

distance 
DTW 

{1},{2} 81.3% 78.8% 92.5% 98.8% 

{3},{4} 73.8% 71.3% 86.3% 92.5% 

{5},{6} 58.8% 62.5% 77.5% 82.5% 

{7},{8} 58.8% 71.3% 83.8% 88.8% 

Average 68.2% 71.0% 85.0% 90.6% 

 

Table 2.3 shows the accuracy of four procedures for both average and each fold of 

four-fold CV datasets. Overall, the proposed method is better than other ones. Especially, 

the accuracy of DTW outperforms that of Euclidean distance. The experimental results 

show that multi-lags based DTW is promising alternative for automatic defect 

classification of wafer map.  

Figure 2.10 shows why DTW works to classify diverse defect types. Figure 2.10(a)-(c) 

show the testing wafer map, best matching wafer maps by DTW and Euclidean distance 

with their corresponding correlograms, respectively. The changes of defect location and 

size make some horizontal shift of correlograms. The classification based on DTW 

distance finds an optimal match between two correlograms by allowing a non linear 

mapping of the one correlogram to another by minimizing the distance between the two 

as shown in Figure 2.8. 

DTW accurately classifies the new wafer map into circle pattern whereas Euclidean 

distance misclassifies it into cluster pattern. In specific, the distance between newX  and 

circleX  by DTW is 
DTW

XX circlenew
d ),( =47.6 while the distance between newX  and clusterX  by DTW 
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is 
DTW

XX clusternew
d ),( =257.3, so the new wafer map is classified into circle pattern based on the 

1-nearest neighbor classifier. On the other hand, the distance between newX  and circleX  by 

Euclidean distance is 
ED

XX circlenew
d ),( =26.4 while the distance between newX  and clusterX  by 

Euclidean distance is 
ED

XX clusternew
d ),( =19.1 , so the new wafer map is classified into cluster 

pattern.  
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(a) 

  

(b) 

  

(c) 

Figure 2.10 Classification results using DTW and Euclidean distance. (a) Testing wafer 

map and corresponding correlogram. (b) Best matching wafer map by DTW and 

corresponding correlogram. (c) Best matching wafer map by Euclidean distance and 

corresponding correlogram 
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For classification of spatial correlogram based on the 1-nearest neighbor classifier (or 

other classifiers using distance measures), it is important to compute the distance between 

two correlograms. However, some defect patterns cannot be clearly be discriminated 

using small number of spatial lags. For example, as shown in Figure 2.11, circle and 

cluster patterns cannot be clearly discriminated using smaller spatial lags while large 

number of spatial lags (≤30) clearly do. 

 

 

(a) Circle pattern                                          (b) Cluster pattern  

Figure 2.11 Spatial correlogram of circle and cluster patterns  

 

In order to explore an optimal spatial lags for the proposed classification method, 

Table 2.4 shows the classification accuracy of DTW with different spatial lags. As shown 

in Table 2.4, larger spatial lags are used, better classification accuracy is obtained. 

Therefore, for the classification purpose, full number of spatial lags is suggested for 

accurate classification. 
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Table 2.4 Classification accuracy of DTW with different spatial lags 

Testing set Lags=10 Lags=20 Lags=30 Lags=38 

{1},{2} 81.3% 73.8% 98.8% 98.8% 

{3},{4} 72.5% 82.5% 90.0% 92.5% 

{5},{6} 61.3% 67.5% 76.3% 82.5% 

{7},{8} 60.0% 72.5% 77.5% 88.8% 

Average 68.8% 74.1% 85.7% 90.6% 

 

To investigate the effectiveness of multi-lags based DTW, the details of classification 

performance of testing set {3, 4} are shown in the Table 2.5. As seen in Table 2.5, multi-

lags based DTW misclassify circle pattern into cluster pattern or in opposite because in 

some cases, the distinction between spatial correlograms of two patterns is not clear due 

to high random noise. It can accurately classify repetitive and spot pattern regardless to 

random noise.  

 

Table 2.5 Detail of DTW performance of testing set {3, 4} 

Type Accuracy Misclassification description 

Circle 18/20 (90%) Circle   Cluster 

Cluster 16/20 (80%) 
Cluster   Circle 

Cluster   Spot 

Repetition 20/20 (100%) None 

Spot 20/20 (100%) None 
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2.5.3 Test of robustness to noise, defect location, and defect size 

This section compares the multi-lags based DTW with existing algorithm such as 

binary neural networks in terms of the robustness to random noise, defect location, and 

defect size.  

 

2.5.3.1 Robustness to random noise 

Figure 2.12(a) shows same circle patterns with different random noise level ranging 

0.05 to 0.3. Figure 2.12(b) presents correlograms of circle patterns in Figure 2.12(a). 

Each correlogram is similar regardless of random noise level.  

 
(a) Wafer maps of circle patterns 

 
(b) Spatial correlograms 

 

Figure 2.12 Circle patterns with different levels of random noise and their corresponding 

spatial correlograms  
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Table 2.6 summarizes the classification accuracy of circle patterns with different noise 

level from the experiments in Section 2.5.1. Our proposed procedure is robust to random 

noise whereas accuracy of other techniques decreases as noise level becomes large.  

 

Table 2.6 Classification accuracy of circle pattern with different noise level 

Random noise 

Level 
Binary NNet Multi-lags NNet DTW 

0.05 ~ 0.1 100% 100% 100% 

0.15 ~ 0.2 95% 35% 90% 

0.25 ~ 0.3 50% 35% 85% 

 

2.5.3.2 Robustness to defect location 

Figure 2.13(a) shows cluster patterns with different locations for a fixed random noise 

rate of 0.2 and their corresponding spatial correlograms are shown in Figure 2.13(b). The 

correlograms are almost same without regard to defect location.  

 

 
(a) Wafer maps of cluster patterns 
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(b) Spatial correlograms 

 

Figure 2.13 Cluster patterns with different defect locations and their corresponding 

spatial correlograms 

 

Table 2.7 summarizes the classification accuracy of cluster patterns with different defect 

locations from the experiments in Section 2.5.1. Our proposed procedure is robust to 

defect locations while other procedures show some classification errors for different 

defect locations.  

 

Table 2.7 Classification accuracy of cluster pattern with different defect location 

Defect location Binary NNet Multi-lags NNet DTW 

Right 80% 60% 100% 

Left 60% 80% 100% 

Up 80% 80% 100% 

Down 60% 80% 100% 
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2.5.3.3 Robustness to defect size 

Figure 2.14(a) shows spot pattern with different defect size for a random noise rate of 

0.2 and their corresponding correlograms are shown in Figure 2.14(b). The shape of 

correlogram looks somewhat different, but unique characteristics of spot pattern such as 

three waves are preserved. 

 

 
(a) Wafer maps of spot patterns 

 
(c) Spatial correlograms 

 

Figure 2.14 Spot patterns with different defect size and their corresponding spatial 

correlograms 
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Table 2.8 shows the classification accuracy of spot pattern with different defect size. Our 

proposed procedure shows slightly better robust performance to different defect size 

compared to neural network-based approaches. 

 

Table 2.8 Classification accuracy of spot pattern with different defect size 

Defect size Binary NNet Multi-lags NNet DTW 

Small 100% 70% 100% 

Medium 90% 80% 100% 

Large 70% 80% 90% 

 

2.6 Concluding Remarks 

 

Although an analysis of wafer map helps to better understand ongoing process 

problems, defect classification cannot be easily identified automatically. This chapter 

proposes a new methodology which incorporates spatial correlogram and DTW to detect 

the anomaly defect patterns and classify them into one of existing spatial defect patterns. 

The new spatial randomness test procedure based on spatial correlogram of a wafer map 

is used to detect anomaly defect patterns whereas the 1-nearest neighbor classifier using 

DTW distance with correlogram input is used to classify its corresponding anomaly 

defect type. Simulation studies show that the proposed methodology is generally more 

effective in detecting and classifying spatial defect patterns on the wafer map than those 

methods that use single lag. The experimental results show that our novel methodology is 

robust to random noise, defect location and defect size. Therefore, this study can be 
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expected to make a contribution to the monitoring and diagnosis of IC manufacturing 

processes. 

As for further study, there is a need to develop more advanced classification 

techniques of spatial patterns based on spatial correlogram. Also, we may extend our 

proposed approach to the wafer bin map that is more informative than the binary wafer 

map. 
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3 CHAPTER 3 

 

Weighted Dynamic Time Warping for Time Series 

Classification and Clustering 

 

3.1 Introduction 

 

There has been a long-standing interest for time series classification and clustering in 

diverse applications such as pattern recognition, signal processing, biology, aerospace, 

finance, medicine, and meteorology (Dietrich et al. 2004, Eads et al. 2002, Jalba et al. 

2005, Keogh and Ratanamahatana 2005, Lee et al. 2004, Nieeattrakul and 

Ratanamahatana 2007, Ubeyli 2008, Yu et al. 2007, Xi et al. 2006), and thus some 

notable techniques have been developed including nearest neighbor classifiers with a 

given distance measure, support vector machines, and neural networks (Eads et al. 2002, 

Guler and Ubeyli 2005, Ratanamahatana and Keogh 2004b). The nearest neighbor 

classifiers with dynamic time warping (DTW) has shown to be effective for time series 

classification and clustering because of its non-linear mappings capability (Itakura 1975, 

Nieeattrakul and Ratanamahatana 2007, Yu et al. 2007). The DTW technique finds an 

optimal match between two sequences by allowing a non-linear mapping of one sequence 

to another, and minimizing the distance between two sequences (Itakura 1975, Jalba et al. 
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2005, Keogh and Ratanamahatana 2005, Sakoe and Chiba 1978). The sequences are 

"warped" non-linearly to determine their similarity independent of any non-linear 

variations in the time dimension. The technique was originally developed for speech 

recognition, but several researchers have evaluated its application in other domains and 

have developed several variants such as derivative DTW (DDTW) (Keogh and Pazzani 

2001, Rath and Manmatha 2003, Sakoe and Chiba 1978). Figure 3.1 shows the example 

of process of aligning two out of phase sequences by DTW.  

 

 
      (a) Two similar sequences, but out of phase                    (b) Alignment by DTW 

 

Figure 3.1 Alignment of sequences based on DTW 

 

The methodology for DTW is as follows. Assume a sequence A of length m, 

mi aaaaA ,,,,, 21   and a sequence B of length n, nj bbbbB ,,,,, 21  . We create 

an m-by-n path matrix where the (i
th 

, j
th

) element of matrix contains the distance between 

the two points ia and jb  such that 
pjiji babad )(),(  , where 

p
  represents the pl  

norm. The warping path is typically subject to several constraints such as (Sakoe and 

Chiba 1978); 

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
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Endpoint constraint: The starting and ending points of warping path have to be 

the first and the last points of the path matrix, that is, u1=( 1a , 1b ) and uk=( ma , nb ). 

Continuity constraint: The path can advance one step at a time. That is, when 

uk=( ia ,
jb ), uk+1=( 1ia ,

1jb ) where 11  ii aa  and 11  ii bb . 

Monotonicity: The path does not decrease. That is, uk=( ia ,
jb ), uk+1=( 1ia ,

1jb ) 

where 1 ii aa  and 1 ii bb . 

The best match between two sequences is the one with the lowest distance path after 

aligning one sequence to the other. Therefore, the optimal warping path can be found by 

using recursive formula given by: 

p
p jiBADTW ),(),(   

where ),( ji  is the cumulative distance described by: 

 )1,( ),,1( ),1,1(min),(  jijijibaji
p

ji  .
                        (3.1)

 

As seen from Eq. (3.1), given a search space defined by two time series sequences, 

pDTW  guarantees to find the warping path with the minimum cumulative distance among 

all possible warping paths that are valid in the search space. Thus, pDTW  can be seen as 

the minimization of warped pl  distance with time complexity of )(mn . By restraining a 

search space using constraint techniques such as Sakoe-Chuba Band (Sakoe and Chiba 

1978) and Itakura Parallelogram (Itakura 1975), the time complexity of DTW can be 

reduced. Figure 3.2 shows the warping matrix and optimal warping path between two 

sequences by DTW. In Figure 3.2, a band with width w is used to constrain the warping.  
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Figure 3.2 Warping matrix and optimal warping path by DTW 

 

However, the conventional DTW calculates the distance of all points between two 

series with equal weight of each point regardless of the phase difference between a 

reference point and a testing point. This may lead to misclassification especially in 

applications such as image retrieval where the shape similarity between two sequences is 

a major consideration for an accurate recognition, thus neighboring points between two 

sequences are more important than others. In other words, relative significance depending 

on the phase difference between points should be considered.  

Therefore, this paper proposes a novel distance measure, called the weighted 

dynamic time warping (WDTW), which weights nearer neighbors more heavily 

depending on the phase difference between a reference point and a testing point. Because 

WDTW takes into consideration the relative importance of the phase difference between 

two points, this approach can prevent a point in a sequence from mapping the further 

points in another one and reduce unexpected singularities, which are alignments between 
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a point of a series with multiple points of the other series. Some practical examples will 

be presented to graphically illustrate possible situations where WDTW clearly is a better 

approach.  

In addition, a new weight function, called the modified logistic weight function, is 

proposed to assign weights as a function of the phase difference between a reference 

point and a testing point. The proposed weight function extends the properties of logistic 

function to enhance the flexibility of setting bounds on weights. By applying different 

weights to adjacent points, the proposed algorithm can enhance the detection of similarity 

between series.  

Finally, we extend the proposed idea to other variants of DTW such as derivative 

dynamic time warping (DDTW) and propose the weighted version of DDTW (WDDTW). 

We compare the performances of our proposed methods with other popular approaches 

using public datasets available through UCR Time Series Data Mining Archive (Keogh et 

al. 2006) for both time series classification and clustering problems. The experimental 

results show that the proposed procedures achieve improved accuracy for time series 

classification and clustering problems. 

This remainder of the paper is organized as follows. In Section 3.2, we review some 

related literatures on times series classification and its methodologies. Section 3.3 

explains the rationale of the advantage of the proposed idea. In Section 3.4, we describe 

the proposed WDTW and the modified logistic weight function for the automatic time 

series classification. The experimental results are presented and discussed in Section 3.5. 

The paper ends with concluding remarks and future works in Section 3.6. 
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3.2 Related Works 

 

As a result of the increasing importance of time series classification in diverse fields, 

lots of algorithms have been proposed for different applications. Husken et al. (2003) 

utilized recurrent neural networks for time series classification and Guler et al. (2005) 

presented the wavelet-based adaptive neuro-fuzzy inference system model for 

classification of ectroencephalogram (EEG) signals. Rath et al. (2003) used DTW for 

word image matching and compared the performance of DTW with other popular 

techniques, including affine-corrected Euclidean distance mapping, the shape context 

algorithm, and correlation using sum of squared differences. Gullo et al. (2009) 

developed a time series representation model, called Derivative time series Segment 

Approximation (DSA), which combines the notions of derivative estimation, 

segmentation and segment approximation, for supporting accurate and fast similarity 

detection in time series data. Eads et al. (2002) introduced a hybrid classification 

algorithm that employs evolutionary computation for feature extraction, and a support 

vector machine for classification with the selected features. They tested their algorithm 

on a lightning classification task using data acquired from the Fast On-orbit Recording of 

Transient Events (FORTE) satellite.  

In the area of new distance measures for time series classification and clustering, 

Keogh and Pazzani (2005) proposed a modification of DTW, called Derivative Dynamic 

Time Warping (DDTW), which transforms an original sequence into a higher level 

feature of shape by estimating derivatives. By preventing the production of unexpected 

singularities, DDTW has showed promising results for several special cases such as (1) 
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two sequences differ in the Y-axis as well as X-axis, (2) cases in which there are local 

differences in the Y-axis, for instance, a peak in one sequence may be higher that the 

corresponding peak in the other sequences.  

However, DDTW retains the assumption that all points in the sequence are weighted 

equally; that is, it is possible that a point of a series may be matched with further 

neighboring points of the other series, generating a similar problem as DTW. With a 

similar concept to DDTW, Xie and Wiltgen (2010) recently proposed an adaptive feature 

based dynamic time warping, which was designed to align two sequences with local and 

global features of each point in a sequence instead of its value or derivative.  

 

3.3 Rationale for the Performance Advantages of WDTW  

 

In this section, we will present the rationale underlying the proposed WDTW with 

practical examples to graphically illustrate situations where WDTW shows better 

performance than conventional DTW. The first example deals with automatic 

classification of defect patterns on semiconductor wafer maps. Figure 3.3 (a)-(d) show 

four common classes of defect patterns on wafer maps. Jeong et al. (2008) presented the 

effectiveness of using spatial correlograms (i.e., time series data) as new features for the 

classification of wafer maps instead of original binary input variables for each pixel 

where 1 represents the defective chip (black color) and 0 indicates the good chip (white 

color). Figure 3.3 (e)-(h) show the corresponding spatial correlograms of Figure 3.3 (a)-
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(d), respectively. In correlograms, X-axis represents the spatial lags and Y-axis indicates 

their corresponding statistic value.  

 

 

Figure 3.3 Typical defect patterns on wafer map and their corresponding correlograms 

 

The correlogram plots the standardized value of T(d) over the spatial lag d where T(d) 

is given as follows for a given defective rate (p) (Jeong et al. 2008). 

)()1()()( 1100 dcpdpcdT  , 
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where )(00 dc  and )(11 dc  represents the total number of normal (0)-to-normal (0) chip 

and defective (1)- to-defective (1) chip joins at a lag d for a given wafer map, 

respectively (for more details, see the (Jeong et al. 2008 and 2009)). Higher value of T(d) 

means that defective chips or good chips exist together at lag d. Figure 3.4 shows the 

definition of neighbors (or joins) at lag d under a Rook-move neighborhood (RMN) 

construction rule. In Figure 3.4, the black square represents a reference chip and red lines 

indicate neighboring chips (i.e. neighbors of a reference chip) with spatial lag d=1. 

Similarly, blue lines present neighboring chips with spatial lag d=2.  

 

 

Figure 3.4 RMN neighborhood construction rules 

 

If ( )T d  is large, the neighbors at distance d from a reference defective chip (normal 

chip) include more defective chips (normal chips) than expected. If ( )T d  is small, a 

reference defective chip (normal chip) tends to have normal chips (defective chips) as its 

neighbor at distance d. For example, in case of a cluster defect pattern, correlogram in 

Figure 3.3 (b), shows larger value of ( )T d  for the 1
st
 - 5

th
 lags, meaning that at those 
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distances, defective chips are clustered at certain areas. From 20
th

 – 30
th

 lag, statistic 

value is a large negative, indicating that at that distance, defective chips (normal chips) 

are joined with normal chips (defective chips). Thus, the comparison of statistic value at 

the same lag (or neighboring lags) between two correlograms (or sequences) is more 

meaningful when they are compared for defect pattern classifications and WDTW may 

choose higher value of g where g is the control parameter for the penalization level in 

weighting function. The higher g value, the more penalizing to points with higher phase 

difference to determine the optimal weights (see Section 3.4 for the detailed introduction 

of weight function).  

Figure 3.5 and Figure 3.6 show the classification results of a new observation in 

testing data using DTW and WDTW, respectively. The red line represents a new time 

series data that should be classified into one of classes, and blue and pink lines represent 

the training dataset. Figure 3.5 (a) shows the result of alignment using DTW, showing the 

nearest distance among training dataset. The distance is 41.31. Figure 3.5 (b) shows the 

result of alignment using DTW, showing the second nearest distance among training 

dataset. The distance is 41.82. In case of DTW, some points in circle sequence (testing 

data, red line) are matched with further points in cluster sequence, distorting a minimum 

distance. Thus, a new testing sequence, which should be classified into a circle class, is 

misclassified into a clustering class. However, as shown in Figure 3.6, our proposed 

distance measure accurately classifies testing circle pattern into a same class because it 

penalizes more a point with higher phase difference between points, in other words, by 

preventing a point in a sequence from matching further points in another one. Note that 

for this case study, the optimal parameter g value for WDTW, which was optimized using 
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the validation data set, was found to be 0.4, implicating much more penalizing for further 

points to increases the classification accuracy because the matching between points with 

same or neighboring lags is more meaningful for the classification of defect patterns. 
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(a)                                                                                 (b) 

(a) Circle pattern (a new observation in testing data, red line) vs. Cluster pattern (an observation with the 

minimum distance using DTW in training data, blue line), DTW distance=41.31 

(b) Circle pattern (a new observation in testing data, red line) vs. Circle pattern (an observation with the 

second minimum distance using DTW in training data, pink line), DTW distance=41.82 

Figure 3.5 Alignment results generated by DTW 

 

 

                                        (a)                                                                                               (b) 

(a) Circle pattern (a new observation in testing data, red line) vs. Cluster pattern (an observation that 

showed the minimum distance using DTW in training data, blue line); WDTW distance=0.16 

(b) Circle pattern (a new observation in testing data, red line) vs. Circle pattern (an observation with the 

minimum distance using WDTW in training data, pink line); WDTW distance=0.03 

Figure 3.6 Alignment results generated by WDTW (g=0.4)  
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The second motivating example considers time series from “UCR Time Series Data 

Mining Archive.” The data consists of six classes (Normal, Cycle, Increasing trend, 

Decreasing trend, Upward shift, and Downward shift). Figures 3.7 and 3.8 represent the 

alignments generated by DTW and WDTW, respectively. The red line indicates a new 

observation (in the test data) which is a “Normal” pattern, and blue and pink line 

represents “Upward shift” and “Normal” pattern in the training data, respectively. In 

order to correctly classify a given sequence, a point in the series should be matched with 

nearer neighbors of the other series because all sequences in the same class have similar 

shape. As shown in Figure 3.7, which shows the alignment by DTW, DTW maps a point 

in the red sequence to the points with further distance in the blue sequence. This 

alignment certainly does not have a positive impact on the similarity evaluation of these 

two sequences even though they have a minimum DTW distance between them. For 

example, Figure 3.7 (a) presents the alignments by DTW between Normal (a new 

observation in the testing data, red line) and Upward shift (training data, blue line) with 

17.4 of DTW distance while Figure 3.7 (b) shows the alignments by DTW between 

Normal (a new observation in the testing data, red line) and Normal (training data, pink 

line) with 18.6 of DTW distance. Thus, DTW selects Upward shift sequence as the best 

match for a new sequence of Normal class, causing a misclassification. Meanwhile, 

Figure 3.8 (a) presents the alignment by WDTW between Normal (a new observation in 

the testing data, red line) and Upward shift (training data, blue line) with 0.134 of 

WDTW distance while Figure 3.8 (b) shows the alignment by WDTW between Normal 

(a new observation in the testing data, red line) and Normal (training data, pink line) with 
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0.123 of WDTW distance, correctly classifying Normal sequence. For WDTW, 

parameter g value was optimized using validation data set and was set to 0.3 in this case.  
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(a)                                                                               (b) 

(a) Normal (a new observation in testing data, red line) vs. Upward shift (an observation with the minimum 

distance using DTW in training data, blue line), DTW distance=17.4 

(b) Normal (a new observation in testing data, red line) vs. Normal (an observation with the second 

minimum distance using DTW in training data, pink line), DTW distance=18.6 

Figure 3.7 Control chart pattern alignments generated by DTW 

 

 

(a)                                                                               (b) 

(a) Normal (a new observation in testing data, red line) vs. Upward shift (an observation that showed the 

minimum distance using DTW in training data, blue line); WDTW distance=0.134 

(b) Normal (a new observation in testing data, red line) vs. Normal (an observation with the minimum 

distance using WDTW in training data, pink line); WDTW distance=0.123 

Figure 3.8 Control chart pattern alignments generated by WDTW (g=0.3)  
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3.4 Proposed Algorithm for Time Series Classification 

 

This section presents the proposed WDTW measure and a new weighting function, so 

called modified logistic weight function (MLWF) for time series data.  

 

3.4.1 Weighted dynamic time warping 

As mentioned earlier, the standard DTW calculates the distance of all points with 

equal penalization of each point regardless of the phase difference. The proposed WDTW 

penalizes the points according to the phase difference between a test point and a reference 

point to prevent minimum distance distortion by outliers. The key idea is that if the phase 

difference is low, smaller weight is imposed (i.e., less penalty is imposed) because 

neighboring points are important, otherwise larger weight is imposed.  

In the WDTW algorithm, when creating the m-by-n path matrix, the distance between 

the two points ia and jb  is calculated as 
p

jijijiw bawbad )(),( 


 where 
ji

w


 is a 

positive weight value between the two points ia  and jb . The proposed algorithm implies 

that when we calculate the distance between ia  in a sequence A and jb  in a sequence B, 

the weight value will be determined based on the phase difference ji  . In other words, 

if the two points ia and jb  are near, smaller weights can be imposed. Thus, the optimal 

distance between the two sequences is defined as the minimum path over all possible 

paths as follows: 

p

p jiBAWDTW ),(),( *
                                             (3.2)
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where  )1,( ),,1( ),1,1(min)(),( **** 


jijijibawji
p

jiji
 . 

Based on the classical analysis of 
pl  spaces, we present the following Propositions that 

show some mathematical properties of WDTW such as WDTWp distance decreases 

monotonically as p increases and the opposite can be obtained under the specific 

condition on the measured space.  

 

Proposition 3.1 For  qp0 , ),( jip baWDTW  ),( jiq baWDTW   

Proposition 3.2 For 0 ,p q    ),( jip rsWDTW 
(1/ ) (1/ )(2 2) ( , ),p q

q i jn WDTW s r  

where n is the length of the two sequences. 

 

Proof of Proposition 3.1: 

By classical analysis of pl  spaces, for  qp0 , we obtain that 
p

x 
q

x  where x 

is a sequence. Let a and b denotes the sequence with same length, respectively. Given the 

two aligned sequences *
a and *

b , it is true 
p

**
ba  

q

**
ba   so that 

p
)( **

baw  

q
)( **

baw   due to 0w . Therefore, ),( **
bapWDTW  ),( **

baqWDTW .  

 

Proof of Proposition 3.2: 

By classical analysis of pl  spaces, given x sequence with n length, 
p

x 
)/1()/1()( qpn 

q
x  for  qp0 . In addition, the length of a minimal warping path in DTW is at 

most 2n-2 when n>1 (Lemire 2009). Given the two aligned sequences *
a and *

b , it is 

true  
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p

**
ba  

)/1()/1()22( qpn 
q

**
ba  . Thus, 

p
)( **

baw  
)/1()/1()22( qpn 

q
)( **

baw   due to 0w . Therefore, ),( **
bapWDTW 

)/1()/1()22( qpn 

),( **
baqWDTW .  

 

Given the lengths of two sequences are m and n, respectively, the time complexity of 

WDTW is the same as DTW, which is O(mn). There are weight factors to a distance 

calculation in WDTW, but each cell in an m-by-n path matrix should be filled in with the 

same time. Also, the best distance measure is related to the selection of p because 

pWDTW  can be seen as the minimization of the warped 
pl  weighed distance. Even 

though optimal p depends on applications, 1l  and 2l  are usually good choices to classify 

time series data set (Lemire 2009, Morse and Patel 2006).  

 

3.4.2. Modified logistic weight function 

The next issue is how to systematically assign weight as a function of the phase 

difference between two points. In this section, we present our proposed modified logistic 

weight function (MLWF). One of the most popular classical symmetric functions that use 

only one equation is the logistic function. However, the standard form of logistic function 

is not flexible in setting bounds on weights. Therefore, in this paper, we propose 

modified logistic weight function (MLWF), which extends the properties of logistic 

function.  

The weight value )(iw  is defined as 
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                                            (3.3)

 

where i=1, … ,m, m is the length of a sequence and cm  is the midpoint of a sequence. 

maxw  is the desired upper bound for the weight parameter, and g is an empirical constant 

that controls the curvature (slope) of the function; that is, g controls the level of 

penalization for the points with larger phase difference. The value of g could range from 

zero to infinity, but we investigate the characteristics of MLWF for four special cases. 

The characteristics of these four cases are summarized as follows: (1) Constant weight: 

This is the case in which all points are given the same weight. This can be achieved when 

g=0. (2) Linear weight: This is applicable to cases in which the weight is linearly 

proportional to the extent of the distance. This is the case when g=0.05, then the value of 

)(iw  is nearly a linearly increasing relationship. (3) Sigmoid weight: Different sigmoid 

pattern can be achieved using different values of g. For example, the weight function 

follows a sigmoid pattern when g=0.25. (4) Two distinct weights: In this case, the first 

one-half is given one weight and the second one-half is given another weight. This is 

possible when g=3. The pictorial representations of the different weights for these g 

values are shown in Figure 3.9. Figure 3.9 also shows that the profile for MLWF is 

symmetric around the midpoint ( cm ) of the total length of a sequence. The m and maxw  

are set to 100 and 1, respectively. It has been shown that a linear weighting profile and a 

sigmoidal pattern of weighting profile can be obtained by setting g=0.05 and g=0.25, 

respectively. Setting g=3 results in two distinct weights. 
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Figure 3.9 The pictorial representations of MLWF with different values of g 

 

Remark 3.1 Conventional DTW and Euclidean distance measures are special cases of 

the proposed WDTW. For example, when 
ji

w


 is constant, i.e., g=0 in MLWF, with 

regard to phase ji  , WDTW is equivalent to DTW. However, as 
ji

w


 becomes 

smaller, i.e., g becomes larger, for the points in nearer phase ji  , WDTW will be 

closer to Euclidean distance because it does not allow non-linear alignments of one point 

to another. By choosing the appropriate g value, WDTW can achieve improved 

performance in diverse situations.  

 

Remark 3.2 Based on our empirical study, the range of optimal g is distributed from 0.01 

to 0.6. Smaller g means the less penalty for further points in the sequence, thus WDTW 

performance is similar to DTW. For example, in case of the signals with common initial 
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phase shift, smaller penalty (or g) will be selected. For larger g, WDTW considers higher 

penalty for further points, leading to a similar performance of Euclidean distance.  

 

3.4.3 Weighted derivative dynamic time warping (WDDTW) 

The proposed weighted concept can be extended to variants of DTW. In this 

subsection, we extend the proposed idea to derivative dynamic time warping (DDTW) 

(Keogh and Pazzani 2001), which is one popular variant of DTW, and propose the 

weighted version of DDTW (WDDTW). Because DTW may try to explain variability in 

the Y-axis by warping the X-axis, this may lead to the unexpected singularities, which are 

alignments between a point of a series with multiple points of the other series, and 

unintuitive alignments. In order to overcome those weaknesses of DTW, DDTW 

transforms the original points into the higher level features, which contain the shape 

information of a sequence. The estimate equation for transforming data point ia  in the 

sequence A is given by (Keogh and Pazzani 2001), 

1 1 1( ) (( ) / 2)
( )

2

a i i i i
A i

a a a a
D d     

 ,         1 i m   

where m is the length of sequence A. Because the first and last estimates are not defined, 

it is considered that 
1 2

a ad d  and 
1

a a

m md d  . 

The weighted version of DDTW is given as follows:  

p

BAp jiDDWDDTW ),(),( *
                                             (4)

 

where  )1,( ),,1( ),1,1(min)(),( **** 


jijijiddwji
p

b

j

a

iji
 , and DA 

and DB are the transformed sequences from sequence A and B, respectively. 
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3.5 Experiment Results 

 

3.5.1 Performance comparison for time series classification 

In this section, we perform extensive experiments to verify the effectiveness of the 

proposed algorithm for time series classification and clustering. All datasets, which 

include real-life time series, synthetic time series, and generic time series, come from 

different application domains and are obtained from “UCR Time Series Data Mining 

Archive” (Keogh et al. 2006). For the detailed descriptions of the datasets, please see 

Ratanamahatana and Keogh (2004a, 2004b). 

Euclidean distance, conventional DTW, and DDTW techniques are selected for 

comparison with the proposed algorithm. In addition, for comparison with state-of-art for 

time series similarity search, we implement the Longest Common Subsequence (LCSS), 

which is one of the popular methods for time series similarity because of its robustness to 

noise (Vlachos et al. 2002). LCSS measure has two parameters,   and  , which should 

be optimized using validating data set. The constant ,  which is usually set to less than 

20 % of the sequence length, controls the window size in order to match a given point 

from one sequence to a point in another sequence. The constant ,  where 0 1  , is the 

matching threshold (please refer to Vlachos et al. (2002) in details). In this paper, we use 

1-nearest neighbor classifier because the 1-nearest neighbor classifier with DTW showed 

very competitive performance and has been widely used for time series classification (Xi 

et al. 2006).  

For WDTW, two parameters should be fixed prior to the evaluation of testing 

performance. Different maxw  does not affect its performance, thus, we set maxw  to 1 in 
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this work. In addition, because an optimal g value is different depending on the 

application domains, we choose the optimal g value using the validation data set after we 

divide the given data set into training, validating, and testing sets.  

Table 3.1 shows the classification accuracy of the four different procedures for each 

dataset. In this work, the error rate is calculated as follows; 

Error rate = data)  testingofnumber  total(

data) classifiedcorrectly  ofnumber  (total-data)  testingofnumber  total(
 

As seen in Table 3.1, our proposed distance measures, WDTW and WDDTW, clearly 

outperform standard DTW, DDTW, and LCSS measures. In most of cases, the accuracies 

of WDTW and WDDTW is better (or equal in a few cases) than those of DTW and 

DDTW. In addition, we can see that depending on the application domains, DDTW 

results in better accuracy than DTW. The experimental results indicate that our proposed 

procedures are quite promising for automatic time series classifications in diverse 

applications. Note that when g becomes smaller, the error rate for WDTW becomes 

similar to that of DTW.  
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Table 3.1 Summary of classification performance 

Data Name 

Number 

of 

classes 

Size of 

training 

set 

Size of 

validating 

set 

Size of 

testing 

set 

Time 

series 

length 

Error rates 

ED* DTW 
WDTW 

(g) 
DDTW 

WDDTW 

(g) 

LCSS 

(
* ,  ) 

Synthetic 

Control 
6 300 150 150 60 0.153 0.007 

0.002 

(0.3) 
0.433 

0.433 

(0.01) 

0.033 

(5, 0.6) 

Gun-Point 2 50 75 75 150 0.093 0.080 
0.040 

(0.2) 
0 

0           

(0.1) 

0.027 

(6, 0.1) 

CBF 3 30 450 450 128 0.136 0.002 
0.002 

(0.08) 
0.418 

0.418 

(0.01) 

0.004 

(6, 0.3) 

Face (all) 14 560 845 845 131 0.319 0.258 
0.257 

(0.01) 
0.144 

0.131   

(0.1) 

0.300 

(2, 0.1) 

OSU Leaf 6 200 121 121 427 0.438 0.388 
0.372 

(0.6) 
0.116 

0.091 

(0.01) 

0.231 

(11, 0.2) 

Swedish 

Leaf 
15 500 313 312 128 0.218 0.210 

0.138 

(0.03) 
0.115 

0.096    

(0.6) 

0.122 

(5, 0.2) 

50Words 50 450 228 227 270 0.352 0.317 
0.194 

(0.1) 
0.330 

0.216   

(0.1) 

0.255 

(6, 0.1) 

Trace 4 100 50 50 275 0.240 0 
0    

(0.01) 
0 

0         

(0.01) 

0.100 

(2, 0.2) 

Two 

Patterns 
4 1000 1000 3000 128 0.09 0 

0    

(0.01) 
0.002 

0.003 

(0.1) 

0.002 

(14, 0.1) 

Wafer 2 1000 1000 5164 152 0.005 0.004 
0.002 

(0.3) 
0.023 

0.006    

(0.1) 

0.004 

(3, 0.5) 
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*ED: Euclidean distance,  : % of sequence length 

 

Face (four) 4 24 44 44 350 0.182 0.136 
0.136 

(0.1) 
0.273 

0.250   

(0.1) 

0.023 

(2, 0.1) 

Lightning-2 2 60 31 30 637 0.200 0.100 
0.100 

(0.1) 
0.367 

0.133  

(0.03) 

0.167 

(4, 0.1) 

Lightning-7 7 70 37 36 319 0.472 0.222 
0.200 

(0.1) 
0.278 

0.228   

(0.1) 

0.277 

(5, 0.3) 

ECG 2 100 50 50 96 0.180 0.180 
0.140 
(0.5) 

0.220 
0.160    

(0.6) 

0.16   

(2, 0.2) 

Adiac 37 390 196 195 176 0.390 0.390 
0.364 

(0.1) 
0.426 

0.333   

(0.4) 

0.569 

(3, 0.1) 

Yoga 2 300 1000 2000 426 0.174 0.165 
0.165 

(0.1) 
0.176 

0.175   

(0.1) 

0.141 

(4, 0.1) 

Fish 7 75 88 87 463 0.184 0.1379 
0.126 

(0.01) 
0.126 

0.023   

(0.1) 

0.057 

(6, 0.1) 

Beef 5 30 15 15 470 0.600 0.600 
0.600 

(0.2) 
0.400 

0.333   

(0.1) 

0.800 

(1, 0.1) 

Coffee 2 28 14 14 286 0.200 0.133 
0.133 

(0.01) 
0.071 

0          

(0.4) 

0.2667 

(1, 0.4) 

Olive Oil 4 30 15 15 570 0.188 0.188 
0.188 

(0.01) 
0.313 

0.313 

(0.01) 

0.857 

(1,0.3) 
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3.5.2. Effect of parameter values in WDTW 

For WDTW, two parameters should be considered prior to the evaluation of testing 

performance. The max ,w  which is used to set the maximum of weight values, does not 

influence on the accuracy of experimental results in this study because weight is positive 

and maxw  represents the full scale of weights in MLWF. For example, Fig. 10 presents the 

MLWF with different maxw  values. Regardless of maxw  value, MLWF retains its shape, 

implying that MLWF assigns weights with constant ratios to points in a sequence.  

 

 

                             (a) 1max w                                                   (b) 5max w  

 

                          (c) 10max w                                                  (d) 20max w  

Figure 3.10 MLWF with different value maxw  
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In addition, WDTW should choose the optimal g value depending on the application 

domains. Figure 3.11 shows the effect of g to the error rates of the validation data for the 

“Swedish Leaf” data set. “Swedish Leaf” data set was split into a training set of 500 

samples, a validation set of 313 samples, and a test set of 312 samples. As shown in 

Figure 3.11, at the beginning, as g value increases, error rate decreases because nearer 

points are heavily weighed so that it is highly possible that sequence with a similar shape 

is chosen with minimum distance. However, as g value increases continuously, error rate 

increases after reaching the minimum error rate (0.115) because too large g value does 

not allow non-linear alignments of one point to another. In order words, WDTW with 

large g value will achieve similar performance to Euclidean distance measure as shown in 

Table 3.1. This example indicates that WDTW can adjust the level of penalization of the 

phase difference on each point by using different g values depending on applications. 

 

 

Figure 3.11 Effect of g to the error rates of validation data for the “Swedish Leaf” data 
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3.5.3 Performance comparison for time series clustering 

Since WDTW is essentially a distance measure that can be generally used with 

different data mining tasks that consider the distance between two observations, we can 

extend the applications of WDTW to different tasks such as a clustering problem. 

Following the procedures of several literatures (Keogh and Lin 2005, Nieeattrakul and 

Ratanamahatana 2007, Yu et al. 2007), which presented DTW-based K-means method 

for time series clustering; we compare the performance of WDTW with that of DTW. As 

evaluation measures for validating a clustering quality, we used entropy and F-measure 

for external cluster validity and average within-cluster-distance (the intra-cluster 

compactness) and average between-cluster-distance (the inter-cluster separation) for 

internal cluster validity (Lu et al. 2008, Zhao et al. 2010).  

Given data set belonging to I classes and partitioning them into J clusters using 

clustering algorithms, let n be the size of data set, ni be the size of class i, nj be the size of 

cluster j, and nij be the number of data belonging to both class i and cluster j. Then, 

Entropy and F-measure can be calculated as follows (Lu et al. 2008) 

2

1 1

( , ) log ( , )
J I

j

j i

n
Entropy P i j P i j

n 

 
  

 
   

0
1

2 ( , ) ( , )
max

( , ) ( , )

I
i

j J
i

n R i j P i j
F measure

n R i j P i j 


  
   

 
  

where ( , )
ij

i

n
R i j

n
 , ( , )

ij

j

n
P i j

n
 . The lower the value of entropy, the higher the 

clustering quality, on the contrary, the higher the value of F-measure, the better the 

clustering quality. For internal cluster criteria, average within-cluster-distance (
_ave withind ) 

and average between-cluster-distance (
_ave betd ) are calculated by (Keogh and Lin 2005) 
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where 
1

1

K

m

M m




  is the number of pairs of cluster centers, ( , )i jd C X  is the distance 

between time series j in the cluster i and the cluster center of cluster i, and ( , )i jd C C  is 

the distance between cluster centers of cluster i and cluster j. In addition, K and Ni the 

number of clusters and the number of items in cluster i, respectively. The smaller the 

value of average within-cluster-distance, the more compact each cluster, and the bigger 

the value of average between-cluster-distance, the more separate the clusters.  

Table 3.2 shows the clustering results of 8 data sets out of 20 data sets. The cluster 

validity measures in Table 3.2 present the average values of 5 runs with the same data set. 

As for the value of g for WDTW, we used the selected value in Table 3.1 instead of 

optimizing it for a clustering purpose. As shown in Table 3.2, in most cases, WDTW 

outperforms both Euclidean distance and DTW even though we did not optimize the 

value of g for WDTW in terms of both external and internal cluster validity measures. 

Even though we used only datasets that have either small number of observations or low 

dimension of an input vector due to the limitation of computational time, similar 

conclusion can be made for the remaining datasets. 

 



71 

 

 

Table 3.2 Summary of clustering performance 

Data 

Name 

Number 

of 

classes 

Data 

size 
length 

External cluster validity Internal cluster validity 

Entropy F- measure 

Average within- 

cluster-distance 

Average between- 

cluster-distance 

ED* DTW WDTW ED* DTW WDTW ED* DTW WDTW ED* DTW WDTW 

Gun-

Point 
2 200 150 1.012 0.999 0.336 0.5 0.505 0.886 3.989 3.865 3.797 7.223 7.384 7.549 

Trace 4 200 275 1.807 1.621 1.621 0.482 0.588 0.588 4.399 4.391 4.806 15.969 18.080 17.901 

Face 

(four) 
4 112 350 0.925 0.877 0.916 0.758 0.797 0.778 13.566 13.653 12.108 11.957 12.021 16.274 

Lighting 

2 
2 121 637 0.953 0.943 0.868 0.579 0.595 0.612 20.112 18.112 18.693 8.297 14.335 16.566 

ECG 2 200 96 0.807 0.807 0.752 0.737 0.737 0.769 5.809 4.909 4.461 2.533 7.523 8.079 

Beef 5 60 470 1.916 1.917 1.906 0.503 0.504 0.542 0.394 0.384 0.354 1.667 1.878 2.069 

Coffee 2 56 286 0.891 0.719 0.719 0.631 0.773 0.773 35.769 34.817 32.722 82.319 79.539 83.561 

Olive 

Oil 
4 60 570 1.319 1.235 1.214 0.636 0.669 0.685 0.079 0.079 0.053 0.126 0.125 0.183 

*ED: Euclidean distance 
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3.6 Concluding Remarks 

 

A new automatic time series classification methodology, weighted dynamic time 

warping (WDTW), is proposed to accurately classify time series dataset in diverse 

applications. Compared with the conventional DTW, the proposed algorithm considers 

near neighbor points to be more important than others by applying more weights. In 

addition, a novel weighting function, called modified logistic weight function (MLWF), 

is developed to systematically assign weights depending on the distance among time 

series points.  

The extensive experimental results using datasets from diverse applications show that 

the proposed WDTW with optimal weights have great potential for accuracy 

improvement of time series classification. As a part of further research, because the 

effectiveness of the proposed WDTW is the focus of this work, our proposed algorithm 

would be combined with the some of the pruning techniques such as LB_Keogh and 

warping-window-DTW to reduce computational time for much longer time series 

datasets.  
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4 CHAPTER 4 

 

A Statistical Anomaly Detection Procedure for a Time 

Sequence Data with Local Variations 

 

4.1 Introduction 

 

A time sequence (series) data or curve, has been popularly used to monitor the quality 

of processes. Examples of time sequence data used in applications include investigation 

of a biomarker in early colon carcinogenesis (Morris et al. 2003), modeling of functional 

sulfur dioxide samples for environmental monitoring (Castro et al. 2005), development of 

SPC procedures for monitoring semiconductor manufacturing quality (Kang and Albin 

2000), prediction of wood properties using high-dimensional spectral data (Fang et al. 

2010), and modeling of acoustic emission signals to improve nano-machining process 

quality (Ganesan et al. 2003). 

Wavelets has been used to model the time sequence data as a preprocessing technique. 

Existing wavelet models for time sequence data mostly focus on analysis of of single 

data curve (see Donoho and Johnstone (1994) and Jeong et al. (2006a) and references 

therein). A typical model assumed in these studies is ( ) = ( ) ( )y t f t z t , where the mean 

function ( )f t  can be modeled by a sum of wavelet coefficients multiplied by their 
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wavelet bases as shown in Eq. (4.1) in Section 4.2. Usually, errors at different time points 

are assumed to be independent and identically distributed as normal with mean zero and a 

constant variance 2 . However, this model does not work well to describe local 

variations in the multiple time-sequence data that will be discussed next. 

For example, in Figure 4.1, the center has more variations than the two sides in the 

stamping process. In case of Antenna data as shown in Figure 4.4 (b), if one examines the 

variations of data patterns closer to the two sides, the curve-to-curve variations are larger 

than the variations of data closer to the center. When the variation pattern is changed, 

process engineers need to investigate its cause. Figure 4.1 shows the three classes of 

multiple curves that represent one normal-condition data (Class 1) and two fault-

condition data with 24 samples in each set (Jin and Shi 2001). Modeling the curve-to-

curve variation for those three classes of products helps in understanding of stamping 

process behavior. 

 



75 

 

 

 

Figure 4.1 Three classes of multiple curves 

 

To capture these between-curve variations, Section 4.2 presents a wavelet-based local 

random-effect model like the repeated measurement models used in biomedical studies. 

However, one important property in our model, as discussed above, is its ability to 

characterize variations in local areas. To elaborate, the following three subfigures in 

Figure 4.2 are generated from our model based on Haar wavelets using different sizes of 

supports covering local between-curve variations. In each subfigure, 20 curves of 256 

data points at a time domain are generated based on a wavelet random-effect model from 

the Haar family in which the variance equals four. In Figure 4.2(a) one wavelet 

coefficient (
4,7c ) at a coarser level in the fourth resolution level is assumed to be a 

random effect. The support of this coefficient covers from 97t  to 112t . Figure 4.2(b) shows 
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a wider support area ( 65t , 96t ) of a coarser level wavelet coefficient (
3,3c ) in the third 

resolution level. Figure 4.2(c) shows a much wider support area ( 65t , 128t ) of a coarser 

wavelet coefficient (
2,2c ) in the second resolution level. See Example 1 for the linkage of 

these random-effects to the stamping process data.  

 

Figure 4.2 Local wavelet random-effect models based on Haar wavelet family 

 

Depending on the support region covered by a few random wavelet coefficients, our 

model can capture between-curve variations in various sizes of local regions. More 

important, our model makes no assumption about which wavelet coefficient is random 

and which is not. We have developed a formal variance-thresholding procedure to 

identify random wavelet-coefficients. The selected wavelet coefficients serve as reduced-

size data for various types of decision analysis. Figure 4.3 illustrates the flowchart of the 

proposed algorithm for freeway incident detection.  
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The remainder of this Chapter is composed as follows. Section 4.2 briefly reviews the 

wavelet background, and Section 4.3 proposes a wavelet-based local random-effect 

model and a mapping theory between data in the time and wavelet domain. Section 4.4 

develops the WMVT procedure and provides guidelines for selecting its regularization 

parameters. Real-life examples are given in Section 4.5, and the WMVT method is 

compared with some possible extensions of existing methods in the literature. A anomaly 

detection procedure is presented in Section 4.6 and the performance of a detection power 

is compared in Section 4.7. The conclusion and suggestions for possible future works are 

offered in Section 4.8. 
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Figure 4.3 Flowchart of the proposed statistical anomaly detection procedure 
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4.2 Wavelets 

 

Denoted by 
1 2= [ , , , ]T

i i i iNy y y y  a vector of N  equally spaced data points from a 

functional curve, where = 2JN  with some positive integer J  and =1,2, ,i M  for 

independently replicated curves. The superscript T  represents the transpose operator. Let 

1 2= [ , , , ]T T T T

MY y y y . When a DWT W  is applied to the data Y , the vector of 

wavelet coefficients obtained from this transformation is = ,D YW  where 

1 2= [ , , , ]T T T T

MD d d d , 
1 2= [ , , , ]T

i i i iNd d d d , imd  is the wavelet coefficient at the m th 

wavelet-position for the i th data curve, and = [ ],ijhW  for , =1,2, ,i j N  is the 

orthonormal N N  wavelet-transform matrix. The original observations Y  can be 

reconstructed using the inverse DWT, i.e., through = T
Y DW . 

The statistical literature has focused on single-curve data. A popular underlying 

model with a certain constant variance random error structure, e.g.,  

= ,  o   = ,dr y f ε d θ ε  

is assumed for generating the N  data points. Then, a few wavelet coefficients can be 

selected based on some thresholding procedures to estimate the true model (Donoho and 

Johnstone 1994). In the signal processing literature, a few of the largest coefficients are 

selected and other coefficients are set as zeros so as to use the inverse DWT to 

approximate the original data curve (Mallat 1998, Section 9.2). The selected wavelet 

coefficients in both the statistical and signal processing literature can be used as 

``reduced size data'' in follow-up decision analysis (e.g., Jeong et al. 2006a). 
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Figure 4.4 yields a better understanding of the relationship between f  in the time 

domain and its DWT θ  in the wavelet domain. Based on the Symmlet-8 wavelet, Figure 

4.4(a) shows that each wavelet coefficient will only affect the original data curve in its 

support area. Using all these coefficients together with a proper local-random-effect 

model proposed in Section 4.3, Figure 4.4(b) illustrates that the original data curves and 

their local-variations can be generated. Note that the data noises were not added into 

Figure 4.3(b) here. See Figure 4.7 for reconstructed curves with noises. 

 

Figure 4.4 Support Areas of Active Random Wavelet Coefficients 
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4.3 Locally Focused Wavelet Random-Effect Model 

 

Denote 
ij  the j th true wavelet coefficient for the i th curve and 

ijd  the sample 

version of 
ij . Most of the classical work in the wavelet literature has focused on single 

curve. Thus, 
ijd 's are independent and 

2( , )ijN    distributed, where 
ij 's and 2  are 

unknown parameters to be estimated. Our random-effect model follows repeated 

measurement studies in the biomedical field (e.g., Chen et al. 2001). In some support 

regions of wavelet coefficients, the behavior of data from different replicates are similar 

and thus we assume that 
1 = =j Mj j    for keeping the model simple. In other 

regions, data curves differ significantly (see Figure 4.4(b)). Then, 
ij 's are modeled as 

random-effects such as 
2( , )ij j jN   , where 

j  measures the average value of wavelet 

coefficients in the j th position while 
2

j  is the wavelet-position-dependent variance. To 

simplify expressions, we assume that 
2( , )ij j jN    with the convention that 

2 = 0j  

implies a fixed-effect model of 
j . 

The following theorem presents analytically the mapping theory between the time and 

wavelet domain data for this random-effect model. 

 

Theorem 4.1  Assume that there is a set of random coefficients, D , in the wavelet 

domain, i.e., 
2 0j   for j D ; zero, elsewhere. Then, the replicated curves from the 

wavelet-based random effect model in the time domain will have the following 
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systematic variations over the region A , where A  is the support area covered by the 

wavelet coefficients in the set D :  

2 2 2

.

2

.

( , ),
( )

( , ), ,

j kj k j

k D
i j

j

N f h t A
y t

N f elsewhere

 





  





 

where ( )i jy t  is the original time domain data for the i th curve at time point 
jt  and 

. jf  is 

the mean curve f  evaluated at 
jt . 

 

Proof of Theorem 4.1 

The replicated curves can be reconstructed from the inverse DWT, i.e.,  

 
,

=1

( ) = , ( =1,2, , )
N

i j kj i k

k

y t h d j N  

 
/

= ,kj ik lj il

k D l S D

h d h d
 

   

  where S  is the set of all wavelet positions. Then, the variability across the curves is 

given by  

 2 2

/

( ( )) = ( ) ( ),i j kj ik lj il

k D l S D

Var y t h Var d h Var d
 

   

 2 2 2= .kj k

k D

h  


  

 



83 

 

 

Example 4.1.  Suppose that there is a data curve with = 256N  data and the lowest 

resolution level, L , is 4 in a Haar wavelet family. Assume all mean parameters 
. j 's are 

equal to zeros and there is only one coarser-level random-effect 
4,7c  in the set D . Its 

support area is from 97t  to 112t  with 
7, =1/ 16, = 97,98, ,112jh j ; zeros, otherwise. If 

we simulated one data curve, according to Theorem 4.1, the support area 97 98 112( , , , )t t t  

of the random wavelet-coefficient 
4,7c  would have the following systematic changes:  

4,7 97 98 112

1
, = , , , ,

( ) = 16

, .

j j

j

j

c t t t t
Y t

elsewhere












 

Figure 4.5(a) shows 50 simulated curves with Var(
2 2

4,7 4,7) = = 2c   and Var(
j ) 

2 2= = 0.1 . The area 97 112( , )t t  in the time domain has systematic variations contributed 

from the random-effect with a variance equal to 2 2

4,7

1

16
  . Other areas have variations 

from random noise with constant variance of 2 . Note that Figure 4.2(a) showed 10 

curves using the same random-effect 
4,7c  model with a different variance 

2 2

4,7 = 10  and 

the common variance 2  was set at zero. 

 

Example 4.2.  Consider the same setup as in Example 4.1. Assume the following 

three wavelet random coefficients: 
4,7 5,28, ,c d  and 

7,6d . Note that 
4,7c  is at a coarser level 

with a support covering 16 data locations, 
5,28d  is at a finer level with a support covering 

eight data locations, and 
7,6d  is at the finest level with a support of two data locations. 
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Theorem 4.1 leads to systematic changes in the following support areas: 

7,6 11

1
( ) = , =

2
j j jY t d t t ;  

7,6 12

1
( ) = , =

2
j j jY t d t t  ; 

5,28 217 220

1
( ) = , ( , )

8
j j jY t d t t t  ; 

5,28 221 224

1
( ) = , ( , )

8
j j jY t d t t t   ; 

4,7 97 112

1
( ) = , ( , )

4
j j jY t c t t t  ; ( ) = ,j j jY t t  is 

elsewhere. 

Figure 4.5(b) shows 50 simulated curves with 
2 2 2 2 2 2

4,7 5,28 7,6= 2 , = 1 , = 1.5    and 

2 2= 0.1 . Along the time line as shown in Figure 4.5(b), the level of systematic 

variations over the area 11 12 97 112( , ), ( , ),t t t t  and 217 224( , )t t  is 2 2

7,6

1

2
  , 2 2

4,7

1

16
  , and 

2 2

5,28

1

8
  , respectively. 
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Figure 4.5 Simulated curves with the wavelet random coefficients models 

 

Next, the above illustrated examples are linked to real-life data curves. 

 

Example 4.3. (Local Variations Around Center   Tonnage Data): Focusing only 

on the center portion of the tonnage signals, Figure 4.6(a) shows the original data curves 

in the normal-condition stamping process. Figure 4.6(b) shows 24 replicated curves from 

a random-effect model with a variance 
2 2

2,2 = 100  for the coefficient 
2,2c  as studied in 

Figure 4.2(a). The simulated data from the random-effect model as shown in Figure 4.6(b) 

captures the local variations in the real data. 
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Figure 4.6 Replicated tonnage curves from the random effect model 

 

Example 4.4 (Local Variations at Side-Regions   Antenna Data): Suppose that 

only the following five wavelet coefficients 
4,8 4,9 4,11 4,12, , ,c c c c , and 

5,32d  are random. See 

Figure 4.4(a) for the support areas of these wavelet bases in the case of the Symmlet-8 

wavelet family. Note that all the support areas from these random effects are only on two 

sides of the antenna data. Figure 4.4(b) shows simulated curves with 2  set as zero to 

display the impact of these random effects. See Figure 4.7 for the simulated curves with 

estimated 2  from the antenna data. Notice the similarity of these figures compared with 

the original curves presented in Figure 4.7, especially with the variations along two sides. 
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These examples show that besides the typical mean modeling with thresholded 

wavelet methods (e.g., Jeong et al. 2006a), it is important to decide which wavelet 

coefficients should be random and estimate the variances of random effects. The next 

section proposes a thresholding method to capture simultaneously both the mean pattern 

and the local variation of multiple curves. 

 

4.4 Wavelet-Based Mean and Variance Thresholding Procedure 

 

The local random-effect model proposed in Section 4.3 can be summarized as follows:  

= ,D Θ Z                                                          (4.1) 

where = [ ]ijdD  is a M N  vector of all DWT transformed wavelet coefficients, 

1= [ , , ]T T T

MΘ θ θ , 
1 2[ , , , ]T

i i i iN    , 
1= [ , , ]T T T

MZ z z , and iz  is a column of 1 N  

random errors from the normal distribution 
2 2(0, )jN   . Note that we do not know 

which wavelet coefficients are random effects. It will be decided based on the procedure 

we propose below. 

Let us start with the situation that all coefficients are random. Estimation of the mean 

and variance parameters can be achieved by minimizing the following negative log-

likelihood of D  

2 2 2 2 2

=1 =1 =1

ln( ) ( ) .
N M N

j ij j j

j i j

M d                                (4.2) 
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To encourage sparsity among 
j 's and 

j  's to keep the number of coefficients small for 

the purpose of data reduction, we impose two penalties at the end of the log-likelihood 

function:  

2 2 2 2 2 2

1 2

=1 =1 =1 =1 =1

ln( ) ( ) | | .
N M N N N

j ij j j j j

j i j j j

M d                         (4.3) 

Minimization of Eq. (4.3) follows the spirit of soft-thresholding and ridge regression. See 

Remark [1] below for details. 

The first penalty term with a regularization parameter 1  encourages sparsity among 

mean parameters 
j 's. The second term with 2  encourages some of the 

j 's to be zero, 

which implies that the j th position wavelet coefficient is a fixed effect. See remarks after 

the parameter estimation algorithm for more insights about the thresholding effects. 

Tuning parameters 1  and 2  control the tradeoff between modeling accuracy (in terms 

of maximizing the likelihood function) and sparsity. By sharing information across all 

multiple curves, the proposed approach achieves both mean and variance thresholding. 

 

  Algorithm for Parameter Estimation:  Given 1  and 2 , 

(1) Initialize an estimate of 2 : 

Based on our experiments, wavelet coefficients at the finest level are less likely to 

be random effects. Thus, an initial estimate of 2  can be obtained from the following 

pooled variance idea. For each curve, obtain an estimate of 2  based on Donoho and 
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Johnston's (1994) robust estimate. Then, the common variance 2  for M  curves can be 

estimated by averaging these robust estimates: 

1 1

=1
ˆ = 0.6745 (| |: / 2 1 )

M

imi
M median d N m N      , where the index m  indicates 

wavelet coefficients at the finest level. 

(2) Initialize an estimate of 
j 's:    

(i) If the sample variance of 
jd
 is larger than the current estimate of 2 , 

estimate 
2

j  by the difference between the two. That is, this position of 

wavelet coefficients has a random effect.  

(ii) Otherwise, estimate 
2

j  by zero. 

(3) Update 
j 's by minimizing (4.3) with respect to 

j 's: 

By minimizing the penalized log-likelihood function with respect to 
j 's, we 

obtain the following closed form solution for the estimate of 
j 's (see Appendix 

for its detailed derivation).  

 2 2

1= | | ( ) / (2 ) s ( ),j j j jd M ign d     
                        (4.4) 

where ( ) = max( ,0)x x  and 1= ( ) /j j Mjd d d M   . 

(4) Update 
2

j  by minimizing (4.4) with respect to 
j 's: 

Similarly, by minimizing the penalized log-likelihood function with respect to 
j

's and by defining 
2 2

=1
= ( ) /

M

j ij ji
s d M , we can also obtain a closed form 

solution for the estimate of 
2

j  as follows:  
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2

22 2

2

1 1 4 /
=

2 /

j

j

s M

M


 




   
 
 
 

.
                                   (4.5) 

(5) Update 
2  by minimizing (4.3) with respect to 

2 : 

We can solve the following equation to obtain the updated estimate of 2 :  

2 2 2

2 2 2
=1

= 0.
( )

N
j j

j j

s 

 

 


                                                (4.6) 

(6) Repeat Steps (3)-(5) until convergence. 

 

Derivation of Parameter Estimates for 
2

. ,j j  , and 2 : 

The penalized log-likelihood function is given by  

 
2 2 2 2 2 2 2 2

. 1 2

=1 =1 =1 =1 =1

( , , ) = ln( ) ( ) | | .
N M N N N

j j j ij j j j j

j i j j j

h M d                      

Taking the partial derivative of h  with respect to 
. j , we obtain  

 1 .2 2
=1.

= 2 s ( )
M

ij j

j

ij j

dh
ign


 

  


 

 
  

 . 1 .2 2

2
= ( ) s ( ) = 0,j j j

j

M
d ign  

 



 


 

 where 
=1

1
=

M

j iji
d d

M
  . Therefore,  
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  2 2

1
ˆ = | | ( ) / 2 s ( ), w ( ) = max( ,0).j j j jd M ign d here y y      

   

In a similar way, by taking the partial derivative of h  with respect to 
2

j , we obtain  

 

2

22 2 2 2 2 2
=1

( )
=

( )

M
ij j

ij j j

dh M 


    


 

  
  

 
2 2 2 2 2 2

22 2 2
= ( ( ) / ) = 0,

( )
j j j

j

M
s M    

 
   


 

 where 
2 2

=1
= ( ) /

M

j ij ji
s d M . Letting 

2 2= ja   , we obtain 
2 2

2 / = 0ja M a s   , 

and 

 2 2 2

2 2= = 1 1 4 / 2 /j ja s M M        

because > 0a . Therefore,  

  2 2 2

2 2
ˆ = 1 1 4 / 2 / .j js M M   



     

Finally, we can obtain the estimate of 2  by solving the following equation:  

 

2 2 2

2 2 2 2

2 2 2 2 2 2
=1 =1 =1 =1

1
= ( ) ( ) = = 0,

( )

N M N N
j j

ij j j

j i j jj j

sh
M d M

 
  

    


 
  

  
    

 which is equivalent to Eq. (4.6). 
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Remarks: 

[1] The algorithm presented above reveals some operating characteristics of the 

proposed approach. Step (3) is similar to soft thresholding. Although a hard-thresholding 

procedure (set smaller ˆ
ij  to zero if it is less than the threshold) will retain fewer 

coefficients and thus achieve better data reduction, soft thresholding has various 

advantages, such as continuity of the shrinkage rule (Bruce and Gao 1996). Hard 

thresholding also leads to a larger variance of estimates and is also sensitive to small 

changes in the data. Interestingly, the minimization of Eq. (4.3) leads to the use of 

varying threshold values for means at different wavelet positions when different 

variability at different positions is considered. Thus, it is expected that our estimate 

should outperform soft thresholding with the  fixed threshold value developed under the 

constant variance model used in most of the wavelet thresholding literature (e.g., Donoho 

and Johnstone 1994, Jung et al. 2006). 

[2] Step (4) discloses the mechanism behind variance thresholding. By going 

through some algebric simplification, one can see that (6) implies that 
2 = 0j  if  

2 2 4

2< / .js M                                                    (4.7) 

Therefore, the positions whose coefficients display limited variation will be set as fixed 

effects by shrinking 
2

j 's to zero. Then, these zero coefficients will not be used as 

reduced-size data in later decision analysis. 
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[3] Step (5) updates the estimate of 2 . Although it is an easy one-dimensional 

optimization problem, it is the most time consuming step of the algorithm because of the 

lack of a closed form solution. 

[4] With the estimates of model parameters, M  multiple curves can be 

reconstructed in the following way. First, obtain the estimate of 
ij 's as follows: (1) for a 

random-effect position, obtain ˆ
ij  from simulated normal random variates with mean 

.
ˆ

j  

and variance 
2 2ˆ ˆ

j  ; (2) for a fixed-effect position, simulate ˆ
ij  from normal 

distribution with mean 
.
ˆ

j  and variance 2̂ . Then, apply the inverse DWT with these 

estimates to reconstruct multiple curves. 

 

Guideline for the Selection of Tuning Parameters:  The effectiveness of the 

proposed WMVT procedure depends on tuning parameters 1  and 2 . We apply the 

leaving-one-out cross validation technique (e.g., Stone 1974) to our problem. Let 
[ ]

.

k

j 's, 

2[ ]k

j 's, and 2[ ]k  be the estimates obtained by minimizing the penalized log-likelihood 

function in Eq. (4.4) based on all data curves except the k th. The measure of the quality 

of these estimates is based on the log-likelihood for data kd  (see below). Then, the 

cross-validation estimate of 1  and 2  is defined to be the minimizer of the following 

log-likelihood function for all M  curves being left out one at a time in the cross-

validation process:  



94 

 

 

 
* 2[ ] 2[ ] [ ] 2 2[ ] 2[ ]

0 1 2

=1 =1 =1

( , ) = [ ln( ) ( ) ].
M N N

k k k k k

j kj j j

k j j

V d             

 

4.5 Real-Life Examples 

 

The evaluation of their performance uses the following criteria commonly seen in the 

wavelet thresholding and signal compression literature. Note that there are a total of 

M N  data points from M  curves with N  wavelet positions. 

(1) 1K : number of non-zero mean wavelet coefficients; 

(2) 2K : number of positions with wavelet random-effects; 

Example 4.5 (Tonnage Signals): Tonnage signals were used for the monitoring 

and diagnosis of a stamping process (Jin and Shi 1999 and 2001). Tonnage signals 

contain process information relating to the deformation stage. Figure 4.7(a) shows 24 sets 

of tonnage signals under normal working conditions (class 1), and the data size of each 

curve is 256. Figure 4.7(b) shows only the center area and indicates that all tonnage 

signals have similar characteristics, but the center area has a larger local between-curve 

variation. The local-variations are contributions of the randomness of the distribution of 

lubricants and material uniformity (Zhou et al. 2006). 
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Figure 4.7 Tonnage curves of class 1 

 

Figure 4.8(a) shows the reconstructed tonnage curves from the WMVT procedure 

with 1 = 400  and 2 = 4000 . The WMVT procedure uses 22 non-zero wavelet 

coefficients for mean modeling and only three wavelet random-effects for variance 

modeling.  
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Figure 4.8 Reconstructed multiple curves for tonnage signals 

 

Example 4.6 (Continued for Antenna Signals):  The popularity of wireless 

communications has increased the need for high quality, technically sophisticated 

antennae. We collected data sets to develop procedures to monitor antenna manufacturing 

quality and detect process problems. Equipment used in such testing receives antenna 

signals at different degrees of elevation and azimuth (Jeong et al. 2006b, Jeong et al. 

2006c). This study focuses on the zero-azimuth cut data curves generated from 20 

antenna data sets under normal conditions. The antenna quality is evaluated according to 

various regulations regarding the signal patterns. 

Figure 4.9 shows the reconstructed multiple curves based on different procedures. In 

particular, Figure 4.9(a) shows the reconstructed curves from the WMVT procedure with 

1 = 150  and 2 = 600 . The WMVT procedure uses a total of 87 coefficients 

( 1 2 = 86K K  and one from 2 ) to model the M  curves.  
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Figure 4.9 Reconstructed Multiple Curves for Antenna Signals 

 

4.6 Profile Monitoring via Mixed-Effects Model in the Wavelet 

Domain 

 

This section shows how to extend SPC procedures to selected wavelet coefficients for 

monitoring possible systematic changes of curves at certain local regions. For example, 

suppose that the antenna assembly process has a process change at time i and thus, the 

antenna or tonnage curves (see Figures 4.1 and 4.4, respectively) collected after the time i 

have larger systematic "local variations" compared with the original curves. Figure 4.10 

shows an example of certain local changes around the center. This figure presents the 

multiple curves, which are coming from the normal condition (blue line) and anomaly 

condition (red line). The center areas exhibit systematic local variations even under the 

normal contition. For monitoring process variations in this case with low false alarm rates, 

a SPC model for monitoring local variances should be considered. However, there are 

fewer publications in variance monitoring, especially in local variance monitoring. 

Therefore, unlike the traditional time domain based SPC procedures in profile monitoring 
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(Reynolds and Cho 2006, Huwang et al. 2007, Zou et al. 2007), this section shows that 

by monitoring a few selected wavelet coefficients that captures those systematic local 

variations, the probability of detecting the changes of process variability at certain local 

areas can be much improved.  

 

 

Figure 4.10 An example of the change of the size of local variations around center area in 

tonnage curves  

 

4.6.1 Only process variance is changed 

Let ,1 ,2 ,( , , , )i i i i Nd d dd  be the wavelet coefficients of the given i-th observation iy . 

When the process is in control, the 
,i jd 's are independent and 

2 2

,( , )i j jN     distributed 

where 
,i j 's, 2  and 

2

j were estimated using the WMVT procedure. After we identify 
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the fixed effect and random effect wavelet coefficients through the WMVT procedure, 

we have rearranged the positions of wavelet variables so that the first 1p  variables are 

random effect coefficients, next 2p  variables are fixed effect coefficients, and others are 

shrunken coefficients. Thus, the covariance matrix of wavelet coefficients iΣ  can be 

expressed as 

NN

NppN

ppNpppf

i

pp

ppNpppppr

i

i
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


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where 
1

2 2( )r

i j p    I  and 
2

2f

i p  I  are the covariance matrix of random and fixed 

effect variables, respectively and 
ipI  is i ip p  identity matrix. Letting 

1 1 1,1 , , 1 ,( , , , , , )rf

i i i p i p i nd d d dd  be of the vector of only random and fixed effect wavelet 

coefficients and 211 ppn  . Then, the mean and covariance matrix of 
rf

id  are given by  

;]'[ f

i
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i

rf
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where r

iμ  and f

iμ  are the mean vectors of random and fixed effect variables, respectively.  

Based on Theorem 4.2, under the assumption that only the process variance is 

changed, the hypothesis-testing formulation for a process-monitoring procedure in the 

time domain is given as follows: 

H0: 
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where 2 2

'2

1
k kj k

k D

h 
 

  , 2 2

'k k k    , and k  is the changed level of process variance 

of the k-th random effect variable. 

The process change under the above assumption can be detected by monitoring only 

random effect variables, 
1,1 ,( , , )r

i i i pd dd  in the wavelet domain. For the given i-th 

observation iy , after transforming it into the wavelet domain and selecting only random 

effect variables, we consider that rr

i 0μμ   and rr

i 0ΣΣ   at time i where both r

0μ  and r

0Σ  

are known from baseline profiles. In addition, the standardized version of 
r

id , 

1/2

0 0( ),r r r

i i

 u Σ d μ  follows the normal distribution with mean )( 0

2/1

0

rr

i

rs

i μμΣμ  
 and 

covariance 
2/1

0

2/1

0

 rr

i

rs

i ΣΣΣΣ . Thus, when the process is in control, iu  is distributed as 

),(
1pN I0 . The proposed SPC model will be constructed based on the standardized 

coefficients iu . 

In case of Phase II process monitoring with an individual observation, an unbiased 

estimator for s

iΣ  is given as 
'

i i iA u u when process mean does not change ( 0s

iμ ). One 

way to combine as much as possible information contained in iA  is to utilize the 

exponentially weighted moving average (EWMA) chart (Macgregor and Harris 1993). 

Therefore, we can define EWMA of iA  at the i-th observation (profile) as follows; 

1)1(  iii ZAZ  , Mi 1                                      (4.8) 

where 10    is a smoothing constant, and 
'

0 1 1Z u u , which is an initial estimate of 

the covariance (Macgregor and Harris 1993). After some computational manipulations, 

Eq. (4.8) can be expressed alternatively as 





i

k

k

ki

i

1

)1( AZ   

where 1)1(
1





i

k

ki .  



101 

 

 

When the process mean does not change, s

i

i

k

i

ki

i ΣAZ 




1

)(E)1()(E   and then 

iZ  can be used to estimate s

iΣ . Since the trace, which is the sum of the diagonal of the 

covariance matrix, measures the overall variability in a covariance matrix, we propose the 

following monitoring statistic  
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(4.9) 

This test statistic is a modified version of Huwang’s process variability monitoring for an 

individual observation (Huwang et al. 2007). Larger 2

1WT  values indicate that a process 

variance is increased because it is assumed that process mean does not change. When the 

process is in control, 
1

2

,

1

p

k j

j

u


  follows a 2  distribution with the degree of freedom of 1p , 

thus, the mean and variance of 2

1WT  are given as follows, respectively;  
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Thus, by using large-sample normal approximation theory, the control limit of 2

1WT  is 

given by 

  1
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where   is the significance level and   is the standard normal distribution function. 
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4.6.2 Both process mean and variance are changed 

Under the assumption that both process mean and variance may change during the 

monitoring period, we can detect process change by monitoring both random and fixed 

effect variables. When the process is in-control, we can assume that rfrf

i 0μμ   and 

rfrf

i 0ΣΣ   where both rf

0μ  and rf

0Σ  are known from baseline profiles. The standardized 

version of 
rf

id , 
1/2

0 ( ),rf rf rf

i i i

 v Σ d μ  follows the normal distribution with mean 

)( 0

2/1

0

rfrf

i

rfv

i μμΣμ  
 and covariance 

2/1

0

2/1

0

 rfrf

i

rfv

i ΣΣΣΣ . Thus, when the process is 

in control, iv is normally distributed as ),(
1mN I0 .  

When the process mean changes during the monitoring period, iZ  is modified by 


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i

k

kkkk

ki

i

1

')~)(~()1( γvγvC 
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Mi 1
                        

(4.10) 

where kγ  is the estimate of the process mean. The optimal estimate iγ  for process mean 

at time i, is 1(1 )i i   v v with smoothing weight 10   (Macgregor and Harris 

1993). Because v

ii ΣC
)2(

)1(2
)(E








  as i , iC

)1(2

)2(








 can be used as the estimator 

of v

iΣ .  

 

Derivation of estimator v

iΣ : 

By definition of )~(EWMA iv  with smoothing weight 0 1  , 
1

(1 )
i

i k

k

 
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 r v .  
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Thus, 
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Because 
)1(2

)2(








 is a constant, we propose the following monitoring statistic 
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By using matrix forms, the above statistic can be simplified as follows. 
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where ( )i i kj i i 
 Π BΔB , 1 ,i j M  . The matrix i iΠ  indicates that recent profiles 

are heavily weighted such as 2(1 )ii    , 
2 2

( 1)( 1) (1 )(1 ) [ (1 )]i i              , 
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Thus, when the process is in control, the mean and variance of 
2

2

WT  are given as 

follows, respectively 
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By using large-sample normal approximation theory, the control limit of 
2

2

WT  is given by 
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Derivation of mean and variance of 
2

2

WT : 
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4.6.3 Comparison of average run length 

This subsection presents simulation results using tonnage stamping signals for 

comparing average run length (ARL1) values for the following four test-statistics: all 

wavelet coefficients-based statistic 2

AT , VisuShrink-based statistic 2

JsT , VET-based statistic 
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2

VetT , VertiShrink-based statistic 2

VsT , and the proposed statistic 
1

2

WT  and 
2

2

WT . Control limits 

are set to make in-control ARL0=200 (Kang and Albin 2000).  

On the other hands, based on the engineering knowledge of stamping processes, we 

know that different potenital process faluires may occur in different areas of the tonnage 

signlas (Jin and Shi 1999). For example, the problems of loose tie rods and worn bearings 

ususally occurs at the central areas of a signal, showing different features of the peak 

tonnage. A excessive dynamic interaction between the press and the nitrogen cushion 

system are frequently happened at transition jump edges (see Jin and Shi 1999 for 

detailed process faulures in a stamping process). We will utilize those engineering 

knowledge for our simulation stuides.  

 

4.6.3.1 Only process variance is changed 

In order to evaluate the effectivenss of the proposed monitoring method for functional 

data, we use 24 tonnage signals with N=256 as baseline, as shown in Figure 4.1. In our 

studies, we used Haar wavelets and set the lowest resolution level (L) as 4. Random 

noises from normal distribution 
2(0, )N   with 2 1   are added to generate 1,000 

replications for each study. We compare ARL1 values of the proposed statistic 
1

2

WT  with 

those of the existing methods such as 2

AT , 2

JsT , 2

VetT , and 2

VsT . The simulated curve at time i 

is generated under the shift level of  (>1)  as follows: 

0

0

( ) ( ),    
( )

( ) ( ),  ,

jj t j j

i j

j j

f t t t A
y t

f t t elsewhere

 



  
 


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where variance shift 2~ (0, )
jt N    where  (>1) is the level of shift ( 1   means no 

variance change), 2 2 2

kj k

k D

h 


  and A is the shift areas [91, 110] in the time domain. In 

reality, the detection of loose tie rod or worn bearing can be identified based on the 

information of the signal in those areas (Jin and Shi 1999). 

Table 4.1 gives the ARL1 values for the five methods over different level of variance 

changes. As expected, 2

AT  chart does not work well for high-dimensional functional data 

(with N=256), and it has large ARL1 values than other charts. Because 2

WT  chart monitors 

only random wavelet coefficients, it performs better than other charts ( 2

JsT , 2

VsT , 2

VetT ) over 

the entire level of the variance shifts. Based on the proposed WMVT, in this experiment, 

three wavele coeffeicnts, (
4,6c ,

4,7c ,
4,8c ), are selected as random effects variables. The 

support areas in the time domain of these coefficients cover from from 81t  to 128t . In 

particular, the proposed 2

WT  performs better in detecting smaller shifts compared to other 

procedures. Based on the simulation studies, the proposed chart is generally effective for 

detecting process changes than the methods extended from ideas given in the literature.  
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Table 4.1 Comparison of ARLs when only process variance is changed 

Level of 

variance shift 

( )  

2

AT  
2

JsT  
2

VsT
 

2

VetT
 1

2

WT  

1 202.22 201.38 201.85 199.95 200.37 

1.5 190.85 186.25 182.37 180.78 155.58 

2 180.74 160.82 156.12 140.24 89.56 

2.5 167.12 141.29 135.31 122.36 43.71 

3 124.06 90.28 60.38 54.10 23.14 

3.5 74.06 56.63 50.94 28.86 13.73 

4 30.778 21.276 20.23 11.946 6.773 

4.5 20.478 15.248 14.746 8.691 4.676 

5 15.353 11.137 10.544 6.449 3.603 

 

4.6.3.2 Both process mean and variance are changed 

In this case, both process mean and variance are shifted at different local segments. 

We also compare ARL1 performance of the proposed statistic 
2

2

WT  with those of other 

charts. The monitoring curves are generated with a corresponding shift as follows: 

0

0

0

( ) ( ),    

( ) ( ) ( ),    

( ) ( ),  ,

j

i

j t j j j

i j i t i i i

j j

f t t t A

y t f t t t A

f t t elsewhere

 

 



  


   




 

where mean shift 2~ (0, )
jt N    and Ai, Aj are the changed areas in the time domain. In 

practice, loose tie rods or worn bearings are usually occurred at central peak areas and 

excessive dynamic interaction between the press and the nitrogen cushion system are 

shown at transient rising edge areas (Jin and Shi 1999).  

Table 4.2 gives the ARL1 values for six methods. This table indicates that 
2

2

WT  chart 

shows better performance than other charts. In addition, regardless of the level of mean 
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shift, 
1

2

WT  chart has similar ARL1 results with same variance shift because random effect 

variables do not cover mean shift areas.  

 

Table 4.2 Comparison of ARLs under both mean shift [65, 70] and variance shift [91, 110] 

Variance 

level 

( )  

Mean 

shift 
2( )  

2

AT  
2

JsT  
2

VsT
 

2

VetT
 1

2

WT  
2

2

WT  

1 

2 191.24 190.32 194.31 180.23 197.74 130.60 

4 184.42 165.48 169.57 137.16 199.30 72.90 

6 166.70 154.38 148.47 96.48 198.58 46.50 

8 136.20 128.98 125.46 72.96 199.42 36.30 

10 121.24 115.16 111.65 56.30 200.88 23.12 

2 

2 185.83 175.15 168.42 127.59 121.06 63.47 

4 165.90 146.21 137.86 88.75 122.24 41.20 

6 135.99 108.76 105.61 66.70 119.30 32.18 

8 130.46 93.27 90.89 52.29 128.76 23.70 

10 108.15 83.77 76.27 44.33 121.94 21.31 

3 

2 182.60 160.32 157.73 122.71 87.60 61.21 

4 164.90 148.38 139.72 96.77 82.81 41.89 

6 136.64 118.32 105.67 66.20 85.20 32.59 

8 119.77 93.35 91.48 53.49 87.40 25.16 

10 105.06 82.40 78.51 44.70 82.35 19.62 

4 

2 173.10 138.16 147.17 101.83 58.69 44.97 

4 140.20 122.30 116.35 73.22 60.37 34.26 

6 131.55 98.40 91.63 58.84 57.86 27.03 

8 109.01 83.40 80.84 46.81 59.20 22.33 

10 96.90 71.63 64.55 37.01 58.24 18.23 

 

4.7 Concluding Remarks 

 

In this research, we proposed a new SPC procedure for functional data to consider 

systematic variations of curves at certain local regions. For this, we presented a wavelet-

based local-random-effect model to characterize between-curve local variations. The 
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penalized likelihood-based wavelet mean and variance thresholding method (WMVT) is 

easy to understand and implement. Closed-form expressions are provided for the 

estimates of the mean and variance thresholding parameters. Based on real-life data 

analyses, we found that the WMVT model adequately describes local variations and uses 

fewer model parameters, and the proposed SPC model can detect the changes of process 

local variations efficiently by using fewer coefficients in the wavelet domain. 

Although the penalized likelihood method limits the number of coefficients in the 

model, this research did not delve deeper into data reduction because it it was considered 

beyond its scope. Although procedures like those used by Jeong et al. (2006a) could be 

used to formulate data reduction metrics, these procedures may not be sufficient in these 

circumstances. This is because the penalized likelihood procedure usually uses cross-

validations to decide tuning parameters. Consequently, the problem is more complicated 

than the single-curve studies of data reduction contained in Jeong et al.(2006a), and 

further work is needed in this direction. 
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5 CHAPTER 5 

 

Kernel-Based Regression with Lagged Dependent Variables 

 

5.1 Introduction 

 

Regression is the statistical methodology for predicting values of one or more 

dependent variables based on a collection of independent variables. The traditional 

regression models such as the ordinary least squares (OLS) regression, assumes that 

there is no autocorrelation in the residuals of observations (Keele and Kelly 2005). That 

is, the residual at any observation is not correlated with any other residual. However, 

many functional data and time series data usually violate this assumption. That is why a 

traditional model often fails to describe the data where there are autocorrelations 

between dependent variables. If the dependent variable is autocorrelated, OLS 

estimators will be biased, inconsistent, and inefficient regardless of the properties of the 

error term (Anselin 1998). 

In regression analysis, one of the effective ways of reflecting autocorrelations for 

better accurate prediction is to include lagged dependent variables (LDVs) as a part of 

independent variables. By introducing LDVs, regression model reflects that a dependent 

variable changes incrementally across time and provides better fits for data with 

autocorrelations. Recently, there has been growing interest in considering the model 
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with lagged dependent variables. For instance, Beck and Kats (1995) utilized LDVs as a 

means of capturing the dynamics of politics. They proposed to consider LDVs in the 

OLS-panel-corrected standard errors (PCSE) model to capture dynamic tendencies. 

Thies and Porche (2007) utilized LDVs to assess the dynamic aspects of agricultural 

producer support. Garin and Montero (2007) also developed tourism demand function 

using ordinary regression model with LDVs considering the correlation between the 

numbers of tourist on each year.  

Also, the kernel-based regression method has been recently used to explore the 

nonlinearity of data in an easy way through the use of various kernel functions (Muller 

et al. 2001, Ruiz and Lopez 2001). Popular kernel-based regression methods include the 

support vector machines for regression (SVR) and kernel ridge regression (KRR) 

(Saunders et al. 1998). However, existing kernel-based regression method has the 

drawback where it assumes that there is no autocorrelation in the residuals of 

observations. To avoid such a problem, this paper proposes a kernel-based regression 

model with lagged dependent variables (LDVs) to consider both autocorrelations of 

response variables and nonlinearity of data. To the best of our knowledge, little prior 

works deal with LDVs taking as input in kernel-based regression methods. 

Among several kernel-based approaches, kernel ridge regression (KRR), a kernel 

version of the ridge regression, makes it possible to perform a sparse non-linear 

regression by constructing a linear regression function in a high dimensional feature 

space (Saunders et al. 1998). Therefore, in the paper, we propose a RR-based LDVs 

model, which combines RR with LDV and the KRR-based LDVs model that explores 

the nonlinearity of data using various kernel functions. In other words, this study 
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explores the nonlinearity between a response variable, independent variables and even 

previous response variables. The nonlinearity of model is a critical limitation of existing 

LDV models. We will present the procedure of how to kernelize the LDV model when 

previous response variables are considered. The proposed model can explore the 

nonlinear relationship between the response and both independent variables and past 

response variables using various kernel functions. In this case, however, it will be 

difficult to apply existing kernel trick directly because of LDVs. We derive a kernel 

ridge estimator with LDVs using a new mapping idea so that the nonlinear mapping 

does not have to be computed explicitly depending on kernel types. The experimental 

results show that the proposed algorithms are promising alternatives for high 

dimensional dataset with autocorrelations of dependent variables. 

The remainder of this paper is organized as follows. Section 5.2 briefly reviews 

relevant literatures. Our proposed RR-based LDVs and KRR-based LDVs models are 

presented in Section 5.3. The performances of the proposed approaches are compared 

with conventional methods in Section 5.4. Finally, conclusions and recommendations for 

future study are presented in Section 5.5.  

 

5.2 Ordinary Regression Model with Lagged Dependent Variables 

 

Following Tanizaki (2000), we formulate a multivariate regression model with 

LDVs as the basis of our study. Consider a multivariate regression model with LDVs in 

a matrix form that takes the form 
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εYαXβy  , 

where 
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
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1

α ,  

),0(~ 2σNε , X is predictor variables related to a response variables y and Y is 

dependant variables in which the model has autocorrelation among response variables 

with a specific lag p.  

Regression coefficients β  and α  can be estimated by least square method as 

)ˆ()(ˆ

)ˆ()(ˆ

1

1

OLSE

TT

OLSE

OLSE

TT

OLSE

βXyYYYα

αYyXXXβ









                                             (5.1) 

OLSEβ̂  in Eq. (5.1) can be rewritten as 

 1 1ˆ ˆ( ) ( ) ( )T T T T

OLSE OLSE

    
 

β X X X y Y Y Y Y y Xβ  

  )ˆ()()( *11
αYyXXYYYYXXX 

 TTTTT  

where,   yYYYα
TT 1*ˆ


 , which represents ordinary least square estimates of 

coefficients in the AR (p) model. Therefore, least square estimates of )ˆ,ˆ( OLSEOLSE αβ  can 

be estimated as follows 
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 
)ˆ()(ˆ

)ˆ()()(ˆ

1

*11

OLSE

TT

OLSE

TTTTT

OLSE

βXyYYYα

αYyXXYYYYXXXβ









 

where,   yYYYα
TT 1*ˆ


   

In practice, it is common to include an intercept term in the model. To obtain least 

square estimates of ˆˆ ˆ( , , )OLSE OLSE OLSEbβ α  in the model with the intercept term b, the 

following optimization problem should be solved.  

   
,

min
T

b
b b     

β,α
y Xβ Yα 1 y Xβ Yα 1  

As a result, the estimates can be derived as follows. 

1
1 *

1

ˆ ˆ( ) ( ) ( )

ˆˆ ( ) ( )

1ˆ ˆ ˆ( )

T T T T T

OLSE

T T

OLSE OLSE

T

OLSE OLSE OLSE
b

l






    

 

  

β X X X Y Y Y Y X X y Yα

α Y Y Y y Xβ

1 y Xβ Yα

 

where 1  is the vector with all 1’s and ( ) X X X1  and ( ) Y Y Y1  which represents the 

centered matrices of X  and Y , respectively. Also, X  and Y  are the column mean of 

X  and Y , respectively. In addition, y  means the centered vector of y  obtained by 

( ) y y y1 . Also, l  is the number of observations. 
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5.3 Proposed Methodology 

 

In this section, we present our proposed ridge regression with LDVs model and its 

kernelized version. 

 

5.3.1 Ridge regression with lagged dependent variables 

Ridge regression is a popular regularization method for ill-posed problems (Hastie 

2001). The regression coefficients in RR with LDVs minimizes the following penalized 

residual sum of squares (RSS) 

    ααββYαXβyYαXβyαβ,
TTT

RSS  )(  

where, 0  and 0  are predetermined constants controlling the amount of 

shrinkage. Therefore, estimates of regression coefficients can be obtained by solving the 

following equations 

 
( )

2 2 2 0T TRSS



     



β,α
X y Yα X Xβ β

β  

 
( )

2 2 2 0T TRSS



     



β,α
Y y Xβ Y Yα α

α  

Hence, 

1ˆ ˆ( ) ( )T T

rr rr   β X X I X y Yα                                       (5.2) 
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1 ˆˆ ( ) ( )T T

rr rr   α Y Y I Y y Xβ                                       (5.3) 

To proceed to the next step, Eq. (5.3) should be modified as an alternative expression. 

The different expression of Eq. (5.3) can be derived using identity properties as follows;  

1 1ˆ ˆˆ ( ) ( ) ( ) ( )T T T T

rr rr rr       α Y Y I Y y Xβ Y YY I y Xβ             (5.4) 

 

Derivation of Eq. (5.4) 

For any matrix U and V with  UVI  and  VUI   are nonsingular, the following 

simple identity property holds (Henderson and Searle 1981) 

1 1( ) ( )   UV I U U VU I                                                  (5.5) 

Letting 
1

,


 T
U Y V Y in Eq. (5.5), we have 

1 1

1 1

1 1
( ) ( )

1 1
( ) ( )

 

 

 

 

  

  

T T

T T

UV I U Y Y I Y

U VU I Y Y Y I

 

Therefore,  

1 1( ) ( )    T T T T
Y Y I Y Y YY I  

Thus, the estimates of ridge coefficients ˆ
rrrα

 
can be rewritten as follows.   

1 1ˆ ( ) ( )rrr      T T T T
α Y Y I Y Y YY I  
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The ridge coefficient rrβ can be represented using Eq. (5.2) and Eq. (5.4) 

1 1ˆ ˆ( ) ( ( ) ( ))T T T T

rr rr      β X X I X y YY YY I y Xβ  

1ˆ ˆ( ) ( ) ( )T T T T T

rr rr      X X I β X y X YY YY I y Xβ  

Namely,  

 1 1 1ˆ ( ( ) ) ( )T T T T T T T T

rr          β X X I X YY YY I X X X YY YY I y     (5.6) 

From Eq. (5.4) and Eq. (5.6), the coefficient estimators for ridge regression with LDVs 

are given as follows. 

 1 1 1ˆ ( ( ( ) ) ) ( )T T T T T T

rr          β X X YY YY I X I X I YY YY I y  

1 ˆˆ ( ) ( )T T

rr rr   α Y YY I y Xβ . 

The coefficient estimators for ridge regression model including intercept term b can be 

obtained by minimizing the following RSS.  

   ( , )
T T TRSS b b b          β,α y Xβ Yα 1 y Xβ Yα 1 β β α α  

The obtained coefficient estimators with X  and Y  replaced by the centered input 

( ) X X X1 , ( ) Y Y Y1  and y  replaced by the centered ouptut ( ) y y y1  

are as follows.  
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 1 1 1

1

ˆ ( ( ( ) ) ) ( )

ˆˆ ( ) ( )

1ˆ ˆ ˆ( )

T T T T T T

rr

T T

rr rr

T

rr rr rr
b

l

  



  



     

  

  

β X X YY YY I X I X I YY YY I y

α Y YY I y Xβ

1 y Xβ Yα

 

 

5.3.2 Kernel ridge regression model with lagged dependent variables 

Kernel-based method is to map nonlinear data matrix in original space into linear 

ones in high dimensional feature space (Muller et al. 2001, Ruiz and Lopez 2001). In the 

regression model with lagged dependent variables, the original data matrix X and Y are 

transformed to ( ) X  and ( ) Y  in the feature space as follows: 

( ) ( )  y X β Y α ε  

where, ( )   represents a mapping function to transform the original input into a high 

dimensional feature space, in which linear regression is equivalent to nonlinear regression 

in the input space. Note that the nonlinear mapping ( )   does not have to be computed 

explicitly in a kernel method. Instead, kernel function K replaces the dot products 

1 2( ), ( )u u  , which is called the “kernel trick”. That is, 

K ( ), ( ) ( , )ij i j i jK  X X X X  

However, it is hard to apply kernel trick to Eq. (5.6) directly. The following Lemma 

makes it possible to apply a nonlinear mapping with kernel trick to ridge regression with 

LDVs. Using these results, we can derive simple formula to obtain the kernel ridge 

estimators with dependent variables. 
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Lemma 5.1.  

Let T)()(1 XXK  and T)()(2 YYK  be the kernel matrices of independent 

variables and dependent variables, respectively. Then, the regression coefficients for 

KRR model with LDVs can be expressed as follows.  

1 1 1

2 2 1 2 2

1

2

ˆ ( ) (( ( ) ) ) ( ( ) )

ˆˆ ( ) ( ) ( ( ) )

T

krr

T

krr krr

  



  



      

   

β X I K K I K I I K K I y

α Y K I y X β
 

 

Proof of Lemma 5.1 

Letting A  be 1( )T T  YY YY I , 
ˆ

rrβ  in Eq. (5.6) can be represented as follows.  

 
1ˆ ( ) ( )rr 


   T T
β X X AX I X I A y  

Letting 
1

, ( )T


  U X V X AX  in Eq. (5.5), we have 

1 1

1 1

1 1
( ) ( ( ) )

1 1
( ) (( ) )

 

 

 

 

   

   

T T

T T

UV I U X X AX I X

U VU I X X AX X I
 

Namely,  

1 1( ( ) ) (( ) )      T T T T
X X AX I X X X AX X I  

Therefore, the ridge coefficient ˆ
rrβ

 
can be rewritten in an alternative expression as 

follows 
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1 1ˆ ( ( ) ) ( ) (( ) ) ( )T T T T

rr          β X X AX I X I A y X I A XX I I A y  

Based on Eq. (5.5) and the above equation of the ridge coefficient ˆ
rrβ , we have 

1ˆ (( ) ) ( )T T

rr     β X I A XX I I A y                                     (5.7) 

1 ˆˆ ( ) ( )T T

rr rr   α Y YY I y Xβ                                              (5.8) 

where 1( )T T   A YY YY I . 

 

The original data matrices X  and Y  are nonlinearly transformed to   X  and 

  Y  in the feature space, respectively. Similarly, Eqs. (5.7)-(5.8) can be expressed 

using   X  and   Y  in the feature space as follows 

     

       

1

1

ˆ (( ) ) ( )

ˆˆ ( ) ( )

T T

krr

T T

krr krr









      

     

β X I A X X I I A y

α Y Y Y I y X β
 

where         1( )
T T

     A Y Y Y Y I  

Letting 1K  be ( ) ( )T X X and 2K  be ( ) ( )T Y Y , the kernel ridge regression with 

LDVs estimator can be represented using  1K  and 2K  as 

 

  1

1

1

2

ˆ (( ) ) ( )

ˆˆ ( ) ( ) ( ( ) )

T

krr

T

krr krr









    

   

β X I A K I I A y

α Y K I y X β
 

where 1

2 2( )  A K K I  
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That is,  

  1 1 1

2 2 1 2 2

1

2

ˆ (( ( ) ) ) ( ( ) )

ˆˆ ( ) ( ) ( ( ) ).

T

krr

T

krr krry

  



  



      

   

β X I K K I K I I K K I y

α Y K I X β
 

The explicit expressions of ˆ
krr
β  and ˆ

krr
α  are not available because explicit forms of 

)(X  and ( ) Y  are unknown in a kernel-based method. Instead, the prediction of the 

observation can be obtained through the kernel trick as follows: 

1 1 1

2 2 1 2 2

1

2

1 1 1 1

1 2 2 1 2 2 2 2

ˆ ˆˆ ( ) ( )

( ) ( ) (( ( ) ) ) ( ( ) )

ˆ( ) ( ) ( ) ( ( ) )

ˆ(( ( ) ) ) ( ( ) ) ( ) ( ( ) )

krr krr

T

T

krr

krr

y

  



   

  



   

  

      

   

        

X β Y α

X X I K K I K I I K K I y

Y Y K I y X β

K I K K I K I I K K I y K K I y X β

 

Similarly, the point prediction estimate of a new observation can be obtained by 

1 1 1

2 2 1 2 2

1

2

1 1 1 1

1 2 2 1 2 2 2 2

ˆ ˆˆ ( ) ( )

   ( ) ( ) (( ( ) ) ) ( ( ) )

ˆ( ) ( ) ( ) ( ( ) )

ˆ(( ( ) ) ) ( ( ) ) ( ) ( ( ) )

new new krr new krr

T

new

T

new krr

new new krr

y

y

y

  



   

  



   

  

      

   

        

X β Y α

X X I K K I K I I K K I y

Y Y K I X β

K I K K I K I I K K I y K K I X β

where, 
1 ( ) ( )T

new new K X X , 
2 ( ) ( )T

new new K Y Y . 

 

5.3.3 Centering of mapped data points for KRR-LDVs models 

In KRR, the intercept term b is helpful for achieving better prediction accuracy but, 

often overlooked. To consider the intercept term b in KRR-LDVs model, the coefficient 

estimators can be obtained by minimizing the following RSS,  
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         ( , )
T T TRSS b b b          β,α y X β Y α 1 y X β Y α 1 β β α α

.
 

We can show that the coefficient estimators for kernel based regression methods can be 

calculated using the centered nonlinear mapping of both X  and Y  as follows. 

 

1 1

1

1

ˆ ( ( ) ( ( ) ( ) ( ) ( ( ) ( ) ) ( )) ) ( )

( ) ( ) ( ( ) ( ) )

ˆˆ ( ) ( ( ) ( ) ) ( ( ) )

T T T T

krr

T T

T T

krr krr

 





 





          

     

     

β X X Y Y Y Y I X I X

I Y Y Y Y I y

α Y Y Y I y X β

 

where  

1

1
( ) ( ) ( )

l

m
ml 

   X X X and 
1

1
( ) ( ) ( )

l

n
nl 

   Y Y Y  are centered mapping of 

X  and Y  in the feature space, respectively. The centering of the mapped data points 

lead to the coefficients of the KRR model, which does not consider implicit intercept 

term b in the feature space. Instead, the following term b is added to the model explicitly.  

    1ˆ ˆ ˆT

krr krrb
l

  1 y X β Y α  

However, the centered nonlinear mapping ( ) X  does not have to be computed 

explicitly. The centering of the individual mapped data points may be achieved by using 

the kernel matrix ( ) ( )T K X X  (Scholkopf et al. 1998, Shawe and Cristianini 2004). 

It is noted that the centered nonlinear mapping has an advantage that we do not have to 

worry whether the selected kernel includes implicit intercept terms or not. For example, 

the polynomial kernel and RBF kernel include intercept terms implicitly (Abe 2005). 

However, even thought the selected kernel is poly kernel or RBF kernel, the centered 
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nonlinear mappings of both X  and Y  make it possible not to consider implicit intercept 

terms b. The main advantage is that we can utilize the obtained coefficient estimators 

with the centered nonlinear mapping without any changes to consider the intercept term 

regardless of the kernel types. 

The kernel matrix in the transformed space can be derived as  

1 1

2
1 1 , 1

2
1 1 , 1

1 1
( ) ( ) ( ) ( ) ( ) ( )

1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1

T
l l

T

ij i j i m j n
m n

l l l
T T T T

i j m j i n m n
m n m n

l l l

ij im mj in nj im mn nj
m n m n

l l

l l l

l l l

 

  

  

  
           

  

           

   

 

  

  

K X X X X X X

X X X X X X X X

K 1 K K 1 1 K 1

The centered kernel matrix can be represented in matrix form as  

2

1 1 1T T T T

l l l l l l l l
l l l

   K K 1 1 K K1 1 1 1 K1 1  

where, l1  represent the vectors of one of the length l , and I  is l  dimensional identity 

matrix. Therefore, the centralization of the data leads to the modification of 1K  and 2K  

matrices as follows. 

1 1

2 2

1 1

1 1

T T

l l l l

T T

l l l l

l l

l l

   
     

   

   
     

   

K I 1 1 K I 1 1

K I 1 1 K I 1 1

 

Therefore, the point prediction estimate of a new observation is replaced as  

1 1 1

1 2 2 1 2 2

1

2 2

ˆˆ ˆˆ ( ) ( )

(( ( ) ) ) ( ( ) )

ˆˆ( ) ( ( ) )

new krr new krr krr

new

new krr krr

y b

b

  



  



   

     

   

X β Y α

K I K K I K I I K K I y

K K I y X β  
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where, 
1 ( ) ( )T

new new K X X , 
2 ( ) ( )T

new new K Y Y  

    1ˆ ˆ ˆT

krr krr krrb
l

  1 y X β Y α . 

 

5.4 Experimental Results 

 

Computational experiments were conducted using three data sets in terms of 

prediction accuracy. The performance of our proposed RR and KRR models with LDVs 

has been compared with OLS, OLS with LDVs, RR, and KRR. In the experimental 

design, shrinkage parameters   and   for RR and KRR are optimized by a grid search. 

  and   are varied such that   and 
15 14 142 ,2 , , 2    and 152 , respectively. Also, 

Gaussian RBF kernel is used for kernel ridge regression. Gaussian RBF kernel is 

presented as follows. 

 2

1 2 1 2( , ) exp 2K u u u u     

where,   is the width parameter that controls the amplitude of the RBF.   is varied such 

that 
15 14 142 ,2 , , 2    and 152 . 

The root mean square error (RMSE) is used to evaluate the prediction ability of each 

method. The data set is divided into three subsets: training, validation and testing data 

sets. After parameter tuning based on the validation data set, the RMSE is then calculated 

for testing data as follows. 
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 
2

, ,

1

ˆ

RMSE

tn

t i t i

i

t

y y

n








 

where, tn  is the number of testing samples, and 
,t iy  and 

,
ˆ

t iy  are the actual and the 

predicted values, respectively. Since the time-order of observation should be maintained 

for considering the lagged variable, the cross-validation for all data sets cannot be used. 

 

5.4.1 The Mackey-Glass time series prediction 

The first data set used for the computational experiments is the Mackey-Glass Time 

Series (Mackey and Glass 1977). The data is generated by the following differential 

equation.  

10)(1

)(2.0
)(1.0

)(






tx

tx
tx

dt

tdx

 

where,  =17. We considered 600 training observations and next 200 for optimal 

parameter selection and last 200 for testing. This data set includes only one independent 

variable and one lagged dependent variable for methods considering LDVs. The RMSE 

values of each method are summarized in Table 5.1 with respect to the data set. From 

Table 5.1, we observe that the methods considering LDVs yield better results than the 

conventional regression methods without LDVs. Note that OLS with LDVs and RR with 

LDVs perform similarly in terms of prediction accuracy. That’s because we considered 

only one independent variable and one lagged dependent variable in this data set. For the 

reason, the shrinkage effect of RR is insignificant.  
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Table 5.1 Summary of the computational results for the simulated data set 

Methods 
Validation Error 

(RMSE) 

Testing Error 

(RMSE) 

OLS 0.234 0.243 

RR 0.234 0.243 

KRR 0.220 0.228 

OLS_LDVs 0.038 0.038 

RR_LDVs 0.038 0.038 

KRR_LDVs 0.037 0.037 

 

5.4.2 The internal bond strength prediction 

The second data set is Internal Bond (IB) strength which is real life data set. Accurate 

prediction of internal bond (IB) strength in a medium density fiberboard (MDF), a key 

product produced by the wood composites industry, is significant and challenging (Andre 

et al. 2008). The IB strength is an indicator of the cohesion of the panel in the direction 

perpendicular to the plane of the panel. A special measuring device is utilized that pulls 

the cross section apart and stresses the specimen until failure. The IB strength has known 

to be affected by fibers moisture contents, resin percentage, and press movement time. In 

addition, because IB strengths were collected by time-order records, it is possible to have 

autocorrelations between them. In this study, 495 time-order IB strength were obtained 

with 164 process variables. The dimension of each observation is 164 and the total 

number of observations is 495. Because original dimensionality is too high, we extracted 
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14 process variables by using variable selection technique. (see Andre et al. (2008) for 

detailed description of the data sets and variable selection procedure).  

In this experiment, we use the LDVs model with autocorrelation among response 

variables with a specific lag 1. Table 5.2 shows computational results for each 

regression model. Also the fitted models are presented in Figure 5.1. This result 

demonstrates that the proposed RR and KRR models with LDVs produce smaller 

prediction errors than conventional regression methods even in this real-world 

application where the observations are often subject to noise or outliers. In addition, 

Table 5.2 shows that the RMSE for OLS with LDVs is higher than that for the other 

methods considering LDVs. The reason for this is believed to be due to the 

multicollinearity of independent variables. Note that the KRR model with LDVs yields 

the best performance. That’s because the KRR model with LDVs may consider the 

nonlinearity of data and reflect autocorrelations of response variables simultaneously.  

 

Table 5.2 Summary of the computational results for IB strength data set 

Methods 
Validation Error 

(RMSE) 

Testing Error 

(RMSE) 

OLS 22.074 19.784 

RR 15.066 16.349 

KRR 14.058 16.267 

OLS_LDVs 17.283 14.168 

RR_LDVs 13.327 13.423 

KRR_LDVs 12.666 13.260 
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                               (a) OLS                                                  (b) OLS with LDVs 

 

                                         (c) RR                                                   (d) RR with LDVs  

 

                             (e) KRR                                                   (f) KRR with LDVs 

Figure 5.1 Output from six different models for IB strength testing data set: The dashed 

line (the actual value) and the solid line (the predicted value)  
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5.4.3 The tourism demand prediction 

The third data set obtained from the Korea National Tourism Corporation (KNTC) 

Annual Statistical Report represents the demand for tourism to Korea by the major 

tourism-generating country, USA, which was originally used in Song et al. (2009). 

Since the success of many tourism businesses depends on the state of the tourism 

demand, the accurate forecasts of expected future demand are essential for efficient 

planning for all tourism-related businesses (Song et al. 2009). Note that people may be 

likely to tell others about their favorable experiences related to the destination. Hence, 

the lagged dependent variable for the tourism demand may be considered as one of the 

independent variables (Garin-Munoz and Montero-Martin 2007). The total number of 

tourist arrivals by the country ranging from 1962 to 1994 is used as the dependent 

variable. The data set consists of 33 samples and was divided into the three sets. The 

data from 1962 to 1980 are used for training data and validation (from 1981 to 1987), 

respectively and testing samples (from 1988 to 1994) of 7 data points are used for the 

experiments. Also, the gross domestic product (GDP), the trade volume (TV) and the 

relative consumer price index (RCPI) are used as the independent variables (Song et al. 

2009). The GDP of the tourism generating country is included to consider the travelers’ 

income. The TV variable measured by the sum of total imports and exports between 

Korea and USA is also involved in the model. That’s because TV may reflect the 

influence of business travelers on tourism demand.  

In addition, RCPI is measured by the relative consumer price index (CPI) of Korea 

to that of USA considering the corresponding exchange rate (EX) as follows.  
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//Korea Korea USA
USA

USA

CPI EX
RCPI

CPI
  

RCPI as independent variable explains the effects of both relative inflation and the 

exchange rate on the demand for tourism to Korea. For this study, the values of all 

variables were transformed by natural logarithm before analysis. 

Validation and testing errors in terms of RMSE for the tourism demand data to 

Korea by USA are summarized in Table 5.3. As same to other cases, the best 

performance in terms of testing error was obtained with the KRR model with LDVs. In 

addition, the models including the LDVs are superior to those excluding the LDVs. The 

results show that the word-of-mouth effect is an important factor for the decision of the 

travel destination.  

 

Table 5.3 Computational results for the tourism demand to Korea by USA 

Methods 
Validation Error 

(RMSE) 

Testing Error 

(RMSE) 

OLS 0.228 0.475 

RR 0.075 0.115 

KRR 0.064 0.092 

OLS_LDVs 0.050 0.160 

RR_LDVs 0.032 0.099 

KRR_LDVs 0.036 0.057 

 

In summary, the experimental results suggest that the proposed approaches are 

promising alternatives to existing algorithms when there are autocorrelations between 

dependent variables. 
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5.5 Concluding Remarks 

 

This paper proposed RR-based and KRR-based LDVs models, and compared them 

with existing regression methods in terms of RMSE using one simulated and two real-life 

data sets. Experimental results show that the proposed RR-based KRR-based models 

perform consistently better than conventional regression methods without LDVs 

regardless of the data set and more importantly, the proposed RR and KRR approach 

yields consistently better results than OLS with LDVs regardless of the data set. This is 

an encouraging result since the performance of proposed approach increase markedly by 

considering LDVs for autocorrelated dependent variables, and the performance of the 

proposed approaches do not deteriorate even for high dimensional data, and therefore, 

may be considered as a useful alternative when the dependent variables are autocorrelated 

and data are high-dimensional.  

The proposed ideas can be expended to the advanced regression model such as 

relevance vector machine (RVM) for regression, which uses Bayesian theory to obtain 

sparse solutions.  
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6 CHAPTER 6 

 

Concluding Remarks and Future Researches 

 

6.1 Concluding Remarks 

 

In this disseration, we have proposed and subsequently implemented several 

methodolgies for spatial and time series data mining. In Chapter 2, we proposed a 

methodology for detecting the presence of spatial autocorrelations and classifying spatial 

patterns using binary spatial data. As a specific application, the identification of spatial 

defect patterns on wafer maps occurring during the manufacturing of semiconductors was 

investigated. We also derive the generalized join-count (JC)-based statistic and then its 

optimal weights. The spatial randomness test was developed for the detection of spatial 

autocorrelation. By combining the spatial correlogram, which transforms binary spatial 

data into time sequence data, with the dynamic time warping algorithm, we have been 

able to construct a classification model for detecting spatial defect patterns on wafer 

maps. The experimental results show that the proposed algorithm is superior to existing 

methods, such as neural networks and nearest neighbor with Euclidean distance.  

In Chapter 3, we proposed a novel distance measure, called weighed dynamic time 

warping (WDTW), for time series classification and clustering. We also explore a 
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number of mathematical properties of the WDTW. Unlike standard DTW, WDTW does 

account for the relative importance of the phase distance between time series points.  This 

property can lead to an accurate classification, especially in applications where the phase 

difference between two time series points plays a key role in the discrimination of classes. 

The rationale underlying the performance advantage of WDTW was investigated by 

illustrating a number of practical examples in which WDTW is clearly more effective 

than standard DTW. We also extended a weight concept to a variant of DTW and then 

proposed a weight-based derivative DTW (WDDTW). The extensive experimental results 

show that the proposed weighed-based DTW with optimal weights has a great potential 

for improving the accuracy of time series classification and clustering  

In Chapter 4, we proposed a new statistical process control procedure for functional data 

to be used for considering these systematic variations of curves at certain local regions. 

To this end, we present a wavelet-based local-random-effect model to capture local 

variations of curves. To deal with the large number of parameters in both the mean and 

variance models, we developed an integrated mean and variance thresholding procedure 

(WMVT) to keep the model simple and also to fit the data curves well. Based on the 

WMVT procedure, we then developed process monitoring procedures for detecting 

process changes using the selected wavelet coefficients within the framework of the 

wavelet-based mixed effects model. The experimental results show that the proposed 

procedure performs better than several techniques extended from methods based on 

single curve-based data reduction. 

Finally, in Chapter 5, we proposed a kernel-based regression model with lagged 

dependent variables (LDVs) that takes both the autocorrelations of the response variables 
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and the nonlinearity of data into consideration. In addition, we derived the kernel ridge 

estimators with LDVs using a new mapping concept so that the nonlinear mapping does 

not have to be computed explicitly depending on kernel types. The experimental results 

show that the proposed kernel ridge regression-based models perform consistently better 

than conventional regression methods without LDVs regardless of the data set and, more 

importantly, that the proposed approach yields consistently better results than ordinary 

least squares model with LDVs regardless of the data set. 

 

6.2 Future Researches 

 

Future studies are needed that focus on improving and applying the approaches proposed 

here to other application domains. Unlike binary wafer maps, which are composed of a 

binary matrix independent of types of failure patterns, the wafer bin map (WBM) 

presents specific failure patterns in order to provide more details that can be used to track 

the process problems in the semiconductor manufacturing process. Even though WBM 

contains more useful information than the binary wafer map, little research has been done 

on the application of WBM for the analysis of spatial defect patterns on wafers. A 

meaningful line of research would be to extend spatial correlogram-based classification 

approaches into WBMs with the aim of identifying defect patterns on wafer maps. 

In this dissertation, we have focused on the effectiveness of the proposed weighted DTW. 

As a means to improve efficiency, the weighted-based DTW algorithm could be 

combined with certain of the pruning techniques, such as LB_Keogh and warping-

window-DTW, to reduce the computational time for much longer time series datasets. 
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Finally, the concept of lagged dependent variables can be expended to the advanced 

regression model, such as the relevance vector machine (RVM) for regression, which 

utilizes Bayesian theory to obtain sparse solutions. 
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