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This thesis consists of three new fundamental results on the existence of spanning

subgraphs in graphs and hypergraphs.

Cycle Factors in Graphs

A classical conjecture of El-Zahar states that if H is a graph consisting of r vertex

disjoint cycles of length n1, n2, . . . , nr, and G is a graph on n = n1 + n2 + . . . + nr

vertices with minimum degree at least
∑r

i=1dni/2e, then G contains H as a subgraph.

A proof of this conjecture for graphs with n ≥ n0 was announced by S. Abbasi (1998)

using the Regularity Lemma-Blow-up Lemma method. We give a new, “de-regularized”

proof of the conjecture for large graphs that avoids the use of the Regularity Lemma,

and thus the resulting n0 is much smaller.

Perfect Matching in three-uniform hypergraphs

A perfect matching in a three-uniform hypergraph on n = 3k vertices is a subset of n
3

disjoint edges. We prove that if H is a three-uniform hypergraph on n = 3k vertices

such that every vertex belongs to at least
(
n−1

2

)
−

(
2n/3

2

)
+ 1 edges, then H contains a

ii



perfect matching. We give a construction to show that our result is best possible.

Perfect Matching in four-uniform hypergraphs

A perfect matching in a four-uniform hypergraph is a subset of bn
4 c disjoint edges. We

prove that if H is a sufficiently large four-uniform hypergraph on n = 4k vertices such

that every vertex belongs to more than
(
n−1

3

)
−

(
3n/4

3

)
edges, then H contains a perfect

matching. Our bound is tight and settles a conjecture of Hán, Person and Schacht

(2009).
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Chapter 1

Introduction

This thesis focuses on structural problems in graph theory and combines algorithmic,

combinatorial and probabilistic methods. This work is part of a vivid area of discrete

mathematics, which, with its methods and results, has contributed to theoretical com-

puter science and computer science in general. In this thesis we not only solve long

standing open problems but also develop powerful techniques that have further po-

tential applications. The unifying theme of the problems we tackle, is the following

question: Does a certain density condition in a graph guarantee that a certain subgraph

must exist?

We provide generalizations of two classical problems in graph theory: The celebrated

theorem of Dirac on the existence of Hamiltonian cycle in graphs, and the well-studied

and widely applicable perfect matching problem extended to hypergraphs.

1.1 Cycle Factors in Graphs

We only consider simple and undirected graphs G = (V,E). We denote the degree

of a vertex v ∈ V by deg(v), the minimum degree of a vertex in V , by δ(G) and a

cycle of length i is denoted by Ci. A cycle containing all vertices of the G is called a

Hamiltonian cycle. In this case G is called a Hamiltonian graph. A collection of vertex

disjoint cycles in G that covers all vertices of G is called a cycle factor in G.

A fundamental theorem in graph theory is the Dirac Theorem [23], which gives a

sufficient condition for the Hamiltonicity of a graph as follows:

Theorem 1 (Dirac 1952). If G is a simple graph on n ≥ 3 vertices and δ(G) ≥ n/2,

then G is Hamiltonian. �
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A long-standing and fundamental conjecture of M.H. El-Zahar generalizes this result

on Hamiltonicity of graphs.

Conjecture (El-Zahar (1984)). Let H be a graph consisting of r vertex disjoint cycles

of length n1, n2, . . . , nr and G be a graph on n = n1 + n2 + . . . + nr vertices, with

minimum degree at least
∑r

i=1dni/2e. Then all cycles in H can be packed into G.

Simple constructions show that the above minimum degree condition is tight. This

beautiful conjecture has generated a lot of attention. Many well known results are only

among its special cases. El-Zahar [9] verified his conjecture only for r = 2. The famous

Corrádi-Hajnal theorem [8] is the special case when every ni = 3. Wang [20] resolved

the special case for arbitrary n1 but ni = 3 for all i ≥ 2. The case ni = 4 is an old

conjecture of Erdös and Faudree [10]. More recently, special cases when H is a mixture

of only triangles and quadrilaterals (i.e. ni = 3 or 4), were proved by Yan [22] and

Wang [21].

On the other hand, several stronger conditions have been shown to suffice for the

existence of such a cycle factor. Sauer and Spencer [4] showed that the much stronger

condition δ(G) ≥ 3n/4 implies the conclusion of El-Zahar’s conjecture, which was later

strengthened to, δ(G) ≥ 2n/3, by Aigner and Brandt [2] and Alon and Fischer [3]. In

general, these results are still far from the original conjecture. In his unpublished work,

Abbasi [1] announced a proof of the conjecture using the Szemerédi Regularity Lemma.

However, as it is common to all results based on the regularity lemma, the result holds

only for astronomically large graphs (involving a tower function). Another interesting

direction was taken by Johansson [13, 14]; it considers the path and bipartite variants

of the El-Zahar’s conjectures.

In this thesis, we prove the El-Zahar’s conjecture for graphs of order n ≥ n0. Our proof

does not invoke the regularity lemma, so that the resulting n0 is much smaller than the

n0 that would generally be obtained by using the regularity lemma. Rather, our proof

relies on elementary algorithmic and graph theoretic methods. Our main result of this

section can be summarized, in the following more convenient form.

Theorem. There exists an n0 such that the following holds. Let H be a graph consisting
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of r vertex disjoint cycles of length n1, n2, . . . , nr, where the number of odd cycles is

denoted by k. If G is a graph on n = n1 + n2 + . . . + nr ≥ n0 vertices such that

δ(G) ≥ n + k

2
,

then G contains H as a subgraph.

We prove this theorem, considering two cases based on the structure of the graph

G, the extremal and the non-extremal case. For the former, we use a simple matching

algorithm to embed the r cycles of H into G. For the latter, our main tool is the optimal

cover, consisting of balanced complete tripartite graphs, balanced complete bipartite

graphs (both of size c log n) and the remaining almost independent set. We embed

all cycles of H into the optimal cover by first eliminating the vertices in the bipartite

graphs and the independent set. We then embed the remaining cycles into the complete

tripartite graphs using a straightforward greedy algorithm.

1.1.1 Perfect matchings in uniform hypergraphs

Many practical problems are formulated as graph matching problems. For example, a

graph for which vertices correspond to employees in an organization and edges represent

the willingness of two employees to work together. A perfect matching in this graph as-

signs employees into teams of size two, who are willing to work together. The König-Hall

and Tutte theorems give full characterization of bipartite and general graphs, respec-

tively, where a perfect matching can be achieved. The situation drastically changes

when the teams have to be of size three or more. The appropriate formulation is now a

hypergraph matching problem, where hyperedges represent the willingness of three or

more employees to work together. In this thesis we consider, k-uniform hypergraphs,

where all hyperedges are of the same size k. In this setting, a graph is a 2-uniform hy-

pergraph, but for k ≥ 3, the corresponding decision problem becomes NP-Complete

(from the special case of SET PACKING). Thus we must look for sufficient conditions

in k-uniform hypergraphs that guarantee a perfect matching. The unifying theme of

a huge body of recent work is to search for a minimum degree condition which would

guarantee the existence of a perfect matching.
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For graphs (2-uniform hypergraphs) Dirac’s theorem (1952) implicitly gives a tight

sufficient condition for a perfect matching. For hypergraphs, various notions of degree

(and minimum degree) have been proposed. Given a k-uniform hypergraph H = (V,E)

on n vertices, the degree of a d-tuple of vertices v1, . . . , vd ∈
(
V
d

)
, 1 ≤ d ≤ k − 1

(denoted by degd(v1, . . . , vd)) is the number of edges in E containing all of v1, . . . , vd.

The minimum d-degree, δd(H), is the smallest degree over all d-tuples in
(
V
d

)
. The

general theme of results is that: If δd(H) ≥ md(k, n), then H has a perfect matching.

The function md(k, n) is called the threshold for matching. Recent results, mostly due

to Han, Kühn, Osthus, Rödl, Ruciński, Schacht, and Szemerédi, primarily address the

case d > 1 (see the recent survey by Rödl and Ruciński [35]). The case d = 1 is quite

harder and is studied in Hán, Person and Schacht [26] where the authors posed the

following conjecture for k = 3 and d = 1.

Conjecture (Hán et.al. [26] (2009)). If H is a three-uniform hypergraph on n vertices

such that

δ1(H) ≥
(

n− 1
2

)
−

(
2n/3

2

)
,

then H has a perfect matching.

A well known construction of a three-uniform hypergraph shows that this conjecture

is tight. Hán et.al. [26] proved only an approximate version of their conjecture. In

particular, they showed that: If δ1(H) ≥
(

5
9 + η

) (
n
2

)
then H has a perfect matching.

In Chapter 3 we completely resolve this conjecture. Most recently, in independent

work, Kühn, Osthus and Treglown [28] announced the same result. However, the novel

idea in this thesis is that, for the first time an old result of Erdös [25] is used to

find complete tripartite hypergraphs rather than just hyperedges. The techniques are

general and have many other applications. In fact, we used the main ingredient of

this section to prove the harder conjecture for the case k = 4 and d = 1 and to show

existence of a Hamiltonian cycle in three-uniform hypergraphs with large vertex degree.

For k = 4 and d = 1, the Hán et.al conjecture works out to:

Conjecture. If H is a four-uniform hypergraph on n vertices such that

δ1(H) ≥
(

n− 1
3

)
−

(
3n/4

3

)
,
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then H has a perfect matching.

The only work toward this conjecture is the recent approximate result of Mark-

ström and Ruciński [37], proving: If δ1(H) ≥
(

42
64 + o(1)

) (
n−1

3

)
, then H has a perfect

matching. This result is still quite far from the above conjectured threshold value of

minimum degree.

In Chapter 4 we settle this conjecture exactly. While the ideas in this section em-

anate from Chapter 3, the construction of an almost perfect matching (which together

with the ‘absorbing step’ builds a perfect matching) is substantially more difficult.

This is so because, unlike the three-uniform case where the pairs in the neighborhood

of a vertex span a graph, now the graph induced by the neighbors of a vertex is it-

self a three-uniform hypergraph. Here, we demonstrate that the new method of using

complete k-partite hypergraphs is extremely powerful. In addition, our techniques for

building an almost perfect matching provide a systematic way of attacking the problem

for general k-uniform hypergraphs. We intend to pursue this in the near future.

We deal with the problem again in two cases, the extremal and non-extremal case.

For the extremal case, simple greedy algorithms, together with probabilistic methods,

are employed to find a perfect matching. Our procedure for building a perfect matching

in the non-extremal case, can be summarized as follows:

• (Absorbing small sets:) Find a relatively small “absorbing matching”, M0, that

has the property, that any ‘not so large’ set of vertices can be absorbed into M0,

meaning that there is a matching containing such a set and the vertices of M0.

• (Finding an almost perfect matching:) Find an almost perfect matching in H,

that leaves out at most εn vertices. This matching is disjoint from M0.

• (Extending to perfect matching) The remaining at most εn vertices are “absorbed”

into M0 to get a perfect matching.
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Chapter 2

Cycle Factors in Graphs

2.1 Introduction

The vertex-set and the edge-set of the graph G is denoted by V (G) and E(G). Kn is the

complete graph on n vertices, Kr+1(t) is the complete (r + 1)-partite graph where each

class contains t vertices and K2(t) = K(t, t) is the complete bipartite graph between

two vertex classes of size t. Cl (Pl) denotes the cycle (path) on l vertices. We denote

by (A,B, E) a bipartite graph G = (V,E), where V = A + B, and E ⊂ A × B. For

a graph G and a subset U of its vertices, G|U is the restriction of G to U . The set

of neighbors of v ∈ V is N(v). Hence the size of N(v) is |N(v)| = deg(v) = degG(v),

the degree of v. The minimum degree is denoted by δ(G) and the maximum degree

by ∆(G) in a graph G. When A,B are subsets of V (G), we denote by e(A,B) the

number of edges of G with one endpoint in A and the other in B. In particular, we

write deg(v, U) = e({v}, U) for the number of edges from v to U . A graph Gn on n

vertices is γ-dense if it has at least γ
(
n
2

)
edges. A bipartite graph G(k, l) is γ-dense if

it contains at least γkl edges. If a graph is not γ-dense, then it is γ-sparse. A graph G

is γ-connected if for every partition V (G) = A ∪ B with A,B 6= ∅ the bipartite graph

between A and B is γ-dense. Throughout the thesis log denotes the base 2 logarithm.

A classical conjecture of El-Zahar states the following.

Conjecture 1 (El-Zahar conjecture). Let H be a graph consisting of r vertex disjoint

cycles of length n1, n2, . . . , nr satisfying n1 + n2 + . . . + nr = n, and G be a graph on n

vertices with minimum degree at least
∑r

i=1dni/2e, then G contains H as a subgraph.

Note that the graph Kk−1 + K(dn−k+1
2 e, dn−k+1

2 e) has minimum degree (n + k −

1)/2 but contains no k vertex disjoint odd length cycles. Thus, the conjecture is best
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possible. This beautiful conjecture has generated a lot of attention. El-Zahar proved

the conjecture for r = 2 in [9]. The case that each ni = 3 (i.e. we only have triangles)

follows from a result of Corrádi and Hajnal [8]. Wang [20] verified the conjecture for

arbitrary n1 and ni = 3, i ≥ 2. The case that each ni = 4 (i.e. we only have 4-cycles) is

an old conjecture of Erdős and Faudree [10] (see [5], [14], [16], [18] and [21] for results

related to this special case). For the case of triangles and quadrilaterals see [22]. In

general it was proved in [2] and in [3] that δ(G) ≥ 2n/3 implies the desired conclusion;

note that this is a special case of the Bollobás-Eldridge conjecture (see [6]). In [13]

Johansson has shown that an El-Zahar type condition implies path factors.

Finally Abbasi announced a proof of Conjecture 1 for graphs with n ≥ n0 in [1].

The proof used the Regularity Lemma-Blow-up Lemma method ([19], [15]) and thus

the resulting n0 was quite large (a tower function).

The main purpose of this chapter is to give a new, “de-regularized” proof of the El-

Zahar conjecture for large graphs that avoids the use of the Regularity Lemma and thus

we obtain a much smaller n0. We prove the theorem in the following more convenient

form.

Theorem 2. There exists an n0 such that the following holds. Let H be a graph

consisting of r vertex disjoint cycles of length n1, n2, . . . , nr satisfying n1+n2+. . .+nr =

n ≥ n0, where the number of odd cycles is denoted by k. If G is a graph on n vertices

with

δ(G) ≥ n + k

2
, (2.1)

then G contains H as a subgraph.

2.1.1 Outline of the proof

We will follow a similar outline as with the Regularity method in [1], where the main

tool was a so-called optimal cover in the reduced graph consisting of triangles, edges

and an independent set. However, here a regular pair will be replaced with a complete

balanced bipartite graph K(t, t), and a regular triangle will be replaced with a complete

balanced tripartite graph K(t, t, t), where t ≥ c log n for some constant c (thus the sizes
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of the color classes are somewhat smaller, logarithmic instead of linear, but this is still

good enough for our purposes).

We will build the optimal cover of this type consisting of complete tripartite and

bipartite graphs and an almost independent set in G using the tools developed in

section 2.2. We will show that either we can find an optimal cover or we are in one of

the following extremal cases.

Extremal Case 1 (EC1) with parameter α: There exists an A ⊂ V (G) such

that

• |A| ≥ n−k
2 − αn, and

• d(A) < α.

Extremal Case 2 (EC2) with parameter α: There exists an A ⊂ V (G) such

that for B = V (G) \A we have

• n
2 ≥ |A| ≥ n

2 − αn, and

• d(A,B) < α.

These extremal cases will be handled in Section 2.4.1 and 2.4.2. In the non-extremal

case in Section 2.3 we will eliminate first the vertices in the independent set and in the

complete bipartite graphs by embedding cycles (or cycle parts) into them. In this

process we will use parts of the complete tripartite graphs as well, but we maintain

the balance of the color classes inside one such complete tripartite graph. Then we

finish the embedding of the cycles by applying Lemma 11 inside the complete tripartite

graphs.

2.2 Tools

2.2.1 Complete bipartite and tripartite subgraphs

In [1] Abbasi used the Regularity Lemma [19], however, here we use a more elementary

approach using only the Kővári-Sós-Turán bound [17]. In what follows we develop some

tools that we repeatedly apply to build the cover in the non-extremal case.
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We make the following two easy observations.

Fact 3. If G(A,B) is a bipartite graph with d(A,B) ≥ x, then there must be at least

η|B| vertices in B for which the degree in A is at least (x− η)|A|.

Indeed, otherwise the total number of edges would be less than

η|A||B|+ (x− η)|A||B| = x|A||B|,

a contradiction to the fact that d(A,B) ≥ x.

Fact 4. If G(A,B) is a 2η-dense bipartite graph, |A| = c1 log n and |B| = c2n then we

can find a complete bipartite subgraph G′(A′, B′) of G such that A′ ⊂ A,B′ ⊂ B, |A′| ≥

η|A| and |B′| ≥ ηc2n
(1−c1).

To see this first apply Fact 26 to get a subset of vertices B1 ∈ B such that |B1| ≥ η|B|

and ∀b ∈ B1 deg(b, A) ≥ η|A|. Now consider the neighborhoods in A, of the vertices

in B1. Since there can be at most 2|A| = nc1 such neighborhoods, by averaging there

must be a neighborhood that appears for at least |B1|
nc1 ≥ ηc2n

nc1 = ηc2n
(1−c1) vertices of

B. This means that we can find the desired complete bipartite graph.

The following lemmas are repeatedly used in section 2.3.

Lemma 5. For r ∈ {1, 2}, let H(A1, . . . , Ar) be a complete r-partite graph with |Ai| =

c1 log n, 1 ≤ i ≤ r and B be a set of vertices disjoint from Ai’s, with |B| = c2n
c3 , c3 >

rc1. If for η > 0 we have

d(B,H) ≥
(

r − 1
r

+ rη

)
then there is a complete (r+1)-partite graph H ′(A′

1, . . . , A
′
r, B

′) such that for (1 ≤ i ≤ r)

we have A′
i ⊂ Ai and |A′

i| = rηAi, and B′ ⊂ B and |B′| ≥ ηc2n
c3−rc1 � |Ai|.

Proof. First applying Fact 26 we get a subset B1 ⊂ B such that |B1| ≥ η|B| and

∀b ∈ B1 deg(b, H) ≥ ((r − 1) + rη)|A1|. In particular every vertex in B1 has at least

rη|A1| neighbors in each color class of H. Now by Fact 27 we get a subset of vertices

B′ ⊂ B1 of size at least ηc2n
c3−rc1 that has the same neighborhood of size at least
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rη|X1| in each color class of H, from which we get the required complete (r+1)-partite

graph. �

Remark 1. To get a complete (r + 1)-partite graph in Lemma 5 we only need a set of

vertices B1 ⊂ B such that ∀ b ∈ B1 deg(b, Ai) ≥ η|Ai| for 1 ≤ i ≤ r.

Remark 2. Typically we use this lemma to get a balanced complete (r+1)-partite graph,

which can be achieved by arbitrarily discarding some vertices of B′. When r = 3, we

will split the complete 4-partite graph guaranteed by Lemma 5 into 4 disjoint balanced

complete 3-partite graphs each with a color class of size η|A1|.

The main tool to make the complete tripartite and bipartite graphs in the cover is

the following lemma.

Lemma 6 (Theorem 3.1 on page 328 in[6]). There is a constant 0 < c1 = c1(ε, s) such

that if 0 < ε < 1/s and we have a graph G with

e(G) ≥
(

1− 1
s

+ ε

)
n2

2

then G contains a Ks+1(t), where t = bc1 log nc .

For s = 1 this is essentially the Kővári-Sós-Turán bound [17] and for general s this

was proved by Bollobás, Erdős and Simonovits [7]. Here we will use the result only for

s = 1 and s = 2.

When k is very small (close to 0) in (2.1) then we may not be able to apply lemma 6

for s = 2 to get complete tripartite graphs of appropriate sizes in our cover. Therefore

we prove the following stability result which shows that in Lemma 6, for s = 2, we

can slightly lower the necessary density condition when the graph is α-non-extremal.

Note that when k is very small, (k/n < 4η) then by definition of extremal case 1, G is

α-extremal if there exists an A ⊂ V (G) such that |A| ≥ (1− α)n/2 and d(A) < α.

Lemma 7. For every 0 < ε � α there exist and integer n0 = n0(ε, α) and a constant

0 < c2 = c2(ε, α), such that if G is an α-non-extremal graph on n ≥ n0 vertices with

δ(G) ≥ (1/2− ε)n, then G contains a K3(t), where t = bc2 log nc.



11

Proof. By Lemma 6 we find a complete bipartite subgraph K2(t1) = (A1, A2) with

t1 = 1
8 log n. Let B = V (G) \ (A1 ∪A2) and let C ⊂ B be the set of vertices that have

at least εt1 neighbors in both A1 and A2. If |C| ≥ ε2n then by the remark following

Lemma 5 we can find the required complete 3-partite graph, therefore we assume that

|C| < ε2n and consider the remaining vertices of B (for simplicity we still denote it by

B).

For i ∈ {1, 2}, let Bi = {b ∈ B : deg(b, Ai) < ε|Ai|}. By the above observation (|C|

is very small) we have B = B1 ∪ B2. From the minimum degree condition and by the

definition of Bi we have that(
1
2
− 2ε

)
n|Ai| ≤ e(Ai, B) ≤ ε|Ai||Bi|+ |Ai|(|B| − |Bi|)

which gives us |Bi| ≤ (1/2 + 3ε)n. Since B = B1 ∪ B2 we have that |B1 ∩ B2| < 8εn

and |Bi| ≥ (1/2− 4ε)n.

We group the vertices in B2 by their neighborhoods in A1 i.e. each group contains

vertices that have the same neighborhood in A1. There can be at most 2t1 < n1/8

groups. We may safely ignore the exceptional groups that have at most
√

n vertices in

them since they can contain at most n5/8 vertices in them. Similarly those groups may

be disregarded that have neighborhood in A1 of size less than 2|A1|/3. Indeed, from the

minimum degree condition and the size of B2 we have that e(A1, B2) ≥ (1−8ε)|A1||B2|,

and thus the total number of vertices in such groups is at most 20εn.

Now since G is α-non-extremal we have that d(B2) ≥ α, so there must exist either

one group with internal density more than α/4 or a pair of groups with cross density

at least α/4. In the prior case we are done because by Lemma 6 (with s = 1) we can

find a K2(c1 log n) and since the two color classes have the same neighborhood in A we

can find a K3(c2 log n); in the latter case, since for any two groups the neighborhoods

in A have an intersection of size at least 1
3 |A1|, we can again find a K3(c2 log n). �

Finally in the extremal case we will use the following simple simple facts on the

sizes of a maximum set of vertex disjoint paths in G (see [6]).
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Lemma 8. In a graph G on n vertices, we have

ν1(G) ≥ min
{

δ(G),
⌊n

2

⌋}
and ν2(G) ≥ (δ(G)− 1)

n

6∆(G)

where νi(G) denotes the size of maximum set of vertex disjoint paths of length i in G.

2.2.2 Embedding into complete tripartite graphs

One of the key ideas in the proof is to show the statement for nearly balanced complete

tripartite graphs, and then what we are left to do is to reduce the general case to these

special graphs. Thus in this section we will assume that we have a complete tripartite

graph G on n vertices with color classes V1, V2 and V3. Let |Vi| = mi and assume

m1 ≤ m2 ≤ m3. The content of this section can be found in [1], but for the sake of

completeness we present the proofs here.

Lemma 9. If n is even and m3 ≤ 2m1, then G contains a perfect matching.

Proof. First we take a matching of size m2 − m1 between V2 and V3. Hence we may

assume that m1 = m2. Since G has an even number of vertices, m3 is even. We pick

m3/2 edges between V1 and V3 and m3/2 edges between V2 and V3. Then there are

exactly m1 − m3/2 vertices left in both V1 and V2, thus there is a perfect matching

between them. �

Lemma 10. If m3 ≤ 2m1−k, then G contains all maximum degree two and minimum

degree one graphs with n vertices and k odd components (cycles or paths).

Proof. Let H be a maximum degree two graph with k odd cycles or paths. Let C be

any cycle in H whose size |C| is greater than three (the procedure is similar for a path

P of length greater than three). We replace the cycle C by a cycle C ′ and an edge e

where |C ′| = |C|− 2, resulting in a new maximum degree two graph H ′. We claim that

if H ′ is a subgraph of G, then H is a subgraph of G as well. Indeed, suppose there is

a good embedding f : V (H ′) → V (G). Since G is a complete tripartite graph we can

“merge” C ′ and e, i.e. we can easily find a cycle in G (corresponding to C) that spans

the vertices in f(C ′) ∪ f(e).
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By repeatedly applying the above argument we may assume that H consists of k

triangles or paths of length three and a matching. Now choose k triangles or paths of

length three in G by choosing one vertex from each Vi. Note that this is possible as

2m1 ≥ m3 + k ≥ m1 + m2 + m3

3
+ k ≥ k + k = 2k.

The remaining graph satisfies the conditions of Lemma 9 and thus contains a perfect

matching. �

Lemma 11. If m3 ≤ (1 + 2/7)m1, then G contains all maximum degree two and

minimum degree one graphs with n vertices that do not contain a C3 or a P3 as a

component.

Proof. Let H be a maximum degree two and minimum degree one graph with n vertices

that does not contain a C3 or a P3 as a component graph and let us denote the number

of odd components (cycles or paths of size at least 5) in H by k. Then we have

5k ≤ m1 + m2 + m3 ≤
(

3 +
4
7

)
m1 =

25
7

m1.

Therefore,

2m1 − k ≥
(

2− 5
7

)
m1 =

(
1 +

2
7

)
m1 ≥ m3.

Hence, the conditions of Lemma 10 are satisfied and H is a subgraph of G. �

2.3 The non-extremal case

Throughout this section we assume that we have a graph G satisfying (2.1) such that

Extremal Cases 1 and 2 do not hold for G. We shall assume that n is sufficiently large

and use the following main parameters

0 < η � α � 1, (2.2)

where a � b means that a is sufficiently small compared to b. In order to present the

results transparently we do not compute the actual dependencies, although it could be

done. We will use the constant

c = min{c1(η, 2), c1(η, 1), c2(η, α)}
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where c1 is from Lemma 6 and c2 is from Lemma 7.

Let γ = k/n, then we have δ(G) ≥ (1 + γ)n/2. For technical reasons we work with

a slightly weaker minimum degree condition, we assume that

δ(G) ≥
(

1 + γ

2
− η

)
n. (2.3)

In the non-extremal case this slightly smaller value of minimum degree is sufficient.

2.3.1 The optimal cover

Before we start the actual embedding we need some preparations in our host graph G.

We are going to work with cover C = (T ,M, I), where T is a collection of disjoint

balanced complete tripartite graphs, M is a collection of disjoint balanced complete

bipartite graphs and I is a set of vertices. Using the following iterative procedure we

build an optimal cover, where

• we cannot increase significantly the number of vertices covered by T , (by at least

η3n vertices),

• we cannot increase significantly the number of vertices covered by M, (by at least

η3n vertices), without reducing the number of vertices covered by T .

Then we will show that the optimal cover exhibits nice structural properties.

We begin with the cover C0 = (T0,M0, I0). Then in each step i ≥ 1, if Ci−1 is not

optimal, we find another cover Ci = (Ti,Mi, Ii) such that either V (Ti) ≥ V (Ti−1) +

η3n or V (Ti) = V (Ti−1) but V (Mi) ≥ V (Mi−1) + η3n (for this we use the notation

Ci+1 > Ci). The size of a color class in each tripartite graph and bipartite graph in

Ci is ti = ηic log n. Thus in at most 1/η3 iterations we arrive at an optimal cover

C = (T ,M, I) while the size of the color classes in the complete tripartite and bipartite

graphs is at least (η1/η3
)c log n, which is large enough when n is sufficiently large.

To get the initial cover C0, we use either Lemma 6 or Lemma 7 for for T0, depending

on the value of γ. In case γ ≥ 4η, the initial cover C0 is obtained by repeatedly applying
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. . .

T M I

. . .

Figure 2.1: The optimal cover: the solid black rectangles indicate complete bipartite graphs

Lemma 6 with s = 2 and ε = η in the leftover of G while the conditions of the lemma are

satisfied and the number of leftover vertices is at least ηn to find complete tripartite

graphs K3(t0) where t0 = c log n. Then when the conditions of the lemma are not

satisfied anymore with s = 2 (thus the density in the leftover of G is less than 1/2+ η),

we apply Lemma 6 repeatedly but this time with s = 1 and ε = η while the condition of

the lemma is satisfied and the number of leftover vertices is at least ηn to find complete

bipartite graphs K2(t0).

In case γ < 4η then first we repeatedly apply Lemma 7 with ε = 4η to get a collection

of disjoint complete tripartite graphs T0 where each K3(t0) ∈ T0 has t0 = c log n vertices

in each color class. Note that we can apply Lemma 7 until we have V (T0) ≥ ηn. At

which point we start applying Lemma 6 for s = 1, to get M0 and I0.

So in either case we have |V (T0)| ≥ ηn. At the ith step in this iterative procedure if Ci

is not an optimal cover, then we get Ci+1 > Ci as follows: Assuming |V (Mi)|, |Ii| ≥ 2ηn

Observation 1: If d(Ii) ≥ 2η then we can apply Lemma 6 with s = 1 in Ii to find

a collection of complete bipartite graphs in Ii covering at least η2n vertices. Adding

these new bipartite graphs to Mi, we get Ci+1 > Ci.

Observation 2: If there is a subcover M′ ⊂Mi such that if we denote by U ′
1 and U ′

2

the union of the two color classes of the bipartite graphs in this subcover, then we have

• |U ′
1| = |U ′

2| ≥ η|V (Mi)| and

• for each Kj
b = (U j

1 , U j
2 ) ∈M′ we have d(Ii,K

j
b ) ≥ (1/2 + 2η)



16

then for each Kj
b = (U j

1 , U j
2 ) ∈ M′, by Lemma 5, we can find a disjoint balanced

complete tripartite graph, Tj , with color classes of size ηti, as subsets of U j
1 , U j

2 and Ii.

We remove the vertices of Tj and add it to Ti+1. The remaining part of Kj
b is added to

Mi+1.

We proceed in similar manner for all bipartite graphs in the subcover M′. We

add to Mi+1 all the bipartite graphs in Mi \M′. All the tripartite graphs in Ti are

added to Ti+1. We split each complete balanced bipartite graph and tripartite graph

in Mi+1 and Ti+1 that has color classes of size more than ti+1 (the old ones) into dis-

joint complete balanced bipartite graphs and tripartite graphs each with a color class

of size ti+1 (for simplicity we assume that ti is a multiple of 1/η). Note that, since

each Tj uses ηti = ti+1 from Ii this together with the size of M′ and Mi implies that

|V (Ti+1)| = |V (Ti)|+ ηn3. Thus Ci+1 > Ci.

η-dense

η-dense

I1

V ′
1

V ′
2

(a) I1 is η-dense to both U ′
1 and U ′

2

. . .

V ′
1

V ′
2

V ′
3

I1

η-dense

η-dense

(b) I is η-dense to both V ′
1 , V ′

2 and V ′
3

Observation 3: If there is a subcover T ′ ⊂ Ti such that if we denote by V ′
1 , V ′

2 and V ′
3

the union of the three color classes of tripartite graphs in this subcover, then we have

• |V ′
1 | = |V ′

2 | = |V ′
3 | ≥ η|V (Ti)| and

• for each Kj
t = (V j

1 , V j
2 , V j

3 ) ∈ T ′ we have d(Ii,K
j
t ) ≥ (2/3 + 3η)

then for each Kj
t = (V j

1 , V j
2 , V j

3 ) ∈ T ′, by Lemma 5, we can find a disjoint balanced

complete 4-partite graph Qj , with color classes of size 3ηti, as subsets of V j
1 , V j

2 , V j
3

and Ii. As noted in the remark following Lemma 5 we split this Qj into four disjoint

balanced complete tripartite graphs, T1, . . . , T4 each with color classes of size ηti. We

remove the vertices of T1, . . . , T4, and add them to Ti+1. The remaining part of Kj
t is

also added to Ti+1.
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We proceed in similar manner for all tripartite graphs in the subcover T ′. We

add to Ti+1 all the tripartite graphs in Ti \ T ′ and let Mi+1 = Mi. Then, similarly

as above we make all the bipartite and tripartite graphs such that each has a color

class of size ti+1. Note that again, since each Qj uses 3ηti vertices from Ii, we get

|V (Ti+1)| = |V (Ti)|+ η3n and hence Ci+1 > Ci.

Observation 4: If there is a subcover M′ ⊂Mi such that if we denote by U ′
1 and U ′

2

the union of the two color classes of bipartite graphs in this subcover, then we have

• |U ′
1| = |U ′

2| ≥ η|V (Mi)| and

• for each Kj
b = (U j

1 , U j
2 ) ∈M′ we have d(V (Mi),K

j
b ) ≥ (1/2 + 2η)

then similarly as above for each Kj
b = (U j

1 , U j
2 ) ∈ M′, by Lemma 5, we can find a bal-

anced complete tripartite graph Tj , with color classes of size ηti, as subsets of U j
1 , U j

2

and V (Mi) disjoint from each other (as |V (Mi)| ≥ 2ηn). Adding these new tripartite

graphs to Ti+1 and repeating the same process as above, we get |V (Ti+1)| = |V (Ti)|+η3n

and thus Ci+1 > Ci.

U ′
1

U ′
2

η-dense

(c) U ′
1 and U ′

2 are η-dense to both
sides

U ′
1

U ′
2

η-dense

. . .

(d) Two color classes of a tripartite graph are
η-dense to both U ′

1, U ′
2 and V ′

3

Observation 5: If there is a subcover M′ ⊂Mi such that if we denote by U ′
1 and U ′

2

the union of the two color classes of bipartite graphs in this subcover, then we have

• |U ′
1| = |U ′

2| ≥ η|V (Mi)| and

• for each Kj
b = (U j

1 , U j
2 ) ∈M′ we have d(V (Ti),K

j
b ) ≥ (2/3 + 3η).

In this case for every Kj
b ∈M

′, there must be a subcover of tripartite graphs T j ⊂ Ti

covering at least η|V (Ti)| vertices, such that for each tripartite graph, (V l
1 , V l

2 , V l
3 ) ∈ T j ,
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there are at least two color classes (say V l
1 and V l

2 ) with both d(V l
1 ,Kj

b ) ≥ 1/2+3η and

d(V l
2 ,Kj

b ) ≥ 1/2 + 3η. Because otherwise we have

e(V (Ti),K
j
b ) <

(
η +

1
3

+
2
3

(
1
2

+ 3η

))
|V (Ti)||V (Kj

b )| =
(

2
3

+ 3η

)
|V (Kj

b )||V (Ti)|

In particular every tripartite graph in T j has at least ηti vertices in both V l
1 and V l

2 for

which the degree in Kj
b is at least (1/2+2η)|Kj

b |, we refer to them as vertices connected

to Kj
b and the tripartite graphs in T j as connected to Kj

b .

Assume that for every Kj
b ∈M

′ the connected vertices in each tripartite graph are

in V l
1 and V l

2 . Note that this is true for at least a third fraction of M′ and with the

parameter η/3 (for simplicity we still denote it by M′).

Now for each Kj
b = (U j

1 , U j
2 ) ∈ M′ by Lemma 5, we can find a balanced complete

tripartite graph T j
1 with color classes of size at least ηti in the set U j

1 , U j
2 and the set

of connected vertices to Kj
b . We can also find, another similar balanced complete tri-

partite graph, T j
2 with color classes in U j

1 , U j
2 and the set of connected vertices. We

will repeat this process for every bipartite graph in M′, but we have to pay attention

to preserve the balance in the remaining complete tripartite graphs. We will guarantee

that each of these new tripartite graphs, use exactly same number of vertices (if at all)

in V l
1 and V l

2 from every tripartite graph (V l
1 , V l

2 , V l
3 ) ∈ Ti .

For this purpose we call a tripartite graph full if we used up an ηti vertices in its

two color classes. When finding the next T j
1 and T j

2 we choose the third color class from

the set Y1 constructed as follows: We choose one vertex connected to Kj
b from each V l

1

that is not full yet. As long as an η/2-fraction of tripartite graphs are not full yet, Y1 is

of size at least η|V (Ti)|/6ti ≥ η2n/ log n. Hence we can apply Lemma 5 on (Y1,K
j
b ), to

get a complete tripartite graph. Note that in this complete tripartite graph, the third

color class, Y ′
1 guaranteed by Lemma 5 is of size at least

√
n. Now we make another

set, Y2 by selecting one vertex connected to Kj
b , from each V l

2 if V l
1 has a vertex in Y ′

1 .

Clearly |Y2| ≥
√

n. Hence it is easy to see that applying Lemma 5 on (Y2,Kj) we can

get a balanced complete tripartite graph T j
2 . From Y ′

1 we can select an appropriate
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subset of vertices to make T j
1 such that we use exactly one vertex from a V l

1 and V l
2 .

After applying this procedure for each Kj
b ∈ M′, from every remaining tripartite

graph in Ti if V l
3 has more vertices than in V 1

l and V 2
l , we discard arbitrarily some

vertices from V l
3 to rebalanced the tripartite graphs. Note that, still the net increase in

the number of vertices covered by tripartite graphs, is at least η3n. As above splitting

(if necessary) the tripartite graphs and bipartite graphs to get their color classes of size

ti+1, we get Ci+1 > Ci.

Observation 6: Assume we have the following setup: There is a subcover M′ ⊂ Mi

and a subcover T ′ ⊂ Ti such that if we denote by U ′
1 and U ′

2, and V ′
1 , V

′
2 and V ′

3 , the

union of the color classes of the graphs in M′ and T ′, respectively. Then we have

• |U ′
1| = |U ′

2| ≥ η|V (Mi)|

• |V ′
1 | = |V ′

2 | = |V ′
3 | ≥ η|V (Ti)|

• for each Kj
b = (U j

1 , U j
2 ) ∈M′ we have d(Ii, U

j
2 ) ≥ 2η and

• for each Kj
t = (V j

1 , V j
2 , V j

3 ) ∈ T ′ we have d(Ii, (V
j
2 , V j

3 )) ≥ (1/2 + 2η)

If, in addition, any of the following is true then we can increase the size of our cover.

i. d(U ′
1) ≥ 2η.

ii. d(V ′
1) ≥ 2η

iii. d(Ii, U
′
1) ≥ 2η

iv. d(Ii, V
′
1) ≥ 2η

v. d(U ′
1, V

′
1) ≥ 2η

We will show how to increase the size of our cover when d(U ′
1) ≥ 2η and when

d(Ii, U
′
1) ≥ 2η, the other cases are similar. For each Kj

b = (U j
1 , U j

2 ) ∈ M′, applying

Lemma 5 we remove a complete bipartite graph with color class of size ηti as subset
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of U j
2 and Ii. Note that this create an imbalance in the bipartite graphs in M′. To

re balance, we make a set of vertices Y by randomly selecting a subset of 2ηti vertices

from U j
1 of each Kj

b = (U j
1 , U j

2 ) ∈ M′. Now if d(U ′
1) ≥ 2η, then with high probabil-

ity, we have d(Y ) ≥ η. We apply Lemma 6 with s = 1 in Y to find a collection of

complete bipartite graphs in Y which in total covers at least η|Y |/2 ≥ η3n vertices.

Discarding the remaining part of Y , and adding these new bipartite graphs to Mi+1 we

get |V (Mi+1)| = |V (Mi)| + η3n. On the other hand if d(Ii, U
′
1) ≥ 2η, then with high

probability, we have d(Ii, Y ) ≥ η, hence we can find a collection of complete bipartite

graphs in the bipartite graph (Ii, Y ) to increase the size of our cover.

2.3.2 The structure of the optimal cover

Using the above observations, in at most 1/η3 iterations we arrive at the optimal cover,

C = (T ,M, I) where a color class of each bipartite and tripartite graph is of size

l = η1/η3
c log n. Let us collect the structural information that we have about this

optimal cover. Denote by τ = |V (T )|/3n, µ = |V (M)|/2n, β = |V (I)|/n and recall

that γ = k/n, where k is the number of odd cycles to be embedded. As argued above,

we have τ ≥ η.

From the fact that we are not in Extremal Case 1 we will derive our main lemma

of the non-extremal case.

Lemma 12. τ ≥ min(γ + β + α, 1
3 − 2η).

Proof. We may assume that τ < 1/3 − 2η, since otherwise we are done. Then either

µ ≥ η or β ≥ η (or maybe both). We distinguish the following two cases to prove this

lemma based on the size of the independent set I.

Case 1: There is an independent set (β ≥ η)

Since C is an optimal cover, none of the above observations holds in C. By Observations

1,2 and 3, respectively, we have
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d (I) < η , d (I, V (M)) <

(
1
2

+ 4η

)
and d (I, V (T )) <

(
2
3

+ 6η

)
(2.4)

Note that this is true even if µ < η. We are going to estimate the number of edges

going between I and its complement. Using the minimum degree condition (2.3), (2.4)

and the fact that 3τ + 2µ + β = 1 we get

e(I, V (T )) ≥ |I|
(

1 + γ

2
− η

)
n−2η

(
|I|
2

)
−|I|

(
1
2

+ 4η

)
2µn ≥

(
3τ + γ + β

2
− 20η

)
n|I|

(2.5)

and

e(I, V (M)) ≥ |I|
(

1 + γ

2
− η

)
n−2η

(
|I|
2

)
−|I|

(
2
3

+ 6η

)
3τn ≥

(
γ + β − τ

2
+ µ− 20η

)
n|I|

(2.6)

We will show that if the lemma is not true then we get a contradiction to the non-

extremality of G. To see that assume that τ < γ +β +α. Plugging this in (2.5) (in the

form γ + β > τ − α) we get

e(I, V (T )) ≥ (2τ − 2α/3) n|I| (2.7)

Similarly plugging τ < γ + β + α in (2.6) we get

e(I, V (M)) ≥ (µ− 2α/3) n|I| (2.8)

From (2.7), (2.8) and (2.4), for almost every vertex x ∈ I we have d(x, V (T )) ≥

(2/3− 4α/5) and d(x, V (M)) ≥ (1/2− 4α/5). Furthermore, since Observation 6 does

not hold for C we must have that almost all vertices in I have the same neighborhoods

in V (M). Indeed otherwise, there must be an η -fraction of bipartite graphs in M for

which both of its color classes are η-dense to I, which by Observation 6 contradicts the

optimality of C. Similar argument gives us that almost all vertices in I have the same

neighborhood in V (T ).

Therefore we have that almost all vertices (1 − η-fraction) in I are connected to

two color classes, (say V l
2 and V l

3 ) of almost every (1− 4α/5 -fraction) tripartite graph
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(V l
1 , V l

2 , V l
3 ) ∈ T . Similarly almost all vertices in I are connected to one color class,

(say U l
2 ) of almost every bipartite graph (U l

1, U
l
2) ∈M.

Denote by (V1, V2, V3) the union of the three color classes in the complete tripartite

graphs and by (U1, U2) the union of the two color classes in the complete bipartite

graphs. By the above density information, the following remarks and observation 6, we

have

d(V1), d(U1), d(V1, U1), d(I, V1), d(I, U1) and d(I) are all < α/2

Now using the fact that 3τ + 2µ + β = 1 and the assumption that τ < γ + β + α we

get that

|V1 ∪ U1 ∪ I| = (τ + µ + β) n =
(

3τ + 2µ + 2β − τ

2

)
n ≥

(
1− γ

2
− α

)
n

which together with the above density information implies that G is in extremal case

1, a contradiction.

Case 2: There is no independent set (β < η but µ > η)

Again, since C is an optimal cover, none of the above observations holds, hence by

observation 4 and 5 we have

d (V (M)) <

(
1
2

+ 4η

)
and d (V (M), V (T )) <

(
2
3

+ 6η

)
(2.9)

Using the minimum degree condition (2.3), (2.9) and the fact that 3τ + 2µ + β = 1 we

get

e (V (M), V (T )) ≥
(

1 + γ

2
− η −

(
1
2

+ 4η

)
2µ− 2η

)
n|V (M)| ≥

(
3τ + β + γ

2
− 20η

)
n|V (M)|

(2.10)

and

e (V (M)) ≥
(

1 + γ

2
− η −

(
2
3

+ 6η

)
3τ − 2η

)
n|V (M)| ≥

(
γ + β − τ

2
+ µ− 20η

)
n|V (M)|

(2.11)
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Similarly as above, we will show that if the lemma is not true then we get a contradiction

to the non-extremality of G. To see that assume that τ < γ + β + α. Plugging

β + γ > τ − α in (2.10) we get

e (V (M), V (T )) ≥ (2τ − 2α/3) n|V (M)| (2.12)

Furthermore, we get the graph induces by V (M) is an almost complete bipartite graph.

Similarly plugging τ < γ + β + α in (2.11) we get

e(I, V (M)) ≥ (µ− 2α/3) n|V (M)| (2.13)

From (2.12) and (2.9) for almost every vertex x ∈ V (M), we have d(x, V (T )) ≥

(2/3 − 4α/5). In addition, since Observation 5 does not hold, , without loss of gener-

ality, we must have that the connectivity structure of almost every tripartite graph

(V l
1 , V l

2 , V l
3 ) and almost every bipartite graph (U j

1 , U j
2 ) is as follows: (V l

1 , U j
2 ) and

(V l
2 , U j

1 ) are almost complete bipartite graphs and both (V l
3 , U j

1 ) and (V l
3 , U j

2 ) are al-

most complete bipartite graphs. This is so because otherwise, we get the situation as

in Observation 5 and get a contradiction to the optimality of the cover.

Denote by (V1, V2, V3) the union of the three color classes in the complete tripar-

tite graphs and by (U1, U2) the union of the two color classes in the complete bi-

partite graphs. From(2.13) and (2.9) for almost every vertex x ∈ V (M), we have

d(x, V (M)) ≥ (1/2 − 4α/5). Furthermore, we must have that the graph induced by

V (M) is almost a complete bipartite graph, because otherwise by Lemma 7 we can find

a collection of complete tripartite graphs in V (M) contradicting the optimality of the

cover.

In this case almost every complete bipartite graph (U j
1 , U j

2 ) behaves exactly like the

complete bipartite graph (V l
1 , V l

2 ) of almost every tripartite graph (V l
1 , V l

2 , V l
3 ). Because

by the above connectivity structure, V l
1 and V 2

l are essentially replaceable with U j
1 and

U j
2 , respectively.
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Denote by (V1, V2, V3) the union of the three color classes in the complete tripartite

graphs and by (U1, U2) the union of the two color classes in the complete bipartite

graphs. By the replaceability property we have that the graph induced by (V1, V2), too

is an almost complete bipartite graph.

Hence the graph induced by U1 ∪U2 ∪V1 ∪V2 is an almost complete bipartite graph

with color classes U1∪V1 and U2∪V2, in particular d(U1∪V1) < α. On the other hand,

|U1∪V1| = (1−τ−η)n
2 ≥

(
1−γ

2 − α
)

n, where the last inequality uses the assumption that

τ < γ +β +α and β < η. But this implies that G is in extremal case 1, a contradiction.

�

2.3.3 Embedding

In this optimal cover, C = (T ,M, I), we are ready to describe the embedding procedure.

Let the size of a color class in a tripartite graph in T and a bipartite graph in M be l.

Let us assume first that we have τ ≥ γ + β + α2/2 in Lemma 12. The other case when

τ ≥ 1/3− 2η in Lemma 12 (the case of almost all triangles) is postponed until Section

2.3.5. Furthermore, we assume that in the cycle system H, all cycles are of length at

most η2l. The embedding procedure for the case H has some cycles of length more

than η2l is given in Section 2.3.4.

By Lemma 12, it is easy to see that the total number of vertices of cycles in H,

that are of length at least 4, (we refer to them as non-triangle cycle) is at least (2µ +

2β + α2/2)n. Roughly speaking our embedding procedure is outlines as follows: We

will start the embedding with cycles of length at least 4 and first we will eliminate the

vertices in M and I (if the exist). We begin with embedding odd cycles of length at

least 5, such that for each such cycle we use exactly three vertices from some Ti ∈ T

(one triangle) and the remaining vertices are embedded into vertices of some Bj ∈M.

If all the non-triangle odd cycles are embedded at this step and there are still some

bipartite graphs left in M, we embed even cycles to it. Having used almost all vertices

of M, we start embedding the remaining non-triangle cycles using vertices of I. We use

one triangle in T for each vertex in I and one additional triangle for each odd cycle.
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From the above bound on the total number of vertices of non-triangle cycles, we still

have some non-triangles left to embed. These and the triangles in H are embedded

with an application of Lemma 11.

For each color class in the complete tripartite graphs in T we set aside a random

α3-portion as a buffer zone. At this stage will not embed any vertices into the buffer

zones; they will be used later to finish the embedding.

Handling the vertices in M

If µ < η, then we add the vertices in M to our exceptional set V0. Otherwise assuming

µ > η, we do the following. We add to V0 all vertices of bipartite graphs that do satisfy

Observation 4. Let Bi = (U i
1, U

i
2) be a bipartite graph in M, Let (x, y) be a typical

edge in Bi. By the minimum degree condition, Observation 2, Observation 4 we have

deg(x, V (T )) + deg(y, V (T )) ≥ (3τ + γ − η)n

Let Txy = {Ti ∈ T : deg(x, Ti) + deg(y, Ti) ≥ (3 + η)l}, by the above lower bound and

Observation 5, we get that |V (Txy)| ≥ (γ− η)n. This implies that if we still have many

unembedded odd non-triangle cycles in H, than there is an unused triangle, T = (a, b, c)

in Txy such that deg(x, T ) + deg(y, T ) ≥ 4. Hence, we embed the next odd cycle, Cj

onto a path of length j−3 in Bi from x to y and we close the cycle with T . We continue

in this fashion until we have no more than η2l vertices left in Bi. When the remaining

part of Bi is less than η2l, we add it to V0. Clearly we can embed odd cycles in this

way, as long as there is some Bi ∈M left. In case almost all ((γ − η)n) odd cycles are

embedded, we embed even cycles to the remaining part of Bi in the straight forward

greedy way. If a cycle doesn’t fit the remaining part of Bi (that is number of vertices in

Bi is less than η2l) we add Bi to V0, and continue with the next bipartite graph in M.

Denote by γ′n the number of odd cycles remaining in H, and let T ′ be the remaining

unused triangles in T . Let the remaining set of cycles to be embedded be H ′
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Handling the vertices in I

Let a be the average length of odd non-triangle cycles in H ′. We randomly partition

these non-triangle odd cycles into groups, such that each group has t cycles (t to be

determined later). Let P = {P1, P2, . . . , Pq} be the groups. Let pi be the average length

of cycles in the group Pi. By the law of large numbers, we may assume that pi ∼ a.

Again if β < η then we add the vertices of I to V0. Otherwise we do the following.

We say that a vertex x ∈ I is good for a Tj ∈ T ′ if deg(x, Tj) ≥ (3
2 + β+γ′

6τ −η)l. Note that

by the minimum degree condition and Observation 1 and 2, this is the average degree of

a typical vertex in I to a tripartite graph. Simple calculation using the minimum degree

and these observations gives us that a typical vertex x is good for at least η-fraction of

tripartite graphs. Counting from the other side we get that there is a tripartite graph

Tj ∈ T ′, that is good for a set I∗ of size at least η|I|. Hence there are many vertices

(at least
√

n) vertices that have the same neighborhood in Tj , (we still denote it by I∗.

Let Tj = (V j
1 , V j

2 , V j
3 ) be such a tripartite graph in T ′. By observation 3 we may

assume, without loss of generality, that d(I∗, V j
1 ) ≥ η and d(I∗, V j

2 ) ≥ η.

We embed the next two even cycles Cq, Cq+1 ∈ H ′ as follows: For Cq we greedily

map |Cq |
2 vertices of Cq each to unused vertices in I∗ and V j

1 . For Cq+1 we greedily

map |Cq+1|
2 vertices of Cj+1 to unused vertices in V j

2 and V j
3 . We similarly alternate the

remaining even cycles, such that we use as equal as possible number of vertices from

each color class of Tj . Using the fact that all cycles are of length at most η2l, we may

assume that the remaining tripartite graph is still almost balanced.

Clearly with this procedure we can either exhaust almost all vertices of I (at least

(1− η)-fraction), or we can embed almost all even cycles. In case there are still unused

vertices in I, (we keep the same notation for the remaining vertices). We will now

embed odd cycles in the groups as follows. Again let Tj be a good tripartite graph and

let I∗ be the subset of I as above.

Let m = t(a−3)
4 and take the next m/t groups of odd cycles, Pi+1, . . . , Pi+m

t
. For

1 ≤ q ≤ m
t We embed Cs ∈ Pi+q by mapping |Cs|−1

2 vertices to unused vertices in I∗

and |Cj |−1
2 vertices to unused vertices in V j

1 , while the cycle is closed by embedding
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the last vertex onto an unused vertex in V j
2 . Take the next m

t groups of odd cycles,

Pi+m
t

+1, . . . , Pi+ 2m
t

. Again, for 1 ≤ q ≤ m
t , embed Cs ∈ Pi+m

t
+q, by mapping |Cs|−1

2

vertices to unused vertices in I∗ and |Cs|−1
2 vertices to unused vertices in V j

2 . Each

cycle is closed using a vertex in V j
1 .

To restore the balance somewhat among the remaining part of Tj , take the next m
t

groups of odd cycles, Pi+ 2m
t

+1, . . . , Pi+ 3m
t

. For 1 ≤ q ≤ m
t , embed Cs ∈ Pi+ 2m

t
+q, by

mapping |Cs|−1
2 vertices to unused vertices in V j

3 and |Cs|−1
2 vertices to unused vertices

in V j
1 , while the cycle is closed using a vertex in V j

2 . Similarly take the next m
t groups

of odd cycles, Pi+ 3m
t

+1, . . . , Pi+ 4m
t

. For 1 ≤ q ≤ m
t , Embed Cs ∈ Pi+ 3m

t
+q, by mapping

|Cs|−1
2 vertices to unused vertices in V j

3 and |Cs|−1
2 vertices to unused vertices in V j

2 ,

while the cycle is closed using a vertex in V j
1 .

Following this procedure we have used m
t · t(a−1)

2 + m
t · t + m

t · t(a−1)
2 + m

t · t =

ma + m vertices each in V j
1 and V j

2 . While the number of vertices used in V j
3 is

m
t ·

t(a−1)
2 + m

t ·
t(a−1)

2 = ma − m, So the remaining part of V j
3 has 2m extra vertices

compared to V j
1 and V j

2 .

To restore the balance completely, we map the next two groups as follows: For

Cs ∈ Pi+ 4m
t

+1 embed it by mapping |Cs|−1
2 vertices in V j

3 and |Cs|−1
2 vertices in V j

1 ,

closing each cycle with a vertex in V j
2 . While embed Cs ∈ Pi+ 4m

t
+2 by mapping |Cs|−1

2

vertices in V j
3 and |Cs|−1

2 vertices in V j
2 , closing each cycle with a vertex in V j

1 . The

number of vertices used in this step in V j
3 is t(a − 1) and that in V j

1 and V j
2 is ta+t

2 .

Using the value of m clearly the number of vertices used in all 3 color classes are the

same hence the remaining part of Tj is balanced.

By the definition of goodness, if we choose t such that ma is less than min{deg(x, V j
1 ), deg(x, V j

2 )},

for any x ∈ I∗ and such that ma + m is much less than l, then clearly we can consume

almost all (≥ (1− η)-fraction) of the vertices in I.

Dealing with vertices in V0

In the above procedure we assigned the vertices in I and M to cycles in such a way,

that at most one triangle for each odd cycle and one triangle for each vertex in I will

be used. Denote by τ ′ the corresponding quantity in the remainder of the complete
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tripartite graphs and let γ′′ = k′/n (where k′ is the number of remaining odd cycles),

since we had τ > γ +β +α2/2 in Lemma 12, we still have τ ′ > γ′′ +α2/2. This implies

in particular that the number of vertices in the cycles with length at least 4 is still at

least α2n/2.

We assign the triangles in H to the tripartite graphs in such a way that the number

of remaining unassigned vertices to each tripartite graph is as equal as possible. The

remaining tripartite graphs are balanced, and in every tripartite graph we still have at

least α3-portion of unassigned vertices (the buffer zone). In the remaining portion of

each tripartite graph, we embed the remaining non-triangle cycles proportionally, i.e.

such that the total number of vertices in cycles embedded in each tripartite graph is as

equal as possible. For each Ti(V i
1 , V i

2 , V i
3 ), an η-fraction of these cycles are embedded in

the bipartite graphs (V i
1 , V i

2 ), (V i
2 , V i

3 ) and (V i
1 , V i

3 ) (using a vertex from the third color

class to close the odd cycles). We call this the special embedding. The rest most of the

cycles are embedded using the Embedding Lemma (Lemma 11). If the cycles do not fit

exactly, we add to V0 some vertices Ti.

At this stage we will assign vertices in the exceptional set, V0 to the tripartite

graphs. Note that from the above procedure it is clear that |V0| < 10ηn and all the

remaining cycles in H are of length at least 4. We will assign these remaining cycles to

the tripartite graphs and eliminating vertices from V0. Let Cj be an unassigned cycle,

4 ≤ j ≤ η2l.

For a vertex v we define Rv to be the set of vertices which can be replaced by v,

i.e. Rv is the set of all vertices X, such that if a cycle is embedded using x then we

can embed the cycle using v and freeing up x. We will prove that Rv is about 1+γ
2 n for

all v ∈ V (G). To prove that we will show that if v has neighbors in any color class of

a bipartite or tripartite graph, then there is a corresponding set of the same size as its

neighborhood, that can be replaced with v.

Let Ti = (V i
1 , V i

2 , V i
3 ) be a tripartite graph. Let d(v, V i

1 ) ≥ η. Then with high prob-

ability we have that v is connected to at least an η/10-fraction of the buffer zone of V i
1 .

And the since there are some cycles embedded through the special embedding and set of
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vertices could be used for this embedding, as it is complete bipartite graph. Say a par-

ticular instance of such a cycle is embedded as x1, y1, x2, y2, . . . , xs, ys, z1, x1, where xj ∈

V i
1 , yj ∈ V i

2 and z1 ∈ V i
3 (if the cycle is odd). Let x′ and x′′ be any two vertices of this

cycle, adjacent to v. the above cycle can be embedded like x′, v, x′′, y2, . . . , xs, ys, z1, x
′,

and we replace x′ and x′′ with x1 and x2 and hence y1 is freed, that is y1 can be moved

out to the set Rv. Similarly vertices assigned to cycles embedded in Ti to consume

the independent set I∗ can be moved out to Rv. Furthermore the vertices assigned to

cycles embedded to consume vertices in M be moved out.

If v is highly connected to some I∗ then we will show that corresponding V i
1 and

V i
2 can be moved out to Rv. This is clearly the case as the cycles are embedded

by going around I∗, V i
1 , I∗, V i

1 , .... And any set of vertices in I∗ can be used for such

embedding. So we may assume that the neighbor of v are used in a cycle. Now similarly

rearrangement of the cycles shows that any vertex in N(I∗, V i
1 ) can be moved out to

Rv. Similar argument gives us that if v is highly connected to U1 of some bipartite

graph (U1, U2) then the vertices in U2 can be freed up.

So if v has neighborhood somewhere we have a corresponding set at least as big as

the size of neighborhood, which can be replaced with v, (moved out). Therefore we

have that |Rv| ≥ (1 + γ − 20η)n/2. Indeed from the fact that G does not satisfy the

conditions of Extremal Case 2 we will show that |Rv| ≥ (1 + γ + α2)n/2. Indeed let

Rv = {x1, . . .}, an easy calculation shows that there is a set R′
v ⊂ ∪xiRxi such that

|R′
v| ≥ (1/2 + γ − 40η)n and for all v ∈ R′

v, we have v ∈ Rxi for at least ηl vertices xi.

Note that any vertex in R′
v still is replaceable by v, we call it the expansion process. If

|R′
v| < (1+γ+α2)n/2 then it must be that that the neighborhood of almost all vertices

in Rv is in Rv only. Hence d(Rv, V (G)\Rv) < α which implies that we are in Extremal

Case 2. We apply the expansion process for all v and we still call the exchangeable set

Rv.

Consider any j points a1, a2, . . . , aj in V0. Since |V0| ≤ 10ηn, deg(ai, V (G) \ V0) ≥

(1 + γ − 20η)n/2 and hence |Rai | ≥ (1 + γ − 20η)n/2 : 1 ≤ i ≤ j. We will assign Cj to

a tripartite graph such that each tripartite graph is assigned almost the same number

of vertices.
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Since |Rai | ≥ (1+γ+α2)n/2 for all 1 ≤ i ≤ j every color class of any tripartite graph

has at least α2n/2 neighbors in each of Rai . Hence we can find j vertices b1, b2, . . . , bj ,

bi ∈ Rai such that deg(bi, V1) ≥ ηl. Replacing each bi with ai we can say that the j

points outsided are highly connected to a color class of some tripartite graph (say V1

of Ti). We will use the vertices b1, . . . , bj for parts of the cycles that are embedded by

special embedding. So j vertices in V2 and V3 can be freed up as discussed above. We

assign the cycle Cj to Ti.

For the next unassigned cycle and points outside we do the same exchanging, choos-

ing some other color class of some other tripartite graph, so that the vertices assigned

to each tripartite graph remains as balanced as possible.

We still have the unassigned vertices (freed-up vertices) in each color class of each

tripartite graphs almost balanced, because V0 is at most 10ηn and we assigned the

remaining cycles in a balanced way, the maximum imbalance among the color classes

of any tripartite graph is bounded by a factor of
√

η. Furthermore the total length

of cycles assigned in this phase to Ti is exactly the same as unused vertices in the

tripartite graphs, as we freed exactly j vertices for a Cj . Hence in each tripartite graph

the assigned cycles can be embedded by an application of Lemma 11.

2.3.4 Embedding Large Cycles

In this case we have some cycles larger than η2l = c log n for some small constant c. It

is easy to see that all arguments in the previous section work even when the minimum

degree is slightly less, i.e it is sufficient to use that δ(G) ≥ (1/2 + γ − η)n, since G is

α-non extremal and η � α.

We use the following lemma from [3] for splitting the graphs into two subgraphs

such that the relative minimum degree and non-extremality in the induced subgraphs

is roughly the same as the original graph.

Lemma 13. For 0 < ε < 1, there exist an n0, such that if H is an α-non-extremal

graph on n ≥ n0 vertices with δ(H) ≥ λn then for any random subset A of V (H),

such that εn ≤ |A| ≤ (1 − ε)n, (let B = V (G) \ A), with high probability we have
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that δ(H|A) ≥ (λ − n−
1
3 )|A| and δ(H|B) ≥ (λ − n−

1
3 )|B| and both H|A and H|B are

(α− n−
1
3 )-non-extremal.

Furthermore we will make use of the following simple fact.

Fact 14 ([23]). Every 2-connected graph H on n vertices has a cycle of length min{n, 2δ(H)}.

Using the fact that our graph G is α-non extremal we prove the following extensions

of Dirac theorem [23] on Hamiltonian graphs and Bondy theorem [24] on pancyclic

graph.

Lemma 15. For 0 < η � α there exist a constant n0 such that if H is an α-non-

extremal graph on n ≥ n0 vertices with δ(H) ≥ (1/2− η)n, then H is Hamiltonian.

Proof. Using Fact 14 we get a cycle C = u1, . . . , uq; q ≥ (1 − 2η)n. If q < n, we

will insert the vertices outside C, to extend the cycle. Let a be an outside vertex. If

a is connected to ui, ui+1 then we can insert a between ui and ui+1 to extend C. If

not then by the minimum degree condition, a must be connected to many pairs like

ui−1, ui+1. Let Ra = {ui ∈ C : ui−1, ui+1 ∈ N(a)}. Clearly any such ui can be replaced

by a without reducing length of the cycle (see Figure 2.2(e)). By the above observation

|Ra| ≥ (1/2− 4η)n. Since we are not in Extremal case 1, d(Ra) ≥ α. Consider an edge

(uj , uk) inside Ra. By definition a is connected to uj−1, uj+1, uk−1, uk+1 since there

are many such edges we can assume k > j + 5. It is easy to see that we can make

the following cycle uj+1, uj+2 . . . , uk−1, uk, uj , uj−1, uj−2, . . . , uk+1, a, uj+1. Hence C is

extended (see Figure 2.2(f)) �

a

ui−1

ui+1

ui

C

(e) Replacing ui with a

a

uj−1

uj

uj+1 uk−1

uk

uk+1

(f) The dashed-cycle extends C to in-
clude a
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We now prove the following stronger statement.

Lemma 16. For 0 < η � α there exist a constant n0 such that if H is an α-non-

extremal graph on n ≥ n0 vertices with δ(H) ≥ (1/2− η)n, then H is pancyclic i.e. H

has a cycle of length q, 3 ≤ q ≤ n.

Proof. For q ≥ εn, (0 < ε < η), we randomly choose a subset A ⊂ V (H), |A| = q. By

Lemma 13, H|A satisfies the conditions of Lemma 15, hence we are done. For q < εn,

We choose a path, P = v2, . . . , vq−1 on (q − 2) vertices, (such a path obviously exits,

as H is Hamiltonian). Since N(v2) and N(vq−1) in V (H) \ V (P ) are both at least

(1/2− 2η)n. Hence by α-non extremality there are edges between N(v2) and N(vq−1).

Take such an edge (v1, vq) and v1, v2, . . . , vq−1, vq is a cycle on q vertices. �

Now we prove our main theorem when the cycle system has larger cycles, i.e. at

least one cycle is larger than η2l = c log n = m, for some small constant c. We denote

by H the given cycle system and by Hs the set of smaller cycles in H, (cycles of length

at most m,) and let Hl = H \Hs. Let M be the total number of vertices in cycles in Hs.

We consider the following cases. Let ε be a positive constant such that c � ε < η/10

Case 1 M < εn:

In this case we embed the cycles in Hs one by one using Lemma 16. The remaining

induced graph still has minimum degree at least (1+γ
2 − 2ε)(n−M). The large cycles,

cycles in Hl, are embedded in the remaining subgraph by the procedure as in Case 4.

Case 2 εn ≤ M ≤ (1− ε)n:

In this case we randomly partition V (G) into A and B, |A| = M . By Lemma 13 we

have δ(G|A) ≥ (1+γ
2 − n−

1
3 )|A| and δ(G|B) ≥ (1+γ

2 − n−
1
3 )|B| and both G|A and G|B

are (α−n−
1
3 )-non-extremal. We embed the cycles in Hs in G|A applying the procedure

in the previous section and for embedding Hl in G|B we get Case 4.

Case 3 M > (1 − ε)n: Similarly as in Case 1, we embed the cycles in Hl one by

one using Lemma 16. The remaining induced graph still has minimum degree at least

(1+γ
2 −2ε)M and is (α/2)-non-extremal, so we use the procedure in the previous section

to embed the cycles in Hs in the remaining subgraph.
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Case 4 All cycles are of length at least m:

In this case since the order of graph could be (n−M), for simplicity, we still say that

G is a graph on n vertices and is α-non-extremal, and δ(G) ≥ (1/2− η)n and let H be

the given cycle system. Let the cycles be C1, C2, . . . , Cr with length n1 ≥ n2 ≥ . . . ≥ nr

respectively ni ≥ m. We consider two cases based on value of n1.

Case 4.1 n1 ≥ (1− η)n:

We embed all cycles Ci for i > 1, one by one using Lemma 16. It is easy to see that

the remaining induced graph satisfies the conditions of Lemma 15, hence there is a

Hamiltonian cycle C1 in it.

Case 4.2 ni < (1− η)n for 1 ≤ i ≤ r:

We distributes the cycles in two sets H1 and H2, let nA and nB be the total number of

vertices in cycles in H1 and H2 respectively. Since η � 1, we can distribute the cycles

such that both nA and nB are at most (1− η)n. We randomly partition V (G) into two

sets A and B such that |A| = nA and |B| = nB. We will embed the cycles in H1 and

H2 in G|A and G|B respectively.

We recursively apply the same splitting procedure until the condition of Case 4.1

is satisfied. Using the fact each ni > m we will show that minimum degree and non-

extremality conditions hold till the very end of this process, hence the required cycles

can be found. Define the normalized degree of a graph F as, D(F ) = δ(F )
|V (F )| . By

definition D(G) ≥ (1/2− η) therefore by Lemma 13 we have

D(GA) ≥ D(G)− n−
1
3 and D(GB) ≥ D(G)− n−

1
3

Since the splitting process terminates before n ≤ m and each time the number of

vertices is reduced by at least a factor of (1 − η), using the fact that m = c log n, for

each final graph Gf we have

D(Gf ) ≥ D(G)−m− 1
3

∞∑
i=0

(1− η)i/3 ≥ 1
2
− 10η

A similar computation shows that each final Gf is α/10-non-extremal, hence the con-

ditions of Lemma 16 are satisfied so we can apply the procedure of Case 4.1
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2.3.5 The case of almost all triangles

We have τ ≥ 1/3 − η in Lemma 12 so the cover consists almost entirely of complete

tripartite graphs. If there are not too many odd cycles in the cycle system H, say

γ < 1/3 − 4η − α2/2, then considering the set of vertices that are not covered by the

tripartite graphs as our independent set I, so β ≤ 3η, the other inequality in Lemma

12 is also satisfied, since τ ≥ 1/3− η ≥ γ + β + α2/2, hence we can apply the previous

embedding procedure. Therefore, we may assume that there are many odd cycles,

γ ≥ 1/3−4η−α2/2, which together with (2.3) and (4.2) imply that δ(G) ≥ (2/3−α2)n.

Furthermore, it follows that the H contains at least (1/3 − 3α2)n triangles. Indeed,

otherwise the total number of vertices is at least

3(1/3− 3α2)n + 5(2α2)n = n + α2n > n,

a contradiction.

In the optimal cover we have at most 3ηn points outside the complete tripartite

graphs T . By greedily embedding the non-triangles into the complete tripartite graphs

(such that we do not embed too many vertices into each complete tripartite graph and

then we keep the balance inside each tripartite graph) we may assume that we have only

triangles left and thus the number of vertices outside the complete tripartite graphs is

divisible by three. We will consider only three vertices outside T and extend the cover

by one or more triangles to include these three vertices, such that the cover remains

a balanced one. By repeating this procedure we eliminate all the vertices outside the

complete tripartite graphs and then the remaining triangles of H can be embedded

inside the complete tripartite graphs. Therefore, we consider only three vertices a, b

and c outside T which do not make a triangle.

For i ∈ {1, 2, 3} we say that a vertex v is i-sided to a tripartite graph Kt = (V1, V2, V3)

if we have d(v,Kt) ≥ ((i− 1)/3 + η), i.e. v has a large degree to at least i color classes.

Denote by s(v,Kt) the largest i for which v is i-sided to Kt.

If v is two-sided to Kt (say to the pair (V2, V3)) then we say that V1 is exchangeable

with v, i.e. any of the vertices in V1 can be exchanged with v while keeping the cover

balanced. Similarly, if v is three-sided to Kt then all three color classes are exchangeable
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with v. For a vertex v, define Rv to be the set of vertices that are exchangeable with v

over all tripartite graphs. By the minimum degree condition, for any vertex v we have

|Rv| ≥ (1/3− α)n. Note that when we exchange a vertex v with a vertex from a color

class Vi, then the new vertex has density 1 to the other two color classes, so we may

assume that this is true already for v; a fact that will be important later. Furthermore,

whenever a vertex v is exchanged with a vertex of a complete tripartite graph Kt, then

we immediately cover it with a triangle in Kt to maintain the property that we still

have a balanced complete tripartite graph.

a

c

b

(g) a, b and c are 2-sided to
different pairs

z

x

y

V1

V2

V3

(h) x is 1-sided to V1 and y
and z are 3-sided

a b c

(i) Replacing a,b
and c in V1

If s(v,Ki) ≤ 1 for a
√

α-fraction of the Ki’s in T , then there is at least a
√

α
2 -fraction

of the other Kj ’s in T such that s(v,Kj) = 3. However, then from each such Kj all

three color classes are exchangeable with v, hence |Rv| > (1 +
√

α)n/3. So Rv is small

(smaller than (1 +
√

α)n/3) only if v is two-sided to most of the tripartite graphs.

Furthermore, from the minimum degree condition, it is easy to see that for any two

vertices v and w, on average we have s(v,Kt)+ s(w,Kt) ≥ 4 for the complete tripartite

graphs Kt ∈ T . Note also that if there exists a Kt ∈ T such that a, b and c are two-sided

to 3 different pairs of color classes in Kt (this happens for example if a, b and c are all

three-sided to Kt), then we can easily expand the cover by one triangle such that we

eliminate a, b and c and we keep the balance inside Kt (see Figure 2.2(g)) so we may

assume that this is never the case.

We consider the following cases depending on the degree distribution of the vertices

a, b and c.

Case 1: a, b and c are not all at least two-sided to most (≥ (1 −
√

α)-fraction) of

the tripartite graphs in T (i.e. there exists a vertex in {a, b, c}, say c, such that for at
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least a
√

α-fraction of the Kt’s we have s(c,Kt) ≤ 1).

We assume that there is no tripartite graph which has a color class exchangeable

with all of a, b and c. Indeed suppose that there is some Vi = {x1, . . . , xt} exchangeable

with all a, b and c. An easy calculation shows that there is a set Rabc ⊂ ∪xiRxi such

that |Rabc| ≥ (1/3−α)n and for all v ∈ Rabc, we have v ∈ Rxi for at least three vertices

xi. We call this process the expansion process. Then any three vertices in Rabc are

exchangeable with a, b and c (we say that a, b and c collapse). Now for any Kt ∈ T

there are at most two vertices in Rabc that are three-sided to Kt, because otherwise we

get three vertices exchangeable with a, b and c that are all three-sided to Kt and we

assumed that this is not the case. This implies that most vertices in Rabc are two-sided

to almost all (≥ (1− α)-fraction) of the tripartite graphs and we are in Case 2.

It is easy to see that there exists a Kt = (V1, V2, V3) in T , such that one of the Vi’s

(say V1) is exchangeable with both a and b. Indeed, the condition in Case 1 implies

that we can find a Kt such that s(c,Kt) ≤ 1 but s(a,Kt) + s(b, Kt) + s(c,Kt) ≥ 6.

This implies s(a,Kt) + s(b, Kt) ≥ 5 and the statement follows. We expand V1 to Rab

as above such that |Rab| ≥ (1/3− α)n.

Consider a vertex x ∈ Rc and a Kt ∈ T . There is at most one vertex y ∈ Rab such

that d(x,Kt) + d(y, Kt) ≥ (4/3 + η), because otherwise either a, b and c collapse or we

have three vertices that are two-sided to three different pairs. This and the minimum

degree condition imply that for most vertices y ∈ Rab we have the following density

condition to almost all (≥ (1− α)-fraction) of the tripartite graphs Kt:

(4/3− α) ≤ d(x,Kt) + d(y, Kt) ≤ (4/3 + η). (2.14)

Furthermore, there is no vertex x in Rc which is at least two-sided to at least a (1−
√

α)-

fraction of the tripartite graphs. Otherwise, all but at most one vertices in Rab must

be three-sided to at least a 2
√

α-fraction of the tripartite graphs. Indeed, as we have

no two vertices in Rab that are two-sided to a (1 − 4
√

α)-fraction of the tripartite

graphs (since we would get Case 2 with 4
√

α instead of
√

α), all but at most one

vertices must be one-sided to at least a 4
√

α-fraction of the tripartite graphs and thus

in fact they must be three-sided to at least a 2
√

α-fraction of the tripartite graphs. But
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then for this x ∈ Rc there exist y, z ∈ Rab and a tripartite graph Kt ∈ T such that

s(x,Kt) ≥ 2, s(y, Kt) = s(z,Kt) = 3, which implies that a, b and c collapse. Note that

by the above remark on |Rv|, this also implies that |Rc| ≥ (1 +
√

α)n/3.

Since Rc is large, we have d(Rab, Rc) > α. As argued above no vertex in Rc is

two-sided to most of the tripartite graphs in T therefore for any x ∈ Rc there is at

least a
√

α-fraction Kt’s in T such that s(x,Kt) ≤ 1. Using (2.14) consider x ∈ Rc and

y, z ∈ Rab ∩N(x) and a tripartite graph Kt = (V1, V2, V3) in T , such that

s(x,Kt) ≤ 1, d(x,Kt) + d(y, Kt) ≥ (4/3− α) and d(x,Kt) + d(z,Kt) ≥ (4/3− α).

Therefore y and x have a common neighbor, say u ∈ V1 so u, x, y is a triangle. Further-

more, z must be three-sided to Kt and thus we can find a triangle z, v, w with some

vertices v ∈ V2, w ∈ V3, thus eliminating a, b and c and keeping the tripartite graphs

balanced (see Figure 2.2(h)).

Case 2: a, b and c are all at least two-sided to most (≥ (1 −
√

α)-fraction) of the

tripartite graphs in T .

Consider a typical tripartite graph Kt. As noted above a, b and c are not two-sided

to three different pairs, therefore, at least 2 vertices (say a and b) are two-sided to the

same pair (say (V1, V2)) in Kt. Hence V3 is exchangeable with both a and b. We expand

V3 to get Rab of size at least (1/3− α)n.

Case 2.1: Rc and Rab are disjoint (so a, b and c do not collapse).

In this case there are no three vertices x ∈ Rc, y, z ∈ Rab, such that they are

two-sided to the same pair of a tripartite graph, since otherwise a, b and c collapse.

Consider a typical tripartite graph Kt = (V1, V2, V3). Let Pi ⊂ Rab, 1 ≤ i ≤ 3, be

the set of those vertices that are exchangeable with Vi. Note that at most two of the

Pi’s are non-empty. Indeed, otherwise if all three are non-empty, then we take a vertex

in Rc that is exchangeable with a color class in Kt (say V1) and one vertex each from P2

and P3 to have 3 vertices two-sided to three different pairs of Kt and then we are done.

Assume that P3 is empty and both P1 and P2 have at least 2 vertices. Similarly we

group vertices in Rc into Qi, 1 ≤ i ≤ 3. Since both P1 and P2 are non-empty, Q3 must

be empty. It is easy to see that if |Pi| ≥ 2 and Qi is non empty then a, b and c collapse.
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Hence without loss of generality we may assume that only |P1| ≥ 2 and Q2 and/or Q3

are non empty (say Q2 is non-empty). But now since we are not in Extremal Case 1, we

have d(P1) > α. Thus there is an edge (x, y) inside P1 and a common neighbor v in V2,

so (x, y, v) is a triangle. Also by the definition of Q2, there are many triangles (z, u, w)

with z ∈ Q2, u ∈ V1 and w ∈ V3. Then removing these two triangles and replacing x, y

and z with a, b and c, respectively, the remaining cover is balanced.

Case 2.2: Rc and Rab are not disjoint.

In this case Rabc is non-empty, by expansion we have |Rabc| ≥ (1/3−α)n and any 3

vertices of Rabc are exchangeable with a, b and c. Assume first that |Rabc| ≤ (1+
√

α)n/3.

Then as noted above, any 3 vertices in Rabc are two-sided to the same pair of almost

all tripartite graphs (say the pair is always (V2, V3)). This implies that all points in

Rabc are exchangeable with each other. The fact that we are not in Extremal Case

1 implies d(Rabc) ≥ α, therefore by exchanging some vertices we can introduce edges

inside V1 of some tripartite graph Kt. Now for such a Kt, we take a triangle (x1, y1, z1)

with x1 ∈ V2, y1, z1 ∈ V1 and another triangle (x2, y2, z2) with x2 ∈ V3, y2, z2 ∈ V1.

Replacing three of the vertices used in these triangles from V1 by a, b and c, we get the

remaining cover balanced (see Figure 2.2(i)).

If |Rabc| > (1 +
√

α)n/3, and we can not finish the task, then we will show that

|Rabc| ≥ (2/3 − α1/3)n. Indeed otherwise, say there is an α1/3-fraction of tripartite

graphs, T ′ ⊂ T , where only one color class (say V1) is part of Rabc. Most vertices in

Rabc must be two-sided to (V2, V3) in most tripartite graphs in T ′ (as in Case 1, since

otherwise we would get three vertices that are three-sided to the same Kt). Since now

Rabc is large, by using the minimum degree condition there are many edges from the

union of the V1’s in T ′ to Rabc; these edges can be brought inside V1 for some tripartite

graph in T ′, hence as above we can finish the task. Now if |Rabc| ≥ (2/3−α1/3)n, then

for any vertex x ∈ Rabc, |N(x)∩Rabc)| ≥ (1/3− 2α1/3)n and again by non-extremality

there are edges inside N(x) ∩Rabc which make triangles with x. We are done since we

found a triangle in Rabc and those three vertices can be replaced by a, b and c. This

finishes the proof of the case of almost all triangles.
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2.4 The Extremal Cases

In the extremal cases we will repeatedly use the following simple fact.

Fact 17. If G(A,B) is a bipartite graph, with

• deg(a,B) ≥ (1− η)|B|, ∀ a ∈ A

• deg(b, A) ≥ (1− η)|A|, ∀ b ∈ B

• B has a matching M of size k and |B| = |A|+ k

then if C is a set of cycles, such that C has k odd cycles and the sum of the lengths of

cycles in C is |A|+ |B|, then C can be embedded into G.

The basic idea is to use one edge of M for each odd cycle and all other edges of

the cycles will be found in the almost complete bipartite graph between A and B. We

assign to each cycle C, d |C|2 e vertices in B. To the next cycle Ci ∈ C, with |Ci| = 2s, we

assign s unassigned vertices x1
i , x

2
i , . . . , x

s
i in B that are disjoint from M . For Ci, with

|Ci| = 2s + 1, we assign s− 1 unassigned vertices x1
i , x

2
i , . . . , x

s−1
i disjoint from M and

an unassigned edge ei = (y1
i , y

2
i ) from M . Now we make an auxiliary bipartite graph

H = (A,B′). Such that B′ has a vertex corresponding to successive pairs of vertices

assigned to Ci, i.e. (x1
i , x

2
i ), (x

2
i , x

3
i ), . . . , (x

s
i , x

1
i ) if |Ci| = 2s. For each odd cycles Ci,

B′ has a vertex for pairs (y1
i , x

1
i ), (x

1
i , x

2
i ), (x

2
i , x

3
i ), . . . , (x

s−1
i , y2

i ). In H, every vertex in

B′ is connected to common neighbors of the vertices in the corresponding pair in G.

Clearly we have |A| = |B′| and the minimum degree of a vertex in H is at least

(1− 2η)|A|. Hence by König-Hall theorem H has a perfect matching. It is easy to see

that any perfect matching in H corresponds to an embedding of C in G. �

2.4.1 Extremal Case 1

Here our graph G satisfies (2.1) and we are in Extremal Case 1.

Extremal Case 1 (EC1) with parameter α: There exists an A ⊂ V (G) such

that

• |A| ≥ n−k
2 − αn, and
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• d(A) < α.

By adding or deleting vertices to or from A we may achieve that |A| = (n−k)/2 and

|B| = (n+k)/2 (note that these are always integers). Furthermore, an easy computation

shows that we still have d(A) < 10α (for simplicity we keep the notation A, B). This

and (2.1) imply that we have

d(A,B) > 1− 10α. (2.15)

Thus roughly speaking, we have an almost complete bipartite graph between A and

B, the basic idea is to find a matching of size k (using (2.1) and Lemma 8 as we have

δ(G|B) ≥ k) in B and then use Fact 17 to find the cycle. However, we have to deal

with certain exceptional vertices first.

A vertex v ∈ A (similarly in B) is called exceptional if it is not connected to most

of the vertices in the other set, more precisely if we have

deg(v,B) ≤ (1−
√

10α)|B|.

Let us denote the set of exceptional vertices by EA in A and by EB in B. From (2.15)

we get that we have few exceptional vertices

|EA| ≤
√

10α|A| and |EB| ≤
√

10α|B|.

Next we further refine the definition of exceptional vertices: an exceptional vertex v ∈ A

(similarly in B) is called strongly exceptional if it is connected to few vertices in the

other set, more precisely if we have

deg(v,B) ≤ α1/3|B|.

Denote the set of strongly exceptional vertices by SEA(⊂ EA) in A and by SEB(⊂

EB) in B. From (2.15) it is clear that

|SEA| ≤ 20α|A| and |SEB| ≤ 20α|B|.

If we have a u ∈ SEA and a v ∈ SEB, then we can exchange the two vertices and they

will not be strongly exceptional anymore in their new sets. Thus we may assume that
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one of the sets SEA and SEB is empty, since otherwise we may reduce the number of

strongly exceptional vertices in both sets. Then we only have to eliminate the vertices

in the non-empty set. For the remainder of this extremal case we will distinguish three

subcases depending on the size of γ = k/n.

Case 1: γ ≤ α1/3.

Without loss of generality we assume that SEB = ∅ and SEA 6= ∅ (the other case

is similar). We may assume that we have no u ∈ B with deg(u, B) > α1/3|B|, since

otherwise we can exchange this vertex with a vertex v ∈ SEA and thus reducing the

size of SEA. Therefore any vertex v ∈ B can be exchanged with any vertex u ∈ SEA

without changing the degree conditions. First for each v ∈ SEA we want to find a path

Pv of length 2 such that the center of Pv is v, the other two vertices are in B and the

paths are vertex disjoint for different v. Consider the graph H = G|SEA∪B, from (2.1)

we have δ(H) ≥ |SEA| (in fact in this case the minimum degree is at least k + |SEA|,

but in the other case when SEB 6= ∅ the minimum degree could be |SEB|). From the

size of SEA and the fact that no vertex has high degree in B, we have ∆(H) ≤ 2α1/3|H|.

Therefore by Lemma 8 there are at least SEA vertex disjoint paths of length 2 in H.

Since every vertex in B can be exchanged with any vertex in SEA, we can assume that

all these paths have the center vertex in SEA and the two end points in B.

Furthermore since the minimum degree in B is at least k and no vertex has degree

more than α1/3|B|, by Lemma 8 we can find a matching of size k in B. From the fact

that SEA is very small, there exists a matching of size k that is vertex disjoint from all

Pv selected above.

Then first we eliminate the paths of length 2 by embedding cycle parts into them.

Note that the endpoints of each Pv have very high degree in B, so the endpoints of

any Pv and Pu can be connected in one step. Therefore, by a simple greedy procedure

we can embed cycles in the bipartite graph between A and B, that use all Pv and use

exactly one edge inside B for each odd cycle. The remaining exceptional vertices (EA

and EB) can also be used similarly, using the fact that their degree across is much

larger than their number. Finally in the leftover almost-complete bipartite graph we

finish the embedding such that the k′ matching edges are used for the remaining k′ odd
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cycles using Fact 17.

Case 2: α1/3 < γ ≤ (1
3 − α1/3).

In this case we know that SEA = ∅, as for each v ∈ A we have

deg(v,B) ≥ k > α1/3n ≥ α1/3|B|.

If SEB 6= ∅, then similarly as in Case 1, we find |SEB| vertex disjoint paths of length

2 such that the middle vertices are in SEB. We also find a matching M of size k, such

that at least one of the endpoints of each edge is non-exceptional and M is disjoint

from the length-2 paths. Then, as in Case 1, we first use the length-2 paths to embed

a few cycles; the edges in M are used for the k odd cycles and we finish the embedding

using Fact 17.

Case 3: γ > (1
3 − α1/3).

In this case most of the cycles are triangles, indeed the number of vertices covered by

cycles of length at least 4 is at most 8α1/3n. Therefore in this case we will use triangles

to use up the exceptional vertices. eliminating the exceptional vertices. Assume first

that we are not in the following two subcases:

Subcase 3.1: There is a partition B = B1 ∪B2 with
(

1
3 − α1/3

)
n ≤ |B1| ≤ n

3 and

d(B1) < α1/4.

Subcase 3.2: There is a partition B = B1 ∪B2 with
(

1
3 − α1/3

)
n ≤ |B1| ≤ n

3 and

d(B1, B2) < α1/4.

Let us consider an exceptional vertex u ∈ A (note that we have SEA = ∅) and its

neighborhood in B of size at least k ≥ (1
3 − α1/3)n. As we are not in Subcase 3.1, we

have edges inside this set and thus we can cover u with a triangle where the other two

vertices come from B, as desired. For an exceptional vertex v ∈ (B \ SEB) again we

can easily find a triangle where one of the other two vertices comes from A, the other

from B. Finally let us take a vertex v ∈ SEB. We may assume that we have no u ∈ A

with deg(u, A) > α1/3|A|, since otherwise we can exchange this vertex with v and thus

reducing the size of SEB. As in Case 1, since the minimum degree in the graph induced

by A∪ SEB is at least |SEB| we can find |SEB| vertex disjoint edges going between A

and SEB. For each such edge e, since both of its endpoints have very high degree in



43

B, we find a common neighbor in B for the endpoints to get a vertex disjoint triangle.

Using the fact that we are not in Subcases 3.1 and 3.2, we can find a matching of size

k′ (the remaining number of odd cycles) in the leftover of B, and then Fact 17 finishes

the embedding.

Finally let us assume that we are in Subcase 3.1 (Subcase 3.2 is similar). By greedily

embedding the few cycles first that are not triangles we may assume that we have only

triangles left and we have three sets A,B, C of equal size. We will have two types of

strongly exceptional vertices in each set; v ∈ A is called strongly exceptional to B if it

is connected to few vertices in B, more precisely if we have

deg(v,B) ≤ α1/3|B|.

Denote the set of these vertices by SEB
A . SEC

A and the strongly exceptional sets in B

and C are defined similarly. We describe how to eliminate the vertices in SEB
A ; the

others are similar. To eliminate vertices in SEB
A , for each vertex v in SEB

A we find a

distinct triangle containing v and the other two vertices from B and C. This can be

done similarly as above by an application of Lemma 8 since the degree conditions are

satisfied. By repeating this procedure we eliminate all the strongly exceptional vertices,

and then by Fact 17 we can finish the embedding. This finishes EC1.

2.4.2 Extremal Case 2

Here we have (2.1) and the following.

Extremal Case 2 (EC2) with parameter α: There exists an A ⊂ V (G) such

that for B = V (G) \A we have

• n
2 ≥ |A| ≥ n

2 − αn, and

• d(A,B) < α.

Thus roughly speaking, G|A and G|B are almost complete and the bipartite graph

between A and B is sparse (note that k has to be small). By adding vertices to A we

may achieve that |A| = bn/2c and |B| = dn/2e. Furthermore, an easy computation

shows that we still have d(A,B) < 10α (for simplicity we keep the notation A, B).
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Again we define exceptional vertices v ∈ A (and similarly for B), as

deg(v,B) ≥
√

10α|B|.

Note that from the density condition d(A,B) < 10α, the number of exceptional vertices

in A is at most
√

10α|A| (and similarly for B). Let us denote the set of exceptional

vertices by EA in A and by EB in B. Next again we further refine the definition of

exceptional vertices: an exceptional vertex v ∈ A (similarly in B) is called strongly

exceptional if it is connected to few vertices in A, more precisely if we have

deg(v,A) ≤ α1/3|A|.

Denote the set of strongly exceptional vertices by SEA(⊂ EA) in A and by SEB(⊂ EB)

in B. If we have a u ∈ SEA and a v ∈ SEB, then we can exchange the two vertices and

they will not be strongly exceptional anymore in their new sets. Thus we may assume

that one of the sets SEA and SEB is empty (say SEB, the other case is similar). We

first handle the vertices of SEA.

We may assume that we have no u ∈ B with deg(u, A) > α1/3|A|, since otherwise

we can exchange this vertex with a vertex v ∈ SEA and thus reducing the size of SEA.

We remove the vertices in SEA from A and add them to B, and denote the resulting

sets by A′ and B′. It is easy to see using (2.1) that in G|A′ apart from at most 10
√

α|A′|

exceptional vertices all the degrees are at least (1− 10
√

α)|A′|, and the degrees of the

exceptional vertices are at least α1/3|A′|/2. In G|B′ we have an even stronger degree

condition; all the degrees are at least (1− 2α1/3)|B′|.

Suppose we have our cycles listed in increasing order of size, C1, C2, . . . Cr. We

assign cycles to A′ until we have no room left and denote by Cm the last cycle, i.e.

by adding this cycle we have at least |A′| vertices assigned to |A′|, but without this

cycle we have fewer than |A′| assigned vertices. We refer to Cm as the middle cycle, let

nm = |Cm|, note that nm ≤ 3 only if we have many cycles of length 2 (i.e. edges) in the

cycle system as we have few odd cycles and thus triangles. Denote

n1
m = |A′| −

m−1∑
i=1

|Ci| and n2
m = nm − n1

m.



45

Note that part of Cm has to be embedded into A′ (n1
m vertices) while the other part

(n2
m vertices) into B′.

We may assume n2
m > 0 as well, since otherwise we are done. If n1

m, n2
m ≥ 3, then it

is easy to embed the middle cycle Cm. Indeed we can find two bridge edges (ui, vi) with

ui ∈ (A \EA), vi ∈ B for i = 1, 2 since from (2.1) we have deg(u, B) ≥ 1 for each u ∈ A

and deg(v,A) ≤ α1/3|A| for each v ∈ B. Then we can connect u1 and u2 with a path

of length n1
m − 1 in A and v1 and v2 with a path of length n2

m − 1 in B. Actually this

argument also works for n1
m = 2, n2

m ≥ 3 as well, since we can have two bridge edges

where (u1, u2) is also an edge in G|A. For n2
m = 2 note that if we can find two vertex

disjoint paths of length 2 such that the center vertices are in B and the endpoints are in

A \EA, then we move the center vertices to A′ and now we have a perfect assignment.

These length 2 paths can be used as part of some cycles and hence we are done. Thus

we may assume that we have no two such paths. However, this fact and the degree

conditions imply that we can find two bridges where (u1, u2) and (v1, v2) are both edges

taking care of all cases n1
m, n2

m ≥ 2.

Finally let us assume n1
m = 1, n2

m ≥ 2 (the other case is symmetric). If k > 0

or SEA 6= ∅ we can clearly find a path of length 2 with its center vertex in A′ and

endpoints in B′, and then we can move the center vertex to B′ to have a perfect

assignment. Thus we may assume that k = 0 (so n is even and n2
m > 2) and SEA = ∅

and thus |A| = |A′| = |B| = |B′| and we have no such path of length 2. Then G|A and

G|B are both complete graphs with a perfect matching M between them and all of our

cycles are even. Let nm = 2s, s ≥ 2, we will find a cycle Ci : i < m, |Ci| = 2p, p < s

or a cycle Cj : j > m, |Cj | = 2q, q > s. In case we have any such cycle (say Ci), we

embed p vertices of Ci in A while the other p vertices in B, joining the corresponding

end points using edges from M . Now in the remaining graph and cycle system we have

n1
m = p + 1 ≥ 2, while n2

m = 2s − 1 − p ≥ 2, so Cm can be easily embedded using

two edges from M . Note that we can always find either Cj or Ci, to see this, assume

there are no such cycle, then all cycles are of length 2s, hence n ≡ 0 (mod 2s) while

|A| = n/2 ≡ 1 (mod 2s), which is a contradiction for s > 1.

It is easy to see that the other cycles apart from Cm (and possibly Ci or Cj in the
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last case) assigned to A′ (and B′) can be embedded in G|A′ (and in G|B′) by eliminating

the few exceptional vertices first and then applying Fact 17. This finishes EC2.
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Chapter 3

Perfect Matching in 3 uniform hypergraphs with large

vertex degree

3.1 Introduction and Notation

For graphs we follow the notation in [6]. For a set T , we refer to all of its k-element

subsets (k-sets for short) as
(
T
k

)
and the number of such k-sets as

(|T |
k

)
. We say that

H = (V (H), E(H)) is an r-uniform hypergraph or r-graph for short, where V (H) is the

set of vertices and E ⊂
(
V (H)

r

)
is a family of r-sets of V (H). We say that H(V1, . . . , Vr)

is an r-partite r-graph, if there is a partition of V (H) into r sets, i.e. V (H) = V1∪· · ·∪Vr

and every edge of H uses exactly one vertex from each Vi. We call it a balanced r-

partite graph if all Vi’s are of the same size. Furthermore H(V1, . . . , Vr) is a complete

r-partite r-graph if every r-tuple that uses one vertex from each Vi belongs to E(H).

We denote a complete balanced r-partite r-graph by K(r)(t), where t = |Vi|. When

the graph referred to is clear from the context we will use V instead of V (H) and will

identify H with E(H). A matching in H is a set of disjoint edges of H and a perfect

matching is a matching that contains all vertices. For U ⊂ V , H|U is the restriction of

H to U .

For an r-graph H and a set D = {v1, . . . , vd} ∈
(
V
d

)
, 1 ≤ d ≤ r, the degree of D

in H, degH(D) = degr(D) denotes the number of edges of H that contains D. For

1 ≤ d ≤ r, let

δd = δd(H) = min
{

degr(D) : D ∈
(

V

d

)}
.

When H is an r-graph and A and B are disjoint subsets of V (H), for a vertex v ∈ A we

denote by degr(v,
(

B
r−1

)
) the number of (r− 1)-sets of B that make edges with v, while

dr(v,
(

B
r−1

)
) = degr(v,

(
B

r−1

)
)/

( |B|
r−1

)
denotes the density. For such A and B, er(A,

(
B

r−1

)
)
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is the sum of degr(v,
(

B
r−1

)
) over all v ∈ A while dr(A,

(
B

r−1

)
) =

er(A,( B
r−1))

|A|( |B|
r−1)

. We denote by

H(A,
(

B
r−1

)
) such a graph when all edges of H uses one vertex from A and r−1 vertices

from B. When A1, . . . , Ar are disjoint subsets of V , for a vertex v ∈ A1 we denote by

degr(v, (A2×· · ·×Ar)) the number of edges in the r-partite r-graph induced by subsets

{v}, A2, . . . , Ar, and e(A1, (A2 × · · · × Ar)) is the sum of degr(v, (A2 × · · · × Ar)) over

all v ∈ A1. Similarly

dr(A1, (A2 × · · · ×Ar)) =
e(A1, (A2 × · · · ×Ar))
|A1 ×A2 × · · · ×Ar|

An r-graph H on n vertices is η-dense if it has at least η
(
n
r

)
edges. We use the notation

dr(H) ≥ γ to refer to an η-dense r-graph H. For U ⊂ V , for simplicity we refer to

dr(H|U ) as dr(U) and to E(H|U ) as E(U). Throughout the thesis log denotes the base

2 logarithm. Moreover we will only deal with r-graphs on n vertices where n = rk for

some integer k, we denote this by n ∈ rZ

Definition 1. Let d, r and n be integers such that 1 ≤ d < r, and n ∈ rZ. Denote by

md(r, n) the smallest integer m, such that every r-graph H on n vertices with δd(H) ≥ m

contains a perfect matching.

For graphs (r = 2), by the Dirac theorem on Hamiltonicity of graphs, it s easy

to see that m1(2, n) ≤ n/2, and since the complete bipartite Kn/2−1,n/2+1 does not

have a perfect matching we get m1(2, n) = n/2. For r ≥ 3 and d = r − 1, it follows

from a result of Rödl, Ruciński and Szemerédi on Hamiltonicity of r-graph [32] that

mr−1(r, n) ≤ n/2 + o(n). Kühn and Osthus [27] improved this result to mr−1(r, n) ≤

n/2 + 3r2
√

n log n. This bound was further sharpened in [31] to mr−1(r, n) ≤ n/2 +

C log n. In [33] the bound was improved to almost the true value, it was proved that

mr−1(r, n) ≤ n/2 + r/4. Finally [34] settled the problem for d = r − 1.

The case d < r − 1 is rather hard, in [29] it is proved that for all d ≥ r/2, md(r, n) is

close to 1
2

(
n−d
r−d

)
. For 1 ≤ d < r/2 in [26] it was proved that

md(r, n) ≤
(

r − d

r
+ o(1)

) (
n− d

r − d

)
A recent survey of these and other related results appear in [35]. In [26] the authors

posed the following conjecture.
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Conjecture 2 ([26]). For all 1 ≤ d < r/2,

md(r, n) ≤ max

{
1
2
, 1−

(
r − 1

r

)r−d
}(

n− d

r − d

)
Note that for r = 3 and d = 1 the above bound yields

m1(3, n) ≤ 5
9

(
n− 1

2

)
The authors of [26] proved an approximate version of their conjecture for the case r = 3

and d = 1 they showed that m1(3, n) ≤
(

5
9 + η

) (
n
2

)
for large n and some constant η > 0.

In this chapter we settle this conjecture for the case r = 3 and d = 1. Parallel

to this work, independently Kühn, Osthus and Treglown [28] proved the same result.

We believe our techniques are more general and have many other applications. In our

subsequent work we use similar techniques to prove the conjecture for the case r = 4

and d = 1 as well. Our main result in this chapter is the following theorem.

Theorem 18. There exist an integer n0 such that if H is a 3-graph on n ≥ n0 (n ∈ 3Z)

vertices, and

δ1(H) ≥
(

n− 1
2

)
−

(
2n/3

2

)
+ 1 (3.1)

then H has a perfect matching.

On the other hand the following construction from [26] shows that the result is best

possible.

Construction 1. Let H = (V (H), E(H)) be a 3-graph on n (n ∈ 3Z) vertices, such

that V (H) is partitioned into A and B, |A| = n
3 − 1 and |B| = n− |A| and E(H) is the

set of all 3-sets of V (H), T , such that |T ∩A| ≥ 1 (see Figure 4.1)

We have δ1(H) =
(
n−1

2

)
−

(
2n/3

2

)
(the degree of a vertex in B) but since every edge in

a matching must use at least one vertex from A, the maximum matching in this graph

is of size |A| = n
3 − 1

3.1.1 Outline of the proof

We distinguish two cases to prove Theorem 25. When H is far from the extremal

example as in Construction 2 we use the absorbing technique to find a perfect matching
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|A| = n
3 − 1

|B| = 2n
3 + 1

Figure 3.1: The extremal example: Every edge intersects the set A.

in H. On the other hand when H is close to to the extremal example we use a simple

König-Hall type argument to find a perfect matching. We say that H is α-extremal for

a constant 0 < α < 1, if the following is satisfied, otherwise it is non-extremal.

Definition 2 (Extremal Case with parameter α). There exists B ⊂ V (H) such that

• |B| ≥ (2
3 − α)n

• d3(B) < α.

In the non-extremal case we use the absorbing lemma (Lemma 34) which roughly states

that in H there exist a small matching M with the property that every “not too large”

subset of vertices can be absorbed into this matching. In Section 4.4 using the tools

developed in section 4.2 we find an ‘almost perfect matching’ in H|V \V (M). The left

over vertices are absorbed into M to get a perfect matching in H. Finally in section

4.5 we build a perfect matching when our graph is α-extremal.

3.2 Tools

We use the following result from [25] which is a hypergraph extension of the Kővári-Sós-

Turán theorem [17] to find complete balanced r-partite subhypergraphs of r-graphs.

Lemma 19. For every integer l ≥ 1 there is an integer n0 = n0(r, l) such that: Every

r-graph on n > n0 vertices, that has at least nr−1/lr−1
edges, contains a K(r)(l).
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In particular Lemma 28 implies that for η > 0 and a sufficiently small constant β, if H

is a 3-graph on n > n0(η, β) vertices with

|E(H)| ≥ η

(
n

3

)
then H contains a K(3)(t), where

t = β
√

log n.

This is so because η
(
n
3

)
≥ n3

n1/β2 log n
= n3

21/β2 , when η > 6

21/β2 .

We use the following two easy observations that will, nevertheless, be useful later on.

Fact 20. If G(A,B) is an η-dense bipartite graph, then there must be at least η|B|/2

vertices in B for which the degree in A is at least η|A|/2.

Indeed, otherwise the total number of edges would be less than

η

2
|A||B|+ η

2
|A||B| = η|A||B|

a contradiction to the fact that G(A,B) is η-dense.

Fact 21. If G(A,B) is a bipartite graph, |A| = c1 log n, |B| = c2n and for every vertex

b ∈ B deg(b, A) ≥ η|A|/2, then we can find a complete bipartite subgraph G′(A′, B′) of

G such that A′ ⊂ A,B′ ⊂ B, |A′| ≥ η|A|/2 and |B′| ≥ c2n
(1−c1).

To see this consider the neighborhoods in A, of the vertices in B. Since there can

be at most 2|A| = nc1 such neighborhoods, by averaging there must be a neighborhood

that appears for at least c2n
nc1 = c2n

(1−c1) vertices of B. This means that we can find

the desired complete bipartite graph.

The following two facts are repeatedly used in section 4.4.

Fact 22. Let H(X, Y, Z) be a 3-partite 3-graph with |X| = |Y | = c1m and |Z| = c22m2

for some constants 0 < c1, c2 < 1. If d3(Z, (X×Y )) ≥ η, then there exists a complete 3-

partite 3-graph H ′(X ′, Y ′, Z ′) as a subgraph of H, such that |X ′| = |Y ′| = |Z ′| = c log m,

where c = c(η, c1) > 0.
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This can be seen by applying Fact 26 on H to get a subset Z1 of Z such that for

every vertex z ∈ Z1, deg3(z, (X × Y )) ≥ η|X||Y |/2 and |Z1| ≥ η|Z|/2. Now consider

the auxiliary bipartite graph G(A,Z1), where A = X × Y and a vertex z ∈ Z1 is

connected to a pair (a, b) ∈ A if (a, b, z) makes an edge of H. An application of

Fact 27 on G gives a complete bipartite graph G2(A′, Z ′
1) where |A′| ≥ η|X||Y |/2 and

Z ′
1 ≥ c2η

2 2m2(1−c21) > |X| when m is sufficiently large. Let G3 be a bipartite graph

where the color classes are X and Y and edges correspond to pairs in A′. Applying

Lemma 28 on G3 (r = 2), we get a complete bipartite graph in G3 with color classes

X ′ and Y ′, such that |X ′| = |Y ′| ≥ c log m. Clearly X ′, Y ′ and a subset of Z ′
1 of size

|X ′|, correspond to the color classes of required complete 3-partite 3-graph.

Fact 23. Let H = (A,
(
B
2

)
) be a 3-graph such that |A| = c1m, |B| = c22m2

, for some

constants 0 < c1, c2 < 1. If d3(A,
(
B
2

)
) ≥ η then there exists a complete 3-partite

3-graph H ′(A′, B′, B′′), with A′ ⊂ A, B′ and B′′ are disjoint subsets of B such that

|A′| = |B′| = |B′′| = η|A|/2.

To see this first apply Fact 26 to get a subset of pairs of vertices in B, P1 ⊂
(
B
2

)
,

such that every pair in P1 makes edges with at least η|A|/2 vertices in A and |P1| ≥

η
(|B|

2

)
/2 ≥ η|B|2/5. Next we find a P2 ⊂ P1, such that all pairs in P2 make edges with

the same subset of A (say A′ ⊂ A). By Fact 27 we have

|P2| ≥
η|B|2/5

2c1m
=

η

5
(c22m2

)2

2c1m
=

c2
2η

5
2m2(2−c1/m) =

c2
2η

5

(
|B|
c2

)2−c1/m

≥ |B|2−2/η|A|

where the last inequality follows when m is sufficiently large and η, c1 and c2 are small

constants. Now construct an auxiliary graph G1 where V (G1) = B and edges of G

corresponds to pairs in P2. Applying lemma 28 on G1 (for r = 2) we get a complete

bipartite graph with color classes B′ and B′′ each of size η|A|/2. Clearly A′, B′, and B′′

corresponds to color classes of a complete 3-partite 3-graph in H as in the statement

of the fact.

Finally we use the following lemma from [26].

Lemma 24. (Absorbing Lemma) For every η > 0, there is an integer n0 = n0(η) such

that if H is a 3-graph on n ≥ n0 vertices with δ1(H) ≥ (1/2 + 2η)
(
n
2

)
, then there exist
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a matching M in H of size |M | ≤ η3n such that for every set W ⊂ V \ V (M) of size

at size at most η6n ≥ |W | ∈ 3Z, there exists a matching covering exactly the vertices

in V (M) ∪W .

3.3 The Non Extremal Case

Throughout this section we assume that we have a 3-graph H satisfying (4.1) such that

the extremal case does not hold for H. We shall assume that n is sufficiently large and

besides our main parameter γ we use the parameters β and α such that following holds

6
21/β2 < γ = α3 � 1 (3.2)

where a � b means that a is sufficiently small compared to b. From (4.1) and (4.2),

when n is large we have

δ1(H) ≥
(

n− 1
2

)
−

(
2n/3

2

)
+ 1 >

5
9

(
n− 1

2

)
− n

3
> (1/2 + 2

√
α)

(
n

2

)
.

Hence our hypergraph H satisfies the conditions of Lemma 34 (the absorbing lemma).

We remove from H an absorbing matching M of size at most α3/2n =
√

γn. In the

remaining hypergraph we find an almost perfect matching that leaves out a set of at

most α3n = γn vertices. As guaranteed by Lemma 34 the vertices that are left out

from the almost perfect matching can be absorbed into M , therefore we get a perfect

matching in H. In what follows we work with the remaining hypergraph (after removing

V (M)). For simplicity we still denote the remaining hypergraph by H and assume that

it is on n vertices. Since
(|V (M)|

2

)
≤

(3
√

γn
2

)
< 5γn2 it is easy to see that in the remaining

hypergraph we still have

δ1(H) ≥
(

5
9
− 10γ

) (
n

2

)
(3.3)

3.3.1 The optimal cover

Our goal is to find an almost perfect matching in H. In fact we are going to build a

cover T = {T1, T2, . . .} where each Ti is a disjoint balanced complete 3-partite 3-graphs

in H (we refer to them as tripartite graphs). We say that such a cover is optimal if

it covers at least (1 − γ)n vertices. We will show that either we can find an optimal
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cover or H is α-extremal. It is easy to see that such an optimal cover readily gives us

an almost perfect matching.

We begin with a cover T obtained by repeatedly applying Lemma 28 in the leftover

of H as long as there are at least γn vertices left and the condition of Lemma 28 is

satisfied, to get disjoint K(3)(t)’s where t = β
√

log n. When the condition of Lemma 28

is no more satisfied then using the procedure outlined below we will increase the size

of our cover. We will show that we can build an optimal cover unless H is α-extremal.

We identify by T the set of tripartite graphs in the cover T , while V (T ) denotes the

union of vertices in tripartite graphs in T (the size of the cover). We refer to a subset of

tripartite graphs in T as a subcover in T . Let I = V (H)\V (T ) be the set of remaining

vertices. Our goal is to show if H is non-extremal then either |I| < γn (meaning the

cover is optimal) or we can increase the size of our cover by at least γ2n/8 vertices.

Assume that |I| ≥ γn then we must have

d3(I) < γ (3.4)

Indeed otherwise by Lemma 28 we can find disjoint complete tripartite graphs in H|I

that cover at least γ|I|/2 > γ2n/8 vertices, and adding these tripartite graphs to T

increases the size of our cover by at least γ2n/8.

I

V i
1 V i

2 V i
3

Ti

Figure 3.2: Ti is at least 2-sided to I

Let Ti = (V i
1 , V i

2 , V i
3 ) be a tripartite graph in T we say that a color class, V i

l of Ti,

(1 ≤ l ≤ 3), is connected to I, if d3(V i
l ,

(I
2

)
) ≥ γ. For 1 ≤ k ≤ 3, we say that Ti is k-sided

if k color classes of Ti are connected to I. We will show that most of the tripartite graphs
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in T are at most 1-sided to I or we can increase the size of our cover by at least γ2n/8

vertices. To see this assume that we have a subcover T ′ ⊂ T , such that each Ti ∈ T ′ is

at least 2-sided to I and |V (T ′)| ≥ γn. Let T ′ = {T1, T2, . . .} ⊂ T and without loss of

generality, say V i
1 and V i

2 are the color classes in each Ti that are connected to I. For

each such Ti, since |V i
1 | = |V i

2 | ≤ β
√

log n = βm and |I| ≥ γn ≥ γ2m2
from Fact 29 we

can find two disjoint balanced complete tripartite graphs (U i
1, A

i
1, B

i
1) and (U i

2, A
i
2, B

i
2)

where U i
1 and U i

2 are subsets of V i
1 and V i

2 respectively, and Ai
1, A

i
2, B

i
1 and Bi

2 are

disjoint subsets of I. The size of each color class of these tripartite graphs is γ|V i
1 |/8 (see

Figure 3.2) We remove the vertices of these new tripartite graphs from their respective

sets and add the tripartite graphs to our cover. Removing these vertices from V i
1 and

V i
2 creates an imbalance in the leftover part of Ti (V i

3 has more vertices). To restore the

balance in the leftover of Ti we discard (add to I) some arbitrary |U i
1| = |U i

2| = γ|V i
1 |/8

vertices from V i
3 . The new tripartite graphs use at least 2|Ai

1|+2|Bi
1| = γ|V i

1 |/2 vertices

from I even after discarding the vertices from V i
3 the net increase in the size of our cover

is 3γ|V i
1 |/8, while all the tripartite graphs in T are balanced. Repeating this procedure

for all tripartite graphs in T ′ we will increase the size of our cover by at least 3γ2n/8

vertices, because |V (T ′)| ≥ γn. Therefore, we assume that the number of vertices in

the at least 2-sided tripartite graphs is at most γn. Note that this implies that for a

typical vertex v ∈ I we have deg3(v, I × V (T )) ≤ (1/3 + 3γ)|I||V (T )|.

From (4.3), (4.4) and the fact that almost all tripartite graphs are at most 1-sided,

we get that for a typical vertex v ∈ I we have

deg3

(
v,

(
V (T )

2

))
≥

(
5
9
− 10γ

) (
n

2

)
− deg3(v, I × V (T ))− deg3

(
v,

(
I
2

))
≥

(
5
9
− 10γ

) (
n

2

)
−

(
1
3

+ 3γ

)
|I||V (T )| − γ

(
|I|
2

)
≥

(
5
9
− 38γ

) (
|V (T )|

2

)
where the last inequality holds when |I| ≥ γn and γ is a small constant. Similar

calculation using (4.3), (4.4) and the fact that almost all tripartite graphs are at most

1-sided yields that |V (T )| ≥ 2n/3.

For a vertex v, consider the edges that v makes with pairs of vertices within the
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tripartite graphs. Since the number of pairs of vertices of any tripartite graph Ti ∈ T

is O(log n), the total number of pairs of vertices within the tripartite graphs in T is

O(n log n) = o
(
n
2

)
. Therefore we ignore these edges and for any vertex v we will only

consider the edges that v makes with pairs of vertices (x, y), x ∈ V (Ti), y ∈ V (Tj), i 6=

j. By the above observation, for the minimum degree of a typical vertex v ∈ I we still

have

deg3

(
v,

(
V (T )

2

))
≥

(
5
9
− 40γ

) (
|V (T )|

2

)
(3.5)

Let Ti = (V i
1 , V i

2 , V i
3 ) and Tj = (V j

1 , V j
2 , V j

3 ) be two tripartite graphs in T , we say that

I is connected to a pair of color classes (V i
p , V j

q ), 1 ≤ p, q ≤ 3, if d3(I, (V i
p × V j

q )) ≥ γ.

For k ∈ {1, . . . , 9} we say I is k-connected to a pair of tripartite graphs (Ti, Tj) ∈
(T

2

)
if

I is connected to k pairs of color classes (V i
p , V j

q ), 1 ≤ p, q ≤ 3. Denote by s(I, (Ti, Tj))

the largest value of k for which I is k-connected to (Ti, Tj). For a constant η > 0 we

say that I is (η, k)-connected to T if there exists a subcover T ′ ⊂ T such that

• |V (T ′)| ≥ ηn and let T ′ = {T ′
1, T

′
2, . . .}

• for each Ti ∈ T ′ we have another subcover T̂i ⊂ T , (not necessarily disjoint from

T ′ and other T̂p’s) such that if T̂i = {Ti1 , Ti2 , . . .} then for each Tij ∈ T̂i we have

s(I, (Ti, Tij )) = k and |V (T̂i)| ≥ ηn.

Note that if I is (η, k)-connected to T then by a simple greedy procedure we can find a

set of disjoint pairs of tripartite graphs, P ⊂
(T

2

)
, such that for the each pair (T p

i , T p
j ) ∈

P, (1 ≤ p ≤ |P|), we have s(I, (T p
i , T p

j )) = k and if mp = min{|V (T p
i )|, |V (T p

j )|} then∑
p mp ≥ ηn/2. We refer to the value

∑
p mp as the size of P. Furthermore on average

for a pair of tripartite graphs (Ti, Tj) we have s(I, (Ti, Tj)) ≥ 5, because by (4.5) on

average for (Ti, Tj) ∈
(T

2

)
we have d3(I, (V (Ti) × V (Tj))) ≥ (5/9 −√

γ) > (4/9 + 5γ).

This implies that if I is (
√

γ,≤ 4)-connected to T , then we also have that I is (2γ,≥ 6)-

connected to T .

For Ti = (V i
1 , V i

2 , V i
3 ) and Tj = (V j

1 , V j
2 , V j

3 ), define vij
1 (respectively vji

1 ) to be the

number of color classes V j
q ’s in Tj (respectively V i

p ’s in Ti) such that I is connected

to (V i
1 , V j

q ) ( respectively (V j
1 , V i

q )). Similarly we define vij
2 and vij

3 (vji
2 and vji

3 ). For
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a fixed pair (Ti, Tj) we assume that vij
1 ≥ vij

2 ≥ vij
3 (vji

1 ≥ vji
2 ≥ vji

3 ). Note that

when s(I, (Ti, Tj)) ≥ 6 then we must have vij
1 ≥ vij

2 ≥ 2. On the other hand when

s(I, (Ti, Tj)) = 5 then we could either have vij
1 ≥ vij

2 ≥ 2 or vij
1 = 3 and vij

2 = vij
2 = 1.

We will consider the following cases based on the way I is connected to T and show

that either we can increase the size of our cover by at least γ2n/8 vertices or H is

extremal.

Case 1: There exists a set of disjoint pairs of tripartite graphs P ⊂
(T

2

)
of size at least

γn and for each pair (Ti, Tj) ∈ P we have s(I, (Ti, Tj)) ≥ 5 with vij
1 , vij

2 ≥ 2.

In this case we increase the size of our cover as follows. For each pair (Ti, Tj) ∈ P, if

both vij
3 ≥ 1 and vji

3 ≥ 1 then it is easy to see that we can match each color class of Ti

with a distinct color class of Tj such that the matched pairs are connected to I. Without

loss of generality assume that I is connected to (V i
1 , V j

1 ), (V i
2 , V j

2 ) and (V i
3 , V j

3 ). Note

that by the definition of connectedness the 3-partite subhypergraph of H induced by

(V i
1 , V j

1 , I) satisfies the conditions of Fact 22. Hence by Fact 22 we can find a complete

balanced tripartite graph T1 = (U i
1, U

j
1 , I1) , such that

I1 ⊂ I, U i
1 ⊂ V i

1 , U j
1 ⊂ V j

1 and |I1| = |U i
1| = |U j

1 | = c log m

where m = min{|V i
1 |, |V

j
1 |} and c is as in Fact 22. Similarly, we can find such complete

balanced tripartite graphs T2 and T3 in (V i
2 , V j

2 , I) and (V i
3 , V j

3 , I) respectively, that

are disjoint from each other since |I| ≥ γn (see Figure 3.3(a)). We remove the vertices

in T1, T2 and T3 from their respective sets and add these three new tripartite graphs to

our cover. In the remaining part of Ti and Tj we remove another such set of 3 disjoint

tripartite graphs. Again by definition of connectedness and Fact 22 we can continue

this process until we remove at least γm/2 vertices from each color class of Ti and Tj .

Note the new tripartite graphs use 3γm/2 vertices from I. Therefore adding these new

tripartite graphs to our cover increases the size of the cover by 3γm/2 vertices while

keeping the cover balanced.

On the other hand, if for a pair (Ti, Tj) ∈ P either vij
3 or vji

3 = 0 (both cannot be

0 because otherwise s(I, (Ti, Tj)) ≤ 4) then we deal with this pair as follows. Say
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I

V j
3

V j
2

V j
1V i

1

V i
2

V i
3

Ti Tj

(a) There is a perfect matching

I

V j
3

V j
2

V j
1V i

1

V i
2

V i
3

Ti Tj

(b) There is a pseudo-matching

Figure 3.3: Shaded rectangles represent pairs connected to I: Triangles represent complete tripartite
graphs.

vij
3 = 0, since s(I, (Ti, Tj)) ≥ 5 we must have vij

1 = 3, vij
2 ≥ 2, vji

1 , vji
2 ≥ 2 and vji

3 ≥ 1.

Since vij
2 ≥ 2, assume without loss of generality that I is connected to (V i

2 , V j
1 ) and

(V i
2 , V j

2 ), then as above applying Fact 22 we find the following four disjoint complete

tripartite graphs: (V i
11, V

j
31, I1), (V i

22, V
j
12, I2), (V i

13, V
j
23, I3) and (V i

24, V
j
24, I4) such that

for 1 ≤ p ≤ 3 and 1 ≤ q ≤ 4, Iq, V
i
pq and V j

pq are disjoint subsets of I, V i
p and V j

p

respectively. For the sizes of these new tripartite graphs we have

|I1| = |I2| = |V i
11| = |V j

31| = |V i
22| = |V j

12| = 2c log m/3

and

|I3| = |I4| = |V i
13| = |V j

23| = |V i
24| = |V j

24| = c log m/3

where m = min{|V i
1 |, |V

j
1 |} and c is as in Fact 22 (see Figure 3.3(b)). In the remaining

part of Ti and Tj we remove another such set of 4 disjoint tripartite graphs. Again by

definition of connectedness and Fact 22 we can continue this process until we remove

at least γm/2 vertices from each V i
1 and V i

2 . Note that when we remove the vertices of
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these new tripartite graphs from their respective color classes in Ti and Tj , the remaining

part of Tj is still balanced while it creates an imbalance in the remaining part of Ti, as

V i
3 is larger than then the other two color classes. To restore the balance we discard

(add to I) an arbitrary subset of vertices in V i
3 (of size equal to the imbalance). Still

in this process the net increase in the number of vertices in the cover is γm/2.

We proceed in similar manner for all pairs in P and increase the size of the cover by

at least γ2n/2 vertices (as the size of P is at least γn) while keeping all the tripartite

graphs in the cover balanced. Note that since n is sufficiently large the size of each

tripartite graph is still large enough.

Case 2: There is no such P

In this case we must have that I is not (
√

γ, 4)-connected to T because otherwise, as

noted above, there will be a set of disjoint pairs of tripartite graphs P ⊂
(T

2

)
of size at

least γn, such that for each pair (Ti, Tj) ∈ P we have s(I, (Ti, Tj)) ≥ 6 and such a P

satisfies the conditions of case 1.

Therefore we must have that for ‘almost all’ pairs (Ti, Tj) ∈
(T

2

)
we have s(I, (Ti, Tj)) =

5 and vij
1 = vji

1 = 3, vij
2 = vji

2 = vij
3 = vji

3 = 1. Call a tripartite graph Ti ∈ T good if for

almost all other tripartite graphs Tj (covering ≥ (1 − 20
√

γ)|V (T )| vertices), we have

s(I, (Ti, Tj)) = 5 such that vij
1 = vji

1 = 3, vij
2 = vji

2 = vij
3 = vji

3 = 1. Note that by the

above observation and since the condition of Case 1 is not satisfied almost all tripartite

graphs (covering ≥ (1− 20
√

γ)|V (T )| vertices) are good. Now by a simple greedy pro-

cedure we match every good tripartite graph Ti with another distinct tripartite graph

Tj such that they have the above connectivity structure. Let the set of these disjoint

pairs be Pg and the set of tripartite graphs in Pg be Tg.

For every (Ti, Tj) ∈ Pg applying Fact 22 we find the following four disjoint complete

tripartite graphs: (V i
11, V

j
21, I1), (V i

22, V
j
12, I2), (V i

13, V
j
33, I3), and (V i

24, V
j
34, I4) such that

for 1 ≤ p ≤ 3 and 1 ≤ q ≤ 4, Ip, V i
pq and V j

pq are disjoint subsets of I, V i
p and V j

p

respectively. The size of each color class in these tripartite graphs is c log m where

m = min{|V i
1 |, |V

j
1 |} and c is as in Fact 22. As argued above we repeat this process
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until in total we use γ2m vertices each from V i
1 and V j

1 while γ2m/2 vertices from each

of the other color classes. We do this such that we use up as close as possible to γ2m/2

vertices each in V i
2 and V i

3 .

Note that in the new tripartite graphs in total we used 2γ2m vertices from I. Re-

moving these new tripartite graphs creates an imbalance among the color classes of

the remaining part of Ti and Tj , to restore the balance we will have to discard γ2m/2

vertices from each color class of Ti and Tj except V i
1 and V j

1 . Which leaves us with

no net gain in the size of the cover. Therefore we will not discard any vertices from

these color classes at this time and say that these color classes have extra vertices. We

proceed in similar manner for each pair in Pg.

Let V g
1 , V g

2 , V g
3 be the union of the corresponding color classes of remaining parts of

tripartite graphs in Tg. By the above observation on the good tripartite graphs and

since the number of vertices used from V g
2 and V g

3 in the newly made tripartite graphs

above is at most γ2n we have |V g
2 | = |V g

3 | ≥ (1− 20
√

γ)|V (T )|/3− γ2n. We will show

that either we can increase the size of our cover or we have

d3(V
g
2 ∪ V g

3 ) ≤ √
γ. (3.6)

For d3(V
g
2 ∪ V g

3 ), we consider only those edges that use exactly one vertex from a tri-

partite graph Ti, as the number of edges of other types is at most o(n3). Assume that

d3(V
g
2 ∪V g

3 ) ≥ √
γ then by Lemma 28 there exist balanced complete tripartite 3-graphs

in H|V g
2 ∪V g

3
covering at least γn vertices. We remove some of these new tripartite

graphs (possibly with splitting and discarding part of them) so that from no color class

we remove more then the number of extra vertices in that color class. Now adding

these new tripartite graphs to our cover, significantly increases the size of our cover.

As we will not need to discard vertices from V g
2 ∪V g

3 for rebalancing. Instead the extra

vertices are part of these new tripartite graphs. In the remaining parts of V g
2 and V g

3

we arbitrarily remove some extra vertices to restore the balance in the tripartite graphs.
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Similarly we will show that either we can increase the size of our cover or we have

d3(V
g
2 ∪ V g

3 ,

(
I
2

)
) ≤ √

γ. (3.7)

Indeed assume the contrary, i.e. d3(V
g
2 ∪V g

3 ,
(I
2

)
) ≥ √

γ, then since both |I| and |V g
2 ∪V g

3 |

are at least γn, by Lemma 28 we can find disjoint complete tripartite graphs with one

color class in V g
2 ∪ V g

3 and two color classes in I covering at least γ2n/2 vertices. And

again as above we can add these tripartite graphs and increase the size of our cover as

we have extra vertices in V g
2 ∪ V g

3 .

From the above observations about the size of V g
2 and V g

3 and (4.2) we have that

|V g
2 ∪ V g

3 ∪ I| ≥ (2/3 − α)n. Therefore if we can not increase the size of our cover

significantly (by at least γn/8 vertices), then by (4.4), (3.6) and (3.7) we get that

d3(V
g
2 ∪ V g

3 ∪ I) < 10
√

γ < α. Hence H is α-extremal.

3.4 The Extremal Case

Here our graph H is in the Extremal Case, i.e. there exists a B ⊂ V (H) such that

• |B| ≥ (2
3 − α)n

• d3(B) < α.

We assume that n is sufficiently large and α is a sufficiently small constant < 1. Let

A = V (H) \ B, by shifting some vertices between A and B we can have that A = n/3

and B = 2n/3 as n ∈ 3Z (we still keep the notation A and B). It is easy to see that

we still have

d3(B) < 6α (3.8)

Since we have

δ1(H) ≥
(

n− 1
2

)
−

(
2n/3

2

)
+ 1 =

(
n− 1

2

)
−

(
|B|
2

)
+ 1

together with (4.8) this implies that almost all 3-sets of V (H) are edges of H except

3-sets of B. Thus roughly speaking we have that almost every vertex b ∈ B makes edges

with almost all pairs of vertices in
(
A
2

)
and with almost all pairs of vertices in B\{b}×A
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and vice versa. Therefore, we will basically match every vertex in A with a distinct pair

of vertices in
(
B
2

)
to get the perfect matching. However some vertices may be ‘atypical’,

in the sense that they may not have this connectivity structure hence we will first find

a small matching that covers all such ‘atypical’ vertices. For the remaining ‘typical’

vertices we will show that they satisfy the conditions of König-Hall theorem, hence we

will match every remaining vertex in A with a distinct pair of remaining vertices in B.

A vertex a ∈ A is called exceptional if it does not make edges with almost all pairs

of vertices in B, more precisely if

deg3

(
a,

(
B

2

))
<

(
1−

√
α
) (

|B|
2

)
A vertex a ∈ A is called strongly exceptional if it makes edges with very few pairs in B,

more precisely if

deg3

(
a,

(
B

2

))
< α1/3

(
|B|
2

)
Similarly a vertex b ∈ B is called exceptional if it does not make edges with almost all

pairs of vertices (bi, aj) : b 6= bi ∈ B and aj ∈ A, more precisely if

deg3(b, (B \ {b} ×A)) < (1−
√

α)|A|(|B| − 1)

A vertex b ∈ B is called strongly exceptional if it makes edges with very few pairs of

vertices (bi, aj) : b 6= bi ∈ B and aj ∈ A, more precisely if

deg3(b, (B \ {b} ×A)) < α1/3|A|(|B| − 1)

Denote the set of exceptional and strongly exceptional vertices in A (and B) by XA

and SXA respectively (similarly XB and SXB). From (4.1) and (4.8) there are few

vertices in XA (and XB) and very few vertices in SXA (and SXB). More Precisely

we have that |XA| ≤ 18
√

α|A| and |XB| ≤ 18
√

α|B| and for the strongly exceptional

sets we have |SXA| ≤ 40α|A| and |SXB| ≤ 40α|B|. The constants are not the best

possible but we choose them for ease of calculation. We will only show the bound on

|XB| similar computation yields the bounds on |XA|, |SXA| and |SXB|. Assume that

|XB| ≥ 18
√

α|B|. Note that by (4.1) and the definition of XB, for a vertex b ∈ XB, we
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have deg3

(
b,

(
B
2

))
≥
√

α|A|(|B| − 1)/2. Therefore for the number of edges inside B we

have

3|E(B)| ≥ |XB|·
√

α|A|(|B|−1)/2 ≥ 9
√

α|B|·
√

α|A|(|B|−1) ≥ 9α|B|(|B|−1)|A| ≥ 27α

(
|B|
3

)
where the last inequality uses |A| = |B|/2 and since an edge can be counted at most 3

times we use 3|E(B)|. Note that this implies that d3(B) > 9α a contradiction to (4.8).

If we have both SXB and SXA non empty, (say b ∈ SXB and a ∈ SXA) then since

by definition deg3(a,
(
B
2

)
) < α1/3

(|B|
2

)
, from (4.1) we must have deg3(a,A \ {a} ×B) ≥

(1−2α1/3)(|A|−1)|B|, (similar bound holds for b). Therefore we can exchange a with b

and reduce the size of both SXB and SXA, as both a and b are not strongly exceptional

in their new sets. Hence one of the sets SXA and SXB must be empty.

Assume SXB 6= ∅. As observed above by the minimum degree condition and defini-

tion of SXB, for every vertex b ∈ SXB, we have deg3(b,
(
B
2

)
) ≥ (1−2α1/3)

(|B|−1
2

)
. This

together with the bound on the size of SXB implies that we can greedily find |SXB|

vertex disjoint edges in H|B each containing exactly one vertex of SXB. We also select

|SXB| other vertex disjoint edges such that each edge has a vertex in B \XB and the

two other vertices are in A. We can clearly find such edges because by (4.1) and (4.8)

almost every vertex in B \XB makes edges with at least (1−2
√

α)
(|A|

2

)
pairs of vertices

in A (as otherwise d3(B) will be very large). We remove the vertices of these edges

from A and B and denote the remaining set by A′ and B′. Let |A′|+ |B′| = n′, by the

above procedure we have n′ = n−6|SXB|, |A′| = |A|−2|SXB| and |B′| = |B|−4|SXB|

hence we get |B′| = 2|A′| = 2n′/3.

In case SXA 6= ∅ (and SXB = ∅), we will first eliminate the vertices in SXA. Note

that in this case any vertex b ∈ B is exchangeable with any vertex in SXA, because if

there is a vertex b ∈ B such that deg3(b,
(
B
2

)
) ≥ α1/3

(|B|
2

)
then we can replace b with any

vertex a ∈ SXA to reduce the size of SXA (as the vertex b is not strongly exceptional

and a can not be strongly exceptional in the set B). Therefore we consider the whole

set SXA ∪B. By (4.1) for any vertex v ∈ SXA ∪B we have

deg3

(
v,

(
SXA ∪B

2

))
≥ (|SXA| − 1)|B|+ 1 ≥

(
3(|SXA| − 1)

2

)
+ 1
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where the last inequality holds when n is large enough. So with a simple greedy

procedure we find |SXA| disjoint edges in H|SXA∪B and remove these edges from

H. Note that this is the only place where we critically use the minimum degree.

We let A′ = A \ SXA and B′ has all other remaining vertices. Again as above we

have n′ = n − 3|SXA|, |A′| = |A| − |SXA| and |B′| = |B| − 2|SXA| hence we get

|B′| = 2|A′| = 2n′/3.

Having dealt with the strongly exceptional vertices, the vertices of XA and XB in

A′ and B′ can be eliminated using the fact that their sizes are much smaller than

the crossing degrees of vertices in those sets. For instance as observed above we have

|XA| ≤ 18
√

α|A| while for any vertex a ∈ XA, we have that deg3(a,
(
B′

2

)
) ≥ α1/3

(|B′|
2

)
/2

(because a /∈ SXA). Therefore by a simple greedy procedure, using the fact that

α1/3
(|B′|

2

)
/2 is much larger than 54

√
α|A||B′|, for each a ∈ XA we delete an edge that

contains a and two vertices from B′. Similarly for each b ∈ XB we delete an edge

that contains b and uses one vertex from A′ and the other vertex from B′ distinct from

b. Clearly we can find such disjoint edges, hence we removed a partial matching that

covers all vertices in the strongly exceptional and exceptional sets.

Finally in the leftover sets of A′ and B′ (denote them by A′′ and B′′, by construction

we still have |B′′| = 2|A′′|) we will find |A′′| disjoint edges each using one vertex in A′′

and two vertices in B′′. Note that for every vertex a ∈ A′′ we have deg3(a,
(
B′′

2

)
) ≥

(1 − 2α1/3)
(|B′′|

2

)
(as a /∈ XA). We say that two vertices bi, bj ∈ B′′ are good for each

other if (bi, bj , ak) ∈ E(H) for at least (1− 40α1/4)|A′′| vertices ak in A′′. We have that

any vertex bi ∈ B′′ is good for at least (1− 40α1/4)|B′′| other vertices in B′′ (again this

is so because bi /∈ XB).

We randomly select a set P1 of 100α1/4|B′′| vertex disjoint pairs of vertices in B′′.

By the above observation with high probability every vertex a ∈ A′′ make edges in

H with at least 3|P1|/4 pairs in P1 and every pair in P1 makes an edge with at least

3|A′′|/4 vertices in A′′. In B′′ \ V (P1) still every vertex is good for almost all other

vertices. We pair up each vertex of B′′ \ V (P1) with a distinct vertex in B′′ \ V (P1)

such that the paired vertices are good for each other. This can be done by considering
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a 2-graph with vertex set B′′ \ V (P1) and all the good pairs as its edges. A simple

application of Dirac theorem on this 2-graph gives such a perfect matching of vertices

in B′′ \ V (P1). Let the set of these pairs be P2.

Now construct an auxiliary bipartite graph G(L,R), such that L = A′′ and vertices

in R corresponds to the pairs in P1 and P2. A vertex in ak ∈ L is connected to a vertex

y ∈ R if the pair corresponding to y (say bi, bj) is such that (bi, bj , ak) ∈ E(H). We

will show that G(L,R) satisfies the König-Hall criteria. Considering the sizes of A′′

and P1 it is easy to see that for every subset Q ⊂ R if |Q| ≤ (1 − 40α1/4)|A′′| then

|N(Q)| ≥ |Q|. When |Q| > (1 − 40α1/4)|A′′| (using |B′′| = 2|A′′|) any such Q must

have at least 6|P1|/10 vertices corresponding to pairs in P1, hence with high probability

N(Q) = L ≥ |Q|. Therefore there is a perfect matching of R into L. This perfect

matching in G readily gives us a matching in H covering all vertices in A′′ and B′′,

which together with the edges we already removed (covering strongly exceptional and

exceptional vertices) is a perfect matching in H. �
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Chapter 4

Perfect Matchings in 4-uniform hypergraphs

4.1 Introduction and Notation

For graphs we follow the notation in [6]. For a set T , we refer to all of its k-element

subsets (k-sets for short) as
(
T
k

)
and the number of such k-sets as

(|T |
k

)
. We say that

H = (V (H), E(H)) is an r-uniform hypergraph or r-graph for short, where V (H) is the

set of vertices and E ⊂
(
V (H)

r

)
is a family of r-sets of V (H). When the graph referred

to is clear from the context we will use V instead of V (H) and will identify H with

E(H). For an r-graph H and a set D = {v1, . . . , vd} ∈
(
V
d

)
, 1 ≤ d ≤ r, the degree of

D in H, degH(D) = degr(D) denotes the number of edges of H that contain D. For

1 ≤ d ≤ r, let

δd = δd(H) = min
{

degr(D) : D ∈
(

V

d

)}
We say that H(V1, . . . , Vr) is an r-partite r-graph, if there is a partition of V (H) into

r sets, i.e. V (H) = V1 ∪ · · · ∪ Vr and every edge of H uses exactly one vertex from

each Vi. We call it a balanced r-partite r-graph if all Vi’s are of the same size. We say

H(V1, . . . , Vr) is a complete r-partite r-graph if every r-tuple that uses one vertex from

each Vi belongs to E(H). We denote a complete balanced r-partite r-graph by K(r)(t),

where t = |Vi|. For r = 3, we refer to the balanced 3-partite 3-graph H(V1, V2, V3),

where |Vi| = 4 as a 4× 4× 4 3-graph.

For an r-graph H, when A and B make a partition of V (H), for a vertex v ∈ A we

denote by degr

(
v,

(
B

r−1

))
the number of (r − 1)-sets of B that make edges with v

while er

(
A,

(
B

r−1

))
is the sum of degr

(
v,

(
B

r−1

))
over all v ∈ A and dr

(
A,

(
B

r−1

))
=

er

(
A,

(
B

r−1

))
/|A|

( |B|
r−1

)
. We denote by H

(
A,

(
B

r−1

))
, such an r-graph, when all edges

use one vertex from A and r − 1 vertices from B. Similarly H
(
A,B,

(
C

r−2

))
is an
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r-graph where A, B and C make a partition of V (H), and every edge in H uses one

vertex each from A and B and r − 2 vertices from C. Degrees of vertices in A and B

are similarly defined as above. The density of H
(
A,B,

(
C

r−2

))
is

dr

(
A,B,

(
C

r − 2

))
=

∣∣∣E (
H

(
A,B,

(
C

r−2

)))∣∣∣
|A||B|

( |C|
r−2

)
When A1, . . . , Ar make a partition of V (H), for a vertex v ∈ A1 we denote by degr(v, (A2×

· · ·×Ar)) the number of edges in the r-partite r-graph induced by subsets {v}, A2, . . . , Ar,

and e(A1, (A2×· · ·×Ar)) is the sum of degr(v, (A2×· · ·×Ar)) over all v ∈ A1. Similarly

dr(A1, (A2 × · · · ×Ar)) =
e(A1, (A2 × · · · ×Ar))
|A1 ×A2 × · · · ×Ar|

An r-graph H on n vertices is η-dense if it has at least η
(
n
r

)
edges. We use the

notation dr(H) ≥ η to refer to an η-dense r-graph H. For U ⊂ V , H|U is the restriction

of H to U . For simplicity we refer to dr(H|U ) as dr(U) and to E(H|U ) as E(U). A

matching in H is a set of disjoint edges of H and a perfect matching is a matching

that contains all vertices. Moreover we will only deal with r-graphs on n vertices where

n = rk for some integer k, we denote this by n ∈ rZ.

Definition 3. Let d, r and n be integers such that 1 ≤ d < r, and n ∈ rZ. Denote by

md(r, n) the smallest integer m, such that every r-graph H on n vertices with δd(H) ≥ m

contains a perfect matching.

For graphs (r = 2), by the Dirac theorem on Hamiltonicity of graphs, it s easy

to see that m1(2, n) ≤ n/2, and since the complete bipartite Kn/2−1,n/2+1 does not

have a perfect matching we get m1(2, n) = n/2. For r ≥ 3 and d = r − 1, it follows

from a result of Rödl, Ruciński and Szemerédi on Hamiltonicity of r-graph [32] that

mr−1(r, n) ≤ n/2 + o(n). Kühn and Osthus [27] improved this result to mr−1(r, n) ≤

n/2 + 3r2
√

n log n. This bound was further sharpened in [31] to mr−1(r, n) ≤ n/2 +

C log n. In [33] the bound was improved to almost the true value, it was proved that

mr−1(r, n) ≤ n/2 + r/4. Finally [34] settled the problem for d = r − 1.

The case d < r − 1 is rather hard, in [29] it is proved that for all d ≥ r/2, md(r, n) is
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close to 1
2

(
n−d
r−d

)
. For 1 ≤ d < r/2 in [26] it was proved that

md(r, n) ≤
(

r − d

r
+ o(1)

) (
n− d

r − d

)
A recent survey of these and other related results appear in [35]. In [26] the authors

posed the following conjecture.

Conjecture 3 ([26]). For all 1 ≤ d < r/2,

md(r, n) ∼ max

{
1
2
, 1−

(
r − 1

r

)r−d
}(

n− d

r − d

)
Note that for r = 4 and d = 1 the above bound yields

m1(3, n) ∼ 37
64

(
n− 1

3

)
For r = 3 and d = 1 this conjecture was proved in [36] and [28]. Markstöm and Ruciński

in [37] improved the bound on md(r, n) for 1 ≤ d < r/2 slightly, by proving

md(r, n) ≤
(

r − d

r
− 1

rr−d
+ o(1)

) (
n− d

r − d

)
Furthermore for r = 4 and d = 1 in [37] the authors proved that m1(4, n) ≤

(
42
64 + o(1)

) (
n−1

3

)
.

In this chapter we settle Conjecture 3 for the case r = 4 and d = 1. The main result in

this chapter is the following theorem.

Theorem 25. There exist an integer n0 such that if H is a 4-graph on n ≥ n0 (n ∈ 4Z)

vertices, and

δ1(H) ≥
(

n− 1
3

)
−

(
3n/4

3

)
+ 1 (4.1)

then H has a perfect matching.

On the other hand the following construction from [26] shows that this result is tight.

Construction 2. Let A and B be disjoint sets with |A| = n
4 − 1 and |B| = n − |A|.

Let H = (V (H), E(H)) be a 4-graph such that V (H) = A ∪ B and E(H) is the set of

all 4-tuples of vertices, T , such that |T ∩A| ≥ 1.

We have δ1(H) =
(
n−1

3

)
−

(
3n/4

3

)
(the degree of a vertex in B) but since every edge in

a matching must use at least one vertex from A, the maximum matching in this graph

is of size |A| = n
4 − 1
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|A| = n
4 − 1

|B| = 3n
4 + 1

Figure 4.1: The extremal example: A Quadrilateral represent an edge. Every edge intersects the set
A.

4.1.1 Outline of the proof

We distinguish two cases to prove Theorem 25. When H is ‘far from’ the extremal

example as in Construction 2 we use the absorbing lemma to find a perfect matching

in H. The absorbing lemma (Lemma 34) roughly states, that any 3-graph H satisfying

(4.1), contains a small matching M with the property that every “not too large” subset

of vertices can be absorbed into M . In Section 4.4, we first remove an absorbing

matching M from H. Then using the tools developed in section 4.2 and the auxiliary

results of section 4.3, we find an almost perfect matching in H|V \V (M). The left over

vertices are absorbed into M to get a perfect matching in H. We will show that we can

either find an almost perfect matching or H is in the extremal case.

For a constant 0 < α < 1, we say that H is α-extremal, if the following is satisfied,

otherwise it is α-non-extremal.

Definition 4 (Extremal Case with parameter α). There exists a B ⊂ V (H) such that

• |B| ≥
(

3
4 − α

)
n

• d4 (B) < α.

In section 4.5, using a König-Hall type argument, we build a perfect matching in H,

when it is α-extremal.
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4.2 Main tools

We use the following two easy observations that will, nevertheless, be useful later on.

Fact 26. If G(A,B) is a 2η-dense bipartite graph, then there must be at least η|B|

vertices in B for which the degree in A is at least η|A|.

Indeed, otherwise the total number of edges would be less than

η|A||B|+ η|A||B| = 2η|A||B|

a contradiction to the fact that G(A,B) is 2η-dense.

Fact 27. If G(A,B) is a bipartite graph, |A| = c1 log n, |B| = c2n and for every vertex

b ∈ B deg(b, A) ≥ η|A|, then we can find a complete bipartite subgraph G′(A′, B′) of G

such that A′ ⊂ A,B′ ⊂ B, |A′| ≥ η|A| and |B′| ≥ c2n
(1−c1).

To see this consider the neighborhoods in A, of the vertices in B. Since there can be at

most 2|A| = nc1 such neighborhoods, by averaging there must be a neighborhood that

appears for at least c2n
nc1 = c2n

(1−c1) vertices of B. This means that we can find the

desired complete bipartite graph.

The main tool in this chapter, as in the previous one, is the following result of Erdös

[25], on complete balanced r-partite subhypergraphs of r-graphs.

Lemma 28. For every integer l ≥ 1 there is an integer n0 = n0(r, l) such that: Every

r-graph on n > n0 vertices, that has at least nr−1/lr−1
edges, contains a K(r)(l).

In particular Lemma 28 implies that for η > 0 and a sufficiently small constant β, if H

is an r-graph on n > n0(η, β) vertices with

|E(H)| ≥ η

(
n

r

)
then H contains a K(r)(t), where

t = β(log n)1/r−1.

This is so because η
(
n
r

)
≥ nr

n1/βr−1 log n
= nr

21/βr−1 , when η > 2r!

21/βr−1 .
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The following three lemmas are repeatedly used in section 4.4.

Lemma 29. Let H(A,
(
B
3

)
) be a 4-graph, |A| = c1m, |B| = c22m3

, for some constants

0 < c1, c2 < 1, if

d4

(
A,

(
B

3

))
≥ 2η

then there exists a complete 4-partite 4-graph H ′(A1, B1, B2, B3), with A1 ⊂ A and

B1, B2 and B3 are disjoint subsets of B such that |A1| = |B1| = |B2| = |B3| = η|A|.

Proof. First apply Fact 26 to get a subset of 3-sets of vertices in B, T1 ⊂
(
B
3

)
, such

that every 3-set in T1 makes edges with at least η|A| vertices in A and |T1| ≥ η
(|B|

3

)
≥

η|B|3/10. Next we find a T2 ⊂ T1, such that all 3-sets in T2 make edges with the same

subset of A (say A1 ⊂ A). By Fact 27 we have

|T2| ≥
η|B|3/10

2c1m
=

η

10

(
c22m3

)3

2c1m
=

c3
2η

10
2m3(3−c1/m2) =

c3
2η

10

(
|B|
c2

)3−c1/m2

≥ |B|3−1/(η|A|)2

where the last inequality follows when m is sufficiently large and η, c1 and c2 are small

constants.

Now construct an auxiliary 3-graph H1 where V (H1) = B and edges of H1 corresponds

to 3-sets in T2. Applying lemma 28 on H1 (for r = 3) we get a complete 3-partite

3-graph with color classes B1, B2 and B3 each of size η|A|. Clearly A1, B1, B2 and B3

corresponds to color classes of a complete 4-partite 4-graph in H as in the statement

of the lemma. �

Lemma 30. Let H(A,B,
(
Z
2

)
) be a 4-graph with |A| = |B| = c1m, |Z| = c22m3

for

some constants 0 < c1, c2 < 1, if

d4

(
A,B,

(
Z

2

))
≥ 2η

then there exists a complete 4-partite 4-graph H ′(A′, B′, Z1, Z2), with A′ ⊂ A, B′ ⊂ B

and Z1 and Z2 are disjoint subsets of Z such that |A′| = |B′| = |Z1| = |Z2| = c log m

for a constant c = c(c1, c2, η).
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Proof. First apply Fact 26 to get a subset of pairs of vertices in Z, P1 ⊂
(
Z
2

)
, such

that every pair in P1 makes edges with at least η|A||B| pairs of vertices in A× B and

|P1| ≥ η
(|Z|

2

)
≥ η|Z|2/3. Next we find a P2 ⊂ P1, such that all pairs in P2 make edges

with the same subset of pairs in A×B (say Q1 ⊂ A×B). By Fact 27 we have

|P2| ≥
η|Z|2/3
2(c1m)2

=
η

3

(
c22m3

)2

2(c1m)2
=

c2
2η

3
2m3(2−c21/m) =

c2
2η

3

(
|Z|
c2

)2−c21/m

≥ |Z|2−1/(log m)

where the last inequality follows when m is sufficiently large, and η, c1 and c2 are small

constants.

Now construct an auxiliary 2-graph G1 where V (G1) = Z and edges of G1 corre-

sponds to pairs in P2. Applying lemma 28 on G1 (for r = 2) we get a complete bipartite

graph with color classes Z1 and Z2 each of size log m.

Similarly construct an auxiliary bipartite graph G2 with color classes A and B, and

edges of G2 corresponds to pairs in Q1. Since we have |Q1| ≥ η|A||B| applying lemma

28 on G2 (for r = 2) we get a complete bipartite graph with color classes A′ and B′,

each of size c log m. Clearly A′, B′ and a subset of vertices each from Z1 and Z2 of size

|A′| corresponds to color classes of the balanced complete 4-partite 4-graph in H as in

the statement of the lemma. �

Lemma 31. Let H(A,B, C, Z) be a 4-partite 4-graph with |A| = |B| = |C| = c1m and

|Z| = c22m3
for some constants 0 < c1, c2 < 1. If

d4(Z, (A×B × C)) ≥ 2η

then there exists a complete 4-partite 4-graph H ′(A′, B′, C ′, Z ′) such that |A′| = |B′| =

|C ′| = |Z ′| = β
√

log |A|.

Proof. First apply Fact 26 on H to get a subset Z1 of Z such that for every vertex

z ∈ Z1, deg3(z, (A × B × C)) ≥ η|A|3 and |Z1| ≥ η|Z|. Now consider the auxiliary

bipartite graph G(D,Z1), where D = A × B × C and a vertex z ∈ Z1 is connected to

a 3-set (a, b, c) ∈ D if (a, b, c, z) makes an edge of H. An application of Fact 27 on G
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gives a complete bipartite graph G2(D′, Z ′
1) where

|D′| ≥ η|A|3 and Z ′
1 ≥ ηc22m3(1−c31) > |A|

when m is sufficiently large.

Let G3 be a 3-partite 3-graph where the color classes are A, B and C and edges

correspond to 3-sets in D′. Since |D′| ≥ η|A|3 applying Lemma 28 on G3 (r = 3), we

get a balanced complete 3-partite 3-graph in G3 with color classes A′, B′ and C ′, such

that |A′| = |B′| = |C ′| ≥ β
√

log |A|. Clearly A′, B′, C ′ and a subset of Z ′
1 of size |A′|,

correspond to the color classes of the required complete 4-partite 4-graph. �

We will frequently apply the following folklore statements (proofs are omitted):

Lemma 32. Every graph H has a subgraph H ′ such that δ1(H ′) ≥ |E(H)|/|V (H)|.

Lemma 33. Every 3-graph H on n vertices, with δ1(H) ≥ η
(
n
3

)
/n, has a matching of

size ηn/24.

Finally we use the following lemma from [26].

Lemma 34. (Absorbing Lemma) For every η > 0, there is an integer n0 = n0(η) such

that if H is a 4-graph on n ≥ n0 vertices with δ1(H) ≥ (1/2 + 2η)
(
n
3

)
, then there exist

a matching M in H of size |M | ≤ η4n/4 such that for every set W ⊂ V \V (M) of size

at size at most η8n ≥ |W | ∈ 4Z, there exists a matching covering exactly the vertices

in V (M) ∪W .

4.3 Auxiliary results

For a 4×4×4 3-graph, denote by Q1, Q2, Q3 its 3 color classes and let Q1 = {a1, a2, a3, a4},

Q2 = {b1, b2, b3, b4} and Q3 = {c1, c2, c3, c4}. For two vertices, x ∈ Qi, y ∈ Qj , i 6= j,

N(x, y) denotes the neighborhood of the pair x, y, i.e. the set of vertices in the third

color class that make edges with the pair x, y. Let deg(x, y) = |N(x, y)|. For two dis-

joint pairs (x1, y1) and (x2, y2) in Qi×Qj , i 6= j the pairs (x1, y2) and (x2, y1) are called

the crossing pairs and the value deg(x1, y2) + deg(x2, y1) is referred to as the crossing

degree sum. We define the following four special 4× 4× 4 3-graphs.
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Definition 5. H432 is a 4 × 4 × 4 3-graph, such that there exist 3 disjoint pairs in a

Qi ×Qj, i 6= j, with degrees at least 4, 3 and 2 respectively.

In the figures the triplets joined by a line represent an edge in the 3-graph. Let

the H432 be as in Figure 4.2(a) or Figure 4.2(b). If the H432 does not have a perfect

matching then we must have deg(b4, c4) = 0, (as otherwise by the König-Hall criteria

we get a perfect matching).

c1

c2

c3

c4

b4

b3

b2

b1

a1

a2

a3

a4

4

3

2

(a) H432 with |N(b2, c2) ∪ N(b3, c3)| = 3

c1

c2

c3

c4

b4

b3

b2

b1

a1

a2

a3

a4

4

3

2

(b) H432 with |N(b2, c2) ∪ N(b3, c3)| = 4

Figure 4.2: The two types of H432. Labels on edges is the degree of the pair.

Definition 6. H4221 is a 4 × 4 × 4 tripartite 3-graph, such that there exist 4 disjoint

pairs in a Qi ×Qj, i 6= j, with degrees at least 4, 2, 2 and 1 respectively.

Let the H4221 be as in Figure 4.3(a). If |N(b2, c2) ∪N(b3, c3) ∪N(b4, c4)| = 3 then

again by the König-Hall criteria we get that H4221 has a perfect matching. We only

consider the H4221 that has no perfect matching.

Definition 7. H3321 is a 4 × 4 × 4 3-graph, such that there exist 4 disjoint pairs in a

Qi ×Qj, i 6= j, with degrees at least 3, 3, 2 and 1 respectively (see Figure 4.3(b)).

Definition 8. Hext is a 4 × 4 × 4 3-graph with exactly 37 edges such that there are

three vertices, one in each of Q1, Q2 and Q3, and all edges are incident to at least one

of these three vertices.
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c1

c2

c3

c4

b4

b3

b2

b1

a1
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a3

a4
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1

(a) H4221 with no perfect matching

c1

c2

c3

c4

b4

b3

b2

b1

a1

a2

a3

a4

3

3

2

1

(b) H3321 with no perfect matching

The following lemma that classifies, 4 × 4 × 4 3-graphs with at least 37 edges, will

be very useful in the subsequent section.

Lemma 35. Let H(Q1, Q2, Q3) be a 4× 4× 4 3-graph. If |E(H)| ≥ 37 then one of the

following must be true

1. H has a perfect matching.

2. H has a subgraph isomorphic to H3321

3. H has a subgraph isomorphic to H432

4. H has a subgraph isomorphic to H4221

5. H is isomorphic to Hext.

Proof. We consider the following cases based on degree of pairs in Qi ×Qj .

Case 1: There is Qi and Qj , i 6= j such that no pair in Qi ×Qj has degree 4.

Let Q2, Q3 be such a pair. Since |E(H)| ≥ 37 and no pair has degree 4, at least 5 out

of the 16 pairs in Q2 × Q3 must be of degree 3. Which implies that there must be at

least 2 disjoint pairs of degree 3. Consider the largest set of disjoint pairs of degree 3

in Q2 ×Q3. Assume that there are 3 disjoint pairs in Q2 ×Q3 of degree 3, say (b1, c1),

(b2, c2) and (b3, c3).
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If deg(b4, c4) ≥ 1, then we have a H3321. So assume that deg(b4, c4) = 0, The total

number of edges incident to pairs in {b1, b2, b3} × {c1, c2, c3} is at most 27 (as there

are 9 pairs and degree of every pair is at most 3), the remaining at least 10 edges are

incident to either b4 or c4. Which implies that there must be at least one pair (say

(b3, c3)), such that crossing degree sum of (b3, c3) and (b4, c4) is at least 4. Therefore

we have that the degree of one crossing pair is at least 2 and that of the other crossing

pair is at least 1. These two crossing pairs together with (b1, c1) and (b2, c2) gives us a

subgraph isomorphic to H3321.

On the other hand, if there are exactly 2 disjoint pairs of degree 3, say (b1, c1) and

(b2, c2). Again the total number of edges incident to pairs in {b1, b2} × {c1, c2} is at

most 12 (as there are 4 pairs and degree of every pair is at most 3). If there is a pair in

{b3, b4}× {c3, c4} (say (b3, c3)) such that the crossing degree sum of (b1, c1) and (b3, c3)

is at least 6, then since there is no degree 4 pair we must have that both deg(b1, c3) and

deg(c1, b3) are 3. Now these crossing pairs together with (a2, b2) are 3 disjoint pairs

of degree 3 which is a contradiction to the maximality of the set of disjoint pairs of

degree 3. Therefore we must have that the sum of degrees of pairs in {b1, b2}× {c3, c4}

and {c1, c2} × {b3, b4} is at most 4× 5 = 20. Hence the number of edges of H incident

to pairs in {b3, b4} × {c3, c4} is at least 37 − 12 − 20 = 5 and no pair has degree 3.

Therefore, in {b3, b4}×{c3, c4}, we can find two disjoint disjoint pairs, (say (b3, c3) and

(b4, c4)) with degree at least 2 and 1 respectively and we get a graph isomorphic to H3321.

Case 2: There is a Qi and Qj , i 6= j such that exactly one disjoint pair in Qi×Qj has

degree 4.

Let Q2, Q3 be such a pair. Consider the largest set of disjoint pairs in Q2 × Q3 with

one pair of degree 4 and the remaining of degree 3. Note that if there are two disjoint

pairs of degree 3 besides the degree 4 pair in the selected set, then clearly we have an

H432. So we consider the following two subcases based on whether or not there is a pair

of degree 3 in the selected set. Let (b1, c1) be the degree 4 pair in the selected set.

Subcase 2.1 There is another pair in Q2 ×Q3 disjoint from (b1, c1) with degree 3.
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Assume that deg(b2, c2) = 3. First observe that

1. If any pair in {b3, b4}× {c3, c4} has degree at least 2 then that pair together with

(b1, c1) and (b2, c2) makes an H432.

2. If both deg(b1, c2) and deg(b2, c1) are 4 then we get two disjoint degree 4 pairs.

Therefore we have that the number of edges incident to pairs in {b1, b2}×{c1, c2}

is at most 4 + 3 + 4 + 3 = 14.

3. If there is a pair in {b3, b4} × {c3, c4} (say (b3, c3)) such that the crossing degree

sum of (b2, c2) and (b3, c3) is at least 5. Then we must have that one crossing

pair is of degree at least 3, and the other is of degree at least 2 (because none of

them can be of degree 4). These 2 crossing pairs together with (b1, c1) makes the

disjoint pairs of an H432. Therefore we must have that (b2, c2) and any pair in

{b3, b4} × {c3, c4} have their crossing degree sum at most 4.

4. Similarly (b1, c1) and any pair in {b3, b4}×{c3, c4} have their crossing degree sum

at most 6.

Assume that (b1, c1) and (b3, c3) have their crossing degree sum, equal to 6. If the

degrees of crossing pairs are 4 and 2, then these crossing pairs and (b2, c2) makes the

disjoint pairs of an H432. On the other hand if both the crossing pairs have degree 3.

Then (b1, c3), (b3, c1) and (b2, c2) are three disjoint pairs of degree 3. From observation

1 we have deg(b3, c3) ≤ 1 and from observation 3 the crossing degree sum of (b3, c3) and

(b2, c2) is at most 4. Which together with observation 2 gives us that the total number

of edges incident to pairs in {b1, b2, b3}×{c1, c2, c3} is at most 14+6+1+4 = 25. Now

if deg(b4, c4) = 1 then we have an H3321, otherwise we have that the number of edges

containing either b4 or c4 is at least 37− 25 ≥ 12. By observation 1 we have that both

deg(b4, c3) and deg(b3, c4) are at most 1 hence we must have that the crossing degree

sum of (b2, c2) and (b4, c4) is 4 with one crossing pair of degree at least 1 and the other

of degree at least 2. These crossing pairs together with (b1, c3) and (b3, c1) gives us an

H3321.

On the other hand if for any pair in {b3, b4}× {c3, c4} and (b1, c1) their crossing degree
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sum is be at most 5. Then the number of edges incident to pairs in {b3, b4} × {c3, c4}

is at least 37 − 14 − 4(2) − 5(2) = 5. Which implies that there must a degree 2 pair,

and hence by observation 1, we get an H432.

Subcase 2.2 There is no pair of degree 3 disjoint from (b1, c1).

In this case again as in observation 2, the crossing degree sum of (b1, c1) and any

pair in {b2, b3, b4} × {c2, c3, c4} is at most 6 (as any other case results in two disjoint

pairs of degree 4 and 3). This implies that the number of edges incident to pairs in

{b2, b3, b4} × {c2, c3, c4} is at least 37− 4− 3(6) = 15 and no pair has degree 3. Which

implies that there are three disjoint pairs in {b2, b3, b4} × {c2, c3, c4} with degrees 2, 2

and at least 1 respectively. These pairs and (b1, c1) makes the 4 disjoint pairs of an

H4221.

Case 3: In every Qi and Qj , i 6= j there are exactly two disjoint pairs in Qi ×Qj with

degree 4.

Consider Q1, Q2 and assume that (a1, b1) and (a2, b2) are the two disjoint pairs with

degree 4. We make the following observations:

1. If any pair in {a3, a4} × {b3, b4} has degree at least 2 then that pair together

with (a1, b1) and (a2, b2) makes the disjoint pairs of an H432. Therefore the total

number of edges spanned by pairs in {a3, a4} × {b3, b4} is at most 4.

2. For any of (a1, b1) and (a2, b2) and any pair in {a3, a4} × {b3, b4} their crossing

degree sum can be at most 5. Indeed otherwise say the crossing degree sum of

(a1, b1) and (a3, b3) is 6, then we must have that one crossing pair has degree

at least 3, and the other has degree at least 2. These crossing pairs and (a2, b2)

make the disjoint pairs of an H432. Furthermore if any such crossing degree sum

is 5 then by the same reasoning as above, it must be that one crossing pair is of

degree 4 and the other is of degree 1.

3. If the total number of edges spanned by pairs in {a1, a2} × {b1, b2} is at most 12,
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then the number of edges that uses one vertex from {a1, a2, b1, b2} and one vertex

from {a3, a4, b3, b4} is at least 37 − 12 − 4 = 21. Hence there will be a pair in

{a3, a4} × {b3, b4} (say (a3, b3)) such that crossing degree sum of (a3, b3) and at

least one of (a1, b1) and (a2, b2) is at least 6, and by observation 2 we get an H432.

The above observations are true for any two disjoint pairs of degree 4. We choose two

disjoint pairs of degree 4, (say (a1, b1) and (a2, b2)) pairs in Q1×Q2 such that (i) a1 has

the maximum vertex degree among all vertices that are part of some pairs of degree 4

and (ii) deg(a2, b1) is as small as possible. Let deg(a2, b1) = x. Note that by observation

3, we have x ≥ 1. We consider the following cases based on the value of x.

Subcase 3.1 x = 4

Note that that the number of edges in {a1, a2}×{b1, b2} is at most 16 (deg(a1, b2) ≤

4). First we will show that both deg(a3, b1), deg(a4, b1) ≤ 1. Assume that deg(a3, b1) ≥

2, but then as in observation 2 both deg(a1, b3) and deg(a1, b4) can be at most 2. Hence

by the maximality of the degree of a1 we get deg(a3, b1) + deg(a4, b1) ≤ 4. Now by

observation 1, there must be at least 37 − 16 − 4 − 8 = 9 edges containing one vertex

from {a3, a4, b3, b4} and one of {a2, b2}. Which implies that the degree of a2 or b2 is

strictly larger than that of a1, a contradiction. So we have deg(a3, b1) = deg(a4, b1) = 1.

Now we show that both deg(a3, b2), deg(a4, b2) ≤ 1. To see this first assume that

either deg(a1, b3) or deg(a1, b4) is equal to 4, (say deg(a1, b3) = 4) then by the minimality

of x we must have that deg(a2, b3) = 4 too, because if deg(a2, b3) < x, then we can

exchange b1 with b3 to get a smaller value of x. But if deg(a2, b3) = 4 then by observation

2 we must have deg(a3, b2) = deg(a4, b2) = 1. On the other hand if both deg(a1, b3)

and deg(a1, b4) are at most 3 (deg(a1, b3) + deg(a1, b4) ≤ 6) then again there must

be at least 37 − 16 − 4 − 8 = 9 edges containing some pair in {a2} × {b3, b4} and

{a3, a4} × {b2}. Which means at least one of these pairs must be of degree at least 3.

Say deg(a2, b3) ≥ 3, but then by observation 2 we have deg(a3, b2), deg(a4, b2) ≤ 1 and

we are done. In case say deg(a3, b2) ≥ 3 then we have deg(a3, b2) + deg(a4, b2) ≥ 7 and

we get that the degree of b2 is larger than degree of a1, a contradiction.
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So we have that deg(a3, b1), deg(a4, b1), deg(a3, b2) and deg(a4, b2) ≤ 1. This to-

gether with observation 1 implies that the number of edges containing some pair in

{a1, a2} × {b1, b2, b3, b4} is at least 37 − 4 − 4 = 29. Therefore the 2 × 4 × 4 3-graph

H ′({b1, b2}, Q2, Q3) has at least 37 − 4 − 4 = 29 edges. There must be at least three

vertices in Q2 such that each one of them is part of at least three pairs in (Q2×Q3) that

are of degree at least 2. To see this assume that there are at most two such vertices in

Q2 (say b1 and b2). Then using the fact that the maximum degree of a pair in Q2×Q3

in H ′ is 2, we get that b1 and b2 can be contained in at most 2(4 · 2) = 16 edges. While

at most 2 pairs containing either b3 and b4 can be of degree 2, we get that the number

of edges containing either b3 and b4 is at most 2 · (2 · 2 + 2 · 1) = 12 which implies that

|E(H ′)| ≤ 28 a contradiction

Now since in Q2 there are at least 3 vertices such that each one of them is part of at

least 3 pairs in (Q2×Q3) of degree at least 2. Which implies that there must a degree 2

pair disjoint from the two degree 4 pairs (guaranteed in Case 3) in Q2 ×Q3. Therefore

we get an H432.

Subcase 3.2 x = 3

Now we have that the number of edges in {a1, a2} × {b1, b2} is at most 15. Again

we first show that both deg(a3, b1), deg(a4, b1) ≤ 1. Assume that deg(a3, b1) ≥ 2,

but then by observation 2 both deg(a1, b3) and deg(a1, b4) can be at most 2. Hence

by the maximality of the degree of a1 we get deg(a3, b1) + deg(a4, b1) ≤ 5. Now by

observation 1, there must be at least 37 − 15 − 4 − 9 = 9 edges containing one vertex

from {a3, a4, b3, b4} and one of {a2, b2}. Which implies that the degree of a2 or b2 is

strictly larger than that of a1, a contradiction. So we have deg(a3, b1) = deg(a4, b1) = 1.

Similarly as in the previous case we show that both deg(a3, b2), deg(a4, b2) ≤ 1. To see

this first assume that either deg(a1, b3) or deg(a1, b4) is equal to 4, (say deg(a1, b3) = 4)

then by the minimality of x we must have that deg(a2, b3) ≥ 3 too. But if deg(a2, b3) = 3

then by observation 2 we must have deg(a3, b2), deg(a4, b2) ≤ 1. On the other hand if

both deg(a1, b3) and deg(a1, b4) are at most 3 (deg(a1, b3) + deg(a1, b4) ≤ 6) then again
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there must be at least 37− 15− 4− 8 = 9 edges containing some pair in {a2}× {b3, b4}

and {a3, a4}× {b2}. Which means at least one of these pairs must be of degree at least

3. Say deg(a2, b3) ≥ 3, but then by observation 2 we have deg(a3, b2), deg(a4, b2) ≤ 1

and we are done. In case say deg(a3, b2) ≥ 3 then we have deg(a3, b2) + deg(a4, b2) ≥ 7

and we get that the degree of b2 is greater than the degree of a1, a contradiction.

So we have that deg(a3, b1), deg(a4, b1), deg(a3, b2) and deg(a4, b2) ≤ 1. Again we

get that the 2 × 4 × 4 3-graph H ′({b1, b2}, Q2, Q3) has at least 37 − 4 − 4 = 29 edges.

and we are done.

Subcase 3.3 x = 2

Similarly as in the previous two subcases we have that deg(a3, b1), deg(a4, b1), deg(a3, b2) and deg(a4, b2) ≤

1 and the 2× 4× 4 3-graph H ′({b1, b2}, Q2, Q3) has at least 37− 4− 4 = 29 edges and

we are done.

Subcase 3.4 x = 1

In this case observation 3 implies that the number of edges in {a1, a2} × {b1, b2} is

exactly 13 (deg(a1, b2) = 4). Using |E(H) ≥ 37| and observation 2 we get that every

pair in {a3, a4} × {b3, b4} has degree exactly 1 and for any pair in {a3, a4} × {b3, b4}

and any of (a1, b1) or (a2, b2) their crossing degree sum is exactly 5 (4 + 1).

Therefore, we have that either

deg(a1, b3) = deg(a1, b4) = deg(a3, b2) = deg(a4, b2) = 4 or

deg(a1, b3) = deg(a1, b4) = deg(a2, b3) = deg(a2, b4) = 4

In the latter case note that again we have that H ′({b1, b2}, Q2, Q3) has at least 29 edges

and we are done as above.

So assume that deg(a1, b3) = deg(a1, b4) = deg(a3, b2) = deg(a4, b2) = 4 and deg(a1, b1) =

deg(a2, b2) = deg(a1, b2) = 4 and every other pair in Q1 × Q2 is of degree exactly 1.

This means that a1 and b2 are not part of any degree 1 pair. Now the neighborhoods

of all the degree 1 pairs must be the same vertex in Q3 (say c3). Because otherwise we
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get a perfect matching in H, (using those two vertices in Q3 for two disjoint degree 1

pairs, and the remaining two vertices of Q3 are matched with two of the degree 4 pairs

in (Q1 ×Q2)). But if all of these edges are incident to c3, then all edges in this graph

are incident to at least one vertex in {a1, b2, c3} and the number of edges is exactly 37,

hence H is isomorphic to Hext. �

Let A, B and C be three disjoint balanced complete 4-partite 4-graphs with color classes

(A1, . . . , A4), (B1, . . . , B4) and (C1, . . . , C4) respectively, and |A1| = |B1| = |C1| = m.

Let Z be a set of vertices disjoint from vertices in A, B and C. For a small constant

η > 0, we say that Z is connected to a triplet of color classes (Ai, Bj , Ck), 1 ≤ i, j, k ≤ 4,

if d4(Z, (Ai × Bj × Ck)) ≥ 2η. For Z and (A,B, C) we define an auxiliary graph, (the

link graph), Labc to be a 4×4×4 3-graph where the vertex set of each color class of Labc

corresponds to the color classes in A, B and C. While a triplet of vertices (ai, bj , ck) is

an edge in Labc iff Z is connected to the triplet of color classes (Ai, Bj , Ck).

Given three balanced complete 4-partite 4-graphs A, B and C and another set of vertices

Z, as above, we say that we can extend (A,B, C) if we can build another set of balanced

complete 4-partite 4-graphs using V (A)∪V (B)∪V (C)∪Z such that the total number

of vertices in the new 4-partite 4-graphs is at least 12m+ ηm/16 and the size of a color

class in each new 4-partite 4-graph is β
√

log m. In what follows we outline a procedure

to extend (A,B, C) using the structure of Labc.

Lemma 36. For η, c > 0, let A,B and C be three balanced complete 4-partite 4-graphs

such that |A1| = |B1| = |C1| = m. If Z is a disjoint set of vertices with |Z| ≥ c2m3
.

If the link graph Labc has at least 37 edges and Labc is not isomorphic to Hext then we

can extend (A,B, C).

Proof. Since Labc is a 4 × 4 × 4 3-graph with at least 37 edges and is not isomorphic

to Hext, for each of the other cases as in Lemma 35, we give the procedure to extend

(A,B, C).

Case 1: Labc has a perfect matching:
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Without loss of generality assume that the perfect matching in Labc corresponds to

{(Ai, Bi, Ci) : 1 ≤ i ≤ 4} i.e. Z is connected to the triplets {(Ai, Bi, Ci) : 1 ≤ i ≤ 4}.

Note that by the definition of connectedness and the sizes of the sets the 4-partite 4-

graph (A1, B1, C1, Z) satisfies the conditions of Lemma 31. Hence we find a complete

balanced 4-partite 4-graph X1 = (A1
1, B

1
1 , C1

1 , Z1), such that

Z1 ⊂ Z, A1
1 ⊂ A1 , B1

1 ⊂ B1 and C1
1 ⊂ C1 and

|Z1| = |A1
1| = |B1

1 | = |C1
1 | = β

√
log m where β is as in Lemma 31

Z A B C

C1

C2

C3

C4

Figure 4.3: Extending (A, B, C) when Labc has a perfect matching: The shaded boxes represent a
triplet connected to Z, while solid thick lines represent a balanced complete 4 partite graphs

Similarly, we find such complete balanced 4-partite 4-graphs X2, X3 and X4 in (A2, B2, C2, Z),

(A3, B3, C3, Z) and (A4, B4, C4, Z) respectively, that are disjoint from each other (as

|Z| is very large compared to m) (see Figure 4.3). We remove the vertices in X1, X2, X3

and X4 and make these four new 4-partite 4-graphs. In the remaining parts of A,B

and C we remove another such set of 4 disjoint complete balanced 4-partite 4-graphs.

Again by definition of connectedness and Lemma 31 we can continue this process until

we remove at least ηm/8 vertices from each color class of A,B and C.

Note that the new 4-partite 4-graphs use at least 4ηm/8 vertices from Z. Therefore

these new 4-partite 4-graphs together with leftover parts of A,B and C have at least

3(4m)+ηm/2 vertices while all the 4-partite 4-graphs are balanced. Hence, we extended

(A,B, C).
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Case 2: Labc has a subgraph isomorphic to H432:

In this case we show in detail how to extend such an (A,B, C), while in the latter

cases we will only briefly outline the procedure. First assume that the H432 in Labc

is as in Figure 4.2(a) and let the pairs corresponding to the degree 4, 3 and 2 pairs

in this subgraph be (B1, C1), (B2, C2) and (B3, C3) respectively. Furthermore let the

color classes corresponding to the neighbors of degree 3 and degree 2 pairs in H432 be

{A2, A3, A4} and {A3, A4} respectively.

Using the definition of connectedness and Lemma 31 we find two disjoint complete

balanced 4-partite 4-graphs X1 = (A1
4, B

1
3 , C1

3 , Z1) and X2 = (A2
3, B

2
3 , C2

3 , Z2) such that

Zj , Aj
i , B

j
i , C

j
i are subsets of Z,Ai, Bi, Ci respectively.

Z A B C

C1

C2

C3

C4

4

3

2

Symbols represent sizes
: t/2

: t/3

Figure 4.4: Extending (A, B, C) when Labc has an H432 as in Figure 4.2(a): The shaded boxes
represent a triplet connected to Z, while solid think lines represent a balanced complete 4 partite
4-graphs

Similarly we find three more disjoint balanced complete 4-partite 4-graphs X3, X4 and

X5 where vertices of three color classes in all of them are from B2, C2 and Z while

vertices of the fourth color class are from A2, A3 and A4 respectively. We build two
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more disjoint balanced complete 4-partite 4-graphs X6 and X7 such that vertices of

three color classes in both of them are from B1, C1 and Z while vertices of the fourth

color class are from A1 and A2 respectively.

The size of a color class in X1, . . . , X7 is β
√

log m. We remove the vertices in X1, . . . X7

from their color classes to make these 7 new 4-partite 4-graphs

In the remaining parts of A,B and C we remove another such set of seven disjoint

balanced complete 4-partite 4-graphs that are disjoint from the previous ones. Again

by definition of connectedness and Lemma 31 we can continue this process until we

remove ηm/8 vertices each from Bi and Ci, 1 ≤ i ≤ 3. By construction, if the number

of vertices used from Bi and Ci, 1 ≤ i ≤ 3 is t (= ηm/8) then the number of vertices

used in A2, A3 and A4 is 5t/6, while that in A1 is t/2 (see Figure 4.4).

Note that the new 4-partite 4-graphs use at least 3t ≥ 3ηm/8 vertices from Z, but the

remaining parts of A, B and C are not balanced (A1, B4 and C4 have more vertices). To

restore the balance in the remaining part of A we discard some arbitrary t/3 vertices

from the remaining part of A1. Similarly we discard some arbitrary t vertices from

B4 and C4 to restore the balance in the remaining part of B and C. Therefore the

new 4-partite 4-graphs together with leftover parts of A,B and C (after discarding the

vertices) have at least 4(|A1|+ |B1|+ |C1|)+3t− t/3−2t ≥ 12m+ηm/12 vertices while

all the 4-partite 4-graphs are balanced. Hence we extended (A,B, C).

On the other hand if the H432 in Labc is as in Figure 4.2(b), then let the color classes

corresponding to the neighbors of degree 3 and degree 2 pairs in H432 be {A1, A2, A3}

and {A3, A4} respectively. In this case extend (A,B, C) as follows.

For the pair (B3, C3) we remove two balanced complete 4-partite 4-graphs with the

fourth color classes in A3 and A4 respectively. For the pair B2, C2 we remove two

balanced complete 4-partite 4-graphs with the fourth color classes in A1 and A2 respec-

tively. The size of of each color class in all of these new 4-partite graphs is β
√

log m.

Since the pair (B1, C1) has degree 4, we remove four balanced complete 4-partite 4-

graphs with the fourth color class in A1, A2, A3 and A4 respectively.

Similarly as in the previous case we repeat this process so that we remove at least
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Z A B C

C1

C2

C3

C4

4

3

2

Symbols represent sizes
: t/2

: t/4

Figure 4.5: Extending (A, B, C) when Labc has an H432 as in Figure 4.2(b): The shaded boxes
represent a triplet connected to Z, while solid thick lines represent a balanced complete 4 partite 4-
graphs

t ≥ ηm/8 vertices from each Bi and Ci, 1 ≤ i ≤ 3. Note that by construction we have

used 3t/4 vertices in each color class of A (see Figure 4.5). So the remaining part of A is

still balanced. While to restore balance in the remaining parts of B and C, we discard

some arbitrary t vertices from each of B4 and C4. Again in total we added 3t vertices

from Z, while we discarded 2t vertices form B4 and C4. Therefore the net increase in

the number of vertices in the new set of complete 4-partite 4-graphs is t ≥ ηm/8, while

all the 4-partite 4-graphs are balanced.

Case 3: Labc has a subgraph isomorphic to H4221:

Without loss of generality, assume that the pairs corresponding to the degree 4, 2,

2 and 1 pairs in this H4221 are (B1, C1), (B2, C2), (B3, C3) and (B4, C4) respectively.

Furthermore let the color classes corresponding to the neighbors of degree 1 and the

two degree 2 pairs in H4221 be {A4}, {A3, A4} and {A3, A4} respectively (as in Figure

4.3(a)). By the definition of connectedness and Lemma 31 we build complete balanced 4-

partite 4-graphs using (A4, B4, C4, Z) and (A3, B3, C3, Z) of size β
√

log m. For the pair
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(B2, C2) we make two more balanced complete 4-partite 4-graphs using (A4, B2, C2, Z)

and (A3, B2, C2, Z). For the degree 4 pair (B1, C1) we remove balanced complete 4-

partite 4-graphs in (A1, B1, C1, Z) and (A2, B1, C1, Z). Again we repeat this process

Z A B C

C1

C2

C3

C4

4

2

2

Symbols represent sizes
: t/2

: t

1

Figure 4.6: Extending (A, B, C) when Labc has an H4221: The shaded boxes represent a triplet
connected to Z, while solid thick lines represent a balanced complete 4 partite 4-graphs

so that we remove t ≥ ηm/24 vertices from each color class of B and C. Note that

with this process we have used 3t/2 vertices in A3 and A4 while t/2 vertices each in

A1 and A2 (see Figure 4.6). Furthermore only the remaining part of A is not balanced.

The balance can be restored by discarding t vertices each from the remaining part of

A1 and A2 which results in the net increase of 2t ≥ ηm/12 vertices in all the balanced

complete tripartite graphs.

Case 4: Labc has a subgraph isomorphic to H3321:

Assume that the pairs corresponding to the degree 3, 3, 2 and 1 pairs in the H3321 are

(B1, C1), (B2, C2), (B3, C3) and (B4, C4) respectively. Let the color classes correspond-

ing to the neighbors of these pairs in H3321 be {A2, A3, A4}, {A2, A3, A4}, {A3, A4}

and {A4}. By the definition of connectedness and Lemma 31 we build three complete
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balanced 4-partite graphs in each of (A4, B4, C4, Z), (A3, B3, C3, Z) and (A2, B2, C2, Z)

of size β
√

log m. In addition we build three more complete balanced 4-partite 4-graphs

using (B1, C1) and Z, while the vertices of the fourth color classes are in A2, A3 and

A4 respectively. We repeat this process so as to remove at least t ≥ 3ηm/64 vertices

each from each color class of B and C. Clearly the remaining part of B and C are still

balanced, while in A we have used 4t/3 vertices in each of A2, A3 and A4. To restore

the balance in remaining part of A we discard arbitrary 4t/3 vertices from A1. In the

process the net increase in the number of vertices in the resultant balanced 4-partite

4-graphs is at least 8t/3 ≥ 3ηm/8, hence (A,B, C) is extended. �

Z A B C

C1

C2

C3

C4

3

3

2

Symbols represent sizes
: t/3

: t

1

Figure 4.7: Extending (A, B, C) when Labc has an H3321: The shaded boxes represent a triplet
connected to Z, while solid thick lines represent a balanced complete 4 partite 4-graphs

4.4 The Non Extremal Case

Throughout this section we assume that we have a 4-graph H satisfying (4.1) such that

the extremal case does not hold for H. We shall assume that n is sufficiently large and

besides our main parameter γ we use the parameters β and α such that the following
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holds
12

21/β2 < γ = α4 � 1 (4.2)

where a � b means that a is sufficiently small compared to b. From (4.1) and (4.2),

when n is large we have

δ1(H) ≥
(

n− 1
3

)
−

(
3n/4

3

)
+ 1 >

37
64

(
n− 1

3

)
− 9n2

64
>

(
1/2 + 2

√
α
) (

n

3

)
Hence our hypergraph H satisfies the conditions of Lemma 34 (the absorbing lemma).

We remove from H an absorbing matching M of size at most α2n/4 =
√

γn/4. In the

remaining hypergraph we find an almost perfect matching that leaves out a set of at

most α4n = γn vertices. As guaranteed by Lemma 34 the vertices that are left out

from the almost perfect matching can be absorbed into M , therefore we get a perfect

matching in H. In what follows we work with the remaining hypergraph (after removing

V (M)). For simplicity we still denote the remaining hypergraph by H and assume that

it is on n vertices. Since |V (M)| ≤ √
γn, in the remaining hypergraph we still have

δ1(H) ≥
(

37
64

− 6
√

γ

) (
n

3

)
(4.3)

as for any vertex v in the remaining hypergraph, there can be at most 6
√

γ
(
n
3

)
edges

containing v and at least one vertex in V (M).

4.4.1 The optimal cover

Our goal is to find an almost perfect matching in H. We are going to build a cover

F = {Q1, Q2, . . .}, such that, each Qi is a disjoint balanced complete 4-partite 4-graph

in H (we refer to them as 4-partite graphs). We say that such a cover is optimal if it

covers at least (1− γ)n vertices. We will show that either we can find an optimal cover

or H is α-extremal. It is easy to see that such an optimal cover readily gives us an

almost perfect matching.

Using the following iterative procedure, we either build an optimal cover or find

a subset of vertices, which shows that H is α-extremal. We begin with a cover F0.

Then in each step t ≥ 1, if Ft−1 is not optimal, we find another cover Ft, such that
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|V (Ft)| ≥ |V (Ft−1)|+ γ2n/16 (for this we use the notation, Ft > Ft−1). The size of a

color class in each 4-partite graph in Ft is mt.

To get the initial cover, F0, we repeatedly apply Lemma 28 in the leftover of H,

while the conditions of the lemma are satisfied and the number of leftover vertices are

at least γn, to find 4-partite graphs, K(4)(m0), where m0 = β(log n)1/3. After the tth

step in this iterative procedure, if Ft is not an optimal cover, then we get Ft+1. We

will show that, unless H is α-extremal, we have Ft+1 > Ft and mt+1 = β
√

log mt. Let

It = V (H) \ V (Ft). Since Ft is not optimal and we cannot apply Lemma 28 in H|It ,

we must have that |It| ≥ γn and

d4(It) < γ. (4.4)

By non-extremality of H, this implies that |V (F0)| ≥ n/4.

In what follows we will show that if there are ‘many’ edges with three vertices in

It and one vertex in some Qi ∈ Ft then we get Ft+1 > Ft. To that end let Qi =

(V i
1 , V i

2 , V i
3 , V i

4 ) be a 4-partite graph in Ft, we say that a color class, V i
p of Qi, (1 ≤ p ≤ 4)

is connected to It, if d4(V i
p ,

(It

3

)
) ≥ 2γ. We will show that if a 4γ-fraction of the

4-partite graphs in Ft have at least 2 color classes connected to It, then we can we

get Ft+1 > Ft. To see this assume that we have a subcover F ′ ⊂ Ft, such that

each Qi ∈ F ′ has at least 2 color classes connected to It and |V (F ′)| ≥ γn. Let

F ′ = {Q1, Q2, . . .} ⊂ Ft and without loss of generality, say V i
1 and V i

2 are the color

classes in each Qi that are connected to It. For each such Qi, since |V i
1 | = |V i

2 | = mt ≤

β(log n)1/3 and |It| ≥ γn, by Lemma 29 we can find two disjoint balanced complete

4-partite graphs (U i
1, A

i
1, B

i
1, C

i
1) and (U i

2, A
i
2, B

i
2, C

i
2) where U i

1 and U i
2 are subsets of

V i
1 and V i

2 respectively, and Ai
k, B

i
k and Ci

k, k ∈ {1, 2} are disjoint subsets of It. The

size of each color class of these new 4-partite graphs is at least γmt/4 (see Figure 4.8).

We remove the vertices of these new 4-partite graphs from their respective sets and

add them to Ft+1. Removing these vertices from V i
1 and V i

2 creates an imbalance in the

leftover part of Qi (V i
3 and V i

4 have more vertices). To restore the balance, we discard

(add to It) some arbitrary |U i
1| = |U i

2| vertices each from V i
3 and V i

4 . The new 4-partite

graphs use 6γmt/4 vertices from It. Therefore even after discarding the vertices from



91

It

V i
1 V i

2 V i
3

Qi

V i
4

Figure 4.8: V i
1 and V i

2 of Qi are connected to It. The Shaded quadrilaterals represent density, while
the dark black quadrilateral is balanced complete 4-partite 4-graph

V i
3 and V i

4 the net increase in the size of our cover is γmt, while all the 4-partite graphs

are balanced. We repeat this procedure for every Qi ∈ F ′ and add the leftover part of

Qi and all 4-partite graphs in Ft \ F ′, to Ft+1. Now, we split each 4-partite graph in

Ft+1 into disjoint balanced complete 4-partite graphs, such that each has a color class

of size mt+1 = β
√

log mt (we assume divisibility). Since |V (F ′)| ≥ γn, by the above

observation, we have |V (Ft+1)| ≥ |V (Ft)|+ γ2n, hence Ft+1 > Ft.

Similarly, if there are ‘many’ edges that uses two vertices in It and two vertices from

V (Ft) then we get Ft+1 > Ft. First note that the number of pairs of vertices of any

4-partite graph Qi ∈ Ft is O(log n)2/3, so the number of pairs of vertices within the

4-partite graphs in Ft is O(n(log n)2/3) = o
(
n
2

)
. Therefore the total number of edges,

containing two vertices within a Qi ∈ Ft and two vertices in It is o
(
n
4

)
, hence we ignore

such edges. Let Qi = (V i
1 , V i

2 , V i
3 , V i

4 ) and Qj = (V j
1 , V j

2 , V j
3 , V j

4 ) be a pair of 4-partite

graphs in Ft we say that It is connected to a pair of color classes (V i
p , V j

q ), (1 ≤ p, q ≤ 4),

if d4

(
V i

p , V j
q ,

(It

2

))
≥ 2γ. We say that It is k-sided to a pair (Qi, Qj) ∈

(Ft

2

)
if It

is connected to k-pairs in {V i
1 , V i

2 , V i
3 , V i

4} × {V j
1 , V j

2 , V j
3 , V j

4 }. Assume that It is at

least 9-sided to a 4γ-fraction of pairs of 4-partite graphs in
(Ft

2

)
. By a simple greedy

procedure, (Lemma 32 and the 2-graph analog of Lemma 33) we get a disjoint set of

pairs, M ′ ⊂
(Ft

2

)
, such that for each pair (Qi, Qj) ∈ M ′, It is at least 9-sided to (Qi, Qj)

and the number of vertices covered by M ′ is at least γn.
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It

V i
1 V i

2 V i
3

Qi

V i
4

V j
1 V j

2 V j
3 V j

4

Qj

Figure 4.9: The pair (Qi, Qj) is at least 9-sided to It. The Shaded quadrilaterals represent density,
while the dark black quadrilateral is balanced complete 4-partite 4-graph

For every (Qi, Qj) ∈ M ′ we proceed as follows: Since It is connected to at least 9

pairs of color classes in {V i
1 , V i

2 , V i
3 , V i

4} × {V j
1 , V j

2 , V j
3 , V j

4 }, it is easy to see that we

can find 3 disjoint pairs of color classes such that It is connected to each of them

(say (V i
1 , V j

1 ), (V i
2 , V j

2 ) and (V i
3 , V j

3 ) are such disjoint pairs of color classes). We have

|V i
1 | = |V j

1 | = mt ≤ β(log n)1/3 and |It| ≥ γn, so by definition of connectedness, the

induced hypergraph, H
(
V i

1 , V j
1 ,

(It

2

))
satisfies the conditions of Lemma 30. Therefore

by Lemma 30 we remove balanced complete 4-partite 4-graphs, such that each of them

has one color class in V i
1 , one in V j

1 and two color classes in It. Note that the conditions

of Lemma 30 are satisfied until in total we remove at least γmt/2 vertices each from

V i
1 and V j

1 . We repeat the same process with (V i
2 , V j

2 ) and (V i
3 , V j

3 ) (see Figure 4.9).

In total these new balanced complete 4-partite 4-graphs use 3γmt vertices from It and

when we remove the vertices of the new 4-partite graphs, from Qi and Qj the remaining

parts of Qi and Qj are not balanced (V i
4 and V j

4 have extra vertices). To restore the

balance we remove an arbitrary set of vertices each from V i
4 and V j

4 (equal to the

difference in color classes). Still the net increase in the number of vertices in the cover

is at least 2γmt.

Applying this procedure for every (Qi, Qj) ∈ M ′ and making all of the 4-partite

graphs of the same size, by splitting, we get Ft+1. Again we have all 4-partite graphs
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balanced with color classes of size mt+1 = β
√

log mt and Ft+1 > Ft.

Now, if we can not get Ft+1 > Ft, we must have that, in almost all 4-partite graphs in

Ft, at most one color class is connected to It and almost all pairs of 4-partite graphs

in
(Ft

2

)
are at most 8-sided. In particular this implies that for a typical vertex v ∈ It

we have

deg4

(
v,

(
It

2

)
× V (Ft)

)
≤

(
1
4

+ 6γ

)
|V (Ft) |

(
|It|
2

)
and

deg4

(
v, It ×

(
V (Ft)

2

))
≤

(
1
2

+ 16γ

)
|It|

(
|V (Ft) |

2

)
.

From (4.3), (4.4) and the above degree bounds, for a typical vertex v ∈ It we have

deg4

(
v,

(
V (Ft)

3

))
≥

(
37
64

− 6
√

γ

) (
n

3

)
− d4

(
v, It ×

(
V (Ft)

2

))
− d4

(
v,

(
It

2

)
× V (Ft)

)
− d4

(
v,

(
It

3

))
≥

(
37
64

− 6
√

γ

) (
n

3

)
−

(
1
2

+ 16γ

)
|It|

(
|V (Ft)|

2

)
−

(
1
4

+ 6γ

) (
|It|
2

)
|V (Ft)| − γ

(
|It|
3

)
≥

(
37
64

− 30
√

γ

) (
|V (Ft)|

3

)
where the last inequality holds when |It| ≥ γn and |V (Ft)| ≥ n/4.

For a vertex v, consider the edges that v makes with 3-sets of vertices within a

Qi ∈ Ft. The number of 3-sets of vertices of any Qi ∈ Ft is O(log n), (as the size of Qi

is at most β log1/3 n), hence the total number of 3-sets of vertices within the 4-partite

graphs in Ft is O(n log n) = o
(
n
3

)
. Similarly the number of 3-sets of vertices which uses 2

vertices from a Qi and one vertex from some other Qj is O(n2 log n) = o
(
n
3

)
. Therefore,

for any vertex v, we ignore these types of edges and we will only consider the edges that

v makes with 3-sets of vertices (x, y, z), x ∈ V (Qi), y ∈ V (Qj), z ∈ V (Qk), i 6= j 6= k.

By the above observation, for the minimum degree of a typical vertex v ∈ It we still

have

deg4

(
v,

(
V (Ft)

3

))
≥

(
37
64

− 40
√

γ

) (
|V (Ft)|

3

)
(4.5)

Let Qi = (V i
1 , . . . , V i

4 ), Qj = (V j
1 , . . . , V j

4 ) and Qk = (V k
1 , . . . , V k

4 ) be three 4-partite

graphs in Ft, we say that It is connected to a triplet of color classes (V i
p , V j

q , V k
r ),
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1 ≤ p, q, r ≤ 4, if d4(It, (V i
p × V j

q × V k
r )) ≥ 2γ. For (Qi, Qj , Qk) ∈

(Ft

3

)
we consider the

link graph Lijk as defined above (with It playing the role of the set Z).

For a constant η > 0, we say that It is (η, s)-connected to Ft, if there is a subset of

triplets of 4-partite graphs, T ⊂
(Ft

3

)
, such that for each triplet (Qi, Qj , Qk) ∈ T , the

link graph, Lijk has s edges and |T | ≥ η
(|Ft|

3

)
.

A simple calculation, using (4.5), implies that if It is (γ1/3, s)-connected to Ft for

some s ≤ 36, then we also have that It is (
√

γ,≥ 38)-connected to Ft.

We consider the following cases based on the way It is connected to Ft and show

that either we get Ft+1 > Ft or H is extremal. First assume that It is (32γ,≥ 37)-

connected to Ft such that for every triplet (Qi, Qj , Qk) ∈ T , the link graph Lijk is not

isomorphic to Hext. Then by lemma 32 and lemma 33 there exists a set a disjoint set

of triplets of 4-partite graphs, T ′ ⊂ T , such that for each triplet (Qi, Qj , Qk) ∈ T ′ the

link graph Lijk has at least 37 edges and is not isomorphic to Hext. Furthermore, the

number of vertices covered by T ′ is at least γn.

Now, for each (Qi, Qj , Qk) ∈ T ′, since Lijk has at least 37 edges and Lijk 6= Hext, using

Lemma 36 we extend (Qi, Qj , Qk) to add at least γmt/16 vertices to our cover. Clearly

if we extend every triplet in T ′ the net increase in the size of our cover is at least γ2n/16

(as the size of T ′ is at least γn). Similarly as above we can split the 4-partite graphs

to make them of the same size and get Ft+1 > Ft.

On the other hand, if there is no such T , then we must have that It is not (γ1/3, s)-

connected to Ft for any s ≤ 36, because otherwise, as observed above, we will get such

a T . So, roughly speaking, for almost all triplets of 4-partite graphs in
(Ft

3

)
, we have

that the link graph of the triplet has exactly 37 edges and is isomorphic to Hext. Call

a 4-partite graph Qi ∈ Ft good, if for almost all pairs of other 4-partite graphs Qj , Qk,

we have that the link graph Lijk is isomorphic to Hext.

By the above observation, almost all 4-partite graphs (covering ≥ (1−2γ1/3)|V (Ft)|

vertices) are good. By a simple greedy procedure we find a set of disjoint triplets of
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4-partite graphs, Tg, such that for each triplet (Qi, Qj , Qk) ∈ Tg, the link graph Lijk is

isomorphic to Hext and all good 4-partite graphs are part of some triplet in Tg. Let the

set of 4-partite graphs covered by Tg be Fg, clearly |V (Fg)| ≥ (1−2γ1/3)|V (Ft)|. With

relabeling we may also assume that in each triplet (Qi, Qj , Qk) ∈ Tg, V i
1 , V j

1 and V k
1

are the color classes corresponding to the vertices of the link graph Lijk that intersect

every edge of Lijk.

For every (Qi, Qj , Qk) ∈ Tg, by definition of connectedness and the sizes of the Qi, Qj

and Qk, the 4-partite hypergraph induced by (V i
1 , V j

2 , V k
2 , It) satisfies the conditions of

Lemma 31. Hence applying Lemma 31 we find a balanced complete 4-partite graphs

Xi1 in H(V i
1 , V j

2 , V k
2 , It). We also find two more disjoint balanced complete 4-partite

graphs, Xi2 and Xi3 in H(V i
1 , V j

3 , V k
3 , It) and H(V i

1 , V j
4 , V k

4 , It). Since |It| ≥ γn, we

can find these complete 4-partite graphs that are disjoint from each other. The sizes of

a color class in each of X11, X12 and X13 is β
√

log mt.

Similarly for each of V j
1 and V k

1 we find 3 disjoint balanced complete 4-partite graphs

Xjp and Xkp in H(V i
p , V j

1 , V k
p , It) and H(V i

p , V j
p , V k

1 , It), (2 ≤ p ≤ 4), respectively. All

of these these balanced complete 4-partite graphs are disjoint from each other and the

size of a color class in each one of them is β
√

log mt.

By the definition of connectedness, the structure of the link graph Lijk and the fact

that |It| ≥ γn, clearly we can find these nine disjoint 4-partite graphs. And as argued

above we repeat this process (remove another set of 9 such 4-partite graphs) until in

total we remove γmt/2 vertices from each of V i
1 , V j

1 and V k
1 , while γmt/3 vertices from

each of the other classes in Qi, Qj and Qk.

Note that these tripartite graphs in total use 3γmt/2 vertices from It. But this

creates an imbalance among the color classes of the remaining parts of Qi, Qj and Qk

(V i
1 , V j

1 and V k
1 have fewer vertices), to restore the balance we will have to discard

γmt/6 vertices from each color class in Qi, Qj and Qk except V i
1 , V j

1 and V k
1 . Which

leaves us with no net gain in the size of the cover. Therefore we will not discard any

vertices from these color classes at this time and say that these color classes have extra
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vertices. We proceed in similar manner for each triplet in Tg. So we have about γn/24

extra vertices altogether.

Denote by V g
1 , V g

2 , V g
3 and V g

4 the union of the corresponding color classes of remaining

parts of 4-partite graphs in Fg. Clearly |V g
2 | = |V g

3 | = |V g
4 | ≥ (1 − 2γ1/3)|V (Ft)|/4 −

γn/24 ≥ (1/16 − 3γ1/3)n. The last inequality follows from the lower bound on size of

V (Ft) above, and the fact that γ is a small constant. We will show that either we can

increase the size of our cover or we have

d4 (V g
2 ∪ V g

3 ∪ V g
4 ) ≤ √

γ. (4.6)

For d4(V
g
2 ∪ V g

3 ∪ V g
4 ), we only consider those edges that use exactly one vertex from

a 4-partite graph Qi, as the number of edges of other types is o(n4). Assume that

d4(V
g
2 ∪ V g

3 ∪ V g
4 ) ≥ √

γ then by Lemma 28 there exist complete 4-partite graphs in

H|V g
2 ∪V g

3 ∪V g
4

covering at least γn vertices. We remove some of these 4-partite graphs

(possibly with splitting and discarding part of it) such that from no color class we

remove more then the number of extra vertices in that color class. Adding these new

4-partite graphs to our cover increases the size of our cover by at least γ2n vertices. As

we will not need to discard vertices from (V g
2 ∪ V g

3 ∪ V g
4 ) for rebalancing. Instead the

extra vertices are part of these new 4-partite graphs. In the remaining parts of V g
2 , V g

3

and V g
4 we arbitrarily discard some extra vertices to restore the balance in the 4-partite

graphs.

Similarly we will show that either we can increase the size of our cover or we have

d4

(
V g

2 ∪ V g
3 ∪ V g

4 ,

(
It

3

))
≤ √

γ. (4.7)

Indeed assume the contrary, i.e. d4(V
g
2 ∪ V g

3 ∪ V g
4 ,

(It

3

)
) ≥ √

γ, then since both |It| and

|V2 ∪ V g
3 ∪ V g

4 | are at least γn, by Lemma 28 we can find disjoint complete 4-partite

graphs with one color class in V2 ∪V g
3 ∪V g

4 and three in It covering at least γ2n/2 ver-

tices. And again as above we can add these 4-partite graphs to our cover and increase

the size of our cover as we have extra vertices in V g
2 ∪ V g

3 ∪ V g
4 . By the same reasoning
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we can prove that there are very few edges that uses two vertices from V2 ∪ V g
3 ∪ V g

4

and two from It.

From the above observations about the size of Fg and (4.2) we have that |V g
2 ∪

V g
3 ∪ V g

4 ∪ It| ≥ (3/4 − α)n. Therefore if we can not increase the size of our cover

significantly (by at least γ2n/16 vertices), then by (4.4), (4.6) and (4.7) we get that

d4(V
g
2 ∪ V g

3 ∪ V g
4 ∪ It) < α. Hence H is α-extremal.

4.5 The Extremal Case

Here our graph H is in the Extremal Case, i.e. there is a B ⊂ V (H) such that

• |B| ≥ (3
4 − α)n

• d4(B) < α.

We assume that n is sufficiently large and α is a sufficiently small constant < 1. Let

A = V (H) \ B, by shifting some vertices between A and B we can have that A = n/4

and B = 3n/4 as n ∈ 4Z (we still keep the notation A and B). It is easy to see that

we still have

d4(B) < 6α (4.8)

Since we have

δ1(H) ≥
(

n− 1
3

)
−

(
3n/4

3

)
+ 1 =

(
n− 1

3

)
−

(
|B|
3

)
+ 1

this together with (4.8) implies that almost all 4-sets of V (H) are edges of H except

4-sets of B. Thus roughly speaking we have that almost every vertex b ∈ B makes

edges with almost all 3-sets of vertices in
(
A
3

)
, with almost all 3-sets of vertices in

B \ {b} ×
(
A
2

)
and with almost all 3-sets of vertices in

(
B\{b}

2

)
× A and vice versa.

Therefore, we will basically match every vertex in A with a distinct 3-set of vertices

in
(
B
3

)
(disjoint from all 3-sets matched with other vertices in A) to get the perfect

matching. However some vertices may be ‘atypical’, in the sense that they may not

have this connectivity structure hence we will first find a small matching that covers
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all such ‘atypical’ vertices. For the remaining ‘typical’ vertices we will show that they

satisfy the conditions of König-Hall theorem, hence we will match every remaining

vertex in A with a distinct 3-sets of remaining vertices in B.

A vertex a ∈ A is called exceptional if it does not make edges with almost all 3-sets

of vertices in B, more precisely if

deg4

(
a,

(
B

3

))
<

(
1−

√
α
) (

|B|
3

)
A vertex a ∈ A is called strongly exceptional if it makes edges with very few 3-sets in

B, more precisely if

deg4

(
a,

(
B

3

))
< α1/3

(
|B|
3

)
Similarly a vertex b ∈ B is called exceptional if it makes edges with many 3-sets of

vertices in B more precisely if

deg4

(
b,

(
B \ {b}

3

))
>
√

α

(
|B|
3

)
A vertex b ∈ B is called strongly exceptional if it makes edges with almost all 3-sets of

vertices in B more precisely if

deg4

(
b,

(
B \ {b}

3

))
> (1− α1/3)

(
|B|
3

)

Denote the set of exceptional and strongly exceptional vertices in A (and B) by XA

and SXA respectively (similarly XB and SXB). Easy calculations using (4.1) and (4.8)

yields that |XA| ≤ 18
√

α|A| and |XB| ≤ 18
√

α|B| and for the strongly exceptional sets

we have |SXA| ≤ 40α|A| and |SXB| ≤ 40α|B|. The constants are not the best possible

but we choose them for ease of calculation.

If we have both SXB and SXA non empty, (say b ∈ SXB and a ∈ SXA) then since

then we can exchange a with b and reduce the size of both SXB and SXA, as it is easy

to see that both a and b are not strongly exceptional in their new sets. Hence one of

the sets SXA and SXB must be empty.

Assume SXB 6= ∅. By definition of SXB, for every vertex b ∈ SXB, we have

deg3(b,
(
B
3

)
) ≥ (1−α1/3)

(|B|
3

)
. This together with the bound on the size of SXB implies
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that we can greedily find |SXB| vertex disjoint edges in H|B each containing exactly

one vertex of SXB. We also select |SXB| other vertex disjoint edges such that each edge

has two vertices in B \XB and the two other vertices are in A. We can clearly find such

edges because by (4.1) and definition of XB every vertex in B \XB makes edges with

at least (1− 3
√

α)-fraction of 3-sets in B×
(|A|

2

)
. We remove the vertices of these edges

from A and B and denote the remaining set by A′ and B′. Let |A′|+ |B′| = n′, by the

above procedure we have n′ = n−8|SXB|, |A′| = |A|−2|SXB| and |B′| = |B|−6|SXB|

hence we get |B′| = 3|A′| = 3n′/4.

In case SXA 6= ∅ (and SXB = ∅), we will first eliminate the vertices in SXA. Note

that in this case any vertex b ∈ B is exchangeable with any vertex in SXA, because if

there is a vertex b ∈ B such that deg4(b,
(
B
3

)
) ≥ α1/3

(|B|
3

)
then we can replace b with any

vertex a ∈ SXA to reduce the size of SXA (as the vertex b is not strongly exceptional

in A and a can not be strongly exceptional in the set B). Therefore we consider the

whole set SXA ∪B. By (4.1) for any vertex v ∈ SXA ∪B we have

deg4

(
v,

(
SXA ∪B

3

))
≥(|SXA| − 1)

(
|B|
2

)
+

(
(|SXA| − 1)

2

)
|B|+

(
(|SXA| − 1)

3

)
+ 1

≥
(

4(|SXA| − 1)
3

)
+ 1

where the last inequality holds when n is large enough and |SXA is small. So with a

simple greedy procedure we find |SXA| disjoint edges in H|SXA∪B and remove these

edges from H. Note that this is the only place where we critically use the minimum

degree. We let A′ = A \ SXA and B′ has all other remaining vertices. Again as above

we have n′ = n − 4|SXA|, |A′| = |A| − |SXA| and |B′| = |B| − 3|SXA| hence we get

|B′| = 2|A′| = 3n′/4.

Having dealt with the strongly exceptional vertices, the vertices of XA and XB in

A′ and B′ can be eliminated using the fact that their sizes are much smaller than

the crossing degrees of vertices in those sets. For instance as observed above we have

|XA| ≤ 18
√

α|A| while for any vertex a ∈ XA, we have that deg4(a,
(
B′

2

)
) ≥ α1/3

(|B′|
3

)
/2

(because a /∈ SXA). Therefore by a simple greedy procedure for each a ∈ XA we delete

a disjoint edge that contains a and three vertices from B′. Similarly for each b ∈ XB we
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delete an edge that contains b and uses one vertex from A′ and the other two vertices

from B′ distinct from b. Clearly we can find such disjoint edges, hence we removed a

partial matching that covers all vertices in the strongly exceptional and exceptional sets.

Finally in the leftover sets of A′ and B′ (denote them by A′′ and B′′, by construction

we still have |B′′| = 3|A′′|) we will find |A′′| disjoint edges each using one vertex in A′′

and three vertices in B′′. Note that for every vertex a ∈ A′′ we have deg4(a,
(
B′′

3

)
) ≥

(1− 2α1/3)
(|B′′|

3

)
(as a /∈ XA). We say that a vertex bi and a pair bj , bk in B′′ are good

for each other if (bi, bj , bk, al) ∈ E(H) for at least (1 − 40α1/4)|A′′| vertices al in A′′.

We have that any vertex bi ∈ B′′ is good for at least (1− 40α1/4)
(|B′′|

2

)
pairs of vertices

in B′′ (again this is so because bi /∈ XB). We call such a (bi, bj , bj) a good triplet.

We randomly select a set T1 of 100α1/4|B′′| vertex disjoint 3-sets of vertices in B′′.

By the above observation with high probability every vertex a ∈ A′′ make edges in H

with at least 3|T1|/4 triplets in T1 and every triplet in T1 makes an edge with at least

3|A′′|/4 vertices in A′′. In B′′ \ V (T1) still every vertex is good for almost all pairs (as

the size of T1 is very small).

We cover vertices in B′′ \V (T1) with disjoint good triplets (i.e. the triplet makes an

edge in H with at least (1−40α1/4)|A′′| vertices in A′′. This can be done by considering

a 3-graph with vertex set B′′ \ V (T1) and all the good triplets as its edges. As argued

above every vertex is good for almost all pairs. We can find a perfect matching in this

3-graph (see [36]). Let the set of triplets in this perfect matching be T2.

Now construct an auxiliary bipartite graph G(L,R), such that L = A′′ and vertices

in R corresponds to the triplets in T1 and T2. A vertex in al ∈ L is connected to a vertex

y ∈ R if the triplet corresponding to y (say bi, bj , bk) is such that (bi, bj , bk, al) ∈ E(H).

We will show that G(L,R) satisfies the König-Hall criteria. Considering the sizes of

A′′ and T1 it is easy to see that for every subset Q ⊂ R if |Q| ≤ (1− 40α1/4)|A′′| then

|N(Q)| ≥ |Q|. When |Q| > (1 − 40α1/4)|A′′| (using |B′′| = 2|A′′|) any such Q must

have at least 6|T1|/10 vertices corresponding to pairs in T1, hence with high probability

N(Q) = L ≥ |Q|. Therefore there is a perfect matching of R into L. This perfect
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matching in G(L,R) readily gives us a matching in H covering all vertices in A′′ and

B′′, which together with the edges we already removed (covering strongly exceptional

and exceptional vertices) is a perfect matching in H. �
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[10] P. Erdős, R. Faudree, Some recent combinatorial problems, Technical Report, Uni-
versity of Bielefeld, 1990.
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[33] V. Rödl, A. Ruciński and E. Szemerédi, A note on perfect matchings in uniform
hypergraphs with large minimum collective degree, Commentationes Mathematicae
Universitatis Carolinae 49(4) (2008) 633-636.
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