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Decomposition has been used in solving numerous problems in mathematics, computer

science, engineering, management, and operations research. In this dissertation, we use

decomposition methods to solve three practical combinatorial optimization problems aris-

ing in telecommunication and airline planning.

In the first part of the dissertation, we study a redundant multicast routing problem

with group diverse constraint (RMRGD) that arises in many network applications such

as communication systems, power supply distribution systems, transportation networks,

etc. We propose three mixed integer programming (MIP) models, an edge-based, a path-

based, and a tree-based model, to solve RMRGD. We proposed two decomposition methods

based on the column generation and branch-and-price to solve the path-based and tree-

based models. Our empirical results suggest that the edge-based model is superior in

solving small and mid-sized problems, whereas the tree-based model performs better for

large problems.
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In the second part of the dissertation, we study the flight conflict resolving problem

(FCR). The purpose of flight conflict re-scheduling problem is to provide a flight schedule

that minimizes the total penalty cost of schedule changes, while maintaining the FAA

separation standard between aircrafts. We propose a set-partitioning-based flight sequence

model (FSM) that selects an optimal set of flight sequences to minimize the total penalty

cost. We also extend the FSM to consider equity among airlines because such corporate

decision making (CDM)-feature is necessary and critical for the future aviation systems.

The computation results show the proposed solution methods outperform other solution

methods, and solve the real life test cases optimally within reasonable time

In the third part of the dissertation, the aircraft maintenance routing problem is stud-

ied. The aircraft maintenance routing problem is aimed at scheduling the aircraft rotations

so that adequate maintenance opportunities are provided to every aircraft in the fleet. In

this dissertation, we present two new compact rotation-tour network representations for

the daily aircraft maintenance routing problem (AMR) and the weekly aircraft main-

tenance routing problem (WAMR), and propose new mixed-integer linear programming

formulations to solve these two problems. The computational study suggests the proposed

models are able to solve large real-life test instances optimally in reasonable time.
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Chapter 1

Introduction

In operations research, when a problem is too large and/or complex to be solved at once, it

might be decomposed into smaller and easier problems. Choosing a sound decomposition

method is critical to resolving difficult problems successfully. Extensive studies have been

made on solving numerous real-life problems using decomposition methods, which requires

considerably related knowledge and analysis because decomposition techniques are highly

problem-dependent. In this dissertation, we focus on solving three diverse problems that

arise in telecommunication and airline logistics using decomposition methods.

In the first part of the dissertation, we study a redundant multicast routing problem

with risk group diverse constraints (RMRGD). RMRGD arises in many network applica-

tions such as communication systems, power supply distribution systems, transportation

networks, etc. In these applications, there are common needs to transmit or to deliver

specific information or objects from a single source to a set of destinations [Paul and

Raghavan, 2002, Garey and Johnson, 1979, Khoury and Pardalos, 1996]. The edges used

in multicast transmission form a multicast tree. In order to provide reliable and resilient

multicast services, a common practice is to find two redundant multicast trees from sepa-

rated sources. The redundant multicast tree has to be disjoint from the original multicast

tree so that a single edge failure does not disable the multicast service to any destination

[Medard et al., 1999, Irava and Hauser, 2005]. In the real life, it is ordinary that some

edges are subject to a common risk, and form a risk group [Yuan and Jue, 2005, Hu, 2003,

Zang et al., 2003, Shen et al., 2005, Guo et al., 2005]. For example, in communication

systems, all fibers in a conduit form a risk group because a conduit break may disable all

the optical fibers contained. In the power distribution network, all power lines located in

a geographic area form a risk group because these power lines are subject to common risks
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like nature disaster (e.g., earthquakes, floods, etc.) or terrorism attack. It is important

to note that an ordinal edge/link disjoint redundant routing is not necessarily reliable in

these cases, because both paths to a destination could fail together in a risk group fail-

ure. Therefore, finding redundant multicast trees with group diverse constraints becomes

very critical for reliable multicast services. In this dissertation, we propose three classes of

models, an edge-based, a path-based, and a tree-based model, to solve RMRGD. The path-

based and tree-based models can be viewed as different Dantzig-Wolfe decompositions of

the edge-based model. Therefore, column generation and branch-and-price methods are

used to solve the path-based and tree-based models. The computational results show that

the edge-based model provides the best results for small and mid size problems, whereas

the tree-based model outperforms the other two for large problems.

In the second part of the dissertation, we study the flight conflict re-scheduling problem,

which is to provide a flight schedule that minimizes the total penalty cost of schedule

changes while maintaining the FAA separation standard between aircrafts. We propose

two optimization models for this problem. The first model is a basic absolute value model

(BAVM) that explicitly presents the penalty cost as a nonlinear function. This model is

extremely difficult to be solved because the linearized model is an integer programming

problem with a large number of Big-Ms, and there is no obvious way, if possible, to

decompose it. Then, we reformulate the problem as a set-partitioning-based flight sequence

model (FSM) that selects an optimal set of flight sequences that minimizes the total penalty

cost. Because there are an exponential number of flight sequences, we propose a column

generation framework with a bilinear pricing subproblem to solve the linear relaxation of

FSM, and use a branch-and-price method with a new branch-on flight-assignment rule to

find the integer optimal solution. Both models are tested on ten simulated test instances

randomly constructed based on a real dataset, and compared with two other heuristic

methods currently employed at the air route traffic control centers (ARTCCs). The results

show that the FSM outperforms all other methods in all test instances. We also extend

the FSM to consider equity among airlines. Although the equity concept has not been

incorporated in the current ARTCC operations, such corporate decision making (CDM)-

feature is necessary and critical for the future aviation systems such as 4-D trajectory
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system. Our study demonstrates that the proposed solution method can be extended to

handle the equity constraints easily. The computation results show the proposed solution

methods can solve the FSM with equity constraints within reasonable time.

In the third part of the dissertation, we study the aircraft maintenance routing problem.

The aircraft maintenance problem is one of the important logistic problems in the airline

industry. It is aimed at scheduling the aircrafts routing so that adequate maintenance

opportunities are provided to every aircraft in the fleet. In this dissertation, we present

two compact network representations for the daily aircraft maintenance routing problem

(AMR) and the weekly aircraft maintenance routing problem (WAMR), and propose new

mixed-integer linear programming formulations to solve these two problems. The quality

of these models are assessed on real life test instances from major US carriers. The com-

putational results show that the proposed models are able to obtain the optimal solutions

to all test instances in reasonable time. This study suggests that these two models can

be applied to integrated problems of the aircraft maintenance routing problem and other

planning problems such as the fleet assignment problem and the crew pairing problem.

This dissertation is organized as follows:

In Chapter 2, a brief review of popular decomposition techniques for linear and integer

programming problems is presented, and the relationships between different decomposition

methods are revealed. In Chapter 3, we study a redundant multicast routing problem with

risk group diverse constraints. In Chapter 4, we present the flight conflict re-scheduling

problem and the solution methodology. In Chapter 5, we discuss the daily aircraft main-

tenance routing problem, and propose a new model to solve the problem. In Chapter 6,

we present a compact model and the solution methodologies to solve the weekly aircraft

maintenance routing problem.
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Chapter 2

Preliminaries

In 1960, two American mathematicians, George Dantzig and Philip Wolfe, developed a

decomposition algorithm for solving linear programming problems with special structures,

and now this algorithm is known as Dantzig-Wolfe decomposition Dantzig and Philip

[1960]. One year later, Gilmore and Gomory proposed the use of column generation to

solve the cutting stock problem Gilmore and Gomory [1961]. From then on, a number

of decomposition methods and the relevant theories have been developed to solve linear

and integer programming problems Jr. [1961], Benders [1962], Walker [1969], Geoffrion

[1974], Barnhart et al. [1998a]. In the last three decades, with the evolution of computa-

tional capability, these decomposition methods have been successfully applied to numerous

large-scale practical problems. The aim of this chapter is to provide a brief overview on

several well-known decomposition methods for linear and integer programming problems,

which include column generation, Dantzig-Wolfe decomposition, Lagrangian relaxation,

and branch-and-price.

2.1 Column Generation

The simplex method Bazaraa et al. [1990] is one of the most successful methods in solving

linear programming problems. In every iteration of the simplex method, we look for a

non-basic variable to price out and enter the basis. Consider the following linear problem.

min
∑
j∈J

cjxj (2.1)

s.t.
∑
j∈J

aijxj ≥ b ∀i ∈ I, (2.2)

xj ≥ 0 ∀j ∈ J̄. (2.3)
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Given non-negative dual variables φi, ∀i ∈ I, we want to find a xj with the minimum

reduced cost c̄∗j , that is, j = arg minj∈J c̄j , where c̄j = cj −
∑

i∈I φiaij . In the simplex

method, this is accomplished by computing the reduced cost c̄j for all j ∈ J and then

selecting the most negative one. When the number of variables is very large, computing

the reduced cost for every j becomes time consuming, because it involves computing

the inverse of the non-basic matrix. For some large problems, it is even impractical to

enumerate all the variables explicitly.

The basic principle of column generation Wolsey [1998], Desaulniers et al. [2005] is

similar with the simplex method. That is, in every iteration of column generation, we

select profitable variables to enter the basis. However, there are two main differences

between the simplex method and column generation. Firstly, instead of working with the

complete set of variables, column generation only deals with a reasonably small subset

of variables, and this partial problem is called the restricted master problem. Secondly,

the pricing step of column generation is more efficient than the simplex method for large

problems. Rather than computing the reduced cost c̄j for all j ∈ J , the pricing operation

of column generation is to find a column with the most negative reduced cost by solving

an optimization problem, called the pricing subproblem, as follows:

c̄∗j = min cj −
∑
i∈I

φiaij (2.4)

s.t.

{a1j , a2j , . . . , a|I|j} is a feasible variable index vector. ∀j ∈ J. (2.5)

If there exists some algorithm to solve the pricing subproblem so quickly that the solution

time of the pricing subproblem is less than the time of computing the reduced costs for

all non-basic variables, column generation becomes more computationally efficient than

the simplex method. Furthermore, because column generation only deals with a subset of

variables, it need much less computational space than the simplex method. The detailed

column generation algorithm is shown as follows:

Initialization We first select a subset of J̄ ⊂ J , which provides a feasible restricted
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master problem as shown in Eqs. (2.6)-(2.8).

min
∑
j∈J̄

cjxj (2.6)

s.t.
∑
j∈J̄

aijxj ≥ b ∀i ∈ I, (2.7)

xj ≥ 0 ∀j ∈ J̄ . (2.8)

Solving Restricted Master Problem After solving the restricted master problem, we

get the dual variables φi, ∀i ∈ I.

Optimality Check & Generation of New Variables In order to check optimality of

the current solution, we solve the pricing subproblem in Eqs. (2.4)-(2.5). If the

objective value of the pricing subproblem is less than 0, the corresponding variable

is added into the restricted master problem, and we continue the next step; otherwise,

the current LP solution is optimal, and the algorithm stops.

Computing Lower and Upper Bounds Note any solution to the restricted master

problem is feasible to the original problem. Let z̄ denote the optimal objective

value of the restricted master problem in an iteration. It is obvious that z̄ is an

upper bound of the problem. If there exists an upper bound for the sum of all the

variables, that is µ ≥
∑

j∈J xj , z̄ − µc̄∗ is a lower bound to the original problem.

In other words, the optimal value z∗ of the original problem satisfies the following

relation:

z̄ − µc̄∗ ≤ z∗ ≤ z̄. (2.9)

This is because we cannot reduce z̄ by more than µ times of the smallest reduced

cost c̄∗.

Stopping Criteria After computing and updating the lower bound of the problem, we

stop the algorithm if the stopping criteria is met; otherwise, we go to step 2, and the

algorithm continues.

The key step of column generation is how to model the pricing subproblem and solve
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it efficiently. As we mentioned before, the modeling of the subproblem takes considerable

experience and analysis. In Table 2.1, we list a set of well-known problems that have been

solved successfully using column generation. We also list the corresponding subproblems.

Problems Column Generation Subproblems

Bin Packing Problem Knapsack Problem
Scholl et al. [1997], de Carvalho [1999, 2002]

Crew Pairing Problem Constrained Shortest Path Problem
Barnhart et al. [1998a, 2003]

Cutting Stock Problem Knapsack Problem
Gilmore and Gomory [1961], Marcotte [1985], Vance [1998]
Vanderback [1999], Degraeve and Schrage [1999], Degraeve and Peeters [2003]

Job Shop Problem Single Machine Sequencing Problem with Time Window
Chen and Powell [1999a,b, 2003], Gelinas and Soumis [2005]

Multicommodity Network Flow Problem Shortest Path Problem
Ahuja et al. [1993], Barnhart et al. [2000]

Multi-Item Lot-Sizing Problems Single-Item Problem
Eppen and Martin [1987]

Vehicle Routing Problem Traveling Sales Man Problem
Desrochers et al. [1992], Kohl et al. [1999]
Chabrier [2006], Irnich and Villeneuve [2006]

Table 2.1: Selected well-known problems solved using column generation.

Some very important techniques may speed up the implementation of column gener-

ation greatly. For example, instead of searching for the variable with the most negative

reduced cost, any variables with negative reduced cost can improve the current solution

of the restricted master problem. Hence, many heuristics can be utilized to achieve this

goal. Applying this method often speeds up the early stages of column generations. An-

other widely used approach is to return multiple columns to the restricted master problem

in every iteration. This normally decreases the number of iterations needed for optimal

solutions.

We have only briefly introduced the idea of column generation in this section. Much

more about theories, implementation issues, and applications on column generation can

be found in the literatures. For the theories of column generation, please see Chapter 11

of Wolsey [1998], Chapter 1 of Desaulniers et al. [2005], Chapter 7 of Bazaraa et al. [1990];

for the implementation issues of column generation, please see Chapter 12 of Desaulniers

et al. [2005], Vanderback [1999]; and there are numerous applications of column generation

in many fields of operations research, industrial engineering, and management science.



8

2.2 Dantzig Wolfe Decomposition

In this section, we present Dantzig Wolfe Decomposition for integer problems. Consider a

mixed integer problem of the following form:

min c(x) (2.10)

s.t. A(x) ≥ b, (2.11)

D(x) ≥ d, (2.12)

x ∈ Z+, (2.13)

where A ∈ Ql×(n), D ∈ Qm×(n), are rational matrices and c ∈ Qn, b ∈ Ql, and d ∈

Qm are rational vectors. Assume Eq. (2.11) represents difficult constraints, and Eq.

(2.12) represents more tractable constraints that it alone can be solved efficiently. For

example, B(x) ≥ b has a block diagonal structure or is totally unimodular Wolsey [1998],

Schrijver [1998], Nemhauser and Wolsey [1999], which can be easily solved. Dantzig-Wolfe

decomposition takes the advantage of such structure and solves the problem in Eqs. (2.10)-

(2.13) efficiently.

Dantzig-Wolfe decomposition uses the concept of variable redefinition. If the convex

set conv(XD) = {(x) : D(x) ≥ d, x ∈ Z+} can be represented by a combination of extreme

points {xp}p∈P and a non-negative combination of extreme rays {xr}r∈R, each x can be

rewritten in the following form:

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr, (2.14)

∑
p∈P

λp = 1, (2.15)

where the index set P and R are finite. Also, by applying linear transformations, we have

cp = cTxp, ap = Axp and cr = cTxr, ar = Axr. Substituting x in Eqs. (2.10)-(2.13), we
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have the following form:

min
∑
p∈P

cpλp +
∑
r∈R

crλr (2.16)

s.t.
∑
p∈P

apλp +
∑
r∈R

arλr ≥ b, (2.17)

∑
p∈P

λp = 1, (2.18)

λp ≥ 0, (2.19)∑
p∈P

xpλp +
∑
r∈R

xrλr = x, (2.20)

x ∈ Z+. (2.21)

Eq. (2.18) is the convexity constraint. If the integrality constraints of x are relaxed, we

can ignore the constraints in Eqs. (2.20)-(2.21). Since |P |, the number of extreme points

of conv(XD), is usually very large, it is impractical to enumerate all the extreme points

explicitly. A more efficient way is to work with a reasonably small subset of extreme points

first, and then solve the entire problem using column generation. Define the dual variable

vector of constraints in Eq. (2.17) as φ, and the dual variable of constraints in Eq. (2.18)

as φ0. The pricing subproblem of the problem becomes as follows:

c̄∗ = min{(cT − φTA)x− φ0|x ∈ XD}. (2.22)

When matrix D has a block diagonal structure as follows:

D =



D1

D2

. . .

Dk


, d =



d1

d2

. . .

dk


, (2.23)

Dantzig-Wolfe decomposition yields k subproblems, each with its own constraints and

associated dual variables. The reduced cost of each subproblem is computed as follows:

c̄k∗ = min{(ckT − φkTAk)xk − φk0|x ∈ Xk}, ∀k ∈ K. (2.24)
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From Eq. (3.44) together with the convexity constraint in Eq. (2.18), we have the upper

and lower bounds in every iteration of column generation for Dantzig-Wolfe decomposition

as follows:

z̄ − c̄∗ = z̄ −
∑
k∈K

c̄k∗ ≤ z∗ ≤ z̄. (2.25)

It is obvious that Dantzig-Wolfe decomposition is closely related with column generation.

There are two main advantages of Dantzig-Wolfe decomposition over the original model:

first, it often leads to a stronger LP bound than the original formulation Geoffrion [1974];

second, we may decompose the original complex problem into a set of well-studied easy

problems and use existing algorithms and methods to solve the subproblem efficiently.

Next, we illustrate the above points in the following example.

Example: Resource Constrained Shortest Path

Consider the network G(N,A) shown in Figure 2.1. Each arc (i, j) ∈ A has two
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(𝑐𝑖𝑗 , 𝑟𝑖𝑗 ) 

𝑗 

Figure 2.1: Resource constrained shortest path problem Ahuja et al. [1993], Desaulniers
et al. [2005].

attributes: the first attribute cij is the travel cost, and the second attribute rij is the

resource consumed. We want to find a path from node 1 to node 6 with minimum

cost and the total resource consumed is less than or equal to 14.

One nature formulation is an edge-based model shown in Eqs. (2.26)-(2.31), in which

we define a binary variable xij such that xij = 1 if edge (i, j) in the shortest path
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and 0 otherwise.

min
∑

(i,j)∈A

cijxij (2.26)

s.t.
∑

j:(1,j)∈A

x1j = 1, (2.27)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 ∀i = 2, 3, 4, 5, (2.28)

∑
i:(i,6)∈A

xi6 = 1, (2.29)

∑
(i,j)∈A

rijxij ≤ 14, (2.30)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.31)

The constraints in Eqs. (2.27)-(2.29) are the flow balance constraints. The constraint

in Eq. (2.30) is resource limitation constraint. The resource constrained shortest

path problem has been proven to be NP-complete Garey and Johnson [1979]. How-

ever, the flow balance constraints in Eqs. (2.27)-(2.29) are totally unimodular, and

it alone can be solved easily. In network theory, the extreme point of the polytope

defined by Eqs. (2.27)-(2.29) corresponds to a path p ∈ P in the network. Therefore,

we can simply substitute xij by extreme point xp as follows:

xij =
∑

p|(i,j)∈p

λp ∀(i, j) ∈ A, (2.32)

∑
p∈P

λp = 1, (2.33)

λp ≥ 0 ∀p ∈ P. (2.34)
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Dantzig-Wolfe decomposition of the model in Eqs. (2.26)-(2.31) is shown as follows:

min
∑

(p∈P )∈A

cpλp (2.35)

s.t.
∑
p∈P

λp = 1, (2.36)

∑
p∈P

rpλp ≤ 14, (2.37)

xij =
∑

p|(i,j)∈p

λp ∀(i, j) ∈ A, (2.38)

λp ≥ 0 ∀p ∈ P, (2.39)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.40)

Here, cp =
∑

(i,j)∈p cij , and rp =
∑

(i,j)∈p rij . We first solve the LP relaxation of the

above problem using column generation. Define the dual variable of constraint in

Eq. (2.36) as φ0 and dual variable of constraint in Eq. (2.37) as φ1. The reduced

cost of a path is:

c̄ =
∑

(i,j)∈p

cij − φ1

∑
(i,j)∈p

ri,j − φ0 ∀p ∈ P. (2.41)

The pricing subproblem is then formulated as:

c̄∗ = min
∑

(i,j)∈A

(cij − φ1rij)xij − φ0 (2.42)

s.t.
∑

j:(1,j)∈A

x1j = 1, (2.43)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 ∀i = 2, 3, 4, 5, (2.44)

∑
i:(i,6)∈A

xi6 = 1, (2.45)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.46)

This problem is simply the shortest path problem and can be solved in polynomial

time Papadimitriou and Steiglitz [1998], Corman et al. [2001].

In Table 2.2, we show the solution procedure using column generation. Specifically,
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Iteration Columns Objective φ0 φ1 Reduced Cost Solution

1 p1 = 1→ 2→ 4→ 6 11.4 40.8 -2.1 -2.8 λp1 = 0.6, λp2 = 0.4
p2 = 1→ 3→ 5→ 6

2 p3 = 1→ 3→ 2→ 5→ 6 9.0 30.0 -1.5 -2.5 λp1 = 0.5, λp3 = 0.5
3 p4 = 1→ 2→ 5→ 6 7.0 35.0 -2.0 0 λp3 = 0.2, λp4 = 0.8

Table 2.2: Column generation solution precedure.

in iteration 1, we generate two initial paths p1 and p2 using shortest path algorithm,

where p1 = 1 → 2 → 4 → 6 has the least cost, and p2 = 1 → 3 → 5 → 6 uses the

least resource. Node that p2 also guarantees the feasibility of the problem. After

solving the restricted master problem, we have dual cost φ0 = 40.8 and dual cost

φ1 = −2.1. By plugging in dual values into Eqs. (2.42)-(2.46), we generate the third

path 1→ 3→ 2→ 5→ 6 and column generation continues. As shown in Table 2.2,

column generation terminates in three iterations with the objective value of 35. It is

worth mentioning that the LP solution contains fractional values λp3 = 0.2, λp4 = 0.8,

and we need to use branch-and-price described in Section 2.4 to obtain the integer

solution.

2.3 Lagrangian Relaxation

When solving the integer problem in Eqs. (2.10)-(2.13), we can also relax the complex

constraints in Eq. (2.11), and penalize the term (A(x)−b) with non-negative cost vector

u. Therefore, the original problem becomes:

min c(x)− u(Ax− b) (2.47)

s.t. D(x) ≥ d, (2.48)

x ∈ Z+. (2.49)

This problem is called a Lagrangian relaxation of the original problem. Note the feasible

region of the above formulation is at least as large as the original formulation. Also the

objective value of the above formulation is a lower bound to the original problem, because

for all u ≥ 0 and A(x) ≥ b, c(x)− u(A(x)− b) ≤ c(x) for all x satisfying constraints in

Eqs. (2.11)-(2.12) Bazaraa et al. [1990], Wolsey [1998]. Here, we can view u as the dual
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cost or Lagrangian multiplier of the complex constraint in Eq. (2.11). Note the values of

min c(x) − u(Ax − b) for all u ≥ 0 provide a set of lower bounds. In order to find the

largest lower bound for all u, we solve the following Lagrangian dual problem.

max
u≥0
{min c(x)− u(Ax− b)} (2.50)

s.t. D(x) ≥ d, (2.51)

x ∈ Z+. (2.52)

It is known that this function of u is concave and piecewise linear Nemhauser and Wolsey

[1999], Wolsey [1998], Bazaraa et al. [1990]. A subgradient optimization method can be

used to obtain the optimal Lagrangian multiplier Wolsey [1998], Nemhauser and Wolsey

[1999]. Specifically, the optimal value of u is computed using an iterative calculation as

follows:

uk+1 = max {uk + θk(Ax− b), 0}, (2.53)

where uk is the Lagrangian dual at iteration k, and θk is the step length of iteration k. In

order to guarantee the convergence of the uk, the step length of iteration k has to satisfy

the following condition: limk→∞
∑

k θk = ∞ and limk→∞ θk = 0. It is important to note

that the step length θk is critical in implementing the subgradient algorithm, and different

methodologies have been developed in determining effective step length θk for different

applications.

Next we show the relationship between Dantzig-Wolfe decomposition and Lagrangian

relaxation method. If we replace x in Eqs. (2.50)-(2.52) by extreme points xp and extreme

ray xr of conv(XD), we have the following:

max
u≥0

{
min
p∈P

cT (xp)− uT (Axp − b)

}
(2.54)

s.t. (cT − uTAxp)xr ≥ 0 ∀r ∈ R. (2.55)

Here, the constraints in Eq. (2.55) ensure that the problem is bound. We can rewritten
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the Eqs. (2.54)-(2.55) in a linear problem form as shown below:

maxu0 (2.56)

s.t. uT (Axp − b) + u0 ≤ cTxp ∀p ∈ P, (2.57)

(cT − uTAxp)xr ≥ 0 ∀r ∈ R, (2.58)

The dual of the above problem is shown as follows:

min
∑
p∈P

cpxpλp +
∑
r∈R

crxrλr (2.59)

s.t.
∑
p∈P

Axpλp +
∑
r∈R

Axrλr ≥ b
∑
p∈P

λp, (2.60)

∑
p∈P

λp = 1, (2.61)

λp ≥ 0. (2.62)

This is the same as Dantzig-Wolfe decomposition of the problem as shown in Eqs. (2.16)-

(2.18). Also, for a given vector u of Lagrangian multiplier and a constant u0, we have:

z̄ + c̄∗ = cTx− (φT (Ax− b)) = (utb+ u0) + min
x∈conv(XD)

(cT − uTA)x− u0 (2.63)

This illustrates that the lower bound provided by Dantzig-Wolfe decomposition in Eq.

(3.44) is the same as the bound provided by Lagrangian relaxation.

There are several advantages of Lagrangian relaxation. First, same as Dantzig-Wolfe

decomposition, it allows us to decompose the complex problem into some well-studied

problems, and solve them efficiently. Second, it is usually easier to solve the Lagrangian

relaxation using subgradient optimization than Dantzig-Wolfe decomposition with linear

or integer subproblems. In the following example, we show how to use the Lagrangian

relaxation to solve the constrained shortest path problem mentioned in Section 2.2.

Example: Resource Constrained Shortest Path Problem (Continuation)
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In the resource constrained shortest path, the constraint in Eq. (2.30) is hard con-

straint, and Lagrangian relaxation of the problem is as follows:

min
∑

(i,j)∈A

cijxij + u(
∑

(i,j)∈A

rij − 14) (2.64)

s.t.
∑

j:(1,j)∈A

x1j = 1, (2.65)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 ∀i = 2, 3, 4, 5, (2.66)

∑
i:(i,6)∈A

xi6 = 1, (2.67)

xij ∈ {0, 1} ∀(i, j) ∈ A. (2.68)

Let u1 = 0 and θk = 1
k . In iteration 1, we have the first path 1 → 2 → 4 → 6, and

u1 = 4. In iteration 2, we generate the second path 1→ 3→ 2→ 5→ 6. In iteration

3, we generate the third path 1→ 2→ 5→ 6. As the number of iteration increases,

the Lagrangian multiplier u converges to 2, and the generated paths change between

1 → 3 → 2 → 5 → 6 and 1 → 2 → 5 → 6. This is also verified by the dual cost of

constraints in Eq. (2.37) of Dantzig-Wolfe decomposition solution.

For detailed information about Lagrangian relaxation, please see Chapter 10 of Wolsey

[1998], Chapter II.3 of Nemhauser and Wolsey [1999], Chapter 16 of Ahuja et al. [1993],

and Chapter 24 of Schrijver [1998].

2.4 Branch-and-Price

Column generation is an efficient framework to solve the large-scale linear programs. How-

ever, when the master problem contains integer variables, column generation does not

guarantee the integrality of the solution. In order to solve the large-scale integer prob-

lems, a method, namely branch-and-price, is designed to combine column generation and

branch-and-bound Barnhart et al. [1998a], Desaulniers et al. [2005]. In this subsection, we

discuss the branch-and-price algorithm for large-scale integer problems.

First, we review the branch-and-bound method for the integer problem briefly. The
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basic principle of branch-and-bound is divide-and-conquer. The branch in the branch-and-

bound is to divide the original problem into smaller problems; and the bound refers to

lower and upper bounds that can be used to speed up the solution procedure and to prove

the optimality of the solution.

When we solve the LP relaxation of an integer problem in Eqs. (2.69)-(2.71), we may

obtain a solution x0.

min
∑
j∈J

cjxj (2.69)

s.t.
∑
j∈J

aijxj ≥ b ∀i ∈ I, (2.70)

xj ∈ Z+ ∀j ∈ J. (2.71)

If all the elements in x0 are integers, x0 is an optimal solution to the integer problem.

Otherwise, we split the problem into two subproblems by adding two mutually exclusive

constraints. For example, if x0
j1

of x0 is fractional, the two subproblems are

min
∑
j∈J

cjxj (2.72)

s.t.
∑
j∈J

aijxj ≥ b ∀i ∈ I, (2.73)

xj ∈ Z+ ∀j ∈ J, (2.74)

xj1 ≥ dx0
j1e. (2.75)

and

min
∑
j∈J

cjxj (2.76)

s.t.
∑
j∈J

aijxj ≥ b ∀i ∈ I, (2.77)

xj ∈ Z+ ∀j ∈ J, (2.78)

xj1 ≤ bx0
j1c. (2.79)

The solution to the original problem has to be in one of the above two subproblems. There-

fore, we solve two subproblems and recheck the solutions. If the solution of a subproblem
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is integral, it is an upper bound to the original problem, because the optimal integer solu-

tion has to be as good as the current integer solution; otherwise, we split the subproblem

again into smaller subproblems. If the original problem is bounded, we are able to find

optimal integer solutions by repeating this procedure in finite number of steps. We can

view this process as a tree shown in Figure 2.2. The root node of the tree represents the LP
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Figure 2.2: Branch-and-bound tree for integer problem.

relaxation of the original integer problem. Each node of the tree represents a subproblem.

When we search the branch-and-bound tree, we can always keep track of a global

upper bound and a global lower bound. The global lower bound is the objective value

of the root node, and the global upper bound is the best integer solution found so far.

During the search of the branch-and-bound tree, there are four possible outcomes from a

branch-and-bound node, which are listed below:

1. If the LP solution at the current node is greater or equal to the lower bound and

smaller than the upper bound, and it is fractional, we need to split this node into

subproblems and solve LP relaxation of these subproblems;

2. If the LP solution at the current node is greater than the lower bound and smaller

than the upper bound, and it is integral, we need to update the current upper bound;

3. If the LP solution at the current node is equal to the lower bound, and it is integral,

we find the optimal integer solution of the original problem;

4. If the LP solution at the current node is greater or equal to the upper bound, or it is

infeasible, we stop search from this node because it is impossible for the remaining

nodes to provide a better IP solution. This process is called pruning.
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There are several implementation issues when implement branch-and-bound algorithm,

which are listed below:

Branching Rules Selecting a right variable to branch may effect the efficiency of the

branch-and-bound drastically. Computational experience shows that a balanced

tree normally enables efficient pruning process. In order to obtain a balanced

tree, one common choice is to start with the most fractional variable. For exam-

ple, for a binary integer problem, we want to choose the variable xj such that

j = arg maxj∈J x
0
j , 1− x0

j .

Searching Procedure A depth-first search is usually used to obtain a feasible integer so-

lution quickly. This integer solution provides an upper bound and makes the pruning

possible. Also, the space requirement of depth-first search is not much comparing to

other searching procedures such as breadth-first search. Other searching procedures

may also be used, such as best-bound-first search.

In branch-and-price, we combine the well-known idea of column generation and branch-

and-bound. When the number of variables is too large to be enumerated, we use column

generation to obtain the LP relaxation at each node of the branch-and-bound tree. How-

ever, there are several difficulties when combining column generation and branch-and-

bound. First, when we add constraints in Eqs. (2.74) and (2.78) into the subproblem,

the structure of column generation pricing problem may be affected. This could bring

difficulties when applying the existing algorithms to subproblems. Second, solving the LP

to optimality at every node of the branch-and-bound tree may not be computationally

efficient. Third, a traditional branching strategy for integer problems may not be efficient

because the branch-and-bound tree may be highly unbalanced. In general, there is no

universal branch-and-price procedure and strategy to avoid these difficulties. Instead, we

need to study and analysis individual application and formulation to obtain an efficient

and effect branch-and-price rule. However, some previous studies may provide us some

insights and experience. For example, one of the most widely used branching strategies

is branch-on-follow-on, which is developed for branch-and-price to solve crew scheduling

problem Ryan and Foster [1981]. The branch-on-follow-on strategy normally provides a
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more balanced branch-and-bound tree, and has been used in a large number of branch-

and-price applications. In one of the pioneer papers on branch-and-price Barnhart et al.

[1998a], two classes of models, a general model and a set partitioning model, are solved us-

ing branch-and-price. In Danna and Pape [2005], a local search heuristics is used together

with branch-and-price to produce good solution efficiently.
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Chapter 3

Redundant Multicast Routing Problem with Risk Group

Diverse Constraints

This chapter presents a redundant multicast routing problem in multilayer networks that

arises from large-scale distribution of realtime multicast data (e.g., Internet TV, video-

casting, online games, stock quotes). Since these multicast services commonly operate in

multilayer networks, the communications paths need to be robust against a single router

or link failure as well as multiple such failures due to shared risk link groups (SRLGs). The

objective of this problem is, therefore, to find two redundant multicast trees, each from

one of the two redundant sources to every destination, at a minimum total communication

cost whereas two paths from the two sources to every destination are guaranteed to be

SRLG-diverse (i.e., links in the same risk group are disjoint). In this chapter, we present

three mathematical programming models, a edge-based, a path-based, and a tree-based

model, for the redundant multicast routing problem with risk group diverse constraints.

Decomposition methods are used to solve the path-based and tree-based models. This

study is motivated by emerging applications of internet-protocol TV service, and we eval-

uate the proposed approaches using real life network topologies. Our empirical results

suggest that the edge-based model performs well on small and mid size test instances, and

the tree-based model outperforms the other two models on large size test instances.

3.1 Introduction

Multicast networking has been widely used in many applications in communications sys-

tems, including multi-location video conferencing, multimedia broadcasting, wireless/mobile

multicast in civil and military applications, web caching, software distribution, video-on-

demand, and virtual reality simulation Oliveira and Pardalos [2005a], Oliveira et al. [2005].
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Generally, a multicast network consists of a set of nodes, where some specific data of com-

mon interest is transmitted (or broadcasted) from a single source to a set of destinations,

called multicast group. This feature provides the main difference between multicast net-

works and unicast networks, where data are sent between pairs of a source node and

a destination node. Multicast transmission delivers the information to each node in a

multicast group simultaneously over a network, which forms a multicast tree. The prob-

lem of finding a multicast tree is often called a multicast routing problem. Although

there are several multicast routing protocols in the literature including open shortest path

first (OSPF) Buriol et al. [2007] and intermediate system to intermediate system (IS-IS)

routing Buriol et al. [2005], the multicast routing problem is still a hard combinatorial

optimization problem Oliveira and Pardalos [2005b], Oliveira et al. [2006], Resende and

Pardalos [2006].

Recently, a very practical concern about reliability and resiliency issues in provisioning

a multicast transmission has been raised Oliveira et al. [2007]. As multicast networks

should be protected from and be resilient to network outages or attacks, network opera-

tors normally utilize some communication links less than their limit capacity in order to

increase the reliability and employ some fast restoration scheme against failures Levine

and Garcia-Luna-Aceves [1998]. In an extreme case where the transmission needs to be

always-on, network operators often employ a path protection scheme, where network rout-

ing finds a backup or redundant path that is disjoint from each working or primary path.

Having redundant or multiple multicast trees that are disjoint will protect the multicast

transmission from network failures or attacks. The problem of identifying disjoint redun-

dant multicast trees from a single source to a set of destinations that can survive any

single link failure was well studied in the literature Medard et al. [1999]. A protected mul-

ticast transmission can also be applied to an existing network infrastructure to maximize

the coverage/yeild and minimize the cost and traffic load Chen et al. [2009], Kang et al.

[2009].

Today’s multicast applications are commonly operated on multilayer telecommunica-

tion networks but previous studies did not address the concept of Shared Risk Resource

Group (SRRG) that arises due to a common structure of multilayer networks. SRRG is a



23

set of shared resources that always fail simultaneously. Such resources are often referred

to a set of nodes or a set of links. For this reason, SRRG plays a very important role in

diverse routing in multilayer networks because a single SRRG failure causes multiple link

and node failure Datta and Somani [2004]. There are two types of SRRG: Shared Risk

Link Group (SRLG) and Shared Risk Node Group (SRNG). Both SRNG and SRLG are

special cases of SRRG, where the network contains only a group of nodes or links that

are subject to a common risk. Multiple nodes in an SRNG share common resources like

channel, power source, or connector (router), whose failure disrupts all nodes in the group.

Multiple links in an SRLG share common resources, whose failure disrupts all links in the

group, e.g., fiber cuts. In a mathematical modeling sense, the problems of finding redun-

dant multicast trees with SRLG-diverse, SRRG-diverse, or SRNG-diverse constraints are

equivalent.

Our study is motivated by emerging applications of Internet Protocol TV (IPTV),

which deal with finding protected (two or more) redundant multicast trees in multilayer

networks. Nowadays several major telecommunications providers around the world are

exploring the employment of IPTV as a new revenue opportunity, considering the fact that

broadband networks are becoming more and more popular all over the world, especially

in Asia and Europe Wikipedia [2008]. The results of this study may be used to improve

the efficiency and reduce the cost of IPTV employment and provisioning. Specifically,

in this chapter we consider the problem of IPTV multicast routing from two redundant

multicast sources over a multilayer network. Our objective is to (a) find two redundant

multicast trees, each from one of the two sources to every destination, at a minimum

total communication cost, and (b) guarantee that two paths from the two sources to

every destination are SRLG-diverse (i.e., links in the same risk group are disjoint). We

call this problem the redundant multicast routing problem with group diverse constraints

(RMRGD), which is a generalization of the single-destination SRLG disjoint multicasing

problem, which has been studied in Shen et al. [2005], Yuan and Jue [2005], Guo et al.

[2005]. To the best of our knowledge, there are a few studies in the literature in this

area, and most of them only propose simple heuristic approaches without giving rigorous

mathematical modeling of protected multicast routing with the consideration of SRRG. In
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addition, conventional path protection algorithms that are well studied in the literature

(e.g., node/edge disjoint path Peleg and Upfal [1989], Robertson and Seymour [1990],

Schrijver [1990]) cannot be directly applied to RMRGD.

In this chapter, we prove the NP-completeness of RMRGD by reducing the well-known

NP-complete 3-SAT problem to it. Previously, NP-completeness has been shown for re-

lated problems based on a reduction of the maximum bipartite subgraph problem Hu

[2003]. Our proof provides an alternative approach, in which a reduction of the 3-SAT

problem is proposed. We present for the first time a new edge-based optimization model

for RMRGD, and reformulate it as two different models, a path-based model with variables

corresponding to paths from a source to a destination, and a tree-based model with vari-

ables corresponding to trees from a mutlicast source. These reformulations arise naturally

from the Dantzig-Wolfe decomposition of the edge model. Since there are an exponential

number of possible paths and trees for large real networks, we develop a heuristic ap-

proach to generate potentially high-quality paths and trees for the path-based model and

the tree-based model respectively. We test and compare the performance of the edge-based,

path-based, and tree-based model on real world network instances.

The rest of this chapter is organized as follows. Section 3.2 provides background on

multicast routing and the concept of SRRG. Section 3.3 investigates the complexity of

a special class of this multicast problem. Section 3.4 formally defines the problem, and

provides the edge-based model. In Section 3.5, we present the path-based model, and

propose three column generation methods to solve the LP relaxation of the problem. We

also provide a branch-and-price method to obtain the integer solution of the problem. In

Section 3.6, we present a column generation and branch-and-price solution methods for

the tree-based model. Section 3.7 presents an comprehensive empirical study using real

life test cases and the economic interpretation of the results we achieved by applying the

described techniques. Section 3.8 presents a conclusion and discussion about future work.
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3.2 Background

In contrast to unicast systems, multicast routing problems are hard combinatorial prob-

lems, which usually require the use of sophisticated solution methods such as approxima-

tion algorithms, distributed computing, multi-objective optimization, and mathematical

programming. The most widely studied multicast routing problem is the minimum cost

multicast routing problem Resende and Pardalos [2006], which is to find a multicast tree

(a set of links) with a minimum cost from a given source to a set of destination nodes in a

network. The problem can be easily seen as a generalization of the Steiner tree problem,

which is a well-known NP-hard problem Garey and Johnson [1979], Pardalos and Khoury

[1996]. For multicasting in communication networks, additional operational constraints

such as capacity, delay, and reliability should be considered and added to the multicast

routing research. For example, in most multicast routing problems, operational backbone

network owners provision their networks such that the average load on each link and the

average end-to-end propagation delay are below a certain threshold. The multicast system

considered in this study is motivated by the fast growing Internet Protocol TV (IPTV)

application. Since identical broadcast TV content is to be distributed across all video hub

offices (VHOs) in IPTV networks, it is intuitive to consider the use of multicast to mini-

mize the communication cost (e.g., bandwidth consumed) Oliveira et al. [2006], Resende

and Pardalos [2006].

Operational networks of today’s internet applications like IPTV involve physical/data-

link layers for optical backbones and network layer for internet protocol (IP) backbones.

Extensive research on multicasting and routing in IP networks can be found in Resende

and Pardalos [2006], Buriol et al. [2007], Teixeira et al. [2007]. However, multicasting

in multilayer networks (both optical and IP) is a relatively new research area and is in

its infancy Ellinas et al. [2003], Xin and Rouskas [2004]. In order to make practical

use of multilayer operations, research studies in multicasting need to invoke up to the

network layer architecture of application-dependent network design. The multicasting

routing problem in multilayer networks with delay or reliability constraints is in turn

very practical, yet extremely challenging. The reliability constraints that are derived

by the multilayer structure of operational networks are very intuitive and viable. The
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concept of shared risk resource group (SRRG) has been introduced to represent a set of

communication links and/or nodes that are simultaneously affected due to a single point

of failure Li et al. [2001]. For instance, fiber links interconnecting network nodes are often

routed over common sections of fiber or conduit Guo et al. [2005]. Specifically, in an optical

network, a conduit carries a large number of fiber cables, each in turn carrying multiple

channels (links). As a result, two diverse connections in the IP layer are not necessarily

diverse in the physical/data-link layers (e.g., cable or conduit layer).
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Figure 3.1: Multilayer network structure.

Figure 3.1 illustrates a simple example of the multilayer structure in today’s communi-

cation networks. In the figure, the largest cylinder represents a conduit, typically carrying

several fiber cables, each in turn carrying multiple channels (or wavelengths) to link be-

tween two nodes. Due to the multilayer structure, communication links connecting two

distinct pairs of nodes may traverse the same conduit in physical networks. Thus, links

that are diverse in the internet protocol or application layer are not necessarily diverse in

the physical layer Li et al. [2001]. For example, in Figure 3.1, the links A ↔ B, A ↔ C

and A↔ D will fail if the conduit has a physical failure. We then group the links A↔ B,

A↔ C and A↔ D into an SRRG. Generally, the shared resources can often refer to a set

of nodes (SRNG) and/or a set of links (SRLG). In the same example, the links A ↔ B,

A↔ C and A↔ D specifically form an SRLG.

In order for network operators to provide reliable and protected communications, dif-

ferent protection schemes for multilayer networks have been studied in the literature. A

common approach of protection schemes is to construct two simultaneous (or primary and

backup) links that are SRRG-diverse between the source and destination Yuan and Jue
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[2005]. However, most studies only address the issue of SRRG-diverse routing in unicast

systems. It has been shown that, given an arbitrary set of links belonging to a com-

mon SRLG, the problem of finding SRLG-diverse paths between a given source and a

destination (i.e., unicast traffic) is NP-complete Hu [2003]. In another unicast study, an

approach for SRLG-diverse path protection in optical networks in WDM mesh networks

was proposed in Zang et al. [2003].

3.3 Complexity of Redundant Multicast Routing Problem with Group

Diverse Constraint (RMRGD)

In this section, we investigate the complexity issues of RMRGD. In Hu [2003], it is shown

that a simpler version of RMRGD with a single destination can be reduced to the maxi-

mum bipartite subgraph problem Lewis [1978], Yannakakis [1978]. Here we will prove the

NP-completeness of RMRGD by using the reduction of the 3-SAT problem, which is a

restriction of the boolean satisfiability problemGarey and Johnson [1979].

Theorem 1. RMRGD with 2 sources and 1 destination is an NP-complete problem.

Proof. Here our proof follows the the NP-complete proof framework presented in Garey

and Johnson [1979]. First we will show that RMRGD is NP by demonstrating that any

two paths p1 and p2, each from one of the two sources to the destination, can be verified

to be SRLG-diverse in polynomial time. One can verify this by comparing every edge in

p1 with every edge in p2, which can be done in polynomial time. If any common edge

pair between p1 and p2 belongs to the same SRLG, these two paths are not SRLG-diverse.

Otherwise, these two paths are a solution to RMRGD.

Next, we will show that any instance of the well-known NP-complete 3-SAT problem

reduces to an instance of RMRGD in polynomial time. We define an instance of the 3-SAT

problem by a set of clauses {C1 ∧C2 ∧ ...∧CN}. Each clause consists of a disjunction of 3

literals, e.g., C1 = {x1 ∨ x2 ∨ x̄3}, where each of the 3-SAT variables x1, x2, ..., xI yields a

literal xi or x̄i. Then we shall construct a 3-SAT graph G = (V,E) such that this 3-SAT

instance is satisfiable if and only if there exist SRLG-diverse paths in G. First we create

a special-purpose component containing two nodes ui and ui+1 for each literal (variable)
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xi (shown in Figure 3.2a). Nodes ui and ui+1 are connected by two edges xi and x̄i (or

uiui+1 and uiui+1). We also create a special-purpose component containing two nodes vn

and vn+1 for each clause Cn (shown in Figure 3.2b). Nodes vn and vn+1 are connected

by three edges, each representing a literal (variable) in that clause. Specifically, if xi is

contained in clause Cn, then there is an edge cni; if x̄i is contained in clause Cn, then

the corresponding edge is cnī. An example in Figure 3.2b represents a special-purpose

component for clause Cn = {x1 ∨ x̄2 ∨ x3}. Next we connect the two source nodes S1

a) b)

Figure 3.2: a) Special-purpose components for variable xi; b) Special-purpose component
for clause Cn = {xi1 ∨ x̄i2 ∨ xi3}

and S2 with nodes u1 and v1, the destination node D with node uI+1 and vN+1. It is

easy to see that the constructed graph G network can represent any arbitrary instance

of the 3-SAT problem, and obviously G can be constructed in polynomial time. Figure

3.3 illustrates an example of 3-SAT graph of an instance defined by C1 = {x1 ∨ x̄2 ∨ x3},

C2 = {x1 ∨ x3 ∨ x̄4}, C3 = {x̄2 ∨ x̄4 ∨ x5}.

After constructing graph G, we shall define four SRLGs as follows. The first SRLG

contains edges {S1u1, S2u1}. The second SRLG contains edges {S1v1, S2v1}. The third

SRLG contains cni and x̄i, and the last SRLG contains edges cnī and xi. The four SRLGs

and their members are shown in Tab.3.1.

After constructing the graph and defining the SRLGs, we now show that this 3-SAT

instance represented by the graph reduces to an instance of RMRGD. Suppose that this 3-

SAT instance has a satisfying assignment, i.e., yes-instance or true-instance. Then in each

clause Cn, one of its literal xi or x̄i must be true (yes). Note that each literal corresponds
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Figure 3.3: Constructed graph for a 3-SAT instance corresponding to C1 = {x1∨ x̄2∨x3},
C2 = {x1 ∨ x3 ∨ x̄4}, C3 = {x̄2 ∨ x̄4 ∨ x5}

Group Members

SRLG1 S1u1, S2u1

SRLG2 S1v1, S2v1

SRLG3 Cni, x̄i, ∀i ∈ I, ∀n ∈ N
SRLG4 Cnī, xi, ∀i ∈ I, ∀n ∈ N

Table 3.1: SRLGs and their members in the 3-SAT graph.

to an edge, xi for uiui+1 or x̄i for uiui+1. By selecting one such “true” literal from each

clause, an edge from the first special-purpose component and an edge from the second

special-purpose component will be also selected. We claim that the two paths formed by

connecting these selected edges are SRLG-diverse. Specifically, let the first path travel

from S1 to D through the the first special-purpose component (u nodes and their edges)

and the second path travel from S2 to D through the the second special-purpose component

(v nodes and their edges). Clearly, for any literal xi = 1, the first path transverses edge xi

and the second path transverses edge Cni. Similarly, for any literal x̄i = 1, the first path

transverses edge x̄i and the second path transverses edge Cnī. Based on the definition of

the four SRLGs, edges xi and Cni are not in the same SRLG, and edges x̄i and Cnī are not

in the same SRLG. Thus we can now conclude that if the 3-SAT instance is a yes-instance,

there must exist two SRLG-diverse paths in graph G.

We shall now prove the converse result. Suppose that G has two SRLG-diverse paths.

It is obvious that one path p1 must travel all the u nodes (first path), and the other path

p2 must travel all the v nodes (second path). We can assign “true” (yes) to each literal xi

in p1 and each clause Cnī
in p2 will not be true because of the SRLG constraint. Similarly,

we can assign “true” (yes) to each x̄i in p1 and each clause Cni in p2 will not be true.
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Any variables that do not correspond to an edge in the first SRLG-diverse path may be

set arbitrarily. For selected values of xi and x̄i, a yes-instance can be obtained. Now, we

can conclude any instance of the 3-SAT problem reduces to an instance of RMRGD. Thus

RMRGD is NP-complete.

It is easy to see that the above proof can be easily modified to prove the NP-Completeness

of 2-source multiple-destination RMRGD. We can also show that the SRLG-diverse rout-

ing and SRNG-diverse routing problems are mathematically equivalent. We can do the

simple transformations between SRLG and SRNG in both directed network and undirected

network as shown in Figure 3.4. The detailed proof can be found in Liang et al. [2010].

Based on these observations, we claim that the SRRG-diverse routing and SRNG-diverse

routing problems are NP-complete. In this study that focuses on telecommunication links,

the concept of SRLG is more practical than that of SRNG because the link reliability

(e.g., broken IP connection) is much more vulnerable than the node reliability (e.g., router

failure). Therefore, in the remainder of this chapter, the mathematical formulation and

solution approaches will focus on SRLG-diverse problem. However, these approaches can

be generalized to SRRG-diverse and SRNG-diverse problems.

 

i i’ i”
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a2.  SRLG  SRNG b2.  SRLG  SRNG 
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Shared Risk Link (Directed) Shared Risk Link (Undirected) Shared Risk Node

Figure 3.4: Transformation between SRLG and SRNG for: a) directed graph and b)
undirected graph.
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3.4 Edge-based Model

Given a directed network G = (V,A), where V is a set of nodes and A is a set of arcs.

There is a set of two sources denoted by {s1, s2} = S ⊂ V and a set of destinations denoted

by D ⊂ V . There is a set of risk groups denoted by B. Each risk group b ∈ B contains

a set of edges Ab ⊂ A, which are subject to a common risk. Each arc (i, j) ∈ A has an

associated cost cij and belongs to one or more risk groups. The objective of the problem is

to find two multicast trees from each source s ∈ S to all the destinations D with minimum

total cost, and to ensures any pair of paths ps1d , p
s2
d to a destination d ∈ D do not use any

common risk group b ∈ B. If an edge of Ab is used in a path, we say the risk group b is

used in that path. We call this problem the redundant multicast routing problem with

group diverse constraints (RMRGD).

The edge-based model (RMRGDE) for RMRGD is formally defined as follows. Define

binary decision variable ysij such that ysij = 1 if edge (i, j) is included in the multicast tree

from source s, and ysij = 0 otherwise. Define binary decision variable xsdij such that edge

xsdij = 1 if edge (i, j) is used by a path from s to d in the solution, and 0 otherwise. Define

decision binary variable zsdb = 1 if the path from source s to destination d uses risk group

b ∈ B, and 0 otherwise. The RMRGDE is given by

min
∑
s∈S

cijy
s
ij (3.1)

s.t. ysij − xsdij ≥ 0 ∀ (i, j) ∈ A, ∀s ∈ S, ∀d ∈ D, (3.2)∑
j|(i,j)∈A

xsdij −
∑

j|(j,i)∈A

xsdij = σsdi ∀i ∈ V , ∀s ∈ S, ∀d ∈ D, (3.3)

zsdb − xsdij ≥ 0 ∀(i, j) ∈ Ab, ∀b ∈ B, ∀s ∈ S, ∀d ∈ D, (3.4)∑
s∈S

zsdb ≤ 1 ∀b ∈ B, ∀d ∈ D, (3.5)

xsdij , y
s
ij , z

sd
b ∈ {0, 1} ∀ (i, j) ∈ A, ∀b ∈ B, ∀s ∈ S, ∀d ∈ D. (3.6)

The objective function in Eq. (3.1) minimizes the total cost of two redundant multicast

trees. The constraints in Eq. (3.2) are the logical constraints that ensure edge (i, j) must

be selected in the multicast tree from source s, if it is used in the path from source s to

destination d in the solution. The constraints in Eq. (3.3) are the flow balance constraints
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for a path between source s and destination d. In particular, σsdi is the net flow capacity

at node i, which indicates a source, sink or transhipment node, in a path from source s

to destination d. Thus σsdi = 1 if i = s, σsdi = −1 if i = d, and σsdi = 0 otherwise. The

constraints in Eq. (3.4) are the logical constraints ensuring that a risk group b is used in

the path from source s to destination d, if any of its edge (i, j) ∈ Ab is included in the

path. The constraints in Eq. (3.5) ensure that the two paths to every destination are

group diverse.

In particular, we notice the number of variables in RMRGDE is |A|× |S|× (|D|+ 1) +

|B|×|S|×|D|, and the number of constraints is (|A|+|N |+
∑

b∈B |Ab|)×|S|×|D|+|B|×|D|.

It is easy to see the size of the problem matrix increases quadratically with the number of

destinations. Moreover, because there is no investigation on RMRGDE structure, limited

practical and theoretical results are revealed for RMRGD.

3.5 Path-based Model

In this section, we propose two alternative path-based models: segregated and aggregated.

We prove that the linear relaxation of the segregated model is equivalent to the linear

relaxation of the edged model. We also prove the linear relaxation of the aggregated

model is weaker than that of the edge-based model.

It notes the constraints in Eq. (3.3) determine the paths from every source to every

destination. Therefore, it is intuitive to formulate the problem as a path-based model. In

the path-based model, we correspond a decision variable to a path from source s ∈ S to

destination d ∈ D, which arises from the Dantzig-Wolfe decomposition of the edge model.

We shall define the following additional notations.

P is the set of all possible paths from any source s ∈ S to any destination d ∈ D; we also

denote P sd as the set of all possible paths from s to d, where s ∈ S, d ∈ D. We have

P =
⋃
s∈S

⋃
d∈D

P sd; similarly, we define P sij as the set of paths from source s using edge

(i, j).

αpij is a binary parameter such that αpij = 1 if path p passes through edge (i, j), and

αpij = 0 otherwise.
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βpb is a binary parameter such that βpb = 1 if any edge of path p is a member of SRLG

b ∈ B, and βpb = 0 otherwise.

up is a binary variable such that up = 1 if path p is selected to form the redundant

multicast trees in the solution, and up = 0 otherwise.

3.5.1 Segregated Path-Based Model

Given the above additional notations, we can define the segregated path-based model

(RMRGDP1) as follows.

RMRGDP1 min
∑
s∈S

∑
(i,j)∈A

cijy
s
ij (3.7)

s.t.
∑
p∈P sd

αpijup ≤ y
s
ij ∀ (i, j) ∈ A, ∀d ∈ D, ∀ s ∈ S, (3.8)

∑
p∈P sd

up = 1 ∀ s ∈ S, d ∈ D, (3.9)

∑
s∈S

∑
p∈P sd

βpbup ≤ 1 ∀ b ∈ B, ∀ d ∈ D, (3.10)

up, y
s
ij ∈ {0, 1} ∀ p ∈ P , ∀ (i, j) ∈ A, ∀s ∈ S. (3.11)

The objective function in Eq. (3.7) is the same as in Eq. (3.1). The constraints in Eq.(3.8)

ensure that an edge must be selected if a path containing that edge is used in the multicast

trees. The constraints in Eq. (3.9) ensure that each source-destination pair is connected

by exactly one path. The constraints in Eq. (3.10) ensure that the two paths connecting

the two sources to every destination are SRLG-diverse. Define the linear relaxations of

RMRGDE and RMRGDP1 as LME and LMP1. Define the optimal solution values of

LME and LMP1 as ν(LME) and ν(LMP1) respectively. We have the following lemma.

Lemma 2. LMP1 is equivalent to LME. Every feasible solution for LMP1 corresponds to

a feasible solution for LME.
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Proof. Since every path satisfies the flow balance constraints in Eq. (3.3), we know

∑
p∈P sd

αpijup = xsdij ∀ (i, j) ∈ A, ∀ s ∈ S, ∀d ∈ D, (3.12)

∑
p∈P sd

βpbup = zsdb ∀ s ∈ S, ∀d ∈ D. (3.13)

Therefore, we know constraints in Eq. (3.2) and constraints in Eq. (3.8) are equivalent

because of the Eq. (3.34). Similarly, constraints in Eq. (3.4)-(3.5) are equivalent to

constraints in Eq. (3.10) because of the Eq. (3.35). Hence, we conclude the segregated

path-based model MP1 is the equivalent to the edge-based model ME .

3.5.2 Aggregated Path-Based Model

The aggregated path-based model (RMRGDP2) can be formulated as follows.

RMRGDP2 min
∑
s∈S

∑
(i,j)∈E

cijy
s
ij (3.14)

s.t.
∑
d∈D

∑
p∈P sd

αpijup ≤ |D|y
s
ij ∀ (i, j) ∈ A, ∀ s ∈ S (3.15)

∑
p∈P sd

up = 1 ∀ s ∈ S, d ∈ D (3.16)

∑
s∈S

∑
p∈P sd

βpbup ≤ 1 ∀ b ∈ B, ∀ d ∈ D (3.17)

up, y
s
ij ∈ {0, 1} ∀ p ∈ P , ∀ (i, j) ∈ A, ∀s ∈ S. (3.18)

The formulation in Eqs. (3.14)-(3.18) is the same as formulation MP1 except constraints

in Eq. (3.15) are in the aggregated form of constraints in Eq. (3.8).

Lemma 3. LME is strictly stronger than LMP2. The worst case ratio ν(LME)
ν(LMP2) is |D|.

Proof. Here, we need to prove ν(LME) ≤ ν(LMP2) for all instances, and there exists some

instances such that ν(LME) < ν(LMP2).

Assume the solution of LMP2 contains a set of paths P ′s from each source s, such that

up > 0,∀p ∈ P ′s. It is obvious the edges from each path satisfy the flow balance constraints

in Eq. (3.3). Also, we can see that zsdb =
∑

p∈P sd β
p
bup. Therefore, we know the constraints

in Eq. (3.5) are satisfied. Hence, the edges from the optimal solution of the path-based



35

model LMP2 is a feasible solution for LP relaxation of the edge-based model. Furthermore,

we know

ν(LMP2) =
∑
s∈S

∑
(i,j)∈A

cijy
s
ij

=
∑
s∈S

∑
(i,j)∈A

∑
d∈D

∑
p∈P sd

cij
αpijup

|D|

=
∑
s∈S

∑
(i,j)∈A

∑
d∈D

cij

∑
p∈P sd α

p
ijup

|D|

=
∑
s∈S

∑
(i,j)∈A

∑
d∈D

cij
xsdij
|D|

due to Eq. (3.34)

=
∑
s∈S

∑
(i,j)∈A

cij

∑
d∈D x

sd
ij

|D|

≤
∑
s∈S

∑
(i,j)∈A

cijy
s
ij

= ν(LME).

Similarly, we have

ν(LMP2) =
∑
s∈S

∑
(i,j)∈A

cij

∑
d∈D x

sd
ij

|D|

≥
∑
s∈S

∑
(i,j)∈A

cij
ysij
|D|

=
1

|D|
ν(LME).

Now, consider an example in Figure 3.5. We have two source nodes s1 and s2 and a

set of destination nodes from d1 to dn. We assume that cs1,a = cs2,a = 0 and ca,d1 = · · · =

ca,dn = 1. We also assume each edge is a SRLG by itself. Then it is obvious ν(LME) = 2n

and ν(LMP2) = 2. Hence, we know ν(LME) < ν(LMP2) for some instance. Therefore, we

know the edge-based model has stronger LP relaxation than the aggregated path-based

model.
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1 1  11  1 

Figure 3.5: An example of RMR-SRLGD where ν(LME) ≥ ν(LMP2). Here, ν(LME) =
2n > ν(LMP2) = 2.

Because RMRGDP1 is stronger than RMRGDP2, in the following sections, we only

focus on how to solve RMRGDP1, which will be referred as the path-based model in

general.

3.5.3 Column Generation

In this section, we present three column generation pricing subproblem approaches for the

path-based model.

3.5.3.1 Probability Approach

We first propose a probabilistic approach to generate a set of paths and select them

probabilistically based on the depth of the paths. This approach starts with a breadth-

first search to enumerate all possible paths between each s− d pair. At every level of the

breadth-first search tree, we select a set of paths in the tree to be included in RMRGDP .

Specifically, at level n of the search tree, we will randomly select 1
n of all the paths at the

current level. By using this probability, shorter paths will have a higher probability to be

included in RMRGDP than longer paths. This procedure terminates when the number

of selected paths is greater than a pre-determined threshold. This probabilistic path

generation approach is simple and easy to implement, and we employ it as a benchmark

method.
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3.5.3.2 Multi-Objective Greedy-Based Approach

Considering the constraints in Eqs. (6.3)-(6.4) of RMRGDP , we observe that the two key

factors playing an important role in improving solution quality are the cost and associated

SRLGs of each path. It is intuitive that paths with lower costs and lesser number of

associated SRLGs are desirable. This is a multi-objective problem. We herein propose a

multi-objective greedy-based approach to generate only such desirable paths. We introduce

a concept of path domination used to generate path candidates for RMRGDP .

Let p1 and p2 be two distinct paths from s to d, where s ∈ S and d ∈ D. p1 dominates

p2 if and only if the following two conditions are satisfied, and either the strict inequality

or strict subset holds.

• The cost of p1 is less than or equal the cost of p2 (i.e., cp1 ≤ cp2).

• The set of associated SRLGs of p1 is a subset of or equal to the set of associated

SRLGs of p2 (i.e., Bp1 ⊆ Bp2).

Path p is a non-dominated path if there is no paths dominating path p from s to d, s ∈ S

and d ∈ D.

It is not necessary to enumerate all possible paths in order to find all the non-dominated

paths. We develop an intelligent way to search for all non-dominated paths. This problem

can be in turn modeled as a multi-objective shortest path problem with one objective to

minimize the cost and the other objective to minimize the set of associated SRLGs. There

are several studies in the literature addressing this multi-objective shortest path problem

Queiros and Martins [1984], Modesti and Sciomachen [1998], Perny and Spenjaard [2005].

Here, we modify the multiple labelling approach to find a set of non-dominated paths.

The procedure of this approach, which is similar to the one in Queiros and Martins [1984],

can be described as follows.

For each node, we keep a set of non-dominated labels (l), each being a combination of

cost and associated SRLG set with two pointers i, l. Specifically, the lith label for node

i is denoted by [cpsi , Bpsi , (j, lj)]li , where (j, lj) is the predecessor of the current label and

(i, j) ∈ A. A permanent label of a node i ∈ V is unchanged. Given a permanent label for

node i, we can then assign a temporary label to node j if (i, j) ∈ A. Each label at every
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Searching Procedure for Non-dominated Path
Input: The graph G(V,A), a set of SRLGs B,

a source node s and a destination node d, where s ∈ S, d ∈ D
Output: A set of non-dominated paths from s to d

1 Assign the temporary label [(0, ∅), (−,−)] to s;
2 WHILE the set of temporary label is not empty
3 Find the lth label of node i such that cps

i
is minimum among all temporary labels;

4 WHILE some node j ∈ V exists such that (i, j) ∈ A
5 Compute cps

j
= cps

i
+ cij , and Bps

j
= Bps

i
∪Bij ;

6 Set [cps
j
, Bps

j
, (i, l)] to be a new label of node j;

7 Delete all dominated temporary label from s to j;
8 End
9 End
10 Find all non-dominated label from s to d.

Figure 3.6: Pseudo-code of multi labeling algorithm for non-dominated path generation.

iteration of the algorithm corresponds to a unique path and a simple backtracking method

can be used to construct these non-dominated paths. The detailed algorithm is shown in

Figure 3.6.

It is important to note that the above multi-objective algorithm is a greedy approach.

In most cases, greedy approaches tend to be trapped in a local optima, and cannot provide

good solutions that are close to the global optimal. The concept of non-dominated paths

also suffers from this downfall. It is very likely that we will not obtain the optimal solution

by including only the non-dominated paths in our path formulation model. On the other

hand, we do not want to include obviously bad paths as well. We herein enhance the

multi-objective approach by introducing a concept of algorithm diversification, where we

include not only non-dominated paths but also nearly non-dominated paths in RMRGDP .

The algorithm used to generate all the nearly non-dominated paths is a relaxation version

of the algorithm in Figure 3.6. Specifically, we relax the multi-objective search algorithm

so that a set of near non-dominated paths are included in the solution. We thus define

nearly non-dominated paths as follows.

• A path p′ is considered to be a nearly non-dominated path if cp′−cp < δ and Bp′ ⊆ Bp

for any non-dominated path p, where δ is the relaxation (or diversification) factor.

It is obvious that the greater the δ value is, the larger number of nearly non-dominated

paths are generated. Setting an appropriate value of δ is very critical to the performance

of the proposed algorithm. If δ is too small, the paths included in RMRGDP maybe too
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restricted so that the optimal or high-quality solutions may be excluded. If δ is too large,

we may include too many bad paths so that the time used to solve RMRGDP drastically

increases. In order to find a proper value of δ, we propose a simple line search scheme to

balance the algorithm’s greediness and diversification. In particular, we start with δ = 0,

which is equivalent to generating all the non-dominated paths, and then solve RMRGDP .

In the following iteration, we gradually increase the value of δ and resolve the problem.

We stop the algorithm if the solution quality does not improve. It is obvious that the step

size of the line search plays a critical role in this procedure. If the step size is too large,

we have to generate too many unnecessary paths at once; if the step size is too small, we

may not improve the solution quality after several iterations. In this study, we set the step

size equal to an average edge cost divided by 2, which seems to be practical in terms of

computational efficiency and solution quality.

3.5.3.3 Mathematical Programming Model for Pricing Subproblem

Let ωsij be the non-positive dual variable associated with the constraints in Eq.(6.2), µsd be

the dual variable associated with the constraints in Eq.(6.3), and τbd be the non-positive

dual variable associated with the constraints in Eq.(6.4). The reduced cost c̄psd of a path

psd can be computed using the following equation.

c̄psd = −
∑

(i,j)∈E

αpijω
s
ij − µsd −

∑
b∈B

βpb τbd (3.19)

The pricing subproblem can be view as the problem of finding a sequence of edges from

s to d and prices out to have negative reduced cost. Obviously, for any given s ∈ S and

d ∈ D, we can formulate the problem as an MIP problem as shown below.

min
∑

(i,j)∈A

cijyij +
∑
b∈Bd

τbzb (3.20)

s.t.
∑

j:(i,j)∈A

yij −
∑

j:(j,i)∈A

yji = σsdi ∀ i ∈ V (3.21)

zb − yij ≥ 0 ∀ (i, j) ∈ Ab, ∀ b ∈ Bd (3.22)

yij , zb ∈ {0, 1} ∀ (i, j) ∈ A, ∀ b ∈ Bd (3.23)
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By solving the above MIP problem, we are able to get good columns with negative reduced

cost. However, only one good column can be generated by solving the MIP formulation

each time. In fact, it is widely known that column generation approach will be much more

efficient if we obtain multiple columns in each of the pricing iteration.

We also observe that if the pricing function in Eq.(4.10) only contains the first two

parts, which is psd is −
∑

(i,j)∈E α
p
ijω

s
ij − µsd, then the problem can be simply formulated

as a shortest path problem from s to d and solved by Dijkstra’s algorithm as all the

edge costs in our subproblem are non-negative and for a given s and d, µsd is a constant.

With extra bundle component in the pricing function, the Dijkstra’s algorithm cannot

be applied directly. For example, in Figure 3.7, we search for a path from A to F with

the best reduced cost. The ω value of each arc is shown above the arc and the τ values
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Figure 3.7: An example of searching for good path.

are shown on the right side of the figure. By using Dijkstra’s algorithm, we know that

the path A → C → D (with cost 23) is superior to path A → B → D (with cost 34).

However, the path A → C → D → E → F (with cost 56) is in fact worse than the path

A→ B → D → E → F (total cost 55). This is because the necessary optimality condition

of shortest path Ahuja et al. [1993] cAF ≤ cAD + cDF is not satisfied. In particular, the

cost of an arc is depending on the history of the path because of the group cost in the

bundle constraints.

In order to solve the price problem efficiently, we use a modified Dijkstra’s algorithm

to search good paths. We evaluate the reduced cost using Eq. (4.10). If the reduced costs

of paths are less than 0, we add them into the restricted master problem, and the column

generation continues. Otherwise, we use the mathematical model in Eqs. (4.15)-(4.21) to

check the existence of the path with negative reduced cost.



41

3.5.4 IP Solution & Branch-and-Price

Given a fractional solution to the LP relaxation of RMRGDP , we can identify a set of

fractional y values. In the branch and price process, we branch on y value and use a depth

first search algorithm. In particular, we always search the branch with maximum y value

where y 6= 1, for the next branching decision. It is also noted that after a branch on

y, it is possible that no feasible LP solution can be found based on existing columns in

that branch, hence no subsequent pricing procedure can be continued. To overcome it, we

create a set of dummy edges which connect each s and d directly. Also a set of dummy

paths are created, each path contains a dummy edge. We set a very high penalty value

for each dummy edge. In the branch-and-bound tree, branching on these dummy edges

is restricted. Hence, in each of the branch in the tree, we always have the set of dummy

paths connecting each s and d pair. Therefore, we can always find a feasible solution and

continue the column generation.

3.6 Tree-based Model

In this section, we present the tree-based model for RMRGD problem. Define the set of

additional notations as follows. Define Ts as a set of multicast trees connecting a source

node s ∈ S to all the destination nodes. T is the superset of Ts, and T =
⋃
s∈S

Ts. Define

ct as the cost of the multicast tree t ∈ T , and ct =
∑

(i,j)∈T
cij . Define binary parameter

θtbd such that θtbd = 1 if the path from s to d in a multicast tree t containing group d;

θtbd = 0 otherwise. Since a path between any two nodes in a multicast tree is unique,

we can explicitly identify the value of θtbd for any destination-group pair (b, d) of tree t.

Define the binary decision variable wt such that wt = 1 if multicast tree t is selected in the

solution and wt = 0 otherwise. Given the above new notations, we present the tree-based
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model RMRGDT as following:

min
∑
s∈S

∑
t∈Ts

ctwt (3.24)

s.t.
∑
t∈Ts

wt = 1 ∀ s ∈ S, (3.25)

∑
s∈S

∑
t∈Ts

θtbdwt ≤ 1 ∀ b ∈ B, ∀ d ∈ D, (3.26)

wt ∈ {0, 1} ∀ t ∈ T , ∀ (i, j) ∈ A. (3.27)

Constraints in Eq. (3.24) minimize cost of the selected multicast trees. Constraints in

Eq. (3.25) ensure a multicast tree is selected from each source. Constraints in Eq. (3.26)

ensure the group diverse constraints for every destination d.

Theorem 4. The LP relaxation of RMRGDT is strictly tighter than the LP relaxation

of RMRGDE.

Proof. Denote the optimal LP solution of RMRGDT as LMT , and its value as ν(LMT );

denote the optimal LP solution of RMRGDE as LME , and its value as ν(LME). We need

to prove ν(LMT ) ≥ ν(LME) for all instances, and there exists some instances such that

ν(LMT ) > ν(LME).

Assume that LMT contains a set of trees T ′s from each source s, such that wt > 0, ∀t ∈

T ′s. We can construct a set of paths Pt from each tree t ∈ T ′s. Each path p ∈ Pt is from

source s to a destination d ∈ D. It is obvious that edges from each path satisfy the flow

balance constraints in Eq. (3.3). Also, we can see that zsdb =
∑

t∈Ts θ
t
bdwt. Therefore, we

know the constraints in Eq. (3.5) are satisfied. Hence, the edges from the optimal solution

to the RMRGDT is a feasible solution to LP relaxation of RMRGDE . Furthermore, we

know

ν(LMT ) =
∑
s∈S

∑
t∈T ′s

ctwt =
∑
s∈S

∑
t∈T ′s

∑
(i,j)∈t

cijwt ≥
∑
s∈S

∑
(i,j)∈

⋃
e∈T ′s

{e}

cijy
s
ij = ν(LME).

Now, consider an example in Figure 3.8. We have two sources s1 and s2 and two

destinations d1 and d2. We assume that each edge is a risk group by itself and the cost is

shown in the figure. In LMT , we have two trees from s1: the first tree t1s1 contains edges
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s1 → d1, d1 → v1, v1 → v2, and v2 → d2; the second tree t2s1 contains edges s1 → d2,

d2 → v1, v1 → v2, and v2 → d2. There is a tree from s2, which contains edges s2 → d1

and s2 → d2. We know ct1s1
= ct2s1

= cts2
= 6, wt1s1

= wt2s1
= 0.5 and wts2

= 1. Hence, it is

obvious that ν(LMT ) = 12.

However, in RMRGDE , we have yd1,d1 = ys1,d2 = yd1,v1 = yd2,v1 = yv1,v2 ,= yv2,d1 =

yv2,d2 = 0.5, and ys2,d1 = ys2,d2 = 1. Therefore, ν(LME) = 11.5 < ν(LMT ) = 12. Hence,

we know ν(LMT ) > ν(LME) for this instance. Therefore, LMT is strictly stronger than

LME .
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Figure 3.8: An example of RMRGD where ν(LMT ) > ν(LME). Two multicast trees t1s1
and t2s1 from s1 and one multicast tree ts2 from s2 are in the solution. t1s1 contains edge
s1 → d1, d1 → v1, v1 → v2, and v2 → d2. t2s1 contains edges s1 → d2, d2 → v1, v1 → v2, and
v2 → d2. In the LMT , wt1s1

= wt1s2
= 0.5 and wts2

= 1. ν(LMT ) = 12 > ν(LME) = 11.5.

We cannot enumerate all the multicast trees because the number of the trees increases

exponentially with the size of the network. However, we would like to generate only

necessary trees and ensure the optimality of the model. This can be achieved by using

column generation method.

3.6.1 Column Generation Subproblem

Column generation has been widely and successfully applied to many large-scale, real-life

optimization problems where the number of variables is too large to enumerate explicitly

Desrocsiers et al. [1984], Lubbecke and Mesrosiers [2005], Wolsey [1998]. The column

generation framework developed here for RMRGDT can be described as follows. First a

subset of multicast trees are constructed by solving a set of Steiner tree problems from both

sources without considering the risk groups. The restricted master problem of RMRGDT
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is then solved, and the dual cost of each constraint is calculated. To improve the restricted

master (i.e., generate more columns), we solve the pricing subproblems based on the dual

cost information, and generate new multicast trees with negative reduced costs. The lower

and upper bounds of the problem are computed based on the dual information. These

multicast trees are then added to the restricted master problem, and the updated restricted

master problem is resolved. These iterative procedures repeat until no new multicast trees

with negative reduced costs is found, which implies that the current LP solution is optimal.

3.6.1.1 Pricing Subproblem Model

Define αs as the dual variable associated with the constraints in Eq. (3.25). Because the

equal sign in Eq. (3.25) can be replaced by “≥”, we know αs ≥ 0. Define βdb as the

negative dual variable associated with the constraints in Eq. (3.26). That is, βdb evaluates

the importance of group b to destination d. For a given a multicast tree t from source s,

the reduced cost c′t is defined as follows.

c′t = ct −
∑
b∈B

∑
d∈D

βdb θ
t
bd − αs =

∑
(i,j)∈t

cij −
∑
b∈B

∑
d∈D

βdb θ
t
bd − αs (3.28)

If we consider βdb as the risk cost of risk group b to destination d, the pricing subproblem

can be viewed as the problem of finding a multicast tree with minimum edge cost and risk

cost. It is obvious this problem is an extension of the Steiner tree problem Pardalos and

Khoury [1996], Polzin and Daneshmand [2001a,b], in which only edge cost is considered.

Therefore, we extend the well-known multicommodity flow model for Steiner tree problem

to formulate the pricing subproblem, because it has been reported the multicommodity

flow model provides very good LP relaxation of the Steiner tree problem. This minimum
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cost tree problem can be formulated as following.

min
∑

(i,j)∈A

cijyij −
∑
b∈B

∑
d∈D

βdb z
d
b (3.29)

s.t. yij ≥ xdij ∀ (i, j) ∈ A, ∀ d ∈ D, (3.30)∑
(i,j)∈A

xdij −
∑

(j,i)∈A

xdji = σdi ∀ i ∈ V , ∀ d ∈ D, (3.31)

zdb ≥ xdij ∀ (i, j) ∈ b, ∀ b ∈ B, ∀d ∈ D, (3.32)

xdij , yij , z
d
b ∈ {0, 1} ∀ (i, j) ∈ A, ∀ d ∈ D, ∀ d ∈ D, ∀b ∈ B. (3.33)

We call this model the basic pricing model (BPM). The objective function in Eq.(3.29)

minimizes the total communication cost and the total risk cost of the multicast tree. We

do not consider the dual cost αs in the objective function because it is a constant for a

given source s ∈ S. The constraints in Eq.(3.30) are the logical constraints to ensure that

an arc must be selected if it is used in the path from the source to any destination. The

constraints in Eq.(3.31) are the flow balance constraints for a path from the source to a

destination. The constraints in Eq.(3.32) are the logical constraints to ensure that a risk

group is selected if any of its arc is used in the path from the source to any destination.

It is worth mentioning that we do not need to enumerate all the constraints for every

combination of destination d ∈ D and risk group b ∈ B in Eq. (3.32), but only the

constraints for destinations d and risk group b such that βdb < 0.

Although the structure of the multicommodity flow model should, in theory, provide

tight LP relaxation bounds for the Steiner tree problem Polzin and Daneshmand [2001a,b],

Goemans and Myung [1993], our computational experience shows that BPM does not

provide a tight LP bound for this subproblem. In some instances, the IP and LP solution

gap can be as large as 15%. It is also noted that the classical Steiner cut formulation

Wong [1984], Aneja [1980] for the traditional Steiner tree problem cannot be extended

to formulate the pricing subproblem, because the group variable zdb depends on the flow

variable xdij in Eq. (3.32), which is not explicitly shown in the cut formulation.



46

3.6.1.2 Valid Inequalities for the Pricing Subproblem

It is important to note that in practice most arcs in a risk group are geographically near

to each other. It is very common that multiple arcs in a risk group share a common node.

For example, in a telecommunication network, a group of arcs that share a common router

could form a risk group with a common node; in the power distribution network, a set of

power lines that share a common transmitter may form a risk group with a common node.

If there exist multiple arcs starting/ending at a common node and included in the same

risk group, we add a set of strong valid inequalities to tighten BPM, which is shown in the

following theorem.

Theorem 5. For any feasible integer solution to BPM in Eqs.(3.29)-(3.33), the following

inequalities are valid.

∑
(i,j)∈Ab

xdij ≤ zdb ∀i ∈ V , ∀b ∈ B, ∀d ∈ D, (3.34)

∑
(j,i)∈Ab

xdji ≤ zdb ∀i ∈ V , ∀b ∈ B, ∀d ∈ D. (3.35)

Proof. We only need to prove Eq.(3.34) and the result can be automatically applied to

Eq.(3.35) because of symmetry. Based on the constraints in Eq.(3.31), we know that any

feasible integer solution to BM will satisfy Eq.(3.36) below.

∑
(i,j)∈Ab

xdij ≤
∑

(i,j)∈A

xdij ≤ 1 ∀i ∈ V , ∀b ∈ B, ∀d ∈ D. (3.36)

Intuitively, Eq.(3.36) simply states that the sum of all the inflow xdij to a node i is less or

equal to 1 for any path from s to d. Therefore, all the inflow xdij from a risk group b to

a node i is less or equal to 1 for any path from s to d. Because of Eqs. (3.32)-(3.33), if

xdij > 0, we have zdb = 1 where (i, j) ∈ Ab. If any xdij > 0 in the left hand side of Eq.(3.36),

we have

∑
(i,j)∈Ab

xdij ≤ 1 = zdb ∀i ∈ V , ∀b ∈ B, ∀d ∈ D.
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If all xdij = 0 in the left hand side of Eq.(3.36), we have

∑
(i,j)∈Ab

xdij = 0 ≤ zdb ∀i ∈ V , ∀b ∈ B, ∀d ∈ D.

Hence we know the inequalities in Eq. (3.34) are valid.

In fact, it is easy to see Eqs.(3.34)-(3.35) are strictly stronger than constraints in

Eq. (3.32). Specifically, if node i only contains one incoming or outgoing from group b,

constraints in Eq. (3.32) is equivalent to constraints in Eqs. (3.34)-(3.35). Therefore, we

replace Eq. (3.32) with the valid inequalities in theorem 5 in the basic pricing model,

and the subsequent model is shown in Eqs.(3.37)-(3.42), denoted as the enhanced pricing

model (EPM).

EPM : min
∑

(i,j)∈A

cijyij +
∑
d∈D

∑
b∈B

βdb z
d
b (3.37)

s.t. yij − xdij ≥ 0 ∀ (i, j) ∈ A, ∀d ∈ D, (3.38)∑
j|(i,j)∈A

xdij −
∑

j|(j,i)∈A

xdji = σdi ∀i ∈ V , ∀d ∈ D, (3.39)

zdb ≥
∑

(i,j)∈Ab

xdij ∀i ∈ N , ∀b ∈ B, ∀d ∈ D, (3.40)

zdb ≥
∑

(j,i)∈Ab

xdji ∀i ∈ N , ∀b ∈ B, ∀d ∈ D, (3.41)

xdij , yij , z
d
b ∈ {0, 1} ∀(i, j) ∈ A, ∀b ∈ B, ∀d ∈ D. (3.42)

Denote the optimal LP solution to BPM as LMBP , and its value as ν(LMBP ); denote

the optimal LP solution to EPM as LMEP , its value as ν(LMEP ). Since LMEP satisfies

constraints in Eqs. (3.38)-(3.41), it must satisfy constraints in Eqs.(3.30)-(3.32). There-

fore, the LMEP is a feasible LP solution to BPM , and ν(LMEP ) ≥ ν(LMBP ). In the

following example, we show an instance with ν(LMEP ) > ν(LMBP ).

Example Consider the network in Figure 3.9. We have source node s and three destina-

tion nodes d1, d2 and d3. All the arc costs are 1. There is an risk group containing

n1 → d2 and n2 → d2 with the dual risk cost βd2
b = 1 for all destinations.

The optimal LP solution LMEP is xd1
sn1

= xd1
n1d1

= xd3
sn2

= xd3
n2d

= 1 and xd2
sn1

= xd2
sn2

=
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d2d1  d3

SRLG   Arcs                 Cost 
  b              n1 d2, n2 d2     1 
   

Figure 3.9: An example to show ν(LMEP ) > ν(LMBM ). We want to find a multicast tree
from s to d1, d2 and d3 with minimum arc cost and dual risk cost. All arc costs are 1. We
have an risk group b containing two arcs n1 → d2 and n2 → d2, and the dual risk cost for
d2 is βd2

b = 1. The optimal LP solution value of BPM is 5.5, and the optimal LP solution
value of EPM is 6.

xd2
n1d2

= xd2
n2d2

= 0.5. We have zd2
b ≥ xd2

n1d2
+ xd2

n2d2
= 1 ≥ max{xd2

n1d2
, xd2

n2d2
} = 0.5.

The total arc cost is 5 and total dual risk cost is 1.

The optimal LP solution LMBP is xd1
sn1

= xd1
n1d1

= xd3
sn2

= xd3
n2d

= 1, xd2
sn1

= xd2
sn2

=

xd2
n1d2

= xd2
n2d2

= 0.5, and zd2
b = xd2

n1d2
= xd2

n2d2
= 0.5. The total arc cost is 5 and the

total risk cost is 0.5. Hence, we have ν(LMEP ) = 6 > 5.5 = ν(LMBM ).

3.6.1.3 Lower Bound and Upper Bound of RMRGDT

Let LM ′T be the optimal LP solution of the restricted master problem in an iteration of the

column generation. It is obvious that ν(LM ′T ) is an upper bound for the LP relaxation

of RMRGDT . We can also compute the lower bound of the RMRGDT after solving

the pricing subproblems in every iteration. Specifically, define ts1 = argt∈Ts1
min c′t and

ts2 = argt∈Ts2
min c′t, where c′t is computed using Eq. (3.28). In other words, ts1 and ts2

are the multicast trees with the most negative reduced costs from s1 and s2 respectively,

and can be obtained by solving EPM optimally. The reduced cost of ts1 is denoted as

c′ts1
, and the reduce cost of ts2 is denoted as c′ts2

. We have the following relations.

ν(LM ′T ) + c′ts1
+ c′ts2

≤ ν(LMT ) ≤ ν(LM ′T ) (3.43)

ν(LM ′T ) + c′ts1
+ c′ts2

is a valid lower bound because we cannot reduce ν(LM ′T ) by more

than c′ts1
+ c′ts2

. To see this, consider the convexity constraints in Eq. (3.25). Because we

can increase wts1 and wts2 by at most 1, the total decrease in the objective value cannot
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exceed c′ts1
+c′ts2

. Furthermore, we know that ν(LMEP )−αs ≤ cts . We may have a weaker

lower bound as follows:

ν(LM ′T ) +
∑
s∈S
{ν(LPEP )− αs} ≤ ν(LM ′T ) + c′ts1

+ c′ts2
≤ ν(LMT ) ≤ ν(LM ′T ) (3.44)

3.6.1.4 A Heuristics to Solve the Pricing Subproblem

Generally in column generation, one only need to find a set of good solution (multicast

trees) to the pricing subproblem. Those solutions do not have to be optimal, especially in

the early stage of the column generation. Any solution with negative reduced cost can be

added to the restricted master problem and may improve the current LP solution. Also,

it is beneficial to generate multiple columns in one iteration. This generally decreases the

number of column generation iterations. It is noted that EPM is a mixed integer program,

and to obtain the optimal integer solution might be time consuming. Furthermore, only

one tree is obtained by solving a EPM problem. Thus, we develop a simple heuristics

utilizing the LP solution provided by EPM . In the heuristics, we construct multiple

multicast trees from the fractional LP EPM solutions. Note the edges used in fractional

LP solution (identified by positive y variables) must be a superset of a multicast tree.

Therefore, we randomly select necessary edges from the fractional solution edges to form

proper multicast trees.

In this study, we propose a hybrid procedure that combines the heuristics and the MIP

of EPM . First, we use heuristics to find good multicast trees with negative reduced costs.

If no such trees are found, the MIP EPM is solved optimally to check the existence of

the tree with negative reduced cost. If EPM provides a multicast tree with a negative

reduced cost, the tree is then added to the restricted master RMRGDT . Otherwise, the

column generation stops and the optimal LP solution is obtained. We note that using

the heuristics in the early stage drastically reduce the number of iteration of the column

generation.

After iteratively generating columns based on the procedure described in the previous

section, the optimal LP solution of the restricted master problem is eventually obtained.

To find an integer optimal solution to RMRGDT , we employ a branch-and-price algorithm,
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in which a traditional branch-on-follow-on rule is used Ryan and Foster [1981], Barnhart

et al. [1998a]. We use the depth-first-best-bound search algorithm to travel the branch-

and-bound tree Barnhart et al. [1998b].

3.7 Computational Results

In this section, we discuss the computational study for the SRLG-diverse multicast prob-

lem. We first present the evaluation test instances used throughout the computational

study. Then, we detail the computational study of the different models. In particular, we

compare the LP and IP results of all three models.

3.7.1 Network Instances

Table 3.2 presents the characteristics (network topologies) of the six network instances used

in this study. Each test instance is listed with the number of nodes, arcs, destinations,

and the risk group information. NET1 and NET2 refer to the topologies of the Italian

and US-NET networks published in Shen et al. [2005]. NET3 to NET6 are operational

tier-1 backbones located across the US of a telecommunication company. Note that we

preprocessed the backbone network topology to make it simple (i.e., a network without

multiple arcs between the same pair of nodes) by adding new nodes and arcs. Based on

the information about real fiber spans provided by the company, we identified a set of risk

groups associated with interfaces, links, and fiber spans as follows. We first associate a

unique risk group with each arc, interface, and fiber span that comprise the arc. A risk

group may be used by multiple arcs, and likewise, multiple arcs may belong to a common

risk group. Then, we remove those groups that are strict subset of other risk groups. We

determined the locations of sources and destinations as follows. For example, consider test

sets NET4. We mapped 40 largest cities in the US as potential destination locations and

searched for the nodes that are located geographically closest to those potential endpoints.

We identified 33 distinct backbone nodes as destinations for the first two test sets. Sim-

ilarly, the same procedure was performed in test instance NET5 and NET6 with 60 and

100 destinations respectively. We also selected the location of two sources randomly, one

from East Coast and the other one from West Coast. We set the arc cost cij as the leasing
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cost for using the arc for service.

Test Set # of Node # of Edges # of Destinations # of Risk Group Ave. Risk Group Size

NET1 21 72 10 22 2.9
NET2 24 86 10 32 2.8
NET3 38 136 10 41 8.4
NET4 178 886 33 212 7.5
NET5 178 886 60 212 7.5
NET6 178 886 100 212 7.5

Table 3.2: Test instances information.

3.7.2 Computational Settings and Implementation

In this subsection, we explain the computational experience in detail. We present the com-

putational results of the LP and IP solution for RMRGDE , RMRGDP and RMRGDT .

We first compare the different column generation algorithms proposed for RMRGDP ,

and select the best algorithm. We then compare the computational results of RMRGDE ,

RMRGDP and RMRGDT .

All the experiments were implemented and performed on an Intel Dual Core 2.79GHz

workstation with 1 gigabytes of memory running Windows XP. Computation times re-

ported in the next section were obtained from the desktop’s internal timing calculations,

which include the time used for preprocessing, perturbation, and postprocessing. All the

mathematical models and algorithms were implemented in C++. Each LP and MIP prob-

lem was solved through a callable CPLEX library version 10.0 with default settings. In

order to reduce the heading-in and tailing-off effects of column generation Vanderbeck

[2005], we use barrier LP solver in CPLEX to solve the LP relaxation of the restricted

master of RMRGDP and RMRGDT .

3.7.2.1 Computational Results for RMRGDP

Table 3.3 presents the performance characteristics of the three path-based models tested on

NET1 to NET4. The performance characteristics include computational time (seconds),

objective function value (cost in thousand dollars) and the model size (numbers of rows

and columns of the MIP models). From the table, the nearly non-dominated path genera-

tion algorithm and the mathematical programming path generation algorithm were able to

find the best solutions for smaller test instances (NET1, NET2 and NET3). For the large
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instance (NET4), the mathematical programming path generation algorithm obtained the

best solution. It is worth mentioning that the nearly non-dominated path generation algo-

rithm provided better solutions than the non-dominated path generation algorithm. This

observation suggests that the diversification and relaxation concept plays an important

role in improving the path generation process. It increased the solution quality by 2% on

average for all four test instances from the non-dominated path approach.

Column Generation Problem Size Solution
Test Case Algorithm Cols Rows Cost Time (in sec)

NET1 Probabilistic 3,611 1,680 1,950 2
Non-Dominated 1,968 1,680 1,385 3
Nearly Non-Dominated 2,669 1,680 1,385 2
Math Programming 223 1,680 1,385 4

NET2 Probabilistic 3,766 2,060 2,640 17
Non-Dominated 2,478 2,060 1,965 2
Nearly Non-Dominated 3,375 2,060 1,955 5
Math Programming 165 2,060 1,955 8

NET3 Probabilistic 88,728 3,150 1,328,541 1,284
Non-Dominated 8,977 3,150 860,176 9
Nearly Non-Dominated 75,974 3,150 841,326 135
Math Programming 3,061 3,150 841,326 525

NET4 Probabilistic 102,117 65,538 7,227,782 4,037
Non-Dominated 18,559 65,538 5,017,163 445
Nearly Non-Dominated 100,242 65,538 4,888,562 4,810
Math Programming 17,350 65,538 4,884,008 4,808

Table 3.3: Performance characteristics of different column generation algorithms for path-
based model on four test instances.

Because the mathematical programming path generation algorithm provided the best

solutions for NET1 to NET4, we used it in the remaining computational studies for

RMRGDP , and ignored other path generation algorithms.

3.7.2.2 Comparison Between Three Models

We solved LP relaxation of four models presented in the paper by enumerating all the

possible variables for NET1 and NET2. When the number of the variables are too large to

enumerate, we generate at least 500,000 variables. For NET3 and NET4, we use a column

generation method to generate good variables (paths and trees). When solving the MIP
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formulation of the problem, we stopped the CPLEX procedure if the computational time

exceeded 4 hour.

Test Solution Problem Size LP Solution IP Solution
Case Model Cols Rows Time Obj LP Gap (%) Time Obj Optimality Gap (%)
NET1 RMRGDE 2,024 3,356 1 1,375 0.72 2 1,385 0.00

RMRGDP 223 1,680 1 1,375 0.72 5 1,385 0.00
RMRGDT 44 222 13 1,385 0.00 14 1,385 0.00

NET2 RMRGDE 2,532 4,312 1 1,955 0.00 2 1,955 0.00
RMRGDP 165 2,060 1 1,955 0.00 8 1,955 0.00
RMRGDT 30 322 10 1,955 0.00 11 1,955 0.00

NET3 RMRGDE 3,812 10,778 4 823,995 2.06 9 841,326 0.00
RMRGDP 3,061 3,150 525 839,035 0.27 525 841,326 0.00
RMRGDT 56 412 29 841,326 0.12 35 841,326 0.00

NET4 RMRGDE 74,240 182,162 21 4,421,522 3.54 1,941 4,582,897 0.00
RMRGDP 17,350 65,538 3,600 4,736,412 6.57 4,808 4,884,008 6.16
RMRGDT 203 6,998 1,320 4,425,280 3.44 1,652 4,583,367 0.00

NET5 RMRGDE 133,532 331,440 141 6,660,709 2.07 6,945 6,801,491 0.00
RMRGDP 200,592 119,160 13,481 7,235,340 6.43 14,400 7,238,351 6.43
RMRGDT 432 12,722 4,946 6,697,647 1.56 6,573 6,803,761 0.03

NET6 RMRGDE 221,372 552,012 14,400 - - - - -
RMRGDP 300,782 198,600 14,400 9,233,718 5.16 14,400 9,735,625 -
RMRGDT 675 21,202 6,946 8,573,590 2.71 9,378 8,812,521 -

Table 3.4: Comparison between different models. RMRGDE represents the edge-based
model, RMRGDP represents the segregated path-based model, and RMRGDT represent
the tree-based model.

In Table 3.4, we indicated, for four different models and both test cases, the problem

sizes and the computational results. The problem size contains the number of columns

and the number of rows in the model. The computational results contains the total

computational times, objective values for LP and IP solutions, and the gaps between LP

and optimal IP (computed as OptimalIP−ν(LM1)
OptimalIP ), and IP solution optimality gap (computed

as OptimalIP−ν(M1)
OptimalIP ).

From Table 3.4, we obtained optimal solutions for NET1 and NET3 test cases in

less than 5 minutes of computational time using all the methods. Within these models,

RMRGDT provided the best LP-IP solution gap. For NET4, RMRGDE and RMRGDT

obtained the optimal IP solution, and LP gap provided by RMRGDT is only 1/3 of the gap

provided by RMRGDE . However, the computational time of RMRGDT is longer than

that of RMRGDE , because the pricing subproblem of RMRGDT is time consuming. We

did not get the optimal LP and IP solution using the RMRGDP , because the column

generate method of RMRGDP converges very slowly. For NET5, RMRGDT provided

very tight LP bound and obtained optimal IP solution faster than RMRGDE . Although

RMRGDE generated the optimal IP solution within the time limit, CPLEX did not prove

the optimality of the solution within the time limit. RMRGDP failed to obtain the
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optimal IP solution within time limit because of the slow convergence and the poor LP

bound. For NET6, RMRGDE failed to produce any solution within limited time. This

could because the memory required for RMRGDE is too large for CPLEX to handle,

e.g., the memory reqiured for RMRGDE is near 2G of memory, which is the limit for

Windows 32-bit platform. However, RMRGDT provided the integer solution within 3%

of optimality. From the computational results, we can see RMRGDE perform very good

for small and mid-sized test cases (NET1-NET4), whereas RMRGDT perform better in

very large test cases (NET5-NET6). This is because when the test problem is too large

for RMRGDE to solve quickly, it is worth to decompose the problem into much smaller

subproblems and then use RMRGDT to solve the problem.

For service providers, it is obviously very beneficial for then to increase the number of

destinations due to the multicast nature. Although the increasing number of destinations

will complicate RMRGD, it is worthwhile to consider such problems. For instance, we

examine an average communication cost per destination as the number of destination

increases based on the network topology used in NET4-NET6. The results are shown in

Figure 3.10. From the figure, when the number of destination increases from 33 to 100,
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Figure 3.10: Average communication cost per destination of redundant multicast trees.

the total communication cost only doubles and the average cost per destination decrease

by threefold.
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Figure 3.11: A hierarchy of linear relaxations of four formulations. ME represents the
edge-based model, MP1 represents the segregated path-based model, MP2 represents the
aggregated path-based model, MT represent the tree-based model. The models in the
upper level provide better LP bounds.

3.8 Conclusion

Figure 3.11 summarizes the hierarchical relationships of all four mathematical formulations

proposed here. The relaxations in the same level are equivalent. A line between two boxes

means that the relaxation in the upper box are strictly stronger than the one in the lower

box.

In a computational sense, a model with better LP bound may improve the computa-

tional time of an optimal integer solution dramatically. On the other hand, the difficulty

of the LP relaxations of the different models could vary a lot. In RNMRGD, the number

of possible paths increases exponentially with the number of edges in the problem, and

the number of possible multicast trees increases exponentially with the number of possible

paths. Therefore, it is almost impossible to enumerate all the paths and trees explicitly in

the path-based and tree-based models. It is necessary and important to select the most

suitable model to archive the best performance when dealing with the problems of various

sizes.
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Chapter 4

Flight Sequence Model for the Flight Conflict Resolving

Problem

Everyday the Anchorage, Oakland and Tokyo air route traffic control centers (ARTCCs)

receive a large number of requested flight plans, which detail the level, track and entry time

for the flights entering the Pacific oceanic airspace. Because each airline independently

optimizes its own flight plans, it is common that these requested flight plans request un-

balanced usage of level and track capacities, and result in conflicting schedule that violates

the Federal Aviation Administration (FAA) safety standards. The flight conflict resolution

problem is to find a practical solution to such a common situation, and to provide a sched-

ule that minimizes the total penalty cost of delay, level change, and track change while

maintaining the FAA separation standards. In this chapter, we herein develop a computa-

tional framework to solve the flight conflict resolution problem effectively and efficiently.

We propose two optimization models for this problem. The first model is a basic absolute

value model (BAVM) that explicitly presents the penalty cost as a nonlinear function.

The second model is a set-partitioning-based flight sequence model (FSM) that selects

an optimal set of flight sequences that minimizes the total penalty cost. Because there

are an exponential number of flight sequences, we propose a column generation framework

with a bilinear pricing subproblem to solve the linear relaxation of the FSM and use a

branch-and-price method with a new branch-on flight-assignment rule to find the integer

optimal solution. Both models are tested on ten simulated instances randomly constructed

based on a real dataset and compare with two other heuristics currently employed at the

ARTCCs. The results show that the FSM outperforms all other methods in all test in-

stances. We also extend the FSM to consider equity among airlines. Although the equity
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concept has not been incorporated in the current ARTCC operations, such corporate de-

cision making (CDM)-feature is necessary and critical for the future aviation systems such

as 4-D trajectory system. Our study demonstrates that the proposed solution method can

be extended to handle the equity constraints easily. The computation results show the

proposed solution methods can solve the FSM with equity constraints within reasonable

time.

4.1 Introduction

With the gradually recovering global economies, by December 2010 air travel volumes had

reached a point that was 15% above the low of early 2009 and 4% above the pre-recession

high of early 2008, and air freight was 1% above the pre-recession peak level of early 2008

IATA [2010]. The projected global economic growth has created an increasing demand in

air transportation, which will require a significant expansion of the air traffic including the

numbers of planes, passengers and cargos. Global air traffic growth between 2008 and 2027

is estimated to be at 4.2% annually for passenger traffic, and the passenger traffic within

North America is predicted to increase 2.5% annually ICAO [2008]. The rapid growth of

air traffic is likely to exceed the current airspace capacity under the current Federal Avi-

ation Administration (FAA) separation standards and will require major changes in air

traffic management (ATM) including operational changes and infrastructure improvement

Zografos and Tsanos [2009]. There is an urgent need of new operations tools to effec-

tively manage the increase in air traffic and accommodate the predicted traffic without

compromising safety and separation standards.

This chapter addresses one of the most challenging ATM operations when the airspace

is congested, and there are many conflicting flight schedules that violate the FAA safety

standards (e.g., minimum vertical separation, minimum time separation). This study is

motivated by the congestion of the Northern Pacific airspace. The air traffic control of the

Pacific ocean falls under the jurisdiction of the Anchorage, Oakland, and Tokyo air route

traffic control centers (ARTCCs). For flights that pass through the western direction of

the Pacific ocean, the airline dispatchers transmit their flights’ track, level and entry time

requests to the Oakland ARTCC. Similarly, the Tokyo ARTCC will dispatch the flights’
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track, level, and entry time for the flights that pass through the eastern direction of the

Pacific ocean. Normally, airlines request the most fuel efficient tracks and levels for their

flights based on the aircraft fleet type and the weather, and the entry times of the flights

reflect the business needs of the airlines. Because the airspace capacity is limited and the

safety standards must be met, it is very common to have flight conflicts and the requested

plans need to be altered. If two flights request the same level on the same track and their

requested entry times are within a predefined time interval set by FAA which is normally

20 minutes, the two flights are considered to be in conflict. The flight conflicts can be

resolved by delaying one of the conflicting flights or changing one of the requested tracks

or levels. Both options are undesirable. Delaying a flight will disrupt the airline’s schedule

(e.g., connecting flights), resource planning (e.g., aircraft utilization, crew pairing) and

passengers’ itineraries. This change will also impact passengers’ satisfaction. Changing

the track or level of a flight from what was requested might result in more fuel burn

and/or arrival delays. This change is costly to the airlines as it may add up to hundreds

of gallons per flight. When the conflicts occur, traffic controllers need to best resolve

the conflicts by rescheduling the conflicting flights so that safety standards are met and

the flight delay, track and level changes are minimized. This problem is called the flight

conflict re-scheduling problem (FCRP), which is one of the most common daily operational

problems at the ARTCCs. The FCRP can be formally defined as follows. Given a set of

flights, each with requested track, level and entry time, the FCRP reschedules the flight

plans in order to minimize the extra fuel cost and the flight delay cost as well as satisfy

the FAA airspace separation standards.

The FCRP in the North Pacific airspace is especially challenging due to the airspace’s

fixed number of tracks and the limited entry points. This problem will be even more

complicated when the traffic volume increases as the economy improves. In fact, it is

expected (based on the Traffic Forecasting Group’s report ICAO [2008]) that the volume

will be increased by 20% within the next five years from 2008. This rapidly increased

traffic volume will aggravate the FCRP currently used by the ARTCCs and FAA. It has

been pointed out by FAA [2010a] that although the traffic controllers in ARTCCs are able

to optimize flight schedule for individual flights, there are no tools and control strategies
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that can help them minimize the inefficiency of all the flights simultaneously without any

conflicts. FAA has realized the urgent need of developing a trajectory control system that

“utilizes integration of trajectory planning, management, and execution from strategic

planning to tactical decision making” FAA [2010a].

In this chapter, we develop optimization models for the FCRP to address the above

mentioned concerns from the ARTCCs and FAA. In particular, we propose two mathe-

matical models to reschedule the flight plans in order to meet the FAA safety standards

and minimize the overall increased fuel cost (due to track and level changes) and the flight

delay cost. In our model, we incorporate the corporate decision making (CDM) feature,

particularly the equity consideration among airlines. This study is the first to develop

optimization models of the FCRP with CDM-feature and an efficient and practical so-

lution approach. Specifically, we first present an explicit nonlinear formulation, called

the basic absolute value model (BAVM), that presents the cost objective function and the

conflict between flights as a nonlinear programming problem. The BAVM can be easily

linearized as a mixed integer program (MIP) but solving the linearized BAVM directly

may not be computationally efficient. In order to efficiently solve the FCRP , we develop

a new optimization model, called the flight sequence model (FSM), which introduces a

selection variable for each of the feasible flight sequences at every level or every track, and

formulates the FCRP as a set partitioning problem with assignment constraints. Because

there are an exponential number of feasible flight sequences, we construct a column gener-

ation framework with bilinear pricing subproblems, and use a branch-and-price approach

to search for the optimal integer solution. Both models are tested using ten flight traffic

test instances generated randomly by a simulation module developed in Brewer [2005], and

is developed based on the historical flight record of 238,778 flights in the Pacific airspace

in 2002. To facilitate this model for the future aviation systems such as 4-D trajectory

system, we extend the FSM to capture a CDM-feature that requires the equity consid-

eration among airlines. It will be subsequently demonstrated that the proposed solution

approach can be extended to handle the equity constraints easily.

The rest of this chapter is organized as follows. In Section 5.2, we present background

and rationale of the FCRP as well as other related studies in the literature. In Section
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4.3, we formally define the FCRP and present the BAVM . In Section 4.4, we present the

computational framework of the FSM and elucidate the details of our column generation

approach and branch-and-price method for the FCRP . We provide the computational

detail, experimental results, and the implications in finding efficient conflict resolving

policy in Section 4.5. In Section 4.6, we extend the FSM with equity constraints, and

modify the column generation for the equity model. Section 4.7 summarizes the chapter

and provides some concluding remarks.

4.2 Background

4.2.1 Traffic Congestion and Track Advisory in the Pacific Airspace

The Pacific oceanic airspace includes flights between three continents: North America,

Asia, Australia/New Zealand and islands like Hawaii and Guam. The Pacific oceanic

airspace consists of five fixed track systems and one flexible track system, called the Pa-

cific Organized Track System (PACOTS). The PACOTS comprises airways (tracks) used

primarily for flights traveling between Japan and Southeast Asia and the mainland of the

United States. On average, there are 700 flights every day on the PACOTS with a little

variation throughout the year. The tracks in the PACOTS are generated twice daily based

on the wind and temperature forecasts. In the PACOTS, each track contains several levels

in the altitude range of 29,000 - 40,000 feet. The FAA safety standards require a 1,000

feet vertical separation being maintained between two adjacent levels of the same track.

By convention, the flights traveling north and east occupy the odd-numbered flight levels,

and the flights traveling south and west occupy the even-numbered flight levels.

Everyday the Oakland ARTCC publishes the west bound tracks through the PACOTS

and receives the information (i.e., requested track, level and entry time) of all the flights

through the Pacific ocean. It then compiles all the requests, sorts and modifies them to

resolve any potential conflicts by delaying flights or requesting track and/or level changes.

The Track Advisory (TA) system FAA [2010b] is a computer program used at the Oak-

land ARTCC that assigns the tracks, levels, and entry times for the flights utilizing the

westbound PACOTS tracks in the high traffic hours between 1900 UTC and 0100 UTC for
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the airlines that subscribe to this track advisory system. The current TA system resolves

the conflicts in three sequential steps. In every step, the TA system tries to delay the

conflicting flights or change flight levels or tracks. After the three-step procedure, if the

conflicts still remain, the conflicting flights are delayed until all the conflicts are resolved.

However, the current TA system does not consider the additional fuel cost when changing

the level and track of the flight. Brewer [2005] improves the conflict resolving procedure

of the TA system by allowing more level change and track change options through a se-

quential procedure. The improved approach is called the sequential heuristic (SH), which

has been experimentally shown to provide better, yet practical, scheduling solutions than

those generated by the TA system.

4.2.2 Airspace Flow Management

There are a number of studies in the literature on airspace flow management that deal with

rescheduling flight plans due to adverse weather conditions and other congestion-causing

circumstances (Terab and Odoni [1993], Bertsimas and Patterson [1998], Sherali et al.

[2002, 2003, 2006b, 2009]). Terab and Odoni [1993] develop an approach for rescheduling

flights such that the delay caused by airspace congestions and adverse weather conditions

is minimized. Specifically, the approach provides an optimal assignment of take-off times

for a set of flights departing from a single airport to reduce the extent and impact of

airborne delays. Bertsimas and Patterson [1998] propose an approach for reducing the

impact of congestion of the US national air traffic system by ground and airborne delay.

The approach minimizes the total cost of delays incurred to satisfy the constraints at

the origin and destination airports as well as the pre-specified sector capacity constraints.

Bertsimas and Patterson [2000] solve the air traffic flow management problem with the

consideration of dynamically rerouting aircrafts using a dynamic network flow approach.

Sherali et al. [2002] propose a new comprehensive airspace planning model for selecting

alternative flight plans when the flight delays and diversions are necessary because of

special-use airspace restrictions for the adverse weather or space port launches. The model

selects a set of flight plans from a given array of alternatives for each flight such that

the ground holding delays and the fuel-cost-based objective function are minimized while
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workload, safety, and equity restrictions are satisfied. In Dell’Olmo and Lulli [2003], the

authors present a two-level hierarchical framework to solve a centralized air traffic flow

management system. The first level optimizes the entire air route network, and its solution

provides the air traffic flow on each arc of the network. The second level optimizes the

traffic on individual airways. If the second level solutions are consistent with the first

level solutions, the centralized air traffic flow problem is solved successfully; otherwise,

the congested air route arcs are feedback to the first level for reoptimization, and the

solution procedure continues iteratively. Vossen et al. [2003] define a general model for

the single-resource air traffic management problem with equity consideration. Ball and

Lulli [2004] solve a distance-based ground delay program. Different from the traditional

ground delay program, the distance-based program only includes a set of flights whose

origin airports are near to the destination airport. Sherali et al. [2003, 2006b] propose a

new framework to enhance the management of air traffic at the national airspace system

(NAS) through the development of the airspace planning and collaborative decision-making

model (APCDM). The APCDM takes into account several FAA practices such as three-

dimensional probabilistic conflict analysis, workload metrics based on peak load measures,

and the equity among airlines in absorbing the costs of re-routing, delays, and cancellations.

Specifically, the APCDM is an optimization model that selects an optimal set of flight

plans subject to sector workload, collision safety, and airline equity considerations. The

APCDM can also be used to generate alternative flight plans in response to a severe weather

condition or spacecraft launches. Subsequently, to improve flight efficiencies, Sherali et al.

[2009] extend the APCDM by integrating slot exchange mechanisms induced by multiple

ground delay programs (GDPs), continuing flights in delineating surrogates for each flight,

and alternative equity concepts. Bersimas et al. [2008] propose a model to the air traffic

flow management problem with the complete representation of flight’s taking-off, cruising,

and landing. Short computational times are reported for instances with the size of US air

traffic control system.

Although such previous studies deal with flight rescheduling problems to minimize the

costs of delay and changes of flight plans, unlike this study the flight plans are not repre-

sented specifically by the levels, tracks and airspace entry times of the flights. Modeling
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the flights’ levels, tracks, and entry times explicitly increases the complexity of the flight

rescheduling problems drastically. In addition, other studies are quite focused on a sin-

gle origin or a specific origin-destination pair whereas we consider the use of the Pacific

airspace as a ”pipeline“ for the flights through the Pacific ocean.

4.3 Problem Definition and Basic Formulation

Given a set of flights, each associated with a requested schedule (track, level and entry

time), the FCRP seeks a flight schedule that minimizes the cost of changing the flights’

levels, tracks from what they have requested and the cost of flight delay, while satisfying

the FAA separation standards. As mentioned in the previous section, these standards

require a specific time interval (normally 20 minutes) between two adjacent flights on any

track and level. The FCRP can be mathematically defined as follows. Let F be a set

of flights to be scheduled, L be a set of available flight levels and T be a set of available

tracks. Define a requested entry level of a flight f as lf , a requested entry track of a flight

f as tf , and a requested entry time of a flight f as rf . If two flights are assigned to the

same track and level, there must be a separation interval P between their entry times due

to the FAA separation standards. There is a delay penalty A for every minute of flight

delay from the requested time in the resulting schedule. It is worth mentioning that we

assume that all the flights are homogenous and the delay cost is linear. For example,

the cost of a ten-minute delayed flight is equal to the cost of any two five-minute delayed

flights. There is a fuel penalty BL for every flight level change in the resulting schedule,

e.g., a flight changing from level 4 to 2 has a penalty of 2BL. Similarly, there is a fuel

penalty BT for every track change in the schedule. In practice the penalty of flight level

change should be less than the penalty of flight track change, that is, BL < BT . The

objective of FCRP is to schedule the flights’ entry times, tracks, and levels to meet the

FAA separation standards such that the total penalty cost of level and track changes and

flight delay is minimized.

We define the following set of variables. For a flight f , zf is a decision variable of

scheduled entry time, yLf is a scheduled flight level and yTf is a scheduled flight track. A

flight f can only be assigned to a subset of tracks Tf ⊆ T and a subset of levels Lf ⊆ L
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because it may be impractical or infeasible to assign a flight to some tracks and/or levels

due to aircraft’s capability and takeoff weight. The explicit nonlinear BAVM of the

FCRP is given by

(BAVM) min
∑
f∈F

A(zf − rf ) +BL|yLf − lf |+BT |yTf − tf | (4.1)

s.t. P |yLfi − y
L
fj
|+ P |yTfi − y

T
fj
|+ |zfj − zfi | ≥ P ∀ fi, fj ∈ F , (4.2)

rf ≤ zf ∀ f ∈ F , (4.3)

yLf ∈ Lf , yTf ∈ Tf , ∀ f ∈ F . (4.4)

The objective function in Eq. (4.1) minimizes the total penalty cost, which contains three

elements: flight delay, level change and track change. The constraints in Eq. (4.2) are

for the FAA separation standards, which ensure the minimum time P between the entry

times of any two flights at the same level on the same track. The constraints in Eq. (4.3)

ensure that a scheduled entry time zf of a flight f is after its requested entry time (no early

entry allowed). The constraints in Eq. (4.4) are the integral constraints for level and track

variables. Note that the BAVM is a nonlinear programming formulation that contains

absolute value expressions in the objective function and constraints. It can be linearized to

an MIP using a traditional absolute value linearization technique. The space complexity

of linearized BAVM is large, approximately 2|F |2 + 5|F | variables and 4.5|F |2 + 4|F |

constraints (with 4|F |2 Big-M constraints). Solving the linearized BAVM directly may

not be computationally efficient; therefore, we develop the FSM to heuristically solve the

FCRP .

4.4 Flight Sequence Model and Column Generation Approach

In this section, we formulate the FCRP as a set partitioning problem with decision vari-

ables of flight sequences and an objective function to find a subset of feasible flight se-

quences for every level and track at the minimum cost. The formulation is called the flight

sequence model (FSM), which is similar to the flight string model proposed in [Barnhart

et al., 1998b]. A flight sequence is defined as a series of flights at any track and level that

satisfies the FAA separation standards. Note that there is a cost of delay and/or level and
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track changes associated with each sequence. The FSM can be formally defined as follows.

Let Slt be a complete set of possible flight sequences at a level l ∈ L on a track t ∈ T .

Define S as a set of all the possible flight sequences, and S =
⋃
l∈L

⋃
t∈t
Slt. Define the penalty

cost of a flight sequence s ∈ Slt as cs =
∑
f∈Fs

BL|l − lf | + BT |t − tf | + A(zf − rf ). Define

the binary parameter αfs = 1 if flight f is included in sequence s, and 0 otherwise. For

every flight sequence s, we introduce a binary decision variable xs to be 1 if s is included

in the solution schedule, and 0 otherwise. The mathematical formulation of the FSM is

then given by

(FSM) min
∑
s∈S

csxs (4.5)

s.t.
∑
s∈S

αfsxs = 1 ∀ f ∈ F , (4.6)∑
s∈Slt

xs ≤ 1 ∀ l ∈ L, ∀ t ∈ T , (4.7)

xs ∈ {0, 1} ∀ s ∈ S. (4.8)

The objective function in Eq. (6.1) minimizes the total penalty cost of the selected flight

sequences. The constraints in Eq. (6.2) are set partitioning constraints ensuring that each

flight is included in only one of the selected sequences. The constraints in Eq. (6.3) ensure

that at most one flight sequence is selected for every track and level. The constraints in

Eq. (4.8) are the binary variable constraints. There are |S| variables and |F |+ |L||T | con-

straints in this model. Note that enumerating the complete set of the flight sequences S is

intractable and impractical because the number of possible flight sequences increases ex-

ponentially with the number of flights. We herein develop a column generation framework

to generate good flight sequences, and use a branch-and-price method to obtain integer

feasible solutions to the FSM .

Column generation has been widely and successfully applied to many large-scale, real-

life optimization problems where the number of variables is too large to enumerate explic-

itly [Desrocsiers et al., 1984, Lubbecke and Mesrosiers, 2005, Wolsey, 1998]. The column

generation framework developed here for the FSM can be described as follows. First a

subset of feasible flight sequences is constructed by delaying all the conflicting flights. The
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restricted master problem of the FSM is then solved, and the dual cost of each constraint

is calculated. To improve the restricted master (i.e., generate more columns), we solve the

pricing subproblems based on the dual cost information, and generate new flight sequences

with negative reduced cost. These flight sequences are then added to the restricted mas-

ter problem, and the updated restricted master problem is then resolved. These iterative

procedures are repeated until no new flight sequences with negative reduced cost is found,

which implies that the current LP solution is optimal. The flow chart of our computational

framework for the FSM is shown in Figure 4.1.
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Figure 4.1: Flow Chart of the Computational Framework for the FSM .

4.4.1 Calculating the Dual Cost

After the restricted master problem of the FSM is solved, we obtain dual variable πf

associated with the partitioning constraint in Eq. (6.2) for flight f ∈ F . Because the

equality sign (=) in Eq. (6.2) can be replaced by ≥ sign, we know πf is non-negative.

Similarly, we obtain non-positive dual variable λlt associated with the constraint in Eq.

(6.3) for track t ∈ T and level l ∈ L. The reduced cost c̄s of flight sequence s ∈ Slt can be
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calculated by

cs = cs −
∑
f∈Fs

πf − λlt.

Here, Fs is the set of flights contained in the sequence s. As we discussed in Section 4.3,

the cost cs of flight sequence s ∈ Slt is the summation of the total penalty cost of all flights

in s, and it is given by

cs =
∑
f∈Fs

(BL|l − lf |+BT |t− tf |+A(zf − rf )) .

Denote clf = BL|l− lf | as the level change penalty and ctf = BT |t−tf | as the track change

penalty of flight f . Hence, the reduced cost of flight sequence s ∈ Slt can be rewritten as

cs =
∑
f∈Fs

(
clf + ctf +A(zf − rf )

)
−
∑
f∈Fs

πf−λlt =
∑
f∈Fs

(
clf + ctf − πf +A(zf − rf )

)
−λlt.

(4.9)

Consequently, the pricing problem is to find a flight sequence with a negative reduced cost,

i.e., cs < 0, which can be found by computing min
s∈Slt

cs. Let us consider flight f ∈ F at level

l on track t. We first compute clf and ctf . If clf + ctf −πf ≥ 0, we know it is not beneficial

to include flight f in sequence s because clf + ctf − πf + A(zf − rf ) ≥ 0. Otherwise, the

flight f may be included in sequence s ∈ Slt with zf ∈ [rf , rf +
πf−clf−ctf

A ). For simplicity,

we denote df = rf +
πf−clf−ctf

A , and the reduced cost contributed by flight f is defined by

clf + ctf − πf +A(zf − rf ) = A

(
clf + ctf − πf

A
+ zf − rf

)
= A(zf − df ).

Hence, df can be interpreted as the due time of flight f , and (df−zf ) can be viewed as the

earliness of flight f with respect to its entry time zf of the airspace. Finally, the reduced

cost in Eq. (4.9) can be rewritten as

cs =
∑
f∈Fs

A(zf − df )− λlt. (4.10)

Note that λlt is a constant for every level l ∈ L on every track t ∈ T , and df can be

computed accordingly for every flight f ∈ F . Thus the pricing subproblem for level l and
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track t becomes a problem of selecting a set of flights that maximizes the total earliness

of flight sequence s.

4.4.2 Solving the Pricing Subproblems

In every iteration of the column generation framework, we need to solve |L| × |T | pricing

subproblems, each to obtain an optimal flight sequence with the most negative reduced

cost. The process is repeated until there are no flight sequences with negative reduced cost

found at any level on any track, which implies that the current LP solution of the FSM is

optimal. In practice, we need to determine the assignment of flights for every level l and

track t (a selection problem) as well as the sequence of flights (a sequencing problem). In

this study, we propose a necessary condition for optimal flight sequence so that we only

need to solve the flight selection problem and significantly reduce the complexity of the

pricing subproblem. The subsequent flight selection problem is formulated as a bilinear

programming problem and can be linearized as an MIP problem. Then we propose a hybrid

approach, which combines a greedy insertion heuristic and the linearized MIP subproblem,

to solve the pricing subproblem efficiently. We also propose an efficient pre-processing

method using clustering concept to reduce the size of the pricing subproblems.

4.4.2.1 Necessary Condition for Optimal Flight Sequences.

As noted earlier, in each iteration of the column generation framework, flights are selected

and sequenced at each level on each track so that the reduced cost of the sequence is

minimized. The problem of finding the best flight sequence at each level on each track can

be viewed as a generalization of single-machine scheduling problem, in which a level on a

track is viewed as a machine, and a flight is considered as a job. The release date of flight f

is defined by rf because no flight is allowed to enter the airspace before its requested time.

The due date of each job is defined as df+P , where P is considered as a constant processing

time for all jobs. The earliness of a flight f is defined as df + P − zf − P = df − zf > 0.

Note that we do consider the level change and track change penalty costs here because

those are included in the calculation of df . Here we are only interested in finding a flight

sequence maximizing the total earliness. Apparently, our problem is more general than the
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single-machine scheduling problem because not every job has to be selected and sequenced

as in the single-machine scheduling problem. Instead, we only select the jobs with the

largest cumulative earliness. In this work, we propose the following necessary condition

for optimal flight sequences, called the earliest flight request time rule.

Theorem 6 (Earliest Flight Request Time Rule). A flight sequence at level l ∈ L on track

t ∈ T is optimal only if it contains a series of flights arranged in an ascending order of

request time rf .

Proof. By contradiction, we suppose that there exists an optimal schedule containing a

track and level that do not satisfy Theorem 6. In this schedule there must be at least

two adjacent flights, say fi followed by fj (denoted as fj → fi), such that rfi < rfj .

Define the earliest possible entry time for fi and fj as E, that is, all the previous flights

have enter the track t and level l before time E − P . We know zfj = max{E, rfj} and

zfi = max{zfj + P, rfi} = max{E + P, rfj + P, rfi}. Therefore, cost of these two flights

fj → fi is

Copt = BL|yLfi − l|+BT |yTfi − t|+A(zfi − rfi) +BL|yLfj − l|+BT |yTfj − t|+A(zfj − rfj )

= BL

(
|yLfi − l|+ |y

L
fj
− l|

)
+BT

(
|yTfi − t|+ |y

T
fj
− t|

)
+

A
(
max{E, rfj} − rfj + max{zfj + P, rfi} − rfi

)
= C +A

(
max{E, rfj} − rfj + max{E + P, rfj + P, rfi} − rfi

)
.

Here, C = BL

(
|yLfi − l|+ |y

L
fj
− l|

)
+BT

(
|yTfi − t|+ |y

T
fj
− t|

)
.

If we switch the order of fi and fj , we have the cost of new sequence fi → fj as follows.

Cswt = C +A
(
max{E, rfi} − rfi + max{E + P, rfi + P, rfj} − rfj

)
.

By computing (Copt − Cswt), we have

Copt − Cswt = A
(
max{E, rfj} −max{E, rfi}

)
+A

(
max{E + P, rfj + P, rfi} −max{E + P, rfi + P, rfj})

)
.
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Since rfi < rfj , we know max{E, rfj} −max{E, rfi} ≥ 0, and equality (=) only happens

when rfi < rfj ≤ E. Also, we have

max{E + P, rfj + P, rfi} −max{E + P, rfi + P, rfj}

= max{E + P, rfj + P} −max{E + P, rfi + P, rfj} ≥ 0,

where and equality (=) only happens when rfi < rfj ≤ E. Therefore, we know Copt < Cswt

when E < rfj , which contradicts the assumption that Copt is the optimal schedule. This

completes the proof.

Based on Theorem 6, we can eliminate flight sequences that do not satisfy the necessary

condition of optimal flight sequences. Most importantly, it drastically simplifies the flight

selection problem, which selects x flights to be scheduled at level l on track t yet there are

x! possible flight sequences. Theorem 6 provides a criterion of the best sequence out of x!

possible. In addition, one can use this result to estimate an upper bound of the objective

of the FSM as UpperBound =
∑
t∈T

∑
l∈L

A× P × |Flt|(|Flt|−1)
2 −

∑
f∈Flt

rf , where Flt is the set

of flights such that lf = l and tf = t.

Finally, it is worth mentioning that Theorem 1 is only true with the assumptions that

all the flights are homogenous and the delay cost is linear. Without these two assumptions,

Theorem 1 may not be valid. For example, as we will present in Section 4.6, when the

equity among airlines is considered in the model, the homogenous flight assumption is not

valid. Therefore, Theorem 1 is no longer the necessary condition for the optimal solution

with equity considerations.

4.4.2.2 Bilinear Pricing Problem.

Given a set of flights, an optimal flight sequence is uniquely defined as an ascending order

of rf (using the a result of Theorem 6). Hence, the objective of the pricing subproblem is

to select a set of flights to be included in the optimal sequence such that the reduced cost

is minimized. We can now formally define the pricing subproblem as follows. Define a set

of flights Flt at level l ∈ L on track t ∈ T . Each flight is associated with request entry

time rf and due time df = rf +
πf−clf−ctf

A . We denote the flights as f1, f2, . . . , fk, where
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k = |Flt|, such that rf1 < rf2 < · · · < rfk . Define binary variable uf such that uf = 1 if

flight f is selected in the optimal sequence, and uf = 0 otherwise. The pricing subproblem

is to select a subset of Flt and construct a flight sequence with the maximum earliness

defined by Eq. (4.10). The bilinear programming of the pricing subproblem is given by

max
∑
f∈Flt

uf (df − zf ) (4.11)

s.t. rf ≤ zf + (1− uf )M ∀f ∈ Flt, (4.12)

zfi + P − (1− ufi)M ≤ zfj + (1− ufj )M

∀fi, fj ∈ Flt and rfi ≤ rfj , (4.13)

uf ∈ {0, 1}, zf ≥ 0 ∀ f ∈ Flt. (4.14)

The objective function in Eq. (4.11) maximizes the total earliness of the selected flights.

The constraints in Eq. (4.12) ensure that the start time zf of flight f is not earlier than

the request entry time rf when flight f is selected. The constraints in Eq. (4.13) ensure

the separation time between two flights fi and fj to be at least P . The constraints in

Eq. (4.14) are the binary and non-negative constraints of decision variables. Note that

the objective function contains a bilinear term. We employed the linearization technique

developed in Chaovalitwongse et al. [2004] to formulate this problem as an MIP problem,

and define an additional continuous variable wf as the earliness time of flight f . The

linearized formulation of bilinear pricing subproblem is given by

max
∑
f∈Flt

wf (4.15)

s.t. rf ≤ zf + (1− uf )M ∀f ∈ Flt, (4.16)

zf ≤Muf ∀f ∈ Flt, (4.17)

zfi + P − (1− ufi)M ≤ zfj + (1− ufj )M ∀fi, fj ∈ Flt and rfi ≤ rfj , (4.18)

wf ≤Muf ∀f ∈ Flt, (4.19)

wf ≤ df − zf ∀f ∈ Flt, (4.20)

uf ∈ {0, 1}, zf , wf ≥ 0 ∀ f ∈ Flt. (4.21)
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The objective function in Eq. (4.15) maximizes the total earliness from the selected flights.

The constraints in Eq. (4.16) is the same as the constraints in Eq. (4.12). The constraints

in Eq. (4.17) ensure if flight f is not selected, zf = 0. The constraints in Eq. (4.18) is the

same as the constraints in Eq. (4.13). The constraints in Eqs. (4.19)-(4.20) ensure the

earliness of flight f is equal to df − zf if flight f is included in the optimal sequence, and

0 otherwise. The constraints in Eq. (4.21) are the binary and non-negative constraints of

decision variables.

We can tighten the linearized model in Eqs. (4.15)-(4.21) by replacing the Big-Ms with

more realistic estimations. The result formulation is shown as follows:

max
∑
f∈Flt

wf (4.22)

s.t. rf ≤ zf + (1− uf )rf ∀f ∈ Flt, (4.23)

zf ≤ dfuf ∀f ∈ Flt, (4.24)

zfi + P − (1− ufi)(P + dfi) ≤ zfj + (1− ufj )(P + dfi)

∀fi, fj ∈ Flt and rfi ≤ rfj , (4.25)

wf ≤ (df − rf )uf ∀f ∈ Flt, (4.26)

wf ≤ df − zf ∀f ∈ Flt, (4.27)

uf ∈ {0, 1}, zf , wf ≥ 0 ∀ f ∈ Flt. (4.28)

We can always select a set of flights that clf + ctf −πf < 0 for level l and track t as the

input of the model in Eqs. (4.11)-(4.14). However, there are |L|× |T | pricing subproblems

need to be solved in every iteration of the column generation, and each linearized MIP

subproblem might not be solved to optimality easily and it can be time consuming. In the

following subsections, we propose a clustering preprocessing method to reduce the size of

pricing subproblem and a greedy heuristic to solve the pricing subproblems efficiently.
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4.4.2.3 Flight Clustering

To speedup the computational performance of the pricing model in Eqs. (4.11)-(4.14),

we develop a preprocessing method called flight clustering to reduce the size of pric-

ing subproblems. Consider a set of flight candidates {f1, f2, ..., fi, fi+1, ..., fk} in a pric-

ing subproblem such that rf is sorted in an ascending order based on the result of

Theorem 6. Define the latest start time of flight fi as efi . We have ef1 = rf1 and

efi+1
= min

{
maxj≤i{efj + P, rfi+1

}, dfi+1

}
. This sequence of flights can be clustered into

two subsequences {f1, . . . , fi} and {fi+1, . . . , fk} if there exists flight fi and fi+1 such

that efj + P ≤ rfi+1
, ∀j ≤ i. The optimal sequence obtained from flights in f1, . . . , fk is

the optimal sequence from flights in f1, . . . , fi followed by optimal sequence from flights

in fi+1, . . . , fk. In Figure 4.2, we show an example of clustering flights in three subse- 
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Figure 4.2: Grouping flights {f1, ..., f5} into three clusters {f1, f2}, {f3} and {f4, f5}

quences. In particular, we have five flights f1, . . . , f5 such that rf1 < rf2 < rf3 < rf4 < rf5

and df1 < df2 < df3 < df4 < df5 . We know ef1 = rf1 and ef1 + P > rf2 . There-

fore, flight f1 and flight f2 should be assigned the same cluster. However, ef2 + P =

min{max{ef1 +P, rf2}, df2}+P = ef1 + 2P < rf3. Therefore, we know flight f2 and flight

f3 belong to the different clusters.

4.4.2.4 Hybrid Approach for Pricing Subproblem

Generally in column generation, one only needs to find a set of good solutions (flight

sequences) to the pricing subproblems. Those solutions do not have to be optimal in the

early stage of the column generation. Any solutions with negative reduced cost can be
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added to the restricted master FSM and may improve the current LP solution. Thus we

develop a simple greedy insertion algorithm to generate good flight sequences efficiently.

In the greedy insertion algorithm, we insert a flight with the largest earliness df − zf into

an initial sequence. We repeat this insertion procedure until there is no other flights with

a positive earliness.

In this study, we propose a hybrid procedure that combines the greedy insertion heuris-

tic and the linearized MIP subproblem model. First, the greedy heuristic is used to find

flight sequences with negative reduced costs. If no such flight sequences are found, the

MIP model in Eqs. (4.15)-(4.21) is solved optimally to check the existence of the flight

sequence with a negative reduced cost. If the MIP subproblem model provides a flight

sequence with a negative reduced cost, the sequence is then added to the restricted master

FSM . The column generation framework iterates until the MIP subproblem model does

not provide any flight sequence with a negative reduced cost. We note that using the

greedy insertion heuristic in the early stage reduces the computational time drastically.

Most importantly, the hybrid method guarantees the optimality of LP solution when the

column generation is terminated.

4.4.3 Branch-and-Price Approach

After iteratively generating columns based on the procedure described in the previous

section, the optimal LP solution of the restricted master problem is eventually obtained. To

find an integer optimal solution to the FSM , we employ a branch-and-price algorithm, in

which a good branching rule is crucial. We notice that the FSM is a set partitioning model

with assignment constraints; therefore, it is intuitive to consider the branch-on-follow-ons

rule for this problem [Ryan and Foster, 1981]. Barnhart et al. [1998a], Desrocsiers et al.

[1984], Vance et al. [1997] have shown the effectiveness of this branching rule in solving

large-scale set partitioning problems. The branch-on-follow-ons rule can be implemented

here by constraining two flights, fi and fj , to be at the same level on the same track for one

branch and constraining the complementary for the other branch. Nevertheless, it does

not necessarily provide an integer solution in our case because the FSM involves multiple

flight sequences that may contain both fi and fj and they can be in different tracks and/or
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levels. For instance, a final solution found by the branch-on-follow-ons rule may contain a

flight sequence with fi → fj at level 1 with a solution value of 0.5 and another sequence

with fi → fj at level 2 with a solution value of 0.5. For this reason, we develop a new

branching rule, called the branch-on flight-assignment rule, that exploits the property of

flight assignment constraints. Given a fractional solution to the FSM , we identify a flight

f being assigned to more than one level. This branch-on flight-assignment rule enforces

flight f to be at level l on track t in one branch, and enforces the complimentary in other

branch. In order to include flight f in the first branch, we can set a very high profit

of including flight f in the subproblem. On the other hand, to exclude flight f in the

other branch, we can set a penalty of including flight f in the subproblem. We then use

a depth-first-best-bound-depth-first node choice rule proposed in Barnhart et al. [1998b].

Starting from the root node of the branch-and-bound tree, we use the depth first strategy

to find a feasible integer solution. Then we choose the node with the best bound to start

the depth first search until a feasible solution is found.

4.5 Computational Study

This section describes the characteristics of the realistic test instances used in this study.

We then provide the detail of our computational settings and implementation. We study

the computational experience of the FSM and compare the results of the BAVM and

FSM with those of the simulated TA system, currently used in the Oakland control center,

as well as the SH approach proposed in Brewer [2005]. Finally, we investigate the effect

of different flight planning policies through a sensitivity analysis of the penalty cost and

alternative cost structure of flight schedules.

4.5.1 Test Instances

The realistic test instances used in this study are created by a simulation module developed

in Brewer [2005]. This simulation module utilizes the historical flight record of 238,778

flights in the Pacific airspace in 2002 to randomly generate different scenarios of realistic

flight traffic. The historical data is provided by the ARTCCs, referred to as ETMS data,

and the Japan civil aviation bureau (JCAB). In this study, we generate ten test instances
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of flight traffic with characteristics shown in Table 4.1. The characteristics include the

number of flights, the number of tracks and levels, and the schedule time horizon. In

particular, instances s1 to s3 are small test instances with 80 to 120 flights. Instances m1

to m4 are medium test instances containing more than 200 flights. Instances d1 to d3 are

large instances of daily flight schedules.

Test Instance Num of Flights Num of Tracks Start Time End Time

s1 80 4 0:00 24:00
s2 86 8 10:00 12:00
s3 124 5 0:00 17:00
m1 200 4 0:00 24:00
m2 210 6 0:00 24:00
m3 212 6 0:00 24:00
m4 215 5 0:00 24:00
d1 415 12 0:00 24:00
d2 415 12 0:00 24:00
d3 422 12 0:00 24:00

Table 4.1: Characteristics of test instances

4.5.2 Computational Settings

In this subsection, we explain the computational experience in detail. We first present the

computational results of the LP and IP solution for the FSM . After that, we compare

the results of flight sequence model with other solution methods. Finally, we change the

cost function of the airspace flight scheduling problem and show its effects on the final

schedules.

All the experiments are implemented and performed on an Intel Dual Core 2.79 GHz

workstation with 1 gigabytes of memory running Windows XP. Computational times re-

ported in the next section are obtained from the desktop internal timing calculations,

which include the time used for preprocessing, perturbation, and postprocessing. All the

mathematical modeling and algorithms are implemented in C++. Each LP and MIP

problem is solved through a callable CPLEX library version 10.0 with a default setting.

In this study, we set the delay penalty A = 1 for one minute of delay, level change

penalty BL = 16 and track change penalty BT = 31 in order to make the optimization

model allow at most 15/30-minute delay before changing the flight’s level/track. The

15/30-minute delay is suggested by field operators at the Anchorage and Oakland ATCCs.

In this study, we also explore different decision policies by changing the penalty settings
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for A, BL and BT . We also make an assumption that any flight can be assigned to any

track and at any level, i.e., Lf = L, Tf = T , ∀f ∈ F . As we mentioned previously, in

real life Tf is a true subset of T for all flights and Lf may be a subset of L for some fleet

types. We note that this assumption only makes the test instances more difficult because

it allows more feasible flight sequences.

4.5.3 Column Generation and Branch-and-Price Implementation

To obtain an initial solution to the restricted master FSM in the column generation frame-

work, we first create a set of feasible columns of flight sequences by delaying all conflicting

flights for every level l ∈ L and every track t ∈ T . The LP relaxation solution of the re-

stricted master FSM in each iteration is obtained by using the barrier LP solver in CPLEX

to reduce the heading-in and tailing-off effects [Vanderbeck, 2005]. Subsequently, the dual

cost is calculated from the LP relaxation, and the pricing subproblem was preprocessed

by clustering flights. The preprocessed pricing model presented in Eqs. (4.11)-(4.14) is

then linearized and solved by the CPLEX MIP solver using a default setting.

4.5.4 Solution Characteristics of the FSM

4.5.4.1 LP Solution.

We first present a comparison of CPU time and computational effort needed to solve the

LP relaxation of the FSM for ten test cases with different pricing subproblem methods.

In particular, we evaluate the benefits of solving the LP pricing subproblem with hybrid

method as opposed to only the pricing model in Eqs. (4.11)-(4.14) or the greedy heuristic.

We first solve the pricing model presented in every iteration of the column generation.

Then, we use the greedy heuristic to solve the pricing subproblem. Finally, we apply

the hybrid subproblem method. We indicate, for three subproblem methods and all ten

test cases, the total computational time, objective value as well as the number of column

generation iterations (Num of Iterations) and the number of columns generated (Num of

Cols). We can see from Table 4.2, for the small test cases, all three methods produced

optimal solutions in a short time. However, by using only the pricing model, we cannot get

good solutions in one hour time for the large test cases (Cases d1-d3). One can notice that
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Test Case Pricing Method Obj Value Comp Time Num of Iters Num of Cols
s1 Math 307.00 112 211 1,147

Greedy 309.00 14 263 1,288
Hybrid 307.00 32 413 1,645

s2 Math 726.00 548 232 1,861
Greedy 726.00 29 295 3,192
Hybrid 726.00 116 305 3,220

s3 Math 957.00 1,151 322 3,341
Greedy 960.56 123 483 5,471
Hybrid 956.00 217 596 5,547

m1 Math 725.00 2,396 588 5,716
Greedy 725.00 455 950 9,556
Hybrid 725.00 477 952 9,332

m2 Math 771.00 3,600 591 5,242
Greedy 771.00 279 676 6,139
Hybrid 771.00 971 1,159 7,955

m3 Math 951.00 3,600 562 4,721
Greedy 951.00 282 678 6,541
Hybrid 951.00 471 901 7,452

m4 Math 1,255.00 3,600 629 5,801
Greedy 1,041.20 2,475 2,100 16,512
Hybrid 1,041.00 2,735 2,112 16,313

d1 Math 2,071.35 3,600 787 7,032
Greedy 1,926.00 667 1,113 14,415
Hybrid 1,926.00 3,051 1,072 15,157

d2 Math 1,951.50 3,600 814 7,260
Greedy 1,763.00 584 812 11,830
Hybrid 1,760.00 3,600 1,065 13,769

d3 Math 1,778.00 3,600 648 6,686
Greedy 1,686.50 377 772 12,854
Hybrid 1,686.00 919 2,269 16,126

Table 4.2: Computational results for LP relaxation of the FSM using three different
subproblem methods

the number of iterations and the number of columns generated using the pricing model

are much less than the other two methods for the large problems (less than 50%). This is

because the mathematical model of the subproblem is computationally expensive. On the

other hand, by using only the greedy algorithm in the pricing problem, we obtain optimal

or near optimal solutions in very short time for all test cases. Finally, the hybrid algorithm

can provide the optimal solutions in an acceptable longer time than the greedy heuristic

for all test cases. It is worth noting that the number of columns generated by hybrid

method is only slightly larger than the number of columns by the greedy heuristic. This

indicates the greedy heuristic submodule in the hybrid method serves more in improving

the objective value, whereas the mathematical model submodule in the hybrid method is
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more in proving the optimality of the solution.

4.5.4.2 Preprocessed Subproblems.

We investigate the benefit of the clustering method in reducing the sizes of pricing sub-

problems. We record the sizes of the pricing subproblems before and after the clustering

methods (Table 4.3). Here the problem size is defined by the maximum and average num-

ber of flight sequences in Eqs. (4.11)-(4.14). Note that the statistics are collected after

the LP relaxation of the FSM is solved optimally. From Table 4.3, the sizes of the pricing

problems for mid-size and large instances decrease drastically after clustering method. In

fact, in mid-size and large test cases, the maximum sizes of the subproblems are reduced

by more than 30%. For instance, the largest subproblem size of all test cases is decreased

from 90 to 61, and the average subproblem size of large-scale problems (instances d1−d3)

is decreased from 14 to less than 3.2. This reduction of the number of flights affects the

performance of the pricing model greatly. On the other hand, the performance of the

greedy heuristic is not significantly affected by the preprocessing methods because the

computational complexity of the greedy heuristic only increases linearly with the number

of flights considered. We also notice that the clustering method does not reduce the sub-

Before Clustering
Test Instance Preprocessing Flights

Ave Sub Size Max Sub Size Ave Sub Size Max Sub Size

s1 12.95 42 2.17 20
s2 5.02 36 4.76 36
s3 6.84 44 4.77 40
m1 11.93 42 2.05 22
m2 11.57 67 2.27 28
m3 14.24 64 2.82 29
m4 18.97 87 2.92 57
d1 14.21 90 3.15 61
d2 13.80 87 2.90 58
d3 11.48 71 2.52 46

Table 4.3: Sizes of the pricing subproblems before and after employing the clustering
mathod.

problems of test case s2 and s3 significantly. This is because test cases s2 and s3 contain

only the flights from a busy time window (as shown in Table 4.1). Therefore, it is hard to

cluster flights into different groups. But this phenomenon usually does not occur in the

large daily test cases.
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4.5.4.3 IP Solution.

We investigate the characteristics of the best IP solutions found for all ten test instances.

Those characteristics include the integrality gap, defined by ( IP−LPLP × 100%), the compu-

tational time, the number of branch-and-bound nodes, the number of columns generated,

and the number of flights with fixed track and level at root node, which are presented in

Table 4.4. We obtain nine optimal solutions out of ten test cases within the 90-minutes

limit. It is also very important to note that, for all instances, the LP relaxation of the

FSM provides good lower bounds. In most small and medium instances, the optimal

solutions are found at the root node.

We also examine the suitability and efficiency of the proposed branch-on flight-assignment

rule. At the root node of branch-and-bound tree, we count the number of flights with fixed

track and level assignments. In other words, we count the number of flights that satisfy∑
s∈Slt

αfsxs = 1, ∀l ∈ L,∀t ∈ T at the root node of branch-and-bound- tree. The procedure

of our branch-on flight-assignment rule is very effective and efficient when there are a

large number of flights with fixed track and level assignments, because it would be easier

to obtain an integer feasible solution. From the last column of Table 4.4, we note that

in every test instance the majority of flights had fixed track and level assignments at the

root node. Therefore, by applying the branch-on flight-assignment rule, we can find the

integer feasible solution efficiently for all the test cases.

Test Best IP Integrality Comp ] of B&B ] of % of fixed flights
Case solution gap (%) time nodes col at root node

s1 307 0.00% 34 1 1,645 100.00%
s2 726 0.00% 118 1 3,220 100.00%
s3 956 0.00% 217 1 5,547 100.00%
m1 725 0.00% 475 1 9,332 100.00%
m2 771 0.00% 974 1 7,955 100.00%
m3 951 0.00% 475 1 7,452 100.00%
m4 1,062 2.02% 3,417 38 18,760 83.26%
d1 1,926 0.00% 3,059 1 15,157 100.00%
d2 1,760 0.00% 4,067 1 13,769 100.00%
d3 1,687 0.06% 1,092 14 21,100 95.97%

Table 4.4: Performance characteristics of the best LP and IP solutions for the FSM .
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4.5.5 Performance Characteristics of Different Solution Methods.

Table 4.5 presents performance characteristics of the BAVM and FSM in comparison

with other solution methods for FCRP , the TA and SH approaches. TA denotes the

track advisory system currently used at the Oakland ARTCC; SH denotes the sequential

heuristic proposed in Brewer [2005]; BAVMN denotes the basic absolute value model

without track changes; FSMN denotes the flight sequence model without track changes.

The performance characteristics are (1) the objective function value (the total penalty

cost), (2) the computational time (in seconds), (3) the average and maximum delay time,

(4) the percentage of flights being delayed, (5) the average and percentage of level and

track changes, and (6) the percentage of flights with unchanged schedules. We will stop

the computation when it reaches the predetermined time limit of one and half hour (5400

seconds). We note that the TA and SH approaches are programmed and implemented in

Fortran but run on the same workstation as the BAVM and FSM . In addition, because

of the nature of their mechanisms, TA approach provides the solutions (conflict-resolved

schedules) without any track changes. Thus, for a fair comparison, we modified both

the FSM and BAVM to disallow the track change option, and the modified models are

denoted by BAVMN and FSMN respectively.

As we can see from Table 4.5, in all cases the FSM provides the best solutions among

all other methods tested. This is more evident in large test instances, where the FSM

provides solutions that are much better (in terms of objective value) than those obtained by

the TA and SH approaches whereas the BAVM fails to obtain a feasible integer solution

for the medium and large instances. We observe that a large number of Big-M type

constraints in the BAVM make the LP relaxation bound very poor and the CPLEX MIP

solver has longer time searching the branch-and-bound tree. We also note that the FSM

solutions are superior to the TA and BAVM solutions in all performance characteristics

in all test instances.

We also notice that the FSMN needs shorter computational time than the FSM in all

test cases. One possible reason is because the possible number of sequences in the FSMN

is much less than that of the FSM . Also, the objective values of the FSMN are only

marginally larger than that of the FSM except for test case d2, where a large number of
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Test Solution Obj Comp Ave Max % of Flight Ave Level % of Level Ave Track % of Track % of Unchanged
Instance Method Val Time Delay Delay Delayed Change Change Change Change Flights

s1 TA 558 2 14.69 29 32.50 1.38 10.00 0.00 0.00 53.75
SH 521 2 9.52 27 28.75 1.36 13.75 1.00 2.50 58.75
BAV MN 365 1,202 10.88 24 21.25 1.00 11.25 0.00 0.00 70.00
BAV M 328 5,400 7.50 20 17.50 1.09 13.75 1.00 1.25 70.00
FSMN 365 8 10.88 24 21.25 1.00 11.25 0.00 0.00 70.00
FSM 307 34 6.67 17 18.75 1.00 13.75 1.00 1.25 70.00

s2 TA 1,077 2 18.66 29 44.19 1.10 24.42 0.00 0.00 34.88
SH 897 3 19.92 35 16.28 1.00 31.40 1.00 6.98 48.84
BAV MN 864 3,279 12.00 25 27.91 1.33 31.4 0.00 0.00 47.67
BAV M 1,250 5,400 17.74 26 54.65 1.11 20.93 1.00 3.49 24.42
FSMN 863 93 12.00 25 27.91 1.33 31.4 0.00 0.00 47.67
FSM 726 118 6.91 24 26.74 1.06 19.77 1.00 10.47 48.84

s3 TA 1,171 3 18.15 27 37.10 1.17 14.52 0.00 0.00 50.00
SH 1,084 4 20.37 35 15.32 1.15 20.97 1.00 5.65 59.67
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 1,113 171 8.02 34 31.45 1.52 21.77 0.00 0.00 46.77
FSM 956 244 6.32 24 27.42 1.04 19.35 1.00 0.09 50.00

m1 TA 1,205 6 14.61 20 1.36 27.00 11.00 0.00 0.00 63.50
SH 1,205 7 7.90 15 10.00 1.26 19.00 1.50 3.00 70.50
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 729 320 10.45 30 16.50 1.00 12.00 0.00 0.00 73.50
FSM 725 475 10.21 30 16.00 1.00 12.50 0.00 0.00 74.00

m2 TA 1,563 6 9.65 33 44.76 1.21 16.19 0.00 0.00 41.90
SH 1,331 7 4.96 26 13.33 1.16 24.29 1.38 3.81 61.43
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 780 131 6.74 15 16.67 1.06 15.24 0.00 0.00 70.95
FSM 771 974 8.34 19 22.38 1.00 11.90 1.00 1.90 64.76

m3 TA 1,518 7 12.19 28 33.96 1.21 15.57 0.00 0.00 52.83
SH 1,496 7 8.14 26 10.38 1.22 23.58 1.18 5.19 64.15
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 971 167 8.52 25 24.53 1.00 15.09 0.00 0.00 64.62
FSM 951 475 7.91 19 21.70 1.00 12.73 1.00 2.36 65.57

m4 TA 2,382 7 22.12 33 40.00 1.15 12.09 0.00 0.00 49.76
SH 1,780 7 6.01 21 20.47 1.13 22.33 1.24 7.91 51.16
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 1,537 1,118 14.49 81 29.30 1.18 15.35 0.00 0.00 60.47
FSM 1,037 3,417 6.10 16 17.67 1.04 13.02 1.00 5.12 65.58

d1 TA 4,598 11 10.62 30 45.54 2.58 14.94 1.00 0.24 42.17
SH 3,916 13 20.46 21 14.70 1.20 25.78 1.35 4.82 58.07
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 1,954 941 7.94 24 25.78 1.08 15.18 0.00 0.00 63.37
FSM 1,926 3,059 7.89 30 23.86 1.05 13.25 1.00 1.69 63.86

d2 TA 4,265 11 7.96 36 38.07 2.89 15.66 0.00 0.00 48.67
SH 3,394 13 12.25 31 9.67 1.12 30.12 1.26 5.54 59.76
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 2,281 3,977 13.46 66 21.93 1.10 14.46 0.00 0.00 68.67
FSM 1,760 4,067 7.00 26 18.07 1.02 12.53 1.00 3.13 68.92

d3 TA 3,534 11 8.38 33 33.89 2.47 13.98 0.00 0.00 54.74
SH 2,881 13 6.02 19 11.12 1.28 23.93 1.17 4.27 63.98
BAV MN No Fea - - - - - - - - -
BAV M No Fea - - - - - - - - -
FSMN 1,732 410 8.42 29 20.38 1.05 14.22 0.00 0.00 67.54
FSM 1,687 1,092 7.68 22 19.19 1.00 12.56 1.00 1.66 68.25

Table 4.5: Performance characteristics of the BAVM and FSM in comparison with the
TA and SH approaches.

flights request the same track during a short time window. Without changing the track, a

portion of these flights have to be delayed.

4.5.6 Dynamic Cost Structures

In reality, the cost structure of FCRP can vary from day to day. For example, the cost of

changing track and level can vary widely depending on the different weather conditions;

the cost of changing track and level might not increase linearly in some extreme conditions.

Also, it is very important to provide the controllers of ARTCCs with the flexibility of cost

to handle different real life scenarios. In our computational study, we change the penalty

of flight track and level changes and delay with two alternatives.
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In the first alternative, we assume the cost of level and track change is not proportional

to the number of level or track changes. Specifically, we assume that a penalty cost is

incurred when a flight track or level is changed, but the cost is the same whether it

changes 1, 2, 3 or more levels or tracks. This scenario makes the calculation of the penalty

cost more complicated because the cost function of flight sequence is nonlinear, which is

given by

cslt =
∑
f∈Fslt

A(zf − rf ) +BL min(1, |l − lf |) +BT min(1, |t− tf |). (4.29)

However, the complicated cost structure does not affect the column generation because

the subproblem does not change structurally. With the same computational settings, the

performance characteristics of the FSM with a nonlinear penalty cost function on three

large test cases is given in Table 4.6. We obtain the optimal IP solutions for all large test

cases within the limited time. Also, it is interesting to note that the numbers of unchanged

flights with non-linear cost do not vary significantly when compared with the results of

original linear cost structure (less than 3%).

Test Obj Comp Ave % Flights with % of Flights with % of Flights with % of Unchanged
Case Value Time Delay Delay Level Change Track Change Flights

d1 1,684 1,479 6.99 18.55% 14.46% 1.45% 66.51%
d2 1,602 4,265 6.92 14.94% 12.53% 2.65% 70.36%
d3 1,553 1,543 6.59 19.67% 14.46% 0.24% 69.91%

Table 4.6: Performance characteristics of the FSM with nonlinear penalty cost function.

In the second alternative, we change the penalty value of BL and BT to investigate

the sensitivity of the FCRP and its effect on the solutions. We initially set the cost of

changing the flight level BL = 16 and the cost of changing the flight track BT = 31 based

on the policy of 15/30-minute delay window and the preference of changing the level over

changing the track. In practice, it is always less desirable to change the flight track over the

flight level. However, it is not always desirable to change the flight level over longer-than-

15-minute delay. Here we vary the penalty cost into four settings: (BL = 6, BT = 11),

(BL = 11, BT = 21), (BL = 16, BT = 31), and (BL = 21, BT = 41). We are particularly

interested in the large test instances, which are daily schedules, because different policies

should be applied to every flight in a particular day.
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Table 5.4 presents the solution characteristics of different penalty cost settings. It is

observed that the resulting schedules do not change drastically across the different settings.

The total number of unchanged flights only varies within 3%. It is also expected that the

higher the penalty cost, the more delay in the schedule, the less level and track changes. In

addition, the level change and track change occur only between adjacent levels and tracks.

This observation is also consistent with the one in Table 4.5. It may be used to improve

the pricing subproblem method. Specifically, when solving the pricing subproblem for level

l and track t, we need to consider only the flights whose requested levels and tracks are in

{l − 1, l, l + 1} and {t− 1, t, t+ 1} respectively.

Test Penalty Ave Max % Flights Ave Level % of Flights with Ave Track % of Flights with % of Unchanged
Case Setting Delay Delay with Delay Change Level Change Change Track Change Flights
d1 BL = 6, BT = 11 3.71 16 8.43 1.03 18.80 1.00 6.25 64.58

BL = 11, BT = 21 6.82 23 17.83 1.04 18.55 1.00 2.65 63.31
BL = 16, BT = 31 7.89 30 23.86 1.05 13.25 1.00 1.69 63.86
BL = 21, BT = 41 8.84 33 26.51 1.10 13.25 1.00 0.72 63.61

d2 BL = 6, BT = 11 4.33 14 10.36 1.03 17.83 1.00 4.10 70.84
BL = 11, BT = 21 5.67 23 13.01 1.00 18.07 1.00 3.37 71.08
BL = 16, BT = 31 7.00 26 18.07 1.02 12.53 1.00 3.13 68.92
BL = 21, BT = 41 8.88 32 22.17 1.02 10.84 1.00 1.93 67.23

d3 BL = 6, BT = 11 4.24 19 9.00 1.00 17.54 1.00 4.74 70.38
BL = 11, BT = 21 7.03 21 11.37 1.00 17.30 1.00 3.08 69.43
BL = 16, BT = 31 7.68 22 19.19 1.00 12.56 1.00 1.66 68.25
BL = 21, BT = 41 9.28 25 22.27 1.00 10.66 1.00 0.96 68.01

Table 4.7: Comparison of solution characteristics with different penalty settings.

4.6 Equity Considerations Among Airlines

It has been recognized that the equity consideration is critical to the airline operation plan-

ning. Although the slot ownership concept and intra-airline slot-exchange procedures are

not currently used for the Pacific oceanic airspace, in the foreseeable future the ARTCCs

are very likely to consider this option since the collaborative and slot ownership concepts

are likely beneficial to the airlines and the ARTCCs. The equity concept has been in-

tegrated in the APCDM for an airspace traffic flow program [Sherali et al., 2002, 2003,

2006b, 2009], ground delay problem [Vossen et al., 2003], and airline crew scheduling prob-

lem [Boubaker et al., 2010]. In Sherali et al. [2002], equity is modeled as a set of hard

constraints, so that the equity values of different airlines are restricted within a predefined

range. In Vossen et al. [2003], Boubaker et al. [2010], equity is captured in the objective

function as a soft constraint. In other words, the undesired variance of equity is penalized

in the objective function. In Sherali et al. [2003, 2006b, 2009], both methods are applied
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simultaneously. A set of hard constraints is used to restrict the equity values within some

predefined range. Then the variance of the restricted equity values is penalized in the ob-

jective function. In this section, we extend the FSM to consider the equity measurement.

4.6.1 Mathematical Formulation and Solution Methods

The equity measurement proposed here is similar to the ones developed in Sherali et al.

[2002, 2003, 2006b]. However, in this study we only model the equity measurement as a set

of hard constraints. Particularly, we require that the difference between the equity values

of any airline to be less than a predefined threshold. For illustration purpose, we simplify

the equity measurement by assuming that all the airlines and all flights of an airline have

an equal weight. However, the weighted case can be handled in a similar manner.

Formally, we introduce the following notations. Define G as a set of airlines, and Gs

as the airlines in the sequence s. Define Fg as the set of flights for airline g ∈ G, and

Fgs as the flights for airline g in sequence s. Define gf as the airline of flight f , therefore,

Gs = ∪f∈Fsgf . Define cfs as the penalty cost of flight f in sequence s. Therefore, we

define the average penalty cost per flight for airline g as cg, which can be computed as

follows:

cg =

∑
f∈Fg

∑
s∈S α

f
s cfsxs

|Fg|
∀g ∈ G.

The average airlines delay cG is then computed as cG =
∑

g∈G cg
|G| . We define the equity

index Eg for airline g as Eg = cg − cG. In order to ensure the equity among airlines, we

restrict the equity index Eg ≤ E, where E is a predefined maximum limit of inequity.

Therefore, the equity constraints can be written as follows.

cg =

∑
f∈Fg

∑
s∈S α

f
s cfsxs

|Fg|
∀g ∈ G, (4.30)

Eg = cg −
∑

g∈G cg

|G|
∀g ∈ G, (4.31)

Eg ≤ E ∀g ∈ G. (4.32)
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Constraints in Eqs. (4.30)-(4.32) can be simplified in the following equation:

∑
s∈S

xs

(|G| − 1)
∑

f∈Fgs
cfs

|G||Fg|
−
∑
g′ 6=g

∑
f∈Fg′s

cfs

|G||Fg′ |

 ≤ E ∀g ∈ G. (4.33)

Define dual cost for constraints in Eq. (4.33) as θg. The dual cost of a sequence can

be rewritten in the following format.

cs =
∑
f∈Fs

(
clf + ctf +A(zf − rf )

)
−
∑
f∈Fs

πf − λlt

−
∑
g∈Gs

 |G| − 1

|G||Fg|
∑
f∈Fgs

cfs −
∑

g′∈Gs\g

∑
f∈Fg′s

cfs

|G||Fg′ |

 θg

=
∑
f∈Fs

(
clf + ctf − πf +A(zf − rf )

)
− λlt −

∑
f∈Fs

cfs
(|G| − 1)θgf −

∑
g′∈Gs\gf θg′

|G||Fgf |

As we can see from the above equation, the dual cost contributed by equity constraints

contains two parts for flight f in sequence s. The first part is the positive contribution to-

wards airline gf when inserting flight f in the flight sequence s, which is equal to
(|G|−1)θgf
|G||Fgf

| .

The second part is the negative contribution to the rest of the airlines Gs \ gf when in-

serting flight f in the sequence s, which is equal to

∑
g′∈Gs\gf

θg′

|G||Fgf
| . For simplicity, we denote

mfs =
(|G|−1)θgf−

∑
g′∈Gs\gf

θg′

|G||Fgf
| . Then we have

cs =
∑
f∈Fs

(
clf + ctf − πf +A(zf − rf )

)
− λlt −

∑
f∈Fs

mfscfs

=
∑
f∈Fs

(
clf + ctf − πf +A(zf − rf ) + (clf + ctf +A(zf − rf ))mfs

)
− λlt

=
∑
f∈Fs

(
(1−mfs)(clf + ctf +A(zf − rf ))− πf

)
− λlt

Because we have decomposed the reduced cost of a flight sequence into the summation

of the cost associated with each flight, the pricing problem can be conducted in a similar

way as discussed in Section 4.4.2. In particular, we only need to consider flight f such

that
(
(1−mfs)(clf + ctf +A(zf − rf ))− πf

)
< 0 in the pricing subproblem of the column

generation. We can use the greedy heuristic to generate good flight sequences efficiently.

However, it is important to note that Theory 6 is no longer valid when incorporating these
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equity constraints. As a result, the preprocessing procedure and the bilinear pricing model

in Eqs. (4.11)-(4.14) cannot be used in the pricing subproblem when considering equity

constraints. Therefore, to solve the equity FSM (EFSM) efficiently, we first solve the

original FSM to optimal, then we use the optimal LP solution of the original FSM as

the initial solution for the EFSM .

4.6.2 Proof of Concept

We conduct the computational study on the EFSM by creating the airline information

based on the historical data. In particular, we first extract the airlines statistical informa-

tion from the historical data mentioned in Section 4.5.1. We compute the airline frequency

for every origin-destination pair in the historical data. Then based on the airline statistics,

we randomly assign an airline to a flight based on the its origin and destination. Each test

case contains 20 airlines.

When solving the EFSM , we first solve the LP relaxation of the origin FSM to

optimal. Then we add the equity constraints to the model and start the column generation

for the EFSM . We set the computational time for column generation of the EFSM to

thirty minutes. We only solve the LP relaxation of the EFSM when either the optimal

solution is obtained or the stopping criterion is met, then we obtain the IP solution using

the existing sequences. No branch-and-price is performed for the EFSM . In order to

investigate how equity constraints affect the solution quality, we increase the value of E in

Eqs. (4.30)-(4.33) from 3 to 7 with step size 1. In Table 4.8, we record the computational

results of the EFSM for the three large test cases.

As we can see from Table 4.8, very good solutions are obtained in a reasonable time

for all three test cases with equity consideration. The results of the EFSM do not incur

significantly incremental costs (less than 2%) in all test cases.

We also notice that when the value of E is too small, there is no feasible solution to

the EFSM . This happens when multiple airlines bid for the same busy time slot of a

track and level. For example, in test case d2, two small airlines bid for the same entry

time of a track and level. Any delay or level and track change on these flights will increase

the equity index of the corresponding airline drastically. Therefore, it is hard to find a
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Test E Obj Incremental Comp Ave Std Max
Case value value cost time EG Eg − EG Eg − EG

∞ 1,926 0.00% 3,050 4.67 3.23 6.33
7 1,926 0.00% 3,271 4.67 3.23 6.33

d1 6 1,927 0.05% 3,378 4.71 3.14 5.29
5 1,953 1.40% 3,359 4.48 2.77 4.77
4 1,957 1.61% 3,216 4.50 2.69 3.42
3 Infea - - - -

∞ 1,760 0.00% 4,067 4.10 3.98 17.2
7 1,794 1.93% 4,978 3.27 6.59 6.19

d2 6 Infea - - - - -
5 Infea - - - - -
4 Infea - - - - -
3 Infea - - - - -

∞ 1,687 0.00% 1,092 3.72 2.79 8.61
7 1,687 0.00% 1,360 3.65 2.57 5.73

d3 6 1,687 0.00% 1,360 3.65 2.57 5.73
5 1,689 0.12% 1,327 3.65 2.52 4.64
4 1,691 0.24% 1,259 3.62 2.42 3.65
3 Infea - - - - -

Table 4.8: Comparison of solution characteristics with different equity values.

feasible solution in this situation. To resolve the infeasibility, we can either penalize the

infeasibility in the objective function using a Lagrangian relaxation based method, or set

different tolerance level E for the airlines of different size.

4.7 Concluding Remarks

Each airline has its own flight planning program that deals with the problem of deter-

mining the optimum flight plans (i.e., level, track, and entry time) to minimize the fuel

usage for each flight based on the aircraft fleet type, takeoff weight and the weather data.

Thus airlines always make the best flight plans independently and provide them to the

ARTCCs. This practice has made the flight planning and scheduling very difficult as there

is no collaborative decision making system among airlines. Often time the requested flight

plans incur conflicts due to the FAA safety standards (i.e., 20-minute separation on the

same track and same level), unbalanced level and track requests, and exhausted level and

track capacity. A common approach to resolve the flight conflicts is to delay one of the

conflicting flights or change one of their requested tracks or levels. This problem of resolv-

ing the flight conflicts is called the FCRP . In this study, we develop a new optimization

framework for the FCRP . Specifically we develop two MIP models: BAVM and FSM .



89

The BAVM is a traditional model for minimizing the penalty cost of delay, level and

track changes by linearizing the absolute term. However, it is shown here to be compu-

tationally inefficient. The FSM is a set-partitioning model, similar to the flight string

model proposed in [Barnhart et al., 1998b]. We construct a column generation framework

with a bilinear pricing subproblem. We develop a preprocessing method to reduce the

size of the pricing subproblem based on a necessary condition of optimal flight sequences.

To solve the pricing subproblem efficiently and effectively, we propose a hybrid approach

that combines the linearized pricing subproblem with a greedy heuristic. A branch-and-

price method with a new branch-on flight-assignment rule is employed to find the optimal

integer solution to the FSM . Both BAVM and FSM are tested on ten simulated in-

stances, based on a real dataset. Their performance characteristics are compared with

those obtained by two other heuristics: TA and SH. The FSM allows us to efficiently

and effectively solve large instances, and its performance is superior to all other methods.

We also extend the FSM to consider equity among airlines. Although the equity con-

cept has not been incorporated in the current ARTCC operations, such corporate decision

making (CDM)-feature is necessary and critical for the future aviation systems such as

4-D trajectory system. Our study demonstrates that the proposed column generation and

branch-and-price methods can be extended to handle the equity constraints easily. The

computation results show the proposed solution methods can solve the FSM with equity

constraints within reasonable time.

There are many other real-life applications that our mathematical model and solution

method can be applied. For example, the problem of assigning workers with different

skill levels can be modeled into our problem[Norman et al., 2002, Ni and Abeledo, 2007],

where each worker can be viewed as a track and level and each task is a flight. Another

example is the critical equipment scheduling in the healthcare centers [Rais and Viana,

2011, Houdenhoven et al., 2008, Erdogan and Denton, 2010]. Typically, in a hospital,

there is a certain set of critical equipments, which patients need to use after a particular

time. There is a penalty if a patient is waiting for the equipment. The objective function

is to minimize the total waiting penalties for the patients. Vehicle routing/scheduling is

another example that our approach can be naturally applied, where each vehicle can be
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viewed as a track and level, each customer is a flight, and the customers’ waiting time

is the flight delay time [Bramel and Simchi-Levi, 1997]. Although the above mentioned

problems may have different structures in the pricing subproblems, the flight sequence

model and the proposed solution methods may serve as a prototype or example for these

problems. The proposed equity extension and the column generation solution method can

also be modified or extended to the needs of various applications as well.
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Chapter 5

A New Rotation-Tour Network Model for Aircraft

Maintenance Routing Problem

The airline industry currently has a $40-billion plus market and is expected to grow rapidly

with the population growth and growth in the overall economy. Everyday, thousands of

aircrafts undergo maintenance, repair and overhaul. The aircraft maintenance problem is

one of the important logistic problems in the airline industry. It is aimed at scheduling the

aircrafts routing so that enough maintenance opportunities are provided to every aircraft

in the fleet. In this chapter, we present a new compact network representation of the

aircraft maintenance routing problem (AMR), and propose a new mixed-integer linear

programming formulation to solve the problem. The quality of this model was assessed on

four real test instances from a major US carrier, and compared with the flight string model

proposed in Barnhart et al. [1998b], Cohn and Barnhart [2003]. The computational results

show that the proposed model is able to obtain the optimal solutions to all test instances

in reasonable time. This study suggests that this model can be applied to integrated

problems of the AMR and other planning problems such as the fleet assignment problem

and the crew pairing problem.

5.1 Introduction

As the safest public transportation system, US domestic airlines operate 5,000 flights per

day while offering over 4 million fares to serve over 10,000 markets. As the demand on

air transportation fluctuates along with the population growth and growth in the overall

economy, the airline aircrafts fly more intensively without compensating the safety consid-

erations. However, there is a reasonable concern raising about the aircraft maintenance.

In a recent article of USA Today Stoller [Feb. 3 2010], it is reported that “millions of



92

passengers have been on at least 65,000 U.S. airline flights that shouldn’t have taken off

because planes weren’t properly maintained during the past six years.” The investigation

also shows that maintenance was ‘a cause, factor or finding’ in 18 accidents since January

1, 2000, and caused 43 people died and 60 people injured. It is suggested that the uncertifi-

cated mechanics and outsourced repairs might be the cause of the situation. In fact, how

to schedule the aircrafts with enough maintenance opportunities using limited resource is

always one of the major airline planning operations, known as the aircraft maintenance

routing problem (AMR). In this chapter, we are investigating a new network-based model

to solve the AMR, with the consideration of the resource limitations at maintenance sta-

tions. Generally, the airline planning consists of four major sequential operations: flight

schedule design, fleet assignment (FAM), aircraft maintenance routing (AMR), and crew

scheduling. The flight schedule is usually designed by the airline marketing department

based on traffic forecasts, airline network analysis and profitability analysis over several

months Soumis et al. [1980], Phillips et al. [1991], Lohatepanont and Barnhart [2004]. Af-

ter a flight schedule is obtained, a variety of aircraft fleets are assigned to individual flights

based on passenger demands (both point-to-point and continuing services), revenues, oper-

ating costs etc, so that the total profit is maximized Subramanian et al. [1994], Hane et al.

[1995], Sherali et al. [2006a], Belanger et al. [2006]. Given an assigned aircraft fleet, the air-

craft maintenance routing Clarke et al. [1997], Barnhart et al. [1998b], Gopalan and Talluri

[1998], Talluri [1998], Boland et al. [2000], Mak and Boland [2000], Sriram and Haghani

[2003], Elf and Kaibel [2003], Sarac et al. [2006] is to determine the rotation of individual

aircraft, so that enough maintenance opportunities are provided to each of the aircrafts.

Subsequently, the crew scheduling is to determine the best set of crew pairings (CP), crew

trips spanning one or more working days separated by a break period, to cover all the

aircraft fleetsRyan and Foster [1981], Anbil et al. [1992], Desaulniers et al. [1997a], Vance

et al. [1997], Barnhart and Shenoi [1998], Barnhart et al. [2003], AhmadBeygi et al. [2009]

and to construct personalized monthly schedules (rosters) for crew members Gamache and

Soumis [1998], Dawid et al. [2001].

In the last decade, there has been an increasing interest in solving the integrated prob-

lems of two or more planning operations, such as integrating FAM and AMR Barnhart
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et al. [1998b], Haouari et al. [2009], CP and AMR Cordeau et al. [2001], Klabjan et al.

[2002], Cohn and Barnhart [2003], Mercier et al. [2005], Mercier and Soumis [2007], Weide

and D. Ryan [2010], FAM and CP Sandhu and Klabjan [2007], etc. As the evolution

of the computational capability, it has become quite worthwhile to solve more than one

planning operations simultaneously. For example, it has been shown in Cordeau et al.

[2001], Klabjan et al. [2002], Cohn and Barnhart [2003], Mercier et al. [2005], Mercier and

Soumis [2007], Weide and D. Ryan [2010] that a substantial saving on crew cost can be

obtained by solving CP and AMR simultaneously. In order to solve an integrated problem

with AMR, the integrated problem is usually decomposed into a multi-stage problem, and

solved using iterative algorithms (e.g., Bender Decomposition algorithm, cutting planning

algorithm, etc.). In these iterative algorithms, it is quite common that AMR needs to be

solved for many times, and the solution speed of AMR effects the overall performance of

the integrated problem greatly. In this chapter, we are not solving any new integrated

problem or a competing solution method for any existing integrated problems, rather, we

are proposing a new network-based model to solve AMR more efficiently. Currently, AMR

is usually solved using a string-based model (FSM) Barnhart et al. [1998b], Clarke et al.

[1997], Boland et al. [2000], Cordeau et al. [2001], Elf and Kaibel [2003], Mercier et al.

[2005], Mercier and Soumis [2007], Weide and D. Ryan [2010], and it again needs to be

solved iteratively using column-generation and branch-and-price, where the pricing prob-

lem was modeled as a constrained shortest path problem on a time-space network. This

requires considerable experience to customize the algorithms and parameters to overcome

the implementation difficulties such as heading-in and tailing-off effect Vanderbeck [2005].

Although FSM can be solved in reasonable time using column-generation and branch-and-

price, to the best of our knowledge, there is no one-step solution methods for FSM because

the number of strings grows exponentially with the number of flights in AMR, and it is

impossible to enumerate all the strings in the model.

In this chapter, we propose a new rotation-tour network model (RTNM) built on a

modified time-space network. RTNM introduces special time-reversible arcs to cater the

maintenance operations. RTNM is very compact and scalable compared to the string

model. The size of RTNM is relative to the maximum number of days allowed between
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two consecutive maintenances while there are exponential number of feasible flight strings

that can be included in the string model. Because the size of RTNM is polynomial in

theory and relatively small even for the large real-life test cases, it can be solved by most

commercial integer solvers in one step. The computational study shows that RTNM can

get the optimal solutions for real network test problems in reasonable time. The results

suggest that the proposed RTNM may improve the solution time of integrated problems of

AMR and other planning problems such as the fleet assignment and crew pairing problem.

We also compare the performance characteristics of RTNM with those of the flight string

model (FSM) proposed in Barnhart et al. [1998b], Cohn and Barnhart [2003] on four real

network test problems.

The remainder of the chapter is organized as follows. In Section 5.2, we give a back-

ground on AMR and present the widely used time-space network structure. In Section 5.3,

we present the new rotation-tour network representation of AMR mathematically. Section

5.4 presents the rotation-tour network optimization model (RTNOM) of AMR, and com-

pares the well-known FSM with RTNOM. Section 5.5 presents the computational results

of the proposed network model and compares its performance characteristics with those

of the flight string model. Finally, we conclude our work and discuss some future studies

in Section 5.6.

5.2 Background of Aircraft Maintenance Routing Problem (AMR)

In this section, we first introduce the background information of AMR. We then present

the traditional time-space network representation of the airline network.

5.2.1 Problem Definition

AMR is to determine how to assign flights of a fleet to every individual aircraft, while

ensures each aircraft has enough maintenance opportunities to meet the regulations set

by an airline or country. Generally, different countries and airlines have slightly different

requirements for their aircraft maintenances. There are several types of common main-

tenances for US domestic airlines Hessburg [Apr. 2000], FAA [2002]. The most frequent

maintenance is daily check (also called night-stop check, or service check), which is needed
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for every 24 to 60 hours of accumulated flight time. A daily check includes a walk around

inspection, check on lights, emergency equipment, servicing engine oil. It takes a me-

chanic about one to three hours to finish and several hours to fix any items (e.g., changing

tire/brake). Normally there is not enough time during the day to fix many items, therefore

a daily check is usually done at night Talluri [1998], Gopalan and Talluri [1998], Sriram and

Haghani [2003]. The next higher level of maintenance check is called Type A check, and

it is performed approximately every month or longer. Then two heavy checks called Type

C check and Type D check are performed every 18 months and 5 years approximately.

Note a maintenance check can only be performed at certain airports called maintenance

stations. Each maintenance station has limited resource and is only capable to perform

certain number of maintenance checks every night. Usually, only daily check is considered

in AMR, whereas the less frequent maintenances can be incorporated into FAM.

In order to ensure the equal utilization of every aircraft in a fleet, some airlines required

aircrafts fly the same sequence of flights, also called big cycle constraints Klabjan [2005].

For example, considering fours daily flights LGA(10 : 10) → DFW (13 : 15), DFW (15 :

15) → LGA(19 : 55), LAX(8 : 10) → DFW (13 : 10), and DFW (15 : 20) → LAX(16 :

30). Assume we have two aircrafts to cover these four flights. There are two possible

scenarios: the first scenario is aircraft A flies LGA → DFW → LGA and aircraft B

flies LAX → DFW → LAX everyday; an alternative scenario is to let every aircraft

flies all four flights LGA → DFW → LAX → DFW → LGA (and forms a big cycle)

in every two days. That is, on day 1, aircraft A takes flights LGA → DFW → LAX

and spends the night at LAX, and aircraft B flies flights LAX → DFW → LGA, and

spends the night at LGA. On day 2, aircraft A flies LAX → DFW → LGA and aircraft

B flies LGA → DFW → LAX. Notice both aircrafts have the same flight sequences

in the rotations. By taking the second scenario, the equal utilization rate of aircrafts is

guaranteed. However, it is worthy mentioning that a big cycle of many flights can hardly

be operated without perturbation in real implementations. Therefore, this constraint is

relaxed in a number of studies Cohn and Barnhart [2003], Mercier et al. [2005], Mercier

and Soumis [2007], Haouari et al. [2009], Weide and D. Ryan [2010].

A feasible solution to AMR in the planning stage normally contains a generic aircraft
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route during a rolling time horizon. Consider the example mentioned before, a feasible

AMR solution could be a rotation of LGA → DFW → LAX → DFW → LGA followed

by a maintenance at LGA, assuming the maximum duration between two maintenances

is two days. This generic solution does not assign individual aircraft to flights explicitly.

However, in the operational stage, this solution can be served as a reference for assigning

individual aircrafts.

There are several possible costs associated with AMR, which include the (negative)

through revenue cost, penalty cost for undesired connections, the maintenance costs, etc.

The through revenue between two connected flights is measured by the number of passen-

gers who stay on the same aircraft between two connected flights in the rotationClarke

et al. [1997]. The penalty cost between two connected flights in a rotation incurs when the

connection/ground time between two flights is close to the minimum ground time. The

minimum ground time is the minimum time for offloading and reloading of passengers,

bags, cargo, fuel, cleaning of the cabin, etc.. A rigid ground time may introduce seri-

ous disruptions for crews, passengers and the operations of the following schedule. For

example, in Klabjan et al. [2002], Cohn and Barnhart [2003], Mercier et al. [2005], it is

pointed out that if the connection time between two flights is less than the minimum time

for crews to change aircrafts (normally longer than the minimum ground time), called a

short connection, it may lead the infeasibility to the crew pairing problem. Finally, the

maintenance cost is associated with the manpower and facility cost at the maintenance

stations Sriram and Haghani [2003]. The maintenance cost can also be associated with

the aircraft flying time since the last maintenance. In particular, if the flying time since

the last maintenance is too short, a new maintenance could lead to potential waste of

maintenance opportunities. On the other hand, if the flying time since the last mainte-

nance is too long (near the maximum allowed time), a new maintenance could restrict

the flexibility of the schedule and bring difficulty for necessary reschedule of the rotation

in future. Therefore, we can penalize the maintenance cost if the aircraft flying time is

too short or too long. It is also worthy mentioning some airlines consider AMR as a pure

feasibility problem Klabjan [2005] because the cost of AMR is relatively small comparing

with other planning operations such as FAM and CP, and it is hard to identify an accurate
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penalty cost for AMR.

In this chapter, we only consider the daily check in AMR, and we assume the mainte-

nance is performed during the night. Also, we are solving the planning stage of the aircraft

maintenance routing problem. That is, we will not consider assigning individual aircraft

to flights. Instead, we try to find a generic route satisfying maintenance requirements. We

assume the cost of AMR contains two parts. The first part is the connection cost, which

is negative for through connections and positive for short connections. The second part is

the maintenance cost.

5.2.2 Time-Space Network Representation

The time-space network is widely used in airline planning operations, i.e., FAM, AMR, CP,

etc. The time-space network first appears in Hane et al. [1995] to solve FAM. In a daily

time-space network (shown in Figure 6.1), a time line represents a station, which consists

a series of event nodes occurring sequentially with respect to a specific time at the station.

Each event node represents an event of flight departure or arrival at the station. In order

to allow connection between flights, a minimum ground time is added on the actual flight

arrival time for computing the time of arrival node. In the time-space network, there are

three types of arcs: ground arc, flight arc and overnight (also called wrap-around) arcs.

Ground arcs represent one or more aircrafts staying at the same station for a period of

time. Flight arcs represent flights between airports. Overnight arcs ensure the continuity

of the aircraft routing from the current planning period to the next one. With ground

arcs and overnight arcs, it is possible to preserve the aircraft balance and allow all possible

connections between the arrival flights and the following departure flights at a station.

In Figure 6.1, we show a daily time-space network containing eight flights between two

stations, and the time progresses horizontally from left to right.

Two preprocessing methods, namely node aggregation and island isolation, are pre-

sented in Hane et al. [1995] to reduce the size of time-space network. Node aggregation

allows to combine consecutive arrival nodes and subsequent consecutive departure nodes

and eliminate unnecessary ground arcs. Island isolation can eliminate a ground arc if it is

not necessary to have aircrafts on the ground arc during the specific period. Considering
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Figure 5.1: Time-space network with three stations and eight flights.

the example shown in Figure 6.1. There are 8 flights and hence 16 nodes in the time-space

network. In Figure 6.1b, we show the time-space network after node aggregation, where

only 7 nodes (6 aggregated nodes and one original node) and 9 ground arcs are neces-

sary. In Figure 6.1c, we show the network after island isolation, where 6 ground arcs are

necessary. It has been reported that these preprocessing methods reduce the size of the

time-space network greatly [Hane et al., 1995, Sherali et al., 2006a].

5.3 Rotation-Tour Time-Space Network

In this section, we first present the new rotation-tour network to represent a daily AMR.

We then introduce the new rotation-tour network model (RTNM) to formulate the daily

AMR as a feasibility problem for the sake of exposition. In section 5.4, we will present the

complete optimization model formally.
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5.3.1 Network Modeling of AMR

We propose a novel rotation-tour network model modified on a the traditional time-space

network to represent AMR, which can be constructed as follows. We construct a |D|−day

time-space network G(N,E), where D = {0, 1, . . . , |D|} is a set of possible days between

two consecutive maintenances for an aircraft and |D| is the maximum number of days

allowed between the two consecutive maintenances. We define N as a set of nodes (events)

at every station, where each node on a time line represents an event of flight arrival or

departure at a station (both maintenance and non-maintenance). There are three types

of arcs in the rotation-tour time-space network: ground, flight and maintenance arcs.

Ground arcs and flight arcs are constructed in the same way as in the traditional time-

space network. The maintenance arcs, which are capacitated, start at the end of each day,

at maintenance stations and end at the beginning of the same time lines (time reversible).

Here the end of a day at a station for AMR is defined as the last scheduled arrival time at

the station, and beginning of a day is defined as the first scheduled departure time at the

station. Notice that the beginning/end of a day could be different at different stations.

The duration between the end of a day and the beginning of the next day is normally

longer than the maintenance duration. The capacity of maintenance arc is the maximum

number of aircrafts allowed to receive the service at a maintenance station per day.

There are two main differences between the rotation-tour network and the traditional

time-space network presented in Section 5.2.2. First, there is only a one-day period in the

traditional time-space network for a daily schedule, but a |D|-day duration in the rotation-

tour network for a daily AMR. Second, instead of having overnight arcs at every station

in the traditional network as time-reversible arcs, the maintenance arcs at the mainte-

nance stations are time-reversible, and there is no time-reversible arcs at non-maintenance

stations in the rotation-tour network. Figure 5.2a illustrates an example of daily flight

schedules that contains 6 flights among three stations, JFK, CVG, and MEM. The two

maintenance stations are JFK and MEM. Figure 5.2b depicts the corresponding rotation-

tour network representation such that the maximum time between maintenances is two

days.

It is obvious that in the rotation-tour network, there exists no sequence of connected
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Figure 5.2: (a) An example of daily flight schedule feasible to 2-day maintenance con-
straints; (b) Rotation-tour time-space network constructed from the flight schedules in (a)
and a feasible rotation tour solution to RTNM shown in red arcs; (c) Flight sequences of
3 aircrafts produced from the rotation tour in (b).

flights that violates the maintenance constraints. Because duration of the rotation-tour

network is |D|, it is impossible to have a flight sequence (a path in rotation-tour network)

last more than |D| days without a maintenance arc. That is, the |D|-day maximum main-

tenance constraints are guaranteed in the rotation-tour network. Also, by constructing

|D| maintenance arcs (each arc starts at the end of d ∈ D day) at a maintenance station,

an aircraft can perform maintenance after any feasible flying days. Finally, all the main-

tenance arcs end at the beginning of the maintenance station time lines, so it is possible

to have |D|-day long flight sequences after a maintenance.

Note red eye flights can also be handled using the rotation-tour network. Unlike the

daytime flights, we duplicate a red eye flight |D| − 1 times, each starts on day d and ends

on day d + 1, where d ∈ {1, . . . , |D| − 1}. Because we assume the maintenances are only

performed at night, it is obvious that the maximum red eye flights an aircraft can fly

without a maintenance is |D| − 1. Hence, the maintenance feasibility of the schedule with

red eye flights is guaranteed using the rotation-tour network.
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5.3.2 Formulating Daily AMR as a Feasibility Problem

In this subsection, we illustrate in detail how to formulate AMR using rotation-tour net-

work. In particular, we only consider AMR as a feasibility problem (with no objective

costs) for explanatory purpose.

Denote a set of nodes (events) in the rotation-tour network by N , a set of daily flights

by F . Denote D = {0, 1, . . . , |D|} as a set of possible days between two consecutive

maintenances for an aircraft, and the day index d ∈ D represents the day in a rotation-

tour network. Denote K as the size of the scheduled fleet. Define a set of maintenance

stations as M . The maximum number of maintenances allowed per day at maintenance

station m is denoted by Qm, where m ∈ M . Define the binary indicator α+
fdn such that

α+
fdn = 1 if flight f on day d starts at node n and 0 otherwise. Define the binary indicator

α−fdn such that α−fdn = 1 if flight f on day d ends at node n and 0 otherwise. Similarly,

define the binary indicator β+
mdn such that β+

mdn = 1 if maintenance arc at station m

on day d starts at node n and 0 otherwise; define the binary indicator β−mdn such that

β−mdn = 1 if maintenance arc at station m on day d ends at node n and 0 otherwise. Define

the binary decision variable xfd such that xfd = 1 if flight f is flown on day d in the

rotation-tour network, and 0 otherwise. Define the integer decision variable zmd as the

number of aircrafts in maintenance at station m at the end of day d in the rotation-tour

network. Define the ground arc before node n as l+n , and the ground arc after node n as

l−n . Define the ground arc variable wl as the number of the aircrafts on the ground arc l.
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The proposed RTNM for AMR is given by

(RTNM) min 0 (5.1)

s.t.
∑
d∈D

xfd = 1 ∀ f ∈ F , (5.2)∑
f∈F

∑
d∈D

α+
fdnxfd +

∑
m∈M

∑
d∈D

β+
mdnzmd + wl+n

=
∑
f∈F

∑
d∈D

α−fdnxfd +
∑
m∈M

∑
d∈D

β−mdnzmd + wl−n ∀ n ∈ N , (5.3)

∑
m∈M

∑
d∈D

d · zmd ≤ K (5.4)∑
d∈D

zmd ≤ Qm ∀ m ∈M , (5.5)

xfd ∈ {0, 1} ∀ f ∈ F , ∀d ∈ D, (5.6)

zmd ∈ {0, 1, ..., Qm} ∀ m ∈ M , d ∈ D, (5.7)

w−n , w
+
n ≥ 0 ∀ n ∈ N. (5.8)

The objective function is 0 because we consider a feasibility problem. The assignment

constraints in Eq.(5.2) ensure that each flight is covered once in the solution rotation. The

flow balance constraints in Eq.(5.3) ensure that the number of inbound aircrafts is equal

to the number of outbound aircrafts at each node. The fleet size constraint in Eq.(5.4)

ensures that the total number of aircrafts used is not greater than the size of the fleet.

In particular, we use the day index d of maintenance arcs to calculate the total number

of aircrafts needed. Specifically, if a maintenance arc at the end of day d is used in the

solution, it implies that there exists a sequence of flights (or string) lasting for d days. As

a result, d aircrafts are needed to cover this sequence of flights. Consider the example in

Figure 5.2. The rotation tour B1 → C1 → F1 → MJFK1 → E1 → A2 → D2 → MMEM2

shows that maintenance arcMJFK on day 1 is used, which implies that an aircraft is needed

to service the flights B1, C1, F1 on that day and be maintained at the end of the day. Also

maintenance arc MMEM on day 2 is used, which implies that two aircrafts are needed to

service the flights in last two days (one for the flight E1 on day 1, and the other for the

flights A2, D2 on day 2). From this observation, to serve all daily flight schedules, the fleet

size of 3 is needed and can be verified easily from Figure 5.2c. The capacity constraints
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in Eq.(5.5) ensure that the number of aircrafts being maintained at each station is not

greater than the station’s capacity. It is worthy mentioning that day index d does not effect

the usage rate of maintenance stations. For example, consider the rotation tour shown

in Figure 5.2 b and c. MMEM2 implies an aircraft need a maintenance at MEM after

two days. However because two aircrafts are needed for the flight sequences before the

maintenance at MEM , when the first aircraft perform the maintenance at MEM after two

days, the second aircraft has complete the flights of the first day and will go maintenance

after the next day’s flights. Hence a maintenance is needed at MEM everyday without

effected by day index d.

Note that the solution to RTNM does not provide details of routing sequences. Instead,

the solution provides a set of flights, ground arcs and maintenance arcs. We can use the

Eulerian tour algorithm Chartrand and Oellermann [1993] to construct a generic routing

sequence in polynomial time. It is worthy mentioning although RTNM does not guarantee

the big cycle constraints mathematically, our computational results never show a violation

on the big cycle constraints for RTNM solutions. This might be because of the hub-and-

spoke structure of the airline networks.

5.4 Rotation-Tour Network Optimization Model (RTNOM)

The proposed RTNM described in the previous section is to find a feasible rotation tour

for AMR. However, in the rotation-tour network, the connections between flights might

be implicity, which bring the difficulty to handle the profit/cost of flight connections.

Nevertheless, the main objective of the AMR is to maximize the profit and minimize the

cost. We herein extend the rotation-tour network to represent the profit connections and

short connections. We then present the optimization version of RTNM, namely RTNOM

for daily AMR. At the end of the section, we compare RTNOM with the well-known flight

string model in terms of flexibility, space complexity, and solution quality. Because we are

solving daily AMR, we assume the cost and profit of flight connections do not vary from

day to day .
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5.4.1 Modeling Through Value Connections

In order to capture the profit for every flight connection, we introduce a type of connection

arcs called through value arcs. Through value arcs represent profitable flight connections.

In the optimization version of RTNM, we can maximize the total profit value (i.e., number

of through value arcs used in the solution) over the network in the objective function. If

a through value arc is contained in the maintenance solution, the two connected flights

must be flown by the same aircraft. We incorporate this profit model in RTNM by cre-

ating negative-cost through value arcs for every profitable connection. To allow other

non-profitable connections that might be in the solution, we introduce a set of 0-cost arcs

connecting flights and station time lines, called touching arcs. Formally, given I profitable

connections and A arrival flights and B departure flights involved in these connections,

we construct |I| additional through value arcs, |A| additional touching arcs into the sta-

tion timeline, and |B| additional touching arcs from the station timeline. An example
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Figure 5.3: Construction of through value arcs. (a) A single profitable connection A→ D
between arrival flight A and departure flight D; (b) Two profitable connections A → D
and A → E from arrival flight A; (c) Multiple profitable connections A → C, A → D,
B → C, and B → D between arriving flights A, B and departure flights C, D.

of through value arc construction is shown in Figure 5.3a. Assume that the connection

between flights A and D is a profitable connection, we created a through value arc between

A and D directly (arc N1→ N2). We subsequently created two touching arcs, N1→ N3

and N4 → N2, to allow non-profitable connections (e.g., A → C or B → D). In a max-

imization problem, the through value arc N1 → N2 will be selected in the solution. In

Figure 5.3 b and c, we show that multiple through value arcs are constructed for profitable

connections. Specifically, in Figure 5.3b, flight A has multiple profitable connections with

flight D and E. Therefore, we construct two through value arcs between A and D, and
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A and E. In Figure 5.3c, flights A and B have profitable connections with flights C and

D, and four through value arcs are constructed for all profitable connections. As we can

see, the method for constructing through value arcs can be extended to handle multiple

profitable connections easily.

5.4.2 Modeling Short Connections

We create a set of connection arcs, called penalty arcs, for all short connections at every

station. We try to avoid short connections in the rotation tour by minimizing the total

cost of the penalty connections in the objective function. In particular, for every arrival

flight at a station, we find a set of departure flights that form short connections and create

the corresponding penalty arcs. It is important to note that the cost of penalty arcs should

be proportional to the short time of the connections. Then we find a non-short-connected

departure flight with least turn time, and create a 0-cost connection arc. Two examples

of penalty arc construction are shown in Figure 5.4. In Figure 5.4a, there is only short

connection A → F . By adding 0-cost arc A → E1, we ensure the cost-free connection

between A and other departure flights at E1 or later, because other subsequent connections

can go through this 0-cost arc. In Figure 5.4b, there are four short connections between

arrival flights A and C1 and departure flights F and E1. We create four penalty arcs for

each short connection and two 0-cost arcs A → E2 and C3 → E2 to ensure other cost

free connections from flights A and C3. Formally, given a set of flight schedules with I

short connections and J arrival flights involved in these short connections, we construct |I|

additional arcs for all penalty connections and |J | additional 0-cost arcs for non-penalty

connections.

5.4.3 Formulation of RTNOM

After we extend the rotation-tour network to represent the through value connections and

short connections, the objective of RTNOM is to minimize the total cost of the undesirable

connections. The mathematical formulation of RTNOM is an extension of RTNM’s mixed

integer program in Eqs. (5.1)-(5.8). We first need to introduce the following additional

parameters and variables. We define the set of additional arcs within a day as H (including
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penalty arcs, touching arcs, and connection arcs). The cost for arc h ∈ H is defined as

ch. Note that here we consider only penalty arcs, we shall assume that ch ≥ 0 for penalty

arc, ch = 0 for through value and touching arcs. In future, if the information about the

flight profit margin is given, we can incorporate it into this modeling by setting up a cost

(profit) for every arc ch. The maintenance cost at maintenance station m ∈ M at day

d ∈ D is denoted as cmd. Note the maintenance cost is associated with day index d as we

discussed in Section 5.2.1. The indicator parameter γ+
hdn(γ−hdn) has value 1 if arc h at day

d starts (ends) at node n; and 0 otherwise. The decision variable yhd has value 1 if arc h

at day d is included in the maintenance solution and 0 otherwise. Therefore, we formulate
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RTNOM as follows:

(RTNOM) min
∑
h∈H

∑
d∈D

chyhd +
∑
m∈M

∑
d∈D

cmdzmd (5.9)

s.t.
∑
d∈D

xfd = 1 ∀ f ∈ F , (5.10)∑
f∈F

∑
d∈D

α+
fdnxfd +

∑
m∈M

∑
d∈D

β+
mdnzmd +

∑
h∈H

∑
d∈D

γ+
hdnyhd + wl+n =

∑
f∈F

∑
d∈D

α−fdnxfd +
∑
m∈M

∑
d∈D

β−mdnzmd +
∑
h∈H

∑
d∈D

γ−hdnyhd + wl−n

∀ n ∈ N , (5.11)∑
d∈D

zmd ≤ Qm ∀ m ∈M , (5.12)∑
m∈M

∑
d∈D

d · zmd ≤ K (5.13)

xfd, yhd ∈ {0, 1} ∀ f ∈ F , ∀ d ∈ D, (5.14)

zmd ∈ {0, 1, ..., Qm} ∀ m ∈ M , ∀ d ∈ D, (5.15)

w−n , w
+
n ≥ 0 ∀ n ∈ N. (5.16)

The objective function in Eq.(6.1) minimizes the total penalty cost. The constraints

in Eq.(6.3) are the new balance constraints which include additional arcs. The rest of

constraints are the same with the constraints in RTMN presented in Eqs.(5.1)-(5.8).

5.4.4 Comparison Between FSM and RTNOM

The first flight string model (FSM) for AMR was proposed in Barnhart et al. [1998b]. A

string was defined as a sequence of connected flights that begin and end at maintenance

stations followed by a maintenance at the end. It satisfies the flow balance and is mainte-

nance feasible by following all FAA and carrier-specified maintenance requirements (e.g.,

the maximum number of days allowed between the two consecutive maintenances). The

departure time of a string is the departure time of the first flight in the sequence. The

arrival time of a string is the arrival time of the last flight in the sequence plus the required

maintenance time. The string model formulates AMR as a set partitioning problem with

side constraints as follows.

Define S as a set of feasible strings, where s ∈ S represents a feasible string for an
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aircraft with a cost cs. Define a binary parameter γfs such that γfs = 1 if flight f is

included in string s, and γfs = 0 otherwise. Define a time-space network G(NM , E),

where NM is a set of nodes at maintenance stations representing the start and the end

time of strings, and E is a set of arcs consisting two parts, one part representing all the

string arcs S and the other part representing all the ground arcs L. Define the set of

incoming and outgoing strings at node n as S+
n and S−n . Define the incoming and outgoing

ground arcs at node n as l+n and l−n . Define the integer parameter δs as the number of

times flight sequence s crosses an arbitrary time O known as count time, and define LO as

a set of ground arcs spanning the count time O. Then we define a binary decision variable

us such that us = 1 if string s is selected in the solution, and us = 0 otherwise. Define an

integer variable wl as the number of aircrafts on ground arc l. The MIP formulation of

string model is given by

(FSM) min
∑
s∈S

csus (5.17)

s.t.
∑
s∈S

γfsus = 1 ∀ f ∈ F , (5.18)∑
s∈S+

n

us + wl+n =
∑
s∈S−n

us + wl−n ∀ n ∈ NM , (5.19)

∑
s∈S

δsus +
∑
g∈LO

wl ≤ K, (5.20)

us ∈ {0, 1} ∀ s ∈ S, (5.21)

wl+n , wl−n ≥ 0 ∀ n ∈ N. (5.22)

The objective function in Eq. (5.17) minimizes the cost of the chosen route strings. The

constraints in Eq. (5.18) are the partitioning constraints ensuring that each flight must be

included in exactly one string. The constraints in Eq. (5.19) are flow balance constraints,

which ensure that the flow of strings form a cycle. The constraint in Eq. (5.20) ensures

that the number of strings and ground arcs crossing the count time O does not exceed the

number of aircrafts in the fleet. Because of the flow balance constraints in Eq. (5.19) and

binary constraints in Eq. (5.21), the integrality of the ground arc variables can be relaxed

as denoted in Eq. (5.22).

As we stated before, RTNOM solves daily AMR problem under the assumption that
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the maintenance is only performed during the night at maintenance stations. Also, RT-

NOM only considers the flight connection cost and the maintenance cost. Although the

assumptions of the RTNOM are realistic, FSM is able to handle a broad range of AMR

problems without these assumptions. For example, FSM is able to model the weekly AMR

problem, capture more complex cost structure, and assume that maintenance can be per-

formed at anytime of the day. Nevertheless, in this chapter we assume these assumptions

are true for FSM in order to compare RTNOM with FSM. Specifically, we assume the

string cost cs can be decomposed into the connection cost ch and maintenance cost cms ,

that is, cs =
∑

h∈Hs
ch + cms , where Hs is the set of connections contained in string s,

and cms is cost of the maintenance at the end of the string s. The connection cost can be

either negative for profit (as shown in Figure 5.3) or positive for penalty connections (as

shown in Figure 5.4).

The total number of variables in RTNOM is |D| × (|F |+ |M |+ |H|) + |N |, the number

of constraints is |F | + |N | + |M | + 1, and the number of non-zero entries in the problem

matrix is |D|× (3|F |+2|H|+4|M |)+2|N |. Because O(|N |) = |F |, and O(|H|) = |F |2, we

know the space complexity of RTNOM is O(|D||F |2). By comparing the space complexity

of RTNOM with that of FSM O(2|F |), the proposed RTNOM is more scalable than FSM.

The number of variables in RTNOM is much less than the possible number of strings in

FSM. Although the number of constraints in RTNOM is larger than that in FSM, pre-

processing steps such as such as node aggregation and construction of islands, which are

discussed in Section 5.2, can drastically reduce the number of nodes in RTNM network.

RTNOM not only has less space complexity than FSM, but has a provably equal linear

relaxation as well. To see this, we first note that any solution to the LP relaxation of

FSM has a corresponding solution to the LP relaxation of RTNOM with the same cost.

To construct the corresponding solution of RTNOM from a FSM solution, we need to

define the following notations for string s. Define the binary parameter θsfd = 1 if flight

f is in dth day of string s, and 0 otherwise. Define ρshd = 1 if connection arc h is in

contained in the dth day of string s, and 0 otherwise. Define φsmd = 1 if maintenance at

station m is performed after d days flights in string s, and 0 otherwise. We can construct

a feasible RTNOM solution from a FSM solution using the following relations, i.e., let
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xfd =
∑

s∈S θ
s
fdus, yhd =

∑
s∈S ρ

s
hdus, and zmd =

∑
s∈S φ

s
mdus. It is easy to see that

the constructed LP solution of RTNOM is at least as good as the LP solution of FSM.

In fact, because the cost of string is decomposable, FSM can be view as a Danzig-Wolfe

decomposition of RTNOM.

5.5 Computational Experience

In this section, we report empirical results of the proposed model on four real flight

schedule datasets from a major US carrier. All test problems were solved using an Intel

Dual Core 2.79GHz workstation with 1 GB of RAM memory running on Windows XP

platform. Computational times reported in this section were obtained from the desktop’s

internal timing calculations, which include time used for preprocessing, perturbation, and

postprocessing. All the mathematical modeling and algorithms were implemented in C++

language. All LP and MIP problems were solved using a CPLEX callable library version

10.0. We also compare the performance characteristics of RTNOM with those of FSM,

which was implemented and solved using a column generation approach described in Barn-

hart et al. [1998b] as follows. First we find a feasible initial solution to the master problem

by solving a constrained shortest path problem to generate a list of strings. Then we solve

the LP relaxation of the master problem optimally, and subsequently solve the original IP

master problem using a set of generated strings. Note that in order to get the optimal IP

solution, we should implement a branch-and-price algorithm. However, this procedure is

very time consuming. For the scope of this chapter in which we use FSM to compare the

network representation and mathematical formulation, we only solve the root node of the

branch-and-price tree and report the IP solution at the root node.

5.5.1 Test Instances

The test instances used as benchmark problems in this study are acquired from real flight

schedules of a major US carrier. Here we consider a 4-day maintenance routing problem,

where the maximum number of days between two consecutive maintenances is 4. Note that

the 4-day horizon comes from a realistic estimate of FAA regulations. We shall call our

four test instances as: P1, P2, P3 and P4. The problem size and network characteristics
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are shown in Table 6.1.

Test Instances P1 P2 P3 P4

Size of the Fleet 14 20 39 70
Number of Flight Legs 46 92 172 352
Total Number of Stations 9 17 29 46
Number of Hub Stations 1 1 1 2
Number of Maintenance Stations 4 6 9 18
Number of Non-Maintenance Stations 5 11 20 28

Table 5.1: Characteristics of all four test problems.

5.5.2 Performance Characteristics

Table 5.2 presents the space complexities of RTNOM and FSM models in all four test

instances. In FSM case, All Columns represents the numbers of possible flight sequences

(strings) in the test instances while G-Columns represents the numbers of columns gener-

ated by the column generation approach that we implement. If we want to guarantee that

FSM will eventually solve the test problems to optimality, we need to generate a large

number of strings even with the column generation approach. The Non-0 column repre-

sents the total number of non-zero entries in the mathematical formulations of RTNOM

and FSM. As we can see from the table, the proposed RTNOM is much more compact

and scalable than FSM.

Test RTNOM FSM
Instances Columns Rows Non-0 All Columns G-Columns Rows Non-0

P1 376 168 1,104 109,220 6,103 82 55,590
P2 819 415 2,310 > 1M 73,434 162 939,520
P3 1,679 816 4,798 > 1M 581,536 289 4,994,162
P4 3,205 1,550 9,146 > 1M 1,000,121 590 12,184,268

Table 5.2: Model space complexity.

Table 5.3 presents the performance characteristics of RTNOM & FSM on all four

test instances. The Solution Gap column represents the gaps between the values of the

solutions, provided by RTNOM and FSM, and those of the optimal solutions. Opt means

that the obtained solution is the optimal solution to the test instance, i.e., solution gap

= 0. The CPU Time column records the solution computational time in seconds. The

LP − IP Gap column records the gaps between the optimal LP solution and the optimal
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IP solution, computed as LP − IP Gap = (Opt IP − Opt LP )/Opt IP . In our study,

we were able to optimally solve all four test instances using RTNOM while only two test

instances (P1 and P2 ) were optimally solved using FSM. We also observed that RTNOM

approach was able to obtain optimal (or integer) solutions to test instances in much less

time comparing with FSM, because the size of RTNOM is much smaller than that of FSM,

and RTNOM can be solved by CPLEX solver in one-step. On the other hand, we need

to solve FSM iteratively using column-generation, and the initial solution to the string

model may not be of high-quality (i.e., close to the true optimal solution). For small

test problems (P1 & P2 ), both RTNOM and FSM were able to obtain very good LP

relaxation solutions with no gap to integer solutions. For large test problems, RTNOM

yielded slightly better LP solutions than FSM, because of the tailing-off effect of column

generation when solving FSM.

RTNOM FSM
Test Solution CPU Time LP-IP Solution CPU Time LP-IP

Instance Gap (sec) Gap Gap (sec) Gap

P1 Opt 2 0.000% Opt 41 0.000%
P2 Opt 4 0.000% Opt 65 0.000%
P3 Opt 6 0.901% 4.12% 169 0.978%
P4 Opt 15 0.372% 3.79% 418 0.393%

Table 5.3: Performance characteristics of RTNOM & FSM on all four test instances.

5.6 Conclusion and Future Works

In this chapter, we presented a new rotation-tour network representation of AMR. Based

on this representation, we proposed a new mixed-integer linear programming formulation

for the aircraft maintenance routing problem, namely Rotation-Tour Network Optimization

Model (RTNOM). To assess the performance of RTNOM, we compared its performance

with the flight string model proposed in Barnhart et al. [1998b], Cohn and Barnhart

[2003], which was considered to be the most well-known and state-of-the-art mathematical

programming model for AMR. We tested both models on four real test instances (i.e., fleet

assignments and flight schedules) from a major US carrier. The computational results

showed that the proposed model was very compact and scalable, and was able to find the

optimal solutions in much less time than the flight string model in all four test instances.
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This research provides a compact formulation for AMR, which is beneficial to the

researches on integrated planning problems of AMR and other planning problems such

as FAM and CP. Evaluating the proposed model with the integrated planning problem

is another interesting future research direction. For example, we note that the proposed

RTNOM model can be extended to the integrated fleet assignment and routing problem

(similar to the implementation of flight string model in Barnhart et al. [1998b]). This can

be done by introducing a set of fleets and adding one more dimension (fleet selection) to

the model. The performance of the extended model, compared to the flight string model,

remains to be tested in our future study.
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Chapter 6

A Network Model for Weekly Aircraft Maintenance

Routing Problem and Integration with the Fleet

Assignment Problem

In airline operation planning research, most studies focus on planning a daily schedule, and

only a very few consider a weekly schedule. The weekly problems are normally much harder

than the daily problems because the complexity increases drastically from daily problems

to weekly problems. In this chapter, we present a novel weekly rotation-tour network

representation for the weekly aircraft maintenance routing problem (WAMRP). Based on

this representation, we propose a new network-based mixed-integer linear programming

formulation for the WAMRP, namely weekly rotation-tour network model (WRTNM). The

size of WRTNM only increases linearly with the size of the weekly schedule. We pro-

pose a simple variable fixing heuristic to solve WRTNM efficiently and effectively. To

assess the performance of WRTNM, we test the WRTNM using eight real life test cases.

The computational results show that the proposed model is very compact and scalable,

and is able to find the optimal solutions to the schedule with 5700 flights and 330 air-

crafts, approximately the size of world’s largest airlines fleet, within five minutes. We also

propose an integrated model to solve the weekly fleet assignment problem (WFAP) and

the WAMRP simultaneously. We test the integrated model on nine self-constructed test

cases. The computational results show that the integrated model generates near optimal

solutions to the schedules with 1700 flights, 8 fleets with 120 aircrafts, approximately a

medium-sized airline, in reasonable time. The computational results show that WRTNM

and the integrated model provide very good LP relaxation bounds for all test cases.
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6.1 Introduction

In the last decade, airlines’ profit margin has been continuously pressured by their growing

exposure to a high-cost low-fare environment. The increasing cost in capital, labor, and

fuel, and raising competition from budget carriers has tied the airlines’ profitability to the

current economic downturn. In 2009, five out of nine major passenger airlines in the U.S.

(i.e., US Airways, Continental, United, Delta and American) suffered net losses, where

American airlines alone lost about $1.5 billion. As a whole, these nine airlines collectively

lost $3.4 billion [McCartney, Jan. 28 2010]. How to efficiently utilize their expensive

resources and generate the maximum profit is always the main challenge in the airline

planning operations. This challenge has attracted numerous researchers from industry

and academia, and generated far more than a thousand papers. However, a great majority

of these papers consider a “daily schedule”, where the schedule and the profitability of the

flights are considered to be the same everyday in the week. For the U.S. domestic airlines,

the schedules are normally the same during the weekdays and slightly different during

the weekends because of the demand variation. For international airlines, on the other

hand, the “daily schedule” assumption is no longer valid. For example, Lufthansa airlines

only offer three flights per week from Frankfurt to Anchorage. Apparently, planning based

on “weekly schedule” is very necessary for international airlines. Even for US domestic

airlines, considering “weekly schedule” in the planning stage may increase their revenues.

However, a very few papers in the airline schedule planning literature deal with the “weekly

schedule”. One of the possible reason is that the weekly problems are normally much

harder than the daily problems because the complexity increases drastically from daily

problems to weekly problems. Although the daily models and solution methodologies can

be adopted to the weekly problems by extending the planning time from a single day

to an entire week, the size of the models and the computational efforts usually increase

exponentially when changing from “daily problems” to “weekly problems”. To overcome

this computational obstacles, various mathematical and heuristic decomposition methods

have to be developed to solve the “weekly problems” [Desaulniers et al., 1997a, Barnhart

et al., 1998a, Barnhart and Shenoi, 1998, Ioachim et al., 1999, Sriram and Haghani, 2003,

Belanger et al., 2006, Gronkvist, 2006, Haouari et al., 2011, Weide and D. Ryan, 2010].
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We focus our research on the weekly aircraft maintenance routing problem (WAMRP).

The aircraft maintenance routing problem (AMRP) is to determine the flight routes for

every aircraft such that the maintenance requirements are satisfied. The sizes of the

traditional models for the AMRP usually increase exponentially with the number of flights

in the schedule, and these models needs to be solved iteratively using column generation

[Desaulniers et al., 1997b, Barnhart et al., 1998a, Cordeau et al., 2001, Elf and Kaibel,

2003, Mercier et al., 2005, Mercier and Soumis, 2007] or row generation [Clarke et al., 1997,

Boland et al., 2000] approaches. Recently, Liang et al. [2011] proposed a compact rotation-

tour network model for the daily AMRP, where the size of the model only increases linearly

with the number of flights in the schedule. However, direct extension of this daily AMRP

model to the WAMRP is not obvious, because simply extending the planning time-space

network used in the model from a single day to an entire week does not preserve the critical

properties to model maintenance requirement.

In this chapter, we propose a novel network-flow based model for the WAMRP. This

model is inspired by the network model proposed in Liang et al. [2011] for the daily

AMRP. The advantage of the proposed model is two-fold. First, the size of the proposed

mathematical model only increases linearly with the number of flights to be scheduled.

Therefore, this compact and scalable model can be solved directly by most commercial

mathematical programming softwares even for very large real life schedules. Second, we

notice from our computational experience that the proposed time-space network-flow based

model provides very tight linear programming (LP) relaxation bounds, which can help to

find good integer solutions efficiently. In addition to that, we further extend the proposed

model to solve the integration of the WAMRP with the weekly fleet assignment problem

(WFAP). As the LP relaxation bounds of the integrated model are very tight, we also

propose a simple variable fixing heuristic to efficiently solve the integrated model.

The remainder of the chapter is organized as follows. In Section 2, we give a back-

ground on airline schedule planning, especially on the fleet assignment problem (FAP)

and the AMRP, and present the widely used time-space network structure. In Section

3, we mathematically present the new rotation-tour network model of WAMRP. Section

4 presents the mathematical model to integrate the WFAP and the WAMRP, and the
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solution methodology. Section 5 presents the computational results of WAMRP and inte-

grated problem. Finally, we conclude our work and discuss some future studies in Section

6.

6.2 Background

In this section, we first introduce several major optimization problems in airline schedule

planning. Then we discuss in detail about the AMRP and its integration with AMRP. At

the end of the section, we present the traditional time-space network representation of the

airline network, and its extension to the AMRP.

6.2.1 Airline Planning Operations

Generally, airline planning is consisted of four major optimization problems: flight sched-

ule design, fleet assignment, aircraft maintenance routing, and crew scheduling. The flight

schedule design problem is to decide which flights should be offered based on traffic fore-

casts, airline network analysis and profitability analysis [Soumis et al., 1980, Lohatepanont

and Barnhart, 2004, Phillips et al., 1991]. After a flight schedule is obtained, a variety

of aircraft fleets are assigned to individual flights based on passenger demands, revenues,

and operating cost, so that the total profit is maximized [Subramanian et al., 1994, Hane

et al., 1995, Sherali et al., 2006b, Belanger et al., 2006]. This operation is referred as

the fleet assignment problem (FAP). Given an assigned aircraft fleet, the aircraft main-

tenance routing problem (AMRP) is to determine the rotation of individual aircrafts, so

that adequate maintenance opportunities are provided to each and every aircraft [Clarke

et al., 1997, Barnhart et al., 1998a, Barnhart and Shenoi, 1998, Gopalan and Talluri, 1998,

Talluri, 1998, Boland et al., 2000, Mak and Boland, 2000, Sriram and Haghani, 2003, Elf

and Kaibel, 2003, Sarac et al., 2006, Liang et al., 2011]. The crew scheduling problem is to

determine the best set of crew pairings (referred as the crew pairing problem (CPP)) to

cover all the aircraft fleets [Ryan and Foster, 1981, Anbil et al., 1992, AhmadBeygi et al.,

2009] and to construct personalized monthly schedules (referred as the rostering problem)

for crew members [Gamache and Soumis, 1998, Dawid et al., 2001].
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Traditionally, airlines solve these planning operations separately and sequentially be-

cause of their enormous problem sizes and intractable complexity. Obviously, the sequen-

tial approach usually leads to suboptimal solutions. In the last decade, with the evolution

of the computational capability, researchers have been able to develop better solution ap-

proaches by integrating multiple planning operations and solving them simultaneously.

For example, it has been shown that a substantial saving on the crew cost can be obtained

by solving the crew pairing problem (CPP) with the FAP and/or the AMRP together

[Cordeau et al., 2001, Klabjan et al., 2002, Cohn and Barnhart, 2003, Mercier et al., 2005,

Mercier and Soumis, 2007, Sandhu and Klabjan, 2007, Weide and D. Ryan, 2010]. In Yan

and Tseng [2002], Lohatepanont and Barnhart [2004], Sherali et al. [2010], it has been

shown that significant benefits can be achieved by solving the integration of the schedule

design problem with the FAP simultaneously.

In this chapter, we are especially interested in the AMRP and its integration with the

FAP. In the following subsections, we provide a detailed literature review on the AMRP

and the recent advances of its integration with the FAP.

6.2.2 AMRP

Given a set of flights and a fleet of aircrafts, the AMRP is to determine the flight routes for

every aircraft such that the maintenance requirements, which are set by Federal Aviation

Administration (FAA) and individual airline companies, are satisfied. There are several

types of common aircraft maintenances for US domestic airlines. The most frequent main-

tenance is called daily check, which is needed every two to four days. It includes a walk

around inspection, a checkup on lights, emergency equipment, servicing engine oil, etc.,

and repairs if needed. It normally lasts from one to three hours for a checkup, and several

hours for a repair. In order not to affect the aircraft utilization during the day, a daily

check is usually performed at night [Talluri, 1998, Gopalan and Talluri, 1998, Sriram and

Haghani, 2003]. Only certain airports, called maintenance stations, are capable of per-

forming the maintenance operation. Usually, only daily check is considered in the AMRP,

whereas other types of maintenances, which are much less frequent, are typically consid-

ered in other planning operations. A feasible solution to the AMRP normally contains a
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generic aircraft route during a rolling time horizon. This generic solution does not assign

individual aircraft to flights explicitly. However, in the operational stage, this solution can

serve as a reference for assigning individual aircrafts.

Two common objectives considered in the AMRP include a short connect penalty cost

and a through revenue between connecting flights. A short connect happens when the turn

time between two connecting flights is less than the minimum sit time. The turn time is

the time required to unload an aircraft after its arrival at the gate and to prepare it for

the next departure, and the sit time is the time for a crew to change aircrafts between

two connecting flights. A short connect is undesirable because it may lead to an infeasible

schedule or a high cost for the CPP. A through revenue between two connecting flights

is measured by the number of passengers who stay on the same aircraft between two

connecting flights. It is worth mentioning that some airlines consider the AMRP as a pure

feasibility problem because the cost of AMRP is relatively small comparing with other

planning operations such as FAP and CPP.

The solution methodology for the AMRP can be categorized into three approaches. The

most commonly used approach in the literature is to model the AMRP as a set partitioning

problem with side constraints, which was first proposed in Desaulniers et al. [1997b],

Barnhart et al. [1998a]. This set-partitioning based model has been further modified and

extended in Cordeau et al. [2001], Elf and Kaibel [2003], Mercier et al. [2005], Mercier and

Soumis [2007]. In this approach, the decision variables represent the maintenance feasible

flight sequences between two maintenance stations with a maintenance at the end. Various

column generation and branch-and-price solution approaches were developed to solve this

type of models. The second approach models the AMRP as an Euler tour problem or

asymmetric traveling salesman problem with side constraints [Clarke et al., 1997, Gopalan

and Talluri, 1998, Talluri, 1998, Boland et al., 2000]. The last and most recent approach

models the AMRP as a network flow problem [Liang et al., 2011]. The network model has

been shown to be very compact and scalable as it is able to solve the real life daily AMRP

in a reasonable time.



120

6.2.3 Integration of the FAP and the AMRP

The integrated the FAP and the AMRP has continuously attracted many researchers to

develop effective models and efficient solution approaches. The traditional FAP usually

does not consider the feasibility of aircraft maintenance schedule. Therefore, when solving

the FAP followed by the AMRP sequentially, the solution to the FAP might not be main-

tenance feasible for the following AMRP. Barnhart et al. [1998a] was the first to solve the

integrated FAP and AMRP using a set-partitioning based model as mentioned previously.

Ioachim et al. [1999] solve the weekly integrated problem with schedule synchronization

constraints, which require the departure times for flights with same identifier (flight num-

ber) to be the same. However, no maintenances are considered in the model. A column

generation method is developed to solve the model. A set of long-haul schedules with about

100 flights are solved within reasonable time. Recently, Haouari et al. [2009] propose a

multi-commodity network flow model for a simplified version of the integrated problem,

in which aircraft maintenances are not considered because of the special practice of the

airline company. The computational results show that this method is able to generate

near-optimal solutions within three minutes for all the schedules from TunisAir. Note this

proposed model cannot be extended to the standard AMRP easily without introducing

new variables and constraints. Haouari et al. [2011] propose two models, an assignment

based and a set-partitioning based, to solve the same simplified version of the integrated

problem with no maintenance considerations. A Bender’s decomposition method is pro-

posed to solve the assignment-based model, and a column generation method to solve the

set-partitioning model. Computational results show that the branch-and-price approach

performs better than Benders decomposition approach and delivers good solutions to real

life test cases. In Mansour et al. [2011], the same group solves the integrated FAP and

AMRP with the options of chartered aircrafts and flight retiming, and no maintenance

are considered in the model. Two sequential heuristics are designed for the problem. The

computational results demonstrate that the solution methods improve the current solu-

tions used in TunisAir. Papadakos [2009] proposes an integrated model to solve the FAP,

the AMRP, and the CPP simultaneously. An enhanced Benders decomposition method is

combined with a column generation approach to solve the integrated model. Solutions to
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realistic data sets are obtained and compared with the solutions using other methods from

the literature. It is shown that the integrated approach reduces the cost significantly.

Note that most of the above papers for the integrated problem do not consider main-

tenance requirements explicitly in their model except Barnhart et al. [1998a], Papadakos

[2009]. Without considering maintenance requirement, a network flow based model can

be used to obtain a set of connecting flights for aircrafts, and no knowledge of the flight

routes are necessary. On the other hand, considering maintenance requirement explicitly

poses significant difficulties in both modeling and solution approaches because the flight

routes information has to be built into the model.

6.2.4 Time-Space Network

The time-space network is widely used to model the airline planning operations including

the FAP, the AMRP, the CPP, etc. The time-space network first appears in Hane et al.

[1995] to solve FAP. In a daily time-space network (shown in Figure 6.1a), a time line

represents a station, which consists a series of event nodes representing flight departure

and/or arrival at the station. In order to allow connection between flights, a minimum

 

a. A time-space network of 2 stations and 8 flights. 
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b. The time-space network after node aggregation and island isolation. 
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c. The rotation tour time-space network for 2-day aircraft maintenance routing problem, where airport A is a maintenance station. 

Figure 6.1: Time-space network with three stations and eight flights for FAP and Rotation-
tour network for 2-day AMRP.

ground time is added on the actual flight arrival time for computing the time of arrival
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node. In the time-space network, there are three types of arcs: ground arc, flight arc and

overnight arcs. Ground arcs represent one or more aircrafts staying at the same station

for a period of time. Flight arcs represent flights between airports. Overnight arcs ensure

the continuity of the aircraft routing from the current planning period to the next one.

With ground arcs and overnight arcs, it is possible to preserve the aircraft balance and

allow all possible connections between the arrival flights and the following departure flights

at a station. In Figure 6.1a, we show a daily time-space network containing eight flights

between two stations, and the time progresses horizontally from left to right.

Two preprocessing methods, namely node aggregation and island isolation, proposed in

Hane et al. [1995] can be used to reduce the size of time-space network. Node aggregation

allows the combination of consecutive arrival nodes and subsequent consecutive departure

nodes and the elimination of the unnecessary ground arcs. Island isolation can eliminate

a ground arc if it is not necessary to have aircrafts on the ground arc during the specific

period. Considering the example shown in Figure 6.1. There are 8 flights and hence

16 nodes in the time-space network. In Figure 6.1b, we show the network after node

aggregation and island isolation, where only 6 ground arcs and 6 nodes are necessary.

Liang et al. [2011] propose a modified time-space network, namely rotation-tour net-

work, to model the daily AMRP. They duplicate the daily time-space network for D times,

where D is the maximal days allowed between two consecutive maintenances. They also re-

move all the overnight arcs in the traditional time-space, and create a set of time-reversible

maintenance arcs to represent maintenance opportunities. The new maintenance arcs start

at the end of every day in a maintenance station and end at the beginning of the same

maintenance station time line. It is obvious that any flight sequences in the rotation-tour

network cannot violate the D-day maintenance constraints. In Figure 6.1c, we show a

2-day rotation-tour network for the daily AMRP.

Liang et al. [2011] also propose two set of additional arcs to represent the undesired

short connects and profitable connects with through revenue in the time-space network.

In Figure 6.2a, we show how to model the short connects in the time-space network. For

any short connect between an arrival flight and a departure flight, we construct a penalty

arc to represent the short connect. Consider the example shown in Figure 6.2a, we have
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a. To model two short connects between flights fa, fb, and flights fa, fc, we construct two penalty 

arcs hab, hac, and a zero cost arc hao. We assume the minimum turn time is 30 minutes and 

minimum sit time is 45 minutes. 

b. To model the through connect between flights fa and fb, we construct a through arc hab and 

two zero cost arcs ha and hb. 
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Figure 6.2: Construction of penalty arcs for short connects and through arcs for through
revenue connects. For illustration purpose, we assume that the end time of a flight arc
is equal to the arrival time of the flight in this figure to avoid confusion. However in a
general time-space network, the end time of a flight arc is normally set to the arrival time
of the flight plus the minimum turn time.

two short connects between flights fa, fb, and flights fa, fc. Instead of connecting the

arrival flight fa with the ground arc directly, we let the penalty arcs hab and hac connect

the arrival flight with the ground arc. The end time of a penalty arc hab (or hac) is

the departure time of the short connect flight fb (or fc). In order to allow non-penalty

connections between the arrival flight fa and the later departure flights, we also create a

zero cost arc hao connecting the arrival flight fa with the ground arc. The end time of the

zero cost arc hao equals to the arrival time of the flight fa plus the minimum sit time.

In Figure 6.2b, we show how to model the through revenue connects. For any through

connect, we build a through arc connecting the arrival flight with the departure flight.

Consider the example shown in Figure 6.2b, we have a through connect between flights fa

and fb. Instead of connecting fa and fb with the ground arc, we create a through arc hab

connecting flights fa and fb. The profit of through arc hab is the number of passengers

with the itinerary fa followed by fb. In order to allow non-through connects between fa/fb

and other flights, we create a zero cost arc ha/hb to connect the fa/fb and the ground arc.
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6.3 Weekly Rotation-Tour Time-Space Network Model

Given a weekly schedule containing F flights, the WAMRP is to find a generic cyclic

aircraft route so that the overall penalty cost or (negative) through revenue is minimized.

The number of aircrafts required to implement the solution route has to be less than or

equal to the fleet size K. Additionally, an aircraft needs to undergo a maintenance every

D day or less, and maintenances can only be performed at the set of maintenance stations

denoted by M . There is a maintenance capacity Qmp on p day of the week at maintenance

station m, where p ∈ P = {1, 2, . . . , 7} and m ∈ M . Note the maintenance capacity of a

station may vary on different day of the week (e.g., weekdays versus weekends).

In this section, we first present the weekly rotation-tour network to represent the

WAMRP. We then introduce the new weekly rotation-tour network model (WRTNM) to

formulate the WAMRP.

6.3.1 Construction of Weekly Rotation-Tour Network

The weekly rotation-tour network (WRTN) for the WAMRP can be constructed as follows

(as shown in Figure 6.3). We first construct seven D-day time-space networks. Each D-

day time-space network starts at day p and ends at day p+D− 1, where p ∈ {1, 2, . . . , 7}.

If p + D − 1 is greater than 7, we divide it by 7 and take the remainder to ensure the

day index is smaller than or equal to 7. Without loss of generality, we assume all the day

indexes calculated in the remaining of the chapter are smaller or equal to 7 by using the

modular operation. We denote the D-day time-space network starting at day p, where

p ∈ {1, 2, . . . , 7}, as Sp network. For example, S6 network, where D = 3, is the time-space

network containing Saturday, Sunday, and Monday.

We define N as a set of nodes in the seven D-day time-space networks, where node

n ∈ N represents a flight departure or arrival at a station. There are three types of arcs in

any Sp network: flight, ground, and connection arcs. The flight arcs and ground arcs are

constructed in the same way as in the traditional time-space network. The connection arcs

are constructed in the same way as in Liang et al. [2011] as discussed previously in Section

6.2.4 and Figure 6.2. It is noted that we need to construct D flight arcs, each in one of Sp
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network where p ∈ {i, . . . , i + D − 1}, for every flight f departing on day i + D − 1. For

example, we need to construct 3 flight arcs for a flight departing on Saturday in S4, S5,

and S6 network respectively.

We also create a set of capacitated maintenance arcs connecting seven Sp networks.

Specifically, a maintenance arc starts at the end of day i at maintenance station m in Sp

network, where i ∈ {p, . . . , p+D− 1}, and ends at the beginning time line of maintenance

station m in Si+1 network. For example, as shown in Figure 6.3, for S2 network (here

D = 3) spanning on Tuesday, Wednesday, and Thursday, we create three maintenance

arcs leaving this time-space network at the end of Tuesday, Wednesday, and Thursday.

The maintenance arc that starts at the end of Tuesday ends at the beginning of S3,

and the maintenance arc that starts at the end of Wednesday ends at the beginning of

S4. It is important to note that “the end of day” at a station is defined as the last

departure/arrival event at the station, and “the beginning of a day” is defined as the

first scheduled arrival/departure time at the station. The duration between the end of a

day and the beginning of the next day is normally longer than the maintenance duration.

Other operational concerns such as red eye flights can be handled in a similar way as in

Liang et al. [2011].

By constructing the WRTN, it is guaranteed that no aircraft rotations violate the

maximum D-day maintenance constraints. This is because without going through any

maintenance arcs, an aircraft only stays in a single Sp network in WRTN, which lasts for

D days. In order to build a flight route lasting more than D days, a maintenance arc has

to be inserted in the route. Also, it is noticed that an aircraft can fly at most D days after

a maintenance, because in the WRTN an aircraft will enter a new Sp network after going

through any maintenance arcs. For any maintenance station of a Sp network, there are D

outgoing maintenance arcs, each at the end of day i ∈ {p, . . . , p + D − 1}. Therefore, an

aircraft can perform a maintenance after d ∈ {1, ..., D} days flying, and no maintenance

opportunities are ignored in the network.

6.3.2 Mathematical Modeling for WAMRP

To facilitate the discussion of our model, we first list all the notations as follows.
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Sets, Elements, and Constants

D: the maximum days between two consecutive maintenances.

p: ∈ {1, 2, . . . , 7} represent the day of week.

Sp: the D-day time-space network starts on day p.

N : the set of nodes (events) in the WRTN, indexed by n.

Np: the set of node in Sp network, where p ∈ {1, 2, . . . , 7}.

F : the set of flights in the weekly schedule, indexed by f .

Fp: the set of flight arcs in Sp network. It is worth mentioning that Fp are the arcs in network,

whereas F are the flights in reality. Therefore,
∑

p∈{1,...,7} |Fp| = D× |F |, because each flight

appears D times in the weekly network.

H: the set of connect arcs in WRTN (either for penalty connects or for through revenue connects),

indexed by h.

Hp: the set of connect arcs in Sp network.

ch: the cost of connect arc h, where h ∈ H.

M : the set of maintenance stations, indexed by m.

G: the set of maintenance arcs in WRTN, indexed by g.

gmpd: the maintenance arc at station m at the end of day p after d days flying, where m ∈ M ,

p ∈ {1, . . . , 7}, and d ∈ D. Notice that index (mpd) uniquely define a maintenance arc in the

WRTN.

Qmp: the maintenance capacity at maintenance station m on day p.

L: the set of ground arcs in the WRTN, indexed by l.

l+n : the ground arc before node n.

l−n : the ground arc after node n.

K: the size of the aircraft fleet.

O: the arbitrary count time for counting the number of aircrafts.

FO: the set of flight arcs passing the count time O in WRTN.

HO: the set of connect arcs passing the count time O in WRTN.

LO: the set of ground arcs passing the count time O in WRTN.

GO: the set of maintenance arcs passing the count time O in WRTN.

Indication Parameters
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α+
fpn: the binary indicator such that α+

fpn = 1 if flight f in Sp network starts at node n, and 0

otherwise.

α−fpn: the binary indicator such that α−fpn = 1 if flight f in Sp network ends at node n, and 0

otherwise.

γ+
hpn: the binary indicator such that γ+

hpn = 1 if arc h in Sp network starts at node n, and 0

otherwise.

γ−hpn: the binary indicator such that γ−hpn = 1 if arc h in Sp network ends at node n, and 0 otherwise.

β+
mpdn: the binary indicator such that β+

mpdn = 1 if maintenance arc gmpd starts at node n, and 0

otherwise.

β−mpdn: the binary indicator such that β−mpdn = 1 if maintenance arc gmpd ends at node n; and 0

otherwise.

Variables

xfp: the binary variable such that xfp = 1 if flight f is flown in Sp network, and 0 otherwise.

yhp: the binary variable such that yhp = 1 if connect arc h is in Sp network, and 0 otherwise.

zmpd: the integer variable representing the number of aircrafts on maintenance arc gmpd in the

weekly network.

wl: the integer variable representing the number of aircrafts on ground arc l.
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Given the above notations, a WRTNM for the WAMRP is presented as follows.

(WRTNM) min
∑
h∈Hp

∑
p∈{1,...,7}

chyhp (6.1)

s.t.
∑

p:f∈Fp

xfp = 1 ∀ f ∈ F , (6.2)

∑
p:f∈Fp

∑
f∈F

α+
fpnxfp +

∑
m∈M

∑
d∈D

∑
p∈{1,...,7}

β+
mdpnzmpd

+
∑

p:h∈Hp

∑
h∈H

γ+
hpnyhp + wl+n =

∑
p:f∈Fp

∑
f∈F

α−fpnxfp

+
∑
m∈M

∑
d∈D

∑
p∈{1,...,7}

β−mdpnzmpd +
∑

p:h∈Hp

∑
h∈H

γ−hpnyhp + wl−n

∀ n ∈ N , (6.3)∑
d∈D

zmpd ≤ Qmp ∀ m ∈M , p ∈ {1, . . . , 7}, (6.4)∑
fp∈FO

xfp +
∑

gmpd∈GO

zmpd +
∑
l∈LO

wl ≤ K (6.5)

xfp, yhp ∈ {0, 1} ∀ p ∈ {1, . . . , 7}, ∀ f ∈ Fp, ∀h ∈ Hp, (6.6)

zmpd ∈ {0, 1, ..., Qmp} ∀ m ∈ M , ∀ p ∈ {1, . . . , 7}, ∀d ∈ D, (6.7)

wl ∈ Z+ ∀ l ∈ L. (6.8)

The objective function in Eq.(6.1) minimizes the total penalty cost. The assignment

constraints in Eq.(6.2) ensure that each flight is covered once in the rotation solution.

The flow balance constraints in Eq.(6.3) ensure that the number of inbound aircrafts

is equal to the number of outbound aircrafts at each node. The capacity constraints

in Eq.(6.4) ensure that the number of aircrafts being maintained at each station is not

greater than the station’s capacity. The fleet size constraint in Eq.(6.5) ensures that the

total number of aircrafts used is not greater than the size of the fleet. The constraints in

Eqs.(6.6)-(6.8) are the binary, integrality constraints for variables. It is interesting to note

that the integrality constraints in Eqs.(6.7)-(6.8) can be relaxed because of flow balance

constraints in Eq.(6.3) and binary constraints in Eq.(6.6). The total number of variables

and constraints in WRTNM is O(D|F |), and the number of non-zero entries in the problem

matrix is O(D|F |2).
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Note that the solution to WRTNM does not provide details of routing sequences.

Instead, the solution provides a set of connecting flight arcs, ground arcs, connection

arcs, and maintenance arcs. We can use a general Eulerian tour algorithm [Chartrand and

Oellermann, 1993] to construct generic routing sequences in polynomial time. To construct

an Eulerian tour, we first convert the set of connecting arcs in the solution into a simple

digraph. In particular, we replace a solution arc with value π by π parallel arcs, each with

capacity one. Then we use the Euler tour algorithm to find a rotation, which covers all the

arcs in the graph. We can also extract the individual flight strings from each Sp network

by traveling the flight arcs, ground arcs, and connection arcs in that Sp network.

6.3.3 Variable Fixing Heuristic

Based on our preliminary computational experiment, the integrality gaps between optimal

LP relaxations and integer solutions of the WRTNM are less than 0.1%. This results

matches the observations from most time-space network based model from airline planning

problems, e.g., [Hane et al., 1995, Barnhart et al., 1998a, Sherali et al., 2006b]. Also,

the number of cuts added by CPLEX at the root node of the branch-and-bound tree

[ILOG, 2002] is quite small comparing the problem matrix size, and these cuts improve

the objective value insignificantly. The strong LP relaxation of WRTNM encourages us to

apply a simple variable fixing heuristic to simplify the problem and obtain good solutions

in a timely fashion.

Here, we propose an iterative heuristic to fix the variables based on their values in the

LP solution. Given a fractional LP solution, we first fix all the variables whose values are

equal to 1. Because of the constraints in Eq.(6.2), we fix the corresponding non-selected

variables to 0. Then we resolve the simplified MIP using CPLEX solver. If no integer

solution is obtained within a limited time, we then solve the LP relaxation of the model

and fix the variables whose value are greater than 1 − σ, where σ is the step size of the

variable fixing heuristic. It is important to note that by rounding up multiple fractional

variables, the problem might become infeasible. When an infeasibility is detected, we

reduce the σ by half and the algorithm continues. The detailed algorithm is shown in

Figure 6.4.
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Variable Fixing Heuristic
Input: WRTNM problem matrix;

Heuristic step length σ;
Predefined IP solution time limit τ ;

0 K = 0;
1 Solve the LP relaxation of WRTNM;
2 WHILE Current LP solution is fractional

3 Select a set of variables X̂ such that xfp ≥ 1−K × σ for all xfp ∈ X̂ ;
4 K = K + 1;

5 Set lower bound of xfp to 1, ∀xfp ∈ X̂;

6 Set upper bound of xfp̄ to 0, ∀xfp̄ such that xfp ∈ X̂, p̄ 6= p;
7 Solve the IP of restricted WRTNM;
8 If feasible solution of restricted WRTNM is obtained within time τ ;
9 If optimal solution of restricted WRTNM is obtained;
10 Select the best integer solutions available, algorithm ends;
11 Else If feasible but not optimal solution is obtained;
12 Record the solution if it is better than the current best solution;
13 End If;
14 End If;
15 Solve the LP relaxation of the restricted WRTNM;
16 If the restricted WRTNM is infeasible;

17 Restore lower bounds for xfp ∈ X̂ and upper bounds for xfp̄ such that xfp ∈ X̂, p̄ 6= p;
18 σ = σ/2;
19 K = K − 1;
20 End If
21 End While
22 Select the best integer solutions available, algorithm ends;

Figure 6.4: Pseudo-code of variable fixing heuristic
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6.4 Integrated WFAP with WAMRP

It has been pointed out in Section 6.2.2 that the results of FAP do not guarantee the

feasibility of the AMRP, because the maintenance requirements are not considered in

FAP. Therefore, it is necessary to study the integrated WFAP with WAMRP. The network

representation of WRTNM can be extended to the integrated WFAP and WAMRP. The

objective of WFAP is to assign the flights to aircrafts of several fleets so that the total

profit is maximized. To model the integrated WFAP with WAMRP, we introduce a new

set of available fleets I, which increases the dimensionality of variables with fleet index.

In other words, we create a WRTN for each of the fleet i ∈ I. To facilitate the discussion,

we define the following additional notations.

Sets, Elements, and Constants

I: the set of fleets, indexed by i.

Di: the maximum days between maintenances for fleet i.

Si
p: the D-day time-space network starts on day p for fleet i.

N i: the set of nodes (events) in the WRTN for fleet i, indexed by n.

N i
p: the set of node in Si

p network, where p ∈ {1, 2, . . . , 7}.

F i
p: the set of flight arcs in Si

p network.

rif : the revenue of assigning flight f to fleet i.

M i: the set of maintenance stations for fleet i, indexed by m.

Gi: the set of maintenance arcs in WRTN for fleet i, indexed by g.

gimpd: as the maintenance arc at station m at the end of day p after d days flying for fleet i.

Qi
mp: the maintenance capacity at station m on day p for fleet i.

Li: the set of ground arcs in the WRTN for fleet i, indexed by l.

Ki: the size of the aircraft fleet i.

F i
O: the set of flight arcs passing the count time O in WRTN for fleet i.

Li
O: the set of ground arcs passing the count time O in WRTN for fleet i.

Gi
O: the set of maintenance arcs passing the count time O in WRTN for fleet i.

Indication Parameters

αi+
fpn: is 1 if flight f in Si

p network starts at node n for fleet i; and 0 otherwise.
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αi−
fpn: is 1 if flight f in Si

p network ends at node n for fleet i; and 0 otherwise.

βi+
mpdn: is 1 if maintenance arc gimpd starts at node n for fleet i; and 0 otherwise.

βi−
mpdn: is 1 if maintenance arc gimpd ends at node n for fleet i; and 0 otherwise.

Variables

xifp: is a binary variable such that xifp = 1 if flight f is flown in Si
p network, and 0 otherwise.

zimpd: is an integer variable representing the number of aircrafts on maintenance arc gimpd in the

WRTN for fleet i.

wi
l is an integer variable representing the number of aircrafts on ground arc l for fleet i.

The MIP formulation of WFAP and WAMRP using WRTNM is given by

max
∑
i∈I

∑
p:f∈F i

p

∑
f∈F

rifx
i
fp (6.9)

s.t.
∑
i∈I

∑
p:f∈F i

p

xifp = 1 ∀ f ∈ F , (6.10)

∑
p:f∈F i

p

∑
f∈F

αi+fpnx
i
fp +

∑
m∈M i

∑
d∈Di

∑
p∈{1,...,7}

βi+mdpnz
i
mpd + wi

l+n
=

∑
p:f∈F i

p

∑
f∈F

αi−fpnx
i
fp +

∑
m∈M i

∑
d∈Di

∑
p∈{1,...,7}

βi−mdpnz
i
mpd + wi

l−n

∀ n ∈ N i, ∀i ∈ I, (6.11)∑
d∈Di

zimpd ≤ Qimp ∀ m ∈M i, p ∈ {1, . . . , 7}, ∀i ∈ I, (6.12)

∑
fp∈F i

O

xifp +
∑

gimpd∈G
i
O

zimpd +
∑
l∈Li

O

wil ≤ Ki ∀i ∈ I, (6.13)

xifp ∈ {0, 1} ∀ f ∈ F ip, ∀ p ∈ {1, . . . , 7}, ∀i ∈ I, (6.14)

zimpd ∈ {0, 1, ..., Qimp} ∀ m ∈ M i, ∀ p ∈ {1, . . . , 7},

∀d ∈ Di,∀i ∈ I, (6.15)

wil ∈ Z+ ∀ l ∈ L, ∀i ∈ I. (6.16)

The objective function in Eq. (6.9) maximize the total profit of all the flights. Here, we

do not consider the cost of WAMRP but only the profit rif of the flights, because the cost

of WAMRP is negligible comparing to the cost of WFAP. However, the connection costs

and maintenance costs can be included in the integrated model easily as in WRTNM. The
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constraints in Eq. (6.10) ensure each flight is assigned to a single fleet. The constraints

in Eq. (6.11) are the flow balance constraints, which ensure the flow balance within the

WRTN of any fleet. The constraints in Eq. (6.12) ensure the number of maintenance

performed on day p, at maintenance station m, for fleet i does not exceed the maintenance

capacity. The constraints in Eq. (6.13) are the plan count constraints for any fleet i.

Because the size of the integrated model is compact, we use commercial solvers to solve

the integrated model directly. If no satisfied solution is obtained in reasonable time, we

use variable fixing heuristic presented in Section 6.3.3 to obtain the solution in a timely

fashion.

6.5 Computational Results

In this section, we report empirical results of the proposed models. All test problems

were solved using an Intel Dual Core 2.79GHz workstation with 3 GB of memory running

on Windows XP platform. No parallel processes are implemented. Computational times

reported in this section were obtained from the desktop’s internal timing calculations,

which include time used for preprocessing, perturbation, and postprocessing. All the

mathematical modeling and algorithms were implemented in C++ language. All LP and

MIP problems were solved using a CPLEX callable library version 10.0. We stop the

solution algorithm if the optimality gap of a solution is less than 0.05%.

6.5.1 Computational Experience for WAMRP

The test instances used to benchmark WRTNM in this study are constructed based on

the real life operational aircraft schedule from a major US airline, which are publicly

accessible on the airline websites. In particular, we construct total eight test cases, in

which the first six test cases are constructed from six different fleets respectively, and the

last two are constructed by combining flights from multiple fleets. To construct the first

six test cases, we first select six representable fleets, and extract the corresponding airline

flights within a particular week of the published schedule. Because what we obtained is an

operational schedule, it does not guarantee the cyclic constraints geographically, i.e., the

number of incoming flights to an airport is not equal to the number of outgoing flights in
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a particular week. In order to ensure the feasibility of WAMRP, we develop an Eulerian

tour algorithm [Chartrand and Oellermann, 1993] to obtain the maximal set of flights,

which are maintenance feasible. We obtain the fleet size information from the airline

website. Since we have no information on maintenance stations, we assume an airport is

a maintenance station if the number of flights departure/arrival on that airport is greater

than a threshold. We minimize the total number of maintenance stations by increasing this

threshold and maintaining the feasibility of the schedule at the same time. For example,

for Boeing 757-200 flights, we assume an airport is a maintenance station if the pairs of

in/out flights at the airport are greater than 30.

We combine the schedules of two fleets AIR-320 and 737-800 to create a larger test

case SIM-001, and combine the schedules of three fleets 757-200, AIR-320, and 737-800

to create the largest test case SIM-002 just for testing purpose. It is interesting to note

that the last test case SIM-002 is about the size of the world’s largest fleet, Southwest

Airline Boeing 737-700 (350 aircrafts). For all the test cases, we assume the maximum

days between maintenance are 4, which is a realistic estimation of the airline regulation.

The detailed information of eight test cases are shown in Table 6.1.

Test Cases Flights Fleet Size Redeyes Airports Maint Station

757-300 352 22 14 19 15

737-500 680 40 0 38 19

CRJ-700 1,000 56 0 47 22

757-200 1,428 88 54 31 6

AIR-320 2,110 123 39 65 34

737-800 2,240 122 54 84 12

SIM-001 4,372 245 93 109 41

SIM-002 5,778 333 157 111 44

Table 6.1: Characteristics of eight test cases.

Table 6.2 presents the solution information of WRTNM with objective of minimizing

the total penalty cost of short connects. S-Connect records the number of all possible

short connects in the schedule. In our computation, we assume the minimum turn time

for aircraft is 30 minutes and minimum sit time for crew is 45 minutes. We set the short
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connect cost to be the short time (short time = min(minimum sit time - real connection

time, 0)) of the connect. Cols and Cols-P represent the number of variables before and

after preprocessing. Similarly, Rows with Row-P, and NonO with NonO-P represent

the numbers of constraints, and non-zero entities in the problem matrix before and after

preprocessing respectively. LP represents the solution values of LP relaxation of WRTNM.

IP represents the integer solution to WRTNM. Gap represents the LP-IP gap of the model.

Time records the total solution time of the problem. Cut records the number of cuts added

by CPLEX solver when solving the model. Nodes records the number of branch-and-bound

nodes CPLEX solver explored to obtain the solution.

Test Cases S-Connect Cols Cols-P Rows Rows-P Non0 Non0-P LP IP Gap(%) Time (sec) Cuts Nodes

757-300 21 5,613 3,737 4,243 2,367 13,343 9,591 0 0* 0 3 4 1

737-500 148 10,810 7,786 7,815 4,791 26,006 19,958 102 102* 0 7 1 1

CRJ-700 472 15,003 11,471 9,983 6,451 36,739 29,675 1,789 1,789* 0 12 17 1

757-200 412 18,777 12,509 12,995 6,727 45,183 32,647 25 25* 0 15 20 1

AIR-320 789 30,123 21,811 20,215 11,903 73,411 56,787 216 216* 0 40 7 1

737-800 656 31,011 20,971 22,061 12,021 74,221 54,141 82 82* 0 45 18 1

SIM-001 1,667 59,150 41,186 39,372 21,408 144,040 108,112 105 112* 6.250 309 39 1

SIM-002 3,521 82,666 59,746 50,331 27,411 205,475 159,635 64 64* 0 422 7 1

Table 6.2: Performance characteristics of WRTNM when minimizing the total penalty cost
from short connects. (*) denotes the optimal solutions.

We can see from Table 6.2 that WRTNM produces optimal solutions to all test cases

within about seven minutes. Also, it is important to note that the LP bounds provided by

WRTNM are very tight. Zero LP-IP gaps are obtained for seven out of eight test cases.

The tight LP bounds again help to find optimal solutions quickly. The number of cuts

generated by CPLEX to WRTNM is very minimum comparing to the problem sizes. Also,

the optimal integer solutions are found at the root node of the CPLEX branch-and-bound

trees for all test cases. Finally, the preprocessing procedure reduces the problem sizes by

about 1/3 for all the test cases.

Table 6.3 presents the solution information of WRTNM with objective of maximizing

the total profit from through revenue. Similar information is recorded in Table 6.3 as in

Table 6.2. Particularly, we record the number of possible through connects in the second

column of Table 6.3. Since we do not have real life through connects information, we
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assume a through connect only occurs on the airline hubs for one stop service with spoke-

hub-spoke structure. In particular, we build a through connect between any arrival flight

and departure flight if the connection time between them is between 45 minutes to 3 hours.

We randomly generate a through value for any through connect such that the accumulative

through value from/to any flight does not exceed the aircraft’s capacity.

Test Cases T-Connect Cols Cols-P Rows Rows-P Non0 Non0-P LP IP Gap(%) Time (sec) Cuts Nodes

757-300 0 5,609 3,605 4,323 2,319 13,251 9,243 0 0* 0 2 11 1

737-500 1,222 15,554 11,946 8,263 4,655 44,678 37,462 1,755 1,755* 0 25 10 1

CRJ-700 1,496 20,583 15,315 11,467 6,199 57,979 47,443 2,087 2,087* 0 14 13 1

757-200 4,099 34,314 26,379 13,995 6,059 107,134 91,262 4,724 4,724* 0 40 11 1

AIR-320 5,260 49,856 38,572 22,279 10,995 151,436 128,868 5,921 5,921* 0 189 8 1

737-800 10,167 72,570 60,478 23,573 11,481 240,126 215,942 6,814 6,813* 0.015 89 58 1

SIM-001 10,647 98,979 74,984 43,528 19,536 301,795 253,811 9,615 9,608 0.050 508 40 1

SIM-002 8,243 108,030 74,922 56,855 23,747 307,956 241,740 8,153 8,153* 0 1,465 10 1

Table 6.3: Performance characteristics of WRTNM when maximizing the total revenue
from through connects. (*) denotes the optimal solutions.

As we can see from Table 6.3, we obtain optimal solutions to 6 out of 8 test cases, except

SIM-001 within 0.05% optimal. For the first 6 test cases, we are able to obtain optimal

solutions in less than 3 minutes computational time. Similar with the results shown in

Table 6.2, the LP bounds provided by WRTNM are very tight (within 0.05% optimal).

The cuts added by CPLEX at the root node of the branch-and-bound tree is minimal and

do not improve the LP objective value significantly. Optimal and near optimal solutions

are found at the root node of the branch-and-bound tree.

For test cases SIM-001 and SIM-002, the computational times are longer than the other

test cases significantly. Therefore, we test the variable fixing heuristic. Here, we set the

step size σ = 0.1 and time limit for restrict IP τ = 300 seconds. The computational results

is recorded in Table 6.4.

Test Cases Iteration Threshold Variables Up Variables Down Remaining Binaries LP IP Time (sec)

SIM-001 1 1.0 1,932 25,125 32,669 9,615 9,608 270

SIM-002 1 1.0 3,485 24,606 29,040 8,153 8,153* 222

Table 6.4: Performance characteristics of variable fixing heuristic when maximizing the
total revenue from through connects. (*) denotes the proven optimal solutions to the
current restricted WRTNM.
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As we can see from Table 6.4, the variable fixing heuristic is very efficient in solving

large WRTNM problems. We fix more than 45% binary variables in the first iteration of

the variable fixing heuristic, and obtain the solution to SIM-001 within 0.05% optimal and

optimal solution to SIM-002 in less than 5 minutes.

6.5.2 Computational Experience for Integrated WFAP and WAMRP

The test cases used for the integrated model are constructed from multiple fleet schedules

presented in Table 6.1. As we can see from the integrated model in Eqs. (6.9)-(6.16),

the size of the integrated model primarily depends on both the number of flights in the

schedule, and the number of fleets in WFAP. Therefore, we vary these characters when

generating the integrated test cases. Specifically, we construct 2 sets of test cases, one set

with 4 fleets and the other set with 8 fleets. There are five instances in the 4-fleet test

set and four instances in the 8-fleet test set. We assume the demand for every flight is

uniformly distributed between the 80 to 320. We also assume the capacities of the fleets

in 4-fleet test set are 110, 170, 230, and 290 with 60 seats difference between two adjacent

fleets. Similarly, we assume the fleet capacities for 8-fleet test set are from 95 to 305 with

30 seats difference between two adjacent fleets. The number of aircrafts in each fleet is

same for all test cases. The profit obtained by assigning flight f to fleet i is computed by

the following equation.

rif = min{dmdf , capi} × durf − 0.1 max{0, dmdf − capi} × durf (6.17)

Here, dmdf is the randomly generated demand for flight f , capi is the capacity of aircraft

fleet i, and durf is the flying time of flight i. The profit rif in Eq. (6.17) contains two part:

the first part computes the revenue, and the second part computes the loss sale penalty.

For simplicity, we only consider flight-based profit, but not itinerary-based profit.

In Table 6.5, we present the nine test cases used to test the proposed integrated model.

As we can see from Table 6.5, the numbers of flights vary approximately from 1000 to

2000, which are about the sizes of small to medium airlines. We also list the schedules

used to construct the test cases in the last column of the Table 6.5.
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Test Cases Flights Aircrafts Fleets Origin Flights

INT1-4 1,032 62 4 757-300, 737-500
INT2-4 1,352 78 4 757-300, CRJ-700
INT3-4 1,686 96 4 737-500, CRJ-700
INT4-4 1,780 110 4 757-200, 757-300
INT5-4 2,108 128 4 737-500, 757-200

INT1-8 1,032 62 8 757-300, 737-500
INT2-8 1,352 78 8 757-300, CRJ-700
INT3-8 1,686 96 8 737-500, CRJ-700
INT4-8 1,780 110 8 757-200, 757-300

Table 6.5: Characteristics of ten integrated WFAP and WAMRP test cases.

In our computational study, we assume every flight is eligible to be assigned to any

fleet. In other words, we construct |I| rotation-tour networks, and each network contains

all flights F . In reality, if it is infeasible or unattractive to assign flight f to fleet i (e.g.,

the flight distance of f might be too long for some small fleet; the demand is too small for

some fleet with large capacity), we can exclude flight f in rotation network for fleet i to

reduce the size of the integrated model. We set the computational time to be three hours

(10,800 seconds). We stop the CPLEX MIP solver if the optimality gap of CPLEX is less

than 0.2%.

Test Cases Cols Rows Non0 LP LP Time (sec) IP IP Time (sec) Gap(%) Cuts Nodes

INT1-4 40,692 22,752 104,492 138,085 77 138,085* 219 0.00 3 1

INT2-4 51,008 28,212 130,712 152,586 110 152,593* 309 0.00 5 1

INT3-4 62,252 34,138 159,452 175,975 156 175,991 8,543 0.01 13 41

INT4-4 54,708 26,240 143,136 194,392 245 194,392* 812 0.00 2 1

INT5-4 67,620 33,560 175,944 250,814 231 250,863 10,800 0.02 3 11

INT1-8 81,384 44,472 208,984 137,483 101 137,533 10,800 0.04 2 27

INT2-8 102,016 55,072 261,424 158,472 180 - 10,800 - - -

INT3-8 124,504 66,590 318,904 178,018 515 - 10,800 - - -

INT4-8 109,416 50,700 286,272 210,064 617 - 10,800 - - -

Table 6.6: Performance characteristics of integrated WFAP with WRTNM using CPLEX
directly. (*) denotes the optimal solutions.

In Table 6.6, we present the solutions of integrated model using CPLEX directly. As

we can see from Table 6.6, the weekly integrated model can solve all the 4-fleet test cases

within 0.02% optimal. However, the computational time increase drastically from less than

4 minutes to 3 hours when the sizes of the 4-fleet test cases increase. Also, the number of
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fleets effects the computational time greatly. The integrated model can only obtain one

feasible solution for four 8-fleet test cases, and the computational time reaches the time

limit of 3 hours. On the other hand, we notice the LP gaps provided by the integrated

model are very tight, which matches our observation for WRTNM.

To obtain good solutions in reasonable time, we apply the variable fixing heuristic to the

integrated weekly model. In Table 6.7, we present the solutions of integrated model using

variable fixing heuristic. As we can see, we obtain the near optimal solutions to all nine

Test Cases Iteration Threshold Var Up Var Down IP IP Time (sec) Gap(%) Cuts Nodes

INT1-4 1 1.0 339 5,061 138,085* 93 0.00 3 1

INT2-4 1 1.0 292 4,380 152,593* 95 0.00 7 1

INT3-4 1 1.0 340 5,100 175,996 167 0.01 15 1

INT4-4 1 1.0 482 7,170 194,392* 778 0.00 3 1

INT5-4 1 1.0 407 6,073 250,835 1,191 0.01 3 7

INT1-8 3 0.8 231 7,153 137,526 3,588 0.03 7 11

INT2-8 4 0.7 368 11392 158,727 2,014 0.16 1 2

INT3-8 3 0.8 401 12,431 178,311 1,909 0.16 2 1

INT4-8 3 0.8 456 14,072 213,003 10,800 1.38 4 1

Table 6.7: Performance characteristics of integrated WFAP with WRTNM using CPLEX
directly. (*) denotes the optimal solutions.

test cases. Particularly, for 8 out of 9 test cases, the optimality gaps are within 0.2%. For

test case INT4-8, the optimality gap is 1.38%. Also, by applying variable fixing heuristic,

the computational times are reduced drastically. Specifically, for 4-fleet test cases, we

only fix those flight variables with xifp = 1 in the IP. We can obtain optimal and near

optimal solutions within 20 minutes. We also notice that for 8-fleet test cases, the variable

fixing thresholds are 0.7 to 0.8. That means we round up xifp to 1 if xifp ≥ 0.8 or 0.7.

Because of the variable rounding up, the LP solutions of the integrated model only increase

marginally. We are able to obtain very good IP solutions with small optimality gaps for

these test cases. Overall, by fixing 20% to 28% of the flights, we can quickly obtain very

good IP solutions for the integrated model.
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6.6 Conclusion

In this chapter, we present a new weekly rotation-tour network representation for the

WAMRP. Based on this representation, we propose a new mixed-integer linear program-

ming formulation for the WAMRP, namely Weekly Rotation-Tour Network Model (WRTNM).

To assess the performance of WRTNM, we test the model using eight test cases. The com-

putational results show that the proposed model is very compact and scalable, and is able

to find the optimal solutions to schedule with 5,700 flights and 330 aircrafts in minutes.

We also propose an integrated model to solve the WFAP and the WAMRP simultaneously.

A simple variable fixing heuristic is used to solve the integrated model efficiently. We test

the integrated model on nine self-constructed cases. The computational results show that

the integrated model generates near optimal solutions to the schedules less 2,000 flights

and 120 aircrafts, approximately a medium-sized airline, in reasonable time. The compu-

tational results show that WRTNM and the integrated model provide good LP relaxation

bounds for all test cases.

The current WRTNM can only handle simple cost structures. Extending the proposed

network representation for more complex requirement and/or cost will be an interesting

future research direction. The compact formulation of WRTNM might also be beneficial

to the integration of WAMRP with other planning operations such as schedule design

problem and CPP. Evaluating the new integrated problems with WRTNM might be anther

interesting future research direction. Finally, the proposed WRTN representation might

facilitate researchers for various weekly planning problems in other areas of transportation,

scheduling, and networking.
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