
APPLICATION OF SDP TO PRODUCT RULES AND

QUANTUM QUERY COMPLEXITY

by

RAJAT MITTAL

A dissertation submitted to the

Graduate School—New Brunswick

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Mario Szegedy

And approved by

New Brunswick, New Jersey

May, 2011

ABSTRACT OF THE DISSERTATION

APPLICATION OF SDP TO PRODUCT RULES AND

QUANTUM QUERY COMPLEXITY

By RAJAT MITTAL

Dissertation Director:

Mario Szegedy

In recent years, semidefinite programming has played a vital role in shaping complexity

theory and quantum computing. There have been numerous applications ranging from

estimating quantum values, over approximating combinatorial quantities, to proving

various bounds. This work extends the use of semidefinite programs (SDPs) to proving

product rules and to characterizing quantum query complexity.

In the first application, we provide a general framework to establishing product

rules for quantities that can be expressed (or approximated) using SDPs. We use duality

theory to give product rules, which bound the value of the “product” of two problems in

terms of their value. Some previous results have implicitly used the properties of SDPs

to give such product rules. Here we give sufficient and necessary conditions under which

these approaches work, thereby enabling us to capture these previous results under our

unified framework. We also include a discussion about alternate definitions of what a

“product” means and how they fit into our approach.

The second application provides an SDP characterization of quantum query com-

plexity, which is one of the ways in which complexity of a function can be measured. It

is known that quantum query complexity can be lower bounded by the so-called “adver-

sary method” which is expressible as a semidefinite program. Recently, Ben Reichardt

showed that the adversary method leads to a tight lower bound for boolean functions

ii

by converting the solution of this SDP (of adversary method) into an algorithm. We

show that a related SDP, called “witness size” in this thesis, provides a tight bound on

the quantum query complexity of non boolean functions (total as well as partial). This

witness size SDP is also used to give composition results for quantum query complexity.

We also show that the witness size is bounded by a constant multiple of the adversary

bound.

Finally, we briefly explore whether other convex programming paradigms can be

useful in complexity theory. One of them is copositive programming. We show that

one of the recent result about parallel repetition of unique games, by Barak et.al., can

be interpreted as an application of copositive programming.

iii

Acknowledgement

First and most of all, I would like to thank my advisor Mario Szegedy for his enormous

help and guidance throughout the PhD. He has been a constant source of inspiration

and motivation. He made me realize the difference between knowing something and

understanding it. The discussions with him were always fun whether academic or non-

academic.

I also thank other theory faculty in Rutgers for their support, help, insights and

intuition. The reading seminar and discussions with Mike Saks made me interested

in areas such as algebraic complexity, algorithmic number theory and communication

complexity. As a graduate advisor in the beginning and later as the part of my com-

mittee, William Steiger has guided me in many aspects of my PhD and I will always

be thankful to him.

It was a privilege to work with my coauthors Troy Lee, Ben Reichardt and Robert

Spalek. Troy has been a great mentor, coauthor and friend. I learned a lot about

research by working with him. His expertise in norms and communication complexity

was very helpful. Special thanks to him for introducing me to dropbox and making me

realize the importance of coding. I would like to thank Alantha Newman for working

on graph isomorphism and SDPs with me. The long discussions about academics and

life in general were really enjoyable. She taught me a lot about research.

The summer internships in NEC and Microsoft Research India were very helpful. I

thank Neeraj Kayal and Satya Lokam for being a great host in Bangalore. At NEC,

Hari Krovi and Martin Roetteler introduced me to wealth of information about hidden

subgroup problem. I specially thank Martin Roetteler for being on my committee and

more importantly for his suggestions on this thesis. I also thank Ashwin Nayak for

inviting me to Waterloo and being a great host.

iv

The theory students at Rutgers made the experience memorable and fun. The

lunch discussions with Devendra Desai, Fengming Wang, Mangesh Gupte and Pravin

Shankar were really helpful and highly enjoyable. The trips to various conferences with

Dev, Fengming, Luke Friedman, Mangesh and Nikos Leonardos were always filled with

fun. Thanks to Carol DiFrancesco and other staff at Rutgers for solving all of my

administrative problems.

I would also like to thank countless friends who have provided unconditional support

and have been an integral part of my PhD experience. My cricket, football and squash

teams cleared my mind from time to time and helped me focus on my academics better.

The lunch group at BCC gave an ideal venue for getting fresh again for work. I thank

Kirit, Dev, Siddharth, Deepti, Rajesh, Shivangi, Swapnil, Rohan, Varsha, Meenaskshi,

Pravin, Madhur, Hari, Viral, Prathima, Shweta and Mangesh from Rutgers for always

being there. I also thank “we”, my wingmates, Garima and Vikas for their support.

v

Dedication

To my parents.

Brother-in-law, sister, Bhavya and Kavya.

Brother and sister-in law.

vi

Table of Contents

Abstract . ii

Acknowledgement . iv

Dedication . vi

List of Figures . viii

1. Introduction . 1

1.1. Applications . 3

1.1.1. Product rules . 3

1.1.2. Quantum query complexity . 4

1.1.3. Other optimization problems . 5

1.2. Thesis layout . 5

2. Semidefinite programming . 7

2.1. Notation . 7

2.2. Positive semidefinite matrices . 8

2.3. Affine semidefinite program instances . 9

2.3.1. Duality . 10

2.3.2. Vector formulation . 11

2.4. SDPs as relaxations . 11

2.4.1. Examples . 12

3. Product rules . 14

3.1. Semidefinite programming approach to product theorems 15

3.1.1. Our contribution . 17

3.2. Product instances . 17

vii

3.2.1. Counterexample to the product theorem 18

3.2.2. The product solution . 20

3.3. Sufficient conditions for a product theorem 21

3.3.1. Positivity of the matrix J . 22

3.3.2. All A(k) are block diagonal, and J is block anti-diagonal 23

3.3.3. A generalized condition . 25

3.4. Nonnegativity constraints . 27

3.4.1. Discrepancy . 30

3.4.2. Feige-Lovász . 31

The relaxed program . 32

3.5. Extension to linear programming . 34

3.6. A necessary condition for dual feasibility 35

3.7. The weak product . 38

3.8. Discussion . 39

4. Quantum query complexity . 41

4.1. Definitions . 43

4.1.1. Quantum query complexity . 44

4.1.2. Hadamard product operator norm 45

4.2. The general adversary bound and witness size SDPs 46

4.3. Equivalent formulations for witness size 49

4.4. The general adversary bound is tight . 52

4.4.1. The algorithm . 52

4.4.2. Analysis of the algorithm . 54

4.5. Composition of the general adversary and witness size SDPs 57

5. Optimization over the copositive cone 62

5.1. Notation . 63

5.2. Gaps between solutions . 64

5.3. Product rules for copositive programming 64

viii

5.4. Parallel repetition of unique games . 65

6. Conclusions . 69

6.1. Open problems . 70

References . 71

Appendix A. Bipartite tensor product . 77

Appendix B. Quantum query complexity 79

B.1. Proof of Proposition 4.4.1 . 79

B.2. Proofs of composition results . 81

Vita . 86

ix

List of Figures

3.1. Sufficient conditions . 26

4.1. An example graph G(x) for a function f(x1x2) = x2 mapping D =

{0A, 0B, 1C} ⊂ {0, 1} × {A,B,C} to E = {A,B,C}. Our algorithm

essentially runs a quantum walk on the vertices of this bipartite graph,

starting at |ø〉. The walk converges, on average, to an eigenvalue-zero

eigenvector supported on the larger, red vertices, after which measuring

the vertex has a good probability of giving output vertex f(0B) = B.

(In general, there will be many more vertices in the last two levels from

ø.) The dashed lines are added to the graph G to define G(x), shown for

input x = 12. The details of this construction are given in Section 4.4. 43

x

1

Chapter 1

Introduction

In many diverse areas of mathematics, problems are studied where an objective function

needs to be minimized or maximized while simultaneously satisfying a set of constraints.

These problems are called optimization problems, which can be classified depending

upon the kind of objective function and the kind of constraints used. One of the

simplest class of optimization problems is called linear programming, where both the

objective function and the set of constraints are linear. It is heavily used in discrete

mathematics, in combinatorial optimization, and in complexity theory. This utility of

linear programming derives not only from the fact that large number of problems can

be described as linear programs, but also because of our ability to solve these programs

efficiently.

The paradigm of semidefinite programming is a generalization of linear program-

ming, which can also be solved efficiently and has the power to express more mathe-

matical problems. Semidefinite programs (SDPs) can express any problem written in

linear programming and much more. On the other hand, the progress in efficiently

solving SDPs was initially slow. This is because the feasible region is not polyhedral,

hence, the simplex method1 could not be applied. But with the advent of more efficient

algorithms like the interior point method [Kar84], we have efficient polynomial time

algorithms to solve semidefinite optimization problems. These algorithms have made

SDP an essential tool in various disciplines of mathematics and computer science.

In theoretical computer science many problems are expressible using semidefinite

programs. Then there are other problems which can be approximated well by semidefi-

nite programming relaxations. The idea is to write these problems as integer programs

1Simplex algorithm is a popular algorithm for numerically solving linear programming.

2

(where variables are constrained to be integers); They can then relaxed to be vectors.

It turns out that for many of those problems, a semidefinite relaxation approximates

the optimum much better than a linear program [Lov, GW95]. Given its efficient algo-

rithms, semidefinite programming is emerging as a major tool for constructing approx-

imation algorithms and for proving bounds on the complexity of underlying problem.

One of the first applications of SDPs in discrete mathematics was the Lovász theta

number [Lov79]. It showed that a quantity called Shannon capacity can be approxi-

mated by an SDP. The other major breakthrough came in 1995 when Goemans and

Williamson [GW95] showed an approximation algorithm for the problem max cut in

combinatorial optimization. It is still the best known algorithm in terms of approxima-

tion guarantee. In 2007, Khot et. al. [KKMO07] proved that it is optimal. Recently,

another proof of its optimality was given by Raghavendra [Rag08] assuming the unique

games conjecture, again using SDPs. The result is much more general and states that

for a class of constraint satisfaction problems, SDPs provide the best approximation

factor, assuming unique games conjecture.

Semidefinite programming has been really effective in quantum computing. It has

provided much closer approximations and sometimes exact formulation in the quantum

world. One of the early use of semidefinite programming was to give optimal POVM

conditions for distinguishing a set of quantum states. Holevo and Yuen et.al. showed

that this can be characterized by an SDP [Hol73, YKL75]. SDPs were also used in

proving that QIP ⊂ EXP [KW00], and now in a seminal result Jain et.al. proved

QIP = PSPACE [JJUW10]. Barnum and Knill showed how to reverse quantum

dynamics while preserving quantum and classical fidelity [BK00]. All these results used

SDPs to characterize various quantities in quantum computing.

Cleve et. al. [CSUU07] showed that the value of certain games, called quantum

nonlocal XOR games, can be achieved exactly using SDPs. Later Kempe et.al. [KRT07]

showed that SDPs provides a much closer approximation to the value of wider class of

games, called nonlocal unique games. In the area of quantum query complexity, Barnum

et.al. provided a mathematical representation of quantum query complexity as an SDP

feasibility problem [BSS03]. A long series of work showed that adversary methods

3

give lower bound to quantum query complexity [HNS02, Amb06, Zha05, BSS03, LM04,

HLŠ07]. Recently, Ben Reichardt [Rei09, Rei10a] showed that this lower bound is tight

for boolean functions.

To summarize, semidefinite programming has been a very useful tool in complexity

theory, approximation algorithms and quantum computing. We pursue this line of re-

search further, and show its application in product rules and quantum query complexity.

The main results of this thesis are the application of SDPs in these two fields.

Linear programming and semidefinite programming are examples of convex pro-

gramming, where the objective function and set of constraints are convex. There is a

hope to use other convex programming classes in complexity theory. Briefly, in the end,

we talk about one such application of copositive optimization to complexity theory.

1.1 Applications

As mentioned above, the major part of this thesis deals with the application of SDP

in product rule and quantum query complexity. Below we give the motivation behind

studying these areas and state the contribution made by this research.

1.1.1 Product rules

A fundamental question in complexity theory is, how the resources needed to compute k

copies of a function scale with the resources needed to compute a single instance of the

function. Although not always the case, one generally expects and wishes to show that

the resources needed grow linearly with k and/or that the success probability decreases

exponentially with k. Answers to these questions are known as direct sum theorems,

(strong) direct product theorems, or XOR lemmas. It depends on the behavior of the

resource, success probability parameters, and whether one considers to output a k-tuple

of answers or simply their XOR.

In this thesis, we study a particular approach to proving such product theorems

based on semidefinite programming. In this approach, a semidefinite program is devel-

oped that approximates the quantity of interest. Then one shows that the semidefinite

4

program obeys a product rule, this bounds the behavior of the original quantity under

product as well. This approach has been successfully used many times in the literature,

for example [Lov79, FL92, KKN95, CSUU07, LSŠ08]. Despite this, there has been no

general theory to explain when semidefinite programs obey a product rule and when

they do not—each of these works had to prove their product theorem from scratch.

We attempt to develop a general theory to explain when the optimum of a semidef-

inite program is multiplicative under a naturally defined product operation. We find

sufficient conditions for the product rule to hold, and also discuss why in some cases it

does not hold (Section 3.3). We come up with a necessary condition too (Section 3.6).

Our framework is general enough to explain all the semidefinite product theorems in

the literature.

There are slight modification to the definition of being “multiplicative”. We discuss

how our results can be extended to those definitions. The results of this section are

published in [MS07, LM08].

1.1.2 Quantum query complexity

There are various complexity measures like certificate complexity and decision tree

complexity for functions. One of these measures for functions, is the number of bits

needed to compute the function in the worst case, called query complexity. Currently,

there are two main ways to get a lower bound on quantum query complexity. One of

them, called the adversary method, was developed initially by Bennett et. al. [BBBV97]

and then later by Ambainis [Amb02]. It is known that the bound achieved by adversary

method for a function can be characterized using a semidefinite program.

In 2007, Hoyer et. al. [HLŠ07] introduced the generalized adversary bound (or

negative adversary bound) that lower-bounds the number of input queries needed by a

quantum algorithm to evaluate a function [HLŠ07]. This can also be represented as a

SDP. This SDP value is known to be tight up to constant factors for functions (total or

partial) with boolean output and binary input alphabet [Rei09, Rei10a, Rei10b, Rei10c].

We show that the general adversary bound is tight for any function whatsoever, i.e.,

with potentially non-boolean input or output alphabets (Theorem 4.0.1). We also show

5

that quantum query complexity (Q) exhibits a remarkable composition property:

Q
(
f(g(x1), . . . , g(xn))

)
= O

(
Q(f)Q(g)

)
,

for any compatible functions f, g (Corollary 4.5.6). This was previously known only in

the boolean case.

Both of these results are obtained by defining a new, but closely related SDP, that

we call the witness size. The minimization formulation of the witness size adds more

constraints compared to the general adversary bound. This enables dual solutions to

correspond to eigenvalue-zero eigenvectors of certain graphs. While the witness size can

be strictly larger than the adversary bound, we show that it can be at most a factor of

two larger. These results are published in [LMRS10].

1.1.3 Other optimization problems

Instead of optimizing over a semidefinite cone, one can take a look at optimizing over

other kinds of convex cones. A natural question is, are there applications in theoretical

computer science where these cones can be helpful? We show that one of the recent

parallel repetition result [BHH+08] can be interpreted as an application of optimization

over the “copositive” cone.

It is known that we can represent NP-hard problems like independent set using

a copositive program. It makes this copositive optimization NP-hard to achieve. So

this rules out the possibility of using them to obtain approximation algorithms for

combinatorial quantities. Still they can be used to give bounds on these quantities. We

discuss how copositive programs can be used to give bounds on the value of certain

kind of nonlocal games, called unique games. It can be shown that the value of these

games, when played multiple times in parallel, approaches the value of the semidefinite

relaxation. These ideas are simplification of the article [BHH+08].

1.2 Thesis layout

This thesis is mainly composed of application of SDP in the two domains, product rules

and quantum query complexity. There is also a little discussion about how other forms

6

of convex optimization can be helpful in complexity theory.

In Chapter 2, we give a short introduction to the field of semidefinite programming.

The standard form of an SDP as well as other various equivalent formulations are

discussed. The chapter ends with explaining how SDPs are mostly used in applications

to theoretical computer science, i.e., relaxations and rounding procedures.

Chapter 3 is concerned with product rules derived using semidefinite programming.

As discussed in Section 1.1.1, we give sufficient conditions and necessary conditions for

a semidefinite program to be multiplicative. These conditions can be used to obtain

new product rules. Various product rules from different fields which follow from this

general framework are also discussed.

Chapter 4 gives the characterization of quantum query complexity (or negative ad-

versary bound) using SDP. This is done using a new SDP formulation called “witness

size”, as mentioned in Section 1.1.2. First we give these SDPs for negative adversary

bound and witness size. The chapter later discusses the algorithm, which shows that

these bounds are tight for quantum query complexity. In the end, we discuss composi-

tion results for quantum query complexity.

In Chapter 5, we briefly discuss how copositive programming can be helpful to

complexity theory. Then the thesis is concluded by summarizing the results and stating

open problems in this field.

7

Chapter 2

Semidefinite programming

Semidefinite programming is a class of optimization problems over matrix variables. It

can be thought of as a generalization of linear programming. In linear programming,

we have a linear objective function and linear constraints. An SDP also has a linear

objective function, considering entries of the matrix as variables. It can have linear

constraints, but it also allows the constraint that a certain matrix is in the semidefinite

cone. This is defined formally in Section 2.3.

2.1 Notation

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. Upper case letters will be used

to denote matrices and lower case letters vectors. Bold capital letters will be used for

tuples of matrices, e.g., A = (A(1), . . . , A(m)). The multiplication between vector y and

tuple of matrices A is defined as yTA =
∑m

i=1 yiA
(i).

For two matrices A, B of the same size, A ◦ B denotes their entry-wise product,

also known as the Hadamard or Schur product. The summation of all the entries in

the matrix A ◦B is denoted by A •B (dot product of A and B), and defined as

A •B =
∑

i,j

Ai,jBi,j. (2.1.1)

The inner product between two vectors u and v will be denoted by uT v or 〈u|v〉.

If not specified, we will assume all matrices to be symmetric. An optimization

problem can be denoted by any one of the symbols π, σ, π(X), σ(X). Here X is the

variable in the optimization problem1. Given a primal instance π, the dual of that

instance will be denoted by π∗.

1The variable X can be dropped from the notation (π, σ), when it is clear from the context.

8

Any optimization problem has an objective function, the function we are trying to

minimize or maximize. It has a feasible region (the set of admissible X’s), defined

by the constraints of the problem. So the task is to maximize/minimize the objective

function dependent on X, under the condition that X belongs to the feasible region.

2.2 Positive semidefinite matrices

An n×n symmetric matrix M is called a positive semidefinite matrix if, for all vectors

v ∈ Rn, the quadratic form vTMv ≥ 0. It is called positive definite, if vTMv > 0.

When a matrix M is positive semidefinite, it is denoted by symbol M � 0 (M ≻ 0,

when it is positive definite). There are other equivalent definitions also. We state them

without proof [HJ85].

Theorem 2.2.1. The following are equivalent for an n × n symmetric matrix M ∈

Rn×n.

1. M is positive semidefinite, i.e., ∀ v ∈ Rn, vTMv ≥ 0.

2. All eigenvalues of M are nonnegative.

3. M is the Gram matrix of a set of vectors x1, · · · , xn ∈ Rk, for some k. So, for

all i, j ∈ [n], Mi,j = 〈xi|xj〉.

4. For some vectors v1, · · · , vk ∈ Rn, M = v1v
T
1 + · · ·+ vkv

T
k .

The set of positive semidefinite matrices is a “cone”. This means that for any two

positive semidefinite matricesM1,M2, given any α, β ≥ 0, it holds that αM1+βM2 � 0.

The dual cone C∗ of a cone C is the set of vectors whose dot product with any

element of the cone C is non-negative, i.e.,

C∗ = {y ∈ Rn : yTx ≥ 0 ∀x ∈ C}. (2.2.1)

It is known that the dual of the semidefinite cone is the semidefinite cone itself. This

implies, for any two positive semidefinite matrices M1,M2, we know M1 •M2 ≥ 0 (even

M1 ◦M2 � 0). On the other hand, given a K, s.t., ∀M � 0K •M ≥ 0, then K is

positive semidefinite [BV04].

9

2.3 Affine semidefinite program instances

We take a semidefinite program to be described by triples π = (J,A, b), where

• J is the objective matrix, a symmetric matrix of dimension n× n,

• A = (A(1), . . . , A(m)) is a list ofm symmetric matrices, each of dimension n×n. A

describes a transformation from Rn×n → Rm where A(X) = (A(1) •X, . . . , A(m) •

X),

• b is a vector of length m.

With π we associate a semidefinite programming instance in the following standard

form with optimal value α(π):

max
X

J •X (2.3.1)

s.t. A(X) = b

X � 0.

We define the dimension of the instance to be (n,m). This semidefinite programming

instance is called affine as it only has equality constraints. Note, however, that this for-

mulation is completely general as one can encode inequality constraints by introducing

slack variables as necessary and enforcing non-negativity constraints by putting them

on the diagonal of X.

Notice that the objective function J • X is linear in the entries of the matrix X.

There are linear constraints of the form A(i) • X = bi. The semidefinite condition is

enforced by the constraint, that matrix X lies in the semidefinite cone (X � 0). These

constraints can also be thought of as, “feasible region is the intersection of a polyhedra

and the semidefinite cone”.

10

2.3.1 Duality

Like linear programming, duality theory is an important part of semidefinite program-

ming. The “dual” of a semidefinite program is another semidefinite optimization prob-

lem (SDP). It has the opposite objective, minimization if original problem is maximiza-

tion and vice versa. The original problem is called “the primal”. The dual of the dual

is the primal [BV04].

We will need the dual of π (defined by Eq. 2.3.1), which we denote by π∗. For the

method to express the dual see, for example, [BV04, Ali95, Lov]. The dual is defined

as

min
y

yT b

s.t. yTA− J � 0.

where y is a column vector of length m. Here, yTA is the matrix
∑m

k=1 ykA
(k).

Without loss of generality assume that our primal is a maximization problem (like

Eq. 2.3.1). The theorem of weak duality states, for any feasible solutions X, y of primal

π and dual π∗ respectively,

π(X) ≤ π∗(y).

Hence the value of the dual is an upper bound on the value of the primal. Similarly

the value of the primal is a lower bound on the value of dual. The situation in which

these two optimal values are equal (α(π) = α(π∗)) is known as strong duality.

In the case of semidefinite programs, the value of the primal is not always equal to

the value of the dual. In other words, strong duality is not necessarily true. But it

follows if either the primal or the dual is strictly feasible, i.e., if there exist a feasible

X ≻ 0 for the primal or there is a y such that yTA− J ≻ 0 for the dual, then strong

duality is achieved. In most of the cases, and all the cases discussed in this thesis,

this condition holds. Hence we assume strong duality in the complete thesis. More

information about strong duality can be found in the excellent surveys [BV04, Ali95].

11

2.3.2 Vector formulation

For applications in complexity theory it turns out that another formulation of SDPs

where vectors are the variables (instead of the matrices) is used more often. From

Theorem 2.2.1 any n×n positive semidefinite matrixM can be thought of as the Gram

matrix of vectors v1, v2 · · · , vn, i.e., the i, jth entry of M is equal to the inner product

(〈vi|vj〉) between vi and vj. Conversely, any Gram matrix of n vectors is a positive

semidefinite matrix.

This equivalence gives us another way to express the semidefinite programming

problem π mentioned above.

max
vi

∑

i,j

Ji,j〈vi|vj〉 (2.3.2)

∀k
∑

i,j

Ak
i,j〈vi|vj〉 = bk (2.3.3)

Notice here that there is no positive semidefinite cone condition, because if every i, jth

entry of the matrix can be represented as 〈vi|vj〉, then it is positive semidefinite.

2.4 SDPs as relaxations

Semidefinite programs are a convenient way to estimate many combinatorial quantities.

Sometimes they express the quantity of interest exactly [CSUU07], and in other cases

they approximate the quantity tightly [GW95, ARV04, KRT07, Rei09]. The concept of

relaxation is very important for all these applications.

These relaxations help in approximating a quantity. The quantity is first expressed

exactly as an integer program or a convex optimization problem with some non-convex

constraints. These programs cannot be solved efficiently and in most of the cases are

NP-complete.

The idea is to “relax” the program to an SDP which can be solved efficiently. A

“relaxation” σ̄(X) of an optimization problem σ(X) (X is the variable in the optimiza-

tion problem), is another optimization problem. Any feasible solution X of problem

σ(X) should be a solution of σ̄(X) with the same objective value. This shows that the

value of σ̄(X) is a lower bound (upper bound) if σ(X) is a minimization (maximization)

12

problem. A relaxation, by definition, is a bound on the original quantity of interest. It

is useful if it can be efficiently computed or is related to some other quantity of interest.

So the approach is to relax an integer program/non-convex program into a semidefi-

nite program, which we know is efficiently computable. In the case of integer programs,

we can drop the constraint that variables are integer and assume them to be vectors.

This gives us a semidefinite program (Section 2.3.2), if the integer program has linear

constraints and objective function. That is one of the reasons why vector formulation

is so important in complexity theory.

But solving a relaxation is not sufficient. We need to show that the relaxation is close

to the original quantity of interest. This is achieved by showing that the optimal solution

of a relaxation can be converted into a solution of the original non-convex optimization

problem without losing much in the objective value. For the integer programming

case, we need to convert the vector solution into an integer solution. This is known as

“rounding” [GW95, Rag08].

Hence, the process of creating a relaxation and then showing a good rounding al-

gorithm, proves that the semidefinite program is close to the quantity of interest. This

can be used to give bounds on the quantity or obtain good approximation algorithms.

In the next section, we will discuss few examples that highlight the use of this strategy.

2.4.1 Examples

One of the first applications of semidefinite programs in complexity theory was the

approximation algorithm for max-cut given by Goemans and Williamson [GW95]. It

is a good example for the relaxation and rounding strategy we outlined above. In the

max-cut problem, we are given a graph G = (V,E), and we need to find the cut which

has maximum number of edges. The cut is specified by a partition of the vertex set V

into two parts. The number of edges in the cut is the number of edges going between

the two partitions.

This optimization can be written as an integer program, where variables can only

take values from {1,−1}. The set of vertices which are assigned 1 form one part of the

13

partition, and the rest another.

max
yi

∑

(i,j)∈E

1− yiyj
2

∀i ∈ V yi ∈ {1,−1}

This integer program is relaxed to get a semidefinite program. Here the variables for

every vertex are allowed to be vectors instead of just being from {1,−1}.

max
vi

∑

(i,j)∈E

1− 〈vi|vj〉
2

∀i ∈ V vi ∈ R|V |

This can be solved in polynomial time using semidefinite programming solvers. Goe-

mans and Williamson showed that the resulting vectors can be converted into integers

by a simple rounding procedure. We take a random hyperplane and assign ±1 to vertex

i, depending upon which side of the hyperplane vi lies on. The expected value of the in-

teger solution is at least .878 times the vector solution. This gives a .878 approximation

algorithm for max-cut [GW95].

Taking another example, the maximum/minimum eigenvalue of a matrix can be

calculated as a semidefinite program. More generally, suppose a symmetric matrix A(x)

depends affinely on x ∈ Rn, i.e., A(x) = A0 + x1A1 · · ·+ xnAn. Then the minimization

of the maximum eigenvalue of A(x) can be computed using the SDP

min
x

t

s.t. tI −A(x) � 0

Here t, x are the variables. This format is same as the dual problem mentioned in the

Section 2.3.1.

14

Chapter 3

Product rules

A prevalent theme in complexity theory is what we might roughly call product theorems.

These results look at, how the resources needed to accomplish several independent tasks

scale with the resources needed to accomplish the tasks individually. Let us look at a

few examples of such questions:

Shannon capacity: Let α(G) be the size of a largest independent set in a graph

G. How does α(G) compare with amortized independent set size limk→∞ α(Gk)1/k?

This last quantity, known as the Shannon capacity, gives the effective alphabet size of

a graph where vertices are labeled by letters and edges represent letters which can be

confused if adjacent [Lov79].

Hardness amplification: Product theorems naturally arise in the context of hardness

amplification. If it is hard to evaluate a function f(x), then an obvious approach to

create a harder function is to evaluate two independent copies f ′(x, y) = (f(x), f(y)) of

f . There are different ways that f ′ can be harder than f—a direct sum theorem aims

to show that evaluation of f ′ requires twice as many resources as needed to evaluate f ;

direct product theorems aim to show that the error probability to compute f ′ is larger

than that of f , given the scaled up amount of resources [JKS10].

Soundness amplification: Closely related to hardness amplification is what we might

call soundness amplification. This arises in the context of interactive proofs where one

wants to reduce the error probability of a protocol by running several checks in parallel.

The celebrated parallel repetition theorem shows that the soundness of multiple prover

interactive proof systems can be boosted in this manner [Raz98].

15

3.1 Semidefinite programming approach to product theorems

The previous examples illustrate that many important problems in complexity theory

have dealt with product theorems. One successful approach to these types of questions

has been through semidefinite programming. The use of semidefinite programming has

proliferated in many areas of theoretical computer science, for example in combina-

torial optimization [GW95, KMS98, ARV04], quantum computing [BSS03, CHTW04,

CSUU07, HLŠ07], and complexity theory [FL92, LLS06, LSŠ08], and it has also proven

useful to show product theorems.

In this approach, we want to know how some quantity σ(G) behaves under the

product operation. So we take a look at the semidefinite approximation/relaxation

σ̄(G) of σ(G). Then the hope is to show

1. σ̄(G) provides a good approximation to σ(G) (rounding).

2. σ̄(G) obeys a product theorem σ̄(G×G) = σ̄(G)σ̄(G) .

So we obtain that the original quantity σ(G) must approximately obey a product rule

as well.

It is shown that all the semidefinite programs do not multiply. This strategy gives

a very natural approach, which shows when a semidefinite program obeys a product

theorem. Namely, we use the maximization formulation of the semidefinite program to

show that σ̄(G×G) ≥ σ̄(G)2 by combining optimal solutions for the G instance into a

solution for the G×G instance. Similarly, then we try to show that σ̄(G×G) ≤ σ̄(G)2

by considering the dual minimization formulation and showing that an optimal dual

solution can be combined into a solution for the G × G instance. Note that in this

strategy one does not need to use the fact that the value of semidefinite programs can

be computed efficiently.

Let us see how this approach has been used for the above questions.

Shannon capacity: Perhaps the first application of this technique was to the Shannon

capacity of a graph G. Lovász developed a semidefinite quantity, the Lovász theta

function ϑ(G). He showed that it is an upper bound on the independence number of a

16

graph and that ϑ(G×G) = ϑ(G)2. In this way he determined the Shannon capacity of

the pentagon, resolving a long-standing open problem [Lov79].

Hardness amplification: Karchmer, Kushilevitz, and Nisan [KKN95] notice that

another program introduced by Lovász [Lov75], the fractional cover number, can be

used to characterize non-deterministic communication complexity, up to small factors.

As this program also perfectly products, they obtain a direct sum theorem for non-

deterministic communication complexity.

As another example, Linial and Shraibman [LS08] show that a semidefinite program-

ming quantity γ∞2 characterizes the discrepancy method of communication complexity,

up to constant factors. Lee, Shraibman and Špalek [LSŠ08] then use this result, to-

gether with the fact that γ∞2 perfectly products, to show a direct product theorem for

discrepancy, resolving an open problem of Shaltiel [Sha03].

Soundness amplification: Although the parallel repetition theorem was eventually

proven by other means [Raz98, Hol07], one of the first positive results did use semidefi-

nite programming. Feige and Lovász [FL92] show that the acceptance probability, ω(G),

of a two-prover interactive game can be represented as an integer program. They then

relax this to a semidefinite program, ω̄(G), and show that this quantity perfectly prod-

ucts. In this way, they are able to show that if ω(G) < 1 then supk→∞ ω(Gk)1/k < 1,

for a certain class of games G known as unique games.

Recently, there has been a lot of renewed interest in studying parallel repetition

through semidefinite programming. Part of this interest stems from the close connection

between semidefinite programming and the value of a two-prover interactive game where

the provers are allowed to share entanglement. The value of a special kind of such a

game, known as an XOR game, can be exactly represented by a semidefinite program

[Tsi87, CHTW04]. Cleve et al. [CSUU07] show that this semidefinite program obeys a

product theorem to obtain a perfect parallel repetition theorem for these kinds of games.

Kempe, Regev, and Toner [KRT07] look at the broader class of unique games with

entanglement and use semidefinite programming techniques to get a parallel repetition

theorem for these games.

17

Very recently, Barak et al. [BHH+08] show that semidefinite programming is in-

herently connected to parallel repetition. Roughly speaking, they show that the amor-

tized value of a unique game repeated in parallel converges to the value of the natural

semidefinite relaxation of the unique game studied in the original paper [FL92].

3.1.1 Our contribution

We hope that this selection of examples demonstrates the power and usefulness of

the semidefinite programming approach to proving product theorems. Despite these

successes, however, we are not aware of any work which systematically investigates the

conditions under which semidefinite product theorems hold. This is what we attempt

to do in this chapter. We identify a large class of semidefinite programming instances

that obey the product rule, and in particular we are able to explain all of the product

theorems in the works [Lov79, FL92, CSUU07, LSŠ08, KRT07]. We also discuss some

examples where product theorems do not hold, and give a necessary condition for a

product theorem to hold, at least if one proceeds by the most natural proof technique.

We think that the sufficiency conditions developed here will already be of use for

researchers using the semidefinite programming approach to prove product theorems.

Indeed, rather than proving their product theorem from scratch, Kempe et al. [KRT07]

were able to appeal to the results in our preliminary article [MS07]. From a mathemat-

ical point of view, however, there is still much to be done to reach a full understanding

of when semidefinite programs product. We hope to provoke ideas and set the scene

for what one day might be a complete classification.

3.2 Product instances

Consider a semidefinite instance given in the standard form, as defined in Section 2.3.

max
X

J •X

A(X) = b

X � 0.

18

We now define a notion of what it means to take the product of two such semidefinite

programming instances.

Definition 3.2.1. Let π1 = (J1,A1, b1) and π2 = (J2,A2, b2) be two affine semidefinite

programming instances with dimensions (n1,m1) and (n2,m2), respectively. We define

the product instance as π1 × π2 = (J1 ⊗ J2,A1 ⊗ A2, b1 ⊗ b2), where A1 ⊗ A2 is by

definition the list (A
(k)
1 ⊗A

(l)
2)k,l of length m1m2 of n1n2 ×n1n2 matrices. The product

instance has dimensions (n1n2,m1m2).

The natural question to ask is if two instances of semidefinite programs behave

nicely under this product operation.

Definition 3.2.2. Two semidefinite programming instances π1 and π2 are said to obey

a product theorem if and only if α(π1 × π2) = α(π1)α(π2).

The rest of this chapter focuses on finding conditions, both sufficient and necessary,

for a product theorem to hold.

From a mathematical point of view, this definition of product is the most natural.

In applications, however, one generally has a notion of product in mind which is native

to the problem at hand, and which might not always agree with that of Definition 3.2.1.

It is possible that taking the tensor product of the constraint matrices A1⊗A2 creates

unintended constraints, or, on the contrary, that one in fact desires more constraints

than just those defined byA1⊗A2. This is the most subtle aspect of applying our theory

in practice. Later in the chapter, Section 3.7 and Section 3.4, we discuss alternative

notions of product used in the literature and how they fit into our setting.

3.2.1 Counterexample to the product theorem

In this section we give an example of a semidefinite programming instance where the

product theorem does not hold. For a symmetric and square matrix M , let λ1(M)

denote the largest eigenvalue of M . The largest eigenvalue of M , in contrast to the

similar notion of spectral norm, is not multiplicative. Indeed, let M be a matrix with

maximal eigenvalue 1 and minimal eigenvalue −2. Then, using the fact that under

19

the tensor product the spectra of matrices multiply, we get that M ⊗M has maximal

eigenvalue 4 6= 12 (the corresponding spectral norms would be 2 forM and 4 forM⊗M).

Proposition 3.2.3. The largest eigenvalue of a symmetric matrix can be formulated

as the optimal value of a semidefinite program. This program does not obey a product

theorem.

Proof. First notice that

λ1(M) = min{λ | λI −M � 0}. (3.2.1)

This is the formulation of the dual (minimization) instance. Observe that m = 1,A =

(I), J = M and b = 1. For the sake of completeness we also describe the primal

problem:

λ1(M) = max{M •X | Tr(X) = 1, X � 0}. (3.2.2)

The product instance associated with two matrices, M1 and M2, has parameters I =

I1 ⊗ I2, M = M1 ⊗ M2 and b = 1. Since I is the identity matrix of appropriate

dimensions, the optimum value of this instance is exactly the maximal eigenvalue of

M1⊗M2. On the other hand, as described in the beginning of this section, the maximal

eigenvalue program does not obey a product theorem.

As remarked above, the spectral norm of a symmetric matrix M , that is, the largest

eigenvalue of M in magnitude, does obey a product theorem and is described by a very

similar semidefinite program:

‖M‖ = max{|M •X| | TrX = 1, X � 0}. (3.2.3)

The reader might think that a product theorem can always be rescued by taking

the absolute value of the objective function, Next we give a counterexample to this

conjecture. Consider a very simple linear program (it is also a semidefinite program):

max x1 − x2

x1 − x2 + x3 = 2

x ≥ 0.

20

Here x is the vector (x1, x2, · · · , xn). Clearly the value of this program is 2; since

x3 is non-negative. Now if we take the product of this program with itself

maxx1,1 − x1,2 − x2,1 + x2,2

x1,1 − x1,2 − x2,1 + x2,2 + x3,1 + x1,3 + x3,3 − x2,3 − x3,2 = 4

x ≥ 0.

Now, the value of the objective function can be raised indefinitely by raising the

value of x2,3. So the value of the program is not 4. The product program would have

been the same, if we had taken the product in terms of semidefinite representation. So

taking the absolute value does not save the product theorem.

3.2.2 The product solution

In Section 3.2.1 we saw an example of an affine semidefinite program that does not

obey a product rule. Therefore, for the product rule to hold we need to look for proper

subclasses of all affine instances.

Let π1 and π2 be two affine instances, with optimal solutions X1 and X2 for the

primal, and optimal solutions y1 and y2 for the dual. For our entire discussion, we

will assume that so-called strong duality holds for π1 and π2 (see [BV04, Ali95], Sec-

tion 2.3.1). This implies that α(π1) = α(π∗1), i.e., the primal and dual values agree, and

similarly for π2 and π1 ⊗ π2.

The first instinct for proving the product theorem would be to show if X1,X2 are

optimal solutions to π1, π2 respectively, then X1 ⊗ X2 is a solution of the product

instance. This solution X1 ⊗ X2 has objective value α(π1)α(π2), which gives a lower

bound on α(π1 × π2). Similarly, if y1, y2 are optimal solutions to π∗1, π
∗
2 ; then y1 ⊗ y2 is

a solution of the dual of the product instance. This will give the lower bound of same

value α(π1)α(π2). The above two potential solutions for the product instance and its

dual we call the product-solution and the dual product-solution. In other words, in order

to show that the product rule holds for π1 and π2 it is sufficient to prove:

1. Feasibility of the product-solution: (A1 ⊗A2)(X1 ⊗X2) = b1 ⊗ b2;

21

2. Feasibility of the dual product-solution: (y1 ⊗ y2)
T (A1 ⊗A2)− J1 ⊗ J2 � 0;

3. Objective value of the primal product-solution: (J1 ⊗ J2) • (X1 ⊗ X2) = (J1 •

X1)(J2 •X2);

4. Objective value of the dual product-solution: (y1 ⊗ y2)
T (b1 ⊗ b2) = (yT1 b1)(y

T
2 b2).

We also need that X1 ⊗X2 � 0, but this is automatic as X1,X2 � 0. Which of 1–4 fail

to hold in general? Basic linear algebra gives that conditions 1, 3 and 4 hold without

any further assumption. This immediately gives

Proposition 3.2.4. Let π1 and π2 be two affine instances. Then α(π1 × π2) ≥

α(π1)α(π2).

3.3 Sufficient conditions for a product theorem

From the previous section, any property of (A, J, b) which implies Condition 2 (dual

feasibility) will be a sufficient condition for the product theorem to hold. In this section

we present some sufficient conditions for dual feasibility.

The condition for dual feasibility is (y1 ⊗ y2)
T (A1 ⊗A2)− J1 ⊗ J2 � 0. We already

know that yT1 A1 − J1 � 0 and yT2 A2 − J2 � 0. Note that it is not true in general

that A � B and C � D implies A ⊗ C � B ⊗ D. One can take the very simple

counterexample with scalars where A,C = 1 and B,D = −2

Let us assume, however, that yT1 A1+J1 and y
T
2 A2+J2 are also positive semidefinite.

Then

(yT1 A1−J1)⊗(yT2 A2+J2) = yT1 A1⊗yT2 A2−J1⊗yT2 A2+y
T
1 A1⊗J2−J1⊗J2 � 0. (3.3.1)

Also

(yT1 A1+J1)⊗(yT2 A2−J2) = yT1 A1⊗yT2 A2−yT1 A1⊗J2+J1⊗yT2 A2−J1⊗J2 � 0. (3.3.2)

Taking the average of the right hand sides of Equations (3.3.1) and (3.3.2) we obtain

22

that

yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2 � 0.

⇒ (y1 ⊗ y2)
T (A1 ⊗A2)− J1 ⊗ J2 � 0.

which is the desired Condition 2.

Note that in this proof, we only assumed the positivity of yTc Ac + Jc � 0. That

gives us our first sufficient condition.

Lemma 3.3.1. Let π1, π2 be semidefinite programs for which strong duality holds. Let

y1, y2 be optimal solutions to the dual formulations π∗1, π
∗
2 respectively. If yTc Ac+Jc � 0

for both c ∈ {1, 2}, then the product theorem holds for π1 and π2.

Unfortunately, this condition depends on an optimal dual solution of the semidefinite

instance, something that we generally will not know. Now we will derive two less

general sufficient conditions that have the advantage of only depending upon Jc,Ac, bc

for c ∈ {1, 2}, the parameters of our semidefinite instance.

3.3.1 Positivity of the matrix J

We saw above a counterexample to the statement that A � B and C � D implies

A ⊗ C � B ⊗D. In the case of scalars, however, if B,D ≥ 0, then the implication is

true. Our first simple condition is based on the analogous fact that if B,D � 0 then

the implication also holds.

Theorem 3.3.2. Assume that both J1 and J2 are positive semidefinite. Then α(π1 ×

π2) = α(π1)α(π2).

Proof. As we noted in Section 3.2.2 it is sufficient to show that Condition 2 of that

section holds. By our assumptions on y1 and y2 we have that y
T
1 A1−J1 and yT2 A2−J2

are positive semi-definite. So yT1 A1 + J1 and yT2 A2 + J2 are also positive semi-definite,

since they arise as sums of two positive matrices (yT1 A1 + J1 = (yT1 A1 − J1) + 2J1).

Hence by Lemma 3.3.1, condition 2 is satisfied.

23

The Lovász theta number [Lov79] is an example that falls into this category. Con-

sider the definition of Lovász theta number in [Sze94]. Here E denotes the all ones

matrix.

max
X

E •X

Tr(X) = 1

Xi,j = 0 for all edges (i, j)

X � 0.

The objective matrix is the all ones matrix and so is positive semidefinite. The objective

matrix remains positive semidefinite even if we consider the weighted version of the theta

number [Knu94]. In the weighted case, J is of the form wwT for some column vector

w.

3.3.2 All A(k) are block diagonal, and J is block anti-diagonal

We now look for other situations where the assumption of Lemma Lemma 3.3.1 holds.

Following the lead of Cleve et al. [CSUU07], we can identify another sufficient condition

which arises surprisingly often in practice.

For this condition, we need to introduce the notions of what we call “block diagonal”

and “block anti-diagonal” matrices. An n-by-n matrix A is block diagonal, if we can

partition [n] into two sets (C1, C2), such that, A[i, j] = 0 whenever i, j do not lie in the

same set. Similarly we say that A is block anti-diagonal, if there is a partition of [n] into

two sets (C1, C2), such that, A[i, j] = 0 whenever i, j lie in the same set. Pictorially,

these matrices look as follows:

Block anti-diagonal Block diagonal

 0 Q

QT 0

 P 0

0 Q

24

Lemma 3.3.3. Let A,B be n-by-n symmetric matrices such that A is block diagonal

and B is block anti-diagonal with respect to the same partition of [n]. If A − B � 0

then A+B � 0.

Proof. Let C1 ⊎ C2 = [n] be a partition for which A is block diagonal and B is block

anti-diagonal. Define the diagonal matrix D as D[i, i] = 1 if i ∈ C1 and D[i, i] = −1 if

i ∈ C2. Note that D is an orthogonal matrix and DT (A−B)D = A+B. Thus A−B

and A+B have the same spectra. Hence one is positive semidefinite if and only if the

other is.

Now consider all the matrices A(k) to be block-diagonal and J to be block anti-

diagonal. For those instances, from Lemma 3.3.1 and Lemma 3.3.3, product rule will

hold. We can generalize it further for case when J is of the form J1 +J2, where J1 is of

the form as before and J2 is positive semidefinite (yTA should still be block diagonal).

Notice that the block diagonality of yTA automatically holds if A = (A(1), . . . , A(m)),

where all A(k) are block diagonal with respect to the same partition. We summarize

the findings of this section in the following theorem:

Theorem 3.3.4. Let πc = (Ac, Jc, bc) for both c ∈ {1, 2} be affine instances for which

strong duality holds and such that:

1. Ac = (A
(1)
c , . . . , A

(m)
c), where each A

(k)
c is block diagonal.

2. Jc = J ′
c + J ′′

c where J ′
c is block anti-diagonal and J ′′

c � 0 for c ∈ {1, 2}.

All A
(i)
1 (J ′

1) matrices are block diagonal (antidiagonal) with respect to the same partition

and similarly for A
(i)
2 (J ′

2). Then the product theorem holds for π1 and π2.

Proof. Let y1, y2 be optimal solutions for π∗1, π
∗
2 respectively. From the feasibility of

yc and J ′′
c � 0, we have yTc Ac − J ′

c � 0. Also Notice that yTc Ac is block diagonal

because each A
(i)
c is block diagonal. Thus we can apply Lemma 3.3.3 to obtain yTc Ac+

J ′
c � 0. Finally, this implies yTc Ac + Jc � 0 and we obtain the theorem by applying

Lemma 3.3.1.

25

The product theorem of Cleve et al. [CSUU07] for the quantum value of XOR games

falls under this condition. The SDP for the quantum value of a 2-prover nonlocal XOR

game can be written as:

max

 0 1

2A

1
2A

T 0

 •X

s.t. diag(X) = e

X � 0

Here A is some cost matrix, but the whole objective matrix is anti block diagonal.

The constraints are only on diagonal (so A is block diagonal). Note that the product

operation defined in [CSUU07] is not a true tensor product as we use here, but rather

another kind of product, called “bipartite tensor product”. It is relatively straight-

forward, however, to see that the value of the programs under these two notions of

product agree and this is nicely explained in [KRT07]. For the sake of completeness,

in Appendix A, we include the definition and show that our product Theorem 3.3.4

implies product theorem for “bipartite tensor product”.

3.3.3 A generalized condition

Notice the condition given in Theorem Theorem 3.3.4. One seemingly unnatural prop-

erty of the condition that A is block diagonal and J is block anti-diagonal, however,

is that it depends on the basis in which A and J are presented. On the other hand,

obeying a product theorem intuitively seems like a basis independent property. This

intuition is difficult to formalize in our framework as even the property of being posi-

tive semidefinite depends on the basis—while A and SAS−1 have the same eigenvalues,

SAS−1 is not necessarily symmetric if A is. Nonetheless, this line of thinking motivates

the following generalization:

Lemma 3.3.5. Suppose that A−B � 0. If there exists a matrix S such that

• SAST = A

• B + SBST � 0.

26

Then A+B � 0.

First let us see how this generalizes our previous two conditions. To obtain the

case where J is positive semidefinite (Theorem 3.3.2), we may simply take S to be

the identity matrix. For the case where the matrices A are block diagonal and J is

block antidiagonal with respect to the same partition (Theorem 3.3.4), we may take

S to be defined as the diagonal matrix D in the proof of Lemma 3.3.3. In this case

J + SJST = 0.

Now we prove the lemma.

Proof. By assumption A − B � 0, so let XXT = A − B be a factorization. Now

consider S(A − B)ST . This matrix is also positive semidefinite as it can be factored

as SX(SX)T . Using now the assumption that SAST = A we have A − SBST � 0.

Finally, if B + SBST � 0 then we can add this to A− SBST to obtain the conclusion

of the lemma.

We summarize the sufficient conditions given in this section through the figure below

(Figure 3.1). Every node in the tree is a sufficient condition in itself. Every children

is derived from the parent condition. The root node in the tree (Lemma 3.3.1) is the

most basic and strongest among the four. This condition implies all the others as they

all take this approach to showing the product theorem. Next is the condition from

Lemma 3.3.5. The two leaves can be derived from this node. It is an interesting open

question to find other conditions which can be derived from this Lemma 3.3.5.

3.4 Nonnegativity constraints

Two examples in the literature, the product theorem of Feige and Lovász [FL92] for

a semidefinite relaxation of the value of interactive games and the product theorem of

[LSŠ08] for the discrepancy bound in communication complexity, still do not fit into

the framework we have developed. The reason is that these programs do not only

contain equality constraints, but also nonnegativity constraints. They are programs of

27

yTA+ J � 0 (3.3.1)

J � 0 (3.3.2)

J = J ′ + J ′′, J ′ block-antidiagonal, J ′′ � 0
A block diagonal (3.3.4)

∃S s.t. SAS∗ = A, J + SJS∗ � 0 (3.3.5)

Figure 3.1: Sufficient conditions

the following form:

α(π) = max
X

J •X

s.t. A •X = b

B •X ≥ 0

X � 0

Here both A and B are vectors of matrices, and 0 denotes the all 0 vector.

Of course, a program of this form can be equivalently written as an affine program

by suitably extending X and modifying A accordingly to enforce the B •X ≥ 0 con-

straints through the X � 0 condition. Transforming the format of the program in this

way, however, can lead to undesired constraints in the product of instances. The some-

what subtle point is that two equivalent programs do not necessarily lead to equivalent

product instances. We explicitly separate out the non-negativity constraints here so

that we can define the product as follows: for two programs, π1 = (J1,A1, b1,B1) and

π2 = (J2,A2, b2,B2) we say

π1 × π2 = (J1 ⊗ J2,A1 ⊗A2, b1 ⊗ b2,B1 ⊗B2).

Notice that the equality constraints and non-negativity constraints do not interact in

the product, which is usually the intended meaning of the product of instances. Indeed,

this is the notion of product desired in [FL92, LSŠ08].

28

It is again straightforward to see that α(π1 × π2) ≥ α(π1)α(π2), thus we focus on

the reverse inequality.

Theorem 3.4.1. Let π1 = (J1,A1, b1,B1) and π2 = (J2,A2, b2,B2) be two semidefinite

programs for which strong duality holds. Suppose the following two conditions hold:

1. (Bipartiteness) There is a partition of rows and columns into two sets, such that,

with respect to this partition, Ji and all the matrices of Bi are block anti-diagonal,

and all the matrices of Ai are block diagonal, for i ∈ {1, 2}.

2. There are non-negative vectors u1, u2 such that J1 = uT1 B1 and J2 = uT2 B2.

Then α(π1 × π2) ≤ α(π1)α(π2).

Proof. To prove the theorem it will be useful to consider the dual formulations of π1

and π2. Dualizing in the standard fashion, we find

α(π1) =min
y1,z1

yT1 b1

s.t. yT1 A1 − (zT1 B1 + J1) � 0

z1 ≥ 0

and similarly for π2. Fix y1, z1 to be vectors that realize this optimum for π1 and

similarly y2, z2 for π2. The key observation of the proof is that if we can also show that

yT1 A1 + (zT1 B1 + J1) � 0 and yT2 A2 + (zT2 B2 + J2) � 0 (3.4.1)

then we will be done. Let us for the moment assume Equation 3.4.1 and see why this

is the case.

If Equation 3.4.1 holds, then we also have

(
yT1 A1 − (zT1 B1 + J1)

)
⊗
(
yT2 A2 + (zT2 B2 + J2)

)
� 0

(
yT1 A1 + (zT1 B1 + J1)

)
⊗
(
yT2 A2 − (zT2 B2 + J2)

)
� 0

Averaging these equations, we find

(y1 ⊗ y2)
T (A1 ⊗A2)−

(
(zT1 B1 + J1)⊗ (zT2 B2 + J2)

)
� 0.

29

Let us work on the second term. We have

(zT1 B1 + J1)⊗ (zT2 B2 + J2)

= (z1 ⊗ z2)
T (B1 ⊗B2) + zT1 B1 ⊗ J2 + J1 ⊗ zT2 B2 + J1 ⊗ J2

= (z1 ⊗ z2)
T (B1 ⊗B2) + (z1 ⊗ u2)

TB1 ⊗B2 + (u1 ⊗ z2)
TB1 ⊗B2 + J1 ⊗ J2.

Thus if we let v = z1 ⊗ z2 + z1 ⊗u2 +u1 ⊗ z2 we see that v ≥ 0 as all of z1, z2, u1, u2

are, and also

(y1 ⊗ y2)
T ⊗ (A1 ⊗A2)− (vT (B1 ⊗B2) + J1 ⊗ J2) � 0.

Hence (y1⊗ y2, v) form a feasible solution to the dual formulation of π1×π2 with value

(y1 ⊗ y2)(b1 ⊗ b2) = α(π1)α(π2).

It now remains to show that Equation 3.4.1 follows from the condition of the the-

orem. Given yA− (zTB + J) � 0 and the bipartiteness condition of the theorem, we

will show that yA+ (zTB+ J) � 0. We have that yTA is block diagonal and zTB+ J

is block anti-diagonal with respect to the same partition. So by Lemma 3.3.3, we know

yA+ (zTB+ J) � 0. Now apply this argument to both π1 and π2.

One may find the condition that, J lies in the positive span of B, in the statement

of Theorem 3.4.1, somewhat unnatural. If we remove this condition, however, a simple

counterexample shows that the theorem no longer holds. Consider the program

α(π) =max
X

 0 −1

−1 0

 •X

such that I •X = 1,

0 1

1 0

 •X ≥ 0,X � 0.

Here I stands for the 2-by-2 identity matrix. This program satisfies the bipartiteness

condition of Theorem 3.4.1, but J does not lie in the positive span of the matrices of

B. It is easy to see that the value of this program is zero. The program π×π, however,

has positive value as J ⊗ J does not have any negative entries but is the matrix with

ones on the main anti-diagonal.

30

Note : Theorem 3.4.1 should not be seen as a single theorem. If we look at the

proof strategy closely, it can be extended to SDPs which have two sets of constraints.

In this case one set was = and other was ≥ constraints. We can have any mix of ≥,≤,=

constraints and the corresponding product theorem with required conditions will emerge

from the this proof strategy. We will see one such application in the Section 3.4.2.

3.4.1 Discrepancy

Communication complexity is an ideal model to study direct sum and direct product

theorems. It is simple enough that one can often hope to attain tight results, yet

powerful enough that such theorems are non-trivial and have applications to reason-

ably powerful models of computation. See [KN97] for more details on communication

complexity and its applications. Shaltiel [Sha03] proved a direct product theorem for

communication complexity lower bounds shown by a particular method—the discrep-

ancy method under the uniform distribution. Shaltiel does not explicitly use semidefi-

nite programming techniques, but proceeds by relating discrepancy under the uniform

distribution to the spectral norm, which can be cast as a semidefinite program.

This result was recently generalized and strengthened by Lee, Shraibman, and

Špalek [LSŠ08] who show an essentially optimal direct product theorem for discrepancy

under arbitrary distributions. This result follows the general plan for showing prod-

uct theorems via semidefinite programming: they use a result of Linial and Shraibman

[LS08] that a semidefinite programming quantity γ∞2 (M) characterizes the discrepancy

of the communication matrix M up to a constant factor, and then show that γ∞2 (M)

perfectly products. The semidefinite programming formulation of γ∞2 (M) is not affine

but involves non-negativity constraints. Let us now look at the semidefinite program

describing γ∞2 :

γ∞2 (M) =max
X

M̂ •X such that

X • I = 1

X • Eij = 0 for all i 6= j ≤ m, i 6= j ≥ m

X • (M̂ ◦Eij) ≥ 0 for all i ≤ m, j ≥ m, and i ≥ m, j ≤ m

31

X � 0.

Here Ei,j is the 0/1 matrix with exactly one entry equal to 1 in coordinate (i, j). In

this case, A is formed from the matrices I and Eij for i 6= j ≤ m and i 6= j ≥ m. These

matrices are all block diagonal with respect to the natural partition of M̂ . Further, the

objective matrix M̂ and matrices of B are all block anti-diagonal with respect to this

partition. Finally, we can express M̂ = uTB by simply taking u to be the all 1 vector.

3.4.2 Feige-Lovász

In a seminal paper, Babai, Fortnow, and Lund [BFL91] show that all of non-deterministic

exponential time can be captured by interactive proof systems with two-provers and

polynomially many rounds. The attempt to characterize the power of two-prover sys-

tems with just one round sparked interest in a parallel repetition theorem—the question

of whether the soundness of a two-prover system can be amplified by running several

checks in parallel. Feige and Lovász [FL92] ended up showing that two-prover one-round

systems capture NEXP by other means, and a proof of a parallel repetition theorem

turned out to be the more difficult question [Raz98]. In the same paper, however, Feige

and Lovász also take up the study of parallel repetition theorems and show an early

positive result in this direction. In a two-prover one-round game, the Verifier is trying

to check if some input x is in the language L. The Verifier chooses questions s ∈ S, t ∈ T

with some probability P (s, t) and then sends question s to prover Alice, and question

t to prover Bob. Alice sends back an answer u ∈ U and Bob replies w ∈ W , and then

the Verifier answers according to some boolean predicate V (s, t, u, w). We call this a

game G(V, P), and write the acceptance probability of the Verifier as ω(G). In much

the same spirit as the result of Lovász on the Shannon capacity of a graph, Feige and

Lovász show that if the value of a game ω(G) < 1 then also supk ω(G
k)1/k < 1, for a

certain class of games known as unique games.

The proof of this result proceeds in the usual way: Feige and Lovász first show

that ω(G) can be represented as a quadratic program. They then relax this quadratic

program in the natural way to obtain a semidefinite program with value σ(G) ≥ ω(G).

32

Here the proof faces an extra complication as σ(G) does not perfectly product either.

Thus another round of relaxation is done, throwing out some constraints to obtain a

program with value σ̄(G) ≥ σ(G) which does perfectly product. Part of our motivation

for proving Theorem 3.4.1 was to uncover the “magic” of this second round of relaxation,

and explain why Feige and Lovász remove the constraints they do in order to obtain

something which perfectly products.

Although the parallel repetition theorem was eventually proven by different means

[Raz98, Hol07], the semidefinite programming approach has recently seen renewed in-

terest for showing tighter parallel repetition theorems for restricted classes of games

and where the provers share entanglement [CSUU07, KRT07, BHH+08].

The relaxed program

As mentioned above, Feige and Lovász first write ω(G) as an integer program, and then

relax this to a semidefinite program with value σ(G) ≥ ω(G). We now describe this

program. The objective matrix C is a |S|× |U |-by-|T |× |W | matrix where the rows are

labeled by pairs (s, u) of possible question and answer pairs with Alice and similarly

the columns are labeled by (t, w) possible dialogue with Bob. The objective matrix for

a game G = (V, P) is given by C[(s, u), (t, w)] = P (s, t)V (s, t, u, w). We also define

an auxiliary matrices Bst of dimensions the same as Ĉ, where Bst[(s
′, u), (t′, w)] = 1 if

s = s′ and t = t′ and is zero otherwise.

With these notations in place, we can define the program:

σ(G) =max
X

1

2
Ĉ •X such that

X •Bst = 1 for all s, t ∈ S ∪ T (3.4.2)

X ≥ 0 (3.4.3)

X � 0

We see that we cannot apply Theorem 3.4.1 here as we have global non-negativity

constraints (not confined to the off-diagonal blocks) and global equality constraints (not

confined to the diagonal blocks). Indeed, Feige and Lovász remark that this program

33

does not perfectly product. Also Kempe and Regev ([KR10]) showed that a similar

SDP (slightly tighter with additional orthogonality constraints) does not product.

Feige and Lovász then consider a further relaxation with value σ̄(G) whose program

does fit into our framework. They throw out all the constraints of Equation 3.4.2 which

are off-diagonal, and remove the non-negativity constraints for the on-diagonal blocks

of X, Equation 3.4.3. More precisely, they consider the following program:

σ̄(G) =max
X

1

2
Ĉ •X such that

∑

u,w∈U
|X[(s, u), (s′, w)]| ≤ 1 for all s, s′ ∈ S (3.4.4)

∑

u,w∈W
|X[(t, u), (t′, w)]| ≤ 1 for all t, t′ ∈ T (3.4.5)

X • E(s,u),(t,w) ≥ 0 for all s ∈ S, t ∈ T, u ∈ U,w ∈W

X � 0

Let us see that this program fits into the framework of Theorem 3.4.1. The vector of

matrices B is composed of the matrices E(s,u),(t,w) for s ∈ S, u ∈ U and t ∈ T,w ∈ W .

Each of these matrices is block diagonal with respect to the natural partition of Ĉ.

Moreover, as Ĉ is non-negative and bipartite, we can write Ĉ = uTB for a non-negative

u, namely where u is given by concatenation of the entries of C and CT written as a

long vector.

The on-diagonal constraints given by Equations 3.4.4 and Eq. 3.4.5 are not imme-

diately seen to be of the form needed for Theorem 3.4.1 for two reasons: first, they

are inequalities rather than equalities, and second, they have of absolute value signs.

Fortunately, both of these problems can be easily dealt with.

It is not hard to check that Theorem 3.4.1 also works for inequality constraints

A•X ≤ b. The only change needed is that in the dual formulation we have the additional

constraint y ≥ 0. This condition is preserved in the product solution constructed in

the proof of Theorem 3.4.1 as y ⊗ y ≥ 0.

The difficulty in allowing constraints of the form A • X ≤ b is in fact that the

opposite direction α(π1 × π2) ≥ α(π1)α(π2) does not hold in general. Essentially,

what can go wrong here is that a1, a2 ≤ b does not imply a1a2 ≤ b2. In our case,

34

however, this does not occur as all the terms involved are positive and so one can show

σ̄(G1 ×G2) ≥ σ̄(G1)σ̄(G2).

To handle the absolute value signs we consider an equivalent formulation of σ̄(G).

We replace the condition that the sum of absolute values is at most one by constraints

saying that the sum of every possible ± combination of values is at most one:

σ̄′(G) =max
X

1

2
Ĉ •X such that

∑

u,w∈U
(−1)xuwX[(s, u), (s′, w)] ≤ 1 for all s, s′ ∈ S and x ∈ {0, 1}|U |2

∑

u,w∈W
(−1)xuwX[(t, u), (t′, w)] ≤ 1 for all t, t′ ∈ T and x ∈ {0, 1}|W |2

X • E(s,u),(t,w) ≥ 0 for all s ∈ S, t ∈ T, u ∈ U,w ∈W

X � 0

This program now satisfies the conditions of Theorem 3.4.1. It is clear that σ̄(G) =

σ̄′(G), and also that this equivalence is preserved under product. Thus the product

theorem for σ̄(G) follows from Theorem 3.4.1 as well.

3.5 Extension to linear programming

It is known that linear programming is a special case of semidefinite programming.

So it is natural to ask what these conditions tell us about product rules in linear

programming.

Consider a standard linear program π(c,A, b):

max
x

cTx

s.t. ∀i ∈ [m] aTi x = bi

x ≥ 0

Where ai are the rows of matrix A, so the middle constraint is Ax = b.

Let C be the diagonal matrix, whose diagonal is c. Similarly for every i, define the

diagonal matrix Ai, with ai as its diagonal. Then the above linear program can be

35

written as the SDP

max
X

C •X

s.t. ∀i ∈ [m] Ai •X = bi

X � 0

If there is a solution x to the linear program, then the diagonal matrix X with x as

the diagonal, is a solution of the above SDP with the same value. Similarly, if there is

a solution matrix X of SDP, its diagonal x will be a solution of the LP with the same

objective value. So these two programs are equivalent.

The condition discussed in Section 3.3.1, gives a product rule for linear program-

ming. The matrix C is positive semidefinite if and only if all the coefficients in the

objective vector c are positive. So we get the theorem,

Theorem 3.5.1. Let π1(c1, A1, b1) and π2(c2, A2, b2) be two standard instances of lin-

ear programming. If both objective vectors are entry wise positive, i.e., c1, c2 ≥ 0, then

α(π1 ⊗ π2) = α(π1)α(π2),

where α denotes the optimum of the linear program.

The condition discussed in Section 3.3.2 cannot be extended to linear programming.

Since when you convert an LP into an SDP, the resulting matrices will be diagonal

matrices.

3.6 A necessary condition for dual feasibility

In this section, we turn our attention to necessary conditions for a product theorem

to hold. If we restrict our attention to an instance and its square, we are able to give

a condition which is necessary and sufficient, but is somewhat unsatisfactory as the

expression explicitly refers to the optimal dual solutions y1 and y2, like dual feasibility

itself. It remains a task for the future to develop a necessary and sufficient condition

whose criterion is formulated solely in terms of the problem instances π1 and π2.

36

Assume y1, y2 to be the optimal dual solutions for π1, π2. We know that yT1 A1 −

J1, y
T
2 A2 − J2 are positive semidefinite. Consider the trivial case when both of them

are 0. Barring this trivial case when both of them are zero, we can show that sufficient

condition given in Lemma 3.3.1 (yTc Ac + Jc � 0) is partially necessary. More formally

Theorem 3.6.1. For two semidefinite programming instances π1 and π2, let y1 and

y2 be optimal solutions of π∗1 and π∗2, respectively. Further, assume that at least one

of yTc Ac − Jc is not identically zero for c ∈ {1, 2}. Then y1 ⊗ y2 is a feasible solution

of the dual of the product instance (i.e., Condition 2 of Section 3.2.2 holds) only if at

least one of yTc Ac + Jc � 0 for c ∈ {1, 2}.

Proof. We will assume that yTc Ac + Jc � 0 for both c ∈ {1, 2} and show that this

implies that y1 ⊗ y2 is not dual feasible for π1 × π2. Lets divide the proof into 3 cases

depending upon whether any yTc Ac − Jc, c ∈ {0, 1} is strictly zero.

Case 1: yT1 A1 − J1 = yT2 A2 − J2 = 0.

By our assumption in the theorem, this case can’t happen. But for the sake of

completeness, in this case (y1⊗ y2)
T (A1 ⊗A2)− J1 ⊗ J2 = 0, so y1 ⊗ y2 is dual feasible

for π∗1 × π∗2 and the product theorem holds. Note that it is not necessary for one of

yT1 A1 + J1, y
T
2 A2 + J2 to be positive semidefinite.

Case 2: Exactly one of yTc Ac − Jc is zero (say yT1 A1 − J1).

Then (yT1 A1 − J1)⊗ (yT2 A2 + J2) is zero. Hence

2(yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2) = (yT1 A1 + J1)⊗ (yT2 A2 − J2), (3.6.1)

and y1 ⊗ y2 is dual feasible if and only if yT1 A1 + J1 is positive semidefinite.

Case 3: None of yTc Ac − Jc is zero.

By our assumption that yTc Ac + Jc � 0, we have vectors vc, such that vTc (y
T
c Ac +

Jc)vc < 0 for both c ∈ {1, 2}. As y1, y2 are dual feasible, we also know that vTc (y
T
c Ac −

Jc)vc ≥ 0 for both c ∈ {1, 2}. We would actually like this second inequality to be strict.

Claim 3.6.2. There exist vectors wc, s.t.,

wT
c (y

T
c Ac + Jc)wc < 0, wT

c (y
T
c Ac − Jc)wc > 0

37

Proof. Suppose wc = vc does not salsify these conditions. First observe that

yTc Ac − Jc � 0

⇒ ∃B s.t. yTc Ac − Jc = BBT

⇒ Bv = 0 (Since (yTc Ac − Jc)vc = 0)

⇒ (yTc Ac − Jc)vc = 0 c ∈ {1, 2} (3.6.2)

Secondly, we know that yTc Ac − Jc � 0 and not the all zero matrix. Then there

exist vectors uc for both c ∈ {1, 2}, such that uTc (y
T
c Ac − Jc)uc > 0.

Now, let wc = vc + δcuc, for some parameter δc. From Equation 3.6.2 and ap-

propriately small δ, we obtain wT
c (y

T
c Ac + Jc)wc < 0 and wT

c (y
T
c Ac − Jc)wc > 0 for

c = 1, 2.

With these new wc’s from Claim 3.6.2, construct w = w1 ⊗ w2. Then

0 > wT ((yT1 A1 − J1)⊗ (yT2 A2 + J2))w

= wT (yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2 − J1 ⊗ yT2 A2 + yT1 A1 ⊗ J2)w

= wT (yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2)w + wT (yT1 A1 ⊗ J2 − J1 ⊗ yT2 A2)w

By similar argument, considering now the inequality

wT ((yT1 A1 + J1)⊗ (yT2 A2 − J2))w < 0,

we can show that

wT (yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2)w + wT (−yT1 A1 ⊗ J2 + J1 ⊗ yT2 A2)w < 0

By averaging the two inequalities we get that

wT (yT1 A1 ⊗ yT2 A2 − J1 ⊗ J2)w < 0

which implies that y1 ⊗ y2 is not feasible for π1 × π2.

One might suspect that the full converse of Lemma 3.3.1 holds, i.e., in the case of

the feasibility of y1⊗y2, both yT1 A1+J1 and y
T
2 A2+J2 should be positive semidefinite.

We now show that this is not necessarily the case.

38

Lets return to the example of Section 3.2.1. Recall that in this example, J = M ,

A = (I) and y = λ (the maximal eigenvalue of M). Let M1 be a symmetric matrix

with eigenvalues −2 and 1 and let M2 be a symmetric matrix with eigenvalues 0 and

1. Then y1 = 1 and y2 = 1, so y1 ⊗ y2 = 1, which is a solution of

{minλ | λI −M1 ⊗M2 � 0}, (3.6.3)

even though I +M1 is not positive semidefinite.

3.7 The weak product

A surprising observation about the theta number of Lovász, well described in [Knu94],

is that it is multiplicative with two different notions of products:

Definition 3.7.1 (Strong product “×” of graphs). (u′, u′′) −− (v’,v”) or (u′, u′′) =

(v′, v′′) in G′ ×G′′ if and only if (u′ −− v′ or u′ = v′ in G′) and (u′′ −− v′′ or u′′ = v′′

in G′′).

and

Definition 3.7.2 (Weak product “×w” of graphs). G′ ×w G
′′ = G′ ×G′′.

Recall that ϑ(G) is defined by [Sze94] (by J we denote the matrix with all 1 ele-

ments):

ϑ(G) = max{J •X | I •X = 1; ∀(i, j) ∈ E(G) : Xi,j = 0; X � 0}. (3.7.1)

That is, every edge gives a new linear constraint, increasing m by one. In general,

E(G′ ×w G
′′) ⊇ E(G′ × G′′), because (u′, u′′) −− (v′, v′′) is an edge of G′ ×G′′ if and

only if both of its projections are edges or identical coordinates, but (u′, u′′) 6= (v′, v′′).

On the other hand, (u′, u′′) −− (v′, v′′) is an edge of G′×wG
′′ if and only if there exists

at least one projection which is an edge.

It is easy to see that the constraint in Expression 3.7.1 for ϑ(G′×G′′) has a constraint

for every constraint pair in the corresponding expression for G′ and G′′. So the strong

product is the one that corresponds to our usual product notion that appears in previous

39

sections. In contrast, when we write down Expression 3.7.1 for ϑ(G′ ×w G
′′), we see a

lot of extra constraints.

How do they arise? In general, assume that we know that the product solution

X1⊗X2 is the optimal solution for π1×π2 (which is indeed the case under the conditions

we considered in earlier sections). Assume furthermore that some coordinate i of b1 is

zero. Then A
(i)
1 •X1 = 0. Now we may take any n2×n2 matrix B, and it will hold that

(A
(i)
1 ⊗B) • (X1 ⊗X2) = (A

(i)
1 •X1)(B •X2) = 0.

Therefore adding matrices of the form A
(i)
1 ⊗B to A1 ⊗A2 and setting the the corre-

sponding entry of the longer b vector of the product instance to zero will not influence

the objective value. The same can be said when the roles of π1 and π2 are exchanged.

We can easily see that the weak product in the case of the theta number arises this

way. What equations we wish to add to the product system this way is a matter of taste,

and we believe it depends on the specific class of semidefinite programming instances

under study. We summarize the finding of this section in the following proposition

Proposition 3.7.3. Assume that for affine instances π1 and π2 the product rule holds.

Then if we define a system π1×w π2 that we call “weak product” by conveniently adding

an arbitrary number of new constrains to the system that follow the construction rules

described above (in particular, every added constraint should be associated with a zero

entry of b1 or b2), the product rule will also hold for the weak product.

The above lemma explains why the theta number of Lovász obeys the product rule

with respect to the weak product of graphs.

3.8 Discussion

We have begun to systematically investigate product theorems for affine instances of

semidefinite programming. Our theorems are able to explain many of the semidefinite

program product theorems in the literature, including [Lov79, FL92, CSUU07, KRT07,

LSŠ08]. This list of examples allows us to conclude that we have hit upon a basic

research topic with immediate and multiple applications in computer science. Indeed,

40

we hope that the framework we have developed will encourage further applications of

the method of proving product theorems via semidefinite programming.

While the sufficient conditions given here are able to explain many of the examples

in the literature, we still feel that such a natural problem of when semidefinite programs

obey a product rule deserves further research to obtain a more elegant and cohesive

mathematical theory.

Another direction of research is to try for more general composition theorems rather

than just product theorems. This is motivated by the common setting in boolean

function complexity where, say, one has a lower bound on the complexity of f :

{0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, and would like to obtain a lower bound

on (f ◦ g)(~x) = f(g(x1), . . . , g(xn)). What we have studied so far in looking at ten-

sor products corresponds to the special cases where f is the PARITY or the AND

function, depending on whether the objective matrix is a sign matrix or a 0/1 valued

matrix. One example of such a general composition theorem is known for the adver-

sary method, a semidefinite programming quantity which lower bounds quantum query

complexity. There it holds that Adv(f ◦g) ≥ Adv(f)Adv(g) [Amb03, HLŠ07]. It would

be interesting to develop a theory to explain these cases as well.

41

Chapter 4

Quantum query complexity

Quantum query complexity measures the number of coherent, black-box queries to the

input string needed to evaluate a function. Many quantum algorithms can be formulated

in the query model, and the model has the further advantage that strong lower bounds

can often be shown.

One of the main techniques for placing lower bounds on quantum query complexity

is the adversary method. The origins of the adversary bound can be traced to the hy-

brid argument of Bennett et al.[BBBV97]. Ambainis developed the adversary method

proper[Amb02] and subsequently many alternative formulations were given[HNS02,

BS04, Amb06, Zha05, BSS03, LM04]—all later shown to be equivalent[ŠS06]. Finally,

the bound was modified to allow negative weights, resulting in a strictly stronger bound

known as the general adversary bound[HLŠ07]. The general adversary bound of a func-

tion f , which we will denote as Adv±(f), can be written as a semi-definite program

(SDP), and behaves well under function composition.

A recent sequence of works [FGG08, CCJY09, ACR+10, RŠ08] has culminated in

showing that the general adversary bound characterizes the bounded-error quantum

query complexity of a boolean function, up to a constant factor[Rei10a, Rei10b, Rei10c].

Our work completes this picture by showing that, up to a constant factor, the general

adversary method characterizes the bounded-error quantum query complexity of any

function whatsoever, boolean or non-boolean, partial or total.

Theorem 4.0.1. For finite sets C and E, and D ⊆ Cn, let f : D → E. Then

Q(f) = Θ
(
Adv±(f)

)
. (4.0.1)

Compared to the boolean case, the non-boolean case presents new challenges. What

42

emerges from our work is that for upper bounds it is key to use a slightly different

SDP than the adversary bound. When phrased as a minimization problem, this new

program, which we call witness size, can be viewed as the general adversary bound

with additional constraints. While the adversary bound only has constraints on input

pairs x, y with f(x) 6= f(y), the witness size has constraints on all pairs including those

where f(x) = f(y). These additional constraints are crucial for the construction of our

algorithm.

From this description it is clear that the witness size value will be at least as large

as the general adversary bound. We show the lucky fact that it can be at most a factor

of two larger. For a boolean function, the witness size SDP value equals the least span

program witness size, a complexity measure on boolean functions that has been shown

to equal the general adversary bound [Rei09, Rei10b].

Our algorithm essentially runs a quantum walk on a certain weighted bipartite graph

constructed from a solution to the witness size SDP. Figure 4.1 shows an example.

Compared to the graphs used for evaluating boolean functions, there are two main

new features. To allow for a non-boolean input alphabet, we add certain weighted star

graphs (dashed) depending on the input letters instead of single dangling edges. To

accommodate non-boolean output, we have multiple output vertices instead of just one.

The edges are weighted according to the witness size SDP solution instead of according

to the general adversary bound SDP.

In our second result, we show that quantum query complexity possesses a remark-

able algorithmic property, Q
(
f(g(x1), . . . , g(xn))

)
= O

(
Q(f)Q(g)

)
for any compatible

functions f, g. This was previously only known in the boolean case. This result fol-

lows by showing that the witness size obeys such a composition rule. Again the extra

constraints in the witness size program prove crucial in this proof. Extending a result

in[HLŠ07], we also show that Q
(
f(g(x1), . . . , g(xn))

)
= Ω

(
Q(f)Q(g)

)
whenever the

output of g, and therefore input of f , is boolean.

Many well-studied functions in quantum query complexity, like element distinct-

ness [BDH+00, Shi02, Amb07, CE05, MSS05] and the ordered search problem [FGGS99,

HNS02, CLP07, BOH07, CL08], have non-boolean input or output. It is our hope that

43

Figure 4.1: An example graph G(x) for a function f(x1x2) = x2 mapping D =

{0A, 0B, 1C} ⊂ {0, 1} × {A,B,C} to E = {A,B,C}. Our algorithm essentially runs

a quantum walk on the vertices of this bipartite graph, starting at |ø〉. The walk

converges, on average, to an eigenvalue-zero eigenvector supported on the larger, red

vertices, after which measuring the vertex has a good probability of giving output ver-

tex f(0B) = B. (In general, there will be many more vertices in the last two levels from

ø.) The dashed lines are added to the graph G to define G(x), shown for input x = 12.

The details of this construction are given in Section 4.4.

our characterization can help with problems like finding an explicit optimal adversary

lower bound for element distinctness, showing that the quantum complexity of ordered

search is (1/π) ln(n), or deriving new algorithms for other non-boolean functions.

4.1 Definitions

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. As discussed before, for two

matrices A, B of the same size, A ◦B denotes their entry wise product, also known as

Hadamard or Schur product.

44

For a finite set X, let CX be the Hilbert space C|X| with orthonormal basis {|x〉 :

x ∈ X}. For vector spaces V and W over C, let L(V,W) denote the set of all linear

transformations from V into W , and let L(V) = L(V, V). ‖A‖ is the spectral norm of

an operator A and ‖A‖tr is the trace norm of A, that is the sum of the singular values

of A.

A weighted bipartite graph G can be specified by its weighted biadjacency matrix

BG. G has a vertex for every row and for every column of BG, and edges between the

row and column vertices have weights specified by the matrix entries. The weighted

adjacency matrix of G is

AG =

 0 BG

B†
G 0

 . (4.1.1)

4.1.1 Quantum query complexity

As with the classical model of decision trees, in the quantum query model, we wish

to compute some function f and access the input through queries. The complexity of

f is the number of queries needed to compute f on a worst-case input x. Unlike the

classical case, however, quantum queries can be made in superposition.

For C = {0, 1, . . . , k−1}, a finite set E, and D ⊆ Cn, consider a function f : D → E.

The state of a quantum query algorithm for f resides in a space HQ ⊗ HW where

HQ = C{0,...,n} ⊗ CC is a (n + 1)k-dimensional query register with basis |j, b〉 for

0 ≤ j ≤ n, 0 ≤ b ≤ k − 1 and HW is a workspace of arbitrary dimension. The query

operator for x, denoted Ox is defined by the action

Ox|j, b〉|w〉 = |j, b + xj mod k〉|w〉 , (4.1.2)

where x0 = 0 by convention. On input x, the algorithm begins in the state |ψ0
x〉 = |0〉|0〉

and alternately applies a unitary operation independent of the input x and either the

query operator Ox or its inverse. The output is determined by a complete orthogonal

set of projectors {Πb}b∈E labeled by the possible outputs of f . The probability the

algorithm outputs b on input x is ‖Πb|ψT
x 〉‖2, where |ψT

x 〉 is the state of the algorithm

on input x after T queries. The 1/3-error quantum query complexity of a function f ,

45

denoted Q(f), is the minimum number of queries made by an algorithm which outputs

f(x) with probability at least 2/3 for every x.

4.1.2 Hadamard product operator norm

We will make use of the γ2 norm, also known as the Hadamard product operator

norm[Bha07]. This norm has been introduced recently to complexity theory by Linial

et al.[LMSS07]. It is defined for a matrix A as

γ2(A) = min
X,Y :XY=A

r(X) c(Y) , (4.1.3)

where r(X) is the largest ℓ2 norm of a row of X and similarly c(Y) is the largest ℓ2

norm of a column of Y . Using this definition it is straightforward to see that γ2 is a

norm. By writing the optimization problem (4.1.3) as an SDP and taking the dual, an

alternative formulation can be derived[LSŠ08]:

γ2(A) = max
X:‖X‖tr=1

‖A ◦X‖tr . (4.1.4)

The following straightforward lemma plays a key role in relating the adversary bound

and witness size, and in the design of our algorithm.

Lemma 4.1.1. Let S be a finite set and S1, . . . , Sk a partition of S. Consider the |S|-

by-|S| matrix M with entries Mi,j = 0 if i, j ∈ Sb for some b, and Mi,j = 1 otherwise.

Then γ2(M) = 2
(
1− 1

k

)
.

Proof. From the formulation of γ2 given by Eq. (4.1.3) it is readily seen that γ2 is

invariant under adding or removing duplicate rows or columns. By removing duplicate

rows and columns, it suffices to consider the k-by-k matrix C with ones everywhere

except for zeros on the diagonal.

It is easy to see that γ2(C) ≤ 2 as C is the difference of the all-ones matrix and the

identity matrix, both of which have γ2 value one. This observation can also be used to

give an explicit factorization of C with value 2 by defining (k + 1)-dimensional vectors

|µi〉 = |0〉 + |i〉 and |νi〉 = |0〉 − |i〉 for i ∈ [k]. Then Cij = 〈µi|νj〉, and each |µi〉, |νi〉

has norm
√
2.

46

One can actually do slightly better than this. We exhibit unit vectors |µi〉, |νi〉 ∈ C[k]

for i ∈ [k] satisfying 〈µi|νj〉 = 1
2

k
k−1Cij . Let α =

√
1
2 −

√
k−1
k . The vectors are defined

as

|µi〉 = −α|i〉+
√
1− α2

√
k − 1

∑

j 6=i

|j〉 |νi〉 =
√

1− α2|i〉+ α√
k − 1

∑

j 6=i

|j〉 . (4.1.5)

For the lower bound we use the formulation given in Eq. (4.1.4). The trace norm

of C is 2(k−1). Taking X to be the matrix with all entries equal to 1/k gives the lower

bound.

4.2 The general adversary bound and witness size SDPs

In this section, we will define two semi-definite programs, the general adversary bound

and the witness size. The former SDP is from[HLŠ07] and the latter SDP naturally

extends a definition in[RŠ08, Rei10b]. We then derive relationships between the SDPs.

For finite setsD and E, andD ⊆ Dn, consider a function f : D → E. Let s ∈ [0,∞)n

be a vector of “costs.” Let F and ∆j , for j ∈ [n], be the matrices in L(CD) defined by

F =
∑

x,y∈D: f(x)6=f(y)

|x〉〈y| ∆j =
∑

x,y∈D:xj 6=yj

|x〉〈y| . (4.2.1)

Thus the x, y entry of F , 〈x|F |y〉, is 1 if and only if f(x) 6= f(y), while the x, y entry

of ∆j is 1 if and only if xj 6= yj.

Definition 4.2.1. The general adversary bound for f , with costs s, is denoted Adv±s (f),

and is the common optimum value of the primal and dual SDPs:

max
{
‖Γ ◦ F‖ : ∀j ∈ [n], ‖Γ ◦∆j ◦ F‖ ≤ sj

}
(4.2.2)

= min
{
max
x∈D

∑

j∈[n]
sj〈x|(Xj + Yj)|x〉 :

∑

j∈[n]
(Xj − Yj) ◦∆j ◦ F = F

}
. (4.2.3)

The witness size for f , with costs s, is denoted wsizes(f), and is the common opti-

mum value of the primal and dual SDPs:

max
{
‖Γ ◦ F‖ : ∀j ∈ [n], ‖Γ ◦∆j‖ ≤ sj

}
(4.2.4)

= min
{
max
x∈D

∑

j∈[n]
sj〈x|(Xj + Yj)|x〉 :

∑

j∈[n]
(Xj − Yj) ◦∆j = F

}
. (4.2.5)

47

In both cases, the maximization is over real, symmetric matrices Γ ∈ L(RD) and

the minimization is over positive semi-definite real matrices Xj , Yj � 0, for j ∈ [n].

When the cost vector s is not specified, it is taken to be ~1 = (1, 1, . . . , 1).

Observe that in the general adversary bound primal SDP Eq. (4.2.2), Γ appears

only as Γ ◦F . Therefore we may restrict Γ = Γ ◦F without loss of generality. A matrix

Γ with Γ = Γ ◦ F is known as an adversary matrix for f .

We will mostly work with the dual of the witness size SDP. Notice that from the

perspective of the dual, a witness size solution satisfies more constraints. Namely, in

the general adversary bound the constraints only involve terms 〈x|(Xj − Yj)|y〉 when

f(x) 6= f(y), whereas in the witness size dual we also have constraints on 〈x|(Xj−Yj)|y〉

when f(x) = f(y). It is this extra property that is key for showing a composition

theorem for witness size and constructing an algorithm for functions with non-boolean

output.

In the case of boolean input it is known for the general adversary bound that the

variables Yj can always be eliminated without cost by suitably modifying the Xj , see

[Rei10b, Theorem 4.4]; the same is true for the witness size program.

For presenting our algorithm and composition results, it will be useful to work with

vector-factorized presentations of the witness size dual SDP in Eq. (4.2.5). Let us define

two vector optimization problems, each equivalent to the witness size.

Lemma 4.2.2. Let As(F) and Bs(F) be defined by

As(F) = min
m∈N,

|µxj〉,|νxj〉∈Cm

max
x∈D

∑

j∈[n]
sj
(
‖|µxj〉‖2 + ‖|νxj〉‖2

)
(4.2.6)

s.t. ∀x, y ∈ D,
∑

j∈[n]:xj 6=yj

(
〈µxj|µyj〉 − 〈νxj |νyj〉

)
= 〈x|F |y〉

Bs(F) = min
m∈N,

|uxj〉,|vxj〉∈Cm

max
x∈D

max
{ ∑

j∈[n]
sj‖|uxj〉‖2,

∑

j∈[n]
sj‖|vxj〉‖2

}
(4.2.7)

s.t. ∀x, y ∈ D,
∑

j∈[n]:xj 6=yj

〈uxj |vyj〉 = 〈x|F |y〉

48

Then

wsizes(f) = As(F) = Bs(F) . (4.2.8)

The corresponding optimization problems with constraints only on pairs x, y ∈ D with

f(x) 6= f(y) have optimal values equal to Adv±s (f).

Proof. The fact that wsizes(f) = As(F) follows from the straightforward factorization

of the positive semi-definite matrices Xj , Yj in the dual form of witness size, Eq. (4.2.5).

To see the equivalence, let 〈x|Xj |y〉 = 〈µxj|µyj〉 and 〈x|Yj|y〉 = 〈νxj|νyj〉.

To show that As(F) = Bs(F), observe that we may assume the vectors in an optimal

solution to As(F) satisfy 〈µxi|νyj〉 = 0 for all x, y ∈ D, i, j ∈ [n]. This means that

‖|µxj〉+ |νxj〉‖2 = ‖|µxj〉 − |νxj〉‖2 = ‖|µxj〉‖2 + ‖|νxj〉‖2. Therefore, optimal solutions

to As(F) and Bs(F) can be related, in both directions, using |uxj〉 = |µxj〉 + |νxj〉,

|vxj〉 = |µxj〉 − |νxj〉.

The values of the witness size and general adversary SDPs differ by at most a factor

of two, and are equal in the case the function has boolean output:

Theorem 4.2.3. For finite sets D and E, and D ⊆ Dn, let f : D → E. The general

adversary bound and witness size SDPs are related by

Adv±s (f) ≤ wsizes(f) ≤ 2
(
1− 1

|E|
)
Adv±s (f) (4.2.9)

and in particular agree when |E| = 2.

Proof. It is clear that Adv±s (f) ≤ wsizes(f) as any adversary matrix which is a feasible

solution for the general adversary primal SDP will also be feasible for the witness size

primal SDP with the same objective value.

For the other direction, use

wsizes(f) = max
{
‖Γ ◦ F‖ : ∀j ∈ [n], ‖Γ ◦∆j‖ ≤ sj

}

≤ max
{
‖Γ ◦ F‖ : ∀j ∈ [n], ‖Γ ◦∆j ◦ F‖ ≤ γ2(F) sj

}

= γ2(F)Adv
±
s (f) .

(4.2.10)

From Eq. (4.2.1), the matrix F satisfies the assumptions of Lemma 4.1.1 with Sb the

preimage of b ∈ E. Therefore, γ2(F) = 2
(
1− 1

|E|
)
, giving our claim.

49

It is instructive to give a separate proof based on the dual formulations, as a sim-

ilar construction will be used both for the algorithm and the composition result. Let

|uxj〉, |vxj〉 be a solution to the program Bs(F) without the constraints on pairs x, y

where f(x) = f(y), and that achieves objective value Adv±s (f). Let |αb〉, |βb〉 for

b ∈ E be vectors witnessing that γ2(G) ≤ 2(1 − 1
|E|), where 〈a|G|b〉 = 1 − δa,b. In

other words, they are the vectors from Eq. (4.1.5) suitably normalized. We claim

that |uxj〉 ⊗ |αf(x)〉, |vxj〉 ⊗ |βf(x)〉 form a feasible solution to the witness size program

Bs(F) given in Eq. (4.2.7), with objective value γ2(F)Adv
±
s (f). Indeed, note that

(〈uxj | ⊗ 〈αf(x)|)(|vyj〉 ⊗ |βf(y)〉) = 〈uxj |vyj〉 if f(x) 6= f(y) and zero otherwise. Further-

more, ‖|uxj〉 ⊗ |αf(x)〉‖ =
√
γ2(F)‖|uxj〉‖ and ‖|vxj〉 ⊗ |βf(x)〉‖ =

√
γ2(F)‖|vxj〉‖.

4.3 Equivalent formulations for witness size

We give few alternate formulations of witness size sdp. They are shown equivalent

using simple properties of a semidefinite program. They are useful in motivating the

algorithm and deriving composition properties. The witness size program can be written

as follows

min
uxi,vxi

max
x

∑

i

‖uxi‖2 + ‖vxi‖2 (4.3.1)

∑

i:xi 6=yi

〈uxi|uyi〉 − 〈vxi|vyi〉 = F [x, y].

We propose three different alternative equivalent formulations:

• This is the first alternate SDP for witness size.

min
µxi,νxi

max
x

∑

i

‖µxi‖2 (4.3.2)

∑

i:xi 6=yi

〈µxi|νyi〉 = F [x, y]

‖|µxi〉‖ = ‖|νxi〉‖.

Proof. Indeed, notice that in the first formulation we may assume without loss

of generality that in an optimal solution the |uxi〉 and |vxi〉 are orthogonal. Then

50

let |µxi〉 = |uxi〉+ |vxi〉 and |νxi〉 = |uxi〉− |vxi〉 to obtain a solution to the second

SDP with the same objective value, since 〈µxi|νyi〉 = 〈uxi|uyi〉 − 〈vxi|vyi〉 and

‖|µxi〉‖2 = ‖|νxi〉‖2 = ‖|uxi〉‖2 + ‖|vxi〉‖2. Conversely, beginning with an optimal

solution |µxi〉, |νxi〉 to the second program, let |uxi〉 = 1
2 (|µxi〉 + |νxi〉), |vxi〉 =

1
2(|µxi〉 − |νxi〉). Then

∑
i 〈uxi|uyi〉 − 〈vxi|vyi〉 =

∑
i(〈µxi|νyi〉 + 〈µyi|νxi〉)/2 =

(F [x, y] + F [y, x])/2 = F [x, y] and ‖|uxi〉‖2 + ‖|vxi〉‖2 = ‖|µxi〉‖2.

• This is the second alternate formulation.

A(F) = min
µxi,νxi

max
x

1

2

∑

i

‖µxi‖2 + ‖νxi‖2 (4.3.3)

∑

i:xi 6=yi

〈µxi|νyi〉 = F [x, y].

Proof. Let us first see that A(F) 4.3.3 is smaller than the original Formula-

tion 4.3.1. Notice that in the original formulation we may assume without loss

of generality that in an optimal solution the uxi and vyi are orthogonal. Let

{uxi}, {vyj} be such a solution. Then let µxi = uxi + vxi and νxi = uxi − vxi. We

see that

〈µxi|νyi〉 = 〈uxi|uyi〉 − 〈vxi|vyi〉

and ‖µxi‖2 = ‖νxi‖2 = ‖uxi‖2 + ‖vxi‖2.

For the other direction, let µxi, νyi be an optimal solution to A(F) 4.3.3. Then

let uxi =
1
2(µxi + νxi) and let vxi =

1
2(µxi − νxi). We have

〈µxi|νyi〉 = 〈uxi|uyi〉 − 〈vxi|vyi〉

and ‖uxi‖2 + ‖vxi‖2 = 1
2(‖µxi‖

2 + ‖νxi‖2).

• We can now write down third alternative formulation where the objective function

is a sum of products.

B(F) = min
µxi,νxi

max
x

∑

i

‖µxi‖‖νxi‖ (4.3.4)

∑

i:xi 6=yi

〈µxi|νyi〉 = F [x, y].

51

Claim 4.3.1. The quantities A(F) and B(F) defined above are equal.

A(F) = B(F)

Proof. By the arithmetic-geometric mean inequality it is clear that B(F) ≤ A(F).

To complete the proof, we will show that B(F) is at least as large as A(F) by

showing that it is at least as large as the primal program of A(F). As we already

know that A(F) is equal to witness size, the primal program is

max
{
‖Γ ◦ F‖ : ∀j ∈ [n], ‖Γ ◦∆j‖ ≤ 1

}

The condition ‖Γ ◦∆j‖ ≤ 1 implies that

∆i =

 I Γ ◦Dj

Γ ◦Dj I

 � 0

for each j.

Suppose that we have a decomposition of F as F =
∑

j XjY
∗
j ◦ Dj . Form the

positive semidefinite matrix

Pi =

XiX

∗
i XiY

∗
i

YiX
∗
i YiY

∗
i

 .

As the Hadamard product of two psd matrices is psd, the matrix
∑

i∆i◦Pi is also

psd. Now we use the following lemma (see [Bha07], Positive Definite Matrices,

Prop. 1.3.2).

Lemma 4.3.2. If
 A X

X∗ B

 � 0

then ‖X‖ ≤ ‖A‖1/2‖B‖1/2.

Applying this to the matrix
∑

i∆i ◦ Pi we find that

‖
∑

i

Γ ◦Di ◦XiY
∗
i ‖ = ‖Γ ◦ F‖ ≤ ‖

∑

i

XiX
∗
i ◦ I‖

1/2
‖
∑

i

YiY
∗
i ◦ I‖

1/2
.

This gives the claim.

52

4.4 The general adversary bound is tight

In this section, we will prove Theorem 4.0.1 by exhibiting an algorithm that evaluates

f . As sketched in Figure 4.1, the idea is to run a quantum walk on a certain graph

constructed using the witness size SDP. The first step is to turn a solution to the dual

SDP formulation given in Eq. (4.2.7) into a more natural geometric object. If the input

alphabet is D = [k], we do this by combining a witness size solution for f with a γ2

solution for the matrix G given by 〈a|G|b〉 = 1− δa,b for a, b ∈ [k].

Indeed let |µi〉, |νi〉 be the vectors given in Eq. (4.1.5), i.e., an optimal γ2 factorization

of G up to normalization. Notice that we can rewrite the sum

∑

j∈[n]:xj 6=yj

〈uxj |vyj〉 =
2(k − 1)

k

∑

j∈[n]
〈uxj |vxj〉〈µxj

|νyj 〉 . (4.4.1)

The point of this transformation is that now the inner product between the vectors
∑

j |j〉|uxj〉|µxj
〉 and 2(k−1)

k

∑
j |j〉|vyj〉|νyj 〉 will equal 〈x|F |y〉. The former vectors will

be used to create our weighted graph, and all the vectors will be used to construct

eigenvalue-zero eigenvectors of the graph. The constraint
∑

j:xj 6=yj
〈uxj |vxj〉 = 〈x|F |y〉

will be required for all input pairs x, y ∈ D.

4.4.1 The algorithm

Let f : D → E, with D ⊆ [k]n. Consider the dual formulation of witness size given by

Eq. (4.2.7) with uniform costs s = ~1. Based on a feasible solution to this SDP with ob-

jective valueW , we will give an algorithm for evaluating f with query complexity O(W).

Note that W ≥ 1 necessarily.

We first construct a weighted bipartite graph G using the vectors |uxj〉, |vxj〉 ∈

Cm from an optimal solution to B~1(F), and the vectors |µi〉, |νi〉 ∈ Ck defined in

Lemma 4.1.1, Eq. (4.1.5). The graph G is between 1 + |D| vertices, which we label by

the elements of {c} ∪ D, and 1 + |E| + knm vertices, which we label by {ø} ∪ E ∪ I,

where I = [n]× [k]× [m].

Let A ∈ L(CI ,C{c}∪D) be given by

A =
∑

x∈D, j∈[n]
|x〉〈j| ⊗ 〈µxj

| ⊗ 〈uxj| . (4.4.2)

53

By extending it with zeros, A can also be seen to act on C{ø}∪E∪I ⊃ CI . Let η = 1/100,

and define vectors |cb〉 ∈ C{c}∪D, for b ∈ E, by

|cb〉 = −|c〉 − η√
W

∑

x∈D:f(x)6=b

|x〉 . (4.4.3)

Let V = ({c} ∪ D) ∪ ({ø} ∪ E ∪ I), and let G be the weighted bipartite graph with

vertex set V and biadjacency matrix BG ∈ L(C{ø}∪E∪I ,C{c}∪D):

BG = |c〉〈ø|+
∑

b∈E
|cb〉〈b|+A . (4.4.4)

An example is shown in Figure 4.1, although for ease of illustration the example uses

the first set of vectors |µi〉, |νi〉 from the proof of Lemma 4.1.1, and not those from

Eq. (4.1.5).

Let ∆ ∈ L(CV) be the orthogonal projection onto the span of all eigenvalue-zero

eigenvectors of the weighted adjacency matrix AG. For an input x ∈ D, let Πx ∈ L(CV)

be the projection

Πx = 1−
∑

j∈[n]
|j〉〈j| ⊗ |µxj

〉〈µxj
| ⊗ 1Cm . (4.4.5)

Finally, let

Ux = (2Πx − 1)(2∆ − 1) . (4.4.6)

Ux consists of the two reflections 2∆ − 1 and 2Πx − 1. The first reflection does not

depend on the input x. The second reflection can be implemented using a call to the

input oracle Ox and its inverse: compute xj, reflect |µxj
〉, then uncompute xj.

Our algorithm is as follows:

Algorithm:

1. Let τ = ⌈109W ⌉. Prepare the initial state 1√
τ

∑
t∈[τ] |t〉 ⊗ |ø〉 ∈ C[τ] ⊗CV .

2. Apply the controlled unitary
∑

t∈[τ] |t〉〈t| ⊗ U t
x.

3. By a measurement, project onto the span of the states 1√
τ

∑
t∈[τ] |t〉⊗ |b〉, for b ∈

E. On success, output the second register. Otherwise, fail.

54

4.4.2 Analysis of the algorithm

Proposition 4.4.1. The algorithm outputs f(x) with probability at least 21%. For any

b ∈ E r {f(x)}, the algorithm outputs b with probability at most 0.2%.

The algorithm makes τ = O(W) queries to Ox. Theorem 4.0.1 therefore follows

from Proposition 4.4.1, by using repetition to improve the success rate. To prove

Proposition 4.4.1, we shall study the spectrum of the unitary Ux. The structure of the

argument is similar to the analysis in[Rei10c].

Let

|φ±〉 =
1√
2

(
|ø〉 ± |f(x)〉

)
. (4.4.7)

For the analysis, it will be useful to introduce two new graphs. Let Π(x) =
∑

j∈[n] |j〉〈j| ⊗ |µxj
〉〈µxj

| ⊗ 1Cm , considered as an element of L(C{ø}∪E∪I ,CI), and let

G(x) and G′(x) be the weighted bipartite graphs with biadjacency matrices

BG(x) =

 BG

Π(x)

 and BG′(x) = BG(x)(1− |φ−〉〈φ−|) . (4.4.8)

The extra Π(x) block in the BG(x) matrix has the effect of attaching disjoint bipar-

tite graphs to G’s column vertices, with the graphs on vertices labeled j each having

biadjacency matrix |µxj
〉〈µxj

|. For example, if the input alphabet is binary, k = 2,

then observe from Eq. (4.1.5) that |µxj
〉〈µxj

| = |x̄j〉〈x̄j |, so G(x) differs from G by the

attachment of dangling weight-one edges to all vertices |j, x̄j , i〉 for j ∈ [n], i ∈ [m], i.e.,

all vertices with a label that disagrees with the input string x.

Based on the constraints of the SDP in Eq. (4.2.7), we can construct eigenvalue-zero

eigenvectors for G(x) and G′(x):

Lemma 4.4.2. The vector

|ψ〉 = |ø〉+ |f(x)〉+ η√
W

2(k − 1)

k

∑

j∈[n]
|j〉 ⊗ |νxj

〉 ⊗ |vxj〉 (4.4.9)

55

satisfies BG(x)|ψ〉 = 0 and |〈φ+|ψ〉|2/‖|ψ〉‖2 > 1− 2η2 = 1− 2 · 10−4.

The vector

|ψ′〉 = − η√
W

|c〉+ |x〉 −
∑

j∈[n]
|j〉 ⊗ |µxj

〉 ⊗ |uxj〉 (4.4.10)

satisfies B†
G′(x)|ψ′〉 = 0 and |〈φ−|B†

G(x)|ψ′〉|2/‖|ψ′〉‖2 > 9/(105W 2).

Proof. By definition of BG(x), we have BG(x)|ψ〉 = (BG|ψ〉,Π(x)|ψ〉). The first term is

BG|ψ〉 =
(
|c〉〈ø|+

∑

b∈E
|cb〉〈b|+

∑

y∈D,j∈[n]
|y〉〈j| ⊗ 〈µyj | ⊗ 〈uyj |

)
|ψ〉

= |c〉+ |cf(x)〉+
η√
W

2(k − 1)

k

∑

y∈D,j∈[n]
|y〉〈µyj |νxj

〉〈uyj |vxj〉

= |c〉+ |cf(x)〉+
η√
W

∑

y∈D

∑

j∈[n]:yj 6=xj

|y〉〈uyj |vxj〉

= 0 ,

(4.4.11)

where in the third equation we used 〈µyj |νxj
〉 is 0 if xj = yj and is otherwise k/(2(k−1)),

and in the last step we used the SDP constraint
∑

j:xj 6=yj
〈uyj |vxj〉 = 1− δf(x),f(y) and

the definition of |cf(x)〉. The second term, Π(x)|ψ〉, evaluates to zero since 〈µxj
|νxj

〉 = 0:

Π(x)|ψ〉 = η√
W

2(k − 1)

k
Π(x)

∑

j∈[n]
|j〉 ⊗ |νxj

〉 ⊗ |vxj〉

=
η√
W

2(k − 1)

k

∑

j∈[n]
〈µxj

|νxj
〉|j〉 ⊗ |µxj

〉 ⊗ |vxj〉 = 0 .

(4.4.12)

Thus indeed BG(x)|ψ〉 = 0. The claim |〈φ+|ψ〉|2/‖|ψ〉‖2 ≥ 2
2+4η2

> 1− 2η2 is a calcula-

tion, using ‖|νxj
〉‖ = 1 and

∑
j ‖|vxj〉‖

2 ≤W .

For the second part of the lemma, we claim that B†
G′(x)|ψ′〉 = 0. Indeed,

B†
G′(x)|ψ

′〉 = (1− |φ−〉〈φ−|)
[
B†

G Π(x)

][− η√
W
|c〉+ |x〉

−∑j |j〉 ⊗ |µxj
〉 ⊗ |uxj〉

]
(4.4.13)

= (1− |φ−〉〈φ−|)
{(

|ø〉〈c|+
∑

b∈E
|b〉〈cb|

)(−η√
W

|c〉+ |x〉
)

(4.4.14)

+A†|x〉 −Π(x)
∑

j∈[n]
|j〉|µxj

〉|uxj〉
}

56

The term A†|x〉 cancels the Π(x) term, while the other terms are proportional to |φ−〉:

(
|ø〉〈c|+

∑

b∈E
|b〉〈cb|

)(−η√
W

|c〉 + |x〉
)
=
(−η√

W

(
|ø〉 −

∑

b∈E
|b〉
)
− η√

W

∑

b:f(x)6=b

|b〉
)

=
−η√
W

(
|ø〉 − |f(x)〉

)
=

−η√
W

√
2|φ−〉 .

(4.4.15)

Finally, use BG(x)|φ−〉 = 1√
2

(
2|c〉+ η√

W

∑
y∈D:f(y)6=f(x) |y〉

)
to calculate

|〈φ−|B†
G(x)|ψ′〉|2/‖|ψ′〉‖2 ≥ 2η2

W /(η
2

W + 1 +W) > 9/(105W 2).

Our main technical tool is the following theorem, abstracted from the analysis

in[Rei10c]:

Theorem 4.4.3 ([Rei10c]). Let G be a weighted bipartite graph with biadjacency matrix

BG ∈ L(CS ,CT). Let ∆ ∈ L(CS ⊕CT) be the orthogonal projection onto the span of

all eigenvalue-zero eigenvectors of the weighted adjacency matrix AG. Let S0 ⊂ S,

and define G0 from G by adding a dangling, weight-one edge to each vertex in S0.

Let Π0 be a diagonal matrix that projects onto all vertices except those in S0. Let

U0 = (2Π0 − 1)(2∆ − 1), and let {|β〉} be a complete set of orthonormal eigenvectors

of U0 with corresponding eigenvalues eiθ(β), θ(β) ∈ (−π, π]. Then,

• If there are unit-length vectors |ψ〉, |φ〉 ∈ CS such that |φ〉 is not supported on

S0, BG0 |ψ〉 = 0 and |〈φ|ψ〉|2 ≥ δ, then U0 has an unit-length, eigenvalue-one

eigenvector |β0〉 with |〈β0|φ〉|2 ≥ δ.

• If there are unit-length vectors |ψ′〉 ∈ CT ⊕CS0 , |φ′〉 ∈ CS such that |φ′〉 is not

supported on S0, (1 − |φ′〉〈φ′|)B†
G0

|ψ′〉 = 0 and |〈φ′|B†
G0

|ψ′〉|2 ≥ δ, then for any

Θ ≥ 0,
∑

β:|θ(β)|≤Θ

|〈β|φ′〉|2 ≤
(
2
√
δΘ +

Θ

2

)2
. (4.4.16)

Our graphs do not quite satisfy the hypotheses of the theorem, since going from G

to G(x) involves adding edges weighted by the entries of |µxj
〉〈µxj

| for j ∈ [n], and not

weight-one edges. However, since ‖|µi〉‖ = 1, we can apply a unitary change of basis

so that our graphs and the operator Ux are in accord with the theorem. Combining

Lemma 4.4.2 and Theorem 4.4.3, we obtain:

57

Lemma 4.4.4. Ux has a unit-length, eigenvalue-one eigenvector |β0〉 with

|〈β0|φ+〉|2 > 1− 2 · 10−4 . (4.4.17)

This eigenvector is simply the restriction of |ψ〉 from Eq. (4.4.9) to the vertices of G.

Furthermore, let {|β〉} be a complete set of orthonormal eigenvectors of Ux with

corresponding eigenvalues eiθ(β), θ(β) ∈ (−π, π]. Then for any Θ ≥ 0,

∑

β:|θ(β)|≤Θ

|〈β|φ−〉|2 ≤
(
10
√
6ΘW +

Θ

2

)2
. (4.4.18)

There is now clear intuition for Proposition 4.4.1. Note that |ø〉 = 1√
2

(
|φ+〉+ |φ−〉

)
.

The first term, |φ+〉, is very close to an eigenvalue-zero eigenvector of AG(x), while the

second term, |φ−〉, is very far from the small-eigenvalue subspace of AG(x). Intuitively,

this allows us to average out the |φ−〉 term. The surviving first term, then, has constant

overlap on the desired vertex, |f(x)〉. A full proof is given in Appendix B.1.

4.5 Composition of the general adversary and witness size SDPs

We now study the behavior of the two SDPs under function composition.

Let us begin by introducing some notation. For functions gi : Ci → D, with Ci ⊆

Cmi , let M =
∑

i∈[n]mi and define a function ~g = (g1, . . . , gn) mapping C1× · · · × Cn ⊆

CM to Dn by

~g(x) =
(
g1(x1, . . . , xm1), . . . , gn(xM−mn+1, . . . , xM)

)
. (4.5.1)

For the purposes of query complexity and the general adversary bound and witness size

SDPs, the decomposition of the domain is into copies of C. In the special case that the

functions gi are the same g, we write gn = ~g.

Lemma 4.5.1. Let f : Dn → E, and for i ∈ [n] let gi : Ci → D, Ci ⊆ Cmi . Let

si = wsize(gi). Then

Adv±(f ◦ ~g) ≤ Adv±s (f) (4.5.2)

wsize(f ◦ ~g) ≤ wsizes(f) . (4.5.3)

58

The proof of this lemma follows in the natural way. We take optimal dual solutions

to the witness size programs for f and the gi, using the formulation of Eq. (4.2.7), and

form their tensor product to construct a solution to the composed program. This proof

strategy does not directly work for the general adversary bound—we crucially use the

extra constraints present in the witness size programs for the gi.

Proof of Lemma 4.5.1. An input x to f ◦ ~g can be written as x = (x1, . . . , xn), with

xi ∈ Ci. Let x̃ = ~g(x) ∈ Dn, i.e., x̃i = gi(x
i) for i ∈ [n].

Let us begin with showing Eq. (4.5.3). For i ∈ [n], let {|µxi,j〉, |νxi,j〉} be optimal

vectors for gi in Eq. (4.2.7) with uniform costs, and let {|ux̃,i〉, |vx̃,i〉} be optimal vectors

for f with costs s.

We design a vector solution to Eq. (4.2.7) for the composed function f ◦ ~g as

|αx,(i,j)〉 = |ux̃,i〉 ⊗ |µxi,j〉 |βx,(i,j)〉 = |vx̃,i〉 ⊗ |νxi,j〉 . (4.5.4)

Then ‖|αx,(i,j)〉‖ = ‖|ux̃,i〉‖‖|µxi,j〉‖ and ‖|βx,(i,j)〉‖ = ‖|vx̃,i〉‖‖|νxi,j〉‖, and for all inputs

x, y,

∑

(i,j):xi
j 6=yij

〈αx,(i,j)|βy,(i,j)〉 =
∑

(i,j):xi
j 6=yij

〈ux̃,i|vx̃,i〉〈µxi,j|νxi,j〉

=
∑

i

〈ux̃,i|vỹ,i〉
∑

j:xi
j 6=yij

〈µxi,j|νyi,j〉

=
∑

i:x̃i 6=ỹi

〈ux̃,i|vỹ,i〉

= 1− δf(x̃),f(ỹ) .

(4.5.5)

The key point here is that the witness size (or adversary) SDP for f ◦ ~g imposes a

constraint on the summation over all i, j with xij 6= yij. This includes those i, j such

that xij 6= yij yet x̃i = gi(x
i) = ỹi = gi(y

i). With the adversary bound we have no

control over the inner products in this case. The witness size SDP for gi, on the other

hand, gives that the sums are zero when x̃i = ỹi.

Thus we upper bound the witness size for the composed function f ◦ ~g by the

objective value, the larger of maxx
∑

i,j ‖|αx,(i,j)〉‖2 and maxx
∑

i,j ‖|βx,(i,j)〉‖
2. Both

59

expressions can be bounded in the same way, e.g.,

∑

i∈[n],j∈[mi]

‖|αx,(i,j)〉‖2 ≤
∑

i∈[n]
‖ux̃,i‖2 wsize(gi) ≤ wsizes(f) . (4.5.6)

By Eq. (4.2.9), this also implies Eq. (4.5.2), except with a lost factor of two on the

right-hand side. That this factor of two is unnecessary can be seen easily by repeating

the above arguments, except beginning with an optimal vector solution to the general

adversary bound dual SDP for f from Lemma 4.2.2, and then considering only inputs

x, y with (f ◦ ~g)(x) 6= (f ◦ ~g)(y).

Corollary 4.5.2. Let g : C → D, with C ⊆ Cm, and let f : Dn → E. Then

Adv±(f ◦ gn) ≤ Adv±(f)wsize(g) (4.5.7)

wsize(f ◦ gn) ≤ wsize(f) wsize(g) . (4.5.8)

In the case where all the functions f and gi are boolean, a matching lower bound to

Lemma 4.5.1 has been shown by Høyer et al. [HLŠ07]. Such a composition lower bound

cannot hold in general for non-boolean functions. For example, let f : [k]n → B output

the sum of its inputs modulo two. Its quantum query complexity Q(f) is Θ(n). Let

g : Bm → [k] be a function with Q(g) = Θ(m) but that only outputs even numbers.

Then the composition f ◦ gn is the constant zero function.

A matching composition lower bound does hold in the case that the range of g is

boolean:

Lemma 4.5.3. Let f : {0, 1}n → E, and, for i ∈ [n], gi : Ci → {0, 1}. Let si =

wsize(gi). Then

wsize(f ◦ ~g) ≥ wsizes(f) . (4.5.9)

Proof. The proof follows the same lines as the proof for the boolean case given in

[HLŠ07].

Our basic task is, given optimal matrices Γf , Γgi from the witness size primal SDPs,

construct a matrix Γ to show that the witness size of f ◦~g is large. Note that as each gi

has boolean output, we may assume by Theorem 4.2.3 that the Γgi are adversary

matrices.

60

A key part of this construction is a block-wise Hadamard product. Let B1, . . . , Bn

be n matrices, with each Bi structured by arbitrary divisions of the rows and of the

columns as

Bi =

B

0,0
i B0,1

i

B1,0
i B1,1

i

 . (4.5.10)

Now the tensor product ⊗Bi will have a natural block structure where (x, y) ∈ {0, 1}n×

{0, 1}n labels the block ⊗Bxi,yi
i . For a 2n-by-2n matrix A, define the block-wise

Hadamard product A◦b (
⊗
Bi) as the matrix ⊗Bi with block x, y multiplied by A[x, y].

Claim 4.5.4. Let A be symmetric and Bi be as above with B1,0
i = (B0,1

i)† and B0,0
i =

‖B0,1
i ‖1, B1,1

i = ‖B0,1
i ‖1, where 1 in each case is an identity matrix of the appropriate

dimension. Then
∥∥A ◦b

(⊗
Bi

)∥∥ = ‖A‖
∏

i

∥∥B0,1
i

∥∥ . (4.5.11)

Note that ‖Bi‖ = 2‖B0,1
i ‖ so the naive upper bound would be 2n‖A‖∏i

∥∥B0,1
i

∥∥. We

give the proof of this claim in Appendix B.2.

Now define Γ = Γf ◦b
(⊗

(Γgi + ‖Γgi‖1)
)
. As the Γgi are adversary matrices, the

rest of the proof follows as in [HLŠ07, Lemma 14], using Claim 4.5.4.

Corollary 4.5.5. Let g : C → {0, 1} and f : {0, 1}n → E. Then

wsize(f ◦ gn) = wsize(f)wsize(g) . (4.5.12)

By Theorem 4.0.1, we obtain:

Corollary 4.5.6. Let g : C → D and f : Dn → E. Then

Q(f ◦ gn) = O
(
Q(f)Q(g)

)
(4.5.13)

and Q(f ◦ gn) = Ω
(
Q(f)Q(g)

)
if |D| = 2.

The above composition lemmas also lead to direct-sum results for quantum query

complexity. In the special case where f is the identity function Dn → Dn, f ◦ ~g =

~g, and it can be verified that wsizes(f) ≤
∑

j sj. Lemma 4.5.1 shows wsize(gn) ≤

nwsize(g) and Adv±(gn) ≤ 2nAdv±(g). Ambainis et al. [ACGT10] have shown the

61

corresponding lower bound nAdv±(g) ≤ Adv±(gn), and their construction can also be

used to obtain nwsize(g) ≤ wsize(gn). Putting this together, we have the following

immediate corollary:

Corollary 4.5.7. Let f : D → E, and let fn : Dn → En consist of n independent

copies of f , given by fn(x1, . . . , xn) =
(
f(x1), . . . , f(xn)

)
. Then

Q(fn) = Θ
(
nQ(f)

)
. (4.5.14)

Let us remark that when E = {0, 1}, the upper bound Q(fn) = O
(
nQ(f)

)
follows

from the robust input recovery quantum algorithm [BNRW05, Theorem 3]. The same

algorithm can be generalized to handle larger E.

A tight direct-sum property also holds for certificate complexity (nondeterministic

classical query complexity). Jain et al. [JKS10] have recently shown a tight direct-

sum result for deterministic decision-tree complexity (classical query complexity), and

a potentially slightly loose direct-sum result in the randomized case. Their results hold

for relations, and not only for functions.

62

Chapter 5

Optimization over the copositive cone

In this chapter, we look at the application of another kind of convex programming, called

copositive programming. It is very similar to semidefinite programming, the difference

being that we optimize over the copositive cone instead of the semidefinite cone. We

know that the semidefinite cone is the cone of n×nmatricesM , s.t. ∀ v ∈ Rn, vTMv ≥

0. A matrix is copositive (in the copositive cone), if ∀ v ≥ 0 ∈ Rn, vTMv ≥ 0. So

the difference is that the quadratic form should be positive only for entry wise positive

vectors.

We know that the dual of the semidefinite cone is the semidefinite cone itself. The

dual of the copositive cone, on the other hand, is called the completely positive cone. So

copositive programming and completely positive programming are equivalent. A matrix

is completely positive if ∃ v1, · · · , vk ≥ 0 ∈ Rn, M = v1v
T
1 + · · · + vkv

T
k . If we remove

the constraint that vi’s are entry wise positive then we get the semidefinite cone. This

means that a solution to copositive programming (completely positive programming)

can be interpreted as vectors which are entry wise positive. We will call such vectors

“completely positive”. This notion is helpful in the rounding procedure discussed in

Section 2.4.

In general, copositive (completely positive) programming is NP-complete. For most

cases, we convert the SDP solution to integer solution directly. But it seems that

for certain Semidefinite Programming relaxations, converting the vector solution to a

completely positive solution and then using this solution to generate the integer solution

is easier. We take a look at the properties of this completely positive solution and study

an example where it is useful.

63

5.1 Notation

Let us consider an integer program in variables si (i ∈ [n]):

min
∑

i,j∈[n] Ji,j〈si|sj〉 (5.1.1)

s.t. ∀k ∑
i,j∈[n]Ai,j,ksisj = 1

∀k ∑
i,j∈[n]Bi,j,ksisj = 0 ∀i 6= j

∀i si ∈ {0, 1} (5.1.2)

Its relaxation, when integers si are relaxed to vectors ui, will look like:

min
∑

i,j∈[n] Ji,j〈ui|uj〉 (5.1.3)

s.t. ∀k ∑
i,j∈[n]Ai,j,k〈ui|uj〉 = 1

∀k ∑
i,j∈[n]Bi,j,k〈ui|uj〉 = 0 ∀i 6= j

This will be called a semidefinite instance π = (J,A,B). Here A,B are the con-

straint matrix, and matrix B can be used to make selected dot products zero. Matrix J

is known as the objective matrix. Then a completely positive solution to this program

will be a solution of the same SDP except one additional constraint of all vectors being

positive.

min
∑

i,j∈[n] Ji,j〈vi|vj〉 (5.1.4)

s.t. ∀k ∑
i,j∈[n]Ai,j,k〈vi|vj〉 = 1

∀k ∑
i,j∈[n]Bi,j,k〈vi|vj〉 = 0 ∀i 6= j

∀ i ∈ [n] vi ≥ 0 (entry wise)

Notice that this optimization problems is not an SDP because of the new constraints.

It is now a copositive programming problem. Given an SDP (5.1.3) we will denote its

solution by {ui}, and its completely positive solution (5.1.4) by {vi}. Let’s denote the

solution of original problem (5.1.1) as {si}.

64

5.2 Gaps between solutions

In rounding an SDP solution, the focus is to bound the gap between the SDP solution

and its rounded integer solution. So we want to give an upper bound on the quantity

∑
i,j∈[n] Ji,j〈ui|uj〉∑
i,j∈[n] Ji,j〈si|sj〉

, (5.2.1)

i.e., the ratio between the objective value of {ui} solution and {si} solution. With

the intermediate step of solving a copositive programming problem, there are two gaps

now. We need to bound the gap between the SDP solution and the completely positive

solution, and then also bound the gap between the completely positive solution and the

integer solution. The two gaps are

1.
∑

i,j∈[n] Ji,j〈ui|uj〉
∑

i,j∈[n] Ji,j〈vi|vj〉
, and

2.
∑

i,j∈[n] Ji,j〈vi|vj〉∑
i,j∈[n] Ji,j〈si|sj〉

It seems that in some cases it is easier to give these two bounds separately, rather

than directly giving the bound between the vector (SDP) solution and the integer

solution.

5.3 Product rules for copositive programming

In many applications (like parallel repetition), it is important to check whether a

completely positive solution multiplies. Intuitively, given two copositive programs

π1 = (J1,A1,B1) and π2 = (J2,A2,B2), can their solutions be multiplied to get a

solution of π1 ⊗ π2. Here π1 ⊗ π2 needs to be defined, but mostly it is taken to be the

copositive program π1 ⊗ π2 = (J1 ⊗ J2,A1 ⊗ A2,B1 ⊗ B2). Formally, there are two

notions of “multiplies” here.

1. Given any solutions xi of π1 and yj of π2, xi ⊗ yj is a solution of π1 ⊗ π2.

2. Given optimal solutions xi of π1 and yj of π2, xi ⊗ yj is an “optimal” solution of

π1 ⊗ π2.

65

Note that π1 and π2 can be same here, and then we might ask the same question

for higher powers too. The first condition is satisfied for all copositive programs of

type 5.1.4, because of elementary properties of tensor products. But whether optimal

solutions multiply to give optimal solutions is an open question.

5.4 Parallel repetition of unique games

We try to simplify the approach of Barak et al. ([BHH+08]), who prove that the value

of any parallel repeated game approaches the value of the semidefinite relaxation of

that game. The value of a nonlocal unique game can be upper bounded by the SDP

(E denotes the expected value):

min Eu,u′,π
∑

i∈[k] ‖xu,i − xu′,π(i)‖2 (5.4.1)

s.t.
∑

i∈[k] ||xu,i||2 = 1

〈xu,ii|xu,j〉 = 0 ∀ i 6= j

We have the solution of this SDP, whose value is 1 − δ. The goal is to con-

struct a strategy of the parallely repeated game (repeated l times), whose value is

1− O(
√
lδ log k). The rounding algorithm by CMM ([CMM06]), gives us a way to get

an integer solution with value 1−O(
√
δ log k) (k is the alphabet size). Let us attempt to

get the required value directly. If we multiply the rounded strategy (of CMM algorithm)

l times, we get a solution of Gl with value 1−O(l
√
δ log k). Instead, if we multiply the

SDP solution, we get an SDP solution for game Gl with value 1 − lδ. Then rounding

the SDP solution of parallely repeated game using CMM algorithm ([CMM06]), we get

a solution of Gl with value 1 − O(
√
lδl log k). This is because the alphabet size is kl

now. So in both the cases we get a value of 1−O(l
√
δ log k), but the required value is

1−O(
√
lδ log k).

Now we will use completely positive solution to get over this problem. We claim that

we can generate completely positive solution from SDP solution with value 1−O(δ log k
δ)

(Step 1). Since this solution multiplies, we can convert this to a completely positive

solution of Gl with value 1 − O(lδ log k
δ) (Step 2). Then we convert this solution into

solution of Gl with value 1−O(
√
lδ log k

δ (Step 3). Step 2 is clear because completely

66

positive solution multiplies as discussed in the previous section. Now we will present

the proof of Step 1 and Step 3 formally.

The distributional strategy used by Boaz et.al. ([BHH+08]), is equivalent to a com-

pletely positive solution of this SDP (Equation 5.4.1). The concept of hellinger distance

is equal to the objective value of the corresponding copositive program. They prove

that

Theorem 5.4.1. Say, the value of the SDP 5.4.1 for a nonlocal unique game is

SDPval(G) = 1− δ. Then,

val(Gl) ≥ 1−O(

√
lδ log

k

δ
) ≥ (1− δ)O(l).

Proof. Consider the SDP mentioned in Equation 5.4.1. Let us assume that xu,i ∈ Rd

is the solution of this SDP, s.t., SDPval(G) = 1 − δ. Let yu,i be the corresponding

completely positive solution. For Step 1, we need to show that the objective value of

yu,i is more than 1 − O(δ log k
δ). As before, this completely positive solution can be

thought of as a solution of this copositive programming problem (not an SDP).

min Eu,u′,π

∑
i∈[k] ||yu,i − yu′,π(i)||2 (5.4.2)

s.t.
∑

i∈[k] ||yu,i||2 = 1

〈yu,ii|yu,j〉 = 0 ∀ i 6= j

yu,i ≥ 0

First we will define new vectors yu,i,j in terms of xu,i. yu,i,j will have a coordinate

for every vector in Rd (remember xu,i ∈ Rd). So every coordinate will be indexed by a

vector v ∈ Rd.

(yu,i,j)v =

0 If v’s projection on xu,i is not maximum out of all xu,h
√
γu,j,v otherwise

(5.4.3)

Here γu,j,v is the probability of selecting v with Gaussian centered on xu,j. Then we

define the vth coordinate of the completely positive solution yu,i in terms of yu,i,j, with

67

relation

(yu,i)
2
v =

∑

j∈[k]
‖xu,j‖2(yu,i,j)2v (5.4.4)

So yu,i is also a vector of dimension |Rd| (remember, xu,i ∈ Rd). They can be

explicitly defined by

(yu,i)v =

0 If v’s projection on xu,i is not maximum out of all xu,j
√∑

j∈[k] ||xu,j||2γu,j,v otherwise

(5.4.5)

It is clear that yu,i is orthogonal to yu,j. Also, for all (u, j) pairs, the vectors yu,i,j

(considering all i) define a probability distribution. Then, for all u, the vectors yu,i also

define a probability distribution (they are convex combinations of yu,i,j). So yu,i are

the completely positive solutions of SDP 5.4.1. To simplify the notation, for any set of

vectors zu,i, lets call obj(zu,i) = Eu,u′,π

∑
i∈[k] ‖yu,i − yu′,π(i)‖2.

To prove the Step 1, we need to show

obj(yu,i) ≥ 1−O(δ log
k

δ
)

From Claim 5.2 of article [BHH+08], we can choose t (depending upon σ of Gaussian

distribution), so that for every permutation π, we know

∑

i∈[k]
||yu,i,j − yu,π(i),π(j)||2 ≥ (O(t)||x′u,i − x′u′,πi||2 + k.2−t)

Here x′u,i is the unit vector in the direction of xu,i. Using this, we can prove that

∑

i∈[k]
||yu,i − yu,π(i)||2 ≥ (O(t)

∑

i∈[k]

1

2
||xu,i − xu′,πi||2 + k.2−t)

Now choosing t = log k
δ , we get the required result

obj(yu,i) ≥ 1−O(δ log
k

δ
)

Since this completely positive solution multiplies (Step 2), we know

obj(y⊗l
u,i) ≥ 1−O(lδ log

k

δ
) (5.4.6)

68

To convert these vectors into strategy of Gl (Step 3), we choose v ∈ (Rd)⊗l using

correlated sampling lemma. Then answer (i1, i2, · · · , il), if yu,i1,i2···il ’s vth coordinate is

non-zero. Using lemma 4.5 of article [BHH+08], we know

val(Gl) ≥ 1−O(

√
lδ log

k

δ
) (5.4.7)

Hence the result is proved.

69

Chapter 6

Conclusions

In this work, we have shown two applications of semidefinite programming. The first one

was in obtaining product rules. Secondly we characterized quantum query complexity in

terms of SDPs. The advantage of expressing (approximating) an optimization problem

in terms of semidefinite program is that it can be solved efficiently. With the help

of duality theory, other important properties of these optimization problems can be

derived.

We now have a generalized framework for deriving product rules of quantities which

can be estimated using SDPs. There are sufficient and necessary conditions under

which two semidefinite instances obey the product rule. These conditions help us in

determining, which constraints need to be relaxed or changed, in order to make the

program “multiplicative”. There are still many open questions in this field, and this

study is by no means complete.

For the other application, we give a characterization of quantum query complexity

in terms of an SDP. The dual formulation motivates the design of an algorithm, which

computes the function value using the solution of the SDP. Hence, it proves that the

adversary bound is tight for quantum query complexity. An equivalent SDP formulation

shows the composition property of quantum query complexity in a simplified manner.

This semidefinite formulation might also be useful in getting a strong direct product

theorem.

There is hope that other convex optimization techniques can also be fruitful in

complexity theory and quantum computing. We have explored one such application of

copositive programming. It will be interesting to find other applications of these convex

programming classes and their properties with respect to composition.

70

6.1 Open problems

There are still many question which need to be answered. Some of them are listed

below.

1. Product rules

• Can we give a unified sufficient and necessary condition for product rules

to hold for semidefinite programs? We presently have a necessary condition

that depends upon the dual solution. The goal is to remove that dependence,

and to show that the obtained condition is sufficient also.

• Since linear programs are a special case of semidefinite programs, is it easier

to get the sufficient and necessary condition for them?

2. Quantum query complexity

• Can we show a strong direct product theorem for quantum query complexity?

• What is the quantum query complexity for functions having variable output

size?

3. Other problems

• Can a general framework for obtaining bounds on other compositions (other

than multiplication) be developed for semidefinite programs?

• Are there other applications of copositive programming?

• What are the conditions under which a general convex program “multiplies”?

We hope that these questions will be solved in the near future.

71

References

[ACGT10] A. Ambainis, A. Childs, F. Le Gall, and S. Tani. The quantum query
complexity of certification. Quantum Inf. Comput., 10:181–188, 2010,
arXiv:0903.1291 [quant-ph].

[ACR+10] A. Ambainis, A. Childs, B. Reichardt, R. Špalek, and S. Zhang. Any AND-
OR formula of size N can be evaluated in time N1/2+o(1) on a quantum
computer. SIAM J. Comput., 39(6):2513–2530, 2010. Earlier version in
FOCS’07.

[Ali95] F. Alizadeh. Interior Point Methods in Semidefinite Programming with
Applications to Combinatorial Optimization In SIAM J. Optim., 5(1):13–
51, 1995.

[Amb02] A. Ambainis. Quantum lower bounds by quantum arguments. J. Comput.
Syst. Sci., 64:750–767, 2002, arXiv:quant-ph/0002066. Earlier version in
STOC’00.

[Amb03] A. Ambainis. Polynomial degree vs. quantum query complexity. In Pro-
ceedings of the 44th IEEE Symposium on Foundations of Computer Science,
230–239. IEEE, 2003.

[Amb06] A. Ambainis. Polynomial degree vs. quantum query complexity. J. Com-
put. Syst. Sci., 72(2):220–238, 2006, arXiv:quant-ph/0305028. Earlier
version in FOCS’03.

[Amb07] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM J.
Computing, 37(1):210–239, 2007, arXiv:quant-ph/0311001. Earlier ver-
sion in FOCS’04.

[ARV04] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings,
and graph partitionings. In Proceedings of the 36th ACM Symposium on
the Theory of Computing. ACM, 2004.

[Bha07] Rajendra Bhatia. Positive Definite Matrices. Princeton University Press,
Princeton, 2007.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM J. Comput.,
26(5):1510–1523, 1997, arXiv:quant-ph/9701001.

[BDH+00] Harry Buhrman, Christoph Dürr, Mark Heiligman, Peter Høyer, Frédéric
Magniez, Miklos Santha, and Ronald de Wolf. Quantum algorithms for
element distinctness. 2000, arXiv:quant-ph/0007016.

http://www.arxiv.org/abs/0903.1291
http://www.arxiv.org/abs/quant-ph/0002066
http://www.arxiv.org/abs/quant-ph/0305028
http://www.arxiv.org/abs/quant-ph/0311001
http://www.arxiv.org/abs/quant-ph/9701001
http://www.arxiv.org/abs/quant-ph/0007016

72

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3–40,
1991.

[BHH+08] B. Barak, M. Hardt, I. Haviv, A. Rao, O. Regev, and D. Steurer. Round-
ing parallel repetitions of unique games. In Proceedings of the 49th IEEE
Symposium on Foundations of Computer Science. IEEE, 2008.

[BK00] H. Barnum and E. Knill. Reversing quantum dynamics with near-optimal
quantum and classical fidelity. J. Math. Phys. 43:2097, 2002.

[BNRW05] Harry Buhrman, Ilan Newman, Hein Röhrig, and Ronald de Wolf. Robust
polynomials and quantum algorithms. In Proc. 22nd STACS, LNCS vol.
3404:593–604, 2005, arXiv:quant-ph/0309220.

[BOH07] Michael Ben-Or and Avinatan Hassidim. Quantum search in an ordered
list via adaptive learning. 2007, arXiv:quant-ph/0703231.

[BS04] Howard Barnum and Michael Saks. A lower bound on the quantum query
complexity of read-once functions. J. Comput. Syst. Sci., 69(2):244–258,
2004, arXiv:quant-ph/0201007.

[BSS03] H. Barnum, M. Saks, and M. Szegedy. Quantum query complexity and
semidefinite programming. In Proceedings of the 18th IEEE Conference on
Computational Complexity, 179–193, 2003.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University
Press, 2004.

[CCJY09] Andrew M. Childs, Richard Cleve, Stephen P. Jordan, and David Yeung.
Discrete-query quantum algorithm for NAND trees. Theory of Computing,
5:119–123, 2009, arXiv:quant-ph/0702160.

[CE05] Andrew M. Childs and Jason M. Eisenberg. Quantum algorithms
for subset finding. Quantum Inf. Comput., 5(7):593–604, 2005,
arXiv:quant-ph/0311038.

[CHTW04] R. Cleve, P. Høyer, B. Toner, and J. Watrous. Consequences and limits
of nonlocal strategies. In Proceedings of the 19th IEEE Conference on
Computational Complexity, 236–249. IEEE, 2004.

[CL08] AndrewM. Childs and Troy Lee. Optimal quantum adversary lower bounds
for ordered search. In Proc. 35th ICALP, LNCS vol. 5125:869–880, 2008,
arXiv:0708.3396 [quant-ph].

[CLP07] Andrew M. Childs, Andrew J. Landahl, and Pablo A. Parrilo. Improved
quantum algorithms for the ordered search problem via semidefinite pro-
gramming. Phys. Rev. A, 75:032335, 2007, arXiv:quant-ph/0608161.

[CMM06] M. Charikar, K. Makarychev, Y. Makarychev. Near-optimal algorithms for
unique games. In Proceedings of 38th IEEE Symposium on Foundations of
Computer Science , pages 205-214.ACM, 2006.

http://www.arxiv.org/abs/quant-ph/0309220
http://www.arxiv.org/abs/quant-ph/0703231
http://www.arxiv.org/abs/quant-ph/0201007
http://www.arxiv.org/abs/quant-ph/0702160
http://www.arxiv.org/abs/quant-ph/0311038
http://www.arxiv.org/abs/0708.3396
http://www.arxiv.org/abs/quant-ph/0608161

73

[CSUU07] R. Cleve, W. Slofstra, F. Unger, and S. Upadhyay. Perfect parallel repeti-
tion theorem for quantum XOR proof systems. In Proceedings of the 22nd
IEEE Conference on Computational Complexity. IEEE, 2007.

[FGG08] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algo-
rithm for the Hamiltonian NAND tree. Theory of Computing, 4:169–190,
2008, arXiv:quant-ph/0702144.

[FGGS99] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Invariant quantum algorithms for insertion into an ordered list. 1999,
arXiv:quant-ph/9901059.

[FL92] U. Feige and L. Lovász. Two-prover one-round proof systems: their power
and their problems. In Proceedings of the 24th ACM Symposium on the
Theory of Computing, pages 733–744. ACM, 1992.

[GW95] M. Goemans and D. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming.
Journal of the ACM, 42:1115–1145, 1995.

[Hol73] A. S. Holevo. Statistical decision theory for quantum systems. J. Multi-
variate Anal, 3:337, 1973.

[HJ85] R. Horn and C. Johnson. Matrix Analysis. Chapter 7, Cambridge Univer-
sity Press, 1985.

[HLŠ07] P. Høyer, T. Lee, and R. Špalek. Negative weights make adversaries
stronger. In Proceedings of the 39th ACM Symposium on the Theory of
Computing. ACM, 2007.

[HNS02] Peter Høyer, Jan Neerbek, and Yaoyun Shi. Quantum complexities
of ordered searching, sorting, and element distinctness. Algorithmica,
34(4):429–448, 2002, arXiv:quant-ph/0102078. Special issue on Quan-
tum Computation and Cryptography.

[HŠ05] Peter Høyer and Robert Špalek. Lower bounds on quantum query complex-
ity. EATCS Bulletin, 87:78–103, October 2005, arXiv:quant-ph/0509153.

[Hol07] T. Holenstein. Parallel repetition theorem: simplifications and the no-
signaling case. In Proceedings of the 39th ACM Symposium on the Theory
of Computing, 411–419, 2007.

[JJUW10] R. Jain, Z. Ji, S. Upadhyay, J. Watrous. QIP=PSPACE. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, 2010.

[JKN08] R. Jain, H. Klauck, A. Nayak. Direct product theorems for classical com-
munication complexity via subdistribution bounds. In Proceedings of the
40th ACM Symposium on the Theory of Computing, 599-608, 2008.

[JKS10] Rahul Jain, Hartmut Klauck, and M. Santha. Optimal direct sum re-
sults for deterministic and randomized decision tree complexity. 2010,
arXiv:1004.0105 [cs.CC].

http://www.arxiv.org/abs/quant-ph/0702144
http://www.arxiv.org/abs/quant-ph/9901059
http://www.arxiv.org/abs/quant-ph/0102078
http://www.arxiv.org/abs/quant-ph/0509153
http://www.arxiv.org/abs/1004.0105

74

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.
In Combinatorica 4:373-395, 1984.

[KKMO07] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproxima-
bility results for MAX-CUT and other two-variable CSPs?. SIAM Journal
on Computing, 37(1):319-357, 2007.

[KKN95] M. Karchmer, E. Kushilevitz, and N. Nisan. Fractional covers and commu-
nication complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92,
1995.

[KMS98] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by
semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

[Knu94] D. Knuth. The sandwich theorem. Electronic Journal of Combinatorics,
volume 1, article A1, 1994.

[KRT07] J. Kempe, O. Regev, and B. Toner. The unique game conjecture with
entangled provers is false. Technical Report 0712.4279, arXiv, 2007.

[KSV02] Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi. Classical and
Quantum Computation, volume 47 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, Rhode Island, 2002.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Uni-
versity Press, 1997.

[KR10] J. Kempe and O. Regev. No Strong Parallel Repetition with Entangled and
Non-signaling Provers. Conference on Computational Complexity, 2010.

[KW00] A. Kitaev and J. Watrous. Parallelization, amplification, and exponential
time simulation of quantum interactive proof systems. In Proceedings of
the 32nd ACM Symposium on Theory of Computing, 608617, 2000.

[LLS06] S. Laplante, T. Lee, and M. Szegedy. The quantum adversary method and
classical formula size lower bounds. Computational Complexity, 15:163–
196, 2006.

[LM04] Sophie Laplante and Frédéric Magniez. Lower bounds for randomized and
quantum query complexity using Kolmogorov arguments. In Proc. 19th
IEEE Complexity, 294–304, 2004, arXiv:quant-ph/0311189.

[LM08] T. Lee and R. Mittal. Product theorems via semidefinite programming. In
Proceedings of the 35th International Colloquium On Automata, Languages
and Programming, volume 5125 of Lecture Notes in Computer Science, 674–
685. Springer-Verlag, 2008. arXiv:0803.4206.

[LMRS10] T. Lee, R. Mittal, B. Reichardt and R. Špalek. An adversary for algorithms.
arXiv:1011.3020v1.

[LMSS07] Nati Linial, Shahar Mendelson, Gideon Schechtman, and Adi Shraibman.
Complexity measures of sign matrices. Combinatorica, 27:439–463, 2007.

http://www.arxiv.org/abs/quant-ph/0311189

75

[Lov] L. Lovász. Semidefinite programs and combinatorial optimization, Lecture
Notes. http://www.cs.elte.hu/l̃ovasz/semidef.ps.

[Lov75] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete
Mathematics, 13:383–390, 1975.

[Lov79] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, IT-25:1–7, 1979.

[LS08] N. Linial and A. Shraibman. Learning complexity versus communication
complexity. In Proceedings of the 23rd IEEE Conference on Computational
Complexity. IEEE, 2008.

[LSŠ08] T. Lee, A. Shraibman, and R. Špalek. A direct product theorem for dis-
crepancy. In Proceedings of the 23rd IEEE Conference on Computational
Complexity, 71–80. IEEE, 2008.

[Moc07] C. Mochon. Quantum weak coin flipping with arbitrarily small bias. Tech-
nical Report arXiv:0711.4114, arXiv, 2007.

[MS07] R. Mittal and M. Szegedy. Product rules in semidefinite programming. In
16th International Symposium on Fundamentals of Computation Theory,
435–445. Springer, 2007.

[MSS05] Frédéric Magniez, Miklos Santha, and Mario Szegedy. Quantum algorithms
for the triangle problem. In Proc. 16th ACM-SIAM Symp. on Discrete
Algorithms (SODA), 2005, arXiv:quant-ph/0310134.

[Rag08] P. Raghavendra. Optimal algorithms and inapproximability results for ev-
ery CSP? Proceedings of the 40th ACM Symposium on the Theory of Com-
puting, 245–254, 2008.

[Raz98] R. Raz. A parallel repetition theorem. SIAM Journal on Computing,
27(3):763–803, 1998.

[Rei09] Ben W. Reichardt. Span programs and quantum query complexity: The
general adversary bound is nearly tight for every boolean function. 2009,
arXiv:0904.2759 [quant-ph]. Extended abstract in Proc. 50th IEEE
FOCS, 544–551, 2009.

[Rei10a] Ben W. Reichardt. Reflections for quantum query algorithms. 2010,
arXiv:1005.1601 [quant-ph].

[Rei10b] Ben W. Reichardt. Least span program witness size equals the gen-
eral adversary lower bound on quantum query complexity. Technical
Report TR10-075, Electronic Colloquium on Computational Complexity,
http://eccc.hpi-web.de, 2010.

[Rei10c] Ben W. Reichardt. Span programs and quantum query algorithms. Techni-
cal Report TR10-110, Electronic Colloquium on Computational Complexity,
http://eccc.hpi-web.de, 2010.

http://www.arxiv.org/abs/quant-ph/0310134
http://www.arxiv.org/abs/0904.2759
http://www.arxiv.org/abs/1005.1601
http://eccc.hpi-web.de
http://eccc.hpi-web.de

76

[RŠ08] Ben W. Reichardt and Robert Špalek. Span-program-based quantum algo-
rithm for evaluating formulas. In Proc. 40th ACM STOC, 103–112, 2008,
arXiv:0710.2630 [quant-ph].

[Sha03] R. Shaltiel. Towards proving strong direct product theorems. Computa-
tional Complexity, 12(1–2):1–22, 2003.

[Shi02] Y. Shi. Quantum lower bounds for the collision and the element
distinctness problems. In Proc. 43rd IEEE FOCS, 513–519, 2002,
arXiv:quant-ph/0112086.

[Sze94] M. Szegedy. A note on the theta number of Lovász and the generalized Del-
sarte bound. In Proceedings of the 35th IEEE Symposium on Foundations
of Computer Science, 36–39. IEEE, 1994.

[ŠS06] R. Špalek and M. Szegedy. All quantum adversary methods are equivalent.
Theory of Computing, 2(1):1–18, 2006, arXiv:quant-ph/0409116. Ear-
lier version in ICALP’05.

[Tsi87] B. Tsirelson. Quantum analogues of the Bell inequalities: the case of two
spatially separated domains. Journal of Soviet Mathematics, 36:557–570,
1987.

[VB96] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38:49–95, 1996.

[YKL75] H. Yuen, R. Kennedy and M. Lax. Optimum testing of multiple hypotheses
in quantum detection theory. In IEEE Transactions on Information Theory,
21(2):125–134, 1975.

[Zha05] Shengyu Zhang. On the power of Ambainis’s lower bounds. Theoretical
Computer Science, 339(2-3):241–256, 2005, arXiv:quant-ph/0311060.
Earlier version in ICALP’04.

http://www.arxiv.org/abs/0710.2630
http://www.arxiv.org/abs/quant-ph/0112086
http://www.arxiv.org/abs/quant-ph/0409116
http://www.arxiv.org/abs/quant-ph/0311060

77

Appendix A

Bipartite tensor product

This definition and argument is taken from [KRT07]. In the context of non local

classical and quantum games, another definition of product of semidefinite instances

is interesting. Suppose for the semidefinite instance (J,A, b), it is given that J is anti

block diagonal and A is block diagonal. So

J A(i)

 0 K

KT 0

 P (i) 0

0 Q(i)

Then the semidefinite instances πc(J,A, b), c ∈ {0, 1}, can be described asKc, P
(i)
c , Q

(i)
c , bc.

We can now define the “bipartite tensor product” between π1 and π2 as π1 ⊗b π2.

J A(ij) b

 0 K1 ⊗K2

KT
1 ⊗KT

2 0

 P

(i)
1 ⊗ P

(j)
2 0

0 Q
(i)
1 ⊗Q

(j)
2

 b1 ⊗ b2

Here, we see that the dimensions of the variable matrix is smaller compared to the

original tensor product. Now Theorem 3.3.4 proves that dual is feasible for the original

tensor product instance.

(y1 ⊗ y2)
T (A1 ⊗A2)− J1 ⊗ J2 � 0 (A.0.1)

78

To show that product theorem also holds for π1⊗b π2, we need to show that y1 ⊗ y2

is feasible for the dual of π1 ⊗ π2. Hence, we need to show that the following matrix is

positive semidefinite.

∑

ij(y1)i(y2)jA
(i)
1 ⊗A

(j)
2 0

0
∑

ij(y1)i(y2)jB
(i)
1 ⊗B

(j)
2

 −

 0 K1 ⊗K2

KT
1 ⊗KT

2 0

Notice that this is just an independent sub block of the matrix in Equation A.0.1.

Since the complete matrix in Eq. A.0.1 is positive semidefinite, implies this matrix is also

positive semidefinite. Hence, product theorem follows for “bipartite tensor product”

also.

79

Appendix B

Quantum query complexity

B.1 Proof of Proposition 4.4.1

Proof of Lemma 4.4.2. By definition of BG(x), we have BG(x)|ψ〉 = (BG|ψ〉,Π(x)|ψ〉).

The first term is

BG|ψ〉 =
(
|c〉〈ø|+

∑

b∈E
|cb〉〈b|+

∑

y∈D,j∈[n]
|y〉〈j| ⊗ 〈µyj | ⊗

(
〈vyj |+ 〈wyj |

))
|ψ〉

= |c〉+ |cf(x)〉+
η√
W

2(k − 1)

k

∑

y∈D,j∈[n]
|y〉〈µyj |νxj

〉
(
〈vyj |vxj〉 − 〈wyj |wxj〉

)

= |c〉+ |cf(x)〉+
η√
W

∑

y∈D

∑

j∈[n]:yj 6=xj

|y〉
(
〈vyj |vxj〉 − 〈wyj |wxj〉

)

= 0 .

(B.1.1)

Where in the third equation we used 〈µyj |νxj
〉 is 0, if xj = yj , and is otherwise k/(2(k−

1)). In the last step we used the SDP constraint
∑

j:xj 6=yj

(
〈vyj |vxj〉 − 〈wyj |wxj〉

)
=

1− δf(x),f(y) and the definition of |cf(x)〉. The second term, Π(x)|ψ〉, evaluates to zero

since 〈µxj
|νxj

〉 = 0:

Π(x)|ψ〉 = η√
W

Π(x)
∑

j∈[n]
|j〉 ⊗ |νxj

〉 ⊗
(
|vxj〉 − |wxj〉

)

=
η√
W

∑

j∈[n]
〈µxj

|νxj
〉|j〉 ⊗ |µxj

〉 ⊗
(
|vxj〉 − |wxj〉

)
= 0 .

(B.1.2)

Thus indeed BG(x)|ψ〉 = 0. The claim |〈φ+|ψ〉|2/‖|ψ〉‖2 ≥ 2
2+4η2

> 1− 2η2 is a calcula-

tion, using ‖|νxj
〉‖ = 1 and

∑
j

(
‖|vxj〉‖2 + ‖|wxj〉‖2

)
≤W .

80

For the second part of the lemma, we claim that B†
G′(x)|ψ′〉 = 0. Indeed,

B†
G′(x)|ψ

′〉 = (1− |φ−〉〈φ−|)
(
B†

G Π(x)

)(− η√
W
|c〉+ |x〉

−∑j |j〉 ⊗ |µxj
〉 ⊗

(
|vxj〉+ |wxj〉

)

)

= (1− |φ−〉〈φ−|)

(
|ø〉〈c|+

∑

b∈E
|b〉〈cb|

)(−η√
W

|c〉+ |x〉
)

+A†|x〉 −Π(x)
∑

j

|j〉 ⊗ |µxj
〉 ⊗

(
|vxj〉+ |wxj〉

)

(B.1.3)

The term A†|x〉 cancels the Π(x) term, while the other terms are proportional to |φ−〉:
(
|ø〉〈c|+

∑

b∈E
|b〉〈cb|

)(−η√
W

|c〉+ |x〉
)
=
(−η√

W

(
|ø〉 −

∑

b∈E
|b〉
)
− η√

W

∑

b:f(x)6=b

|b〉
)

=
−η√
W

(
|ø〉 − |f(x)〉

)
=

−η√
W

√
2|φ−〉 .

(B.1.4)

Finally, use BG(x)|φ−〉 = 1√
2

(
2|c〉+ η√

W

∑
y∈D:f(y)6=f(x) |y〉

)
to calculate

|〈φ−|B†
G(x)|ψ′〉|2/‖|ψ′〉‖2 ≥ 2η2

W /(η
2

W + 1 +W) > 9/(105W 2).

Proof of Proposition 4.4.1. :

Let |ϕ〉 =∑β:θ(β)=0 |β〉〈β|ø〉. By Lemma 4.4.4 with Θ = 0, |ϕ〉 = 1√
2

∑
β:θ(β)=0 |β〉〈β|φ+〉

and ‖|ϕ〉‖2 > 1
2(1 − 2 · 10−4). Since Ux|ϕ〉 = |ϕ〉, either ∆|ϕ〉 = Πx|ϕ〉 = |ϕ〉 or

∆|ϕ〉 = Πx|ϕ〉 = −|ϕ〉. The former case holds as Πx|φ+〉 = |φ+〉. Thus ∆|ϕ〉 = |ϕ〉, so

〈f(x)|ϕ〉 = 〈ø|ϕ〉. This then implies ‖|ϕ〉‖2 = 1
2 〈φ+|

∑
β:θ(β)=0 |β〉〈β|φ+〉 = 1√

2
〈φ+|ϕ〉 =

1
2(〈ø|ϕ〉+〈f(x)|ϕ〉) = 〈f(x)|ϕ〉. (Let us remark that |ϕ〉 need not be proportional to the

state |ψ〉 from Eq. (4.4.9), and can have small overlap on vertices |b〉 for b ∈ Er{f(x)}.)

Now let Θ = 3 · 10−7/W . Using notation from Lemma 4.4.4, define the projections

∆Θ =
∑

β:0<|θ(β)|≤Θ |β〉〈β| and ∆Θ =
∑

β:|θ(β)|>Θ |β〉〈β|, so |ø〉 = |ϕ〉 +∆Θ|ø〉 +∆Θ|ø〉.

By Eq. (4.4.17), ‖∆Θ|φ+〉‖2 < 2 · 10−4. By Eq. (4.4.18), ‖∆Θ|φ−〉‖2 < 2 · 10−4. There-

fore, since |ø〉 = 1√
2

(
|φ+〉+ |φ−〉

)
,

‖∆Θ|ø〉‖ ≤ 1√
2

(
‖∆Θ|φ+〉‖+ ‖∆Θ|φ−〉‖

)
<

1

50
. (B.1.5)

The algorithm outputs b ∈ E with probability
∣∣∣∣∣
(1√

τ

∑

t∈[τ]
〈t| ⊗ 〈b|

)(1√
τ

∑

t∈[τ]
|t〉 ⊗ U t

x|ø〉
)∣∣∣∣∣

2

=
1

τ2

∣∣∣
∑

t∈[τ]
〈b|U t

x|ø〉
∣∣∣
2
. (B.1.6)

81

Then

1

τ

∣∣∣
∑

t∈[τ]
〈f(x)|U t

x|ø〉
∣∣∣ = 1

τ

∣∣∣
∑

t∈[τ]
〈f(x)|U t

x

(
|ϕ〉 +∆Θ|ø〉 +∆Θ|ø〉

)∣∣∣

≥ 〈f(x)|ϕ〉 − ‖∆Θ|ø〉‖ −
1

τ

∣∣∣
∑

t∈[τ]
〈f(x)|U t

x∆Θ|ø〉
∣∣∣

>
1

2
(1− 2 · 10−4)− 1

50
− 1

τ

∣∣∣
∑

t∈[τ],β:|θ(β)|>Θ

〈f(x)|U t
x|β〉〈β|ø〉

∣∣∣

= 0.48 − 10−4 − 1

τ

∣∣∣
∑

β:|θ(β)|>Θ

eiθ(β)τ − 1

eiθ(β) − 1
eiθ(β)〈f(x)|β〉〈β|ø〉

∣∣∣ .

(B.1.7)

Using |eiΘ − 1| = 2 sin Θ
2 , the final term is at most

1

τ sin Θ
2

∑

β

|〈f(x)|β〉〈β|ø〉| ≤ 1

τ sin Θ
2

< 0.01 , (B.1.8)

by the Cauchy-Schwarz inequality. Therefore, the algorithm indeed outputs f(x) with

probability at least 0.462 > 21%.

Similarly, we can argue that for b ∈ E r {f(x)},

1

τ

∣∣∣
∑

t∈[τ]
〈b|U t

x|ø〉
∣∣∣ ≤ |〈b|ϕ〉|+ ‖∆Θ|ø〉‖+

1

τ

∣∣∣
∑

t∈[τ]
〈b|U t

x∆Θ|ø〉
∣∣∣

< |〈b|ϕ〉|+ 1

50
+ 0.01 .

(B.1.9)

Bound |〈b|ϕ〉|2 ≤ ‖|ϕ〉‖2 − |〈ø|ϕ〉|2 − |〈f(x)|ϕ〉|2 = ‖|ϕ〉‖2 − 2‖|ϕ〉‖4 < 1
2 − 2 · 1

4(1 − 2 ·

10−4)2 < 2 · 10−4. Thus the algorithm outputs b with probability at most 2 · 10−3, as

claimed.

B.2 Proofs of composition results

In this section we give proofs of Lemma 4.5.1 and Claim 4.5.4.

Proof of Lemma 4.5.1. Let M =
∑

i∈[n]mi. For an input x ∈ CM , let x̃ = ~g(x).

Let us begin with Eq. (4.5.3). Say that {vx̃,i, wx̃,i} are optimal vectors for f . In

other words, these vectors are a factorization of optimal matrices from Eq. (4.2.5), the

82

dual formulation of witness size, and satisfy

Ff [x̃, ỹ] = 1− δf(x̃),f(ỹ) =
∑

i:x̃i 6=ỹi

〈vx̃,i|vỹ,i〉 − 〈wx̃,i|wỹ,i〉

wsizes(f) = max
x̃

∑

i

si
(
‖vx̃,i‖2 + ‖wx̃,i‖2

)
.

(B.2.1)

Similarly, say that {txi,j, uxi,j} are optimal vectors for gi. Thus, by assumption we have

Ff◦~g[x, y] =
∑

i:x̃i 6=ỹi

(
〈vx̃,i|vỹ,i〉 − 〈wx̃,i|wỹ,i〉

)

=
∑

i

(
〈vx̃,i|vỹ,i〉 − 〈wx̃,i|wỹ,i〉

)
(∑

j:xi
j 6=yij

〈txi,j|tyi,j〉 − 〈uxi,j|uyi,j〉
)

=
∑

i,j:xi
j 6=yij

(〈vx̃,i|vỹ,i〉〈txi,j|tyi,j〉+ 〈wx̃,i|wỹ,i〉〈uxi,j|uyi,j〉

−〈vx̃,i|vỹ,i〉〈uxi,j|uyi,j〉 − 〈wx̃,i|wỹ,i〉〈txi,j|tyi,j〉

)
.

(B.2.2)

The key point here is that the witness size (or adversary) SDP for f ◦ ~g imposes a

constraint on the summation over all i, j where xij 6= yij. This includes those i, j such

that xij 6= yij, yet gi(x
i) = gi(y

i). With the adversary bound we have no control over

the inner products in this case; the witness size SDP, on the other hand, allows us to

pass to a summation over i where x̃i 6= ỹi to a summation over all i in the second line

above.

At this stage, we can read off the proper construction of vectors for f ◦~g. Define the

“positive vectors” as the concatenation (vx̃,i⊗txi,j, wx̃,i⊗uxi,j) and define the “negative

vectors” as (vx̃,i ⊗ uxi,j, wx̃,i ⊗ txi,j). This solution gives an objective value of

max
x

∑

i,j

(‖vx̃,i‖2‖txi,j‖2 + ‖wx̃,i‖2‖uxi,j‖2

+‖vx̃,i‖2‖uxi,j‖2 + ‖wx̃,i‖2‖txi,j‖2

)
(B.2.3)

= max
x

∑

i

(‖vx̃,i‖2 + ‖wx̃,i‖2)
∑

j

(‖txi,j‖2 + ‖uxi,j‖2)

≤ wsizes(f) , (B.2.4)

which completes the proof of Eq. (4.5.3).

By Eq. (4.2.9), this also implies Eq. (4.5.2), except with a lost factor of two on the

right-hand side. That this factor of two is unnecessary can be seen easily by repeating

the above arguments, except beginning with an optimal vector solution to the general

83

adversary bound dual SDP Eq. (4.2.3) for f , and then considering only inputs x, y with

(f ◦ ~g)(x) 6= (f ◦ ~g)(y).

Proof of Claim 4.5.4. Say that the matrix Bi has dimensions mi-by-m
′
i, and let M =

∏
i(mi + m′

i). We define 2kM many eigenvectors of A ◦b (
⊗
Bi) and show that they

span the entire space. Then we show that they all have eigenvalues whose magnitude

is bounded by the expression in the claim, and that at least one achieves this bound.

Consider the matrix

B̄i =

 0 B0,1

i

(B0,1
i)† 0

 . (B.2.5)

Let u0i ⊕u1i be an eigenvector of this matrix with eigenvalue λi. Notice that this vector

has the property that B0,1
i u1i = λiu

0
i and (B0,1

i)†u0i = λiu
1
i .

For λ = (λ1, . . . , λk) a sequence of eigenvalues of B̄1, . . . , B̄k respectively, define a

2k-by-2k matrix Aλ whose (x, y) entry is given by Aλ[x, y] = A[x, y]
∏

i λ
[xi 6=yi]
i . Here

λ
[1]
i = λi and λ

[0]
i = ‖B0,1

i ‖.

Let α be an eigenvector of Aλ with eigenvalue c. Notice that this means for all x,

∑

y

A[x, y]α[y]
∏

i

λ
[xi 6=yi]
i = c α[x] . (B.2.6)

Now we claim that γ =
⊕

x α[x] ⊗ uxi

i is an eigenvector of A ◦b (
⊗
Bi). For any x

we have

∑

y

A[x, y]α[y]
⊗

Bxi,yi
i

(⊗
uyii

)
=
⊗

uxi

i

(∑

y

A[x, y]α[y]
∏

i

λ
[xi 6=yi]
i

)

= c α[x]
⊗

uxi

i .

(B.2.7)

The first line holds because

• If xi = yi, then B
xi,yi
i uyii = ‖B0,1

i ‖uxi

i .

• If xi 6= yi, then B
xi,yi
i uyii = λiu

xi

i .

For every λ and c we have now defined an eigenvector. It can be verified that these

eigenvectors span the entire space. Thus there can be no others as the eigenvectors of

a symmetric matrix are orthogonal.

84

We now bound the eigenvalues of each of these eigenvectors. To do this it suffices

to bound the spectral norm of the matrix

Aλ = A ◦
⊗

i

‖B1,0‖ λi

λi ‖B1,0‖

 . (B.2.8)

Note that for any rank-one sign matrix C we have that ‖A ◦ C‖ = ‖A‖. A similar

situation is at work here. Define a variable matrix to be one whose entries are variables

or products of variables. For a m-by-n variable matrix B, let B(a) be the matrix

obtained by the assignment xi 7→ ai given by the vector a ∈ Rmn. We say that a

variable matrix has a rank-one sign pattern, if for every assignment of the variables to

{−1,+1} the resulting sign matrix is rank one. A good example of a variable matrix

with a rank-one sign pattern to keep in mind is
(
x1 x2
x2 x1

)
. Notice that the matrices of

the tensor product in Eq. (B.2.8) are of this form.

We claim the following:

Claim B.2.1. Let A be m-by-n matrix, and B a variable matrix of the same size which

has a rank-one sign pattern. Then for any assignment a ∈ Rmn to the variables of B

‖A ◦B(a)‖ ≤ ‖A‖ · ℓ∞(a) . (B.2.9)

Proof. Let u, v be two unit vectors and consider |ut(A ◦B(a))v|. We wish to show that

this is at most ‖A‖ · ℓ∞(a). We will do this by forming a new assignment b, all of whose

entries are in {−ℓ∞(a),+ℓ∞(a)}, and such that

|ut(A ◦B(a))v| ≤ |ut(A ◦B(b))v| . (B.2.10)

The result will then follow from the previous claim, since B(b) is a constant times a

rank-one sign matrix.

We form the assignment b as follows. Consider ut(A ◦ B)v and break up this sum

into two terms as x1X+Y where Y does not contain factors of x1. If X(a) ≥ 0 then we

set b1 = +ℓ∞(a) and otherwise we set b1 = −ℓ∞(a). In this way, b1X(a) ≥ a1X(a) and

so ut(A ◦B(b1, a2, . . . , amn))v ≥ ut(A ◦B(a1, a2, . . . , amn))v. We continue this process

in turn isolating the variables x2, x3 and so on.

85

Our claim now follows as the tensor product of matrices with rank-one sign patterns

will again have a rank-one sign pattern.

86

Vita

Rajat Mittal

2011 Ph. D. in Computer Science, Rutgers University

2000-2004 B. Tech. from Indian Institute of Technology, Bombay.

2000 Graduated from Instrumentation Limited School, India.

2010-2011 Teaching assistant, Department of Computer Science, Rutgers University.

2007-2010 Graduate assistant, Department of Computer Science, Rutgers University.

2004-2007 Teaching assistant, Department of Computer Science, Rutgers University.

	Abstract
	Acknowledgement
	Dedication
	List of Figures
	Introduction
	Applications
	Product rules
	Quantum query complexity
	Other optimization problems

	Thesis layout

	Semidefinite programming
	Notation
	Positive semidefinite matrices
	Affine semidefinite program instances
	Duality
	Vector formulation

	SDPs as relaxations
	Examples

	Product rules
	Semidefinite programming approach to product theorems
	Our contribution

	Product instances
	Counterexample to the product theorem
	The product solution

	Sufficient conditions for a product theorem
	Positivity of the matrix J
	All A(k) are block diagonal, and J is block anti-diagonal
	A generalized condition

	Nonnegativity constraints
	Discrepancy
	Feige-Lovász
	The relaxed program

	Extension to linear programming
	A necessary condition for dual feasibility
	The weak product
	Discussion

	Quantum query complexity
	Definitions
	Quantum query complexity
	Hadamard product operator norm

	The general adversary bound and witness size SDPs
	Equivalent formulations for witness size
	The general adversary bound is tight
	The algorithm
	Analysis of the algorithm

	Composition of the general adversary and witness size SDPs

	Optimization over the copositive cone
	Notation
	Gaps between solutions
	Product rules for copositive programming
	Parallel repetition of unique games

	Conclusions
	Open problems

	References
	Appendix A. Bipartite tensor product
	Appendix B. Quantum query complexity
	Proof of Proposition ??
	Proofs of composition results

	Vita

