APPLICATION OF SDP TO PRODUCT RULES AND
QUANTUM QUERY COMPLEXITY

by
RAJAT MITTAL

A dissertation submitted to the
Graduate School—New Brunswick
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of
Mario Szegedy

And approved by

New Brunswick, New Jersey

May, 2011

ABSTRACT OF THE DISSERTATION

APPLICATION OF SDP TO PRODUCT RULES AND
QUANTUM QUERY COMPLEXITY

By RAJAT MITTAL

Dissertation Director:

Mario Szegedy

In recent years, semidefinite programming has played a vital role in shaping complexity
theory and quantum computing. There have been numerous applications ranging from
estimating quantum values, over approximating combinatorial quantities, to proving
various bounds. This work extends the use of semidefinite programs (SDPs) to proving
product rules and to characterizing quantum query complexity.

In the first application, we provide a general framework to establishing product
rules for quantities that can be expressed (or approximated) using SDPs. We use duality
theory to give product rules, which bound the value of the “product” of two problems in
terms of their value. Some previous results have implicitly used the properties of SDPs
to give such product rules. Here we give sufficient and necessary conditions under which
these approaches work, thereby enabling us to capture these previous results under our
unified framework. We also include a discussion about alternate definitions of what a
“product” means and how they fit into our approach.

The second application provides an SDP characterization of quantum query com-
plexity, which is one of the ways in which complexity of a function can be measured. It
is known that quantum query complexity can be lower bounded by the so-called “adver-
sary method” which is expressible as a semidefinite program. Recently, Ben Reichardt

showed that the adversary method leads to a tight lower bound for boolean functions

ii

by converting the solution of this SDP (of adversary method) into an algorithm. We
show that a related SDP, called “witness size” in this thesis, provides a tight bound on
the quantum query complexity of non boolean functions (total as well as partial). This
witness size SDP is also used to give composition results for quantum query complexity.
We also show that the witness size is bounded by a constant multiple of the adversary
bound.

Finally, we briefly explore whether other convex programming paradigms can be
useful in complexity theory. One of them is copositive programming. We show that
one of the recent result about parallel repetition of unique games, by Barak et.al., can

be interpreted as an application of copositive programming.

il

Acknowledgement

First and most of all, I would like to thank my advisor Mario Szegedy for his enormous
help and guidance throughout the PhD. He has been a constant source of inspiration
and motivation. He made me realize the difference between knowing something and
understanding it. The discussions with him were always fun whether academic or non-
academic.

I also thank other theory faculty in Rutgers for their support, help, insights and
intuition. The reading seminar and discussions with Mike Saks made me interested
in areas such as algebraic complexity, algorithmic number theory and communication
complexity. As a graduate advisor in the beginning and later as the part of my com-
mittee, William Steiger has guided me in many aspects of my PhD and I will always
be thankful to him.

It was a privilege to work with my coauthors Troy Lee, Ben Reichardt and Robert
Spalek. Troy has been a great mentor, coauthor and friend. I learned a lot about
research by working with him. His expertise in norms and communication complexity
was very helpful. Special thanks to him for introducing me to dropbox and making me
realize the importance of coding. I would like to thank Alantha Newman for working
on graph isomorphism and SDPs with me. The long discussions about academics and
life in general were really enjoyable. She taught me a lot about research.

The summer internships in NEC and Microsoft Research India were very helpful. 1
thank Neeraj Kayal and Satya Lokam for being a great host in Bangalore. At NEC,
Hari Krovi and Martin Roetteler introduced me to wealth of information about hidden
subgroup problem. I specially thank Martin Roetteler for being on my committee and
more importantly for his suggestions on this thesis. I also thank Ashwin Nayak for

inviting me to Waterloo and being a great host.

iv

The theory students at Rutgers made the experience memorable and fun. The
lunch discussions with Devendra Desai, Fengming Wang, Mangesh Gupte and Pravin
Shankar were really helpful and highly enjoyable. The trips to various conferences with
Dev, Fengming, Luke Friedman, Mangesh and Nikos Leonardos were always filled with
fun. Thanks to Carol DiFrancesco and other staff at Rutgers for solving all of my
administrative problems.

I would also like to thank countless friends who have provided unconditional support
and have been an integral part of my PhD experience. My cricket, football and squash
teams cleared my mind from time to time and helped me focus on my academics better.
The lunch group at BCC gave an ideal venue for getting fresh again for work. I thank
Kirit, Dev, Siddharth, Deepti, Rajesh, Shivangi, Swapnil, Rohan, Varsha, Meenaskshi,
Pravin, Madhur, Hari, Viral, Prathima, Shweta and Mangesh from Rutgers for always

being there. I also thank “we”, my wingmates, Garima and Vikas for their support.

Dedication

To my parents.
Brother-in-law, sister, Bhavya and Kavya.

Brother and sister-in law.

vi

Table of Contents

Abstract e ii
Acknowledgement oL iv
Dedication e vi
List of Figures viii
1. Introduction 1
1.1. Applications 3
1.1.1. Product rules 3

1.1.2. Quantum query complexity 4

1.1.3. Other optimization problems 5

1.2. Thesis layout)

2. Semidefinite programming 7
2.1. Notation oL 7
2.2. Positive semidefinite matriceso oL 8
2.3. Affine semidefinite program instances 9
2.3.1. Duality 10

2.3.2. Vector formulation 0 0oL 11

2.4. SDPs as relaxations o 11
24.1. Examples 12

3. Product rules 14
3.1. Semidefinite programming approach to product theorems 15
3.1.1. Our contribution L L 17

3.2, Product instances L L L 17

vii

3.2.1. Counterexample to the product theorem 18

3.2.2. The product solution 20

3.3. Sufficient conditions for a product theorem 21
3.3.1. Positivity of the matrix J 22
3.3.2. All A®) are block diagonal, and .J is block anti-diagonal 23
3.3.3. A generalized condition 25

3.4. Nonnegativity constraints, 27
3.4.1. DISCTepancy . . . « . v v vt i e e e e e 30
3.4.2. Feige-Lovasz e 31

The relaxed program oL 32

3.5. Extension to linear programming 34
3.6. A necessary condition for dual feasibility 35
3.7. The weak product 38
3.8. Discussiono 39
. Quantum query complexity 41
4.1, Definitions oL 43
4.1.1. Quantum query complexity L. 44
4.1.2. Hadamard product operator norm 45

4.2. The general adversary bound and witness size SDPs 46
4.3. Equivalent formulations for witness size 49
4.4. The general adversary bound is tight 52
4.4.1. The algorithm o L 52
4.4.2. Analysis of the algorithm 54

4.5. Composition of the general adversary and witness size SDPs 57
. Optimization over the copositive cone 62
5.1. Notation 63
5.2. Gaps between solutions 64
5.3. Product rules for copositive programming 64

viil

5.4. Parallel repetition of unique games 65

6. Conclusions L e 69
6.1. Open problems 70
References e 71
Appendix A. Bipartite tensor product 77
Appendix B. Quantum query complexity 79
B.1. Proof of Proposition 4.4.1 79
B.2. Proofs of composition results L. 81
Vita e 86

ix

List of Figures

3.1. Sufficient conditions Lo 26
4.1. An example graph G(z) for a function f(x1x2) = x2 mapping D =
{0A4,0B,1C} c {0,1} x {A,B,C} to E = {A,B,C}. Our algorithm
essentially runs a quantum walk on the vertices of this bipartite graph,
starting at |¢). The walk converges, on average, to an eigenvalue-zero
eigenvector supported on the larger, red vertices, after which measuring
the vertex has a good probability of giving output vertex f(0B) = B.
(In general, there will be many more vertices in the last two levels from
@.) The dashed lines are added to the graph G to define G(x), shown for

input x = 12. The details of this construction are given in Section 4.4. 43

Chapter 1

Introduction

In many diverse areas of mathematics, problems are studied where an objective function
needs to be minimized or maximized while simultaneously satisfying a set of constraints.
These problems are called optimization problems, which can be classified depending
upon the kind of objective function and the kind of constraints used. One of the
simplest class of optimization problems is called linear programming, where both the
objective function and the set of constraints are linear. It is heavily used in discrete
mathematics, in combinatorial optimization, and in complexity theory. This utility of
linear programming derives not only from the fact that large number of problems can
be described as linear programs, but also because of our ability to solve these programs
efficiently.

The paradigm of semidefinite programming is a generalization of linear program-
ming, which can also be solved efficiently and has the power to express more mathe-
matical problems. Semidefinite programs (SDPs) can express any problem written in
linear programming and much more. On the other hand, the progress in efficiently
solving SDPs was initially slow. This is because the feasible region is not polyhedral,
hence, the simplex method! could not be applied. But with the advent of more efficient
algorithms like the interior point method [Kar84], we have efficient polynomial time
algorithms to solve semidefinite optimization problems. These algorithms have made
SDP an essential tool in various disciplines of mathematics and computer science.

In theoretical computer science many problems are expressible using semidefinite
programs. Then there are other problems which can be approximated well by semidefi-

nite programming relaxations. The idea is to write these problems as integer programs

!Simplex algorithm is a popular algorithm for numerically solving linear programming.

(where variables are constrained to be integers); They can then relaxed to be vectors.
It turns out that for many of those problems, a semidefinite relaxation approximates
the optimum much better than a linear program [Lov, GW95]. Given its efficient algo-
rithms, semidefinite programming is emerging as a major tool for constructing approx-
imation algorithms and for proving bounds on the complexity of underlying problem.

One of the first applications of SDPs in discrete mathematics was the Lovéasz theta
number [Lov79]. It showed that a quantity called Shannon capacity can be approxi-
mated by an SDP. The other major breakthrough came in 1995 when Goemans and
Williamson [GW95] showed an approximation algorithm for the problem maz cut in
combinatorial optimization. It is still the best known algorithm in terms of approxima-
tion guarantee. In 2007, Khot et. al. [KKMOOT7] proved that it is optimal. Recently,
another proof of its optimality was given by Raghavendra [Rag08] assuming the unique
games conjecture, again using SDPs. The result is much more general and states that
for a class of constraint satisfaction problems, SDPs provide the best approximation
factor, assuming unique games conjecture.

Semidefinite programming has been really effective in quantum computing. It has
provided much closer approximations and sometimes exact formulation in the quantum
world. One of the early use of semidefinite programming was to give optimal POVM
conditions for distinguishing a set of quantum states. Holevo and Yuen et.al. showed
that this can be characterized by an SDP [Hol73, YKL75]. SDPs were also used in
proving that QIP ¢ EXP [KWO00], and now in a seminal result Jain et.al. proved
QIP = PSPACFE [JJUWI10]. Barnum and Knill showed how to reverse quantum
dynamics while preserving quantum and classical fidelity [BK00]. All these results used
SDPs to characterize various quantities in quantum computing.

Cleve et. al. [CSUUO07| showed that the value of certain games, called quantum
nonlocal XOR games, can be achieved exactly using SDPs. Later Kempe et.al. [KRT07]
showed that SDPs provides a much closer approximation to the value of wider class of
games, called nonlocal unique games. In the area of quantum query complexity, Barnum
et.al. provided a mathematical representation of quantum query complexity as an SDP

feasibility problem [BSS03]. A long series of work showed that adversary methods

give lower bound to quantum query complexity [HNS02, Amb06, Zha05, BSS03, LM04,
HLS07]. Recently, Ben Reichardt [Rei09, Reil0a] showed that this lower bound is tight
for boolean functions.

To summarize, semidefinite programming has been a very useful tool in complexity
theory, approximation algorithms and quantum computing. We pursue this line of re-
search further, and show its application in product rules and quantum query complexity.
The main results of this thesis are the application of SDPs in these two fields.

Linear programming and semidefinite programming are examples of convex pro-
gramming, where the objective function and set of constraints are convex. There is a
hope to use other convex programming classes in complexity theory. Briefly, in the end,

we talk about one such application of copositive optimization to complexity theory.

1.1 Applications

As mentioned above, the major part of this thesis deals with the application of SDP
in product rule and quantum query complexity. Below we give the motivation behind

studying these areas and state the contribution made by this research.

1.1.1 Product rules

A fundamental question in complexity theory is, how the resources needed to compute k
copies of a function scale with the resources needed to compute a single instance of the
function. Although not always the case, one generally expects and wishes to show that
the resources needed grow linearly with k& and/or that the success probability decreases
exponentially with k. Answers to these questions are known as direct sum theorems,
(strong) direct product theorems, or XOR lemmas. It depends on the behavior of the
resource, success probability parameters, and whether one considers to output a k-tuple
of answers or simply their XOR.

In this thesis, we study a particular approach to proving such product theorems
based on semidefinite programming. In this approach, a semidefinite program is devel-

oped that approximates the quantity of interest. Then one shows that the semidefinite

program obeys a product rule, this bounds the behavior of the original quantity under
product as well. This approach has been successfully used many times in the literature,
for example [Lov79, FL92, KKN95, CSUU07, LSS08]. Despite this, there has been no
general theory to explain when semidefinite programs obey a product rule and when
they do not—each of these works had to prove their product theorem from scratch.

We attempt to develop a general theory to explain when the optimum of a semidef-
inite program is multiplicative under a naturally defined product operation. We find
sufficient conditions for the product rule to hold, and also discuss why in some cases it
does not hold (Section 3.3). We come up with a necessary condition too (Section 3.6).
Our framework is general enough to explain all the semidefinite product theorems in
the literature.

There are slight modification to the definition of being “multiplicative”. We discuss
how our results can be extended to those definitions. The results of this section are

published in [MS07, LMO8].

1.1.2 Quantum query complexity

There are various complexity measures like certificate complexity and decision tree
complexity for functions. One of these measures for functions, is the number of bits
needed to compute the function in the worst case, called query complexity. Currently,
there are two main ways to get a lower bound on quantum query complexity. One of
them, called the adversary method, was developed initially by Bennett et. al. [BBBV97]
and then later by Ambainis [Amb02]. It is known that the bound achieved by adversary
method for a function can be characterized using a semidefinite program.

In 2007, Hoyer et. al. [HLS07] introduced the generalized adversary bound (or
negative adversary bound) that lower-bounds the number of input queries needed by a
quantum algorithm to evaluate a function [HLS07]. This can also be represented as a
SDP. This SDP value is known to be tight up to constant factors for functions (total or
partial) with boolean output and binary input alphabet [Rei09, ReilOa, ReilOb, ReilOc].
We show that the general adversary bound is tight for any function whatsoever, i.e.,

with potentially non-boolean input or output alphabets (Theorem 4.0.1). We also show

that quantum query complexity (Q)) exhibits a remarkable composition property:

for any compatible functions f, g (Corollary 4.5.6). This was previously known only in
the boolean case.

Both of these results are obtained by defining a new, but closely related SDP, that
we call the witness size. The minimization formulation of the witness size adds more
constraints compared to the general adversary bound. This enables dual solutions to
correspond to eigenvalue-zero eigenvectors of certain graphs. While the witness size can
be strictly larger than the adversary bound, we show that it can be at most a factor of

two larger. These results are published in [LMRS10].

1.1.3 Other optimization problems

Instead of optimizing over a semidefinite cone, one can take a look at optimizing over
other kinds of convex cones. A natural question is, are there applications in theoretical
computer science where these cones can be helpful? We show that one of the recent
parallel repetition result [BHHT08] can be interpreted as an application of optimization
over the “copositive” cone.

It is known that we can represent NP-hard problems like independent set using
a copositive program. It makes this copositive optimization NP-hard to achieve. So
this rules out the possibility of using them to obtain approximation algorithms for
combinatorial quantities. Still they can be used to give bounds on these quantities. We
discuss how copositive programs can be used to give bounds on the value of certain
kind of nonlocal games, called unique games. It can be shown that the value of these
games, when played multiple times in parallel, approaches the value of the semidefinite

relaxation. These ideas are simplification of the article [BHHT08].

1.2 Thesis layout

This thesis is mainly composed of application of SDP in the two domains, product rules

and quantum query complexity. There is also a little discussion about how other forms

of convex optimization can be helpful in complexity theory.

In Chapter 2, we give a short introduction to the field of semidefinite programming.
The standard form of an SDP as well as other various equivalent formulations are
discussed. The chapter ends with explaining how SDPs are mostly used in applications
to theoretical computer science, i.e., relaxations and rounding procedures.

Chapter 3 is concerned with product rules derived using semidefinite programming.
As discussed in Section 1.1.1, we give sufficient conditions and necessary conditions for
a semidefinite program to be multiplicative. These conditions can be used to obtain
new product rules. Various product rules from different fields which follow from this
general framework are also discussed.

Chapter 4 gives the characterization of quantum query complexity (or negative ad-
versary bound) using SDP. This is done using a new SDP formulation called “witness
size”, as mentioned in Section 1.1.2. First we give these SDPs for negative adversary
bound and witness size. The chapter later discusses the algorithm, which shows that
these bounds are tight for quantum query complexity. In the end, we discuss composi-
tion results for quantum query complexity.

In Chapter 5, we briefly discuss how copositive programming can be helpful to
complexity theory. Then the thesis is concluded by summarizing the results and stating

open problems in this field.

Chapter 2

Semidefinite programming

Semidefinite programming is a class of optimization problems over matrix variables. It
can be thought of as a generalization of linear programming. In linear programming,
we have a linear objective function and linear constraints. An SDP also has a linear
objective function, considering entries of the matrix as variables. It can have linear
constraints, but it also allows the constraint that a certain matrix is in the semidefinite

cone. This is defined formally in Section 2.3.

2.1 Notation

For a natural number n € N, let [n] = {1,2,...,n}. Upper case letters will be used
to denote matrices and lower case letters vectors. Bold capital letters will be used for
tuples of matrices, e.g., A = (A(l), e ,A(m)). The multiplication between vector y and
tuple of matrices A is defined as yT A = Sy y; AW
For two matrices A, B of the same size, A o B denotes their entry-wise product,
also known as the Hadamard or Schur product. The summation of all the entries in
the matrix A o B is denoted by A e B (dot product of A and B), and defined as
AeB=> A;;Bi;. (2.1.1)
,J
The inner product between two vectors u and v will be denoted by u”v or (u|v).
If not specified, we will assume all matrices to be symmetric. An optimization
problem can be denoted by any one of the symbols 7,0, 7(X),0(X). Here X is the
1

variable in the optimization problem®. Given a primal instance m, the dual of that

instance will be denoted by 7*.

IThe variable X can be dropped from the notation (m,0), when it is clear from the context.

Any optimization problem has an objective function, the function we are trying to
minimize or maximize. It has a feasible region (the set of admissible X’s), defined
by the constraints of the problem. So the task is to maximize/minimize the objective

function dependent on X, under the condition that X belongs to the feasible region.

2.2 DPositive semidefinite matrices

An n x n symmetric matrix M is called a positive semidefinite matrix if, for all vectors
v € R”, the quadratic form vTMv > 0. It is called positive definite, if vZMv > 0.
When a matrix M is positive semidefinite, it is denoted by symbol M > 0 (M > 0,
when it is positive definite). There are other equivalent definitions also. We state them

without proof [HJ85].

Theorem 2.2.1. The following are equivalent for an n X n symmetric matric M €

R’I’LX’I’L.
1. M is positive semidefinite, i.e., ¥ v € R*, vIMv > 0.
2. All eigenvalues of M are nonnegative.

3. M is the Gram matriz of a set of vectors x,--- ,x, € R¥, for some k. So, for

alli,j € [n], M;; = (xi|xj).
4. For some vectors vi,--- ,upy € R", M = fulvf + -+ fukvg.

The set of positive semidefinite matrices is a “cone”. This means that for any two
positive semidefinite matrices My, My, given any «, 5 > 0, it holds that aM;+BMs = 0.
The dual cone C* of a cone C' is the set of vectors whose dot product with any

element of the cone C' is non-negative, i.e.,
C*={yeR":ylz>0VreCl (2.2.1)

It is known that the dual of the semidefinite cone is the semidefinite cone itself. This
implies, for any two positive semidefinite matrices M1, Ma, we know M; e My > 0 (even
Mj o My > 0). On the other hand, given a K, s.t., VM > 0K ¢ M > 0, then K is

positive semidefinite [BV04].

2.3 Affine semidefinite program instances

We take a semidefinite program to be described by triples 7 = (J, A, b), where
e J is the objective matrix, a symmetric matrix of dimension n X n,

o A= (A(l), e ,A(m)) is a list of m symmetric matrices, each of dimension nxn. A
describes a transformation from R™™ — R™ where A(X) = (AD e X, ..., A" o

X),
e b is a vector of length m.

With 7 we associate a semidefinite programming instance in the following standard

form with optimal value a(m):

max JeX (2.3.1)
X
st. A(X)=1b

X >=0.

We define the dimension of the instance to be (n,m). This semidefinite programming
instance is called affine as it only has equality constraints. Note, however, that this for-
mulation is completely general as one can encode inequality constraints by introducing
slack variables as necessary and enforcing non-negativity constraints by putting them
on the diagonal of X.

Notice that the objective function J e X is linear in the entries of the matrix X.
There are linear constraints of the form A® e X = b;. The semidefinite condition is
enforced by the constraint, that matrix X lies in the semidefinite cone (X > 0). These
constraints can also be thought of as, “feasible region is the intersection of a polyhedra

and the semidefinite cone”.

10

2.3.1 Duality

Like linear programming, duality theory is an important part of semidefinite program-
ming. The “dual” of a semidefinite program is another semidefinite optimization prob-
lem (SDP). It has the opposite objective, minimization if original problem is maximiza-
tion and vice versa. The original problem is called “the primal”. The dual of the dual
is the primal [BV04].

We will need the dual of 7 (defined by Eq. 2.3.1), which we denote by 7*. For the
method to express the dual see, for example, [BV04, Ali95, Lov]. The dual is defined
as

min y'b
y

s.t. yTA —J = 0.

where ¥ is a column vector of length m. Here, yT A is the matrix >y y AK),

Without loss of generality assume that our primal is a maximization problem (like
Eq. 2.3.1). The theorem of weak duality states, for any feasible solutions X,y of primal
m and dual 7* respectively,

m(X) < 7 (y).

Hence the value of the dual is an upper bound on the value of the primal. Similarly
the value of the primal is a lower bound on the value of dual. The situation in which
these two optimal values are equal (a(7) = a(7*)) is known as strong duality.

In the case of semidefinite programs, the value of the primal is not always equal to
the value of the dual. In other words, strong duality is not necessarily true. But it
follows if either the primal or the dual is strictly feasible, i.e., if there exist a feasible
X > 0 for the primal or there is a y such that y’ A — J > 0 for the dual, then strong
duality is achieved. In most of the cases, and all the cases discussed in this thesis,
this condition holds. Hence we assume strong duality in the complete thesis. More

information about strong duality can be found in the excellent surveys [BV04, Ali95].

11

2.3.2 Vector formulation

For applications in complexity theory it turns out that another formulation of SDPs
where vectors are the variables (instead of the matrices) is used more often. From
Theorem 2.2.1 any n X n positive semidefinite matrix M can be thought of as the Gram
matrix of vectors vy, vy --- ,Up, i.e., the 4, j*" entry of M is equal to the inner product
((vilv;)) between v; and vj. Conversely, any Gram matrix of n vectors is a positive
semidefinite matrix.

This equivalence gives us another way to express the semidefinite programming

problem 7 mentioned above.

max Y Jij(vilv;) (2.3.2)
1 7”]

VE > AF(vil) = by (2.3.3)
i,

Notice here that there is no positive semidefinite cone condition, because if every 4, j**

entry of the matrix can be represented as (v;|v;), then it is positive semidefinite.

2.4 SDPs as relaxations

Semidefinite programs are a convenient way to estimate many combinatorial quantities.
Sometimes they express the quantity of interest exactly [CSUUQ7], and in other cases
they approximate the quantity tightly [GW95, ARV04, KRT07, Rei09]. The concept of
relaxation is very important for all these applications.

These relaxations help in approximating a quantity. The quantity is first expressed
exactly as an integer program or a convex optimization problem with some non-convex
constraints. These programs cannot be solved efficiently and in most of the cases are
NP-complete.

The idea is to “relax” the program to an SDP which can be solved efficiently. A
“relaxation” &(X) of an optimization problem ¢(X) (X is the variable in the optimiza-
tion problem), is another optimization problem. Any feasible solution X of problem
o(X) should be a solution of (X) with the same objective value. This shows that the

value of 6(X) is a lower bound (upper bound) if (X)) is a minimization (maximization)

12

problem. A relaxation, by definition, is a bound on the original quantity of interest. It
is useful if it can be efficiently computed or is related to some other quantity of interest.

So the approach is to relax an integer program/non-convex program into a semidefi-
nite program, which we know is efficiently computable. In the case of integer programs,
we can drop the constraint that variables are integer and assume them to be vectors.
This gives us a semidefinite program (Section 2.3.2), if the integer program has linear
constraints and objective function. That is one of the reasons why vector formulation
is so important in complexity theory.

But solving a relaxation is not sufficient. We need to show that the relaxation is close
to the original quantity of interest. This is achieved by showing that the optimal solution
of a relaxation can be converted into a solution of the original non-convex optimization
problem without losing much in the objective value. For the integer programming
case, we need to convert the vector solution into an integer solution. This is known as
“rounding” [GW95, Rag08].

Hence, the process of creating a relaxation and then showing a good rounding al-
gorithm, proves that the semidefinite program is close to the quantity of interest. This
can be used to give bounds on the quantity or obtain good approximation algorithms.

In the next section, we will discuss few examples that highlight the use of this strategy.

2.4.1 Examples

One of the first applications of semidefinite programs in complexity theory was the
approximation algorithm for max-cut given by Goemans and Williamson [GW95]. It
is a good example for the relaxation and rounding strategy we outlined above. In the
max-cut problem, we are given a graph G = (V, E), and we need to find the cut which
has maximum number of edges. The cut is specified by a partition of the vertex set V'
into two parts. The number of edges in the cut is the number of edges going between
the two partitions.

This optimization can be written as an integer program, where variables can only

take values from {1, —1}. The set of vertices which are assigned 1 form one part of the

13

partition, and the rest another.
max Y LYY
Yi - 2
(i,5)€E

VieV ye{l,—1}

This integer program is relaxed to get a semidefinite program. Here the variables for
every vertex are allowed to be vectors instead of just being from {1,—1}.
1 — (viv))
w0 Ll
(i.)eE

VieV v eRVI

This can be solved in polynomial time using semidefinite programming solvers. Goe-
mans and Williamson showed that the resulting vectors can be converted into integers
by a simple rounding procedure. We take a random hyperplane and assign +1 to vertex
i, depending upon which side of the hyperplane v; lies on. The expected value of the in-
teger solution is at least .878 times the vector solution. This gives a .878 approximation
algorithm for max-cut [GW95].

Taking another example, the maximum/minimum eigenvalue of a matrix can be
calculated as a semidefinite program. More generally, suppose a symmetric matrix A(z)
depends affinely on x € R™, i.e., A(z) = Ag+ 2141 -+ + £, A,. Then the minimization

of the maximum eigenvalue of A(z) can be computed using the SDP

min ¢
X

sit. tI —A(x) =0

Here t, x are the variables. This format is same as the dual problem mentioned in the

Section 2.3.1.

14

Chapter 3

Product rules

A prevalent theme in complexity theory is what we might roughly call product theorems.
These results look at, how the resources needed to accomplish several independent tasks
scale with the resources needed to accomplish the tasks individually. Let us look at a
few examples of such questions:

Shannon capacity: Let o(G) be the size of a largest independent set in a graph
G. How does a(G) compare with amortized independent set size limy_, a(Gk)l/ k2
This last quantity, known as the Shannon capacity, gives the effective alphabet size of
a graph where vertices are labeled by letters and edges represent letters which can be
confused if adjacent [LovT79].

Hardness amplification: Product theorems naturally arise in the context of hardness
amplification. If it is hard to evaluate a function f(z), then an obvious approach to
create a harder function is to evaluate two independent copies f'(x,y) = (f(x), f(y)) of
f. There are different ways that f’ can be harder than f—a direct sum theorem aims
to show that evaluation of f’ requires twice as many resources as needed to evaluate f;
direct product theorems aim to show that the error probability to compute f’ is larger
than that of f, given the scaled up amount of resources [JKS10].

Soundness amplification: Closely related to hardness amplification is what we might
call soundness amplification. This arises in the context of interactive proofs where one
wants to reduce the error probability of a protocol by running several checks in parallel.
The celebrated parallel repetition theorem shows that the soundness of multiple prover

interactive proof systems can be boosted in this manner [Raz98].

15

3.1 Semidefinite programming approach to product theorems

The previous examples illustrate that many important problems in complexity theory
have dealt with product theorems. One successful approach to these types of questions
has been through semidefinite programming. The use of semidefinite programming has
proliferated in many areas of theoretical computer science, for example in combina-
torial optimization [GW95, KMS98, ARV04], quantum computing [BSS03, CHTWO04,
CSUU07, HLS07], and complexity theory [FL92, LLS06, LSS08], and it has also proven
useful to show product theorems.

In this approach, we want to know how some quantity o(G) behaves under the
product operation. So we take a look at the semidefinite approximation/relaxation

7(G) of o(G). Then the hope is to show
1. (G) provides a good approximation to o(G) (rounding).
2. (@) obeys a product theorem (G x G) = 5(G)a(G) .

So we obtain that the original quantity o(G) must approximately obey a product rule
as well.

It is shown that all the semidefinite programs do not multiply. This strategy gives
a very natural approach, which shows when a semidefinite program obeys a product
theorem. Namely, we use the maximization formulation of the semidefinite program to
show that (G x G) > 5(G)? by combining optimal solutions for the G instance into a
solution for the G x G instance. Similarly, then we try to show that (G x G) < 5(G)?
by considering the dual minimization formulation and showing that an optimal dual
solution can be combined into a solution for the G x G instance. Note that in this
strategy one does not need to use the fact that the value of semidefinite programs can
be computed efficiently.

Let us see how this approach has been used for the above questions.

Shannon capacity: Perhaps the first application of this technique was to the Shannon
capacity of a graph G. Lovész developed a semidefinite quantity, the Lovasz theta

function ¥(G). He showed that it is an upper bound on the independence number of a

16

graph and that 9(G x G) = 9(G)?. In this way he determined the Shannon capacity of
the pentagon, resolving a long-standing open problem [Lov79].

Hardness amplification: Karchmer, Kushilevitz, and Nisan [KKN95] notice that
another program introduced by Lovész [LovT75], the fractional cover number, can be
used to characterize non-deterministic communication complexity, up to small factors.
As this program also perfectly products, they obtain a direct sum theorem for non-
deterministic communication complexity.

As another example, Linial and Shraibman [LS08] show that a semidefinite program-
ming quantity v5° characterizes the discrepancy method of communication complexity,
up to constant factors. Lee, Shraibman and Spalek [LSS08] then use this result, to-
gether with the fact that v§° perfectly products, to show a direct product theorem for
discrepancy, resolving an open problem of Shaltiel [Sha03].

Soundness amplification: Although the parallel repetition theorem was eventually
proven by other means [Raz98, Hol07], one of the first positive results did use semidefi-
nite programming. Feige and Lovasz [FL.92] show that the acceptance probability, w(G),
of a two-prover interactive game can be represented as an integer program. They then
relax this to a semidefinite program, @w(G), and show that this quantity perfectly prod-
ucts. In this way, they are able to show that if w(G) < 1 then supy_, ., w(GF)/* < 1,
for a certain class of games G known as unique games.

Recently, there has been a lot of renewed interest in studying parallel repetition
through semidefinite programming. Part of this interest stems from the close connection
between semidefinite programming and the value of a two-prover interactive game where
the provers are allowed to share entanglement. The value of a special kind of such a
game, known as an XOR game, can be exactly represented by a semidefinite program
[Tsi87, CHTWO04]. Cleve et al. [CSUUO07| show that this semidefinite program obeys a
product theorem to obtain a perfect parallel repetition theorem for these kinds of games.
Kempe, Regev, and Toner [KRT07] look at the broader class of unique games with
entanglement and use semidefinite programming techniques to get a parallel repetition

theorem for these games.

17

Very recently, Barak et al. [BHH"08] show that semidefinite programming is in-
herently connected to parallel repetition. Roughly speaking, they show that the amor-
tized value of a unique game repeated in parallel converges to the value of the natural

semidefinite relaxation of the unique game studied in the original paper [FL92].

3.1.1 Our contribution

We hope that this selection of examples demonstrates the power and usefulness of
the semidefinite programming approach to proving product theorems. Despite these
successes, however, we are not aware of any work which systematically investigates the
conditions under which semidefinite product theorems hold. This is what we attempt
to do in this chapter. We identify a large class of semidefinite programming instances
that obey the product rule, and in particular we are able to explain all of the product
theorems in the works [Lov79, FL92, CSUU07, LSS08, KRT07]. We also discuss some
examples where product theorems do not hold, and give a necessary condition for a
product theorem to hold, at least if one proceeds by the most natural proof technique.

We think that the sufficiency conditions developed here will already be of use for
researchers using the semidefinite programming approach to prove product theorems.
Indeed, rather than proving their product theorem from scratch, Kempe et al. [KRT07]
were able to appeal to the results in our preliminary article [MS07]. From a mathemat-
ical point of view, however, there is still much to be done to reach a full understanding
of when semidefinite programs product. We hope to provoke ideas and set the scene

for what one day might be a complete classification.

3.2 Product instances

Consider a semidefinite instance given in the standard form, as defined in Section 2.3.

max JeX
X
AX)=b

X =0.

18

We now define a notion of what it means to take the product of two such semidefinite

programming instances.

Definition 3.2.1. Let m = (J1, A1,b1) and mo = (J2, Az, by) be two affine semidefinite
programming instances with dimensions (n1,my) and (ng, ms), respectively. We define
the product instance as m X ma = (J1 ® Ja, A1 @ Ao, by ® by), where A1 ® Ag is by
definition the list (Agk) ® Aél))k,l of length myms of nine X nino matrices. The product

instance has dimensions (ning, mims).

The natural question to ask is if two instances of semidefinite programs behave

nicely under this product operation.

Definition 3.2.2. Two semidefinite programming instances w1 and my are said to obey

a product theorem if and only if a(m X mg) = a(m1)a(me).

The rest of this chapter focuses on finding conditions, both sufficient and necessary,
for a product theorem to hold.

From a mathematical point of view, this definition of product is the most natural.
In applications, however, one generally has a notion of product in mind which is native
to the problem at hand, and which might not always agree with that of Definition 3.2.1.
It is possible that taking the tensor product of the constraint matrices A1 ® Ay creates
unintended constraints, or, on the contrary, that one in fact desires more constraints
than just those defined by A;® As. This is the most subtle aspect of applying our theory
in practice. Later in the chapter, Section 3.7 and Section 3.4, we discuss alternative

notions of product used in the literature and how they fit into our setting.

3.2.1 Counterexample to the product theorem

In this section we give an example of a semidefinite programming instance where the
product theorem does not hold. For a symmetric and square matrix M, let A\ (M)
denote the largest eigenvalue of M. The largest eigenvalue of M, in contrast to the
similar notion of spectral norm, is not multiplicative. Indeed, let M be a matrix with

maximal eigenvalue 1 and minimal eigenvalue —2. Then, using the fact that under

19

the tensor product the spectra of matrices multiply, we get that M ® M has maximal

eigenvalue 4 # 12 (the corresponding spectral norms would be 2 for M and 4 for M®@M).

Proposition 3.2.3. The largest eigenvalue of a symmetric matriz can be formulated
as the optimal value of a semidefinite program. This program does not obey a product

theorem.
Proof. First notice that
A (M) = min{\ | A\ — M = 0}. (3.2.1)

This is the formulation of the dual (minimization) instance. Observe that m =1, A =
(I),J = M and b = 1. For the sake of completeness we also describe the primal
problem:

M(M)=max{M e X | Tr(X)=1, X = 0}. (3.2.2)

The product instance associated with two matrices, My and Ms, has parameters I =
L I, M = M; ® My and b = 1. Since [is the identity matrix of appropriate
dimensions, the optimum value of this instance is exactly the maximal eigenvalue of
M1 ® Ms. On the other hand, as described in the beginning of this section, the maximal

eigenvalue program does not obey a product theorem. O

As remarked above, the spectral norm of a symmetric matrix M, that is, the largest
eigenvalue of M in magnitude, does obey a product theorem and is described by a very

similar semidefinite program:
M| = max{|M ¢ X| | TrX =1, X = 0}. (3.2.3)

The reader might think that a product theorem can always be rescued by taking
the absolute value of the objective function, Next we give a counterexample to this

conjecture. Consider a very simple linear program (it is also a semidefinite program):

max T — I
T, — X9+ 23 =2

x> 0.

20

Here z is the vector (z,x9, - ,xy). Clearly the value of this program is 2; since

x3 is non-negative. Now if we take the product of this program with itself

maxxil — X1,2 — T21 + T22
T11 — T12 — T21 + 22+ X371 +T13+T33 — Ta3— 232 =4

xz > 0.

Now, the value of the objective function can be raised indefinitely by raising the
value of x9 3. So the value of the program is not 4. The product program would have
been the same, if we had taken the product in terms of semidefinite representation. So

taking the absolute value does not save the product theorem.

3.2.2 The product solution

In Section 3.2.1 we saw an example of an affine semidefinite program that does not
obey a product rule. Therefore, for the product rule to hold we need to look for proper
subclasses of all affine instances.

Let m and w9 be two affine instances, with optimal solutions X; and Xy for the
primal, and optimal solutions y; and yo for the dual. For our entire discussion, we
will assume that so-called strong duality holds for w1 and 79 (see [BV04, Ali95], Sec-
tion 2.3.1). This implies that a(m) = a(n7), i.e., the primal and dual values agree, and
similarly for mo and 7 ® ms.

The first instinct for proving the product theorem would be to show if X, Xy are
optimal solutions to 7y, respectively, then X; ® X5 is a solution of the product
instance. This solution X; ® X9 has objective value a(7m1)a(ms), which gives a lower
bound on a(m; x mg). Similarly, if 1, y2 are optimal solutions to 7}, m5; then y; ® yo is
a solution of the dual of the product instance. This will give the lower bound of same
value a(m1)a(ms). The above two potential solutions for the product instance and its
dual we call the product-solution and the dual product-solution. In other words, in order

to show that the product rule holds for m; and w9 it is sufficient to prove:

1. Feasibility of the product-solution: (A ® A2)(X; ® X2) = b1 & bo;

21

2. Feasibility of the dual product-solution: (y1 ® y2)T (A1 ® Ag) — J1 @ Jo = 0;

3. Objective value of the primal product-solution: (J; ® J2) e (X7 ® Xo) = (Jy
X1)(J2 @ X3);

4. Objective value of the dual product-solution: (y; ® o) (by ® ba) = (yLb1)(y2 ba).

We also need that X; ® Xo = 0, but this is automatic as X7, X9 = 0. Which of 1-4 fail
to hold in general? Basic linear algebra gives that conditions 1, 3 and 4 hold without

any further assumption. This immediately gives

Proposition 3.2.4. Let m; and my be two affine instances. Then a(m; X ma) >

a(m)a(ms).

3.3 Sufficient conditions for a product theorem

From the previous section, any property of (A, J,b) which implies Condition 2 (dual
feasibility) will be a sufficient condition for the product theorem to hold. In this section
we present some sufficient conditions for dual feasibility.

The condition for dual feasibility is (y1 ® y2)? (A1 ® Ag) — J; ® Jo = 0. We already
know that y{Al —Jiy = 0 and y2TA2 — Jo = 0. Note that it is not true in general
that A = B and C > D implies A® C = B ® D. One can take the very simple
counterexample with scalars where A,C =1 and B, D = —2

Let us assume, however, that yfAl +J1 and yg Ao+ Js are also positive semidefinite.

Then
(] A1—J1)®(y3 Ao+Jz) = yf A1®ys As—J1®y Ag+y] A1@J—J1@J2 = 0. (3.3.1)

Also

(YT A1+ 1)@ (y3 As—To) = y{ A1©0y3 Ao—y] A1@ o+ J1@ys As—J1@J5 = 0. (3.3.2)

Taking the average of the right hand sides of Equations (3.3.1) and (3.3.2) we obtain

22

that

y{Al & szAz —J1® Jy = 0.

= (yl & y2)T(A1 ® A2) —J1® Jy = 0.

which is the desired Condition 2.
Note that in this proof, we only assumed the positivity of y! A. + J. = 0. That

gives us our first sufficient condition.

Lemma 3.3.1. Let 1,7 be semidefinite programs for which strong duality holds. Let
Y1, Y2 be optimal solutions to the dual formulations w7}, w5 respectively. If yI'A.+J, =0

for both ¢ € {1,2}, then the product theorem holds for w1 and .

Unfortunately, this condition depends on an optimal dual solution of the semidefinite
instance, something that we generally will not know. Now we will derive two less
general sufficient conditions that have the advantage of only depending upon J., A., b,

for ¢ € {1, 2}, the parameters of our semidefinite instance.

3.3.1 Positivity of t