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ABSTRACT OF THE THESIS

Inertial acoustic cloaks made from three acoustic fluids.

by Adam Julius Nagy

Thesis Director: Dr. Andrew N. Norris

This thesis provides an extensive review of acoustic wave theory in one, two (polar),

and three (spherical) dimensions concluding with a study of passive, non-directional

cloaking. The optical theorem is derived by use of energy conservation, yielding the

cross sectional scattering in two and three dimensions. A new method, the Matricant

Propagator, is developed for solving the scattered pressure field in wave-object

interactions. Solutions found from the Matricant Propagator method are compared

with known solutions using the Global Matrix method. A review of acoustic cloaking

literature is given, including numerical comparison with previously proposed cloaking

models. Lastly an acoustic cloak of the inertial type, made from compressible, inviscid

fluids, is proposed by layering concentric shells of only three distinct fluids. The

effectiveness of the device depends upon the relative densities and compressibilities

of the three fluids. Optimal results are obtained if one fluid has density equal to

the background fluid, while the other two densities are much greater and much

less than the background. Numerical examples display a significant reduction in

scattering and were compared using multiple solution methods. It is found that use of

only two unique fluids is too restrictive for cloaking, however, interesting characteris-

tics are found where energy may be diverted such that a reduction in backscatter occurs.
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Chapter 1

Introduction

This thesis covers an extensive review of acoustics based in the realm of normal, inviscid,

acoustic fluids. Solutions to the wave equation in one, two and three dimensions are

summarized. Scattering solution techniques such as the Global Matrix and Matricant

Propagator methods are developed and utilized. Lastly, the scattering cross-section,

which identifies the amount of energy scattered occurring from object-wave interaction

is discussed.

The review of acoustic wave theory forms the basis for a study of passive, non-

directional acoustic cloaking. Here an acoustic cloak directs wave energy around an

object such that waves incident from any direction may pass around the object through

the cloaking medium. This will have the effect of hiding the object such that the effective

cross-sectional scattering will ideally be zero. A region of space is thus transformed,

acoustically, to a single point such that the scattering strength vanishes causing the

region to become seemingly uniform. For instance if a submerged vessel underwater

were to be hidden from sonar a cloak could be used to transform the region the vessel

occupies to behave just as the surrounding medium. Instead of waves reverberating off

the hull of the vessel they are sent around and propagate away as if the vessel were not

present.

In this thesis we will only consider cloaks derived from anisotropic inertial prop-

erties defined as inertial cloaks. Simply layering different fluids defined by a unique

transformation rule can create the needed anisotropicity. Further investigation reveals

only three unique fluids are required for cloaking. A layering of only two unique fluids

carries interesting characteristics where energy may be diverted such that a reduction

in backscatter occurs.
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1.1 Motivation and Literature Review

Acoustic cloaking structures have applications to a broad spectrum of fields including

national defense as well as civil engineering. A cloak could be used to hide underwater

vessels from sonar, create better isolated environments for laboratories, help in vibra-

tion control in blasting environments, create advanced concussion protection helmets

for troops, dramatically improve seismic mitigation, and a plethora of other broader

impacts that would benefit society.

Recent developments in electromagnetic cloaking have given new life in the study

of acoustic cloaking. Studies in electromagnetism have found that strong anisotropic

electromagnetic (EM) parameters are required for EM cloaking, [1, 2]. This class of

material is referred to as a metamaterial as they do not occur in nature and must be

man-made. Further studies in EM metamaterials have shown unprecedented control of

wave propagation for devices such as: concentrators [3], beam splitters [4], and of course

cloaks [5, 6]. These devices are created through the technique of transformation optics

which is done by applying a form-invariant coordinate transform to the EM equations,

deforming space in a specified manner [4]. Similarly, transformation acoustics applies a

form-invariant coordinate transform to the Helmholtz equation. Work done by Cummer

and Schurig [5], proposed that an acoustic material with strong mass anisotropy was

needed to construct a cloaking medium. Milton et al. [7] conceptually described how

spring-loaded masses could create the needed mass anisotropy, building on the work of

Willis [8] who demonstrated that, for a composite material in which density varied, the

effective density operator took the form of a second-order tensor. Material parameters

for a two dimensional acoustic cloak were proposed by Cummer and Schurig [5] for a

given transformation, however Norris [9] has shown the effective material properties of

an acoustic cloak are not uniquely defined and have special relations to the transforma-

tion mapping. This finding has opened a vast range of materials for realizing acoustic

cloaks. The acoustic cloak corresponds to the limiting case of a point transformed into

a finite region, and it has unavoidable physical singularities associated with the extreme

nature of the transformation. Different types of singularities are obtained depending on



3

whether the transformed metamaterial is purely inertial with anisotropic density and

a scalar bulk modulus, or in the other limit, purely pentamodal with isotropic inertia.

The distinction is important for cloaking, for which it is known that use of only fluids

with anisotropic inertia (inertial cloaks) requires infinite mass, and is therefore not a

realistic path towards acoustic cloaking [9]. Despite this severe limitation, it is possible

to achieve almost perfect, or near-cloaking, using layers of anisotropic fluids that ap-

proximate the transformed medium, without the singularity. Examples of this type of

layering have been proposed [10, 11].

1.2 Outline of the Thesis

The thesis outline is as follows. The theory of acoustics is introduced in Chapter

2, where solutions to the wave equation are developed in one, two (polar), and three

(spherical) dimensions. A further study of one dimensional acoustics is done in Chapter

3, where examples of boundaries separating semi-infinite mediums is given. We also be-

gin developing the Matricant Propagator method. In Chapter 4, we explore anisotropic

properties of cylindrically layered media, continue development of the Matricant Propa-

gator in cylindrical coordinates and compare with the Global Matrix method. In Chap-

ter 5 solution techniques are developed in three dimensional spherical coordinates. We

begin acoustic cloaking review in Chapter 6 and numerically compare results of Torrent

and Sánchez-Dehesa [10]. Chapter 7 reviews the work developed alongside this thesis in

Norris and Nagy [12], where a cloaking structure comprised of only three unique fluids

is developed. Finally, Chapter 8 provides a short summary of the main results of the

thesis.
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Chapter 2

The Acoustic Wave Equation

First we start with an examination of the wave equation.

(

∇2 − 1

c2

∂2

∂t2
)

u(xxx, t) = 0. (2.1)

Here, ∇2 is the Laplacian and c is the speed of wave propagation in a given medium.

The method of separating variables will be employed to consider a solution consisting

of a transient and steady part, starting in one dimension and working to three dimen-

sional, spherical coordinates. As a reference on the wave equation and the separation of

variables technique, Jin [13], was used for which electromagnetic fields were the interest

of study.

2.1 One dimension

Starting with a one-dimensional analysis, where u(xxx, t) = u(x, t), we employ separation

of variables such that u(x, t) = P (x)T (t) and substitute into Equation (2.1) attaining

c2 P
′′

(x)

P (x)
=

T
′′

(t)

T (t)
= const. = −ω2. (2.2)

Here, ω is the angular frequency and, for an acoustic wave, P is the acoustic pressure

describing local deviation from ambient. The time harmonic general solution of T (t) is

then Ce±iωt, for which i is the imaginary unit, T (t) = e−iωt is taken here. This means

P (x) must satisfy the Helmholtz equation, namely

P
′′

+
ω2

c2
P = 0. (2.3)

The general solution for P (x) is then given by P (x) = Ae±ikx for which the exponent

is negative for waves traveling to the left and positive for waves traveling to the right.

A is the amplitude of these waves and k is the wavenumber given by k = ω
c .
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2.2 Two dimensions, polar coordinates

In two dimensional, polar coordinates, the wave equation becomes

(

∇2 − 1

c2

∂2

∂t2
)

u(r, θ, t) = 0. (2.4)

Employing separation of variables, u(r, θ, t) = P (r)Θ(θ)T (t). This will have the same

time harmonic solution for T (t) and Θ(θ) must satisfy

Θ(θ)
′′

Θ(θ)
= const. = −n2. (2.5)

Θ(θ) must be periodic such that Θ(θ + 2πn) = Θ(θ) for n being an integer (n =

0, 1, 2, . . .). A solution taken here will be Θ(θ) =
∑∞

n=−∞ einθ. Now P (r) must then

satisfy a second order, homogeneous equation given by

d2Pn

dr2
+

1

r

dPn

dr
+ (k2 − n2

r2
)Pn = 0. (2.6)

The subscript n denotes that this must hold for all values of n. The solution for Pn

is found by realizing that (2.6) is Bessel’s differential equation, for which the general

solution for Pn can be expressed by Bessel functions of the first, Jn, second, Yn and

third, H
(1)
n , H

(2)
n kind, with

Pn =















C1Jn(kr) + C2Yn(kr)

C3H
(1)
n (kr) + C4H

(2)
n (kr)

. (2.7)

The method of Frobenius may be used to solve Bessel’s differential equation, (2.6), as

done in Greenberg [14]. Abramowitz and Stegun, [15], will be referenced in the following

sections for relations regarding Bessel functions. Conservation of momentum is used to

find the acoustic velocity, V , assuming constant frequency. The linearized momentum

equation is written as

ρ
∂V

∂t
= −∇P → iωρV = ∇P. (2.8)

We can see that the acoustic velocity is proportional to the pressure gradient as seen

in Equation (2.8), for which ρ is the density. The acoustic velocity in polar coordinates
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for Vr and Vθ is given by

Vr =
1

iωρ

∂P

∂r
, (2.9a)

Vθ =
1

riωρ

∂P

∂θ
→ inP

riωρ
(for mode n). (2.9b)

The velocity will come in handy when solving acoustic problems where solutions must

satisfy continuous pressure and velocity boundary conditions.

2.3 Three dimensions, spherical coordinates

Finally the wave equation in 3D spherical coordinates is solved. We start with the three

dimensional wave equation

(∇2 − 1

c2

∂2

∂t2
)P (x, y, z, t) = 0. (2.10)

We next change Cartesian coordinates to spherical such that P can be expressed as

P = P (r, θ, φ, t), where r =
√

x2 + y2 + z2, θ = cos−1
(

z√
x2+y2+z2

)

and φ = tan−1
( y

x

)

.

Applying these transformations to Equation (2.10), and simplifying as much as possible,

the wave equation in spherical coordinates is

1

c2

∂2P

∂t2
=

1

r2

∂

∂r

(

r2 ∂P

∂r

)

+
1

r2 sin (θ)

∂

∂θ

[

sin (θ)
∂P

∂θ

]

+
1

r2 sin2 (θ)

∂2P

∂φ2
. (2.11)

Applying separation of variables and continuing as before, the above equation may be

solved for P . Let P (r, θ, φ, t) = R(r)Θ(θ)Φ(φ)T (t). Substitution of this expression into

Equation 2.11 and dividing the result by R(r)Θ(θ)Φ(φ)T (t) yields

1

c2

T
′′

T
=

1

r2R
(r2R

′

)
′

+
1

r2 sin (θ)

1

Θ
[sin (θ)Θ

′

]
′

+
1

r2 sin2(θ)

Φ
′′

Φ
. (2.12)

The RHS, (right hand side), of Equation (2.12) is independent of t which makes the

LHS constant. As before, we call this constant −k2 where k = ω
c , such that

T
′′

+ c2k2T = 0. (2.13)

The solution for T is the same as before, where T (t) = e±iωt. Making the RHS of

Equation (2.12) equal to −k2 and multiplying by r2 sin2(θ), gives with some rearranging,

Φ
′′

Φ
= −k2r2 sin2 (θ) − sin2 (θ)

R
(r2R

′

)
′ − sin (θ)

Θ
[sin (θ)Θ

′

]
′

. (2.14)
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This maneuver separated φ dependence from r and θ so that the LHS of Equation

(2.14) can be set equal to a constant. We shall call it −m2 so that Φ must satisfy

Φ
′′

+ m2Φ = 0. (2.15)

Equation (2.15) is once again the harmonic oscillator equation, with solutions Φ±(φ) =

Φ0e
±imφ. Because continuous solutions are required as a function of φ, m must be

restricted to integer values. (m = 0,±1,±2, . . .). If the RHS of Equation (2.14) is

equal to −m2 and we divide by sin2 (θ) we have

1

sin (θ)Θ
[sin (θ)Θ

′

]
′ − m2

sin2 (θ)
= − 1

R
(r2R

′

)
′ − k2r2. (2.16)

The above equation separated θ and r dependencies. Again each side of this equation

is constant and, by convention, is equal to −l(l+1). The resulting differential equation

for Θ(θ) is then

1

sin (θ)
[sin (θ)Θ

′

]
′

+

[

l(l + 1) − m2

sin2 (θ)

]

Θ = 0. (2.17)

Through the change of variables s(θ) = cos (θ), we can think of Θ as a function of θ

through the variable s with Θ = Θ[s(θ)] and write the derivatives of Θ as

∂Θ

∂θ
=

∂Θ

∂s

∂s

∂θ
=

∂Θ

∂s
[− sin (θ)] =

∂Θ

∂s
[−

√

1 − s2],

∂2Θ

∂θ2
=

∂

∂θ

(

∂Θ

∂s

∂s

∂θ

)

=
∂2Θ

∂s2
(1 − s2) +

∂Θ

∂s
[−s].

Substituting the above into Equation (2.17) yields the associated Legendre equation

(1 − s2)Θ
′′

(s) − 2sΘ
′

(s) +

[

l(l + 1) − m2

1 − s2

]

Θ(s) = 0. (2.18)

The solutions are the Legendre functions of the first and second kind denoted by Pm
l (s)

and Qm
l (s). However solutions associated with Qm

l (s) are not desired since these so-

lutions diverge as s → ±1. For the Pm
l (s) solutions to remain finite, l must be an

integer and m must satisfy |m| ≤ 1. For m = 0 (azimuthal symmetry) the solutions

P 0
l (s) ≡ Pl(s), these are known as the Legendre polynomials in s of order 1. Equating

the RHS of Equation (2.16) to −l(l + 1) we attain

s2R
′′

(s) + 2sR
′

(s) + [s2 − l(l + 1)]R(s) = 0. (2.19)
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Solutions of Equation (2.19) are known as spherical Bessel functions of the first and

second kind, jl(s) and yl(s), where s = kr. The function R is then given by

Rkl(r) = Gkl jl(kr) + Hkl yl(kr), (2.20)

where indices k and l of Gkl and Hkl signify the unknown coefficients for integer l and

the wave number dependency k. The final solution for P (r, θ, φ, t) is then

Pklm(r, θ, φ, t) =[Gkljl(kr) + Hklyl(kr)]
[

ElmPm
l (cos (θ)) + FlmQm

l (cos (θ))
]

(2.21)

×
(

Cmeimφ + Dme−imφ
)(

Akeikct + Bke−ikct
)

.

2.4 General summary

The wave equation was solved for 1D, 2D (polar) and 3D (spherical) geometries through

the technique of separation of variables. This review was, in part, extensive. However,

transient, unsteady, solutions such as d’Alembert’s were left out. Now that solutions

for the wave equation have been discussed, it is convenient to end with a discussion on

how material properties might affect wave propagation through a given medium. The

relationship between material properties and the sound velocity at which compressional

/ longitudinal waves propagate in a solid isotropic medium is given by Kinsler, [16], as

c =

√

E(1 − ν)

ρ(1 + ν)(1 − 2ν)
=

√

K + 4
3G

ρ
. (2.22)

Here K is the bulk modulus, G is the shear modulus, E is Young’s modulus, and ν

is Poisson’s ratio. Similarly, the shear velocity, cS , is given by cS =
√

G
ρ [16]. These

parameters may be found by solving the equation of motion, σji,j + Fi = ρ∂2ui
∂t2

, for a

semi-infinite elastic slab where, in one case, a simple longitudinal/compressional wave is

propagated through one end and in another case where a shear wave is propagated. For

a fluid, the compressional wave speed is given by c =
√

K
ρ . It is easy to compare this

with Equation (2.22), where G has dropped out. This occurs as a Newtonian fluid does

not sustain shear forces. The next chapter will focus on the one-dimensional wave and

the reflectance and transmission of such waves through boundaries separating different

media.
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Chapter 3

One Dimensional Semi-infinite Medium Examples

This section will consider a sequence of problems illustrating the basic concepts of one-

dimensional wave propagation. In particular, we consider the amounts of reflection and

transmission that occur due to a wave traveling through different media.

3.1 Simple one boundary

We start with the simplest 1-D case in which an incident wave of magnitude A1 interacts

with a boundary separating two media with different density and speed of sound. From

Figure 3.1, it is seen that the reflected wave will have magnitude A2 and the transmitted

wave will have magnitude B1. Notice that eikx refers to a wave traveling in the positive

x direction while e−ikx refers to a wave traveling in the negative x direction as per our

definition of T (t) = e−iωt. The pressure P (x) and velocity V (x) are given by

P (x) =















A1e
ikx + A2e

−ikx, x < 0,

B1e
ik1x, x > 0,

(3.1)

Figure 3.1: Simple one boundary diagram.
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V (x) =















1
Z (A1e

ikx − A2e
−ikx), x < 0,

1
Z1

B1e
ik1x, x > 0.

(3.2)

In the above equation Z is the acoustic impedance, defined as Z = ρc and Z1 = ρ1c1.

Boundary conditions for acoustic problems require continuity of pressure and velocity

and are as follows; P (0+) = P (0−) and V (0+) = V (0−). These conditions allow for the

coefficients A2 and B1 to be solved in terms of the incident wave magnitude, A1, where

A2 = A1
Z1 − Z

Z + Z1
, B1 = A1

2Z1

Z + Z1
. (3.3)

The reflection coefficient, R, expresses the fractional amount of the incident wave that

is reflected. Likewise the transmission coefficient, T , expresses the fractional amount

of the incident wave that is transmitted. For this example, R and T are given by

R =
Z1 − Z

Z + Z1
, T =

2Z1

Z + Z1
. (3.4)

3.2 Two boundaries: a slab

The next case we consider is that of an incident wave interacting with a slab of thickness

2h with acoustic properties ρ1 and c1. This problem will be solved using three different

methods:

• Straight Forward Method : applying the interface conditions

• Symmetry / Antisymmetry : using the underlying symmetry of the problem

• Matricant (Propagator) : ODE solution.

3.2.1 A straight forward method

An incident wave of magnitude A1 interacts with the slab as shown in Figure 3.2. The

reflected wave has magnitude of A2. The part of the incident wave that transmits

through the boundary x = −h will have magnitude C1 and then at x = h a reflected

wave of magnitude C2 and a transmission wave of magnitude B1 will result. The
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Figure 3.2: Configuration for slab wave interaction.

pressure and velocity are given by

P (x) =































A1e
ikx + A2e

−ikx, x < −h,

C1e
ik1x + C2e

−ik1x, −h < x < h,

B1e
ikx, x > h,

(3.5a)

V (x) =































1
Z (A1e

ikx − A2e
−ikx), x < −h,

1
Z1

(C1e
ik1x − C2e

−ik1x), −h < x < h,

1
Z B1e

ikx, x > h.

(3.5b)

Once again, the same boundary conditions are applied: P (h+) = P (h−), P (−h+) =

P (−h−), V (h+) = V (h−), V (−h+) = V (−h−), which results in a system of equations

to be solved with,

A1e
−ikh + A2e

ikh = C1e
−ik1h + C2e

ik1h,

A1e
−ikh − A2e

ikh =
Z

Z1
(C1e

−ik1h − C2e
ik1h),

C1e
ik1h + C2e

−ik1h = B1e
ikh,

C1e
ik1h − C2e

−ik1h =
Z1

Z
B1e

ikh.

(3.6)
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Answers to coefficients A2 , C1 , C2 and B1 in terms of A1, are

A2 = −A1
e−2ihk(−1 + e4ihk1)(Z − Z1)(Z + Z1)

e4ihk1(Z − Z1)2 − (Z + Z1)2
,

C1 = −2A1
e−ih(k−k1)Z1(Z + Z1)

e4ihk1(Z − Z1)2 − (Z + Z1)2
,

C2 = 2A1
e−ih(k−3k1)Z1(Z1 − Z)

e4ihk1(Z − Z1)2 − (Z + Z1)2
,

B1 = −4A1
e−2ih(k−k1)ZZ1

e4ihk1(Z − Z1)2 − (Z + Z1)2
.

(3.7)

Finally the reflection and transmission coefficients can be found by using Figure 3.2 for

which R = A2/A1 and T = B1/A1, yielding

R = −e−2ihk(−1 + e4ihk1)(Z − Z1)(Z + Z1)

e4ihk1(Z − Z1)2 − (Z + Z1)2
,

T = −4
e−2ih(k−k1)ZZ1

e4ihk1(Z − Z1)2 − (Z + Z1)2
.

(3.8)

3.2.2 Symmetry / Antisymmetry

Consider the two cases of symmetry and antisymmetry for which PS(x) = PS(−x)

and PA(x) = −PA(−x), respectively. By employing these conditions on P (x) from the

previous example, PS(x) and PA(x) are defined by

PS(x) =































A1e
ikx + A2Se−ikx, x < −h,

C1S cos k1x, −h < x < h,

A1e
−ikx + A2Seikx, x > h,

(3.9a)

PA(x) =































A1e
ikx + A2Ae−ikx, x < −h,

C1A sin k1x, −h < x < h,

−A1e
−ikx − A2Aeikx, x > h.

(3.9b)

Now, when the two situations of symmetry and antisymmetry are put together, the

same example is attained as seen in Figure 3.3, where

P (x) =































2A1e
ikx + A2Se−ikx + A2Ae−ikx, x < −h,

C1S cos k1x + C1A sin k1x, −h < x < h,

A2Seikx − A2Aeikx, x > h.

(3.10)
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Figure 3.3: Configuration for symmetry/anti-symmetry conditions for slab wave inter-
action.

The system can be solved separately in terms of the symmetric and antisymmetric

situations using continuity of pressure and velocity. The resulting system of equations

to be solved is

A1e
ikh + A2Se−ikh = C1S cos k1h,

1

Z
(A1e

ikh − A2Se−ikh) =
−C1S

iZ1
sin k1h,

A1e
ikh + A2Ae−ikh = C1A sin k1h,

1

Z
(A1e

ikh − A2Ae−ikh) =
C1A

iZ1
cos k1h.

(3.11)

The answers for the coefficients in terms of the incident wave magnitude, A1 are

A2A = A1e
2ikh[ 2 sin k1h

Z
iZ1

cos k1h+sin k1h
− 1], C1A = 2A1e2ikh

Z
iZ1

cos k1h+sin k1h
,

A2S = A1e
2ikh[ 2 cos k1h

cos k1h− Z
iZ1

sin k1h
− 1], C1S = 2A1e2ikh

cos k1h− Z
iZ1

sin k1h
.

Similarly A2A and A2S could have been found by applying impedance matching at one

boundary such that P (h+)
V (h+)

= P (h−)
V (h−)

since both pressure and velocity are continuous.

However, C1A and C1S would not be found using impedance matching. From Figure

3.3, the reflection coefficient, R, will be A2A+A2S
2A1

and the transmission coefficient, T ,

will be A2S−A2A
2A1

, yielding

R = e2ikh[
sin k1h

Z
iZ1

cos k1h + sin k1h
+

cos k1h

cos k1h − Z
iZ1

sin k1h
− 1], (3.12a)

T = e2ikh[
sin k1h

Z
iZ1

cos k1h − sin k1h
+

cos k1h

cos k1h − Z
iZ1

sin k1h
]. (3.12b)

These results can be shown to be identical from the previous analysis with the result

in Equation (3.8).
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3.2.3 The Matricant Propagator

We desire a differential equation involving the state vector, Ū(x), describing pressure

and velocity at some position, x, which we can integrate and solve from an initial

position. This can be done by using the Matricant, MMM , as described by Pease [17]. The

solution of the system is in the form, Ū(x) = MMMŪ(0). We begin this formulation for a

general case based on elastic material properties in 1-D. The stress for an elastic solid

is related to the displacement in the form σ = E ∂u
∂x . Pressure is related to stress by

σ = −P and the derivative of pressure is related to velocity by Equation (2.8). These

relationships can be expressed in matrix form such that

d

dx





V

−σ



 = iω





0 − 1
E

ρ 0









V

−σ



 . (3.13)

From Pease [17], if the state vector Ū, which here describes pressure and velocity,

can be expressed such that dŪ
dx = QQQŪ, then the Matricant can be found such that

dMMM
dx = QQQMMM . This can be solved analytically or numerically with an ODE solver based

on the complexity of the problem. The problem is then reduced to finding the system

matrix, QQQ. From Equation (3.13) we can see that,

Ū =





V

−σ



 and QQQ = iω





0 − 1
E

ρ 0



.

Note that when we take the medium to be a fluid the term −1/E in the system matrix

becomes 1/K, where K is the bulk modulus, this results directly from combining the

mass and momentum balance equations. Now for the slab, Ū will be defined such that

Ū
(1)

represents the wave traveling to the right and Ū
(2)

is the wave traveling to the

left, such that

Ū
(1)

= Aeikx





1

Z



 , Ū
(2)

= Be−ikx





1

−Z



 .

Putting the two waves together in the vector Ū, gives

Ū(x) =





1 1

Z −Z









eikx 0

0 e−ikx









A

B



 . (3.14)
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Now, the Matricant can be found by solving Ū(x) = MMM(x)Ū(0), where

Ū(0) =





1 1

Z −Z









A

B



 . (3.15)

Multiplying Ū(x) = MMM(x)Ū(0) by the inverse of Ū(0) and simplifying the resulting

expression gives the Matricant as

MMM(x) =





cos(kx) i
Z sin(kx)

Zi sin(kx) cos(kx)



 . (3.16)

Alternatively we could have found MMM(x) by noting dMMM
dx = QQQMMM and MMM(0) = III leading

to MMM(x) = eQQQx. Now, the Matricant can be used to solve the one-dimensional problem

of the slab, where

Ū(h) = MMM1(2h)Ū(−h), (3.17)

with Ū(h), MMM1(2h), and Ū(−h) are defined as

Ū(h) = A1





Teikh

ZTeikh



 , MMM1(2h) =





cos(2k1h) i
Z1

sin(2k1h)

iZ1 sin(2k1h) cos(2k1h)



 ,

Ū(−h) = A1





e−ikh + Reikh

Ze−ikh − zReikh



 .

Multiplying and expanding Equation (3.17) gives




Teikh

ZTeikh



 =





cos(2k1h)(e−ikh + Reikh) + iZ
Z1

sin(2k1h)(e−ikh − Reikh)

iZ1 sin(2k1h)(e−ikh + Reikh) + Z cos(2k1h)(e−ikh − Reikh)



 . (3.18)

Solving for the reflection and transmission coefficients yields

R =
e−2ikh sin(2k1h)( iZ1

Z − iZ
Z1

)

2 cos(2k1h) − sin(2k1h)( iZ
Z1

+ iZ1
Z )

, (3.19a)

T = cos(2k1h)(e−2ikh + R) +
iZ

Z1
sin(2k1h)(e−2ikh − R). (3.19b)

A numerical demonstration was completed using Matlab for this wave-slab interaction

problem. The figure below depicts frequency, ω, versus the amount of wave energy

transmitted and reflected. By taking variables such as pressure and velocity at an

initial point, a solution was propagated to another point in space by the Matricant.

It will become apparent in the next section that the Matricant is especially useful in

problems involving many separating boundaries.
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Figure 3.4: Plot of R and T vs ω for ρ = 156 kg
m3 , ρ1 = 342 kg

m3 , c = 113m
s , c1 = 174m

s ,

h = 15m, ω ranges from 1 to 100 rad
s

3.3 Using the Matricant to solve general slabs

To show how powerful the Matricant propagator method is, we will next use it to solve

for an array of slabs. When used in conjunction with numeric solving programs such

as Matlab, the Matricant proves to be very useful.

3.3.1 Periodic slabs

In the next example a system in which an incident wave interacts with a series of five

periodic slabs of properties ρ1 and c1, spaced apart by distance h1, as shown in Figure

3.5, will be solved. Setting up the problem using the Matricant, we have

[U(5(h1 + h))] = ([MMM1(h1)][MMM(h)][MMM1(h1)][MMM(h)][MMM1(h1)][MMM(h)][MMM1(h1)][MMM(h)]

×[MMM1(h1)][MMM(h)])[UUU(0)],

where

U[5(h1 + h)] =





Te5ik(h1+h)

ZTe5ik(h1+h)



 , U(0) =





1 + R

Z(1 − R)



 ,

MMM1(h1) =





cos k1h1
i

Z1
sin k1h1

iZ1 sin k1h1 cos k1h1



 , MMM(h) =





cos kh i
Z sin kh

iZ sin kh cos kh



 .
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Figure 3.5: General case of periodic slabs.
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The system may then be solved numerically using Matlab with given ρ, c, h, ρ1, c1, h1

and ω. Alternatively this problem can be solved by creating a system of equations,

0 5 10 15 20 25
0

0.5

1

( ω/c)*(h+h1)

|R
|

0 5 10 15 20 25
0

0.5

1

( ω/c)*(h+h1)

|T
|

Figure 3.6: Plot generated by the Matlab code for Reflection and Transmission coef-
ficients, ρ = 156 kg

m3 , c = 113m
s , h = 15m, ρ1 = 342 kg

m3 , c1 = 174m
s , h1 = 11m and ω

ranges from 1 to 100 rad
s in steps of 0.1.

matching pressure and velocity at each boundary and solving. When this system of

equations is arranged into a matrix and solved it is referred to as the global matrix

method which will be discussed for problems involving concentric cylinders later on.

3.3.2 Systems in which properties vary smoothly

Equation (3.13) may be used to solve for a slab for which properties vary smoothly.

When using the Matricant, a solution is propagated forward through a finely discretized

thickness such that the properties may vary from layer to layer. Alternatively analytic

solutions may also be found for simple enough problems. In general,

dMMM

dx
= QQQ(x)MMM, MMM(0) = I, QQQ(x) = iω





0 1
E(x)

ρ(x) 0



 . (3.20)

We next use the Matricant to solve a one-dimensional problem in which the density, ρ,

and Young’s modulus, E, are continuous functions of x. Consider E(x) = 50 + 10x Pa

and ρ(x) = 50 − 5x kg
m3 . The Matricant, MMM(x), will be solved for numerically using

the ODE solver in Matlab with the equation dMMM
dx = QQQ(x)MMM . For ω = 50 rad/s, the

Matricant evaluated at x = 1 is

MMM(1) =





−0.8113 0 + 0.0110i

0 + 28.6364i −0.8436



.
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The answer from the ODE solver in Matlab can be checked by using Equation (3.16)

and approximating ρ and E as constant over small dx. By taking the step dx to be

10−6, Matlab yields

MMM(1) =





−0.8113 0 + 0.0110i

0 + 28.6365i −0.8436



.

As before Ū(x) can be solved by using Ū(x) = MMM(x)Ū(0).

0 5 10 15 20 25
0.01

0.02

0.03

|R
|

ω/c

0 5 10 15 20 25
0.9996

0.9998

1
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|T
|

Figure 3.7: Plot of the Reflection and Transmission vs. ω
c for ω ranging from 1 to 25

rad
s using ρ(x) = 50 − 5x kg

m3 and E(x) = 50 + 10x Pa for a slab starting at x = 0 to
x = 1 m.
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3.4 Energy conservation

From the original one-dimensional problem of the slab, a relationship between the

reflection and transmission coefficients will yield the one-dimensional optical theorem

which can be derived by an energy balance of the system. In 1-D, the transmitted

part of the solution can be rewritten such that

P0Teikx = P0e
ikx(1 + T ′), T ′ = T − 1.

In the above equation, R and T ′ contribute to the scattered field which is equal to

the total field less the incident. We then may write |R|2 + |T ′ + 1|2 = 1, such that

|R|2 + (T ′ + 1)(T ′∗ + 1) = 1 where |z|2 = zz∗, and ∗ denotes the complex conjugate.

The final result is then,

|R|2 + |T ′|2 = −2Re(T ′). (3.21)

Similar formulations will be studied in two and three dimensions in order to determine

a numeric value on the amount of scattering that occurs, given by the scattering cross

section.

3.5 Summary

One-dimensional acoustic problems were studied in which several techniques were used

to solve the same problem. An important result of this one-dimensional study was

displaying that if the impedance, Z, of two media matched the entire wave transmits

through. In other words, the reflection coefficient becomes zero and the transmission

coefficient becomes one for this case. Techniques such as the Matricant propagator and

matching coefficients were developed and used to solve semi-infinite boundary problems.
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These techniques will be further developed in two and three dimensions in the following

chapters.
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Chapter 4

2D Acoustic Wave Theory

Here we continue the discussion from Section 2.2 and solve simple scattering problems

involving infinitely long cylinders. We also continue the development on the Matricant

propagator technique from the previous chapter into the two-dimensional realm. This

chapter finishes with a discussion concerning the amount of energy scattered by a target

in order to quantify the scattering strength.

4.1 Transforming the incident plane wave to polar coordinates

From before, the incident plane wave was given as Ceikx. In polar coordinates the

parameter x turns into r cos θ. This can be transformed into a series involving Bessel

functions by using the complex Fourier series where

f(x) =
∞

∑

n=−∞
Cneinx, Cn =

1

2π

∫ π

−π
f(x)e−inxdx.

Using the Complex Fourier series for our function eir cos (θ), results in

eir cos (θ) =
∞

∑

n=−∞
Cneinθ, Cn =

1

2π

∫ π

−π
eir cos (θ)e−inθdθ.

Using Bessel’s first integral, Cn can be simplified in terms of a Bessel function where

Bessel’s first integral is given by [15], with

Jn(r) =
1

2πin

∫ 2π

0
eir cos (θ)einθ, Cn = inJn(r).

Putting everything together

eir cos (θ) =
∞

∑

n=−∞
inJn(r)einθ. (4.1)

Alternatively this series could be found such that n ranges from 0 to ∞ instead of −∞

to ∞. By using the Cosine Fourier Series for eir cos (θ) and using another version of
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Bessel’s first integral where Jn(r) = i−n

π

∫ π
0 eir cos (θ) cos (nθ)dθ. Then eir cos (θ) may be

written as

eir cos (θ) = J0(r) + 2
∞

∑

n=1

inJn(r) cos (nθ). (4.2)

4.2 Scattering from a cylinder

Consider the case for which the order of Bessel’s differential equation is zero. That

is n = 0 from Equation (2.6). Then,

r2P ′′
0 + rP ′

0 + ((kr)2 − 0)P0 = 0,

the pressure is then defined by Equation (2.7) such that

P (r) =















A1H
(2)
0 (kr) + A2H

(1)
0 (kr), r > a,

B1J0(k1r) + B2Y0(k1r), 0 < r < a.

However lim
r→0

Y0(r) = −∞, which means B2 = 0. Using continuity conditions such that

P (a+) = P (a−) and Vr(a
+) = Vr(a

−),

B1 = −
A1

(

H
(2)
−1 (ka) − H

(2)
0 (ka)H

(1)
−1 (ka)

H
(1)
0 (ka)

)

Z
Z1

J1(k1a) +
J0(k1a)H

(1)
−1 (ka)

H
(1)
0 (ka)

, (4.3a)

A2 = −A1

[ J0(k1a)

(

H
(2)
−1 (ka) − H

(2)
0 (ka)H

(1)
−1 (ka)

H
(1)
0 (ka)

)

Z
Z1

H
(1)
0 (ka)J1(k1a) + J0(k1a)H

(1)
−1 (ka)

+
H

(2)
0 (ka)

H
(1)
0 (ka)

]

, (4.3b)
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where A1 is the magnitude of the incident wave, A2 is the magnitude of the outgoing

wave, and B1 is the magnitude of the standing wave inside the cylinder. The next

problem is to find the pressure distribution caused by an incident plane wave on a

cylinder of radius a for all n. From Equation (4.1), the incident wave can be found in

polar coordinates as

Pincident = P0e
ikx = P0e

ikr cos (θ) = P0

∞
∑

n=−∞
inJn(kr)einθ, r > a. (4.4)

By the Sommerfeld condition, the energy radiated from the source must scatter to

infinity and no energy from infinity may be radiated to the field. See Ihlenburg [18].

This simplifies the Pscattered equation such that it is only dependent on H
(1)
n (kr), which

represents outgoing waves. The function H
(2)
n (kr) represents incoming waves, which by

the Sommerfeld condition, should not be present. The scattering solution is then

Pscattered = P0

∞
∑

n=−∞
AnH(1)

n (kr)einθ, r > a, (4.5)

and the field inside the cylinder is

Pin =
∞

∑

n=−∞
BnJn(k1r)e

inθ, r < a. (4.6)

Combining solutions for r > a and r < a the total field inside and outside is given by

P (r, θ) =
∞

∑

n=−∞
einθ ×















(

inP0Jn(kr) + AnH
(1)
n (kr)

)

, r > a,

BnJn(k1r), r < a,

(4.7a)

Vr(r, θ) = −i
∞

∑

n=−∞
einθ ×















Z−1
(

inP0J
′
n(kr) + AnH

′(1)
n (kr)

)

, r > a,

Z−1
1 BnJ ′

n(k1r), r < a.

(4.7b)

Imposing continuous pressure and velocity boundary conditions at r = a, as done in

the previous chapter, the solution for the scattering coefficients An and Bn are

An =
inJn(ka)

H
(1)
n (ka)

[ J
′

n(k1a)
Z1Jn(k1a) −

J
′

n(ka)
ZJn(ka) ]

[ H
′(1)
n (ka)

ZH
(1)
n (ka)

− J
′

n(k1a)
Z1Jn(k1a) ]

, (4.8)

Bn =
P0i

nJn(ka)

Jn(k1a)
[1 +

[ J
′

n(k1a)
Z1Jn(k1a) −

J
′

n(ka)
ZJn(ka) ]

[ H
′(1)
n (ka)

ZH
(1)
n (ka)

− J
′

n(k1a)
Z1Jn(k1a) ]

]. (4.9)
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An could also have been found by using the impedance matching method where we

want to solve the equation P (a+)
V (a+)

= P (a−)
V (a−)

such that

iZ[inJn(ka) + AnH
(1)
n (ka)]

[inJ ′

n(ka) + AnH
′(1)
n (ka)]

= iZ1
Jn(k1a)

J ′

n(k1a)
. (4.10)

Solving Equation (4.10) for An,

An =
in[Jn(ka) − Z1

Z
Jn(k1a)

J
′

n(k1a)
J

′

n(ka)]

[Z1
Z

Jn(k1a)

J
′

n(k1a)
H

′(1)
n (ka) − H

(1)
n (ka)]

=
inJn(ka)

H
(1)
n (ka)

[ J
′

n(k1a)
Z1Jn(k1a) −

J
′

n(ka)
ZJn(ka) ]

[ H
′(1)
n (ka)

ZH
(1)
n (ka)

− J
′

n(k1a)
Z1Jn(k1a) ]

,

which is exactly the same as Equation (4.8). Notice that Bn, the coefficient solution for

the inner cylinder, is not found by the impedance matching method. This also occurred

in the previous chapter where the solution inside the slab could not be determined by

this method. This occurs as these coefficients are divided out of the solution, for

instance the right hand side of Equation (4.10) does not contain the Bn coefficients.

Limiting boundary conditions

For the case of a pressure release cylinder, where the quantity Z1 = ρ1c1 −→ 0,

An,pres.rel. = −in
Jn(ka)

H
(1)
n (ka)

, Bn,pres.rel. =
2P0i

nJn(ka)

Jn(k1a)
. (4.11)

For the case of a rigid cylinder, where Z1 −→ ∞,

An,rigid = −in
J

′

n(ka)

H
′(1)
n (ka)

, Bn,rigid =
P0i

n

Jn(k1a)
[Jn(ka) − J

′

n(ka)H
(1)
n (ka)

H
′(1)
n (ka)

]. (4.12)

Using the Wronskian to simplify Bn,rigid, where the Wronskian relationship is given in

[15], gives

W = Jv(z)Y
′

v (z) − Yv(z)J
′

v(z) = Yv(z)Jv+1(z) − Jv(z)Yv+1(z) =
2π

z
,

Bn,rigid =
2πP0i

n+1

kaJn(k1a)H
′(1)
n (ka)

. (4.13)

Of all objects, rigid targets tend to produce the highest level of backscattering, scatter-

ing opposite the direction of wave motion, as will be shown later in Section 4.6.1. For

this reason, rigid targets will represent the object surrounded by the cloaking medium

in later discussion on cloaking theory. We end this section with a figure displaying the

pressure distribution of cylinder-wave interaction, for given fluid properties.
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Figure 4.1: Contour and surface plots using Equations (4.8) and (4.9) for a = 2m,
cylinder radius, n ranges from -50 to 50 , the resolution is 0.1 m controlled by [x,y] =
meshgrid([-15:.1:15]), ρ = 10 kg

m3 , c = 15m
s , ρ1 = 5 kg

m3 , c1 = 7m
s , magnitude of incoming

wave, P0 = 10 Pa, ω = 5c
a

rad
s

4.3 Using the Matricant

From Equations (2.9a) and (2.9b) the Matricant can be found to solve for cylindrical

geometries. Rewriting these equations in matrix form,

iωρ





Vr

Vθ



 =





∂
∂rP

inP
r



 . (4.14)

Next, we can eliminate Vθ to get two equations dependent on P and Vr only. This

can be done by using the mass balance equation, iωP = K∇.V , where K is the bulk

modulus, V = −iωu and ∇.V is given in polar coordinates by,

∇.V =
1

r

∂

∂r
(rVr) +

1

r

∂

∂θ
Vθ =

1

r

∂

∂r
(rVr) +

inVθ

r
. (4.15)

Eliminating Vθ by using the mass balance equation such that, iω
K P = 1

r
∂
∂r (rVr) + inVθ

r

gets us ∂
∂r (rVr) = iω

r P [ r2

K − n2

ω2ρ
]. The system matrix, QQQ, can now be found, as in Section
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3.2.3, by writing the derivative of the state vector in terms of itself, where

d

dr





P

rVr



 =
iω

r





0 ρ

r2

K − n2

ω2ρ
0









P

rVr



 . (4.16)

The quantities P and rVr may now be solved and propagated forward by solving dMMM
dr =

QQQ(r)MMM for MMM . Thus,

QQQ(r) =
iω

r





0 ρ

r2

K − n2

ω2ρ
0



 . (4.17)

Solutions for P and rVr may now be found in the form





P

rVr





r=a

=





M11 M12

M21 M22





a,b





P

rVr





r=b

. (4.18)

4.3.1 Using Matlab to compute the Matricant

Using Equation (4.16), a Matlab code was written and a check performed using Equa-

tion (2.7). As done in Section 3.3.2, the ODE solver will be used to solve for the

Matricant, again

dMMM

dr
= QQQ(r)MMM, MMM(0) = III, QQQ(r) =

iω

r





0 ρ

r2

K − n2

ω2ρ
0



 . (4.19)

As a check we can use Equation (2.7), where P (r) = AJn(kr) + BYn(kr) and rV (r) =

r
iZ (AJ

′

n(kr) + BY
′

n(kr)). In this way we can find MMM as done before in Section 3.2.3.

Hence,

Ū(r) =





P

rVr



 =





Jn(kr) Yn(kr)

r
iZ J

′

n(kr) r
iZ Y

′

n(kr)









A

B



 ,

where Ū(r) = MMM(r)Ū(rmin) and MMM(r) = Ū(r)Ū(rmin)−1. MMM(r) is then

MMM(r) =





Jn(kr) Yn(kr)

r
iZ J

′

n(kr) r
iZ Y

′

n(kr)









Jn(krmin) Yn(krmin)

r
iZ J

′

n(krmin) r
iZ Y

′

n(krmin)





−1

. (4.20)

To make the problem more interesting, consider the bulk modulus, K, and the density,

ρ, to be continuous functions of r. Since we are considering a fluid medium, we use the

speed of sound, c =
√

K
ρ . A Matlab code was written and attached in the appendix
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where D.1 contains the main code, D.2 contains the function used for finding the Matri-

cant, and D.3 contains the check performed between the exact and ODE solver values

for MMM .

4.4 Concentric cylinders

Having described the Matricant we now consider the global matrix method and compare

how to find the scattering coefficients for the two methods. Setup: An incident wave

interacts with concentric cylinders for which the surrounding medium properties are ρ0

and c0. The properties of the outer cylinder are ρ1 and c1 and the properties of the

most inner cylinder are ρ2 and c2. This two dimensional example is comparable to the

slab example from Section 3.2.

4.4.1 Global Matrix method

The solution for pressure for r2 > r ≥ 0 has to be finite at r = 0. Since lim
r→0

Y0(r) →
−∞, only solutions involving Jn will exist for r2 > r ≥ 0. In the intermediate layer

r1 > r > r2 both types of radial solutions are possible. In the exterior r > r1 the

incident wave is assumed, and the scattered solution must be an outgoing wave (one

that has energy going out, not in), which are represented by H
(1)
n (kr), assuming e−iωt.

For two concentric cylinders the pressure and velocity is

P (r, θ) =

∞
∑

n=−∞

ineinθ ×



























P0Jn(k0r) + C0nH
(1)
n (k0r), r > r1,

C1nJn(k1r) + D1nYn(k1r), r1 > r > r2,

C2nJn(k2r), r2 > r ≥ 0,

(4.21a)

Vr(r, θ) = −i
∞
∑

n=−∞

ineinθ ×



























Z−1
0

(

P0J
′

n(k0r) + C0nH
(1)′

n (k0r)
)

, r > r1,

Z−1
1

(

C1nJ ′

n(k1r) + D1nY ′

n(k1r)
)

, r1 > r > r2,

Z−1
2 C2nJ ′

n(k2r), r2 > r ≥ 0.

(4.21b)

Matching pressure and velocity at the r1 interface,

C1nJn(k1r1) + D1nYn(k1r1) = P0Jn(k0r1) + C0nH(1)
n (k0r1), (4.22a)

Z−1
1

(

C1nJ ′
n(k1r1) + D1nY ′

n(k1r1)
)

= Z−1
0

(

P0J
′
n(k0r1) + C0nH(1)′

n (k0r1)
)

. (4.22b)
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Similarly, matching for the r2 interface,

C1nJn(k1r2) + D1nYn(k1r2) = C2nJn(k2r2), (4.23a)

Z−1
1

(

C1nJ ′
n(k1r2) + D1nY ′

n(k1r2)
)

= Z−1
2 C2nJ ′

n(k2r2). (4.23b)

Rewriting these equations in matrix form:


















H
(1)
n (k0r1) −Jn(k1r1) −Yn(k1r1) 0

−Z
−1
0 H

′(1)
n (k0r1) Z

−1
1 J

′

n(k1r1) Z
−1
1 Y

′

n(k1r1) 0

0 Jn(k1r2) Yn(k1r2) −Jn(k2r2)

0 −Z
−1
1 J

′

n(k1r2) −Z
−1
1 Y

′

n(k1r2) Z
−1
2 J

′

n(k2r2)





































C0n

C1n

D1n

C2n



















=



















−P0Jn(k0r1)

Z
−1
0 P0J

′

n(k0r1)

0

0



















.

(4.24)

Similarly this method can be applied to any number of concentric cylinders for which

the size of the matrix will be on the order of (two times the number of layers) by (two

times the number of layers). A Matlab code was written for the general case of any

number of concentric cylinders and was compared to the Matricant method as described

in the next section.

4.4.2 Using the Matricant

From Equation (4.16), the Matricant was found for a single cylinder. For concentric

cylinders it can be used given the impedance, ratio of pressure and velocity at the inner

most radius. Using Equations (4.21a) and (4.21b) for r2 > r ≥ 0 and solving M(r1,r2)

using an ODE solver in Matlab, the impedance at r = r1 will be

Z1 =
M(r1,r2),11Jn(k2r2) + M(r1,r2),12

r2
iZ2

J
′

n(k2r2)

M(r1,r2),21Jn(k2r2) + M(r1,r2),22
r2
iZ2

J ′

n(k2r2)
. (4.25)

Then the scattering coefficient for r > r1 is found by manipulating (4.22a) such that

the scattering coefficient, C0n may be written as

C0n = P0

Jn(k1r1) − Z1
iZ0

J
′

n(k1r1)

Z1
iZ0

H
′(1)
n (k1r1) − H

(1)
n (k1r1)

, (4.26)
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where Z0 = ρ0c0. The Matlab code which compares these two methods will be discussed

later in which both methods are used to duplicate the results of Torrent and Sánchez-

Dehesa, [10]. It will first be necessary to understand how layered fluids may act as a

single medium with anisotropic properties.

4.5 Homogenized cylindrically layered media

In the limit in which the wavelength is much larger than the spacing between many

concentric cylinders, the wave responds as if the medium had a single effective bulk

modulus and an anisotropic density. Here we discuss the formulation of the effective

medium properties by the characteristic properties of the individual fluids.

4.5.1 Effective properties

Consider a series of concentric cylinders in which cylindrical shells consist of properties

ρ1, ρ2, c1 and c2, where each shell alternates from medium 1 to medium 2. Now, this

layered media may be thought of as a single cylinder with effective bulk modulus, Keff

and inertial properties differing in the θ and r directions. From [8], a composite medium

in which density varies is thought of as having an effective density operator that takes

the form of a second-order tensor. Writing the momentum balance equation, we may

find how this effective density behaves,

ρρρ
∂vvv

∂t
= −∇p ⇒





ρr 0

0 ρθ





∂vvv

∂t
= −∇p. (4.27)

The homogenized properties are defined by averages as

Keff = 〈K−1〉−1 =
( φ1

K1
+

φ2

K2

)−1
, (4.28a)

ρr = 〈ρ〉 = φ1ρ1 + φ2ρ2, (4.28b)

ρθ = 〈ρ−1〉−1 =
(φ1

ρ1
+

φ2

ρ2

)−1
, (4.28c)

with Kj = ρjc
2
j , as usual, and volume fractions φj ≥ 0, j = 1, 2, and φ1 + φ2 = 1. This

same formulation will be introduced later using three fluid shells in order to create a

medium that will behave as a cloak.
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4.5.2 Solutions using effective properties

Eliminating the velocity, a single equation results for the time-harmonic pressure with

Keff

rρr

∂

∂r

(

r
∂P

∂r

)

+
(

ω2 − n2Keff

r2ρθ

)

P = 0, (4.29)

which is Bessel’s differential equation but now for non-integer order N . Rewriting

Equation (4.29), attains

r2P
′′

+ rP
′

+
(

k2r2 − N2
)

P = 0, with k = ω

√

ρr

Keff
, N = n

√

ρr

ρθ
. (4.30)

This corresponds to solutions we have seen before, implying the pressure and radial

velocity may be written as

P (r, θ) =
∞

∑

n=0

εnin cos nθ ×















(

P0Jn(k0r) + AnH
(1)
n (k0r)

)

, r > a,

BnJN (kr), r < a,

(4.31a)

Vr(r, θ) = −i
∞

∑

n=0

εnin cos nθ ×















Z−1
(

P0J
′
n(k0r) + AnH

′(1)
n (k0r)

)

, r > a,

Z−1
r BnJ ′

N (kr), r < a.

(4.31b)

where Zr =
√

Keffρr, and εn = 1 for n = 0, εn = 2 for n > 0. Note that the sum

is strictly on positive values of n. Unlike the case for a normal fluid, where the Bessel

functions are all of integer order, in this case the sum for the interior pressure must be

written using only positive n since Bessel functions of the form J−N (kr) are not regular

at r = 0 if N is positive but non-integral. In other words, only the functions JN (kr)

for N > 0 provide the basis for representing the pressure in the neighborhood of r = 0,

where it must remain finite.

4.5.3 Layer properties for given homogenized medium

Suppose we wanted to design a medium with given properties ρr, ρθ, Keff , along with

ρ1, c1. We may then find the properties and volume fractions of the second fluid needed
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to create this medium. φ2, ρ2, c2 can be found by inverting (4.28a), resulting in

φ2 =

(

(

1 − ρr

ρ1

)−1
+

(

1 − ρ1

ρθ

)−1
)−1

, (4.32a)

ρ2 =

(

ρr − ρ1

ρθ − ρ1

)

ρθ, (4.32b)

K2 =

(

K−1
1 +

K−1
eff − K−1

1

φ2

)−1

. (4.32c)

The values of ρr and ρθ are not completely free. In addition to the requirement that

they are positive, we also have

〈ρ〉〈ρ−1〉 − 1 = φ1φ2

(√

ρ1

ρ2
−

√

ρ2

ρ1

)2

≥ 0. (4.33)

This implies ρr ≥ ρθ, with equality only if the cylinder is completely uniform, which is

not of interest. Therefore, 0 < ρθ < ρr in general. In addition, in order to get a positive

but finite K2, the effective bulk modulus must satisfy 0 < Keff < K1
1−φ2

. As long as

these constraints are satisfied, we can generate a layered medium that approximates

the properties of the homogenized cylinder.

4.5.4 Alternative Matricant

From balance of momentum using Equation (4.27),

iω





ρr 0

0 ρθ









Vr

Vθ



 =





d
drP

in
r P



 . (4.34)

Inverting the above equation, we find that Vθ = n
rωρθ

P and d
drP = iωρrVr. Using the

balance of mass Equation (4.15), we have iωP = K∇.V , where ∇.V = 1
r

d
dr (rVr)+

in
r Vθ.

With some manipulation of pressure and velocity, the system matrix QQQ may be found,

where

iω

K
P =

d

dr
Vr +

Vr

r
+

in

r
Vθ =

d

dr
Vr +

Vr

r
+

in2

r2ωρθ
P, (4.35a)

d

dr
Vr = P

[ iω

K
− in2

r2ωρθ

]

− Vr

r
. (4.35b)

Now that the derivative of P and Vr with respect to r have been found, QQQ may be

written such that

d

dr





P

Vr



 = QQQ





P

Vr



 , where QQQ =





0 iωρr

iω
K − in2

r2ωρθ
−1

r



 . (4.36)
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Using the same method as before, the Matricant, MMM , may be found, using an ODE

solver for dMMM
dr = QQQMMM .

4.6 Far field response

By using the Method of Steepest Descent the behavior of the Bessel functions can be

found for x >> 1. We may then apply this result to the wave solutions for large values

of kr. Hence,
∫ B

A
X(z)erf(z)dz =

√

2π

r

erf(z0)

[−f ′′(z0)]1/2
[1 + ooo(1)].

Evaluating the Hankel function for large r,

H(1)
n (r) =

eiπn/2

π

∫

C1

eir cos zeinzdz =
eiπn/2

π

∫

C1

erf(z)X(z)dz,

where X(z) = einz, f(z) = i cos z, f ′(z) = −i sin z, f ′′(z) = −i cos z. The critical points

(saddle points) are found by finding f ′(z) = 0 which correspond to z = 0,±π,±2π, . . .

The integration limits of H
(1)
n (r) in the complex z-plane are found from Figure 4.2.

Figure 4.2 shows that the most direct path of steepest descent intersects the critical

Figure 4.2: Contour integration paths C1 and C2 for the two Hankel functions

H
(1)
n and H

(2)
n . Source: http://www.math.ohio-state.edu/ gerlach/math/BVtypset/n-

ode121.html

point z0 = 0. The phase angle, φ, of the integration path z − z0 = τeiφ is determined

by the condition (z − z0)
2f ′′(z0) = −τ2|f ′′(z0)| such that e2iφe−iπ/2 = −1 = e±iπ, so

eiφ = e−iπ/4. So, for large r the asymptotic expansion of the Hankel function is

H(1)
n (r) =

e−iπn/2

π

√

2π

r
eire−iπ/4[1 + OOO(

1

r
)]. (4.37)
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4.6.1 Far field scattering response

Consider the scattered pressure when kr becomes very large, (kr >> 1). Pscattered was

defined in Equation (4.5), using the series expansion

H(1)
n (kr) −→ an

eikr

√
kr

[1 + OOO(
1

kr
)],

where, from Equation (4.37), an = e
−iπ
4 e

−inπ
2

√

2
π . Now, Pscattered can be broken up

into functions, f(θ), and g(r), as follows:

Pscattered

P0
= g(r)f(θ), (4.38)

where,

g(r) =
eikr

√
kr

, f(θ) = e
−iπ
4

√

2

π

∞
∑

n=−∞
Anein(θ−π

2
). (4.39)

Using An as defined in Equation (4.8), a polar plot can be created describing the amount

of scattering as a function of θ, as done in Figure 4.3. The upper image in Figure
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Figure 4.3: Polar plot for rigid cylinder using equation (4.12) for a = 1, cylinder radius,
n ranges from -10 to 10 , ρ = 1, c = 100, magnitude of incoming wave, P0 = 10,
ω = 3.4c

a . The bottom two figures show the convergence of the An coefficients.

4.3 compares well with Figure 9 of [19], showing the direction of far field scattering

as a function of θ as well as the convergence of the scattering coefficients, An, as a

function of n. Next by finding the scattering coefficients, An, such that they depend
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on solid material properties, which unlike fluids will include shear waves, more figures

from Faran [19] may be compared to. This is done by using Equation (4.40) from [20],

Ẑ⊥ =
Z⊥
C66

= 2





1 in

−in 1



 + (k2a)2





k1a
J ′

n(k1a)
Jn(k1a) −in

in k2a
J ′

n(k2a)
Jn(k2a)





−1

, (4.40)

where the impedance, pressure divided by velocity, of Equation (4.40) is given by

ẑ =
Z2

k2a

det(Ẑ⊥)

ˆZ⊥22

.

Now, by matching the impedance at the interface in this case between a solid cylinder

and a fluid at radius r = a, the next equation may be solved to find An and a polar

plot may be produced to compare with Faran [19], where

Z2

k2a

det(Ẑ⊥)

ˆZ⊥22

=
Z3(i

nJn(k3a) + AnH
(1)
n (k3a))

inJ ′
n(k3a) + AnH

′(1)
n (k3a)

,

rewritting shows that An is,

An =
in(ẑJ ′

n(k3a) − Z3Jn(k3a))

Z3H
(1)
n (k3a) − ẑH

′(1)
n (k3a)

. (4.41)

Figure 4.4 compares with Figure 3 from Faran [19] for which the target is a brass

cylinder surrounded by water.

4.7 Energy conservation

In the two-dimensional case, the energy balance requires that the total energy flux

averaged over one period must be zero. The energy flux is found by multiplying pressure

and velocity, where the intensity is a measure of the time-averaged energy flux. Using

the period 2π
ω we write

∫

dS n.(VP ) = r0

∫ 2π

0
dθ VrP, r = r0 > a. (4.42)

Next the real parts of pressure and velocity are written and multiplied to find the energy

flux.

Re(P (r, θ)e−iωt) =
1

2
[P (r, θ)e−iωt + P ∗(r, θ)eiωt], (4.43a)

Re(V (r, θ)e−iωt) =
1

2
[V (r, θ)e−iωt + V ∗(r, θ)eiωt], (4.43b)

F = Re(Pe−iωt)Re(V e−iωt) =
1

4
[PV e−2iωt + P ∗V∗e2iωt + (PV ∗ + P ∗V )]. (4.43c)
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Figure 4.4: Scattering pattern for brass cylinder .0322 inches in diameter at frequency
1.00 mc/sec. Young’s modulus is 10.1 ∗ 1011 dynes/cm2. x3 = 1.7, x1 = 0.6, where x∗
is k∗a, Poisson’s ratio is 1

3 and ρ1 = 8.5 g/cm3.

Taking the average over one period,

∫ 2π
ω

0
F dt =

π

2ω
(PV ∗ + P ∗V ), since

∫ 2π

0
eixdx = 0, (4.44)

where PV ∗ + P ∗V = 2Re(P ∗V ). Next we use energy conservation such that

∂

∂t
(
1

2
ρ0v

2 +
ρ2

2ρ0c2
) + ∇.F = 0, (4.45a)

∫ 2π
ω

0
dt∇.F = 0. (4.45b)

The above requires that the intensity integrated over all angles, θ, be zero,

∫ 2π

0
Re(P ∗V,r) dθ = 0. (4.46)

We separate the above into three parts for convenience such that

∫ 2π

0

Re(P ∗

scVsc,r)dθ +

∫ 2π

0

Re(P ∗

incVinc,r)dθ +

∫ 2π

0

Re(P ∗

incVsc,r + P ∗

scVinc,r)dθ = 0. (4.47)

By considering values for large kr and noting the flux of incident waves over a closed

surface is zero the middle term drops out. We find a relationship for the An coefficients

which is derived in detail in the appendix, Section A, where:

4|P0|2
rωρ

[

∞
∑

n=−∞
|An|2 +

∞
∑

n=−∞
Re(Ane−

inπ
2 )] = 0. (4.48)
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∞
∑

n=−∞
|An|2 = −

∞
∑

n=−∞
Re(Ane−

inπ
2 ). (4.49)

This is a useful relationship since it can be applied to check the An coefficients.

The scattering cross-section is a ratio between the time averaged rate at which

energy of the incident wave crosses a unit area normal to wave propagation (3D) or

unit length normal (2D) and the time averaged rate at which energy is scattered by the

target over one period. In the limit of optics, where the wavelength approaches zero

and the object is taken as rigid, the scattering cross-section of a sphere of radius, r, is

simply σsc = πr2 so that in 2D the scattering length is simply 2r. These results can

be used as a check in acoustics for small wavelengths with relatively rigid and large

objects. The scattering cross-section, σsc, is found in acoustics by integration of the

absolute value squared of Equation (4.39) such that

σsc =
1

2

∫ 2π

0
|f(θ)|2dθ. (4.50)

Using Equation (4.49) and simplifying as much as possible, the total scattering cross-

section, σsc, in 2D will be

σsc ≡
∞

∑

n=−∞
−2Re(Ane−

inπ
2 ) ≡

∞
∑

n=−∞
2|An|2. (4.51)
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Figure 4.5: Numerical check of the optical theorem using An,rigid.

4.8 Conclusion

In this chapter we have developed acoustic scattering solutions from plane wave in-

teraction with infinitely long cylinders. Solutions techniques such as the Matricant
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Propagator and Global Matrix methods were formulated and examples shown. Devel-

opment of cylindrically layered media and the effective properties of such a material

was discussed and will allow for a study of inertial cloaking structures. This chapter has

laid the foundation for us to consider cylindrical acoustic cloaks which will be discussed

later on. Next, however, we will discuss these solution techniques for three-dimensional,

spherical coordinates.
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Chapter 5

3D Acoustic Wave Theory

Continuing the development into three-dimensional, spherical coordinates from Section

2.3, we find the solution for scattering from a single as well as concentric spheres.

The Matricant is further developed into spherical coordinates using properties of each

spherical shell, with density, ρi and speed of sound, ci, as well as for radial properties, ρr,

ρθ and Keff , for homogenized concentric spheres continuing development from Section

4.5.4. Lastly, energy conservation yields the far field scattering solution as a function

of θ, as well as relations for the scattering cross section, σsc. This is the last chapter

before we delve into acoustic cloaking theory.

5.1 Scattering from a sphere

In spherical coordinates, z transforms into r cos θ. Referring back to Section 4.1, we use

the complex Fourier series and then use Abramowitz and Stegun [15] to find the solution

of the incident wave in terms of spherical Bessel functions and Legendre polynomials.

eikz = Pincident =

∞
∑

n=0

in(2n + 1)jn(k0r)Pn(cos θ), (5.1)

where Pn(cos θ) is the nth degree Legendre polynomial. Next, the scattered solution is

similar to the solution found for cylindrical coordinates, where we leave out solutions

involving h
(2)
n (kr), as these waves would represent energy scattered from infinity to the

field, which by the Sommerfeld condition, are not present. We therefore have

Pscattered =
∞

∑

n=0

Anh(1)
n (k0r)Pn(cos θ). (5.2)

Similarly, solutions for 0 ≤ r < a require that the coefficient for yn(kr) must be zero

since yn(r → 0) → ∞. The total pressure solution for a plane wave incident on a sphere
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of radius, a, is then given by

P (r, θ) =
∞

∑

n=0

Pn(cos θ)















in(2n + 1)jn(k0r) + Anh
(1)
n (k0r), r > a,

Bnjn(kr), 0 ≤ r < a.

By using the linearized momentum equation the radial and angular velocities may be

found where iωρV = ∇P , Vr = 1
iωρ

∂P
∂r , Vθ = 1

riωρ
∂P
∂θ , Vφ = 1

r sin θ
∂P
∂φ = 0. We can then

write out the solutions for Vr and Vθ as functions of r and θ. Hence,

Vr(r, θ) = −i
∞
∑

n=0

Pn(cos θ)











Z−1
0

[

in(2n + 1)j
′

n(k0r) + Anh
(1)′

n (k0r)
]

, r > a,

Z−1Bnj
′

n(kr), 0 ≤ r < a,

(5.3)

Vθ(r, θ) =

∞
∑

n=0

n cos θPn(cos θ) − nPn−1(cos θ)

riωρ sin θ











in(2n + 1)jn(k0r) + Anh
(1)
n (k0r), r > a,

Bnjn(kr), 0 ≤ r < a.

The coefficients An and Bn are found by making pressure and velocity continuous at

the boundary r = a. Thus,

Bn =

in(2n + 1)

[

j
′

n(k0a) − jn(k0a)h
(1)′

n (k0a)

h
(1)
n (k0a)

]

Z0
Z j′

n(ka) − jn(ka)h
(1)′
n (k0a)

h
(1)
n (k0a)

, (5.4a)

An =
Bnjn(ka)

h
(1)
n (k0a)

− in(2n + 1)jn(k0a)

h
(1)
n (k0a)

. (5.4b)

With these coefficients found, the scattering solution is complete for a plane wave

incident on a sphere. Relationships between the spherical Bessel functions and Bessel

functions are given below from [15]. These are important for programming numerical

solutions, as Matlab does not contain the spherical functions but does include the Bessel

functions as used in the previous chapter.

jn(x) =

√

π

2x
Jn+ 1

2
(x), (5.5a)

yn(x) =

√

π

2x
Yn+ 1

2
(x), (5.5b)

h(1)
n (x) =

√

π

2x
H

(1)

n+ 1
2

(x), (5.5c)
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∂

∂x
jn(x) =

√

π

2x

(Jn− 1
2
(x) − Jn+ 3

2
(x)

2

)

− 1

2

√

π

2
x−3/2Jn+ 1

2
(x), (5.6a)

∂

∂x
yn(x) =

√

π

2x

(Yn− 1
2
(x) − Yn+ 3

2
(x)

2

)

− 1

2

√

π

2
x−3/2Yn+ 1

2
(x), (5.6b)

∂

∂x
h(1)

n (x) =

√

π

2x

(H
(1)

n− 1
2

(x) − H
(1)

n+ 3
2

(x)

2

)

− 1

2

√

π

2
x−3/2H

(1)

n+ 1
2

(x). (5.6c)

In general, these functions have the property d
dzfn(z) = n

z fn(z) − fn+1(z).

5.2 Matricant in 3D: spherical coordinates

By using mass and momentum balance, the derivatives of pressure and velocity may be

found with respect to pressure and velocity. Starting with the mass balance equation,

iωP = K∇.V, where in spherical coordinates the divergence of velocity is

∇.V =
1

r2

∂

∂r
(r2Vr) +

1

r sin θ

∂

∂φ
Vφ +

1

r sin θ

∂

∂θ
(Vθ sin θ). (5.7)

With some manipulations we find the derivative of the quantity r2Vr with respect to r,

in terms of P and Vr. Thus,

r2iωP

K
=

∂

∂r
(r2Vr) +

1

iωρ sin θ

∂

∂θ
(
∂P

∂θ
sin θ), (5.8a)

∂

∂r
(r2Vr) =

r2iωP

K
− 1

iωρ sin θ

∂

∂θ
(sin θ

∂P

∂θ
), (5.8b)

d

dr
(r2Vr) = (

iωr2

K
+

n(n + 1)

iωρ
)P, (5.8c)

where the last equation, (5.8c) comes from the Legendre differential equation of the

form

1

sin(θ)
[sin(θ)Θ

′

]
′

+
[

l(l + 1) − m2

sin2(θ)

]

Θ = 0, (5.9)

with m = 0, for azimuthal symmetry. From Equation (5.3), the derivative of pressure

is found such that we may write the matrix equation,

d

dr





P

r2Vr



 = iω





0 ρ
r2

r2

K − n(n+1)
ρω2 0









P

r2Vr



 . (5.10)

This is now in a form where QQQ = iω





0 ρ
r2

r2

K − n(n+1)
ρω2 0



, and we may proceed as in

Section 4.3 to find MMM .
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5.2.1 Alternative Matricant

An alternative form of QQQ depends on the choice of the state vector. In the previous

section the state vector was given by





P

r2Vr



. Here we derive the Matricant using

the effective radial properties, where the state vector is now





P

Vr



. From balance of

momentum,

iω





ρr 0

0 ρθ









Vr

Vθ



 =





∂
∂rP

in
r P



 . (5.11)

This means Vθ = n
rωρθ

P and ∂
∂rP = iωρrVr. Using the above equation and the balance

of mass equation, iωP = K∇.V , the derivative of Vr is found with respect to r

iω

K
P =

∂

∂r
Vr +

Vr

r
+

in

r
Vθ =

∂

∂r
Vr +

Vr

r
+

in2

r2ωρθ
P, (5.12a)

∂

∂r
Vr = P

[ iω

K
− in2

r2ωρθ

]

− Vr

r
. (5.12b)

Rewriting the equations in matrix form, we have

∂

∂r





P

Vr



 =





0 iωρr

iω
K − in2

r2ωρθ
−1

r









P

Vr



 , (5.13)

where we can see that

QQQ =





0 iωρr

iω
K − in2

r2ωρθ
−1

r



 . (5.14)

Again, referring back to Section 4.3, MMM may be found by integration of dMMM
dr = QQQMMM .
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5.3 Concentric spheres general solution

Very similar to the development of Section 4.4.1, the solution for a plane wave incident

on concentric spheres takes the form

P (r, θ) =

∞
∑

n=0

Pn(cos θ)































P0i
n(2n + 1)jn(k0r) + C0nh

(1)
n (k0r), r > r1,

C1njn(k1r) + D1nyn(k1r), r1 > r > r2,

C2njn(k2r), r2 > r ≥ 0,

Vr(r, θ) = −i
∞

∑

n=0

Pn(cos θ)































Z−1
0

[

P0i
n(2n + 1)j

′

n(k0r) + C0nh
(1)′

n (k0r)
]

, r > r1,

Z−1
1

(

C1nj
′

n(k1r) + D1ny
′

n(k1r)
)

, r1 > r > r2,

Z−1
2 C2nj

′

n(k2r), r2 > r ≥ 0,

where a sphere of properties, ρ2, c2 and radius r2 is surrounded by another sphere of

properties ρ1, c1 and radius r1, all contained in an infinite medium of properties ρ0

and c0. Notice that, as before, so long as the radius does not go to zero solutions

involving yn(kir) exist. By matching pressure and velocity as done before, this system

of equations can be turned into a matrix equation, where


















h
(1)
n (k0r1) −jn(k1r1) −yn(k1r1) 0

−Z−1
0 h

′(1)
n (k0r1) Z−1

1 j′n(k1r1) Z−1
1 y′n(k1r1) 0

0 jn(k1r2) yn(k1r2) −jn(k2r2)

0 −Z−1
1 j′n(k1r2) −Z−1

1 y′n(k1r2) Z−1
2 j′n(k2r2)





































C0n

C1n

D1n

C2n



















=



















−P0i
n(2n + 1)jn(k0r1)

Z−1
0 P0i

n(2n + 1)j′n(k0r1)

0

0



















.

(5.16)

Matricant

Using Equation (5.10), we may find MMM by integrating dMMM
dr = QQQ(r)MMM , with MMM(0) = III,

where,

dMMM

dr
=





Q1,1M1,1 + Q1,2M2,1 Q1,1M1,2 + Q1,2M2,2

Q2,1M1,1 + Q2,2M2,1 Q2,1M1,2 + Q2,2M2,2



 . (5.17)
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MMM is found using an ODE solver to go from the r2 to r1 boundary, and then equating

MMM





C2njnk2r2

C2nr2

2

iZ2

j
′

n(k2r2)



 =





M1,1C2njn(k2r2) + M1,2
C2nr2

2

iZ2

j
′

n(k2r2)

M2,1C2njn(k2r2) + M2,2
C2nr2

2

iZ2

j
′

n(k2r2)



 =





P (r1)

r2
1Vr(r1)



 . (5.18)

Now we may find the scattering coefficient for r > r1 by finding the impedance Zb at

r = r1, where

Zb =
iZ0

[

P0i
n(2n + 1)jn(k0r1) + C0nh

(1)
n (k0r1)

]

P0in(2n + 1)j′

n(k0r1) + C0nh
(1)′
n (k0r1)

. (5.19)

Inverting the above equation and finding the scattering coefficient gives

C0n =
P0i

n(2n + 1)
[

iZ0jn(k0r1) − Zbj
′

n(k0r1)
]

Zbh
(1)′
n (k0r1) − iZ0h

(1)
n (k0r1)

. (5.20)

5.4 Far field response and energy conservation

Far field scattering amplitude may be found by taking Equation (5.2) and finding the

response as r → ∞. The spherical Bessel function, h
(1)
n (kr), response for r → ∞, may

be found by using the method of steepest descent this results in the relation below.

lim
kr→∞

h(1)
n (kr) ≈ −i

eikr

kr
(−i)n = −i

ei(kr−nπ/2)

kr
. (5.21)

Now, the far field scattering amplitude may be represented by a function of g(r) and

f(θ) where each is given by the following:

Psc = g(r)f(θ), g(r) =
eikr

kr
, f(θ) = −i

∞
∑

n=0

AnPn(cos θ)e−inπ/2. (5.22)

The energy balance requires that the total energy flux averaged over one period must

be zero. This is done by integrating the real parts of pressure multiplied by velocity

and using a period equal to 2π
ω . Hence,

F = Re(Pe−iωt)Re(V e−iωt) =
1

4
[PV e−2iωt + P ∗V ∗e2iωt + P ∗V + PV ∗], (5.23)

Next, we take the average over one period and note that any integral over one period

of a periodic function such as eix is zero. This leaves us with

∫ 2π
ω

0
Fdt =

π

2ω
(P ∗V + PV ∗) =

π

ω
Re(P ∗V ). (5.24)
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Next, by integrating over φ and θ, we will find a conserved quantity and find the optical

theorem for a plane wave incident on a sphere, since the energy balance requires the

net flux to be zero. Equating
∫ π
0

∫ 2π
0 Re(P ∗Vr) sin θdφdθ = 0, yields

∫ pi

0

∫ 2π

0

(Re(P ∗

scVsc,r) + Re(P ∗

incVinc,r) + Re(P ∗

incVsc,r + P ∗

scVinc,r)) sin θdφdθ = 0. (5.25)

A detailed solution of this integral is located in the appendix, Section B. The end

result of Equation (5.25) is the optical theorem for a plane wave incident on a sphere,

for which the forward scattering is related to the scattering coefficients by the relation

Im(f(0)) =
∞

∑

n=0

|An|2
2n + 1

. (5.26)

Again, the cross sectional scattering takes the form

σsc =

∫ 2π

0

∫ 2π

0
|f(θ)|2dθdφ. (5.27)

5.5 Conclusion

Scattering from spheres has much in common with its two dimensional counterpart for

cylinders. The Matricant and Global Matrix solution methods have been developed

in spherical coordinates. Although examples were not shown, the following chapters

will go over many numeric results using both methods. Now, having reviewed acoustic

wave theory in two-dimensional polar, and three-dimensional spherical coordinates, we

may begin to examine and review cloaking theory in the next chapter with respect to

cylinders and spheres.
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Chapter 6

Acoustic Cloaking Review

Acoustic cloaking is achieved through transformation acoustics in which a coordinate

transformation makes it possible for one region of fluid to acoustically mimic another.

Fluids with this property are known as metafluids. The range of possible acoustic

metafluids has been derived [21], and includes fluids with anisotropic inertia and pen-

tamode materials. For an acoustic cloak, the transformation considers the limiting

case of a point transformed into a finite region, requiring materials that are radically

anisotropic with unavoidable singularities associated with material properties. Differ-

ent singularities are found depending on whether the transformed metafluid is purely

pentamodal, or purely inertial. A pentamodal material is a special type of anisotropic

elastic medium in which the shear modulus is zero. Perfect inertial cloaks, those cre-

ated with fluids of anisotropic inertia only, in which the scattered field is zero have

been found to require infinite mass [9]. Considering almost perfect cloaks, Torrent and

Sánchez-Dehesa [10] and Scandrett et al. [11] have proposed construction techniques of

such mediums.

6.1 Torrent and Sánchez-Dehesa model and numerical results

Torrent and Sánchez-Dehesa [10] proposed a two-dimensional inertial cloak in which

two fluid shells of equally thin, radially symmetric fluids surrounded an object. The

cylindrical layering of the shells yields an effective medium as discussed before with

anisotropic density and scalar bulk modulus. A possible cloaking medium proposed by

Cummer and Schurig [5] defined the effective medium properties and were then used

to define the local properties of the two fluid shells through local averaging equations.

This results in a layering of several hundred unique fluids which makes the creation of
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such a cloak challenging.

6.1.1 Effective medium

As in Section 4.5.1, this cylindrically layered medium will result in a effective density

operator and scalar bulk modulus. In general, the effective fluid will be defined by

a scalar compressibility Ceff and an anisotropic inertia with radial density ρr, and

circumferential density ρθ. Compressibility is defined as the inverse of the bulk modulus,

C = K−1. The parameters of the effective fluid are defined by homogenization of the

stratified medium as in [22],













ρr

ρ−1
θ

Ceff













=













〈ρ〉

〈ρ−1〉

〈C〉













, (6.1)

where, 〈·〉 is the local average over the volume fractions of the layered fluids. For the

structure proposed by Torrent and Sánchez [10] the local averaging yields the effective

properties, such that the averaged quantities are given by,

ρr =
1

2
(ρ1 + ρ2), (6.2a)

ρθ = [
1

2
(ρ−1

1 + ρ−1
2 )]−1, (6.2b)

Keff = [
1

2
(K−1

1 + K−1
2 )]−1. (6.2c)

A linear transformation proposed by Cummer and Schurig [5] was then used in which

the effective properties are defined by the inner, r0 and outer, rout radii of the cloaking

medium, such that an object of radius r0 may then be cloaked by such a material.

With,

ρr =
r

r − r0
, ρθ =

r − r0

r
, (6.3a)

Keff =
(rout − r0

rout

)2 r

r − r0
, (6.3b)

where the quantities ρr, ρθ, and Keff have been normalized to the background fluid

properties. Using Equations (6.2) and (6.3), Torrent and Sánchez-Dehesa proposed that
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the properties {ρj , Kj}, j = 1, 2 of the two fluid shells have the form,

ρ1(r) =
r

r − r0
+

√

2r0

r − r0
, (6.4a)

ρ2(r) =
r − r0

r +
√

2r0(r − r0)
, (6.4b)

c1(r) = c2(r) =
rout − r0

rout

r

r − r0
. (6.4c)

In order to achieve this equivalence it is necessary that the device have a large number

of distinct fluids: 100 and 400 for the two numerical examples reported by Torrent

and Sánchez-Dehesa [10]. It is now convenient to replicate these numerical examples

using the Global Matrix and Matricant Propagator methods. The next section shows

that the two methods result in the same answer. More importantly, it shows that

the cylindrical layering of these fluids does indeed create an effective medium with

properties as described by Cummer and Schurig [5].

6.2 Numerical comparison

The Matlab code is given in the appendix, Section D.4, where r0 = 1, rout = 1/2 and the

inner cylinder (object that is being cloaked) is taken as hard, by numerically inserting

large values for density and speed of sound. Next we can plot the scattering solutions

for the two different methods. Comparing the difference of the scattering coefficient

An, describing the amplitude of the scattered pressure for r > rout for a given mode n,

between the two methods is done below where the difference between the two answers

is on the order of 10−12. Clearly these two methods yield equivalent answers.

Matlab Code: 6.1: Comparison of scattering coefficient An for Global Matrix and Ma-

tricant methods.

1 >>An’−Anm’

2

3 ans =

4

5 1 .0 e−012 ∗

6

7 −0.0123 − 0 .9246 i
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Figure 6.1: Scattering solutions for pressure, Top: Global Matrix Method. Bottom:
Matricant Propagator Method

8 0 .0011 − 0 .4668 i

9 0 .0019 − 0 .1300 i

10 −0.0003 − 0 .0227 i

11 0 .0000 − 0 .0019 i

12 0 .0000 − 0 .0001 i

13 −0.0000 − 0 .0000 i

14 0 .0000 − 0 .0000 i

15 −0.0000 − 0 .0000 i

The two methods agree with a significant amount of accuracy. Noting that the scat-

tering strength is proportional to
∑ |An|2, the sum of the absolute value of the scat-

tering coefficients squared is then
∑ |An|2 ≈ 2.9184 ∗ 10−5 for the cloaked object.
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Lastly, considering the same cylinder of radius 1/2, without the cloaking medium yields
∑ |An|2 ≈ 0.7734. This shows that a significant amount of scattering has been reduced

by this layered cloaking medium.
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Figure 6.2: Scattering solution for pressure using hard cylinder of radius, 1/2 (no
cloaking medium used).

6.3 Conclusion

The numerical demonstration has proven the Matricant Propagator and Global Matrix

methods agree with significant accuracy. The layered medium does indeed create an

anisotropic medium described by the equations of Cummer and Schurig [5]. Considering

feasibility in manufacturing, this cloaking medium will require 400 unique fluids. In the

next chapter we consider developing a theory in which we may find the fewest number

of individual fluids required to create such a medium.
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Chapter 7

Determination of Fewest Distinct Fluids For Inertial

Cloaking

This chapter includes the work done in Norris and Nagy [12], which was researched

alongside the construction of this thesis. The purpose is to demonstrate that almost

perfect inertial cloaks can be achieved using layers comprised of only three acoustic

fluids. Similar to Torrent and Sánchez-Dehesa [10], the idea is to make a finely layered

shell that surrounds an object, however we only allow the use of N distinct fluids.

Instead of prescribing the thickness of each layer, the thickness is allowed to vary as

a function of r. Transformation formulas from [9] then imply unique values for the

relative concentrations of the N fluids as functions of r, in cylindrical and spherical

configurations.

7.1 Setup

Considering radially symmetric configurations, cylindrical in 2D and spherical in 3D,

a metafluid shell occupies 0 < r0 ≤ r ≤ rout, where r0 is the radius of the object

to be cloaked. A uniform acoustic medium with density and sound speed ρout, cout,

in r > rout surrounds the structure. The shell is made from N distinct fluids, finely

stratified compared to the incident wavelength, that results in an effective material

with smoothly varying properties as seen in [10]. Here we are interested in finding the

smallest number, N , of distinct fluids to create a metafluid capable of cloaking. Of

course N = 1 fluid does not result in any effective anisotropic medium as described by

the local averages back in Section 6.1.1. We therefore concentrate on the cases N = 2

and N = 3. We set rout = 1, cout = 1 and ρout = 1, this chooses units for length, time

and mass, respectively and lets us consider non-dimensional quantities.



52

The N distinct fluids are defined by their mass densities, ρ1, . . . , ρN , and compress-

ibilities C1, . . . , CN . Compressibility, C, is defined as the inverse of the bulk modulus,

Ci = K−1
i where Ki is the bulk modulus. Wave speeds are defined by ci =

√

Ki/ρi,

and the impedances are Zi =
√

Kiρi, i = 1, . . . , N . Later we will use the quantity

Si = ρiCi, or Si = c−2
i , and we may identify

√
Si as acoustic slowness in fluid i.

7.1.1 Transformative properties

Referring to Equation (6.1), the local averaging has the form

〈x〉 =
N

∑

i=1

φixi, with 〈1〉 = 1, (7.1)

where it is assumed that volume fractions of fluid i, written as φi, will be a function

of r, φi = φi(r), so that the averages (6.1) define parameters ρr(r), ρθ(r), and Ceff (r).

This type of homogenized medium was proven to occur with cylindrically layered shells

as seen in the comparison with Torrent and Sánchez [10].

The acoustic cloak corresponds to transformations from the current (physical) do-

main to the mimicked one in which the limiting case of a point is mapped to a finite

region. This makes the shell appear acoustically as if it is a larger shell of fluid with

uniform properties equal to the exterior fluid. The key is a transformation function,

r → R = R(r), such that the range of R exceeds its domain, i.e., the inverse map-

ping R → r physically contracts space. To be specific, the outer boundary is mapped

to itself, r = R = 1, and the inner boundary r = r0 is mapped to R = R0, with

0 < R0 = R(r0) < r0. The perfect acoustic cloak is defined by R0 = 0. The trans-

formed material has properties ρrT , ρθT , and Ceff,T , with values uniquely defined by

the transformation in d−dimensions given by [9] as












ρrT

ρ−1
θT

Ceff,T













= R′













(r/R)d−1

(r/R)3−d

(r/R)1−d













, d = 2 or 3, (7.2)

where R′ = dR/ d r.

The connection between the homogenized material (6.1) and the acoustically trans-

formed material (7.2) is now made explicit by requiring ρrT = ρr, ρθT = ρθ and
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Ceff,T = Ceff (and we drop the subscript T ). Our objective is to find families of trans-

formation functions R = R(r), φi = φi(r) for which this equivalence can be achieved.

It depends, of course, on the choices of material properties {ρi, Ci}, i = 1, . . . , N , and

not all combinations will work. Among the requirements is that the transformation

function is one-to-one, and that the volume fractions are all between zero and unity.

We therefore require that φφφ ∈ ΦN where φφφ is the N−dimensional vector of volume

fractions, and ΦN the N − 1 dimensional surface on which it must lie,

ΦN = {φi ≥ 0,
∑

i

φi = 1, i = 1, . . . , N}. (7.3)

In order to gain some understanding of the problem we start with the simpler case

N = 2 and then move on to consider N = 3.

7.2 The two-fluid material

Here we consider the use of N = 2 fluids. Interesting metafluid structures made from

only two fluids were investigated, where acoustic wave energy may be diverted from

the backscatter direction. We find that the use of only two fluids is too restrictive and

an additional parameter is required for cloaking to occur. A layering of two unique

fluids is considered where the compressibility of one of the fluids is allowed to vary as

a function of r, which can be achieved by adding small concentrations of bubbles. We

call this the two and a half fluid material.

7.2.1 Algebraic formulation

The first two relations in (6.1), for d = 2 dimensions, and the identity (7.1), are written

in matrix form as












1 1 0

ρ1 ρ2 −ρr

1
ρ1

1
ρ2

−ρ−1
θ

























φ1

φ2

1













=













1

0

0













. (7.4)

Inverting the above equation, the concentrations, φi, are

φ1 =
ρr − ρ2

ρ1 − ρ2
, φ2 =

ρ1 − ρr

ρ1 − ρ2
, (7.5)
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and the densities ρr, ρθ are related by

ρr + ρ1ρ2ρ
−1
θ = ρ1 + ρ2. (7.6)

The effective compressibility, which follows from (7.5) and the third relation in (6.1),

satisfies

(ρ1 − ρ2)Ceff + (C2 − C1)ρr = ρ1C2 − ρ2C1. (7.7)

Equation (7.5) provides relations for the volume fractions in terms of the radial inertia

ρr. One can also interpret Equations (7.6) and (7.7) as defining ρθ and Ceff , respec-

tively, in terms of ρr. Therefore, all parameters in the two-fluid material can be defined

by a single quantity, in this case ρr.

However, in order to relate the two-fluid material to a transformation it is necessary

that there exists a function R which satisfies the three differential identities (7.2).

Substitution of these into Equations (7.6) and (7.7) gives a pair of equations which can

be considered as algebraic equations in two unknowns: R′ and R/r. Solutions for both

of these quantities can be found in terms of the two-fluid properties ρ1, ρ2, C1, C2, but

the solutions are not of practical interest. The reason is that the constant values of R′

and R/r that are found, say R′ = a, R/r = b, must be equal, leading to trivial cases.

The main conclusion of the study of the N = 2 case is that the 2-fluid material is overly

restrictive for construction of an acoustic cloak, and we need to introduce more degrees

of freedom. Before considering N = 3 we note some possible useful properties of the

2-fluid shells.

7.2.2 A special case of a uniform two-fluid material

While it is not possible for the 2-fluid material to reproduce a transformation mate-

rial suitable for cloaking, it is possible to make some interesting uniform fluids with

anisotropic inertia. The idea is to seek constant values of ρr, ρθ and Ceff which also

match to the exterior fluid in r > 1. This requires that R = 1 at r = 1. Enforcement of

(7.2) then requires the three parameters in the left vector be equal to R′. Substituting

into Equation (7.6) yields

ρr = ρ−1
θ = Ceff = ρr3, (7.8)
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where

ρri =
ρj + ρk

1 + ρjρk
(i 6= j 6= k 6= i). (7.9)

The volume fractions follow from (7.5) as

φ1 = ρ1ρr3

(

1 − ρ2
2

ρ2
1 − ρ2

2

)

, φ2 = ρ2ρr3

(

1 − ρ2
1

ρ2
2 − ρ2

1

)

, (7.10)

which are both positive if and only if (1−ρ1)(1−ρ2) < 0. The one remaining condition,

that for the compressibility, implies using (7.7) and (7.8) and the condition that the

two compressibilities must be related such that

C1ρ1(1 − ρ2
2) + C2ρ2(ρ

2
1 − 1) = ρ2

1 − ρ2
2. (7.11)

The anisotropic fluid (7.8) is defined by the parameter ρr3 = ρr3(ρ1, ρ2), and is com-

posed of volume fractions φi = φi(ρ1, ρ2) of fluid i = 1, 2. Denote any pair satisfying the

relation (7.11) as Ci = Ci(ρ1, ρ2), i = 1, 2. It is interesting to note that these functions

are invariant under the interchange {ρ1, ρ2, φ1, φ2, C1, C2} → {ρ−1
2 , ρ−1

1 , φ2, φ1, C2, C1}.

Examples

If, for instance, C1ρ1 = C2ρ2 then (7.11) implies that C1ρ1 = C2ρ2 = 1. Both fluids

have the same wave speed as the background fluid. They differ only in their impedances,

which in this case are zi = ρi = C−1
i , i = 1, 2.

Conversely, if C1/ρ1 = C2/ρ2 then (7.11) implies that C1/ρ1 = C2/ρ2 = 1. The

two fluids have the same acoustic impedance as the background fluid, and differ only

in their wave speeds, which are ci = ρ−1
i = C−1

i , i = 1, 2.

Interesting properties of two fluid mediums

Using Equation (7.8) we may investigate interesting properties of an inertial medium

described by a single parameter ρr. Utilizing Equations (4.31a), (4.31b), and (4.36), we

may now compare solutions using anisotropic properties where, (4.31a), (4.31b) are used

to construct a global matrix method and (4.36) is used to find Matricant propagator

solutions. The Matlab code in the appendix D.6 considers a rigid object of radius,
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r0 = 1/2, surrounded by a medium described by Equation (7.8), where ρr = 20 and

outer radius rout = 1. This structure is then immersed in a fluid of ρ0 = 1 and c0 = 1.

Running the Matlab code in the appendix, Section D.6, allows us to compare answers

for the scattering coefficients, An. The code uses the global matrix and Matricant

propagator methods, using the effective properties, ρr, ρθ and Ceff from Equations

(4.31a), (4.31b), and (4.36).

Comparing results for the two methods,

1 >> Anm’−An’

2 ans =

3 1 .0 e−004 ∗

4 0 .2860 − 0 .3445 i

5 −0.1803 − 0 .4213 i

6 0 .0844 + 0.4155 i

7 −0.3400 − 0 .0901 i

8 0 .1649 − 0 .2453 i

9 0 .0772 − 0 .0746 i

10 0 .0000 + 0.0000 i

11 0 .0000 + 0.0000 i

Also, comparing scattering strength measured by
∑ |An|2, found by the two methods,

1 >> sum( abs (An) . ˆ 2 )

2 ans =

3 3.7391

4

5 >> sum( abs (Anm) . ˆ 2 )

6 ans =

7 3.7391

8

9 >> sum( abs ( A r ) . ˆ 2 )

10 ans =

11 2.4967
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where An, in the above command prompt, was found using the global matrix method

and Anm was found using the Matricant, A r is the scattering coefficients caused by a

rigid cylinder of radius, r0 = 1/2. Unfortunately this medium increased the scattering.

However we find that a significant amount of energy has been directed away from the

backscattering direction. Using Equation (4.39) polar plots were created, as shown

in Figure 7.1. Lastly, this medium can be achieved by layering shells described by

Equations (7.9) and (7.10), where for ρr = 20 a possible combination of two fluid

layering may be ρ1 = .01, ρ2 = 24.9875 where the volume fractions of the layered shells

for fluid i will have the ratio φ1 = .19968 and φ2 = .80032. From Figure 7.1 the rigid

cylinder causes a significant amount of backscatter. However, using a two fluid medium

with the property of ρr = 20 and defined by Equation (7.8) a large amount of energy

has been directed away from the backscatter direction.

7.2.3 Two and a half fluids

We consider the 2D case, for which (r/R)R′ = ρr, from Equation (7.2)1. It follows

from (7.6)2, i.e. ρr = ρ−1
θ , that ρr = ρr3, a constant. Taking into account the boundary

condition R(1) = 1, the unique mapping is

R(r) = rρr3 . (7.12)

Equation (7.7) combined with (7.2)3 then implies

(1 − ρ2
2)S1 + (ρ2

1 − 1)S2 = (ρ2
1 − ρ2

2)r
2(ρr3−1). (7.13)

This cannot be satisfied if the fluids have properties independent of r. If we still require

that the densities are fixed, but the compressibilities could vary with r, then (7.13)

suggests that a mapping can be realized if one or both S1, S2 are such that the equality

holds for some range of r. It is well known that adding a small concentration of bubbles

to a liquid results in an increase in the compressibility without significant change in the

effective density.

Since (ρ1−1)(ρ3−1) must be negative, we take, with no loss in generality, ρ1 > 1 >

ρ3. A large value of ρr3 is achieved if ρ1 ≫ 1, ρ3 ≪ 1, in which case (7.13) becomes

ρ−2
1 S1 + S2 ≈ r2(ρr3−1). (7.14)
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Figure 7.1: The top figure is the far field scattering caused by a rigid cylinder of
r0 = 1/2, the bottom is of the same rigid cylinder wrapped in a medium described by
equation (7.8) where ρr = 20 and rout = 1.
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7.3 The three-fluid material

We now consider N = 3 fluid configurations. The extra fluid adds a significant amount

of freedom in that we do not expect ρr = ρ−1
θ = Ceff . Also the volume fractions will

not be constrained to single values. Instead, we expect to have φi = φi(r).

7.3.1 Algebraic formulation

We again start with the first two relations in (6.1) and the identity (7.1)2, which may

be written in matrix form as












1 1 1

ρ1 ρ2 ρ3

ρ−1
1 ρ−1

2 ρ−1
3

























φ1

φ2

φ3













=













1

ρr

ρ−1
θ













. (7.15)

Inverting the above equation to find the 3-vector of volume fractions in terms of ρr and

ρ−1
θ and substituting into the third relation in (6.1) yields an expression for Ceff in

terms of ρr and ρ−1
θ . Thus,

φφφ = fff0 + ρrfff1 + ρ−1
θ fff2, (7.16a)

Ceff = α + β1ρr + β2ρ
−1
θ , (7.16b)

where the 3-vectors in (7.16a) are

φφφ =











φ1

φ2

φ3











, fff0 = D











ρ2

ρ3

− ρ3

ρ2

ρ3

ρ1

− ρ1

ρ3

ρ1

ρ2

− ρ2

ρ1











, fff1 = D











1
ρ2

− 1
ρ3

1
ρ3

− 1
ρ1

1
ρ1

− 1
ρ2











, fff2 = D











ρ3 − ρ2

ρ1 − ρ3

ρ2 − ρ1











, (7.17)

with D = ρ1ρ2ρ3/[(ρ1 − ρ2)(ρ2 − ρ3)(ρ3 − ρ1)], and the scalars α, β1 and β2 in (7.16b)

are

α = CCCTfff0, β1 = CCCTfff1, β2 = CCCTfff2, (7.18)

with CCCT = (C1, C2, C3).

7.3.2 The transformation function

The transformation function r → R(r) is manipulated into a differential equation and

solved in terms of α, β1, and β2. Using Equation (7.2) to eliminate Ceff , ρr and ρ−1
θ
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from (7.16b) yields,

(R

r

)d−1
R′ = α +

(

β1

( r

R

)d−1
+ β2

( r

R

)3−d
)

R′, (7.19)

where d = 2 or 3 is the spatial dimension. Rewriting results in

d R

d r
= α















(

R
r − β r

R

)−1
, 2D,

(

R2

r2 − β1
r2

R2 − β2

)−1
, 3D,

(7.20)

subject to the boundary condition R(1) = 1, such that the outer radius is mapped to

itself. We define the parameters β, λ, and µ, here as:

β = β1 + β2 λ = α + β, µ = −β

α
, (7.21)

which will be useful in solving (7.20).

2D solution

Considering the 2D Equation (7.20)1, let x = r2, X = R2, then Equation (7.20)1

becomes

X
d x

dX
+

β

α
x =

X

α
, x(1) = 1. (7.22)

Integrating yields

r =

(

R2 + (λ − 1)R2µ

λ

)1/2

. (7.23)

The 2D transformation function is therefore completely defined by the two parameters

λ and µ.

3D solution

The 3D Equation (7.20)2 becomes, with the change of variable s = r
R ,

1

R

d R

d s
=

−αs2

β1s4 + αs3 + β2s2 − 1
=

4
∑

i=1

γi

s − si
, R(1) = 1, (7.24)

where the four roots si and the coefficients γi, i = 1, 2, 3, 4, are defined by

β1

4
∏

j=1

(s − sj) = β1s
4 + αs3 + β2s

2 − 1, γi =
−αs2

i

β1
∏

j 6=i

(si − sj)
. (7.25)
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Figure 7.2: The range of φφφ for the 3-fluid.

Note that
∑

i γi = 0,
∑

i si = −α/β1,
∑

i γisi = −α/β1,
∑

i γis
2
i = (α/β1)

2. Integration

of (7.24) yields

R =
4

∏

i=1

( r
R − si

1 − si

)γi

. (7.26)

This provides an implicit formula for R and r in terms of the three parameters α, β1

and β2. Using the fact that 1 ≤ s ≤ s0, where s0 is defined in the next subsection,

Equation (7.26) gives R as a function of s, from which r = sR is obtained.

7.3.3 The inner radii r0 and R0

It follows from continuity of the solution of the differential equation (7.20) that the

values of the inner radii r0 and R0 should correspond to a point on the edge of the

triangular region Φ3. See Figure 7.2. The actual radial values can be determined by

starting with (7.15), using ρr and ρθ as defined in (7.2), and keeping the parameter

s = r
R to express φi of (7.16a) in the form

φi =
ρi

[

(sd−1 + ρjρks
3−d)R′ − (ρj + ρk)

]

(ρi − ρj)(ρi − ρk)
, (7.27)

where i 6= j 6= k 6= i. Replacing R′ by (7.20) and setting (7.27) to zero implies an

algebraic (polynomial) equation for s. In principle there are three possible solutions,

corresponding to each of φi = 0, i = 1, 2, 3. However, in practice for a given set of

3-fluids only one is important, and we choose the 3-fluid properties so that it is the root

for φ2 = 0. We consider first d = 2.
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In the 2D cylindrical configuration the equation φ2 = 0 is a quadratic in s with

a single positive root greater than unity (corresponding to r0 > R0), combined with

(7.23) we can find both R0 and r0 in explicit form as

R0 =

{

(λ − 1)

(

ρ−1
r2 − µ

1 − ρ−1
r2

)} 1
2(1−µ)

, (7.28a)

r0 =

{

λ

(

ρ−1
r2 − µ

1 − µ

)}− 1
2

R0, (7.28b)

where ρr2 follows from the definition (7.9).

For the 3D spherical case the equation φ2 = 0 becomes a biquadratic in s with a

single positive root. We find

R0 =
4

∏

i=1

(

s0 − si

1 − si

)γi

, r0 = s0R0, (7.29)

where s0 is the smallest positive root greater than unity of

s4[α + β1(ρ1 + ρ3)] + s2[αρ1ρ3 + β2(ρ1 + ρ3)] − (ρ1 + ρ3) = 0. (7.30)

7.3.4 Total mass and average density

The total mass m of the 3-fluid shell is the integral of local average of the density,

〈ρ〉. Therefore, m follows from Equation (6.1) as the volumetric integral of ρr(r).

Substituting from (7.2)1 and using (7.20), the integral can be expressed in closed form

for the 2D case, and reduced to an integral in s = r/R for the 3D case. We find

m =















π
λ

{

1 − R2
0 + (λ−1)

µ

(

1 − R2µ
0

)}

, 2D,

4π α
β1

s0
∫

1

s6
4
∏

i=1

(

s−si

)3γi−1

(

1−si

)3γi
d s, 3D,

(7.31)

from which the average density in the shell, ρ̄ = 3m/[π(d + 1)(1 − rd
0)], can be found.

The average density for 2D becomes, after some simplification,

ρ̄ =
1

µ
− 1

β

(

1 − R2
0

1 − r2
0

)

, 2D. (7.32)

7.3.5 Summary

We have shown that the three-fluid shell is uniquely related to a possible transformation

function in both 2- and 3-dimensions. The connection is still somewhat tentative, since
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Figure 7.3: The range of φφφ for the 3-fluid in the cylindrical configuration. The dashed
lines show the possible straight line paths. In practice, the path begins at some point
inside the triangular region (r = R = 1) and ends at φ2 = 0 (r = r0, R = R0).

we must confirm that the function is physically realistic. This requires, among other

things, that the volume fractions are all positive and between zero and unity, i.e. that

φφφ ∈ Φ3 where the equilateral triangle surface Φ3 is defined by (7.3). We will consider

numerical examples in a following section. Next we will consider how to go about

choosing three fluid possibilities for which the transformation occurs.

7.4 Three fluid analysis

Beginning with the density implications, Equation (7.16a) reduces, using ρrρθ = 1, to

give

φi =
ρi(ρj + ρk)(ρr − ρri)

ρri(ρi − ρj)(ρi − ρk)
, i 6= j 6= k 6= i, (7.33)

where the critical values of ρr are given by (7.9). Based upon the above equation, we

note that

φi|ρr=ρri
= 0, φj |ρr=ρri

= ρjρri

(

1 − ρ2
k

ρ2
j − ρ2

k

)

, (7.34)

where i 6= j 6= k 6= i. The points defined by (7.34) are the intersections of the line (7.33)

with the planes eeei ·φφφ = 0. In order to have some φφφ ∈ Φ3 at least one of the intersections

must lie on the boundary of Φ3. Consider ρri of (7.9), then φj and φk must both be

positive, which occurs if and only if one of (ρj , ρk) is larger than, and the other is less

than, unity. This gives an important condition, that at least one of the three densities
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is larger than unity and at least one must be less than unity. We introduce the density

values ρp, ρm, {p 6= m} ∈ {1, 3}, such that

(ρ2 − 1)(ρp − 1) > 0, (ρ2 − 1)(ρm − 1) < 0, (7.35)

with 2 6= p 6= m 6= 2. We note some other properties of the critical values of the

densities:

ρri − ρrj = ρriρrj
(ρj − ρi)(1 − ρ2

k)

(ρi + ρk)(ρj + ρk)
, (7.36a)

ρri − 1 = −ρri
(ρrj − 1)(1 − ρrk)

ρrj + ρrk
, (7.36b)

where i 6= j 6= k 6= i. These imply, respectively, that ρr2 > ρrp > ρrm, and ρr2 > 1,

ρrp > 1 and ρrm < 1. Combining these with the previous inequalities, we surmise the

ordering ρr2 > ρrp > 1 > ρrm. Thus, for instance, if ρ2 > 1, then the possible range of

ρr is ρr1 ≤ ρr ≤ ρr2. If ρ2 < 1 then it is ρr3 ≤ ρr ≤ ρr2. Any value of ρr in the range

ρrp ≤ ρr ≤ ρr2 therefore yields a triple of concentration values satisfying φφφ ∈ Φ3. At the

upper (lower) value, ρr = ρr2 (= ρrp), the concentration φφφ lies on the boundary of the

triangle with φ2 = 0 (φp = 0). But these limiting values are not necessarily achieved.

Thus, at r = R = 1 the differential equality (7.20) implies that ρr = α/(1− β). This is

the practical lower bound on the range of ρr.

Sensitivity

The reachable range of ρr is, from (7.20), ρrp < ρr < ρrp + ∆ρr where

∆ρr ≡ ρr2 − ρrp =
(ρp − ρ2)(1 − ρ2

m)

(1 + ρ2ρm)(1 + ρpρm)
. (7.37)

Hence,

∂∆ρr

∂ρ2
= − (1 − ρ2

m)

(1 + ρ2ρm)2
,

∂∆ρr

∂ρp
=

(1 − ρ2
m)

(1 + ρpρm)2
, (7.38)

∂∆ρr

∂ρm
= −(ρp − ρ2)(1 + ρ2

m)(ρ2 + ρp + 2ρ2ρpρm)

(1 + ρ2ρm)2(1 + ρpρm)2
.

If p = 1 these are, respectively, < 0, > 0, < 0. Conversely, if p = 1 they are > 0, < 0,

> 0. Hence, whether p = 1 or p = 3 it is clear that ∆ρr is greatest if ρ1 is large, ρ2 is

close to unity, and ρ3 is small.
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Case ρ1 ρ2 ρ3 S1 S2 S3

1 10 1 0.2 1 10 0.1
2 10 1 0.2 1 10 0.01
3 100 1 0.02 1 10 0.01
4 1000 1 0.002 1 10 0.01

Table 7.1: The four cases of 3-fluid material considered.

7.5 Numerical results

7.5.1 Example of three-fluid shells

The range of possibilities for the 3-fluid metamaterials is extensive given that there are

3 × 2 = 6 independent variables at our disposal. We take ρ2 = S1 = 1, ρ3 = 2/ρ1 and

S2 = 10, which leaves two parameters: ρ1 and S3. Four distinct 3-fluids are considered

according to the four sets of parameters in Table 7.1 with different combinations of

ρ1 and S3. The transformation function and the concentrations of the three fluid

constituents are illustrated in Figures 7.4-7.7. The curves R = R(r) illustrate the

transformation, which maps the original region R0 ≤ R ≤ 1 to the physical domain

r0 ≤ r ≤ 1, and the values of the inner radii, r0 and R0, are given in Table 7.2. Note

that R ≤ r, as expected. Also, the concentrations for the 2D shells, in Figures 7.4a,

7.5a, 7.6a and 7.7a, satisfy φ3 ≈ 2φ1, since ρ1ρ3 = 2. The most important aspect is the

relative values of r0 and R0, in that it is desirable to have r0 close to unity while R0

should be close to zero. The value of r0 is smallest in Figure 7.4 and largest in Figure

7.7, and it appears to increase with ρ1. In order to obtain a value of r0 close to unity,

it is necessary to have a large value of ρ1, see Figures 7.6 and 7.7. Although only two

values of S3 are considered here, numerical experiments indicate that the value of R0 is

more sensitive to this parameter, with R0 decreasing as S3 is increased. It is also found

that better results, i.e. smaller R0, larger r0, are obtained when S2 becomes very large.

For instance, r0 = 0.989, R0 = 0.031 is obtained in 2D with ρ1 = S2 = 103, S3 = 10−3.
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Figure 7.4: The curves show the concentrations of the three fluids and the radius R
as functions of the physical radial coordinate r for the fluid parameters of Case 1 (see
Table 1). (a) the 2D cylindrical configuration; (b) the 3D spherical shell.
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Figure 7.5: Case 2. The parameters are the same as in figure 7.4 with the exception
that now S3 = 0.01.



68

0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

r
 

 

0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

r
 

 

R

R

φ
2

(a)

(b)

φ
2

φ
3

φ
1

φ
1

φ
3

Figure 7.6: Case 3. The parameters are the same as in figure 7.5 except that ρ1 = 100,
ρ3 = 0.02.
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Figure 7.7: Case 4. As in figure 7.6 except that now ρ1 = 1000, ρ3 = 0.002.

7.5.2 Discrete layering algorithm

The inhomogeneous nature of the homogenized material is captured by layering the

shell on two scales. The first scale is a fine layering of L distinct bands defined by the

regions between r0 < r1 < r2 < . . . < rL = rout = 1. The second scale of layering

defines three sub-regions between neighboring radii. Let rn,1 ≡ rn, and define

rd
n,m = rd

n,m−1 − φm−1(rn)∆n, m = 2, 3, (7.39a)

∆n = rd
n − rd

n−1, n = 1, 2, . . . , L, (7.39b)

where π
3 (d + 1)∆n is the area or volume between the inner and outer radii of the

band [rn−1, rn]. The three regions (rn,2, rn,1] , (rn,3, rn,2] and (rn−1,1, rn,3] have frac-

tional volumes φ1(rn), φ2(rn) and φ3(rn) of the band, respectively, and are there-

fore occupied by the respective fluids, see Figure 7.8. The choice of the ordered set

{rn, n = 1, 2, . . . , L−1} is relatively arbitrary as long as it is finely spaced for large val-

ues of L. For simplicity we take ∆n constant, independent of n, in which case ∆n ≡ ∆
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2D 3D
r0 R0 ρ̄ σ0(%) r0 R0 ρ̄ σ0(%)

1 0.60 0.20 3.12 25.8 0.66 0.26 5.41 4.55
2 0.41 0.06 3.13 2.37 0.59 0.19 5.69 2.20
3 0.88 0.09 19.17 0.69 0.88 0.11 57.7 .033
4 0.94 0.09 40.22 0.69 0.96 0.096 192 .012

Table 7.2: Results for the four cases of Table 7.1. ρ̄ is the average density in the shell
r0 ≤ r ≤ 1. σ0 is the relative value of the total scattering cross section at kr0 = 3 of a
rigid cylinder/sphere surrounded by the 3-fluid shell with 500 layers. A value of 100%
corresponds to the bare rigid target.
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Figure 7.8: The discrete layering algorithm to reproduce the local homogenization
properties of the 3-fluid shell.

and the radii become

rd
n,1 = rd

0 + n∆, n = 1, 2, . . . , L, (7.40a)

rd
n,m = rd

n,m−1 − φm−1(rn,1)∆, m = 2, 3, (7.40b)

∆ = (1 − rd
0)/L. (7.40c)

7.5.3 Numerical results

Three different numerical methods are employed to find the scattered pressure: (i) by

solving for the Matricant; (ii) using a global matrix; and (iii) by solving the Matricant

of the homogenized radially dependent anisotropic fluid. The code is attached in the

appendix D.8. Figures 7.9 and 7.10 show the magnitude of the scattered acoustic

field for an incident wave of unit amplitude. Since the radius of the object being

cloaked changes for each of the four cases of Table 7.1 we take the non-dimensional
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Figure 7.9: Case 1. The magnitude of the scattered pressure for an incident wave of
unit amplitude for the 2D (top) and 3D (bottom) 3-fluid shells. In each case kr0 = 3
and L = 500. The inner dark circular region depicts the rigid target of radius r0,
surrounded by the shell of unit outer radius.
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Figure 7.11: 3D pressure map solution for a rigid cylinder; kr0 = 3, r0 = .88.

characteristic value kr0 = 3 in each scattering simulation. This allows us to compare

the total scattering cross-section between the four cases even though the values of r0

are different. Figure 7.11 shows the response of the bare 3D spherical rigid target based

upon case 3 in which r0 = .88. The total scattering cross-section for the “cloaked” rigid

object was calculated using the coefficients An, and compared with the cross-section

for the bare rigid object. In each case, as Table 7.2 shows, the relative cross-section

satisfies σ0 < 1. Also, the numerical methods (i) and (ii) were found to be in agreement

with one another, and with method (iii) when L is very large. For instance, the cross-

section found using method (iii) is 0.3% larger than that of method (i) for the 2D

example in figure 7.9. Finally Figure 7.12 shows the effect of increasing the number

of layers versus the relative value of the total scattering cross section, σ0. It should

be noted that Figure 7.12 shows the homogenization process at work. When there are

very few layers the incident wave does not respond as if the medium were described by

a cloaking medium. However as we increase the number of layers within the cloaking

region and therefore decrease the thickness of each layer of individual fluid, the incident

wave begins responding as if the medium contained the fluid properties of Equation 7.2.

A curve fit of the power function f(x) = axb + c was used and the results can be found

in the caption of Figure 7.12.
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Figure 7.12: Number of three-fluid layers vs. the relative value of the total scattering
cross section for case 3, in which the layers occupy r0 < r ≤ 1. Where 5 ≤ L ≤ 100. The
curve fit used was of the form f(x) = axb + c. For 2D a = 3716, b = −2.221, c = .9924.
The root mean squared error (RMSE)=.290 and R2 ≈ 1. For 3D a = 6435, b =
−2.258, c = .1324, (RMSE)=.278 and R2 ≈ 1.

7.6 Three fluid examples using feasible materials

Using Equation (7.28a) a plot of values for r0 vs. R0 using combinations of several

materials was created. Ideally we want r0 to be close to unity and R0 to be close to

zero. The list of materials considered is located in the appendix C. We considered

gases, liquids, and solids. Although solids will have shear effects we consider them neg-

ligible when layering a thin strip of solid material between two fluids. Having taken all

possible three-combinations of the tables in the appendix, Figure 7.13 was created. Un-

fortunately no combination resulted in any significant cloaking. Interestingly however

is that points that lie on the 45o line mimic the background fluid for a given volume.

The three colors of Figure 7.13 correspond to which volume fraction φi went to zero

first. For instance, referring to Figures 7.4-7.7, the fluids for those figures were chosen

such that φ2 was zero at r = r0, however this is not always the case for a given random

set of fluids. Ultimately a random set of fluids starts somewhere within the surface of

Figure 7.2 at r = 1, for two dimensional structures, and transformation occurs until

one φi(r = r0) = 0, for i = 1, 2, 3.
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Figure 7.13: Plot of r0 vs. R0 made from 198 different materials constituting 1,274,196
different three-pair combinations, this is produced by the binomial coefficient n choose
k written (n

k ). The three colors correspond to which volume fraction went to zero first,
further explained in section 7.6

7.7 Conclusion

The 2 and 3-fluid shells have the effect of creating an inertially anisotropic medium

however the 2-fluid shell results in constant functions for ρr and ρθ that have no radial

dependence. By introducing the 3-fluid shell additional degrees of freedom are exploited

and a desired radial dependent inertial medium is attained that upon layering and ho-

mogenizing has the effect of steering incident acoustic energy around the structure, and

conversely, reducing the radiation strength. The overall effectiveness and the precise

form of the layering depends upon the relative densities and compressibilities of the

three fluids. The best results are obtained if one fluid has density equal to the back-

ground or host fluid, while the other two densities are much greater and much less than
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the background values, as per the discussion in Section 7.4. Future improvements in

optimization of the layering of the three fluids to result in an effective homogenized

medium with fewer layers may significantly improve the results of Fig. 7.12.
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Chapter 8

Summary and future work

This thesis covered a somewhat extensive review of acoustic wave theory in order to

review and develop acoustic cloaking theory. Chapters 3 - 5 covered one, two, and three

dimensional scattering problems where solution methods were discussed and developed.

In Chapters 4 and 5 the optical theorem was derived in two and three dimensions

yielding the scattering cross section for later use when determining the effectiveness

of a cloak. Matlab codes were written to compare solution methods and compute the

effectiveness of acoustic cloaking mediums proposed by the literature. A review of

Torrent and Sánchez-Dehesa in Chapter 6 considered an inertial cloak comprised of

layering several hundred unique fluids. We found that only three unique fluids are

required to create a cloaking medium, the main results are in Chapter 7. As discussed

in the literature, mass is an issue in cloaks of the inertial type. Future work will need

to consider a broader set of cloaking materials, such as pentamode elastic solids with

anisotropic strength and isotropic inertia.
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Appendix A

Derivation of optical theorem for section 4.7

Detailed solution for (4.47),

∫ 2π

0
Re(P ∗

scVsc,r)dθ +

∫ 2π

0
Re(P ∗

incVinc,r)dθ +

∫ 2π

0
Re(P ∗

incVsc,r + P ∗
scVinc,r).

Where Psc is given by Equation (4.38) and Pinc is given by (4.4). Determining the first

term, the complex conjugate of the scattered pressure, P ∗
sc = P ∗

0
e−ikr√

kr
f∗(θ). Using linear

momentum balance and Equation (4.38), Vsc,r = P0
iωρf(θ) d

dr(g(r)), where d
dr(g(r)) =

eikr −1+2ikr
2
√

kr3/2
. Vsc,r is then

Vsc,r =
P0

iωρ
eikr−1 + 2ikr

2
√

kr3/2
f(θ). (A.1)

Multiplying P ∗
sc and Vsc,r and taking the real part, the first term of Equation (A.1) can

be found, with

P ∗

scVsc,r =
|P0|2
iωρ

−1 + 2ikr

2kr2
f(θ)f∗(θ), (A.2a)

Re(P ∗

scVsc,r) =
|P0|2
2iωρ

(
−1 + 2ikr

2kr2
)|f(θ)|2 +

|P0|2
2iωρ

(
1 + 2ikr

2kr2
)|f(θ)|2 =

|P0|2
rωρ

|f(θ)|2. (A.2b)

Using Equation (4.39) for f(θ), the integral may be found,

∫ 2π

0
Re(P ∗

scVsc,r)dθ =
4|P0|2
rωρ

|An|2. (A.3)

The second term of (A.1) is zero as this is the flux of the incident wave integrated over a

closed region. Now we begin working on the third term where Vinc,r = P0
Z cos θeikr cos θ.

Then we may find,

P ∗
incVsc,r =

|P0|2
Z
√

kr
eikr(1−cos θ)f(θ), (A.4)

taking the real part,

Re(P ∗
incVsc,r) =

|P0|2
2Z

√
kr

[eikr(1−cos θ)f(θ) + eikr(cos θ−1)f∗(θ)]. (A.5)
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Similarly the next term

P ∗
scVinc,r =

|P0|2
Z
√

kr
cos θeikr(cos θ−1)f∗(θ), (A.6a)

Re(P ∗
scVinc,r) =

|P0|2
2Z

√
kr

cos θ[eikr(cos θ−1)f∗(θ) + eikr(1−cos θ)f(θ)]. (A.6b)

Finally we may integrate over θ,

∫ 2π

0

Re(P ∗

incVsc,r+P ∗

scVinc,r) =
|P0|2

2Z
√

kr

∫ 2π

0

eikr(1−cos θ)(1+cos θ)f(θ)+eikr(cos θ−1)(1+cos θ)f∗(θ)dθ

This is a rather complicated integral we begin with the first term, where

∫

(1 + cos θ)eikr(1−cos θ)f(θ)dθ =

∫

(2 + O(θ2))eikr( θ2

2
)f(θ)dθ.

The above is done using the series expansion of 1 − cos θ ≈ θ2

2 − θ4

24 + O(θ6) for θ ≈ 0.

Using the substitution, θ = (kr)−1/2
√

2y,

∫

2eikr( θ2

2
)f(θ)dθ = f(0)

2
√

2√
kr

∫ ∞

−∞
eiy2

dy, (A.7)

where,
∫ ∞
−∞ eiy2

dy = (1 + i)
√

π
2 =

√
πe

iπ
4 . Finally,

∫

(1 + cos θ)eikr(1−cos θ)f(θ)dθ =
f(0)2

√
2πe

iπ
4

√
kr

+ O(
1

(kr)3/2
).

The next term to be investigated,

∫

(1 + cos θ)eikr(cos θ−1)f∗(θ)dθ.

Applying the exact same maneuvers as done for the previous integral to obtain,

∫

(1 + cos θ)eikr(cos θ−1)f∗(θ)dθ =
f∗(0)2

√
2πe

−iπ
4

√
kr

+ O(
1

(kr)3/2
).

Now the entirety of Equation (A.1) can be written.

∫ 2π

0
Re(P ∗

scVsc,r)dθ +

∫ 2π

0
Re(P ∗

incVinc,r)dθ +

∫ 2π

0
Re(P ∗

incVsc,r + P ∗
scVinc,r)dθ,

=
4|P0|2
rωρ

[

∞
∑

n=−∞
|An|2 +

∞
∑

n=−∞
Re(Ane−

inπ
2 )] = 0. (A.8)
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Appendix B

Derivation of optical theorem for section 5.4

Detailed solution for

∫ π

0

∫ 2π

0
(Re(P ∗

scVsc,r)+Re(P ∗
incVinc,r)+Re(P ∗

incVsc,r +P ∗
scVinc,r)) sin θdφdθ = 0. (B.1)

Working with the first term the complex conjugate of the scattered pressure is given by

P ∗
sc = P ∗

0

e−ikr

kr
f∗(θ). (B.2)

The radial scattered velocity is given by,

Vsc,r =
P0

iωρ

eikr

kr
(ik − 1

r
)f(θ). (B.3)

Multiplying the complex conjugate of the scattered pressure and velocity and taking

the real part attains

P ∗
scVsc,r =

|P0|2
iωρ

1

(kr)2
(ik − 1

r
)f(θ)f∗(θ), (B.4)

Re(P ∗
scVsc,r) =

|P0|2|f(θ)|2
ωρkr2

. (B.5)

Taking the integral over θ and φ

∫ π

0

∫ 2π

0
Re(P ∗

scVsc,r) sin θdφdθ =
2π|P0|2
ωρkr2

∫ π

0
|f(θ)|2 sin θdθ. (B.6)

The above integral is done through a variable change where µ = cos(θ), where f(θ) is

given in Equation (5.22).

2π|P0|2
ωρkr2

∫ π

0
|f(θ)|2 sin θdθ =

2π|P0|2|An|2
ωρkr2

∫ 1

−1
|Pn(µ)|2dµ =

4π|P0|2|An|2
ωρkr2(2n + 1)

. (B.7)

Where the last integral was found from the identity,
∫ 1
−1 Pm

n (x)Pm
n′ (x)dx =

2
2n+1

(n+m)!
(n−m)!δnn′ . Next working with the second term of Equation (B.1), for which we
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expect the result to be zero, since the flux of incident waves over a period should be

zero. Starting with

P ∗
inc = P ∗

0 e−ikr cos θ, Vinc,r =
P0 cos θ

Z
eikr cos θ, (B.8)

and multiplying the the two terms together, P ∗
incVinc,r = |P0|2

Z cos θ. Next by taking the

integral over θ and φ we see

∫ π

0

∫ 2π

0
Re(P ∗

incVinc,r) sin θdφdθ = 0. (B.9)

Next we work on the third term from Equation (B.1), where P ∗
incVsc,r = |P0|2

ωρr [1 +

i
kr ]eikr(1−cos θ)f(θ) and P ∗

scVinc,r = |P0|2
ωρr cos θf∗(θ)eikr(cos θ−1). Taking the real parts

and adding the two terms

Re(P ∗

incVsc,r+P ∗

scVinc,r) =
|P0|2
2ωρr

[

(1+
i

kr
+cos θ)f(θ)eikr(1−cos θ)+(1− i

kr
+cos θ)f∗(θ)eikr(cos θ−1)

]

.

Taking OOO( 1
r2 ) ≈ 0,

Re(P ∗

incVsc,r + P ∗

scVinc,r) =
|P0|2
2ωρr

[

(1 + cos θ)f(θ)eikr(1−cos θ) + (1 + cos θ)f∗(θ)eikr(cos θ−1)

]

.

Integrating over θ and φ,
∫ π
0

∫ 2π
0 Re(P ∗

incVsc,r + P ∗
scVinc,r) sin θdφdθ, yields

π|P0|2
ωρr

[ ∫ π

0
(1 + cos θ) sin θf(θ)eikr(1−cos θ)dθ +

∫ π

0
(1 + cos θ) sin θf∗(θ)eikr(cos θ−1)dθ

]

.

Solutions for each integral is done by integration by parts and using the substitution

cos θ = µ, dµ = − sin θ.
∫ π

0

f(θ)(1 + cos θ) sin θeikr(1−cos θ)dθ =

∫ 1

−1

F (µ)(1 + µ)eikr(1−µ)dµ =
2i

kr
F (1) + OOO

[ 1

(kr)2
]

,

where F (1) = f(0). Integrating the next term
∫ π

0

f∗(θ)(1+cos θ) sin θeikr(cos θ−1)dθ =

∫ 1

−1

F ∗(µ)(1+µ)eikr(µ−1)dµ = − 2i

kr
F ∗(1)+OOO

[ 1

(kr)2
]

.

Finally putting everything together the third term of Equation (B.1) yields

∫ π

0

∫ 2π

0
Re(P ∗

incVsc,r + P ∗
scVinc,r) sin θdφdθ =

2πi|P0|2
ωρkr2

[f(0) − f∗(0)]. (B.10)

Putting every term together in Equation (B.1) we have the optical theorem for a three

dimensional problem of a plane wave incident on a sphere.

Im(f(0)) =
∞

∑

n=0

|An|2
2n + 1

. (B.11)
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Appendix C

Materials used for section 7.6

Source of material parameters: mostly from Onda Corporation. Website: ondacorp.com

GASSES

Material ρ
ρH2O

C
CH2O

Acetate, butyl 0.871 1.559

Acetate, ethyl, C4H8O2 0.900 1.719

Acetate, methyl, C3H6O2 0.934 1.602

Acetate, PROPYL 0.891 1.766

ACETONE, (CH3)2CO 0.791 2.009

ACETONITRILE, C2H3N 0.783 1.681

ACETONYL ACETONE, C6H10O2 0.729 1.533

ACETYLENDICHLORIDE, C2H2C12 1.260 1.671

ALCOHOL, BUTYL, C3H9OH 0.810 1.759

ALCOHOL, ETHANOL, C2H5OH 0.790 1.903

ALCOHOL, FURFURYL, C5H4O2 1.135 0.918

ALCOLHOL, ISOPROPYL, 2-PROPANOL 0.786 2.036

ALCOHOL, METHANOL, CH3OH 0.791 2.276

ALCOLHOL, PROPYL (N) C3H7OH 0.804 1.830

ALCOHOL, T-AMYL, C5H9OH 0.810 1.878

ALKAZENE 13, C15H24 0.860 1.462

ANILINE, C6H5NH2 1.022 0.750

ARGON, LIQUID AT 87k 1.430 2.171

BENZENE, C6H6 0.870 1.501

BENZOL 0.878 1.410
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Material ρ
ρH2O

C
CH2O

BENZOL, ETHYL 0.868 1.405

BROMOBENZENE, C6H5Br 1.522 1.057

BROMOFORM, CHBr3 2.890 0.895

t-BUTYL CHLORIDE, C4H9Cl 0.840 2.715

BUTYRATE, ETHYL 0.877 1.825

CARBITOLTM, C6H14O3 0.988 1.040

CARBON DISULPHIDE, CS2 1.260 1.317

CARBON DISULPHIDE CS2, 3GHz 1.221 1.045

CARBON TETRACHLORIDE, CCI4 1.594 1.603

CESIUM 1.880 1.246

CHLORO-BENZENE, C6H5Cl 1.106 1.165

CHLORO-BENZEN, C6H5Cl 1.100 1.178

CHLOROFORM, CHCl3 1.490 1.509

CYCLOHEXANOL, C6H12O 0.962 1.083

CYCLOHEXANONE, C6H10O 0.948 1.146

DIACETYL, C4H6O2 0.990 1.439

1,3 DICHLOROISOBUTANE, C3H18Cl2 1.140 1.291

DIETHYL KETONE 0.813 1.570

DIMETHYL PHTHALATE, C8H10O4 1.200 0.856

DIOXANE 1.033 1.113

ETHANOL AMIDE, C2H7NO 1.018 0.724

ETHYL ETHER, C4H10O 0.713 3.166

d-FENCHONE 0.940 1.337

FOMAMIDE, CH3NO 1.134 0.736

FURFURAL, C5H4O2 1.157 0.901

CARBON TETRACHLORIDE, CCI4 1.594 1.603

CESIUM 1.880 1.246

CHLORODIMETHYL PHTHALATE, C8H10O4 1.200 0.856

DIOXANFLUORINERT, FC-104 1.760 3.764

FLUORINERT, FG-43 1.850 2.760

FLUORO-BENZENE, C6H5F 1.024 1.536

FREON, TF 1.570 2.721
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Material ρ
ρH2O

C
CH2O

GALLIUM 6.090 0.0437

GASOLINE 0.803 1.746

GLYCERIN 1.260 0.480

GLYCOL - 2,3 BUTYLENE 1.019 0.981

GLYCOL - DIETHYLENE C4G10O3 1.116 0.786

GLYCOL - ETHYLENE 1,2-ETHANEDIOL 1.113 0.716

GLYCOL - ETHYLENE PRESTON II 1.108 0.782

GLYCOL - OLOYETHYLENE 200 1.087 0.768

GLYCOL - POLYETHYLENE 400 1.060 0.787

GLYCOL - TETRAETHYLENE C9H18O6 1.120 0.783

GLYCOL, TRIETHYLENE, C6H14O4 1.123 0.752

HELIUM-4, LIQUID AT .4K 0.147 263.058

HELIUM-4, LIQUID AT 2K 0.145 293.159

HELIUM-4 LIQUID AT 4.2K 0.126 519.100

n-HEXANONL, C6H14 0.659 2.732

HONEY, sue Bee orange 1.420 0.374

HYDROGEN LIQUID AT 20K 0.070 22.097

IODO-BENZENE, C6H5I 1.183 1.519

ISOPENTANE, C5H12 0.620 3.590

KERSONE 0.810 1.543

LINALOOL 0.884 1.264

MERCURY AT 25 oC 13.5 0.0772

MESITYLOXIDE, C6H16O 0.850 1.502

METHYLETHYLKETONE 0.805 1.858

METHYL NAPTHALENE, C11H10 1.090 0.881

MONOCHLOROBENZENE, C6H5Cl 1.107 1.227

MORPHOLINE, C3H9NO 1.00 1.056

NEON, LIQUID AT 27K 1.20 1.268

NICOTIN, C10H14N2 1.01 0.977

NITROBENZENE, C6H6NO2 1.20 0.852

NITROGEN, N2, LIQUID AT 77K 0.80 4.215
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Material ρ
ρH2O

C
CH2O

NITROMETHANE, CH3NC2 1.13 1.0958

OIL - BABY 0.821 1.305

OIL - CASTOR C11H10O10 0.968 1.037

OIL - CASTOR AT 20.2C AT 4.224MHz 0.942 1.024

OIL-CORN 0.922 1.115

OIL GRAVITY FUEL AA 0.990 0.997

OIL JOJOBA 1.17 0.884

OIL LINSEED 0.940 1.093

OIL MENERAL LIGHT 0.825 1.280

OIL MINERAL HEAVY 0.843 1.219

OIL OLIVE 0.918 1.143

OIL PARRAFIN 0.835 1.301

OIL PEANUT 0.914 1.162

OIL SAE 20 0.870 0.832

OIL SAE 30 0.880 0.861

OIL-SILICON DOW 200 1 CENTISTOKE 0.818 2.906

OIL-SILICON DOW 200 10 CENTISTOKE 0.940 2.487

OIL-SILICON DOW 200 100 CENTISTOKE 0.968 2.356

OIL-SILICON DOW 200 1000 CENTISTOKE 0.972 2.299

OIL-SILICON DOW 704 1.020 1.082

OIL-SILICON DOW 705 1.150 0.896

OIL-SILICON DOW 710 1.110 1.080

OIL-SAFFLOWER 0.900 1.158

OIL SOYBEAN 0.930 1.152

OIL SPERM 0.880 1.200

OIL SUNFLOWER 0.920 1.132

OIL-TRANSFORMER 0.920 1.232

OIL WINERGREEN (METHYL SALICYLATE) 1.600 0.719

OXYGEN, O2, AT 90K 1.110 2.436

n-PENTANE, C5H12 0.626 3.317

POTASSIUM 0.830 0.797
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Material ρ
ρH2O

C
CH2O

PYRIDINE 0.982 1.122

SODIUM AT 300C 8.810 0.042

SOLVESSO #3 0.877 1.331

SONOTRACH COUPLANT 1.040 0.803

THALLIUM 11.90 0.0701

TRICHORETHYLENE 1.05 1.892

TURPENTINE 0.88 1.580

UNIVIS 800 0.87 1.381

WATER HEAVY,D2O 1.104 1.012

WATER LIQUID 20 oC 1.000 1.000

WATER - SEA 25oC 1.025 0.912

XENON AT 166K 2.860 1.930

XYLENE HEXAFLORIDE, C8H4F6 1.370 2.069

m-Xylol, C8H10 0.864 1.455

GASSES

Air 0.00129 15420.159

Ammonia, NH3 0.000771 16495.780

Argon at 0oC 0.00056 38437.403

Carbon monoxide, CO 0.00125 15338.399

Carbon dioxide, CO2 0.00198 16516.470

Chlorine 0.00321 16059.910

Deuterium 0.00019 14554.250

Ethane, C2H6 0.00136 17027.948

Ethylene, C2H4 0.00126 17299.532

Helium 0.000178 13214.441

Hydrogen at 0oC 0.0000899 14778.614

Hydrogen bromide, HBr 0.0035 15645.714

Hydrogen chloride, HCl 0.00164 15253.203

Hydrogen iodide, Hi 0.00566 15700.291

Hydrogen sulfide, H2S 0.00154 17040.766

Methane, CH4 0.000717 16526.791

Neon at 0oC 0.0009 12861.819
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Material ρ
ρH2O

C
CH2O

Nitric oxide, NO 0.00134 15571.434

Nitrogen, N2 at 0oC 0.00125 15695.429

Nitrous oxide, N2O 0.00198 16017.888

Oxygen, O2 at 0oC 0.00143 15350.306

Sulfur dioxide 0.00293 16494.589

SOLIDS

Aluminum Alloy (7075-T6) 2.710 0.0277

Brass 2.70 0.0188

Bronze, Regular 8.30 0.0175

Bronze, Manganese 8.30 0.0192

Concrete 2.50 0.0435

Copper 8.94 0.0167

Glass 2.60 0.0342

Gold 19.32 0.0211

Iron (Cast) 7.20 0.0157

Iron (Wrought) 7.60 0.0104

Magnesium, Mg 1.74 0.0465

Nickel 8.89 0.00936

Nylon, Polyamide 1.10 0.745

Platinum 21.4 0.0128

Steel 7.85 0.0200

Tin 7.30 0.0462

Titanium 4.51 0.0176

Alumina, Al2O3 3.90 0.00520

Beryllium alloy 2.90 0.00875

Bone, (compact) 2.0 0.127

Brass, (annealed) 8.4 0.0149

Cermets, (Co/WC) 11.5 0.00421

CFRP Laminate (graphite) 1.5 1.336

Copper Alloys 8.3 0.0141

Cork 0.18 63.689

Epoxy thermoset 1.2 0.582
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Material ρ
ρH2O

C
CH2O

GFRP Laminate (glass) 1.8 0.0771

Glass (soda) 2.5 0.0317

Granite 2.6 0.0309

Ice, H2O 0.92 0.220

Lead alloys 11.1 0.108

Nickel alloys 8.5 0.0109

Polyamide (nylon) 1.1 0.597

Polybutadiene elastomer 0.91 1019.022

Polycarbonate 1.2 0.663

Polyester thermoset 1.3 0.582

Polyethylene (HDPE) 0.95 2.558

Polypropylene 0.89 1.989

Polyurethane elastomer 1.2 65.217

Polyvinyl chloride (rigid PVC) 1.4 1.194

Silicon 2.3 0.0186

Silicon Carbide, SiC 2.8 0.00472

Spruce (parallel to grain) 0.6 0.220

Steel high strength 4340 7.8 0.00948

Titanium alloy (6A14V) 4.5 0.0189

Tungsten Carbide (WC) 15.5 0.00378
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Appendix D

Matlab codes

D.1 Reference codes for section 4.3.1

Matlab Code: D.1: Code used in reference to section 4.3.1.

1 g l oba l w n

2 w=5; n=0;

3 rmin=1;

4 rmax=2;

5

6 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−10 1e−10 1e−10 1e−10]) ;

7 [R,M] = ode45 ( @Matrivary polar vary p and K , [ rmin rmax ] , [ 1 0 0 1 ] ,

opt ions ) ;

8 ZM2 = [M( end , 1 ) M( end , 2 ) ;M( end , 3 ) M( end , 4 ) ] ;

9

10 Mb = M( s i z e (M, 1 ) , : ) ;

11 Zb = Mb(1) /Mb(3) ;

12

13 nmax=10000; h=(rmax−rmin ) /nmax ;

14 Mzm = eye (2 ) ;

15 f o r j = 1 :nmax

16

17 r j = rmin+ j ∗h∗( rmax−rmin ) ;

18 p= r j ;

19 K= r j ;

20 c=sq r t (K/p) ; z=p∗c ; k=w/c ;

21

22 Mcheck = [ b e s s e l j (n , k∗(h+r j ) ) b e s s e l y (n , k∗(h+r j ) ) ; ( ( ( h+r j ) ) /(1 i ∗z ) ) ∗ . . .

23 ( . 5 ∗ ( b e s s e l j (n−1,k∗(h+r j ) )−b e s s e l j (n+1,k∗(h+r j ) ) ) ) . . .
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24 ( ( h+r j ) /(1 i ∗z ) ) ∗ ( . 5∗ ( b e s s e l y (n−1,k∗(h+r j ) )−be s s e l y (n+1,k∗(h+r j ) ) ) )

] ∗ . . .

25 inv ( [ b e s s e l j (n , k∗ r j ) b e s s e l y (n , k∗ r j ) ; . . .

26 ( ( r j ) /(1 i ∗z ) ) ∗ ( . 5∗ ( b e s s e l j (n−1,k∗ r j )−b e s s e l j (n+1,k∗ r j ) ) ) . . .

27 ( ( r j ) /(1 i ∗z ) ) ∗ ( . 5∗ ( b e s s e l y (n−1,k∗ r j )−be s s e l y (n+1,k∗ r j ) ) ) ] ) ;

28 Mzm=Mcheck∗Mzm;

29 end

Matlab Code: D.2: Function used for code D.1

1 func t i on dM = Matr ivary po lar vary p and K ( r ,M)

2 g l oba l w n

3

4 p=r ;

5 K=r ;

6 Q = (1 i ∗w/ r ) ∗ [ 0 p ; ( ( ( r ˆ2) /K) − ( ( nˆ2) / ( (wˆ2) ∗p) ) ) 0 ] ;

7 dM = ze ro s (4 , 1 ) ;

8 dM(1) = Q(1 ,2 ) ∗M(3) ; %us ing r i g i d at r=a so Vr( a ) = 0 ;

9 dM(2) = Q(1 ,2 ) ∗M(4) ;

10 dM(3) = Q(2 ,1 ) ∗M(1) + Q(2 ,2 ) ∗M(3) ;

11 dM(4) = Q(2 ,1 ) ∗M(2) + Q(2 ,2 ) ∗M(4) ;

Matlab Code: D.3: Check on MMM using code D.1

1 >>ZM2−Mzm

2 ans =

3 1 .0 e−004 ∗

4

5 −0.0629 0 − 0 .3497 i

6 0 + 0.3497 i 0 .0629

D.2 Reference codes for section 6.2

Matlab Code: D.4: Torrent and Sánchez-Dehesa comparison, reference for section 6.2

1 g l oba l w n Ksub psub

2 w=3; P 0 = 1 ; p0 =1; c0=1;

3 R2 = 1 ; r (1 )=R2 ;
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4 l a y e r s = 400 ;

5 R1 = R2/2 ;

6 dr = (R2−R1) /( l a y e r s ) ;

7 f o r n=1: l a y e r s+1

8 r (n) = R2−(dr ∗(n−1) ) ;

9 i f mod(n , 2 )==1

10 p(n) = ( r (n)+sq r t (2∗ r (n) ∗R1 − R1ˆ2) ) /( r (n)−R1) ;

11 end

12 i f mod(n , 2 )==0

13 p(n) = ( r (n)−R1) /( r (n)+sq r t (2∗ r (n) ∗R1 − R1ˆ2) ) ;

14 end

15 c (n) = ( (R2−R1) /R2) ∗ ( ( r (n) ) /( r (n)−R1) ) ;

16 end

17 p( l a y e r s +1)=10000; %%% MOST inner c y l i nd e r p r op e r t i e s .

18 c ( l a y e r s +1)=10000; %%% MOST inner c y l i nd e r p r op e r t i e s .

19 k0=w/c0 ; z0 = p0∗ c0 ; ka=k0∗ r (1 ) k = w./ c ;

20 K = p .∗ c . ˆ 2 ; z=p .∗ c ;

21 [ x , y ] = meshgrid ( [ − 4 : . 0 5 : 4 ] ) ;

22 [ theta , rad ] = ca r t2po l (x , y ) ;

23 s i z=5+ka

24 cnt = 1 ;

25 f o r n = 0 : s i z

26 %GLOBAL MATRIX

27 Hk0r1 = be s s e l h (n , 1 , k0∗ r (1 ) ) ;

28 Jk1r1 = b e s s e l j (n , k (1 ) ∗ r (1 ) ) ;

29 Yk1r1 = be s s e l y (n , k (1 ) ∗ r (1 ) ) ;

30 GM( 1 , : ) = [ Hk0r1 −Jk1r1 −Yk1r1 ] ;

31 dHk0r1=.5∗(( b e s s e l h (n−1 ,1 , k0∗ r (1 ) )−be s s e l h (n+1 ,1 , k0∗ r (1 ) ) ) ) ;

32 dJk1r1 =.5∗( b e s s e l j (n−1,k (1 ) ∗ r (1 ) )−b e s s e l j (n+1,k (1 ) ∗ r (1 ) ) ) ;

33 dYk1r1=.5∗( b e s s e l y (n−1,k (1 ) ∗ r (1 ) )−be s s e l y (n+1,k (1 ) ∗ r (1 ) ) ) ;

34 GM( 2 , : ) =[−(z0ˆ−1)∗dHk0r1 ( z (1 ) ˆ−1)∗( dJk1r1 ) ( z (1 ) ˆ−1)∗( dYk1r1 ) ] ;

35 f o r m = 1 : l aye r s −1

36 Jkrn = b e s s e l j (n , k (m) ∗ r (m+1) ) ;

37 Ykrn = be s s e l y (n , k (m) ∗ r (m+1) ) ;

38 Jkrn1 = −b e s s e l j (n , k (m+1)∗ r (m+1) ) ;

39 Ykrn1 = −be s s e l y (n , k (m+1)∗ r (m+1) ) ;

40
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41 dJkrn =.5∗( b e s s e l j (n−1,k (m) ∗ r (m+1) )−b e s s e l j (n+1,k (m) ∗ r (m+1) ) ) ;

42 dYkrn=.5∗( b e s s e l y (n−1,k (m) ∗ r (m+1) )−be s s e l y (n+1,k (m) ∗ r (m+1) ) ) ;

43 dJkrn1=−.5∗( b e s s e l j (n−1,k (m+1)∗ r (m+1) )−b e s s e l j (n+1,k (m+1)∗ r (m

+1) ) ) ;

44 dYkrn1=−.5∗( b e s s e l y (n−1,k (m+1)∗ r (m+1) )−be s s e l y (n+1,k (m+1)∗ r (m

+1) ) ) ;

45 b = 2∗m;

46 GM(b+1,b : b+3)=[Jkrn Ykrn Jkrn1 Ykrn1 ] ;

47 GM(b+2,b : b+3)=[( z (m)ˆ−1)∗dJkrn ( z (m)ˆ−1)∗dYkrn ( z (m+1)ˆ−1)∗

dJkrn1 ( z (m+1)ˆ−1)∗dYkrn1 ] ;

48 end

49 m=l ay e r s ;

50 Jkrn = b e s s e l j (n , k (m) ∗ r (m+1) ) ;

51 Ykrn = be s s e l y (n , k (m) ∗ r (m+1) ) ;

52 Jkrn1 = −b e s s e l j (n , k (m+1)∗ r (m+1) ) ;

53 Ykrn1 = −be s s e l y (n , k (m+1)∗ r (m+1) ) ;

54 dJkrn =.5∗( b e s s e l j (n−1,k (m) ∗ r (m+1) )−b e s s e l j (n+1,k (m) ∗ r (m+1) ) ) ;

55 dYkrn=.5∗( b e s s e l y (n−1,k (m) ∗ r (m+1) )−be s s e l y (n+1,k (m) ∗ r (m+1) ) ) ;

56 dJkrn1 =.5∗( b e s s e l j (n−1,k (m+1)∗ r (m+1) )−b e s s e l j (n+1,k (m+1)∗ r (m

+1) ) ) ;

57 dYkrn1=.5∗( b e s s e l y (n−1,k (m+1)∗ r (m+1) )−be s s e l y (n+1,k (m+1)∗ r (m

+1) ) ) ;

58 b = 2∗m;

59 GM(b+1,b : b+2)=[Jkrn Ykrn Jkrn1 ] ;

60 GM(b+2,b : b+2)=[−(z (m)ˆ−1)∗dJkrn −(z (m)ˆ−1)∗dYkrn ( z (m+1)ˆ−1)∗

dJkrn1 ] ;

61 vec = ze ro s (2∗ ( l a y e r s +1) ,1 ) ;

62 vec (1 ) = −P 0∗ b e s s e l j (n , k0∗ r (1 ) ) ;

63 vec (2 ) = ( z0ˆ−1)∗P 0 ∗ . 5∗ ( b e s s e l j (n−1,k0∗ r (1 ) )−b e s s e l j (n+1,k0∗ r

(1 ) ) ) ;

64 Coef=GM\vec ;

65 An( cnt )=Coef (1 ) ;

66 i f n==0

67 Pout ( : , : , cnt ) = (An( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

68 e l s e

69 Pout ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ ( (An( cnt ) ∗ be s s e l h (n

, 1 , k0 .∗ rad ) ) ) ;
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70 end

71 GMs{ cnt}=GM; Coefs { cnt}=Coef ;

72 c l e a r GM

73

74 %MATRICANT

75 H1k0sumr = be s s e l h (n , 1 , k0∗R2) ;

76 dH1k0sumr = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗R2)−be s s e l h (n+1 ,1 , k0∗R2) ) ;

77 Jk1r1 = b e s s e l j (n , k ( end ) ∗R1) ;

78 Jk0sumr = b e s s e l j (n , k0∗R2) ;

79 dJk0sumr = . 5∗ ( b e s s e l j (n−1,k0∗R2)−b e s s e l j (n+1,k0∗R2) ) ;

80 dJk1r1 = . 5∗ ( b e s s e l j (n−1,k ( end ) ∗R1)−b e s s e l j (n+1,k ( end ) ∗R1) ) ;

81 M = eye (2 ) ;

82 f o r jk = 1 : l a y e r s

83 psub=p ( ( l a y e r s +1)−jk ) ;

84 Ksub=K(( l a y e r s +1)−jk ) ;

85 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−5 1e−5 1e−5 1e−5]) ;

86 [ R12 ,M1] = ode45 ( @Matrivary polar1 , [ r ( ( l a y e r s +1)−jk+1) r ( ( l a y e r s +1)−jk ) ] ,

[ 1 0 0 1 ] , opt ions ) ;

87 ZM1 = [M1( end , 1 ) M1( end , 2 ) ;M1( end , 3 ) M1( end , 4 ) ] ;

88 M = ZM1∗M;

89 end

90 z in = [ Jk1r1 ; ( r ( end ) /(1 i ∗z ( end ) ) ) ∗dJk1r1 ] ;

91 Zb = M∗ z in ;

92 Zb = R2∗Zb(1) /Zb (2) ;

93 Anm( cnt ) = P 0 ∗( Jk0sumr − (Zb/(1 i ∗ z0 ) ) ∗dJk0sumr ) / ( (Zb/(1 i ∗ z0 ) ) ∗dH1k0sumr

− H1k0sumr ) ;

94 i f n==0

95 Poutm ( : , : , cnt ) = (Anm( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

96 e l s e

97 Poutm ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ ( (Anm( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ) ;

98 end

99 cnt=cnt+1;

100 end

101 Pot = sum( ( Pout ) ,3 ) ;

102 Pot=Pot + P 0∗exp (1 i .∗ k0 .∗ rad .∗ cos ( theta ) ) ;

103 Potm = sum( (Poutm) ,3 ) ;

104 Potm=Potm + P 0∗exp (1 i .∗ k0 .∗ rad .∗ cos ( theta ) ) ;
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105 [ row ot , c o l o t ] = f i nd (x.ˆ2+y .ˆ2 <= (R2ˆ2) ) ;

106 f o r j = 1 : s i z e ( row ot , 1 )

107 Pot ( row ot ( j ) , c o l o t ( j ) ) =0;

108 Potm( row ot ( j ) , c o l o t ( j ) ) =0;

109 end

110 hold on ;

111 j=sq r t (−2) ;

112 df =360;

113 f o r i =1: df

114 c i r c l e ( i )=R2∗exp (2∗ j ∗ i ∗ pi / df ) ;

115 end

116 maxed=abs (max(max ( [max(max(Pot ) ) ,max(max(Potm) ) ] ) ) ) ;

117 mini=(min (min ( [ min (min (Pot ) ) ,min (min (Potm) ) ] ) ) ) ;

118 mini=mini −1;

119 subplot ( 2 , 1 , 1 ) ;

120 contour f (x , y , r e a l ( Pot ) ) ;

121 cax i s manual

122 cax i s ( [ mini maxed ] ) ;

123 co l o rba r ;

124 hold on

125 p lo t ( c i r c l e , ’ r ’ , ’ LineWidth ’ , 4 ) ; x l ab e l ( ’X ’ ) ; y l ab e l ( ’Y ’ ) ; z l a b e l ( ’Z ’ ) ;

ax i s ( ’ equal ’ )

126 subplot ( 2 , 1 , 2 )

127 contour f (x , y , r e a l (Potm) ) ;

128 cax i s manual

129 cax i s ( [ mini maxed ] ) ;

130 co l o rba r ;

131 hold on

132 p lo t ( c i r c l e , ’ r ’ , ’ LineWidth ’ , 4 ) ; x l ab e l ( ’X ’ ) ; y l ab e l ( ’Y ’ ) ; z l a b e l ( ’Z ’ ) ;

ax i s ( ’ equal ’ )

Matlab Code: D.5: Function used for code D.4

1 func t i on dM1 = Matr ivary po lar1 (R,M1)

2 g l oba l w n Ksub psub

3 Q = (1 i ∗w/R) ∗ [ 0 psub ; ( ( (Rˆ2) /Ksub)−((nˆ2) / ( (wˆ2) ∗psub ) ) ) 0 ] ;

4 dM1 = ze ro s (4 , 1 ) ;

5 dM1(1) = Q(1 ,2 ) ∗M1(3) ;
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6 dM1(2) = Q(1 ,2 ) ∗M1(4) ;

7 dM1(3) = Q(2 ,1 ) ∗M1(1) ;

8 dM1(4) = Q(2 ,1 ) ∗M1(2) ;

D.3 Reference codes for section 7.2.2

Matlab Code: D.6: Code used in reference to section 7.2.2 to construct figure 7.1.

1 g l oba l w n C 1 pr1

2 w=10;

3 theta = [ 0 : . 0 1 : 2∗ pi ] ;

4 p2=9999; %dens i ty o f most inner c y l i nd e r

5 c2=9999; %speed o f sound most inner c y l i nd e r

6 r2 =.5 ; %inner most c y l i nd e r rad iu s

7 z2=p2∗ c2 ;

8 pr1=20;%outer c y l i nd e r C ∗ = pr

9 C 1=pr1 ;

10 r1=1; %outer rad iu s o f surrounding cy l i nd e r

11 p0=1; %outer medium surrounding conc en t r i c c y l i n d e r s .

12 c0=1;

13 z0=p0∗ c0 ;

14 P 0=1; %magnitude o f i n c i d en t wave

15 s i z =40; %maximum number o f n (Code has been opt imized to stop when b e s s e l j

(n , k0∗ r1 )<1e−4)

16 cntn=1;

17 f o r n=0: s i z

18 k0=w/c0 ; k1=w∗ s q r t (C 1∗pr1 ) ; k2 = w/c2 ;

19 zr =1;

20 N=n∗pr1 ;

21 i f abs ( b e s s e l j (n , k0∗ r1 ) )>1e−3

22 H1k0r1 = be s s e l h (n , 1 , k0∗ r1 ) ;

23 H1k1r1 = be s s e l h (n , 1 , k1∗ r1 ) ;

24 H1k1r2 = be s s e l h (n , 1 , k1∗ r2 ) ;

25 H1k1r1N = be s s e l h (N, 1 , k1∗ r1 ) ;

26 dH1k0r1 = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗ r1 )−be s s e l h (n+1 ,1 , k0∗ r1 ) ) ;

27 dH1k0r2 = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗ r2 )−be s s e l h (n+1 ,1 , k0∗ r2 ) ) ;

28 dH1k1r1 = . 5∗ ( b e s s e l h (n−1 ,1 , k1∗ r1 )−be s s e l h (n+1 ,1 , k1∗ r1 ) ) ;
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29 dH1k1r2 = . 5∗ ( b e s s e l h (n−1 ,1 , k1∗ r2 )−be s s e l h (n+1 ,1 , k1∗ r2 ) ) ;

30 dH1k1r1N=.5∗( b e s s e l h (N−1 ,1 , k1∗ r1 )−be s s e l h (N+1 ,1 , k1∗ r1 ) ) ;

31 dH1k1r2N=.5∗( b e s s e l h (N−1 ,1 , k1∗ r2 )−be s s e l h (N+1 ,1 , k1∗ r2 ) ) ;

32 Jk2r2 = b e s s e l j (n , k2∗ r2 ) ;

33 Jk1r2 = b e s s e l j (n , k1∗ r2 ) ;

34 Jk1r2N = b e s s e l j (N, k1∗ r2 ) ;

35 Jk1r1 = b e s s e l j (n , k1∗ r1 ) ;

36 Jk0r1 = b e s s e l j (n , k0∗ r1 ) ;

37 Jk1r1N = b e s s e l j (N, k1∗ r1 ) ;

38 dJk0r1 = . 5∗ ( b e s s e l j (n−1,k0∗ r1 )−b e s s e l j (n+1,k0∗ r1 ) ) ;

39 dJk0r2 = . 5∗ ( b e s s e l j (n−1,k0∗ r2 )−b e s s e l j (n+1,k0∗ r2 ) ) ;

40 dJk1r1 = . 5∗ ( b e s s e l j (n−1,k1∗ r1 )−b e s s e l j (n+1,k1∗ r1 ) ) ;

41 dJk1r2 = . 5∗ ( b e s s e l j (n−1,k1∗ r2 )−b e s s e l j (n+1,k1∗ r2 ) ) ;

42 dJk2r2 = . 5∗ ( b e s s e l j (n−1,k2∗ r2 ) − b e s s e l j (n+1,k2∗ r2 ) ) ;

43 dJk1r1N = .5∗ ( b e s s e l j (N−1,k1∗ r1 ) − b e s s e l j (N+1,k1∗ r1 ) ) ;

44 dJk1r2N = .5∗ ( b e s s e l j (N−1,k1∗ r2 ) − b e s s e l j (N+1,k1∗ r2 ) ) ;

45 Yk1r1 =be s s e l y (n , k1∗ r1 ) ;

46 Yk1r2 =be s s e l y (n , k1∗ r2 ) ;

47 Yk1r2N =be s s e l y (N, k1∗ r2 ) ;

48 Yk1r1N =be s s e l y (N, k1∗ r1 ) ;

49 dYk1r1 = . 5∗ ( b e s s e l y (n−1,k1∗ r1 )−be s s e l y (n+1,k1∗ r1 ) ) ;

50 dYk1r2 = . 5∗ ( b e s s e l y (n−1,k1∗ r2 )−be s s e l y (n+1,k1∗ r2 ) ) ;

51 dYk1r1N = .5∗ ( b e s s e l y (N−1,k1∗ r1 )−be s s e l y (N+1,k1∗ r1 ) ) ;

52 dYk1r2N = .5∗ ( b e s s e l y (N−1,k1∗ r2 )−be s s e l y (N+1,k1∗ r2 ) ) ;

53 A r ( cntn ) = −((1 i ) ˆn) ∗ dJk0r2/dH1k0r2 ;

54

55 %Global Matrix 4X4

56 AM1my =[−H1k0r1 Jk1r1N Yk1r1N 0 ; . . .

57 (−1/z0 ) ∗dH1k0r1 (1/ zr ) ∗dJk1r1N (1/ zr ) ∗dYk1r1N 0 ; . . .

58 0 Jk1r2N Yk1r2N −Jk2r2 ; . . .

59 0 (1/ zr ) ∗dJk1r2N (1/ zr ) ∗dYk1r2N (−1/z2 ) ∗dJk2r2 ] ;

60 AM2my =[P 0∗Jk0r1 ; ( 1 / z0 ) ∗P 0∗dJk0r1 ; 0 ; 0 ] ;

61 Bmy = AM1my\AM2my;

62 An( cntn ) = Bmy(1) ;

63 C1n = Bmy(2) ;

64 D1n = Bmy(3) ;

65 C2n = Bmy(4) ;
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66

67 %Matricant s o l u t i o n

68 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−5 1e−5 1e−5 1e−5]) ;

69 [R1 ,M1] = ode45 ( @Matrivary polar1 , [ r2 r1 ] , [ 1 0 0 1 ] , opt ions ) ;

70 ZM1 = [M1( end , 1 ) M1( end , 2 ) ;M1( end , 3 ) M1( end , 4 ) ] ;

71 z in = [ Jk2r2 ; ( r2 /(1 i ∗ z2 ) ) ∗dJk2r2 ] ;

72 Zb = ZM1∗ z in ;

73 Zb = r1 ∗Zb(1) /Zb (2) ;

74 Anm( cntn ) = P 0 ∗( Jk0r1 − (Zb/(1 i ∗ z0 ) ) ∗dJk0r1 ) / ( (Zb/(1 i ∗ z0 ) ) ∗dH1k0r1 −

H1k0r1 ) ;

75

76 i f n==0

77 f tA r ( 1 : s i z e ( theta , 1 ) , 1 : s i z e ( theta , 2 ) , cntn )= exp(−1 i ∗ pi /4) ∗ s q r t (2/ p i ) . ∗ (

A r ( cntn ) ) ;

78 ftAn ( 1 : s i z e ( theta , 1 ) , 1 : s i z e ( theta , 2 ) , cntn )= exp(−1 i ∗ pi /4) ∗ s q r t (2/ p i ) . ∗ (An(

cntn ) ) ;

79 e l s e

80 f tA r ( 1 : s i z e ( theta , 1 ) , 1 : s i z e ( theta , 2 ) , cntn ) = 2∗ exp(−1 i ∗n∗ pi /2) ∗exp(−1 i ∗ pi

/4) ∗ s q r t (2/ p i ) . ∗ ( A r ( cntn ) ) .∗ cos (n .∗ theta ) ;

81 ftAn ( 1 : s i z e ( theta , 1 ) , 1 : s i z e ( theta , 2 ) , cntn ) = 2∗ exp(−1 i ∗n∗ pi /2) ∗exp(−1 i ∗ pi

/4) ∗ s q r t (2/ p i ) . ∗ (An( cntn ) ) .∗ cos (n .∗ theta ) ;

82 end

83 cntn=cntn+1;

84 end

85 end

86 ftA rsum = sum( ftA r , 3 ) ;

87 subplot ( 2 , 1 , 1 )

88 po la r ( theta , abs ( ftA rsum ( : , : , 1 ) ) . ˆ 2 )

89 ftAnsum = sum( ftAn , 3 ) ;

90 subplot ( 2 , 1 , 2 )

91 po la r ( theta , abs ( ftAnsum ( : , : , 1 ) . ˆ 2 ) )

92 sum A r = sum( abs ( A r ) . ˆ 2 )

93 sum Anm=sum( abs (Anm) . ˆ 2 )

94 sum An =sum( abs (An) . ˆ 2 )

Matlab Code: D.7: Function used for code D.6

1 func t i on dM1 = Matr ivary po lar1 ( r ,M1)
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2 g l oba l w n C 1 pr1

3 Q = (1 i ∗w/ r ) ∗ [ 0 pr1 ; ( ( ( r ˆ2) ∗C 1 )−((nˆ2) / ( (wˆ2) ∗( pr1 ˆ(−1) ) ) ) ) 0 ] ;

4 dM1 = ze ro s (4 , 1 ) ;

5 dM1(1) = Q(1 ,2 ) ∗M1(3) ;

6 dM1(2) = Q(1 ,2 ) ∗M1(4) ;

7 dM1(3) = Q(2 ,1 ) ∗M1(1) ;

8 dM1(4) = Q(2 ,1 ) ∗M1(2) ;

D.4 Reference codes for chapter 7

Matlab Code: D.8: Code used in reference to section 7.5.1 to construct figures from

chapter 7.

1 c l e a r ; c l c ; c l f ;

2 t i c

3 g l oba l w n Ksub psub lam mu rvs

4 r e so = 500 ;

5 r =[100 1 2/100 ] ; r (3 )=2/r (1 ) ;

6 S=[1 ; 10 ; . 0 1 ] ;

7 p=r ;

8 C = S ./ r ’ ;

9 r r = [ ( r (2 )+r (3 ) ) /(1+r (2 ) ∗ r (3 ) ) ( r (3 )+r (1 ) ) /(1+r (3 ) ∗ r (1 ) ) ( r (1 )+r (2 ) ) /(1+

r (1 ) ∗ r (2 ) ) ] ;

10 M = inv ( [ ones (1 , 3 ) ; r ; 1 . / r ] ) ;

11 eb = M( : , 1 ) ; rb = M( : , 2 ) ; rb1 = M( : , 3 ) ;

12 a l = C’∗ eb ; b1 = C’∗ rb ; b2 = C’∗ rb1 ; b = b1+b2 ;

13 lam = S(1) ∗(1− r (2 ) )∗(1− r (3 ) ) / ( r (1 )−r (2 ) ) /( r (1 )−r (3 ) ) . . .

14 +S (2) ∗(1− r (3 ) )∗(1− r (1 ) ) / ( r (2 )−r (3 ) ) /( r (2 )−r (1 ) ) . . .

15 +S (3) ∗(1− r (1 ) )∗(1− r (2 ) ) / ( r (3 )−r (1 ) ) /( r (3 )−r (2 ) ) ;

16 mu = ( S (1) ∗( r (2 )ˆ2−r (3 ) ˆ2) / r r (1 ) + S (2) ∗( r (3 )ˆ2−r (1 ) ˆ2) / r r (2 ) +S (3) ∗( r (1 )

ˆ2−r (2 ) ˆ2) / r r (3 ) ) . . .

17 / ( S (1 ) ∗( r (2 )ˆ2−r (3 ) ˆ2) + S (2) ∗( r (3 )ˆ2−r (1 ) ˆ2) +S (3) ∗( r (1 )ˆ2−r (2 ) ˆ2) ) ;

18 phi r2 = r r (2 ) /( r (1 )ˆ2−r (3 ) ˆ2) ∗ [ r ( 1 ) ∗(1− r (3 ) ˆ2) ; 0 ; r (3 ) ∗( r (1 ) ˆ2−1) ] ;

19 R0 = ( ( lam−1)∗(1/ r r (2 )−mu) /(1−1/ r r (2 ) ) ) ˆ( 1/(2∗(1−mu) ) ) + eps ;

20 r0 = R0/ sq r t ( lam ∗(1/ r r (2 )−mu)/(1−mu) ) + eps ;

21 r0a = 1−0.5/S (2 ) ; R0a = sq r t ( S (3 )+S (1) / r (1 ) ˆ2) ;

22 r0 , ( r0a−r0 ) , R0 , R0a/R0
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23 rbar = (1−R0ˆ2 + ( lam−1)/mu∗(1−R0ˆ(2∗mu) ) ) /(1− r0 ˆ2 ) /lam ;

24 rbara = (1−R0ˆ(2∗mu) ) /mu;

25 mu2 = 1+ ( r (1 )−1)∗(1− r (3 ) ) ∗( r (1 )−r (3 ) ) ∗S (2) / ( (1− r (3 ) ˆ2) ∗S (1)+(r (1 ) ˆ2 −1)

∗S (3) −(r (1 ) ˆ2 −r (3 ) ˆ2) ∗S (2) ) ;

26 R0r0= ( (1− r (3 ) ˆ2) ∗S (1)+(r (1 ) ˆ2 −1)∗S (3) ) / ( r (1 ) ˆ2 −r (3 ) ˆ2) ;

27 R02 = ( ( S (2 )−1)/( S (2 ) /R0r0 −1) ) ˆ( 1/2/(1−mu) ) ;

28 r02 = R02/ sq r t ( R0r0 ) ;

29 Rv = l i n s p a c e (1 ,R0 , r e so ) ;

30 rv = sq r t ( (Rv.ˆ2 + ( lam−1)∗Rv.ˆ (2∗mu) ) /lam ) ;

31 rrv = a l . / ( (Rv. / rv ) . ˆ2 − b) ;

32 phi1 = eb∗ ones ( s i z e ( r rv ) )+ ( rb+rb1 ) ∗ r rv ;

33 phi1=phi1 ( : , 1 : s i z e ( phi1 , 2 ) −1) ;

34 phi111 = phi1 ( 1 , : ) ;

35 phi222 = phi1 ( 2 , : ) ;

36 phi333 = phi1 ( 3 , : ) ;

37 r = rv ;

38 rv s s=l i n s p a c e (1 , r0 , r e so ) ;

39 f o r i =1: r e so

40 rvs=rv s s ( i ) ;

41 x00 = 1 . 5 ; % Make a s t a r t i n g guess at the s o l u t i o n

42 opt ions=opt imset ( ’TolFun ’ ,1 e−12, ’ MaxIter ’ ,1000) ; % Option to d i sp l ay

output

43 [ r fv , f v a l ] = f z e r o ( @asdf , [ 0 1 . 1 ] ) ; % Cal l opt imize r

44 r f v s ( i )=r f v ;

45 f v a l s ( i )=f v a l ;

46 end

47 p lo t ( rvss , r f v s , rv ,Rv) ; l egend ( ’ R f so lv s ’ , ’R ’ )

48 Rv=r f v s ;

49 rv=rv s s ;

50 r=rv ;

51 rrv = a l . / ( ( r f v s . / rv s s ) . ˆ2 − b) ;

52 phi = eb∗ ones ( s i z e ( r rv ) )+ ( rb+rb1 ) ∗ r rv ;

53 phi=phi ( : , 1 : s i z e ( phi , 2 ) ) ;

54 phi11 = phi ( 1 , : ) ;

55 phi22 = phi ( 2 , : ) ;

56 phi33 = phi ( 3 , : ) ;

57 [ x , y ] = meshgrid ( [ − 4 : . 0 5 : 4 ] ) ;
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58 [ theta , rad ] = ca r t2po l (x , y ) ;

59 p0=1; %%MOST OUTER PROPERTIES BACKGROUND

60 c0=1;

61 w=3/r ( end ) ;

62 P 0=1;

63 R2 = 1 ;

64 R1 = r ( end )

65 fend=Rv( end )

66 pin = 10000;%%% MOST inner c y l i nd e r p r op e r t i e s .

67 c in =10000;

68 k0=w/c0 ;

69 z0 = p0∗ c0 ;

70 ka=k0∗R1

71 s i z=5+ka ;

72 l a y e r s = s i z e ( phi11 , 2 )

73 rz=r ;

74 r (1 )=R2 ;

75 rho (1 ) = p (1) ;

76 c (1 ) = sq r t (S (1 ) ˆ−1) ;

77 cnt=2;

78 f o r n=1: l aye r s −1

79 drz (n)=pi ∗ ( ( rz (n) ˆ2)−rz (n+1)ˆ2) ;

80 r ( cnt ) = sq r t ( r ( cnt−1)ˆ2 −(drz (n) ∗phi11 (n) / p i ) ) ;

81 rho ( cnt ) = p (2) ;

82 c ( cnt ) = sq r t (S (2 ) ˆ−1) ;

83 r ( cnt+1) = sq r t ( r ( cnt ) ˆ2 −(drz (n) ∗phi22 (n) / p i ) ) ;

84 rho ( cnt+1) = p (3) ;

85 c ( cnt+1) = sq r t (S (3 ) ˆ−1) ;

86 r ( cnt+2) = sq r t ( r ( cnt+1)ˆ2 −(drz (n) ∗phi33 (n) / p i ) ) ;

87 rho ( cnt+2) = p (1) ;

88 c ( cnt+2) = sq r t (S (1 ) ˆ−1) ;

89 cnt=cnt+3;

90 end

91 rho ( end )=pin ; %%% MOST inner c y l i nd e r p r op e r t i e s .

92 c ( end )=c in ;

93 k = w./ c ;

94 K = rho .∗ c . ˆ 2 ;
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95 z=rho .∗ c ;

96 cnt = 1 ;

97 f o r n = 0 : s i z

98 %GLOBAL MATRIX

99 Hk0r1 = be s s e l h (n , 1 , k0∗ r (1 ) ) ;

100 Jk1r1 = b e s s e l j (n , k (1 ) ∗ r (1 ) ) ;

101 Yk1r1 = be s s e l y (n , k (1 ) ∗ r (1 ) ) ;

102 GM( 1 , : ) = [ Hk0r1 −Jk1r1 −Yk1r1 ] ;

103 dHk0r1 = . 5 ∗ ( ( b e s s e l h (n−1 ,1 , k0∗ r (1 ) )−be s s e l h (n+1 ,1 , k0∗ r (1 ) ) ) ) ;

104 dJk1r1 = . 5∗ ( b e s s e l j (n−1,k (1 ) ∗ r (1 ) )−b e s s e l j (n+1,k (1 ) ∗ r (1 ) ) ) ;

105 dYk1r1 = . 5∗ ( b e s s e l y (n−1,k (1 ) ∗ r (1 ) )−be s s e l y (n+1,k (1 ) ∗ r (1 ) ) ) ;

106 GM( 2 , : ) = [−( z0ˆ−1)∗dHk0r1 ( z (1 ) ˆ−1)∗( dJk1r1 ) ( z (1 ) ˆ−1)∗( dYk1r1 ) ] ;

107 f o r m = 1 : s i z e ( r , 2 )−2

108 Jkrn = b e s s e l j (n , k (m) ∗ r (m+1) ) ;

109 Ykrn = be s s e l y (n , k (m) ∗ r (m+1) ) ;

110 Jkrn1 = −b e s s e l j (n , k (m+1)∗ r (m+1) ) ;

111 Ykrn1 = −be s s e l y (n , k (m+1)∗ r (m+1) ) ;

112 dJkrn = . 5∗ ( b e s s e l j (n−1,k (m) ∗ r (m+1) )−b e s s e l j (n+1,k (m) ∗ r (m+1) ) )

;

113 dYkrn = . 5∗ ( b e s s e l y (n−1,k (m) ∗ r (m+1) )−be s s e l y (n+1,k (m) ∗ r (m+1) ) )

;

114 dJkrn1 = −.5∗( b e s s e l j (n−1,k (m+1)∗ r (m+1) )−b e s s e l j (n+1,k (m+1)∗ r (

m+1) ) ) ;

115 dYkrn1 = −.5∗( b e s s e l y (n−1,k (m+1)∗ r (m+1) )−be s s e l y (n+1,k (m+1)∗ r (

m+1) ) ) ;

116 b = 2∗m;

117 GM(b+1,b : b+3)=[Jkrn Ykrn Jkrn1 Ykrn1 ] ;

118 GM(b+2,b : b+3)=[( z (m)ˆ−1)∗dJkrn ( z (m)ˆ−1)∗dYkrn ( z (m+1)ˆ−1)∗

dJkrn1 ( z (m+1)ˆ−1)∗dYkrn1 ] ;

119 end

120 m=s i z e ( r , 2 ) −1;

121 Jkrn = b e s s e l j (n , k (m) ∗ r (m+1) ) ;

122 Ykrn = be s s e l y (n , k (m) ∗ r (m+1) ) ;

123 Jkrn1 = −b e s s e l j (n , k (m+1)∗ r (m+1) ) ;

124 Ykrn1 = −be s s e l y (n , k (m+1)∗ r (m+1) ) ;

125 dJkrn = . 5∗ ( b e s s e l j (n−1,k (m) ∗ r (m+1) )−b e s s e l j (n+1,k (m) ∗ r (m+1) ) )

;
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126 dYkrn = . 5∗ ( b e s s e l y (n−1,k (m) ∗ r (m+1) )−be s s e l y (n+1,k (m) ∗ r (m+1) ) )

;

127 dJkrn1 = . 5∗ ( b e s s e l j (n−1,k (m+1)∗ r (m+1) )−b e s s e l j (n+1,k (m+1)∗ r (m

+1) ) ) ;

128 dYkrn1 = . 5∗ ( b e s s e l y (n−1,k (m+1)∗ r (m+1) )−be s s e l y (n+1,k (m+1)∗ r (m

+1) ) ) ;

129 b = 2∗m;

130 GM(b+1,b : b+2)=[Jkrn Ykrn Jkrn1 ] ;

131 GM(b+2,b : b+2)=[−(z (m)ˆ−1)∗dJkrn −(z (m)ˆ−1)∗dYkrn ( z (m+1)ˆ−1)∗

dJkrn1 ] ;

132 vec = ze ro s (2∗ ( s i z e ( r , 2 ) ) , 1 ) ;

133 vec (1 ) = −P 0∗ b e s s e l j (n , k0∗ r (1 ) ) ;

134 vec (2 ) = ( z0ˆ−1)∗P 0 ∗ . 5∗ ( b e s s e l j (n−1,k0∗ r (1 ) )−b e s s e l j (n+1,k0∗ r

(1 ) ) ) ;

135 Coef=GM\vec ;

136 Angm( cnt )=Coef (1 ) ;

137 i f n==0

138 Pout ( : , : , cnt ) = (Angm( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

139 e l s e

140 Pout ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ ( (Angm( cnt ) ∗ be s s e l h

(n , 1 , k0 .∗ rad ) ) ) ;

141 end

142 GMs{ cnt}=GM;

143 Coefs { cnt}=Coef ;

144 c l e a r GM

145

146 %MATRICANT

147 H1k0sumr = be s s e l h (n , 1 , k0∗R2) ;

148 dH1k0sumr = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗R2)−be s s e l h (n+1 ,1 , k0∗R2) ) ;

149 Jk1r1 = b e s s e l j (n , k ( end ) ∗R1) ;

150 Jk0sumr = b e s s e l j (n , k0∗R2) ;

151 dJk0sumr = . 5∗ ( b e s s e l j (n−1,k0∗R2)−b e s s e l j (n+1,k0∗R2) ) ;

152 dJk1r1 = . 5∗ ( b e s s e l j (n−1,k ( end ) ∗R1)−b e s s e l j (n+1,k ( end ) ∗R1) ) ;

153 M = eye (2 ) ;

154 f o r jk = 1 : s i z e ( r , 2 )−1

155 psub=rho ( ( end )−jk ) ;

156 Ksub=K(( end )−jk ) ;
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157 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−5 1e−5 1e−5 1e−5]) ;

158 [ R12 ,M1] = ode45 ( @Matrivary polar1 , [ r ( ( end )−jk+1) r ( ( end )−jk ) ] , [ 1 0 0

1 ] , opt ions ) ;

159 ZM1 = [M1( end , 1 ) M1( end , 2 ) ;M1( end , 3 ) M1( end , 4 ) ] ;

160 M = ZM1∗M;

161 end

162 z in = [ Jk1r1 ; ( r ( end ) /(1 i ∗z ( end ) ) ) ∗dJk1r1 ] ;

163 Zb = M∗ z in ;

164 Zb = R2∗Zb(1) /Zb (2) ;

165 Anm( cnt ) = P 0 ∗( Jk0sumr − (Zb/(1 i ∗ z0 ) ) ∗dJk0sumr ) / ( (Zb/(1 i ∗ z0 ) ) ∗dH1k0sumr

− H1k0sumr ) ;

166 i f n==0

167 Poutm ( : , : , cnt ) = (Anm( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

168 e l s e

169 Poutm ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ ( (Anm( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ) ;

170 end

171 cnt=cnt+1;

172 end

173 g l oba l prv pthetv Kv

174 K=Cstar .ˆ−1;

175 pr=pr11 ;

176 r=rz ;

177 k1=w/ c in ;

178 z1 = c in ∗pin ;

179 cnt = 1 ;

180 f o r n = 0 : s i z

181

182 %MATRICANT RADIAL

183 H1k0sumr = be s s e l h (n , 1 , k0∗R2) ;

184 dH1k0sumr = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗R2)−be s s e l h (n+1 ,1 , k0∗R2) ) ;

185 Jk1r1 = b e s s e l j (n , k1∗R1) ;

186 Jk0sumr = b e s s e l j (n , k0∗R2) ;

187 dJk0sumr = . 5∗ ( b e s s e l j (n−1,k0∗R2)−b e s s e l j (n+1,k0∗R2) ) ;

188 dJk1r1 = . 5∗ ( b e s s e l j (n−1,k1∗R1)−b e s s e l j (n+1,k1∗R1) ) ;

189 M = eye (2 ) ;

190 f o r jk = 1 : s i z e ( r , 2 )−1

191 prv=pr ( end−jk ) ;
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192 pthetv=pthet ( end−jk ) ;

193 Kv = K( end−jk ) ;

194 opt ions = odeset ( ’ RelTol ’ ,1 e−10, ’ AbsTol ’ , [ 1 e−5 1e−5 1e−5 1e−5]) ;

195 [ R12 ,M1] = ode45 ( @Matricant pr pthet , [ r ( ( end )−jk+1) r ( ( end )−jk ) ] , [ 1 0 0

1 ] , opt ions ) ;

196 ZM1 = [M1( end , 1 ) M1( end , 2 ) ;M1( end , 3 ) M1( end , 4 ) ] ;

197 M = ZM1∗M;

198 end

199 z in = [ Jk1r1 ; ( 1 / ( 1 i ∗ z1 ) ) ∗dJk1r1 ] ;

200 Zb = M∗ z in ;

201 Zb = Zb(1) /Zb (2) ;

202 Anmpr( cnt ) = P 0 ∗( Jk0sumr − (Zb/(1 i ∗ z0 ) ) ∗dJk0sumr ) / ( (Zb/(1 i ∗ z0 ) ) ∗

dH1k0sumr − H1k0sumr ) ;

203 i f n==0

204 Poutmpr ( : , : , cnt ) = (Anmpr( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

205 e l s e

206 Poutmpr ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ ( (Anmpr( cnt ) ∗ be s s e l h (n , 1 , k0 .∗

rad ) ) ) ;

207 end

208 cnt=cnt+1;

209 end

210 toc

211

212 %COMPARISON WITH SINGLE CYLINDER WITHOUT ANY CLOAKING.

213 k1 = w/c ( end ) ;

214 z1=rho ( end ) ∗c ( end ) ;

215 cnt = 1 ;

216 f o r n = 0 : s i z ;

217 H1k0 = be s s e l h (n , 1 , k0∗R1) ;

218 dH1k0 = . 5∗ ( b e s s e l h (n−1 ,1 , k0∗R1)−be s s e l h (n+1 ,1 , k0∗R1) ) ;

219 Jk1 = b e s s e l j (n , k1∗R1) ;

220 Jk0 = b e s s e l j (n , k0∗R1) ;

221 dJk0 = . 5∗ ( b e s s e l j (n−1,k0∗R1)−b e s s e l j (n+1,k0∗R1) ) ;

222 dJk1 = . 5∗ ( b e s s e l j (n−1,k1∗R1)−b e s s e l j (n+1,k1∗R1) ) ;

223 An( cnt ) = ((1 i ˆn) ∗Jk0/H1k0) ∗ ( ( dJk1 /( z1∗Jk1 ) ) − ( dJk0 /( z0∗Jk0 ) ) ) / ( ( dH1k0/(

z0∗H1k0) ) − ( dJk1 /( z1∗Jk1 ) ) ) ;

224 i f n==0
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225 Pout ( : , : , cnt ) = (An( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

226 e l s e

227 Pout ( : , : , cnt ) = (1 i ˆn) ∗2∗ cos (n∗ theta ) . ∗ (An( cnt ) ∗ be s s e l h (n , 1 , k0 .∗ rad ) ) ;

228 end

229 cnt=cnt+1;

230 end

231 toc

232 Pot = sum( ( Pout ) ,3 ) ;

233 Pot=Pot + P 0∗exp (1 i .∗ k0 .∗ rad .∗ cos ( theta ) ) ;

234 Potm = sum( (Poutm) ,3 ) ;

235 Potm=Potm + P 0∗exp (1 i .∗ k0 .∗ rad .∗ cos ( theta ) ) ;

236 [ row ot , c o l o t ] = f i nd (x.ˆ2+y .ˆ2 <= (R2ˆ2) ) ;

237 [ row otin , c o l o t i n ] = f i nd (x.ˆ2+y .ˆ2 <= (R1ˆ2) ) ;

238 f o r j = 1 : s i z e ( row otin , 1 )

239 Pot ( row ot in ( j ) , c o l o t i n ( j ) ) =0;

240 end

241 f o r j = 1 : s i z e ( row ot , 1 )

242 Potm( row ot ( j ) , c o l o t ( j ) ) =0;

243 end

244 hold on ;

245 j=sq r t (−2) ;

246 df =360;

247 f o r i =1: df

248 c i r c l e 1 ( i )=R2∗exp (2∗ j ∗ i ∗ pi / df ) ;

249 end

250 f o r i =1: df

251 c i r c l e 2 ( i )=R1∗exp (2∗ j ∗ i ∗ pi / df ) ;

252 end

253 maxed=abs (max(max ( [max(max(Pot ) ) ,max(max(Potm) ) ] ) ) ) ;

254 mini=(min (min ( [ min (min (Pot ) ) ,min (min (Potm) ) ] ) ) ) ;

255 mini=mini −1;

256 contour f (x , y , r e a l (Potm) ) ;

257 cax i s manual

258 cax i s ( [ mini maxed ] ) ;

259 co l o rba r ;

260 hold on

261 rad iu s = R2∗2 ;
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262 w123 = rad iu s ;

263 h123 = rad iu s ;

264 x123 = −R2 ;

265 y123 = −R2 ;

266 r e c t ang l e ( ’ Po s i t i on ’ , [ x123 , y123 , w123 , h123 ] , ’ Curvature ’ , [ 1 , 1 ] , ’ FaceColor ’

, [ 1 , 1 , 1 ] )

267 rad iu s = R1∗2 ;

268 w123 = rad iu s ;

269 h123 = rad iu s ;

270 x123 = −R1 ;

271 y123 = −R1 ;

272 r e c t ang l e ( ’ Po s i t i on ’ , [ x123 , y123 , w123 , h123 ] , ’ Curvature ’ , [ 1 , 1 ] , ’ FaceColor ’

, [ 0 , 0 , 0 ] )

273 ax i s ( ’ equal ’ )

Matlab Code: D.9: Function used for code D.6

1 func t i on dM1 = Matr ivary po lar1 (R,M1)

2 g l oba l w n Ksub psub

3 Q = (1 i ∗w/R) ∗ [ 0 psub ; ( ( (Rˆ2) /Ksub)−((nˆ2) / ( (wˆ2) ∗psub ) ) ) 0 ] ;

4 dM1 = ze ro s (4 , 1 ) ;

5 dM1(1) = Q(1 ,2 ) ∗M1(3) ;

6 dM1(2) = Q(1 ,2 ) ∗M1(4) ;

7 dM1(3) = Q(2 ,1 ) ∗M1(1) ;

8 dM1(4) = Q(2 ,1 ) ∗M1(2) ;

Matlab Code: D.10: Function used for code D.6

1 func t i on dM1 = Matr i cant pr pthet (R,M1)

2 g l oba l w n Kv prv pthetv

3 Q = [0 1 i ∗w∗prv ; . . .

4 (1 i ∗w/Kv)−(1 i ∗nˆ2) /(w∗pthetv ∗Rˆ2) −1/R ] ;

5 dM1 = ze ro s (4 , 1 ) ;

6 dM1(1) = Q(1 ,2 ) ∗M1(3) ;

7 dM1(2) = Q(1 ,2 ) ∗M1(4) ;

8 dM1(3) = Q(2 ,1 ) ∗M1(1) + Q(2 ,2 ) ∗M1(3) ;

9 dM1(4) = Q(2 ,1 ) ∗M1(2) + Q(2 ,2 ) ∗M1(4) ;
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