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ABSTRACT OF THE THESIS 

 

Improving models of covariation 

between marine communities and their habitats 

by incorporating pelagic features 

captured by coastal ocean observatories 

By LAURA JEAN PALAMARA 

 

Thesis Director: 

Joshua T. Kohut 

 

 Fisheries habitats are spatially and temporally variable in the Mid-Atlantic Bight. 

Therefore, understanding how fisheries species respond to habitat change is important for 

developing effective management strategies.  In this study, we use canonical 

correspondence analysis (CCA) to determine which habitat variables are most important 

in explaining variation in fish and invertebrate communities sampled using bottom trawls.  

Using partial CCA we also quantify the relative explanatory power of benthic factors, 

pelagic factors measured in situ, and pelagic factors measured remotely for describing 

species variability.  Results show that pelagic habitat factors are as important as benthic 

habitat factors in determining species distributions, and that remote sensing can 

accurately represent many characteristics of fisheries habitats.  Cross-shore and seasonal 

variation in environmental variables were the major predictors of fisheries habitats, 

accounting for 71.3% of the total explained community variation.  We generated seasonal 
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spatial maps for these key gradients and fit response curves for 6 species along each 

gradient.  Future possibilities for fisheries management are discussed. 
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1.  INTRODUCTION 

 Animal distributions are influenced by environmental factors that constrain 

physiology and environmental factors that are behaviorally favored.  However, we still 

know little regarding which factors are important in defining habitat and how and why 

animals respond to these factors.  Marine and terrestrial environments are often treated in 

similar ways when studying habitat and executing management strategy, even though 

they are very different.  In terrestrial landscapes bottom structure is very important, 

habitat is slow to change, and primary producers are large and long-lived.  In marine 

seascapes bottom structure is not as important, habitat can change more quickly, and 

primary producers are small and short-lived.  Considering only the benthos in marine 

management is akin to treating a three-dimensional seascape as a two-dimensional 

landscape. 

1.1  Benthic Habitat 

 In the marine environment, habitat is often defined by only a few environmental 

characteristics.  Fisheries managers and scientists tend to focus on benthic features such 

as depth, sediment type, and bottom temperature (e.g. Chatfield et al. 2010).  Benthic 

studies have demonstrated that these types of characteristics are important for defining 

the habitats of marine animals (Chatfield et al. 2010, Ysebaert et al. 2002), but 

consideration of solely the benthos excludes many of the other potentially important 

marine habitat characteristics.  While benthic structure is certainly essential for defining 

habitat, pelagic features are also crucial because these animals are living in a three-

dimensional seascape characterized by a fluid that varies in several ways that strongly 

influence metabolism (Fry 1971).  These features are less stable and therefore not as 
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easily measured or studied.  However, advances in observational technology have 

allowed us to include the pelagic environment in habitat models. 

1.2  Pelagic Habitat 

 While the pelagic environment is more difficult to study, it is important to the 

habitat of benthic and pelagic marine species at various life stages; the abundance, 

distribution, and composition of marine life is to a large extent explained by physical 

processes such as currents, fronts, eddies, upwelling and downwelling regions, and wind-

driven mixing, all of which are highly dynamic in both space and time (Game et al. 

2009).  Some of the most important environmental factors affecting the metabolism and 

growth of fish are features such as temperature, dissolved oxygen, food, predators, 

salinity, and pollutants, most of which involve pelagic processes (Fry 1971, Yamashita et 

al. 2001).  These and several other pelagic features affect the distribution of marine 

species by varying degrees at each life history stage.  Even though pelagic features are 

important at all life stages, more research has been done regarding how larvae are 

affected by pelagic processes than has been for juveniles or adults (Katz et al. 1994, 

Terceiro 2007). 

 The larvae of many marine species, including those that are benthic when mature, 

are often pelagic and therefore rely heavily on water column characteristics.  Their 

survival is constrained by features such as water temperature and salinity, but they also 

need to have a sufficient amount of food available for growth and to sustain them until 

settlement and metamorphosis.  Surface currents are also crucial to the larvae of many 

species (Bakun 2010, Katz et al. 1994, Leis 2006).  Many species have narrow habitat 

ranges that can serve as acceptable nursing grounds for juvenile fishes.  Whether larvae 
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reach one of these areas depends on when and where the larvae are released, where the 

ocean currents carry them, and the presence or absence of larval behavior (Bakun 2010, 

Katz et al. 1994, Leis 2006).  Bakun (2010) describes three major classes of physical 

processes that create an ideal reproductive habitat for coastal fishes.  Enrichment 

processes such as upwelling and mixing can provide food for larvae, and concentration 

processes such as convergence and frontal formation would have a similar effect.  Lastly, 

currents could also contribute to processes that favor retention within or drift toward an 

appropriate larval or settlement habitat. 

 Less research has been done on adult fish responses to pelagic processes than has 

for larval responses.  Despite this, it is clear that both benthic and pelagic species 

continue to rely on the pelagic environment as they mature.  Even the distributions of 

benthic infauna can be related to pelagic habitat variables (Ysebaert et al. 2002).  

Population distributions fundamentally depend on the survival and metabolism of the 

individuals making up that population (Neill et al. 1994).  We know that pelagic features 

like temperature (Marsh et al. 1999) and dissolved oxygen (Falkowski et al. 1980) can 

have significant impacts on mortality of many fish and invertebrate species.  However, it 

is likely that these extreme events are not the only pelagic conditions that drive species 

distributions. 

1.3  The Dynamic Ocean 

 Compared to pelagic characteristics, benthic characteristics are used more often in 

habitat models, partly because they are assumed to be relatively stable over time.  While 

the benthos is not static, the stability assumption generally holds in the absence of benthic 

data with finer time-scale resolution.  The pelagic environment is, however, more 
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dynamic, especially in temperate coastal areas such as the Mid-Atlantic Bight (MAB), 

and the stability assumption is less acceptable in models of pelagic habitats.  The MAB 

exhibits particularly high seasonal variability: for example, sea surface temperature varies 

seasonally by about 23°C (Shearman & Lentz 2010), and average cross-shore flow 

reverses during the autumn (Gong et al. 2010).  Pelagic habitat in the region is also 

patchy and highly dynamic on time scales much shorter than whole seasons, many 

features being dependent on storms, variable winds, river runoff, sunlight, and many 

others (e.g. Glenn et al. 2008).  The rapid change in pelagic habitat has made it difficult 

to incorporate these features into habitat models.  However, advances in ocean 

observatories have allowed us to remotely measure many of these characteristics, 

including surface currents and SST.  Several of these factors can be used to calculate 

other features, such as divergence and chlorophyll.  Certain other characteristics that are 

neither directly measured nor calculated can relate to features that are measured.  For 

example, remotely sensed currents can affect mixing, which in turn relates to features 

such as oxygen and productivity.  This technology enables us to observe large regions 

with the fine spatial and temporal resolution necessary to develop fisheries-based habitat 

models. 

1.4  Advancing Science and Management 

 With the increasing availability of data, it is becoming more important to create 

habitat models that merge the environment and species abundance and distribution.  

Understanding how fish respond to dynamic habitat characteristics is important both 

because it provides the opportunity to gain scientific understanding of the ecosystem and 

because it may improve fisheries management and economics.  Better understanding of 
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the relationships between marine species and their environment can lead to the 

application of habitat models in management decisions, which would ideally lead to more 

sustainable fisheries (Game et al. 2009). 

 This study analyzed benthic and pelagic environmental characteristics to 

determine which factors were most important to the Mid-Atlantic Bight fish and 

invertebrate community.  We also examined how remotely sensed variables contributed 

to the habitat characteristics important to the community.  Using these results we can 

begin to define habitat and consider how we can measure and use important 

environmental characteristics in management decisions. 
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2.  IMPROVING HABITAT MODELS BY INCORPORATING PELAGIC 

FEATURES CAPTURED BY OCEAN OBSERVATORIES 

2.1  Introduction 

 Spatial distributions of many species are largely a result of habitat selection based 

on behavior and environmental constraints.  The factors that define habitat, including 

temperature, benthic structure, and productivity, can impact the growth, survival, and 

reproductive success of individuals and these effects in turn influence the productivity 

and stability of entire regional populations (Fry 1971; Neill et al. 1994, Yamashita et al. 

2001).  In temperate areas like the Mid-Atlantic Bight (MAB) a diverse array of habitat 

characteristics can be observed within a single region over the course of a year.  These 

include seasonal variation as well as environmental variation occurring over much shorter 

time scales.  Many species in these regions are highly migratory, allowing them to 

respond to the frequent changes in the environment and also allowing them to use a 

variety of habitats at different times in their life cycles (Bakun 2010).  Populations 

experience increased vulnerability to fishing pressure at certain times and in certain areas, 

especially over migration routes and in breeding and foraging areas (Game et al. 2009).  

In order to develop effective space- and time-based conservation strategies, it is 

important to understand how habitats change over time and how animal populations 

respond to changes in major environmental cues like temperature (Yamashita et al. 2001) 

and currents (Bakun 2010, Ysebaert et al. 2002). 

 There is a tendency to concentrate on benthic characteristics when describing the 

habitats selected by marine species (e.g. Chatfield et al. 2010).  However, both pelagic 

and benthic species depend on the pelagic environment for a variety of reasons.  Many 
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species spend at least part of their life cycles living in the water column, or have prey that 

rely on water column characteristics (Yamashita et al. 2001).  Because the vertical water 

column is heavily used by fish species, seascapes should ideally be evaluated in three-

dimensions.  Including water column (pelagic) variables, such as currents and water 

column stability, in addition to benthic variables in habitat models gives a more complete 

view of the ecosystem and can be extremely beneficial for ecosystem analysis and 

development of management strategies.  Pelagic features such as maximum tidal current 

velocities, for example, help predict the distributions for even macrobenthic infauna in an 

estuary (Ysebaert et al. 2002).  Until recently, it has been very difficult to measure 

pelagic habitat factors over large spatial and temporal scales because of the difficulty and 

cost in regularly sampling the ocean on synoptic scales. 

 The Integrated Ocean Observing System (IOOS) now provides information about 

many of the pelagic features that can influence population and community dynamics over 

these synoptic scales.  IOOS data includes pelagic variables detected remotely via 

satellite (i.e. sea surface temperature and ocean color), high-frequency (HF) radar (i.e. sea 

surface currents), and gliders (i.e. water column temperature, salinity, optical 

backscatter).  These data streams are analyzed to produce derived variables such as 

chlorophyll, water mass, divergence, and vorticity.  Satellites and HF radar currently 

provide the greatest amount of spatial coverage, including synoptic maps of surface 

currents, temperature, and chlorophyll.  These fields can be combined to map the location 

and relative strength of water mass boundaries.  While these observations are confined to 

the near surface of the ocean, they are often indicative of the sub-surface environment. 
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 For the past several years, these pelagic features and processes have been well-

documented in the MAB through the use of remotely sensed data from the Mid-Atlantic 

Regional Association Coastal Ocean Observing System (MARACOOS, 

www.maracoos.org), a regional subdivision of IOOS.  Remote sensing has been used to 

help define habitat and biological responses in other regions (e.g. Hardman-Mountford et 

al. 2008, Palacios et al. 2006).  However, the increasing availability and coverage of 

various types of remotely sensed data in the MAB allow us to examine relationships 

between fish and the pelagic environment that until now couldn’t be studied. 

 Even benthic species are strongly linked to many pelagic habitat features and 

processes that are described by ocean observatories.  For example, Bakun (2010) 

describes three major classes of physical processes that are important for yielding ideal 

reproductive habitat for coastal fishes: enrichment processes such as upwelling and 

mixing, concentration processes such as convergence, formation of fronts, and water 

column stability, and processes that favor retention within or drift toward proper habitat, 

most of which can be described by remotely sensed data streams.  By considering the 

comparatively stable benthic features along with the dynamic pelagic features that can be 

measured both in situ and remotely with IOOS, we can more precisely describe the three-

dimensional structure of the environment to which marine species respond (Game et al. 

2009). 

 In this study we combined benthic, pelagic, and remote measures of the physical 

habitat in the Mid-Atlantic Bight.  We built statistical relationships between habitat 

characteristics likely to affect the growth, survival, dispersal, and reproduction of marine 

species, and fish abundances available from the National Marine Fisheries Service, 
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Northeast Fisheries Science Center’s (NMFS-NEFSC) bottom trawl survey data.  The 

study consisted of three major components (Fig. 1).  First, we determined which 

environmental variables were most strongly correlated with fish and invertebrate 

abundance using the multivariate ordination technique canonical correspondence analysis 

(CCA).  Second, we used partial CCA to quantify the relative importance of three 

categories of environmental variables: benthic, in situ pelagic (CTD), and remotely 

sensed pelagic.  Third, for each of the first three CCA axes we generated spatial maps of 

the environmental features as well as response curves for six species well-explained by 

the CCA model whose habitat distributions differed by latitude and by depth in the water 

column.  Our goals in this analysis were to establish habitat-defining environmental 

characteristics, to determine the effectiveness of remote sensing technology in habitat 

models, and to use the response curves to infer any difference in response between 

species with differing latitudinal ranges or water column preferences. 

2.2  Methods 

2.2.1  Study Area 

 The Mid-Atlantic Bight (MAB) extends from Cape Cod, MA to Cape Hatteras, 

NC, and is an ideal location to study the impact of pelagic features on fish and 

invertebrate populations.  Because the habitats in this region are patchy and can change 

over short time scales, many of the fish and invertebrates in the region are highly 

migratory.  Many of these species are also of great interest to both commercial and 

recreational fisheries.  There is high benthic biomass in this region, but small pelagic 

species are still very important (Link et al. 2008).  These species could respond to many 

pelagic conditions that exhibit particularly high spatial and temporal (especially seasonal)  
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Figure 1.  Flow chart of the analysis.  The sequence of steps used to create the final 

model, and the subsequent analyses, are shown.



11 

 

 

variation in this area, such as surface and bottom temperature, stratification, and surface 

currents (Gong et al. 2010, Shearman & Lentz 2010).   Because of the high variation, the 

location of a species’ chosen habitat can be highly dynamic.  Now that we have a robust 

ocean observation system to capture these habitats, this region is well-suited to conduct 

this type of research. 

2.2.2  Species Abundance Data 

 Abundance estimates for fish and invertebrate species were collected in the 

National Marine Fisheries Service, Northeast Fisheries Science Center’s (NMFS-

NEFSC) autumn, winter, and spring fisheries bottom trawl surveys (Table 1, Fig. 2).  The 

survey design and trawl characteristics are described in detail by Azarovitz (1981).  

Winter cruises occurred in February (year day [yd]=39-57), spring cruises between 

March and the beginning of May (yd=63-123), and autumn cruises from the beginning of 

September through late October (yd=243-313), when the water column was still 

relatively stratified (Gong et al. 2010).  Survey tows were made with a #36 Yankee trawl 

(12.7 cm stretched mesh opening, 11.4 cm stretched mesh cod end, 1.25 cm stretched 

mesh lining in cod end and upper belly) equipped with rollers and a 10.4 m wide x 3.2 m 

high opening.  The net was towed at ~3.5 knots over the bottom for 30 minutes.  

Distances a net was towed over the bottom at each station averaged 1.9 km (95% 

Confidence limits 1.75-2.01 km).  Trawls tows occurred throughout the 24 hour day. 

 We selected a spatial and temporal domain for analysis based upon the 

availability of remotely sensed data collected by MARACOOS. NEFSC bottom trawl 

samples collected from February 2003 through October 2007, between latitudes 37.14 &  
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Table 1.  Common and scientific names of the 65 species included in the 

multivariate analysis.  Included species were those observed in at least 

10 of the trawls used in the analysis 

Common Name Scientific Name 

Blueback Herring Alosa aestivalis 

Alewife Alosa pseudoharengus 

American Shad Alosa sapidissima 

Northern Sand Lance Ammodytes dubius 

Deepbody Boarfish Antigonia capros 

Striated Argentine Argentina striata 

Jonah Crab Cancer borealis 

Atlantic Rock Crab Cancer irroratus 

Black Sea Bass Centropristis striata 

Shortnose Greeneye Chlorophthalmus agassizi 

Gulf Stream Flounder Citharichthys arctifrons 

Atlantic Herring Clupea harengus 

Conger Eel Uncl. Congridae 

Barndoor  Skate Dipturus laevis 

Smallmouth Flounder Etropus microstomus 

Red Deepsea Crab Geryon quinquedens 

Witch Flounder Glyptocephalus cynoglossus 

Blackbelly Rosefish Helicolenus dactylopterus 

Sea Raven Hemitripterus americanus 

American Lobster Homarus americanus 

Northern Shortfin Squid Illex illecebrosus 

Fawn Cusk-Eel Lepophidium profundorum 

Little Skate Leucoraja erinacea 

Rosette Skate Leucoraja garmani 

Winter Skate Leucoraja ocellata 

Yellowtail Flounder Limanda ferruginea 

Atlantic Seasnail Liparis atlanticus 

Longfin Squid Loligo paeleii 

Goosefish Lophius americanus 

Ocean Pout Macrozoarces americanus 

Longspine Snipefish Macrorhamphosus scolopax 

Grenadier Uncl. Macrouridae 

Spider Crab Uncl. Majidae 

Haddock Melanogrammus aeglefinus 

Atlantic Silverside Menidia menidia 

Offshore Hake Merluccius albidus 

Silver Hake Merluccius bilinearis 

Smooth Dogfish Mustelus canis 

Lanternfish Uncl. Myctophidae 

Bullnose Ray Myliobatis freminvillei 

Longhorn Sculpin Myoxocephalus octodecemspinosus 
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Atlantic Hagfish Myxine glultinosa 

Snake Eel Uncl. Ophichthidae 

Summer Flounder Paralichthys dentatus 

Fourspot Flounder Paralichthys oblongus 

Butterfish Peprilus triacanthus 

Armored Searobin Peristedion miniatum 

Sea Lamprey Petromyzon marinus 

Sea Scallop Placopecten magellanicus 

Bluefish Pomatomus saltatrix 

Northern Searobin Prionotus carolinus 

Striped Searobin Prionotus evolans 

Winter Flounder Pseudopleuronectes americanus 

Clearnose Skate Raja eglanteria 

Windowpane Scophthalmus aquosus 

Atlantic Mackerel Scomber scombrus 

Chain Dogfish Scyliorhinus rotifer 

Bobtail Uncl. Sepiolidae 

Spiny Dogfish Squalus acanthias 

Scup Stenotomus chrysops 

Tonguefish Symphurus 

Red Hake Urophycis chuss 

Spotted Hake Urophycis regia 

White Hake Urophycis tenuis 

Buckler Dory Zenopsis conchifera 
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Figure 2.  Locations of samples.  The locations of the trawls included in the analysis are 

shown overlapping a map of sediment grain size on a phi scale.
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40.85 N and Longitudes -70.83 & -75.16 fit within that domain.  An average of 101 

stations was sampled during spring and autumn cruises.  An average of 70 stations was 

sampled during the winter. 

2.2.3  Habitat Data 

2.2.3.1  Benthic data 

 We computed topographic bottom habitat characteristics from the 3-arc-second 

NGDC Coastal Relief Model (http://www.ngdc.noaa.gov/mgg/coastal/coastal.html; 93m 

cell size; Table 2).  We used circular moving window analysis in GRASS GIS software to 

calculate median and standard deviations of bottom depth, aspect, slope, and curvature 

from the relief model (Neteler & Mitasova 2008).  We selected a window diameter of 

1950 meters to correspond to the median length of NEFSC trawl tows (1910 meters).  

Profile and tangential bottom curvature measured the concavity (i.e. valleys, negative 

values) and convexity (i.e. ridges, positive values) of the surface parallel and tangential to 

major axes of slope, respectively (Neteler & Mitasova 2008).  Sediment grain sizes (phi) 

for the trawl samples were selected from a map interpolated from records in the 

usSEABED data base (Reid et al. 2005).  The map of sediment grain size had a spatial 

resolution of 2000 meters and was constructed using sampling bias correction, maximum-

likelihood resampling, and a spline-in-tension algorithm described in Goff et al. (2005 & 

2008). 

2.2.3.2  Pelagic data 

 We used conductivity, temperature, and depth (CTD) profiles collected during 

NEFSC bottom trawl surveys to describe water column characteristics including bottom 

temperature, salinity, water column structure and stability (Table 2).  We considered  
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Table 2.  Data sources and possible ecological impacts of environmental variables 

considered in the CCA.  Unless otherwise noted, the source of benthic variables is 

http://www.ngdc.noaa.gov/mgg/coastal/coastal.html, the source of CTD variables is 

the shipboard CTD, and the sources of remotely sensed data are HF radar for surface 

current data and Moderate Resolution Imaging Spectrometer (MODIS) for satellite 

data.  Geographic coordinates were recorded at the time of the trawl, and solar 

elevation was calculated using the maptools library in R. 

*variable is included in the final CCA model 

*
1
residuals of a GAM with log-transformed depth are included in the final CCA model 

*
2
anomalies from MAB 7-year monthly averages are included in the final CCA model 

Habitat Variable Spatial 

Resolution 

Effect or Process 

Solar elevation n/a Vertical migration/catchability 

Seasonality n/a Various 

Benthic Data 

Depth (μ* & SD) 1.95 km Structural/spatial refuge 

Slope (μ*
1
 & SD) 1.95 km Structural/spatial refuge 

Aspect (SD) 1.95 km Structural/spatial refuge 

Profile curvature (μ & SD) 1.95 km Structural/spatial refuge 

Sediment grain size (μ*, from 

USSeabed) 

2 km Structural/spatial 

refuge/enrichment 

Pelagic Data: CTD 

Bottom temperature* n/a Metabolic rate 

Bottom salinity n/a Proximity to freshwater source 

Surface salinity*
1
 n/a Proximity to freshwater source 

Mixed-layer depth n/a Mixing/primary productivity 

Stratification* n/a Mixing/primary productivity 

Simpson’s PE (upper 30 m) n/a Mixing/primary productivity 

Pelagic Data: Remotely Sensed (HF Radar) 

Cross-shelf velocity (raw μ & SD, 

detided μ & SD, filtered μ* & SD) 

10 km radius Advection/movement 

cost/mixing 

Along-shelf velocity (raw μ & SD, 

detided μ & SD, filtered μ & SD) 

10 km radius Advection/movement 

cost/mixing 

Variance in raw velocities (cross-

shelf* and along-shelf) 

10 km radius Tidal mixing/episodic forcing 

Divergence/convergence (μ & SD) 10 km radius Advection/movement 

cost/mixing 

Divergence/convergence tendency* n/a Advection/movement 

cost/mixing 

Vorticity (μ & SD) 10 km radius Eddy development/retention 

Vorticity tendency n/a Eddy development/retention 

Pelagic Data: Remotely Sensed (Satellite) 

Sea surface temperature (μ*
2
 & SD) 10 km radius Metabolic rate/seasonality 

Chlorophyll-a (μ & SD) 10 km radius Primary productivity/organic 

matter 
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Water leaving radiances at 412, 

443, 488, 531, 551, 667 nm (μ & 

SD) 

10 km radius Water clarity & 

brightness/organic matter 

Water leaving radiance divided by 

the maximum at each trawl: 412, 

443, 488*, 531, 551*
1
, 667 nm 

10 km radius Water clarity/organic matter 

Water mass class n/a Various 

Gradient strength & distance to 

gradient (frontal index) 

n/a Enrichment/concentration 
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“mixed layer” depth at which density was 0.125 kg/m
3
 higher than at the surface layer 

(Levitus 1982), a stratification index calculated as the density difference between 50 m 

and the surface, and Simpson’s potential energy anomaly (PE; Simpson 1981) in the 

models.  The stability index for the entire water column was positively correlated with 

bottom depth.  To avoid its being confounded with depth, a measure of Simpson’s PE 

was calculated within only the upper 30 meters. 

 Surface features were observed remotely using shore- and space-based sensors.  

High Frequency (HF) radar (Barrick et. al. 1977) provided remotely sensed surface 

current measurements for our analysis (Table 2).  A network of HF radars (frequency = 5 

MHz) maintained by MARACOOS measures radial current vectors that are geometrically 

combined to produce total vector surface current maps each hour with a resolution of 6 

km from Cape Hatteras, NC to Cape Cod, MA and from the shore to the edge of the 

continental shelf (www.maracoos.org, Roarty et al. 2010).  These data have been used to 

describe seasonal (Gong et al. 2010) and event-scale surface dynamics (Dzwonkowski et 

al. 2009, 2010) in the MAB. For this analysis the entire raw time series for each HF radar 

grid point was de-tided using a least-squares fit of the five strongest tidal constituents 

(M2, S2, N2, K1, and O1).  This de-tided data was then low pass filtered with a cutoff 

period of 30 hours.  We only used data for grid points with > 25% return over the annual 

records.   Surface divergence, represented as vertical velocity at 1 m depth, and vorticity, 

normalized by the local coriolis parameter of the lowpass filtered fields, were calculated 

using finite difference.  The same processing was used as in Gong et al. (2010) and 

Dzwonkowski et al. (2009, 2010).  We considered one-day and eight-day mean raw, de-



19 

 

 

tided, and filtered cross-shore and along-shore velocity, as well as divergence, vorticity, 

and the variance of the raw fields within 10 km of each trawl sample in our modeling. 

 In addition to considering short-term upwelling and downwelling, we wanted to 

test the species response to regions with more consistent upwelling and downwelling.  To 

quantify this we calculated a new “divergence tendency” variable by assigning a new 

value of -1 to instantaneous divergence (vertical velocity) values that were <-0.1 m/day 

(downwelling), 0 to those between -0.1 and +0.1 m/day (neither), or +1 to values > +0.1 

m/day (upwelling).  These new values were averaged for each grid point to produce a 

mapped index of upwelling and downwelling potential for each season and year.  We 

calculated divergence tendency for each site by averaging all seasonal means within 10 

km of the survey site.  The same processing was performed to generate vorticity 

tendencies using threshold values of ±0.02.  The thresholds chosen were in approximately 

the 25
th

 and 75
th

 percentile of the entire set of values. 

 Satellite remote sensing provided maps of surface temperature, chlorophyll-a, and 

water-leaving radiance within 10 km of each NEFSC trawl tow over both the 24 hours 

previous to the tow and the 8 days previous (Table 2). We used data from the Moderate 

Resolution Imaging Spectrometer (MODIS) binned to 1km spatial resolution with the 

standard data quality flags using Seadas v5.3 for sea surface temperature (SST) and ocean 

color (oceancolor.gsfc.nasa.gov). SST can range from less than 3 °C to about 28 °C in the 

MAB, especially in shallower water (Shearman & Lentz 2010), and we wanted to 

examine spatial anomalies independent of the strong seasonal signal.  To do this, 

anomalies of these values based on monthly 7-year composites averaged over the entire 

study site were used rather than raw SST.  To account for this adjustment, we also 
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included season as a factor in the analysis. We considered measurements of chlorophyll 

(mg m
-3

), and normalized water-leaving radiance (W m
-2

 st
-1

 μm
-1

) at 412, 443, 488, 531, 

551, and 667 nm (nlw412, nlw443, …) for our models.  In addition to raw channel 

values, we also considered each wavelength divided by the maximum radiance on a 

survey by survey basis (from here on we refer to the wavelengths relative to the 

maximum for each survey as rnlw412, rnlw443, …). 

   Ensemble clustering was applied to satellite sea surface temperature and 

reflectance measured at 490 and 555 nm to objectively classify water masses, and 

gradient strengths along frontal boundaries between water masses were determined using 

methods described in Oliver et al. (2004) and Oliver & Irwin (2008).  We used maps of 

gradient strength along frontal boundaries of 27 water masses identified to compute the 

distance (d km) to, and gradient strength ( G) of the nearest frontal boundary for each 

bottom trawl sample.  We then calculated a frontal index (FI) for each trawl using the 

equation:  

FI=ln( G/d km+1). 

 Many of the 27 water masses contained fewer than 5 NEFSC trawl samples.  As a 

result, we agglomerated the 27 water masses into 8 water masses using k-means 

clustering and the satellite data used in the original ensemble clustering.  Each of the 8 

water masses included at least 20 samples. 

 Since the species selected for analysis can exhibit day-night differences in 

behavior, including vertical migration, we expected capture efficiencies in bottom trawls 

to vary with the time of day of the sampling (Powell et al. 2004).  We used the Maptools 

library in R (Lewin-Koh & Bivand 2009) to estimate solar elevations for the times and 
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locations of each trawl, which we considered in our model for partial analysis.  All of the 

environmental variables except for season and solar elevation were divided into one of 

three categories: CTD (in situ pelagic), IOOS (remotely sensed pelagic), or benthic 

(Table 2). 

2.2.4  Model Development 

 All statistical analysis was performed using R software (R Development Core 

Team 2008, Legendre & Legendre 1998, Bolker 2008, Jongman et al. 1995, McGarigal et 

al. 2000).  The canonical correspondence analysis (CCA), used for variable selection and 

model partitioning, was done using the vegan library (Oksanen et al. 2008).  The vegan 

library was also used in the goodness-of-fit tests to determine how well each species was 

explained by the different axes defined by the CCA.  Generalized additive models 

(GAM), used in variable selection and to plot species responses to habitat gradients 

derived from the CCA were done using the mgcv library (Wood 2004, 2006, 2008).  We 

used backward selection of variables within each category of habitat data and with all 

habitat categories combined to create the final CCA model, used a partial CCA to 

determine the relative explanatory value of each category, and used GAM analysis of 

species responses to the habitat gradients extracted from the full CCA.  Figure 1 shows 

the sequence of the model development. 

2.2.4.1  Variable selection for models 

 We used canonical correspondence analysis (CCA) for our model because it 

allowed us to simultaneously ordinate both the environmental and log-linear species 

responses, and also allowed for partial analysis (Oksanen et al. 2008). This technique 

determines how the environmental variables can be combined to best explain the total 
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community variation.  It reduces the number of factors that need to be considered to 

predict community variation by taking several environmental variables and creating 

fewer factors (called axes) made up of linear combinations of the original environmental 

variables, which better explain the community variation than one environmental variable 

alone would. 

 The 65 species we used for this analysis were observed in at least 10 of the 

bottom trawls (Table 1).  Species abundance was normalized to the trawl distance and 

log-transformed.  Initially, we calculated three separate CCAs: one for each category of 

environmental variables (benthic, CTD, and remotely sensed).  Because there was a large 

left-skew to depth, we used log-transformed depth in the model.  We used variables from 

these analyses that were significant at the 0.01 level in a CCA containing environmental 

variables from all three categories, along with season and solar elevation. We tested the 

significance of the model terms in the CCA and the least significant environmental 

variables were removed from the analysis. This process was repeated until all 

environmental variables were significant to the model at a level of 0.01.  We further 

culled variables by only including those with possible mechanistic effects on the 

physiology or behaviors of the animals (Table 2).  For variables that provided the same 

information as others, the less noisy and more ecologically meaningful variables were 

used; remotely sensed 8-day means were used in place of 1-day means, divergence and 

vorticity tendencies instead of means, filtered current velocities instead of de-tided or raw 

velocities, and water-leaving radiances normalized to the maximum water-leaving 

radiance in place of the original water-leaving radiance values. 
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 Any environmental variables included in the resulting CCA model that were 

ecologically meaningful but highly correlated with each other were modified to eliminate 

redundancy.  To achieve this we fit a generalized additive model (GAM) to the two 

variables, and the values of one of the correlated variables were replaced with the 

differences (residuals) between the observed values and those predicted by the GAM.  

We performed another CCA using residuals instead of the raw variable, and if the 

residuals were no longer significant we removed them from the model.  This was 

necessary for bottom slope, surface salinity, mixed-layer depth, and rnlw551, all of which 

were strongly correlated with depth.  Residuals of mixed-layer depth were highly 

correlated with stratification, and were removed from the final model. 

 The final CCA model included the 65 species listed in Table 1 and 13 

environmental variables: season, 3 benthic variables, 3 CTD variables, and 6 remotely 

sensed variables (Table 2). 

2.2.4.2  Model partitioning 

 We determined relative explanatory power of each category of environmental data 

(benthic, CTD, and remotely sensed) and overlap in explanatory power between 

categories using a partial CCA (Borcard & Legendre 1992).  The variables included in 

each category are listed in Table 2.  We calculated partial CCAs to determine the amount 

of variation explained by all three categories together (which included all variables in the 

final model except for season) and by each of the three categories separately.  We also 

calculated constrained CCAs for each category using the variables from the other two 

categories as constraints, as well as two additional constrained CCAs for each category 

using the variables from each of the other categories individually as constraints.  The 
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amount of variation explained by each of the partial and constrained CCAs could be 

considered together to calculate the relative explanatory power of each category and how 

redundant the categories are with each other (Fig. 3). 

2.2.4.3  Species responses to environmental variability 

 Scores for the first three CCA axes were calculated for each trawl survey included 

in the model.  These scores were matched to the corresponding survey’s time and 

location, and the scores were seasonally mapped.  The color maps were derived using 

bilinear interpolation and the contours using linear interpolation, both on a grid with a 

cell size of 0.025° lat (2.8 km) by 0.025° lon (2.1 km).  Species response curves were 

considered in tandem with these spatial maps to infer where a species would be most 

likely to occur. 

 To describe species responses to habitat, we chose six species of the 65 included 

in the CCA to be analyzed in relation to the environmental gradients extracted from the 

CCA.  These species represented different latitude (north and south) and water column 

preferences (pelagic fish, pelagic squid, and benthic flatfish), and included Atlantic 

herring (Clupea harengus), witch flounder (Glyptocephalus cynoglossus), Northern 

shortfin squid (Illex illecebrosus), scup (Stenotomus chrysops), summer flounder 

(Paralichthys dentatus), and longfin squid (Loligo paeleii) (Table 3).  Each of these is 

common in the MAB and is generally well-explained (as shown by a goodness-of-fit test) 

by the final CCA model.  GAM (Wood 2004, 2006, 2008) was used to fit a response 

curve for the abundance of each of these six species to the score of the first three CCA 

axes.  To place species on the same scale, abundances were standardized to maximum 

observed abundance. 
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Figure 3.  Partial CCA.  Calculation of the relative explanatory power for each category 

of data. 
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Table 3.  The 6 species analyzed in response to the environmental gradients extracted 

from the CCA. 

Common Name Scientific Name Latitudinal 

Region 

Water Column 

Preference 

Atlantic herring Clupea harengus Northern Pelagic fish 

Witch flounder Glyptocephalus cynoglossus Northern Benthic flatfish 

Northern shortfin squid Illex illecebrosus Northern Pelagic squid 

Scup Stenotomus chrysops Southern Pelagic fish 

Summer flounder Paralichthys dentatus Southern Benthic flatfish 

Longfin squid Loligo paeleii Southern Pelagic squid 
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2.3  Results 

2.3.1  Variable Selection 

 The habitat variables included in the final analysis were season, 3 benthic 

variables (log-transformed depth, bottom slope residuals vs. depth, sediment grain size), 

3 CTD variables (bottom temperature, surface salinity residuals vs. depth, stratification), 

and 6 remotely sensed variables (rnlw488, rnlw551 residuals vs. depth, sea surface 

temperature anomalies, filtered cross-shore velocity, variance in raw cross-shore velocity, 

and divergence tendency). 

2.3.2  Community Variance Partitioning 

 The 13 variables included in the final CCA model accounted for 26.0% of the 

species variation.  When the effects of seasonality were removed from the model in order 

to look at spatial variation in community response without the temporal aspect (season), 

23.7% of the community response is explained by the model.  Figure 4 shows how much 

of this 23.7% is due to each of the three categories of environmental data considered 

(benthic, CTD, remotely sensed) and how redundant they are with each other.  Each of 

the three categories individually explained approximately the same proportion, but the 

pelagic characteristics (remotely sensed: 46.9%, CTD: 45.1%) explained slightly more 

than the benthic characteristics (40.9%).  Remotely sensed variables had a high degree of 

redundancy with both benthic and CTD variables (16.7% and 16.0%, respectively), while 

there was little correlation between benthic and CTD (3.0%).  Figure 5b shows which 

variables are likely to be responsible for this redundancy; the correlation between the 

remotely sensed category and the benthic category appeared to be due to a correlation  
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Figure 4.  Relative explanatory power of categories of habitat data.  Venn diagram 

depicts the proportion of the total 23.7% of the community response explained by spatial 

variation divided into three categories.  Overlap between categories indicates redundancy 

between those categories.  Pelagic categories were as effective at explaining community 

response as the benthic category was.  The remotely sensed category showed high 

redundancy with both other categories.
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with log-transformed depth and SST anomaly, while the correlation of remotely sensed 

data with the CTD data was probably due to the correlations of surface salinity residuals 

and stratification with cross-shore velocity, variance in cross-shore velocity, and rnlw551 

residuals. 

2.3.3  Species Response to CCA Axes 

 The first three axes of the final CCA model accounted for 71.3% of the explained 

community variation.  Because all subsequent axes had only small contributions, species 

response GAM models were only fit to the first three axes (Fig. 5).  Figures 6-8 show the 

species responses to each of these axes as well as spatial maps of the axis scores for 

winter, spring, and fall of 2006.  We can use these to see at which locations during each 

season we would be most likely to find each of the six species considered in the GAM 

models; the peak of the response curves indicates at which axis score a species is likely to 

be most abundant, and the corresponding locations of those scores can then be found on 

the maps. 

 The first axis was defined by a cross-shore gradient.  The most important 

environmental factors on each axis are listed here, with a (+) following the variable if it is 

positively correlated with the axis scores and a (-) if it is negatively correlated.  The most 

influential variables on the first axis were log-transformed depth (-), sea surface 

temperature anomaly (-), bottom temperature (-), sediment grain size (- on phi scale), and 

rnlw551 (+).  Axis scores tended to be low all around in the fall due to high SST but 

shallow water inshore, and low SST but deep water farther offshore.  In the winter and 

spring, low SST in shallow inshore waters and high SST in deeper offshore waters 

created a gradient with high axis scores close to shore that decrease farther offshore.   
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Figure 5.  CCA biplots for the final model.  Axes 1 and 2 (a) and 1 and 3 (b) are shown.  

Points correspond to median axis scores for a season or species, and arrows correspond to 

spatial environmental variables (logD = log-transformed depth, sloper = slope residuals 

vs. depth, gs = sediment grain size; bT = bottom temperature, sfcSr = surface salinity 

residuals vs. depth, strat = stratification; n488 = rnlw488, n551r = rnlw551 residuals vs. 

depth, sst_anom = SST anomaly, cross = filtered cross-shore velocity, cvar = variance in 

raw cross-shore velocity, divsy = divergence tendency).  Variables corresponding to 

arrows reaching far along an axis are important on that axis.
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Species that were most abundant in areas with high scores on this axis show a preference 

for shallow, cold areas with coarse-grained sediment and anomalously high green 

reflected.  Witch flounder, Northern shortfin squid, longfin squid, and scup all tended to 

be most abundant for very negative axis values, while Atlantic herring and summer 

flounder were more abundant at slightly more positive values (Fig. 5, 6).  Scup and 

summer flounder were not very well-explained on this axis. 

 The second axis was also a cross-shore gradient, but was mostly comprised of 

bottom variables, including bottom temperature (+), log-transformed depth (-), sediment 

grain size (- on phi scale), and bottom slope residuals (-).  Shallow water with a warm 

bottom, coarse-grained sediment, and an anomalously small slope for that depth would 

produce high scores here.  Spatial maps of this axis show high scores inshore and low 

scores offshore in the fall (from shallow water with a warm bottom to deep water with a 

cold bottom).  In the winter and spring bottom temperature and depth balance each other 

on the axis and result in maps that are neutral across the entire region.  On this axis, 

southern species (scup, summer flounder, longfin squid) were most abundant where axis 

values were very positive, while northern species (Atlantic herring, witch flounder, 

Northern shortfin squid) tended to be most abundant where axis values were more 

negative (Fig. 5, 7).  Atlantic herring and Northern shortfin squid were not very well-

explained on this axis, and southern species were better explained than northern species. 

 The third axis was characterized mostly by stratification (+), but variance in raw 

cross-shore velocity (+), surface salinity residuals (-), and rnlw551 (-) were also heavily 

weighted on the axis.  A site with high scores on this axis would exhibit high 

stratification, high variance in cross-shore velocity, and low surface salinity and low  
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Figure 6.  Response curves and Spatial Maps for CCA Axis 1.  Abundance, relative to the 

maximum observed abundance, is plotted for six species as predicted by a GAM 

dependent on axis 1 scores, correlated with SST anomaly and depth (blue: northern, red: 

southern, solid: pelagic squid, dotted: pelagic fish, dashed: benthic flatfish) (a).  Color 

maps and contours show how axis 1 scores are distributed spatially for fall (b), winter (c), 

and spring (d) of 2006. 
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Figure 7.  Response curves and spatial maps for CCA Axis 2.  Abundance, relative to the 

maximum observed abundance, is plotted for six species as predicted by a GAM 

dependent on axis 2 scores, correlated with depth and bottom temperature (blue: northern, 

red: southern, solid: pelagic squid, dotted: pelagic fish, dashed: benthic flatfish) (a).  

Color maps and contours show how axis 2 scores are distributed spatially for fall (b), 

winter (c), and spring (d) of 2006.
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Figure 8.  Response curves and spatial maps for CCA Axis 3.  Abundance, relative to the 

maximum observed abundance, is plotted for six species as predicted by a GAM 

dependent on axis 3 scores, correlated with stratification (blue: northern, red: southern, 

solid: pelagic squid, dotted: pelagic fish, dashed: benthic flatfish) (a).  Color maps and 

contours show how axis 3 scores are distributed spatially for fall (b), winter (c), and 

spring (d) of 2006.
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rnlw551 (greenness) for that depth.  This axis seems to describe seasonal variation, the 

major environmental factors all exhibiting strong seasonal dependence.  High values on 

this axis are very characteristic of early fall features: high stratification, variable onshore 

flow, and relatively clear, fresh water; fall maps of this axis show scores that are low very 

near the coast but increase steeply in relatively shallow water and are high throughout the 

majority of the region.  Low values throughout the entire region are more representative 

of winter and early spring.  Scup, summer flounder, and Atlantic herring were most 

abundant with negative values on Axis 3, while Northern shortfin squid was most 

abundant with positive values (Fig. 5, 8).  Longfin squid, witch flounder, and Atlantic 

herring were not well-explained on this axis. 

2.4  Discussion 

 We found that the environmental features considered in this study are useful when 

defining important habitats for common fish and invertebrate species in the MAB.  Both 

benthic and pelagic features were influential to the community.  Additionally, many of 

the pelagic variables deemed important were described by ocean observing systems, and 

these remotely sensed characteristics increased the explanatory power of the model 

beyond what was given by benthic variables and those measured in situ using CTD. 

2.4.1  Pelagic Habitat 

 Many management strategies tend to focus almost exclusively on the benthic 

habitat.  While bottom structure serves as a refuge for many species and is important to 

consider, we find that the pelagic habitat is at least as important as the benthic in 

describing the distribution of many fish and invertebrate species in the MAB.  The CTD 

and remotely sensed categories of variables each individually explained about as much 
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community variation as the benthic category did, and only 24% of the variation 

accounted for was not explained by either the CTD or remotely sensed habitat categories 

(Fig. 4).  Also, pelagic variables came into play strongly in both the first and third CCA 

axes; sea surface temperature and rnlw551 residuals were important on the first axis, and 

all major variables on the third axis were pelagic features: stratification, variance in 

current velocity, surface salinity residuals, and rnlw551 residuals.  These observations 

support the concept that seascapes need to be viewed as three-dimensional environments 

in which the entire vertical water column is just as important as the bottom structure. 

2.4.2  Ocean Observing Systems Describe Pelagic Habitat 

 There was a high degree of redundancy between remotely sensed variables and 

both benthic and CTD variables; approximately a third of each of these two categories 

was also described by remotely sensed variables (Fig. 4).  This suggests that the methods 

employed for measuring sea surface characteristics are effective at describing 

characteristics measured in situ throughout the water column.  The redundancy with 

benthic variables was most likely due to the inclusion of SST anomalies in the remotely 

sensed category; SST in deep water is less likely to vary as much as it does in shallow 

water.  The redundancy with the CTD variables, however, is more likely to be due to 

correlations between stratification, surface salinity residuals, cross-shore velocity and 

variance in velocity, and rnlw551 residuals.  This may be due to currents affecting the 

stratification of the water column, which in turn may impact surface salinity and rnlw551 

(greenness, possibly suggesting primary productivity).  Although differences in 

redundancy between categories during different seasons were not considered in this 

study, it is likely that redundancy – particularly between remotely sensed variables and 
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CTD variables – does vary over the seasons, especially in the MAB.  In the winter and 

early spring when the water column is unstratified, surface characteristics are more likely 

to be similar to bottom characteristics even in relatively deep water.  In summer and early 

fall, however, when the water column is highly stratified, surface characteristics are less 

likely to represent bottom conditions. 

2.4.3  Ocean Observing Systems Enhance Habitat Models 

 The power that remote sensing can have in describing the associations between 

the community and environmental gradients is demonstrated by the fact that IOOS comes 

into play in both the first (cross-shore) and third (seasonal) CCA axes, Axis 1 being 

heavily weighted with both sea surface temperature and rnlw551, and rnlw551 and 

variance in currents coming into play relatively strongly in Axis 3.  With the growing 

possibilities that remote sensing can offer, several of the other variables that are most 

important on these axes could potentially be predicted using remote sensing equipment in 

the near future: bottom temperature, stratification, and salinity data can be gathered using 

gliders, and other features (surface salinity, for example) could potentially be inferred 

using algorithms that include surface characteristics measured via satellite and HF radar. 

  In the final CCA model, we also see that 17% of the explained community 

variation was explained solely by remotely sensed variables (Fig. 4).  This indicates that 

ocean observatories not only give us information about habitat features we routinely 

measure in situ, but also on features not routinely measured in situ.  Furthermore, six 

habitat variables were included in the remotely sensed category of data: twice as many as 

in either the CTD or benthic category.  While this tells us that there are many remotely 

sensed variables that give us important information about habitat, it is important to note 
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that there were also many remotely sensed variables available to be used in this analysis 

and only a few that were available in the benthic and CTD categories.  The explanatory 

power of the category was increased simply due to the number of variables used.  The 

remotely sensed category explained approximately the same amount of community 

variation as either of the other two categories (CTD and benthic) (Fig. 4), so even though 

twice as many variables were included they did not seem to contribute proportionately to 

the explanation of community variation. 

2.4.4  Other Conclusions 

 Twenty-six percent of the variability in species abundance was explained by the 

13 environmental factors included in the model, but even though this percentage may 

seem small the results still tell us a lot about how fish and invertebrate species respond to 

their environment.  In analyses such as this one the total variance explained should not be 

given much value because even an ordination with a relatively small amount of variance 

explained can still provide a lot of valuable information (Palmer 1993).  We eliminated 

most of the environmental variables that were initially considered in the model because 

they were either shown to be unimportant or redundant with other variables.  By doing 

this we were able to narrow several potentially important factors down to the final 13 

(Table 2) that seemed to be most important to the community as a whole and that should 

be considered in future studies concerning communities in areas with several migratory 

fish species.  These 13 factors were further condensed into two major gradients described 

by the first three axes, the first two axes defined mainly by a cross-shore gradient and the 

third defined by seasonal changes, especially in stratification.  Analyses like this one 

allow us to look at the ecosystem holistically and focus less on individual species.  If we 
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can determine the environmental variables that are important to the entire community we 

can make steps toward identifying what characteristics lead to “good conditions” for the 

ecosystem as a whole.  This would then allow us to define areas in which it would be 

beneficial to focus future process studies. 

 Studies like this one can be very useful for fisheries management, and research 

looking at the data in other ways (for example, by using smaller target groups of species) 

can be a helpful supplement to our results.  Similar research can, for instance, help to 

define essential fish habitat and reduce by-catch.  Figures 6-8 include, in addition to 

species response curves, seasonal spatial maps for 2006 for each of the CCA axes 

discussed.  The combination of these maps and response curves are an example of what 

can be done using results from this type of study.  Looking at them together allows us to 

see at which locations in the MAB each of the axes in the model predicts high abundance 

for each species.  If maps like these can be created and updated over frequently and used 

to predict the locations of groups of species relevant to fisheries, they may be helpful in 

developing dynamic management strategies.  The growing applicability of remote 

sensing can be very helpful in increasing our ability to apply the results to fisheries with 

relative ease, and may allow for designation of dynamic MPAs which would require less 

area than static MPAs (Game et al. 2009).  These developments also give us the 

opportunity to implement adaptive management.  Because this management strategy 

requires constant adjustments to the practices of fishermen, managers, and scientists 

based on the observations of all involved (Kar & Matsuda 2006), it is important to be 

able observe environmental features long-term and on fine spatial and temporal scales.  

Now that ocean observatories make this possible, if we can strengthen collaborations 
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between fishermen, managers, and scientists, widespread use of adaptive management 

may be feasible in the near future.  This would allow for continuous improvement on 

fishing practices, paving the way for more sustainable fisheries. 

 Because of the design of the study, and the limited data available, several 

questions are still left unanswered and deserve further study.  The nature of the benthic 

structure should be reconsidered; here, benthic variables were assumed to be static over 

time, but in fact they can be very dynamic (Glenn et al. 2008).  Also, because of the 

timing of the cruises, even though there are several survey sites for each season (winter, 

spring, and fall), those surveys take place over a limited time period and the entire season 

is not covered.  No trawl surveys were collected during the summer, and therefore these 

results should be used cautiously if at all to consider species distributions during summer.  

We need to exercise caution in making inferences about pelagic species when using data 

collected by bottom trawl, since presumably these species would not most commonly 

occur at the same depths as the bottom trawls.  We also cannot assume fish are in a 

“preferred” environment; fish collected may be in the process of moving to a favorable 

environment, if spawning they may be in (or moving to/from) an environment that is 

optimal for their young but unfavorable to them as adults (Terceiro 2007, Katz et al. 

1994), etc.  While we believe our major conclusions will hold across all seasons and for 

the ecosystem as a whole, the more specific details are likely to vary from our results 

depending on the seasons and species in question. 

 Future ecosystem models may also benefit by including other data that was not 

available for this study.  We only had data available for adult individuals, but to fully 

understand the ecosystem we need to know about the abundance and distribution of all 
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life stages, including eggs and larvae.  In order to understand adult fish distributions it 

may also be beneficial to include a time lag in models; knowing what environmental 

conditions were experienced when adults were in younger, more vulnerable life stages 

can help determine the present abundance and distribution of adult species.  Determining 

appropriate time lags would be easiest with short-lived species, but having information 

on the size/age class of collected individuals could also help with this.  Research suggests 

that size-selective fishing can negatively affect the resilience of populations and that it is 

important to maintain the age and spatial structure of populations as well as the biomass 

(Hsieh et al. 2010), further emphasizing the need to for data on size/age of fish collected.  

Studies similar to this one would also benefit from benthic data with a finer spatial 

resolution; many species depend on features that vary over scales much smaller than the 2 

km grid used in this study, especially for refuge.  Any reliance on these features would 

not have been revealed in this study.  Having more remotely sensed variables available 

would also be extremely useful to fisheries studies.  In the future, the ability of remote 

sensing equipment to replace in situ measurements can be increased further by measuring 

new characteristics or by finding new applications available with present equipment and 

by increasing the spatial and temporal coverage of the present equipment (between 2007 

and 2008, the HF Radar network was expanded to cover the entire MAB).  Other ocean 

observing assets not considered in this study, such as gliders, can also provide more 

continuous measures of pelagic characteristics (including but not limited to those that are 

measured using CTDs) remotely at depths spanning the entire water column.  We already 

have a lot of great data sources, many of which were used in this study, that are useful 

resources for fisheries research and management.  As technology develops further, the 
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possibilities are unlimited.
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3.  FUTURE OPPORTUNITIES 

3.1  Technology is Sufficient, and Still Evolving 

 For years ecologists have known that the pelagic habitat is important in 

determining the distribution of marine species and until recently have not had the data 

necessary to model the pelagic habitat and how marine species respond to it.  We now 

have satellites that measure – either directly or through the use of algorithms utilizing 

measured variables – sea surface temperature, water leaving radiances, chlorophyll, and 

locations and strengths of frontal boundaries, among others.  HF radar provides maps of 

surface current velocity, vertical velocity, and vorticity.  Coastal coverage in the MAB 

has grown from small subregions in 2003 to the entire MAB in 2008.  Autonomous 

gliders extend the surface coverage provided by satellites and HF radar to the water 

column beneath the surface. 

 The remotely sensed characteristics that we considered were sufficient to describe 

many of the important features measured in situ, and several even contributed habitat-

defining information that was not provided by either the in situ CTD factors or the 

benthic factors.  With the constantly growing capabilities of ocean observatories, we 

should soon be able to remotely observe even more of the environmental factors that 

today we are still only able to measure by going out to sea.  We now have the capability 

to make great strides in our understanding of the complicated interactions that define 

coastal ecosystems. 

3.2  Application to Adaptive Fisheries Management 

 This new capacity to measure highly dynamic features with a fine spatial and 

temporal resolution makes the implementation of adaptive management strategies more 
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feasible.  Adaptive management consists of a constant accumulation of knowledge and 

systematic feedback learning by scientists, fishermen, and managers (Kar & Matsuda 

2006).  It involves experimentation of different policies followed by monitoring of the 

results; any observations can be used quickly to adjust and inform new management and 

research decisions.  With the capabilities we currently have for remote sensing, habitat 

models, and field observations, the tools are finally in place to make adaptive 

management possible, but in order to make it successful all user groups involved must 

work together as partners and be willing to share their knowledge and observations with 

one another. 

 The use of remote sensing in combination with habitat models allows us to create 

dynamic habitat maps that we can update frequently and as they are needed to aid in 

adaptive management.  Game et al. (2009) suggest that remote sensing can be used to 

designate dynamic MPAs based on the constantly changing habitat, a strategy that would 

require less total area than static MPAs.  We can do studies similar to this one but more 

focused on target groups of species, and potentially use the results from those studies in 

adaptive management for specific fisheries. 

 For example, the results from this study have contributed to the obtainment of 

funding for research that is currently underway for the longfin squid fishery in the MAB.  

This fishery has had considerable problems with butterfish bycatch, and has even been 

threatened to be shut down due to those issues.  This new study will use habitat models to 

predict co-occurrence between squid and butterfish, and will use those models to 

speculate on how to best limit bycatch in the fishery.  Dynamic maps based on habitat 
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variables obtained through ocean observatories, similar to those in figures 6-8, can be 

created for these co-occurrence models and used in adaptive management. 

 Cooperation and sharing of knowledge is an integral part of adaptive 

management.  Currently we are collaborating with commercial fishermen and managers 

to ensure their input is part of the model development.  In order to ensure the final 

product has relevance, we need information on how they fish and on what environmental 

cues they look for.  We have already shared results from this multivariate study as well as 

one considering only longfin squid, butterfish, summer flounder, and spiny dogfish with 

the Mid-Atlantic Fisheries Management Council, and once we have results from the 

squid/butterfish co-occurrence model we intend to share it with and get further input from 

both fishermen and managers.  As with any adaptive strategy, it will be an iterative 

process that should improve and provide us with valuable knowledge and experience at 

each step. 

3.3  Future Research Possibilities 

 Game et al. (2009) note that marine species tend to exhibit increased vulnerability 

to fishing pressure in certain areas such as breeding grounds, foraging areas, and 

migration routes.  It is especially important to understand the habitat dynamics in these 

regions and what controls the fish response.  If the relationship between animals and the 

environment is misunderstood or misused, especially in these areas of increased 

vulnerability, the population (or even the entire community) could face potentially 

devastating effects.  Habitat models that focus specifically on these vulnerable areas (for 

example, spawning habitat models) and the effects of fishing in these regions would be 

extremely beneficial. 
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 We can also focus studies on specific species or small groups of species, which 

would allow us to get a more defined picture of which environmental factors best predict 

the distributions of those species.  Marine species abundances may relate more closely to 

environmental factors that change on time scales similar to their generation times than 

they would to those that change more or less frequently (Hsieh & Ohman 2006).  This 

leads us to predict that short-lived species are likely to respond to environmental features 

that change on very short time scales, such as currents and temperature, and long-lived 

species are more likely to respond to environmental features that change less frequently, 

including several benthic characteristics.  Focusing on specific species could also make it 

easier to incorporate time lag into habitat models.  Because the abundance of adult 

species depends partly on successful recruitment of the young, having a picture of the 

past habitat (when current adults would have been recruited) may help explain the present 

abundance and distribution of marine species.  Incorporating this time lag may be 

difficult for many species, but can be very beneficial and feasible, at least for annuals and 

other short-lived species. 

 Other studies have indicated that size-selective fishing can negatively affect the 

resilience of populations (Hsieh et al. 2004).  They suggest that managers should aim to 

conserve not only the viable spawning biomass of a population, but also the age and 

spatial structure.  We did not have this data available on individuals for this study, but 

when possible it may be useful to incorporate age and/or size of individuals into habitat 

models as well as simple abundance or biomass. 

 Lastly, these results have strong implications for climate change.  Nye et al. 

(2009) showed that many species exhibit temporal trends in spatial shifts consistent with 
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the environmental variations that are associated with climate change.  The authors 

suggest many mechanisms for which climate change could have resulted in these spatial 

shifts, but it is still unclear which of those most impacts the fish.  This study showed that 

fish respond strongly to habitat variations and defined some of the key habitat-defining 

benthic and pelagic characteristics, many of which have been impacted by climate change 

(e.g. temperature, wind-driven circulation).  Future studies could look more deeply into 

just which habitat features are likely to be responsible for the spatial shifts that Nye et al. 

(2009) observed in many species and attributed to climate change. 

 Based on this study, we conclude that marine species respond to variations in not 

only the benthic habitat, but also in the pelagic habitat, and we are able to determine 

some of the major environmental factors that contribute to habitat.  We also establish that 

ocean observatories can describe many important pelagic features that should be included 

in habitat models.  This knowledge has enormous potential to lead to advances in 

management strategies, and the possibilities it opens up for new research opportunities 

are endless. 
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