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ABSTRACT OF THE DISSERTATION

Multimodal Image Registration using Multivariate

Information Theoretic Similarity Measures: Applications

to Prostate Cancer Diagnosis and Targeted Treatment

by Jonathan Chappelow

Dissertation Director: Anant Madabhushi

Multimodal and multiprotocol image registration refers to the process of alignment

of two or more images obtained from different imaging modalities (e.g. digitized his-

tology and MRI) and protocols (e.g. T2-w and PD-w MRI). Registration is a critical

component in medical applications including image guided surgery, image fusion for

cancer diagnosis and treatment planning, and automated tissue annotation. However,

registration is often complicated on account of differences in both the image intensities

and the shape of the underlying anatomy. For example, non-linear differences in the

overall shape of the prostate between in vivo MRI and ex vivo whole mount histology

(WMH) often exist as a result of the presence of an endorectal coil during pre-operative

MR imaging and deformations to the specimen during slide preparation.

To overcome these challenges, we present new registration techniques termed Com-

bined Feature Ensemble Mutual Information (COFEMI) and Collection of Image-derived

Non-linear Attributes for Registration Using Splines (COLLINARUS). The goal COFEMI

is to provide a similarity measure that is driven by unique low level textural features, for

registration that is more robust to intensity artifacts and modality differences than mea-

sures restricted to intensities alone. COLLINARUS offers the robustness of COFEMI
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to artifacts and modality differences, while allowing fully automated non-linear image

warping at multiple scales via a hierarchical B-spline mesh grid. In addition, since rou-

tine clinical imaging procedures often involve the acquisition of multiple imaging pro-

tocols, we present a technique termed Multi-attribute Combined Mutual Information

(MACAMI) to leverage the availability of multiple image sets to improve registration.

We apply our registration techniques to a unique clinical dataset comprising 150

sets of in vivo MRI and post-operative WMH images from 25 patient studies in order

to retrospectively establish the spatial extent of prostate cancer (CaP) on structural

(T2-w) and functional (DCE) in vivo MRI. Accurate mapping of CaP on MRI is used

to facilitate the development and evaluation of a system for computer-assisted detection

(CAD) of CaP on multiprotocol MRI. We also demonstrate our registration and CAD

algorithms in developing radiation therapy treatment plans that provide dose escalation

to CaP by elastically registering diagnostic MRI with planning CT.
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This dissertation represents the collective published and unpublished works of the au-
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1

Chapter 1

Introduction

1.1 Overview

Multimodal and multiprotocol image registration refers to the process of alignment of

two images obtained from different imaging modalities (e.g. digitized histology and

MRI) and protocols (e.g. T2-weighted and PD MRI), utilizing either rigid or non-rigid

coordinate system transformations. Both processes are critical components in a range

of applications, including image guided surgery [9–11], multimodal image fusion for

cancer diagnosis and treatment planning [12], and automated tissue annotation [13].

However, registration of multimodal imagery has posed a more challenging task com-

pared with alignment of images from the same modality or protocol on account of

differences in both image intensities and shape of the underlying anatomy. The first

of these hindrances, dissimilar intensities between modalities, arises as a consequence

of the measurement of orthogonal sources of information such as functional (SPECT)

and structural (CT/MRI) imagery [12], as well as on account of other factors such as

intensity artifacts, resolution differences, and weak correspondence of observed struc-

tural details. For example, artifacts such as inhomogeneity and non-standardness in

MRI [14,15], speckle and shadowing in ultrasound [16], and beam hardening and photon

scatter in x-ray represent common but particularly formidable hindrances. Interproto-

col image registration tasks, such as alignment of high resolution MRI and interventional

MRI (iMRI) [9] for guided treatment, are also hindered, although to a lesser extent, by

reduced image similarity owing primarily to resolution differences.

Further, non-linear shape differences are common between real multimodal biomed-

ical image data sets, and must be corrected using require elastic transformations. For

example, registration of images of highly deformable tissues such as in the breast have
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been shown to require flexible non-rigid techniques [17]. Similarly, non-linear differences

in the overall shape of the prostate between in vivo MRI and ex vivo whole mount his-

tology (WMH) have been shown to exist as a result of (1) the presence of an endorectal

coil during MR imaging and (2) deformations to the histological specimen as a result

of fixation and sectioning [18, 19]. Consequently, achieving correct alignment of such

imagery requires elastic transformations to overcome the non-linear shape differences.

Most automated registration techniques rely upon intensity-based similarity measures,

which have been shown to be wanting for robustness across highly dissimilar modalities

and in the presence of artifacts [3].

To overcome the challenges of both non-linear deformations and intensity artifacts,

we present new registration techniques termed Combined Feature Ensemble Mutual In-

formation (COFEMI) and Collection of Image-derived Non-linear Attributes for Regis-

tration Using Splines (COLLINARUS). The goal of the COFEMI technique is to provide

a similarity measure that is driven by unique low level textural features, for registra-

tion that is more robust to intensity artifacts and modality differences than similarity

measures restricted to intensities alone. The operation of COFEMI is described in de-

tail in Chapter 2. COLLINARUS offers the robustness of COFEMI to artifacts and

modality differences, while allowing fully automated non-linear image warping at mul-

tiple scales via a hierarchical B-spline mesh grid optimization scheme. The operation

of COLLINARUS is described in detail in Chapter 4. In addition, since routine clin-

ical imaging procedures also involve the acquisition of multiple imaging protocols, we

present a technique termed Multi-attribute Combined Mutual Information (MACAMI)

to leverage the availability of multiple image sets to improve registration. The operation

of MACMI is described in detail in Chapter 5.

The registration schemes were developed to perform an automated tissue annotation

task that is designed to facilitate the development and evaluation of a novel system for

computer-assisted detection (CAD) of prostate cancer on multiprotocol MRI. The de-

velopment of a multimodal CAD system requires ground truth labels for cancer on each

modality to characterize malignant tissue. Since these MRI pixel labels are usually ob-

tained by manual delineation, they can be extremely time consuming to generate and
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subject to errors and bias of the expert performing the annotation, which adversely

affects CAD performance. Therefore, to improve labeling and hence CAD classifier

accuracy, we perform alignment of in vivo images with corresponding ex vivo whole-

mount histology (WMH), the source of the cancer ”gold standard”, via automated

multimodal image registration using our novel registration techniques. Following regis-

tration, cancer ground truth on registered WMH is directly mapped onto corresponding

MRI studies.

We apply our registration techniques to a unique dataset combining multimodal

images comprising in vivo/ex vivo MRI and whole mount histology (WMH) in or-

der to establish the spatial extent of prostate cancer (CaP) on multi-functional struc-

tural (T2-weighted) and functional (DCE) in vivo MRI. Elastic registration using our

feature-driven registration technique COFEMI is demonstrated in conjunction with a

spline-based warping for registration of WMH and ex vivo MRI. A CAD system for ex

vivo MRI was trained using the registration-established CaP labels and demonstrated

to provide accuracy greater than CAD trained using manually established labels, as

described in Chapter 3. Automated elastic registration and mapping of CaP labels

from WMH to in vivo T2-w and DCE MRI via COLLINARUS was then demonstrated

for 150 sets of clinical MRI and WMH images from 25 patient studies. Finally, for the

same 25 patient studies, we also demonstrate elastic registration of the WMH to both

the T2-w and DCE MRI protocols simultaneously using MACMI to combine and utilize

the information channels associated with the two MRI protocols.

To demonstrate the utility of our elastic registration algorithms for improving treat-

ment possibilities, the CAD system was then applied to detection of lesions on an

independent data cohort comprising corresponding T2-w MRI and computerized to-

mography (CT) acquired for radiation therapy planning. Having determined suspect

regions on MRI, we leveraged our registration algorithms to align the MR data to the

CT studies, hence establishing the location of CaP on CT. These suspected regions

were then used to generate intensity modulated radiation therapy (IMRT) plans pro-

viding dose escalation to the detected lesion, while maintaining the usual dose to the

remainder of the prostate. We refer to this combination of image registration and CAD
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in radiation therapy planning as Computer-Assisted Targeted Therapy (CATT), and

describe the operation of CATT in detail in Chapter 6.

In the following section, we describe in detail the requirements and challenges in

developing a CAD system for accurately identifying the spatial location of prostate

cancer on in vivo clinical. We also introduce the novel image registration techniques

that were developed in this thesis to address these challenges.

1.2 Computer-Assisted Detection of Prostate Cancer

Cancer of the prostate (CaP) is the most common malignancy among men with 217,730

new cases estimated to have occurred in 2010 alone, including 32,050 fatalities (Amer-

ican Cancer Society). Early diagnosis of CaP expands the possibilities for treatment

and provides the best hope for curing it [20], however no image-based protocol exists

for its detection. The current protocol for CaP detection and diagnosis is a screening

test based on elevated levels of the prostate-specific antigen (PSA) in the blood [21],

followed by a needle biopsy guided using transrectal ultrasound (TRUS) to locate the

prostate in vivo [22], for patients with high PSA levels. However, TRUS biopsies have

been associated with low CaP detection accuracy due to (a) the low specificity of the

PSA test, and (b) lack of contrast between benign and malignant tissues in ultrasound

(US) [23]. Further, since no a priori knowledge of tumor location is available, biopsy

locations are chosen at random.

High resolution MRI has been demonstrated to show better separation of normal

benign tissue from cancer compared to ultrasound [22, 24, 25]. However, human visual

recognition has proven problematical as many benign features, such as atrophic glands

and stromal over-growth, exhibit similar texture and intensity characteristics to malig-

nant tissue. In response to the limitations associated with visual detection of prostate

cancer, methods using image processing and machine learning have recently been ap-

plied to the task of improving detection. We have demonstrated [26–29] the efficacy of

a computer-aided detection (CAD) system for detection of prostate cancer from high

resolution ex vivo MR of prostate specimens, and showed that its detection sensitivity
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and specificity were comparable to trained radiologists. One of the challenges in ex-

tending CAD to in vivo is determining the spatial extent and location of tumor on in

vivo MR in order to train the system to detect lesions. In light of low inter-observer

agreement in the task of determination of ground truth on ex vivo MR by visually

mapping histology ground truth, the quality of manually determined ground truth on

in vivo MR would be even more unsuitable.

The overall goal is to allow the construction of a system for detecting prostatic

adenocarcinoma in high resolution in vivo MRI, thus providing a powerful tool for

prostate cancer screening and staging. In this research, we wish to develop the image

registration methods necessary to facilitate the use of CAD on in vivo MR. It is our

general hypothesis that such a system would help (i) reduce the number of unnecessary

biopsies by avoiding biopsying everyone with a high PSA, (ii) decrease the number

of false positives associated with TRUS by improving the accuracy of needle insertions

during biopsy procedures, and (iii) improve therapy through targeted dose conformality

and reduced dosage to healthy tissue. In addition, the ability to characterize the 3D

morphology of CAP will improve the accuracy of targeted radiation therapy.

The CAD system developed in [26] produces a likelihood map for tumor presence

(Figure 1.1(c)) at every point on a high resolution ex vivo MR image by stochastically

combining 3D image texture features. Sophisticated classification [28] techniques have

been developed for the system, and novel implementations of machine learning methods

such as graph embedding [29] have been utilized in the fine tuning of its detection

capabilities. On ex vivo trials, the CAD system performed comparably to trained

experts in terms of accuracy where the expert segmentations were determined by visual

examination of the MRI images. The system has also demonstrated [28] significantly

lower intra-system variability (of CAD accuracy with change in system parameter)

compared to experts’ intra- and inter-observer variability (Figure 1.1(d)). Three human

experts’ determinations of CAP presence on ex vivo MR are shown superimposed on

Figure 1.1(d). Note that there is little inter-observer agreement (white) and that expert

determinations are highly inaccurate unless the determination is made using histology

as a reference as in Figure 1.1(b). The CAD result in Figure1.1(c) is comparable to
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(a) (b) (c) (d)

Figure 1.1: (a) ex vivo prostate MRI, (b) tumor ground truth from histology, (c)
CAD result, (d) superposition of 3 human expert segmentations of CAP on (a). Note
that (i) CAD performance is comparable to human experts and (ii) the low levels of
inter-observer agreement in (d). The bright areas in (d) are the only areas where all
expert segmentations agree.

tumor ground truth determined from histology. We wish to extend the CAD system to

cancer detection in vivo, and we plan to address several key challenges in making this

important transition.

There are important limitations of the current CAD system that must be addressed

to implement a CAD for in vivo MR. The CAD system depends on the availability of

accurately delineated tumor boundaries on MRI datasets for training of the system’s

tissue classification parameters and for evaluating the CAD-produced tumor segmenta-

tions for accuracy against a “ground truth” for tumor presence. Previously, however,

this ex vivo MR ground truth was determined by manually mapping the tumor bound-

ary from the histological sections onto the MR data, a procedure that is prone to

errors and subject to observer bias (Figure 1.1(b) and (d)). Further, expert mappings

of ground truth on MR are not based on precisely corresponding histology slices, but

approximations of corresponding data. Delineation of accurate ground truth will im-

prove accuracy of ex vivo tumor detection by improving prior feature distributions used

for tissue classification. Previous studies have demonstrated the consequences of inac-

curacies in ground truth by detecting classification errors using the graph embedding

techniques [29]. This method was demonstrated to be able to correct for errors in la-

beling by experts and thus yield a refined set of expert labeled cancer instances. Errors

in tumor segmentation in Figure 1.2(a) are detected using graph embedding to identify

outlier pixels (Figure 1.2(b)). The outliers in the graph embedding result correspond
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(a) (b) (c)

Figure 1.2: (a) Manually determined ground truth from histology. (b) Representation
of tumor texture features in reduced dimensional space. Cluster outliers shown in red
on (b) represent incorrectly classified tissue also shown in red on (c).

to mislabeled regions shown in Figure 1.2(c). These discrepancies need to be addressed

to determine CAP ground truth on ex vivo MR from histology.

Since the tumor ground truth is similarly absent on in vivo MR data sets, an anal-

ogous procedure for mapping the ground truth from histological sections and ex vivo

MRI to corresponding in vivo MRI is required for training and evaluating the CAD

model for detection of cancer in vivo. The process of physically slicing and quarter-

ing of histology sections results in significant deformation and tissue loss. In order to

correctly match material points on histology with MR, it is necessary to account for

these deformations using elastic transformations. Given these issues, it is necessary to

reliably establish ex vivo ground truth in a robust, unbiased manner.

The lower spatial resolution of in vivo MRI compared to ex vivo MRI makes deter-

mination of distinct image features difficult, hindering the ability of expert observers

to accurately align the in vivo MR slices to histology. Manual registration of in vivo

MR directly to histology is complicated by the absence of co-oriented in vivo MR and

histology slices and by the presence of out-of-plane deformations in in vivo prostate

MR data. In addition, the decreased signal-to-noise ratio of in vivo MR poses a prob-

lem for implementing automated registration techniques as the structural information

contained in the data is much less than that of the ex vivo data sets. To address these

problems and build a CAD system for detection of prostate cancer from high resolution

in vivo MR data, we propose the following,
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1. Since tumor ground truth is determined from histology, we propose elastic registra-

tion and mapping ground truth from whole-mount histology to ex vivo MRI and in

vivo MRI of the prostate.

2. The use of textural features derived from MRI intensities to improve the perfor-

mance of image similarity measures in the registration procedure.

3. The use of multiprotocol (T2-w and DCE) MRI as an adjunct to scalar image

intensities to enhance the registration procedure.

1.3 Previous Work

Manual labeling of structures on radiological images is often used as a surrogate of

ground truth for evaluating CAD algorithms, however we [29,30] and other researchers

[31–33] have demonstrated that expert segmentations are often corrupted by a signifi-

cant number of mislabeled instances. These errors in the ground truth surrogates could

severely compromise the efficacy CAD models as well as the validity of CAD evaluation

results. Several researchers have demonstrated [34, 35] that utilization of one or even

multiple expert segmentations is not suitable as a basis for ground truth. We propose

the use of image registration to map the histology ground truth onto the ex vivo MR

images. Tumor regions determined on ex vivo MR will then be mapped onto in vivo

MR, via an elastic image registration technique. Although some researchers have at-

tempted to use whole mount histological prostatectomy specimens to demonstrate the

use of high resolution in vivo MR in visually identifying CAP [36,37], little work exists

on the task of image registration of prostate histology and MR on account of the nu-

merous difficulties involved. In [28] we attempted to map tumor extent determined on

histological sections to MR by maintaining the ex vivo MR slices and histological slices

in the same plane of section. Areas visually determined to be affected by cancer were

manually mapped to ex vivo MR. Manual registration is approximate at best and does

not account for the processes of tissue fixation and slicing of histology sections which

results in deformation and tissue loss. A robust registration algorithm will require lo-

calized deformations to be applied. Multimodality problems such as this one are also
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faced with data that have different slice thicknesses and spatial resolution, such that

the histology slices, while of high spatial resolution within the plane of the image, do

not directly correspond to specific slices within the ex vivo MR volume. A volumet-

ric deformation algorithm is necessary to overcome this aspect of multimodality image

registration.

Mutual information (MI) has recently [38–40] been introduced as a similarity mea-

sure for voxel-based registration of multimodality images, due in part to the robustness

of the measure to intensity differences between modalities and protocols. In its ca-

pacity as a global image similarity measure, MI is often used as an objective function

for rigid image registration followed by feature-driven elastic deformations. Recently,

some researchers have developed warping algorithms such as finite element models [11],

free form deformations [12,17], thin-plate-splines (TPS) [41], and Gaussian kernels [42]

to accomplish elastic registration in sequence with rigid registration by maximization

of mutual information. MI has also been utilized in the elastic registration step as a

metric to validate TPS deformations in 2D images [43] and more recently in volumetric

data [44]. Porter et al. [10] and Moskalik et al. [45] have attempted to register histolog-

ical and US images of the prostate. In [10] rudimentary corrections such as rescaling

the aspect ratio of the images were used to account for histological deformations. Lee

et al. [12] have utilized manually defined anatomical landmarks to guide non-rigid reg-

istration between histological prostate sections with low resolution in vivo MRI. Since

an external array coil and not an endorectal coil was used in the MR imaging, no

prostate deformation occurred. Consequently a simple rigid registration combined with

deformation of landmarks was used to warp the histology onto the MRI via a TPS

transformation. In many studies anatomical landmarks have been used to aid the reg-

istration procedure [46–50], however automatic selection of landmarks for registering

prostate imagery has not received much attention. Generic methods for selecting point

correspondences and performing non-rigid deformations have been described in [46].

Our proposed method will integrate automatic anatomic fiducial determination with

an elastic registration technique to map tumor regions from histological sections onto

the ex vivo MRI sections.
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The mapping of tumor regions from ex vivo onto in vivo MRI is complicated by

presence of large prostate deformations due largely to the endorectal (ER) coil, presence

of which is necessary to maximize signal intensity. In addition, the in vivo MR protocol

is subject to significantly higher noise and MR-related artifacts compared to ex vivo.

Alterovitz et al. [51] have studied ER coil induced deformations in vivo and have shown

that they produce significant dimensional and volumetric changes. Registration of

prostate CT images subject to large deformations due to variable presence bowel gas

has been addressed by Foskey [52]. In [11] Bharatha et al. presented an alignment

strategy for registering segmented pre-operative (1.5 T) and intra-operative (0.5 T)

MR images of the prostate using an active surface algorithm. du Bois d’Aische et

al. [49] proposed an improvement to [11] by using a MI based non-rigid registration

algorithm to match the internal structures of the prostate. Both [11,49] however, only

looked at registering in vivo MRI to in vivo MRI and not the more difficult task of

registration of in vivo MRI to ex vivo MRI or histology. We present a novel approach

using elastic deformation driven by multiparametric image information to register the

in vivo and ex vivo MRI with histology.

More detailed descriptions of previous work on registration of histology and MR

images of the prostate, and the problems of elastic and multimodal image registration

in general, are provided in Chapters 2-5.

1.4 Overview of Contributions

To address the challenges of automated multimodal elastic image registration, we have

developed a set novel registration methodologies. Our methods are aimed at improving

the image similarity measure, which drives the optimization of the image transforma-

tion, by (1) incorporating multiple independent textural features, and (2) leveraging

the availability of multifunctional image sets. First, we have developed an improved

similarity measure for multimodal images based on the combination of multiple cal-

culated textural features. We have implemented the texture-driven similarity measure

within both affine and elastic registration frameworks. This technique, termed Com-

bined Feature Ensemble Mutual information (COFEMI) [53], is described in detail and
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demonstrated for the affine registration of ex vivo histology and ex vivo MRI in Chapter

2. The application of COFEMI for mapping regions of cancer from histology onto ex

vivo MRI, and subsequently training and evaluating a supervised classifier for detec-

tion of prostate cancer on ex vivo MRI, is demonstrated in Chapter 3. In this study,

we have also developed a novel pixelwise CAD system using independent component

analysis (ICA) of multiple textural features to drive a näıve Bayesian classifier for the

detection of cancer [5]. In Chapter 4, we demonstrate a novel automated elastic registra-

tion scheme, termed Collection of Non-linear Attributes for Registration Using Splines

(COLLINARUS) [1], which implements the COFEMI technique within an elastic reg-

istration framework. The application of COLLINARUS for mapping regions of cancer

from histology directly onto in vivo (pre-operative) MRI is demonstrated for 25 patient

studies with prostate cancer comprising 150 pairs of T2-w MRI and whole mount his-

tology images. Our second primary contribution is the development of a technique for

incorporating information from multiple co-registered image channels, such as multiple

MRI protocol image series that are commonly acquired as part of routine clinical prac-

tice, in a multivariate similarity measure to improve registration performance. This

technique, termed Multi-Attribute Combined Mutual Information (MACMI) [2, 7], is

described in detail and demonstrated for the elastic registration of ex vivo histology

and multiprotocol (T2-w and DCE) in vivo MRI in Chapter 5. For 25 patient studies,

MACMI is applied to mapping spatial extent of cancer onto both in vivo T2-w MRI

and in vivo DCE MRI by simultaneous elastic registration with 150 histology images.

In addition, we have leveraged our image registration and CAD techniques for cre-

ating intensity modulated radiation therapy (IMRT) plans providing dose escalation

to the dominant intraprostatic lesion, while maintaining dose to the entirety of the

prostate and minimizing dose to neighboring healthy tissue.

To facilitate both registration and annotation of whole-mount histological sections,

we have also developed a software package for digital reconstruction of whole-mount

sections from tissue fragments such as the quadrants employed in Chapters 2 and 3. The

software, referred to as HistoStitcher c©, provides a graphical user interface for interactive

reassembly of adjacent fragments and a set of routines for efficient and flexible image
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transformation and stitching. The design and operation of HistoStitcher is described

in detail in Chapter 7.

1.5 Notation

Table 1.1 below lists the common symbols used throughout this document. Notation

and symbols specific to the studies in each of the following chapter are listed in separate

tables.

Table 1.1: Common notation and symbols used throughout this document.
Symbol Description

A 2D template intensity image

B 2D target intensity image

CA Coordinate set defined for A
CB Coordinate set defined for B
fA(c) Value of image A at pixel c ∈ CA

fB(c) Value of image B at pixel c ∈ CB

Br Registered target B
Φβ Feature operator where β ∈ {1, . . . , n}

fΦβ (c) Feature value at c for Φβ

f(c) Feature vector [fΦβ (c)|β ∈ {1, . . . , n}] at c
Tap Known, applied transformation

Tco Corrective transformation
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Chapter 2

Registration of ex vivo Whole-Mount Histology and ex

vivo MRI of Prostate Specimens

2.1 Introduction to Image Registration

2.1.1 Image Similarity-based Multimodal Image Registration Back-

ground

Multimodal and multiprotocol image registration refers to the process of alignment of

two images obtained from different imaging modalities (e.g. PET and MRI) and pro-

tocols (e.g. T1-w and T2-w MRI), respectively. Both processes are critical components

of medical applications ranging from routine clinical tasks to cutting edge visualization

and diagnostic tools, including image guided surgery [9–11], multimodal image fusion for

cancer diagnosis and treatment planning [12], and automated image based tissue/re-

gion annotation [13]. However, registration of multimodal imagery is a significantly

more challenging task compared to alignment of images from the same modality or pro-

tocol, since image intensities between modalities may not reflect the same structural

attributes. More specifically, considerable differences in appearance between modalities

may arise as a consequence of the measurement of orthogonal sources of information

such as functional (SPECT) and structural (CT/MRI) imagery [12]. Other important

sources of dissimilarity include image intensity artifacts and resolution differences. Ar-

tifacts such as bias field inhomogeneity and intensity non-standardness in MRI [15],

speckle and shadowing in ultrasound [16], and beam hardening and photon scatter in

X-ray represent common but particularly formidable hindrances to multimodal image

registration. Interprotocol image registration tasks [9], are similarly hindered by re-

duced image similarity owing primarily to differences in image resolution and fidelity.
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The registration methodology presented in this study is geared toward addressing (1) a

lack of precise correspondence between anatomical fiducials observable in the different

modality images and (2) the presence of modality-specific artifacts in one image but

not the other(s) being registered.

Numerous multimodal image registration methods have focused on the development

of voxel-based similarity measures to establish image alignment, yet the optimal mech-

anism for incorporating the information encoded by the image intensities and their

spatial arrangements remains an open issue [54]. The spirit of voxel-wise similarity

measures (Ψ) is that when images A and B are brought into alignment via an appro-

priate transformation Tmax, obtained over multiple possible transformations (T), their

similarity is maximized.

Tmax = argmax
T

[Ψ(A,T(B))] (2.1)

However, when images A and B are obtained from different imaging modalities or

protocols, a non-linear relationship between voxel intensities in A and B may exist.

For this reason, non-linear, statistical measures of image similarity or interdependence

such as mutual information (MI) [38, 55], entropy correlation coefficient (ECC) [38],

and normalized MI (NMI) [56] are uniquely suited to multimodal image registration

tasks [39]. Despite the general robustness of information theoretic quantities in handling

the non-linear relationship of image intensities between dissimilar modalities, these

measures are limited in their ability to handle intensity artifacts and highly dissimilar

modalities. The shortcomings of MI are primarily a consequence of the limitations of

image intensities to overcome these challenges.

Recently, some researchers [57–59] have attempted to address the failure of MI

and other intensity-based similarity measures using low-level image-based textural fea-

tures to incorporate information regarding the spatial relationships of image intensities.

Pluim, et al. [57] proposed incorporating edge information by weighting MI or NMI val-

ues by a measure of gradient vector agreement. Studholme, et al. [58] used a form of

MI to consider connected component region labels as an image feature. Rueckert, et

al. [59] derived a multivariate counterpart of MI to characterize spatial co-occurrence of
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intensities. The form of MI used in [58] and [59], which we refer to as combined mutual

information (CMI), uses higher order entropy calculations to account for redundancies

between feature values and the image intensities from which they are derived. The use

of CMI for inclusion of semi-independent feature images that are in implicit alignment

with an intensity image is a more intuitive choice of higher-order MI compared to previ-

ously presented formulations which involved linearly combining multiple pairwise image

similarity values or other ad hoc formulations [60,61]. These CMI formulations [58,59]

however lack (1) quantitative justification for choice of features to complement image

intensity in driving the registration, and (2) a rationally designed method for selecting

appropriate features for an arbitrary registration task, suggesting that these schemes

may not be readily generalized to a broad range of multimodal registration tasks. The

theory behind previously proposed information theoretic quantities [39,58] is described

in detail in Section 2.2.

2.1.2 Motivation for Multiple Image Features in Image Registration

Multiple textural features derived from image intensities can provide valuable struc-

tural descriptions not readily discernible by use of a single image feature such as image

intensity. In addition, the use of textural attributes allows for alternate image intensity

representations that are more robust to imaging artifacts [14, 16]. In [14] and [62], the

utility of textural features in discrimination of posterior acoustic shadowing from the

lesion area in breast ultrasound was demonstrated. Similarly, spatial image features

calculated from statistics on gradients were successfully used in [63] to improved ret-

rospective correction of intensity inhomogeneity artifacts on MRI. The utility of image

texture attributes has also been shown to improve accuracy of image point matching

tasks [42, 64, 65] when used in conjunction with information theoretic techniques. It is

thus intuitive that multiple textural attributes can also provide the same benefits of

improved image correspondence and robustness to artifacts in multimodal registration

tasks. For example, given two intensity images A and B from different modalities, mul-

tiple textural representations of A or B may (a) not be plagued to the same extent by

intensity artifacts as A or B, and may (b) improve correspondence of structural details
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Figure 2.1: Overview of the operation of COFEMI. Automatic selection of an opti-
mal ensemble of textural features is central to the COFEMI method for multimodal
registration.

between the two modalities. The value of a similarity measure that is able to incor-

porate the information encoded by these textural features will hence correlate more

closely with degree of alignment of A and B.

2.1.3 Combined Feature Ensemble Mutual Information

The registration scheme presented in this study, Combined Feature Ensemble Mutual

Information (COFEMI), employs an algorithm for (i) optimal textural feature selection

and (ii) integration of multiple image derived attributes to create an improved similar-

ity measure to drive multimodal image registration. The COFEMI method operates

by dynamically selecting maximally informative textural representations from a larger,

comprehensive feature set, and then incorporates them via an information theoretic

formulation tailored to capture non-redundant information between the two images to

be registered. The flowchart in Figure 2.1 shows the modules comprising the COFEMI

technique. From the image(s) A,B to be registered, a large number of correspond-

ing textural images are generated as candidates for inclusion into a feature ensemble.

These feature images are obtained via application of (i) gradient, (ii) first order statis-

tical, and (iii) second order statistical operators on the images to be registered (Section

2.3.2). Since only a subset of the most informative features are required to provide the
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additional information to formulate a well defined similarity measure for multimodal

image registration, COFEMI selects textural feature images for inclusion into an op-

timal ensemble via a novel joint entropy maximization technique (Section 2.3.3). The

feature selection criteria include (1) the descriptiveness of the feature images in terms

of information content and (2) the distinctiveness of an image attribute to be included

in the ensemble with respect to the other existing feature images in the ensemble. The

COFEMI feature selection criteria are similar to previous feature selection approaches

that consider feature redundancy and feature relevance [66, 67], as quantified by MI.

Note however, that to the best of our knowledge, COFEMI is the only multimodal

image registration scheme to employ intelligent feature selection to generate an optimal

global similarity measure. Following feature ensemble generation, correct image align-

ment is achieved by optimizing some transformation T via maximization of the CMI

multivariate similarity measure of the corresponding image ensembles.

2.1.4 Quantitative Evaluation of Registration Tasks

The decision to utilize a particular method for evaluation of registration accuracy or

similarity measure performance depends on availability and type of ground truth. When

the ground truth is unknown, evaluation is usually qualitative and consists of visual

assessment of alignment quality. Similarity measure values themselves are often used in

the absence of ground truth to infer alignment quality, although it is generally not ap-

propriate to evaluate the performance of a similarity measure via the same or a related

measure (e.g. using MI values to quantify accuracy of MI-based registration) [68]. On

the other hand, if ground truth in the form of anatomical object segmentations is avail-

able, meaningful estimates of registration accuracy man be defined in terms of boundary

alignment and overlap of corresponding structures on both images. Manually placed

fiducial markers may also provide an estimate of registration accuracy by calculating

target registration error (TRE) [69]. Further, with synthetic image data, such as is

available from the multiprotocol MR simulated brain database at the Montreal Neuro-

logical Institute [70], definitive quantitative evaluation is possible because ground truth

for alignment is known. With such data, registration performance may be measured
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directly in terms of TRE, which may be calculated over multiple registration trials. Al-

ternatively, the utility of a similarity measure as a registration objective function may

be characterized by inspecting the behavior of the measure over a range of misalign-

ments [38]. Using this approach, systematic protocols for thorough characterization of

similarity measures have been proposed by Skerl, et al. [8, 71].

The evaluation techniques used in this study make use of ground truth for align-

ment, and region segmentations to infer alignment accuracy. In 3 sets of experiments

designed to evaluate robustness to modality differences and intensity artifacts, a total

of 8 unique quantitative evaluation measures are calculated to characterize COFEMI.

On 30 synthetic MR images with known alignment ground truth, registration error

from MI, COFEMI, and an image gradient-driven extension of MI is compared for

6 simulated inhomogeneity levels and 5 noise levels. We also implement the evalu-

ation protocol proposed by Skerl, et al. [8] to compare 8 image similarity measures

with COFEMI in terms of 5 properties designed to characterize registration capabili-

ties without solving Equation (2.1). Finally, on an additional 26 real multimodal (MRI

and whole mount histology) prostate images, for which alignment ground truth is not

available, MI, COFEMI, and the gradient extended MI are compared in terms of region

overlap and boundary alignment.

The organization of the rest of the study is as follows. Section 2.2 reviews the

information theory used in MI and related multivariate formulations, including the

CMI measure considered for COFEMI. Section 2.3 describes the COFEMI registration

scheme in detail, including the feature calculation and selection schemes, and the op-

timization approach. Section 2.4 describes the methods used to evaluate and compare

the performance of COFEMI with other methods. In Section 2.5 we present and discuss

the results of registration evaluation applied to two data sets, one synthetic and one

clinical. Concluding remarks and future directions are presented in Section 2.6.
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2.2 Theory of Combined Mutual Information

2.2.1 Mutual Information

MI is often defined in terms of Shannon entropy [72], a measure of information content

of a random variable. Equation 2.2 gives the marginal entropy, S(A1), of image A1 in

terms of its gray level probability distribution p(a1),

S(A1) = −
∑
a1

p(a1) log p(a1), (2.2)

where a1 ∈ {0, . . . , fmax} and fmax is the highest gray level intensity in image A1.

While S(A1) describes the information content of A1, the joint entropy S(A1A2) of an

ensemble of two images A1 and A2 describes the information gained by simultaneous

knowledge of both images (A1A2). This may be expressed as in [39,72],

S(A1A2) = −
∑
a1,a2

p(a1, a2) log p(a1, a2), (2.3)

where a2 represents the gray levels in A2. Thus, when image A1 best explains image

A2, joint entropy is minimized to max[S(A1), S(A2)]. Equation 2.4 below is a common

formulation of MI of a pair of images (or random variables) in terms of the marginal and

joint entropies wherein I2(A1,A2) is maximized by minimizing joint entropy S(A1A2)

and maintaining the marginal entropies S(A1) and S(A2).

I2(A1,A2) = S(A1) + S(A2)− S(A1A2), (2.4)

where I2(A1,A2) describes the interdependence of 2 variables, or gray levels of a pair

of images [39]. A Venn diagram representation of S(A1) and S(A2) is shown in Figure

2.2(a) where the shaded region represents I2(A1,A2). As I2(A1,A2) increases, the

uncertainty about A1 given A2 decreases. As such, it is assumed that the global MI

maximum will occur at the point of precise registration, when maximal uncertainty

about intensities of A1 is explained by A2. These properties of MI contrast with those

of traditional coefficients of correlation, which measure linear relationships rather than
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Figure 2.2: Venn diagrams with the shaded regions representing the information
theoretic quantities (a) MI (I2) of 2 random variables or images A1 and A2, (b) higher
order MI (I3) of 3 random variables A1, A2, and A3, and (c) CMI (I2

∗) between A1

and an ensemble of two simultaneously observed random variables, A2A3. (d) With
the addition of a fourth random variable A4, the fourth order MI (I4) decreases from
the quantity in (b). (e) CMI with the addition of a fourth random variable increases
as the knowledge of A4 further reduces the uncertainty about A1.

a more general functional relationship [39]. For these reasons, MI is considered the most

robust intensity-based similarity measure for multimodal images [39]. Note however,

that the spatial organization of pixels is not taken into account with MI.

2.2.2 Generalized Mutual Information

Generalized (higher-order) MI (GMI) may also be expressed as a summation of multiple

entropy terms, and represents the intersecting or “interaction” [73, 74] information of

multiple images or variables. The MI of three random variables A1, A2, and A3 can be

written in terms of Shannon entropy as [39],

I3(A1,A2,A3) = S(A1)+S(A2)+S(A3)−S(A1A2)−S(A1A3)−S(A2A3)+S(A1A2A3).

(2.5)
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The formula may be generalized for n random variables A1, ...,An as [75],

In(A1, ...,An) =
n∑

s=1

(−1)s+1
∑

i1<···<is

S(Ai1 · · · Ais), (2.6)

for all combinations {i1, . . . , is} ∈ {1, . . . , n}. GMI which is used to refer to In, n ≥ 2,

can only decrease with the addition of variables, as information shared by all variables

decreases. For example, Figures 2.2(a), (b), and (d) illustrate In for n ∈ {2, 3, 4}

semi-independent variables. The addition of A3 and A4 has the effect of decreasing the

common information from the quantity I2 as shown in Figure 2.2(a).

Since an intensity image and any textural feature representations are in implicit

alignment and semi-independent, they may be considered as a single high dimensional

observation rather than multiple independent variables since such images are related.

However, where the texture feature A3 is derived from and in alignment with A2,

GMI in the example shown in Figure 2.2(b) would treat A3 as independent from A2.

GMI is thus useful only in a registration scenario where each image is intended to

move independently. Further, the formulation of GMI shown in Equation 2.6 is not

necessarily a nonnegative quantity with a clear interpretation for registration. Despite

these inherent limitations of GMI, equivalent formulations of GMI expressed in the form

of Kullback-Leibler distance between the joint gray level distribution and the product of

the marginal distributions [39] are often used to incorporate image-derived features [61].

2.2.3 Combined Mutual Information (CMI)

The goal of CMI is not to measure the intersecting information of multiple random

variables or images (A1, . . . ,An), as with GMI, but to quantify the combined informa-

tion content encoded by one multivariate observation (e.g. A1 · · ·An) with respect to

another (e.g. B1 · · ·Bn). In the most simple case, the CMI (I2
∗) that a single image A1

shares with an ensemble of two semi-independent images, B1 and B2, is defined by the

equation,

I2
∗(A1,B1B2) = S(A1) + S(B1B2)− S(A1B1B2). (2.7)



22

I 2
∗ (
A

1
,A

2
··
·A

n
+
1
)

n
(a)

∑ n+
1

i=
2
I 2
(A

1
,A

i)

n
(b)

I n
(A

1
,A

2
,.
..
,A

n
+
1
)

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

n
(c)

Figure 2.3: (a) A plot of CMI of intensity image A1 with 16 (n − 1) dimensional
ensembles comprising intensity image A2 and (n − 2) corresponding textural feature
images, demonstrates that CMI is bounded by S(A1) (horizontal line), the information
content of A1. (b) Plot of the sum of pairwise MI (SMI) of A1 with each of A2, . . . ,An

aggregates redundant information about A1 and is unbounded. (c) Plot of GMI of
A1, . . . ,An illustrates information shared by all images becomes less as additional fea-
tures are considered. The upper bound on the value of CMI in (a) suggests that it is
a more intuitive formulation for integrating multiple semi-independent feature images
derived from A2, compared to either (b) linear combination of multiple MI measure-
ments or (c) GMI. For the synthetic example considered in this figure, intensity images
A1 and A2 are in correct alignment.

This formulation utilizes higher order joint entropy calculations to measure only the

unique (non-redundant) information provided by an additional image, B2, about A1.

Significantly, by considering B1 and B2 as simultaneously measured semi-independent

variables in the single multidimensional ensemble B1B2, any dependence that exists

between B1 and B2 is discounted. The generalized form of CMI of the n dimensional

ensemble εAn = A1 · · ·An with the m dimensional ensemble εBm = B1 · · ·Bm is then

written here as,

I2
∗(εAn , ε

B
m) = S(εAn ) + S(εBm)− S(εAn εBm). (2.8)

To compare GMI (I3(A1,A2,A3) in Figure 2.2(b)) with CMI, the quantity in Equation

2.7 is presented in Figure 2.2(c) in terms of only A as I2
∗(A1,A2A3), which is the CMI

of A1 with the ensemble A2A3. Unlike GMI, CMI can be seen to increase with the

addition of the new variable A3 that contains unique information. Figures 2.2(d) and

(e) extend this example to a fourth random variable A4 on GMI (I4(A1,A2,A3,A4))

of all four variables and on CMI (I2
∗(A1,A2A3A4)) of A1 with the ensemble A2A3A4.
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Again it can be seen that additional variables only reduce GMI and increase CMI.

Now consider the terms εAn and εBm in Equation 2.8 to represent two image ensem-

bles, each comprising an intensity image and multiple (n,m) intensity-derived feature

images. To compare the behavior of CMI and GMI for such variable length ensem-

bles, we again restrict the comparison to components of εAn , and consider the quantity

I2
∗(A1,A2 · · · An+1) for CMI, and In(A1, . . . ,An+1) for GMI in Figure 2.3 for multiple

values of n. In addition to CMI and GMI, Figure 2.3 also compares the quantity ob-

tained by summation of MI (SMI) values for pairs of images (
∑n+1

i=2 I2(A1,Ai)). SMI

has also been previously utilized for combining multiple sources of information [60].

As seen in Figure 2.3(a), as the ensemble grows with the introduction of images,

CMI approaches an asymptote equal to S(A1), which is the total information con-

tent or uncertainty about A1. On the other hand, SMI (Figure 2.3(b)) over im-

age pairs ((A1,A2), . . . , (A1,An)) increases in an unbounded fashion as intersecting

information provided by A2,A3, . . . ,An about A1 is recounted. Conversely, GMI

(Figure 2.3(c)) drops to zero as the information content shared by each A1, . . . ,An

becomes too small to measure. In summary, CMI has the desirable property that

I2
∗(A1,A2 · · · An) ≤ S(A1) = I2(A1,A1).

2.3 Combined Feature Ensemble Mutual Information (COFEMI)

2.3.1 Brief Overview of COFEMI

A flowchart showing the operation of the COFEMI registration technique for alignment

of a moving target image B with a stationary template image A is shown in Figure 2.4.

Briefly, these steps include,

Step 1. Feature Extraction (Section 2.3.2): COFEMI calculates two extensive sets of

n feature images from each intensity image A,B for which additional structural

description is required to improve multimodal image similarity.

Step 2. Feature Ensemble Selection (Section 2.3.3): Using the information maximiza-

tion algorithm described in Section 2.3.3, COFEMI constructs from the feature
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Figure 2.4: Flowchart describing the operation of COFEMI for the registration of a
target intensity image B to a stationary template intensity image A.

sets of the two multimodal images A,B, corresponding optimal feature ensembles

of reduced length to drive registration.

Step 3. Registration by Maximization of CMI (Section 2.3.4): The two intensity im-

ages A,B are registered by optimizing a spatial transformation via maximization

of CMI between the two ensembles associated with A and B respectively.

Table 2.1: List of notation and symbols specific to Chapter 2.
Symbol Description

G(A), G(B) Coordinates of object in A and B
G(Br) Coordinates of object in Br

Gb(A), Gb(B) Boundary of object in A and B
Gb(Br) Boundary of object in Br
Aβ Feature image for Φβ of A
Bβ Feature image for Φβ of B
πAl Optimal feature ensemble of Aβ, length l

πBk Optimal feature ensemble of Bβ, length k
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We define template and target intensity images A = (C, fA(c)) and B = (C, fB(c)),

both defined on some coordinate system C and with intensity values fA(c) and fB(c)

at every location c ∈ C. Image operators Φβ, β ∈ {1, . . . , n}, are defined to calcu-

late from A and B the n feature scenes denoted by Aβ = (C, fAβ ), and Bβ = (C, fBβ ),

respectively. Hence fBβ (c) is the resulting feature value at pixel c associated with ap-

plication of feature operator Φβ to B. The optimal feature ensembles, denoted by

πAl and πBk , of l and k images are uniquely composed such that πAl = Aγ1Aγ2 · · · Aγk

where {γ1, γ2, . . . , γl} ∈ {1, . . . , n}, and πBk = Bα1Bα2 · · · Bαk
where {α1, α2, . . . , αk} ∈

{1, . . . , n}. Hence, registration of A and B is achieved by optimizing some spatial

transformation T via maximization of the CMI between the ensembles AπAl and BπBk
to obtain TCOFEMI , which may be stated formally as,

TCOFEMI = argmax
T

[
I2

∗(AπAl , T(BπBk ))
]
. (2.9)

A list of the main notations employed in this study is given in Table 1.1.

2.3.2 Feature Extraction

The textural operators Φβ, β ∈ {1, . . . , n} include both linear and non-linear image

operations, and are drawn from 3 general classes of texture features including (i) gra-

dient, (ii) first order statistical, and (iii) second order statistical texture features. A

description of the 311 features considered here as part of COFEMI is given in Table

2.2.

Gradient Features

These features include 144 steerable and 11 non-steerable linear gradient operators,

whereby steerable filters refer to operators specified by an orientation parameter.

Non-steerable Gradient Features

Eleven non-steerable gradient features were obtained using the Sobel and Kirsch edge

operators [76], and discrete first order spatial derivatives. Three Sobel linear operators
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Feature Class Parameters Total
Fea-
tures

Gradient
(Sobel, Kirsch, Discrete Derivatives, Gabor)

scale (|σ| = 3)
orientation (|λ| = 6)
frequency (|ϕ| = 8)

155

First Order Statistics
(Mean, Median, Standard Deviation, Range)

window size (|κ| = 3)
12

Second Order Statistics
(Energy, Entropy, Inertia, Correlation, Inverse
Difference Moment, Information Correlation
(two), Sum Average, Sum Variance, Sum
Entropy, Difference Average, Difference
Variance, Difference Entropy, Shade,
Prominence, Variance)

window size (|κ| = 3)
number of bins
(|L| = 3)

144

Table 2.2: Description of 311 image derived features used by COFEMI and correspond-
ing parameters for each texture feature class.

were defined to detect the strength of horizontal, vertical, and diagonal edges. Four

Kirsch linear operations were utilized as approximations to the strength of edges normal

to lines oriented 0, π4 ,
π
2 , and

3π
4 radians from the horizontal. The Sobel and Kirsch filter

responses were obtained by convolution of A and B with each linear operator. Four

additional edge estimates are obtained by combinations of three simple first order spatial

derivative operators, including the vertical, horizontal, and diagonal spatial derivatives.

The derivative filter responses were again obtained by convolution of A and B with the

linear operators. The gradient magnitude of the image was calculated as the L2 norm

of the horizontal and vertical derivative responses at each pixel.

Steerable Gradient Features

Gabor gradient operators [77] comprise the steerable class of gradient calculations. The

linear Gabor kernel used here is defined by the product of a 2D Gaussian function with

a cosine in 2D space c = (x, y).

ΦGab = e
(x′+y′)

σ cos(2
π

λ
x′), (2.10)
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where λ is the wavelength of the sinusoid and hence controls the spatial frequency (scale)

of the oscillations. The width of the Gaussian envelope σ is used to define filters of size

κ × κ where κ = 5σ. Orientation of the filter is affected by ϕ through the following

coordinate transformations x′ = x cosϕ + y sinϕ and y′ = x cosϕ − y sinϕ, where

1 ≤ x ≤ κ, and 1 ≤ y ≤ κ. A set of 144 Gabor filters were generated for σ ∈ {1, 1.6, 3}

(κ ∈ {5, 7, 15}), λ ∈ { π
2
√
2
, π4 ,

π
4
√
2
, π8 ,

π
8
√
2
, π
16}, and ϕ ∈ {0, π8 ,

π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 }. A

total of 144 Gabor feature images for each A and B were obtained by convolution of

ΦGab with A and B for each of σ, λ, ϕ.

The application of each of the above steerable and non-steerable gradient operators

Φβ, β ∈ {1, . . . , 155} to A and B produces corresponding gradient scenes of A and B.

First Order Statistical Features

Four first order statistical feature operations (mean, median, standard deviation, and

range of image intensities) are defined from the gray level distributions of pixels within

κ × κ local neighborhoods of pixels Nκ(c) centered about each c ∈ C and of size

κ ∈ {3, 5, 7}. The mean feature operation was defined as the average gray level of all

pixels d ∈ Nκ(c). Each of the median, standard deviation, and range feature operations

are defined via pixel-wise, non-linear calculations using the same κ-neighborhoods to

sample local gray level distributions. For example, the range value at a pixel c is defined

as maxd∈Nκ(c) [f(d)] − mind∈Nκ(c) [f(d)]. These four feature operations, calculated for

all three κ values, (Φβ, β ∈ {156, . . . , 167}) when applied to A and B result in 12

corresponding feature scenes each.

Second Order Statistical Features

We define 144 unique second order statistical feature operations from the class of Haral-

ick features [78] for characterization of spatial gray level dependence. An L×L spatial

gray level co-occurrence matrix Pκ(c), where L = maxc∈C [f(c)], is first defined. The

value at any location [u, v] in the matrix Pκ(c) represents the frequency with which two

distinct pixels c and d ∈ Nκ(c) with associated image intensities f(c) = u, f(d) = v

are adjacent (within the same 8-neighborhood within Nκ(c)). The 16 Haralick features
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listed in Table 2.2 were calculated from Pκ(c) at every c ∈ C, for κ ∈ {3, 5, 8}, and

L ∈ {64, 128, 256} to obtain a total of 144 second order statistical feature operators

(Φβ, β ∈ {168, . . . , 311}).

2.3.3 Feature Ensemble Selection

The feature ensemble selection method applied to generate ensembles πAl and πBk cor-

responding to intensity images A and B is based on the interpretation of joint entropy

S(BπBk ) of an ensemble of images BπBk as the total information content of the ensemble.

Thus, an optimal ensemble πBk of length k for CMI-based registration would contain

maximum joint entropy S(BπBk ). Further, it follows that maximization of S(BπBk ) for an

ensemble of length k << n also simultaneously enforces the criteria of feature distinc-

tiveness. Determining the ensemble of length k that is optimal in terms of S(BπBk ) is

however not a trivial task. A brute force approach to selecting πk for k = 5 from n = 311

features would involve computing the joint entropy of
(
311
5

)
ensembles (over 1010). Con-

sequently, we present the following feature selection algorithm (CMIfeatures), which

iteratively incorporates the most distinct features (in terms of joint entropy) into an

optimal feature ensemble.

Algorithm CMIfeatures
Input: B, k, Bβ, β ∈ {1, . . . , n}.
Output: πBk .
begin

0. Initialize πBk and Ω as empty queues;
1. for i = 1 to k
2. for β = 1 to n
3. If Bβ is present then
4. Insert Bβ into πBk ;
5. Ω[β] = S(BπBk );
6. Remove Bβ from πBk ;
7. endif;
8. endfor;
9. o = argmaxβ [Ω[β]];

10. Insert Bo into πBk ;
11. endfor;

end

The central idea of the algorithm is to compute the joint Shannon entropy between
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B and πBk when a single feature image Bβ is inserted into πBk in a pairwise fashion

over all β ∈ {1, . . . , n}. At the end of each set of n iterations, the feature image Bβ

contributing the most information over the previously chosen features and B is inserted

into the queue πBk and removed from further consideration. The process is repeated

until k − 1 additional unique feature images are inserted into the ensemble πBk .

2.3.4 Registration by Maximization of CMI

Following feature extraction and selection of ensembles πAl and πBk , the CMI multi-

variate similarity measure is used to incorporate the non-redundant information en-

coded by the implicitly registered feature images within the ensembles. As such,

the optimal image transformation TCOFEMI required to align B with A is found by

TCOFEMI = argmaxT I
∗
2 (AπAl , T(BπBk )) (denoted by ΨCOFEMI(A,B) for simplicity),

and the registered target Br = T(B) is obtained. A Nelder-Mead simplex algorithm [79]

was used in our tests to optimize parameters for rotation, translation and scaling in T.

2.4 Quantitative Evaluation Methods

Quantitative evaluation is performed using three methods: (1) overlap and boundary

alignment of anatomical structures (Section 2.4.1), (2) TRE measured over multiple

registration trials (Section 2.4.2), and (3) an optimizer-independent evaluation proto-

col presented by Skerl (Section 2.4.3). Sections 2.4.1 and 2.4.2 describe the methods

involving registration trials (maximizing Equation 2.1 for different images and misalign-

ments), while Section 2.4.3 describes the methods for characterizing similarity measure

Ψ without optimization of T (Equation 2.1).

2.4.1 Evaluation using Anatomical Region Labels

When ground truth for correct alignment is not available, registration performance can

be evaluated via pre-segmented anatomical structures to calculate (1) alignment of the

boundaries and (2) overlap of the segmented region. We denote as G(A) and G(B), the

sets of pixels corresponding to prominent regions on the stationary image A and on the
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target image B. G(Br) denotes the region G(B) on the registered image Br. The region

overlap ratio (ROR) [80] of corresponding regions G(A) and G(Br) is calculated as,

φROR(G(A), G(Br)) = |G(A) ∩G(B
r)|

|G(A) ∪G(Br)|
. (2.11)

where |G| denotes the cardinality of set G. We also denote as Gb(A) and Gb(Br) as

the boundary pixels on G(A) and G(Br), respectively. The Hausdorff distance metric

[81] (φHD) is calculated between sets Gb(A) and Gb(Br) to quantify the accuracy of

alignment of G(A) and G(B) as in Equation 2.12.

φHD(Gb(A), Gb(Br)) = max

[
max

c∈Gb(A)

[
min

d∈Gb(Br)
‖c− d‖

]
, max
d∈Gb(Br)

[
min

c∈Gb(A)
‖c− d‖

]]
(2.12)

where ‖.‖ denotes the L2 distance in <2 space. A low Hausdorff distance measure

φHD(Gb(A), Gb(Br)) for a registration result indicates a low degree of misalignment

along Gb(A) and Gb(Br) and hence reflects a high degree of alignment between A and

Br. The Mean Absolute Distances (MAD) φMAD1 and φMAD2, which represent the

average of the shortest distances from each point on Gb(A) to Gb(Br) and from Gb(Br)

to Gb(A), respectively, are also calculated. We define φMAD(Gb(A), Gb(Br)) as the

average of φMAD1 and φMAD2.

2.4.2 Evaluation via Target Registration Error

TRE values are obtained by applying a known deformation (Tap) away from known

alignment, followed by execution of the registration algorithm to recover the initial cor-

rect alignment via a corrective deformation (Tco). The TRE measure is thus calculated

for each pixel c ∈ C as the distance between the common undeformed coordinates (c)

in B and the coordinates that have been moved by the applied and recovered transfor-

mations (cr = Tco(Tap(c)) in Br) by the equation,

TRE(c) = ‖c− cr‖ . (2.13)
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The average TRE over all c ∈ C in an image pair (B,Br) is then calculated as,

φTRE(Tco) =
1

|C|
∑
c∈C

TRE(c). (2.14)

2.4.3 Quantitative Evaluation via Skerl Evaluation Protocol

To evaluate the efficacy of a similarity measure Ψ for rigid registration in the absence

of confounding factors such as strategy for optimization of T in the maximization of

Equation (2.1), we implement the evaluation protocol presented in [8]. The Skerl eval-

uation protocol, which also requires images for which a “gold standard” for alignment

is known, calculates 5 unique properties to characterize Ψ. The spirit of the method is

to systematically sample a normalized linear transformation space at regular intervals,

and then to apply the transformations in order to characterize Ψ at various degrees

of misalignment of an image pair (B,Br). The space of image transformations is sam-

pled at M evenly spaced points ms ∈ {−M/2, . . . ,M/2}, or positions, along each of

N total lines ns ∈ {1, . . . , N} drawn in the hyperspace spanned by the transformation

parameters. The hyperspace used here is 3-dimensional, where each position (ns,ms)

represents a transformation specified by (θ1ns,ms
, θ2ns,ms

, θ3ns,ms
) for rotation, horizontal

translation, and vertical translation.

A parameter space line ns ∈ {1, . . . , N} is illustrated in Figure 2.5(a), where a PD-w

MR image is shown transformed from its original position by the two transformations

at the extrema of parameter line ns. At each point ms along this line, the 3 parameters

(θ1ns,ms
, θ2ns,ms

, θ3ns,ms
) are smoothly varied to generate a range of misalignment from

ground truth at ms = 0 (the black dot in Figure 2.5(a)). A stationary T2-w MR image

of the same brain slice is shown in Figure 2.5(b) relative to the same deformed PD-w

MRI slices in Figure 2.5(a). Next, by computing Ψ for the two images at each (ns,ms),

a total of N similarity “traces” each comprising M individual similarity values are

obtained from which fitness of Ψ is characterized. The trace of Ψ for line ns is shown

in bold in Figure 2.5(c). The primary quantities that are extracted from each of the N

traces are the location and number of local minima, and the slopes of the traces, shown

via the dashed and the light weight lines, respectively, in Figure 2.5(c). A close-up of
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Figure 2.5: The quantitative evaluation protocol proposed by Skerl involves system-
atically transforming an image along “lines” in transformation parameter hyperspace.
(a) A PD-w MR image shown at the two extrema of deformations (ms = −M/2 and
ms = M/2) on a line ns. (b) The corresponding T2-w MR image shown in its sta-
tionary position superposed on the deformed PD-w MR images in (a). The T2-w MRI
remains stationary, while (c) values of image similarity (Ψ) are calculated at positions
ms ∈ {−M/2, . . . ,M/2} along each line ns. Properties of Ψ are derived from the
derivative (light blue) and local maxima (dashed vertical) along the profile of a mea-
sure’s trace. (d) Location and number of local minima (solid vertical) and the global
maximum (dash-dotted vertical) are also used in the calculation of the properties de-
scribed in Table 2.3.
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Property Description

Accuracy
(ACC), φS1

Distance from the observed global maximum to ground truth.
Captures the extent to which the maximum of Ψ corresponds
to correct alignment; lower ACC is better.

Capture Range
(CR), φS2

Distance from the global maximum to the nearest local mini-
mum. Captures the extent of initial misalignment that can be
present and still achieve correct alignment. Higher CR is better.

Distinctiveness
of the Optimum
(DO), φS3

Number of local minima with respect to distance from the global
maximum. “Peakedness” of Ψ about the global maximum.
Higher DO is better.

Number of
Minima (NOM),
φS4

Number of local minima with respect to distance from the global
maximum. Possible locations for Ψ to find a local optimum
instead of the global optimum. Lower NOM is better.

Risk of
Non-convergence
(RON), φS5

Integral of the slopes of the similarity measure that are positive
away from the global maximum. Reflects the likelihood that an
optimization scheme will move away from the global maximum.
Lower RON is better.

Table 2.3: Description of properties φS1–φS5 of Ψ calculated by the Skerl protocol [8]
for evaluation in the context of rigid registration. The reader is referred to [8] for
additional details on the Skerl evaluation protocol.

the peak of Ψ is shown in Figure 2.5(d), where a local minimum and its associated local

maximum can be seen at 8 mm from the ground truth alignment.

A total of five properties proposed in [8] to quantify the ability of Ψ to drive rigid

registration include accuracy, capture range, distinctiveness of the global optimum,

number of local minima, and risk of non-convergence, and are calculated for each of the

N similarity measure traces (Table 2.3). We refer the reader to [8] for details on the

formulation of these properties as well as the protocol for defining and sampling the

normalized parameter space.

2.5 Results of Automated Affine Registration

2.5.1 Real and Synthetic Image Data

Table 2.4 summarizes the real and synthetic image data sets used for quantitative

evaluation of COFEMI, and the availability and type of ground truth for each data set,

and the evaluation techniques (Section 2.4) that are applicable for each data set.

Image Data Set 1: The image data set denoted by D1 represents multiprotocol



34

Data Set Protocols Parameters Ground Truth
Availability

Evaluation Measures

D1

(synthetic
brain
MRI)

T1-w
(T 1),
T2-w
(T 2),
PD-w
(P)

30 2D
sections of
a normal
study,
256×256
pixels

Brain gray matter
regions G(T 1)
and G(P).
Exact
misalignment Tap

between each T 1,
T 2 and P known.

Gray matter region
overlap
φROR(G(T 1), G(P)).
Target registration
error φTRE(Tco) of
whole brain.
Skerl’s similarity
measure properties
φS1–φS5.

D2

(clinical
prostate)

histology
(H),
ex vivo
MR (M)

2 3D
volumes
comprising
26 2D
sections,
256×256
pixels

Prostate regions
G(M) and G(H),
and prostate
contours Gb(M)
and Gb(H).
No alignment
truth.

Hausdorff distance of
prostate boundary
φHD(Gb(Mr), Gb(H)).
Region overlap of
prostate
φROR(G(Mr), G(H)).

Table 2.4: Description of image data sets used in this study for evaluation of COFEMI.

synthetic brain MRI (T1-w, T2-w, and PD-w and denoted via scenes T 1, T 2 and

P, respectively) from BrainWeb [82]. Each 3D MRI brain volume has dimensions

181× 217× 181 with voxel size of 1mm3. Ground truth for correct alignment between

T 1, T 2, and P is implicit in the simulated data, allowing for quantitative evaluation of

different registration schemes as described in Sections 2.4.2 and 2.4.3.

Image Data Set 2: The image data set denoted by D2 contains a total of 26 2D

4 Tesla ex vivo MR and digitized histology images from two prostate patient studies.

Details of the data acquisition are described in [28]. Haematoxylin and Eosin stained

2D digitized histological images, denoted by H, were generated by conversion to gray

scale and resampling from their original resolution of 0.07 mm/pixel (approximately

2000 × 2000 pixels) to match the resolution of the 2D MRI slices (256 × 256 pixels),

denoted by M. Since there were roughly twice the number of MRI slices as there

were histological sections for each patient study, the MRI sections corresponding to

the histological sections were identified by an expert by visually inspecting H andM.

Since only a total of 26 histological sections were available from the 2 glands, only 26

corresponding MRI slices were considered.
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2.5.2 Experiment 1: Synthetic Multiprotocol BrainWeb Data

Introducing Different Levels of Bias Field and Noise

Simulated noise and bias field inhomogeneity were artificially introduced into P by,

f∗(c) = (f(c)× gb(c)) + ησ(c), (2.15)

where gb(c) and ησ(c) represent bias field and noise functions, respectively. Bias field

gb(c) ∈ [0, 1] was obtained via the BrainWeb simulated MRI database, and noise ησ(c)

sampled from Gaussian distributions with mean 0 and variances σ. From each of the

30 P sections, an additional 30 scenes Pb,σ with gb(c), b ∈ {0, 0.5, 1.0, 1.5, 2.0, 2.5} and

ησ(c), σ ∈ {0, 1, . . . , 4}, were generated, for a total of 900 Pb,σ scenes.

Experiment 1a: TRE and Region Overlap

Since the T 1 and P images generated by the BrainWeb MRI simulator [82] are in

implicit alignment, evaluation of registration accuracy was performed as described in

Section 2.4.2 by imposing a known deformation Tap to Pb,σ, followed by execution of a

registration scheme to determine the transformation Tco required to recover the original

alignment. Using 30 pairs of corresponding T 1 and Pb,σ images from set D1, a total of

900 registration trials are performed over 5 different σ and 6 different b. In this experi-

ment, three registration methods MI, COFEMI, and CMIgrad were individually applied

to determine Tco. Since common feature driven registration approaches have used im-

age gradients [57,60,83], we investigate gradient-driven MI variant by denoting CMIgrad

as the scheme using similarity measure I2
∗(T 1, P Pgrad), where Pgrad is obtained from

the gradient magnitude feature operator. MI registration was performed using 128 gray

level bins, while CMIgrad utilized 48 gray levels. For COFEMI registration, a feature

ensemble of length k = 2 was generated by the CMIfeatures algorithm, and 42 gray

levels were used. The numbers of gray levels were determined empirically to be opti-

mal for the respective registration schemes. Following registration by MI, CMIgrad, and

COFEMI to determine Tco and hence Pr
b,σ, both φ

TRE(Tco) and φROR(G(Pr
b,σ), G(T 1))
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.6: Synthetic multiprotocol MRI of the brain is used to compare MI and
COFEMI for two different combinations of simulated inhomogeneity and noise. (a) T 1
and corresponding (b) Pb,σ with simulated misalignment, high inhomogeneity strength
(b = 2.5) and low noise (σ = 1). The boundary of the skull on T 1 ((a),(e)) and Pb,σ
((b)-(d), (e)-(h)) is shown in green and red, respectively. (c) MI registration result Pr

b,σ

is susceptible to inhomogeneity in the lower region of Pb,σ, as evidenced by misalignment
of red and green contours. (d) COFEMI is able to compensate for the artifacts and
noise, as evidenced by the nearly perfect alignment of the red and green contours.
(e)-(h) For pair of T 1 and Pb,σ with low inhomogeneity strength b = 1.0 and higher
noise σ = 2.

were calculated, G(T 1) and G(Pr
b,σ) denoting the sets of pixels representing the gray

matter region on T 1 and P respectively and where G(Pr
b,σ) = Tco(Tap(G(Pb,σ))). Val-

ues for φTRE and φROR are calculated for each of 900 registration trials.

Qualitative Results

Figure 2.6 presents a comparison of registration via MI and COFEMI for two different

slice pairs from P and T 1. In Figures 2.6(a) and (e), two different stationary T 1 images

are shown with the boundary of the skull outlined in green. The corresponding Pb,σ

sections subject to Tap and simulated noise and inhomogeneity are shown in Figures
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2.6(b) and (f), where the red contour represents the skull boundary. The image inten-

sities in Figures 2.6(b) and (f), are generated by Equation 2.15 using (b = 2.5, σ = 1)

and (b = 1.0, σ = 2), respectively. Since accurate registration of P to T 1 should result

in close coincidence of the red and green boundaries, boundary alignment can be used

to infer the accuracy of alignment. The results of MI-based registration of Pb,σ to T 1

are shown in Figures 2.6(c) and (g). Clearly, inhomogeneity in Pb,σ has caused misalign-

ment at the bottom of the scene (Figure 2.6(c)). Yet with only modest inhomogeneity

artifact (b = 1.0), as in Figure 2.6(f), MI-based registration is still unable to correct

for the rotational misalignment, and registration error is apparent in Figure 2.6(g).

On the other hand, the results of COFEMI-based registration (Figures 2.6(d) and (h))

demonstrate a near perfect alignment of the red and green boundaries, indicating an

improved alignment over that attained by MI.

Quantitative Results

Figure 2.7 presents an analysis of the failure rates over all 900 registration trials for

MI and COFEMI. A registration failure is defined as one where φTRE > 1.5 mm.

COFEMI is more robust to increased noise levels or bias field inhomogeneity artifacts

than MI (Figure 2.7(a)). Failure of MI rigid registration is most clearly influenced

by bias field strength, while higher noise levels in the presence of moderate to high

inhomogeneity are also detrimental to MI-based registration. Figure 2.7(c) shows the

differences in φTRE for MI − COFEMI, and highlights the robustness of COFEMI to

artifacts compared with MI. Figure 2.7(d) shows a similar plot comparing differences in

φROR for COFEMI−MI since higher φROR values correspond to better accuracy, and

complements the φTRE results of Figure 2.7(c). Figures 2.7(e) and (f) present a similar

comparison of φTRE and φROR values from COFEMI and CMIgrad, where COFEMI

again demonstrates its advantage when noise and inhomogeneity artifacts are present.

For each of the 30 simulated noise-inhomogeneity levels considered, the average

values of φTRE from COFEMI were lower than φTRE from MI. The φTRE values

for COFEMI and MI were compared using a paired t-test under the null hypothesis

that the φTRE values are equal for COFEMI and MI. The p-values for each of the
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Figure 2.7: (a) Registration failure rates of MI over 5 levels of noise and 6 levels of field
inhomogeneity (b ∈ {0, 0.5, 1.0, 1.5, 2.0, 2.5}, σ ∈ {0, 1, . . . , 4}) in Pb,σ, where failure is
φTRE > 1.5mm. (b) Failure rates of COFEMI. (c) Plot of ∆φTRE = φTRE

MI − φTRE
COFEMI.

(d) Plot of ∆φROR = φROR
COFEMI−φROR

MI . CMIgrad is similarly compared to COFEMI by
(e) ∆φTRE = φTRE

CMIgrad
− φTRE

COFEMI, and (f) ∆φROR = φROR
COFEMI − φROR

CMIgrad
. COFEMI

is consistently more robust to the presence of bias field and noise artifacts, compared
with MI or CMIgrad.
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Noise/Field (σ, b) σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

b = 0.0 0.1595 0.1158 0.3052 0.1789 0.3545

b = 0.5 0.6270 0.1214 0.2936 0.2280 0.4607

b = 1.0 0.9914 0.3966 0.0867 0.5132 0.2329

b = 1.5 0.0196 0.1949 0.0056 0.2602 0.3895

b = 2.0 0.1508 0.0289 0.5195 0.1250 0.0180

b = 2.5 0.1255 0.2135 0.0446 0.0041 0.0290

Table 2.5: p-values for paired t-tests comparing φTRE values for MI and COFEMI
for 30 different combinations of simulated noise (σ) and field inhomogeneity (b). These
values correspond to the φTRE differences shown in Figure 2.7(c) averaged across 30
pairs of T 1 and Pr

b,σ for each b, σ.

30 noise-inhomogeneity levels are listed in Table 2.5, where instances corresponding to

p < 0.05 (shown in bold) were considered to indicate statistically significant differences

in φTRE between COFEMI and MI. Table 2.6 presents p-values for the comparison

of φTRE values between COFEMI and CMIgrad. Complementary to φTRE , average

φROR(G(T 1), G(Pr
b,σ)) values from COFEMI were higher than those from MI for each

of the 30 simulated noise-inhomogeneity combinations. The φROR values for COFEMI

and MI were similarly compared using a paired t-test under the null hypothesis that the

φROR values are equal for COFEMI and MI. Table 2.7 presents the p-values obtained

over the 30 slice pairs for each of the 30 noise-inhomogeneity levels, where instances

corresponding to p < 0.05 (shown in bold) were considered to indicate statistically sig-

nificant differences in φROR between COFEMI and MI. Table 2.8 presents p-values for

the comparison of φROR values between COFEMI and CMIgrad. These results for φTRE

and φROR indicate that (1) COFEMI provides equal or better registration performance

for images with and without serious artifacts and that (2) a statistically significant im-

provement in registration performance is obtained using COFEMI over MI or CMIgrad

for images with moderate to high levels of inhomogeneity.

Experiment 1b: Skerl Evaluation Protocol

The evaluation protocol described in Section 2.4.3 was applied to 30 pairs of P and T 2

from D1 to calculate 5 additional properties φS1–φS5. Since the data in D1 was simu-

lated using a similar ICBM protocol [84] as in [8], the parameter space normalization
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Noise/Field (σ, b) σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

b = 0.0 0.2134 0.7029 0.2019 0.9859 0.1605

b = 0.5 0.8155 0.3623 0.0851 0.1503 0.6249

b = 1.0 0.3745 0.9372 0.3605 0.6450 0.5929

b = 1.5 0.7566 0.3224 0.1773 0.0546 0.5559

b = 2.0 0.4552 0.6838 0.1822 0.4206 0.0497

b = 2.5 0.3782 0.0693 0.0034 0.0166 0.0036

Table 2.6: p-values for paired t-tests comparing φTRE values for CMIgrad and COFEMI
for 30 different combinations of simulated noise (σ) and field inhomogeneity (b). These
values correspond to the φTRE differences shown in Figure 2.7(e) averaged across 30
pairs of T 1 and Pr

b,σ for each b, σ.

Noise/Field (σ, b) σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

b = 0.0 0.1183 0.1752 0.2933 0.1982 0.5281

b = 0.5 0.3661 0.2496 0.4450 0.1070 0.7237

b = 1.0 0.5934 0.8980 0.1637 0.9800 0.6305

b = 1.5 0.0568 0.3829 0.2170 0.6346 0.6700

b = 2.0 0.2396 0.0695 0.0490 0.2147 0.0127

b = 2.5 0.2732 0.2585 0.0436 0.0026 0.0207

Table 2.7: p-values for paired t-tests comparing φROR values for MI and COFEMI
for 30 different combinations of simulated noise (σ) and field inhomogeneity (b). These
values correspond to the φROR differences shown in Figure 2.7(d) averaged across 30
pairs of T 1 and Pr

b,σ for each b, σ.

Noise/Field (σ, b) σ = 0 σ = 1 σ = 2 σ = 3 σ = 4

b = 0.0 0.1877 0.7110 0.1932 0.8598 0.1580

b = 0.5 0.9551 0.3000 0.1576 0.1663 0.9636

b = 1.0 0.5231 0.8746 0.6066 0.7910 0.4856

b = 1.5 0.7489 0.2913 0.2073 0.0800 0.8226

b = 2.0 0.3428 0.7609 0.2635 0.6177 0.0395

b = 2.5 0.5035 0.0906 0.0049 0.0195 0.0053

Table 2.8: p-values for paired t-tests comparing φROR values for CMIgrad and COFEMI
for 30 different combinations of simulated noise (σ) and field inhomogeneity (b). These
values correspond to the φROR differences shown in Figure 2.7(f) averaged across 30
pairs of T 1 and Pr

b,σ for each b, σ.
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Similarity Measure Relationship
Characterized

Formula

Correlation
Coefficient (CC)

Linear Intensity
Differences

ΨCC(A,B) =∑
c∈C(fA(c)− ¯fA)(fB(c)−f̄B)√∑

c∈C(fA(c)− ¯fA)2
∑

c∈C(fB(c)−f̄B)2

Sums of Squared
Differences (SSD)

Linear Intensity
Differences

ΨSSD(A,B) =
∑

c∈C(f
A(c)− fB(c))2

Mutual
Information (MI)

Joint Gray
Level
Distribution

ΨMI(A,B) = S(A) + S(B)− S(AB)

Normalized
Mutual
Information (NMI)

Joint Gray
Level
Distribution

ΨNMI(A,B) = S(A)+S(B)
S(AB)

Entropy
Correlation
Coefficient (ECC)

Joint Gray
Level
Distribution

ΨECC(A,B) = 2− 2 S(AB)
S(A)+S(B)

Negative Joint
Entropy (JE)

Joint Gray
Level
Distribution

ΨJE(A,B) = −S(AB)

Energy of Joint
Histogram (EOH)

Joint Gray
Level
Distribution

ΨEOH(A,B) =
∑

fA
∑

fB p2(fA, fB)

Point Similarity
Measure Based on
MI (PSMI)

Joint Gray
Level
Distribution

ΨPSMI(A,B) =
∑

a

∑
b p(a, b)PSMI(a, b),

where PSMI(a, b) = log
(

pMI(a,b)
pMI(a)pMI(b)

)
Table 2.9: Similarity measures Ψ compared to COFEMI by the Skerl evaluation proto-
col, in terms of two generic images A and B with respective intensities fA(C) and fB(c)
at coordinate c, and average intensities f̄A = 1

|C|
∑

c∈C f
A(c) and f̄B = 1

|C|
∑

c∈C f
B(c).

Note that pMI represents a prior gray level distribution determined from two images
that are known to be in correct alignment.

was performed as in [8]. The 3-dimensional parameter hyperspace is sampled on N = 40

random, unique lines with M = 300 evenly space points per line. Gaussian noise of

variance σ = 4 was introduced into both T 2 and P. Simulated bias field inhomogeneity

with a sharpness of b = 2 was used to modulate P intensities as described in Section

2.5.2. Hence, the scenes T 2σ and Pb,σ with σ = 4, b = 2 were considered.

In addition to the feature-driven similarity measure provided by COFEMI (ΨCOFEMI)

and described in Section 2.3.4, eight additional similarity measures were compared.

These include negative joint entropy (ΨJE), MI (ΨMI), NMI (ΨNMI), ECC (ΨECC),

energy of the joint histogram (ΨEOH), and a point similarity measure based on MI [85]
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(ΨPSMI). Two linear similarity measures, correlation coefficient (ΨCC) and sums of

squared distance (ΨSSD), were also compared. The measures and their formulations

are given in Table 2.9.

Properties Independent of Trace Radius

For each Ψu, u ∈ {COFEMI,MI,NMI,ECC,EOH,JE,SSD,CC,PSMI}, values for each of the 5

properties φS1–φS5 (Table 2.3) were calculated along N = 40 transformation parameter

lines. A comparison of each Ψu in terms of these 5 properties is presented in Figure 2.8.

As originally observed in [8], ACC is the least informative measure for synthetic data,

where the ground truth is heavily favored as the global maximum. As may be discerned

by Figure 2.8(a), the average ACC is less than the size of a pixel. On the other hand,

CR indicates a significant difference between MI-based measures, which do not suffer

from local minima until at least 40 mm of misalignment. CC, SSD, EOH, and JE, are

similarly prone to local minima even when very close to ground truth. Consequently,

MI, NMI, ECC, PSMI, and COFEMI are able to attain the global maximum in spite of

a larger initial misalignment, where COFEMI and PSMI exhibits the highest capture

range. As with several other results, PSMI exhibits a marginal superiority attributable

to the use of a prior gray level distribution pMI determined from a training image set in

correct alignment. Figure 2.8(c) provides a comparison of NOM values for all measures,

while Figure 2.8(d) magnifies the vertical axis to compare just the MI-based measures

(Ψu, u ∈ {COFEMI,MI,NMI,ECC,PSMI}). NOM values reflect the CR results, in that the

MI-based measures are vastly superior in terms of absence of local minima. Over all

N lines COFEMI only had a single local minimum, while MI had three. Figure 2.8(e)

presents the average DO values over all N lines, which clearly show that COFEMI

performs favorably compared to all other measures, including the PSMI measure which

requires off-line training. The average RON is shown in Figure 2.8(f) for just the

MI-based measures, as RON for the other measures are very high. These RON values

indicate that, in addition to few local minima, any gradients of Ψu that point away

from the global maximum are small and uncommon for ΨCOFEMI .
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Figure 2.8: Comparison of 9 similarity measures Ψu, u ∈ {COFEMI, MI, NMI, ECC,

EOH, JE, SSD, CC, PSMI} in terms of the 5 properties proposed by Skerl [8]. (a) ACC
indicates that global maximum of all similarity measures correspond very closely to the
ground truth registration. (b) CR, (c) NOM, and (e) DO for all Ψu. (d) NOM for only
the MI-based measures in (c) is shown magnified for clearer comparison. RON was very
high for measures u ∈ {EOH,JE,SSD,CC}, thus RON is shown for only MI-based measures
in (f), indicating superior optimization characteristics of ΨCOFEMI . The supervised
PSMI method demonstrates marginally better performance in terms of NOM and RON
versus COFEMI.
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Figure 2.9: NOM versus R, the distance of deformation from ground truth registra-
tion. (a) NOM for Ψu, u ∈ {EOH,JE,SSD,CC}, demonstrate a large number of minima
compared with (b) NOM for Ψu, u ∈ {COFEMI, MI, NMI, ECC, PSMI}. Note the scale dif-
ference between (a) and (b). Only PSMI demonstrates any improvement over COFEMI,
which can only be seen as the marginal difference at the highest value of R in (b).

Number of Minima versus Trace Radius

The number of local minima can also be visualized as a function of distance (R) from

ground truth at line position ms = 0. In Figure 2.9, NOM is plotted against the

magnitude of misalignment, or equivalently the number of steps away from ground

truth at ms = 0 averaged over all N parameter lines. Figure 2.9(a) shows NOM versus

R for EOH, JE, SSD, and CC, which are two orders of magnitude greater than NOM

for the MI-based measures shown in Figure 2.9(b). It is important to note the X-axis

in Figure 2.9(b), which begins at 38 mm from ground truth. It can be seen that

NOM values for ECC and NMI are equivalent; a logical consequence of their related

formulations. Each of MI, COFEMI, and PSMI do not suffer from local minima until

R is much larger (R > 50 mm). Again, these results suggest that COFEMI is superior

over MI, while COFEMI and the supervised PSMI technique demonstrate the fewest

local minima at most values of R.

Risk of Non-convergence versus Trace Radius

Figure 2.10(a) illustrates the comparison of all similarity measures in terms of RON

values obtained for each N lines. As previously stated, the measures EOH, NJE, SSD,



45

COFEMI MI NMI ECC EOH JE SSD CC PSMI

0

200

400

600

800

1000

1200

R
O

N
 (

1
e
−

3
 m

m
−

1
)

(a)
COFEMI MI NMI ECC PSMI

0

0.5

1

1.5

2

2.5

R
O

N
 (

1
e

−
3

 m
m

−
1
)

(b)

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

R
O

N
 (

1
e
−

3
 m

m
−

1
)

R (mm)

 

 

EOH

JE

SSD

CC

(c)

42 44 46 48 50 52 54

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
O

N
 (

1
e
−

3
 m

m
−

1
)

R (mm)

 

 

COFEMI

MI

NMI

ECC

PSMI

(d)

Figure 2.10: (a) RON box-plot for all similarity measures Ψu, u ∈ {COFEMI,

MI, NMI, ECC, EOH, JE, SSD, CC, PSMI}. (b) Compact box-plot for Ψu, u ∈
{COFEMI,MI,NMI,ECC,PSMI}. Note the scale difference between (a) and (b). (c)
RON averaged over N lines versus R for Ψu, u ∈ {EOH,JE,SSD,CC} and (d) for
u ∈ {COFEMI,MI,NMI,ECC,PSMI}. As with NOM, MI-based measures are superior,
while ΨCOFEMI and ΨPSMI have the best convergence characteristics.

and CC have a very high RON as R becomes large, while the RON for MI-based

measures remains relatively low, as can be seen in Figure 2.10(b) by the few outlying

lines with non-zero RON values. In Figure 2.10(c), RON is plotted against the R

for the measures EOH, JE, SSD, and CC. As with NOM, the MI-based measures in

Figure 2.10(d) exhibit RON values several orders of magnitude smaller than the other

measures. Again, NMI closely tracks ECC, while COFEMI and PSMI exhibit the best

performance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.11: (a) 4 Tesla ex vivo MR image (M), (b) corresponding histological section
H, and (c)-(h) MR feature scenes Mβ corresponding to Haralick correlation (κ = 8)
and inverse difference moment (κ = 5), mean intensity (κ = 5), range (κ = 5), range
(κ = 8), and Haralick correlation (κ = 5).

2.5.3 Experiment 2: Multimodal Prostate Registration

Experiment 2 Overview

The multimodal prostate data set D2 was used to compare the performance of COFEMI

with MI for the task of aligning the real ex vivo T2-w MRI with the whole mount his-

tological sections. The objective of this experiment was to compare COFEMI and MI

in terms of their ability to map known CaP extent from H&E stained H onto the corre-

spondingM. Each MRI sectionM was aligned to corresponding H sections to obtain

a registered MR image Mr via an affine transformation determined using COFEMI

and also by maximization of MI (Equation 2.4). Intensity-based MI registration was

performed using 128 gray level bins, empirically chosen for maximal performance. In

this multimodal task, H possesses clear and extensive structural details, while the MRI

sections are affected by noise, inhomogeneity artifacts, and lower spatial resolution [3].

Therefore, feature scenes were only calculated (Section 2.3.2) fromM and the feature

ensemble selection algorithm (Section 2.3.3) was used to choose 4 maximally unique

and informative feature images πM4 =Mα1 · · ·Mα4 , where {α1, . . . , α4} ∈ {1, . . . , n}.
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Figures 2.11(c)-(h) show some of the first and second order statistical feature scenes

Mβ, β ∈ {1, . . . , n} initially calculated by COFEMI from M (Figure. 2.11(a)). Each

subsequently chosenMα1 , . . . ,Mα4 contributes to describing the correspondingH (Fig-

ure 2.11(b)), by addressing the resolution disparity between H andM and by providing

representations ofM that can overcome the intensity inhomogeneity, clearly visible at

the top ofM. COFEMI was then performed using Haralick Correlation (κ = 5), mean

(κ = 5), and range (κ = 5) features selected by CMIfeatures. For H, πHl = ∅ was

used. MI-based registration, which corresponds to k = 0, was also performed to align

M and H.

Qualitative Evaluation

Figure 2.12 shows 4 consecutive pairs of corresponding histology and MRI slices of the

prostate. The boundary of the prostate region G(H) on histology (Gb(H)) is shown in

green on Figures 2.12(a)-(d), while the red contours in Figures 2.12(e)-(h) represent the

prostate boundary in the unregistered MR images (Gb(M)). With Gb(H) overlaid onto

the MRI with Gb(M), it is easy to visualize the degree of misalignment between H and

M in terms of the distance between the red and green boundaries. The transformed

MRI intensity images Mr obtained by MI registration in Figures 2.12(i)-(l) show im-

proved alignment of registered boundaries Gb(Mr) and Gb(H) over the unregistered

boundaries. However, noticeable misalignment is observable at the tops of the gland in

Figure 2.12(i)-(l), where hypointense regions hinder image similarity and hence correct

alignment. On the other hand, COFEMI provided consistently superior alignment us-

ing all four feature ensembles. This performance improvement is illustrated in Figures

2.12(m)-(p) for the feature ensemble comprising range, correlation, and mean features

(automatically chosen by CMIfeatures for k = 3). As evidenced by the closer co-

incidence of Gb(Mr) and Gb(H), COFEMI is clearly robust to the inhomogeneity of

tissue intensities visible in the MR intensity images, which caused the misregistration

associated with conventional MI (Figures 2.12(i)-(l)).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.12: (a)-(d) Four consecutive histology sections H with the prostate boundary
shown in green and (e)-(h) corresponding unregistered MRI slicesM with the prostate
boundary Gb(M) accentuated in red and the green boundary Gb(H) from (a)-(d) over-
laid. Misalignment of the red and green boundaries in (e)-(h) indicates the initial
misalignment between Gb(H) and Gb(M). (i)-(l) Registered MRI slicesMr generated
by intensity-based MI demonstrate misalignment near hypointense regions at the top
of M, as evidenced by the space between the red and green contours. (m)-(p) Im-
proved accuracy of COFEMI is evidenced by closer coincidence of Gb(H) and Gb(Mr),
particularly at the locations in (i)-(l) where MI exhibited misalignment.
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Measure φROR φHD φMAD

MI 0.924 19.843 3.417

CMIgrad 0.932 19.819 3.1023

COFEMI (k = 3) 0.940 18.296 2.786

Table 2.10: ΦROR, ΦHD, and ΦMAD values, averaged over 26 pairs ofM and H, and
corresponding to registration via MI, CMIgrad, and COFEMI, are given for prostate
regions G(Mr) and G(H) and boundaries Gb(H) and Gb(Mr).

Comparison and Measure φROR φHD φMAD

MI vs CMIgrad 0.0406 0.9610 0.1157

MI vs COFEMI 7× 10−4 0.033 0.0120

CMIgrad vs COFEMI 0.0127 0.003 0.0577

Table 2.11: p-values for t-tests comparing φROR, φDH , and φMAD values corresponding
to the average values presented in Table 2.10, indicating consistently higher overlap
and lower boundary distances obtained from COFEMI versus MI, and COFEMI versus
CMIgrad.

Quantitative Evaluation

Since no ground truth for correct alignment is available for the real multimodal prostate

data, quantitative evaluation of registration was done in terms of (1) Hausdorff distance

φHD, and (2) φMAD between Gb(H) and Gb(Mr), and (3) overlap φROR of G(H) and

G(Mr). Table 2.10 below quantitatively summarizes the multimodal prostate image

registration results in terms of average φROR(G(Mr), G(H)), φHD(Gb(Mr), Gb(H)),

and φMAD(Gb(Mr), Gb(H)) values over 26 pairs ofM and H. Average values of φROR

were higher from COFEMI than from MI or CMIgrad, while the average values of

φROR were higher from CMIgrad compared to MI (COFEMI> CMIgrad >MI). Similarly,

average values of φHD and φMAD were lower from COFEMI than from MI or CMIgrad,

and lower from CMIgrad compared to MI (COFEMI< CMIgrad <MI). The values of

φROR, φHD and φMAD for COFEMI, CMIgrad and MI were compared in a pairwise

fashion using paired t-tests under the null hypothesis that the φTRE , φHD and φMAD

values are equal for each of COFEMI, CMIgrad and MI. These values, shown in Table

2.11, indicate significantly higher φROR and significantly lower φHD and φMAD with

COFEMI compared to both MI and CMIgrad.
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2.6 Concluding Remarks

In this study we presented a new feature-driven multimodal image registration scheme

called COFEMI that improves upon existing MI-based techniques via automatically

generating an ensemble of feature images. An intelligent feature selection step means

the scheme can be tailored to any registration task. While feature space representa-

tions have been used in different forms [57–61, 86] to encode spatial information and

enhance multimodal image registration performance, the COFEMI technique is the first

to provide a method for automatic selection of an optimal ensemble of multiple features

specific to the registration task at hand and which are less susceptible to intensity arti-

facts and to structural differences across modalities. COFEMI introduces the following

significant improvements over previous registration techniques,

1. Robustness to intensity artifacts such as inhomogeneity and noise.

2. Robustness to modality differences that otherwise weaken correspondence of anatom-

ical structures between intensity images.

3. Natural generalizability to diverse multimodal data sets with different require-

ments for structural description via image-derived low-level textural features.

We demonstrate the ability of COFEMI to qualitatively and quantitatively improve

registration accuracy over intensity-based MI on a multimodal prostate data set and

a synthetic multiprotocol brain MR data set. The findings of our experiments are

summarized as follows,

• In terms of Hausdorff distance and the region overlap ratio of the prostate and

its boundaries on 26 pairs of corresponding MR and histology images, COFEMI

significantly outperformed both MI and CMIgrad in terms of accuracy.

• A comparison of TRE and ROR values for the brain region on 30 pairs of synthetic

multiprotocol MR images over 5 levels of noise and 6 levels of inhomogeneity, total-

ing 900 registration trials, similarly demonstrated the performance improvement

of COFEMI over MI.
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Offline Operations for a Modality Pair Online Operations

Comprehensive
Feature

Calculation

Feature Ensemble
Selection

Ensemble
Generation for
Test Image Pair

Affine Registration

110 4 10 45

Table 2.12: Approximate computation times (in seconds) for the different modules in-
volved in the operation of the COFEMI registration scheme. Note that calculation of
the full, comprehensive feature set and selection of the optimal ensemble are performed
only once initially (offline) for a given modality pair. To register successive test image
pairs (online), it is only required to calculate the features comprising the selected en-
semble. Computation times were obtained for images of size 256 × 256 running on an
Intel Core 2 Duo 2.4GHz PC running 64-bit MATLAB c©.

• A comprehensive comparison of 8 similarity measures with COFEMI using the

evaluation protocol proposed by Skerl in conjunction with 30 pairs of synthetic

T2-w and PD-w MR images quantitatively validated the superiority of COFEMI

as a similarity measure for rigid registration in terms of 5 different similarity

measure properties.

While our technique is currently presented in the context of affine registration,

COFEMI can also be used to drive elastic registration techniques, such as free form

deformations (FFD) [17], and we are presently investigating the use of COFEMI in a

hierarchical FFD scheme. COFEMI may also be implemented in conjunction with any

deformation model, intensity interpolation technique, parameter optimization scheme,

or entropy estimation method. Thus, COFEMI may be utilized to provide a customized

feature-based objective function for a FFD method such as [17], or simply to drive the

optimization of affine transformation parameters. The later application is considered

here to evaluate COFEMI in the absence of confounding factors associated with compli-

cated optimization strategies, while the former non-linear application is presently being

investigated as a powerful tool for automated deformable multimodal image registra-

tion. Table 2.12 lists typical computation times (in seconds) for the primary modules

of COFEMI in an affine transformation framework.

While any technique for joint entropy estimation may be used, COFEMI registration

is performed here using high order joint histograms with 32 gray level bins for a single

feature image, 16 bins for two feature images, and 10 bins for up to 4 features. These
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values were selected both to limit the total number of bins in the histogram, and

empirically for performance, as with MI. Joint probability distribution estimates used

in the calculation of both MI and CMI were obtained via the normalized histograms of

intensity and feature values. Obtaining accurate estimates of higher order joint entropy

represents the largest limitation associated with the COFEMI technique. However,

with recent advances in information theory [87], high order entropy can be accurately

calculated for even very sparse joint histograms.
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Chapter 3

Improving Supervised CAD on ex vivo MRI via

Registration

3.1 Importance of CAD Training Data Accuracy

Supervised classifiers are the central component of computer-aided diagnosis (CAD)

systems for medical imagery, in which the goal is to classify observations (e.g. pixels)

as belonging to a particular class (e.g. cancer or non-cancer) based on prior observa-

tions. A crucial step in the implementation of such classifiers is obtaining object labels

that accurately represent the targeted tissue class. The most common way of obtaining

such class labels involves manual labeling by an expert (e.g. radiologist). Although,

even with trained experts, manual annotations are time consuming, variable, and error

prone [28]. The adverse effect of any mislabeled training instances on supervised clas-

sifier performance has been repeatedly observed [29, 32, 88] in terms of accuracy and

robustness. As such, avoidance of incorrectly labeled instances is of utmost importance

in building an effective supervised CAD classifier.

Consider the MRI image of a prostate gland is shown in Figure 3.1(a) from which

a CAD system [28] driven by a Bayesian classifier calculates the likelihood that each

pixel belongs to the cancer class (Figure 3.1(b)) and obtaining a binary prediction for

cancer presence (Figure 3.1(c)). Figure 3.1(e) shows the likelihood image obtained by

CAD after removal of erroneous training instances, indicating that removal of even a

small portion of mislabeled data resulted in a significant improvement in classification

accuracy as can be discerned in the increase in contrast in the posterior likelihood

scenes, indicating enhanced separation between classes (compare Figures 3.1(e) and

(b)). Figure 3.1(d) shows a reconstructed WMH section of the prostate obtained via

radical prostatectomy which corresponds to the MRI slice in Figure 3.1(a).
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: (a) MRI slice of a prostatectomy specimen with cancer present. (b)
Likelihood image generated by a CAD system applied to (a), and (c) the prediction for
cancer presence obtained by thresholding (b) at 50% confidence level and superposing
on (a). (d) The corresponding histology slice shown labeled for cancer extent by H&E
stain (black arrow). (e) Likelihood image calculated by CAD after removal of erroneous
training instances, and (f) the resulting binary prediction.

Delineating regions of CaP on MRI is difficult even for radiologists; fortunately,

images from multiple modalities can be utilized to assist in labeling the CAD targeted

modality. In this study, histology provides a modality with readily available ground

truth for CaP extent, found with the aid of haematoxylin and eosin (H&E) staining.

For instance, manual mapping of histological ground truth onto MRI using anatomical

features as visual cues has been previously demonstrated in [28], where CaP extent

on MRI was obtained by examination of WMH and radiological sections by a pathol-

ogist and a radiologist simultaneously. For example, the ground truth for CaP extent

provided by the WMH section in Figure 3.1(d) is manually mapped by the simulta-

neous efforts of both experts onto the corresponding MRI in Figure 3.1(a). Despite

possession of empirical domain knowledge by the experts performing the mapping, this

process is also time consuming and subject to observer bias. Note that this task is akin

to manual registration or alignment of the two modalities, whereby a mapping between
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corresponding pixels is determined. Thus, it is clear that in order to accurately estab-

lish training instances using multimodal imagery, it is necessary to achieve accurate

registration.

In this view of the manual mapping process, we present an automated labeling

scheme whereby the histological ground truth is automatically mapped directly to MR

from aligned WMH sections via image registration techniques. The optimal alignment

between two images A and B is obtained when the pixels representing the same material

points on the anatomical object or region of interest (Ca in A, Cb in B) are mapped into

the same spatial coordinates (Cb = T (Ca)). The result of successful image registration

is a pair of images Â and B where Â represents A subjected to the determined trans-

formation T , and pixels Ca in Â and Cb in B represent the same underlying anatomical

features of the region of interest. If we consider the set of pixels that represents the

CaP extent on histology, it is clear that determining the transform T , which specifies

the mapping of pixels on WMH to MRI, can provide a precise ground truth estimate

for CaP on MRI.

In summary, we present a method for automated training of a supervised classi-

fier by establishing accurate training instances via registration of multimodal images.

We demonstrate the method for a specific CAD application where the objective is to

automatically identify CaP on high resolution ex vivo MRI. We further quantitatively

demonstrate that the object class labels established by registration are more reliable

compared to expert annotations even when (1) considerable image differences exist

between modalities and (2) the manual segmentations are meticulously obtained by

multiple experts analyzing both modalities simultaneously. The principal contributions

of this work are to demonstrate,

• a novel method for automatically training a supervised classifier when multimodal

data is present,

• the ability of multimodal registration methods to accurately annotate object la-

bels with significantly greater accuracy compared to expert delineations in spite of

differences between disparate modalities (e.g. histology and MRI) which generally
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hinder successful registration, and

• the potential use of classifier performance as a benchmark for evaluating registra-

tion performance.

The rest of this paper is organized as follows. In Section 3.2 we outline the design of

the supervised classifier training technique and its evaluation. In Section 3.3 we describe

the registration methodologies, the classifier and the automated training method, and

the cross-validation procedure used to compare the accuracy of multiple classifiers. In

Section 3.6 we present the results of each supervised classifier. Concluding remarks and

future research directions are presented in Section 3.7.

3.2 Overview of Experimental Design

There has been relatively little work in the area of prostate registration, less so in

the context of multimodal registration. Registration of prostate histology with ultra-

sound images has been addressed recently by Taylor [19] who utilized surface matching,

Moskalik [45] who fit the prostate boundary with an ellipsoid to find an affine mapping

and Porter [10] who used blood vessels as fiducial markers. Lee [12] performed non-

rigid registration of CT/MRI with histological sections for a visualization system. In

this study, we consider two rigid and two non-rigid multimodal registration methods

for aligning prostate histology with MRI. Finding a transformation T which can bring

the pixels representing the prostate on histology and MRI into spatial correspondence

is hindered by:

1. Dissimilarity of the modalities and the structural characteristics captured by the

modalities.

2. The complicated nature of the deformations to which the anatomical object is

subjected.

Namely, the processes of quartering, sectioning and fixation of the gland in formalin for

acquisition of digitized histological images subject the tissue to irregular and extensive

deformation and alter the underlying tissue.
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Figure 3.2: Outline of registration-based supervised classifier training system applied
to CAD for prostate MRI with histological ground truth for cancer (top left). Labeling
of MRI training data is achieved by registration of histology with MRI, followed by
directly mapping histological ground truth to MRI, which are used to train the super-
vised classifier which drives the CAD system (bottom row). Training labels are also
established by expert manual delineation, upon which another classifier is trained (top
row). The classifiers are then evaluated with respect to each other (right).

Most current robust non-linear multimodal image registration techniques operate by

initially determining an affine or rigid alignment as a precursor to an elastic deformation

step [17,89,90]. An accurate initial global alignment is often important for the success of

the elastic alignment step, primarily because physically realistic deformations are most

accurately modeled when required deformations are small. Thus, in [3] we presented

our registration technique, termed combined feature ensemble mutual information or

COFEMI, with emphasis on obtaining an accurate global affine precursor to elastic

deformation. In this study, we demonstrate two similarity measures in the optimization

of an affine transformation: MI and COFEMI, both followed by elastic transformation.

To compare the influence of the affine alignments on the final alignment, we utilize a

control point driven thin plate splines (TPS) deformation model to elastically transform

histology onto MRI. Thus, the design of our supervised classifier training method and

its evaluation against expert-based training are outlined in Figure 3.2 using the notation

defined in Section 3.3.1 for a set of multimodal images:
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1. Automated affine registration of MRI and histology is performed via MI and

COFEMI.

2. Subsequent TPS warping is applied following affine alignment to achieve the final

image alignments (MI+TPS and COFEMI+TPS) using prominent anatomical

landmarks as control points.

3. The ground truth for spatial extent of cancer is directly mapped onto the CAD-

targeted modality (MRI).

4. Manual delineations of cancer on MRI are obtained from radiologists using visual

cues from histology.

5. The pixels automatically labeled as cancer and those delineated by experts are

used as training instances in separate supervised classifiers.

6. Accuracies of the classifiers trained using the 4 registration methods and the

expert delineation are compared in terms of ROC curves using a 5-fold randomized

cross validation procedure.

In this manner, we demonstrate that in spite of the challenges in registration of

prostate MRI and histology, the automated CaP annotations thus obtained are signif-

icantly more accurate compared to expert delineation of CaP on MRI obtained with

aid from corresponding stained histological sections and prior domain knowledge. We

further demonstrate that despite the non-linear nature of the deformations even simple

rigid registration methods are more accurate compared to expert annotation, yielding

better quality classifier training data.

3.3 Overview of Registration Methods

3.3.1 Notation

We define a 2D image by the notation C = (C, f) where C is a coordinate grid, called

the image domain, and f is a function that assigns to every spatial location c∈C an

intensity value f(c) in 2D space c = (x, y). Under this convention, the 2D slices of

the 3D ex vivo MRI dataset are defined by CM = (C, fM ), while the corresponding
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histology slices are defined by CH = (C, fH). The notations and symbols used in the

rest of this paper are listed in Table 3.1.

Table 3.1: List of notation and symbols specific to Chapter 3.
Symbol Description

CM 2D MRI image

CH 2D Histology image

G(CH) CaP pixels from H&E staining on CH
Gm(CM ) CaP pixels found manually on CM

χr Registration method where r ∈ {1, 2, 3, 4}
Gχr(CM ) G(CH) on CM by method χr

CΦβ MRI feature image for operator Φβ

3.3.2 Manual Mapping of Cancer from Histology to MRI

Histological sections were microscopically examined to determine cancer extent on CH

denoted by the set of pixels G(CH). Manual expert segmentations of cancer on ex vivo

MRI, denoted by the set of pixels Gm(CM ), are obtained by visually mapping G(CH)

onto CM . Note that the manual delineation of cancer Gm(CM ) on CM was guided by

G(CH) on CH along with visual cues from the anatomical features of the prostate on

both CH and CM . Since there were roughly twice the number of MRI slices as there

were histological sections for each patient study, the MRI sections corresponding to the

histological sections were manually identified by an expert by identifying anatomical

features visible on both CH and CM . A total of 26 MRI-histological sections were

considered in this study.

3.3.3 Overview of Registration Methods

Most robust rigid/affine multimodal registration techniques utilize similarity measures

to bring images into alignment, the assumption being that when the images are in

alignment, their similarity is maximized. The optimal alignment of the two images A

and B obtained by the transformation T is given by

Tmax = argmax
T

ψ(TA,B), (3.1)
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where ψ is some voxel-based similarity measure and TA represents the image A subject

to transformation T . The designation of A and B as moving (target) and stationary

(template) images is user dependent.For the case of A as the target of deformations, we

further denote Â as the result of the initial affine registration step and Ã as the result

of the subsequent elastic registration step. The four effective affine and elastic registra-

tion techniques (denoted χr ∈ {MI, MI+TPS, COFEMI, COFEMI+TPS}) evaluated

in this study are described in the following sections.

Maximization of Mutual Information (MI)

The most common similarity measures used for voxel-wise image registration are the

sums of squared distance (SSD), correlation coefficient (CC), mutual information (MI),

related information theoretic quantities such as entropy correlation coefficient (ECC),

normalized mutual information (NMI) [39]. Since no linear relationship between voxel

intensities inA and B may exist with multimodal imagery, mutual information and other

statistical measures of image similarity or interdependence have been widely utilized

for multimodal image registration tasks. Registration by maximization of MI can be

achieved by calculating the MI of two images in terms of Shannon entropy [39], a

measure of information content of a random variable. Equation 3.2 is a formulation

of MI in terms of the marginal and joint entropies wherein the MI of a pair of images

or random variables, I2(A,B), is maximized by minimizing joint entropy S(AB) and

maintaining the marginal entropies S(A) and S(B). Where ensemble AB represents

simultaneous knowledge of both images, MI is given by,

I2(A,B) = S(A) + S(B)− S(AB), (3.2)

where I2(A,B) describes the interdependence of multiple variables or gray levels of a

set of images [39]. Thus, when I2(A,B) increases, the uncertainty about A given B

decreases. As per Equation 3.1, it is assumed that the global MI maximum will occur

at the point of precise registration.
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Combined Feature Ensemble Mutual Information

Both MI and NMI can be ill-defined and highly non-convex measures for dissimilar

modalities [38,39,91]. Hence, in [3] we presented the combined feature ensemble mutual

information (COFEMI) registration technique, which incorporates additional informa-

tion in the form of image features which are complementary to image intensity in order

to increase the robustness of the similarity measure to modality differences and image

artifacts, and was demonstrated to be superior compared to MI in terms of robustness

to images with artifacts and dissimilar modalities. The COFEMI technique utilizes the

notion of combined mutual information (CMI) to incorporate additional information in

the form of image features. The CMI that two semi-independent images, B and B′, con-

tain about a third image, A, is defined as I2(A,BB′) = S(A)+S(BB′)−S(ABB′) [75].

This formulation allows the incorporation of only the unique (non-redundant) informa-

tion provided by an additional image, B′, about A. Hence, the generalized form of CMI

for n additional images is,

I2(A,BB′1 · · · B′n) = S(A) + S(BB′1 · · · B′n)− S(ABB′1 · · · B′n). (3.3)

It can be seen that CMI incorporates only the unique information of additional images

toward describing A, thus enhancing but not overweighting the similarity measure with

redundant information. Therefore, it will always be the case that I2(A,BB′1 · · · B′n) ≤

S(A) = I2(A,A). The intuition behind using CMI is that one or more of the feature

images B′1,B′2, ...,B′n derived from the intensity image B will be relatively more immune

to image intensity artifacts such as bias field inhomogeneity and intensity non-linearity

compared to B. In addition one or more of B′1,B′2, ...,B′n will potentially provide addi-

tional structural description of A not readily discernible from intensity image B. By

choosing appropriate statistical features calculated over windows of B, one may in-

troduce information pertaining to the spatial arrangement of intensity values into the

similarity measure. The feature extraction and selection algorithms described in [3]

were used to generate a feature ensemble πk ⊂ {B′1,B′2, ...,B′n} of length k used to drive

the registration procedure by maximization of I2(A,Bπk). Details of feature extraction
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are given in Section 3.4.1.

Affine Registration via MI and COFEMI

Images A and B are initially aligned using an affine transformation with a total of five

parameters for rotation (θ), translation (dx, dy), and scaling (σx, σy). The affine trans-

formation matrix (M) is constructed by combination of three coordinate transformation

matrices corresponding to rotation in the plane of the image (R), translation in the X

and Y directions (Txy), and horizontal and vertical scaling (Sxy). The individual affine

transformation matrices are composed in terms of the five parameters (θ, dx, dy, σx, σy)

by common geometric coordinate transformations equations. Homogeneous transfor-

mation matrices and coordinate representations were utilized to apply translations in

the same matrix operation as scaling and rotation. Thus for a homogeneous coordinate

ch = (x, y, 1)T , the transformed coordinate is determined by c′h = M ch. Deforma-

tions are applied in the order of rotation, scaling, and then translation by the product

M = Txy Sxy R. Both COFEMI and MI registration techniques (χ1 and χ2) utilize NN

interpolation to avoid artifacts associated with linear and partial volume interpolation.

MI-based registration is achieved by optimizing (via a Nelder-Mead simplex algorithm

tuned for differences in parameter scale) the affine transformation M by maximization

of MI of A with B to obtain the optimal transformation Mχ1 . The COFEMI procedure

operated by maximization of CMI of A and ensemble Bπk, resulting in the optimal rigid

transformation Mχ2 to best align B with A by maximizing I2(Â,B πk). The common

coordinate frame C is maintained.

Elastic Registration via MI, COFEMI, and TPS

Thin plate splines (TPS) [92] were used to model the non-linear portion of deforma-

tion required to bring A and B into alignment. That is, having obtained Â via affine

registration, a TPS defined deformation field was used to generate the final alignment

result Ã from Â. Using the approach outlined by Bookstein [92], the equation describ-

ing the surface of a thin material plate is used as an interpolant to define in-plane

deformations based on the translation of arbitrary control points. Thus, to define a
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warping of image Â onto image B, two sets of control points c and d representing the

same anatomical features on images A and B, respectively, are selected by manually

identifying salient anatomical landmarks. The landmarks are structural features that

are clearly visible on both modalities, such as large duct centers, the urethra, features

along the outer boundary of the prostate and along the transition between peripheral

and central zones. For any slice pair, {c1, . . . , cp}, {d1, . . . ,dp} ⊂ C where the number

of control point pairs rage from 7 ≤ p ≤ 12. Anatomical control points are chosen

on the common undeformed images such that precisely the same anatomical features

are used to define the elastic deformations that follow the different affine alignments

obtained by MI and COFEMI. The principal warp determined from the solution of the

thin plate spline subject to the displacement of points c and d is applied to obtain

the overall affine and elastic deformation fields Mχ3 and Mχ4 . Similarly, B̃ may be

obtained from B̂ if A is desired to remain stationary. We refer to elastic registration

following MI- and COFEMI-based affine registration as MI+TPS and COFEMI+TPS.

3.4 Supervised Computer-Aided Classification

3.4.1 Feature Extraction

We compute a total of n = 311 unique feature images from each MRI intensity im-

age CM , the CAD-targeted modality, which corresponds to image B in the general-

ized notation used throughout Section 3.3.3 above. These feature representations were

chosen for their class-discriminative abilities as previously demonstrated in prostate

MRI CAD [28]. These features were also chosen to compose the ensemble used in the

COFEMI registration scheme described in Section 3.3.3 since several of these feature

representations were found to be less susceptible to image artifacts such as bias field

inhomogeneity [3]. Thus, for each B, feature images BΦβ = (C, fΦβ ) are calculated by

applying feature operators Φβ, β ∈ {1, . . . , n} within a local neighborhood associated

with every c ∈ C. Thus fΦβ (c) represents the feature value associated with feature

operator Φβ at pixel c in B, and f = [fΦβ (c)|β ∈ {1, . . . , n}] is the feature vector of

length n for pixel c.
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Gradient Features

Gradient features are calculated using steerable and non-steerable linear gradient op-

erators. Eleven non-steerable gradient features were obtained using Sobel, Kirsch and

derivative operations. Gabor gradient operators [77] comprise the steerable class of

gradient calculations. The magnitude of the Gabor filter response was defined for

every pixel c = (x, y) by fGab(c) = e(x
′+y′)/2π cos(2πλx′) where λ is the spatial fre-

quency (scale) of the sinusoid. The filter was applied on a κ× κ square neighborhood

Nc,κ associated with every pixel c ∈ C and centered on c. The orientation of the

filter is affected by ϕ through the coordinate transformations: x′ = x cosϕ + y sinϕ

and y′ = x cosϕ − y sinϕ. Gabor gradient features were calculated for κ ∈ {5, 8, 15},

ϕ ∈ {0, π8 ,
π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 } and λ ∈ {

π
2
√
2
, π4 ,

π
4
√
2
, π8 ,

π
8
√
2
, π
16}.

Statistical Features

Four first order statistical features, including mean, median, standard deviation, and

range, and were calculated as described in [28]. To calculate the second order statistical

feature images, we define any pixel d ∈ Nc,κ as a κ neighbor of c. We now compute a

M ×M co-occurrence matrix Pc,κ associated with Nc,κ, where M is the maximum gray

scale intensity over all B. The value at any location [u, v], where u, v ∈ {1, . . . ,M}, in

the matrix Pc,κ[u, v] represents the frequency with which two distinct pixels c,d ∈ Nc,κ

with associated image intensities f(c) = u, f(d) = v are adjacent (within the same

8-neighborhood within Nc,κ). A total of 16 Haralick features including energy, entropy,

inertia, correlation, inverse difference moment, two information correlation measures,

sum average, sum variance, sum entropy, different average, difference variance, differ-

ence entropy, shade, prominence and variance were extracted at every pixel c ∈ C, from

Pc,κ, for κ ∈ {5, 8, 15}, and M ∈ {64, 128, 256}.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: MRI intensity image (a) and corresponding independent component feature
images obtained via ICA (b)-(h) of feature images (not shown). Maximal statistical
independence between independent components is maximized to facilitate näıve com-
bination in Bayes’ rule.

3.4.2 Bayesian Classifier and Independent Component Analysis

The näıve form of Bayes’ rule defines the likelihood of observing some class ω1 given

the multivariate feature vector f(c) of dimensionality n and is determined by,

P (ω1|f(c)) =
P (ω1)p(f(c)|ω1)

P (ω1)p(f(c)|ω1) + P (ω0)p(f(c)|ω0)
. (3.4)

where the prior probabilities of occurrence of the two classes are P (ω1) and P (ω0),

and p(f(c)|ω1) and p(f(c)|ω0) are the a priori class conditional distributions of f(c).

Estimation of p(f(c)|ω1) and p(f(c)|ω0) is difficult or impossible when the distributions

are of a high dimensionality. However, if the conditional probabilities of each dimension

of f(c) can be made statistically independent by some linear transformation W (i.e.

φφφ = W f) the distribution of the new random variable φφφ of dimensionality h can be

written p(φφφ) = p(φ1, . . . , φk) =
∏h

i p(φi). Hence, independent component analysis

(ICA) is used to reduce the feature vector f of size n = 311 to a vector φφφ = {φ1, . . . , φh}

of size h � n with statistically independent distributions. That is, for the entire

set of pixels C of image B, ICA determines a h × n unmixing matrix W such that
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the distributions of the rows of φφφ are maximally independent. The h independent

components φi(c) of pixels c ∈ Gχr are then used to generate h a priori distributions

p(φi(c)|ω1) for the target class ω1, while pixels c ∈ {C − Gχr} are used to generate

distributions for class ω0. Hence, Bayes’ rule can then be used to obtain the a posteriori

probability distribution P (ω1|φφφ(c)) of observing ω1 for the linearly independent feature

vector φφφ(c) at each pixel c ∈ C by

P (ω1|φφφ(c)) =
P (ω1)

∏h
i p(φi(c)|ω1)

P (ω1)
∏h

i p(φi(c)|ω1) + P (ω0)
∏h

i p(φi(c)|ω0)
. (3.5)

The probability images L = (C,P (ω1|φφφ(c))), represent the joint a posteriori likelihood

of c ∈ C belonging to class ω1 obtained for each training image B, which correspond

to MRI slices (CM ) in this study. Importantly, since the class of features represented

by the individual feature operators Φβ has been demonstrated to be discriminative in

previous studies [28], the independent component distributions P (ω1|φi(c)) will contain

discriminative potential.

The Jade ICA implementation [93] was used to employ a measure of independence in

approximation to MI, a natural measure of statistical dependence of multiple distribu-

tions related to measures of non-Gaussianity that are commonly used in ICA algorithms.

In this view of independence, the maximum number of independent component images

that can be obtained from the feature set with a minimal degree of dependence between

the components is determined via calculation of pairwise MI between the resulting in-

dependent component images as described in [94]. Estimation of further “independent”

components beyond the maximum results in a sharp increase in the magnitude of MI

between multiple components, indicating that additional independent sources are not

identifiable in the feature set. In this manner, the value of h is determined. Figure

3.3(b)-(h) shows h = 7 independent component images derived from feature images of

CM in Figure 3.3(a), each of which were tested for independence by paired MI calcula-

tions and inspection of the joint distributions.
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3.5 Application to Prostate CAD

3.5.1 Supervised Classifier Training

The registration-based supervised classifier training technique described above was used

to train a CAD system for detection of cancer in MRI images of the prostate (CM ). In

the registration procedure we treat CM as the stationary template image (A) and CH as

the target image (B). The four effective affine and elastic registration techniques (χr ∈

{MI, MI+TPS, COFEMI, COFEMI+TPS}) described in Section 3.3.3 were each used

to establish corresponding region labels Gχ1(CM ), Gχ2(CM ), Gχ3(CM ) and Gχ4(CM ) on

MRI. The region labels were each used to establish the membership of each pixel in

CM to either the cancer or non-cancer class (c ↪→ ωc or c ↪→ ωnc), and four supervised

Bayesian classifiers Ψ1, Ψ2, Ψ3 and Ψ4 were trained as described in Section 3.4.2. The

manual delineation of cancer Gm(CM ) was used to train a fifth Bayesian classifier Ψ5.

3.5.2 Evaluation of Supervised CAD Classifier

Since no definitive ground truth is available on CM , testing and evaluation of classifier

accuracy was done using seven ground truth surrogates, which correspond to the five

individual cancer labels (Gχ1(CM ), Gχ2(CM ), Gχ3(CM ) and Gχ4(CM ) and Gm(CM )), the

union (
⋃
GΩ where Ω ∈ {χ1, χ2, χ3, χ4,m}) and the intersection (

⋂
GΩ) of the labels.

These 7 ground truth estimates are represented as Γ1−7. For each classifier Ψ1−5 and

ground truth estimate Γ1−7, totaling 35 combinations, receiver operating characteristic

(ROC) curves are generated, and the area under the ROC curves (AUC) and positive

predictive value (PPV) are calculated. The vertical axis of the ROC curve is the true

positive rate (TPR) or sensitivity and the horizontal axis is the false positive rate (FPR)

or 1-specificity. Each point on the curve corresponds to the sensitivity and specificity

of detection of classifier Ψα, α ∈ {1, . . . , 5}, at threshold ρ. If P (ωc|φφφ(c)) ≥ ρ then c is

classified as ωc else ωnc to obtain a binary prediction GCAD
ρ,Ψ for threshold ρ and classifier
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Ψ. For each GCAD
ρ,Ψ and Γ1−7, sensitivity (SN) and specificity (SP) are calculated as

SNρ,Ψ,Γ =

∣∣∣GCAD
ρ,Ψ ∩ Γ

∣∣∣∣∣∣GCAD
ρ,Ψ ∩ Γ

∣∣∣+ ∣∣∣Γ−GCAD
ρ,Ψ ∩ Γ

∣∣∣ (3.6)

SPρ,Ψ,Γ =

∣∣∣(C −GCAD
ρ,Ψ ) ∩ (C − Γ)

∣∣∣∣∣∣(C −GCAD
ρ,Ψ ) ∩ (C − Γ)

∣∣∣+ ∣∣∣GCAD
ρ,Ψ − Γ

∣∣∣ (3.7)

where |.| indicates the cardinality of a set of pixels. A 5-fold randomized cross-validation

procedure is used to compare the accuracy of each Ψ1−5 with respect to each Γ1−7,

whereby from the 26 image pairs with G(CH) mapped to CM by each method, 21

MR images are randomly chosen from which a classifier is trained. The remaining

images are used as a test set upon which classifier accuracy is evaluated. Randomized

cross-validation is repeated 50 times for different training and testing slices CM .

Average ROC curves for each classifier were generated for display purposes by fitting

a smooth polynomial and averaging the ROCs over each test image and Γ1−7. To

avoid introducing bias toward classifiers derived from registration-established training

data, which would occur if curves from all four Γ1−4 are averaged, each average curve

was generated using a subset of Γ1−7: the expert determined ground truth (Γ5), the

intersection and union ground truths (Γ6−7) and one automatically mapped ground

truth estimate (Γ1−4 corresponding to the Ψ being evaluated). Values of AUC and

PPV for each classifier pair were compared in a similar manner.

3.6 Results of Semi-automated Elastic Registration and CAD Evalu-

ation

3.6.1 Qualitative Evaluation of Registration Schemes

For each of the 26 histological and MRI images, alignment of corresponding CM and

CH slices and establishment of training instances in CM was performed using each of

the four registration techniques. Figure 3.4 shows the results of the registration proce-

dures for a single corresponding pair of images CH (Fig. 3.4(a)) and CM (Fig. 3.4(e)).

The manual expert delineation of cancer on MRI (Gm(CM )) is shown in green in Fig.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: (a) Histology with ground truth indicated by the black arrow is registered
to (e) MRI to transfer histological cancer map to MRI. Resulting mappings obtained
via MI (c), COFEMI+TPS (d) and COFEMI (f). Overlays of MRI with histology
registered via MI and COFEMI+TPS shown in (g) and (h), respectively, indicate the
more accurate alignment with elastic vs. affine deformations. (b) Manually determined
labels on MRI are shown for comparison.

3.4(b). Histological ground truth G(CH), indicated by the arrow in Fig. 3.4(a), is shown

mapped to Gχ1(CM ), Gχ4(CM ) and Gχ3(CM ) in Figs. 3.4(c),(d) and (f). Comparing

Gχ1(CM ) and Gχ3(CM ) as shown in Figs. 3.4(c) and (f) indicates similar results with

fewer obvious mislabeled instances in Gχ3(CM ). However, the difference in accuracy of

the registration methods is best illustrated as an overlay of CM with the whole trans-

formed image CH as in Figs. 3.4(g) and (h) for the methods MI and COFEMI+TPS.

Notice the considerable region of non-overlapping tissue in Figure 3.4(g) compared with

the nearly ideal alignment in Figure 3.4(h). It is clear that a non-linear elastic regis-

tration procedure is superior in this task. Over all slice pairs, COFEMI was found to

produce qualitatively more accurate alignments compared with MI, supporting previ-

ous results [3]. Further, the associated elastic methods MI+TPS and COFEMI+TPS

produced the most qualitatively accurate and realistic alignments overall.
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3.6.2 Quantitative Results

From the registration results, the supervised classifiers Ψ1−5 were generated using h = 7

independent component images obtained from the full set of feature images. Using the

randomized cross-validation procedure described above, Ψ1−5 were compared for the

ground truth estimates Γ1−7 in terms of PPV and AUC. Figure 3.5(a) shows average

ROC curves for each classifier Ψ1−5 derived from the different training data labels

(Gχ1(CM ), Gχ2(CM ), Gχ3(CM ), Gχ4(CM ) and Gm(CM )). The dashed line in Figure 3.5

represents the ROC curve for classifier Ψ5 averaged over different CaP ground truth

estimates as described in Section 3.5.2. Clearly, overall accuracy of the classifiers Ψ1−4

trained from registration-derived training labels is greater than the accuracy of Ψ5,

which is trained using expert labels. Values for AUC and PPV were then calculated

from the original ROC curves. Differences between classifiers Ψ1−5 are compared in

terms of PPV values as illustrated in Figure 3.5(b), which shows the average PPV for

each Ψ1−5. The difference in PPV between Ψ5 (expert) and each Ψ2−4 (MI+TPS,

COFEMI, COFEMI+TPS) were statistically significant (p < 0.05) for each Γ1−4,6−7,

while for Γ5 the values for Ψ5 were not significantly greater than any Ψ1−4. The AUC

of each Ψ1−4 (MI, MI+TPS, COFEMI, COFEMI+TPS) was significantly (p < 0.05)

greater than the AUC of Ψ5 (expert) for the same Γs as for PPV, while Ψ5 again

displayed no significant advantage for any Γ.

3.7 Concluding Remarks

In this paper we demonstrated the need for use of multi-modal registration methods

for establishing accurate ground truth for classifier training. We demonstrate that even

simple MI-based schemes are more accurate in mapping spatial extent of cancer from one

modality to another compared to expert labeling in spite of inter-modal differences and

intensity artifacts which hinder automated registration techniques. We quantitatively

demonstrated with the use of 4 different registration methods (MI, COFEMI, MI+TPS,

COFEMI+TPS) to align 26 pairs of ex vivo MRI with histology images of the prostate

upon which cancer ground truth is available and provide improved registration accuracy
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Figure 3.5: Accuracy of classifiers Ψ1−5 represented by the average ROC curves in (a).
Quantitative comparison of Ψ1−5 in terms of AUC (not shown) indicates a statistically
significant improvement from training labels established by registration vs. expert
delineation. Comparison in terms of (b) PPV suggests an improvement in labeling
using elastic registration.

compared to expert delineations. The 5 labels for CaP were used to train 5 classifiers

and these were evaluated against 7 different ground truth surrogates. A quantitative

performance improvement in the supervised classifier component of a CAD system

was observed using the cancer labels obtained by registration versus labels manually

determined by an trained expert pathologist with a histological reference.

This method for training of a supervised classifier by multimodal registration is

applicable to any scenario in which multimodal data with ground truth is available. By

providing accurate and repeatable training labels, registration overcomes several of the

problems with manual delineation of training labels including human error, observer

bias and variability. Further, the method of comparing classifier performance where

the classifiers have been trained on the registration results may be used as a means of

comparing registration performance. Some steps in this direction were undertaken in

this paper.
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Chapter 4

Registration of ex vivo Whole-Mount Histology and in

vivo MRI using Multiple Texture Features

4.1 Challenges of Automated Elastic Multimodal Image Registration

Multimodal and multiprotocol image registration refers to the process of alignment of

two images obtained from different imaging modalities (e.g. digitized histology and

MRI) and protocols (e.g. T2-weighted and PD MRI), utilizing either rigid or non-rigid

coordinate system transformations. Both processes are critical components in a range

of applications, including image guided surgery [9–11], multimodal image fusion for

cancer diagnosis and treatment planning [12], and automated tissue annotation [13].

However, registration of multimodal imagery has posed a more challenging task com-

pared with alignment of images from the same modality or protocol on account of

differences in both image intensities and shape of the underlying anatomy. The first

of these hindrances, dissimilar intensities between modalities, arises as a consequence

of the measurement of orthogonal sources of information such as functional (SPECT)

and structural (CT/MRI) imagery [12], as well as on account of other factors such as

intensity artifacts, resolution differences, and weak correspondence of observed struc-

tural details. We have previously addressed these challenges in the context of rigid

registration using our feature-driven registration scheme termed combined feature en-

semble mutual information (COFEMI) [3, 53]. The goal of the COFEMI technique is

to provide a similarity measure that is driven by unique low level textural features,

for registration that is more robust to intensity artifacts and modality differences than

similarity measures restricted to intensities alone. For example, the multiprotocol MRI

in Fig. 4.1 which contains strong bias field artifact on T1 MRI are registered using

both conventional intensity-based MI and with COFEMI. The features in Figs. 4.1(e)
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and (e) clearly demonstrate robustness to artifacts, and hence provide improved regis-

tration with COFEMI as in Fig. 4.1(f). We refer the reader to [3] for demonstration

and further description of the technique.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: Comparison of MI and feature-driven COFEMI rigid registration of images
with strong bias field inhomogeneity artifacts. (a) A T2 MR brain image is registered
to (b) the corresponding T1 MRI using (c) intensity-based MI and (f) COFEMI using
second order (d) correlation and (e) inverse difference moment features. Green contours
in (c) and (f) represent the boundary of the T2 brain MRI of (a) overlaid onto the reg-
istered target. Red outlines accentuate the boundaries in the registration result. Use of
textural feature images by COFEMI was shown to improve registration of multiprotocol
images with heavy intensity artifacts.

While accurate rigid registration is a valuable precursor to more complex trans-

formations, and rigid image transformations are often sufficient to model many defor-

mations in biomedical imagery, non-linear shape differences are common between real

multimodal biomedical image data sets. For example, registration of images of highly

deformable tissues such as in the breast have been shown to require flexible non-rigid

techniques [17]. Similarly, non-linear differences in the overall shape of the prostate

between in vivo MRI and ex vivo whole mount histology (WMH) have been shown to

exist as a result of (1) the presence of an endorectal coil during MR imaging and (2)
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deformations to the histological specimen as a result of fixation and sectioning [18,19].

Consequently, achieving correct alignment of such imagery requires elastic transforma-

tions to overcome the non-linear shape differences. The free form deformation (FFD)

technique proposed by Rueckert in [17] has been demonstrated to provide a flexible au-

tomated framework for non-rigid registration by using any similarity measure to drive

registration. However, this technique relies upon intensity-based similarity measures,

which have been shown to be wanting for robustness across highly dissimilar modal-

ities and in the presence of artifacts [3]. Thin plate splines (TPS) warping methods

are common, but involve identification of anatomical fiducials, a difficult task that is

usually performed manually.

To overcome the challenges of both non-linear deformations and intensity artifacts si-

multaneously, we present a new technique termed Feature Ensemble Multi-level Splines

(COLLINARUS). Our new COLLINARUS non-rigid registration scheme offers the ro-

bustness of COFEMI to artifacts and modality differences, while allowing fully auto-

mated non-linear image warping at multiple scales via a hierarchical B-spline mesh grid

optimization scheme. An overview of the registration methodology used in this paper

to demonstrate COLLINARUS is presented in Fig. 4.2, whereby feature ensembles

drive both rigid and non-rigid registration of an intensity image that is the target for

transformation, onto a template intensity image that remains stationary. As previously

described [3], COFEMI is used to drive an initial rigid registration step to correct large

scale translations, rotations, and differences in image scale. The transformed target

intensity image that results from rigid registration is then registered in a non-linear

fashion via COLLINARUS to the template image. Registration by COLLINARUS is

critical to account for local deformations that cannot be modeled by any linear coor-

dinate transformation. Since COFEMI and COLLINARUS involve maximization of a

similarity measure, each step is fully automated.

We developed the COLLINARUS scheme to perform an automated tissue annotation

task that is designed to facilitate the development and evaluation of a novel system for

computer-assisted detection (CAD) of prostate cancer on multi-protocol MRI [28]. The

development of a multimodal CAD system that operates upon in vivo imagery requires
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Figure 4.2: A two step COFEMI-driven rigid and non-rigid registration methodology
applied in this study to perform automated alignment of two intensity images. Initial
global alignment is performed using COFEMI to optimize an affine transformation of
the target intensity image. Subsequently, non-rigid registration via COLLINARUS is
performed to determine the remaining local deformations.

ground truth labels for cancer on each modality to characterize malignant tissue. Since

these MRI pixel labels are usually obtained by manual delineation of cancer, they can

be extremely time consuming to generate and subject to errors and bias of the expert

performing the annotation. The deleterious effect of such errors in training labels on

MRI CAD has been demonstrated [29, 88]. Therefore, to improve labeling and hence

CAD classifier accuracy, alignment of in vivo imagery with corresponding ex vivo whole

mount histology (WMH), the source of the cancer “gold standard”, may be performed

via automated multimodal image registration. The use of COFEMI for automated

rigid registration has been previously demonstrated on ex vivo MRI [5]. In the current

study, we present the non-rigid spatial registration of in vivo T2-w MRI, in vivo DCE

MRI, and ex vivo whole mount prostate histology slices, followed by mapping of the

“gold standard” from histology onto both MRI protocol images. A diagram of the

multimodal prostate registration task performed in this paper is shown in Fig. 4.3.

The ex vivo WMH containing the “gold standard” label for cancer shown in Fig. 4.3(a)

is registered to the corresponding in vivo T2-w MRI section via the COLLINARUS

non-linear registration technique. The transformed WMH section shown in the bottom

of Fig. 4.3(a) contains a cancer map than is then transfered directly onto the T2-w

MRI as illustrated at the bottom of Fig. 4.3(b). The new non-rigid COLLINARUS
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Figure 4.3: Application of the COLLINARUS automated feature driven non-rigid
registration technique to alignment of (a) ex vivo whole mount histology (WMH), (b)
in vivo T2-w MRI and (c) in vivo DCE-MRI images of the prostate and annotation
of cancer on multiprotocol MRI. (a) Histopathologic staining of whole-mount sections
of a prostate with cancer provides the “gold standard” for cancer extent. Non-rigid
registration via COLLINARUS of (a) WMH to (b) corresponding in vivo MRI obtained
prior to resection allows the histological cancer map to be transferred onto (b). (c)
Corresponding DCE-MRI is registered to (b) by COFEMI rigid registration to establish
a map of cancer on (c).

registration technique will overcome the limitations of rigid deformation models, while

providing similar improvements in efficiency and accuracy of cancer delineation on

in vivo multiprotocol MRI. This will allow the structural appearance and functional

properties of cancer to be accurately characterized for the development and evaluation

of in vivo multiprotocol CAD applications.

Qualitative and quantitative evaluation of the COLLINARUS scheme is performed

on a set of real multimodal prostate images and on a set of synthetic multiprotocol brain

images. Multimodal prostate image registration is performed as described above for 6

clinical data sets comprising a total of 21 groups of in vivo T2-w MRI, DCE-MRI, and

ex vivo WMH images with cancer present. Evaluation of prostate registration is per-

formed by comparison with 3TP DCE mappings, the industry standard for DCE-MRI

analysis, and by measures of prostate region overlap. The set of synthetic multiproto-

col images, acquired from the BrainWeb Simulated Brain Database [82], comprises 11
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pairs of T1-w and proton density (PD) MRI of the brain. The synthetic registration

task was generated by applying a known non-linear warping to the PD MRI, hence

misaligning T1-w MRI from PD MRI. Non-rigid registration was then performed to

recover the original, correct alignment of each image pair. Quantitative evaluation of

brain registration was performed by direct comparison of (1) the recovered deformation

field to the applied field and (2) the original undeformed and recovered PD MRI. For

each of the data sets, COLLINARUS is compared with the MI-driven counterpart of

the B-spline technique.

The primary novel contributions of this work are,

• A new method termed COLLINARUS for automated non-rigid image registration.

• Use of textural feature image ensembles in a non-rigid registration technique for

robustness to artifacts and modality differences.

• A multimodal rigid and non-rigid registration scheme that provides superior reg-

istration accuracy compared to use of MI-driven counterparts.

The rest of the paper is organized as follows. In Section 4.2, the COLLINARUS

registration technique is described. In Section 4.3, the results of the real and synthetic

registration tasks are described for both COLLINARUS and MI-MLS. Concluding re-

marks are given in Section [82].

4.2 Collection of Image-derived Non-linear Attributes for Registra-

tion Using Splines (COLLINARUS)

4.2.1 Overview

The new registration technique referred to as Collection of Image-derived Non-linear

Attributes for Registration Using Splines, or COLLINARUS, consists of three primary

components,

1. A robust feature ensemble-driven similarity measure derived the COFEMI [3]

scheme,
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2. A flexible non-linear image warping model based on B-splines and,

3. A variable spline grid size approach for optimizing a multi-scale local image warp-

ing.

4.2.2 Notation

Define a stationary template image as A = (C, fA), where C is a set of coordinates

c ∈ C and fA(c) is the intensity value of A at location c. A target image B = (C, fB) is

similarly defined with intensities fA(c) on the same coordinate grid C. The goal of the

registration task is to provide a coordinate transformation T(c), ∀c ∈ C, that describes

the mapping of each point on a registered target image Br to the template intensity

image A. We can then define Br = (C, f∗(c)), where f∗(c) = g(T(c), fB) represents

an interpolation function used to provide intensity values at location T(c) using the

underlying intensity map fB. We can further define a generic image transformation Φ

to represent the application of T at each c ∈ C, such that Br = Φ(B,T).

4.2.3 General Registration Framework

We demonstrate COLLINARUS in a two stage rigid and non-rigid registration frame-

work, whereby COFEMI and COLLINARUS are used in the rigid and non-rigid compo-

nents, respectively. As described in Fig. 4.2, registration of A and B may be performed

by first determining a global, rigid transformation Trigid, followed by an local, elastic

transformation Telastic. The global transformation is determined by maximizing,

Trigid = argmax
T

ψ(A,Φ(B,T)), (4.1)

where ψ is an image similarity measure such as conventional intensity-driven MI or the

feature ensemble-driven measure from COFEMI. Application of Trigid to B gives the

rigidly registered target image Br by,

Br = Φ(B,Trigid). (4.2)
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The elastic transformation Telastic and the final registered target image Bnr are then

determined, again by maximization of the similarity measure ψ, by,

Telastic = argmax
T

ψ(A,Φ(Br,T)), and (4.3)

Bnr = Φ(Br,Telastic). (4.4)

A unified coordinate transformation may then be defined as the successive applica-

tion of the coordinate transformations Trigid and Telastic,

T∗(c) ≡ Telastic(Trigid(c)) (4.5)

and the non-rigid registration result generated directly by,

Bnr = Φ(B,T∗) (4.6)

For the implementation of the above methodology used in this study, we define

Trigid as an affine coordinate transformation. Details of the multi-scale optimization

of Telastic are described in the following section.

4.2.4 COLLINARUS Non-Rigid Registration

The COLLINARUS non-rigid registration technique achieves the optimization ofTelastic

in Eqn. (4.3) by synergy of the following concepts,

1. Using a feature ensemble-driven similarity measure for ψ, obtained via the tech-

niques for feature extraction, selection, and combination that are associated with

COFEMI.

2. Defining Telastic as the 2-D tensor product of the cubic B-splines [41,95] to allow

local elastic image deformations.

3. Maximization of ψ using a multi-level control point grid approach to achieve

B-spline deformations at multiple scales.
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The feature ensemble-driven similarity measure used for ψ is obtained by the COFEMI

technique. The primary components of COFEMI are (1) extraction of an exhaustive

set of low level textural feature images, (2) selection of a highly descriptive ensembles of

textural features from the intensity images using the CMIfeatures algorithm described

in [3], and (3) incorporation of the feature ensembles by combined mutual information

(CMI), a form of MI derived to compare two multivariate observations. The measure

ψ used by COLLINARUS is thus defined as in [3] by,

ψ(A,B) = CMI(AπA, B πB), (4.7)

where πA and πB are the selected feature ensembles, and each AπA and B πB also

represent distinct ensembles. Thus, the COLLINARUS non-rigid registration scheme

involves optimization of Telastic by Eqn. (4.3) via (4.7), whereas the COFEMI rigid

registration scheme involves optimization of Trigid by Eqn. (4.1) via (4.7).

By defining Telastic for COLLINARUS in terms of the cubic B-splines basis func-

tions, COLLINARUS is capable of defining local elastic deformations without the use

of anatomical fiducial markers. The coordinate transformation used by COLLINARUS

is instead defined in terms of a regularly spaced control point mesh of size nx×ny, the

displacements of which are used to define a coordinate transformation Telastic according

to the 2D tensor product of B-spline basis functions [41].

The multiresolution image warping method employed by COLLINARUS is achieved

by a multi-level spline grid optimization approach, whereby the number of grid points

are modulated via nx and ny. Spline deformations defined with successively finer con-

trol point meshes are then combined into a single non-linear transformation. The idea

behind this approach is to exploit the local neighborhood influence of B-splines grid

so as to model successively smaller and more local deformations. This technique is

thus capable of modeling deformations of varying magnitude. For a total of L transfor-

mations, Tl
elastic is defined at multiple control point spacing levels l ∈ {1, . . . , L} with

corresponding mesh sizes nx,l×ny,l. At each level l, the transformation Tl
elastic is deter-

mined as in Eqn. 4.3 by maximization of similarity measure ψ, where the displacements
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of each of the nx,l×ny,l control points are the free parameters. Each Tl
elastic is applied

successively to form the final elastic transformation Telastic.

4.2.5 Registration Evaluation

Evaluation of registration accuracy can be performed easily if the correct coordinate

transformation, Tap, is known. First, the magnitude of error in the transformation

Tco determined by registration can be quantified in terms of mean absolute difference

(MAD) (Fmad(T
co)) and root mean squared (RMS) error (Frms(T

co)) from Tap,

Fmad(T
∗) =

1

N

∑
c∈C
‖Tco(c)−Tap(c)‖L2 (4.8)

Frms(T
∗) =

√
1

N

∑
c∈C
‖Tco(c)−Tap(c)‖2L2. (4.9)

Further, the desired transformed target image B′ may be obtained by from the known

correct transformation Tap by,

B′ = Φ(B,Tap), (4.10)

and compared directly with the resulting target image Bnr actually obtained from

registration. Three measures are used to compare Bnr with B′, including L2 distance

(DL2), MI (SMI), and entropy correlation coefficient (SECC) [38].

4.3 Results of Automated Elastic Image Registration

4.3.1 Data Sets

Synthetic Data. Synthetic brain MRI [82] were obtained from BrainWeb, comprising

corresponding simulated T1-w and PD MR brain volumes of dimensions 181×217×181

with voxel size of 1mm3. We denote the T1-w and PD MRI images as CT1 and CPD,

respectively. Ground truth for correct alignment between CT1 and CPD is implicit in

the simulated data, allowing use of the evaluation methods described in Sec. 4.2.5.

Clinical Data. Clinical in vivo multiprotocol (T2-w and DCE) 3T MRI images with
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WMH sections of the prostate were acquired to establish a map for spatial extent of can-

cer on both T2-w MRI and DCE-MRI. For 6 clinical data sets comprising in vivo T2-w

MRI, DCE-MRI, and WMH, a total of 21 corresponding images with cancer present

were considered. Cancer extent on histology was first obtained via microscopic analysis

of haematoxylin and eosin stained tissue. Slices of T2-w MRI that correspond with the

available WMH sections were identified by visual inspection by an expert radiologist.

The slices of the T2-w MRI and DCE-MRI volumes are in implicit correspondence

(but not 2D alignment) since the multiprotocol MRI data was acquired during a single

scanning session in which the patient remained stationary.

4.3.2 Synthetic Brain Data

The synthetic T1-w and PD MRI brain data was used to perform quantitative analysis

of registration accuracy under simulated noise and intensity inhomogeneity. Since the

CT1 and CPD images generated by the BrainWeb MRI simulator are in implicit align-

ment, evaluation of registration accuracy was performed as described in Sec. 4.2.5 by

imposing a known transformation T ′ to each coordinate of CPD, followed by execution

of COLLINARUS to determine the transformation T ∗ required to recover the original

alignment. For 11 pairs of corresponding CT1 and CPD images, registration was per-

formed using COLLINARUS and an analogous MI-driven B-spline registration scheme.

Fig. 4.4 demonstrates the registration of one T1-w MRI section with a PD MRI sec-

tion. The T1-w MRI in Fig. 4.4(a) is initially in alignment with the PD MRI in 4.4(b),

which contains noise and simulated field inhomogeneity. The non-linear deformation

illustrated in Fig. 4.4(c) by the deformed grid is then applied to generate the deformed

PD MRI in Fig. 4.4(d). MI-driven B-spline registration is then performed to obtain

the PD MRI image in Fig. 4.4(e). A textural feature calculated by COLLINARUS

from Fig. 4.4(b) is shown in Fig. 4.4(g), demonstrating the diminished effect of inho-

mogeneity on the feature image. The registration result from COLLINARUS is shown

in Fig. 4.4(h). While the MI-based and COLLINARUS results in Figs. 4.4(e) and (h)

appear similar, deformation field error magnitude images shown in Fig. 4.4(f) and (i)

clearly indicate that T∗ obtained from COLLINARUS contains far less error than the



83

(a) (b) (c) (d)
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Figure 4.4: (a) Synthetic T1-w MRI section, and (e) corresponding PD MRI sec-
tion with simulated noise and bias field inhomogeneity artifacts. A deformation field,
demonstrated on a grid in (f), is applied to (e) PD MRI to generate (b) a warped PD
MRI section. Both MI and COFEMI are used to drive a non-linear B-spline based reg-
istration of (b) to (a). A correctly transformed PD MRI section would closely resemble
(f). The results of (e) MI-driven and (g) COLLINARUS registration appear similar,
while representations of the deformation field error magnitudes in (d) and (h) illustrate
the greater error of MI compared with COFEMI.

transformation obtained MI spline registration.

The quantities Fmad and Frms are calculated from T∗ obtained from COLLINARUS

and MI-MLI from Eqns. (4.9), as well as DL2, SMI , and SECC . The average values

of each quantity for n = 11 image pairs are given in Table 4.1, along with p-values for

student’s t-tests. The average values of both Fmad and Frms were significantly lower for

COLLINARUS, indicating less error in the recovered deformation field determined by

Tco. The average values of both SMI , and SECC were significantly higher for COLLI-

NARUS, indicating greater similarity between the recovered PD MRI and the correct

undeformed image. Similarly the distance DL2 was lower for COLLINARUS, indicating

greater similarity between COLLINARUS recovered and correct PD images.
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Fmad Frms DL2 SMI SECC

MI-MLS 0.9585 2.2201 1.88e+03 2.8803 0.5104

COLLINARUS 0.8330 1.9406 1.56e+03 3.0709 0.5437

p (n = 11) 0.0075 0.0097 9.97e-05 8.76e-05 9.97e-05

Table 4.1: Comparison of non-rigid registration accuracy for COLLINARUS and MI-
MLS alignment of n = 11 pairs of synthetic PD MRI and T1-w MRI brain images.
Error of recovered deformation field in terms of mean absolute difference (Fmad) and
root mean squares (Frms) measures the deviation of the registration-derived deforma-
tion field from the known field. Units of Fmad and Frms are mm. Euclidean distance
between the original undeformed PD MRI and recovered PD MRI obtained by non-
rigid registration (DL2), measures the dissimilarity between the registration result and
the ideal result. The mutual information and entropy correlation coefficient between
the recovered and original PD MRI sections (SMI and SECC) indicate how well the
recovered image resembles the original, ideal result. Each of Fmad, Frms, DL2, SMI and
SECC indicate that COLLINARUS more accurately recovered the original undeformed
PD MRI compared with MI-MLS.

4.3.3 Clinical Multi-Modal Prostate Data

Prostate Registration Task

The “gold standard” for cancer presence, which is available on the whole mount his-

tological (WMH) images, is mapped onto both in vivo T2-w MRI and DCE-MRI by

alignment of each of the modalities. In this task, large differences in the overall shape of

the prostate exist between WMH and in vivo MRI as a result of (1) the presence of an

endorectal coil during MR imaging and (2) deformations to the histological specimen as

a result of fixation and sectioning. Consequently, achieving correct alignment of WMH

and MRI requires elastic transformations to overcome the non-linear shape differences.

Thus, a multi-stage rigid and non-rigid registration procedure utilizing COLLINARUS

was implemented to align the WMH, T2-w MRI, and DCE-MRI. The main steps are

described below:

1. Initial affine registration of the WMH target image to the in vivo T2-w MRI

image via the COFEMI multiple feature-driven registration technique.

2. Non-rigid registration of rigidly registered WMH image from step 1 onto T2-w

MRI using the COLLINARUS technique.

3. Combine the resulting affine and non-rigid transformations, mapping pixels from
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WMH onto the T2-w MRI.

4. Affine registration of multiprotocol images (T2-w MRI and DCE) via maximiza-

tion of mutual information (MI), bringing all modalities and protocols in to spatial

alignment.

In step 2, the B-spline derived warping from COLLINARUS allows for modeling of

the local deformations that result from the presence of the endorectal coil required for

high resolution in vivo MRI of the prostate. On the other hand, since T2-w MRI and

DCE-MRI were acquired during the same scanning session, only a rigid transformation

was required in step 4 to compensate for resolution and bounding box differences, as

well as any small patient movements that may have occurred between acquisition of the

two protocol volumes. The combined non-linear transformation obtained in step 3 was

applied to the histopathologic cancer label, hence bringing the label into the coordinate

frame of T2-w MRI. The final determined affine transformation was then applied to the

histopathologic cancer label on T2-w MRI, thus generating the label for cancer extent

on DCE-MRI.

Three Time Point (3TP) DCE Cancer Maps

The commonly used 3 time point (3TP) representation of the DCE-MRI can provide an

independent estimate of cancer extent against which the registration-established cancer

masks are compared. Most current efforts in computer-aided diagnosis of CaP from

DCE-MRI involve pharmacokinetic curve fitting such as in the 3 Time Point (3TP)

scheme [96]. Based on the curve/model fits these schemes attempt to identify wash-in

and wash-out points, i.e. time points at which the lesion begins to take up and flush out

the contrast agent. Lesions are then identified as benign, malignant or indeterminate

based on the rate of the contrast agent uptake and wash out. Red, blue and green

colors are used to represent different classes based on the ratio w = Rate of wash-in
Rate of wash-out

of the contrast agent uptake. When w is close to 1, the corresponding pixel is identified

as cancerous area (red), when w is close to zero, the pixel is identified as benign (blue),

and green pixels are those are identified as indeterminate.
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Prostate Registration Results

Corresponding sections from a WMH slice, in vivo T2-w MRI, and a single time frame

of DCE-MRI imagery from the same patient are shown in Figures 4.5(a) and (b) for

a prostate with cancer, where the boundary of the prostate on T2-w MRI has been

outlined in yellow. Using the automated non-rigid registration method described above,

the WMH section in Fig. 4.5(a) is warped into alignment with the prostate region in Fig.

4.5(b). The cancer extent is then mapped directly onto T2-w MRI, as shown in Figure

4.5(d) to display the prostate more clearly. Having established cancer extent on T2-w

MRI (Fig. 4.5(d)), the T2-w MRI image is registered to the DCE-MRI image. Finally,

the CaP extent is mapped from T2-w MRI (Fig. 4.5(d)) onto DCE-MRI, as in Figure

4.5(e). For visual comparison, we calculate the 3TP color representation from the DCE

time series, as shown in Fig. 4.5(f) for the same slice, providing an independent means

of evaluating the CaP labels mapped by our registration technique. Prostate overlap

between modalities and protocols, and comparison of mapped cancer extent (green)

with 3TP cancer extent (red) indicates excellent overall alignment between modalities

and protocols obtained by COLLINARUS, and an accurate mapping of cancer on images

from both MRI protocols.

Since the correct transformation required to bring the images into alignment is not

know, registration accuracy is evaluated in terms of how well the region of the images

representing the prostate overlaps between the aligned images (the overlap ratio). The

intuition of this measure is that if the prostate image regions completely overlap between

the modalities, the registration and hence the cancer mapping is highly accurate. The

overlap ratio for two images of the prostate is defined as the ratio of the number of

pixel coordinates that represent the prostate in both modalities to the total number of

pixel coordinates representing the prostate in either modality (i.e. the prostate region

intersection-to-union pixel count ratio). The mean overlap ratio for the prostate in the

pairs of registered WMH and T2-w MRI was 0.9261, indicating that prostate in the two

aligned modalities occupies nearly the same spatial coordinates. Similarly for the pairs

of registered T2-w MRI and DCE-MRI images, a high overlap of 0.8964 was achieved.
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(j) (k) (l)

Figure 4.5: Registration of WMH to 3T in vivo T2-w MRI and DCE-MRI of the
prostate with cancer. (a) WMHwith cancer extent delineated (dotted lines) is registered
to (b) corresponding T2-w MRI using COLLINARUS to generate (c) transformedWMH
in spatial alignment with the prostate in (b). (d) T2-w MRI with the cancer extent
mapped from (c) superimposed in green. (e) DCE-MRI registered with (d) by an affine
transformation, shown with cancer extent (green) mapped from (d) T2-w MRI. (g)
The commonly used 3TP representation of the DCE data in (e), which provides and
independent estimate of CaP extent, demonstrates that the cancer extent mapped by
registration is accurate. (g)-(l) Similar results are demonstrated for a different set of
multimodal prostate images from another study.
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4.4 Concluding Remarks

We have demonstrated a new method for fully automatic non-rigid multimodal/mul-

tiprotocol image registration that combines textural feature ensembles in a similarity

measure to drive a multilevel B-spline based image warping scheme. The robustness to

modality differences offered by the COFEMI technique for feature ensemble selection

and combination, and the flexibility of B-splines to model non-linear deformations are

leveraged in this study to provide a powerful tool for automated multimodal image

registration. Our method was used to successfully register a unique data set com-

prising WMH, in vivo T2-w MRI, and in vivo DCE-MRI images of the prostate, and

subsequently map histopathologic CaP extent onto the images from both in vivo MRI

protocols. A comparison of the CaP labels mapped onto DCE-MRI with the inde-

pendent 3TP representation suggests that the labels are established accurately by the

registration procedure. We have thus presented a robust, accurate means for aligning

and thus facilitating fusion of structural and functional data. The primary contributions

of our method are, The primary novel contributions of this work are,

• A new method termed COLLINARUS that provides flexible and robust auto-

mated non-rigid multimodal image registration.

• Use of textural feature image ensembles to drive a non-rigid registration technique

and provide robustness to artifacts and modality differences.

• Superior non-rigid registration accuracy compared with similar MI-driven tech-

niques.

• Application of our technique in automatically determining the spatial extent

of CaP by registration of multiprotocol 3T in vivo clinical MRI images of the

prostate, with histology containing cancer ground truth. Our work presented

here represents the first time a fully automated technique has been presented for

registration of histology with in vivo MRI of the prostate.
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Our experiments demonstrated on clinical and synthetic data indicated that COLLI-

NARUS provides greater registration accuracy compared with similar MI-driven tech-

niques. As such, the COLLINARUS technique will have broad applicability for auto-

mated registration of multimodal and multiprotocol images, including structural and

functional data.
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Chapter 5

Registration of ex vivo Whole-Mount Histology and in

vivo MRI using Multiparametric Images

5.1 Background and Motivation

Recently, magnetic resonance (MR) imaging (MRI) has emerged as a promising modal-

ity for detection of prostate cancer (CaP), with several studies showing that 3 Tesla

(T) endorectal in vivo T2-weighted (T2-w) imaging yields significantly higher contrast

and resolution compared to ultrasound (US) [97]. For example, Fig. 5.1(a) shows a

typical in vivo US image of a prostate in which internal anatomical details, such as

the urethra, ducts, and hyperplasia, are barely discernible, while in the segmented

T2-w MR image shown in Fig. 5.1(b), internal anatomical details within the prostate

are clearly visible. An additional advantage offered by MRI is the ability to use dif-

ferent acquisition protocols to capture orthogonal sources of information, including

functional (dynamic-contrast enhanced (DCE)), metabolic (magnetic resonance spec-

troscopy (MRS)), vascular (diffusion weighted imaging (DWI)), and structural (T2-w)

attributes. Since multiple protocols can be acquired in the same scanning session, little

additional setup time is required.

The use of multiprotocol MRI for CaP diagnosis has been shown to improve de-

tection sensitivity and specificity compared to the use of a single MR imaging proto-

col [98–100]. Previous studies have demonstrated improved CaP detection sensitivity

and specificity by simultaneous use of multiple MRI protocols, including DCE and T2-

w MRI [101], MRS and T2-w MRI [102], and DWI with both T2-w [103] and DCE

MRI [104]. Since the current clinical diagnostic protocol involves no image-based de-

tection of CaP, the ability to utilize in vivo multiprotocol diagnostic images for detec-

tion and localization of CaP in vivo would have clear implications for (1) non-invasive
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image-based screening, (2) targeted biopsies, and (3) conformal radiation therapy.

If the spatial extent for CaP on multiprotocol in vivo radiological imaging can be

accurately delineated, it may then be possible to define specific imaging parameters

with the greatest diagnostic accuracy in reliably characterizing CaP on in vivo clini-

cal, radiologic images. The definition of such image signatures would be invaluable in

building (a) a computer-assisted disease detection system [5,28,102,105], or (b) spatial

disease atlases which could serve as training and educational tools for medical students,

radiology residents, and fellows. However, direct annotation of disease extent on MRI

is often challenging even for experienced radiologists. Thus, to reliably ascertain extent

of CaP on in vivo radiological images, it is necessary to utilize ex vivo tissue specimens,

upon which “ground truth” estimates of CaP extent may be established by histopatho-

logic inspection. (In the context of patients diagnosed with CaP and scheduled for

radical prostatectomy (RP), in several centers in the U.S., pre-operative imaging is

performed to identify presence of extracapsular spread. [106]) Figure 5.1(c) shows a

whole-mount histology (WMH) section of a RP specimen on which cancerous tissue

has been manually annotated (dark purple) following microscopic examination of the

excised gland.

Spatial correlation of diseased regions on histology and MRI may be performed by

(a) visually identifying and labeling corresponding structures on each modality [28,107–

109] or (b) using a semi- or fully-automated image registration procedure [2, 110–112].

For example, the spatial extent of CaP on MRI, obtained by manually labeling the in

vivo image while visually referencing the histology, is shown in green in Fig. 5.1(d).

On the other hand, the disease extent established by elastic registration of the MR and

histology images in Figs. 5.1(b) and 5.1(c) is shown in Fig. 5.1(e). Note that the shape

of the disease mask mapped onto the MRI in Fig. 5.1(e) more closely resembles the

histopathological ground truth for CaP extent in Fig. 5.1(b) compared to the manually

annotated region shown in Fig. 5.1(d). Thus, with an accurate registration technique,

CaP extent on MRI can be established with greater accuracy, efficiency, and consistency

compared to manual labeling.

Registration of images from different modalities such as histology and radiology
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(a) (b) (c) (d) (e)

Figure 5.1: Ultrasound imagery of the prostate provides poor soft tissue resolution,
while (b) high resolution MRI (ex vivo image shown) shows internal anatomical de-
tails of the prostate with greater clarity. Ground truth for CaP extent is obtained
only through histopathologic analysis of (c) the corresponding Haematoxylin and Eosin
stained tissue section. The histopathologic CaP extent (dark purple) on (c) can be
mapped onto the MRI in (b) by either (d) manual labeling the MRI using histology as
a visual reference, or (e) automatically mapping CaP extent from (c) via image regis-
tration. Note that the morphology of the CaP extent is better preserved in the mapping
from (c) onto (e) as compared to (d).

is complicated on account of the vastly different image characteristics of the individ-

ual modalities. For example, the appearance of tissue and anatomical structures (e.g.

hyperplasia, urethra, ducts) on MRI and histology are considerably different, as may

be appreciated from Figs. 5.1(b) and 5.1(c). The shape of the WMH is also signifi-

cantly altered due to uneven tissue fixation, gland slicing and sectioning, resulting in

duct dilation, gland deformation, and tissue loss. Traditional intensity-based similarity

measures, such as mutual information (MI) are typically inadequate to robustly and

automatically register images from two such significantly dissimilar modalities. There

have been several efforts to complement intensity information with alternative image

information, including image gradients [57], co-occurrence information [59], color [61]

and image segmentations [58] in conjunction with MI variants, specifically adapted

to incorporate these additional channels of information. Similar to the use of calcu-

lated features to complement image intensity, it may also be advantageous to leverage

additional imaging protocols that may be available. For instance, multiprotocol MR

imaging is part of standard clinical practice at a number of medical centers for disease

diagnosis and treatment [113,114]. These additional channels may provide complemen-

tary structural, metabolic, and functional data to complement image intensity for the

registration process.
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In this paper, we present an information theoretic approach, Multi-Attribute Com-

bined Mutual Information (MACMI), to simultaneously utilize all available imaging

channels, such as registered multiprotocol imagery (or image features calculated from

the original images), in the registration of several images. In this work we demon-

strate the application of MACMI for establishing spatial extent of CaP on radiological

imaging via registration of annotated ex vivo histology sections with corresponding

multiprotocol in vivo MRI.

5.2 Previous Work

Registration of prostate images is important for (a) the planning, guidance and ret-

rospective evaluation of radiotherapy procedures [11, 52, 115, 116], (b) the fusion of

diagnostic images for improved CaP detection accuracy [12,117–119], and (c) the auto-

mated annotation of radiological images via histopathologic correlation [111, 120, 121].

Intra-modality prostate image registration has been utilized by [122] for image-guided

prostate surgery via elastic registration of pre- and intraoperative prostate MRI, and

by [52] for monitoring therapy related changes over time by registration of serial CT im-

ages. [12] investigated the use of multimodal prostate images (MRI, CT, and SPECT) to

characterize CaP, performing automated multimodal registration of MRI to SPECT via

MI, and manual registration of MRI to CT using a graphical user interface. Automated

rigid registration of MRI with CT has been addressed by several groups [117–119], while

automated elastic registration has only recently been addressed by [123] using a spatially

constrained B-spline. Methods for registration of MRI and 3D transrectal ultrasound

(TRUS) for real-time MRI-guided prostate biopsy have been presented by both [115]

and [116].

The unique set of challenges associated with registration of ex vivo histology and

multiprotocol MRI of the prostate has begun to be addressed by several recent studies;

these studies have however primarily been in the context of high resolution ex vivo

MRI [5, 112, 120, 124]. [120] utilized a thin plate spline (TPS) to model the elastic 2D

deformations of histology to ex vivo MRI of prostate specimens using control points.

However, “block face” photographs of thick tissue sections of the prostate, taken prior
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to microtome slicing and slide preparation, were used to facilitate correction of the

non-linear tissue deformations and in the creation of a histology volume. While these

photographs allowed [120] to overcome the non-linear deformations to histology and ad-

dress the issue of slice correspondences (identifying a one-to-one relationship between

histology sections and slices in the MRI volume), such photographs are not generally

acquired as part of routine clinical practice. Recently [112] aligned ex vivo MRI and

histology sections of a prostate specimen with the aid of precise cancer labels on both

modalities to improve their objective function for registration. As part of an integrated

registration and segmentation strategy, the required cancer extent on MRI was estab-

lished via a pixel-wise supervised classifier. The authors did not however address how

classifier errors would affect registration accuracy. While high resolution (4 T) ex vivo

MRI provided sufficient segmentation accuracy in [112], it is not clear that disease

extent can reliably be established on in vivo clinical images. [124] also performed reg-

istration of ex vivo MRI and histology sections using pairs of automatically detected

control points on each modality. However, automated identification of a large number

of landmark pairs across ex vivo WMH and in vivo MRI (of lower image resolution and

quality compared to the ex vivo MRI used in [124]) may not be feasible.

Registration of clinical in vivo radiologic images with WMH of the prostate has

also been recently addressed [1, 12, 111, 121]. [12] performed histopathologic validation

of CaP estimates on CT and MRI by 2D elastic registration of histology sections with

CT and MRI. Manually identified control points (anatomical landmarks), placed pri-

marily along the gland boundary, were used to define a TPS interpolant. In a rat brain

study, [121] also leveraged available block face photographs of the gland prior to sec-

tioning (similar to [120]) to generate an histology volume for 3D registration. Their

approach also utilized an intermediate ex vivo MRI series, to which WMH was aligned

via a TPS-based approach using manually selected initial control points, followed by

MI-driven refinement of the coordinates of the control points. Subsequently, ex vivo

MRI was registered to in vivo MRI, thus indirectly aligning the in vivo MRI and his-

tology slices of the rat brains. [111] extended this approach to the human prostate

and to include multiprotocol (T2-w and DWI) in vivo MRI and PET, again using
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block face photographs and ex vivo MRI as an intermediate. While the works of Park

and Meyer [111, 121] successfully address the need to rely on approximate slice corre-

spondences, neither block face photographs nor ex vivo MRI of prostate specimens are

usually available in the course of the clinical workflow. This might also explain why

only two patient studies were employed in [111], and one rat brain slide in [121].

Alignment of more than two images or volumes representing very different structural

or functional attributes of the same object is not well studied. One approach to regis-

tration of multiple images is to take a groupwise (GW) approach, whereby all images

are simultaneously aligned, usually to some reference image or coordinate frame. The

limitations of fully-GW approaches are that they either (1) involve optimization prob-

lems with many degrees of freedom arising from multiple simultaneous transformations,

or (2) are limited to images with similar intensity and/or deformation characteristics.

In the GW registration method presented by Bhatia [125], all images contribute to

the same histogram used for entropy calculation. This limits the technique to images

of the same modality. On the other hand, the GW method of Studholme [126] uti-

lizes a high dimensional distribution suitable for multimodal data, but the use of a

dense deformation field requires a constraint that penalizes deformations that devi-

ate from an average deformation. However, in the context of large deformation fields,

such as might be present between ex vivo and in vivo images, this technique is restric-

tive. Other methods require repeated refinement of individual transformations prior

to convergence [127]. More recently, Balci [128] performed simultaneous inter-patient

registration of a large number (50) of brain MRI scans using a sum of univariate (1D)

entropy values (“Stack Entropy”) calculated at every pixel location. However, since

this cost function requires a large number of images to calculate entropy at each pixel

location, it is suited only for registration of very large populations of images from the

same modality, as opposed to a smaller number of multimodal images from a single

patient. Thus, while a GW approach is generally preferable to several pairwise (PW)

registration steps, GW methods can be restrictive or computationally prohibitive.

Given the challenges and constraints of GW registration approaches, simple sequen-

tial PW registration steps are most commonly performed to bring multiple images from
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Figure 5.2: Registration of an ex vivo prostate histology (A) image to corresponding
in vivo T2-w (B) and T1-w (C) MR images can be achieved in different ways. Two
possible approaches using PW registration involve (a) PW alignment of histology to each
individual MRI protocol (A → B and A → C), or (b) alignment of multiprotocol MRI
(C → B) and alignment of histology to just T2-w MRI (A → B). In the latter case, T1-w
MRI would be in implicit alignment with histology at the end of the two registration
steps. Alternatively, (c) a multi-attribute image registration scheme involves initial
PW alignment of images from the same modality (T1-w and T2-w MRI) as in (b),
followed by alignment of histology to a multi-attribute image comprising the registered
multiprotocol MRI via a similarity measure defined for high dimensional data.
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different modalities into alignment. This was the method of choice for the prostate work

in [12] and [1] where several modalities are registered in steps using two images at a

time. Figures 5.2(a) and 5.2(b) illustrate two possible approaches to PW registration of

an ex vivo prostate histology (A) image to corresponding in vivo T2-w MR (B) and in

vivo T1-w (single time point of a DCE series) (C) MR images. Figure 5.2(a) illustrates

the case where image A is independently registered to both B and C. Figure 5.2(b) il-

lustrates a scenario where the multiprotocol MR images are co-registered by alignment

of C to B, and A is registered to just B, thus bringing A into alignment with both B

and C. For this particular set of multimodal images, the approach illustrated in Fig.

5.2(b) is preferable to that shown in Fig. 5.2(a) since alignment between multiprotocol

MRI is less complicated compared to multimodal alignment of ex vivo histology and in

vivo MRI. The latter approach involves dealing with highly elastic deformations and

dissimilar intensities. In both instances (illustrated in Figs. 5.2(a) and (b)), the two

registration steps are independent and utilize only two images at a time.

5.3 Novel Contributions and Significance

Both of the PW approaches illustrated in Figs. 5.2(a) and (b) consider only two images

at a time. Hence, they exploit only a fraction of the available data in driving each

registration step. Further, in subsequent alignment steps, it is necessary to select only

a single image from the set of co-registered images for use as a reference. A more

effective approach is to exploit all the information acquired from prior alignment steps

to drive the subsequent registration operations. As illustrated in Fig. 5.2(c), following

registration of C to B, both the newly aligned images could be considered in unison (as

a “multi-attribute” image) to drive the registration with A. Such an approach would

exploit the fact that C and B are (a) in implicit alignment, and (b) represent different

and informative image attributes (in this case structural and functional). This approach

is akin to previous studies that have used additional textural and gradient feature

images [57] to complement image intensity in order to improve image registration.

Multivariate formulations of MI have been shown to be useful in incorporating

multiple image attributes (e.g. texture) [1, 59]. Thus, multivariate MI may also be
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Figure 5.3: Establishing disease signatures on in vivo multiprotocol MRI using MACMI
for registration of (a) WMH sections to corresponding (d) T2-w and (e) T1-w MRI.
Alignment of the T2-w and T1-w MRI allows generation of (c) the multi-attribute MRI
comprised of co-registered multiprotocol MRI. MACMI is used to aligned (a) WMH
to (c) the multi-attribute MRI. CaP extent on the (b) elastically registered WMH is
mapped directly onto both MR images in (c).

applied in the context of applications where multiprotocol imaging (e.g. T2-w, T1-w

MRI) needs to be registered to another modality (e.g. histology).

The novel contribution of this work is a formal quantitative image registration frame-

work, which we refer to as Multi-Attribute Combined MI (MACMI). MACMI allows for

incorporation of multiple modalities, protocols or even feature images, in an automated

registration scheme, facilitated by the use of multivariate MI. MACMI is distinct from

previous GW approaches in that it handles images that can significantly vary in terms

of image intensities (e.g. multimodal data) and deformation characteristics (e.g. in

vivo to ex vivo). Additionally, it involves a simple (low degree of freedom) optimization

procedure whereby individual image transformations are determined in sequence. The

use of an information theoretic similarity measure is central to the ability of MACMI

to handle (1) multimodal data, which may contain non-linear relationships between

the image intensities of different modalities, and (2) high dimensional (multi-attribute)
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observations, which may contain redundancies between the attributes that can be dis-

counted via joint entropy. Finally, by employing a sequential approach to alignment of

multiple images within the multi-attribute representation, each successive optimization

procedure remains as simple (in terms of degrees of freedom) as with the conventional

PW registration.

In this work, we evaluate MACMI in the context of a clinical problem involving

multiprotocol (T2-w and DCE) MRI of the prostate and WMH sections; the sections

being digitized following gland resection. Registration of WMH to corresponding mul-

tiprotocol MRI is then performed to map CaP extent from ex vivo WMH (previously

delineated by pathologists) onto in vivo MRI. This procedure involves (1) initial affine

alignment of the T2-w and DCE (T1-w) images (Figs. 5.3(d) and 5.3(e)) using MI to

generate a multi-attribute MR image (Fig. 5.3(c)), followed by (2) multimodal elastic

registration of WMH with the multi-attribute MRI.

Our scheme for registration of in vivo MRI and ex vivo WMH of the prostate is

distinct from previous related efforts [12,111,121] in that (1) information from all in vivo

imaging protocols is being utilized simultaneously to drive the process of automated

elastic registration with histology, (2) no additional, intermediate ex vivo radiology or

gross histology images need be obtained in addition to the clinically acquired in vivo

MRI series, and (3) no point correspondences are required to be identified manually or

automatically.

For the registration of 150 corresponding sets of prostates images from 25 patient

studies with T2-w and DCE MRI, we quantitatively compare MACMI to a PW reg-

istration approach using conventional MI (Fig. 5.2(b)). For 15 patients for which

apparent diffusion coefficient (ADC) MRI was also acquired, we further demonstrate

MACMI for including the third MR protocol in the elastic registration of histology with

all three MRI series for 85 sets of images (in vivo T2-w, DCE and ADC MRI slices,

and ex vivo WMH sections). We also quantitatively evaluate MACMI on a synthetic

brain MRI study from BrainWeb1, whereby T1-w and T2-w MR images are registered

1http://www.bic.mni.mcgill.ca/brainweb/
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to PD MRI, where both the T1-w and T2-w protocols are simultaneously considered.

MACMI is compared to PW MI-based approaches where T1-w and T2-w MR images

are individually registered with PD MRI.

5.4 Methods

5.4.1 Theory on Mutual Information and MACMI

Mutual Information Between Scalar-Valued Images

Equation 5.1 below is a common formulation of MI for a pair of images (or random

variables) A1,A2 in terms of Shannon entropy.

I2(A1,A2) = S(A1) + S(A2)− S(A1,A2), (5.1)

where I2(A1,A2) describes the interdependence of 2 variables, or intensity values of

a pair of images [57]. As I2(A1,A2) increases, the uncertainty about A1 given A2

decreases. Thus, it is assumed that the global MI maximum will occur at the point of

precise alignment, when maximal uncertainty about intensities of A1 can be explained

by A2.

Mutual Information Between High-dimensional (Multi-Attribute) Images

The conventional MI formulation can be extended to high dimensional observations by

combining the multiple dimensions or attributes via high order joint entropy calcula-

tions. We refer to this application of MI as multi-attribute combined MI (MACMI) to

distinguish it from conventional applications of MI and higher order MI, and denote it as

I2
∗. Unlike the more familiar higher order MI (In, n ≥ 2), the goal of MACMI is not to

measure only the intersecting information between multiple sources (A1, . . . ,An), but

to quantify the combined predictive value of one multivariate source (e.g. [A1, . . . ,An])

with respect to another (e.g. [B1, . . . ,Bn]). Here we introduce the notion of an im-

age ensemble as the concatenation of n intensity-valued images (I1, . . . , In) into an

n-dimensional (multi-attribute) image, denoted as [I1, . . . , In]. In the simplest case,
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the MI (I2
∗) that a single image A1 shares with an ensemble of two other images, B1

and B2, is,

I2
∗(A1, [B1,B2]) = S(A1) + S(B1,B2)− S(A1,B1,B2). (5.2)

By considering B1 and B2 as simultaneously measured semi-independent variables in

the multidimensional ensemble [B1,B2], any dependence that exists between B1 and B2

may be discounted and I2
∗ remains bounded by the smaller of S(A1) and S(B1,B2).

The generalized form of MI between the n dimensional ensemble εAn = [A1, . . . ,An]

with the m dimensional ensemble εBm = [B1, . . . ,Bm] is,

I2
∗(εAn , ε

B
m) = S(εAn ) + S(εBm)− S(εAn , εBm). (5.3)

Thus, MACMI accomplishes fusion of the multiple dimensions of a multi-attribute

image, allowing only intersecting information between two such images (e.g. εAn and

εBm) to be quantified. Calculation of I2
∗(εAn , ε

B
m) is discussed in Section 5.4.3.

5.4.2 Framework for Registration of Multiple Images using MACMI

In Section 5.4.2, we present a generalized algorithm (MACMIreg) for performing reg-

istration of m images Z1, . . . ,Zm in a specific order. The order is specified using a

hierarchical organization of the images within a family of sets Z, and by progressively

aligning and accumulating the registered images into an single ensemble ε. In Section

5.4.2 we illustrate the operation of the algorithm for 4 images (Z1,Z2,Z3,Z4), where

Z is structured to register Z1 with Z2, and Z3 with Z4, prior to alignment of the two

resulting ensembles.

Algorithm

Consider a family of sets Z that containsm ≥ 2 images Z1, . . . ,Zm distributed through-

out n ≤ m ordered subsets Zj , j ∈ I, where I = {1, . . . , n}, (i.e.
⋃

j∈I Zj = {Z1, . . . ,Zm}

and
⋂

j∈I Zj = ∅). Each subset Zj , j ∈ {1, . . . , n} may also be a family (i.e. have

subsets of its own) or simply an ordered set of registered images. For example, if
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Zj = {{Z(j)
1 ,Z(j)

2 }, {Z
(j)
3 }, {Z

(j)
4 }}, we define Zj as a family of |Zj | = 3 subsets, con-

taining a total of k = ‖Zj‖ = 4 images. We further denote the ensemble of all k images

in Zj as ε = 〈Zj〉 = [Z(j)
1 , . . . ,Z(j)

k ]. By organizing the m images into a hierarchy of

subsets within the family Z, the order in which the images are registered and com-

bined into multi-attribute images is determined. The procedure for alignment of all

images (within and between each Zj) into a single ensemble ε of registered images is

described in the following recursive algorithm MACMIreg. Here we define the nota-

tion ε ← εd as the expansion of an n-dimensional multi-attribute image (ensemble) ε

into an (d+ n)-dimensional ensemble by concatenation with a d-dimensional ensemble

εd. We also denote Zj ⇐ ε as the assignment of each the m dimensions (intensity

images) in ε to the existing m total members of Zj (independent of the organization of

images within the family structure), thus replacing or updating Zj with the contents

of ε.

Algorithm MACMIreg
Input: Z = {Z1, ...,Zn}, n ≥ 1.
Output: ε.
Auxiliary Data Structures: Index k, j, α; Image ensemble ε0.
begin

0. for j = 1 to n do
1. k = |Zj |;
2. if k > 1 then
3. Obtain ensemble ε0 =MACMIreg(Zj);
4. Update Zj ⇐ ε0;
5. endif ;
6. endfor ;
7. Initialize ε as an empty ensemble;
8. ε← [Z1, . . . ,Zk], k = ‖Z1‖;
9. α = k + 1;
10. for j = 2 to n do
11. k = ‖Zj‖;
12. ε0 = [Zα, . . . ,Zα+k];
13. Obtain T = argmaxT[I2

∗(ε,T(ε0))];

14. Obtain ε̃0 = T(ε0) = [Z̃α, . . . , Z̃α+k];
15. ε← ε̃0;
16. α = α+ k + 1;
17. endfor ;

end

Lines 1-6 of MACMIreg use recursive calls to MACMIreg to register the images
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Z1 Z3Z2 Z1 Z2

Z

MACMIreg(Z = ffZ3g; fZ4gg)MACMIreg(Z = ffZ1g; fZ2g; ffZ3g; fZ4ggg)

ffZ3g; fZ4ggfZ1g fZ2g fZ3g fZ4g

Output: " = [Z3; Ẑ4]

1: " = [Z1]; "0 = [Z2];

2: " = [Z1; ~Z2]; "0 = MACMIreg(Z3);

" = [Z3]; "0 = [Z4];

Output: " = [Z1; ~Z2; ~Z3; ~Z4]

line 3
Line 13 inputs:

jZ3j > 1 (lines 1-2)

Line 13 inputs:

(a) (b)

Figure 5.4: (a) Graphical representation of the organization of 4 images (Z1, . . . ,Z4)
within a family of image sets (Z = {{Z1}, {Z2}, {{Z3}, {Z4}}}), and the application of
the MACMIreg algorithm for alignment of all 4 images. Since only Z3 contains subsets
(i.e. |Z3| = 2), line 3 of MACMIreg in (a) begins a new instance of the algorithm in
(b) with Z = {{Z3}, {Z4}} as the input. The instance in (b) brings Z3 and Z4 into
alignment, and returns the ensemble [Z3, Ẑ4] to the instance in (a). The instance in (a)
first bring Z1 and Z2 into alignment, and then align the ensemble of registered images
from Z3 (ε0 = [Z3, Ẑ4]) with the registered images of Z1 and Z2 (ε = [Z1, Z̃2]). At each
registration step (line 13), a transformation T is determined by argmaxT[I

∗
2 (ε,T(ε0))],

and ε is then expanded by ε← ε̃0 = T(ε0) (lines 14 and 15 of MACMIreg). The output
of (a), containing all of the co-registered images in Z, is ε = [Z1, Z̃2, Z̃3, Z̃4].

within each Zj containing more than 1 image. When MACMIreg(Zj) is executed

on line 3, the algorithm is recursively instantiated in order to co-register the images

within the subset Zj and any of its subsets, returning the registered images within

ensemble ε. Line 4 then updates each Zj by replacing its constituent elements with the

co-registered member images contained within ε. Lines 7-17 of MACMIreg perform

the registration between the multi-attribute images generated from each Zj , each of

which now comprise only co-registered images (or a single image) following lines 1-6

of the algorithm. A spatial transformation T of the current moving image ensemble

ε0 into alignment with the stationary, growing ensemble ε is determined on line 13.

The registered ensemble ε̃0, obtained via T on line 14, is then combined with ε on line

15. The algorithm continues to align each subsequent Zj with the expanding reference

ensemble ε.
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Instance of MACMI for Registration of 4 Images

The operation of the MACMI algorithm is illustrated in Fig. 5.4 for a scenario involving

registration of four images (Z1,Z2,Z3,Z4), of which Z3 and Z4 are designated to be

co-registered prior to alignment with Z1 and Z2. In this generic example, Z1 and Z2

could represent images from two different modalities such as CT and PET, and Z3

and Z4 could represent multiprotocol images from the same modality such as T1-w

and proton density (PD) MRI that may be in proximal alignment through hardware

configuration or through prior application of a registration routine.

The operation of MACMIreg(Z) for Z = {{Z1}, {Z2}, {{Z3}, {Z4}}} begins by reg-

istration of images within each Zj , j ∈ {1, 2, 3}, where only Z3 = {{Z3}, {Z4}} contains

more than one image. Thus, as in Fig. 5.4(b), MACMIreg(Z3) is called to register

Z3 to Z4 and update Z3 with ensemble ε = [Z1, Ẑ2] (lines 3-4 of MACMIreg). Hav-

ing registered the images within each Zj (lines 1-6 of MACMIreg), all images in Z

are registered as in Fig. 5.4(a) in two steps (lines 7-17 of MACMIreg). At each

registration step, an optimal spatial transformation T of ε0 to ε is determined by

argmaxT[I
∗
2 (ε,T(ε0))] (line 13 of MACMIreg), and ε is then expanded by ε ← ε̃0 =

T(ε0) (lines 14-15 of MACMIreg). Thus, Z2 is first registered to Z1 where ε = [Z1]

and ε0 = [Z2], and ε ← ε̃0 = Z̃2 := T(Z2). Next, Z3 is registered to Z1 (and im-

plicitly Z2) where ε = [Z1, Z̃2] and ε0 = [Z3, Ẑ4] (the output of MACMIreg(Z3)),

and ε ← ε̃0 = [Z̃3, Z̃4] := [T(Z3),T(Z4)]. The final output is ε = [Z1, Z̃2, Z̃3, Z̃4],

comprising all of the co-registered images in Z.

The use of both Z3 and Z4 (and both Z1 and Z2) in the final registration step

has the following benefits, (1) avoids potential ambiguity in choosing between Z3 and

Z4 (between Z1 and Z2), and (2) potentially provides improved alignment versus use

of just Z3 or Z4 (Z1 or Z2) individually. The advantage of MACMI is that it yields

cumulative incorporation of all images, while allowing flexibility to choose the order

of multi-attribute image construction. Implementation of MACMI within a complete

registration framework is described in Section 5.4.3 below.
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5.4.3 Requirements for Implementation of MACMI

MACMI can be utilized to leverage multiple image sources in nearly any registration

application by selecting the following components based on domain requirements:

1. MI estimation for high dimensional data: The most straightforward approach to es-

timating I2
∗(εAn , ε

B
m) is to formulate the density estimates from high dimensional

histograms. While histogram-based techniques are feasible and effective for up to

4-dimensional observations with appropriate bin size, as demonstrated in [58] and

[59], higher dimensionality necessitates an alternate estimate of entropy or MI, such

as those based on entropic spanning graphs or related quantities such as α-MI [87].

2. Image transformation model(s): Since MACMI only dictates the construction of the

objective function, MACMI is agnostic to the deformation model. Further, different

deformation models may be used for each image since the individual image transfor-

mations are performed in independent steps.

3. Optimization scheme to find a maximum of I2
∗(εAn , ε

B
m): If the analytical gradient

can be derived, as demonstrated for α-MI in [129], an efficient stochastic gradient

descent method can be used. In the absence of analytical gradients of I2
∗(εAn , ε

B
m),

methods including direct search (e.g. downhill simplex), quasi-Newton (e.g. Broyden-

Fletcher-Goldfarb-Shanno (BFGS)), and other finite difference-based schemes can be

employed.

Specific implementation details employed in this work are described in the following

section.

5.5 Experimental Design

A summary of the clinical prostate and synthetic brain image data sets investigated in

this study is presented in Table 5.1.
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Table 5.1: Summary of the synthetic and clinical datasets registered by MACMI.
Pixels are square.
Data Set Description Modalities

Ss Synthetic multiprotocol brain MRI from
BrainWeb

T2-w, T1-w, PD MRI

Sc
1 Clinical multiprotocol MRI and histology of

prostate
in vivo T2-w, DCE
MRI, ex vivo WMH

Sc
2 Clinical multiprotocol MRI and histology of

prostate
ADC, T2-w, DCE MRI,

ex vivo WMH

Data Set Dimensions Studies (Images)

Ss 181×217 (1 mm pixel) 1 (20)

Sc
1 T2-w MRI: 512×512 (0.230-0.280 mm pixel) 25 (150)

Sc
2 T2-w MRI: 512×512 (0.230-0.280 mm pixel) 15 (85)

5.5.1 Synthetic Multiprotocol Brain MRI

Data Description

To quantitatively evaluate the performance of MACMI, we consider a synthetic regis-

tration task using a data set Ss comprising 20 2D multiprotocol (T1-w, T2-w, and PD)

MRI slices from the BrainWeb simulated brain database [82]. We denote the T1-w,

T2-w, and PD MRI slices as T 1, T 2 and P, respectively.

Registration Experiment

Since synthetic brain MRI volumes T 1, T 2 and P are initially in alignment, we apply a

known non-linear deformation (Tap) to P to generate an image Pd, for which misalign-

ment from T 1 and T 2 is known. The objective of the registration task is to recover the

initial correct alignment via a corrective deformation (Tco). We denote the recovered P

slice as Pr. Image transformation is implemented using an elastic Free Form Deforma-

tion (FFD) model with a hierarchical mesh grid spacing scheme, as described in [59].

Three mesh grid levels were defined for vertex spacings of approximately {36, 27, 18}

mm at each level (nx,y ∈ {(6, 5), (8, 7), (12, 10)} moving control points on zero-padded

images). MACMI is performed in a manner similar to the scenario illustrated in Fig.
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5.2(c), whereby Pd (instead of WMH) is registered to the multi-attribute image com-

prising the co-registered sections T 1 and T 2 via the recovered transformation,

Tco
MACMI = argmax

T

[
I∗2 (ε(T 1T 2),T(Pd))

]
, (5.4)

where ε(T 1T 2) represents the ensemble ε of T 1 and T 2. In order to compare with

MACMI, registration is also performed using objective functions defined by the MI of

(1) Pd with T 1, and (2) Pd with T 2. Thus, two additional Pr images are obtained by

Tco
PW1 = argmaxT[I2(T 1,T(Pd))], and by Tco

PW2 = argmaxT[I2(T 2,T(Pd))]. Estima-

tion of I2 and I∗2 was achieved using 2D and 3D probability density estimates obtained

using histograms with 128 and 62 graylevel bins, respectively. The number of bins

in each case were chosen empirically for reliable optimization of Equation 5.4 using a

Nelder-Mead simplex algorithm [79].

Registration Evaluation

For the synthetic data, quantitative evaluation of registration accuracy can be per-

formed easily since the correct coordinate transformation, Tap, is known. The magni-

tude of error in the transformation Tco determined by registration can be quantified in

terms of mean absolute difference (MAD) (Fmad(T
co)) and root mean squared (RMS)

error (Frms(T
co)) from Tap. Both MAD and RMS error are computed over the N

total image pixels c in the common coordinate frame C of T 1, T 2, and P, and can be

expressed as in Equation (4.9). Further, the original P is compared directly with the

resulting Pr using L2 distance (DL2) as the similarity measure.

5.5.2 Clinical Multimodal Prostate MRI and Histology

Data Description

We address the registration of two prostate data sets, Sc
1 and S

c
2, comprising multimodal

(3 T in vivo MRI and histology) and multiprotocol (T2-w, DCE, and ADCMRI) images

(see [113] for details on acquisition). Set Sc
1 comprises 150 corresponding ex vivo WMH

sections with CaP delineated and their closest corresponding 3 T in vivo T2-w and
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DCE MRI slices over all 25 patient studies. Set Sc
2 is a subset of 15 patients (85

image sets) in Sc
1 for which DWI was also acquired and ADC maps calculated. We

denote the T2-w MRI, DCE MRI, ADC MRI, and WMH images as S, F , D and H

respectively. Each DCE MRI series comprises a sequence of T1-w gradient echo MRI

volumes acquired following bolus injection of the gadopentetate dimeglumine contrast

agent at 0.1 mmol/kg of body weight. Two pre- and five post-contrast T1-w MRI

volumes were obtained at a temporal resolution of 95 seconds. Maximal enhancement

was generally obtained at the third post-contrast time point (denoted as F3), which

was designated for use in the registration routines. No ex vivo MRI or gross pathology

photographs were acquired.

Following RP and prior to sectioning, the excised prostate was embedded in a paraf-

fin block while maintaining the orientation to keep the urethra perpendicular to the

plane of slicing. This procedure facilitates the identification of a corresponding in vivo

2D axial MRI slice for each 2D histology slice. Preparation of the digitized WMH

sections proceeds as follows: (1) the excised prostate is cut into sections that are 3-4

mm thick by slicing axial sections from the paraffin block using a circular blade, (2)

a microtome is used to further cut the sections into thin slices that are about 5 µm

thick, and (3) a single thin slice from each 3-4 mm thick section is chosen and digi-

tally scanned. Each slide is then examined under a light microscope using up to 40x

apparent magnification to identify and delineate the regions of CaP. As a result of this

slide preparation process, spacing of the digital WMH slides is both coarse and irreg-

ular, ranging from 3-8 mm. Further, the non-linear tissue deformations and artifacts

introduced during microtome slicing are independent between slices, and no block face

photographs or fiducial markers are available to correct the distortions. Therefore it is

not feasible to accurately construct a 3D histology volume suitable for a 3D registration

procedure without significant modifications to the established clinical routine [6, 130].

Thus for each WMH slice with disease, the closest corresponding T2-w MRI slice was

visually identified by an expert radiologist.
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Registration Experiments

As previously described, the goal of this task is to register WMH to each MRI protocol

in order to map CaP extent onto MRI. Since each MRI series was acquired in sequence

and with minimal movement, 3D affine registration of the DCE to T2-w MRI volume

was performed for each of the 25 patients in Sc
1 (and Sc

2) via MI between the 3D T2-w

MRI volume and the 3D T1-w MRI volume corresponding to the third post-contrast

time point of the 4D DCE MRI volume, using 256 graylevel bins for the joint histogram.

For each axial slice F̃ of the registered 4D DCE MRI volume, a multi-attribute image

representation ε(SF̃3) was generated, as illustrated in Figs. 5.3(c)-(e). Prior to 2D

elastic registration of each H to each ε(SF̃3), the prostate capsule on the correspond-

ing S images (6 slices on average) for each patient was roughly delineated and the

extraneous tissue masked out during registration. This was done to facilitate a rough

global localization of the prostate on S relative to H.

For data set Sc
1, automatic FFD registration of WMH to the MRI by MACMI is

then performed for each of the 150 H slices using I∗2 (ε(SF̃3),Te(H)), resulting in a

warped WMH H̃ = Te(H), as shown in Fig. 5.3(b). The CaP extent is then mapped

onto S and F̃3 by Te, as shown in green on Fig. 5.3(c). In addition to MACMI,

the elastic registration of H to the coordinate frame of S is also performed using (1)

the conventional MI of H with S (I2(S,Te(H))), and (2) the conventional MI of H

with F̃3 (I2(F̃3,Te(H))). We refer to these PW registration approaches as PW-T2

and PW-DCE, respectively, and denote corresponding transformations as Te
MACMI ,

Te
PW -T2, and Te

PW -DCE .

For data set Sc
2, the 3D ADC volume for each patient is also registered using a 3D

affine transformation to the co-registered T2-w and DCE MRI volumes via a multi-

attribute volume (i.e. the volume composed of axial images ε(SF̃3)), hence generating

a registered ADC volume comprising slices D̃. Automated FFD registration of WMH

to MRI is then performed for each set of corresponding H and S slices by MACMI,

which also considers F̃3 and D̃ via I∗2 (ε(SF̃3D̃),Te(H)). CaP extent is then mapped to

each of S, F̃3 and D̃. PW registration using just H and D is not performed as the DWI
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protocol provides insufficient spatial resolution and anatomical detail for multimodal

correlation based on image intensities alone.

Registration Evaluation

Since ground truth for alignment of the clinical prostate data is not known or easily

determinable, evaluation is performed by calculating similarities of both S and F̃3 with

Te
MACMI(H), Te

PW -T2(H), and Te
PW -DCE(H). To exclude the extraneous tissue out-

side the prostate in registration evaluation, similarity is calculated in terms of the MI

(Equation 5.1) for only the area in the image containing the prostate. Qualitative eval-

uation is also performed by visually comparing the CaP extent mapped from histology

onto T2-w MRI via Te
MACMI , T

e
PW -T2, and Te

PW -DCE . An estimate of CaP extent

manually established by a radiologist on select slices of the T2-w MRI is used as the

ground truth. This is done for only those specific MR images where CaP extent could

be reliably delineated. It is important to note these slices are not representative of all

T2-w MR images with CaP, since easily delineated lesions are generally associated with

dense tumors (i.e. those with compact cellular arrangements) [131] and those occurring

only in the peripheral zone [132]. Further, delineation of the CaP boundary is more

challenging than discerning the presence of a lesion.

5.6 Results and Discussion

5.6.1 Synthetic Brain Registration

Table 5.2 presents a comparison of the evaluation measures Fmad, Frms, and DL2 for

transformations obtained in elastic registration of the n = 20 multiprotocol MRI slices

using MACMI (Tco
MACMI) and both PW registration approaches (Tco

PW1, T
co
PW2). The

values of Fmad were compared between Tco
MACMI and Tco

PW1 using a paired t-test under

the null hypothesis that there was no difference in Fmad between Tco
MACMI and Tco

PW1.

The values of Frms and DL2 were also compared between Tco
MACMI and Tco

PW1. Sim-

ilarly, the values of Fmad, Frms, and DL2 were also compared between Tco
MACMI and

Tco
PW2 (second row of table). MACMI achieves better performance in terms of each
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Table 5.2: Comparison of elastic registration accuracy for MACMI and pairwise MI
alignment of n = 20 pairs of synthetic PD MRI with co-registered T1-w and T2-w
MRI brain images. The measures illustrated below correspond to (i) error of recovered
deformation field (in mm) in terms of Fmad and Frms, and (ii) distance (DL2) between
the undeformed and recovered PD MRI. MACMI results are significantly more accurate
compared to either PW approach (p-values for both tests shown).

Fmad Frms DL2

Tco
PW1 (T1-PD) 0.9117 2.1407 1.83e+03

Tco
PW2 (T2-PD) 0.9506 2.0248 2.35e+03

Tco
MACMI (ε(T1T2)-PD) 0.8348 1.9307 1.71e+03

p (Tco
PW1 vs. Tco

MACMI) 0.0817 0.0578 0.0174

p (Tco
PW2 vs. Tco

MACMI) 0.0013 0.2020 1.8e-10

measure, with significantly lower error (p < 0.05 for n = 20) compared to one or both

PW methods.

5.6.2 Clinical Prostate Registration

Mapping CaP extent from WMH onto in vivo T2-w and T1-w MRI

Figure 5.5 illustrates the registered WMH images and the corresponding T2-w MRI

along with the contours of the mapped CaP extent and the urethra (verumontanum),

for a single set of corresponding images in Sc
1 (and Sc

2). The S slice is shown in Fig.

5.5(a) with the region containing the dominant intraprostatic lesion (DIL) shown in the

blue box and the urethra outlined in orange. An expert delineation of the DIL (green

contour) is shown in Fig. 5.5(b), while the original WMH image with CaP ground truth

(dotted line) is shown in Fig. 5.5(c). As described in Section 5.5.2, affine registration of

T2-w and DCE MRI protocol volumes (containing images S with F) is performed prior

to elastic registration of H. Elastic registration of the H slice (shown in Fig. 5.5(c)) to

S in Fig. 5.5(a) is then performed individually using each method (PW-T2, PW-DCE,

MACMI). The elastically warped H, H̃, obtained using only S (PW-T2) is shown in

Fig. 5.5(f), and the CaP extent is shown mapped onto S in Figs. 5.5(d) and 5.5(e). H̃

obtained using only F (PW-DCE) is shown in Fig. 5.5(j), and the CaP extent is again

shown mapped onto S (Figs. 5.5(h) and 5.5(i)). Finally, H̃ obtained using both S and

F (MACMI) is shown in Fig. 5.5(m), and the CaP extent is again shown on S (Figs.
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Table 5.3: Comparison of elastic registration accuracy for MACMI, PW-T2, and
PW-DCE for n = 25 patient studies. The measures illustrated below correspond to
mean similarity in terms of the total MI of all registered WMH slices H̃, obtained by
MACMI, PW-T2, or PW-DCE (columns of table), with either T2-w MRI or DCE MRI
(rows).

mean MI with WMH registration objective function p (vs. MACMI)

MR protocol MACMI PW-T2 PW-DCE PW-T2 PW-DCE

T2-w: Ī2(S, H̃) 0.3378 0.3339 0.3297 0.0099 0.0006

DCE: Ī2(F̃3, H̃) 0.3155 0.3085 0.3102 4.0e-4 0.0014

5.5(k) and 5.5(l)). The contours of the mapped CaP extent on MRI suggest that (1)

accurate elastic registration of WMH directly to corresponding in vivo MRI is feasible

using the described FFD framework and (2) MACMI outperforms PW application of

MI using data from only one of the several available MRI protocols. Note again that

while the DIL shown in Fig. 5.5 is useful for qualitative evaluation, identifying such

a clearly bounded lesion on T2-w MRI is rare. The positions of the urethra (orange

contours) on H̃ in Figs. 5.5(f), 5.5(j), and 5.5(m) also illustrate improved alignment

of the image interior via MACMI compared to PW-T2 and PW-DCE. For example,

note the improved urethral positioning via MACMI in Fig. 5.5(m) compared to the left

misalignment by PW-T2 in Fig. 5.5(f).

The results in Fig. 5.5 qualitatively demonstrate that the general FFD-based reg-

istration paradigm described in this paper is capable of generating good alignment

between in vivo MRI and ex vivo WMH prostate sections without the use of any ad-

ditional ex vivo MRI series or gross histology (“block face”) photographs. Table 5.3

quantitatively illustrates the advantage of using MACMI over a single MRI protocol.

For each of the n = 25 patient studies in Sc
1, registration accuracy for each of MACMI,

PW-T2, and PW-DCE was approximated by the total MI of the elastically registered

histology slices H̃ with all of the corresponding (1) S and (2) F̃3 slices, both of which

are in the same coordinate frame as S. Table 5.3 lists the average MI value Ī2 over

n = 25 patients of all registered WMH slices H̃ obtained by MACMI, PW-T2, and PW-

DCE (columns) with either S or F̃3 (rows). The values of Ī2(S, H̃) (and Ī2(F̃3, H̃))

were compared between MACMI and PW-T2 using a paired t-test under the null hy-

pothesis that there was no difference in Ī2(S, H̃) (and Ī2(F̃3, H̃)) between MACMI and
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Figure 5.5: (a) 3T in vivo T2-w MRI of a prostate with a clearly visible DIL (shown
in blue box) and magnified in (b) with a manual estimate of CaP extent (green). (c)
Closest corresponding WMH slice with CaP ground truth (dotted line) and urethra (or-
ange). (d)-(e) T2-w MRI with estimate of CaP extent (red) as mapped from (f) WMH
via elastic registration using only T2-w MRI. (h)-(i) T2-w MRI with CaP estimate
from (j) WMH registered to DCE (T1-w) MRI (co-registered to T2-w MRI). (k)-(l)
Registration using both T2-w and DCE MRI via MACMI results in closer agreement
of the registration-derived CaP extent (red) and the manual estimate (green). The
verumontanum of the urethra (orange contour) is also shown on the registered WMH
images in (f), (j), and (m).
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: Using MACMI to include ADC MRI in the elastic registration of (a)
histology to each of (d) T2-w, (e) DCE (T1-w) and (f) ADC MRI. Prior to elastic
registration of histology, (d)-(e) T2-w and T1-w MRI were first successfully aligned via
MI, as seen by (c) the checkerboard overlay of T2-w MRI and registered T1-MRI. (e)
ADC was then registered to both T2-w and T1-w MRI via MACMI. (b) Elastically reg-
istered histology was obtained using the co-registered multiprotocol MRI via MACMI,
and CaP extent was mapped onto (d)-(f) MRI (red lines).

PW-T2. The comparisons of Ī2(S, H̃) and Ī2(F̃3, H̃) were also made between MACMI

and PW-DCE. In all comparisons, MACMI demonstrated significant (p < 0.05) im-

provement over both PW-T2 and PW-DCE, despite these PW methods using MI as

their objective function.

Mapping CaP Extent from WMH onto ADC, T2-w and T1-w MRI

For the m = 15 patient studies in Sc
2 for which ADC maps were also obtained, MACMI

was applied in both (1) the 3D affine alignment of D to ε(SF̃3) and (2) the 2D elastic

alignment of H to ε(SF̃3D̃). Figures 5.6(a) and 5.6(b) show the original H and the

warped H (Te(H)), following elastic alignment with ε(SF̃3D̃). Figure 5.6(c) shows a
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checker board visualization of the two co-registered S and F̃3 slices (shown in Figs.

5.6(d)-(e)) after the 3D registration of the T2-w and DCE MRI volumes performed for

the studies in Sc
1. For each of the studies in Sc

2 ⊂ Sc
1, the second 3D affine multiprotocol

registration step was performed to align the ADC volume to the T2-w and DCE MRI

volumes. This enables the generation of aligned D̃ images (Fig. 5.6(f)) for each S

(and F̃3). S and the registered F̃3 and D̃ images are shown in Figs. 5.6(d)-(f) with

the contour of the mapped CaP extent from Te(H) (Fig. 5.6(b)). It was observed

that the inclusion of D̃ in ε(SF̃3D̃) had little effect on the resulting alignment with H

when compared with the results obtained using only S and F̃3 as in Section 5.6.2 above

(comparison not shown).

5.7 Concluding Remarks

Signatures for disease on multimodal in vivo imaging may be used to develop systems

for computer-assisted detection of cancer, or to assist in the training of medical students,

radiology residents, and fellows. To establish in vivo radiological imaging signatures for

prostate cancer, an accurate estimate of ground truth for cancer extent on each of the

imaging modalities is necessary. In the context of certain anatomic regions and diseases,

the spatial extent of disease may be obtained by spatial correlation or registration of

histology sections with corresponding in vivo images. In this paper, we presented a

new method termed Multi-Attribute Combined Mutual Information (MACMI) within

an automated elastic FFD registration framework for alignment of images from mul-

tiple in vivo acquisition protocols with corresponding ex vivo whole-mount histology

(WMH) sections. Our approach to registration of in vivo multiprotocol radiology im-

ages and ex vivo WMH of the prostate using MACMI is distinct from previous related

efforts [12, 111, 121] in that (1) information from all in vivo image sources is being

utilized simultaneously to drive the automated elastic registration with WMH, (2) no

additional, intermediate ex vivo radiology or gross histology images need to be obtained

(this approach does not disrupt routine clinical workflow), and (3) no point correspon-

dences are required to be identified manually or automatically. This last advantage is

particularly relevant in the context of in vivo MR images where visual identification of
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anatomical landmarks is a challenge even for experts.

MACMI performs registration of several images by incorporating multiple image

sources using an information theoretic approach. These may include different modali-

ties, acquisition protocols, or image features. For the clinical application discussed in

this paper, MACMI facilitates the use of all available in vivo prostate imaging pro-

tocols acquired during the standard clinical routine, in order to perform automated

elastic registration with the ex vivo WMH. Unlike fully-groupwise registration tech-

niques, the optimization problem remains simple while accommodating both highly

dissimilar modalities and large deformations of variable magnitude.

We demonstrated the use of MACMI for registration of 150 multimodal (WMH,

T2-w and DCE MRI) prostate image sets from 25 patients, 85 sets of WMH, T2-w,

ADC and DCE MRI from 15 patients, and 20 sets of synthetic T1-w, T2-w, and PD

MR brain images. Statistically significant improvement in registration accuracy was

observed in using MACMI to simultaneously register PD MRI to both T1-w and T2-w

MRI, compared to pairwise registration of PD to T1-w or T2-w MRI, for the synthetic

dataset. Qualitative examination of alignment between multiprotocol clinical prostate

MRI and histology suggested improved performance via MACMI over pairwise MI.

The inclusion of ADC MRI in the multi-attribute registration had little effect on the

resulting alignment with WMH when compared with the results obtained using only

T2-w and T1-w MRI (Section 5.6.2). Nevertheless, it is possible that the use of MACMI

in the registration of ADC to the ensemble of registered T2-w and T1-w MRI helped

achieve more consistent multiprotocol MRI alignment than if either protocol were used

alone. We intend to investigate this application of MACMI further in the future.

While we utilized histograms for density estimation, other techniques, such as en-

tropic graphs [87], can be applied for larger numbers of images. However, independent

of the implemented estimation method, MACMI affects information theoretic fusion of

multiple image sources by computing multivariate MI between multi-attribute images

constructed as ensembles of co-registered images. It is important to note that in the

absence of a predetermined order for combining images, MACMI may still be applied

by combining images in a completely arbitrary order. Even in this scenario, MACMI
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still represents an improvement over fully-pairwise registration by utilizing all registered

images. Future work will investigate the influence of the order of multi-attribute image

construction on alignment accuracy.
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Chapter 6

Application of Elastic Image Registration and CAD to

Improving IMRT

6.1 Introduction to Radiation Therapy Planning

Treatment of prostate cancer (CaP) by targeted radiotherapy requires the use of com-

puterized tomography (CT) to formulate a dose plan. Successful conformal planning

can reduce rectal and bladder toxicity by more accurately targeting the prostate, in

turn allowing dose escalation to the planning target volume (PTV) and more effective

treatment. Localization of the dominant intraprostatic lesion (DIL) can be used to

create dose plans with even less exposure to benign tissue. More importantly, a more

focused dose plan can afford significant dose escalation to the tumor, potentially pro-

viding greatly reduced rates of recurrence. However, CT does not provide good tumor

localization [133]. Further, CT has been shown to overestimate the prostate volume

and provide inaccurate discrimination between base and apex and surrounding struc-

tures [134]. As such, there is a need for improved image information in planning of

guided therapy.

Magnetic resonance imaging (MRI) of the prostate has been shown to provide im-

proved resolution of intraprostatic structures and the prostate boundary compared to

CT [117] and ultrasound [22, 25]. We have previously demonstrated the utility of a

computer-aided detection (CAD) system for prostate cancer on high resolution ex vivo

MRI [28], as well as on in vivo multiprotocol MRI [101,102,135]. Pickett demonstrated

the combined use of MRI and magnetic resonance spectroscopy (MRS) for tumor de-

tection to provide escalated dose to the DIL [136], although their study was limited to

looking within the peripheral zone and only involved rudimentary alignment.

In order to utilize MRI for dose planning, it is necessary to align, or register, MRI
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with CT so that MRI-derived diagnoses may be mapped onto CT. Therefore, registra-

tion of MRI with CT of the prostate has been investigated by a few groups [117–119].

One approach [117] has involved using bones or implanted gold fiducials as landmarks

for alignment. Such intraprostatic marker-based registration techniques have been lim-

ited by time requirements and uncertainty associated with both the implantation and

identification of marker centers on images. While surface-based registration using the

iterative closest point (ICP) algorithm have been shown in [118] to be superior to

fiducial-based methods, manual segmentation of the prostate on both CT and MRI is

required for this type of approach. In addition to manual segmentation of the prostate

on both CT and MRI being time consuming, the methods in [117] and [118] were limited

to rigid body transformations. Recently, a method for semiautomated registration of

post-implant CT and MRI was proposed by Vidakovic [119]. The technique exploited

the presence of seed and insertion-needle tracks to achieve superior-inferior alignment

prior to an automated registration step via maximization of the normalized mutual

information (NMI) similarity measure. Besides being limited to rigid-body transforma-

tions, these registration methods are subject to interobserver variability.

Significant non-linear deformations may occur between the acquisition of planning

CT and diagnostic MRI, due to the use of an endorectal coil (needed for diagnostic

MR imaging) and variability in the size of the bladder, both of which push against

the prostate. As such, a robust elastic registration framework is necessary for accurate

and efficient delineation of prostate and tumor boundary on planning CT images using

high resolution diagnostic MR. Direct registration of diagnostic MRI with planning CT

images, such as those shown in Figures 6.1(a) and (b), is complicated on account of

both resolution and modality differences. Resolution differences are associated with

differences in field of view (FOV), where diagnostic MRI has a small FOV centered

on the prostate, and the planning CT has a wider FOV as well as reduced resolution

to resolve soft tissue details [117, 133, 134]. However, a second image set (planning

MRI) can be acquired in the same scanning session with a similar FOV and patient

positioning to that of the CT.

In this paper, we present a complete quantitative framework for Computer-Assisted
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(a) (b)

(c) (d)

Figure 6.1: (a) Diagnostic MRI which may allow for identification of CaP extent. The
diagnostic MRI must be registered to (b) planning CT so that a targeted dose plan
may be generated. (c) Planning MRI can be used as an intermediary to facilitate
alignment between (a) diagnostic MRI and (b) planning CT. (d) Registered diagnostic
MRI (estimated cancer label in red) in alignment with planning CT.

Targeted Therapy (CATT). The CATT planning method presented here is comprised

of three main components, (1) an unsupervised texture-driven classifier for identifying

suspected locations on diagnostic MRI, (2) an elastic registration method for alignment

of diagnostic MRI, planning MRI and CT images of the prostate, and (3) mapping of

tumor location onto CT, and generation of a dose plan that is targeted at the tumor

location. The CAD system utilizes multiple textural features to enhance characteri-

zation of tissue and facilitates the discrimination of benign and malignant regions of

the prostate. Figure 6.1(c) shows the planning MRI that corresponds to the diagnostic

MRI (Figure 6.1(a)) and planning CT (Figure 6.1(b)). Using planning MRI, we present
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Figure 6.2: Overview of the CATT system. An unsupervised CAD system is used to
identify suspect regions on the diagnostic MRI. A two step registration procedure is
performed, which involves alignment of diagnostic MRI to planning MRI, followed by
alignment of multiprotocol MRI to the planning CT. This allows for mapping the tumor
regions onto CT, allowing for a targeted radiotherapy dose plan to be generated.

a novel two-step elastic registration procedure to overcome the modality differences be-

tween CT and MRI and bring diagnostic MRI into alignment with planning CT. In

the first step, the registration of diagnostic and planning MRI is driven by exploiting

the similarity of two MRI datasets to overcome FOV differences. Following coregistra-

tion of both MRI protocols, an elastic registration procedure is employed to align the

planning MRI to CT, and consequently the diagnostic MRI to CT. This two step pro-

cess allows for overcoming the modality differences that might otherwise complicate the

multimodal registration task (i.e. mapping tumor labels directly from diagnostic MRI

to planning CT). For each slice on which the prostate is visible, 2D transformations

are determined to align the corresponding slices from each modality. We adopt this

approach compared to a volumetric approach on account of the difficulty in establish-

ing point correspondences in 3D, and due to the highly anisotropic voxels of diagnostic

and planning MRI (see Table 6.1). The CATT system components and workflow are

illustrated in Figure 6.2.

The rest of the paper is organized as follows. In Section 6.2 we describe the com-

ponents of the CATT framework, including the unsupervised CAD classifier for local-

ization of cancer, the elastic registration procedure for alignment of diagnostic MRI to

CT (via the planning MRI), and the mapping of cancer onto CT for improved dose
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planning. In Section 6.3 we present the results of the CATT framework for improved

dose planning on 79 sets of CT and multiprotocol MR images from 10 prostate studies,

and generate radiotherapy dose plans based on target volumes defined using both the

prostate boundary and the suspected cancer region. Concluding remarks and future

directions are presented in Section 6.4.

6.2 Computer-Assisted Targeted Therapy (CATT)

6.2.1 Data Description and Preprocessing

For 10 patients with prostate cancer, scheduled to undergo radiotherapy treatment,

two MRI and one CT image sets were acquired. These image data sets are described

in Table 6.1, where the large FOV differences between diagnostic MRI (row 1) and

planning MRI and CT (rows 2,3) should be noted. The CT image set is a planning,

or simulation study that is used to determine attenuation characteristics necessary to

formulate a radiotherapy dose plan capable of delivering sufficient levels of radiation to

the targeted volumes. As such, a large FOV is necessary to encompass the entire body.

Table 6.1: Summary of the prostate image data sets acquired for each of 10 patients.
Set Number Slice Notation Modality Description/Purpose

1 Id T2-w MRI Diagnostic

2 Ip T2-w MRI Treatment Planning

3 ICT CT Planning/Simulation

Set Number Dimensions (mm3) Voxel Size (mm3)

1 120× 120× 107 0.5× 0.5× 4

2 340× 340× 256 1.3× 1.3× 8

3 500× 500× 320 1× 1× 2

In the remainder of this paper, we denote a 2D slice of a volume as I = (C, f),

where C is a finite 2D rectangular grid of pixels and f(c) is the image intensity at each

pixel c ∈ C. Slices of diagnostic MRI, planning MRI, and planning CT are thus defined

as Id, Ip and ICT, respectively. Note that these images are defined on independent

coordinate grids Cd, Cp and CCT, and it is the goal of any registration technique to

determine spatial transformations that map locations in Cd and Cp to corresponding

locations in CCT.
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Several preprocessing steps were performed. Correction of MRI bias field inhomo-

geneity was first performed using the automatic low-pass filter based technique pre-

sented by Cohen in [137]. Delineation of the prostate boundary on the diagnostic MRI

volume was then manually performed (Figure 6.3(a)) to allow for application of the

unsupervised classifier for CaP detection to only the voxels within the prostate. The

region identified as the prostate on a slice Id is denoted by the set of pixels Gd ⊂ Cd.

Finally, the slices of the planning MRI volume containing the prostate were identified.

On average, the prostate was found to be visible on about 6 slices of each planning MRI

volume.

6.2.2 Localization of Cancer on Diagnostic MRI

The location of cancer on diagnostic MRI is identified using a computer-aided detection

(CAD) system comprising the following components, (1) extraction of multiple descrip-

tive textural features at every spatial location (voxel) within the prostate, (2) non-linear

dimensionality reduction on the texture feature space via graph embedding [138] to

project the textural signatures associated with each voxel into a reduced-dimensional

sub-space, and (3) replicated k -means clustering [102] to reliably partition voxels of

the prostate into distinct tissue classes, including cancer. These components are briefly

described below.

Texture feature extraction

We have previously shown the utility of texture features in distinguishing cancerous

from non-cancerous regions in the prostate [5]. We extract 60 unique features from

three classes of 3D texture attributes. These include, (1) first order statistical attributes

calculated on graylevel distributions, (2) gradient operators, and (3) second order sta-

tistical quantities calculated on distributions of spatial co-occurrence of graylevels [78].

First order statistical features

Each of mean, standard deviation, median and range, are calculated over a neighbor-

hood Nc,κ of size κ ∈ {5, 7} centered on each voxel.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: (a) Original diagnostic MRI image with prostate boundary manually de-
lineated (green). (b),(c) The median and Haralick correlation features of the 60 total
textural features extracted from (a). Note the enhanced visibility of the hypointense
lesion in (b) that is not visible in (a). (d) RGB visualization of 3 dimensional embedded
feature space obtained by application of the non-linear dimensionality reduction scheme
to the full texture space of the prostate voxels. (f) Map of the cancer region obtained
by replicated k -means clustering in the embedded feature space in (e).

Gradient features

Gradient features comprising the responses from 9 distinct Sobel operators, oriented

along each of the 3 coordinate axes and 6 diagonals, and from the spatial derivatives

in each direction plus the gradient magnitude are calculated.

Second order statistical features

Haralick or second order statistical features characterize spatial co-occurrence [78],

where any pixel d ∈ Nc,κ is defined as a κ neighbor of c. A M ×M co-occurrence

matrix Pc,κ associated with Nc,κ is then computed, where M is the chosen number of

gray level bins. The value at any location [u, v], where u, v ∈ {1, . . . ,M}, in the matrix

Pc,κ[u, v] represents the frequency with which two distinct pixels with associated image
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intensities f(c) = u, f(d) = v are adjacent. From Pc,κ, the 13 Haralick features com-

prising energy, entropy, inertia, correlation, inverse difference moment, two information

correlation measures, sum average, sum variance, sum entropy, different average, differ-

ence variance and difference entropy were extracted at every pixel c ∈ C, for κ ∈ {5, 7},

and M ∈ {64, 128}.

Each pixel c ∈ C is now associated with a high dimensional texture feature vector

F(c) rather than a scalar intensity f(c). Details of the calculation of these textural

features described in [5]. Figures 6.3 (b),(c) show the median and Haralick correlation

feature images corresponding to the intensity image in Figure 6.3 (a). Note that the

hypointense lesion in the medial section of the gland is more easily discernible on the

texture maps (Figures 6.3 (b),(c)) compared to the intensity image in Figure 6.3 (a)

Non-linear dimensionality reduction

Object-class discriminability can be improved by projecting the data into a reduced-

dimensional embedding space, thus allowing for greater separation of the data classes.

To reduce the high dimensional texture space F(c) to a lower dimensional representation

S(c) for c ∈ Gd, graph embedding is employed via the normalized cuts algorithm [138].

The aim of graph embedding [29, 138] is to find a vector S(c), ∀c ∈ Gd such that the

relative adjacency of any two pixels ci, cj ∈ Gd, i, j ∈ {1, . . . , |Gd|} in high dimensional

space is preserved in the low dimensional space. To compute S(c), ∀c ∈ Gd, an affinity

matrix W ∈ <N×N , where N = |Gd| is defined as,

W (i, j) = e−‖F(ci)−F(cj)‖2 , (6.1)

for each ci, cj ∈ Gd. The embedding space S(c), for each c ∈ Gd, for m << 60

dimensions, is defined by the eigenvectorsX corresponding to them smallest eigenvalues

of (D−W )X = λDX, where D is a diagonal matrix with elements D(i, i) =
∑

j W (i, j).

Thus, S(ci) is obtained by extracting the first m components of the ith row of X.

Since linear projections are not utilized to compute these projections (such as done by

PCA) [139], graph embedding is capable of discovering inherent non-linearity in the
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data. The reduced dimensional space can be visualized for m = 3 by representing every

location c ∈ Gd on Id by its embedding coordinates S(c) and scaling these values to

display as an RGB image, as shown overlaid on a diagnostic MRI slice in Figure 6.3(d).

Note how dissimilar regions can be more easily discerned in Figure 6.3(d), where similar

colors represent the same class, as compared to Figure 6.3(a).

Replicated k-means clustering

Unsupervised replicated clustering is used to partition each pixel c ∈ Gd into one of

k classes based on the embedding representation S(c) obtained from corresponding

textural descriptions. The k-means algorithm provides an efficient and unsupervised

method for clustering observations. However, when random initialization of cluster

centroids is used, k-means is not deterministic. Replicated clustering has been shown

to provide more stable clusters [102] by selecting from T independent runs of k-means,

the clustering with the smallest average intra-class variance. Defining V q
t ⊂ Gd as the

set of pixels belonging to cluster q ∈ {1, . . . , k} from k-means replication t ∈ {1, . . . , T},

the cluster centroid is defined by Sq
t =

1
|V q

t |
∑

c∈V q
t
S(c). The optimal clusters V q

τ ⊂ Gd,

τ ∈ {1, . . . , T} are found by

τ = argmin
t

[
1

k

∑
c∈V q

t ,q

1

|V q
t |
‖S(c)− Sq

t‖]. (6.2)

Therefore, replicated k-means is utilized here to classify S(c),∀c ∈ Gd as one of k classes.

We select k = 6 to allow clustering of many dissimilar tissue classes, including benign

epithelium, stroma and hyperplasia, cancer, atrophy, and structures such as blood

vessels and the urethra. Figure 6.3(c) shows a tumor region identified as one of the

clusters generated using the replicated k-means technique. Note that since the technique

is unsupervised, the cluster corresponding to cancer must be manually selected based

on appearance and spatial configuration of the cluster within the prostate. In our

experiments this was done by an expert radiologist. The set of pixels belonging to the

cluster representing cancer is denoted Ωd ⊂ Gd ⊂ Cd.
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6.2.3 Elastic Registration of Diagnostic MRI, Planning MRI, and CT

The goal of registration is to determine the spatial transformations TdC(c) and TpC(e)

in order to map coordinates c ∈ Cd and e ∈ Cp onto the corresponding locations in CCT.

This allows for the transformation of both Id and Ip into alignment with ICT. A two

stage registration approach is used to first determine Tdp(c), the transformation from

each location c ∈ Cd to a corresponding e ∈ Cp, followed by TpC(c), the transformation

from each location e ∈ Cp into CCT. The registration of Id to ICT involves the steps

below.

1. Multiprotocol Registration: Automated affine registration of Id to Ip via

maximization of NMI [56] is performed to determine the mapping Tdp : Cd 7→ Cp

by

Tdp = argmax
T

[
NMI(Ip,T(Id))

]
, (6.3)

where T(Id) = (Cp, fd) so that every c ∈ Cd is mapped to new spatial location

e ∈ Cp (i.e. T(c) ⇒ e and c ⇐ T−1(e)). The NMI between Ip and T(Id) is

defined as,

NMI(Ip,T(Id)) = H(Ip) +H(T(Id))
H(Ip,T(Id))

, (6.4)

in terms of the marginal and joint entropies,

H(Ip) = −
∑
e∈Cp

pp(fp(e)) log pp(fp(e)), (6.5)

H(T(Id)) = −
∑
e∈Cp

pd(fd(T−1(e))) log pd(fd(T−1(e))), and (6.6)

H(Ip,T(Id)) = −
∑
e∈Cp

ppd(fp(e), fd(T−1(e))) log ppd(fp(e), fd(T−1(e))), (6.7)

where pp(.) and pd(.) are the graylevel probability density estimates, and ppd(., .)

is the joint density estimate. Note that the similarity measure is calculated over

the pixels in Cp, the coordinate grid of planning MRI. Despite the small FOV

of Id and the large FOV of Ip (Figures 6.1(a),(c)), an affine transformation is

sufficient since the two MRI protocols are acquired in the same scanning session
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with minimal patient movement between acquisitions. Since both T2-weighted

MRI protocols are also similar in terms of intensity characteristics, NMI is effective

in establishing optimal spatial alignment.

2. Multimodal Registration: Elastic registration of Ip to ICT using control

point-driven thin plate splines (TPS) [92] to define mapping TpC : Cp → CCT

is performed. An intuitive point-and-click graphical interface was developed and

employed for identifying pairs of corresponding spatial locations between Ip and

ICT. Having nearly the same FOV and similar spatial resolution, landmarks on

Ip, including the femoral head, pelvic bone and prostate capsule, are identifiable

on the corresponding ICT. For example, in Figures 6.1(b),(c) corresponding ICT

and Ip images are shown, where the wide FOV of planning MRI encompasses

peripheral anatomical features such as the hip bones and spine, which are not

visible on Id (see Figure 6.1(a)). Note that while Tdp(c) determined in Stage 1 is

implemented as an affine transformation, TpC(e) is a non-parametric deformation

field, elastically mapping each coordinate in Cp to CCT.

3. Combination of transformations: The direct mapping TdC(c) : Cd 7→ CCT

of coordinates of Id to ICT is obtained by the successive application of Tdp and

TpC,

TdC(c) = TpC(Tdp(c)).

Thus, using TdC(c), each coordinate in Cd is mapped into CCT.

In summary, the procedure described above is used to obtain the following spatial

transformations: (1) Tdp mapping from Cd to Cp, (2) TpC mapping from Cp to CCT,

and (3)TdC mapping from Cd to CCT. UsingTdC andTpC, the diagnostic and planning

MRI that are in alignment with CT are obtained as Ĩd = TdC(Id) = (CCT, fd) and

Ĩp = TpC(Ip) = (CCT, fp), respectively. For example, Figure 6.1(d) shows Ĩd obtained

by aligning with the corresponding ICT. Note the non-linear nature of TdC is clearly

visible in Figure 6.1(d).
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(a) (b)

(c)

Figure 6.4: (a) 3D visualization of the orientations and shapes of the 7 dynamically
shaped radiation beams used to design the IMRT dose plan. (b) Axial view of a CT slice
with the 7 beams and the resulting dose map thresholded at 7920 cGy (minimum dose
for the PTV) overlaid. (c) Adjacent CT slice with the dose map thresholded at 8640
cGy (minimum dose for the cPTV) and boundaries for the PTV and cancer overlaid.

6.2.4 Mapping of Tumor Location from Diagnostic MRI onto CT

After registration, the CAD result, represented by a set of spatial locations labeled as

Ωd on Id, is mapped via the transformation TdC to set ΩCT on ICT. For example,

the label Ωd shown in red on Id (Figure 6.3(e)) is mapped onto CT slice ICT (Figure

6.3(f)) via TdC.

6.2.5 Dose Plan Generation

Two target volumes are defined and used to generate a single IMRT dose plan using

the Varian c© Eclipse software. These are the planning target volume (PTV), which is

based on the radiologist’s outline of the prostate on CT plus margins, and a cancer

PTV (cPTV), based on ΩCT plus margins. The IMRT plan utilizes 7 beam angles and
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a dynamic multileaf collimator (MLC) to shape the beam and deliver no less than 7920

cGy to the PTV and no less than 8640 cGy to the cPTV. Figure 6.4(a) shows a 3D

view of the 7 beam angles and the shapes of the MLC at various points over the course

of the treatment. An axial view of the beams are shown in Figure 6.4(b) with the

resulting dose map thresholded at 7920 cGy overlaid onto the CT slice. The increased

dose to the cPTV is demonstrated in Figure 6.4(c) where the dose map thresholded at

8640 cGy covers the cPTV, which is indicated by the inner boundary. Note that while

dose escalation to the cancer is achieved, the rest of the PTV receives no less radiation,

hence ensuring that the entire prostate receives a full dose.

6.3 Results of CATT

6.3.1 Unsupervised CAD Classifier to Identify Tumor Labels on Di-

agnostic MRI

The unsupervised CAD classifier (Section 6.2.2) was applied to identify pixels belonging

to the cancer class (Gd) for each of 10 diagnostic MRI studies. Figures 6.3(a)-(c) show

a 2D section of diagnostic MRI of the prostate and two representative textural feature

images. The features show in Figures 6.3(b),(c) are the median calculated for each pixel

c with neighborhoods Nc,κ of size κ = 5 and the Haralick correlation for Nc,κ of size

κ = 7. Shown in Figure 6.3(d) is a color representation of the 3 dimensional feature

space S(c) obtained by application of the graph embedding scheme to F(c) for each

c ∈ Gd. The corresponding cancer label Ωd was obtained for each of the 10 prostate

volumes by applying the replicated k -means clustering technique to all S(c), c ∈ Gd.

The identified cancer cluster Ωd, manually identified by a radiologist, is shown in Figure

6.3(e). No quantitative evaluation of CAD accuracy is possible was not available for

these patients; in previous work [1] we identified ground truth for prostate cancer on

MRI by registering the imaging with corresponding whole mount ex vivo histological

sections.
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6.3.2 Multiprotocol and Multimodal Image Registration

Registration was performed as described in Section 6.2.3 for the 79 data sets of Id,

Ip, and ICT from the 10 patients. Figures 6.5(a) and (b) show a corresponding pair

of diagnostic and planning MRI slices (Id and Ip). Figure 6.5(c) shows Ĩd, Id after

automated affine registration to Ip, while the fusion of Ĩd and Ip is shown as a blended

overlay in Figure 6.5(d). In Figures 6.5(e)-(h), the registration of four different Id and

Ip slices is demonstrated as checkerboard patterns of Ip and Ĩd. The continuity of the

internal structures in the prostate and surrounding tissues between the registered images

can be appreciated in Figure 6.5(e)-(h). Clearly, by sequentially acquiring the diagnostic

and planning MRI volumes in the same imaging session, an affine transformation using

the NMI similarity measure appears to be sufficient to bring Id and Ip into alignment.

(a) (b) (c)

(d) (e) (f)

Figure 6.5: (a) Diagnostic MRI is affinely registered to (b) planning MRI. (c) The
registered diagnostic MRI is shown in (d) overlaid onto (b). (e)-(h) Checkerboard
patterns of four additional pairs of aligned diagnostic and planning MRI demonstrate
accuracy of registration, as evidenced the continuity of prostate capsule and internal
structures across checks.
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Figures 6.6(a)-(d) demonstrate the elastic registration results of 4 sets of corre-

sponding Id, Ip and ICT images as overlays of ICT and the registered images Ĩd and

Ĩp. The alignment of internal structures is evident in the vicinity of the prostate, be-

tween the hip joints (within the FOV of the diagnostic MRI). The non-linearity of the

image transformations required to align MRI with CT (Figures 6.6(a)-(d)) is clearly

demonstrated by the grids shown in Figures 6.6(e)-(h).

(a) (b) (c)

(d) (e) (f)

Figure 6.6: Elastic registration of both planning and diagnostic MRI to CT. (a)-(d)
Overlay of all three imaging modalities of four slices from a single prostate study. (e)-
(h) Deformed grid patterns for slices corresponding to (a)-(d) illustrate the non-linear
nature of the deformation field required to align the prostate on diagnostic MRI to the
visible gland on CT.

6.3.3 Tumor Mapping onto CT

The transformations TdC determined between each Id and ICT slice are applied to the

corresponding cancer label Ωd of each Id to obtain new spatial locations ΩCT on each

ICT. Figures 6.7(a), (b) show two different CT slices with ΩCT as a white mask and

the resulting cPTV boundary as a red line.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: (a), (b) Two different CT studies shown with cancer labels ΩCT (white)
mapped from MRI by registration and the resulting cPTV (red line). Resulting dose
intensity maps for the slices in (a), (b) are shown thresholded at the minimum dose for
PTV (7920 cGy, outer orange line) in (c), (d) and thresholded at the minimum dose for
cancer (8640 cGy, inner red line) in (e), (f). These demonstrate dose escalation to the
cancer PTV while maintaining dose to the prostate PTV. Note that the original dose
plan has not been shown.
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6.3.4 Dose Planning

From the CT volumes with PTV and cPTV delineated (shown as red lines in Figures

6.7(a),(b)), dose plans were generated for each of the 10 patient studies. Figures 6.7(c)

and (d) show the radiation dosage maps for the slices in Figures 6.7(a) and (b). To

illustrate the dose to the PTV, the radiation intensity is thresholded at 7920 cGY in

Figures 6.7(c) and (d), while to illustrate the dose escalation to the cPTV, the radiation

intensity is thresholded at 8640 cGY in Figures 6.7(e) and (f).

6.4 Concluding Remarks

With high resolution diagnostic MRI, it is now possible to visually identify presence and

extent of prostate cancer. Additionally, computer-aided classifiers for detecting disease

extent on MRI have been developed. The tumor location identified on the MRI by

CAD classifiers was mapped onto CT via a two step registration methodology, allowing

formulation of a more precise dose plan. The implications of a dose plan targeted only at

the tumor include (1) reduced exposure to the bladder, rectum, and other benign tissues,

and (2) dose escalation to the tumor. Thus, the approach described here could translate

to a real reduction in side effects and increased efficacy of radiotherapy treatments.

It is important to note that there is no straightforward way of evaluating the accu-

racy of tumor localization on CT. Validation of the computer-assisted dose pans would

involve a long-term, clinical trial whereby CAD-assisted therapy is compared against

conventional therapy targeted at the entire prostate without the benefit of CAD. The

work presented here will pave the way for such a clinical trial.

For future work, we are currently implementing a fully automated registration

paradigm using free form deformations, such as previously described in our work on

MR-histology registration [1]. Another avenue of future work will focus on automated

prostate segmentation using a previously developed feature-driven active contour tech-

nique [140]. Finally, we plan to investigate the use of a supervised classifier to drive

the CAD system, which will remove the interactive component of the current clustering

scheme and potentially provide more accurate cancer labels.
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Chapter 7

HistoStitcher: An Interactive Program for Accurate and

Rapid Reconstruction of Digitized Whole Histological

Sections from Tissue Fragments

7.1 Need for Efficient Digital Reconstruction of Whole Histological

Images

Histological sections of tissue specimens obtained via biopsy or surgical excision, such

as lumpectomy or radical prostatectomy, are used for identifying presence and extent of

disease, and if resolution is sufficient, the grade and malignancy of the disease [141–143].

In cases where the patient is scheduled for surgical resection of the diseased tissue or

gland, it may be valuable to map disease extent from ex vivo histology sections onto

in vivo radiological imaging, which is commonly acquired prior to excision, to discover

signatures for disease on in vivo imaging [5, 28, 107]. For example, men with prostate

cancer confirmed by biopsy and who are scheduled to undergo radical prostatectomy

may receive pre-operative MRI of the prostate for identifying the presence of extra

capsular spread. By registering these pre-operative MRI with corresponding ex vivo

histology sections obtained from the radical prostatectomy specimen (see Figures 7.1(a)

and (b)), pathological regions on histology (purple regions in Figures 7.1(a)) are then

mapped onto the registered MRI (shown in green on Figure 7.1(c)). To achieve the

required histology annotation and multi-modal registration steps described above, whole

histological sections of entire slices of the specimen rather than fragmented sections of

tissue are required.

Obtaining whole-mount histological sections of large specimens, such as an enlarged

prostate gland, while maintaining tissue integrity is not always feasible. For large

specimens, a single glass slide is often too small to mount the entire contiguous tissue
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(a) (b) (c) (d)

Figure 7.1: (a) Reconstructed pseudo-whole-mount histology from a prostate specimen
with cancer (delineated in dark purple) may be used to identify signatures for disease
on pre-operative in vivo imagery, similar to the MRI image shown in (b), by registering
the two images. (c) The registered MRI slice that is in alignment with whole histology
in (a) allows mapping of cancer onto MRI (green). (d) Quadrants comprising the whole
histology section in (a) must be first reconstructed into a pseudo whole-mount section
to facilitate improved annotation across cuts and registration with MRI in (b).

section, necessitating the cutting of the section into smaller fragments and mounting

them onto multiple slides. Further, it is difficult to slice large specimens thin enough

to achieve the very high spatial resolution required for accurate annotation without the

use of specialized procedures and microtomes. For example, obtaining a whole slide for

the specimen shown in Figure 7.1(b) with a thickness of only 4µm is difficult, prone

to specimen damage, and inefficient, requiring exorbitant amounts of preparation time.

As a result of these challenges, it is often preferable to adopt the much simpler approach

of cutting large tissue specimens into smaller fragments and preparing multiple slides

for separate analysis, such as quadrant sections shown in Figures 7.1(d).

Tissue fragments spread across multiple slides presents a significant hindrance for

both (1) digital annotation of disease extent by a pathologist, which requires integration

of visual cues across disjoint section boundaries, and (2) image processing tasks, such

as registration of whole histological sections with in vivo imaging modalities. Anno-

tation of multiple slides by a pathologist may be performed separately, however when

the targeted pathology of interest crosses the boundary between slides, the process

is complicated as the pathologist must repeatedly alternate between adjacent slides.

As with any strenuous manual task, the annotations obtained in this manner may be

inaccurate or unreliable. In addition to tissue annotation, whole histology slides are

valuable in facilitating correlation with in vivo imagery by image registration, and much
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work has been done on registration of whole-mount histology with in vivo radiological

imaging [4, 19, 112, 144]. On the other hand, registration of smaller histologic image

fragments to a sub-image or region of the in vivo data has not been widely investigated

and is likely to be a more challenging registration task. Thus, in order to streamline

and improve pathologist slide annotation, and facilitate image processing tasks requir-

ing whole histological sections, it becomes useful to reconstruct a pseudo-whole-mount

histological section from multiple individual fragments [28].

With the spread and growing acceptance of digital pathology [141–143], it is feasible

for high resolution whole-mount sections to be digitally reconstructed from the images of

the smaller fragments. Digitally reconstructed whole-mount histological sections would

not only facilitate a variety of image processing tasks, but if pathologists can perform

digital annotation of disease extent on high resolution histology images on computer

monitors, annotations would be greatly improved compared to manual labeling of slides

with felt pen or drawing on standardized examination sheets. Annotation could be im-

proved in terms of both accuracy and efficiency using digital images by allowing labeling

at any level of detail and for editing and revision of the markup. For example, in Figure

7.1(a) are the digitized histology quadrants of a section from a prostatectomy specimen

with cancer. The closest corresponding MRI slice is shown in Figure 7.1(b). By digitally

combining, or stitching, the quadrants a pseudo-whole-mount section can be generated

(see Figure 7.1(c)), upon which efficient pathologist annotation can be performed on a

high resolution computer monitor. The resulting cancer label established by analysis

of the reconstructed pseudo-while-mount section is shown in purple, and can be seen

to cross the cut between the original quadrants. Finally, having a reconstructed whole

histology section, registration with corresponding in vivo imagery, such as MRI, can be

performed to achieve mapping of spatial extent of disease (in this case prostate cancer)

from the annotated whole histology onto corresponding radiological in vivo imaging.

For example, the aligned MRI slice obtained in a previous study [5] is shown in Figure

7.1(d) with the mapped histopathologic cancer label shown in green. In this paper,

we present a software utility called HistoStitcher c© for computerized reconstruction of a

whole histological section from digital images of the multiple slides of tissue fragments.
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While we demonstrate the utility of HistoStitcher c© in the context of prostate sections

in this work, the program is just as readily applicable to other domains and applications

such as reassembly of whole histology sections of breast lumpectomy or mastectomy.

The rest of the paper is organized as follows. In Section 7.2 we discuss the challenges

and requirements associated with digital reconstruction of high resolution histopatho-

logic images. In Section 7.3.1 we present an overview of the HistoStitcher c© software,

including the interface and workflow. In Section 7.3.3 we detail the mathematical meth-

ods used to determine the optimal image transformation based on user-defined control

points. In Section 7.3.4 we describe the application of the transformation to the full res-

olution histology and the process of stitching to create a larger image. In Section 7.3.6

we describe the features of HistoStitcher c© that facilitate operation on very large images.

In Section 7.4 we present formalized evaluation criteria and a 6 point scoring scheme

for comparing and assessing the quality digitally reconstructed histology sections. In

Section 7.5 we demonstrate the use of HistoStitcher c© for reassembly of quadrants of

prostate histology sections, and compare the results to manually reassembled (using

Photoshop) sections and to block face photographs of the gland taken prior to cut-

ting into quadrants. The reconstruction evaluation scheme is applied to compare the

quality of stitches generated using HistoStitcher c© to corresponding stitches generated

using Photoshop for 6 prostate additional prostate studies. In Section 7.6 we present

concluding remarks and enumerate further applications of HistoStitcher c©.

7.2 Challenges in Digital Reconstruction of High Resolution Whole

Histology

At institutions where high resolution digitization of excised tissue specimens are per-

formed, an imaging software like Photoshop c©1 is typically employed to digitally recon-

struct a whole histology image when the tissue is fragmented across multiple slides. The

use of conventional image editing programs for reassembly of high-resolution histology

images is both inefficient and inadequate on several accounts. Firstly, these programs

1http://www.adobe.com/photoshop/
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do not allow for simultaneous rotation, translation and scaling, which makes the digital

stitching process using these programs tedious and the resulting transformation difficult

to parameterize and record. Secondly, operating on high resolution (10x magnification)

histology is extremely memory intensive. For example, a single digital histology image,

which can be larger than 15,000 x 15,000 RGB pixels or 675 MBytes, necessitates careful

memory handling to perform even basic image manipulations. The size of the images

underscores the need for efficient parameterization of the transformations, which must

be easily stored and applied to the full size images in chunks at a later time.

Despite the shortcomings of commercially available image editing programs for the

task, digital reassembly of the fragments of whole histological sections requires ex-

pert interaction to ensure accurate reconstruction, where the corresponding edges of

adjacent sections are aligned or “stitched” to preserve the continuity of anatomical

structures of the tissue. Common automatic techniques for image stitching generally

rely on significant overlap between adjacent images, such as with photograph [145–147]

or microscopy [148–151] mosaic generation. However no such overlap exists between

adjacent histology fragments. Automated edge matching techniques [152–155], which

are generally designed for rigid objects such as puzzles and broken tiles, break down on

account of uneven distortion and loss of tissue along the edges of histological fragments,

leading to highly dissimilar contours of the two edges that were originally adjacent in

the contiguous section. For example, the prostate histology quadrants shown in Figure

7.1(d) do not posses distinctive curvatures or other features on the contours of the ad-

jacent edges, either at a macro or micro scale, which can be reliably used to align the

edges. Many large macroscopic structures within the tissue are however visible that

cross between quadrants. Thus, instead of trying to characterize overall edge similar-

ity, the pathologist must observe the organization of tissue architecture and infer the

continuity of structures across the cut. At these points along the cut where structural

continuity is clear, the corresponding points along the two adjacent contours can simply

be marked and used to perform the stitching.

HistoStitcher c©, our interactive software package presented in this paper, adopts this

approach based on identification of pairs of control points since (1) it provides a simple
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Figure 7.2: The HistoStitcher c© graphical user interface where two histology pieces
from the same section are digitally combined by selecting control point pairs along
common boundaries. An optimal transformation of one fragment onto the the other is
automatically determined based on user specified constraints.

way for a pathologist to drive the reassembly process, (2) as few as three pairs of control

points are sufficient to obtain a transformation, and (3) the transformation is easily

parameterized, stored, and applied to high resolution images. While the underlying

techniques employed by HistoStitcher c© for image transformation using control points

are not novel per se, their application to interactive digital reassembly of histology

fragments and subsequent visualization of whole sections is. The design and operation

of HistoStitcher c© software is described in Section 7.3 below.

7.3 Features and Operation of HistoStitcher

7.3.1 Software Overview and Workflow

The HistoStitcher c© software is comprised of an intuitive graphical user interface (GUI)

and a set of computational routines for reassembly of a single stitched histological

section from two images containing the adjacent fragments. A screenshot of the main

HistoStitcher c© GUI with two prostate histology quadrants loaded is shown in Figure 7.2.



141

(a) (b) (c) (d)

(e) (f) (g)

Figure 7.3: (a)-(d) Histology slide images of fragments (quadrants) of a whole section
of a prostate specimen are reassembled using HistoStitcher c©. (e) Half prostate his-
tology section reconstructed by stitching quadrants in (a) and (b). (f) Three-quarters
prostate histology section from stitching of quadrant in (c) with half in (e). (g) Final
reconstructed pseudo-whole prostate histology section following stitching of quadrant
in (d) with (e).

The operation of the program for stitching two adjacent histology fragments involves

the following steps,

1. Load two adjacent images: the stationary image (left image) and the moving

image (right image) that is to be transformed so that common edges are in the

best possible alignment.

2. Select pairs of corresponding anatomical landmarks (points) that exist along the

cut separating two adjacent sections. (Add Points button).

3. Specify constraints on the image transformation, including reflection, scale, and

scale isotropy. (Tick boxes at bottom).

4. Automatically calculate the optimal coordinate transformation to minimize the

error (in the least-squares sense) between pairs of control points. (Calculate

Transform button).
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5. Transform the moving image, bringing both images into a common coordinate

frame.

6. Combine the images to generate the stitched image, expanding the image canvas

as necessary. (Preview Stitch button).

7. Return the parameterized linear coordinate transformation and the full-resolution

stitched image. (Done button).

8. Continue to Step 1 with the next adjacent fragment and the newly stitched image.

This general approach to reassembling a whole histology section from several fragments,

such as the four quadrants of the prostate histology section shown in Figure 7.1(d), in-

volves the cumulative stitching of two images at a time until all fragments have been

combined. The process of stitching these quadrants, shown in Figures 7.3(a)-(d), pro-

ceeds as follows. First, two adjacent fragments (Figures 7.3(a) and (b)) are stitched

using the steps above to generate a larger histology image (Figure 7.3(e)). The newly

assembled semi-circular histology section is then stitched with the next histology frag-

ment (Figure 7.3(c)) to generate a larger histology image (Figure 7.3(f)) comprising

three quarters of the original whole section. Finally, the last histology fragment is

stitched with the three-quarters section (Figure 7.3(f)) to generate the pseudo-whole

prostate histology section, as shown in Figure 7.3(g).

7.3.2 Notation

The pairs of anatomical landmarks identified using the HistoStitcher c© GUI (shown as

blue and green stars in Figure 7.2) correspond to two sets of N control points, denoted

by the homogeneous coordinate matrices X = [x;y;1] (moving) and U = [u;v;1]

(stationary), where x,y,u,v,1 are row vectors of length N . We define the stationary

and moving histology fragment images as A = (fA, C
A) and B = (fB, C

B), where

fA(c) and fB(c) are the image intensity or RGB values at each pixel c in rectangular

coordinate sets CA and CB, respectively. We denote the transformation of B as β = T◦

B = (fβ, C
β), defined by a new coordinate set Cβ and intensity function fβ(c) for each
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Table 7.1: List of notation and symbols specific to Appendix 7.
Symbol Description

X Control point matrix on moving image

U Control point matrix on stationary image

x, y X- and Y -axis components of X

u, v X- and Y -axis components of U

X̂ Mean-centered X

Û Mean-centered U

X̃ Normalized X

Ũ Normalized U

T Linear coordinate transformation

R Orthonormal rotation matrix

t Translation vector

s Scale factor

X Mean coordinate of X

U Mean coordinate of U

A Stationary image on HistoStitcher c© left

B Moving image on HistoStitcher c© right

β Image B transformed by T

Cβ Coordinate set for β

fβ(c) Value of image β at pixel c ∈ CB

α Transparency value for background pixels

S Stitched image comprising A and β

CS Coordinate set for S s.t. (CA ∪ Cβ) ⊂ Cs

fS(c) Value of image S at pixel c ∈ CS

N Number of control points

coordinate c ∈ Cβ. The stitched image comprising A and β is denoted S = (fS , C
S)

and defined on the coordinate frame CS . A comprehensive list of the main notations

employed in this paper is given in Table 7.1.

7.3.3 Determining the Optimal Transformation from Control Point

Pairs

The goal of this section is to determine a linear coordinate transformation T that

minimizes the error e in the transformation of X via U = TX + e, subject to vari-

able constraints on scaling (anisotropic, isotropic, none) and reflection (allowed, forced,

none). To evaluate the accuracy of control point placement, the residual error in the

mapping of X onto U is calculated as ‖TX−U‖2 and displayed on the GUI (shown
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beneath the “Calculate Transform” button in Figure 7.2).

Depending on the handling of the histology sections during creation and imaging of

the slides, different constraints on the number of degrees of freedom (DOF) in the linear

coordinate transformation, which is ultimately applied to the entire moving image, may

be necessary. It is often necessary to reflect (mirror image) a section if the slice was

flipped upside-down when it was scanned. Scaling may be necessary to correct for

variable degrees of tissue shrinkage between fragments, or if the magnification used

to acquire all sections was not exactly the same. Further anisotropic scaling (two

independent scale factors on orthogonal axes) may be necessary when the slicing process

causes deformations that are not equal in each direction. However, to prevent overfitting

of the coordinates, especially when few or collinear landmarks were identified, it may

be necessary to reduce the degrees of freedom by constraining or disallowing scaling

and/or reflection. For example, when only one pair of edges are being stitched, the

control points are mainly collinear and isotropic scaling should be used to prevent

overfitting. When two or more pairs of edges are being stitched, the points are not

collinear and anisotropic scaling can be safely used. However, if the object is truly

rigid, such as if bone were being stitched, anisotropic scaling would never be used.

The mathematical techniques used to find the optimal transformation T subject to the

various constraints are described in Sections 7.3.3-7.3.3.

Unconstrained Affine: Anisotropic Scale Allowing Reflection

Maximal flexibility in the transformation of the moving image (shown in the right side of

the GUI) is provided by allowing two independent scale parameters (anisotropic scaling)

and reflection, in addition to rotation and translation, to align the selected control

points. In the HistoStitcher c© interface, this configuration corresponds to selecting the

“Allow Reflection” and “Allow Scaling” check boxes, and unselecting the “Isotropic

Scaling” checkbox. To achieve an alignment with these transformation possibilities, an
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unconstrained affine transformation Ta of X is defined as,

TaX =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1

 (7.1)

where a11, a12, a13, a21, a22, a23 are the 6 independent parameters that comprise Ta.

The four parameters a11, a12, a21, a22 collectively control the scale, rotations and any

reflection. The parameters a13 and a23 represent the translations of the moving image

that occur after any scale, rotation and reflection operations.

Following selection of the control point pairs U and X and selecting the appropri-

ate constraints, the user can then click the “Calculate Transform” button, directing

HistoStitcher c© to solve for Ta. HistoStitcher c© finds the optimal transformation that

minimizes the error between U and TaX,

E(Ta) = ‖TaX−U‖2 , (7.2)

where ‖·‖ is the Frobenius norm. Equation (7.2) can be minimized by expanding in

terms of a11, a12, a13, a21, a22, a23 as,

E(Ta) =

N∑
i=1

(a11xi + a12yi + a13 − ui)2 + (a21xi + a22yi + a23 − vi)2, (7.3)

and differentiating E(Ta) with respect to each of the six parameters and setting the

resulting equations to zero. This produces the following linear system,



∑
x2i

∑
xiyj

∑
xi 0 0 0∑

xiyi
∑
y2i

∑
yi 0 0 0∑

xi
∑
yi

∑
1 0 0 0

0 0 0
∑
x2i

∑
xiyj

∑
xi

0 0 0
∑
xiyi

∑
y2i

∑
yi

0 0 0
∑
xi

∑
yi

∑
1





a11

a12

a13

a21

a22

a23


=



∑
uixi∑
uiyi∑
ui∑
vixi∑
viyi∑
vi


, (7.4)



146

where
∑

represents the sum over each element i (and j). Solving the system for

[a11 a12 a13 a21 a22 a23]
T provides the parameters of the optimal transformation Ta,

which is then displayed in the HistoStitcher c© GUI in the “Transformation” box beneath

the stationary image on the left. To allow the operator to assess the accuracy of control

point placement, the residual error of the minimization (calculated as ‖TaX−U‖2) is

displayed immediately below the “Calculate Transform” button.

Isotropic Scaling with No Reflection

It may often be appropriate to constrain the transformation of the moving image by

allowing only a single scale parameter (isotropic scaling), and disallowing any reflection

(mirroring). To select this configuration, the operator checks the box for “Isotropic

Scaling” and unchecks the box for “Allow Reflection”. Constraining the linear trans-

formation to a single isotropic scaling factor and no reflection involves parameterizing

the transformation Ts as,

U = TsX =


a1 −a2 a3

a2 a1 a4

0 0 1



x

y

1

 , (7.5)

where a1, a2, a3, a4 are the 4 independent parameters that comprise Ts. The parameters

a1 and a2 collectively control the rotation and scale, while the negative sign prohibits

reflecting the coordinates. The parameters a3 and a4 represent the translations. The

error term may be formulated as,

E(Ts) = ‖Ts(x)− v‖2 , (7.6)

=
∑
i

(a1xi − a2yi + a3 − ui)2 + (a2xi + a1yi + a4 − vi)2, (7.7)
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and differentiated with respect to each of the four parameters a1, a2, a3 and a4. Setting

the four resulting equations to zero provides the following matrix formulation,



∑
x2i +y

2
i 0

∑
xi

∑
yi

0
∑
x2i +y

2
i −

∑
yi

∑
xi∑

xi −
∑
yi

∑
1 0∑

yi
∑
xi 0

∑
1





a1

a2

a3

a4


=



∑
uixi + viyi∑
vixi + uiyi∑

ui∑
vi


. (7.8)

When the “Calculate Transform” button is clicked, HistoStitcher c© solves the system in

Equation 7.8 for [a1 a2 a3 a4]
T, yielding the optimal transformation Ts. This transfor-

mation is then displayed in the “Transformation” box.

Isotropic Scaling allowing Reflection

Similar isotropic scaling constrains may be enforced while allowing for reflection. Such

constraints may be required if a the mirror image of a slide is loaded. To select this

configuration, the operator checks the boxes for both “Isotropic Scaling” and “Allow

Reflection”. When reflection is allowed, but not enforced, we seek a transformation

Tp,s using Procrustes analysis [156] to determine a constituent 2-by-2 orthonormal

transformation matrix R, a single scaling factor s and a translation vector t = [tx; ty].

The major steps of the method employed by HistoStitcher c© to solve for Tp,s are as

follows:

1. Center x and v such that their mean corresponds to the origin, obtaining the

following coordinate matrices,

X̂ = [x̂; ŷ], (7.9)

Û = [û; v̂], (7.10)

where the elements of x̂ and ŷ are,

x̂i = xi −
1

N

N∑
i

xi and ŷi = yi −
1

N

N∑
i

xi,
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and the elements of û and v̂ are,

ûi = ui −
1

N

N∑
i

ui and v̂i = vi −
1

N

N∑
i

vi.

2. The centered coordinates X̂ and Û are then scaled to unit norm by,

X̃ =
X̂∥∥∥X̂∥∥∥ , (7.11)

Ũ =
Û∥∥∥Û∥∥∥ , (7.12)

where ‖·‖ is the Frobenius matrix norm.

3. Compute the rotation matrixR = QPT wherePΣQT is the singular value decom-

position (SVD) [157] of ÛTX̂. The SVD PΣQT is comprised of two orthogonal

matrixes P and Q corresponding to the eigenvectors of X̂TÛÛTX̂ and ÛTX̂X̂TÛ

respectively, and a diagonal matrix Σ of the square roots of the eigenvalues.

4. Compute the scale factor s = trace(Σ) ∗
∥∥∥X̂∥∥∥∥∥∥Û∥∥∥ .

5. Compute the translation vector t = U − sXR, where X = [x̄; ȳ] and U = [ū; v̄]

are the mean coordinates of X and U.

6. Construct the homogeneous transformation matrix,

To,s =


sR11 sR21 tx

sR12 sR22 ty

0 0 1

 . (7.13)

When the “Calculate Transform” button is clicked, HistoStitcher c© executes the above

step to solve for To,s, which is then displayed in the “Transformation” box.
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Rotation and Translation: No Scaling

If the images were acquired at exactly the same magnification and stored at the same

spatial resolution, no scaling is necessary. In such an event only a transformation

comprising pure rotation and translation would be required to stitch the fragments. To

set up this configuration, the operator unchecks both the boxes for “Allow Scaling”

and “Allow Reflection”. As described in [156], the rotation matrix R obtained via

Procrustes analysis (steps 1-3 Section 7.3.3) is also used when no scaling factor is

employed. The translation however is now calculated as t = U − XR. Finally, the

homogeneous transformation matrix is constructed with the new translations,

To,n =


R11 R21 tx

R12 R22 ty

0 0 1

 . (7.14)

HistoStitcher c© calculates To,n as described above when the “Calculate Transform” but-

ton is clicked.

Enforcing Reflection

For any of the configurations described above (anisotropic scale, isotropic scale, no

scale, allowed reflection), HistoStitcher c© provides a mechanism to reflect (horizontally

and/or vertically) the histology fragment in the moving image shown on the right. The

toggle buttons shown to the right of the moving image in the HistoStitcher c© GUI are

used to reflect both the image and any previously selected control points. A manually

specified horizontal or vertical reflection is combined into the transformation by TMx

or TMy, where,

Mx =


−1 0 0

0 1 0

0 0 1

 and My =


1 0 0

0 −1 0

0 0 1

 ,
are the X and Y axis homogeneous reflection matrices. If both X and Y reflections are

selected, a 180 degree rotation of the moving fragment is applied.
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7.3.4 Transformation of Moving Image

On both images, background pixels not representing the tissue mounted on the slide

are assigned a value α, a background intensity or color specified by a command line

argument. The moving fragment image B is transformed via T determined from the

control points as described in Section 7.3.3, obtaining β = T ◦ B = (fβ, C
β), defined

by a new coordinate set Cβ = {T(c),∀c ∈ CB} and intensity function fβ(c) for each

coordinate c ∈ Cβ. Cubic spline interpolation on fB is used to obtain the new image

values fβ(c) at each c ∈ Cβ, while a value of α is assigned to coordinates originating

outside the original image domain CB.

7.3.5 Image Reconstruction

The stationary and transformed fragment images A and β are combined to create the

reassembled histology section contained within a larger image S = (fS , C
S) by creating

a continuous rectangular coordinate frame CS that is large enough to encompass both

CA and Cβ (i.e. (CA∪Cβ) ⊂ CS). The value fS(c) of each pixel c ∈ CS in S is defined

by,

fS(c) =



fA(c), if c ∈ CA and (c /∈ Cβ or fB(c) = α)

fβ(c), if c ∈ Cβ and (c /∈ CA or fA(c) = α)

fA(c)+fβ(c)
2 , if (c ∈ CA and fA(c) 6= α) and (c ∈ Cβ and fB(c) 6= α)

α, if c /∈ CA and c /∈ Cβ

(7.15)

so that blending of fA and fβ only occurs at pixels c representing tissue on both A

and β. Note that the blending of fA and fβ will occur for few pixels in an accurately

stitched pair of images, however it is necessary to address overlap that results from

jagged features along the edges and other edge irregularities due to slicing and slide

preparation. Thus, this area of blending will be minimal in a correct stitch and is only

performed for regions where tissue deformation prevents perfect boundary alignment.

To facilitate this blending-with-transparency approach, a simple preprocessing tool
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is included in HistoStitcher c© to identify the boundary of the tissue on the slide and hence

the background. Any value of α may be selected to represent the slide background on

the stitched image, such as values representing white or black.

7.3.6 Considerations for High Resolution Images

As previously mentioned, operations on high resolution histology images require spe-

cial handling to avoid exhausting computer system memory. For example, the 10x

magnification scan of the single prostate histology quadrant in Figure 7.3(b) contains

30k x 18k pixels, each pixel requiring 3 bytes to encode the RGB values, for a total

of 1.6 GBytes of uncompressed data. Operations such as affine transformation on an

image this size require excessive computation time and necessitate operating in tiles or

chunks of the image when sufficient memory is not available to load the entire image.

Therefore, HistoStitcher c© has two important features to facilitate large images; these

are (1) loading of any resolution within the image pyramid stored in an Aperio’s SVS or

multi-page TIFF file format and (2) down-sampling the two images for both display in

the GUI and for previewing the stitch when the “Preview Overlay” button is pressed.

By operating on a lower resolution pyramid level while placing control points and pre-

viewing the transformation, and by saving the obtain transformation, the full resolution

images can be reassembled offline with the saved transformation using a system with

more memory or using a routine that operates in blocks or tiles.

7.3.7 Reference Stitching: Manual Alignment of Fragments in Pho-

toshop

In previous studies [5, 28, 112] that utilized reconstructed whole prostate histological

sections for correlation with MR images, an expert pathologist performed stitching

by manual manipulation of lower resolution quadrants in Photoshop. In this paper

manual stitching of histology fragment images in Photoshop is compared to use of

HistoStitcher c©. Manipulation of the images in general purpose image editing software

such as Photoshop involves performing any rotations, translations, and stretching (scal-

ing) steps sequentially and thus independently. By contrast, HistoStitcher c© simultaneously
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determines the single transformation that contains the optimal sequence of rotations,

scale, and translation. Further, to closely stitch the edges of two histology fragments

in a general image editing program, it is also necessary to specify a transparency layer

by carefully delineating the boundary of the tissue on the slides.

7.4 Criteria for Stitching Quality and Evaluation by Multiple Expert

Consensus

The criteria for assessment of the quality of a reconstructed histology section is defined

to reflect how well the resulting pathology image facilitates the disease annotation pro-

cess. When a pathologist reviews a histopathologic section for prostate cancer, the

pathologist first analyzes the tissue architecture at a low power magnification, at which

a differential diagnosis is often made, and will zoom into higher power for confirmation.

Thus, good stitching quality is most critical for the low power assessment where first

impressions and often the diagnosis, which is of crucial importance in prostate cancer,

are made. The disease annotation process involves inspecting salient anatomical struc-

tures (e.g. ducts, BPH nodules, urethra, capsule), which may span multiple quadrants.

Therefore, with a well reconstructed section the assessment at low power is more effi-

cient and accurate because a pathologist will not be required to perform complicated

mental image transformations of the individual quadrants in order to follow the salient

features across the cuts/boundaries.

In consort with our collaborating pathologists, we have defined stitch quality in

terms of (1) continuity of tissue across the stitch boundaries, such that gaps and mis-

alignment of anatomical structures are minimized, and (2) utility of the stitch for an-

notation of disease extent by a pathologist. A better stitch, as defined by this criterion,

will facilitate a pathologist’s ability to follow anatomical structures across the bound-

aries and, given the low to high power assessment approach employed by pathologists,

perform annotation of disease extent more accurately and efficiently.

A quantitative 6 point scoring scheme, proposed by our collaborating and co-

authoring pathologists, is employed to assess stitching quality. Under the 6 point
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scoring scheme, each reconstructed section receives a score from 0 to 6, with up to

2 points awarded for alignment of each of the following three anatomical features:

1. Capsule: continuity across the quadrants

2. Urethra: ability to visualize in its entirety

3. Glands: boundary and structural preservation of glands and other histological

instances across the cut

Each anatomical feature receives either 0 points for no alignment, 1 point for partial

alignment, or 2 points for full alignment. Therefore, even with some remaining gaps,

points are awarded for good alignment of the edges of the anatomical structures.

7.5 Results of HistoStitcher

7.5.1 Experiment 1: Reconstructing High Resolution Whole Prostate

Sections from Quadrants

To demonstrate the operation of HistoStitcher c© and evaluate both the accuracy of the

reassembled histology sections and the efficiency of its use, we reconstruct high resolu-

tion whole histology sections of two different prostate specimens by stitching digitized

slide images of the quadrants which compose each section. In the first prostate spec-

imen, HistoStitcher’s c© operation is demonstrated in the context of the reassembly of

a whole histology section from the very high resolution scans of the slides of the four

fragments, or quadrants (Figures 7.3(a)-(d)). The slides were digitized using an Aperio

slide scanner at 20x apparent magnification for approximately 0.5 microns per pixel.

In HistoStitcher c©, image pyramid level 1 containing the 10x resolution images were

loaded. The pixel dimensions of these four images shown in Figure 7.3(a)-(d) are ap-

proximately: 25k x 20k, 30k x 18k, 29k x 22k and 18k x 17k. To evaluate the efficacy

of HistoStitcher c© in terms of both the quality of the reassembled sections and the effi-

ciency of stitching process, the same fragments were also stitched at a lower resolution

(approximately 0.5x magnification or 20 microns per pixel) by an expert pathologist

using Photoshop to manipulate the positions of the quadrants, as described in Section
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Figure 7.4: (a) Photograph of specimen face prior to cutting into quadrants and mount-
ing on slides. (b) Manually reassembled whole histology section obtained using Pho-
toshop with low resolution images (final stitched image is 2,796 x 2,358 pixels). (c)
HistoStitcher c©-reassembled whole histology section from high resolution images (final
stitched image is 48k x 41k pixels). Both stitches in (b) and (c) are validated by the
photograph of the section taken prior to cutting. (d)-(g) Close up views of regions
I-IV over the seams of the HistoStitcher c©-reassembled image in (c). (h)-(k) Close up
views of the regions nearest to I-IV on the manually-reassembled image in (b). The
seams in (d)-(g) contain smaller gaps and better continuity of internal tissue structures
compared to the seams in (h)-(k).
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7.3.7. To establish a baseline for stitching quality, we also acquired an image of the gross

pathology section with a digital camera prior to cutting the section into quadrants, and

staining and mounting each quadrant on slides. While this photograph shown in Figure

7.4(a) is not useful for diagnostic purposes, it shows the original configuration of the

quadrants prior to cutting.

As described in Section 7.3.1, the stitching of multiple fragments is cumulative and

begins by stitching any two originally adjacent fragments. In this case, the quadrants

in Figures 7.3(a) and (b) were stitched by placing corresponding pairs of control points

along their common edge, automatic transformation of the moving image (the quadrant

in Figure 7.3(a)), followed by reassembly of the larger image shown in Figure 7.3(e).

Next, the quadrant in Figure 7.3(c) was stitched to the reassembled half in Figure

7.3(e) to generate the image in Figure 7.3(f). Finally, the quadrant in Figure 7.3(d)

was stitched to the section in Figure 7.3(f) to generate the pseudo-whole mount section

in Figure 7.3(g). The total time required to reassemble the final WMH section from

the four quadrants was approximately 6 minutes. This included any time required to

(i) load the images, (ii) select control points, (iii) preview the stitch, (iv) refine and/or

add landmarks, (v) select appropriate transformation constraints, and (vi) perform the

full resolution image transformation.

The reassembled whole-mount section generated using HistoStitcher c© on the high

resolution (10x apparent magnification) histology quadrants is shown in Figure 7.4(c),

while the result of the manual stitching using Photoshop (see Section 7.3.7) is shown

in Figure 7.4(b) for much lower resolution (0.5x magnification) images. To validate the

accuracy of reassembled sections generated manually and using HistoStitcher c©, a block

face photograph of the whole section prior to slicing into quadrants is shown in Figure

7.4(a). The HistoStitcher c© result is shown in Figure 7.4(c) with four rectangular regions

along the stitched boundaries highlighted. Close-up views of each of regions I-IV delin-

eated in Figure 7.4(c) are shown in Figures 7.4(d)-(g), illustrating the continuity and

smoothness of the stitched boundaries between the quadrants on the HistoStitcher c©-

reassembled section. For the manually stitched section in Figure 7.4(b), close-up views

of approximately the same regions I-IV are shown in Figures 7.4(h)-(k), illustrating
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significantly larger gaps between the adjacent quadrants and lack of continuity of in-

ternal structures compared with the HistoStitcher c© result. The full 10x reconstruction

had dimensions of 48k x 41k pixels (approximately 5.9GB) and was obtained using a

64-bit workstation with 8GB RAM. To perform stitching at resolutions higher than

10x magnification would require either a server machine with greater amounts of mem-

ory, or computational methods to process and save the stitched image in blocks, or

tiles. Note however that if the parameterized linear transformations for each of the

three stitching steps were saved (Save Points button), they may easily be reloaded into

HistoStitcher c© (via Load Points button), which automatically adjusts the translation

for the resolution difference.

7.5.2 Experiment 2: Comparison with Manual Stitching of High Res-

olution Sections

On a second high resolution study, manual stitching was performed at 1x magnification

(approximately 7MB per quadrant), and also attempted at approximately 4x apparent

magnification (approximately 110MB per quadrant). HistoStitcher c© was again used to

reassemble the quadrants of this second study on 8x resolution images (approximately

420 MB per quadrant). For this study, we compare both the (a) feasibility of manually

stitching very high resolution images without a tool such as HistoStitcher c©, and (b) the

efficiency of the stitching process in terms of total processing time. In both of these

experiments, we use the background mask obtained by HistoStitcher c© to establish the

transparency layer used in the manual stitching process. This speeds up the manual

stitching process and provides for a more fair comparison of stitching quality between

the two methods.

The results of attempted manual stitching using Photoshop at 4x apparent magni-

fication, and successful stitching at 1x magnification are shown in Figures 7.5(a) and

(b), while the HistoStitcher c© result using 8x magnification images is shown in 7.5(c).

The obvious failure of Photoshop-based manual stitching at the full resolution (Figure

7.5(a)) is a result of insufficient memory to accommodate the necessary transparency

layers and all three color planes. Without the transparency layer, the quadrants could
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Figure 7.5: Comparison of whole histology reassembly via Photoshop vs.
HistoStitcher c©. (a) Inadequate stitching is obtained using Photoshop on 4x resolu-
tion images (final image is 13975 x 13675 pixels), as computer system memory of 2GB
was insufficient to introduce the transparency layers required to bring the images closer.
(b) Stitching results using Photoshop on low resolution (about 1x magnification) images
(final image was 2706 x 2244 pixels). (c) HistoStitcher c© result on high resolution (8x
magnification) images (final image is about 22k x 18k). (d)-(f) Zoomed regions I-III of
manually stitched image (b), compared to (g)-(i) same regions of HistoStitcher c© result
(c), demonstrating both more contiguous stitching with minimal gaps and improved
continuity of tissue structures across the stitch using HistoStitcher c©.
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Stitching
Method

Image Size Time Result Output

Manipulation
in Photoshop

Medium
resolution
(4x mag.)

56 min. Partial failure
due to memory
requirements

Partially stitched
image only

Manipulation
in Photoshop

Low
resolution
(1x mag.)

4 min. Success with
some gaps,

inconsistencies

Low-resolution
stitched image

only

HistoStitcher c© High
resolution
(8x mag.)

6 min. Success with
negligible gaps,

overlap

All stitched
images and fully-
parameterized
transformations

Table 7.2: Comparison of HistoStitcher c©to manipulation via Photoshop for the task
of reassembling a whole prostate histological section from four separate slide images of
histology quadrants. HistoStitcher c© is demonstrated to be fast, memory efficient, and
capable of producing better quality stitches of very high resolution images.

Section 1 2 3 4 5 6

Photoshop 4± 1.0 3.3± 1.2 3.3± 0.6 4.3± 1.2 3.7± 0.6 4± 1.0

HistoStitcher c© 5± 1.0 4.3± 1.2 5.3± 0.6 6± 0.0 4.3± 0.6 6± 0.0

Table 7.3: Average and standard deviation of scores for 6 sections reconstructed using
both Photoshop and HistoStitcher c©.

not be brought any closer, as clearly shown in the resulting stitch in Figure 7.5(a).

Therefore, the manual stitching task was performed again at a lower resolution of 1x

apparent magnification. The reassembled section obtained by manipulation of these low

resolution quadrants is shown in Figure 7.5(b). The machine used for manual stitching

with Photoshop had 2GB of RAM, illustrating that this approach is clear memory in-

efficient. The high resolution reconstruction obtained using HistoStitcher c© is shown in

Figure 7.5(c). The 8x reconstruction the whole section had dimensions of about 22k x

18k pixels (approximately 1.2GB), and was obtained on a desktop computer with 6GB

of RAM, although peak memory usage during stitching was less than 3GB, suggesting

better memory efficiency.

A summary of these stitching results is described in Table 7.2, which also lists the

operation times required to generate each result. The close-up views of the manually

stitched section in Figure 7.5(b) are shown in Figures (d)-(f), while the same regions on

the HistoStitcher c© result in Figure 7.5(c) are shown in Figures 7.5(g)-(i). Continuity
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of the gland architecture and tissue morphology is clearly visible across the stitched

edges in Figures 7.5(g)-(i). The reconstructed section obtained using HistoStitcher c© not

only has smoother alignment of adjacent boundaries and better continuity of internal

structures compared to the manually reconstructed section, but was obtained on the

full resolution images in approximately the same amount of time required to perform

a manual alignment on low resolution images. Using HistoStitcher c©, the reconstructed

sections can be generated faster and/or more accurately than using an improvised

approach in general purpose software, as evidenced by the results in Figure 7.5 and Table

7.2. Note in Table 7.2 the excessive time (56 minutes) required to operate on the medium

resolution quadrants in Photoshop compared with the much shorter time (6 minutes)

to combine the high resolution quadrants via HistoStitcher c©. Only using drastically

down-sized images was it possible to obtain a comparable stitch in a reasonable amount

of time.

7.5.3 Experiment 3: Evaluation of Stitching Quality via Multiple Ex-

perts

On 6 additional high resolution studies, both HistoStitcher c© and manual stitching were

used to reassemble the quadrants at 4x resolution (approximately 160MB per quadrant).

A different computer workstation with 8GB of RAM and an Intel Core 2 Quad CPU

was used for manual stitching in this experiment, while the same desktop computer

with 6GB of RAM was used to run HistoStitcher. The results of the manual Photoshop

stitching of 3 studies are shown in Figures 7.6(a), 7.6(c), and 7.6(e). The results of

HistoStitcher c© for the same 3 studies are shown in Figures 7.6(b), 7.6(d), and 7.6(f).

Three independent expert pathologists scored each section using the 6 point scoring

system described in Section 7.4. The average scores for the six sections are presented

in Table 7.3. Section numbers 6, 1, and 4 correspond to the three rows in Figure 7.6.

In addition to the 6 point scoring system, all three experts consistently identified the

reconstructions generated by HistoStitcher as the higher quality stitch for each of the

6 sections in this experiment.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: Three prostate histology sections reconstructed using Photoshop (left
column) and HistoStitcher c© (right column). Stitching quality scores for these sections
are given in Table 7.3 under section numbers 6 for (a) and (b), 1 for (c) and (d), and
4 for (e) and (f).
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7.6 Concluding Remarks

Reassembly of whole histological sections from smaller tissue fragments is necessary to

facilitate improved pathologist annotation, especially when pathologies span multiple

fragments, and multimodal image fusion such as registration of WMH with MRI. To

achieve accurate reconstruction of sections with variable tissue loss and uneven defor-

mations along the incisions between fragments, an expert-guided interactive process is

necessary. In this paper, we address this need for an efficient histology reassembly tool

and present HistoStitcher c©, a graphical software package for combining images, that

offers a powerful image alignment engine with flexible spatial transformation options.

The program was demonstrated for the successful reconstruction of a whole histological

section of the prostate from four “quadrants”, requiring only identification of pairs of

anatomical landmarks along the boundaries via mouse clicks. Note that the recon-

structed whole mount sections obtained by HistoStitcher c© were generated by a näıve

user, yet were obtained with greater accuracy and efficiency than the sections that were

reconstructed via Photoshop by an expert pathologist. Using formalized criteria for

stitching quality and a 6 point scoring scheme, which assesses the alignment and con-

tinuity of anatomical structures important for disease annotation, three independent

expert pathologists evaluated the reconstructions of 6 prostate studies. Each of the

reconstructed sections generated via HistoStitcher scored higher than the correspond-

ing reconstructions generated by an expert pathologist using Photoshop. Further, the

ability of HistoStitcher c© to operate more efficiently on higher resolution images com-

pared to Photoshop can be valuable in many applications. Although we demonstrated

HistoStitcher c© on prostate histology sections, the program can be applied to other ap-

plications such as reassembly of liver biopsy or breast lumpectomy histology fragments.

Not only is HistoStitcher c© efficient and flexible, with multiple options for constrained

transformation, but the interface is intuitive enough to be used by relatively inexperi-

enced users with minimal domain expertise.
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Chapter 8

Conclusions

We have developed novel techniques for multimodal elastic image registration, and ap-

plied them to registration of whole-mount histology while multiprotocol MR images

of the prostate. By establishing an accurate alignment of histology, upon which the

ground truth for cancer extent and severity may be obtained, and MRI via image reg-

istration, we demonstrated the ability to establish a precise spatial extent of cancer

on MRI. Our registration techniques were able to overcome the challenges of aligning

images from modalities with dissimilar appearance (ex vivo digitized histopathology

sections and in vivo multiprotocol MRI) and irregular and non-linear differences in

shape. The COFEMI and COLLINARUS techniques utilizes multiple textural features

within an information theoretic framework to improve affine and elastic registration,

respectively, of multimodal images. We have shown quantitative improvement in regis-

tration accuracy over conventional mutual information (MI) similarity measures, with

most significant improvements in cases with a image intensity artifacts including noise

and MRI bias field inhomogeneity. The MACMI registration method provides a system

for utilizing of multi-attribute images (e.g. multiprotocol MRI) simultaneously in the

registration procedure. With the increasingly common acquisition of multiple imaging

protocols, it is desirable to consider all available images when performing registration.

We have demonstrated the use of MACMI in performing the alignment of 150 sets of in

vivo T2-w MRI, DCE MRI and ex vivo whole mount histology images from 25 patient

studies. In addition to the clinical prostate datasets, synthetic multiprotocol brain im-

ages were used to quantitatively demonstrated the performance improvements of both

MACMI and COLLINARUS over conventional MI.

Using our image registration techniques, the spatial extent of cancer was mapped
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via affine and non-linear spatial transformations from annotated ex vivo whole-mount

histology onto both ex vivo and in vivo multiprotocol MRI datasets, as described in

Chapters 2-5. The cancer maps on ex vivo MRI were used to train a novel supervised

classifier for detection of cancer with accuracy greater than a classifier trained using

cancer maps derived from manual delineation by experts, as described in Chapter 3.

Preliminary studies by our group [101] investigating the development of a CAD system

trained using the registration-derived in vivo cancer maps have demonstrated the ef-

ficacy of our registration techniques for mapping cancer extent from ex vivo histology

to in vivo multiprotocol MRI. Future work will involve development and evaluation of

more sophisticated CAD systems for in vivo multiparametric MRI data including dif-

fusion weighted (DW) and spectroscopic imaging protocols (MRS). Thus, future work

will also investigate the use of MACMI for inclusion of additional information channels

with highly disparate spatial resolutions, such as MRS “metavoxels” that may span

tissue elements up to 10 times the width of commonly acquired T2-w voxels.

We have also leveraged our elastic image registration and CAD methodologies to

generate intensity-modulated radiation therapy (IMRT) dose plans providing increased

dose to suspicious regions of the prostate, as described in Chapter 6. This use of image

registration and prostate CAD to generate IMRT treatment plans with dose dose esca-

lation to cancerous tissue demonstrates just one of the ways in which cancer treatment

options can be improved using advanced image processing techniques. Future work

should investigate the potential improvements to screening and diagnosis procedures

via CAD and image-guided biopsy using existing clinical imaging protocols.
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