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ABSTRACT OF THE DISSERTATION
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ISKANDER ZIYATDINOV

Dissertation Director: Alexander Zamolodchikov

The main subject of this thesis is the Ising field theory, the field theory describing the

scaling limit of the two-dimensional Ising model near its critical point. We study the

Ising field theory in low- and high-temperature regimes.

In the low-temperature regime we address questions related to the mass spectrum of

the bound states that exist in the theory. The overall goal is to study analytic properties

of the masses taken as functions of the scaling variable in the theory. At this stage,

we are primarily interested in the asymptotic series in the coupling parameter. We

describe methods used for developing expansions in the coupling parameter when this

parameter is sufficiently small. This gives rise to the low-energy and semiclassical series.

Methods developed are then applied to a different model, a model that has many things

in common with the Ising field theory, the two-dimensional quantum chromodynamics

with infinite number of colors, also known as the ’t Hooft model.

In the second part of the thesis we turn to the Ising field theory in the high-

temperature regime. Here we study the problem of scattering in a weak magnetic

field. We compute the leading perturbative correction to the scattering amplitude for

the 2→ 2 process. This is done first by means of standard methods based on the direct
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intermediate-state decomposition and dispersion relations. Then we compute the large

energy asymptotic of the amplitude for this process directly using a known relation be-

tween the Ising field theory at zero magnetic field and classical sinh-Gordon equation.

We obtain consistent results that show the logarithmic growth of the amplitude with

energy at this order in magnetic field. Going beyond the leading order we argue that at

large energies for a sufficiently weak magnetic field the amplitude exhibits a power-like

decay.
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Chapter 1

Introduction

Search for integrability is a common theme in physics. Discovery of every new inte-

grable theory has always been followed by great advances in different areas of research

including those at first sight completely unrelated. Conformal field theory in two di-

mensions is a classic example of such a process [1]. Soon after it appeared, it was shown

that a very important class of conformal field theories known as “rational conformal

field theories” is integrable, that there exists an infinite number of conserved charges

which, in principle, allows to determine all there is to know about the theory. Interest-

ingly, most of universality classes important in two-dimensional statistical mechanics

are associated with rational conformal field theories. Subsequent development of con-

formal field theory has brought new ideas and methods in areas ranging from solid state

physics to string theory.

Unfortunately, integrability is not always present. Most field theories are either

non-integrable at all or almost integrable with a certain degree of carefully hidden

integrability, and all known genuinely different integrable theories are easily countable.

Moreover, integrabilty is known to be a very fragile property: in the presence of a generic

deformation, the integrability is usually destroyed which makes studying the resulting

deformed theory an unsurmountable task. At the same time, it was shown in [5] that

there exist certain deformations, the so-called integrable deformations, that preserve

integrability and allow to solve the theory non-perturbatively. Combined with methods

of factorized S-matrices [6], this approach proved to be immensely useful in studying off-

critical models1. For an arbitrary deformation, when the integrability is lost, the most

common method to approach such deformed systems is to develop perturbation theory

1A thorough review of these matters can be found in, e.g., [7].
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near integrable points, which, due to difficulties in constructing a general analytical

framework, is usually implemented via numerical calculations [4, 8, 9, 10, 11, 12, 13, 14].

The Ising field theory (IFT), the main subject of this dissertation, serves a rep-

resentative example of a phenomenon when the theory easily integrable at its critical

point becomes more or less untreatable away from it except for special situations cor-

responding to the cases that can be interpreted in terms of integrable deformations in

the above mentioned sense. To define what this theory is we first have to introduce

another model, the model that gives rise to the IFT.

Consider the following model. Take a lattice with N nodes, and in each node place

a variable σi, the “spin”, taking values ±1. With a given configuration (see one possible

Figure 1.1: A possible spin configuration on a two-dimensional square lattice.

configuration on a two-dimensional square lattice in Fig. 1.1) we associate the energy

E[σ] = −J
∑
〈i,j〉

σi σj −H
∑
i

σi, (1.1)

where the sum in the interaction term goes over the neighboring spins only; J and H

characterize the interaction of spins with each other and with the external magnetic

field H, respectively. With this at hand, we can define the free energy of the model

f(H,T ) = −T lim
N→∞

1

N
log
∑
{σ}

e−E[σ]/T . (1.2)

This model is known as the Ising model in the magnetic field. It was first introduced

as an approximate description of magnetics, but with time it turned out to be very

general describing a whole class of systems, the so-called Ising universality class, among

which one could name lattice gases, binary alloys and many others.
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Although one can study the Ising model in any dimensions, we will restrict ourselves

to and will always imply the special case of two dimensions. It appears to be important

for several reasons. Since Peierls [15] it has been known that in the absence of the

magnetic field the Ising model possesses a non-trivial phase structure with two distinct

phases separated by a second-order phase transition (Fig. 1.2). In the low-temperature

phase the symmetry with respect to the change of magnetization is broken and the

phase is ordered, whereas in the high-temperature phase this symmetry is restored.

Later on, this semiquantitative picture has been proven in the classic work by Onsager

[16], who solved the 2D Ising model at H = 0 exactly.

h

τ

T

H

0

Critical point Tc

T > TcT < Tc

0

Figure 1.2: Phase diagram of the Ising model. The highlighted area represents the
phase diagram of the Ising field theory.

Another reason of why the 2D Ising model is relevant is that in the scaling limit

around its critical point T = Tc, H = 0, it is described by a certain field theory,

which happens to be the simplest rational conformal field theory, the so-called c = 1/2

conformal field theory, deformed by both relevant operators present in the theory. To

make this equivalence more clear, we should go back to the free energy of the Ising
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model (1.2) and notice that it can be written as the sum of the regular part and the

part that will contain all the singularities that define the phase structure of the model,

f(H,T ) = fsing(H,T ) + freg(H,T ). (1.3)

It turns out that the leading singular part of fsing(H,T ) is universal, it does not depend

on the microscopic details of the formulation of a given model such as the properties

of the original lattice or the physics of the model, with this information hidden in the

sub-leading parts of fsing(H,T ) and regular part freg(H,T ). What is more important

is that this leading singular part can be interpreted as a vacuum energy density of a

certain field theory, the IFT, which appears, despite the simplicity of its formulation, to

be extremely rich in phenomena and proves to be an enormous challenge for studying.

In field-theoretic terms, the IFT is defined in terms of the Euclidean action2

AIFT = Ac=1/2 CFT + τ

∫
ε(x) d2x+ h

∫
σ(x) d2x (1.4)

that represents a general renormalization group flow from the unitary conformal field

theory with the central charge c = 1/2, given as a theory of free massless Majorana

fermions, perturbed by its two relevant operators. The free fermion action can be

written as

Ac=1/2 CFT =
1

2π

∫ (
ψ∂̄ψ + ψ̄∂ψ̄

)
d2x, (1.5)

where x = (x, y) are Euclidean coordinates, ∂ = 1
2(∂x − i∂y), ∂̄ = 1

2(∂x + i∂y), ψ

and ψ̄ are chiral components of the Majorana fermion. The field ε(x), of the conformal

dimensions (1/2, 1/2), proportional to ψ̄ψ when written in terms of ψ and ψ̄, represents

the temperature deviation from the critical point, i.e., τ ∼ (Tc−T ), and is usually called

as the “energy density”. The “spin field” σ(x) has the dimensions (1/16, 1/16), and

the associated coupling parameter h is the rescaled magnetic field. Unlike the “energy

density” operator, it does not have a simple form in terms of ψ and ψ̄ [17]. We assume

the following normalizations of these fields as |x| → 0,

|x|2〈ε(x) ε(0)〉 → 1, |x|1/4〈σ(x)σ(0)〉 → 1.

2We will imply the analytical continuation, y→ it, to the Minkowski space when required.
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The parameters τ and h have mass dimensions 1 and 15/8, respectively. Thus, apart

from the overall mass scale, the theory depends on a single dimensionless parameter η,

η =
2πτ

|h|8/15
≡ − m

|h|8/15
, (1.6)

with the parameter m = −2πτ introduced for later use3.

The theory (1.4) admits an exact solution at a few special, “integrable”, points. The

first one, most obvious, is the case of zero magnetic field, h = 0. This integrable point

is due to the presence of the exact solution of the Ising model on the lattice before the

scaling limit is performed. In the continuous limit, at this point the IFT is equivalent

to the field theory of free fermions with the mass |m| theory (see, e.g., [2]). The phase

structure of the theory in the continuous limit remains the same. If one expresses this

point τ 6= 0, h = 0 in terms of η as η = ±∞, then the two phases are differentiated

by the sign of the infinity. At η = +∞, i.e., in the low-T regime, the spin-reversal

symmetry is spontaneously broken, and the field σ(x) develops nonzero expectation

value 〈σ(x)〉 = ±σ̄, with σ̄ known exactly [3]

σ̄ = |m|1/8 s̄, s̄ = 21/12e−
3
2
ζ′(−1) = 1.35783834170660 . . . (1.7)

At η = −∞, i.e., in the high-T regime, the symmetry is restored and 〈σ(x)〉 = 0. These

regimes are related by a duality transformation. The second solvable point in the IFT

is τ = 0, i.e., η = 0, where the theory is no longer free, but the exact solution can still

be obtained due to the presence of infinitely many local integrals of motion [5]. There

is one more special point, the Lee-Yang point [18], which appears if one allows η to

take complex values. To be more specific, at the Lee-Yang point, m takes real positive

values and h = ±i am15/8 with a = 0.18933(2). These points are known to be critical

[19], and the associated conformal field theory is the non-unitary minimal model with

c = −22/5 [20].

These integrable points can be classified via renormalization group language. Thus

the first case, when the resulting theory is the theory of free massive Majorana fermions,

3This parameter, m, or more precisely, |m|, is typically associated with the mass of elementary
particles of the theory.
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corresponds to the situation when the c = 1/2 conformal field theory is deformed by

the “energy density” field. The second integrable point is the result of deforming

the same conformal field theory with the “spin density” field. Finally, the Lee-Yang

point corresponds to the deformation with a special combination of these two operators

representing the renormalization group flow from the c = 1/2 conformal field theory to

the c = −22/5 conformal field theory.

In a general case, away from the critical point τ = 0, h = 0, at arbitrary values of

η, the theory (1.4) is not integrable (see, e.g., [25]). It can be represented as a massive

quantum field theory with interaction, and just like with any massive field theory, its

physical content can be understood in terms of the spectrum of particles and their

interactions, that is, their scattering amplitudes.

The particle content is qualitatively understood since [4]. As η changes, the spec-

trum of stable particles gradually changes from an infinite tower of “mesons”, bound

states of the elementary “quark” fields, in the low-T regime at η → +∞ to a single

particle in the high-T regime with η → −∞. On quantitative level, various expansions

of some of the masses near the integrable points are available through the perturbation

theory [4, 8, 9, 10, 11, 12, 13, 14], and rather accurate numerical data were obtained

in [8, 9] by means of the “truncated conformal space approach” of [21], and by numer-

ical diagonalization of the lattice transfer-matrix [22, 23]. First few masses from the

IFT spectrum as functions of η are shown in Fig. 1.3, obtained in [9], thus providing

quantitative evidence to support the qualitative scenario of [4].

With regard to the problem of scattering, apart from the integrable points, there

is little known about it. Analytic treatment is hampered by the apparent difficulty to

develop conventional covariant perturbation theory for the IFT. As for the numerical

approach, the methods of [21] turn out to be of limited power here. While these methods

are successful in numerical evaluations of low-energy scattering phases [24], it is not

clear how to apply them to the analysis of the the high-energy scattering. At the same

time, understanding scattering amplitudes, in particular, their high-energy behavior, is

essential — it can provide important insights into the structure of the theory. When the

parameter η changes, some particles lose their stability becoming virtual or resonance



7Mass spectrum of IFT (numerical)

 0
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 10
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 25
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Figure 1.3: First few masses in the IFT spectrum as functions of η. The dotted line
represents the lowest stability threshold 2M1. 8 points at η = 0 correspond to 8 stable
particles existing due to the integrability of the IFT at η = 0.

states. Qualitative changes in the spectrum typically occur when the masses of some

resonance states in units of the stable particle masses go to infinity. Analyzing this

phenomenon clearly requires some knowledge about the high-energy scattering.

In this dissertation we attempt to address both topics, the analytic properties of the

mass spectrum and the scattering. In the first part of the thesis (Chapter 2) we describe

methods of studying the mesons’ mass spectrum introduced in [13]. These methods are

later used on a different model, the 2D QCD with infinite number of colors [36]. This

theory appears to be very similar to, albeit simpler in some respects than the IFT. The

goal of this analysis is twofold: firstly this model represents an interesting problem by

itself, and secondly it serves a sort of a litmus test for the technique.

In the second part of the thesis (Chapter 3) we study the 2 → 2 scattering in the

high-temperature IFT [41]. Our analysis is based on the perturbation theory developed

around the integrable point η = −∞. The goal is to compute the first correction in h2

to the scattering amplitude. At first, this is done by means of the intermediate-state

decomposition that when combined with certain dispersion relations on the amplitude
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makes it possible to compute the dominant contribution of the amplitude. Then we

use a known relation between the IFT at h = 0 and the classical sinh-Gordon problem

to compute the large-energy asymptotic of the standard perturbative matrix element

directly. In the end of the chapter we also propose an approximation that allows us

to derive the large-energy asymptotic of the scattering amplitude beyond the leading

order in h2.
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Chapter 2

Mass spectrum in two-dimensional theories with

confinement. Low-temperature Ising field theory and ’t

Hooft model.

In this chapter we describe methods that are used to study the particle spectrum in

the IFT and apply them to the problem of the bound states in the ’t Hooft model.

As it was mentioned in the introduction, the IFT at zero magnetic field in the low-

T regime can be described a theory of Majorana fermions of mass m. These fermions

can be interpreted as domain walls between spatial domains of positive and negative

magnetization. Switching on a weak magnetic field provides confining interaction of

the form h
∫
σ(x) dx 1 that makes it possible for fermions to form stable bound states,

“mesons”. The natural question that one can ask is about properties of masses of these

mesons, how they behave when considered as functions of the scaling parameter η. The

qualitative picture has been developed in [4]. According to this scenario, fermions,

free at η = +∞, become confined once η becomes finite, η < ∞. As η decreases, the

heavier mesons become unstable and decay into the lighter ones, typically turning into

resonances. With η nearing 0, some of resonances become stable again, this stability

is related to the integrability of the IFT at η = 0 mentioned in the Introduction. As

η decreases further, all particles but one disappear2, and at η = −∞ the IFT again

becomes a theory of free fermions, the result expected from the duality.

In [9, 13] authors proposed to study the mass spectrum of bound states in the

1The appearance of this confining force can be understood as follows. In the low-temperature phase,
σ develops non-zero vacuum expectation 〈σ(x)〉 = σ̄. Hence, two fermions located at x1 and x2 will
interact according to the potential V ≈ 2σ̄h |x1 − x2|.

2In fact, already at η < η2 ≈ −2.09, seen in the Fig. 1.3, there will be just one stable particle left in
the spectrum [9].
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problem via the Bethe-Salpeter equation. Though written in a certain, rather limiting

approximation, it gives a very good agreement with the qualitative scenario above.

Another theory, simpler in some respect (to be made clear below), exhibiting if not

the same, then at least very similar properties is the so-called ’t Hooft model. This

name is given to the QCD in two dimensions with infinite number of colors, Nc = ∞

[26]. From the particle content point of view, the ’t Hooft model and IFT are not very

different, each being a two-dimensional theory of fermions with a confining interaction.

Among many features of the model we will be interested in the following one: it is

known since [26] that mesons and their spectrum can be exactly described in terms

of solutions of a certain integral equation, again the Bethe-Salpeter equation. This

equation, unlike the one suggested for the IFT, is exact at Nc =∞. At the same time,

2D QCD with finite Nc, just like the IFT, is known to be non-integrable (see, e.g.,

[31]). This, together with the results of studies of the ’t Hooft model, might give us

some intuition as what to expect in the full IFT.

Although the Bethe-Salpeter equation in for the ’t Hooft model can be solved nu-

merically [28, 29, 30, 31], this equation, due its elegance and simplicity, deserves an

analytical study. In particular, one is interested in analytic properties of the spectrum

as functions of parameters of theory, that is, the coupling constant and masses of quarks,

taken as complex variables. With this goal in mind, the authors of [35] proposed a novel

method for studying analytic properties of solutions of the equation, more specifically

the spectrum of the problem. Although they consider the case when quark masses

have special values, the method they developed is general and many conclusions about

properties of the spectrum are applicable or can be extended to a general case without

any obvious difficulties.

In the following sections we outline the methods developed in [13] and apply them

to the case of the ’t Hooft model. The results of the analysis are then compared to the

direct numerical solution of the problem.
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2.1 Bethe-Salpeter equation in IFT

The qualitative picture of the interaction in the low-temperature IFT via a linear po-

tential appears to be sufficient to give a rather good approximation for the bound-

state masses. Thus, the theory is roughly equivalent to the problem of two interacting

fermions described in terms of the Hamiltonian

Ĥ = ω(p1) + ω(p2) + 2σ̄h |x1 − x2| (2.1)

with ω(p) =
√
m2 + p2 being the energy of a particle with mass m and momentum p.

This interpretation already turns out to be powerful enough to give the first terms in

the asymptotic expansions of the meson masses in two extreme parts of the spectrum,

the low-energy and semiclassical limits. For example, in the low-energy limit, that

is, in the lower part of the spectrum, fermions can be treated as non-relativistic with

ω(p) ≈ m2 + p2/(2m), and the problem of studying the meson spectrum Mn is reduced

to finding the eigenvalues of the Hamiltonian p2/m + 2σ̄h |x|. Hence for the meson

masses Mn one will have

Mn ≈ 2m

(
1 +

(2σ̄h/m2)2/3

2
zn

)
, (2.2)

where zn, n = 1, 2, . . ., are consecutive zeroes of the Airy function Ai(−z). This result

was first obtained through the analysis of the spin-spin correlation function in [4].

For the higher part of the spectrum, Mn with n ∼ m2/(σ̄h), one should use the semi-

classical approximation. Classically, two fermions forming the meson can be treated as

distinguishable particles moving between collisions towards each other under constant

acceleration. To describe their motion it is convenient to work in the center-of-mass

frame where the trajectories of both fermions can be parametrized in terms of a single

variable, the rapidity θ, so that the two particles have the rapidities +θ and −θ. The

time along the trajectory is taken as t− t0 = R sinh θ, where t0 is a suitable reference

time and R = m/(2σ̄h) is a characteristic spatial scale of the problem. Up to a permu-

tation of the quarks, the coordinate along the trajectory within a cycle is then given

as

x ≡ x2 − x1 = 2R (coshϑ− cosh θ), −ϑ ≤ θ ≤ ϑ, (2.3)
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where ϑ is a parameter specifying the classical trajectory, and the momentum is

p ≡ p1 − p2

2
= −m sinh θ. (2.4)

The mass of the meson can be extracted as the center-of-mass energy associated with

the trajectory, M = 2m coshϑ. The reduced action per cycle takes the form∮
p dx = 2

∫ ϑ

−ϑ
p dx = 4mR

∫ ϑ

−ϑ
sinh2 θ dθ =

2(sinh 2ϑ− 2ϑ)

λ
, (2.5)

where λ is the dimensionless ratio 2σ̄h/m2. Hence, using the Bohr-Sommerfeld quan-

tization condition
∮
p dx = 2π(N + 1/2), N = 0, 1, . . ., and taking into account the

fermionic nature of quarks that prescribes N to be odd, N = 2n− 1, n = 1, 2, . . ., one

gets the quantization condition in the form

sinh 2ϑn − 2ϑn = 2πλ(n− 1/4) (2.6)

that leads to the WKB meson spectrum,

Mn = 2m coshϑn. (2.7)

A more systematic approach, proposed in [9, 13], is developed under the assumption

that in the low-T limit the Ising mesons can be considered mainly as two-quark con-

structs, which is true at a sufficiently weak magnetic field. Under this assumption it is

possible to write down an equation, the Bethe-Salpeter equation, that allows to greatly

improve on the simple qualitative interpretation. Here we will sketch the reasoning

underlying its derivation.

We start from the integrable point η = −∞, that is, when the magnetic field is zero.

At this point the theory is described by the free Hamiltonian

Ĥ0 = E0 +

∫ ∞
−∞

dp

2π
ω(p) â†pâp, (2.8)

where the creation-annihilation operators âp, â
†
p are subject to the usual anticommuta-

tors, {âp, â†q} = (2π) δ(p − q), and together with the vacuum state they give the Fock

space of states.

The magnetic field provides the interaction

Ĥ = Ĥ0 + h

∫ ∞
−∞

σ(x) dx, σ(x) ≡ σ(x, t)|t=0 . (2.9)
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The natural way is to approach the problem perturbatively. Unfortunately, it is not as

straightforward as it seems: the difficulty in analyzing the spectrum of this hamiltonian

is due to the fact the usual covariant perturbation theory is not available for the IFT.

We are left to use the quantum-mechanical perturbation theory and make sure that at

every step Lorentz co- and invariance can be restored. Nevertheless, one can proceed

thanks to the fact that matrix elements of σ(x) between the states with any number of

fermions at h = 0 are known explicitly [27].

The eigenstates of the Hamiltonian (2.9) are of the form

|Ψ〉 = |Ψ(2)〉+ . . . (2.10)

where the two-quark component is

|Ψ(2)〉 =
1

2

∫
dp1

2π

dp2

2π
Ψ(p1, p2)|p1, p2〉, (2.11)

and . . . stand for multi-particle contributions, present in general.

Hence, using the explicit expression for the 2→ 2 matrix element of σ(x)

G(p1, p2|q1, q2) =
1

4
√
ω(p1)ω(p2)ω(q1)ω(q2)

[
ω(p1) + ω(q1)

p1 − q1

ω(p2) + ω(q2)

p2 − q2
−

− ω(p1) + ω(q2)

p1 − q2

ω(p2) + ω(q1)

p2 − q1
+

p1 − p2

ω(p1) + ω(p2)

q1 − q2

ω(q1) + ω(q2)

]
, (2.12)

we can rewrite the eigenvalue problem Ĥ|Ψ〉 = E|Ψ〉 in the two-quark approximation

as

[ω(p1) + ω(p2)−∆E] Ψ(p1, p2) =

= f0−
∫ ∞
−∞

(2π)δ(p1 + p2 − q1 − q2)G(p1, p2|q1, q2) Ψ(q1, q2)
dq1

2π

dq2

2π
, (2.13)

where f0 = 2σ̄h is the “string tension”, and ∆E = E −Evac will be associated later on

with the energy of a meson with the mass M and the momentum P , ∆E =
√
M2 + P 2.

The meson is a bound state of two quarks, hence the wave function of the meson

with the momentum P can be written as

Ψ(p1, p2) = (2π) δ(p1 + p2 − P )ΨP (p1 − P/2), (2.14)



14

and the equation (2.13) becomes

[ω(P/2− p) + ω(P/2 + p)−∆E] ΨP (p) = f0−
∫ ∞
−∞

GP (p|q) ΨP (q)
dq

2π
, (2.15)

where GP (p|q) = G(P/2 + p, P/2− p|P/2 + q, P/2− q). Here ΨP (p) is assumed to be

normalizable with the norm

‖ΨP ‖2 =
1

2∆E

∫ ∞
−∞
|ΨP (p)|2 dp

2π
. (2.16)

The kernel, GP (p|q), has the form

GP (p|q) =
1

(p− q)2
− 1

(p+ q)2
+G

(reg)
P (p|q). (2.17)

One can notice that since the pole terms have the same effect as the linear potential

above, this equation refines the earlier qualitative picture taking into account the short-

range interaction G
(reg)
P (p|q).

It appears that the most tractable version of the equation is obtained if one goes to

the reference frame related to the meson with P → ∞. Moreover, it has been argued

that in this limit some of the corrections necessary to restore the Lorentz invariance,

which is lost within this two-quark approximation, disappear3.

Eventually, in this limit, using the parametrization in terms of the rapidity variable

tanh θ = 2p/P , we get(
m2 − M2

4 cosh2 θ

)
Ψ(θ) = f0−

∫ ∞
−∞

G(θ|θ′)Ψ(θ′)
dθ′

2π
, (2.18)

where

G(θ|θ′) = 2
cosh(θ − θ′)
sinh2(θ − θ′)

+
1

4

sinh θ

cosh2 θ

sinh θ′

cosh2 θ′
(2.19)

and Ψ(θ) = limP→∞ΨP (p).

This equation (2.18) is referred as the IFT Bethe-Salpeter equation. It can be

interpreted as the eigenvalue problem for the meson masses4 M2

ĤΨ = M2Ψ (2.20)

3Similar arguments were used in the context of the ’t Hooft model in [32].

4One should mention that these values M2 are not the actual meson masses due to the approximate
nature of the equation. Nevertheless, in the weak-coupling limit they are sufficiently close. Unfor-
tunately, due to the nature of the Bethe-Salpeter equation there is no parameter that controls the
approximation.
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with the Hamiltonian Ĥ defined as

ĤΨ(θ) = 4 cosh2 θ

(
m2Ψ(θ)− f0−

∫ ∞
−∞

G(θ|θ′)Ψ(θ′)
dθ′

2π

)
(2.21)

and acting in the Hilbert space with the metric following from (2.16) in the form

‖Ψ‖2 =

∫ ∞
−∞

dθ

2π

|Ψ(θ)|2

4 cosh2 θ
. (2.22)

In this metric Ĥ is Hermitian; moreover, it can be shown that its eigenvalues are not

just real, but also positive.

For this Bethe-Salpeter equation one develops the weak-coupling expansion for the

mesons masses taking the dimensionless combination λ = f0/m
2 to zero, in other

words, setting the string tension f0 in units of m2 be small. Depending on how one

takes the limit, two series appear: low-energy expansion for low-lying meson states, and

semiclassical expansion for highly excited states. The resulting series derived in [9, 13]

contain corrections to the expressions (2.2) and (2.7).

The technique used in the analysis is presented in the next section on the example

of the ’t Hooft model.

2.2 ’t Hooft model

The ’t Hooft model, or two-dimensional QCD with gauge group SU(N), is defined by

the following Lagrangian

L = − N

4g2
Tr Fµν F

µν + ψ̄(a)(iγµDµ −m(a)
0 )ψ(a), (2.23)

here ψ(a) are quarks with bare masses m
(a)
0 , different in general; the field strength

Fµν = ∂µAν−∂νAµ+ i [Aµ, Aν ] and the covariant derivative Dµ = ∂µ+ iAµ are defined

in terms of the gauge potential Aµ given by N×N hermitian traceless matrices. Being a

two-dimensional gauge field theory, the model implies confinement via a linear potential,

just like the IFT. Hence the qualitative interpretation of the particle spectrum together

with the first terms in the asymptotic expansion of their masses, present in the IFT, is

applicable to the ’t Hooft model as well5.

5The Hamiltonian, analogous to (2.1), has the same form with 2σ̄h, “the string tension” in the IFT,
replaced by g2/2.
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In the large-N limit, ’t Hooft derived the Bethe-Salpeter equation for mesons, two-

quark bound states of the theory [26]. As it has already been pointed out, unlike in the

IFT, this equation is exact when the number of colors is infinite. When quarks have

equal masses m
(a)
0 = m0, which is the case we will consider, the ’t Hooft equation has

the form6

M2ϕ(x) =
m2 ϕ(x)

x(1− x)
− g2

π
−
∫ 1

0

ϕ(y) dy

(y − x)2
(2.24)

with ϕ(x) being the wave function of the meson with the mass M and m2 = m2
0− g2/π

standing for the renormalized quark mass, x and y are appropriately defined ratios of

momenta of constituent quarks to the momentum of the meson. It is this equation (2.24)

that is the main object of our analysis. Written in terms of dimensionless quantities,

α = M2/(4m2) and λ = g2/(2m2), the equation (2.24) becomes

αϕ(x) =
ϕ(x)

4x(1− x)
− λ−

∫ 1

0

ϕ(y)

(y − x)2

dy

2π
. (2.25)

Again just like in the case of the IFT, the linear potential is hidden in the second term

on the right hand side of the equation and is due to the presence of a double pole in

the integrand.

The bound-state equation can be viewed as an eigenvalue problem Ĥϕ = αϕ for

a suitably defined hamiltonian Ĥ acting in a certain Hilbert space. Solutions of the

problem can be classified according to the symmetry x→ 1− x of the equation giving

rise to the odd and even solutions7.

The overall goal of this work is to provide some insight into analytical properties of

the spectrum, that is, properties of α as a function of λ taken complex. As we have

pointed out earlier, at the current stage we will be mainly interested in asymptotic

properties of the spectrum, analogous to the ones found for the IFT, leaving other,

more interesting, questions for later.

6The derivation of the equation can be found, besides the original paper by ’t Hooft [26], for example,
in lectures by Coleman [33].

7In the IFT where there is just one type of fermions, the even sector is absent altogether.
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2.2.1 Weak-coupling expansion

In the weak-coupling limit λ→ 0, each meson’s mass Mn will approach 2m from above,

i.e., α approaches 1+0. Depending on how λ goes to 0, one gets different expansions.

For example, if n is kept fixed, this limit will give us the low-energy expansion. This

expansion appears to be in t = λ1/3. At the same time if one looks at higher levels, with

n > 1/λ, one obtains the semiclassical expansion that gives corrections to the already

known Bohr–Sommerfeld quantization condition for the spectrum.

It is convenient to go to the rapidity space, θ = 1
2 log x

1−x . Then (2.25) takes the

form8 (
1− α

cosh2 θ

)
ϕ(θ) = 2λ−

∫ ∞
−∞

dθ′

2π

ϕ(θ′)

sinh2(θ − θ′)
. (2.26)

Define the hamiltonian Ĥ as

Ĥϕ(θ) = cosh2 θ

(
ϕ(θ)− 2λ−

∫ ∞
−∞

dθ′

2π

ϕ(θ′)

sinh2(θ − θ′)

)
, (2.27)

then (2.26) becomes equivalent to

Ĥϕ(θ) = αϕ(θ) (2.28)

with ϕ(θ) belonging to the Hilbert space with the metric identical to (2.22)

‖ϕ‖2 =

∫ ∞
−∞

dθ

2π

|ϕ(θ)|2

4 cosh2 θ
. (2.29)

For ϕ(θ) we use the following ansatz

ϕ
(0)
odd(θ) =

∫ ∞
−∞

sinh θ coshβ eiS(β)/λ dβ

sinh(θ + β − i0) sinh(θ − β + i0)
(2.30)

in the odd sector, and

ϕ(0)
even(θ) =

∫ ∞
−∞

(− sinhβ cosh θ) eiS(β)/λ dβ

sinh(θ + β − i0) sinh(θ − β + i0)
(2.31)

in the even sector, where

S(β) = α tanhβ − β. (2.32)

8A quick look at this equation and the Bethe-Salpeter equation in the IFT (2.18) explains why we
called the ’t Hooft model rather simpler as a model in comparison with the IFT.
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Both ansatz functions can be shown to be normalizable with respect to the metric

(2.29).

In the further analysis we will be working with the following quantities

sinh θ ∆odd(θ) ≡ (Ĥ − α)ϕ
(0)
odd(θ) (2.33)

and

− cosh θ ∆even(θ) ≡ (Ĥ − α)ϕ(0)
even(θ). (2.34)

Computation along the lines of the one shown in [13], sketched in the Appendix A,

gives the following expressions for these functions

∆odd(θ) =

∫ ∞
−∞

dβ eiS(β)/λ

(
α

coshβ
− iλ cosh2 θ sinhβ

(coshβ + cosh θ)2

)
, (2.35)

∆even(θ) =

∫ ∞
−∞

dβ eiS(β)/λ

(
α sinhβ

cosh2 β
− iλ cosh θ (coshβ cosh θ + 1)

(coshβ + cosh θ)2

)
. (2.36)

We develop the small-λ series for (2.35) and (2.36). At first few orders, terms in

these expansions will have no dependence on θ, directly giving the spectra αn as zeroes

of ∆odd/even(θ) ≡ ∆odd/even(θ|α). But in general, these terms will carry an explicit

dependence on θ. In such situations one has to proceed as follows. Let {ϕn} be the

complete orthonormal set of eigenvectors of Ĥ: Ĥϕn = αnϕn. Then the following

quantity, set to zero,

Cn; odd/even(α) =
(
ϕn, (Ĥ − α)ϕ

(0)
odd/even

)
(2.37)

will play the role of the spectral condition with αn being its zeroes. For small values

of λ, ϕ
(0)
odd/even provides a good approximation for ϕn. As λ grows, corrections can be

found by iterating the following expression

ϕn(θ) =
1

(ϕn, ϕ
(0)
odd/even)

ϕ(0)
odd/even(θ)−

∑
k 6=n

Ck(α)

αk − α
ϕk(θ)

 . (2.38)

Finding ϕn order by order and plugging it in (2.37), one obtains corrections to the

spectral condition.
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2.2.2 Low-energy expansion

Consider the case when α is close to 1, i.e., M2 ∼ 4m2. Then we look for α in the form

of a series in t

α = 1 + zt2 +

∞∑
k=3

ekt
k, (2.39)

where z and ek are to be determined. In this case one sees that the main contribution

to the integrals (2.35) and (2.36) comes when β ∼ t. Rescaling β = −ut, θ = −vt, and

observing that

S(β)

λ
= S0(u) + S1(u), (2.40)

where S0(u) = u3

3 − zu
9, and S1(u) = S(β)

λ − S0(u) = O(t), one can expand ∆(θ) in t.

Subsequent setting terms in each order of t equal to zero gives conditions sufficient for

determining α.

After a straightforward computation10 one obtains low-energy expansions for α in

both sectors. In the odd sector the first terms will have the form

αodd = 1 + t2z +
t4z2

5
+ t6

(
− 3

175
z3 +

6

35

)
+ t8

(
23

7875
z4 − 4

1575
z

)
+ . . . , (2.41)

where z is any zero of the Airy function

Ai(−z) = 0. (2.42)

For even solutions one obtains

αeven = 1 + t2z + t4
(
z2

5
+

1

5z

)
+ t6

(
− 3

175
z3 +

3

25
− 1

50z3

)
+ . . . (2.43)

with z being the solution of

Ai′(−z) = 0. (2.44)

9This part, S0(u), gives rise to the Airy function, which is an expected result due to the presence of
the linear interaction.

10The calculation involves the integrals∫ ∞
−∞

(iu)keiu
3/3−izu = πAi′(−z)Ik,

∫ ∞
−∞

(iu)keiu
3/3−izu = πAi(−z)Jk.

Both factors Ik and Jk satisfy the recursion relation

Ik+2 = −zIk + kIk−1

with first of them following from (2.42) and (2.44), I0 = 0, I1 = 1, and J0 = 1, J1 = 0.
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Looking at the terms in both series (2.41) and (2.43), one can identify them with

successive approximations to the meson masses as follows: the t0-term describes the

bound state as two non-interacting quarks put together, the next term, ∼ t2, describes

the correction due to the quark interaction via linear potential, the t4-term is the leading

relativistic correction. Higher order terms represent further relativistic corrections and

corrections due to the short-range interaction between quarks.

As above, one should mention that except for the first few terms of the expansion of

∆ in t, expressions at powers of t will depend on v, that is, on θ. In these cases one has

to follow the procedure outlined above. We just note that such dependence appears for

the first time at t8-order in the odd sector and t6-order in the even.

Looking at the coefficients in (2.41) and (2.43), one can see the general structure of

ek, polynomial in z or in z and 1/z, respectively. At higher levels, zn grow with n as

∼ n2/3 both for odd and even solutions. Hence, the leading terms in ek, terms with the

largest power of z, which come from the term at λ0 in the brackets in (2.35) and (2.36),

depend on the combination (n1/3t)2m. Moreover, one can notice that numerical coeffi-

cients are the same for both odd and even sectors. This is expected because the sum of

these leading terms is given by the Bohr–Sommerfeld formula, the leading contribution

in the semiclassical expansion. Therefore, one would expect that summing sub-leading

terms should reproduce contributions of the semiclassical expansion of higher orders.

2.2.3 Semiclassics

When λ goes to zero and α is not necessarily close to 1, one obtains the semiclassical

approximation. Technically it is reduced to calculating the integrals (2.35) and (2.36)

using the saddle-point method.

In both sectors the integral for ∆(θ) has the form

∆(θ) =

∫ ∞
−∞

dβ f(β|θ) eiS(β)/λ, (2.45)

where f(β|θ) is a linear function of λ. There are two saddle points β = ±ϑ with ϑ

being the positive solution of

α = cosh2 ϑ. (2.46)
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Denoting contributions from ±ϑ as ∆±(θ), we rewrite the integral as

∆(θ) = ∆+(θ) + ∆−(θ). (2.47)

In each case, odd or even, one has to compute only ∆+(θ), with ∆−(θ) coming from

∆−(θ) = ±∆∗+(θ), here +/− is in the odd and even sectors, respectively.

The leading order calculation yields the following expressions in the odd sector

∆odd(θ)
√

sinhϑ

2
√
πλ cosh3 ϑ

= cos
(
S̄(ϑ)/λ− π/4

)
, (2.48)

and in the even

∆even(θ)

2i
√
πλ sinhϑ coshϑ

= sin
(
S̄(ϑ)/λ− π/4

)
(2.49)

with

S̄(ϑ) = S(β)|β=ϑ =
sinh 2ϑ− 2ϑ

2
. (2.50)

At this level, there is no dependence on θ, and the spectral condition in the leading

order will have the Bohr–Sommerfeld form, S̄(ϑn) = πλ(n−n0), here n = 1, 2, . . ., and

n0 is equal either to 1/4 in the odd sector or 3/4 in the even, just like in the qualitative

analysis for the IFT above with the only difference due to the presence of the even

solutions.

In contrast to the IFT, θ-dependence becomes relevant already at the one-loop level.

Computations at this order give the following expression for the odd case

∆odd(θ)
√

sinhϑ

2
√
πλ cosh2 ϑ

= cos
(
S̄(ϑ)/λ− π/4 + λAodd(θ|ϑ) + λS1; odd(ϑ)

)
, (2.51)

where

Aodd(θ|ϑ) = − cosh2 θ tanhϑ

(cosh θ + coshϑ)2
, (2.52)

S1; odd(ϑ) =
tanhϑ

4
+

1

48 tanh3 ϑ

(
−9 tanh4 ϑ+ 6 tanh2 ϑ− 5

)
. (2.53)

In the even sector the expression is

∆even(θ)

2i
√
πλ sinhϑ cosh θ

= sin
(
S̄(ϑ)/λ− π/4 + λAeven(θ|ϑ) + λS1; even(ϑ)

)
(2.54)

with

Aeven(θ|ϑ) = −cosh θ (cosh θ coshϑ+ 1)

sinhϑ (cosh θ + coshϑ)2
, (2.55)



22

S1; even(ϑ) =
1

4 tanh3 ϑ
+

1

48 tanh3 ϑ

(
−9 tanh4 ϑ+ 6 tanh2 ϑ− 5

)
. (2.56)

In this situation one again has to use the method based on (2.37). At this order,

when ϕn is approximated by ϕ
(0)
odd/even, the integral in (2.37) at small λ will have the

main contribution coming from the saddle points θ = ±ϑ giving the following quanti-

zation conditions in the odd sector

sinh 2ϑn − 2ϑn
2

= πλ(n− 1/4)− λ2 (Aodd(ϑn|ϑn) + S1; odd(ϑn)) +O(λ3) (2.57)

and in the even sector

sinh 2ϑn − 2ϑn
2

= πλ(n− 3/4)− λ2 (Aeven(ϑn|ϑn) + S1; even(ϑn)) +O(λ3). (2.58)

Once ϑn is found, the eigenvalues αn are determined using (2.46).

Calculation in higher orders is technically similar, albeit more involved.

One can show that expansions (2.57) and (2.58) after a suitable change of variables

reproduce results obtained in [35].

In principle, using (2.57) and (2.58) one can re-derive low-energy expansions (2.41)

and (2.43), respectively.

2.2.4 Numerical results

Over the years there have been proposed different approaches to the numerical solution

of the problem, each giving solution to ’t Hooft’s equation with any degree of accuracy.

In [13] another method, based on discretizing the Fourier-transformed version of ’t

Hooft’s equation, was suggested. Applying the Fourier transform to (2.26)

ϕ(θ) =

∫ ∞
−∞

dν e−iνθϕ(ν), ϕ(ν) =

∫ ∞
−∞

dθ

2π
eiνθ ϕ(θ), (2.59)

one obtains (
1 + λν coth

πν

2

)
ϕ(ν) = α

∫ ∞
−∞

dν ′ K(ν − ν ′)ϕ(ν ′) (2.60)

with K(ν) = ν/(2 sinh πν
2 ). The main feature of this version of ’t Hooft’s equation is

the smoothness of its kernel allowing to discretize the equation directly. Even though

this method can be not as efficient as others, its relative ease makes up for it. One
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should mention that this is not the first time this parametrization involving Fourier

transformed rapidity has been used. It has already appeared, for example, in [34] and

recently in [35].

In Tables 2.1 and 2.2 we list values for α, i.e., for M2 in units of 4m2, for first few

levels, both odd and even, at different values of λ. Numerical results are obtained by

discretizing (2.60) with the number of steps N = 3000 and step size ε = 0.1. This

choice of discretization parameters provides more than sufficient accuracy in this range

of λ, at least for the first levels. They are compared to the results obtained by means of

derived expansions (2.41) and (2.43), truncated at λ10/3 in the odd sector and at λ8/3

in the even sector. One can see that within the given accuracy numerical results match

the expected values with deviations determined by the order of the terms dropped from

the low-energy expansion.

Table 2.1: αn for first odd levels. The first value is numerical; the second is obtained
using the truncated low-energy expansion (2.41); the third value is the order of the
difference between the two.

λ 0.0001 0.001 0.01 0.1

n = 1
1.00504237411651
1.00504237411666

10−13

1.02349036201
1.02349036216

10−10

1.11087634
1.11087649

10−7

1.55404
1.55418

10−4

n = 2
1.00882272353899
1.00882272353917

10−13

1.04121272921
1.04121272942

10−10

1.19684999
1.19685027

10−7

2.02721
2.02759

10−4

n = 3
1.01192195048315
1.01192195048344

10−13

1.05581244361
1.05581244407

10−10

1.26911411
1.26911489

10−6

2.44971
2.45097

10−4

n = 4
1.01466422536562
1.01466422536618

10−12

1.06878314251
1.06878314354

10−9

1.33436550
1.33436743

10−6

2.84797
2.85117

10−3

n = 5
1.01717361844767
1.01717361844723

10−13

1.08069521197
1.08069521405

10−9

1.39513452
1.39513856

10−6

3.23152
3.23815

10−2

It is worthwhile to see the rate with which the expansions (2.41) and (2.43) approach

the numerical values. For the lowest odd and even levels, which we choose because

zeroes of Ai(−z) and Ai′(−z) are smallest for them thus making specific features of the

expansions, especially in the even case, more prominent, this can be observed in Tables
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Table 2.2: Same as in Table 2.1, but for first even levels.

λ 0.0001 0.001 0.01 0.1

n = 1
1.002196798442
1.002196798481

10−11

1.0102283943
1.0102284025

10−8

1.0481649
1.0481666

10−6

1.2387
1.2391
10−4

n = 2
1.007008105144
1.007008105149

10−12

1.0326986818
1.0326986807

10−9

1.1554011
1.1554000

10−6

1.7964
1.7959
10−3

n = 3
1.010406331508
1.010406331481

10−11

1.0486680231
1.0486680086

10−8

1.2336564
1.2336495

10−5

2.2408
2.2381
10−3

n = 4
1.013313818353
1.013313818267

10−10

1.0623921932
1.0623921521

10−8

1.3021422
1.3021238

10−5

2.6502
2.6430
10−2

n = 5
1.015933386177
1.015933385994

10−10

1.0748048015
1.0748047167

10−7

1.3650255
1.3649880

10−5

3.0406
3.0266
10−2

2.3 and 2.4, respectively. Here α
(k)
odd/even denotes estimates obtained using (2.41) and

(2.43) by keeping terms up to tk included.

Table 2.3: Step-by-step approximation of the meson mass for the the lowest odd level
obtained by successively including higher terms in (2.41); the last value is the numerical
result.

λ 0.0001 0.001 0.01 0.1

α
(2)
odd 1.00503729971412 1.02338107410 1.10852533 1.50373

α
(4)
odd 1.00504237459180 1.02349040903 1.11088088 1.55448

α
(6)
odd 1.00504237411491 1.02349036134 1.11087611 1.55400

α
(8)
odd 1.00504237411666 1.02349036215 1.11087649 1.55418

α
(num)
odd 1.00504237411651 1.02349036201 1.11087634 1.55404

Tables 2.5 and 2.6 contain values of αn obtained through semiclassical expansions,

(2.57) and (2.58). As expected, with n increasing, semiclassical results approach values

obtained through discretization.

Again, it is useful to see how semiclassical formulae (2.57) and (2.58) approach

results of direct numerical evaluation as one includes more terms in the expansion.

These data are provided in Tables 2.7 and 2.8.
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Table 2.4: Same as in Table 2.3, but for the lowest even level.

λ 0.0001 0.001 0.01 0.1

α
(2)
even 1.002194922920 1.010187930 1.0472882 1.21949

α
(4)
even 1.002196797651 1.010228320 1.0481584 1.23824

α
(6)
even 1.002196798481 1.010228403 1.0481666 1.23907

α
(num)
even 1.002196798442 1.010228394 1.0481649 1.23870

Table 2.5: αn for first odd levels using semiclassics.

λ 0.0001 0.001 0.01 0.1

n = 1 1.005045002 1.023502645 1.110935189 1.554453706
n = 2 1.008822931 1.041213704 1.196854870 2.027350588
n = 3 1.011921999 1.055812673 1.269115381 2.449829823
n = 4 1.014664243 1.068783226 1.334366056 2.848080751
n = 5 1.017173627 1.080695251 1.395134852 3.231630623

2.3 Discussion

The study of the mass spectrum in the low-temperature IFT and ’t Hooft model pre-

sented here has to be considered as a part of an extended project. Further development

of methods used in this work might provide a way to tackle more general problems. For

example, as one of the possible extensions of the presented technique one can consider

its application to the treatment of the ’t Hooft model with arbitrary quark masses.

Not long ago another approach to the problem of the mass spectrum in the ’t Hooft

model was suggested in [35]. It is based on the fact that the bound-state equation can be

reformulated as a certain difference equation. The method is rather general and can be

applied to the IFT, as well as the ’t Hooft model. To be more specific, under particular

conditions on the analyticity of the solutions, one rewrites bound-state equations in

both theories, (2.18) and (2.26)11, in a homologous form as

Q(ν + 2i) +Q(ν − 2i)− 2Q(ν) = − 4α

f(ν)
Q(ν). (2.61)

The difference between the two theories lies solely in what Q(ν) and f(ν) are. Thus,

11It is convenient for this purpose first to rewrite them via the Fourier transform (2.59).
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Table 2.6: αn for first even levels using semiclassics.

λ 0.0001 0.001 0.01 0.1

n = 1 1.002079962 1.009690485 1.045761963 1.229713753
n = 2 1.007007280 1.032694849 1.155383793 1.796538843
n = 3 1.010406206 1.048667441 1.233654091 2.240958482
n = 4 1.013313781 1.062392019 1.302141769 2.650298641
n = 5 1.015933371 1.074804730 1.365025460 3.040735165

Table 2.7: αn for first odd levels from semiclassics; the first value is computed through
the Bohr–Sommerfeld approximation; the second value includes the λ2–correction; the
third value is the numerical result.

λ 0.0001 0.001 0.01 0.1

n = 1 1.005003824 1.023309966 1.109995180 1.547883056
1.005045002 1.023502645 1.110935189 1.554453706

1.005042374 1.023490362 1.110876342 1.554039023

n = 2 1.008809448 1.041150166 1.196526952 2.023884388
1.008822931 1.041213704 1.196854870 2.027350588

1.008822724 1.041212729 1.196849986 2.027209388

n = 3 1.011914598 1.055777568 1.268923891 2.447092290
1.011921999 1.055812673 1.269115381 2.449829823

1.011921950 1.055812444 1.269114113 2.449709791

n = 4 1.014659340 1.068759829 1.334231284 2.845657897
1.014664243 1.068783226 1.334366056 2.848080751

1.014664225 1.068783143 1.334365504 2.847966326

n = 5 1.017170044 1.080678054 1.395030374 3.229381199
1.017173627 1.080695251 1.395134852 3.231630623

1.017173618 1.080695212 1.395134525 3.231518812

in the IFT we set12

f(ν) = 1 + λν tanh
πν

2
, Q(ν) = cosh

πν

2
f(ν)ϕ(ν), (2.62)

and in the ’t Hooft model13

f(ν) = 1 + λν coth
πν

2
, Q(ν) = sinh

πν

2
f(ν)ϕ(ν). (2.63)

Among the advantages of this approach one can name the most obvious one: it gives

a hint at the presence of a certain integrable structure in both theories, since the the

12Here, in the IFT, α is defined in the same way as in the ’t Hooft model, α = M2/(4m2).

13In [35], the authors consider the special case when the renormalized quark mass is zero.
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Table 2.8: Same as in Table 2.7, but for the even levels.

λ 0.0001 0.001 0.01 0.1

n = 1 1.002404341 1.011179464 1.052308851 1.251640571
1.002079962 1.009690485 1.045761963 1.229713753

1.002196798 1.010228394 1.048164905 1.238695902

n = 2 1.007036829 1.032828428 1.155917112 1.796124444
1.007007280 1.032694849 1.155383793 1.796538843

1.007008105 1.032698682 1.155401066 1.796434578

n = 3 1.010419587 1.048727116 1.233868841 2.239567100
1.010406206 1.048667441 1.233654091 2.240958482

1.010406332 1.048668023 1.233656383 2.240819014

n = 4 1.013321943 1.062427975 1.302257261 2.648662328
1.013313781 1.062392019 1.302141769 2.650298641

1.013313818 1.062392193 1.302142228 2.650165065

n = 5 1.015939061 1.074829509 1.365095410 3.039010202
1.015933371 1.074804730 1.365025460 3.040735165

1.015933386 1.074804802 1.365025482 3.040607676

difference equation above strongly reminds of the equation on Baxter’s Q-operator

which by itself indicates the integrability.

The overall project involving the IFT and ’t Hooft model has many possible ram-

ifications. Some of them are related to questions about analytical properties of the

spectra which are preserved if one considers the case of number of colors large but

finite in case of the ’t Hooft model. In such cases one is primarily interested in the

nature of singularities. Others deal with possible applications of these methods to more

general field theories, theories with vacuum degeneracy, possessing certain integrabilty

broken by perturbations. These perturbations typically give rise to a confining force

between particles of original theories, just like in the case of the IFT and t’ Hooft model

which provide sufficiently simple examples of such theories.
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Chapter 3

Scattering in high-temperature Ising field theory

In this chapter we concentrate our attention on the high-temperature limit of the IFT.

In terms of the scaling variable η, this limit corresponds to η → −∞. As it has been

argued earlier, at η sufficiently large the IFT can be viewed as a particle field theory

with particles of one kind. Our primary interest is the high-energy scattering in this

theory.

We approach the problem in a most natural way, via perturbation theory around

the integrable point η = −∞. We study the 2→ 2 scattering amplitude in the high-T

domain using perturbation theory in h2 to the leading order in h2 1. Unfortunately, in

its present form, this perturbation theory, as it has been noted earlier, is not as simple

and transparent as the Feynman diagram technique. It relies on the intermediate-state

decomposition with the use of exact matrix elements, also known as “form-factors”, of

the field σ(x) at h = 0 that have already appeared in the previous chapter. One of

the technical difficulties in such “form-factor” perturbation theory is that separating

disconnected contributions and the “external leg” mass corrections is not as straightfor-

ward as in the standard Feynman technique. We bypass these difficulties by using the

optical theorem and associated dispersion relation, expressing the amplitude through

the total inelastic cross-section σtot. This procedure involves the well-known ambiguity

in analytic terms, which can be fixed once the high-energy asymptotic of the amplitude

is known. To eliminate this ambiguity we calculate this asymptotic directly (again, to

the order of h2), using an approach based on the intermediate-state decomposition and

techniques developed in [10].

1The expansion goes in h2 instead of h because of the Z2-symmetry with respect to the change of
the magnetization sign present in the high-T phase.



29

This chapter has the following structure. First, we remind the basics of the 2 → 2

scattering. Then based on the intermediate-state decomposition and dispersion rela-

tion for the amplitude we compute the dominant contributions to the amplitude and

the cross-section for this process. In the following section we use the known relation

between the matrix element for the amplitude and the classical sinh-Gordon problem to

compute the large-energy asymptotic of the amplitude. Finally, we present a semiclas-

sical argument about the behavior of the amplitude of the process beyond the leading

order.

3.1 General properties of 2→ 2 S-matrix element

In this section we briefly describe general properties of the 2 → 2 scattering matrix

element and the 2 → n inelastic cross-section. For the most part, the content of this

section is an adaptation of textbook basics of the relativistic S-matrix theory (see, e.g.,

[37]), with minor simplifications specific for the 1 + 1-kinematics.

For simplicity, and in view of the problem at hand, we assume that the theory has

one neutral particle, with the mass m, which we refer to as the particle A. Kinematic

state of the asymptotic particle is characterized by its on-shell 2-momentum pµ, conve-

niently parametrized by the rapidity θ, p(θ) ≡ pµ(θ) = (m cosh θ,m sinh θ). We use the

notations

|θ1, θ2, . . . , θn〉in(out) (3.1)

for the in- (out-) states with n particles A, with the rapidities θ1, θ2, . . . , θn. The states

form the Fock space, and we assume the following normalization of one-particle states

〈θ|θ′〉 = (2π) δ(θ − θ′). (3.2)

In two dimensions, the 2→ 2 scattering is always purely elastic (i.e., the momenta

of the two outgoing particles are the same as the momenta of the incoming ones), by

the total energy-momentum conservation. Therefore, one can write

|θ1, θ2〉in = S2→2(θ1, θ2)|θ1, θ2〉out +
∞∑
n=3

1

n!

∫ n∏
i=1

dβi
2π
×

× (2π)2δ(2)(Pin − Pout)S2→n(θ1, θ2|β1, . . . , βn)|β1, . . . , βn〉out, (3.3)
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where Pin = p(θ1) + p(θ2) and Pout =
∑n

i=1 p(βi) are the total 2-momenta of the ini-

tial and the final states, respectively. The equation (3.3) defines the 2 → n S-matrix

elements S2→n. Our attention will be mostly focussed on the element S2→2(θ1, θ2). Rel-

ativistic invariance demands that it actually depends on a single variable, the rapidity

difference θ1 − θ2; correspondingly, we will write

S2→2(θ1, θ2) ≡ S(θ1 − θ2). (3.4)

0 Im θ

Re θ

iπ

1/S 1/S∗ 1/S 1/S∗

1/S∗ 1/S 1/S∗ 1/S

S S∗

S∗ S

Figure 3.1: Analytic structure of the two-particle scattering amplitude S(θ) in the
complex θ-plane. The thick lines represent the branch cuts associated with inelastic
channels. The values of S(θ) at different edges of the cuts represent physical S-matrix
element S, its complex conjugate S∗, and the inverse values. The bullets • and circles
◦ indicate possible positions of poles and zeroes, respectively. Poles located on the
imaginary axis within the physical strip 0 < Im θ < π correspond to stable particles,
poles in the mirror strip −π < Im θ < 0 are associated with resonance scattering states.

The function S(θ) has direct physical interpretation at real values of θ (the physical

domain in the s-channel scattering), but it can be analytically continued to the complex

θ-plane with certain singularities. The analyticity of S(θ) was widely discussed in the

specific context of factorizable scattering theory (see, e.g., [6]), but much of this analysis

is applicable in the general case. The function S(θ) is analytic in the strip 0 < Im θ < π,

except for possible poles at the corresponding segment of the imaginary-θ axis (such
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poles, if present, signify stable particles existing in the theory). S(θ) takes real values

at purely imaginary θ. The function admits analytic continuation to the whole θ-plane

(with certain branch cuts, as is detailed below) via the functional relations

S(θ) = S(iπ − θ), (3.5)

S(θ)S(−θ) = 1. (3.6)

The first of these relations expresses the crossing symmetry of the S-matrix. The

second follows from the unitarity of the 2 → 2 S-matrix at the energies below the

multi-particle thresholds. In the case of integrable, purely elastic scattering theory,

the multi-particle contributions to (3.3) are altogether absent, and as the result in this

case S(θ) is a meromorphic function of the whole complex plane. But in the general,

non-integrable, case, of course, branching-point singularities associated with the multi-

particle thresholds are present. These branching points are located at θ = ±θ(n), where

θ(n) are real positive solutions of the equation

cosh
θ(n)

2
=
n

2
, (3.7)

and they correspond to the n-particle thresholds. By the crossing symmetry (3.5),

there are similar branching points at the axis Im θ = π, θ = iπ ∓ θ(n) representing

the n-particle thresholds in the cross-channel. Since the relations (3.5) and (3.6) imply

periodicity

S(θ + 2πi) = S(θ), (3.8)

the pattern is periodically extended along the imaginary-θ axis. We will define the

principal sheet of the θ-surface by making branch cuts from θ(n) to +∞ and from

−θ(n) to −∞, with periodic extension according to (3.8), as is shown in Fig. 3.1 (note

the unusual directions of the axes in this figure). Presumably, S(θ) can be further

analytically continued under the branch cuts, to other sheets of the Riemann surface,

but at the moment we do not have much to say about its analytic structure there.

Discontinuities of S(θ) across the branch cuts are controlled by the probabilities of

inelastic scattering events. As follows from the full unitarity condition, we have, at real
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positive θ,

S(θ + i0)S(−θ + i0) = S(θ + i0)/S(θ − i0) = 1− σtot(θ), (3.9)

where σtot(θ) is the total probability of all inelastic processes,

σtot(θ) =
∞∑
n=3

σ2→n(θ), (3.10)

σ2→n(θ) =
1

sinh θ

1

n!

[∫ n∏
i=1

dβi
2π

]
(2π)2δ(2)(Pin − Pout) |S2→n(θ1, θ2|β1, . . . , βn)|2 .

In the last line, the notations are the same as in (3.3). Obviously, σ2→n(θ) = 0 at

|θ| < θ(n), and hence the total cross-section (3.10) has the segment [θ(3),∞) as its

support.

Apart from these branch cuts, S(θ) can have poles at the principal sheet. Due to

the periodicity (3.8), one can limit attention to the strip −π 6 Im θ 6 π. We will refer

to the domain 0 < Im θ < π as the “physical strip” (PS), since the values of S(θ) at

its boundaries represent physical scattering amplitudes. In view of (3.6), every pole of

S(θ) in the PS is accompanied by the associated zero in the strip −π < Im θ < 0 and

vice versa, and for this reason we refer to the latter as the “mirror strip” (MS). By

causality, locations of possible poles within the PS are limited to the imaginary axis

Re θ = 0. The poles in the PS are associated with stable particles of the theory. In a

unitary theory, a pole at θ = iαp (with 0 < αp < π),

S(θ) ≈ irp
θ − iαp

, (3.11)

with positive rp, is the direct-channel manifestation of the stable particle (“bound

state”) Ap with the mass Mp = 2 cos(αp/2). Every such pole comes along with the

cross-channel pole at iα̃p ≡ i(π − αp), with the residue −irp2. On the other hand,

poles in the MS are not restricted to lie at the imaginary axis Re θ = 0. There may be

poles at iαp with real αp ∈ [−π, 0] (“virtual states”, in the terminology of the potential

scattering theory), as well as with a complex αp (generally associated with resonance

states).

2Of course, strict adherence to our assumption that there is only one kind of stable particles implies
that there can be only two poles in the PS, at iαA = 2πi/3 and at iα̃A = iπ/3.
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If the positions of all the poles on the principal sheet are known, the function S(θ)

can be written as

S(θ) =
∏
p

sinh θ + i sinαp
sinh θ − i sinαp

U(θ), (3.12)

where the product accounts for all the poles θ = iαp, i(π−αp), including bound, virtual,

and resonance states. The function U(θ) satisfies the same relations (3.5) and (3.6),

together with (3.9), as the amplitude S(θ), but in addition it has neither poles nor

zeroes, on the whole principal sheet. Hence it can be written as

U(θ) = exp (i sinh θ∆(θ)) , (3.13)

with ∆(θ) analytic everywhere in the PS. As follows from (3.5) and (3.6), ∆(θ) satisfies

the relations

∆(θ) = ∆(iπ − θ), ∆(θ) = ∆(−θ), (3.14)

which in turn imply an enhanced periodicity

∆(θ + iπ) = ∆(θ). (3.15)

Of course, ∆(θ) has branching points at the thresholds θ(n), and in view of (3.9),

its discontinuities across the associated branch cuts are related to the inelastic cross-

sections. In particular, at positive real θ we have

∆(θ + i0)−∆(θ − i0) = − i log (1− σtot(θ))
sinh θ

. (3.16)

In view of (3.14) and (3.15), it suffices to concentrate attention on the values of

∆(θ) in the strip 0 6 Im θ 6 π/2. The transformation

w = sinh2 θ (3.17)

maps this domain (with obvious identifications at the boundary) onto the complex w-

plane with the branch cut along the real axis, from w(3) = sinh2 θ(3) = 45/4 to +∞3.

3It is useful to understand the mapping properties of (3.17). The edges Im θ = +0 of the branch
cuts θ ∈ [θ(3),+∞) and θ ∈ (−∞,−θ(3)] in Fig. 3.1 correspond to the upper and lower edges of the
branch cut in the w-plane. The segment [0, θ(3)] of the imaginary θ-axis is mapped onto the segment
[0, w(3)] of the real w-axis. Furthermore, the segments [−1, 0] and (−∞,−1] of the real w-axis are the
images of the segments Re θ = 0, Im θ ∈ [0, π/2] and Im θ = π/2, Re θ ∈ [0,+∞), respectively.
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We note that w relates to the center-of-mass energy E = 2m cosh(θ/2) as

w =
E2(E2 − 4m2)

4m2
. (3.18)

With some abuse of notations, let us write ∆(w) and σtot(w) for the quantities defined

in (3.10) and (3.13), expressed in terms of the variable w. The equation (3.16) then

relates the discontinuity of ∆(w) across the branch cut in the w-plane to σtot(w), and

one can write down the associated dispersion relation

∆(w) = ∆reg(w) + i

∫ ∞
w(3)

log (1− σtot(v))

(w − v)
√
v

dv

2π
, (3.19)

where ∆reg(w) is an entire function of w, real at the real w-axis4.

3.2 Scattering in IFT at weak coupling

Let us come back to the theory (1.4), and consider the particle scattering in the high-T

regime, at weak coupling |h| � τ15/8. In this domain there is only one stable particle

[4], which in the absence of the magnetic field, h = 0, becomes a free Majorana fermion.

In this case the scattering is trivial and S(θ)|h=0 = −1 5. At small h the amplitude

S(θ) can be expressed as series in powers of h2. Here we mostly limit our attention to

the leading term of this expansion, the amplitude A(θ) defined as

S(θ) = −
(

1 + h2 iA(θ)

sinh θ
+O(h4)

)
. (3.20)

To simplify notations, in what follows we set the units of mass so that m = 1.

The amplitude A(θ) is analytic in the PS, except for the poles at iαA = 2πi/3

and iα̃A = iπ/3, representing the particle A itself in the direct- and cross-channels,

respectively. Note that in view of the overall minus sign in (3.20), the residue at iαA

must be negative. From (3.5) and (3.6) it follows that A(θ) satisfies the same symmetries

4The integral can diverge if σtot approaches its unitarity bound 1 at high energies too fast; as usual,
in such cases one has to make appropriate subtractions.

5In 1 + 1-dimensions it is useful to distinguish between in- and out-states even in a free fermion
theory. Thus, in the IFT with h = 0, the n-particle in-state with θ1 > θ2 > . . . > θn is identified
with the Fock-space state |θ1, . . . , θn〉 ≡ a†(θ1) . . . a†(θn)|0〉, while for the out-state the fermion creation
operators must be arranged in the opposite order.
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as ∆(θ) in (3.14), i.e.,

A(θ) = A(iπ − θ), A(θ) = A(−θ), (3.21)

and A(θ + iπ) = A(θ). We will see that

A(0) = 0. (3.22)

Again, expressing A(θ) as a function of w, we conclude that this function is analytic

in the whole w-plane, with the branch cut from w(3) to +∞, except for a single pole

at w = −3/4. The discontinuity of A(w) across the branch cut is related to the cross-

section

A(w + i0)−A(w − i0) = i
√
w σ

(2)
tot (w), (3.23)

where σ
(2)
tot is the leading term of the expansion

σtot(w) = h2σ
(2)
tot (w) +O(h4). (3.24)

Assuming that A(w) ∼
√
w logw as w → ∞, an assumption that we will verify later

on, and making use of (3.22), based on (3.23) we can write down the corresponding

dispersion relation

A(w) =
rw

w + 3/4
+ w

∫ ∞
w(3)

σ
(2)
tot (v)

(v − w)
√
v

dv

2π
(3.25)

with r being a constant, yet to be determined.

Of course, the amplitude A(θ) admits standard perturbation theory representation

in the form of the integral

iA(θ12) = −1

2

∫
d2x 〈θ1, θ2|Tσ(x)σ(0)|θ1, θ2〉conn, (3.26)

where the integration goes over Minkowski space-time, x = (x, t), and θ12 ≡ θ1−θ2. The

integrand involves the connected part of the time-ordered product6 of the Heisenberg

6The connected part is obtained from the full matrix element by removing its disconnected parts

〈θ1, θ2|Tσ(x)σ(0)|θ′1, θ′2〉conn = 〈θ1, θ2|Tσ(x)σ(0)|θ′1, θ′2〉 − 2πδ(θ1 − θ′1)〈θ2|Tσ(x)σ(0)|θ′2〉−

− 2πδ(θ2 − θ′2)〈θ1|Tσ(x)σ(0)|θ′1〉 − (2π)2δ(θ1 − θ′1)δ(θ2 − θ′2)〈0|Tσ(x)σ(0)|0〉 (3.27)

before setting θ′1 = θ′1, θ′2 = θ2. In writing (3.27) we have omitted the terms involving δ(θ1 − θ′2) and
δ(θ′1 − θ2), which are generally present by the antisymmetry of the matrix element with respect to
θ1 ↔ θ2, because they vanish at θ′1 = θ′1, θ′2 = θ2.
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field operators. The matrix element in (3.26) can be handled through the intermediate-

state decomposition with the use of the exact matrix elements from [27],

F (θ1, θ2|β1, . . . , βn) = 〈θ1, θ2|σ(0)|β1, . . . , βn〉 = i(n+2)/2σ̄ tanh

(
θ1 − θ2

2

)
×

×
n∏
i=1

[
coth

(
θ1 − βi

2

)
coth

(
θ2 − βi

2

)]∏
i<j

tanh

(
βi − βj

2

)
. (3.28)

Since the form-factors (3.28) vanish at θ1 − θ2 = 0, this expansion directly confirms

(3.22). However, this approach has well-known difficulties. In particular, individual n-

particle contributions are not Lorentz-invariant, this symmetry being restored only upon

summing up all multi-particle terms. For this reason, it is easier to collect the multi-

particle contributions by using the dispersion relation (3.25), expressing the amplitude

through the h2-term of the inelastic cross-section (3.24). The latter can be written in

terms of the form-factors (3.28) as

σ
(2)
tot (w) =

∞∑
k=1

σ
(2)
2→2k+1(w) (3.29)

with

σ
(2)
2→n(w) =

1√
ω

1

n!

∫ [ n∏
i=1

dβi
2π

]
(2π)2δ(2) (Pin − Pout) |F (θ1, θ2|β1, . . . , βn)|2,

here w = sinh2(θ1 − θ2) ≡ sinh2 θ. In writing (3.29), we take into account that matrix

elements of F (θ1, θ2|β1, . . . , βn) with even n vanish. This leaves undetermined the

coefficient r in the pole term in (3.25), which should be evaluated separately.

3.2.1 Pole term

The residue of A(θ) at the pole θ = 2πi/3 can be deduced from the one-particle term

in the standard intermediate-state decomposition (3.26),

A(θ12) = −
∫ ∞
−∞

dβ
δ(sinh θ1 + sinh θ2 − sinhβ)

cosh θ1 + cosh θ2 − coshβ + i0
|〈θ1, θ2|σ(0)|β〉|2 + . . . , (3.30)

where . . . stands for the multi-particle contributions. With the use of explicit matrix

elements (3.28), we have

|〈θ1, θ2|σ(θ)|β〉|2 = σ̄2 tanh2

(
θ1 − θ2

2

)
coth2

(
θ1 − β

2

)
coth2

(
β − θ2

2

)
. (3.31)
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Since the expression is positive at all real values of the rapidities, we have erased the

absolute value signs, making possible analytical continuation to the complex plane. The

integral over β is eliminated by the delta-function7, and the result explicitly shows a

pole at θ ≡ θ1 − θ2 = 2πi/3,

A(θ) ≈ − i18
√

3 σ̄2

θ − 2πi/3
. (3.32)

Note that the minus sign here appears because analytical continuation of the right-hand

side of (3.31) to the pole point yields real but negative value

− tanh6(2π/3) = −27.

This, when combined with the overall minus sign in (3.20), (3.32) shows 2πi/3 to be a

positive pole of S(θ),

S(θ) ≈ i36(σ̄h)2

θ − 2πi/3
+O(h4). (3.33)

The cross-channel pole at θ = πi/3, which will have a residue with the opposite sign, can

be extracted from the three-particle contribution to the intermediate-state decomposi-

tion, which also generates the threshold singularity at θ(3). The higher multi-particle

terms do not contribute to the residues, producing only the associated multi-particle

threshold singularities. The residue in (3.32) corresponds to the value

r = 36σ̄2 (3.34)

of the coefficient in (3.25).

3.2.2 Three- and multi-particle contributions to σ
(2)
tot

The first term in (3.29), σ
(2)
2→3, can be evaluated in closed form (see Appendix C for

details). When expressed in terms of the center-of-mass energy

E = 2 cosh(θ/2),

it can be written as

σ
(2)
2→3(E) = Θ(E − 3)N(E)I(E), (3.35)

7It is easiest to do this calculation in the center-of-mass frame θ1+θ2 = 0. Although the one-particle
term (3.30) is not Lorentz-invariant, the residue at the pole is.
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where the step-function Θ(E−3) is put as a reminder that this part of the cross-section

vanishes below the three-particle threshold,

N(E) =
4σ̄2

π

(E + 2)5/2

(E − 2)3/2

(E − 3)3(2E − 1)4

(E + 3)3/2(E − 1)5/2(E + 1)E3
, (3.36)

and I(E) is the elliptic integral of the form

I(E) =

∫ 1

−1
dt

√
1− t2

(1− q t2)3/2

(
1− µ t2

1− ν t2

)2

(3.37)

with

q =
(E + 1)(E − 3)3

(E − 1)(E + 3)3
, µ = q

(E − 2)(2E + 1)2

(E + 2)(2E − 1)2
, ν = q

E + 2

E − 2
. (3.38)

Some basic properties of σ
(2)
2→3(E) are readily derived. For example, near the thresh-

old E → 3 the leading term is

σ
(2)
2→3(E) =

56
√

5 σ̄2

2534
√

3
Θ(E − 3) (E − 3)3 +O

(
(E − 3)4

)
. (3.39)

On the other hand, at large E the behavior is given by

σ
(2)
2→3(E) =

32σ̄2

π

(
logE2 +

√
3π − 11

2
+O

(
1/E2

))
. (3.40)

The behavior of σ
(2)
2→3(E) near the threshold and at large E and how well the asymp-

totic expressions (3.39) and (3.40) approximate the exact value are shown in Figs. 3.2

and 3.3, respectively.

Another useful conclusion can be made about the behavior of σ
(2)
2→n(E) at the n-

particle threshold, E → n. The computation, sketched in Appendix D, shows that

σ
(2)
2→n(E) decays to zero according to

σ
(2)
2→n(E) = Θ(E − n)

2
√
n2 − 4

n3

σ̄2

2n2−n×

×
(
n+ 2

n− 2

)2n
∏n−1
p=1 p!√
n

(E − n)(n2−3)/2

(2π)(n−3)/2 Γ
(
n2−1

2

) +O
(
(E − n)4

)
. (3.41)

Except for the threshold asymptotics, the partial cross-sections σ
(2)
2→n with n > 3

are not evaluated in closed form. However, numerical estimates show that these multi-

particle terms are small when compared to σ
(2)
2→3 at all values of the energy E. Thus,

the five-particle contribution σ
(2)
2→5 is smaller than 1% of σ

(2)
2→3 at all E, and the higher

terms are small still. Therefore, the amplitude A(θ) in (3.20) can be approximated with

high accuracy by the dispersion relation (3.25) with σ
(2)
tot (w) replaced by σ

(2)
2→3(w).
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Figure 3.2: Threshold behavior of σ
(2)
2→3(E); the solid line is the result of the numerical

evaluation of σ
(2)
2→3(E), the dashed line shows the asymptotic form (3.39).

3.2.3 The amplitude

With σ
(2)
tot (w) approximated by σ

(2)
2→3(w), the second term in (3.25), which we denote

as Aσ(w), can be evaluated numerically. The relative contributions of Aσ(w) and

the pole term Ap(w) = 36σ̄2w/(w + 3/4) in (3.25) for low values of w are shown in

Fig. 3.4. One can see that in the shown domain of w the pole term brings substantially

larger contribution than Aσ(w). In particular, in the physical domain w > 0, but

below the three-particle threshold w(3) = 11.25, Aσ(w) contributes no more than 15%

to the scattering phase. Above the threshold, w > w(3), Aσ(w) develops imaginary

part,
√
w/4σ

(2)
2→3. At larger w the real part of Aσ(w) increases, overtaking at w ≈

68.31 the pole term Ap(w) in magnitude, and then approaches the asymptotic 8σ̄2√w.

At large negative w, Aσ(w) behaves as −(8σ̄2/π)
√
−w log(−w/w0) − 36σ̄2 with w0 =

(1/4) exp(11−
√

3π) ≈ 64.86. Figs. 3.5 and 3.6 show how the real and imaginary parts of

Aσ(w) are approximated by its large w-asymptotic −(8σ̄2/π)
√
−w log(−w/w0)− 36σ̄2.
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Figure 3.3: Large-E behavior of σ
(2)
2→3(E); the solid line is the result of the numerical

evaluation of σ
(2)
2→3(E), the dashed line shows the asymptotic form (3.40), which is seen

to approximate σ
(2)
2→3(E) very closely starting from relatively low energies.

3.3 High-energy limit of the amplitude

In the IFT with h = 0, the matrix element in (3.26) admits the exact representation in

terms of the Lax equation associated with special solution of the classical sinh-Gordon

equation. In this section we describe this relation and then use it to evaluate the

asymptotic of A(θ12) at high energy, θ12 →∞.

3.3.1 The matrix element

As is known since the classic paper [38], the two-point correlation functions of the

spin field σ and the disorder field µ in the h = 0 IFT, G(x) = 〈0|Tσ(x)σ(0)|0〉 and

G̃(x) = 〈0|Tµ(x)µ(0)|0〉, are expressed in terms of a special solution of the classical

sinh-Gordon system

∂z∂z̄ϕ =
1

8
sinh (2ϕ) , ∂z∂z̄χ =

1

8
[1− cosh (2ϕ)] . (3.42)

Here and below we use the light-cone coordinates z and z̄

z = x− t, z̄ = x + t (3.43)
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Figure 3.4: Relative contributions of Ap(w) (solid line) and Aσ(w) (dashed line) to the
amplitude A(w) at w 6 11.25.

to label the points x of 1+1 Minkowski space-time. The relevant solution is Lorentz-

invariant, i.e., the functions ϕ(z, z̄) and χ(z, z̄) depend only on the Lorentz-invariant

combination ρ = zz̄ = x2 − t2. In this case (3.42) reduces to the ordinary differential

equation, the famous Penlevé III equation. The solution we are interested in is specified

by the asymptotic form as ρ→ 0,

ϕ(ρ) = −1

2
log(ρ/4)− log(−Ω) +O(ρ2Ω2), (3.44a)

χ(ρ) =
1

4
log(16ρ) + log(−Ω) +O(ρ), (3.44b)

where

Ω =
1

2
log(κ2ρ). (3.45)

Under the special choice of the constant κ = eγE/8, which we use, the solution ϕ(ρ) is

regular at all real ρ and decays as

ϕ(ρ) =
2

π
K0(
√
ρ) +O

(
e−3
√
ρ
)

(3.46)

as ρ → +∞ [38]. The solution ϕ(ρ) can be regarded as a function of the complex ρ.

Using, e.g., the representation in [38], it is possible to show that ϕ(ρ) is analytic in the

whole ρ-plane with the branch cut from −∞ to 0, except for the point ρ = 0 where the
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Figure 3.5: The real part of the amplitude at large w; the dashed line corresponds to
Aσ(w), the solid line shows its large-w asymptotic.

logarithmic singularity, explicit in (3.44), is located. Moreover, the asymptotic form

(3.46) holds for −π < arg ρ < π as |ρ| → ∞. The function χ(ρ) has similar analyticity,

except that at large |ρ| it tends to a constant

χ(ρ) = 4 log s̄+O
(
e−2
√
ρ
)

(3.47)

as |ρ| → ∞, −π < arg ρ < π, here s̄ is a constant defined in (1.7). In the high-T regime,

when 〈σ〉 = 0 and 〈µ〉 = σ̄, in the h = 0 IFT the correlation functions G(ρ) and G̃(ρ)

are written in terms of ϕ(ρ) and χ(ρ) as follows

G(ρ) = eχ/2 sinh(ϕ/2), G̃(ρ) = eχ/2 cosh(ϕ/2). (3.48)

Both correlation functions are real at space-like separations ρ > 0, while in the time-like

domain the values at the upper edge of the branch cut, i.e., G(ρ + i0) and G̃(ρ + i0),

have to be taken.

This relation can be extended to matrix elements of the products Tσ(x)σ(0) and

Tµ(x)µ(0) inserted between any particle states. The main ingredient here is the special

solution Ψ±(z, z̄|β) of the linear system

∂zΨ+ = −1

2
∂zϕΨ+ +

eβ

4
eϕ Ψ−, (3.49a)

∂zΨ− =
1

2
∂zϕΨ− −

eβ

4
e−ϕ Ψ+, (3.49b)
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Figure 3.6: The imaginary part of the amplitude at large w; the dashed line corresponds
to Aσ(w), the solid line shows its large-w asymptotic.

and

∂z̄Ψ+ =
1

2
∂z̄ϕΨ+ −

e−β

4
e−ϕ Ψ−, (3.50a)

∂z̄Ψ− = −1

2
∂z̄ϕΨ− +

e−β

4
eϕ Ψ+, (3.50b)

which constitutes the Lax representation of the sinh-Gordon equation (the first of the

equations (3.42) guarantees integrability of (3.49a) and (3.50a)) with eβ playing the role

of the spectral parameter. The solution Ψ±(x|β), relevant to our problem, is described

in some detail in [10]8. The components Ψ±(x|β) are analytic functions on the double

cover of the Minkowski space-time parametrized by the coordinates x = (z, z̄), with the

branching singularities at the right and left parts of the light cone, i.e., at z = 0 and

z̄ = 0. The double cover is needed because Ψ±(x|β) change sign when the point x is

brought around the origin (z, z̄) = (0, 0).

Due to the obvious symmetry of (3.49a) and (3.50a), the functions Ψ±(x|β) depend

only on the combinations Z = eβ z, Z̄ = e−β z̄, and below we often use the nota-

tion Ψ±(Z, Z̄) for them. The solution under consideration can be characterized by its

8In [10] this solution is described in the Euclidean space, where z = x + iy, z̄ = x − iy. Here we
discuss its continuation y → it. The continuation is straightforward for space-like separations ρ > 0.
In the time-like domains ρ < 0, the standard i0 prescription z → z + i0 sign(z̄), z̄ → z̄ + i0 sign(z) is
implied.
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behavior as (Z, Z̄)→∞,

Ψ+(Z, Z̄) =

√
π

−Ω

(
Z

Z̄

)1/4 [
1 +

4Ω− 1

64
Z̄2 − 1

64
Z2 +O(ρ4Ω2)

]
, (3.51a)

Ψ−(Z, Z̄) =

√
π

−Ω

(
Z̄

Z

)1/4 [
1 +

4Ω− 1

64
Z2 − 1

64
Z̄2 +O(ρ4Ω2)

]
, (3.51b)

where Ω is defined in (3.45).

The matrix elements of the T -product of σ(x)σ(0) between particle states are cer-

tain products of the functions Ψ±(x|β). The relation looks somewhat simpler for the

“centered” product Tσ(x/2)σ(−x/2); the integral (3.26) is clearly insensitive to this

shift. First, define the two-particle matrix elements

G(θ, θ′) = 〈0|Tσ(x/2)σ(−x/2)|θ, θ′〉, (3.52a)

G(θ|θ′) = 〈θ|Tσ(x/2)σ(−x/2)|θ′〉 − 2πδ(θ − θ′)G, (3.52b)

where G = G(ρ) is one of the two-point functions in (3.48), and we omit the argument

x in G(θ, θ′) and G(θ|θ′) to simplify notations. Then we have

G(θ1, θ2) = − i
2

[
G
eθ1 − eθ2
eθ1 + eθ2

Ψs(θ1, θ2)− G̃Ψa(θ1, θ2)

]
, (3.53a)

G(θ1|θ2) = −1

2

[
G
eθ1 + eθ2

eθ1 − eθ2
Ψa(θ1, θ2)− G̃Ψs(θ1, θ2)

]
, (3.53b)

where G̃ is the other two-point function in (3.48), and

Ψs(θ1, θ2) = Ψ+(Z1, Z̄1)Ψ−(Z2, Z̄2) + Ψ−(Z1, Z̄1)Ψ+(Z2, Z̄2), (3.54a)

Ψa(θ1, θ2) = Ψ+(Z1, Z̄1)Ψ−(Z2, Z̄2)−Ψ−(Z1, Z̄1)Ψ+(Z2, Z̄2). (3.54b)

Here

(Z1, Z̄1) = (eθ1z, e−θ1 z̄), (Z2, Z̄2) = (eθ2z, e−θ2 z̄).

Finally, the four-particle matrix element in (3.26) is the fermionic Wick product of the

two-particle matrix element (3.53),

〈θ1, θ2|Tσ(x/2)σ(−x/2)|θ1, θ2〉conn =

= G−1 [G(θ2|θ1)G(θ1|θ2)− G(θ1|θ1)G(θ2|θ2) + G(θ1, θ2)G(θ1, θ2)] . (3.55)
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It will be convenient to write G(θ|θ), which is simply the limit of G(θ|θ′) as θ′ → θ, as

the sum of two terms

G(θ|θ) = G̃K(Z, Z̄)−GL(Z, Z̄), (3.56)

where

K(Z, Z̄) = Ψ+(Z, Z̄)Ψ−(Z, Z̄), (3.57a)

L(Z, Z̄) = Ψ−(Z, Z̄)∂θΨ+(Z, Z̄)−Ψ+(Z, Z̄)∂θΨ−(Z, Z̄), (3.57b)

and again Z = eθz, Z = e−θ z̄.

3.3.2 High-energy limit of the integral (3.26)

The expression for the matrix element in (3.26) described above is still too complicated

for the integral to be evaluated in closed form. However, it is possible to use this

representation to derive its limiting behavior as θ12 →∞.

To simplify arguments, we assume that θ1 → +∞ and θ2 → −∞. In this limit the

factors involving the ratio eθ1 − eθ2 and eθ1 + eθ2 in (3.53) can be dropped, and the

expression (3.55) simplifies as

〈θ1, θ2|Tσ(x/2)σ(−x/2)|θ1, θ2〉conn → G
[
K(Z1, Z̄1)K(Z2, Z̄2)+

+L(Z1, Z̄2)L(Z2, Z̄2)
]
− G̃

[
K(Z1, Z̄1)L(Z2, Z̄2) + L(Z1, Z̄2)K(Z2, Z̄2)

]
, (3.58)

where K and L are the functions (3.57). Furthermore, it is possible to show that at

|Z+ Z̄| � 1 the functions Ψ±(Z, Z̄) approach plane waves. The exact form of the plane

waves is different for different regions in the (Z, Z̄)-plane. Thus, as Z → +∞, Z � Z̄,

we have

Ψ+(Z, Z̄)→ 2 eϕ/2 cos

(
Z − Z̄

4
− π

4

)
, (3.59a)

Ψ−(Z, Z̄)→ 2 e−ϕ/2 cos

(
Z − Z̄

4
+
π

4

)
, (3.59b)

while as Z̄ → +∞, Z̄ � Z,

Ψ+(Z, Z̄)→ 2 e−ϕ/2 cos

(
Z − Z̄

4
− π

4

)
, (3.60a)

Ψ−(Z, Z̄)→ 2 eϕ/2 cos

(
Z − Z̄

4
+
π

4

)
. (3.60b)
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When Z ∼ Z̄ → +∞ the difference between (3.59) and (3.60) is irrelevant since in this

domain ϕ→ 0. Likewise, as Z → −∞, −Z � Z̄,

Ψ+(Z, Z̄)→ 2i eϕ/2 cos

(
Z − Z̄

4
+
π

4

)
, (3.61a)

Ψ−(Z, Z̄)→ −2i e−ϕ/2 cos

(
Z − Z̄

4
− π

4

)
, (3.61b)

while as Z̄ → −∞, −Z̄ � Z,

Ψ+(Z, Z̄)→ 2i e−ϕ/2 cos

(
Z − Z̄

4
+
π

4

)
, (3.62a)

Ψ−(Z, Z̄)→ −2i eϕ/2 cos

(
Z − Z̄

4
− π

4

)
. (3.62b)

In writing these equations we have ignored the overall sign ambiguity of Ψ± (if the

sign is fixed as in (3.59) and (3.60), the overall signs in (3.61) and (3.62) still depend

on the way of continuation around the point (Z, Z̄) = (0, 0)), because this ambiguity

does not affect the functions (3.57). From these equations one finds the corresponding

asymptotics for the functions (3.57),

K(Z, Z̄)→ 2 cos

(
Z − Z̄

2

)
, L(Z, Z̄)→ |Z + Z̄| (3.63)

as |Z + Z̄| → ∞.

The leading θ12 →∞ asymptotic of the integral (3.26) clearly comes from the term

with GL(Z1, Z̄1)L(Z2, Z̄2) in (3.58). The remaining terms involve the fast oscillating

function K, and integration over (z, z̄) leads to their suppression by at least one power of

e−θ12 , as compared to the leading term. The leading high-energy asymptotic θ12 →∞

of the amplitude (3.26) is thus given by

iA(θ12)→ −1

2

∫
d2x |UV |G(ρ+ i0), θ12 → +∞, (3.64)

where d2x = dxdt = 1
2dzdz̄, and

U = Z1 + Z̄1 = eθ1z + e−θ1 z̄, V = Z2 + Z̄2 = eθ2z + e−θ2 z̄. (3.65)

The integral here can be handled as follows. Write

|UV | = UV − 2UV Θ(−UV ), (3.66)
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where Θ(x) is the usual step function. The first term in the integral is analytic in

the coordinates (z, z̄), and its contribution can be evaluated using the Wick rotation,

t→ −iy, yielding

−1

2

∫
d2xUV G(zz̄)→ π iG(3) exp(θ12), (3.67)

where

G(3) =
1

2

∫ ∞
0

ρG(ρ)dρ (3.68)

is the third moment of the Euclidean spin-spin correlation function. The second term

in (3.66) involves the step function which limits the integration domain to UV > 0. In

the domain U < 0, V > 0, which lies entirely within the future light-cone ρ = zz̄ < 0,

z < 0, one can parametrize z = −
√
−ρ e−φ, z̄ =

√
−ρ eφ, with the integration domain

corresponding to the range θ2 < φ < θ1 of the Lorentz parameter φ. Therefore, at

θ12 � 1 the contribution from this domain to the integral in (3.64) is∫
U<0<V

UV G(ρ+ i0)d2x ≈ −θ12 exp(θ12)

∫ 0

−∞
ρG(ρ+ i0)dρ =

= θ12 exp(θ12)

∫ ∞
0

ρG(ρ)dρ, (3.69)

where the last form is obtained by rotating the integration contour ρ→ e−iπρ, which is

possible since G(ρ) decays exponentially into the upper half-plane of complex ρ. The

“past” part of the light-cone z > 0 > z̄ brings in an identical contribution. Collecting

all these pieces together, we have

iA(θ12)

sinh θ12
→ −4G(3) [θ12 − iπ/2 + θ0] , (3.70)

where θ0 is a real constant whose value cannot be determined by the simple analysis

above, its calculation would require much better understanding of the behavior L(Z, Z̄)

in the domain Z + Z̄ ∼ 1.

The asymptotic (3.70) can be written in terms of the variable (3.17) as

iA(w + i0)→ −2G(3)√w [log(w/w0)− iπ] , w → +∞, (3.71)

with w0 being a real positive constant related to θ0. This equation can be extended to

the whole complex w-plane with the branch cut along the positive part of the real axis,

A(w)→ −2G(3)
√
−w log(−w/w0), |w| → ∞, −π < arg(−w) < π, (3.72)
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where the branch of the multi-valued function is chosen in such a way that
√
−w is

positive and log(−w) is real at real negative w. From (3.23) one finds the high-energy

behavior of the h2-term in the inelastic cross-section,

σ
(2)
tot (w)→ 4G(3) log(w/w0) ≈ 8G(3) log(E2), (3.73)

which is of the same logarithmic form as the high-energy behavior of σ
(2)
2→3, determined

in Section 3.2, the equation (3.40). Note that the coefficient in (3.40) corresponds to

the one-particle contribution G1P (ρ) = (1/π)K0(
√
ρ) in the intermediate-state decom-

position of the spin-spin correlation function G(ρ),

1

2

∫ ∞
0

ρG1P (ρ) dρ =
4σ̄2

π
= 2.3475035314 . . . (3.74)

Comparing the exact value of G(3),

G(3) =

∫ ∞
0

r3〈σ(r)σ(0)〉 dr = 2.34752921866 . . . , (3.75)

and the one-particle contribution (3.74) reaffirms the statement that σ
(2)
tot is dominated

by its three-particle component σ
(2)
2→3.

3.4 Remarks about higher orders in h2

The logarithmic growth with the energy in (3.73) of the h2-term in the inelastic cross-

section,

σtot → 8G(3)h2 log(E2) +O(h4), (3.76)

suggests that the higher-order terms of the h2-expansion become significant at high

energies, since unitarity requires σtot 6 1 at all energies. One can expect that the terms

of the higher order h2n in the expansion (3.24) are ∼ h2n lognE2 at large E. Here we

argue that it is indeed so, and, moreover, that summing up these leading logarithms

results in a power-like behavior9

σtot → 1− (E/E0)−α as E →∞, (3.77)

9This behavior, with α ≈ 64(σ̄h)2/π, was earlier proposed, on the basis of a different argument,
by S. Rutkevich [40]. He also suggested the high-energy form of the partial cross-sections σ2→2+n ≈
(1/n!)(α log(E/E0))n(E/E0)−α.
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where α ≈ 16G(3)(σ̄h)2 at small h2, and E0 = Cm, with the yet unknown constant C.

First, let us note that the expression (3.64) admits a simple, essentially classical

interpretation as follows. Let us introduce coordinates

(u, v) = (eθ1 z + e−θ1 z̄, eθ2 z + e−θ2 z̄) (3.78)

on the (z, z̄)-plane, and assume that at θ12 → ∞ the particles with the rapidities θ1

and θ2 can be represented by their classical trajectories u = 0 and v = 0, respec-

tively. Also assume that unless the points x1, x2 are too close to the trajectories, the

matrix element 〈θ1, θ2|Tσ(x1)σ(x2)|θ1, θ2〉 is approximated by the correlation function

〈0|Tσ(x1)σ(x2)|0〉, multiplied by the sign factor which depends on whether the inser-

tion points x1 and x2 are located on the same side or on different sides of each of the

trajectories. More specifically, we assume10

〈θ1, θ2|Tσ(x1)σ(x2)|θ1, θ2〉 ≈

≈ sign(u1) sign(u2) sign(v1) sign(v2)〈0|Tσ(x1)σ(x2)|0〉, (3.79)

where (u1, v1) and (u2, v2) are the coordinates (3.78) of the points x1 and x2, respec-

tively11. This expression still involves the “disconnected” parts,

[1 + (sign(u1) sign(v1)− 1) + (sign(u2) sign(v2)− 1)]〈0|Tσ(x1)σ(x2)|0〉.

Subtracting these, one obtains

〈θ1, θ2|Tσ(x1)σ(x2)|θ1, θ2〉conn ≈ 4Θ(−u1v1)Θ(−u2v2)〈0|Tσ(x1)σ(x2)|0〉, (3.80)

where Θ(u) is again the usual step function. Since the two-point correlation function

〈0|Tσ(x1)σ(x2)|0〉 depends only on the separation x1 − x2, one can explicitly integrate

10To simplify notations, here and below we ignore the delta-functions associated with the plane-wave
normalization (3.2) of the particle states. Instead, one can think of normalized wave packets centered
at the rapidities θ1 and θ2.

11Similar approximation was put forward in a different context in [39]. In our case it can be justified as
follows. The correlation between the spin operators located at the points x1 and x2 is due to exchanges
of an odd number of particles. An external particle trajectory which passes between these two points
intersects an odd number of the trajectories of these exchange particles, thus producing the minus sign.
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out one of the coordinates in

1

2

∫
d2x1d

2x2 〈θ1, θ2|Tσ(x1)σ(x2)|θ1, θ2〉conn =

= − 1

2 sinh θ12

∫
d2x |UV |〈0|Tσ(x/2)σ(−x/2)|0〉, (3.81)

where U = u1−u2, V = v1−v2 are the coordinates (3.78) associated with the separation

x = x1− x2. The last expression is equivalent to (3.67), which leads to the logarithmic

behavior (3.71). The origin of the logarithm is clear. Apart from the step function, the

integrand in (3.81) is Lorentz-invariant. The step function provides the cutoff for the

integration over the Lorentz boost parameter φ in the integral over d2x = dρ dφ. Thus,

the term θ12 ≈ 1
2 logw in (3.70) is just the size of the Lorentz boost which brings the

rest frame of the particle 2 to the rest frame of the particle 1.

The same approximation can be applied to the higher-order terms in the perturba-

tive expansion of

S(θ12) = −〈θ1, θ2|T exp

(
−ih

∫
σ(x)d2x

)
|θ1, θ2〉conn (3.82)

by assuming that at θ12 →∞ one can write

〈θ1, θ2|Tσ(x)σ(x2) . . . σ(x2n)|θ1, θ2〉 →

→

[
2n∏
i=1

sign(ui) sign(vi)

]
〈0|Tσ(x)σ(x2) . . . σ(x2n)|0〉, (3.83)

where (ui, vi) are the coordinates (3.78) of the points xi. Again, apart from the sign

factors sign(ui) sign(vi), the right-hand side of (3.83) is invariant with respect to simul-

taneous Lorentz transformations of the coordinates xi. Therefore, integration over∏2n
i=1 d

2xi generates at least one factor θ12. But in fact this integration produces

much larger contribution ∼ θn12. Indeed, the 2n-point correlation function contains

(2n)!/(2nn!) fully disconnected terms

〈0|Tσ(x1)σ(x2)|0〉〈0|Tσ(x3)σ(x4)|0〉 . . . 〈0|Tσ(x2n−1)σ(x2n)|0〉+ permutations. (3.84)

These terms are invariant with respect to n copies of the Lorentz group, each acting on

a respective pair of the points. Because of the factorization, these terms can be handled
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exactly as it was done before with the h2-contribution, and it leads to the contribution

∼ (h2θ12)n to (3.82). It is not difficult to see that the contributions from the fully

disconnected terms above form an exponential series in h2 θ12 ∼ h2 logw. Assuming

that there are no other sources of such “leading logarithms”, which clearly needs to

be proven by a more detailed analysis, this suggests the power-like decay of the 2→ 2

S-matrix element in terms of the variable (3.17)

S(w) ∼ (−w/w0)−2G(3)h2 (3.85)

as |w| → ∞, −π < argw < π. Here again we choose the branch of the function in such

a way that S(w) is real at negative w. This corresponds to the behavior (3.77) of the

inelastic cross-section.

Finally, we note that the asymptotic behavior (3.85) agrees with naive “two-particle”

unitarization of (3.20),

S(θ) = −sinh θ + i sin(2π/3)

sinh θ − i sin(2π/3)

sinh θ − i sin(2π/3 + rh2)

sinh θ + i sin(2π/3 + rh2)
exp

(
ih2Aσ(θ)

sinh θ

)
, (3.86)

where r = 36σ̄2, and Aσ(θ) is the second term in (3.25). Although (3.86) involves

all powers of h2, it is, of course, not the exact expression for the 2 → 2 S-matrix

element, since it ignores the higher-order corrections to the residue (3.33), as well as

the higher-order terms in σtot.

3.5 Discussion

In this chapter we use two different methods to compute high-energy asymptotic for the

scattering amplitude. What we observe is that to the first order in h2 the amplitude is

dominated by the logarithmic term

S → −1 + 8h2G(3) [log(E/E0)− iπ/4] +O(h4) (3.87)

as E, the center-of-mass energy, goes to infinity. Here G(3) is the third moment of the

spin-spin correlation function12

G(3) =

∫ ∞
0

r3〈σ(r)σ(0)〉dr = (2.34752921866 . . .)m−15/4. (3.88)

12Here we restore the mass to give an idea of the dimensionality of the expression.
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The asymptotic behavior (3.87) indicates the logarithmic growth of the leading term

in the h2-expansion of the total inelastic cross-section. The unitarity bound σtot 6 1

suggests that (3.87) represents but the first terms of a series in the “leading logarithms”

(h2 logE)n. We presented an argument in support of this statement which also shows

that the leading logarithms form an exponential series that gives a power-like decay

|S2→2| ∼ E−8G(3)h2 at large E. This behavior suggests that while at low energies

the two-particle scattering is dominated by the elastic 2 → 2-channel, at large E the

scattering goes almost entirely through inelastic channels, even at small h2.

These results are somewhat disappointing from the following point of view. We

know that as η grows from −∞, the particle spectrum of the IFT changes qualitatively:

at η ≈ −2.09 the second stable particle with the mass M2 appears in the spectrum in

addition to the first particle, the third particle becomes stable at η ≈ −0.14, and this

process of particle multiplication continues further with growing η (Fig. 1.3). Therefore,

at sufficiently large negative η, when we have a single stable particle in the theory, we

would expect other particles, or at least the lighter ones, to exist in form of resonances

that should be observable in the amplitude at sufficiently high energies, and this does not

seem to be the case, at least at the current level of understanding. There are two possible

scenarios that could resolve this puzzle. The first one is that at h2 → 0 the resonance

masses when taken in units of m, the lightest stable particle, depart to infinity in a

non-analytic manner, e.g., as M2
res ∼ eC/h

2
, where C is a certain constant. This would

indicate that the point h = 0, while being just a regular point for the vacuum energy,

becomes an essential singularity when the particle masses are considered. Another

possibility is that the resonances disappear at infinity at certain positive values of

E−h
2
. In any case, the work presented here has to be considered as just the beginning

of the systematic analysis of scattering in the high-temperature IFT.
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Appendix A

Computation of ∆odd/even(θ)

In this appendix we sketch the computation of ∆odd(θ) and ∆even(θ), (2.35) and (2.36),

respectively. For this first it is convenient to rewrite the wavefunctions (2.30) and (2.31)

through more elementary functions

ϕ+(θ) =
1

2

∫ ∞
−∞

eiS(β)/λ dβ

sinh(θ + β − i0)
, ϕ−(θ) =

1

2

∫ ∞
−∞

eiS(β)/λ dβ

sinh(θ − β + i0)
. (A.1)

Then using ϕ+(−θ) = −ϕ−(θ), we have

ϕ
(0)
odd(θ) = ϕ+(θ)− ϕ+(−θ), ϕ(0)

even(θ) = ϕ+(θ) + ϕ+(−θ). (A.2)

Hence one has to evaluate (Ĥ−α)ϕ+(θ) only, then separating the terms antisymmetric

and symmetric with respect to the reflection θ → −θ gives the sought expressions.

It is useful to rewrite the operator (Ĥ − α) as

(Ĥ − α)ϕ(θ) = cosh2 θ (Ω̂ + Ĝ)ϕ(θ) (A.3)

with

Ω̂ϕ(θ) = Ω(θ)ϕ(θ), Ω(θ) = −∂S(θ)

∂θ
= 1− α

cosh2 θ
, (A.4)

and

Ĝϕ(θ) = −2λ−
∫ ∞
−∞

dθ′

2π

ϕ(θ′)

sinh2(θ − θ′)
. (A.5)

First, look at the integral

Ĝϕ+(θ) = −λ−
∫ ∞
−∞

dθ′

2π

1

sinh2(θ − θ′)

∫ ∞
−∞

eiS(β)/λ dβ

sinh(θ′ + β − i0)
=

= λ
d

dθ
−
∫ ∞
−∞

dθ′

2π
coth(θ − θ′)

∫ ∞
−∞

eiS(β)/λ dβ

sinh(θ′ + β − i0)
=
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One changes the order of integration. For fixed real β, shifting downward the contour

of integration over θ′, θ′ = α− iπ/2, produces an additional term coming from the pole

of coth(θ − θ′) at θ′ = θ,

= iλ
d

dθ

∫ ∞
−∞

dβ

2π
eiS(β)/λ

∫ ∞
−∞

dα
tanh(θ − α)

cosh(α+ β)
+
iλ

2

d

dθ

∫ ∞
−∞

eiS(β)/λ dβ

sinh(θ + β − i0)
=

The integral over α is evaluated in closed form∫ ∞
−∞

dα
tanh(θ − α)

cosh(α+ β)
= π tanh

θ + β

2
. (A.6)

In the second integral, we change d/dθ to d/dβ and integrate by parts, thus getting the

following

=
iλ

4

∫ ∞
−∞

dβ
eiS(β)/λ

cosh2 θ+β
2

− 1

2

∫ ∞
−∞

Ω(β) eiS(β)/λ dβ

sinh(θ + β − i0)
. (A.7)

One can notice that when plugged into (A.3) the term with Ω(β) combines with the

term Ω(θ)ϕ+(θ) giving

1

2

∫ ∞
−∞

(Ω(θ)− Ω(β)) eiS(β)/λ dβ

sinh(θ + β − i0)
=

1

2

∫ ∞
−∞

dβ eiS(β)/λ α sinh(θ − β)

cosh2 θ cosh2 β
. (A.8)

Hence, we get for (A.3)

(Ω̂ + Ĝ)ϕ+(θ) =
1

2

∫ ∞
−∞

dβ eiS(β)/λ

(
α sinh(θ − β)

cosh2 θ cosh2 β
+
iλ

2

1

cosh2 θ+β
2

)
. (A.9)

Now this expression, appropriately anti-symmetrized and symmetrized, gives the for-

mulae for ∆odd(θ) and ∆even(θ), (2.35) and (2.36), respectively.
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Appendix B

Coordinate-space representation

Dependence of the terms in the low-energy expansion on roots of Ai′(−z) in (2.43) looks

drastically different from the behavior in the odd sector. Therefore, it is worthwhile to

provide another way to reproduce it.

In [9] a coordinate-space formulation for the bound-state equation was used to obtain

the low-energy series for the spectrum of the IFT. Similarly we map ’t Hooft’s equation

into the coordinate space. For simplicity we choose (2.25) as a starting point for our

analysis. In u = 2x− 1, this equation becomes

αϕ(u) =
ϕ(u)

1− u2
− 2λ−

∫ 1

−1

ϕ(v)

(u− v)2

dv

2π
. (B.1)

Rescaling u = tk, v = tp, setting λ = t3, expanding everything in t, and rearranging

the terms, one gets

(1− α+ t2k2 + t4k4 + . . . )ϕ(tk) = 2t2−
∫ ∞
−∞

ϕ(tp)

(p− k)2

dp

2π
. (B.2)

Here we changed the limits of integration from (−1/t, 1/t) to (−∞,∞), an operation

legitimate at O(t4).

Now this equation in the configuration space becomes(
−ε+ |x| − d2

dx2
+ t2

d4

dx4
− t4 d

6

dx6
+ . . .

)
ψ(x) = 0. (B.3)

Here the Fourier transform conventions in terms of the rescaled distance between quarks

x = t xreal are

ψ(x) =

∫ ∞
−∞

dk

2π
eikxϕ(tk),

and we let 1− α = −εt2.

This equation (B.3) has a symmetry x → −x, hence its spectrum can divided into

even and odd parts.
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To find a perturbative solution for it, one first solves the auxiliary equation(
x− d2

dx2
+ t2

d4

dx4
− t4 d

6

dx6
+ . . .

)
F (x) = 0 (B.4)

with

F (x) = F0(x) + t2F1(x) + t4F2(x) + . . .

The bounded perturbative solution for (B.4) is

F (x) = Ai(x) +
t2

5

(
4xAi(x) + x2 Ai′(x)

)
+

+ t4
[(

x5

50
+

5x2

7

)
Ai(x) +

(
9x3

35
+

6

35

)
Ai′(x)

]
+ . . . (B.5)

The following two claims provide both the solutions for (B.3) and the spectra for

even and odd sectors. In each case we assume that F (x) is the perturbative solution

(B.5) for (B.4).

Claim 1. ψodd(x) = signx F (|x| − ε) provides the odd perturbative solution of

(B.3) if F (x) is such that

F (−ε) = O(t2),

F (−ε)− t2F ′′(−ε) = O(t4),

F (−ε)− t2F ′′(−ε) + t4F IV(−ε) = O(t6).

(B.6)

Claim 2. ψeven(x) = F (|x| − ε) is the even perturbative solution of (B.3) if F (x)

satisfies

F ′(−ε) = O(t2),

F ′(−ε)− t2F ′′′(−ε) = O(t4),

F ′(−ε)− t2F ′′′(−ε) + t4FV(−ε) = O(t6).

(B.7)

The proof of each claim is straightforward. Higher order conditions can be easily

written but they are not necessary at the order we are interested in.

In both cases conditions on F , (B.6) and (B.7), are sufficient for determining the

spectra. It is easy to check that using them one obtains the following expansion of α

in the odd sector

αodd = 1 + t2z +
t4z2

5
+ t6

(
− 3

175
z3 +

6

35

)
+ . . . (B.8)
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and in the even sector

αeven = 1 + t2z + t4
(
z2

5
+

1

5z

)
+ t6

(
− 3

175
z3 +

3

25
− 1

50z3

)
+ . . . (B.9)

where z is the solution of Ai(−z) = 0 and Ai′(−z) = 0, respectively, thus matching

low-energy expansions (2.41) and (2.43) derived above at the chosen order in t.
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Appendix C

Computation of σ
(2)
2→3

As earlier, to simplify notations, we will perform the calculations in the center-of-mass

frame, θ1 + θ2 = 0, and set θ ≡ θ1 − θ2 > 0. It is useful to introduce notations x = eθ/2

and E = x + x−1, so that E = 2 cosh(θ/2) is still the center-of-mass energy in units

where m = 1. Kinematics demands E > 3, hence x > (3 +
√

5)/2.

The relevant matrix element (3.28) in new notations is given now as

F (θ1, θ2|β1, β2, β3) = σ̄
x2 − 1

x2 + 1
G(x|{zi}) (C.1)

with

G(x|{zi}) =
3∏
i<j

zi − zj
zi + zj

3∏
i=1

x+ zi
x− zi

1 + xzi
1− xzi

, (C.2)

here zi = eβi . Hence, σ
(2)
2→3 becomes

σ
(2)
2→3(ω) =

2σ̄2

π

x2(x2 − 1)

(x2 + 1)3
W (x) (C.3)

with

W (x) =
1

3!

∫
dz1

z1

dz2

z2

dz3

z3
δ(E − Σizi)δ(E − Σi1/zi)G

2(x|{zi}). (C.4)

Integration over each zi goes from 0 to ∞. Since the integral is symmetric with respect

to permutations of these variables, we integrate over 0 < z1 < z2 < z3 <∞ eliminating

the factorial factor. The integral can be further simplified by introducing the symmetric

variables

s1 = z1 + z2 + z3, s2 = z1z2 + z2z3 + z1z3, s = z1z2z3. (C.5)

The jacobian of the transformation is

D =

∣∣∣∣ ∂(s1, s2, s)

∂(z1, z2, z3)

∣∣∣∣ = (z2 − z1)(z3 − z1)(z3 − z2) =

=
√
s2

1s
2
2 − 4ss3

1 − 4s3
2 + 18ss1s2 − 27s2. (C.6)
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In variables s delta-functions become δ(E − s1) and δ(E − s2/s), thus, integration sets

s1 = E, s2 = sE. The jacobian becomes

D ≡ D(E|s) = 2E3/2
√
s(s+ − s)(s− s−) (C.7)

with s± being the ordered solutions, s+ > s−, of the quadratic equation

s2 − E4 + 18E2 − 27

4E3
s+ 1 = 0. (C.8)

Notice that for E > 3 both roots are real and positive becoming equal at E = 3, the

three-particle threshold.

In new variables G(x|{zi}) is

G(x|{zi}) = G(E|s) =
2E2 + 1

E2 − 1

R(E|s)
Q(E|s)

D(E|s)
s

(C.9)

with

R(E|s) = s2 +
E(4E2 − 7)

2E2 + 1
s+ 1, Q(E|s) = s2 − Es+ 1. (C.10)

Hence, the integral (C.4) becomes

W (x) =

∫ s+

s−

ds
G2(E|s)
D(E|s)

. (C.11)

To simplify further analysis, it is useful to make projective transformation of the

integration variable to bring the limits to −1 and 1. We define

q = q(E) =

(
s+ − 1

s+ + 1

)2

=
(E + 1)(E − 3)3

(E − 1)(E + 3)3
, (C.12)

and introduce t

t =
1

q

1− s
1 + s

. (C.13)

This brings (C.11) to the form

W (E) =
2(E + 2)2(2E − 1)4(E − 3)3

(E − 2)2(E2 − 1)(E + 3)3/2(E − 1)3/2
×

×
∫ 1

−1
dt

√
1− t2

(1− q t2)3/2

(
1− µ t2

1− ν t2

)2

(C.14)

with

µ = q
(E − 2)(2E + 1)2

(E + 2)(2E − 1)2
, ν = q

E + 2

E − 2
. (C.15)
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Finally, collecting everything together we come to the expression (3.35)

σ
(2)
2→3 = N(E)I(E) (C.16)

with

I(E) =

∫ 1

−1
dt

√
1− t2

(1− q t2)3/2

(
1− µ t2

1− ν t2

)2

(C.17)

and

N(E) =
4σ̄2

π

(E + 2)5/2

(E − 2)3/2

(E − 3)3(2E − 1)4

(E + 3)3/2(E − 1)5/2(E + 1)E3
. (C.18)

We can use now this expression to study behavior of the σ
(2)
2→3 at the threshold and

high energies.
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Appendix D

Near-threshold behavior of σ
(2)
2→n

Here we compute the main leading term in σ
(2)
2→n near the threshold E → n.

In the center-of-mass frame we have

Pin = (E, 0), Pout = (Σi coshβi,Σi sinhβi) . (D.1)

Using the expression for the matrix element (3.28), we get

σ
(2)
2→n(w) =

2
√
E2 − 4

E3

σ̄2

n!

∫ [ n∏
i=1

dβi
2π

]
(2π)2δ (E − Σi coshβi) δ (Σi sinhβi)×

×
n∏
i=1

(
E + 2 coshβi
E − 2 coshβi

)2 n∏
j>i=1

tanh2 βi − βj
2

. (D.2)

We are interested in the threshold behavior E = n + ε with ε → 0+. In this limit,

all βi are small so that the integral is simplified

σ
(2)
2→n(w) =

2
√
E2 − 4

E3

σ̄2

2n2−n

(
E + 2

E − 2

)2n

Wn(E), (D.3)

where

Wn(E) =
1

n!

∫ [ n∏
i=1

dβi
2π

]
(2π)2δ

(
ε− Σiβ

2
i /2
)
δ (Σiβi) ∆2(β) (D.4)

with ∆(β) =
∏
i<j(βi − βj) being the Vandermonde determinant.

The integral for Wn(E) is evaluated in the following way. Rewrite Wn(E) as

Wn(E) =

∫ ∞
−∞

dt e−iεtDn(t) (D.5)

with

Dn(t) =

∫ ∞
−∞

dx

∫ [ n∏
i=1

dβi
2π

]
ei

∑
i(tβ2

i /2+xβi)∆2(β). (D.6)

Using the shift, βi = yi − x/t, one obtains for Dn(t)

Dn(t) =

√
2πt

in

∫ [ n∏
i=1

dyi
2π

]
eit

∑
i y

2
i /2∆2(y). (D.7)
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Another change of variables, yi = zi
√
i/t, gives

Dn(t) =

√
2π

n

(
i

t

)(n2−1)/2 ∫ [ n∏
i=1

dzi
2π

]
e−

∑
i z

2
i /2∆2(z). (D.8)

The integral over zi is evaluated in closed form [42]∫ [ n∏
i=1

dzi
2π

]
e−

∑
i z

2
i /2∆2(z) =

∏n
p=1 p!

(2π)n/2
. (D.9)

Hence, for Wn(E) we have

Wn(E) =

∏n−1
p=1 p!√
n

i(n
2−1)/2

(2π)(n−1)/2

∫ ∞
−∞

dt
e−iεt

(t2 + i0)(n2−1)/2
=

=

∏n−1
p=1 p!√
n

(E − n)(n2−3)/2

(2π)(n−3)/2 Γ
(
n2−1

2

) . (D.10)

Collecting everything and keeping the leading term, we get the threshold behavior

(3.41).
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