Description: PUP Math – Night	Transcriber(s): Private Universe
Session	Project
Location: David Brearley High School	Verifier(s): Sigley, Robert, Sran,
– Kenilworth, NJ	Kiranjeet
Researcher: Professor Carolyn Maher	Date Transcribed: Spring 2000
	Page: 1 of 4
	5

Line	Time	Speaker	Transcript
1.		NARRATOR	In May of their junior year, Kenilworth High School students returned to school one evening around 7:30 p.m. for a research session with Carolyn Maher and her colleagues from Rutgers University. Carolyn began the session by asking them to review what they had discussed in their pre-calculus class earlier that day. The class had touched on binomial expansions, and the students had learned about a way to calculate the co-efficient of any term without having to write out Pascal's triangles. The notation is called N choose R. It evaluates how many ways there are of choosing R objects from a set of N objects. Mike drew Pascal's triangle, and explained how the numbers could be assigned to the N choose R notation.
2.		MIKE	All right. This would be like 3 choose 1. How many different places could you put that 1, that one guy- there's only one place. The next one would be 3 choose 3. There's obviously 3 different places-
3.		CAROLYN MAHER	You 3 choose what? What's the next one?
4.		MIKE	-3 choose 1. The next would be 3 choose 2, which you just figured that out is 3. And the last one is 3 choose 3. You can only put those 3 people in 3 places. You can't no other place to put

Description: PUP Math – Night	Transcriber(s): Private Universe
Session	Project
Location: David Brearley High School	Verifier(s): Sigley, Robert, Sran,
– Kenilworth, NJ	Kiranjeet
Researcher: Professor Carolyn Maher	Date Transcribed: Spring 2000
	Page: 2 of 4
	5

		them.
5.	CAROLYN	I have another question. You could
	MAHER	write more rows of that triangle. And
		now you're telling me you can write
		them as the "choose" way, you've
		called that. So can you take, let's say,
		another row or two? And show me the
		addition rule, and what it looks like,
		with your new notation for a particular
		row.
6.	MIKE	Add this and this, and go like that?
7.	CAROLYN	Sure. Or 3 and 3 is 6. Show me what
	MAHER	that looks like with that new notation.
8.	MIKE	All right. Let's go to this one. This
		would be, like, 3 different places, I
		guess.
9.	JEFF	Which one are we looking at?
10.	MIKE	That one right there.
11.	JEFF	That would be a plus b to the third?
12.	MIKE	Let's say you have like, here's a
		number, right? Zero means no
		toppings, 1 would be a topping. So the
		first category is everything with no
		toppings, and that's your number for
		that one. This is like binary numbers or
		something, Next would be- there's all
		the ones that have 1 topping.
13.	JEFF	Mike, you got to make that a zero at the
		end. You messed up.
14.	MIKE	What? I knew that. There's your 3
		choose 1, and there's 3 different
		combinations you can put that. And I
		can go on forever doing this. But when
		have a new- when you add another
		place, another topping-
15.	JEFF	That can be one or the other- one or
ļ ļ		the other- one or the other-
16.	MIKE	So it could be one or the other. It could

Description: PUP Math – Night	Transcriber(s): Private Universe
Session	Project
Location: David Brearley High School	Verifier(s): Sigley, Robert, Sran,
– Kenilworth, NJ	Kiranjeet
Researcher: Professor Carolyn Maher	Date Transcribed: Spring 2000
	Page: 3 of 4

			be a zoro or a one la zoro or a one la
			be a zero or a one, a zero or a one, a zero or a one. So all these 3's would
			either move up a step onto the next
			category, and have 2 toppings, or they
			might stay behind and still only have 1,
			if they have the zero. So 3, I get a
			topping go to this one. And 3 won't-
			will stay. And obviously, this guy's
			going to get a topping; that's why you
			add this one. So now this guy's going to
			have without toppings you're going
			to add a topping onto him and it's
			going to be 1 topping. These 3 with 1
			topping won't get one. So, you know,
			you can put them in the same category
			as this one, that's 4.
17.	,	EFF	Yeah. Those are 4.
18.	M	IIKE	And, you know, the 3 that had 2
			toppings won't get any.
19.	,	EFF	Yeah. So that'll go to the left?
20.	M	IIKE	And you'll put them together with the
			ones that did get some. That's why you
			would add- keep on adding.
21.		AROLYN	Well I want you to show me how the
		IAHER	addition rule works, in general.
22.		EFF	N choose X plus N choose X + 1
23.		IIKE	-Equals that
24.	JF	EFF	-plus 1 equals that right there. Well that's
			because this would be gaining an X and
			going into the $X + 1$, and this would be
			losing an X.
05			N
25.		IIKE	No, no, no-
26.		NKUR	That stays the same.
27.	JE	EFF	That's staying the same, and that's- is
			the X + 1
28.	M	IIKE	And the toppings going to change

Description: PUP Math – Night	Transcriber(s): Private Universe
Session	Project
Location: David Brearley High School	Verifier(s): Sigley, Robert, Sran,
– Kenilworth, NJ	Kiranjeet
Researcher: Professor Carolyn Maher	Date Transcribed: Spring 2000
	Page: 4 of 4

		bacausa yau baya mara
29.	IEEE	because you have more-
29.	JEFF	-because you have more things. And
		why do it? -Because when you add
		another topping on to it, say the
		toppings were one and zero, if it gets a
		topping, that's why it goes up to the X +
		1, and since it doesn't get anything, it
		will stay the same. And in this one, it's
		staying the same, right? And that's why
		it's going there, like saying that's the
		zero, and going to there. Make sense?
30.	BRIAN	Yes, it actually does.
31.	JEFF	So that would be the general addition
		rule, in this case.
32.	CAROLYN	In fact, I wish someone would do it on
	MAHER	the board on the right there, write that
		addition statement, using factorial
		notations.
33.	JEFF	Minus X plus- exactly. You know like,
		how intimidating this equation must
		be, like if you just pick up a book and
		look at that?
34.	CAROLYN	Could you very carefully check that
	MAHER	arithmetic?
35.	MIKE	You think we're wrong?
36.	ANKUR	Yeah, it's right there.
37.	JEFF	Where is it?
38.	ANKUR	It's right above n over x.
39.	MIKE	There you go.
40.	CAROLYN	You sure?
	MAHER	
41.	MIKE	Yeah, I'm sure. You got anything else?