Description: PUP Math – Pascals	Transcriber(s): Private Universe Project
Addition	Verifier(s): Sigley, Robert, Sran,
Location: Harding School –	Kiranjeet
Kenilworth, NJ	Date Transcribed: Spring 2000
Researcher: Professor Carolyn Maher	Page: 1 of 2

Line	Time	Speaker	Transcript
1		Narrator	In March of 1996, mathematician Robert Speiser, of
			Brigham Young University, interviewed Stephanie.
			Stephanie linked towers 2 high to each number in the
			second row of Pascal's triangle.
2		Stephanie	We figured out all of them, like, from this.
3		Robert	OK. Tell me a little more about the triangle. Okay, does
		Speiser	this have to do with towers?
4		Stephanie	Yeah.
5		Robert	Show me the
		Speiser	
6		Stephanie	It would be-
7		Robert	So these are the towers that are 2 high 2 blocks high.
		Speiser	And then how do you find the 1, the 2, and the 1?
8		Stephanie	It would be if you're selecting green it would be 1
			Well, if you're selecting blue, it would be 1 with no
			selections of blue, 2 with 1 selection of blue, and 1 with 1
			all selections of blue. It's like the towers.
9		Robert	It's like the way you'd organized the towers before.
		Speiser	
10		Stephanie	Mm-hmm. Yeah.
11		Robert	How would you organize the next row so that it makes
		Speiser	more sense so that it makes the most sense for you?
12		Stephanie	Oh, to the chart it would be Wait.
13		Robert	How did you know to write those numbers?
		Speiser	
14		Stephanie	Because 1 goes to 1 and 1, and then 1 goes here, 1 + 1 is 2,
			and 1 goes there.
15		Robert	Oh. So you do it by adding. Ah.
	-	Speiser	
16		Stephanie	Yeah. $1 + 2$ is 3, $1 + 2$ is 3, and 1 goes there. That's how
			you do that.
17		Robert	Oh. So that's how you got this row?
10		Speiser	
18		Stephanie	Yes.
19		Robert	Okay.
20		Speiser	
20		Stephanie	That's how I got it.
21		Narrator	Stephanie then showed how adding either a green block or
			a blue block can make towers 3 high and lead to a new
			row of Pascal's triangle.

Description: PUP Math – Pascals	Transcriber(s): Private Universe Project
Addition	Verifier(s): Sigley, Robert, Sran,
Location: Harding School –	Kiranjeet
Kenilworth, NJ	Date Transcribed: Spring 2000
Researcher: Professor Carolyn Maher	Page: 2 of 2

22	Robert	Did you explore why the adding works?
	Speiser	
23	Stephanie	Its choices can be green, built onto it it can either have a
		green on top of it or a blue on top of it. And there was no
		one with green, blue, blue. That's why.
24	Robert	Good. It looks to me like the others worked the same way.
	Speiser	
25	Stephanie	Yeah, you just keep building on.
26	Narrator	This is called the additional rule of Pascal's triangle. The
		same addition rule applies to polynomial co-efficients.