Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 1 of 15

Line	Time	Speaker	Transcript	Code
1.		Narrator	When the Kenilworth students were in	
			the sixth grade, the late Robert B. Davis	
			led a research session based on the	
			classic game, Towers of Hanoi. The	
			researchers were interested in finding	
			out how the students would solve	
			problems involving exponential	
			functions, even though at this point,	
			their formal knowledge of exponents	
			was very limited.	
2.		Robert Davis	You may know this puzzle. It's called	
			The Tower of Hanoi. Do you know the	
			story that goes with it?	
3.		Students	Yeah	
4.		Robert Davis	They claim there was an order of	
			monks in the City of Hanoi, who were	
			religious men who lived by themselves.	
			And they were concerned about when	
			the world was going to end. And so	
			they made a puzzle like this which has	
			100 disks in it. And they spent all of	
			their time- plus they eat and sleep and	
			things like that- but when they're not	
			doing things like that, they spend all	
			their time working to solve that puzzle.	
			When they have it done, that's	
			supposed to be when the world ends.	
			Okay? And I thought it might be	
			interesting to figure out when the	
			world's going to end, so we'd know too.	
5.		Jeff	Yeah, but I'd be scared.	
6.		Robert Davis	Now let's agree on what the rules are.	
			The rules are you can only move one	
			disk at a time, and what else?	
7.		Ankur		
			one.	
8.		Robert Davis	You can never put a bigger one on top	
			You can't move a bigger onto a smaller one.	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 2 of 15

		of a smaller one. Okay. Now if we want to find out when the world is going to end- some safe way; we're not going to do a 100
9.	Carolyn Maher	Bob Davis came to mathematics education as a mathematician. He had three degrees from MIT in mathematics, but decided that he was really interested in how people learned mathematics. He was really interested in thinking. And so he was one of our very first pioneers to come into this field and lead the way.
10.	Robert Davis	What could I do?
11.	Ankur	Do you think if we get all hundred, the world will really end?
12.	Mike	We'll probably be dead when you get it.
13.	Jeff	Yeah. By the time we figure it out with a hundred, we'll be dead.
14.	Robert Davis	I want you to do it.
15.	Carolyn Maher	For them, this was an unsolved problem. For them, like the mathematician who's working on a problem, they don't know the answer. And even though we know there is an answer, they know that we're not going to tell them what that answer is. So for them, the conditions are very much like mathematicians doing original mathematics.
16.	Amy-Lynn	We got the whole thing in
17.	Fern Hunt	It's hard when you've got a lot of disks flying around, to try to find a way to move these disks without breaking those rules.
18.	Stephanie	twenty two, twenty three, twenty four.
19.	Fern Hunt	I think if you were to start to actually carry this task out, one finds out pretty

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 3 of 15

		quickly that it can get pretty	
		complicated.	
20.	Ankur	One, two	
21.	Michelle	Three, four	
22.	Ankur, Michelle	Five, six, seven.	
23.	Ankur	Three is seven.	
24.	Fern Hunt	One of the first things that a	
		mathematician often does is to simplify	
		the situation. Rather than look at the	
		problem in all its complexity, look at	
		another problem. And that problem	
		shares, perhaps, some of the	
		characteristics of the original problem.	
		But it has many fewer of the	
		complexities. And you would work with	
		that simpler problem to see what one	
		could learn. Hopefully, what you learn in	
		that situation, you can apply to the	
		more complex situation.	
25.	Robert Davis	Okay. I want somebody to come-	
		Suppose we had just one disk.	
		Somebody come and solve that puzzle.	
26.	Fern Hunt	So a simplification is an important step.	
27.	Student	It has to move at least once.	
28.	Robert Davis	Okay. And now I need to keep track.	
		When there was one disk it took one	
		move. Everybody agree with that?	
29.	Student	Yes.	
30.	Robert Davis	And that's what we've got here.	
		Somebody told me if there was two	
		disks, it would take three moves. Is	
		that right?	
31.	Student	Yes.	
32.	Robert Davis	Somebody come and do that. Amy-	
		Lynn, can you come do that?	
33.	Robert Davis	Great it took her three moves, okay?	
		That looks all right. Is that okay? We	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 4 of 15

		need somebody to come down and do
0.4	Y . CC	it with three disks.
34.	Jeff	I'll do it with three.
35.	Robert Davis	Two, three, four, five, six, seven. Looks
		like it's right, huh? Okay. Now is that all
		right? Everybody happy with that?
		Now how about four moves? Milin,
		have you figured out what it will be with four moves?
26	Milin	That's nine.
36.		
37.	Robert Davis	It's nine.
38.	Michelle	I can do it in fifteen.
39.	Jeff	Go Milin.
40.	Mike	Oh it's times 2 + 1. Oh we got it. I know,
		I know Can I tell everybody? Is it the
41	Milia	number times 2 + 1?
41.	Milin	Yes. The number times 2 + 1. It always
42	Dahast Dasia	works.
42.	Robert Davis	Is that right?
43.	Milin	Yes.
44.	Jeff	Can we still play the game now?
45.	Robert Davis	Okay, we need to try this, I think,
		because we've got some disagreements here.
46.	Robert Davis	Fifteen. You did it in 15.
47.	Stephanie	I did it in 15.
48.	Robert Davis	Okay, Stephanie just did it in 15. Can
40.	Robert Davis	anybody do it in less than 15?
49.	Matt	I found a pattern. I found the pattern
45.	Matt	with it.
50.	Robert Davis	You found the pattern?
51.	Matt	Yes.
52.	Robert Davis	What is the pattern?
53.	Matt	It's likelook at from this way, two
		times two, times one is three. Three
		times three plus one. Four times four
		minus one. Then it would go five times

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 5 of 15

		five plus one
54.	Student	We noticed a pattern.
55.	Robert Davis	You know the pattern too.
56.	Matt	Six times six minus one.
57.	Robert Davis	Don't do that too quickly here.
58.	Michelle	Like one and one is three, and then you add one more, and then it's- three and three are six. And then you add one
		more, and then seven and seven are 14, and you add one, is 15, and 15 and 15 are 30-
59.	Robert Davis	Michelle and Ankur have found something very clever, but we may not end the world today.
60.	Fern Hunt	Another thing that a mathematician does is look for patterns. They look at, perhaps, many instances. And from those classes of problems that the mathematician is solving, certain patterns may arise. The idea is in some sense to try to
		understand or somehow summarize what that pattern might be.
61.	Michelle	This is what we did. One plus one is two, and then one more is three. Three plus three is six, and then plus one is seven. And then
62.	Brian	Wait. there's an easier way. See, there's two between there. It doubles becomes four? Four is between there, it doubles and becomes eight. Eight doubles
63.	Ankur	But that doesn't
64.	Romina	Yeah, I know.
65.	Brian	But it's the easiest way to figure it out.
66.	Ankur	Oh please.
67.	Robert Davis	Michelle- Could I get everybody's

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 6 of 15

		<u> </u>	
		attention, please, for just a minute, because Michelle has something interesting to say. Can you show everybody what you're doing?	
68.	Michelle	Well, one and one is three, and then you add one more, and then it's- Three and three are six, and then you add one more. And seven and seven are 14, plus one is 15. So then the next one would	
		be 15 and 15 is 30, plus one is 31. And then so on, and so on, and so on	
69.	Robert Davis	Thirty-one. Okay. And now what is the one we really care about? The one that counts	
70.	Student	One hundred.	
71.	Robert Davis	is 100. So we want to know what number goes there.	
72.	Student	Oh my God.	
73.	Ankur	Maybe if we get ten, we can get like, 20, and then 30.	
74.	Stephanie	Ten is 1,023.	
75.	Ankur	Ten is 1,023.	
76.	Stephanie	I already got down to ten.	
77.	Ankur	Ten is	
78.	Michelle	1,023. Want to work with us Steph? If you guys are just off in la-la land.	
79.	Stephanie	Matt, come on.	
80.	Brian	And then do ten times ten. Not ten times ten. Ten times 1,023.	
81.	Michelle	Very quickly here. We've got to catch on.	
82.	Ankur	Shelly, this is 2 to the tenth power.	
83.	Michelle	Oh my God. Duh, we had it right there.	
84.	Ankur	What's 2 to the 100th power? That's the answer.	
85.	Michelle	2 to he 100th power?	
86.	Ankur	We got it. We got it.	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 7 of 15

87.	Robert Davis	You've got it. Okay, can we get one discussion so everybody can hear? Who's going to do the talking about this problem?	
88.	Students	All of us.	
89.	Robert Davis	All of you?	
90.	Students	We all did it.	
91.	Robert Davis	All right. Can you sort of face the rest of the people and tell them what you got?	
92.	Ankur	We tried to figure out ten, right? And it wasone hundred and twenty three so we found that two to the tenth power also equals 123. So we figured that two to the hundredth power should equal the answer.	
93.	Robert Davis	Now, I'm not sure that I think two to the tenth is 1,023.	
94.	Michelle	We figured this out by going through the numbers.	
95.	Students	It's 1,024.	
96.	Stephanie	That's not right.	
97.	Students	It's 1,024.	
98.	Student	Because you can't have an odd number as the last number.	
99.	Robert Davis	Thank you very much. That's a cleaver idea.	
100.	Michelle	And then we realized since it would work for this to this, why wouldn't it work, oh excuse me, from 2 to the 100th power.	
101.	Student	Why can't it be 10,240?	
102.	Ankur	It's 2 times 2 times 2 and so on to a hundred.	
103.	Robert Davis	Yeah. Instead of multiplying, instead of writing ten twos and multiplying them, you have to write 100 twos and multiply them. That's more than	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 8 of 15

		adding zeros.	
104.	Ankur	That's the equation but we didn't	
		figure out the answer, yet.	
105.	Mike	I just saw something. What we're	
		trying to do is 1 and 3, the difference is	
		2. Three and 7, the difference is 4.	
		Seven and 15, the difference is eight.	
106.	Robert Davis	I'll write those numbers, too, if that	
		helps.	
107.	Matt	Oh, I have it. I have it. You're	
		multiplying everything by two. Two	
		times 2 is 4 times 2 is 8 times 2 is	
		sixteen, times two	
108.	Robert Davis	Do we agree that we've got something	
		very valuable here. Do we agree that	
		that's a pretty good idea?	
109.	Students	Yes.	
110.	Narrator	Almost seven years after this session,	
		Matt, currently a freshman at Virginia	
		Polytechnic Institute, watched and	
		discussed his work as a sixth grader	
		with Australian mathematician, Gary	
		Davis, Professor of Education at the	
		University of Southhampton, in southern	
		England.	
111.	Matt	You're multiplying everything by two.	
112.	Gary Davis	Have you got it?	
113.	Matt	Uh-huh.	
114.	Gary Davis	You got the pattern?	
115.	Matt	Uh-huh.	
116.	Garry Davis	Do you have any feeling when you look	
		at that? Do you have a feeling of	
		reconstructing what you were doing	
		there? Because you're sitting there by	
		yourself.	
117.	Matt	I just pretty much was sitting there,	
		like, concentrating, just looking at	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 9 of 15

110	Carren David	numbers, you know? Like with these and what we did here, it's a lot of just trying to look at patterns and looking at different kinds of patterns.
118.	Garry Davis	That's right.
119.	Matt	And if you just see, like, 2 and 4, you automatically say, "All right. That's either adding 2 or multiply by 2." And you say "Four times 2 is 8, times 2 is 16, times 2. No wait." And you see- I just pick up on things.
120.	Garry Davis	So you just try? You're trying different things in your head, and-
121.	Matt	Yeah. Pretty much. Yeah.
122.	Garry Davis	So in a sense, what's on the board's really important to you-
123.	Matt	Yeah.
124.	Garry Davis	-because that's what you were looking at.
125.	Matt	Yeah.
126.	Robert Davis	We know one thing we could do is we could keep extending this table. All right, is that what you were doing or not? What would go here for six? What would go here for six if I used I think it was Michael's rule?
127.	Brian	Sixty three.
128.	Robert Davis	Right, 63. So one way, you could come down and find out what goes according to this rule. Who made up that rule? It's a neat rule. Who said "take this number and double it and subtract, noadd one; double this and add one"-who made up that rule?
129.	Student	not me.
130.	Gary Davis	Well of course his original question was "how many moves would it take for 100 rings.?"

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 10 of 15

131.	Mike	Probably a lot.	
132.	Gary Davis	A lot, it'll take a lot, there's no question	
		about it. Is there any way you can	
		figure that out from this?	
133.	Mike	Yeah, uhhmm, when moving the four	
		you got this to a point where there was	
		seven.	
134.	Gary Davis	There was seven.	
135.	Mike	When you move those three it took	
		seven moves.	
136.	Gary Davis	It did. It did.	
137.	Mike	So then it took another eight to move	
		the rest of it. I'm trying to think.	
138.	Gary Davis	Sorry, eight?	
139.	Mike	Yeah, it was fifteen, right?	
140.	Gary Davis	It was fifteen, yeah. yes it was.	
141.	Mike	So, maybe to move three, take seven.	
142.	Gary Davis	Yes.	
143.	Mike	Now you've got to move this guy	
		somewhere.	
144.	Gary Davis	You do.	
145.	Mike	Eight. And to move those three again is	
		another seven.	
146.	Gary Davis	Oh right. So the 15 is 7 plus 1 and 7?	
147.	Mike	Plus one, plus seven- That's a	
		possibility. I don't know if that's-	
148.	Robert Davis	One of the questions is, I still don't	
		know where this 2 to the 10th came	
		from. What did you do to get the 2 to	
		the 10th? But the other thing is, you're	
		telling me 10 and you're telling me	
		100, and I'd like you to tell me how to	
		do it with any number of disks. Okay?	
		What would happen with 7 disks or	
		700 disks, or whatever? Because we	
		really want to able to do it for any	
		number. Okay?	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 11 of 15

150. Matt Guys, I ran out of room at about	ı t 20
1 1 D.L. 4 D. 1 CL 11 1 1 1 1 1 1 1 1 1	
151. Robert Davis Shell, do you get 2 times 50 on	your
calculator?	
152. [simultaneous conversation]	1
153. Ankur I'm just multiplying by 2 by ha	
154. Stephanie Real smart. Okay, what numbe multiplying by?	r are we
155. Ankur Seven, 7, 2, 8. This number.	
156. [simultaneous conversation]	
157. Matt Thirty two 64.	
158. Robert Davis Sixty four.	
159. Matt I figured it out.	
160. Robert Davis What?	
161. Matt I figured it out plus 1 plus 1 p	due 1
plus 1 plus 1-	nus i
162. Robert Davis That's a neat idea. Really neat	idea
163. Matt Ooooohhhhhh.	idea.
164. Matt I like to see things, kind of- mo	re like a
visual learner than sitting ther	
doing it in my head and saying	
two times is this." Say, "Okay, p	
down on a piece of paper. See y	
have." Because then you can lo	
patterns.	
165. Matt That would be 127.	
166. Robert Davis That's what I get, too -127. See	e if vou
can make that table go through	-
than that.	
167. Matt Hey guys, I figured out the patt	tern.
168. Ankur Is Matt's right? Does Matt have	
pattern?	
169. MattPlus one, plus 1, plus 1.	
170. Michelle That's what we said before.	
171. Matt Just like this, not with all this. J	lust like
this.	
172. Michelle Oh I get it. I see what you're do	oing.

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 12 of 15

173.	Jeff	Oh these are going up.	
174.	Gary Davis	And as the end approaches, Ankur	
		comes up and starts working with you	
		on it, and Jeff comes over and starts	
		working with you on it. It's like you're	
		a magnet.	
175.	Matt	Yeah, maybe, I guess.	
176.	Gary Davis	Well, why does he come up to you?	
177.	Matt	I don't know. I guess he sees something,	
		or he can see the same thing that I see- or	
		sees something different than what I see,	
		and can add on to what I've done.	
178.	Gary Davis	What allows him to do that?	
179.	Matt	Instead of just seeing a bunch of huge	
		numbers on a paper, seeing more of a	
		pattern to it, and seeing it written as,	
		like, a pattern, instead of seeing it as 2	
		to the first, as 2 to the second- as this	
		huge number, and keep on going in	
		huge numbers- those that are easier to	
		see a pattern between.	
180.		[simultaneous conversation]	
181.	Amy-Lynn	What are you doing?	
182.	Bobby	When I go home I'm going to write	
		"times 2" 100 times to figure it out. I'm	
		just going to keep on putting "times 2"	
		in my calculator. I'm going to figure out	
		the answer.	
183.	Carolyn Maher	Fern outlined some of the things	
		mathematicians do when they do	
		mathematics. And I think it's very	
		interesting to watch that the children	
		and the tape do some of these same	
		things. They do think of a simple	
		problem, they do look for patterns, they	
		look for finite differences- as you see.	
		They notice the pattern and they notice	
		that there's an exponential here. They	

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 13 of 15

184.	Narrator	posit two to the end. And that's what mathematicians do. They see these patterns, they pose a theory, that they have to go back and test it. A few days later the students were still interested in finding out how long it would be before the world would end. Bobby reported that he knew how many
185.	Robert Davis	moves it would take for 100 disks. Okay, let me show you -Bobby wrote something here which I think several of you had last Thursday. If you had a hundred disks, he says it would take this many moves. Okay, let's assume -Bobby and Amy-Lynn worked pretty carefully on this and they think they've got the right number. So let's assume this right: 28 comma, 458 comma, 001 comma, 530 comma, 100 they say. Okay. Suppose it takes that many moves -and I don't really believe that story about the world ending, but let's pretend we did. Let's figure out when the world would end. If it takes that many moves, how long is that going to take?
186.	Student	A long time.
187.	Mike	It could take a day. It could take a day.
188.	Jeff	because if seven of them take ten minutes.
189.	Robert Davis	Okay, I want somebody to come and solve the problem here with disks. Four disks. Milin will you time this carefully? Okay, Milin say go when you're ready what?
190.	Student	Now.

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 14 of 15

191.	Robert Davis	Go.
192.	Narrator	The students performed a series of tests
		to find the average time per move.
193.	Student	Go Matthew.
194.	Robert Davis	How long did it take?
195.	Milin	Thirty one seconds.
196.	Robert Davis	It took thirty one seconds.
197.	Student	Yes, she's got it.
198.	Robert Davis	How much time?
199.	Milin	Two Minutes and fifty seconds.
200.	Robert Davis	Two Minutes and fifty seconds.
201.	Brian	Oh yeah.
202.	Robert Davis	So it's about
203.	Ankur	It's two seconds per move.
204.	Robert Davis	So it's about twice as many seconds as
		there are moves. Right? If we assume
		that Bobby as the right number of
		moves here, Okay. He says that many
		moves. So how many seconds will that
		be?
205.	Student	Oh boy.
206.	Robert Davis	Well it's going to be twice as many.
		Would you all double this, multiply this
		by 2 and tell me what you get?
207.	Narrator	Finally the students did a series of
		calculations to convert the units from
		seconds to years.
208.	Robert Davis	So it's about, it's about that many
		years. Sot what is that? It's saying 2
		billion years. Isn't that what it's saying?
209.	Student	Oh my god, it's going to take that many
		years to do that?
210.	Robert Davis	Somebody once said if you really knew
		the world was going to end you
		wouldn't be able to get on the
		telephone, everybody would be busy
		calling somebody to say "I love you."

Hanoi

Location: Harding School -

Kenilworth, NJ

Researcher: Professor Carolyn Maher

Transcriber(s): Private Universe

Project

Verifier(s): Sigley, Robert, Sran,

Kiranjeet

Date Transcribed: Spring 2000

Page: 15 of 15

211.	Student	I love you!	
212.	Mike	I love you Jeff.	
213.	Jeff	Really, what do you think you would be	
		doing if you were going to die?	
214.	Narrator	We've seen students using a variety of problem solving strategies to approach the Towers of Hanoi problem. What strategies have you observed your students using to solve difficult problems?	