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DISSERTATION ABSTRACT

BOOLEAN MATRIX DECOMPOSITION AND EXTENSION
WITH APPLICATIONS

By Haibing Lu

Dissertation Directors: Dr. Vijayalakshmi Atluri and Dr. Jaideep Vaidya

Boolean matrix decomposition (BMD) refers to decomposing of an input Boolean

matrix into a product of two Boolean matrices, where the firstmatrix represents a

set of meaningful concepts, and the second describes how theobserved data can

be expressed as combinations of those concepts. As opposed to standard matrix

factorization, BMD focuses on Boolean data and employs Boolean matrix prod-

uct instead of standard matrix product. The key advantage ofBMD is that BMD

solutions provide much more interpretability, which enable BMD to have wide

applications in multiple domains, including role mining, text mining, discrete pat-

tern mining, and many others.

There are three main challenges in the research of BMD. First, real applica-

tions carry varying expectations and constraints on BMD solutions, which make

the task of searching for a good BMD solution nontrivial. Second, BMD by itself

has the issue of insufficiency in modeling some real data semantics, as only the set

union operation is employed in combination. Third, BMD variants are generally

ii



NP-hard in nature, which makes practitioners reluctant to apply the BMD model

to large scale data analysis.

All of the three challenges are addressed in this dissertation. First, a unified

framework, which is based on integer linear programming, ispresented to encom-

pass all BMD variants. Such a framework allows us to directlyadopt fruitful re-

search results in the optimization field to solve our own problems. It also provides

researchers across different domains with a new perspective to view their prob-

lems and enables them to share their research results. Second, a novel extended

Boolean matrix decomposition (EBMD) model is proposed. It allows describing

an observed record as an inclusion of some concepts with an exclusion of some

other concepts. Thus EBMD is effective to meet the needs of modeling some

complex data semantics. Third, rank-one BMD is studied. Rank-one BMD is to

decompose a Boolean matrix into the product of two Boolean vectors, which can

be interpreted as a dominant pattern vector and a presence vector. By recursively

applying rank-one BMD, a Boolean matrix is partitioned intoclusters and dis-

crete patterns of the observed data are thus discovered. Rank-one BMD can serve

many functions of regular BMD, while rank-one BMD is relatively easy to solve

compared to regular BMD. In addition, efficient 2-approximation algorithms are

found for some special cases of rank-one BMD.
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1

CHAPTER 1

INTRODUCTION

Many kinds of real data sets can be represented by Boolean matrices, such as

market basket data, document data, Web click-stream data and user-to-permission

assignment data in an organization. For instance, market basket data contains cus-

tomer transaction records, where each record can be represented as a Boolean vec-

tor where each element indicates whether or not the corresponding item/product is

purchased. A document can be described by a Boolean vector where each element

indicates whether or not a corresponding word/term is present.

Interestingly, many important data analysis tasks on Boolean data can be

transformed as Boolean matrix decomposition (BMD) problems. BMD is to de-

compose a Boolean matrixAm×n into two matricesXm×k andCk×n, such that

A = X
⊗

C. In which,
⊗

is called Boolean matrix product and significantly

different from the ordinary matrix product.
⊗

is built on the logical arithmetic

operations,∨ and∧. If A = X
⊗

C, we have

aij =
k

∨

l=1

(Xit ∧ Ctj) . (1.1)

An input Boolean matrixAm×n can be viewed asm data records withn at-

tributes{1, 2, ..., n}. Theith row vector corresponds to an attribute subsetAi such
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thatAi contains the attributej if Aij = 1.

Ck×n can be viewed as as a collection ofk concepts, where each concept is a

subset of attributes{1, 2, ..., n}. Concepti consists of attributej if Cij = 1.

Xm×k can be interpreted as a combination matrix, showing how eachobserved

data record is represented as a union of a subset of concepts.

Then a BMD solutionA = X ⊗ C can be interpreted as follows:

Ai =
⋃

xij=1

Cj, ∀j . (1.2)

Such interpretability enables BMD to model many real data semantics, which

cannot be found in an ordinary matrix factorization.

Take the role mining problem (RMP) as an example. RMP comes from the im-

plementation of Role-based access control (RBAC). RBAC is awidely accepted

access control model, which greatly simplifies administration by assigning each

user a few roles instead of a large number of individual permissions, where a role

is a subset of permissions. To take the advantages of RBAC, organizations need

to define a good set of roles, and then assign them to users appropriately, the work

of which is called role engineering. To automate the processof role engineering,

Vaidya et al. [62] propose to mine roles from existing user-to-permission assign-

ment data, which is the origin of RMP. Look at the example of user-to-permission

assignment data represented by a bipartite graph as shown inFigure 1.1. With

m permissions andn users, that bipartite graph can be represented by a Boolean

matrix Am×n, whereaij = 1 if the ith permission is assigned to thejth user,
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U1

U2

U3

U4

U5

U6

P1

P2

P3

Users

(Documents, 

Permissions

(Terms, 

A

Figure 1.1. Bipartite Graph

otherwise 0. As we know, a role is nothing, but a subset of permissions. The

basic objective of RMP is to find a set of roles and user-to-role assignments, such

that every user has exactly the same permissions as what theyhad. To meet that

requirement, the union of permissions contained by roles assigned to each user

has to be the permission set that was assigned to that user. A feasible solution

for the example of Figure 1.1 is as shown in Figure 1.2. In which, permission-

to-role assignments and user-to-role assignments return two Boolean matricesC

andX. Hence, that graph is corresponding to a BMD solution asA = X
⊗

C.

As we can see, role mining is essentially to finding a BMD solution with exist-

ing user-to-permission assignments as the input Boolean matrix. Besides RBAC,

BMD can be applied to many other domains. For example, if the bipartite graph of

Figure 1.1 is representing document-to-term data, the third layer of the tripartite

graph of Figure 1.2 gives a set of topics extracted from existing document-to-term

data . If the bipartite graph of Figure 1.1 describes a marketbasket data set, a

BMD solution implied from Figure 1.2 generates a set of product itemsets, which
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might be beneficial for supermarkets to design promotion strategies. There are

prevalent applications of BMD in many domains involving Boolean data analysis

tasks. However, there are three prominent problems existing in the research field

of BMD as follows.

U1

U2

U3

U4

U5

U6

P1

P2

P3

Users

(Documents, 

Permissions

(Terms, 

R1

R2

Roles

(Topics, 

Itemsets

X                        C

Figure 1.2. Tripartite Graph

1. Lack of a General Framework.

Most Boolean data analysis tasks cannot be simply modeled asfinding

a feasible BMD solution. Usually specific objectives and constraints are

attached. For example, to maximize the benefits of adopting the RBAC

scheme, one possible way is to find a minimum set of roles. In the lan-

guage of BMD, it is to find a feasible BMD solution, such thatC is of the

least rows. While, to minimize the RBAC administrative work, one needs

to find a set of roles, which brings the least assignments. In other words,

the decomposed matrices of the input user-to-permission assignment ma-
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trix contain the least 1’s cells. Besides various objectives, some constraints

may be applied. For example, each user is limited to have up tok roles, or

no pair of roles overlap more thant permissions. As we can see, even the

role ming problem alone generates many variants of BMD. However, there

are many other research problems that can be modeled throughBMD, such

as document summarization in text mining, tiling databases, market basket

data analysis, Boolean data compressing, feature selection, dimensionality

reduction, etc. We observe that despite in different domains, many prob-

lems are equivalent from the perspective of BMD. For instance, the basic

RMP problem in role mining [60] and the minimum tiling problem in tiling

databases [19] are the same. Unfortunately, these problemsused to be stud-

ied in their own disciplinary. So to fully exploit the benefits of BMD and

help people recognize its importance, we need a general framework, which

enables to classify, model, and solve problems from different domains. So

people across different domains can share their intelligence and collaborate

closely.

2. Insufficiency of BMD in Modeling Real Data Semantics.

The reason why BMD has broad applications is that its decomposition so-

lutions provide such interpretabilites that each observedBoolean record is

expressed as a union of a subset of concepts. A BMD solution not only

identifies concepts, but also shows how to reconstruct observed data from

those concepts. However, we notice that the Boolean matrix product only

considers the union operation. In other words, a successfulBMD gives a set

of concepts and shows how every column of the input data can beexpressed
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as a union of some subset of those concepts. This way of modeling incom-

pletely represents some real data semantics. Essentially,it ignores a critical

component – the set difference operation: a column can be expressed as the

combination of union of certain concepts as well as the exclusion of other

topics.

To explain this explicitly, we look at a simple text mining example. One of

main research topics in text mining is given a large number ofdocuments

to generate a few topics to summarize them, where each document can be

represented by a Boolean matrixAm×n with aij = 1 if the ith document con-

tains thejth term, otherwise 0. Then a rowAi is corresponding to a subset

of terms. Suppose a presidential speech covers all topics except ”EDUCA-

TION”. With BMD, to describe that speech, we have to list all mentioned

topics. However, if we create a topic called ”ALL-TOPICS”, that speech

can simply be expressed asALL − TOPICS\EDUCATION . Another

advantage of introducing the set difference operation is that we may be able

to use fewer topics to describe the same documents. To take these advan-

tages, we need to extend the conventional BMD model and come up with a

more general model, which can represent both the set union operation and

the set difference operation.

3. Inability of Rank-One BMD to Impose Personal Preferences.

Mining discrete patterns in binary data is important for many data analysis

tasks, such as data sampling, compression, and clustering.An example is

that replacing individual records with their patterns would greatly reduce

data size and simplify subsequent data analysis tasks. As a straightforward
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approach, rank-one binary matrix decomposition has been actively studied

recently for mining discrete patterns from binary data. It factorizes a binary

matrix into the multiplication of one binary pattern vectorand one binary

presence vector, while minimizing mismatching entries. However, this ap-

proach suffers from two serious problems. First, if all records are replaced

with their respective patterns, the noise could make as muchas 50% in the

resulting approximate data. This is because the approach simply assumes

that a pattern is present in a record as long as their matchingentries are more

than their mismatching entries. Second, two error types, 1-becoming-0 and

0-becoming-1, are treated evenly, while in many application domains they

are discriminated.

1.1 Problem Statement

The objective of this dissertation is to investigate methodologies to facilitate cer-

tain types of Boolean data analysis tasks, which can be viewed as variants of

matrix decomposition. Specifically, we will address the following three research

issues.

1. Boolean Matrix Decomposition.

As Boolean matrix decomposition provides solutions of goodinterpretabil-

ities, it has attracted increasing attention recently. However, as it is a rela-

tively new topic, it has not received enough attention, despite its great po-

tentiality of being applied to many research domains. The subsequence is

that the BMD model is not well studied, and its importance andpotential
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applications are not recognized. To improve this fact, we will address the

following sub-problems:

• reviewing important research problems that can be modeled through

BMD, and identify their corresponding BMD variants, some typical

problems of which will be collected for further extensive study;

• building a unified framework to encompass all BMD variants;

• studying computational complexity of those identified typical BMD

variants;

• designing effective and efficient algorithms for those important BMD

variants.

2. Extended Boolean Matrix Decomposition.

Although BMD has lot of potential applications, it lacks a critical compo-

nent in combination, the set difference operation. It makesBMD not suffi-

cient to model certain semantics. To address it, we propose anew notion,

extended Boolean matrix decomposition, which allows each observed data

record to be expressed as an inclusion of a subset of conceptswith an ex-

clusion of another subset of concepts. The introduction of the set difference

operation will not only correct the deficiency of BMD in modeling, but also

enable us to describe observed Boolean data with fewer concepts in a more

succinct way. For example, suppose a document-to-term dataset is given

as the matrix on the left side of Equation 1.3. With BMD, the least number

of topics needed to describe those five documents is 3. However, by intro-

ducing the set difference operation, only two topics as shown in Figure 1.3
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are necessary. Those five topics are consequently expressedasD1 = T1,

D2 = T2, D3 = T1 ∪ T2, D4 = T1\T2, andD5 = T2\T1. Those re-

lationships can also be recorded in a way of Boolean matrix multiplication

as Figure 1.3, where⊙ is called the extended boolean matrix product oper-

ator, and the cell of the combination matrix at{ij} is 1, if the documentDi

includes the topicTj , otherwise 0.

1 1 0

1 0 1

1 1 1

0 1 0

0 0 1

1 0

0 1

1 1

1 -1

-1 1

1 1 0

1 0 1
=

D1

D2

D3

D4

D5

W1  W2  W3

T1

T2

Documents TopicsCombination

Figure 1.3. Illustration of Extended Boolean Matrix Factorization

EBMD also has a lot of implications in data compressing, rolemining, text

mining, knowledge discovery, etc. Different circumstances may carry vary-

ing objectives and requirements. To perform an extensive investigation on

the EBMD model, we will address the following sub-problems:

• giving formal definition of EBMD and its operation rule;

• identifying applications that can benefit from EBMD and summarizing

various EBMD variants;

• building a unified framework to encompass all EBMD variants;

• studying computational complexity of some typical EBMD variants;
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• designing good algorithms for those EBMD variants.

3. Weighted Rank-One Boolean Matrix Decomposition.

Example 1.1 Given a matrixA, a rank-one approximation is computed as

follows:

A =









1 0 1 1 0
1 1 1 1 1
0 0 1 0 0
1 1 1 1 0









≈









1
1
0
1









(

1 1 1 1 0
)

= XY T . (1.3)

Rank-one BMD is a special variant of BMD. It is to decompose a Boolean

matrix, where each row is an observed record, into the product of two

Boolean vectors as illustrated in Equation 1.3. The decomposed Boolean

row vector(1, 1, 1, 1, 0) can be viewed as a dominant pattern of the ob-

served data and the Boolean column vector(1, 1, 0, 1)T , called a presence

vector, shows which observed records belong to this dominant pattern. By

its component values, the presence vector divides observeddata records into

two parts. By recursively applying rank-one BMD on every part, observed

Boolean vectors can be divided into indivisible clusters. Dominant patterns

for those clusters constitute discrete patterns of original data.

However, users are not able to impose their personal preferences on error

type distribution of discovered patterns and the number of patterns. Look

at the same example. What if one expects to discover more discrete pat-

terns to improve the accuracy of patterns in approximating observed data?

What if one wants to discover a set of patterns which can describe observed
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data without introducing any 1-becoming-0 errors, becausethere are only a

few 1’s cells in the original data? To address these two issue, we propose

weighted rank-one BMD, which is at the basis of conventionalBMD to in-

troduce different weights on 0-becoming-1 errors and 1-becoming-0 errors.

To determine wether a data record belongs to a discrete pattern, three pieces

of information need to be considered: (i) components of 1 in both the pat-

tern and the data record, (ii) components which are 1 in the pattern and 0 in

the data record; and (iii) components which are 0 in the pattern and 1 in the

data record. By applying different weights to the three parts, instead of the

same value as in conventional rank-one binary matrix approximation, users

can effectively control the level of accuracy in the final approximate matrix

and impose their preferences on the distribution of error types. Thus We

call the problem weighted rank-one BMD.

1.2 Research Challenges

BMD is a relatively new research topic, but has received muchattention recently

from many research fields because of its good adaptability toreal semantics. How-

ever, there are three main challenges remaining.

First, there lacks a general framework covering all BMD variants. It makes

literature work not beneficial for solving other similar problems with only minor

modifications. One of main reasons might be that people across different research

fields have not seen their problems from the perspective of BMD. Actually, if they

do, they would realize that their problems have much commonality. Hence, the

first problem this dissertation deals with is to review all problems, which can be
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modeled through BMD, and categorizes them into five main groups. To exploit

the commonality of those problems, we will formulate them through mathematical

programming. Once done that, for new problems with minor modifications from

any of formulated problems, we simply change correspondingconstraints or the

objective function.

The second challenge is that the conventional BMD model doesnot consider

the set difference operation, which makes it not be able to model the exclusion

relationship, and limits the interpretabilities of decomposition solution. To ad-

dress it, we propose EBMD, which allows both the set union operation and the

set difference operation. Though it has broad applications, people may not realize

it. Thus we will discuss all possible applications of EBMD and categorize them

into groups as well. Furthermore, to exploit the commonality of those problems,

we formulate them through integer programming (IP), which allows us to take

advantages of available IP software packages and algorithms. As EBMD is a new

notion, the computational complexity of its variants has never been studied. We

will look at them also int this dissertation. Additionally,efficient heuristics will

be designed for each EBMD variant.

The third challenge is that all problems to be studied are combinatorial prob-

lems in nature, which are usually hard to solve. The main application domains of

our research are data mining and information security. Research problems occur-

ring in those two domains usually involve large scale data, which requires us to

give effective and efficient algorithms for the formulated combinational problems.
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1.3 Contributions

There are four main contributions in this dissertation. First, the BMD problem is

extensively investigated. Important BMD variants, which have pragmatic implica-

tions in reality, and their relations are identified and studied. Second, we propose

the EBMD model, which addresses the inability of the BMD model to describe

the set difference relationship. The proposed EBMD model also has the ability

to discover some underlying data semantics along with the data mining process.

Third, the weighted rank-one BMD model is proposed. It allows users to effec-

tively impose their preferences on the number of mined discrete patterns and the

error type distribution of resultant approximate data. Fourth, for each proposed

problem, the computational complexity result is given, integer programming for-

mulation is provided, and effective and efficient solutions, such as approximation

algorithms and heuristics, are presented.

1.4 Outline of the Dissertation

The organization of the rest paper is as follows. Chapter 2 reviews the literature

work related to Boolean matrix applications. Chapter 3 gives some background

knowledge on computational complexity, mathematical programming, approxi-

mation algorithms, and heuristics. Chapters 4-6 study Boolean matrix decompo-

sition, extended Boolean matrix decomposition, and weighted rank-one Boolean

matrix decomposition respectively. Chapter 7 concludes our dissertation
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CHAPTER 2

RELATED WORK

2.1 Role Engineering

Role engineering arises from implementing the RBAC system.RBAC is an ac-

cess control system that users are assigned to roles insteadto permissions. As

the number of required roles is usually much less than the number of permis-

sions, RBAC has the advantage of administrative efficiency over the conventional

permission-based access control. Due to its advantage, many organizations want

to transfer from their old access control systems to the RBACsystem. To re-

alize the full potential of RBAC, one must first define a complete and correct

set of roles. According to a study by NIST, this task has been identified as the

costliest component in realizing RBAC. The concept of role engineering was first

presented by Coyne [11]. It refers to the systematic work fordetermining roles.

Conceptually, there are two types of approaches towards role engineering. They

are top-down and bottom-up. Top-down is by analyzing business processes to de-

duce roles [1, 2, 11]. However, all those approaches share one common weakness

that it ignores existing user-to-permission assignments and calls for the cooper-

ation among various authorities from different disciplines. The bottom-up ap-

proach generates roles purely from the existing user-to-permission assignments.

It allows the automation of role generation without knowingthe semantics of busi-
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ness. Kuhlmann, Shohat, and Schmipf [47] present a bottom-up approach using

clustering technique similar to the well known k-means clustering. Schlegelmilch

and Steffens [58] have proposed an agglomerative clustering based role mining

approach, known as ORCA. More recently, Vaidya et al. [62] proposed an ap-

proach based on subset enumeration, called RoleMiner. Thisapproach not only

eases the task of role engineering, but also helps in providing the security ad-

ministrators an insight into user-to-role assignments. However, it does require

an expert review of the results to choose which of the discovered roles are most

advantageous to implement. To find the optimal role set matching the interesting-

ness measures , Vaidya et al. [60] took a step forward to propose the role mining

problem. Lu et al. [42] further connect the role mining problem with the Boolean

matrix decomposition problem.

2.2 Text Mining

Text mining, roughly equivalent to text analytic, refers generally to the process of

deriving high-quality information from text. High-quality information is typically

derived through the deriving of patterns and trends throughmeans such as statis-

tical pattern learning. Text mining usually involves the process of structuring the

input text, deriving patterns within the structured data, and finally evaluation and

interpretation of the output. High quality in text mining usually refers to some

combination of relevance, novelty, and interestingness. Typical text mining tasks

include text categorization, text clustering, concept/entity extraction, production

of granular taxonomies, sentiment analysis, document summarization, and entity

relation modeling (i.e., learning relations between namedentities) [30]. For in-



16

stance, data summarization is becoming an very important research topic, because

with the widespread of internet technology we are facing thedramatically increas-

ing amount of document data. Its basic task is to categorize alarge amount of

documents into some topics, where each topic could simply bea subset of words

or a representative document. A good summarization scheme not only reduces

data storage space, but also facilitates the task of information retrieval [5].

2.3 Ordinary Matrix Factorization

Ordinary matrix decomposition is a well-studied problem that has been the focus

of significant research. Indeed, one of the earliest motivations of matrix decom-

position came from the problem of solving linear equations.It is known that if a

matrixA can be decomposed into the product of a lower triangular matrix L and

a upper triangular matrixU , solving the systemsL(UX) = b andUX = L−1U

is much easier thanAX = b [13]. In recent years, a big motivation for matrix

decomposition is for data analysis and data processing. Oneof best known meth-

ods is perhaps the Singular Value Decomposition,X = U
∑

V , whereU andV

are orthogonal real-valued matrices containing the left and right singular vectors

of A, and
∑

is a diagonal matrix containing the singular values ofA [13]. One

classic application of this method is to get the optimal rank-k factorization ofA

by setting all but the topk singular values in
∑

to 0. In this sense, matrix de-

composition can be used for compressing data. The underlying reason is that if

we findAm×n = Xm×k · Ck×n andk is much less thanm andn, storingX andC

instead ofA will save great space [29].
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2.4 Nonnegative Matrix Factorization

While the SVD is optimal in terms of the Frobenius norm, recently, people have

realized that it does not have sufficient interpretability.To address this problem,

multiple new methods were proposed, like Probabilistic Latent Semantic Index-

ing [27], Latent Dirichlet Allocation [9] and Nonnegative Matrix Factorization

(NMF) [31]. NMF is also an old problem that has been extensively studied in [55].

In NMF, the added restriction is that all the matrices shouldbe non-negative. This

can help cluster data, find centroids and even describe the probabilistic relation-

ships between individual points and centroids. Ding et al. [15] show the equiva-

lence of NMF, spectral clustering andK-means clustering. The work of Lee and

Seung [38, 39] also helped bring much attention from machinelearning and data

mining research communities to NMF.

2.5 Boolean Matrix Factorization

Since many real applications involve Boolean data, such as document-to-term

data, web click-stream data (users vs websites), DNA microarray expression pro-

files and protein-protein complex interaction network [63], Boolean data have ob-

tained a special and important space in the domain of data analysis [40]. It is

natural to represent Boolean data by Boolean matrices, which are a special case of

non-negative matrices. Many research problems involved inBoolean data analy-

sis can be reduced to Boolean matrix factorization. Geerts et al. [19] propose the

tiling databases problem which aims to find a set of tiles to cover a 0-1 database.

Since a tile can be represented by a Boolean vector, the tiling databases problem

is reduced to finding a factorization ofA = C
⊗

X by limiting each column of
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C to be a subset of one column ofA, because each tile can only cover cells of

1. Miettinen et al. [52] considerC as a discrete basis ofA, from whichA can

be reconstructed. GivenA, how to find a good basis is their core problem. This

work is further developed by Miettinen [48] whereC is limited to be the subset of

columns ofA. This limitation gives increased interpretability since each column

of C can be seen as a centroid ofA from the perspective of clustering. [48] also

allows the factorizationC
⊗

X to cover cells containing zeros inA as long as

the amount of error is within a tolerable threshold. Haibinget al. [42] looks at

the Boolean matrix factorization problem in the context of role based access con-

trol (RBAC). The first and most difficult step of implementingRBAC is mining

roles given the user-permission assignment. By representing the user-permission

assignment, the user-role assignment and the mined role setby Boolean matrices

A, C andX, we haveA = C
⊗

A. Therefore, the role mining problem is to find

a Boolean matrix factorization ofA.

2.6 Probabilistic Matrix Factorization

Probabilistic matrix factorization is viewing the input matrix from the statistic per-

spective. The most famous work might be principle componentanalysis (PCA)

[3]. It transforms a number of possibly correlated variables into a smaller number

of uncorrelated variables called principal components. PCA involves the calcula-

tion of the eigenvalue decomposition of a data covariance matrix or singular value

decomposition of a data matrix. Some work were proposed to use matrix factor-

ization to model user rating profiles for collaborative filtering [45,46]. Their core

idea is to find a good factorization of the input matrix to reconstruct the missing
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cells in the input data. In [8, 14, 27], they use the concept ofmatrix factorization

to find latent factors by which to index documents. It can be applied in clustering

as well. Some work even tried clustering two attributes of the input data simul-

taneously, by factoring a matrix into the product of three matrices [17, 44, 51].
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CHAPTER 3

BACKGROUND

3.1 Access Control

In computer system security, role-based access control (RBAC) is an approach to

restricting system access to authorized users. Due to its advantages in administra-

tive efficiency and flexibility, it has been used by the majority of enterprisers and

is a newer alternative approach to mandatory access control(MAC) and discre-

tionary access control (DAC).

Sandu R. et al. [57] is one of the most cited papers in the field of RBAC.

It definedRBAC0, the basic model,RBAC1 which introduces role hierarchies,

RBAC2 which introduces constraints at the basis ofRBAC0, andRBAC3 which

includes both role hierarchies and constrains. Their detailed descriptions are given

as follows.

Definition 3.1 (RBAC0)

• U, R, P and S (users, roles, permissions and sessions, respectively);

• PA ⊆ P ×R, a many-to-many permian-to-role assignment relation;

• UA ⊆ U × R, a many-to-many user-to-role assignment relation;
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• user :S → U , a function mapping each sessionsi to the single user user(si)

(constant for the session’s lifetime);

• roles : S → 2R, a function mapping each sessionsi to a set of roes

roles(si) ⊆ {r|(user(si), r) ∈ UA} (which can change with time) and

sessionsi has the permissionsUr ∈ roles(si){p|(p, r) ∈ PA}.

The base model consists of everything except role hierarchies and constraints.

Definition 3.2 TheRBAC1 model has the following components:

• U, R, P, S, PA, UA, and user are unchanged fromRBAC0;

• RH ⊆ P × R is a partial order onR called the role hierarchy or role

dominance relation, also written as≥; and;

• roles : S → 2n is modified fromRBAC0 to requireroles(si) ⊆ {r|(∃r
′ ≥

r)[(usr(si), r
′) ∈ UA} (which can change with time) and sessionsi has the

permissions∪r∈roles(si){p|(∃r
′′ ≤ r)[(p, r′′) ∈ PA]}.

Definition 3.3 RBAC2 is unchanged fromRBAC0 except for requiring that there

be constraints to determine the acceptability of various components ofRBAC0.

Only acceptable values will be permitted.

Common access control constraints include mutually exclusive roles, cardi-

nality, and prerequisite roles.

Mutually exclusive roles.The most common RBAC constraint could be mu-

tually exclusive roles. The same user can be assigned to at most one role in a
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mutually exclusive set. This supports separation of duties, which is further en-

sured by a mutual exclusion constraint on permission assignments.

Cardinality. Another user assignment constraint is a maximum number of

members in a role. Only one person can fill the role of department chair; Simi-

larly, the number of roles an individual user can belong to could also be limited.

These are cardinality constraints, which can be correspondingly applied to permis-

sion assignments to control the distribution of powerful permissions. Minimum

cardinality constraint, on the other hand, may be difficult to implement. For exam-

ple, if a role requires a minimum number of members, it would be difficult for the

system to know if one of the members disappeared and to respond appropriately.

Prerequisite roles.The concept of prerequisite roles is based on competency

and appropriateness, whereby a user can be assigned to roleA only if the user

already is assigned to roleB. For example, only users who are already assigned to

the project role can be assigned to the testing role in that project. The prerequisite

(project) role is junior to the new (test) role. In practice,prerequisites between

incomparable roles are less likely to occur.

Other Constraints Constraints also apply to sessions and other user and role

functions associated with a session. A user may belong to tworoles but cannot

be active in both at the same time. Other session constraintslimit the number of

sessions a user can have active at the same time. Correspondingly, the number of

sessions to which a permission is assigned can be limited.

Definition 3.4 RBAC3 provides both role hierarchies and constraints as it com-

binesRBAC1 andRBAC2.
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3.2 Computational Complexity

Computational complexity measures how difficult it is to solve a problem. In

this dissertation, we are dealing with many discrete optimization problems. To

gain an insight into the difficulty of those problems, performing computational

complexity analysis is necessary. The book [18] provides a perfect guide to the

computational complexity theory.

Definition 3.5 P, also known as PTIME or DTIME, is one of the most fundamen-

tal complexity classes. It contains all decision problems which can be solved by a

deterministic Turing machine using a polynomial amount of computation time, or

polynomial time.

People commonly think that P is the class of computational problems which are

”efficiently solvable” or ”tractable”. In practice, some problems not known to be

in P have practical solutions, and some that are in P do not. But this is a useful

rule of thumb.

Definition 3.6 NP is the set of decision problems where the ”yes”-instance can

be recognized in polynomial time by a non-deterministic Turing machine.

Intuitively, NP is the set of all decision problems for whichthe instances where

the answer is ”yes” have efficiently verifiable proofs of the fact that the answer is

indeed ”yes”. The complexity class P is contained in NP, but NP contains many

important problems, the hardest of which are called NP-complete problems, for

which no polynomial-time algorithms are known.
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Definition 3.7 The complexity class NP-complete (abbreviated NP-C or NPC)is

a class of decision problems. A problem L is NP-complete if ithas two properties:

• It is in the set of NP (nondeterministic polynomial time) problems: Any

given solution to L can be verified quickly (in polynomial time).

• It is also in the set of NP-hard problems: Any NP problem can beconverted

into L by a transformation of the inputs in polynomial time.

NP-complete is a subset of NP, the set of all decision problems whose solu-

tions can be verified in polynomial time; NP may be equivalently defined as the set

of decision problems that can be solved in polynomial time ona nondeterministic

Turing machine.

If a problem is NP-complete, it implies that most likely there is no polynomial

algorithm. Then it is better to resort to other solutions, such as approximation

algorithms and heuristics. Many problems have been proven to be NP-complete.

A typical routine to prove a problem
∏

is NP-complete consists of the following

steps:

• showing that
∏

is in NP;

• selecting a known NP-complete problem
∏′;

• constructing a transformationf from
∏′ to

∏

, and

• proving thatf is a polynomial transformation.

Definition 3.8 A problem H is NP-hard if and only if there is an NP-complete

problem L that is polynomial time Turing-reducible to H.
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Informally, NP-hard means ”at least as hard as the hardest problems in NP”.

NP-hard problems may be of any type: decision problems, search problems, or

optimization problems.

3.3 Approximation Algorithm

In computer science and operations research, approximation algorithms are algo-

rithms used to find approximate solutions to optimization problems. Approxima-

tion algorithms are often associated with NP-hard problems; since it is unlikely

that there can ever be efficient polynomial-time exact algorithms solving NP-hard

problems, one settles for polynomial time sub-optimal solutions. Unlike heuris-

tics, which usually only find reasonably good solutions reasonably fast, one wants

provable solution quality and provable run time bounds. Ideally, the approxima-

tion is optimal up to a small constant factor. Approximationalgorithms are in-

creasingly being used for problems where exact polynomial-time algorithms are

known but are too expensive due to the input size.

Before giving the formal definition of approximation algorithm, we define

combinatorial optimization problem. A combinatorial optimization problem
∏

is either a minimization problem or a maximization problem and consists of the

following three parts:

• a setDQ of instances;

• for each instanceI ∈ DQ, a finite setSQ(I) of candidate solutions forI;

and

• a functionmQ that assigns to each instanceI ∈ DQ and each candidate
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solutionσ ∈ SQ(I) a positive rational numbermQ(I, σ), called the solution

value forσ.

If
∏

is a minimization (problem) problem, then an optimal solution for an

instanceI ∈ Dprod is a candidate solutionσ∗ ∈ SQ(I) such that, for allσ ∈

SQ(I), mQ(I, σ∗) ≤ mQ(I, σ) (mQ(I, σ∗) ≥ mQ(I, σ)).

Definition 3.9 An algorithmA is a ρ-approximation algorithm of the optimiza-

tion problem
∏

if the valuef(x) of the approximation solutionA(x) to any in-

stancex of
∏

, is not more than a factorρ times the value,OPT , of an optimum

solution.
{

OPT ≤ f(x) ≤ ρOPT, ifρ > 1

ρOPT ≤ f(x) ≤ OPT, ifρ < 1.
(3.1)

Definition 3.10 A family of approximation algorithms for a problemP, {Aǫ}ǫ, is

called a polynomial approximation scheme or PAS, if algorithmAǫ is a (1 + ǫ)-

approximation algorithm and its running time is polynomialin the size of the input

for a fixedǫ.

Definition 3.11 A family of approximation algorithms for a problemP, {Aǫ}ǫ,

is called a fully polynomial approximation scheme or FPAS, if algorithmAǫ is a

(1 + ǫ)-approximation algorithm and its running time is polynomial in the size of

the input and1/ǫ.

When a FPAS is a family of randomized algorithms, it will be called fully

polynomial randomized approximation scheme or FPRAS.
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3.4 Mathematical Programming

Mathematical programming or optimization refers to choosing the best element

from some set of available alternatives.

In the simplest case, this means solving problems in which one seeks to mini-

mize or maximize a real function by systematically choosingthe values of real or

integer variables from within an allowed set. This formulation, using a scalar, real-

valued objective function, is probably the simplest example; the generalization of

optimization theory and techniques to other formulations comprises a large area

of applied mathematics. More generally, it means finding ”best available” values

of some objective function given a defined domain, includinga variety of different

types of objective functions and different types of domains.

Linear programming (LP), is a special type of convex programming, studies

the case in which the objective function is linear and the setof constraints is speci-

fied using only linear equalities and inequalities. Such a set is called a polyhedron

or a polytope if it is bounded. Linear programs can be expressed in the following

form.

maximize(minimize) cT x (3.2)

subject to Ax ≤ b (3.3)

There are several good algorithms for linear program. The simplex algo-

rithm [12], developed by George Dantzig in 1947, solves LP problems by con-

structing a feasible solution at a vertex of the polytope andthen walking along
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a path on the edges of the polytope to vertices with non-decreasing values of

the objective function until an optimum is reached. In practice, the simplex al-

gorithm is quite efficient and can be guaranteed to find the global optimum if

certain precautions against cycling are taken. However, the simplex algorithm

has poor worst-case behavior. Leonid Khachiyan in 1979 introduced the ellip-

soid method [12], the first worst-case polynomial-time algorithm for linear pro-

gramming. Khachiyan’s algorithm was of landmark importance for establishing

the polynomial-time solvability of linear programs. It also inspired new lines of

research in linear programming with the development of interior point methods,

which can be implemented as a practical tool. In contrast to the simplex algorithm,

which finds the optimal solution by progressing along pointson the boundary of

a polytopal set, interior point methods move through the interior of the feasible

region.

Integer programming studies linear programs in which some or all variables

are constrained to take on integer values. This is not convex, and in general much

more difficult than regular linear programming. Integer programming problems

are in many practical situations (those with bounded variables) NP-hard. 0-1 in-

teger programming or binary integer programming (BIP) is the special case of

integer programming where variables are required to be 0 or 1. This problem is

also classified as NP-hard, and in fact the decision version was one of Karp’s 21

NP-complete problems. Advanced algorithms for solving integer linear programs

include: cutting-plane method, branch and bound, branch and cut, and branch and

price.



29

3.5 Heuristics

In computer science, heuristic designates a computationalmethod that optimizes

a problem by iteratively trying to improve a candidate solution with regard to

a given measure of quality. Heuristics make few or no assumptions about the

problem being optimized and can search very large spaces of candidate solutions.

However, heuristics do not guarantee an optimal solution isever found. Many

heuristics implement some form of stochastic optimization.

Heuristics are used for combinatorial optimization in which an optimal solu-

tion is sought over a discrete search space. Popular heuristics for combinatorial

problems include simulated annealing by Kirkpatrick et al.[33], genetic algo-

rithms by Holland et al. [28], ant colony optimization by Dorigo,[9] and tabu

search by Glover [20].
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CHAPTER 4

BOOLEAN MATRIX DECOMPOSITION

4.1 BMD Variants with Applications

4.1.1 Basic BMD

The basic BMD problem is to decompose an input Boolean matrixinto two Boolean

matrices with the minimum size. In other words, it is to find the most succinct

representation of a Boolean matrix in the form of Boolean matrix decomposition.

According to the rule of BMD, a Boolean matrix with the size ofm× n can only

be decomposed into two Boolean matrices with the sizes ofm× k andk × n. So

to minimize the size of decomposed matrices is to minimizek, which gives the

definition of the basic BMD problem as the following.

Problem 4.1 ( Basic BMD) Given a matrixA ∈ {0, 1}m×n, find matricesX ∈

{0, 1}m×k andC ∈ {0, 1}k×n, such thatA = X
⊗

C andk is minimized.

The basic BMD problem has pragmatic implications in many application do-

mains, including role mining, tiling databases, graph theory and set theory. Many

problems in those application domains can be formulated as the basic BMD prob-

lem with appropriate transformations. In the following, wewill introduce some

of them.
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Role Mining. The basic BMD problem can find its important application in

role mining. As introduced in Chapter 2, the role mining problem arises from the

implementation of a role-based access control system. It isto discover a good role

set from user-to-permission assignments existing in an organization and assign

these roles to users appropriately such that each user gets the same permissions as

original. Role-based access control is usually administratively efficient compared

to the traditional permission-based access control, especially for large-scale sys-

tems. It is due to the fact that the number of required roles isusually much less

than the number of permissions.

The basic RMP problem, the fundamental role mining variant,attempts to find

a minimum set of roles, which would maximize the benefits of RBAC. This prob-



32

u1

u2

u3

u4

u5

u6

R1

R2

p1

p2

p3

Users

(Document, Transaction Record)
Permissions

(Term, Product)

Role

(Topic, Itemset)

B C

Figure 4.2. Tripartite Graph

lem is a basic BMD problem. Look at Figure 6.1a, an illustrative example of user-

to-permission assignments. An edge means that its associated user is assigned its

associated permission. Such user-to-permission assignments can be completely

recorded by the Boolean matrix on the left to the equal sigh inEquation (4.1),

where each row corresponds to a user, each column corresponds to a permission,

and the value of 1 represents its corresponding user has its corresponding permis-

sion; otherwise, not. Similarly, the role mining solution as shown in Figure 5.5a

can be mapped to the two Boolean matrices on the right to the equal sign in Equa-

tion (4.1). The first Boolean matrix on the right to the equal sign gives the same

role assignments as shown in Figure 5.5a and the second Boolean matrix denotes

two roles. So the basic RMP problem is equivalent to decomposing the Boolean

matrix Am× representing the user-to-permission assignments into twoBoolean

matricesXm×k andCk×n, while minimizingk.

Market Basket Analysis. The basic BMD problem can be applied on market

basket analysis as well. Market basket data contains the transactions on product
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items, and is one of the main data types studied in the data mining research field.

Market basket data are considered containing much information on customer be-

haviors and product values. The underlying patterns on market basket data are

crucial to designing good commercializing strategies.

Market basket data can be represented in the form of a Booleanmatrix with

the cell at the position of{ij} indicating whether or not the transactioni includes

the itemj. It can also be expressed as a bipartite graph as illustratedin Figure

6.1a, where nodes on the left side are transactions, nodes onthe right side are

items, and an edge means the transaction includes the item.

An important market basket data analysis task is to determine what items typ-

ically appear together, e.g., which items customers typically buy together in a

database of supermarket transactions. This in turn gives insight into questions

such as how to group them in store layout or product packages,how to market

these products more effectively, or which items to offer on sale to increase the

sale of other items.

Conventional solutions for determining such itemsets is based on the metric

of support. The support of an itemset X is the ratio of transactions in which an

itemset appears to the total number of transactions. Given asupport threshold

value, any itemset with a greater support value is considered to be frequent and

selected.

However, this way suffers from some limitations. For a large-scale database

a low support threshold would generate overwhelming itemsets, which are not of

practical use for data owners. It is true that a high support threshold would reduce
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selected itemsets significantly. However, such selected itemsets do not guarantee

to cover the whole database or to describe all customer behaviors. In fact, in

reality some itemsets might be less frequent, but quite important. A good itemset

group is then expected to completely cover the whole database.

The basic BMD can be effectively utilized to resolve the itemset overwhelm-

ing issue. Instead of discovering frequent itemsets, we discover minimal itemsets

to cover the whole transaction database. Such a solution canalso be depicted

by a tripartite graph as shown in 5.5a. The nodes in the middledenote itemsets.

Edges between itemsets and items show the components of eachitemset, while

edges between transactions and itemsets gives the description for each transaction

as a union of some itemsets. A tripartite graph is corresponding to two Boolean

matrices. Hence, the task of minimizing the number of itemsets to describe a

transaction database is a basic BMD problem.

Topic Identification

With the fast development of internet and database technologies, a huge amount

of text data are generated and collected everyday, which creates needs for auto-

mated analysis. Given a collection of documents, a basic problem is: what topics

are frequently discussed in the collection? Its answer would assist human un-

derstanding of the essence within documents and help in archiving and retrieving

documents.

Given a collection of documents, a set of key words can be discovered. Each

document then can be structured as a subset of keywords, which further can be rep-

resented as a Boolean row vector with each dimension corresponding to a keyword
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and each component value indicating whether or not the keyword is included. As

a result, a collection of documents can be represented as a Boolean matrix. It can

be depicted as a bipartite graph as shown in Figure 4.5a as well.

The topic identification problem can be performed as follows: Discover mini-

mal topics, each of which is a subset of keywords, to describethe given collection

of documents. The solution would give a limited number of topics, which is a

complete description of the whole collection of documents.

Such a topic identification problem is a basic BMD problem. Again, look at

Figure 5.5a. The relation between documents, topics, and keywords is depicted as

a tripartite graph, which decomposes the Boolean matrix of the document collec-

tion into two Boolean matrices.

4.1.2 Cost BMD

The cost BMD problem is to find a BMD solution minimizing the complexity

of decomposition solution, which is the number of 1’s cells in the decomposed

matrices, instead of the number of roles.

Problem 4.2 (Cost BMD) Given a Boolean matrixA ∈ m× n, find Boolean

matricesX ∈ {m×k} andC ∈ {k×n}, such thatA = X
⊗

C and||X||1+||C||1

is minimized.

Cost BMD has an important application in role mining. The edge-RMP prob-

lem [60] is searching for the role set corresponding to the minimum administrative

cost, which is quantified by the total number of 1’s cells in the role-to-permission
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assignment matrixC and the user-to-role assignment matrixX, as the manage-

ment information system makes assignments only based on 1’scells.

Cost BMD can also be applied in Boolean data compression. AsA = X
⊗

C,

storingA can be replaced by storingX andC, if the total size ofX andC is much

smaller than the size ofA. To store a sparse Boolean matrix, only positions of 1’s

cells need to be maintained. Therefore, the size of a Booleanmatrix is the number

of its 1’s cells. The problem of searching for the best compressing strategy for

sparse matrices becomes a cost BMD problem.

4.1.3 Approximate BMD and Its Variants

The approximate BMD problem is to find a BMD solution without the restriction

of exactness and is described as follows.

Problem 4.3 (Approximate BMD) Given a Boolean matrixA ∈ m× n and a

threshold valueδ, find Boolean matricesX ∈ {m × k} andC ∈ {k × n}, such

that ||A−X
⊗

C||1 ≤ δ andk is minimized.

An important motivation of approximate BMD is that in many cases a large

number of concepts are required to exactly describe the observed Boolean data,

while only a few concepts are necessary if a certain amount ofinexactness is

allowed. For those cases, if the exactness issue is not fatal, people tend to reduce

the number of necessary concepts by introducing a limited amount of errors.

This model can be well applied to the text mining scenario, asfor a large

document-word data set, restricting each document be represented exactly by an
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union of a subset of topics tends to cause the over-fitting problem. Hence it is bet-

ter to allow some level of inexactness. It will facilitate the subsequent information

retrieval task as well since less topics make indexing work easier. Approximate

BMD can also be used to model the approximate RMP problem [62], which is a

variant of basic RMP.

However, certain applications may have specific requirements on the charac-

teristics of errors. It leads to two variants, 1-0 error freeBMD and 0-1 error BMD,

defined as follows.

Problem 4.4 (1-0 Error Free BMD) Given a Boolean matrixA ∈ m× n and a

threshold valueδ, find Boolean matricesX ∈ {m × k} andC ∈ {k × n}, such

that
∑

ij |aij − (X ⊗ C)ij| is minimized and(X ⊗ C)ij = 1 if aij = 1.

Problem 4.5 (0-1 Error Free BMD) Given a Boolean matrixA ∈ m× n and a

threshold valueδ, find Boolean matricesC ∈ {m × k} andX ∈ {k × n}, such

that
∑

ij |aij − (X ⊗ C)ij| is minimized and(X ⊗ C)ij = 0 if aij = 0.

For a sparse Boolean matrix with very few 1’s cells, 1-0 errors would cause

much information loss in the resultant Boolean matrix reconstructed from its ap-

proximate BMD solution. Hence, it is preferred to avoid 1-0 errors when decom-

posing sparse Boolean matrices, which gives rise to 1-0 error free BMD.

In the setting of role-based access control, 0-1 errors meanover-assignments.

Over-assignments would cause serious security and safety problems because users

may misuse permissions that are not supposed to be granted tothem. Under-



38

assignments, which are 1-0 errors, are relatively more tolerable. Therefore, it is

preferred to have 0-1 error free in the approximate RMP setting.

4.1.4 Partial BMD

Partial BMD is given concepts to describe observed data as combinations of con-

cepts, formally defined as follows.

Problem 4.6 (Partial BMD) Given matricesA ∈ m× n andC ∈ {k × n}, find

a Boolean matrixX ∈ {m× k}, such that
∑

ij |aij − (X
⊗

C)ij| is minimized.

Partial BMD can be viewed as a subproblem of other BMD variants. For ex-

ample, to solve the basic BMD problem, one two-phase approach is: (i) generate

a candidate concept set; (2) examine how well the concept setdescribes the ob-

served data. The second phase is a partial BMD problem.

Partial BMD can also rises on its own. The basis usage problem[52], which

is given a set of Boolean basis vectors to describe an observed Boolean vector, is

a partial BMD problem.

In addition to four BMD variants introduced above, there could be many other

variants occurring in reality. For example, basic BMD may have the constraint

that the combination of each observed vector is limited up tok concepts. But this

dissertation focuses on those four typical BMD variants.

4.2 Theoretical Study

This section will give computational complexity results for basic BMD, approx-

imate BMD, and partial BMD. The decision problem of basic BMDis a NP-
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complete problem, which can be proven by a reduction to the set basis problem

known to be NP-compete.

Definition 4.1 (Set Basis Problem)INSTANCE: A finite setU , a family S =

{S1, ..., SN} of subsets ofU and a positive integerk. QUESTION: Does there

exist a set basis of size at mostk for S?

Theorem 4.1 The decision problem of basic BMD is NP-complete.

Proof. The decision problem of basic BMD can be phrased as follows. IN-

STANCE: A Boolean matrixA and a positive integerk. QUESTION: Does there

exist a BMD solutionXm×k andCk×n of A?

For any set basis instance, we can find a basic BMD instance, which is true

if and only if the set basis instance is true. For a set basis instance{U ,S, k},

we create a vector sCce with dimensions of|U|, which denotes the number of

elements in|U|, and each dimension corresponding to an element in{U}. We also

construct row vectors{A1, ..., AN}, such thatAi(j) = 1 if Si contains elementj.

So far, we have created a basic BMD instance{A, k}. It is not difficult to see that

the constructed instance is true if and only if the set basis instance is true.�

Basic BMD essentially is a special case of approximate BMD with the error

threshold of 0. Hence, the decision problem of approximate BMD is NP-complete

as well.

The decision problem of partial BMD is also NP-complete, which can be

proven by a reduction to a known NP-complete problem,±PSC [49] described

as follows.
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Problem 4.7 (±PSC ) INSTANCE: Two disjoint setsP and N of positive and

negative elements, respectively, a collectionS of subsets ofP
⋃

N , and a pos-

itive integert. QUESTION: Does there exist a subcollectionC ∈ S, such that

|P\(∪C|) + |N ∩ (∪C|) ≤ t.

Theorem 4.2 The decision problem of partial BMD is NP-complete.

Proof. The decision problem of partial BMD can be phrased as follows. IN-

STANCE: two Boolean matricesAm×n andCk×n, and a positive numbert. QUES-

TION: Does there exist a Boolean matrixX such that
∑

ij |aij − (X ⊗C)ij| ≤ t.

Given an instance of the decision problem of partial BMD, it is not difficult to

check if it is true. So the decision problem of partial BMD belongs to NP.

For any±PSC instance{P, N,S, t}, we can construct a decision partial BMD

instance as follows, which is true if and only if the±PSC instance is true. We

let A to a 1 × (|P | + |N |) Boolean vector, with the first|P | components being

1 and the others being 0. In addition, for the1 × (|P | + |N |) vector sCce, we

let the firstP dimensions correspond to positive elements inP respectively and

the lastN dimensions correspond to negative elements inN respectively. For

each element subsetsi in S, we create a Boolean row vectorCi of C such that:

if si contains some element, the component ofCi which corresponds to that Cr-

ticular element is 1; otherwise 0. The constructed decisionpartial BMD instance

{A1×(|P |+|N |), C|S|×(|P |+|N |), t} is equivalent to the±PSC instance.�
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4.3 Mathematical Programming Formulation

BMD variants share much commonality. For example, the only difference be-

tween basic BMD and cost BMD is in the objective functions. The difference

between approximate BMD and basic BMD is that approximate BMD allows in-

exactness. A natural arising thought is that if we can build aunified framework

for all BMD variants, we then do not need to deal with each problem individu-

ally. Additionally when new BMD variants appear, system engineers do not need

to start from scratch and can take advantage of algorithms that have been devel-

oped for existing BMD variants. As all BMD variants are essentially optimization

problems, we propose to formulate them through integer linear programming.

There are many benefits by connecting BMD variants with integer linear pro-

gramming. First, optimization has been studied for more than half century. There

are quite a few good exact optimization algorithms, even forinteger linear pro-

gramming, such as branch-and-bound [37]. In addition, successful optimization

software Packages are easily obtainable, such as Matlab andthe Neos server1.

Even though those BMD variants are proven to be hard to solve,small or medium

size problems can still be solved through traditional optimization techniques. In

addition to exact algorithms, approximation algorithms may be developed through

LP-based techniques, such as dual-fitting [41], randomizedrounding [23], and

primal-dual schema [36]. The linear programming frameworkwe will propose in

fact can not only incorporate BMD variants, but also problems in other application

domains, such as tiling database problems [19] and discretebasis problems [50].

1http://www-neos.mcs.anl.gov/
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For ease of explaining, in this section, we will discuss BMD variants in the role

mining context, where a BMD solution{X, C} of user-to-permission assignments

A gives rolesC and user-to-role assignmentsX.

4.3.1 Partial BMD

In the context of role mining, partial BMD is given user-to-permission assign-

mentsA and rolesC to assign roles appropriately to users such that the resultant

user-to-permission assignment errors
∑

ij |aij − (X ⊗ C)ij| is minimized. Then

the partial BMD problem can be roughly represented as follows:

minimize ||A−X ⊗ C||1.

To formulate it as an explicit integer linear programming problem, we first

formulateX ⊗ C = 0 and then relax it by tolerating errors.

To do so, we letCi denote rolei andAi denote permissions assigned to user

i. A −X ⊗ C = 0 means every user’s permission set should be represented as a

union of some candidate roles. This can be phrased asAi =
⋃

t∈si
Ct, wheresi

denotes the role subset assigned to useri. {si} can convert to a Boolean matrixX

such thatXit = 1 if role t belongs tosi, otherwiseXit = 0.

The constraint essentially says that if some user has a particular permission, at

least one role having that permission has to be assigned to that user. In turn, if that

user does not have some permission, none of the roles having that permission can

be assigned to it. SoX ⊗ C = A can be transformed to the following equation

set.
{

∑q
t=1 XitCtj ≥ 1, if Aij = 1

∑q
t=1 XitCtj = 0, if Aij = 0

(4.2)
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To formulate inexactness, we introduce a non-negative slack variable{Vij} to

each constraint and have the following modified constraints.

{
∑q

t=1 XitCtj + Vij ≥ 1, if Aij = 1
∑q

t=1 XitCtj − Vij = 0, if Aij = 0
(4.3)

For Aij = 1,
∑q

t=1 XitCtj + Vij ≥ 1 allows
∑q

t=1 XitCtj to be 0. ForAij = 0,
∑q

t=1 XitCtj−Vij = 0 allows
∑q

t=1 XitCtj to be greater than 1. In other words, if

Vij > 0, the constraint enforcing whetherAij = 1 or Aij = 0 is not satisfied. The

objective function||A−X ⊗ C||1 is then the count of unsatisfied constraints for

A = X ⊗ C. To formulate the objective function, we need to count the positive

variables{Vij}. To do so, we introduce another Boolean variable set{Uit} and

enforce the following constraints:

{

MUij ≥ Vij

Uij ≤ Vij
.

In which, the bigM is a large constant greater thanq. The above two inequalities

ensure that ifVij ≥ 1, Uij = 1 and if Vij = 0, Uij = 0. Thus, the count of

positive{Vij} is
∑

ij Uij . Therefore, the integer linear programming formulation

for partial BMD is as the following

minimize
∑

ij

Uij































∑q
t=1 XitRtj + Vij ≥ 1, if UCij = 1

∑q
t=1 XitRtj − Vij = 0, if UCij = 0

MUij − Vij ≥ 0, ∀i, j

Uij ≤ Vij, ∀i, j

Xit, Uij ∈ {0, 1}, Vij ≥ 0

.

(4.4)
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4.3.2 Basic BMD

With the integer linear program formulation for partial BMD, it is easy to for-

mulate other BMD variants. Consider basic BMD. In the role mining setting,

it means given user-to-permission assignmentsAm×n to find user-to-role assign-

mentsXm×k and permission-to-role assignmentsCk×n. It can be succinctly put

as an optimization problem as follows:

minimize k

s.t. Xm×k ⊗ Ck×n = Am×n.

For simplicity, we break up the basic BMD into two subproblems: (i) find a

candidate role set{R1, R2, ..., Rq}; (ii) locate a minimum candidate role subset to

form A.

A role is nothing, but a permission subset. Givenn permissions, there are2n

possible roles. But most of them can be easily eliminated. For example, if none

of users had both permissionsi andj, any permission subset containing both per-

missionsi and j can never be a candidate role. We will explicitly discuss the

generation of candidate roles when we conduct experimentalstudy on BMD vari-

ants later. Here assume we have already had a candidate role set{R1, R2, ..., Rq}.

Then consider the second subproblem, which is similar to partial BMD.

Every user’s permission set should be able to be representedas a union of

some candidate roles. This can be phrased as the following:Ai =
⋃

t∈si
Rt,

wheresi denotes the candidate role subset assigned to useri andAi denotes the

permission subset assigned to useri. {si} can convert to a Boolean matrixX such

thatXit = 1 if candidate rolet belongs tosi, otherwiseXit = 0. As bothX andR
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are Boolean matrices, their relation can be represented by the following Boolean

matrix multiplication,Xn×q ⊗ Rq×m = An×n, whereR andA are given andX

is unknown. AsXit indicates whetherRj is assigned to useri, so if ∀t Xit = 0,

it means thatRt is never employed. So the basic BMD is essentially to minimize

the number of non-zero columns inX.

Same as the partial BMD, the constraintX ⊗ R = A can be enforced by

{
∑q

t=1 XitRtj ≥ 1, if Aij = 1
∑q

t=1 XitRtj = 0, if Aij = 0
. (4.5)

Now we need to count the number of non-zero columns inX. To do so, we

introduce a set of Boolean slack variables{d1, ..., dq}, wheredt = 1 indicates

role t is present, otherwise not. Then|Roles| =
∑q

t=1 dt. Sincedt indicates the

presence of a role,dt should only be 1 when at least one user is assigned rolet.

Thus,dt = 1 when at least one of{X1t, ..., Xmt} is 1. We can formulate this by

adding in the constraints{dt ≥ Xit, ∀i, t}.

Finally, putting every thing together, the basic BMD is formulated as the fol-

lowing

minimize
∑

t

dt



















∑q
t=1 XitRtj ≥ 1, if Aij = 1

∑q
t=1 XitRtj = 0, if Aij = 0

dt ≥ Xij, ∀i, j

dt, Xij ∈ {0, 1}

.

(4.6)
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4.3.3 Approximate BMD

In the role mining setting, approximate BMD problem means tominimize the

number of required roles within a tolerable amount of errors. In Equation 4.4,

the error amount is formulated as
∑

ij Uij . In Equation 4.6, the number of roles

is formulated as
∑

t dt. By combining these two equation systems together, we

easily obtain the formulation for the approximate BMD problem as Equation 4.7.

minimize
∑

t

dt



















































∑q
t=1 XitRtj + Vij ≥ 1, if Aij = 1

∑q
t=1 XitRtj − Vij = 0, if Aij = 0

MUij − Vij ≥ 0, ∀i, j

Uij ≤ Vij , ∀i, j

dt ≥ Xit, ∀i, t
∑

i

∑

j Uij ≤ δ

dj, Xit, Uij ∈ {0, 1}, Vij ≥ 0

.

(4.7)

In which,
∑n

i=1

∑m
j=1 Uij ≤ δ ensures the total deviating cells less thanδ and the

objective function
∑q

t=1 dt is the number of mined roles.

4.3.4 Cost BMD

Different from basic BMD, cost BMD is to minimize the administrative cost. As

a RBAC system only needs to maintain explicit user-to-role assignments and ex-

plicit role-to-permission assignments, the administrative cost is hence evaluated

by positive cells in the decomposed matricesX andC. By employing the same

notations in the integer linear program formulation for thebasic BMD as in Equa-

tion 4.6, the administrative cost can be formulated as the following

||X||1 + ||C||1 =
∑

i

∑

t

Xit +
∑

t

(dt

∑

j

Rtj). (4.8)
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∑

i

∑

t Xit is the count of positive cells inX and
∑

t(dt

∑

j Rtj) counts positive

cells in selected candidate roles, which is||C||1. Thus, the integer linear program

formulation for cost BMD can be obtained by replacing the objective function in

Equation 4.6 with the formula in Equation 4.8.

4.3.5 Discussion

From the integer linear program formulating processes for those role mining vari-

ants, we observe that once one role mining variant is successfully formulated, it

is easy to formulate other variants. This fact illustrates the benefit of building a

unified integer linear program framework of the role mining problem. Such an

integer linear program framework is broad and flexible to incorporate new vari-

ants, which may appear in practice. For instance, a role mining engineer may

not want to see 0-becoming-1 errors in an approximate BMD solution, because

0-becoming-1 errors mean that a user obtains unauthorized permissions, which

may harm the system security severely. To reflect this concern in the integer lin-

ear program formulation , we could simply replace the constraint for Aij = 0 of
∑q

t=1 XitRtj − Vij = 0 in Equation 4.7 by
∑q

t=1 XitRtj = 0. Consider another

instance that all roles are expected to be highly repetitively used. To realize this

expectation, we could add a constraint that
∑

i Xit ≥ LB, where
∑

i Xit is the

number of users granted rolet andLB is a specified frequency lower bound. So

every picked role is employed more thanLB times.
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4.4 Algorithm Design for BMD Variants

The integer linear program formulation for the partial BMD takesmn variables

and for other BMD variants takes aboutmq variables, wherem is the number of

users,n is the number of permissions, andq is the number of candidate roles. The

state-of-art integer linear program software Packages candeal with up to millions

variables. So for problems of sizes withm andq greater than 1000, we have to

resort to efficient heuristics. In this section, we will propose efficient heuristics

for BMD variants. They are easy to implement and run fast. Their effectiveness

will be validated in the next section. Like the above integerlinear program for-

mulations that require candidate roles to be given, our heuristics need candidate

concepts generated beforehand as well. So before presenting our heuristics, we

will first discuss ways of generating candidate concepts. For ease of explaining,

we will still discuss it in the role mining setting.

4.4.1 Candidate Role Set Generating

We present three ways of generating candidate roles. All of them were somehow

mentioned in other peoples’ work before either in the role mining context or in

the discrete basis context.

Intersection. We call the first methodIntersection, which is proposed by

Vaidya et. in [62]. This method includes every unique user’spermission set as

a candidate role. In addition the intersections of every twouser permission sets

are included as candidate roles as well. This method is basedon two observa-

tions. First in order to make a permission subset be a role, itmust be employed

and assigned to some user. In other words, a candidate role must be a subset of
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some user’s permission set. The other observation is that tomake a RBAC system

succinct and efficient, roles should be repetitively employed. So a role is desired

to be assigned to multiple users. Hence, a candidate role is expected to be the

intersection of two or multiple user’s permission sets. Givenm users, candidate

roles generated by theIntersectionmethod iso(m2).

Association. This method is to exploit the correlations between the columns

of existing user-to-permission assignmentsA by employing the association rule

mining concept in [52]. It was presented as a part of theASSOalgorithm proposed

for the discrete basis problem. The concrete generation process is as follows. Sup-

pose user-to-permission assignmentsAm×n are given. LetA(:, i) denote theith

column. Thenn candidate roles will be generated, represented by a Booleanma-

trix Cn×n. In which,Cij = 1 if 〈A(:, i), A(:, j)〉\〈A(:, i), A(:, i)〉 ≥ τ ; otherwise

0. The operator〈., .〉 is the vector inner product operation, andτ is a predeter-

mined threshold controlling the level of correlation.

Itself. This method is to simply treat unique user’s permission setsfrom A

as candidate roles. It was studied in [48], but in the scenario of the discrete basis

problem. The problem is to find a discrete basis for an input Boolean matrix, such

that the discrete basis is a subset of columns (or rows) of theinput Boolean matrix.

In the role mining context, if employing this method to generate candidate roles,

it is assumed that for every role there must be one user who is granted this role

and only this role.
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4.4.2 Partial BMD

As we mentioned earlier, partial BMD is equivalent to the basis usage problem.

A heuristic called Loc& IterX was proposed for the basis usage problem in [48].

Here we propose two more effective heuristics, one greedy approach and one sim-

ulated annealing approach.

Without loss of generality, we assume that there is only one user. HenceA is

a1× n row vector. A role setCr×n is given. partial BMD becomes to find a role

subset, such that the union of permissions contained in those roles is closest toA.

Greedy. A greedy algorithm is any algorithm that makes the locally optimal

choice at each stage with the hope of finding the global optimum. It has many

successful applications, such as the traveling salesman problem and the knapsack

problem. Our greedy approach consists of a preliminary step. It is to assign all

roles inC which aresubordinateto A to the user. A roleC1 is considered to be

subordinate to a roleC2 if all permissions contained byC1 belong toC2. After

that, iteratively pick one remaining role which can reduce the reconstruction error

by the most and assign it to the user, till the reconstructionerror cannot be reduced

any more.

Simulated Annealing Simulated annealing is a generic probabilistic heuris-

tic for the global optimization problem. It locates a good approximation to the

global optimum of a given function in a large search space. Different from greedy

heuristics, simulated annealing is a generalization of a Markov Chain Monte Carlo

method, which has a solid theoretical foundation. We present a simulated anneal-

ing heuristic for the partial BMD problem as the following. First, we let(0, ..., 0)
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Algorithm 4.1 Greedy Algorithm for Partial BMD

Input: A1×n andCr×n

Output: X1×r

1: X1×r ← (0, ..., 0);
2: for i← 1 : r do
3: if Ci ⊆ A then
4: X[i] = 1;
5: end if
6: end for
7: loop
8: Ci=the best remaining role,j=the largest improvement;
9: if j > 0 then

10: X[i] = 1;
11: else
12: break
13: end if
14: end loop

be the starting state ofX1×r. Then at each stage, randomly select its neighboring

value by randomly picking one element ofX and flipping its value from 0 to 1 or

from 1 to 0. If the newX better reconstructsA, the next state is the newX. If

not, with a certain probability less than 1, the next state isthe newX . In other

words, with certain probability, it remains its original state. This property reduces

the chance of being stuck at a local optimum. The procedure described above

allows a solution state to move to another solution state andhence produces a

Markov Chain. Denote thenth state bex and the randomly selected neighboring

value bey. If the next state isy with probability min{1, exp{λV (x)/N(x)}
exp{λV (y)/N(y)}

}] or it

remainsx, whereλ is a constant,V (t) is the reconstruction error with the solution

t, andN(t) is the number of neighboring values oft. Such a Markov Chain has

a limiting probability of 1 for arriving at optimal minimization solutions when

λ → ∞ [56]. But it has been found to be more useful or efficient to allow the
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Algorithm 4.2 Simulated Annealing Algorithm for Partial BMD

Input: A1×n andCr×n

Output: X1×r

1: X, x← (0, ..., 0); n← 1;
2: while n ≤ limit & V (X) > 0 do
3: y= a random neighboring value ofx;
4: if V (y) < V (X) then
5: X ← y;
6: end if
7: x = y with probability

min{1, exp{log(1+n)V (x)}
exp{Clog(1+n)V (y)}

};
8: n← n + 1;
9: end while

value ofλ to change with time. Simulated annealing is a popular variation of

the preceding. Here, we adopt the formula proposed by Besag et al. [54] and let

the transition probability bemin{1, exp{λnV (x)/N(x)}
exp{λnV (y)/N(y)}

} whereλn = log(1 + n). In

our case,N(x) andN(y) are equivalent and are canceled out in the formula. As

computing time is limited, we terminate the algorithm aftera certain number of it-

erations regardless of whether or not the global optimum is reached. Our complete

simulated annealing algorithm is described as in Algorithm4.2.

4.4.3 Basic BMD

The heuristic proposed for the basic BMD also runs in a greedyfashion. Look at

the integer linear program formulation for the basic BMD as Equation 4.6. There

are two main types of constraints, one for{Aij = 1} and the other for{Aij = 0}.

In order to satisfy the constraint set{
∑q

t=1 XitRtj = 0, if Ait = 0}, if Rjt = 1,

Xit must be equal to 0. Therefore, many variablesXit can be determined directly

in this way. Then the constraint set{
∑q

t=1 XitRtj = 0, if Ait = 0} is all satisfied.

Next consider{
∑q

t=1 XitRtj ≥ 1, if Ait = 1}. To satisfy it, if the particular
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cellsRt1j , Rt2,j, ...Rtk ,j are 1, one of the associated cellsXit1 , Xit2, ...Xitk has to

be 1.

Now, consider the objective functionmin
∑q

t=1 dt. Asdt is determined by the

constraintdt ≥ Xit. Hence once one of the cells{Xit, ∀t} is 1, dt is forced to

be 1. In other words, no matter how many variables in{Xit, ∀t} take the value

of 1, the objective function value is always increased by 1. Our greedy algorithm

utilizes this property. At each step, choose a candidate role Rt such that by set-

ting {Xit, ∀t}, except those predetermined, be 1, the most remaining constraints

{
∑q

t=1 XitRtj = 1, if Aij = 1} are satisfied. We call the count of such satisfied

remaining constraints the basic-key.

Definition 4.2 (Basic-Key) For each column of the variable matrix{Xit}, the

count of the constraints{
∑q

t=1 XijRtj = 1, if Aij = 1} being satisfied by letting

the cells of such a variable column be 1 except the cells predetermined, is called

its basic-key.

If there are multiple columns with the same greatest basic-key, we simply

choose the column with the least index. Once a column is chosen, it means that

the associated candidate role is chosen and the associateddt is set to be 1. Then

delete the satisfied constraints and perform the same procedure repetitively till all

the constraints are satisfied. The full procedure of this greedy algorithm is given

in Algorithm 4.3.
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Algorithm 4.3 Greedy Algorithm for Basic BMD

Input: Unique user-to-permission assignmentsAm×n and candidate roles
{R1, ..., Rq}.

Output: X andC
1: C = ∅;
2: Investigate the constraints{

∑q
t=1 XitRtj = 0} in Equation 4.6 and determine

some ofXit to be 0;
3: Select the candidate roleRt with the greatest basic-key value and include it

in C.
4: Let undetermined values in{Xit} be 1 and deleter hence satisfied constraints

in {
∑q

t=1 XitRtj > 1};
5: Go back to step 3 till all constraints of{

∑q
t=1 XitRtj = 0} and

{
∑q

t=1 XitRtj > 0} are satisfied.
6: Set the remaining variables inX to be 0.
7: X is the subset of rows inX corresponding to selected roles inC.

4.4.4 Approximate BMD

From the integer linear program formulation perspective, approximate BMD seems

much more complicated than basic BMD. However an efficient greedy heuris-

tic for the approximate BMD can be easily developed by modifying the greedy

heuristic for the basic BMD. As theδ-approximate BMD toleratesδ amount of

errors, we can terminate Algorithm 4.3 early once the remaining uncovered 1’s

cells are less thanδ.

4.4.5 Cost BMD

Cost BMD is to minimize the administrative cost||X||1+||C||1, while basic BMD

only aims to minimize the number of roles. So a basic BMD optimal solution is

not necessarily a cost BMD solution. Cost BMD was studied in [61], where a

greedy heuristic was proposed. To distinguish it, we call itEdge-Key. Here we

propose a new heuristic, calledTwo-Stage.
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Cost BMD objective consists of two parts||X||1 and ||C||1. Intuitively less

number of roles leads to a less value of||C||. In this sense, an optimal solution of

basic BMD can be a not-bad solution for cost BMD. Our greedy heuristic for basic

BMD is able to produce a goodC. However,X produced by the greedy heuristic

is just a byproduct and not in its optimal form. We can start a second phase

and reduce user-role assignments by reassigning obtained roles ofC to each user.

It is essentially another basic BMD problem that assigning the minimum roles

from C to exactly cover all permissions for a user. So here we can adopt our

greedy heuristic again. It is a common fact that if a role contains permissions not

originally possessed by a user, the role can never be assigned to the user. With

this rational, we can simplify the second-phase task by filtering out unlikely roles

from C in advance. The complete algorithm is as described in Algorithm 4.4.

Algorithm 4.4 Two-Stage Algorithm for Edge-BMD

Input: user-to-permission assignmentsAm×n and candidate roles{R1, ..., Rq}.
Output: ||X||1 + ||C||1

1: Run Algorithm 4.3 with{R1, ..., Rq} to obtainC.
2: for eachAi do
3: Remove roles that contain permissions not belonging toAi from C.
4: Run Algorithm 4.3 with remaining roles inC to obtainXi.
5: end for

4.5 Experimental Study

In this section, we conduct extensive numerical experiments on both synthetic

data sets and real data sets to evaluate the performance of our heuristics.
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m # of users
n # of permissions
r # of roles
ρ1 density ofC
ρ2 density ofX

noise noise percentage
limit maximum number of iterations

Figure 4.3. Notations

4.5.1 Synthetic Data

The synthetic data sets are generated as follows. Firstly, generate a set of unique

rolesCr×n and user-to-permission assignmentsXm×r in a random fashion.A is

the Boolean product ofC andX. Two parametersρ1 andρ2 are employed to

control the density of 1’s cells inC andX respectively, which then determine

the density of 1’s cells inA. Precisely, to create a role, generate a random number

Poissrnd(ρ1) from a poisson distribution with the mean ofρ1×n. If the generated

number is greater thann, perform it again. Then randomly generate a Boolean

vector withPoissrnd(ρ1) 1’s elements. We generate a user’s role assignment in

a similar way, except replacingρ1 with ρ2. To reflect real data sets, we also add

in noise by flipping the values for a portio of cells.noise is the noise percentage

parameter. For convenience of reference, we list all notations in Figure 4.5.1.

In which, the parameterlimit is used in Algorithm 4.2 to control the maximum

number of iterations.

The first experiment is to study partial BMD. We compare the Loc & IterX

algorithm proposed in [48] with our greedy heuristic and ourSA heuristic with

limit of 500. Three algorithms are compared with respect to the reconstruction
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Figure 4.4. Experimental Results on Partial BMD

error ratio, which is defined asErrorRatio = ||A−A′||1/||A||1, whereA′ denotes

the reconstructedA.

The concrete experimental design is as follows. (i) Generate a number of data

sets{X, C, A} with m = 50, n = 50, ρ1 = 0.3, ρ2 = 0.3 andnoise varying from

0 to 0.2; (ii) Run the Loc & IterX, the greedy algorithm, and the SA algorithm

with limit of 500 respectively to obtainX andA′ givenC andA. The experiment

result is illustrated as shown in Figure 4.4a. It shows the greedy algorithm and the

SA algorithm are significantly better than the Loc & IterX algorithm. The other

observation is that the performances of the greedy heuristic and the SA heuristic

are comparable.

Different from the greedy heuristic, which returns a local optimum in most

cases, a SA heuristic can with probability one reach a globaloptimum with enough
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computing time; in other words unlimited number of iterations. However, the

meaning of existence for a heuristic is that it can get a good solution in an accept-

able time. So we conduct another experiment to investigate how our SA heuristic

performs as opposed tolimit. We generate 100 sets of{X, C, A} with ρ1=0.3,

ρ2=0.3, m=1, n=50, r=30, andnoise=0.2. limit varies from 50 to 2500. Run

both the greedy heuristic and the SA heuristic against them.Figure 4.4b shows

that the SA heuristic has better performance than the greedyheuristic whenlimit

is greater than 500. It also shows at the beginning small increase inlimit can im-

prove the performance by a lot for the SA heuristic. However,whenlimit reaches

certain point, the improvement becomes much less significant. It somehow shows

that the greedy heuristic has relatively satisfactory performance. Figure 4.4c plots

computing times for both methods. The computing time for theSA heuristic in-

creases linearly withlimit. However, to achieve the same performance as the

greedy heuristic, the SA heuristic takes more time. So we conclude that the SA

heuristic is recommended for small-size problems while thegreedy heuristic is

suitable for large-size problems.

Next we study our greedy heuristic for basic BMD. The heuristic is closely

dependent on candidate roles. Three ways of generating candidate roles were in-

troduced:Itself, Intersection, andAssociation. As Associationhas a parameter of

association thresholdτ , for a fair comparison, we consider two cases,τ = 0.9 and

τ = 0.7. We generate{A} with ρ1=0.3, ρ2=0.3, m=50, n=50, r=10, noise=0.

Then run Algorithm 4.3 with each candidate role set respectively to findX and

C. The results are illustrated as shown in Figure 4.5a. BothIntersectionandItself

are able to reconstructA completely, butAssociation. With respect to the error
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reducing speed,Associationis inferior to two other approaches. OverallIntersec-

tion has the best performance, while the performance ofAssociationis far from

satisfactory. So ignoringAssociation, we then further studyItself and Intersec-

tion with respect to computing time. Figure 4.5b shows thatIntersectiontakes

much more time thanItself. The underlying reason is thatIntersectionproduces

o(m2) candidate roles as opposed too(n) candidate roles produced byItself. We

conclude that for small size problemsIntersectionis preferred whileItself is rec-

ommended for large size problems.

Our greedy heuristic for approximate BMD is same as that for basic BMD,

except that it terminates early. So the previous experimental results are valid for

studying approximate BMD. Figure 4.5c plots reconstruction error ratio values

with respect to required number of roles. If a small amount oferrors are allowed,

A can be successfully reconstructed with much less number of roles. For example,

Itself needs only 10 roles to cover more than 80 percent of existing permissions,

while 20 extra roles are needed to cover the remaining permissions. Somehow

it can be interpreted that roles returned by approximate BMDare more ”funda-

mental”. It suggests that if a bottom-up role engineering approach is only used to

identify promising roles to assist a top-down engineering approach, approximate

BMD is more efficient. Figure 4.5d shows the relation betweendata density and

the number of required roles for full coverage. As the data density is indirectly

determined byρ1 andρ2. The experiment is to letρ1 andρ2 have the same value

and vary them together from 0.1 to 0.6. In Figure 4.5d, both lines suggest that

for denser data sets more roles are required. In other words,our greedy heuristic

performs better for sparse data sets, while real access control data sets are usually
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Figure 4.5. Experimental Results on Basic BMD and Approximate BMD



61

very sparse. We then study the relation between data size andour greedy heuristic

performance. We letm andn be same and vary them from 40 to 100. Figure 4.5e

illustrates that our heuristic performs good for medium andsmall sizes.

Next we evaluate theTwo-Stagealgorithm proposed for edge BMD by com-

paring it with theEdge-Keyalgorithm proposed in [61]. For convenience, we

let default parameters for generatingA be {m = 50, n = 50, ρ1 = 0.3, ρ2 =

0.3, noise = 0}. We then variate one parameter each time, generate a set ofAs,

and runTwo-StageandEdge-Keyrespectively on them. As both algorithms re-

quire input candidate roles, we consider bothItself andIntersection. Hence, we

actually compare four approaches:(Two-Stage, Itself), (Two-Stage, Intersection),

(Edge-Key, Itself),and (Edge-Key, Intersection). Experimental results are illus-

trated as shown in Figure 4.6. All four graphs suggest thatTwo-Stageis better

thanEdge-Key.

4.5.2 Real Data

We run our greedy heuristics on real data sets collected by Ene et al. [16]. They

areemea, healthcare, domino, firewall 1, andfirewall 2.

The first experiment is to study the basic BMD. We run Algorithm 4.3 against

each data set with candidate roles generated byItself andIntersectionrespectively.

Numbers of roles required for full coverage are recorded in Figure 4.7. The num-

ber of required roles is much less than the number of permissions for each case.

It successfully demonstrates the power of RBAC and also the effectiveness of our

heuristic on discovering roles. Another observation is that the performance ofIn-

tersectionis not always better thanItself when working with our greedy heuristic.



62

0.2 0.4 0.6

500

1000

1500

2000

ρ
1
 and ρ

2

E
dg

e 
V

al
ue

 

 

Edge−Key, Itself,
Two−Stage, Itself
Edge−Key, Intersection
Two−Stage, Intersection

5 10 15 20 25 30
0

1000

2000

3000

r

E
dg

e 
V

al
ue

 

 

Edge−Key, Itself,
Two−Stage, Itself
Edge−Key, Intersection
Two−Stage, Intersection

0.1 0.2 0.3
1200

1300

1400

1500

1600

1700

noise

E
dg

e 
V

al
ue

 

 

Edge−Key, Itself,
Two−Stage, Itself
Edge−Key, Intersection
Two−Stage, Intersection

40 60 80 100 120

500

1000

1500

2000

m and n

E
dg

e 
V

al
ue

 

 

Edge−Key, Itself,
Two−Stage, Itself
Edge−Key, Intersection
Two−Stage, Intersection

Figure 4.6. Reconstructed Error Ratio w.r.t. Percentage ofRequired Roles For
Real Data Sets

In theory, withIntersectionthe optimal solution of a basic BMD is better than that

with Itself, as the feasible solution space is expanded. However, if thealgorithm

runs in a greedy manner, it is not always true.

The second experiment is to study theδ-approximate BMD. We run Algorithm

4.3 and record remaining errors when a new role is identified.Figure 4.8 plots

reconstruction error ratios with respect to number of required roles. The first

observation is that all lines drop fast at the beginning. It suggests that a few roles

are usually able to reduce error ratio to a very low level. Roles early identified can

hence be interpreted as ”more valuable”. Another observations is that much more

roles are required to cover the remaining few 1’s at the end. It suggests hat if a role

mining approach is used as a tool to assist a top-down role engineering approach,

δ-approximate BMD might be sufficient. The other important observation is that
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Data Set Users Permissions ||A||1 Itself
# of Roles Edge Value

Edge-Key Two-Stage
emea 35 3,046 7,220 34 7,281 7,246
healthcare 46 46 1,486 16 624 478
domino 79 231 730 20 810 727
firewall 1 365 709 31,951 71 5,475 4,937
firewall 2 325 590 36,428 10 1,796 1,456

Data Set Users Permissions ||A||1 Intersection
# of Roles Edge Value

Edge-Key Two-Stage
emea 35 3,046 7,220 43 9,078 9,014
healthcare 46 46 1,486 14 553 412
domino 79 231 730 21 814 827
firewall 1 365 709 31,951 65 4,508 4,034
firewall 2 325 590 36,428 10 1,796 1,456

Figure 4.7. Number of Roles and Edge Value for Full Coverage for Real Data Sets

Intersectiondose not always perform better thanItself in our greedy heuristic. In

fact, if only considering early mined roles, their performances are comparable.

The third experiment is to study the edge BMD. We run(Two-Stage, Itself),

(Two-Stage, Intersection), (Edge-Key, Itself),and(Edge-Key, Intersection)respec-

tively against each data set. Their edge values are recordedin Figure 4.7. Our

Two-Stagealgorithm performs better than theEdge-Keyalgorithm for nearly all

cases except for thedomino data set withIntersection. The experimental results

demonstrate the advantage of RBAC over the traditional access control system

once again, as the edge-value (administration cost) is muchless than||A||1 for

any case.
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Figure 4.8. Reconstructed Error Ratio w.r.t. Number of Required Roles For Real
Data Sets
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CHAPTER 5

EXTENDED BOOLEAN MATRIX DECOMPOSITION

Boolean matrix decomposition is to decompose a Boolean matrix into the product

of two Boolean matrices, where the first matrix represents a set of meaningful

concepts, and the second describes how the observed data canbe expressed as

combinations of those concepts. The combination is only in terms of the set union.

In other words, a successful Boolean matrix decomposition gives a set of concepts

and shows how every column of the input data can be expressed as a union of some

subset of those concepts.

However, this way of modeling only incompletely representsreal data seman-

tics. Essentially, it ignores a critical component – the setdifference operation: a

column can be expressed as the combination of union of certain concepts as well

as the exclusion of other concepts. This has two significant benefits. First, the

total number of concepts required to describe the data may itself be reduced. Sec-

ond, a more succinct summarization may be found for every column. In this paper,

we propose the extended Boolean matrix decomposition (EBMD) problem, which

aims to factor boolean matrices using both the set union and set difference opera-

tions. We study several variants of the problem, show that they are NP-hard, and

propose efficient heuristics to solve them. Extensive experimental results demon-

strate the power of EBMD.
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To better explain EBMD, we will study it in the context of rolemining in the

following.

5.1 Motivation of EBMD

Role-based access control (RBAC) has proven to be a very successful model for

access control. Its flexibility and cost-efficiency have resulted in it being widely

adopted by current commercial systems. Indeed, it has been the model of choice

for migration in the case of enterprises still employing traditional access control

schemes. However, for such enterprises, the first and indeedthe most crucial step

is to design a good set of roles and assign them appropriatelyto each user. This

process of designing roles is called role engineering [11].While top-down tech-

niques have been proposed for role engineering, for large-scale enterprises with

more than thousands of users and permissions, bottom-up role extraction, called

role mining, which mines roles purely from existing user-permission assignments

without considering their semantic meanings, has become quite popular.

Semantics likeexceptionsandseparation of duty constraint(SoD) are indis-

pensable parts of RBAC,critical to model real-world cases.While SoD constraints

are restrictions on users and roles to capture policy semantics, allowing the se-

mantics related to exceptions are needed for a more succincttranslation of access

control policies to the actual specification. However, existing solutions for role

mining such as BMD are not able to capture or reflect semantics, specifically the

exceptions and separation of duty constraints. We will explicitly explain both

below.

Exceptions: Exceptions are inherent to any real world access control policy that
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uses some notion of abstraction in the authorization. Sincethe focus of this paper

is on role mining, we consider the role based access control policy. Suppose the

RBAC policy states that any user with role “manager” is allowed to access the

file “project A”. However assume there exists an exception tothis policy stating

that all users except John (who can play the role of the manager) is not allowed

to access “project A” due to certain conflict of interest requirements. Such excep-

tions are quite common to real world policies. Under a typical RBAC policy this

is supported through a negative authorization as it does notmake sense to create

a new role specifically to John alone. It is important to realize that supporting

negative authorizations sometimes may result in conflicting authorizations (in this

case due to permission inheritance through role hierarchy). These can be han-

dled by implementing conflict resolution policies (in this example, negatives take

precedence). Assume other users assigned to “manager” are Alice, Bob, Cathy,

Dave and Eve, and the permission to access “project A” isp, the corresponding

user-to-permission assignments of this example would be asshown in figure 5.1.

Traditional role mining approaches attempt to mine roles that have the same per-

mission sets. In this case, two roles will be mined, first comprising of Alice, Bob,

Cathy, Dave and Eve, and the second with John alone. Our proposed role min-

ing approach in this paper attempts to capture the underlying semantics of such

exceptions and eliminates mining of such incorrect role sets. Note that similar

exceptions can be found with other abstractions of authorizations. An example of

such a policy would be “John is allowed to access all project reports except the

report of project A”. Our approach can elegantly handle exceptions of these kinds

as well.
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user p
Alice 1
Bob 1

Cathy 1
Dave 1
Eve 1
John -1

Figure 5.1. User-to-permission assignments of the exampleabove

Separation of Duty Constraints: SoD constraints are an integral part of RBAC,

as stated in the definition ofRBAC2 [57]. These help to limit exploitation of priv-

ileges and limit fraud. Consider the following toy example.Assume the follow-

ing four permissions of a company: “Purchasing”, “Auditing”, “Marketing” and

“Sales”. A person can assume multiple permissions. Supposethat the same per-

son is in charge of purchasing and sales. Hence these two permissions are grouped

together as a role, which can be represented by a Boolean vector as{1, 0, 0, 1}T .

To prevent fraud, the company has a policy stating that a person cannot assume

both “Purchasing” and “Auditing” permissions. Simply representing a role as a

Boolean vector cannot reflect this constraint. Even though the “auditing” permis-

sion is not included in{1, 0, 0, 1}T , a person who has been assigned this role, can

obtain the “Auditing” permission by acquiring other roles,which is perfectly valid

in the BMD model. We however, would like to recognize such constraints as part

of the mining process itself.

To address this ineffectiveness of the BMD model in capturing semantics, we

propose introducingnegative permissionsor negative user-role assignment, which

can cleverly resolve both of the above issues.

As distinct from regular permissions, negative permissions mean that once
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a permission is assigned to a user negatively, this user can never exercise that

permission. Thus, negative permissions have higher priority than positive permis-

sions. Indeed, if the user is already assigned the permission positively through

another role or even through the hierarchy, this assignmentis automatically re-

voked. If the user is assigned the permission positively in the future, it still does

not become effective. Thus, negative permissions yield a great power and can

effectively model both SoD constraints and exceptions.

SoD constraints can be modeled through introducing negative permissions

in roles. Consider again the “Purchasing” and “Auditing” example. To enforce

the SoD constraint on them, for any role containing one of them, we add the

negative permission of the other. Hence, the role of{1, 0, 0, 1}T is changed to

{1,−1, 0, 1}T , where the cell of -1 denotes the negative “Auditing” permission.

As a result any employee assuming that role can never have the“Auditing” per-

mission, unless the role assignment is revoked. We denote such roles, allowing

negative permissions, assemantic roles.

Exceptions can be modeled through introducing negative user-role assign-

ments. Negative user-role assignments mean that if a role isassigned to a user,

the user cannot have access to any permission of that role. The negative user-role

assignment is superior to the positive (or regular) user-role assignment. Revisiting

the “Manager” example of John. To forbid him from accessing “project A”, we

only need to assign the “manager” role negatively to him. We call such user-role

assignments, which include both positive and negative assignments, assemantic

user-role assignments.

Indeed, negative authorizations are integral part of many access control sys-
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tems. From the work of Bertino et al. [6, 7], introducing negative authorizations

have many advantages. They enable a temporary suspension ofa permission from

a user without having to revoke it (revoking a permission sometimes may have a

cascading effect), allow exceptions to be specified, and prevent a user from being

able to exercise a privilege.

We observe that in addition to increasing administration flexibility, negative

authorizations can help discover semantics underlying existing user-permission

assignments during the role mining process. Consider the example of existing

user-permission assignmentsA as shown in Figure 5.2, where{u1, u2, u3, u4}

denote users and{p1, p2, p3, p4} denote permissions.

p1 p2 p3 p4

u1 1 0 1 1
u2 1 0 1 1
u3 1 1 0 1
u4 0 1 0 1

Figure 5.2. Existing User-Permission Assignments

One optimal solution of the conventional role mining problem, minimizing

required roles, is as shown in Figure 5.3, where{r1, r2, r3} denote roles. The first

Boolean matrix gives user-role assignmentsX and the second Boolean matrix

represents permission-role assignmentsC. In fact,X andC are a Boolean matrix

decomposition (BMD) solution ofA and represented byA = X ⊗ C [42].

If we allow negative permissions in roles, a roleri would consist of two parts,

positive permissionsP+
i and negative permissionsP−

i . Hence, a role can be rep-

resented as a vector in{−1, 0, 1}. For example, a vector(−1, 0, 1)T denotes a

role with the negative authorization for the first permission and the positive au-
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r1 r2 r3

u1 1 0 1
u2 1 0 1
u3 1 1 0
u4 0 1 0

(a) X

p1 p2 p3 p4

r1 1 0 0 1
r2 0 1 0 1
r3 0 0 1 0

(b) C

Figure 5.3. Conventional Role Mining

thorization for the third permission. Assigningri to a user means that the user

can never have any permission ofP−
i unlessri is revoked and the user can have a

permission ofP+
i if he is not assigned any role consisting of its negation.

Now let us do the same thing as the conventional role mining problem, mini-

mizing the number of required roles. The only difference is that negative permis-

sions are allowed this time. As we expect it to discover underlying data semantics,

we call it thesemantic role mining problem. For the same user-permission assign-

ments as above, the resultant optimal solution is as shown inFigure 5.4.

r1 r2

u1 1 0
u2 1 0
u3 1 1
u4 0 1

(a) X

p1 p2 p3 p4

r1 1 0 1 1
r2 0 1 -1 1

(b) C

Figure 5.4. Semantic Role Mining with Negative Permission

The first impression on the result is that with negative authorization for per-

missions we need only two roles to reconstruct the same existing user-permission

assignments. Further by taking a close look, you can find moreinformation.

First, r2 : {0, 1,−1, 1} shows that ifr2 is assigned to a user, he can never has
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the privilege ofp3. It implies thatp3 might be exclusive fromp2 andp4. Sec-

ond, r1 : {1, 0, 1, 1} shows thatp2 andp4 can be existent in one role. It leaves

one plausible explanation that there is a separation of dutyconstraint onp2 and

p3. So the real semantic might be there are indeed only two rolesin the sys-

tem,r1 : {1, 0, 1, 1} andr2 : {0, 1, 0, 1}. The reason thatu3 does not getp3 even

thought he is assignedr2, is the separation of duty constraint onp2 andp3. How-

ever, the conventional role mining approach is not able to discover such semantics.

Compared to the result in Figure 5.3, the result in Figure 5.4seems more plausible.

This toy example demonstrates the ability of negative authorization on dis-

covering underlying semantics. To perform semantic role mining, we propose in-

troducing a new approach, extended Boolean matrix decomposition (EBMD). As

its name tells, EBMD extends from BMD. It allows -1 in one of the decomposed

matrices. Thus, EBMD is to decompose one Boolean matrix intoone Boolean

matrix and one matrix in{−1, 0, 1}.

From the technical perspective, semantic role mining is like finding a good

EBMD solution of the Boolean matrix corresponding to given user-permission

assignments. However, it is more complicated than that. Theparticular role min-

ing context has to be incorporated in the matrix decomposition process.

5.2 Extended Boolean Matrix Decomposition

In this section, we will introduce a novel matrix decomposition method EBMD,

which addresses the ineffectiveness of BMD in its ability ofcapturing real data

semantics. To help better understand the function of EBMD, let us recall BMD

first.
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BMD is essentially to discover a set of discrete concepts anduse them to de-

scribe each observed Boolean record as a union of some discrete concepts. The

key advantage of BMD is to provide much interpretability to decomposition solu-

tions. To illustrate it, look at the example of Equation 5.2.













a1 a2 a3 a4
d1 : 1 1 0 1
d2 : 0 1 1 0
d3 : 1 0 0 1
d4 : 1 1 1 1













=









1 0 0
0 1 0
0 0 1
1 1 0









⊗









a1 a2 a3 a4
c1 : 1 1 0 1
c2 : 0 1 1 0
c3 : 1 0 0 1









.

(5.1)

The matrix on the left is the observed records. In which, 1 means that the

record consists of the attribute. For example,d1 = {a1, a2, a4}. The matrix

on the right is the discovered concepts, each of which is a subset of attributes.

For example,c1 = {a1, a2, a4}. The combination matrix tells how observed

records can be described as a union of some discovered concepts. For example,

d4 = c1 ∪ c2.

BMD does provide much interpretability to matrix decomposition solutions.

However, it is only able to represent the set union operation. In reality, some data

semantics requires the representation of the set difference operation as well. For

example, in the access control setting, a role could be negatively assigned to a

user, such that any permissions belonging to the role can never be assigned to the

user.

To enable BMD to capture the set difference operation, we introduce a new

concept EBMD, which allows -1 in the combination matrix and uses it to represent

the set difference operation.
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Consider the same above example. By introducing -1 in the combination

matrix, we obtain a new decomposition solution as below, where⊙ denotes the

EBMD multiplication operator.













a1 a2 a3 a4
d1 : 1 1 0 1
d2 : 0 1 1 0
d3 : 1 0 0 1
d4 : 1 1 1 1













=









1 0
0 1
1 −1
1 1









⊙





a1 a2 a3 a4
c1 : 1 1 0 1
c2 : 0 1 1 0



 .

(5.2)

Notice that with the introduction of the set difference operation only two con-

cepts are needed to represent the same observed data. The combination matrix

shows that:d1 = c1, d2 = c2, d3 = c1 \ c2, andd4 = c1 ∪ c2.

As illustrated, EBMD is to describe a set of observed recordswith a small set

of concepts, such that each record can be represented as inclusion of one subset

of concepts with exclusion of another subset of concepts. Ifa record includes

one concept, that record should contain all elements of thatconcept; if a record

excludes one concept, that record should not contain any element of that record.

As is natural in set operations, exclusion overrides inclusion. In other words, if

a record excludes one concept, any element in that concept isnot included in the

reconstructed record, even if it is present in any other concept that is included in

that record.

The essential task of EBMD is to find a set of concepts and the way of re-

constructing the input Boolean matrix with those concepts.Similar to BMD, a

concept is represented by a Boolean vector. In BMD, the combinations are repre-

sented by a Boolean matrix, where an element of 1 for a record denotes that the
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corresponding concept is included, otherwise not. To reflect the set difference op-

eration, we introduce elements of -1. So an EBMD solution of aBoolean matrix

Am×n is in a form of{Xm×k, Ck×n}, where the concept matrixC is a Boolean

matrix and the combination matrixX is in {−1, 0, 1} wherexij = 1 denotes the

jth record includes theith concept andxij = −1 denotes thejth record excludes

the ith concept. In contrast to BMD, we denote EBMD asA = X ⊙ C. The

following is the formal set-theoretic EMBD definition:

Definition 5.1 (EBMD) {X ∈ {−1, 0, 1}, C ∈ {0, 1}} is called an EBMD solu-

tion ofA ∈ {0, 1}, denoted byA = X ⊙ C, if Ai = ∪xij=1Cj \ ∪xij=−1Cj, where

Ai denotes the item subset corresponding to elements of 1 in thejth row ofA and

Cj denotes similarly.

Although the definition of EBMD is intuitive, the⊙ operator cannot be di-

rectly executed as the⊗ operator of BMD. So we give the following definition of

the⊙ operator based on logic arithmetic.

Definition 5.2 (⊙ operator) The⊙ operator operates over a matrixXm×k ∈

{−1, 0, 1}m×k and a matrixCk×n ∈ {0, 1}
k×n . If Am×n = Xn×k ⊙ Ck×n, we

have


















aij=1 if (∃t1) (xi,t1 = 1 AND ct1,j = 1)

AND (¬∃ t2) (xi,t2 = 1 AND ct2,j = −1)

aij=0 if (¬∃ t1) (xi,t1 = 1 AND ct1,j = 1)

OR (∃ t2) (xi,t2 = 1 AND ct2,j = −1)

wherei ∈ [1, m] andj ∈ [1, n]

Note that the⊙ and⊗ operators are equivalent when all entries inX are

binary.
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The EBMD operator is commutative as described as follows.

Property 5.1 (Commutativity) (Xm×k ⊙ Ck×n)
T = CT

k×n ⊙ CT
m×k.

The commutativity implies that ifA = C ⊙ X whereC ∈ {−1, 0, 1} and

X ∈ {0, 1}, we haveAT = XT ⊙CT as well. So EBMD essentially decomposes

one Boolean matrix into one Boolean matrix and one matrix in{−1, 0, 1}, while

the order of them does not matter.

Look at Figure 5.4, in which the negative element appears in the second de-

composed matrix. To interpret such an EBMD solution, we can consider its in-

verse as the follows. It gives us another perspective to lookat negative permission

authorizations in a role. Each ”role”ri can be viewed a set of users. Each per-

missionpi corresponds to a set of users who are assigned the permission. The

EBMD result as shown in Figure 5.3 gives thatp1 = r1, p2 = r2, p3 = r1 \ r2, and

p4 = r1 ∪ r2.












u1 u2 u3 u4
p1 : 1 1 0 1
p2 : 0 1 1 0
p3 : 1 0 0 1
p4 : 1 1 1 1













=













r1 r2

p1 1 0
p2 0 1
p3 1 −1
p4 1 1













⊙





u1 u2 u3 u4
r1 : 1 1 0 1
r2 : 0 1 1 0



 .

(5.3)

5.3 Semantic Role Mining Problem

We have illustrated how negative authorizations can help identify underlying data

semantics and discover a succinct role-based access control system. Negative

authorizations can be negative permissions in a role or negative role assignments.

However, it does not make sense to have both in a system as it would be difficult
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to interpret a negative assignment of a role, which includesa negative permission.

So in the access control setting, we limit negative authorization to be only one

kind, either negative role assignments or negative permissions.

Roles and role assignments with negative authorizations are called semantic

roles and semantic user-role assignments respectively. They are defined as fol-

lows.

Definition 5.3 (Semantic Role)A semantic roleri is a role consisting of positive

permissionsP+
i and negative permissionsP−

i .

Definition 5.4 (Semantic Role Assignment)A semantic role assignmentci con-

sists of positive role assignmentsR+
i and negative role assignmentsR−

i .

A permission can be assigned to a user both positively and negatively. To

resolve such a conflict, we require that a negative permission assignment always

overrides a positive permission assignment. In other words, if a permissionpi is

negatively assigned to a user, the user can never have that permission, unless the

negative assignment of the permissionpi is revoked.

The goal of role mining is to discover a good set of roles. The goodness of a

set of roles is usually evaluated by the number of roles. As illustrated before, with

negative authorizations, less roles would be needed and some underlying data se-

mantics such as SoD and exception constraints could also be revealed. Therefore,

we introduce the semantic role mining problem as follows.

Problem 5.1 (Semantic Role Mining (SRM))Given existing user-permission as-

signmentsA, discover a RBAC system with the minimum number of rolesC (or
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semantic roles) and identify the corresponding user-role assignmentsX (or se-

mantic role assignments).

SRM is essentially to find an EBMD solutionX andC of the Boolean matrix

of A. One ofX andC is a Boolean matrix and the other is a matrix in{−1, 0, 1}.

Mathematically, SRM can be formulated as an optimization problem as follows.

minimize k

s.t. Am×n = Xm×k ⊙ Ck×n.

It is not easy to find such an optimal EBMD solution. We observethat the

SRM problem can be broke down into two subproblems: identifyone decom-

posed matrix and then determine the other decomposed matrix. Based on this

observation, we propose an alternating approach to solve the SRM problem. For

ease of explanation, we describe it in the language of EMBD. The sketch of this

alternating approach is depicted as in Algorithm 5.3

Algorithm 5.5 Sketch of An Alternating Approach for EBMD

1: Input: A ∈ {0, 1}m×n

2: Output:C ∈ {−1, 0, 1}m×k andX ∈ {0, 1}k×n

3: Define an initial value ofX andC;
4: while The current EBMD solution can be improveddo
5: GivenX, improveC;
6: GivenC, improveX;
7: end while

Two subproblems arise from this alternating approach. We call them partial

SRM I and partial SRM II.

Problem 5.2 (Partial SRM I) Given original user-permission assignmentsA and
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regular rolesC (or regular user-role assignmentsX), find semantic user-role as-

signmentsX (or semantic rolesC), such that||A−X ⊙ C||1 is minimized.

The partial SRM II can also arise on its own. One possible scenario is that reg-

ular roles are given, the system administrator wants to assign fewer roles to each

user by employing both positive role assignments and negative role assignments.

Problem 5.3 (Partial SRM II) Given original user-permission assignmentA and

semantic rolesC (or semantic user-role assignmentsX), find regular user-role

assignmentX (or regularC) , such that||A−X ⊙ C||1 is minimized.

The partial SRM I problem can arise on its own in a scenario as the follow-

ing. Recall that semantic roles can be deployed to enforce some SoD polices by

introducing negative permissions in roles. Suppose that SoD polices have been

enforced and the reflective semantic roles are given. Now we need to assign those

roles appropriately to users to match their existing user-permission assignments.

This is a partial SRM I problem.

In the language of EBMD, partial SRM problems are essentially given a Boolean

matrix and a part of its EBMD solution to find the other part.

Notice that for partial SRM problems, we allow errors instead of requiring

exact matching. The rationale is that the role mining phase essentially aims to

identifying roles, not finalizing roles. By allowing reconstruction errors, we can

obtain a broad picture of role sets. The other important reason is that the in-

put user-permission assignments themselves may contain errors. Exact matching

would cause results to be over-fitting.
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There are two types of errors, 1 becoming 0 and 0 becoming 1. However, not

both are favored in the role mining context. When facing 1 becoming 0 errors, a

user can always call help desk to request missing permissions. While, 0 becoming

1 errors can directly harm system safety. Hence the conservative way is to avoid

0 becoming 1 errors in the first place. Therefore, we introduce two variants.

Problem 5.4 (Conservative Partial SRM I) Given original user-permission as-

signmentA and regular rolesC (or regular user-role assignmentsX), find se-

mantic user-role assignmentX (or semantic rolesC), such that||A − X ⊙ C||1

is minimized and(X ⊙ C)ij = 0 if Aij = 0.

Problem 5.5 (Conservative Partial SRM II) Given original user-permission as-

signmentA and semantic rolesC (or semantic user-role assignmentsX), find reg-

ular user-role assignmentX (or regularC) , such that||A−X⊙C||1 is minimized

and(X ⊙ C)ij = 0 if Aij = 0.

5.4 Theoretical Study

This section studies complexity of presented SRM (EBMD) variants. We start

by looking at the partial SRM I problem. Its decision versionproblem is NP-

complete, which can be proven by a reduction to a known NP-complete problem,

the decision BU problem [48].

Problem 5.6 (Decision BU)Given binary matricesAm×n andCk×n, and a non-

negative integert, is there a binary matrixXm×k such that||A−X ⊗ C||1 ≤ t?
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Theorem 5.1 The decision partial SRM I problem is NP-complete.

Proof.The decision partial SRM I problem obviously belongs to NP. The decision

partial SRM I problem can be polynomially reduced to the decision BU problem.

A decision BU instance is a triplet{A′
m×n, C ′

k×n, t
′}, wheret′ is a positive integer.

We construct a decision partial SRM II problem instance{A, C, t}, whereA is a

m × (n + 2t) binary matrix where the first2t columns containing all 1’s and the

remainingm columns areA′, andC is ak× (n+2t) binary matrix where the first

2t columns contain all 1’s and the remainingn columns areC ′. If the solution

X for that decision EBU instance consists of cells of -1,||A−X ⊗ C||1 must be

greater thant. ThereforeX can only be in{0, 1}. WhenX is limited to be in

{0, 1}, the⊙ operator is equivalent to the⊗ operator. Therefore, the decision BU

instance is true if and only if the constructed decision EBU instance is true.�

Let us now look at the conservative partial SRM I problem. It is a NP-hard

problem as well. For ease of understanding, we would to like to study it in the

setting of the red-blue set cover problem (RBSC) [10].

Problem 5.7 (RBSC ) Given a finite set of red elementsR and a finite set of blue

elementsB and a familyS = {S1, ..., Sn} ∈ 2R∪B, find a subfamilyC ∈ S which

covers all blue elements, but which covers the minimum possible number of red

elements.

The conservative partial SRM I problem can be viewed as a special variant of

the RBSC problem as follows.
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Problem 5.8 (Decision Extended RBSC I)Given disjoint setsR and B of red

and blue elements, a collectionS = {S1, ..., Sn} ∈ 2R∪B, and a nonnegative

numbert, are there two subcollectionsC1, C2 ⊆ S such that
⋃

C1\
⋃

C2 covers

more thant blue elements, while no red elements are covered?

Theorem 5.2 The decision extended RBSC I problem is NP-complete.

Proof. Given a solution of the decision extended RBSC I problem, it is easy to

determine wether it is true or not. Hence the decision extended RBSC problem

belongs to NP. Then we will prove that it can be reduced to a known NP-complete

problem, the decision RBSC problem. For any instance of the decision RBSC

problem{R, B,S, t}, we create a corresponding decision extended RBSC I in-

stance{R′, B′,S ′, t′}, such that:

• for each blue elementbi in B, create a corresponding red elementr′i and

include it inR′. Hence,|B| = |R′|;

• For each red elementri in R, create a corresponding blue elementb′i and

include it inB′.

• In addition, we createk more blue elements,

{b′|R|+1, ..., b
′
|R|+k}, wherek ≫ |R|+ |B|.

• For eachsi ∈ S, creates′i, such that for eachbi in si, include the corre-

spondingr′i in s′i and for eachri in si, include the correspondingb′i in s′i.

Includes′i in S ′
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• Create a subset ofs′|S|+1, such that it contains all blue and red elements. In

other words,

s′|S|+1 = R ∪ B ∪ {b′|R|+1, ..., b
′
|R|+k}.

• Let S ′ = {s′1, ..., s
′
|S|} ∪ s|S|+1.

• Let t’=t.

Illustration to the instance construction. Suppose the decision RBSC instance

is {{b1, b2, r1}, {b1, r1, r2}, {b2, b3, r2}} and t = 1. The constructed extended

RBSC II instance is{{r′1, r
′
2, b

′
1}, {r

′
1, b

′
1, b

′
2},

{r′2, r
′
3, b

′
2}, {r

′
1, r

′
2, b

′
1, b

′
2, b

′
3, b

′
4, b

′
5, b

′
6, b

′
7, b

′
8}}.

Becauses′|S|+1 containsk new blue elements, which do not belong to any

subset, andk ≫ |R| + |B|, the optimal solution should be thats′|S|+1 excluding

a subcollection of{s′1, ..., s
′
|S|}, such that the subcollection covers the minimum

blue elements while covers all red elements. As the blue and red elements inS ′ are

corresponding to the red and blue elements inS respectively, the decision RBSC

instance is true, if and only if the constructed decision extended RBSC II instance

is true. As decision extended RBSC II belongs to NP, it is NP-complete.�

The above proof naturally leads to the following conclusion.

Theorem 5.3 The decision conservative partial SRM I is NP-complete.

We now look at the partial SRM II problem. Its decision problem can be

proven by a reduction the decision BU problem as well.

Theorem 5.4 The problem of decision partial SRM II is NP-complete.



84

Proof. Given user-role assignmentsUA, it is easy to determine whether||UPA−

UA⊗PA||1 ≤ t is satisfied or not. The determination can be done in a polynomial

time. So the problem of decision partial SRM II belongs to NP.Next we will build

a mapping from the decision BU problem to the decision partial SRM II problem.

For every instance of the decision BU problem,{A, X, t}, we can create a cor-

responding instance of the problem of decision partial SRM II, {UPA, PA, t},

such thatUPA = A andPA = X. Because there is no cell with the value of -1

in PA and the partial SRM II problem requiresUA to be all positive assignments,

we haveUA⊙ PA = UA ⊗ PA. So the instance of{A, X, t} is true if and only

if the instance of{UPA, PA, t} is true. Hence, the problem of decision partial

SRM II is NP-complete.�

Then we study the conservative partial SRM II problem. Before we give the

NP-complete proof, we introduce one known NP-complete problems, Positive-

Negative Partial Set Cover (±PSC) [48].

Problem 5.9 (±PSC ) Given disjoint setsP andN of positive and negative ele-

ments, respectively and a collectionS of subsets ofP
⋃

N , find a subcollection

C ∈ S minimizing|P\(∪C|) + |N ∩ (∪C|).

The±PSC problem is extended from the RBSC problem. If we replace pos-

itive and negative elements with blue and red elements respectively, the±PSC

problem becomes to find a subfamilyC ∈ S which minimizes the sum of uncov-

ered blue elements and covered red elements. Hence, the onlydifference between
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RBSC and±PSC is that the RBSC problem requires all blue elements to be cov-

ered.

To prove the decision version of conservative partial SRM IUis complete, we

will relate it to a special case of±PSC, where the number of positive elements is

same as the number of negative elements. We simply call it equal±PSC.

Problem 5.10 (Equal±PSC ) Given disjoint setsP andN of positive and neg-

ative elements respectively, where|P | = |N |, and a collectionS of subsets of

P
⋃

N , find a subcollectionC ∈ S minimizing|P\(∪C)|+ |N ∩ (∪C)|.

Theorem 5.5 The decision equal±PSC problem is NP-complete.

Proof. Equal±PSC is a special case of±PSC. Obviously, it belongs to NP.

Next, we will show that for every instance of decision±PSC, we can find a cor-

responding decision equal±PSC instance. Given a decision±PSC instance as

{P, N,S, t}, we create a corresponding equal±PSC instance{P ′, N ′,S ′, t′} such

that:

• if |P | < |N |

⊲ Introduce|N | − |P | new positive elements,

{p′|P |+1, ..., p
′
|N |}. Let P ′ = P ∪ {p′|P |+1, ..., p

′
|N |}

⊲ Let N ′ = N .

⊲ For every subsetsi ∈ S, create a subsets′i such thats′i = si ∪

{p′|P |+1, ..., p
′
|N |} and include it inS ′. SoS ′ = {s′1, ..., s

′
|S|}.
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⊲ t′ = t.

• else if|P | > |N |

⊲ Introduce|P | − |N | new negative elements,

{n′
|N |+1, ..., n

′
|P |}. Let N ′ = N ∪ {n′

|N |+1, ..., n
′
|P |}

⊲ Let P ′ = P .

⊲ For every subsetsi ∈ S, create a subsets′i such thats′i = si ∪

{n′
|N |+1, ..., n

′
|P |} and include it inS ′. SoS ′ = {s′1, ..., s

′
|S|}.

⊲ t′ = t + (|N | − |P |).

• else

⊲ P ′ = P ; N ′ = N ; S ′ = S; t′ = t.

Consider the case of|P | < |N |. If the±PSC instance,{P, N,S, t}, is true,

there exists a subcollectionC ∈ S such that|P\(∪C)| + |N ∩ (∪C)| < t. We

can find a subcollectionC′ ∈ S ′ corresponding toC ∈ S. As {p′|P |+1, ..., p
′
|N |}

belong to any subset inC′, we have|P ′\(∪C′)|=|P\(∪C)|. It is obvious true that

|N ′ ∩ (∪C′)| = |N ∩ (∪C)|. So we have|P ′\(∪C′)| + |N ′ ∩ (∪C′)| < t. In the

other way,if the decision equal±PSC instance is true, the±PSC instance must be

true.

For |P | > |N |, as new negative elements{n′
|N |+1, ..., n

′
|P |} are added for

each subset, we have|N ′ ∩ (∪C′)| = |N ∩ (∪C) + (|N | − |P |)|. It is true that

{p′|P |+1, ..., p
′
|N |} = {p|P |+1, ..., p|N |}. Hence, we have|P\(∪C)|+ |N ∩ (∪C)| =

|P\(∪C)|+ |N ∩ (∪C)|+ (|N | − |P |). Therefore, the decision±PSC instance is

true if and only if the equal±PSC instance is true.
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For the case of|P | = |N |, both instances are equivalent.�

Next we will prove the decision version of conservative partial SRM I is NP-

complete by relating it to the decision equal±PSC problem.

Theorem 5.6 The problem of decision conservative partial SRM II is NP-complete.

Proof. A decision conservative partial SRM II instance is a triplet{UPA, PA, t}.

Given a solutionUA, it is easy to check whether||UPA − UA ⊙ PA||1 ≤ t is

true or not. So the decision conservative partial SRM II problem belongs to NP.

Next, we will reduce it to the known NP-complete problem, decision equal±PSC.

For any decision±PSC instance{P, N,S, t}, we create a corresponding decision

conservative partial SRM II instance{UPA, PA, t′}, such that:

• Let |Permissions| = |P | (or |N |) and each permission correspond to an

element.

• For each subsetsi of S, create a role, which corresponds to a row inPA,

such that:

⊲ if si containsnj , PA(i, j) = −1.

⊲ if si containspj and excludesnj , PA(i, j) = 1.

⊲ if sj has neitherpj, nornj, PA(i, j) = 0.

• Let UPA be a single row with all elements being 1.

• Let t’=t.
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Illustration to the instance construction: Suppose a RBSC instance is as

{{p1, p2, n1}, {p2, n2}, {p1, n2}}, with only two blue elements and two red ele-

ments. The corresponding instance of conservative partialSRM I is : UPA =

(1, 1) andPA =





-1 0
0 -1
1 -1



.

Recall the definition of semantic roles that if a user is assigned to a role with

negative permissioni, he can never have that permission, even though he is as-

signed to other roles with positive permissioni. The above mapping actually cor-

respond positive elementpi to positive permissioni, negative elementni to nega-

tive permissioni, andUPA to all positive elements. Further as we need to cover

UPA, which contains all permissions, there will never be 0-1 errors. Hence, we

do not even need to consider it for such constructed instances. Suppose a subset

of roles are selected, which givesUA. The total number of permissions assigned

to the user is:

#(covered positive permissions)−#(covered negative permissions)

Hence, the difference betweenUPA and real assignment is

|Permissions| − (#(covered positive permissions)− #(covered negative permissions))
= |Permissions| − #(covered positive permissions) + #(covered negative permissions)
= #(uncovered positive permissions) + #(covered negative permissions)
= P\(∪C| + |N ∩ (∪C|.

It shows that the equal±PSC instance is true if and only if the constructed

partial SRM I instance is true.�

5.5 Mathematical Programming Formulation

We introduced SRM, partial SRM I and II, and their 0-1 error free and 1-0 error

free variants. Although they are NP-hard, standard mathematical programming



89

software packages can still solve small or even medium scaleproblems. In this

section, we will provide mixed integer program formulationfor all presented SRM

(EBMD) variants.

We start by looking at SRM, which is given observed binary data to find a

EBMD solution with the minimum size. For ease of explanation, let us assume

the case of regular roles and semantic user-to-role assignments. The problem

becomes to find a EBMD decomposition{Xm×k, Ck×n} of Am×n, whereC is

a matrix in{0, 1} andX is a matrix in{−1, 0, 1}. The EBMD solution space is

huge. To further ease the problem, we assume a set of candidate rolesC are given.

The problem then becomes to finding a minimum candidate role set to describe

the observed dataA.
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min
∑

k∈K

yk (5.4)

s.t

∑

k∈Ks.t.aij=1

x+
ikckj ≥ 1, ∀i ∈M, j ∈ N (5.5)

∑

k∈Ks.t.aij=1

x−
ikckj = 0, ∀i ∈M, j ∈ N (5.6)

∑

k∈Ks.t.aij=0

x+
ikckj ≤ tijB, ∀i ∈M, j ∈ N (5.7)

∑

k∈Ks.t.aij=0

x−
ikckj ≥ 1− (1− tij)M, ∀i ∈M, j ∈ N (5.8)

x+
ik + x−

ik ≤ 1, ∀k, j (5.9)

yk ≥ x+
ik, ∀k ∈ K, i ∈M (5.10)

yk ≥ x−
ik, ∀k ∈ K, i ∈M (5.11)

tij ∈ {0, 1}, ∀i ∈M, j ∈ N (5.12)

x+
ik, x

−
ik ∈ {0, 1}, ∀k ∈ K, i ∈M (5.13)

The formulated mixed integer program is as Equations (5.4-5.13). Descrip-

tions about the mixed linear program are given as follows:

• ckj is binary and given.ckj = 1 means the candidate rolek contains the

permissionj; otherwise not.

• x+
ik andx−

ik are binary variables to to be determined.x+
ik = 1 means the

candidate rolek is positively assigned to the useri; otherwise not. x−
ik

means the candidate rolek is negatively assigned to the useri; otherwise

not.
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• Equation 5.5 ensures that whenaij = 1, at least one candidate role which

contains the permissionj is positively assigned to the useri.

• Equation 5.6 ensures that whenaij = 1, no candidate role which contains

the permissionj is negatively assigned to the useri.

• tij is a binary auxiliary variable andB is a large enough constant. Equa-

tions 5.7 and 5.8 ensure that whenaij = 0, either no role containing the

permissionj is positively assigned to the useri, or some role containing the

permissionj is negatively assigned to the useri.

• Equation 5.9 ensures that a role is assigned positively or negatively.

• yk is a binary variable. When it is 1, the rolek is employed; otherwise

not. Equations 5.10 and 5.11 ensures that if some rolek has been employed

regardless of in a positive way or in a negatively way,yk is 1.

• The objective function
∑

k yk is to minimize the number of selected roles.

Partial SRM I is givenA andC to findX minimizing
∑

ij |aij− (A⊙C)ij |. It

is very similar to the SRM problem with candidate roles beinggiven. The mixed

integer program formulation for partial SRM I is as Equations (5.14 - 5.25), which

is quite similar to the above formulation for SRM I. Descriptions on differences

are given as follows:

• In Equations (5.15 - 5.18), auxiliary non-negative variablesu+
ij andu−ij

are utilized to allow inexactness. If one ofu+
ij andu−ij is positive, there

is an assignment error of the permissionj to the userj. It could be over-

assignment or under-assignment.
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• vij is a binary variable, indicating whether there is an assignment error ataij .

Equation 5.22 ensures that if there is an assignment error ofthe permission

j to the userj, vij = 1.

• For the descriptions of the rest constraints, refer to the preceding descrip-

tions of the mixed integer formulation of SRM.

min
∑

i∈M

vij (5.14)

s.t.

∑

k∈Ks.t.aij=1

x+
ikckj + u+

ij ≥ 1, ∀i ∈M, j ∈ N (5.15)

∑

k∈Ks.t.aij=1

x−
ikckj − u−

ij = 0, ∀i ∈M, j ∈ N (5.16)

∑

k∈Ks.t.aij=0

x+
ikckj − u+

ij ≤ tijB, ∀i ∈M, j ∈ N (5.17)

∑

k∈Ks.t.aij=0

x−
ikckj + u−

ij ≥ 1− (1− tij)M, ∀i ∈M, j ∈ N (5.18)

x+
ik + x−

ik ≤ 1, ∀k, j (5.19)

yk ≥ x+
ik, ∀k ∈ K, i ∈M (5.20)

yk ≥ x−
ik, ∀k ∈ K, i ∈M (5.21)

u+
ij + u−

ij ≤ vijB, ∀i ∈M, j ∈ N (5.22)

tij ∈ {0, 1}, ∀i ∈M, j ∈ N (5.23)

x+
ik, x

−
ik ∈ {0, 1}, ∀k ∈ K, i ∈M (5.24)

u+
ij, u

−
ij ≥ 0, ∀i ∈M, j ∈ N (5.25)

(5.26)
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SRM II is givenA andX to find C. The mixed integer program formulation

for SRM II is the same as Equations (5.14 - 5.25). But note thatX, a matrix in

{−1, 0, 1}, is represented by two Boolean matrixX+ andX−. If the useri is

assigned to the rolej positively,x+
ij = 1. If it is a negative assignment,x−

ij = 1.

5.6 Algorithm Design

5.6.1 Partial SRM I

In the language of EBMD, the partial SRM I problem is given a Boolean matrixA

and a concept matrixC to find the combination matrixX ∈ {−1, 0, 1} such that

||A−X ⊙ C||1 is minimized. As||A−X ⊙ C||1 =
∑

i ||Ai −Xi ⊙C||1, where

Ai andXi denote theith row of A andX respectively, a partial SRM I problem

can be divided into a set of subproblems with each row ofA as an input Boolean

matrix. So without loss of generality, we considerA to be a Boolean row vector.

As a result of that, the partial SRM I problem can be describedas a variant of the

RBSC problem as follows.

Consider the following partial SRM I problem, where the variables{x1, x2, x3}

need to be determined.

(

1 1 0 1
)

=
(

x1 x2 x3

)

⊙





1 0 0 1
0 1 1 0
0 0 1 0



 . (5.27)

Let each column correspond to a distinct element, where the columns at which

the elements of the input Boolean vector are 1, correspond toblue elements and

the remaining rows correspond to red elements. Then, the first, second and fourth

columns correspond to blue elements{b1, b2, b3} respectively and the third column

corresponds to the red element{r1}, as illustrated in Figure 5.5a. Consequently,
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( 1   1   0   1 )

2 31 1

(a) Columns Mapped to Ele-
ments

1 3 12 1

(b) Concepts Mapped to Baskets

Figure 5.5. Mapping Illustration I

the given concept matrixC can be mapped a collectionC of subsets of red-blue

elements{B∪R}, whereB andR denote the blue element set and the red element

set respectively, such that{{b1, b3}, {b2, r1},{r1}}, as illustrated in Figure 5.5b.

Hence, the partial SRM I problem becomes:

• Given a collectionC of subsets of red-blue elements{B ∪ R}, find two

subcollectionsC1 andC2 such that(∪C1)\(∪C2) maximizes

#(covered blue elements) −#(covered red elements).

Denote baskets from left to right in Figure 5.5b to bec1, c2, and c3 respec-

tively. It is not difficult to see that the optimal solution is(c1 ∪ c2)\c3. Therefore

{x1, x2, x3} = (1, 1,−1).

As proven in the previous section, the decision partial SRM Iproblem is NP-

complete in general. So we propose an efficient and effectivegreedy heuristic.

We first divide the given subset collectionC into three groups{CB, CR, CB,R},

whereCB includes subsets containing blue elements only,CR consists of red ele-

ments only and the subsets inCB,R have both red and blue elements. Obviously,

includingCB in C1 andCR in C2 dose not introduce any covering error. SinceCR

has been included inC2, assigning any subset ofC2, in which all contained red

elements belong toCR, to C1 does not introduce covering error either. Next, we



95

need to assign the remaining subsets ofCB,R to eitherC1 or C2. We will do it in an

iterative fashion. At each step we select a subsetc from the remainingCB,R and

put it in C1. The selection criteria is based on the following function:

f1 =
#(Newly Covered Blue)

#(Newly Covered Red)
. (5.28)

The numerator part in the criteria function denotes the number of newly cov-

ered blue elements by includingc, while the denominator part denotes the number

of newly covered red elements. We iteratively select the subset with the great-

est criteria value till all blue elements are covered in the hope that the least red

elements would be included in the final solution. The complete algorithm is as

described in Algorithm 5.6.

Algorithm 5.6 Partial SRM I

Input: A collectionC of subsets of{B ∪ R}.
Output: Two subcollectionsC1 andC2.

1: Divide C into {CB, CR, CB,R}
2: IncludeCB in C1, andCR in C2;
3: UpdateCB,R by deleting elements contained inCB andCR;
4: SetB′ = ∪CB,R ∩B andR′ = ∅;
5: while The objective value can be further improved.do
6: Select the subsetc ∈ CB,R with the largestf1 value and include it inC1;
7: UpdateB′ asB′\(c ∩B), andR′ asR′ ∪ (c ∩ R).
8: end while

5.6.2 Conservative Partial SRM I

The conservative partial SRM I problem requires no 0 becoming 1 errors. In the

red-blue set cover problem setting, it can be described as follows:

• Given a collectionC of subsets of red-blue elements{B ∪R}, find two sub-

collectionsC1 andC2 such that(∪C1)\(∪C2) maximizes#(covered blue elements),
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while no red elements are covered.

Its decision problem has been proven to be NP-complete. Similar to the partial

SRM I problem, we propose a greedy heuristic for its conservative version as

described in Algorithm 5.7. Notice that the first two steps are the same as that

for the partial SRM I problem. After the first two steps, only subsets inC{B, R}

remain. For each remaining subsetc, if its contained elements are already included

in C2, we include it inC1, as it will not introduce any red element in the final

solution.

Algorithm 5.7 Conservative Partial SRM I

Input: A collectionC of subsets of{B ∪ R}.
Output: Two subcollectionsC1 andC2.

1: Divide C into {CB, CR, CB,R}
2: IncludeCB in C1 andCR in C2
3: for eachc ∈ CB,R do
4: if c ∩R ∈ CR then
5: Includec in C1.
6: end if
7: end for

5.6.3 Partial SRM II

The partial SRM II problem is given a Boolean matrixA and a combination matrix

X in {−1, 0, 1}, to find a concept matrixC, such that||A−X⊙C||1 is minimized.

As the⊙ operator has the commutative property, the objective function can be

rewritten as||AT − CT ⊙XT ||1, which basically changes the order ofC andX.

So we can viewX as the concept matrix, while concepts may contain negative

elements. As||AT −CT ⊙XT ||1 =
∑

i(||A
T
i − (CT )i⊙XT ||1), then the original

problem can be divided into a set of subproblems with each rowof AT as the input
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data. Therefore without loss of generalization, we consider AT as a Boolean row

vector.

(

1 1 0 1
)

=
(

x1 x2 x3

)

⊙





1 0 0 −1
0 1 −1 0
1 0 1 1



 . (5.29)

For ease of explaining our algorithm later, we firstly look atan example as

shown in Equation 5.29. The row vector on the left and the matrix on the right

are the input data.{x1, x2, x3} are Boolean variables to be determined. This

partial SRM II problem can be also viewed as a variant of the red-blue set cover

problem. First, we map columns to red-blue elements. The mapping policy is the

same as what we did for the partial SRM I problem. The mapping result is as

shown in Figure 5.6a. Now we will map each row vector in the concept matrix on

the right side of Equation 5.29 to a basket of red-blue elements. Notice that each

row vector may contain three different component values{-1,0, 1}. The value of

1 corresponds to the set union operation, while the the valueof -1 corresponds to

the set different operation. To reflect that, we map each row vector to a special

red-blue element basket in the form ofc+\c−, where bothc+ andc+ are red-blue

element subsets. Based on this mapping rule, the row vectorsin the example

of Equation 5.29 are mapped to baskets as illustrated in Figure 5.6b, where the

symbol of\ denotes the set difference operator. The partial SRM II problem can

be described as follows:

• Given a basket set of{{c+
1 \c

−
1 }, ..., {c

+
k \c

−
k }}, where{c+

i , c−i } are red-blue

element subsets, select a basket subsetS such that(∪i∈Sc+
i )\(∪i∈Sc−i ) max-

imizes#(covered blue elements)−#(covered red elements).
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( 1   1   0   1 )

2 31 1

(a) Columns Mapped to Ele-
ments

1 3

1

2 1 1 3

(b) Concepts Mapped to Baskets

Figure 5.6. Mapping Illustration II

For the example of Figure 5.6b, it is not difficult to see that the optimal solu-

tion is to select the second and third baskets. The result covers all blue elements

without introducing a red elements. However, the partial SRM II problem in gen-

eral has been proven to be NP-hard in the previous section. Sowe propose a

greedy heuristic. Its basic idea is to iteratively select the best remaining basket

based on some selection criteria. We observe that four casesmay occur when

including a basket into the solution: (1) new blue elements being covered; (2)

new red elements being covered; (3) new blue elements being excluded; (4) new

red elements being excluded. Obviously the first and the fourth cases are desired

while the other two cases are disliked. So our selection criteria is based on the

function in Equation 5.30 and the greedy heuristic is described in Algorithm 5.8.

f2 =
#(Newly Covered Blue) + #(Newly Excluded Red)

#(Newly Covered Red) + #(Newly Excluded Blue)
. (5.30)

Algorithm 5.8 Partial SRM II

Input: A red-blue element basket set of{{c+
1 \c

−
1 }, ..., {c

+
k \c

−
k }}.

Output: A red-blue element basket subsetS .
1: Iteratively include the basket with the greatestf1 value intoS till the objective

value cannot be improved.
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5.6.4 Conservative Partial SRM II

The conservative partial SRM II differs from the partial SRMII problem only in

the objective value. It can be similarly studied in the setting of the red-blue set

cover problem as follows:

• Given a basket set of{{c+
1 \c

−
1 }, ..., {c

+
k \c

−
k }}, where{c+

i , c−i } are red-blue

element subsets, select a basket subsetS such that(∪i∈Sc+
i )\(∪i∈Sc−i ) max-

imizes#(covered blue elements) while no red elements are covered.

As the objective is to cover as many blue elements as possible, for simplicity

we only consider baskets{c+
i \c

1
i } with c1

i ⊆ R only. The intuition behind is not

to exclude any blue elements in the final solution. However, if we select all such

baskets, red elements may be included. To eliminate red elements, we remove

troubling baskets in an iterative fashion. At each step, we delete the basket which

reduces the number of covered red elements the most. The complete description

is provided in Algorithm 5.9.

Algorithm 5.9 Conservative Partial SRM II

Input: A red-blue element basket set of{{c+
1 \c

−
1 }, ..., {c

+
k \c

−
k }}.

Output: A red-blue element basket subsetS .
1: For each basket{c+

i \c
−
i }, if c−i ⊆ R, include it intoS.

2: Iteratively remove the basket{c+
i \c

−
i } from S, which reduces the number of

covered elements the most, till no red elements being covered.

5.7 Experimental Study

In this section, we present extensive experimental resultson both synthetic and

real data sets to validate the performance of our proposed heuristics. Our algo-

rithms are compared on one hand against standard matrix decomposition, and on
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the other hand against conventional Boolean matrix decomposition. The algo-

rithm computing standard matrix decomposition isSV D, which is a benchmark

for computing standard matrix decomposition. As SVD returns results of real val-

ues, to be fair, we round them to be binary by setting all values less than 0.5 to

0, and all other values to 1. Hence, this algorithm is called SVD 0/1. The algo-

rithm computing conventional Boolean matrix decomposition is the Loc& IterX

algorithm proposed in [48], which has been experimentally proven to have better

performance than other Boolean matrix decomposition algorithms.

5.7.1 Synthetic Data

We study the behavior of the heuristics with respect to the decomposition size and

noise.

The synthetic data is generated as follows. First, generatek Boolean vectors

randomly as basis, each of which has 50 elements and about 1/3elements are

1. Second, use basis vectors to generate other100 − k vectors. The detailed

procedures are : (i) randomly selectingk/3 basis vectors; (ii) randomly assigning

half selected basis vectors toC1 and the other half toC2; (iii) computing∪C1\∪C2

as a generated vector. The size of such a generated matrix is50× 100. After that,

add noise to the matrix by randomly flipping the values of a given fraction of the

data.

To compare reconstruction error, we use two kinds of measure. The first is

ER1 = ||A − A′||1/size(A), whereA is the input matrix andA′ is the recon-

structed matrix. The second isER2 = ||A − A′||1/||A||1. ER1 reflects how

much fraction of the data is not correctly reconstructed.ER2 is to compare the
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amount of reconstruction error against the total number of 1’s cells. The reason

of employingER2 is that if the input Boolean matrix is sparse, a low value of

ER1 does not demonstrate the input matrix is correctly reconstructed, as simply

returning a matrix of zeros would have a low value ofER1.

The first experiment is to test the effect of sizek with respect to reconstruction

error. We varyk from 4 to 20 and for each size we generate 5 matrices. Reported

results are mean values over these five matrices. For algorithms of Loc&IterX,

EBMD and 0-1 error free EBMD we use basis vectors asC.
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Figure 5.7. Reconstruction Error Ratio withER1 w.r.t. k
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Figure 5.8. Reconstruction Error Ratio withER1 w.r.t. k

The experimental results are as shown in Figures 5.7 and 5.8.As we can see,

the reconstruction error ratios of all three EBMD approaches are lower than those

of Loc&IterX and close to those of SVD 0/1. WithER1, the reconstruction error
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ratios of EBMD approaches are as low as 0.05 on average. WithER2, they are

still as low as 0.2 on average.

The second experiment is to test the effect of noise with respect to reconstruc-

tion error. We vary noise ratio from 0 to 0.5. The experimental results are as

shown in Figures 5.9 and 5.10. The reconstruction error ratios of EBMD and 1-0

error free EBMD are still lower than those of Loc&IterX and close to SVD 0/1.

However, the reconstruction error ratios of 0-1 error free EBMD are much higher

than other approaches even though the amount of noise is little.
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Figure 5.9. Factorization Cost w.r.t. Reconstruction Error Ratio for Synthetic
Data
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Figure 5.10. Factorization Cost w.r.t. Reconstruction Error Ratio for Synthetic
Data
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5.7.2 Real Data

One of our main contributions that we claim is that our heuristic algorithm can

decompose a Boolean matrix with much less reconstruction error than the con-

ventional Boolean matrix decomposition method. In this section, we demonstrate

that the claim holds for real data as well.

Four real data sets are used. The News data set is a subset of 20Newsgroups

dataset1. We select the first 400 messages and the top frequent 100 words in them,

and replace the counts with 1 or 0. Then, we obtain a100 × 400 matrix, which

happens to have no repetitive columns. Votes dataset2 contains plenary votes of

Finnish Parliament. Same as [48], we only consider those MPsthat served an

entire term. During 1999-2001, there were 773 plenary votesand 196 MPs served

the entire term. As an MP can cast four different types of votes (yea, Nay, Abstain,

and Absent), two different dataset are actually used: VotesYes sets Yeas as 1s and

all other votes are 0s, while VotesNo sets Nays as 1’s and all other votes as 0’s.

The Query data set is a user/clicked URL binary matrix, extracted from a large-

scale query log. The query log data include two important attributes, UserID (the

identity query issuer), and ClickedURL (the URL eventuallyclicked by that user

in that single query). We have first selected the top 40 frequent clicked URLs

from the query log with 1,889,761 queries in total and removed all the queries

that are not related to those 40 Clicked URLs (we thus obtain 196,218 queries

with 40 clicked URLs). Consequently, we have generated another dimension of

the matrix by choosing the top 1000 users who have executed most queries in this

1http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://www.fsd.uta.fi/english/data/cagalogue/FSD2117/meF2117e.html
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Data k EBMD 0-1 EBMD Loc& IterX SVD 0/1
News 5 0.2575 0.3966 0.2811 0.2085

10 0.2350 0.3791 0.2633 0.1750
15 0.2200 0.3647 0.2397 0.1457

VotesNo 5 0.0777 0.1921 0.0830 0.0642
10 0.0704 0.1860 0.0763 0.0496
15 0.0684 0.1755 0.0722 0.0398

VotesYes 5 0.1531 0.6491 0.1613 0.0779
10 0.1334 0.6421 0.1459 0.0929
15 0.1244 0.6320 0.1336 0.0775

Query 5 0.1162 0.1220 0.1168 0.0892
10 0.0921 0.0974 0.1071 0.0536
15 0.0710 0.0812 0.1451 0.0301

Table 5.1. Reconstruction Error Ratios withER1 for real datasets

small group of query log. The result is a binary matrix with the dimension of

40*1000. After deleting repetitive columns, finally we havea matrix of40× 200.

The experimental results are shown in Tables 5.1 and 5.2. We can see that the

heuristic of EBMD decomposes real datasets with less reconstruction errors than

Loc&IterX and close to SVD 0/1, while decomposition solutions provided by the

heuristics for 0-1 EBMD have higher reconstruction error ratios.
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Data k EBMD 0-1 EBMD Loc& IterX SVD 0/1
News 5 0.6154 0.9477 0.6718 0.4982

10 0.5616 0.9058 0.6293 0.4181
15 0.5258 0.8714 0.5728 0.3482

VotesNo 5 0.3829 0.9464 0.4091 0.3161
10 0.3471 0.9164 0.3761 0.2445
15 0.3368 0.8647 0.3557 0.1963

VotesYes 5 0.2311 0.9799 0.2435 0.1176
10 0.2014 0.9692 0.2203 0.1403
15 0.1878 0.9540 0.2017 0.1170

Query 5 0.6961 0.7305 0.6992 0.5340
10 0.5516 0.5831 0.6415 0.3211
15 0.4251 0.4865 0.4925 0.1804

Table 5.2. Reconstruction Error Ratios withER2 for real datasets
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CHAPTER 6

RANK-ONE BOOLEAN MATRIX DECOMPOSITION

Rank-one Boolean matrix decomposition is a special BMD case, where the de-

composed matrices are limited to Boolean vectors. Mathematically speaking, it

is to decompose a Boolean matrixAm×n into the product ofXm×1 ⊗ C1×n. One

important application of BMD is to mine discrete patterns inbinary data, which

is important for many data analysis tasks, such as data sampling, compression,

and clustering. An example is that replacing individual records with their patterns

would greatly reduce data size and simplify subsequent dataanalysis tasks. As

a straightforward approach, rank-one binary matrix approximation has been ac-

tively studied recently for mining discrete patterns from binary data. It factorizes

a binary matrix into the multiplication of one binary pattern vector and one binary

presence vector, while minimizing mismatching entries.

However, this approach suffers from two serious problems. First, if all records

are replaced with their respective patterns, the noise could make as much as 50%

in the resulting approximate data. This is because the approach simply assumes

that a pattern is present in a record as long as their matchingentries are more

than their mismatching entries. Second, two error types, 1-becoming-0 and 0-

becoming-1, are treated evenly, while in many application domains they are dis-

criminated. To address the two issues, we propose weighted rank-one binary ma-
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trix approximation. It enables the tradeoff between the accuracy and succinctness

in approximate data and allows users to impose their personal preferences on the

importance of different error types.

In this section, we will study weighted rank-one BMD. Its decision problem

will be proved to be NP-complete. To solve it, several different mathematical pro-

gramming formulations are provided, from which 2-approximation algorithms are

derived for some special cases. An adaptive tabu search heuristic is presented for

solving the general problem, and our experimental study shows the effectiveness

of the heuristic.

6.1 Motivation of Weighted Rank-One BMD

With the fast development of computer and internet technologies and the de-

creased cost of data storage devices, a large volume of data are generated and

gathered every day. Many datasets have discrete attributes, such as those gener-

ated from information retrieval, bio-informatics, and market transactions. Much

attention has been focused on efficient techniques for analyzing large and high

dimensional datasets. Common tasks for analyzing high dimensional data in-

clude extracting correlations between data items, classification, and clustering

data items and finding condensed representations. The analysis of large-scale

datasets commonly has to deal with the curse of dimensionality. A useful ap-

proach is to compress datasets while preserving important underlying patterns.

Conventional matrix factorization techniques can effectively and efficiently com-

press datasets with continuous attributes. For example, singular value decompo-

sition (SVD) can efficiently reduce a given matrix into a low-rank matrix while
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minimizing the Frobenius norm of the difference. However, result interpretation

is difficult for datasets with discrete attributes.

Existing techniques for mining discrete patterns from binary data include PROX-

IMUS [34], which can serve the purpose of data compression aswell. The idea is

to decomposes a given binary matrix into a pattern vector anda presence vector,

which are restricted to be binary, such that the multiplication of two decomposed

vectors has the least mismatching entries with the originalbinary matrix. It is

also calledrank-one binary matrix approximation. Given the presence vector, the

matrix is partitioned into two parts. The part with the presence of the pattern is

grouped together. By recursively applying the same process, all row vectors are

clustered and their respective patterns are identified. Thetask of analyzing the

original binary matrix can be switched on those mined patterns, which have much

smaller size. This technique has received increased attention recently [35, 59].

For example, Shen et al. [59] even provide an efficient 2-approximation algorithm

for rank-one binary matrix approximation recursively conducted in a process of

PROXIMUS.

Rank-one binary matrix approximation is to solveminX,Y ||A − XY T ||F ,

whereX andY are binary vectors and called presence vector and pattern vec-

tor respectively. Based on entry values ofX, rows ofA can be divided into two

parts. The part associated with entries with the value of 1 inX are considered

having patternY . By recursively applying rank-one binary matrix approximation,

a collection of discrete patterns are mined, which can be utilized to approximate

the original data and cluster row vectors.
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Example 6.1 Given a matrixA, a rank-one approximation is computed as fol-

lows:

A =









1 0 1 1 0
1 1 1 1 1
0 0 1 0 0
1 1 1 1 0









≈









1
1
0
1









(

1 1 1 1 0
)

= XY T . (6.1)

The discrete pattern mining approach based on rank-one approximation is

straightforward and not difficult to implement. However, itsuffers from two seri-

ous issues.

The first issue is that according to the objective functionminX,Y ||A−XY T ||F ,

a row vectorAi:, denoting theith row of A, is considered having patternY as

long as their matching components are greater than mismatching components. In

other words, the mismatching ratio could be nearly as much asfifty percent. As

a result, the final collection of mined discreet patterns cannot serve as a good

approximation to the original data matrix and all subsequent data analysis results

would be questionable. To illustrate it, we give Example 6.2. Clearly rank-one

binary matrix approximation is not able to divide row vectors of the binary matrix

on the left side of Equation (3). As a result, rank-one binarymatrix approximation

is only able to identify one discrete pattern, while there are two obvious discrete

patterns in the original data. Furthermore, the mined pattern {1, 1, 1, 1, 0} can

hardly represent row vector{0, 1, 1, 1, 1}, as their matching entries are only one

more than mismatching entries.

Example 6.2 The rank-one binary matrix approximation for a binary matrix with
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two obvious patterns is computed as below:












1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1













≈













1
1
1
1
1













(

1 1 1 1 0
)

. (6.2)

The second issue with rank-one binary matrix approximationis that it does not

support discrimination on 1-becoming-0 errors and 0-becoming-1 errors, which

however is requested by many applications. To illustrate it, we give Example 3.

With (1, 1, 1, 1, 0) as the pattern to approximate all row vectors, it introducesone

0-becoming-1 error to the first row vector and one 1-becoming-0 error to the third

row vector. For the role mining problem arising from implementing role-based

access control [42], the value of 1 in a binary matrix represents a permission

assignment. Analyzing an approximate user-to-permissionmatrix with many 0-

becoming-1 errors would generate roles with surplus permissions, which seriously

affect system security and safety. In this application, 0-becoming-1 errors should

be forbidden.

Example 6.3 Consider the following rank-one approximation:




1 1 1 1 1
1 1 1 1 0
1 1 1 0 0



 ≈





1
1
1





(

1 1 1 1 0
)

. (6.3)

6.2 Weighted Rank-One Binary Matrix Approximation

Desired features of a discrete pattern mining technique should include allowing

the trade-off between the approximation accuracy and the simplicity of mined
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patterns, and enabling users to impose their preferences onthe error type distri-

bution. We achieve them by proposing a new measure on the significance of a

pattern in a row vector and a new definition of pattern presence. They are defined

as below.

Definition 6.1 (Pattern Significance) The significance of a patternY ∈ {0, 1}1×n

in an objectA ∈ {0, 1}1×n denoted byS(Y, A), is measured by

S(Y, A) = max{0, f11(Y, A)− w1f10(Y, A)− w2f01(Y, A)}

wherefij(Y, A) is the number of attributes which arei in Y and j in A, andw1

andw2 are positive weight parameters.

Definition 6.2 (Pattern Presence) If S(Y, A) > 0, the patternY ∈ {0, 1}1×n is

considered present in the objectA ∈ {0, 1}1×n.

Weight parametersw1 andw2 have two purposes. First, the sum value ofw1

andw2 can be utilized to control the level of error tolerance, in other words ap-

proximation accuracy. The greater sum value leads to less error tolerance, hence

higher accuracy in approximation. The ratio betweenw1 andw2 reflects the pref-

erences on two error types. The greater weight means being more disliked.

The essential goal of rank-one binary matrix approximationis to discover a

pattern with the most significance in the data matrix. We callsuch a patterndom-

inant discrete pattern. Weighted rank-one binary matrix approximationis to take

penalty weights into account at the basis of conventional rank-one matrix approx-

imation. Whenw1 = 1 andw2 = 1, the weighted problem is the same as the
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conventional problem. Given a patternY , it is easy to determine presence vector

X even with the presence of penalty weights. So instead of looking for the pair of

X andY at the same time, we consider weighted rank-one binary matrix approx-

imation as the dominant discrete pattern mining problem defined as following.

Definition 6.3 (Dominant Discrete Pattern Mining) Givenm objects consisting

ofn binary attributes represented by a matrixA ∈ {0, 1}m×n, find a dominant pat-

ternY ∈ {0, 1}1×n, such that its total values of pattern significance
∑

i S(Y, Ai:)

are maximized, whereAi: denotes theith row vector ofA.

Two following examples are illustrated to show how weightedrank-one binary

matrix approximation can effectively address the two issues with rank-one binary

matrix approximation.

Example 6.4 Reconsider the binary matrix in Example 6.2. By lettingw1 = w2 =

2, its weighted rank-one binary matrix approximation, wherethe vector on the

right side is the dominant discrete pattern, is as below:












1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
0 1 1 1 1
0 1 1 1 1













≈













1
1
1
0
0













(

1 1 1 1 0
)

. (6.4)

In the above example, by doubly penalizing errors, row vectors are successfully

divided and{1, 1, 1, 1, 0} is indeed a true pattern for rows associated with the

presence vector. By applying weighted rank-one binary matrix approximation to

the other part, pattern{0, 1, 1, 1, 1} is also successfully revealed.
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Example 6.5 Look at the binary matrix in Example 6.3. By lettingw1 = 1 and

w2 = 3, its weighted rank-one binary matrix approximation is as below:




1 1 1 1 1
1 1 1 1 0
1 1 1 0 0



 ≈





1
1
1





(

1 1 1 0 0
)

. (6.5)

It is free of 1-becoming-0 errors.

Due to the binary data type, each row can be represented as a subset ofn

attributes. Such a representation provides a convenient way to describe some

relationships between two binary row vectors which we will utilize later. They

are defined as following.

Definition 6.4 (Superset, Strict Superset, Subset, and Strict Subset) For two bi-

naryn-dimensional row vectorsX andY , if Yi = 1, ∀Xi = 1 , Y is a superset of

X andX is a subset ofY . If Y is superset ofX and there existsi such thatYi = 1

andXi = 0, Y is a strict superset ofX, whileX is a strict subset ofY .

6.3 Relation with Other Existing Problems

The dominant discrete pattern mining problem can be relatedto many research

problems that have been studied in the literature. Those problems can be viewed

as either its special case or its variant.

Definition 6.5 (Maximum Edge Biclique Problem[53]) Given a bipartite graph

G = (V1∪V2, E) and a positive integerK, doesG contain a biclique with at least

k edges?
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A bicilique is a kind of bipartite graph where every vertex ofthe first set is con-

nected to every vertex of the second set. The maximum edge biclique problem

defined as above is a special case of the dominant discrete pattern mining problem

whenw1 is 0 andw2 is greater than the maximal number of 1’s entries in a row of

A, denoted bymaxi||Ai:||1. With w1 being 0,f10(Y, Ai:) is not counted in the pat-

tern significance formula ofS(Y, Ai:). With w2 being greater thanmaxi||Ai:||1,

a patternY can never be present in a row vectorAi:, which is an exact subset of

Ai:. Therefore the dominant discrete pattern mining problem with w1 = 0 and

w2 ≥ maxi||Ai:||1 is to find a patternY which covers the most 1’s entries in row

vectors ofA, which are supersets ofY . Any binary matrixAm×n can be expressed

as an equivalent bipartite graphG = (V1 ∪ V2, E), whereV1 hasm vertices corre-

sponding to all rows ,V2 hasn vertices corresponding to all attributes, and there

is an edge connecting verticesV1(i) andV2(j) if Ai,j = 1. As a 1’s entry inA cor-

responds to an edge in its equivalent bipartite graph, a dominant discrete pattern

with w1 = 0 andw2 ≥ maxi||Ai:||1 induces a maximum edge biclique.

For illustration, consider the binary matrix in Equation (6.1) as an example.

It can be expressed as the bipartite graph in Figure 6.1a. Itsdominant discrete

pattern withw1 = 0 andw2 greater thann is given as in Equation (6.6) and its

induced biclique is as shown in Figure6.1b.








1 0 1 1 0
1 1 1 1 1
0 0 1 0 0
1 1 1 1 0









≈









0
1
0
1









×
(

1 1 1 1 0
)

. (6.6)

Definition 6.6 (Maximum Tile [19]) Given a databaseD as a binary matrix

Am×n, find the tile with the largest area inD, where a tile corresponds to a row
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(a) (b)

Figure 6.1. A Bipartite Graph and Its maximum Edge Biclique

index subsetR and a column index setC, such thatA(i, j) = 1, ∀i ∈ R, j ∈ C .

The maximum tile problem defined as above is essentially to find the largest

tile full of 1’s entries in a binary matrix, allowing the manipulation on the order

of rows and columns. It is equivalent to the maximum edge clique problem, and

hence equivalent to the dominant discrete pattern problem with w1 = 0 andw2 ≥

maxi||Ai:||1.

Consider the binary matrix on the left side of Equation (6.6)as a tiling database.

The largest tile induced by the dominant discrete pattern isas shown in Equation

(6.7).













1 0 1 1 0

1 1 1 1 1

0 0 1 0 0

1 1 1 1 0













(6.7)

Definition 6.7 (Maximum Edge Weight Biclique Problem[43]) Given a bipar-

tite graph{V1 ∪ V2, E} and weights{wij} associated with edges{(V1(i), V2(j))}

respectively, find a bicliqueC, where the sum of the edge weights is maximum.
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The dominant discrete pattern problem withw1 andw2 being equal can be

mapped to a special case of the maximum edge weight biclique problem. The

maximum edge weight biclique problem is to find a biclique with the maximum

weight from a complete bipartite graph. As we have illustrated, any binary matrix

Am×n can be expressed as a bipartite graphG(V1 ∪ V2, E). We can further ex-

pand it as a weighted complete bipartite graph. First complete all missing edges

to make it as a complete graph. Then assign a weight of 1 to all edges in the

original bipartite graph and a negative weight of−w1 to the newly added edges.

A dominant discrete pattern in the original binary matrix would correspond to a

maximum weight biclique in the constructed weighted complete bipartite graph.

For illustration, reconsider the binary matrix in Equation(6.1). Its correspond-

ing maximum edge weight biclique problem instance is as shown in Figure 6.2,

where dashed lines are original edges with the weight of 1 andthick lines are

added edges with the weight of−w1.

Figure 6.2. Edge-Weighted Complete Bipartite Graph
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6.4 Mathematical Programming Formulation

The main result of this section is to present mathematical programming formula-

tions for the dominant discrete pattern mining problem. In particular, we give an

unconstrained quadratic binary programming formulation,an integer linear pro-

gramming formulation, and a relaxed linear programming formulation, which for

the case ofw1 = w2 = 1 induces a 2-approximate algorithm.

6.4.1 Unconstrained Quadratic Binary Programming

The dominant discrete pattern mining problem is to find the patternY maximizing

the global pattern significance
∑

i S(Y, Ai:) for a given binary matrixA. Its cor-

responding presence vectorX can be obtained easily after the dominant discrete

patternY is found. But in the quadratic binary programming formulation given as

below, we treat presence vectorX as variables along with pattern vectorY .

∑

i S(Y, Ai:)

=
∑

i max{0, f11(Y, Ai:)− w1f10(Y, Ai:)− w2f01(Y, Ai:)}

=
∑

i Xi(f11(Y, Ai:)− w1f10(Y, Ai:)− w2f01(Y, Ai:))

=
∑

i Xi(
∑

j AijYj − w1

∑

j(1− Aij)Yj

−w2

∑

j Aij(1− Yj))

=
∑

ij(Aij + w1Aij + w2Aij − w1)XiYj −
∑

ij w2AijXi

= XT UY −XT V~1

(6.8)

whereU is defined asUij = Aij + w1Aij + w2Aij − w1, Vij is defined asw2Aij ,

and~1 denotes the all-ones vector.

The explanation of the above equation deduction process is as follows: (i) The
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first induction step is obvious; (ii) The second induction step is by the fact that if

f11(Y, Ai:)−w1f10(Y, Ai:)−w2f01(Y, Ai:) ≤ 0, Xi = 0; (iii) In the third induction

step,f11(Y, Ai:) counting the number of attributes whereY andAi: both are 1 is

measured by
∑

j AijYj, andf10(Y, Ai:) andf01(Y, Ai:) are by(1 − Aij)Yj and

Aij(1 − Yj) respectively; (iv) The last induction step arranges the whole formula

as matrix multiplications.

Therefore the dominant discrete pattern mining problem canbe simplified

as an unconstrained binary quadratic programming problem as max{XT UY −

XT V~1|X ∈ {0, 1}m, Y ∈ {0, 1}n}. A binary matrix is closely related to a bipar-

tite graph. It is also a useful approach for problems involved with a bipartite graph

to be formulated as an unconstrained quadratic binary programming problem [4].

6.4.2 Integer Linear Programming

The unconstrained quadratic binary programming formulation can be linearized as

an integer linear programming problem by introducing auxiliary binary variables

{Zij} as below.

max
∑

ij

UijZij −
∑

ij

VijXi

s.t.







−Xi − Yj + 2Zij ≤ 0 ∀i, j

Xi + Yj − Zij ≤ 1 ∀i, j

Xi, Yj, Zij ∈ {0, 1}

.

(6.9)

The linearization is done by replacingXiYj with Zij . As the value ofXiYj can

only be either 0 or 1, soZij is binary. Constraints−Xi − Yj + 2Zij ≤ 0 and

Xi + Yj − Zij ≤ 1 guarantee: (i)Zij = 1 when bothXi andYj are 1; (ii)Zij = 0

when one ofXi andYj is 0.

The linearization skill of replacingXiYj with a binary variableZij is also em-
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ployed by Shen et al. in [59] for formulating the rank-one approximation problem.

However their enforcing constraints are as below.







−Xi − Yj + 2Zij ≤ 0 for Aij = 1

Xi + Yj − Zij ≤ 1 for Aij = 0

Xi, Yj, Zij ∈ {0, 1}

. (6.10)

Notice that constraints−Xi − Yj + 2Zij ≤ 0 andXi + Yj − Zij ≤ 1 are not

being enforced for every(ij). Therefore, technically speaking their integer linear

programming formulation is not strict, but a relaxed version.

6.4.3 Linear Programming Relaxation

In general the integer linear programming problem is NP-hard, while the linear

programming problem is not. It has polynomial algorithms such as interior point

method [32] and also has simplex method algorithms which have very good prac-

tical performance despite exponential worst-case runningtime [12]. Thus a typ-

ical approach to solve an integer linear programming problem is to derive an ap-

proximate solution, also an upper bound to its optimum (if itis a maximization

problem) by solving its linear programming relation.

The linear programming relaxation for the dominant discrete pattern mining

problem can be easily obtained by simply replacing the constraint set{Xi, Yi, Zij ∈

{0, 1}} in Equation (6.9) by{Xi, Yi, Zij ∈ [0, 1]}. The relaxation essentially ex-

pands the feasible solution region to a polytope and makes the problem easier

to solve. But the optimal solution of the relaxation problemis not necessarily a

feasible solution of the original problem, because its components could be frac-

tional. So people usually round either down or up those fractional components

to make a feasible solution and use it as an approximate solution. However, the
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approximation ratio is not guaranteed.

As we mentioned earlier, the integer programming formulation for the rank-

one approximation problem provided by Shen et al. in [59] is not a strict for-

mulation, but a relaxed version. However, such a relaxed integer programming

formulation surprisingly leads to a 2-approximation algorithm via simplex meth-

ods. We may directly apply their approach to our problem. Accordingly a new

linear programming relaxation for Equation (6.11) is givenas below.

max
∑

ij

UijZij −
∑

ij

VijXi

s.t.







−Xi − Yj + 2Zij ≤ 0 for Aij = 1

Xi + Yj − Zij ≤ 1 for Aij = 0

Xi, Yj, Zij ∈ [0, 1]

.

(6.11)

Theorem 6.1 The optimal solution of Equation (6.11) via simplex algorithms is

integral, in other words a feasible solution of Equation (6.9).

Proof. As Equation (6.11) has the same constraints as the linear programming re-

laxation problem studied in [59], the same result holds thatthe coefficient matrix

of the inequality constraint set is a totally unimodular matrix. A totally unimod-

ular matrix is a matrix for which the determinant of every square non-singular

submatrix is 1 or -1. All parameters on the right side of inequalities are also in-

tegral. Two properties lead to that the optimal solution of Equation (6.11) via

a simplex algorithm is integral. The reason is as following.A simplex method

is searching from one basic feasible solution to another basic feasible solution

till the optimum is reached. Suppose the constraint set has astandard form as

{AX = b, X ≥ 0}, to which any linear constraint set can be transformed. A
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basic feasible solution is corresponding to a partition{XB, XN} of variablesX

and accordingly the constraint set can be reformed asBXB + NXN = b. By

lettingXN = 0, XB = B−1b. If B−1b > 0, {B−1b, 0} is a basic feasible solution.

According to the Cramer’s rule [22], theith competent ofXB is det(B′)
det(B)

, where

det(B) denotes the determinant ofB, B′ is B except itsith column is replaced

by b. Because in Equation (6.11) the coefficient matrix of the constraint set is

totally unimodular, the determinant of every square non-singular submatrix is 1 or

-1. Hence the denominator ofdet(B′)
det(B)

is 1 or -1. Since all parameters in Equation

(6.11) is integral, the nominator ofdet(B′)
det(B)

is also integral. Thus every component

of any basic feasible solution of Equation (6.11) via a simplex algorithm is inte-

gral, and the optimal solution of the relaxation problem is afeasible solution of

its original problem.

Our proof is built on the basis of the proof given by Shen et al.[59]. But in

addition to pointing out the existence of two sufficient conditions that a totally

unimodular coefficient matrix and all integral parameters,we provide a deep in-

sight on why those two conditions make all basic feasible solutions via a simplex

algorithm integral.

Unfortunately, one cannot prove that the optimal solution of Equation (6.11) is

2-approximate to the optimal solution of Equation (6.9). Weconjecture that they

are at least very close. More importantly the optimal solution of Equation (6.11)

is a feasible solution of Equation (6.9). The problem of finding a feasible solution

of a system of inequalities in integers in general is NP-complete. Many good

heuristics for complex combinatorial optimization problems are starting from a

feasible solution and then iteratively improving the current solution by certain
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rules. A good starting feasible solution such as the optimalsolution of Equation

(6.11) could save much computing time.

6.5 Computational Complexity and Approximation Algorithm

The main result of this section is to prove that the decision problem of dominant

discrete pattern mining is NP-complete and present 2-approximation algorithms

to some special cases of the dominant discrete pattern mining problem.

6.5.1 Computational Complexity

We prove NP-completeness of the decision problem of dominant discrete pattern

mining by a reduction from the decision maximum edge biclique problem.

Lemma 6.1 The decision maximum edge biclique problem is NP-complete [53].

Theorem 6.2 The decision problem of dominant discrete pattern mining isNP-

complete.

Proof. The decision problem of dominant discrete pattern mining isgiven a bi-

nary matrixAm×n and a valueδ to determine if there is a patternY such that
∑

j S(Ai:, Y ) ≥ δ. Given a dominant discrete patternY , it is easy to determine

whether the instance is true. Thus the decision problem of dominant discrete pat-

tern mining belongs to NP. In the previous section, we showedthat the dominant

discrete pattern mining problem is a generalization of the maximum edge biclique

problem, the decision version of which is NP-complete. Therefore, the decision

problem of dominant discrete pattern mining is NP-complete.
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6.5.2 Approximation Algorithm

We will study three special cases of the dominant discrete pattern mining prob-

lem and present approximation algorithms for them. Before doing that, we first

introduce a result.

Lemma 6.2 Any integer linear programming problem withn variables subject

to m linear constraints with at most two variables per inequality, and with all

variables bounded between 0 andU , has a 2-approximation algorithm which runs

in polynomial timeO(mnU2log(Un2m)) [26].

Hochaum et al. in [26] present a 2-approximation algorithm for integer linear

programs with at most two variables per inequality. We briefly introduce this

algorithm here. It transforms the integer program into a monotone integer system

first 1, computes an optimal solution for it, and then modifies the result via some

simple rule to obtain a feasible solution to the original problem, which is also a

2-approximate solution.

Case 1:w1 = 1 andw2 ≥ T whereT is the maximal number of entries with

the value of 1 in a row ofA.

As we have shown in the preceding section, the dominant discrete pattern min-

ing problem withw1 = 1 andw2 ≥ T is equivalent to the maximum edge biclique

problem. Hochbaun in [25] gives a linear programming formulation for the edge

weighted biclique problem which is to delete from a bipartite graph{V1, V2, E},

1For the definition of a monotone integer system, refer to the paper [24].
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a minimum weight collection of edges so that the remaining edges induce a com-

plete bipartite graph. By slight modifications, we obtain a linear programming

formulation for our special case as below.

max
∑

Aij=1

Zij

s.t.







2Zij − (Xi + Yj) ≤ 0, for Aij = 1

Xi + Yj ≤ 1, for Aij = 0

Xi, Yj, Zij ∈ {0, 1}

.

(6.12)

Becausew2 ≥ T , XY T cannot cover 1’s entries inA. In other wordsXiYj = 0

if Aij = 0, which is guaranteed by the constraint set{Xi +Yj ≤ 1, for Aij = 0}.

The objective function
∑

Aij=1 Zij counts(i, j) such that bothAij andZij are 1.

Zij can be 1 if and only if bothXi andYj are 1, which is guaranteed by the first

constraint set{2Zij − (Xi + Yj) ≤ 0, for Aij = 1}.

The constraint of2Zij − (Xi + Yj) ≤ 0 can be spit into two equivalent con-

straintsZij−Xi ≤ 0 andZij−Yj ≤ 0. The similar skill is also used in [25]. Then

Equation (6.12) can be put in the form with at most two variables per inequality

as below.

max
∑

Aij=1

Zij

s.t.



















Zij −Xi ≤ 0, for Aij = 1

Zij − Yj ≤ 0, for Aij = 1

Xi + Yj ≤ 1, for Aij = 0

Xi, Yj, Zij ∈ {0, 1}

.

(6.13)

It naturally leads to the following theorem.

Theorem 6.3 The dominant discrete pattern mining problem withw1 = 1 and
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w2 ≥ T is 2-approximable.

Case 2:w1 ≥ T whereT is the maximal number of entries with the value of 1

in a row ofA.

w1 ≥ T enforces that a patternY can only be present in its subset. In the pre-

ceding section, we have shown that the dominant discrete pattern mining problem

with w1 ≥ T is equivalent to finding a maximum weight biclique from a com-

plete weighted bipartite graph. In which, the weight for theedges corresponding

to entries with the value of 1 inA is 1 and the weight for the other edges is−w1.

It is a special case of the edge weighted biclique problem studied in [25]. Again

by modifying the linear programming formulation for the edge weighted biclique

problem provided in [25], we obtain a linear programming formulation for our

problem as below.

max
∑

Aij=1

Zij −
∑

Aij=0

w2Zij

s.t.







Zij −Xi ≤ 0

Zij − Yj ≤ 0

Xi, Yj, Zij ∈ {0, 1}

.

(6.14)

Equation (6.14) is similar to Equation (6.13), except that:(i) the constraint set

of Xi+Yj ≤ 1, for Aij = 0 is deleted because it is not necessary, and the weights

of {Zij} are replaced with 1 and−w2 accordingly. Every inequality constraint of

Equation (6.14) has only two variables. Obviously the approximation algorithm

presented in [26] applies to it. We state it as below.

Theorem 6.4 The dominant discrete pattern mining problem withw1 ≥ T is 2-

approximable.
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Case 3:w1 = 1 andw2 = 1.

The dominant discrete pattern mining problem withw1 = 1 andw2 = 1 is

equivalent to the rank-one approximation problem. A 2-approximation algorithm

via linear programming relaxation is proposed by Shen et al.in [59]. For simplic-

ity, we skip its details.

6.6 Adaptive Tabu Search Heuristic

A tabu search heuristic is presented for the dominant discrete pattern mining prob-

lem. For large-scale problems running time for mathematical programming is al-

ways an issue. A 2-approximation algorithm sometimes cannot produce satisfac-

tory results in practice. The dominant discrete pattern mining problem essentially

is a combinatorial optimization problem. For such type of problem heuristics

usually bring good practical performance. An iterative heuristic is employed for

the rank-one approximation problem by both [59] and [34]. Its basic idea is that

starting from a feasible solution of patternY and presence vectorX, alternatively

fixing one of them and then searching for the best solution of the counterpart till

both are stable. The only difference between [59] and [34] isthat in [59] instead

of a random starting solution the starting feasible solution is the optimal solution

of Equation (6.11), which is 2-approximate to the optimal solution of the origi-

nal problem. Their iterative heuristic can be viewed as a greedy heuristic, which

greedily picks a neighboring solution at each iteration. One drawback with greedy

heuristics is that it is easy to reach local optimums, and once reaching it the solu-

tion cannot be improved any more.

To address the local optimum issue, we present an adaptive tabu search heuris-
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tic. Tabu search is a mathematical optimization method. It essentially belongs to

the class of local search techniques as well. But it enhancesthe performance of

a local search method by using memory structures. When a potential solution

has been determined, it is marked as ”taboo” so that the algorithm does not visit

that possibility repeatedly. In Section 6.4, we have shown that the dominant dis-

crete pattern mining problem can be formulated as an unconstrained quadratic bi-

nary program. In literature, tabu search has been successfully employed to solve

quadratic binary programming problems [21]. This is another reason why we

choose tabu search.

The dominant discrete pattern mining problem is given a binary matrix A to

maximize
∑

i S(Ai:, Y ). It is easy to computeS(Ai:, Y ) onceY is determined.

The adaptive tabu search approach taken here is a modification of the adaptive

memory tabu search presented in [21]. The basic procedure ofour algorithm

is as following. It starts with an initial solution ofY and then goes through a

series of alternative constructive phases and destructivephases. In the constructive

phases, progressively set 0 components ofY to 1, while in the destructive phase,

progressively set 1 components ofY to 0. At each iteration, one component ofY

is chosen and its value is flipped.

A greedy rule would be choosing the component by changing which improves

the objective function the most. However, to avoid visitingsome solutions re-

peatedly, frequency and recency information is utilized. Frequency information

is aboutcritical solutionsencountered to date. A critical solution is the solution

at which the next move (either add 1 or drop 1) causes the objective function to

decrease. Such an event is called acritical event. Recency information is aboutk
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span number of further steps after a critical event
span∗ maximum value ofspan
Dir direction on changing the value ofspan
pr penalty weight from the recency tabu list
pf penalty weight from the frequency tabu list

IterCount count of total iterations
IterCount∗ maximum value ofIterCount
IterSpan count of iterations at the current value ofspan

t scale parameter on the maximum value ofIterSpan

Table 6.1. Parameter Descriptions

Algorithm 6.10 Tabu Search Algorithm

Input: A, IterCount∗, pr, pf , span∗, t;
Output: X, Y ;

1: Y =0, Ybest=0, IterCount=0, span=1, Dir=increase, Count=0,
IterSpan=0;

2: while IterCount < IterCount∗ do
3: Conduct the constructive phase;
4: Conduct the transitive phase;
5: Conduct the destructive phase;
6: Conduct the transitive phase;
7: end while

critical solutions recently visited. Two pieces of information are stored in two tabu

lists respectively. A greedy approach would stop at a critical event. But the tabu

search heuristic taken here would keep moving. The number offurther moving

steps is based onstrategic oscillation. Such a scheme would enable the solution

to step out some local optimums. The amplitude of oscillation, in other words

the number of further moving steps, is determined by a parameter, span. The

span parameter is fixed for a certain number of iterations andthen changed in a

systematic fashion. To manage the value ofspan, an additional transitive phase is

added between each constructive phase and each destructivephase. So technically

speaking the adaptive tabu search approach consists of three phases.
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The general structure of the tabu search approach is as outlined in Algorithm

6.10. Parameter descriptions are provided in Table 6.1. Variablespan determines

the further steps that can be made after encountering a critical solution.span∗ is

an input parameter, limiting the maximum value ofspan. The value ofDir indi-

cates the direction of changing the value ofspan, either increasing or decreasing.

pr andpf are penalty weights on information derived from recency andfrequency

tabu lists respectively. Its usage will be elaborated later. VariableIterCount

counts the total iterations to date.IterCount∗ is an input parameter limiting the

maximum value ofIterCount and hence the algorithm runtime.IterSpan counts

iterations that have been made at the current value ofspan. t is an input scale pa-

rameter on the maximum value ofIterSpan. We explain it explicitly later. The

termination condition of Algorithm 6.10 is the total numberof iterations less than

IterCount∗. It could be replaced with a termination condition on the runtime. In

each loop, three phases are traversed in order.

6.6.1 Constructive Phase

In the constructive phase, we progressively pick a 0 component of Y and flip

it to 1. The intuitive component-picking policy is to choosethe component by

flipping which contributes the largest net increase to the objective function value
∑

i S(Ai:, Y ). But we want to avoid repeatedly visiting some solutions. Tothis

end, two tabu lists are utilized to influence the search process. The recency tabu

list is a vector denoted byVr, which is the sum of the most recentk critical solu-

tions. At each critical event, it is updated as below:Vr = Vr + Y (current) −

Y (current − k), whereY (current) denotes the current critical solution and
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Y (current− k) denotes the critical solution encountered beforek critical events.

The frequency tabu list is the sum of all critical solutions encountered so far. At

each critical event, it is updated as below:Vf = Vf + Y (current). To avoid re-

peatedly visiting some critical solutions, we give certainpenalty on a 0 component

which was 1 in recent critical solutions or was 1 frequently in the past critical so-

lutions. So the final evaluation on a 1 component at thejth position is determined

by the following measure:

f1(j) =
∑

i S(Ai:, Y + ej)−
∑

i S(Ai:, Y )
−pr ∗ Vr(j)− pf ∗ Vf (j)

. (6.15)

In above,ej is a unit vector with thejth entry of 1,pr andpf are penalty weights,

andVr(j) andVf(j) are thejth entry ofVr andVf respectively.

The details of the constructive phase are as described in Algorithm 6.11. It

consists of two parts. The first part is to iteratively flip thecomponent which

maximizes the evaluation formula of Equation (6.15). The second part is to make

span more iterations after a critical event occurs.

6.6.2 Destructive Phase

In the destructive phase, we progressively pick a 1 component in Y and change it

to 0. The evaluation measure for component picking is as below. It is similar to

Equation (6.15) except that we add penalty terms.

f2(j) =
∑

i S(Ai:, Y − ej)−
∑

i S(Ai:, Y )
+pr ∗ Vr(j) + pf ∗ Vf (j)

. (6.16)

The details of the destructive phase is as shown in Algorithm6.12. It is same

as Algorithm 6.11 except that the component picking rule is changed.
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Algorithm 6.11 Constructive Phase

1: while |Y | < n do
2: Find j′ maximizingf1(j) subject toY (j) = 0;
3: if f1(j

′) > 0 then
4: Y = Y + ej ;
5: IterCount = IterCount + 1;
6: UpdateYbest if necessary;
7: end if
8: end while
9: while CountSpan ≤ span and|Y | > 0 do

10: j′ = argmaxY (j)=1(f2(j));
11: if f1(j

′) ≤ 0 then
12: UpdateVr andVf ;
13: end if
14: Y = Y + ej;
15: CountSpan = CountSpan + 1;
16: IterCount = IterCount + 1;
17: UpdateYbest if necessary;
18: end while
19: CountSpan = 0;

6.6.3 Transitive Phase

If span is an unchanged constant, the constitutive phase and the destructive phase

constitute a complete tabu search algorithm. A largespan would enlarge the

search space at the expense of increasing runtime. But with asmall span the

algorithm might not be able to find a satisfactory solution. To address the issue,

adaptive tabu search adjusts the value ofspan in a systematic fashion. We fix

the value ofspan for a certain number of iterations and then increase it by 1.

Keep doing this untilspan reachesspan∗, the maximum value predefined. After

that, we gradually decrease the value ofspan by 1. Therefore, the value ofspan

will transverse back and forth between 1 andspan∗. The complete procedure of

transitive phase is as described in Algorithm 6.13.
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Algorithm 6.12 Destructive Phase

1: while |Y | > 0 do
2: Find j′ maximizingf2(j) subject toY (j) = 1.
3: if f2(j

′) > 0 then
4: Y = Y − ej ;
5: IterCount = IterCount + 1;
6: UpdateYbest if necessary;
7: end if
8: end while
9: while CountSpan ≤ span and|Y | > 0 do

10: j′ = argmaxY (j)=1(f2(j));
11: if f2(j

′) ≤ 0 then
12: UpdateVr andVf ;
13: end if
14: Y = Y − ej ;
15: CountSpan = CountSpan + 1;
16: IterCount = IterCount + 1;
17: UpdateYbest if necessary;
18: end while
19: CountSpan = 0;

6.7 Experiments

In this section, we illustrate the properties of weighted rank-one binary matrix

approximation by implementing it on synthetic data. The synthetic data are cre-

ated as following: (i) Generate eight random binary row vectors, such that each

vector is of size1 × 50 and has exactly50 ∗ ρ components of 1, whereρ is the

parameter determining data sparseness and within[0, 1]; (ii) Generate 200, 200,

150, 150, 100, 100, 50, and 50 copies respectively for each ofthe eight vectors,

and put them together to constitute a binary matrix with size1000 × 50. There-

fore the resultant binary matrix contains eight discrete patterns;(iii) Flip the value

for each cell in the binary matrix with probabilityρ ∗ ξ, whereξ is the parameter

determining noise ratio and is within[0, 1].
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Algorithm 6.13 Transitive Phase

1: if Dir = increase then
2: if span > span∗ then
3: span = span∗;
4: Dir = decrease;
5: IterSpan = 0;
6: else
7: if IterSpan > t ∗ span then
8: span = span + 1;
9: IterSpan = 0;

10: end if
11: end if
12: else
13: if span = 0 then
14: span = 1;
15: Dir = increase;
16: IterSpan = 0;
17: else
18: if IterSpan > t ∗ span then
19: span = span− 1;
20: IterSpan = 0;
21: end if
22: end if
23: end if

We first study the performance of the adaptive tabu search heuristic with re-

spect to its speed of convergence. Parameter settings for the adaptive tabu search

heuristic are as:pr = 1, pf = IterCount
50

, span∗ = 3, IterCount∗ = 500, and

t = 3. We run it on two synthetic binary matrices with generating parameter

values as{ρ = 0.3, ξ = 0.2} and{ρ = 0.3, ξ = 0} respectively. The experi-

mental results are as shown in Figures 6.3a and 6.3b. In Figure 6.3a, it shows that

the adaptive tabu search heuristic only takes about 15 iterations to reach a discrete

pattern with significance value of 200. The pattern is the global optimum solution,

because according to the data generating process with the noise parameterξ = 0

the dominant discrete pattern covers 200 row vectors. In Figure 6.3b, it shows
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Figure 6.3. Speed of Convergence

that the adaptive tabu search heuristic only takes about 15 iterations to reach a

pattern with significance value of about 220. As no efficient way to check if the

found pattern is dominant, but according to the data generating process, it should

be nearly dominant at least. Both graphs verify the high convergence rate of our

adaptive tabu search heuristic.

We then evaluate the performance of the adaptive tabu searchheuristic by

comparing it to the alternating iterative approach proposed in [34] with respect to

approximation ratio. The approximation ratio measure is defined asf11−f10−f01

||A||1

wheref11 is the number of matching entries with the value of 1,f10 is the num-

ber of 1-becoming-0 errors,f01 is the number of 0-becoming-1 errors, and||A||1

is the number of 1 entries in the original data. For a fair comparison, we let

penalty weighesw1 andw2 for weighted rank-one binary matrix approximation

be 1. Specific parameter setting for the adaptive tabu searchheuristic is:pr = 1,

pf = IterCount
50

, span∗ = 3, IterCount∗ = 500, and t = 3. Regardingpf ,

IterCount
50

means that the frequency tabu list has more and more impact when the

algorithm proceeds.

We compare our algorithm with the alternating iterative approach on various
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Figure 6.4. Comparison w.r.t Approximation Ratio on Synthetic Data

datasets. We first generate data by fixing the noise ratioξ to be 0.2 and vary-

ing the density parameter valueρ from 0.1 to 0.5. As both algorithms require an

initial solution. To be favorable to the alternating iterative approach, we employ

the Partition andNeighborprocedures designed for the alternating iterative ap-

proach proposed in [34] to generate initial solutions. The experimental results are

as shown in Figures 6.4a. The observation is that the tabu search heuristic per-

formances significantly better than the alternating iterative approach in any case.

According to the data-generating process, the dominant discrete pattern should

cover about 20 percent of the whole binary matrix. So the maximum approxima-

tion ratio is around 0.2. Experimental results show that theadaptive tabu search

heuristic produces nearly optimal solutions, while the performance of the alter-

nating iterative approach is unsatisfactory. We then generate data by fixing the

density parameter valueρ to be 0.3 and varying noise from 0 to 0.4. The results is

as shown in Figure 6.4b. They again confirm the conclusion that the adaptive tabu

search heuristic has significantly better performance.

Next we investigate the impact of penalty weights on the quality and proper-

ties of mined patterns. Two measures could be employed to evaluate the quality
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of mined patterns. The first measure is the number of patterns. The objective of

rank-one matrix approximation is to reduce the size of original data by replac-

ing individual records with their corresponding patterns.So less patterns means

more succinct approximate data. The second measure is approximation ratio. It

is always desirable to retain the original data informationin the approximate data,

because severely contaminated data would hardly produce any convincing data

analysis result.

Again we run our adaptive tabu search heuristic on syntheticdata with the

same data-generating process as before. First, we letw1 = w2 and increase their

values gradually. We run our pattern mining algorithm on various data with dif-

ferent data-generating parameter settings. The experimental results are as shown

in Figures 6.5a-6.5d. In these four graphs, the same observation is that by increas-

ing penalty weights approximation ratio increases consistently. However, with

conventional rank-one binary matrix factorization, approximation ratio is not ad-

justable. When penalty weights are increased to 4, the approximation ratio can be

improved to be nearly 1, while the required number of patterns is still significantly

less than the number of original records.

We then fix one of penalty weights and vary the other to investigate the impact

of penalty weights on error type distribution. First, we fixw2 to be 1 and then

vary w1 from 1 to 4. The experimental result is as shown in Figure 6.5e. It

is clearly observed that type I error rate decreases consistently with increasing

w1. Whenw1 = 4, the type I error rate is as low as 0.1. We then fixw1 and

vary w2. The experimental result is as shown in Figure 6.5f. The samefact is

observed. It supports the second main advantage of weightedrank-one binary
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matrix factorization. By adjusting the value ofw1 andw2, users can easily reflect

their preferences on error type distribution.
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Figure 6.5. Impact of Penalty Weights on Approximation Ratio, Number of Pat-
terns, and Error Type Distribution
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This dissertation studies BMD, extended BMD and weighted rank-one BMD.

BMD has many applications including text mining, role mining, clustering, and

information retrieval. Important BMD variants are extensively investigated and a

general integer programming framework for studying BMD variants is provided.

Extended BMD improves the conventional BMD model by including the set dif-

ference operation, which not only makes the decomposition solution more inter-

pretable, but also decomposes an input Boolean matrix in a more succinct way.

Weighted rank-one BMD provides a flexible approach to mine discrete patterns

from binary records. It allows users to effectively impose their preferences on

the approximation level of mined discrete patterns and the error type distribution

in the approximation. For each presented Boolean matrix decomposition vari-

ant, computational complexity is performed, integer programming formulation is

given, and alternative approaches such as approximation algorithms and heuristics

are provided. Extensive experiments on synthetic and real data sets are conducted

to evaluate the performance of our proposed algorithms.

There are still a lot of future work remaining. We will name a few here. First,

there are some other interesting applications of BMD that have not been inves-

tigated. For example, BMD can be applied to social network analysis, because
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social network data can be represented as a Boolean matrix and a BMD solution

identifies cliques among the data. Another application is overlapping clustering

which is important in many domains such as DNA microarray analysis . A BMD

solution divides observed Boolean records into clusters, while a record can be-

long to multiple clusters. Second, in reality data often change over time. So the

real observed data could be a three-dimensional Boolean matrix. There is no any

existing approach that can effectively discover patterns from three-dimensional

Boolean matrix. In the future, we plan to look at those interesting remaining

problems.
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[34] KOYUTÜRK, M., AND GRAMA , A. Proximus: a framework for analyzing

very high dimensional discrete-attributed datasets. InKDD ’03: Proceed-

ings of the ninth ACM SIGKDD international conference on Knowledge dis-

covery and data mining(New York, NY, USA, 2003), ACM, pp. 147–156.

[35] KOYUTURK, M., GRAMA , A., AND RAMAKRISHNAN , N. Compression,

clustering, and pattern discovery in very high-dimensional discrete-attribute

data sets.IEEE Trans. on Knowl. and Data Eng. 17, 4 (2005), 447–461.

[36] KUHN, K. The hungarian method for the assgnment problem.Navel Re-

search Logistics Quarterly(1955), 2:83–97.

[37] LAND , A. H., AND DOIG, A. G. An automatic method of solving discrete

programming problems.Econometrica 28, 3, 497–520.



146

[38] LEE, D. D., AND SEUNG, H. S. Learning the parts of objects by non-

negative matrix factorization.Nature 401, 6755 (October 1999), 788–791.

[39] LEE, D. D., AND SEUNG, H. S. Algorithms for non-negative matrix fac-

torization. InNIPS(2000), pp. 556–562.

[40] L I , T. A general model for clustering binary data. InProceedings of the

eleventh ACM SIGKDD international conference on Knowledgediscovery

in data mining(2005), pp. 188–197.

[41] LOVASZ, L. On the ratio of optimal integral and fractional covers.Discrete

Mathematics(1975), 13:383–390.

[42] LU, H., VAIDYA , J.,AND ATLURI , V. Optimal boolean matrix decomposi-

tion: Application to role engineering.IEEE 24th International Conference

on Data Engineering(2008), 297–306.

[43] M. DAWANDE , P. K., AND TAYUR, S. On the biclique problem in bipartite

graphs. GSIA working paper 1996-04, Carnegie-Mellon University, 1997.

[44] MADEIRA , S., AND OLIVEIRA , A. Biclustering algorithms for biolog-

ical data analysis: a survey.Computational Biology and Bioinformatics,

IEEE/ACM Transactions on 1, 1 (Jan.-March 2004), 24–45.

[45] MARLIN , B. Modeling user rating profiles for collaborative filtering. In In

NIPS*17(2003), MIT Press.

[46] MARLIN , B., AND ZEMEL, R. S. The multiple multiplicative factor model

for collaborative filtering. InIn Proceedings of the 21st International Con-

ference on Machine learning(2004), p. 2004.



147

[47] MARTIN KUHLMANN , D. S., AND SCHIMPF, G. Role mining - revealing

business roles for security administration using data mining technology. In

SACMAT ’03: Proceedings of the eighth ACM symposium on Access control

models and technologies(New York, NY, USA, 2003), ACM, pp. 179–186.

[48] M IETTINEN, P. The boolean column and column-row matrix decomposi-

tions. Data Min. Knowl. Discov. 17, 1 (2008), 39–56.

[49] M IETTINEN, P. On the positive–negative partial set cover problem.Inf.

Process. Lett. 108, 4 (2008), 219–221.

[50] M IETTINEN, P., MIELIKAINEN , T., GIONIS, A., DAS, G., AND MAN-

NILA ., H. The discrete basis problem. InKnowledge Discovery in

Databases: PKDD 2006 C 10th European Conference on Principles and

Practice of Knowledge Discovery in Databases(2006), Springer, pp. 335–

346.

[51] M ISHRA, N., RON, D., AND SWAMINATHAN , R. On finding large con-

junctive clusters. InIn Computational Learning Theory(2003), Springer,

pp. 448–462.

[52] PAULI , M., TANELI , M., ARISTIDES, G., GAUTAM , D., AND HEIKKI ,

M. The discrete basis problem.IEEE Transactions on Knowledge and Data

Engineering 20, 10 (2008), 1348–1362.

[53] PEETERS, R. The maximum edge biclique problem is np-complete.Dis-

crete Appl. Math. 131, 3 (2003), 651–654.



148

[54] PETER, J. B., GREEN, P., HIGDON, D., AND MENGERSEN, K. Bayesian

computation and stochastic systems, 1995.

[55] PRELIC, A., BLEULER, S., ZIMMERMANN , P., WILLE , A., BUHLMANN ,

P., GRUISSEM, W., HENNIG, L., THIELE, L., AND ZITZLER, E. A sys-

tematic comparison and evaluation of biclustering methodsfor gene expres-

sion data.Bioinformatics 22, 9 (May 2006), 1122–1129.

[56] ROSS, S. M. Simulation, Third Edition (Statistical Modeling and Decision

Science) (Hardcover). Academic Press, 2002.

[57] SANDHU , R. S., COYNE, E. J., FEINSTEIN, H. L., AND YOUMAN , C. E.

Role-based access control models.IEEE Computer 29, 2 (1996), 38–47.

[58] SCHLEGELMILCH, J.,AND STEFFENS, U. Role mining with orca. InSAC-

MAT ’05: Proceedings of the tenth ACM symposium on Access control mod-

els and technologies(New York, NY, USA, 2005), ACM, pp. 168–176.

[59] SHEN, B.-H., JI , S.,AND YE, J. Mining discrete patterns via binary matrix

factorization. InKDD ’09: Proceedings of the 15th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining(New York, NY,

USA, 2009), ACM, pp. 757–766.

[60] VAIDYA , J., ATLURI , V., AND GUO, Q. The role mining problem: finding

a minimal descriptive set of roles. InSACMAT(2007), pp. 175–184.

[61] VAIDYA , J., ATLURI , V., GUO, Q., AND LU, H. Edge-rmp: Minimizing

administrative assignments for role-based access control. J. Comput. Secur.

17, 2 (2009), 211–235.



149

[62] VAIDYA , J., ATLURI , V., AND WARNER, J. Roleminer: mining roles using

subset enumeration. InThe 13th ACM conference on Computer and commu-

nications security(2006), pp. 144–153.

[63] ZHANG, Z., LI , T., DING, C., AND ZHANG, X. Binary matrix factorization

with applications. InProceedings of the 2007 Seventh IEEE International

Conference on Data Mining(2007), pp. 391–400.



150

VITA

Haibing Lu

1981 Born at Dafeng, Jiangsu, China.
1998-2002 B.S., Information and Computing Science, Xi’an Jiaotong University, China.
2002-2005 M.S., Computing Mathematics, Xi’an Jiaotong University, China.
2005-2006 Full-Time Research Assistant, School of Information Systems, Singapore

Management University, Singapore.
2006-2010 Graduate Assistantship, Rutgers Business School.
2007-2009 Rutgers Business School Dean Award - Ph.D. Competition.
2008 Rutgers Business School CIMIC Award (one per school).
2010-2011 Dissertation Fellowship, Rutgers Business School.
2011 Ph.D. in Management (IT Major), Rutgers University.

Publications

2006 H. Lu, Y. Li, and X. Wu. Disclosure Risk in Dynamic Two-Dimensional Con-
tingency Tables. ICISS 2006.
H. Lu, Y. Li, and X. Wu. Disclosure Analysis for Two-Way Contingency Ta-
bles. PSD 2006.
Y. Li, H. Lu, and R. Deng. Practical Inference Control for Data Cubes. S&P
2006.

2008 H. Lu and Y. Li. Practical Inference Control for Data Cubes. IEEE Transaction
on Dependable and Secure Computing, 5(2): 87-98.
Y. Li and H. Lu. Disclosure Analysis and Control in Statistical Databases.
ESORICS 2008.
H. Lu, X. He, J. Vaidya, and N. Adam. Secure Construction of Contingency
Tables from Distributed Data. DBSec 2008.
H. Lu, J. Vaidya, and V. Atluri. Optimal Boolean Matrix Decomposition: Ap-
plication to Role Engineering. ICDE 2008.

2009 J. Vaidya, V. Atluri, Q. Guo, and H. Lu. Role Engineeringfor Minimizing
Administrative Assignment. Journal of Computer Security,17 (2): 211-235.
H. Lu, Y. Li, V. Atluri, and J. Vaidya. An Efficient Online Auditing Approach
to Limit Private Data Disclosure. EDBT 2009.
H. Lu, J. Vaidya, V. Atluri, and Yuan Hong. Extended Boolean Matrix Decom-
position. ICDM 2009.

2010 X. He, H. Lu, J. Vaidya and V. Atluri. Secure Construction of Contingency
Tables from Distributed Data. Journal of Computer Security.
J. Vaidya, V. Atluri, Q. Guo, and H. Lu. Role Mining in the Presence of Noise.
DBSec 2010.

2011 H. Lu, J. Vaidya, V. Atluri, H. Shin and L. Jiang. Weighted Rank-One Binary
Matrix Factorization. SDM 2011.
Y. Hong, J. Vaidya and H. Lu. Efficient Distributed Linear Programming with
Limited Disclosure. DBSec 2011.
E. Uzun, V. Atluri, H. Lu and J. Vaidya. An Optimization Modelfor the Ex-
tended Role Mining Problem. DBSec 2011.
H. Lu and S. Huang. Clustering Panel Data. SDM Workshop on Marketing
2011.


