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DISSERTATION ABSTRACT

BOOLEAN MATRIX DECOMPOSITION AND EXTENSION
WITH APPLICATIONS
By Haibing Lu

Dissertation Directors: Dr. Vijayalakshmi Atluri and Drideep Vaidya

Boolean matrix decomposition (BMD) refers to decomposiieanput Boolean
matrix into a product of two Boolean matrices, where the firatrix represents a
set of meaningful concepts, and the second describes howberved data can
be expressed as combinations of those concepts. As oppos&ahtiard matrix
factorization, BMD focuses on Boolean data and employs &moimatrix prod-
uct instead of standard matrix product. The key advantadgMid is that BMD
solutions provide much more interpretability, which emaBMD to have wide
applications in multiple domains, including role miningxt mining, discrete pat-

tern mining, and many others.

There are three main challenges in the research of BMD., Feat applica-
tions carry varying expectations and constraints on BMitsmhs, which make
the task of searching for a good BMD solution nontrivial. @&, BMD by itself
has the issue of insufficiency in modeling some real data sBosaas only the set

union operation is employed in combination. Third, BMD weautis are generally
ii



NP-hard in nature, which makes practitioners reluctanptadyathe BMD model

to large scale data analysis.

All of the three challenges are addressed in this dissentatrirst, a unified
framework, which is based on integer linear programmingrésented to encom-
pass all BMD variants. Such a framework allows us to direatgpt fruitful re-
search results in the optimization field to solve our own f@ots. It also provides
researchers across different domains with a new perspectiview their prob-
lems and enables them to share their research results. Gexoovel extended
Boolean matrix decomposition (EBMD) model is proposed.lltives describing
an observed record as an inclusion of some concepts with@uasésn of some
other concepts. Thus EBMD is effective to meet the needs afatimy some
complex data semantics. Third, rank-one BMD is studied.kRare BMD is to
decompose a Boolean matrix into the product of two Booleatovs, which can
be interpreted as a dominant pattern vector and a presentm.\By recursively
applying rank-one BMD, a Boolean matrix is partitioned imtasters and dis-
crete patterns of the observed data are thus discovere#-drenBMD can serve
many functions of regular BMD, while rank-one BMD is relatly easy to solve
compared to regular BMD. In addition, efficient 2-approxiioa algorithms are

found for some special cases of rank-one BMD.
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CHAPTER 1
INTRODUCTION

Many kinds of real data sets can be represented by Booleamcestsuch as
market basket data, document data, Web click-stream ddtassn-to-permission
assignment data in an organization. For instance, mark&ebdata contains cus-
tomer transaction records, where each record can be repeeses a Boolean vec-
tor where each element indicates whether or not the comelépg item/product is
purchased. A document can be described by a Boolean vectsewhch element

indicates whether or not a corresponding word/term is prtese

Interestingly, many important data analysis tasks on Bwoldata can be
transformed as Boolean matrix decomposition (BMD) prolde®MD is to de-
compose a Boolean matrix,, ., into two matricesX,, «, andCy,, such that
A = XQ®C. Inwhich, ) is called Boolean matrix product and significantly
different from the ordinary matrix producty) is built on the logical arithmetic

operationsy andA. If A = X @ C, we have

k
aij = \/(th A Ctj) . (11)

=1
An input Boolean matrix4,,.,, can be viewed as: data records withu at-

tributes{1, 2, ..., n}. Theith row vector corresponds to an attribute subsetuch



that A; contains the attributgif A;; = 1.

Crxn Can be viewed as as a collectionio€oncepts, where each concept is a

subset of attribute$l, 2, ..., n}. Concept consists of attributg if C;; = 1.

X..xk Can be interpreted as a combination matrix, showing how easérved

data record is represented as a union of a subset of concepts.

Then a BMD solutiold = X ® C' can be interpreted as follows:

A= GV (1.2)

zij=1
Such interpretability enables BMD to model many real dataas#ics, which

cannot be found in an ordinary matrix factorization.

Take the role mining problem (RMP) as an example. RMP conoes fhe im-
plementation of Role-based access control (RBAC). RBACwsdzly accepted
access control model, which greatly simplifies adminigiraby assigning each
user a few roles instead of a large number of individual pssians, where a role
is a subset of permissions. To take the advantages of RBA@naations need
to define a good set of roles, and then assign them to usermsately, the work
of which is called role engineering. To automate the prooéssle engineering,
Vaidya et al. [62] propose to mine roles from existing ugepérmission assign-
ment data, which is the origin of RMP. Look at the example @frtis-permission
assignment data represented by a bipartite graph as shoigure 1.1. With
m permissions and users, that bipartite graph can be represented by a Boolean

matrix A,,.,, wherea;; = 1 if the ith permission is assigned to thiéh user,



Users
(Documents,

Transaction Records,...)

U Permissions
1\ (Terms,
U2 Products,...)
us >P1
us >p3

ue4
A

Figure 1.1. Bipartite Graph

otherwise 0. As we know, a role is nothing, but a subset of g=ions. The
basic objective of RMP is to find a set of roles and user-te-agisignments, such
that every user has exactly the same permissions as whah#aeyTo meet that
requirement, the union of permissions contained by rolegyaed to each user
has to be the permission set that was assigned to that userasibfe solution
for the example of Figure 1.1 is as shown in Figure 1.2. In Whpermission-
to-role assignments and user-to-role assignments reirBbolean matrice§’
and X. Hence, that graph is corresponding to a BMD solutiotlas X ) C.
As we can see, role mining is essentially to finding a BMD sotutvith exist-
ing user-to-permission assignments as the input BoolednxnBesides RBAC,
BMD can be applied to many other domains. For example, if ipartite graph of
Figure 1.1 is representing document-to-term data, thd thirer of the tripartite
graph of Figure 1.2 gives a set of topics extracted from exstocument-to-term
data . If the bipartite graph of Figure 1.1 describes a maoksket data set, a

BMD solution implied from Figure 1.2 generates a set of patdiemsets, which



might be beneficial for supermarkets to design promotioatestyies. There are
prevalent applications of BMD in many domains involving Besn data analysis
tasks. However, there are three prominent problems egigtithe research field
of BMD as follows.

Users
(Documents,

Transaction Records,...)

U1 Roles Permissions
(Topics, (Terms,
vz ltemsets,...) Products,...)
U3« | p
%Fﬁ </
U4= \>
SRod— | 12
Ue“
X C

Figure 1.2. Tripartite Graph

1. Lack of a General Framework.

Most Boolean data analysis tasks cannot be simply modeldth@isg
a feasible BMD solution. Usually specific objectives and staaints are
attached. For example, to maximize the benefits of adoptiegRBAC
scheme, one possible way is to find a minimum set of roles. énldh-
guage of BMD, it is to find a feasible BMD solution, such tldats of the
least rows. While, to minimize the RBAC administrative wodne needs
to find a set of roles, which brings the least assignments.tHaravords,

the decomposed matrices of the input user-to-permissisigrasent ma-



trix contain the least 1’s cells. Besides various objestig®me constraints
may be applied. For example, each user is limited to have épates, or
no pair of roles overlap more tharpermissions. As we can see, even the
role ming problem alone generates many variants of BMD. Hewehere
are many other research problems that can be modeled thBMBh such
as document summarization in text mining, tiling databasesket basket
data analysis, Boolean data compressing, feature selediimensionality
reduction, etc. We observe that despite in different dosjaimany prob-
lems are equivalent from the perspective of BMD. For instanice basic
RMP problem in role mining [60] and the minimum tiling probien tiling
databases [19] are the same. Unfortunately, these prohiseatsto be stud-
ied in their own disciplinary. So to fully exploit the bensfitf BMD and
help people recognize its importance, we need a generakWwank, which
enables to classify, model, and solve problems from diffed®@mains. So
people across different domains can share their intelligemd collaborate

closely.

. Insufficiency of BMD in Modeling Real Data Semantics.

The reason why BMD has broad applications is that its decaitipo so-
lutions provide such interpretabilites that each obseBeolean record is
expressed as a union of a subset of concepts. A BMD solutibromly
identifies concepts, but also shows how to reconstruct ebdetata from
those concepts. However, we notice that the Boolean matoictyet only
considers the union operation. In other words, a succeB8ll gives a set

of concepts and shows how every column of the input data caxjiressed



as a union of some subset of those concepts. This way of nmgdaltom-
pletely represents some real data semantics. Essentialypres a critical
component — the set difference operation: a column can bessgd as the
combination of union of certain concepts as well as the exatuof other

topics.

To explain this explicitly, we look at a simple text mininga®ple. One of
main research topics in text mining is given a large numbetaguments
to generate a few topics to summarize them, where each dotwae be
represented by a Boolean mat, .., with a;; = 1 if the ith document con-
tains thejth term, otherwise 0. Then a rod; is corresponding to a subset
of terms. Suppose a presidential speech covers all topaepeXEDUCA-
TION”. With BMD, to describe that speech, we have to list atmtioned
topics. However, if we create a topic called "ALL-TOPICShat speech
can simply be expressed dd.. — TOPICS\EDUCATION. Another
advantage of introducing the set difference operationdaswle may be able
to use fewer topics to describe the same documents. To teke #dvan-
tages, we need to extend the conventional BMD model and cprméth a
more general model, which can represent both the set unierathpn and

the set difference operation.

. Inability of Rank-One BMD to Impose Personal Preferences.

Mining discrete patterns in binary data is important for jmdata analysis
tasks, such as data sampling, compression, and clustekmgxample is
that replacing individual records with their patterns wbgreatly reduce

data size and simplify subsequent data analysis tasks. tkaigrgforward



approach, rank-one binary matrix decomposition has begvecstudied

recently for mining discrete patterns from binary dataatttbrizes a binary
matrix into the multiplication of one binary pattern vectord one binary
presence vector, while minimizing mismatching entrieswigeer, this ap-
proach suffers from two serious problems. First, if all melsoare replaced
with their respective patterns, the noise could make as raa&@0% in the
resulting approximate data. This is because the approagblysassumes
that a pattern is presentin a record as long as their matelninigs are more
than their mismatching entries. Second, two error typdsgdeming-0 and
0-becoming-1, are treated evenly, while in many applicatiomains they

are discriminated.

1.1 Problem Statement

The objective of this dissertation is to investigate metiodies to facilitate cer-
tain types of Boolean data analysis tasks, which can be deagevariants of
matrix decomposition. Specifically, we will address thddaing three research

issues.

1. Boolean Matrix Decomposition.

As Boolean matrix decomposition provides solutions of gmerpretabil-

ities, it has attracted increasing attention recently. B\, as it is a rela-
tively new topic, it has not received enough attention, dests great po-
tentiality of being applied to many research domains. ThHesequence is

that the BMD model is not well studied, and its importance potential



applications are not recognized. To improve this fact, wi address the

following sub-problems:

e reviewing important research problems that can be modéiexdigh
BMD, and identify their corresponding BMD variants, someital

problems of which will be collected for further extensivady;
¢ building a unified framework to encompass all BMD variants;

e studying computational complexity of those identified tgiBMD

variants;

¢ designing effective and efficient algorithms for those imaot BMD

variants.

2. Extended Boolean Matrix Decomposition.

Although BMD has lot of potential applications, it lacks atical compo-
nent in combination, the set difference operation. It maked not suffi-
cient to model certain semantics. To address it, we propassvanotion,
extended Boolean matrix decomposition, which allows edideoved data
record to be expressed as an inclusion of a subset of conwéptan ex-
clusion of another subset of concepts. The introductioh@set difference
operation will not only correct the deficiency of BMD in moitej, but also
enable us to describe observed Boolean data with fewer ptsitea more
succinct way. For example, suppose a document-to-termsaatis given
as the matrix on the left side of Equation 1.3. With BMD, thasenumber
of topics needed to describe those five documents is 3. Howayéntro-

ducing the set difference operation, only two topics as shiowrigure 1.3



are necessary. Those five topics are consequently exprasged= 71,

D2 =T2,D3 =T1UT2, D4 = T1\T2, andD5 = T2\T1. Those re-
lationships can also be recorded in a way of Boolean matriltiptigation

as Figure 1.3, where is called the extended boolean matrix product oper-
ator, and the cell of the combination matrix{aj } is 1, if the documenb;

includes the topid;, otherwise 0.

W1l W2 w3
o1 (1 1 o) 1 o )
D2 | 1 0 1 0o 1
1 1 0 T1
D3 1 1 1 = 1 1 @[ }
1 0 1 T2
D4 0 1 0 1 -1
ps \ 0 0 1) Lt
Documents Combination Topics

Figure 1.3. lllustration of Extended Boolean Matrix Factation

EBMD also has a lot of implications in data compressing, roleing, text
mining, knowledge discovery, etc. Different circumstaso®y carry vary-
ing objectives and requirements. To perform an extensiestigation on

the EBMD model, we will address the following sub-problems:

e giving formal definition of EBMD and its operation rule;

¢ identifying applications that can benefit from EBMD and suanizing

various EBMD variants;
¢ building a unified framework to encompass all EBMD variants;

e studying computational complexity of some typical EBMDiaats;
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e designing good algorithms for those EBMD variants.

3. Weighted Rank-One Boolean Matrix Decomposition.

Example 1.1 Given a matrixA, a rank-one approximation is computed as

follows:

(1111 0)=XxY" (13)

— O =
—_— O = O
— = =
— O =
O O = O
— O =

Rank-one BMD is a special variant of BMD. It is to decomposeoalBan
matrix, where each row is an observed record, into the prtodfitwo
Boolean vectors as illustrated in Equation 1.3. The deca®agpdoolean
row vector(1,1,1,1,0) can be viewed as a dominant pattern of the ob-
served data and the Boolean column vector, 0, 1), called a presence
vector, shows which observed records belong to this domipaitern. By

its component values, the presence vector divides obsdatadecords into
two parts. By recursively applying rank-one BMD on everytpabserved
Boolean vectors can be divided into indivisible clusterentinant patterns

for those clusters constitute discrete patterns of orlglata.

However, users are not able to impose their personal prefeseon error
type distribution of discovered patterns and the numberattiepns. Look
at the same example. What if one expects to discover moreetispat-
terns to improve the accuracy of patterns in approximatimggoved data?

What if one wants to discover a set of patterns which can desobserved



data without introducing any 1-becoming-0 errors, becalusee are only a
few 1’s cells in the original data? To address these two sseepropose
weighted rank-one BMD, which is at the basis of conventid@D to in-

troduce different weights on 0-becoming-1 errors and Isheng-0 errors.
To determine wether a data record belongs to a discretapattiece pieces
of information need to be considered: (i) components of lathihe pat-
tern and the data record, (ii) components which are 1 in thteqpeand O in
the data record; and (iii) components which are 0 in the patied 1 in the
data record. By applying different weights to the threegartstead of the
same value as in conventional rank-one binary matrix appration, users
can effectively control the level of accuracy in the final apgmate matrix
and impose their preferences on the distribution of errpesy Thus We

call the problem weighted rank-one BMD.

1.2 Research Challenges

BMD is a relatively new research topic, but has received nmattdmtion recently
from many research fields because of its good adaptabilieicsemantics. How-

ever, there are three main challenges remaining.

First, there lacks a general framework covering all BMD aats. It makes
literature work not beneficial for solving other similar ptems with only minor
modifications. One of main reasons might be that people adiifferent research
fields have not seen their problems from the perspective ddBAttually, if they
do, they would realize that their problems have much comuitgnadience, the

first problem this dissertation deals with is to review ablpems, which can be

11
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modeled through BMD, and categorizes them into five main ggouro exploit
the commonality of those problems, we will formulate thenotlyh mathematical
programming. Once done that, for new problems with minor ifications from
any of formulated problems, we simply change correspondamgtraints or the

objective function.

The second challenge is that the conventional BMD model doesonsider
the set difference operation, which makes it not be able tdehthe exclusion
relationship, and limits the interpretabilities of decamjpion solution. To ad-
dress it, we propose EBMD, which allows both the set uniorratmn and the
set difference operation. Though it has broad applicatipesple may not realize
it. Thus we will discuss all possible applications of EBMDdarategorize them
into groups as well. Furthermore, to exploit the commowalftthose problems,
we formulate them through integer programming (IP), whittbves us to take
advantages of available IP software packages and alg@itAmEBMD is a new
notion, the computational complexity of its variants haganédeen studied. We
will look at them also int this dissertation. Additionallfficient heuristics will

be designed for each EBMD variant.

The third challenge is that all problems to be studied areldoatorial prob-
lems in nature, which are usually hard to solve. The mainiegjgbn domains of
our research are data mining and information security. &eblgroblems occur-
ring in those two domains usually involve large scale dataictwvrequires us to

give effective and efficient algorithms for the formulatedroinational problems.
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1.3 Contributions

There are four main contributions in this dissertationstithe BMD problem is
extensively investigated. Important BMD variants, whievé pragmatic implica-
tions in reality, and their relations are identified and sdd Second, we propose
the EBMD model, which addresses the inability of the BMD mddedescribe
the set difference relationship. The proposed EBMD mod= aks the ability
to discover some underlying data semantics along with tie m@ning process.
Third, the weighted rank-one BMD model is proposed. It allavgers to effec-
tively impose their preferences on the number of mined disgpatterns and the
error type distribution of resultant approximate data. fgufor each proposed
problem, the computational complexity result is giveneger programming for-
mulation is provided, and effective and efficient soluticsisech as approximation

algorithms and heuristics, are presented.

1.4 Outline of the Dissertation

The organization of the rest paper is as follows. Chaptenv2wes the literature
work related to Boolean matrix applications. Chapter 3 giseme background
knowledge on computational complexity, mathematical pgogning, approxi-
mation algorithms, and heuristics. Chapters 4-6 study &uoolmatrix decompo-
sition, extended Boolean matrix decomposition, and weiginank-one Boolean

matrix decomposition respectively. Chapter 7 concludesi@msertation



CHAPTER 2
RELATED WORK

2.1 Role Engineering

Role engineering arises from implementing the RBAC syst®BAC is an ac-
cess control system that users are assigned to roles instgamissions. As
the number of required roles is usually much less than thebearof permis-
sions, RBAC has the advantage of administrative efficiemey the conventional
permission-based access control. Due to its advantage; anganizations want
to transfer from their old access control systems to the RBj&tem. To re-
alize the full potential of RBAC, one must first define a conpland correct
set of roles. According to a study by NIST, this task has béentified as the
costliest component in realizing RBAC. The concept of raigireering was first
presented by Coyne [11]. It refers to the systematic world&termining roles.
Conceptually, there are two types of approaches towardserajineering. They
are top-down and bottom-up. Top-down is by analyzing bissipeocesses to de-
duce roles [1, 2,11]. However, all those approaches sha&ea@ammon weakness
that it ignores existing user-to-permission assignmentscalls for the cooper-
ation among various authorities from different discipineThe bottom-up ap-
proach generates roles purely from the existing user-toygsion assignments.

It allows the automation of role generation without knowihg semantics of busi-

14



ness. Kuhlmann, Shohat, and Schmipf [47] present a botfom@pproach using
clustering technique similar to the well known k-means@tiag. Schlegelmilch
and Steffens [58] have proposed an agglomerative clugté@sed role mining
approach, known as ORCA. More recently, Vaidya et al. [62]ppsed an ap-
proach based on subset enumeration, called RoleMiner. afifsach not only
eases the task of role engineering, but also helps in pruyithe security ad-
ministrators an insight into user-to-role assignmentsweier, it does require
an expert review of the results to choose which of the diseal/eoles are most
advantageous to implement. To find the optimal role set nvagahe interesting-
ness measures , Vaidya et al. [60] took a step forward to geite role mining
problem. Lu et al. [42] further connect the role mining pexblwith the Boolean

matrix decomposition problem.

2.2 Text Mining

Text mining, roughly equivalent to text analytic, refersigeally to the process of
deriving high-quality information from text. High-quajitnformation is typically
derived through the deriving of patterns and trends thraughns such as statis-
tical pattern learning. Text mining usually involves thegess of structuring the
input text, deriving patterns within the structured dataj &inally evaluation and
interpretation of the output. High quality in text mininguadly refers to some
combination of relevance, novelty, and interestingnegpical text mining tasks
include text categorization, text clustering, concepifgm®xtraction, production
of granular taxonomies, sentiment analysis, document sanmation, and entity

relation modeling (i.e., learning relations between nametties) [30]. For in-

15



stance, data summarization is becoming an very importaeareh topic, because
with the widespread of internet technology we are facingltfaenatically increas-
ing amount of document data. Its basic task is to categoriaege amount of
documents into some topics, where each topic could simply figbset of words
or a representative document. A good summarization sche&mnenty reduces

data storage space, but also facilitates the task of infoomeetrieval [5].

2.3 Ordinary Matrix Factorization

Ordinary matrix decomposition is a well-studied probleratthas been the focus
of significant research. Indeed, one of the earliest motimatof matrix decom-
position came from the problem of solving linear equatidhgs known that if a
matrix A can be decomposed into the product of a lower triangularimatand

a upper triangular matrik/, solving the system&(UX) = bandUX = L~'U

is much easier thald X = b [13]. In recent years, a big motivation for matrix
decomposition is for data analysis and data processing.oOest known meth-
ods is perhaps the Singular Value Decompositin= U >V, whereU andV
are orthogonal real-valued matrices containing the left @ght singular vectors
of A, and>_ is a diagonal matrix containing the singular values4of13]. One
classic application of this method is to get the optimal rarflactorization ofA
by setting all but the toj singular values irp  to 0. In this sense, matrix de-
composition can be used for compressing data. The undgrigason is that if
we find A,,,«, = Xiuxk - Crxn @ndk is much less tham andn, storingX andC'

instead ofA will save great space [29].

16
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2.4 Nonnegative Matrix Factorization

While the SVD is optimal in terms of the Frobenius norm, relyempeople have
realized that it does not have sufficient interpretabilifg. address this problem,
multiple new methods were proposed, like ProbabilisticebhatSemantic Index-
ing [27], Latent Dirichlet Allocation [9] and Nonnegative ditix Factorization
(NMF) [31]. NMF is also an old problem that has been extengistidied in [55].

In NMF, the added restriction is that all the matrices shdndahon-negative. This
can help cluster data, find centroids and even describe timpilistic relation-
ships between individual points and centroids. Ding etX8] how the equiva-
lence of NMF, spectral clustering arid-means clustering. The work of Lee and
Seung [38, 39] also helped bring much attention from macl@aming and data

mining research communities to NMF.

2.5 Boolean Matrix Factorization

Since many real applications involve Boolean data, suchoasirdent-to-term
data, web click-stream data (users vs websites), DNA micagaxpression pro-
files and protein-protein complex interaction network [@3)olean data have ob-
tained a special and important space in the domain of datysas$40]. It is
natural to represent Boolean data by Boolean matrices hnarea special case of
non-negative matrices. Many research problems involvé&bimiean data analy-
sis can be reduced to Boolean matrix factorization. Geemds §9] propose the
tiling databases problem which aims to find a set of tiles teeca 0-1 database.
Since a tile can be represented by a Boolean vector, thg tlitabases problem

is reduced to finding a factorization af = C' @ X by limiting each column of
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C to be a subset of one column df because each tile can only cover cells of
1. Miettinen et al. [52] considef’ as a discrete basis of, from which A can

be reconstructed. GiveA, how to find a good basis is their core problem. This
work is further developed by Miettinen [48] whetgis limited to be the subset of
columns ofA. This limitation gives increased interpretability sin@ck column

of C can be seen as a centroid 4ffrom the perspective of clustering. [48] also
allows the factorizatior' Q) X to cover cells containing zeros ia as long as
the amount of error is within a tolerable threshold. Haib&tal. [42] looks at
the Boolean matrix factorization problem in the contextaérbased access con-
trol (RBAC). The first and most difficult step of implementiRBAC is mining
roles given the user-permission assignment. By repreggtite user-permission
assignment, the user-role assignment and the mined roby ®olean matrices
A, C'andX, we haveA = C Q) A. Therefore, the role mining problem is to find

a Boolean matrix factorization of.

2.6 Probabilistic Matrix Factorization

Probabilistic matrix factorization is viewing the input triga from the statistic per-
spective. The most famous work might be principle compoaealysis (PCA)
[3]. It transforms a number of possibly correlated variahitgo a smaller number
of uncorrelated variables called principal componentsA R®olves the calcula-
tion of the eigenvalue decomposition of a data covariandexr@ singular value
decomposition of a data matrix. Some work were proposedeaneggrix factor-
ization to model user rating profiles for collaborative filtg) [45, 46]. Their core

idea is to find a good factorization of the input matrix to nestouct the missing
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cells in the input data. In [8, 14, 27], they use the concephafrix factorization
to find latent factors by which to index documents. It can baiad in clustering
as well. Some work even tried clustering two attributes efitiput data simul-

taneously, by factoring a matrix into the product of threeras [17, 44, 51].
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CHAPTER 3
BACKGROUND

3.1 Access Control

In computer system security, role-based access contrdh(RB an approach to
restricting system access to authorized users. Due tovengales in administra-
tive efficiency and flexibility, it has been used by the majoaf enterprisers and
is a newer alternative approach to mandatory access cdMAC) and discre-

tionary access control (DAC).

Sandu R. et al. [57] is one of the most cited papers in the fiElRBAC.
It defined RBAC), the basic modelRBAC; which introduces role hierarchies,
RBAC, which introduces constraints at the basig# AC,, andRBAC; which
includes both role hierarchies and constrains. Their ietdiescriptions are given

as follows.

Definition 3.1 (RBAC))

e U, R, PandS (users, roles, permissions and sessions, tesger

e PA C P x R, amany-to-many permian-to-role assignment relation;

e UA C U x R, amany-to-many user-to-role assignment relation;
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e user:S — U, afunction mapping each sessigrto the single user usexy)

(constant for the session’s lifetime);

e roles : S — 2F, a function mapping each sessiento a set of roes
roles(s;) C {r|(user(s;),r) € UA} (which can change with time) and

sessiors; has the permissions, € roles(s;){p|(p,r) € PA}.

The base model consists of everything except role hierasadmd constraints.

Definition 3.2 The RBAC, model has the following components:

e U R, P, S, PA, UA, and user are unchanged filBBRACy;

e RH C P x R is a partial order onR called the role hierarchy or role

dominance relation, also written as; and;

e roles: S — 2" is modified fromRBAC) to requireroles(s;) C {r|(Ir" >
r)[(usr(s;),r") € UA} (which can change with time) and sessigihas the

PErmissionsJ, c oes(s) 10| (3r” < r)[(p, ") € PA]}.

Definition 3.3 RBACs is unchanged fronk B AC,, except for requiring that there
be constraints to determine the acceptability of variousiponents oRBAC,.

Only acceptable values will be permitted.

Common access control constraints include mutually exaduwles, cardi-

nality, and prerequisite roles.

Mutually exclusive roles. The most common RBAC constraint could be mu-

tually exclusive roles. The same user can be assigned to stt one role in a
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mutually exclusive set. This supports separation of dutssch is further en-

sured by a mutual exclusion constraint on permission assgis.

Cardinality. Another user assignment constraint is a maximum number of
members in a role. Only one person can fill the role of departrakair; Simi-
larly, the number of roles an individual user can belong told@lso be limited.
These are cardinality constraints, which can be correspghyapplied to permis-
sion assignments to control the distribution of powerfulnpgsions. Minimum
cardinality constraint, on the other hand, may be diffiauitdplement. For exam-
ple, if a role requires a minimum number of members, it wowddlbsficult for the

system to know if one of the members disappeared and to rdsgupropriately.

Prerequisite roles. The concept of prerequisite roles is based on competency
and appropriateness, whereby a user can be assigned td iy if the user
already is assigned to role. For example, only users who are already assigned to
the project role can be assigned to the testing role in tlopegl. The prerequisite
(project) role is junior to the new (test) role. In practipeerequisites between

incomparable roles are less likely to occur.

Other Constraints Constraints also apply to sessions and other user and role
functions associated with a session. A user may belong tades but cannot
be active in both at the same time. Other session constiamtshe number of
sessions a user can have active at the same time. Corresglynthie number of

sessions to which a permission is assigned can be limited.

Definition 3.4 RBAC5 provides both role hierarchies and constraints as it com-

binesRBAC,; and RBAC,.
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3.2 Computational Complexity

Computational complexity measures how difficult it is tov&h problem. In
this dissertation, we are dealing with many discrete oaton problems. To
gain an insight into the difficulty of those problems, penfiang computational
complexity analysis is necessary. The book [18] providesréept guide to the

computational complexity theory.

Definition 3.5 P, also known as PTIME or DTIME, is one of the most fundamen-
tal complexity classes. It contains all decision problerhgciv can be solved by a
deterministic Turing machine using a polynomial amountarhputation time, or

polynomial time.

People commonly think that P is the class of computationalblems which are
"efficiently solvable” or "tractable”. In practice, somegimiems not known to be
in P have practical solutions, and some that are in P do nottHaiis a useful

rule of thumb.

Definition 3.6 NP is the set of decision problems where the "yes”-instarene c

be recognized in polynomial time by a non-deterministiagriggmachine.

Intuitively, NP is the set of all decision problems for whittte instances where
the answer is "yes” have efficiently verifiable proofs of thetfthat the answer is
indeed "yes”. The complexity class P is contained in NP, batddntains many
important problems, the hardest of which are called NP-detagproblems, for

which no polynomial-time algorithms are known.
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Definition 3.7 The complexity class NP-complete (abbreviated NP-C or NPC)

a class of decision problems. A problem L is NP-completéhdigttwo properties:

e It is in the set of NP (nondeterministic polynomial time) idemms: Any

given solution to L can be verified quickly (in polynomialejm

e Itis also in the set of NP-hard problems: Any NP problem cand®erted

into L by a transformation of the inputs in polynomial time.

NP-complete is a subset of NP, the set of all decision profletmose solu-
tions can be verified in polynomial time; NP may be equivdlet¢fined as the set
of decision problems that can be solved in polynomial timaowndeterministic

Turing machine.

If a problem is NP-complete, it implies that most likely thés no polynomial
algorithm. Then it is better to resort to other solutionsstsas approximation
algorithms and heuristics. Many problems have been pravée tNP-complete.
A typical routine to prove a problefi] is NP-complete consists of the following

steps:
e showing thaf ] isin NP;
e selecting a known NP-complete probldi;
e constructing a transformationfrom []  to [], and

e proving thatf is a polynomial transformation.

Definition 3.8 A problem H is NP-hard if and only if there is an NP-complete

problem L that is polynomial time Turing-reducible to H.



Informally, NP-hard means "at least as hard as the hardebigms in NP”.
NP-hard problems may be of any type: decision problemsgchgaoblems, or

optimization problems.

3.3 Approximation Algorithm

In computer science and operations research, approximalgorithms are algo-
rithms used to find approximate solutions to optimizatioslgems. Approxima-
tion algorithms are often associated with NP-hard probjesime it is unlikely
that there can ever be efficient polynomial-time exact aligors solving NP-hard
problems, one settles for polynomial time sub-optimal sohs. Unlike heuris-
tics, which usually only find reasonably good solutions osably fast, one wants
provable solution quality and provable run time boundsallgethe approxima-
tion is optimal up to a small constant factor. Approximatadgorithms are in-
creasingly being used for problems where exact polynotimad-algorithms are

known but are too expensive due to the input size.

Before giving the formal definition of approximation algbm, we define
combinatorial optimization problem. A combinatorial aptkzation problem][ |
is either a minimization problem or a maximization problend &onsists of the

following three parts:

e asetDyy of instances;

o for each instancé € Dy, a finite setS(/) of candidate solutions faf,

and

e a functionmpj that assigns to each instantec Dy and each candidate

25
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solutiono € Spy(7) a positive rational numben(1, o), called the solution

value foro.

If [] is a minimization (problem) problem, then an optimal sauatfor an
instancel/ € D,,.q is a candidate solution* < Spj(I) such that, for albe €

Sn(), mp(L,0%) <mpy(l,0) (mpy(L,0%) = mpy(1,0)).

Definition 3.9 An algorithm.A is a p-approximation algorithm of the optimiza-
tion problem] | if the valuef(z) of the approximation solutiopd(z) to any in-
stancer of [ [, is not more than a factop times the valueQ) PT', of an optimum
solution.

{OPT < f(z) < pOPT, ifp>1 (3.1)

pOPT < f(x) < OPT, ifp < 1.
Definition 3.10 A family of approximation algorithms for a problef { A.}., is
called a polynomial approximation scheme or PAS, if aldorit4, is a (1 + ¢)-
approximation algorithm and its running time is polynomrathe size of the input

for a fixede.

Definition 3.11 A family of approximation algorithms for a problef, {A.}.,
is called a fully polynomial approximation scheme or FPA%]gorithm A, is a
(1 + e)-approximation algorithm and its running time is polynohirathe size of

the input andl /e.

When a FPAS is a family of randomized algorithms, it will beled fully

polynomial randomized approximation scheme or FPRAS.



3.4 Mathematical Programming

Mathematical programming or optimization refers to chonggihe best element

from some set of available alternatives.

In the simplest case, this means solving problems in whiehseeks to mini-
mize or maximize a real function by systematically chooghegvalues of real or
integer variables from within an allowed set. This formigdaf using a scalar, real-
valued objective function, is probably the simplest exanfile generalization of
optimization theory and techniques to other formulatioosprises a large area
of applied mathematics. More generally, it means findingstla&ailable” values
of some objective function given a defined domain, includinvgriety of different

types of objective functions and different types of domains

Linear programming (LP), is a special type of convex prograng, studies
the case in which the objective function is linear and th@tebnstraints is speci-
fied using only linear equalities and inequalities. Sucht&ssmalled a polyhedron

or a polytope if it is bounded. Linear programs can be exgegsthe following

form.

mazimize(minimize) ¢’ (3.2)

subject to Ax < b (3.3)

There are several good algorithms for linear program. Thgpkex algo-
rithm [12], developed by George Dantzig in 1947, solves L&bfgms by con-

structing a feasible solution at a vertex of the polytope @reh walking along



a path on the edges of the polytope to vertices with non-dsorg values of
the objective function until an optimum is reached. In piEgtthe simplex al-
gorithm is quite efficient and can be guaranteed to find théajloptimum if
certain precautions against cycling are taken. However,stmplex algorithm
has poor worst-case behavior. Leonid Khachiyan in 197%dhiced the ellip-
soid method [12], the first worst-case polynomial-time aidpon for linear pro-
gramming. Khachiyan’s algorithm was of landmark impor&afar establishing
the polynomial-time solvability of linear programs. It alsispired new lines of
research in linear programming with the development ofriotgoint methods,
which can be implemented as a practical tool. In contrastesimplex algorithm,
which finds the optimal solution by progressing along poarighe boundary of
a polytopal set, interior point methods move through theriot of the feasible

region.

Integer programming studies linear programs in which somalo/ariables
are constrained to take on integer values. This is not cqomarekin general much
more difficult than regular linear programming. Integergraamming problems
are in many practical situations (those with bounded vé&&NP-hard. 0-1 in-
teger programming or binary integer programming (BIP) is ¢ipecial case of
integer programming where variables are required to be Q dihis problem is
also classified as NP-hard, and in fact the decision versesame of Karp’s 21
NP-complete problems. Advanced algorithms for solvingget linear programs
include: cutting-plane method, branch and bound, brandrcat) and branch and

price.

28
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3.5 Heuristics

In computer science, heuristic designates a computatioattiod that optimizes
a problem by iteratively trying to improve a candidate siolutwith regard to
a given measure of quality. Heuristics make few or no assompiabout the
problem being optimized and can search very large spacesdidate solutions.
However, heuristics do not guarantee an optimal solutiogves found. Many

heuristics implement some form of stochastic optimization

Heuristics are used for combinatorial optimization in whan optimal solu-
tion is sought over a discrete search space. Popular hesrist combinatorial
problems include simulated annealing by Kirkpatrick et[8B], genetic algo-
rithms by Holland et al. [28], ant colony optimization by Dgw,[9] and tabu

search by Glover [20].
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CHAPTER 4
BOOLEAN MATRIX DECOMPOSITION

4.1 BMD Variants with Applications
4.1.1 Basic BMD

The basic BMD problem is to decompose an input Boolean miatioxwo Boolean
matrices with the minimum size. In other words, it is to fin@ timost succinct
representation of a Boolean matrix in the form of Booleanrmatecomposition.
According to the rule of BMD, a Boolean matrix with the sizenofx n can only
be decomposed into two Boolean matrices with the sizes afk andk x n. So
to minimize the size of decomposed matrices is to mininkizevhich gives the

definition of the basic BMD problem as the following.

Problem 4.1 ( Basic BMD) Given a matrixA € {0, 1}™*", find matricesX €

{0, 1}k andC € {0, 1}¥*", such thatd = X & C andk is minimized.

The basic BMD problem has pragmatic implications in manyliappon do-
mains, including role mining, tiling databases, graph thiemd set theory. Many
problems in those application domains can be formulatedeabasic BMD prob-
lem with appropriate transformations. In the following, wél introduce some

of them.
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Role Mining. The basic BMD problem can find its important application in
role mining. As introduced in Chapter 2, the role mining peob arises from the
implementation of a role-based access control systemtdtdscover a good role
set from user-to-permission assignments existing in aarorgtion and assign
these roles to users appropriately such that each usehgetaine permissions as
original. Role-based access control is usually admirtisaly efficient compared
to the traditional permission-based access control, éspetor large-scale sys-
tems. It is due to the fact that the number of required rolesisally much less

than the number of permissions.

The basic RMP problem, the fundamental role mining variattémpts to find

a minimum set of roles, which would maximize the benefits oARBThis prob-
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Role L
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(Document, Transaction Record)  (Topic, ltemset) (Term, Product)

Figure 4.2. Tripartite Graph

lem is a basic BMD problem. Look at Figure 6.1a, an illust@agxample of user-
to-permission assignments. An edge means that its assdciaer is assigned its
associated permission. Such user-to-permission assigarman be completely
recorded by the Boolean matrix on the left to the equal sigkdnation (4.1),
where each row corresponds to a user, each column correspmadgermission,
and the value of 1 represents its corresponding user hasriessponding permis-
sion; otherwise, not. Similarly, the role mining solutiam€hown in Figure 5.5a
can be mapped to the two Boolean matrices on the right to th& e@n in Equa-
tion (4.1). The first Boolean matrix on the right to the equghgives the same
role assignments as shown in Figure 5.5a and the seconddowlatrix denotes
two roles. So the basic RMP problem is equivalent to decompgdbke Boolean
matrix A,,. representing the user-to-permission assignments intoBeaean

matricesX,,«» andC.,, while minimizingk.

Market Basket Analysis. The basic BMD problem can be applied on market

basket analysis as well. Market basket data contains theacsions on product



items, and is one of the main data types studied in the datamgiiasearch field.
Market basket data are considered containing much infoomahn customer be-
haviors and product values. The underlying patterns on etdr&sket data are

crucial to designing good commercializing strategies.

Market basket data can be represented in the form of a Boohedrix with
the cell at the position ofi;} indicating whether or not the transactibmcludes
the itemj. It can also be expressed as a bipartite graph as illustiatedyure
6.1a, where nodes on the left side are transactions, nod#searght side are

items, and an edge means the transaction includes the item.

An important market basket data analysis task is to determhmt items typ-
ically appear together, e.g., which items customers tyjpidaly together in a
database of supermarket transactions. This in turn giv@ghitinto questions
such as how to group them in store layout or product packdg®es,to market
these products more effectively, or which items to offer aledo increase the

sale of other items.

Conventional solutions for determining such itemsets seldaon the metric
of support. The support of an itemset X is the ratio of tratisas in which an
itemset appears to the total number of transactions. Givaumpaort threshold
value, any itemset with a greater support value is considerde frequent and

selected.

However, this way suffers from some limitations. For a lasgale database
a low support threshold would generate overwhelming itéssehich are not of

practical use for data owners. It is true that a high suppoeshold would reduce



selected itemsets significantly. However, such selecesdséts do not guarantee
to cover the whole database or to describe all customer m@kavin fact, in
reality some itemsets might be less frequent, but quite mapt A good itemset

group is then expected to completely cover the whole dagabas

The basic BMD can be effectively utilized to resolve the isetnoverwhelm-
ing issue. Instead of discovering frequent itemsets, weodier minimal itemsets
to cover the whole transaction database. Such a solutioralsanbe depicted
by a tripartite graph as shown in 5.5a. The nodes in the midelf®te itemsets.
Edges between itemsets and items show the components ofteaxset, while
edges between transactions and itemsets gives the destfgteach transaction
as a union of some itemsets. A tripartite graph is corresipgnit two Boolean
matrices. Hence, the task of minimizing the number of iteas$e describe a

transaction database is a basic BMD problem.
Topic Identification

With the fast development of internet and database techgresipa huge amount
of text data are generated and collected everyday, whidteseneeds for auto-
mated analysis. Given a collection of documents, a basil@nmois: what topics
are frequently discussed in the collection? Its answer @vaskist human un-
derstanding of the essence within documents and help invarghand retrieving

documents.

Given a collection of documents, a set of key words can beodesed. Each
document then can be structured as a subset of keywordd) funiber can be rep-

resented as a Boolean row vector with each dimension camelépg to a keyword
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and each component value indicating whether or not the keigancluded. As
a result, a collection of documents can be represented asla@omatrix. It can

be depicted as a bipartite graph as shown in Figure 4.5a &s wel

The topic identification problem can be performed as folloliscover mini-
mal topics, each of which is a subset of keywords, to desthi&given collection
of documents. The solution would give a limited number ofi¢gspwhich is a

complete description of the whole collection of documents.

Such a topic identification problem is a basic BMD problem.a#g look at
Figure 5.5a. The relation between documents, topics, aynasldeels is depicted as
a tripartite graph, which decomposes the Boolean matrik@fiiocument collec-

tion into two Boolean matrices.

4.1.2 CostBMD

The cost BMD problem is to find a BMD solution minimizing theneplexity
of decomposition solution, which is the number of 1's cetighe decomposed

matrices, instead of the number of roles.

Problem 4.2 (Cost BMD) Given a Boolean matriXd € m x n, find Boolean
matricesX € {mxk}andC € {kxn}, suchthatd = X @ C and|| X||;+]||C||:

iS minimized.

Cost BMD has an important application in role mining. The@®MP prob-
lem [60] is searching for the role set corresponding to th@mmim administrative

cost, which is quantified by the total number of 1's cells ia thle-to-permission
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assignment matriXC’ and the user-to-role assignment matkix as the manage-

ment information system makes assignments only based aellss

Cost BMD can also be applied in Boolean data compressioml AsX @ C,
storingA can be replaced by storing andC, if the total size ofX andC is much
smaller than the size of. To store a sparse Boolean matrix, only positions of 1's
cells need to be maintained. Therefore, the size of a Boatesrix is the number
of its 1's cells. The problem of searching for the best coregirgy strategy for

sparse matrices becomes a cost BMD problem.

4.1.3 Approximate BMD and Its Variants

The approximate BMD problem is to find a BMD solution witholétrestriction

of exactness and is described as follows.

Problem 4.3 (Approximate BMD) Given a Boolean matrid € m x n and a
threshold value, find Boolean matriceX € {m x k} andC € {k x n}, such

that||A — X @ C||; < ¢ andk is minimized.

An important motivation of approximate BMD is that in manysea a large
number of concepts are required to exactly describe thenadddoolean data,
while only a few concepts are necessary if a certain amoumexfactness is
allowed. For those cases, if the exactness issue is not fetaple tend to reduce

the number of necessary concepts by introducing a limiteoleatnof errors.

This model can be well applied to the text mining scenariofoasa large

document-word data set, restricting each document begepied exactly by an
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union of a subset of topics tends to cause the over-fittinglpm. Hence it is bet-
ter to allow some level of inexactness. It will facilitateettubsequent information
retrieval task as well since less topics make indexing wakier. Approximate
BMD can also be used to model the approximate RMP problem {@2ich is a

variant of basic RMP.

However, certain applications may have specific requirésnen the charac-
teristics of errors. It leads to two variants, 1-0 error iB8D and 0-1 error BMD,

defined as follows.

Problem 4.4 (1-0 Error Free BMD) Given a Boolean matrid € m x n and a
threshold valuej, find Boolean matriceX € {m x k} andC € {k x n}, such

that) .. [ai; — (X ® C);| is minimized andX ® C);; = 1 if a;; = 1.

Problem 4.5 (0-1 Error Free BMD) Given a Boolean matrid € m x n and a
threshold valué), find Boolean matrice€’ € {m x k} and X € {k x n}, such

that)_, |a; — (X @ C);;] is minimized and X ® C);; = 0 if a;; = 0.

For a sparse Boolean matrix with very few 1's cells, 1-0 eynwould cause
much information loss in the resultant Boolean matrix restarcted from its ap-
proximate BMD solution. Hence, it is preferred to avoid 1rtbes when decom-

posing sparse Boolean matrices, which gives rise to 1-0 #nge BMD.

In the setting of role-based access control, 0-1 errors roganassignments.
Over-assignments would cause serious security and safdtiepns because users

may misuse permissions that are not supposed to be grantbérto Under-



assignments, which are 1-0 errors, are relatively moredble. Therefore, it is

preferred to have 0-1 error free in the approximate RMPregtti

4.1.4 Partial BMD

Partial BMD is given concepts to describe observed datambic@mtions of con-

cepts, formally defined as follows.

Problem 4.6 (Partial BMD) Given matricesA € m x nandC € {k x n}, find

a Boolean matrixX' € {m x k}, such thad_, |a;; — (X @ C);;| is minimized.

Partial BMD can be viewed as a subproblem of other BMD vasiaRbr ex-
ample, to solve the basic BMD problem, one two-phase apprisagi) generate
a candidate concept set; (2) examine how well the conceptesetribes the ob-

served data. The second phase is a partial BMD problem.

Partial BMD can also rises on its own. The basis usage prof@einwhich
is given a set of Boolean basis vectors to describe an olb&welean vector, is

a partial BMD problem.

In addition to four BMD variants introduced above, therelddae many other
variants occurring in reality. For example, basic BMD mayééhe constraint
that the combination of each observed vector is limited up¢oncepts. But this

dissertation focuses on those four typical BMD variants.

4.2 Theoretical Study

This section will give computational complexity results ftasic BMD, approx-

imate BMD, and partial BMD. The decision problem of basic BNEa NP-
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complete problem, which can be proven by a reduction to thbass problem

known to be NP-compete.

Definition 4.1 (Set Basis Problem)INSTANCE: A finite set/, a family S =
{S1, ..., Sy} of subsets off and a positive integet. QUESTION: Does there

exist a set basis of size at mastor S?

Theorem 4.1 The decision problem of basic BMD is NP-complete.

Proof. The decision problem of basic BMD can be phrased as follows: |
STANCE: A Boolean matrix4 and a positive integet. QUESTION: Does there

exist a BMD solutionX,,, . andC},,, of A?

For any set basis instance, we can find a basic BMD instandehvidtrue
if and only if the set basis instance is true. For a set basiaite{l/, S, k},
we create a vector sCce with dimensions|i@f, which denotes the number of
elements inl{|, and each dimension corresponding to an elemefit/in We also
construct row vector§A,, ..., Ay}, such that4;(j) = 1if S; contains element.
So far, we have created a basic BMD instafidek}. It is not difficult to see that

the constructed instance is true if and only if the set basignce is true.]

Basic BMD essentially is a special case of approximate BMEhhe error
threshold of 0. Hence, the decision problem of approximat®Bs NP-complete

as well.

The decision problem of partial BMD is also NP-complete, etthtcan be
proven by a reduction to a known NP-complete problerRSC [49] described

as follows.
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Problem 4.7 @PSC ) INSTANCE: Two disjoint set® and N of positive and
negative elements, respectively, a collect®of subsets o’ | J N, and a pos-
itive integert. QUESTION: Does there exist a subcollectiore S, such that

|P\(UC|) + |N n (UC|) < t.

Theorem 4.2 The decision problem of partial BMD is NP-complete.

Proof. The decision problem of partial BMD can be phrased as follows-
STANCE: two Boolean matrices,, ., andC},,, and a positive number QUES-

TION: Does there exist a Boolean matriksuch thad _,; |a;; — (X @ C);; < t.

Given an instance of the decision problem of partial BMDs ot difficult to

check if it is true. So the decision problem of partial BMD dogjs to NP.

For any+PSC instancéP, N, S, t}, we can construct a decision partial BMD
instance as follows, which is true if and only if tRePSC instance is true. We
let Atoal x (|P| 4+ |N|) Boolean vector, with the fir§t?| components being
1 and the others being 0. In addition, for thex (|P| + |N|) vector sCce, we
let the first P dimensions correspond to positive elementg’inespectively and
the last/N dimensions correspond to negative elementd/imespectively. For
each element subsetin S, we create a Boolean row vectét of C such that:
if s; contains some element, the componenf'ofvhich corresponds to that Cr-
ticular element is 1; otherwise 0. The constructed decipamtial BMD instance

{Alx(|P\+|N\)a C\S\X(\PI—HNI)» t} is equivalent to thetPSC instanced.]

40
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4.3 Mathematical Programming Formulation

BMD variants share much commonality. For example, the oiffgrénce be-
tween basic BMD and cost BMD is in the objective functions.eTdifference
between approximate BMD and basic BMD is that approximateDBMows in-
exactness. A natural arising thought is that if we can builchidied framework
for all BMD variants, we then do not need to deal with each fEwbindividu-
ally. Additionally when new BMD variants appear, systemiaegrs do not need
to start from scratch and can take advantage of algorithatshtve been devel-
oped for existing BMD variants. As all BMD variants are ed&dly optimization

problems, we propose to formulate them through integeafipeogramming.

There are many benefits by connecting BMD variants with ietdéigear pro-
gramming. First, optimization has been studied for more tiegf century. There
are quite a few good exact optimization algorithms, evernirfteger linear pro-
gramming, such as branch-and-bound [37]. In addition, ess&fal optimization
software Packages are easily obtainable, such as Matlathandeos servet.
Even though those BMD variants are proven to be hard to sshaall or medium
size problems can still be solved through traditional optation techniques. In
addition to exact algorithms, approximation algorithmgra developed through
LP-based techniques, such as dual-fitting [41], randomirpedding [23], and
primal-dual schema [36]. The linear programming framewaekwill propose in
fact can not only incorporate BMD variants, but also protdenother application

domains, such as tiling database problems [19] and disbestie problems [50].

http://www-neos.mcs.anl.gov/
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For ease of explaining, in this section, we will discuss BMiiants in the role
mining context, where a BMD solutiojX, C'} of user-to-permission assignments

A gives role” and user-to-role assignments

4.3.1 Partial BMD

In the context of role mining, partial BMD is given user-termission assign-
mentsA and rolesC' to assign roles appropriately to users such that the regulta
user-to-permission assignment errdrs; |a;; — (X ® C');;| is minimized. Then

the partial BMD problem can be roughly represented as falow

minimize ||A — X ® C||;.

To formulate it as an explicit integer linear programminglgem, we first

formulateX ® C' = 0 and then relax it by tolerating errors.

To do so, we let; denote role and A; denote permissions assigned to user
1. A— X ® C' = 0 means every user’s permission set should be represented as a
union of some candidate roles. This can be phrased; as Utesz, C,, wheres;
denotes the role subset assigned to usgs; } can convert to a Boolean matrix

such thatX;; = 1 if role ¢ belongs tos;, otherwiseX;; = 0.

The constraint essentially says that if some user has aplartipermission, at
least one role having that permission has to be assignedtagbr. In turn, if that
user does not have some permission, none of the roles hdnahgdrmission can
be assigned to it. S& ® C' = A can be transformed to the following equation
set.

(4.2)

Yo XuCy > 1, if Ay =1
>ty XuCyy =0, if Aij =0
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To formulate inexactness, we introduce a non-negativé slagable{V;; } to

each constraint and have the following modified constraints

~ 4.3
ZgleitCtj—Vi':O, if Aij =0 (4.3)

{ Yo XuCy+ Vg > 1, if Ay =1
ForA;; =1,>7 , XuCyy +V;; > 1allows> ! | X;,Cy; to be 0. ForA,; = 0,
S XuCyy —Vi; = 0allows) 7 | X;,C,; to be greater than 1. In other words, if
Vi; > 0, the constraint enforcing whethdr; = 1 or A;; = 0 is not satisfied. The
objective function|A — X ® C||; is then the count of unsatisfied constraints for
A = X ® C. To formulate the objective function, we need to count theipe
variables{V;;}. To do so, we introduce another Boolean variable{$&t} and
enforce the following constraints:

{ MU; > Vi;
Uij < Vz’j

In which, the bigM is a large constant greater thanThe above two inequalities
ensure that if;; > 1, U;; = 1and ifV;; = 0, U;; = 0. Thus, the count of
positive{V;;} is Zij U;;. Therefore, the integer linear programming formulation

for partial BMD is as the following

minimize Z Uij
ij
(S0 XuRiyj+ Vi > 1,if UC,; =1
Yot XuRyy —Viy=0,if UCy; =0 (4.4)
MU;; = V;; > 0,1,
Uij < Vij, Vi, j
X, Ui; € {0,1},V;; >0




4.3.2 Basic BMD

With the integer linear program formulation for partial BMD is easy to for-
mulate other BMD variants. Consider basic BMD. In the rolenimg setting,
it means given user-to-permission assignmehts,, to find user-to-role assign-
mentsX,,, and permission-to-role assignmentg,,,. It can be succinctly put
as an optimization problem as follows:
minimaize k
s.t. Xk @ Cexn = Amxn-

For simplicity, we break up the basic BMD into two subprobenq) find a
candidate role s€tR,, Ry, ..., R, }; (ii) locate a minimum candidate role subset to

form A.

A role is nothing, but a permission subset. Givepermissions, there ai®

possible roles. But most of them can be easily eliminated.ekkample, if none

of users had both permissiohand;, any permission subset containing both per-
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missions: andj can never be a candidate role. We will explicitly discuss the

generation of candidate roles when we conduct experimstudy on BMD vari-
ants later. Here assume we have already had a candidatetrd sRs, ..., R, }.

Then consider the second subproblem, which is similar tbgd&@MD.

Every user’s permission set should be able to be represastedunion of
some candidate roles. This can be phrased as the followig= (J,., R,
wheres; denotes the candidate role subset assigned toi et A; denotes the
permission subset assigned to us€ls; } can convert to a Boolean matri such

thatX;; = 1if candidate role¢ belongs tos;, otherwiseX;; = 0. As bothX andR
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are Boolean matrices, their relation can be representellebfptiowing Boolean
matrix multiplication, X, ® Ryxm = Anxn, WhereR and A are given andX

is unknown. AsX;, indicates whetheR; is assigned to user so if vt X;, = 0,

it means thatz, is never employed. So the basic BMD is essentially to minémiz

the number of non-zero columns_.

Same as the partial BMD, the constraiitx R = A can be enforced by

{zzzl XuRyy > 1, if Ay =1

; : 4.5
i—1 XuRi; =0, if Ay =0 (4.5)

Now we need to count the number of non-zero column&’inTo do so, we
introduce a set of Boolean slack variablgs, ..., d,}, whered;, = 1 indicates
rolet is present, otherwise not. ThéRoles| = > 7_, d;. Sinced, indicates the
presence of a rolej; should only be 1 when at least one user is assignedirole
Thus,d; = 1 when at least one dfX1, ..., X, } is 1. We can formulate this by

adding in the constraintsl, > X, Vi, t}.

Finally, putting every thing together, the basic BMD is farfated as the fol-

lowing

minimaize Z dy
t
S XuRiyy > 1if Ay =1
S XuRy =0,if Ay =0 (4.6)
dy > Xij, Vi, j '

dy, Xi; € {0,1}
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4.3.3 Approximate BMD

In the role mining setting, approximate BMD problem meansniaimize the
number of required roles within a tolerable amount of errdrs Equation 4.4,
the error amount is formulated as,; U;;. In Equation 4.6, the number of roles
is formulated as _, d;. By combining these two equation systems together, we

easily obtain the formulation for the approximate BMD peanlas Equation 4.7.

minimaize E d;
t

(S XuRyj+ Viy > 1,if Ay =1
S XuRy —Vij=0,if A;j =0
MU;; —Vi; > 0,Vi,j (4.7)
Uij <Vij, Vi, j
d; > X, Vi, t
Zi Zj Uij <0
\ dj, X, Uij € {0,1},Vi; > 0

Inwhich,» " >7™" | Ui; < § ensures the total deviating cells less thiaand the

objective functiony ?_, d; is the number of mined roles.

4.3.4 CostBMD

Different from basic BMD, cost BMD is to minimize the admitrative cost. As
a RBAC system only needs to maintain explicit user-to-relggnments and ex-
plicit role-to-permission assignments, the administeatiost is hence evaluated
by positive cells in the decomposed matricésandC. By employing the same
notations in the integer linear program formulation for i@esic BMD as in Equa-

tion 4.6, the administrative cost can be formulated as theviing

IXH+11CT = 323 Xa+ 3 (Y Ruy) (4.8)



i >, Xit is the count of positive cells i and ), (d; ) _; ;) counts positive
cells in selected candidate roles, which|@||;. Thus, the integer linear program
formulation for cost BMD can be obtained by replacing thesohye function in

Equation 4.6 with the formula in Equation 4.8.

4.3.5 Discussion

From the integer linear program formulating processesfosé role mining vari-
ants, we observe that once one role mining variant is suitdlgstormulated, it
is easy to formulate other variants. This fact illustrates benefit of building a
unified integer linear program framework of the role minirrglgem. Such an
integer linear program framework is broad and flexible tmmporate new vari-
ants, which may appear in practice. For instance, a rolengiengineer may
not want to see 0-becoming-1 errors in an approximate BMDtswi, because
0-becoming-1 errors mean that a user obtains unauthorieadigsions, which
may harm the system security severely. To reflect this conicethe integer lin-
ear program formulation , we could simply replace the camstfor A;; = 0 of
7 XuRij —V;; = 01in Equation 4.7 by>"? | X;;R;; = 0. Consider another
instance that all roles are expected to be highly repelytiveed. To realize this
expectation, we could add a constraint thatf X;, > LB, where)_, X, is the
number of users granted ral@and LB is a specified frequency lower bound. So

every picked role is employed more tham times.
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4.4 Algorithm Design for BMD Variants

The integer linear program formulation for the partial BMakésmn variables
and for other BMD variants takes abauy variables, wheren is the number of
usersy is the number of permissions, and the number of candidate roles. The
state-of-art integer linear program software Packageslieahwith up to millions
variables. So for problems of sizes with and¢ greater than 1000, we have to
resort to efficient heuristics. In this section, we will poge efficient heuristics
for BMD variants. They are easy to implement and run fast.ifTéféectiveness
will be validated in the next section. Like the above intelygear program for-
mulations that require candidate roles to be given, ouribiécs need candidate
concepts generated beforehand as well. So before pregentimeuristics, we
will first discuss ways of generating candidate concepts.elase of explaining,

we will still discuss it in the role mining setting.

4.4.1 Candidate Role Set Generating

We present three ways of generating candidate roles. AHerhtwere somehow
mentioned in other peoples’ work before either in the rolaing context or in

the discrete basis context.

Intersection. We call the first methodntersection which is proposed by
Vaidya et. in [62]. This method includes every unique uspesmission set as
a candidate role. In addition the intersections of every tswer permission sets
are included as candidate roles as well. This method is basédo observa-
tions. First in order to make a permission subset be a rotaugt be employed

and assigned to some user. In other words, a candidate r@ebawa subset of
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some user’s permission set. The other observation is timaake a RBAC system
succinct and efficient, roles should be repetitively emptbySo a role is desired
to be assigned to multiple users. Hence, a candidate robepiscted to be the
intersection of two or multiple user’'s permission sets. égixn users, candidate

roles generated by tHatersectionrmethod iso(m?).

Association. This method is to exploit the correlations between the colsim
of existing user-to-permission assignmedtdy employing the association rule
mining conceptin [52]. It was presented as a part o/ABSCalgorithm proposed
for the discrete basis problem. The concrete generatiarepsas as follows. Sup-
pose user-to-permission assignments,,, are given. LetA(:, i) denote theth
column. Them candidate roles will be generated, represented by a Boohean
trix Cpx,. INWhich,C;; = 1if (A(:, 1), A(:, 7))\(A(:,9), A(:, 1)) > T; otherwise
0. The operatof., .) is the vector inner product operation, ands a predeter-

mined threshold controlling the level of correlation.

Itself. This method is to simply treat unique user’'s permission eta A
as candidate roles. It was studied in [48], but in the scerarthe discrete basis
problem. The problem is to find a discrete basis for an inpuai®mn matrix, such
that the discrete basis is a subset of columns (or rows) ohthe Boolean matrix.
In the role mining context, if employing this method to geatercandidate roles,
it is assumed that for every role there must be one user whrargey this role

and only this role.
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4.4.2 Partial BMD

As we mentioned earlier, partial BMD is equivalent to theibasage problem.
A heuristic called Loc& IterX was proposed for the basis @wspgpblem in [48].
Here we propose two more effective heuristics, one greedsoagh and one sim-

ulated annealing approach.

Without loss of generality, we assume that there is only @ee.tHenced is
al x n row vector. A role set,,, is given. partial BMD becomes to find a role

subset, such that the union of permissions contained irettadss is closest td.

Greedy. A greedy algorithm is any algorithm that makes the locallyiropl
choice at each stage with the hope of finding the global optimit has many
successful applications, such as the traveling salesnudntgon and the knapsack
problem. Our greedy approach consists of a preliminary. dteig to assign all
roles inC which aresubordinateto A to the user. A role&”; is considered to be
subordinate to a rol€; if all permissions contained b§; belong toC,. After
that, iteratively pick one remaining role which can reduereconstruction error
by the most and assign it to the user, till the reconstruatioor cannot be reduced

any more.

Simulated Annealing Simulated annealing is a generic probabilistic heuris-
tic for the global optimization problem. It locates a googrgximation to the
global optimum of a given function in a large search spacéef@int from greedy
heuristics, simulated annealing is a generalization of ekMlaChain Monte Carlo
method, which has a solid theoretical foundation. We presamulated anneal-

ing heuristic for the partial BMD problem as the followingrgt, we let(0, ..., 0)
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Algorithm 4.1 Greedy Algorithm for Partial BMD
Input: A, andC,,
Output: X .

1: Xisr < (0,...,0);

2: fori—1:rdo

3. if C; C Athen
4 X[i] =1,

5. endif

6: end for

7: loop

8: (;=the best remaining rolg=the largest improvement;
9: if j > Othen
10: X[i] =1,
11: else

12: break

13:  endif

14: end loop

be the starting state of,,. Then at each stage, randomly select its neighboring
value by randomly picking one element&fand flipping its value from 0 to 1 or
from 1 to O. If the newX better reconstructd, the next state is the new. If
not, with a certain probability less than 1, the next statdésnewX . In other
words, with certain probability, it remains its originahte. This property reduces
the chance of being stuck at a local optimum. The proceduserithed above
allows a solution state to move to another solution statelemte produces a
Markov Chain. Denote theth state ber and the randomly selected neighboring
value bey. If the next state ig/ with probability min{1, %}] or it
remainse, where\ is a constanty/(¢) is the reconstruction error with the solution
t, andN(t) is the number of neighboring valuesfSuch a Markov Chain has

a limiting probability of 1 for arriving at optimal minimizeon solutions when

A — oo [56]. But it has been found to be more useful or efficient towlthe
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Algorithm 4.2 Simulated Annealing Algorithm for Partial BMD

Input: A, andC,,
Output: X .
1: X,z (0,...,0); n « 1;
2: while n < limit & V(X) > 0do
3: y=arandom neighboring value of

4. if V(y) < V(X)then

5: X —u;

6: endif

7. x =y with probablllty
min{1, Lt

8 n+<n+l1,

9: end while

value of A to change with time. Simulated annealing is a popular vianadf
the preceding. Here, we adopt the formula proposed by Besalg[&4] and let

. - . exp{\nV(z)/N(x)}
the transition probability bewin{1, ea:f){)\n 0 /N(y y} whereA, = log(1+n). In

our case /N (z) andN(y) are equivalent and are canceled out in the formula. As
computing time is limited, we terminate the algorithm a#i@rertain number of it-
erations regardless of whether or not the global optimumashed. Our complete

simulated annealing algorithm is described as in Algorithéh

4.4.3 Basic BMD

The heuristic proposed for the basic BMD also runs in a gréaslyion. Look at
the integer linear program formulation for the basic BMD agi&tion 4.6. There
are two main types of constraints, one fot;; = 1} and the other fof 4;; = 0}.

In order to satisfy the constraint sg¥ 7 | X;;R;; = 0,if A;x = 0}, if R;y = 1,
X,;; must be equal to 0. Therefore, many variablgescan be determined directly

in this way. Then the constraint sgt_;_, X;:R;; = 0,if A;; = 0} is all satisfied.

Next considef > "7 | X;;R;; > 1,if A, = 1}. To satisfy it, if the particular



cellsR,;, Ry, j,...R, ; are 1, one of the associated ce\s, , X;;,,...X;;, hasto

be 1.

Now, consider the objective functionin )7, d;. Asd, is determined by the
constraintd; > X;,. Hence once one of the celsY;;, vt} is 1, d, is forced to
be 1. In other words, no matter how many variables{iK,;, vt} take the value
of 1, the objective function value is always increased by ar @eedy algorithm
utilizes this property. At each step, choose a candidateRpkuch that by set-

ting { X, Vt}, except those predetermined, be 1, the most remainingraamtst
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{370 XuRy; = 1,if A;; = 1} are satisfied. We call the count of such satisfied

remaining constraints the basic-key.

Definition 4.2 (Basic-Key) For each column of the variable matriX;}, the
count of the constraintg) ), X;;R;; = 1, if A;; = 1} being satisfied by letting
the cells of such a variable column be 1 except the cells peeahéned, is called

its basic-key.

If there are multiple columns with the same greatest basic-tve simply
choose the column with the least index. Once a column is chasmeans that
the associated candidate role is chosen and the assodjateset to be 1. Then
delete the satisfied constraints and perform the same proeegpetitively till all
the constraints are satisfied. The full procedure of thigdyealgorithm is given

in Algorithm 4.3.



Algorithm 4.3 Greedy Algorithm for Basic BMD

Input: Unique user-to-permission assignments, ., and candidate roles
{Ry,...,R,}.
Output: X andC
1: C = (;
2: Investigate the constrain{$ !, X;;R;; = 0} in Equation 4.6 and determine
some ofX;; to be 0;

3: Select the candidate role; with the greatest basic-key value and include it

inC.

54

4: Let undetermined values inX;;} be 1 and deleter hence satisfied constraints

in {20, XieRy > 13

5: Go back to step 3 till all constraints of>/ , X;R,; = 0} and
{31, XiRy; > 0} are satisfied.

6: Set the remaining variables i to be 0.

7. X is the subset of rows iX corresponding to selected rolesin

4.4.4 Approximate BMD

From the integer linear program formulation perspectippraximate BMD seems
much more complicated than basic BMD. However an efficieeedy heuris-
tic for the approximate BMD can be easily developed by madgythe greedy
heuristic for the basic BMD. As thé&approximate BMD tolerate§ amount of
errors, we can terminate Algorithm 4.3 early once the remginncovered 1's

cells are less thaf

445 CostBMD

Cost BMD is to minimize the administrative cdsX ||, +||C||;, while basic BMD

only aims to minimize the number of roles. So a basic BMD optisolution is
not necessarily a cost BMD solution. Cost BMD was studied6it],| where a
greedy heuristic was proposed. To distinguish it, we calldge-Key Here we

propose a new heuristic, call@do-Stage
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Cost BMD obijective consists of two parfisX||; and||C||;. Intuitively less
number of roles leads to a less valug|6f||. In this sense, an optimal solution of
basic BMD can be a not-bad solution for cost BMD. Our greedyriséc for basic
BMD is able to produce a goad. However, X produced by the greedy heuristic
is just a byproduct and not in its optimal form. We can stareeosd phase
and reduce user-role assignments by reassigning obtailesdafC' to each user.
It is essentially another basic BMD problem that assignhmg rminimum roles
from C to exactly cover all permissions for a user. So here we captaaiar
greedy heuristic again. It is a common fact that if a role aorg permissions not
originally possessed by a user, the role can never be aslsigrtee user. With
this rational, we can simplify the second-phase task byrifiiteout unlikely roles

from C in advance. The complete algorithm is as described in Allgori4.4.

Algorithm 4.4 Two-Stage Algorithm for Edge-BMD

Input: user-to-permission assignments ., and candidate rolegR;, ..., R, }.
Output: || X]], + [},
: Run Algorithm 4.3 with{ R, ..., R, } to obtainC.
. for eachA,; do
Remove roles that contain permissions not belonging;tsom C'.
Run Algorithm 4.3 with remaining roles ifi to obtain.X;.
end for

a kR wnRe

4.5 Experimental Study

In this section, we conduct extensive numerical experisient both synthetic

data sets and real data sets to evaluate the performance lodanistics.
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m # of users
# of permissions
r # of roles
2 density ofC'
P2 density of X
noise noise percentage
limit | maximum number of iterations

Figure 4.3. Notations

4.5.1 Synthetic Data

The synthetic data sets are generated as follows. Firghermte a set of unique
rolesC,,,, and user-to-permission assignments,.,. in a random fashionA is

the Boolean product of' and X. Two parameterg, and p, are employed to
control the density of 1's cells in’ and X respectively, which then determine
the density of 1's cells itd. Precisely, to create a role, generate a random number
Poissrnd(p;) from a poisson distribution with the meanmfxn. If the generated
number is greater tham, perform it again. Then randomly generate a Boolean
vector with Poissrnd(p;) 1's elements. We generate a user’s role assignment in
a similar way, except replacing with p,. To reflect real data sets, we also add
in noise by flipping the values for a portio of cellsoise is the noise percentage
parameter. For convenience of reference, we list all ranatin Figure 4.5.1.

In which, the parametdimit is used in Algorithm 4.2 to control the maximum

number of iterations.

The first experiment is to study partial BMD. We compare the RolterX
algorithm proposed in [48] with our greedy heuristic and 8é heuristic with

limat of 500. Three algorithms are compared with respect to thensgouction
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Figure 4.4. Experimental Results on Partial BMD

error ratio, which is defined dsrror Ratio = ||A—A'||, /|| Al|., whereA’ denotes

the reconstructed.

The concrete experimental design is as follows. (i) Geeaatumber of data
sets{ X, C, A} with m = 50, n = 50, p; = 0.3, po = 0.3 andnoise varying from
0 to 0.2; (ii) Run the Loc & lterX, the greedy algorithm, anat8A algorithm
with limit of 500 respectively to obtaiX andA’ givenC andA. The experiment
resultis illustrated as shown in Figure 4.4a. It shows tleedy algorithm and the
SA algorithm are significantly better than the Loc & IterX atghm. The other

observation is that the performances of the greedy heuiasti the SA heuristic

are comparable.

Different from the greedy heuristic, which returns a locptimum in most

cases, a SA heuristic can with probability one reach a glob@num with enough
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computing time; in other words unlimited number of iteraBo However, the
meaning of existence for a heuristic is that it can get a gotutisn in an accept-
able time. So we conduct another experiment to investigatedur SA heuristic
performs as opposed tomit. We generate 100 sets X, C, A} with p;=0.3,
p2=0.3, m=1, n=50, r=30, andnoise=0.2. limit varies from 50 to 2500. Run
both the greedy heuristic and the SA heuristic against thieigure 4.4b shows
that the SA heuristic has better performance than the greedystic wheriimit

is greater than 500. It also shows at the beginning smakase inimit can im-
prove the performance by a lot for the SA heuristic. Howewkenlimit reaches
certain point, the improvement becomes much less signtfittsomehow shows
that the greedy heuristic has relatively satisfactoryqgrentince. Figure 4.4c plots
computing times for both methods. The computing time forS$leheuristic in-
creases linearly witllimit. However, to achieve the same performance as the
greedy heuristic, the SA heuristic takes more time. So welode that the SA
heuristic is recommended for small-size problems whilegheedy heuristic is

suitable for large-size problems.

Next we study our greedy heuristic for basic BMD. The heiqist closely
dependent on candidate roles. Three ways of generatingdzdadoles were in-
troduced:ltself, Intersection andAssociation As Associatiorhas a parameter of
association threshold for a fair comparison, we consider two cases; 0.9 and
T = 0.7. We generatg A} with p;=0.3, p»=0.3, m=50, n=50, =10, noise=0.
Then run Algorithm 4.3 with each candidate role set respelstito find X and
C'. The results are illustrated as shown in Figure 4.5a. Ba#rsectiorandltself

are able to reconstruct completely, butAssociation With respect to the error



reducing speedissociations inferior to two other approaches. Overaltersec-
tion has the best performance, while the performancAssociations far from
satisfactory. So ignorindssociationwe then further studitself andIntersec-
tion with respect to computing time. Figure 4.5b shows tiné¢rsectiontakes
much more time thaitself. The underlying reason is thhitersectionproduces
o(m?) candidate roles as opposedsm) candidate roles produced ltgelf. We
conclude that for small size problerrgersections preferred whildtself is rec-

ommended for large size problems.

Our greedy heuristic for approximate BMD is same as that &midoBMD,
except that it terminates early. So the previous experiateesults are valid for
studying approximate BMD. Figure 4.5c plots reconstructoror ratio values
with respect to required number of roles. If a small amourdrodrs are allowed,
A can be successfully reconstructed with much less numbetes.rFor example,
Itself needs only 10 roles to cover more than 80 percent of existngissions,
while 20 extra roles are needed to cover the remaining peroms. Somehow
it can be interpreted that roles returned by approximate B more "funda-
mental”. It suggests that if a bottom-up role engineeringrapch is only used to
identify promising roles to assist a top-down engineeripgraach, approximate
BMD is more efficient. Figure 4.5d shows the relation betwdata density and
the number of required roles for full coverage. As the datasidg is indirectly
determined by, andp,. The experiment is to let; andp, have the same value
and vary them together from 0.1 to 0.6. In Figure 4.5d, bathdisuggest that
for denser data sets more roles are required. In other woumldgreedy heuristic

performs better for sparse data sets, while real accessotdata sets are usually
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very sparse. We then study the relation between data sizetargteedy heuristic
performance. We let, andn be same and vary them from 40 to 100. Figure 4.5e

illustrates that our heuristic performs good for medium amall sizes.

Next we evaluate th&@wo-Stagealgorithm proposed for edge BMD by com-
paring it with theEdge-Keyalgorithm proposed in [61]. For convenience, we
let default parameters for generatidigbe {m = 50,n = 50,p; = 0.3,p, =
0.3,noise = 0}. We then variate one parameter each time, generate a s, of
and runTwo-Stageand Edge-Keyrespectively on them. As both algorithms re-
quire input candidate roles, we consider blgielf andIntersection Hence, we
actually compare four approachg3wo-Stage, Itself Two-Stage, Intersection)
(Edge-Key, ltselfand (Edge-Key, Intersection) Experimental results are illus-
trated as shown in Figure 4.6. All four graphs suggest Thai-Stagds better

thanEdge-Key

45.2 Real Data

We run our greedy heuristics on real data sets collected leyeEal. [16]. They

areemea healthcare domino, firewall 1, andfirewall 2.

The first experiment is to study the basic BMD. We run Algarith.3 against
each data set with candidate roles generatdtskif andintersectiorrespectively.
Numbers of roles required for full coverage are recordedgpife 4.7. The num-
ber of required roles is much less than the number of peramsdior each case.
It successfully demonstrates the power of RBAC and alsoftheteveness of our
heuristic on discovering roles. Another observation is tha performance dh-

tersections not always better thaiself when working with our greedy heuristic.
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Figure 4.6. Reconstructed Error Ratio w.r.t. Percentag@emfuired Roles For
Real Data Sets

In theory, withintersectiorthe optimal solution of a basic BMD is better than that
with Itself, as the feasible solution space is expanded. However, dlt@ithm

runs in a greedy manner, it is not always true.

The second experiment is to study thapproximate BMD. We run Algorithm
4.3 and record remaining errors when a new role is identiflédure 4.8 plots
reconstruction error ratios with respect to number of regfliroles. The first
observation is that all lines drop fast at the beginningugigests that a few roles
are usually able to reduce error ratio to a very low level.é’@arly identified can
hence be interpreted as "more valuable”. Another obsematis that much more
roles are required to cover the remaining few 1’s at the eraiggests hatif arole
mining approach is used as a tool to assist a top-down rol@esgng approach,

d-approximate BMD might be sufficient. The other importansetvation is that
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Data Set | Users| Permissiong ||A||; || Itself

# of Roles Edge Value

Edge-Key  Two-Stage

emea 35 3,046 7,220 || 34 7,281 7,246
healthcare| 46 46 1,486 | 16 624 478
domino 79 231 730 20 810 727
firewall 1 | 365 | 709 31,951 71 5,475 4,937
firewall 2 | 325 | 590 36,428| 10 1,796 1,456
Data Set | Users| Permissions ||A||; || Intersection

# of Roles  Edge Value

Edge-Key  Two-Stage

emea 35 3,046 7,220 || 43 9,078 9,014
healthcare| 46 46 1,486 || 14 553 412
domino 79 231 730 21 814 827
firewall 1 | 365 | 709 31,951|| 65 4,508 4,034
firewall 2 | 325 | 590 36,428| 10 1,796 1,456

Figure 4.7. Number of Roles and Edge Value for Full Coverag&tal Data Sets

Intersectiondose not always perform better thiself in our greedy heuristic. In

fact, if only considering early mined roles, their performas are comparable.

The third experiment is to study the edge BMD. We (Uwo-Stage, ltself)
(Two-Stage, Intersection)Edge-Key, Itselfand(Edge-Key, Intersectionespec-
tively against each data set. Their edge values are recandégure 4.7. Our
Two-Stagealgorithm performs better than thedge-Keyalgorithm for nearly all
cases except for thdomino data set witHntersection The experimental results
demonstrate the advantage of RBAC over the traditionalssccentrol system

once again, as the edge-value (administration cost) is rrasshthan||A||; for

any case.
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CHAPTER 5
EXTENDED BOOLEAN MATRIX DECOMPOSITION

Boolean matrix decomposition is to decompose a Booleanxmato the product
of two Boolean matrices, where the first matrix representstaoE meaningful
concepts, and the second describes how the observed dake expressed as
combinations of those concepts. The combination is onlgrims of the set union.
In other words, a successful Boolean matrix decompositivesg set of concepts
and shows how every column of the input data can be expressedraon of some

subset of those concepts.

However, this way of modeling only incompletely represertd data seman-
tics. Essentially, it ignores a critical component — theditférence operation: a
column can be expressed as the combination of union of nestaicepts as well
as the exclusion of other concepts. This has two significanefits. First, the
total number of concepts required to describe the data reelf iie reduced. Sec-
ond, a more succinct summarization may be found for everynanl In this paper,
we propose the extended Boolean matrix decomposition (Eppi@blem, which
aims to factor boolean matrices using both the set union endifference opera-
tions. We study several variants of the problem, show theyt #re NP-hard, and
propose efficient heuristics to solve them. Extensive eaxpantal results demon-

strate the power of EBMD.
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To better explain EBMD, we will study it in the context of ral@ning in the

following.

5.1 Motivation of EBMD

Role-based access control (RBAC) has proven to be a vergssitd model for

access control. Its flexibility and cost-efficiency haveutes] in it being widely

adopted by current commercial systems. Indeed, it has lbeemdodel of choice
for migration in the case of enterprises still employingliti@nal access control
schemes. However, for such enterprises, the first and intleadost crucial step
is to design a good set of roles and assign them appropri@tesch user. This
process of designing roles is called role engineering [Vhile top-down tech-
niques have been proposed for role engineering, for lacgke€nterprises with
more than thousands of users and permissions, bottom-e@xtidaction, called
role mining which mines roles purely from existing user-permissicigramnents

without considering their semantic meanings, has becorite gapular.

Semantics likeexceptionsaandseparation of duty constrair{f§oD) are indis-
pensable parts of RBAC,critical to model real-world cas®hile SoD constraints
are restrictions on users and roles to capture policy seosarmlowing the se-
mantics related to exceptions are needed for a more sud¢ansiation of access
control policies to the actual specification. However, gxgs solutions for role
mining such as BMD are not able to capture or reflect semarsesifically the
exceptions and separation of duty constraints. We will ieitpyl explain both

below.

Exceptions: Exceptions are inherent to any real world access contratythat



uses some notion of abstraction in the authorization. Simeéocus of this paper
is on role mining, we consider the role based access conbtimyp Suppose the
RBAC policy states that any user with role “manager” is akoWwo access the
file “project A’. However assume there exists an exceptiothis policy stating
that all users except John (who can play the role of the mah&geot allowed
to access “project A’ due to certain conflict of interest rieginents. Such excep-
tions are quite common to real world policies. Under a tylgRBAC policy this
is supported through a negative authorization as it doesnaie sense to create
a new role specifically to John alone. It is important to malihat supporting
negative authorizations sometimes may result in conflyctimthorizations (in this
case due to permission inheritance through role hierarciiflese can be han-
dled by implementing conflict resolution policies (in thisaenple, negatives take
precedence). Assume other users assigned to “manager’liaeg Bob, Cathy,
Dave and Eve, and the permission to access “project A&, ihe corresponding
user-to-permission assignments of this example would lsdasn in figure 5.1.
Traditional role mining approaches attempt to mine roles tave the same per-
mission sets. In this case, two roles will be mined, first cosipg of Alice, Bob,
Cathy, Dave and Eve, and the second with John alone. Our pedpole min-
ing approach in this paper attempts to capture the undegrly@mantics of such
exceptions and eliminates mining of such incorrect rols.s&tote that similar
exceptions can be found with other abstractions of autaboas. An example of
such a policy would be “John is allowed to access all projepbrts except the
report of project A’. Our approach can elegantly handle p&oes of these kinds

as well.

67



68

user
Alice
Bob
Cathy
Dave
Eve
John | -1

R R R R P

Figure 5.1. User-to-permission assignments of the exaaipige

Separation of Duty Constraints: SoD constraints are an integral part of RBAC,
as stated in the definition dBAC, [57]. These help to limit exploitation of priv-
ileges and limit fraud. Consider the following toy examplessume the follow-
ing four permissions of a company: “Purchasing”, “AuditingMarketing” and
“Sales”. A person can assume multiple permissions. Suptihaséehe same per-
son is in charge of purchasing and sales. Hence these twagseons are grouped
together as a role, which can be represented by a Booleaoraetl, 0,0, 1}7.

To prevent fraud, the company has a policy stating that eoperannot assume
both “Purchasing” and “Auditing” permissions. Simply repenting a role as a
Boolean vector cannot reflect this constraint. Even thobghauditing” permis-
sion is notincluded i{1, 0,0, 1}*, a person who has been assigned this role, can
obtain the “Auditing” permission by acquiring other rolegjich is perfectly valid

in the BMD model. We however, would like to recognize suchstoaints as part

of the mining process itself.

To address this ineffectiveness of the BMD model in capgis@emantics, we
propose introducingegative permissiora negative user-role assignmenthich

can cleverly resolve both of the above issues.

As distinct from regular permissions, negative permissiorean that once



a permission is assigned to a user negatively, this user eaer xercise that
permission. Thus, negative permissions have higher prithran positive permis-
sions. Indeed, if the user is already assigned the permiggsitively through
another role or even through the hierarchy, this assignnseatitomatically re-
voked. If the user is assigned the permission positivelyéftiture, it still does
not become effective. Thus, negative permissions yieldeatgoower and can

effectively model both SoD constraints and exceptions.

SoD constraints can be modeled through introducing neggtarmissions
in roles. Consider again the “Purchasing” and “Auditingample. To enforce
the SoD constraint on them, for any role containing one ofmthee add the
negative permission of the other. Hence, the rolg of0,0,1}7 is changed to
{1,-1,0,1}T, where the cell of -1 denotes the negative “Auditing” pesius.
As a result any employee assuming that role can never havAddging” per-
mission, unless the role assignment is revoked. We denatersles, allowing

negative permissions, aemantic roles

Exceptions can be modeled through introducing negative-nade assign-
ments. Negative user-role assignments mean that if a ra@ssigned to a user,
the user cannot have access to any permission of that roeenddmative user-role
assignment is superior to the positive (or regular) uskerassignment. Revisiting
the “Manager” example of John. To forbid him from accessipmject A’, we
only need to assign the “manager” role negatively to him. \Alesuch user-role
assignments, which include both positive and negativeyassents, asemantic

user-role assignments

Indeed, negative authorizations are integral part of maegss control sys-
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tems. From the work of Bertino et al. [6, 7], introducing negaauthorizations
have many advantages. They enable a temporary suspensi@eohission from
a user without having to revoke it (revoking a permission stimes may have a
cascading effect), allow exceptions to be specified, andeptea user from being

able to exercise a privilege.

We observe that in addition to increasing administratioxilbiéty, negative
authorizations can help discover semantics underlyingtiegj user-permission
assignments during the role mining process. Consider taepbe of existing
user-permission assignmemtsas shown in Figure 5.2, wherau, us, us, uy}

denote users anfhs, p2, ps, p4} denote permissions.

P1 | P2 | P3| Pa
u | 10| 1]1
us | 1| 1]0]|1
u | 01101

Figure 5.2. Existing User-Permission Assignments

One optimal solution of the conventional role mining prabjeminimizing
required roles, is as shown in Figure 5.3, wherg 5, 3} denote roles. The first
Boolean matrix gives user-role assignmentsand the second Boolean matrix
represents permission-role assignmentsn fact, X andC' are a Boolean matrix

decomposition (BMD) solution oft and represented by = X ® C [42].

If we allow negative permissions in roles, a rejevould consist of two parts,
positive permission®;" and negative permissiors . Hence, a role can be rep-
resented as a vector in-1,0,1}. For example, a vectqr—1,0,1)7 denotes a

role with the negative authorization for the first permigssand the positive au-
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ESRERRE: P1| P2 | P3| P4
w | 1] 0] 1 170 6”’ 1
™
up, | 1] 0] 1 ST 1Tol1
Tro
us | 11110 1 0l0|1]0
u, | 0] 1]0 3 Y
(a) X (b)

Figure 5.3. Conventional Role Mining

thorization for the third permission. Assignimgto a user means that the user
can never have any permissionf@f unlessr; is revoked and the user can have a

permission ofP;" if he is not assigned any role consisting of its negation.

Now let us do the same thing as the conventional role mininglpm, mini-
mizing the number of required roles. The only differencénet hegative permis-
sions are allowed this time. As we expect it to discover ulydey data semantics,
we call it thesemantic role mining problenfror the same user-permission assign-

ments as above, the resultant optimal solution is as showigure 5.4.

T | T2
up | 1]0 P1| P2 | P3| Pa
upy | 11 0 ri] 10| 1]1
Us 1 1 T2 0 1 -1 1
ug | 0] 1 (b)C

(a) X

Figure 5.4. Semantic Role Mining with Negative Permission

The first impression on the result is that with negative atitation for per-
missions we need only two roles to reconstruct the samemxigser-permission
assignments. Further by taking a close look, you can find nrdogmation.

First, 7, : {0,1,—1,1} shows that ifr, is assigned to a user, he can never has
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the privilege ofps. It implies thatps might be exclusive fronp, andp,. Sec-
ond,r; : {1,0,1, 1} shows thap, andp, can be existent in one role. It leaves
one plausible explanation that there is a separation of domgtraint orp, and
p3. So the real semantic might be there are indeed only two ioléise sys-

tem,r; : {1,0,1,1} andr, : {0,1,0,1}. The reason that; does not gep; even

thought he is assigned, is the separation of duty constraint pnandps. How-
ever, the conventional role mining approach is not ablegoalier such semantics.

Compared to the result in Figure 5.3, the result in FiguresBetns more plausible.

This toy example demonstrates the ability of negative aighton on dis-
covering underlying semantics. To perform semantic roleimgj, we propose in-
troducing a new approach, extended Boolean matrix decatigpoé&EBMD). As
its name tells, EBMD extends from BMD. It allows -1 in one oéttlecomposed
matrices. Thus, EBMD is to decompose one Boolean matrix oni® Boolean

matrix and one matrix if—1,0, 1}.

From the technical perspective, semantic role mining ie fikding a good
EBMD solution of the Boolean matrix corresponding to givesemlpermission
assignments. However, it is more complicated than that.pHEngcular role min-

ing context has to be incorporated in the matrix decompmsjirocess.

5.2 Extended Boolean Matrix Decomposition

In this section, we will introduce a novel matrix decompiasitmethod EBMD,
which addresses the ineffectiveness of BMD in its abilitycapturing real data
semantics. To help better understand the function of EBMDu$ recall BMD

first.



BMD is essentially to discover a set of discrete conceptsumadthem to de-
scribe each observed Boolean record as a union of some tédismecepts. The
key advantage of BMD is to provide much interpretability scdmposition solu-

tions. To illustrate it, look at the example of Equation 5.2.

al a2 a3 a4

1 00 al a2 a3 a4
dl: 1 1 0 1

010 cl: 1 1 0 1
da2: 0 1 1 0 = X

0 0 1 c2: 0 1 1 0
d3: 10 0 1 110 3: 1 0 0 1
dd: 1 1 1 1

(5.1)

The matrix on the left is the observed records. In which, 1madaat the
record consists of the attribute. For examplé, = {al,a2,a4}. The matrix
on the right is the discovered concepts, each of which is aetulif attributes.
For examplecl = {al,a2,a4}. The combination matrix tells how observed
records can be described as a union of some discovered ¢enéep example,

dd =clUc2.

BMD does provide much interpretability to matrix decompiosi solutions.
However, it is only able to represent the set union operationeality, some data
semantics requires the representation of the set differeperation as well. For
example, in the access control setting, a role could be ivefjatissigned to a
user, such that any permissions belonging to the role caerevassigned to the

user.

To enable BMD to capture the set difference operation, wedhice a new
concept EBMD, which allows -1 in the combination matrix aseéslit to represent

the set difference operation.
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Consider the same above example. By introducing -1 in thebawation
matrix, we obtain a new decomposition solution as below,retredenotes the

EBMD multiplication operator.

al a2 a3 a4 1 0
dl: 1 1 0 1 0 1 al a2 a3 a4
d2: 0 1 1 0 =11 ®l el: 1 1 0 1
dd: 1 0 0 1 11 c2: 0 1 1 0
d: 1 1 1 1

(5.2)

Notice that with the introduction of the set difference @iEm only two con-
cepts are needed to represent the same observed data. Thmaom matrix

shows thatd1 = ¢y, dy = o, d3 =C \ Co, andd4 = Uco.

As illustrated, EBMD is to describe a set of observed recwiitts a small set
of concepts, such that each record can be represented asiamcbf one subset
of concepts with exclusion of another subset of conceptsa récord includes
one concept, that record should contain all elements ofahatept; if a record
excludes one concept, that record should not contain amyegieof that record.
As is natural in set operations, exclusion overrides inolusin other words, if
a record excludes one concept, any element in that concapt iacluded in the
reconstructed record, even if it is present in any other eptithat is included in

that record.

The essential task of EBMD is to find a set of concepts and theofae-
constructing the input Boolean matrix with those concej@snilar to BMD, a
concept is represented by a Boolean vector. In BMD, the coatigins are repre-

sented by a Boolean matrix, where an element of 1 for a recendtds that the
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corresponding concept is included, otherwise not. To reflecset difference op-
eration, we introduce elements of -1. So an EBMD solution Bbalean matrix
Apxn isin a form of { X, «x, Ck«xn}, Where the concept matrix is a Boolean
matrix and the combination matriX is in {—1,0,1} wherez,;; = 1 denotes the
jth record includes théh concept and:;; = —1 denotes thgth record excludes
the ith concept. In contrast to BMD, we denote EBMD 4s= X ® C. The

following is the formal set-theoretic EMBD definition:

Definition 5.1 (EBMD) {X € {-1,0,1},C € {0,1}} is called an EBMD solu-
tionof A € {0,1}, denoted byl = X © C, if A; = U,,,—1C; \ U,,,——1C;, where
A; denotes the item subset corresponding to elements of 1 jithtmew of A and

C; denotes similarly.

Although the definition of EBMD is intuitive, the operator cannot be di-
rectly executed as the operator of BMD. So we give the following definition of

the ® operator based on logic arithmetic.

Definition 5.2 (® operator) The ©® operator operates over a matriX,,,«, €
{—1,0,1}™* and a matrixCy, € {0, 1} . If Asp = Xpsk © Chsn, WE

have )
QAjj=1 if (E'tl) («Ti,tl =1 AND Cty,j = 1)

AND (_El tg) (xi7t2 =1 AND Ctg,j = —1)
aij:() |f (_El tl) (xi7t1 =1 AND Ct1,j = ].)
OR (El tg) («Ti,tg =1AND Ctyj = —1>

wherei € [1,m] andj € [1,n]

Note that the® and ® operators are equivalent when all entriesXnare

binary.



The EBMD operator is commutative as described as follows.

Property 5.1 (Commutativity) (X,,xr ® Cixn)? =CL,, ©CL ..

The commutativity implies that it = C' ® X whereC € {-1,0,1} and
X € 10,1}, we haved” = XT © CT as well. So EBMD essentially decomposes
one Boolean matrix into one Boolean matrix and one matrig-i, 0,1}, while

the order of them does not matter.

Look at Figure 5.4, in which the negative element appearkersecond de-
composed matrix. To interpret such an EBMD solution, we aamsitler its in-
verse as the follows. It gives us another perspective to &olegative permission
authorizations in a role. Each "role’; can be viewed a set of users. Each per-
missionp; corresponds to a set of users who are assigned the permiseien
EBMD result as shown in Figure 5.3 gives that= ry, ps = r9, p3 = 11 \ 72, @and

pge =11 UTs.

ul u2 u3d u4d Ty Ta
pl: 1 1 0 1 pp 1 0 ul u2 u3d ud
p2: 0 1 1 0 =1 p 0 1 ol r1: 1 1 0 1
p3: 1 0 0 1 ps 1 —1 r2: 0 1 1 0
pd: 1 1 1 1 ps 1 1

(5.3)

5.3 Semantic Role Mining Problem

We have illustrated how negative authorizations can hedptifly underlying data
semantics and discover a succinct role-based access lceystem. Negative
authorizations can be negative permissions in a role ortivegale assignments.

However, it does not make sense to have both in a system asilitl\we difficult
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to interpret a negative assignment of a role, which includesgative permission.
So in the access control setting, we limit negative autlation to be only one

kind, either negative role assignments or negative peromss

Roles and role assignments with negative authorizatiomsalted semantic
roles and semantic user-role assignments respectivelgy ate defined as fol-

lows.

Definition 5.3 (Semantic Role) A semantic role;; is a role consisting of positive

. " . P
permissions’;” and negative permissions .

Definition 5.4 (Semantic Role Assignment)A semantic role assignmestcon-

sists of positive role assignmerits and negative role assignmengs .

A permission can be assigned to a user both positively andtrnety. To
resolve such a conflict, we require that a negative permmsassignment always
overrides a positive permission assignment. In other waf@dspermissiory; is
negatively assigned to a user, the user can never have timaisg@®n, unless the

negative assignment of the permissjgins revoked.

The goal of role mining is to discover a good set of roles. Tbhedmess of a
set of roles is usually evaluated by the number of roles. lastilated before, with
negative authorizations, less roles would be needed and saderlying data se-
mantics such as SoD and exception constraints could alsevbaled. Therefore,

we introduce the semantic role mining problem as follows.

Problem 5.1 (Semantic Role Mining (SRM)) Given existing user-permission as-

signmentsA, discover a RBAC system with the minimum number of 1Glésr
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semantic roles) and identify the corresponding user-r@signmentsX (or se-

mantic role assignments).

SRM is essentially to find an EBMD solutio¥i andC' of the Boolean matrix
of A. One ofX andC' is a Boolean matrix and the other is a matri{inl,0, 1}.

Mathematically, SRM can be formulated as an optimizatiabf@m as follows.

minimaize k
5t Apxn = Xonxk © Crxn.

It is not easy to find such an optimal EBMD solution. We obsehad the
SRM problem can be broke down into two subproblems: iderdifg decom-
posed matrix and then determine the other decomposed ma&eged on this
observation, we propose an alternating approach to so&v/&®M problem. For
ease of explanation, we describe it in the language of EMBi2 Jketch of this

alternating approach is depicted as in Algorithm 5.3

Algorithm 5.5 Sketch of An Alternating Approach for EBMD
1: Input: A € {0, 1}m™*"

Output:C € {—1,0,1}™* andX € {0, 1}F*"

Define an initial value ofX and(C;

while The current EBMD solution can be improvedd
Given X, improveC;,
GivenC, improveX;

end while

N2aR b

Two subproblems arise from this alternating approach. Welwam partial

SRM | and partial SRM II.

Problem 5.2 (Partial SRM 1) Given original user-permission assignmentand
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regular rolesC' (or regular user-role assignmensfs), find semantic user-role as-

signmentsX (or semantic roleg”), such that|A — X ® C||; is minimized.

The partial SRM Il can also arise on its own. One possibleagers that reg-
ular roles are given, the system administrator wants tgadgsiwver roles to each

user by employing both positive role assignments and negedle assignments.

Problem 5.3 (Partial SRM Il) Given original user-permission assignmenand
semantic roleg” (or semantic user-role assignmemts, find regular user-role

assignmenk (or regular C) , such thaf|A — X ® C||; is minimized.

The partial SRM | problem can arise on its own in a scenaridhaddllow-
ing. Recall that semantic roles can be deployed to enfonges®oD polices by
introducing negative permissions in roles. Suppose thit Baices have been
enforced and the reflective semantic roles are given. Noweee to assign those
roles appropriately to users to match their existing ugemgssion assignments.

This is a partial SRM | problem.

In the language of EBMD, partial SRM problems are essewtigien a Boolean

matrix and a part of its EBMD solution to find the other part.

Notice that for partial SRM problems, we allow errors inst&d requiring
exact matching. The rationale is that the role mining phasemially aims to
identifying roles, not finalizing roles. By allowing recdnsction errors, we can
obtain a broad picture of role sets. The other importantareas that the in-
put user-permission assignments themselves may contairs eExact matching

would cause results to be over-fitting.
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There are two types of errors, 1 becoming 0 and 0 becoming Wekier, not
both are favored in the role mining context. When facing lob&iag O errors, a
user can always call help desk to request missing permssihile, 0 becoming
1 errors can directly harm system safety. Hence the consezwaay is to avoid

0 becoming 1 errors in the first place. Therefore, we intredwo variants.

Problem 5.4 (Conservative Partial SRM 1) Given original user-permission as-
signmentA and regular rolesC' (or regular user-role assignmenty¥), find se-
mantic user-role assignment (or semantic roleg”), such that|A — X © C||;

is minimized andX © C);; = 0if A4;; = 0.

Problem 5.5 (Conservative Partial SRM Il) Given original user-permission as-
signmentA and semantic role§’ (or semantic user-role assignmetX3, find reg-
ular user-role assignmeunt (or regularC’) , such that| A— X ©C||; is minimized

and (X © C)ij — O |f Aij - 0

5.4 Theoretical Study

This section studies complexity of presented SRM (EBMD)args. We start
by looking at the partial SRM | problem. Its decision versnoblem is NP-
complete, which can be proven by a reduction to a known NPpbet@ problem,

the decision BU problem [48].

Problem 5.6 (Decision BU) Given binary matricesi,,.,, and Cy,, and a non-

negative integet, is there a binary matrixX,,., such that|A — X ® C||; < t?



Theorem 5.1 The decision partial SRM | problem is NP-complete.

Proof. The decision partial SRM | problem obviously belongs to N @ecision
partial SRM | problem can be polynomially reduced to the sieci BU problem.
A decision BU instance is a triplgt4! ... C;......t'}, wheret' is a positive integer.
We construct a decision partial SRM Il problem instafiee C, ¢}, whereA is a
m X (n + 2t) binary matrix where the firstt columns containing all 1's and the
remainingm columns ared’, andC'is ak x (n + 2t) binary matrix where the first
2t columns contain all 1's and the remainingcolumns areC’. If the solution
X for that decision EBU instance consists of cells of|{{}, — X ® C||; must be
greater thart. ThereforeX can only be in{0,1}. WhenX is limited to be in

{0,1}, the® operator is equivalent to the operator. Therefore, the decision BU

instance is true if and only if the constructed decision EB&tance is truél

Let us now look at the conservative partial SRM | problem.slaiNP-hard
problem as well. For ease of understanding, we would to bkstady it in the

setting of the red-blue set cover problem (RBSC) [10].

Problem 5.7 (RBSC ) Given a finite set of red elemenfsand a finite set of blue
elements and a familyS = {5, ..., S,,} € 27°B, find a subfamily’ € S which
covers all blue elements, but which covers the minimum plessumber of red

elements.

The conservative partial SRM | problem can be viewed as aaperiant of

the RBSC problem as follows.
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Problem 5.8 (Decision Extended RBSC I)Given disjoint sets? and B of red
and blue elements, a collectiah = {S,...,S,} € 289, and a nonnegative
numbert, are there two subcollectior@', C? C S such that JC'\ |JC? covers

more thart blue elements, while no red elements are covered?

Theorem 5.2 The decision extended RBSC | problem is NP-complete.

Proof. Given a solution of the decision extended RBSC | problens #asy to
determine wether it is true or not. Hence the decision ex@driRBSC problem
belongs to NP. Then we will prove that it can be reduced to akngP-complete
problem, the decision RBSC problem. For any instance of #wstbn RBSC
problem{R, B,S,t}, we create a corresponding decision extended RBSC | in-

stance{ R, B’,S’,t'}, such that:

o for each blue elemerit; in B, create a corresponding red elemehand

include itinR'. Hence|B| = |R/|;

e For each red element in R, create a corresponding blue elemé&nand

include itinB’.

e In addition, we creaté more blue elements,

{Oky11s - Ugips ) Wherek > |R| + | B|.

e For eachs; € S, creates,, such that for each; in s;, include the corre-
spondingr; in s; and for eachr; in s;, include the corresponding in ;.

Includes) in &’
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e Create a subset 6f ,,, such that it contains all blue and red elements. In
other words,

o LetS' = {4, ..., STS|} U S|s|+1-

o Lett'=t.

lllustration to the instance construction. Suppose thésaetRBSC instance
is {{b1,b2, 71}, {b1,71,72},{b2,b3,2}} @andt = 1. The constructed extended
RBSC Il instance ig{r|, 75,0}, {r], b}, b5},

JANNVIRE N LN GOV 2NNV A WA WA NN NN NN VAN N AN N
{71277"37[72}7{T17T27blub27b3>b47b57b6>b77b8}}'

Becauses|s,, containsk new blue elements, which do not belong to any
subset, and > || + B/, the optimal solution should be theft;, , excluding
a subcollection of s}, ..., 5|5/}, such that the subcollection covers the minimum
blue elements while covers all red elements. As the blueeshdlements i’ are
corresponding to the red and blue element§ irespectively, the decision RBSC
instance is true, if and only if the constructed decisioreded RBSC Il instance

is true. As decision extended RBSC Il belongs to NP, it is ldRyalete.[]

The above proof naturally leads to the following conclusion
Theorem 5.3 The decision conservative partial SRM | is NP-complete.

We now look at the partial SRM Il problem. Its decision problean be

proven by a reduction the decision BU problem as well.

Theorem 5.4 The problem of decision partial SRM Il is NP-complete.
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Proof. Given user-role assignmerits4, it is easy to determine whethgt/ P A —
UA®PA||, < tissatisfied or not. The determination can be done in a polyalom
time. So the problem of decision partial SRM Il belongs to N&xt we will build

a mapping from the decision BU problem to the decision psfitiM 1l problem.
For every instance of the decision BU problef, X, ¢}, we can create a cor-
responding instance of the problem of decision partial SRMU PA, PA,t},
such that/ PA = AandPA = X. Because there is no cell with the value of -1
in PA and the partial SRM Il problem requirésA to be all positive assignments,
we havel A © PA = UA ® PA. So the instance ¢fA, X, t} is true if and only

if the instance ofUPA, PA,t} is true. Hence, the problem of decision partial

SRM Il is NP-completé.]

Then we study the conservative partial SRM Il problem. Befee give the
NP-complete proof, we introduce one known NP-complete lprab, Positive-

Negative Partial Set Covet-PSC) [48].

Problem 5.9 &PSC ) Given disjoint sets®> and N of positive and negative ele-
ments, respectively and a collectiéhof subsets of? | J V, find a subcollection

C € S minimizing| P\ (UC|) + |N N (UC|).

The +PSC problem is extended from the RBSC problem. If we replase p
itive and negative elements with blue and red elements ctisply, the +PSC
problem becomes to find a subfamilye S which minimizes the sum of uncov-

ered blue elements and covered red elements. Hence, thditfiahgnce between
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RBSC andtPSC is that the RBSC problem requires all blue elements tobe c

ered.

To prove the decision version of conservative partial SRMsldomplete, we
will relate it to a special case afPSC, where the number of positive elements is

same as the number of negative elements. We simply call &@legfaSC.

Problem 5.10 (EqualPSC ) Given disjoint sets” and NV of positive and neg-

ative elements respectively, where| = |N|, and a collectionS of subsets of

PJN, find a subcollectio®@ € S minimizing| P\ (UC)| + | N N (UC)|.

Theorem 5.5 The decision equatPSC problem is NP-complete.

Proof. Equal £PSC is a special case afPSC. Obviously, it belongs to NP.
Next, we will show that for every instance of decisie®SC, we can find a cor-
responding decision equalPSC instance. Given a decisigiPSC instance as
{P, N, S,t}, we create a corresponding equ#SC instancéP’, N’, S’ t'} such

that:

e if |P| <|N]|
> Introduce|N| — | P| new positive elements,
Piprgr o P LOULP = PUAplpy 1, P}
> Let N' = N.

> For every subset; € S, create a subsef, such thats; = s; U

{p|p11: - Py} @Ndinclude itinS’. SoS" = {s}, ..., sig/}-
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>t =t
e elseif|P| > |N|

> Introduce|P| — | N| new negative elements,
{n{yp1 - npt LN = N U{njy ;o np}
> Let P/ = P.

> For every subset; € S, create a subsef such thats, = s; U

{n|ns1, - nyp } @ndinclude it inS’. SoS’ = {s}, ..., s|g }-

>t =t+ (|N|—|P]).
e eclse

> P=P,N=N;:8=8;t =t

Consider the case oP| < |N|. If the £PSC instance{P, N, S,t}, is true,
there exists a subcollectigh € S such thatf P\(UC)| + |N N (UC)| < t. We
can find a subcollectiod’” € S’ corresponding t@ € S. As {pTPH‘l’ ...,piN‘}
belong to any subset iff, we have| P"\ (UC’)|=|P\(UC)|. It is obvious true that
IN"N(UC")] = |N N (UC)|. Sowe haveP'\(UC')| + |N' N (UC")| < t. In the
other way,if the decision equalPSC instance is true, thePSC instance must be

true.

For [P| > |NJ, as new negative elemen{sy, ., ...,n{p} are added for
each subset, we hay&’ N (UC')| = [N N (UC) + (|N| — |P])|. Itis true that
{Pppsrs P} = {Pipis1, - P} Hence, we haveP\(UC)| + [N N (UC)| =
|P\(UC)| 4+ |N N (UC)| + (|N| — | P]). Therefore, the decisioftPSC instance is

true if and only if the equakPSC instance is true.
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For the case ofP| = | N

, both instances are equivalent.

Next we will prove the decision version of conservative BhERM | is NP-

complete by relating it to the decision equaPSC problem.

Theorem 5.6 The problem of decision conservative partial SRM Il is Nifptete.

Proof. A decision conservative partial SRM Il instance is a trigletP A, PA, t}.
Given a solution/ A, it is easy to check whethéiU PA — UA © PA||; < tis
true or not. So the decision conservative partial SRM Il pgobbelongs to NP.
Next, we will reduce it to the known NP-complete problem,iden equab-PSC.
For any decisior-PSC instancé P, N, S, t}, we create a corresponding decision

conservative partial SRM Il instangé&/ PA, PA, '}, such that:
e Let|Permissions| = |P| (or |[N|) and each permission correspond to an
element.

e For each subset of S, create a role, which corresponds to a rowHd,

such that:
> if s; containsn;, PA(i, j) = —1.
> if s; containg; and excludes;, PA(i,j) = 1.
> if s; has neithep;, norn;, PA(i, j) = 0.
e Let UPA be a single row with all elements being 1.

o Lett'=t.
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lllustration to the instance construction: Suppose a RB&tance is as
{{p1,p2, 1}, {p2,m2}, {p1,n2}}, with only two blue elements and two red ele-

ments. The corresponding instance of conservative p@RM | is : UPA =

-1 0
(I,1)andPA=1] 0 -1
1 -1

Recall the definition of semantic roles that if a user is assigto a role with
negative permission he can never have that permission, even though he is as-
signed to other roles with positive permissiomhe above mapping actually cor-
respond positive elemepf to positive permission, negative elememnt; to nega-
tive permission, andU P A to all positive elements. Further as we need to cover
UPA, which contains all permissions, there will never be 0-beesr Hence, we
do not even need to consider it for such constructed instari8eppose a subset
of roles are selected, which givesA. The total number of permissions assigned

to the user is:
#(covered positive permissions) — #(covered negative permissions)

Hence, the difference betweénP A and real assignment is

| Permissions| — (#/(covered positive permissions) — #(covered negative permissions))
| Permissions| — #(covered positive permissions) + #(covered negative permissions)
#(uncovered positive permissions) + #(covered negative permissions)

P\(UC| + |N n (uC|.

It shows that the equatPSC instance is true if and only if the constructed

partial SRM | instance is trué.]

5.5 Mathematical Programming Formulation

We introduced SRM, partial SRM | and I, and their 0-1 erraefand 1-0 error

free variants. Although they are NP-hard, standard mathieahgrogramming



software packages can still solve small or even medium gwalglems. In this
section, we will provide mixed integer program formulatfonall presented SRM

(EBMD) variants.

We start by looking at SRM, which is given observed binaryadat find a
EBMD solution with the minimum size. For ease of explanatieh us assume
the case of regular roles and semantic user-to-role assigisi The problem
becomes to find a EBMD decompositi§qtX ,,,«x, Ckxn} Of Apxn, WhereC' is
a matrix in{0, 1} and X is a matrix in{—1,0,1}. The EBMD solution space is
huge. To further ease the problem, we assume a set of caadadiesC' are given.
The problem then becomes to finding a minimum candidate edléosdescribe

the observed data.
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min Z Yk (5.4)

keK
s.t
Y wha;>1,VieM, jeN (5.5)
kEKS.t.(lijZI
> apey=0,VieM jeEN (5.6)
k‘EKS.t.aij::[
> whay<t;B VieM jeN (5.7)
kEKS.t.(lij:O
> apey=1-(1—ty)M, Vie M, jeN (5.8)
k‘EKS.t.aij:O
v+ <1, Yk, (5.9)
y > x5, Vke K, ie M (5.10)
Yp > Ty, VkEK, 1€ M (5.11)
ti; € {0,1}, Vie M,j € N (5.12)
o an €{0,1}, Vke K,ie M (5.13)

The formulated mixed integer program is as Equations (518)5 Descrip-

tions about the mixed linear program are given as follows:

e ¢4, is binary and given.c;; = 1 means the candidate rolecontains the

permissiory; otherwise not.

e z}; andz;, are binary variables to to be determined;, = 1 means the
candidate rolet is positively assigned to the usér otherwise not. z;,
means the candidate rokeis negatively assigned to the userotherwise

not.
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Equation 5.5 ensures that whep = 1, at least one candidate role which

contains the permissigpis positively assigned to the user

Equation 5.6 ensures that whep = 1, no candidate role which contains

the permission is negatively assigned to the uger

t;; is a binary auxiliary variable an# is a large enough constant. Equa-
tions 5.7 and 5.8 ensure that when = 0, either no role containing the
permissiory is positively assigned to the usgior some role containing the

permissiory is negatively assigned to the usger
Equation 5.9 ensures that a role is assigned positively gatively.

yi 1S a binary variable. When it is 1, the rokeis employed; otherwise
not. Equations 5.10 and 5.11 ensures that if someirbles been employed

regardless of in a positive way or in a negatively wgyis 1.

The objective functior) _, v, is to minimize the number of selected roles.

Partial SRM lis giverd andC'to find X minimizing}_, a;; — (A® C)y]. It
is very similar to the SRM problem with candidate roles beingn. The mixed
integer program formulation for partial SRM | is as Equati¢h.14 - 5.25), which
is quite similar to the above formulation for SRM |. Descigpis on differences

are given as follows:

e In Equations (5.15 - 5.18), auxiliary non-negative vamhl;; anduj
are utilized to allow inexactness. If one @;@ andu~ij is positive, there
is an assignment error of the permissijpto the user;. It could be over-

assignment or under-assignment.



e v;; isabinary variable, indicating whether there is an assgmtrarror at;;.
Equation 5.22 ensures that if there is an assignment erttvegiermission

j tothe usey, v;; = 1.

e For the descriptions of the rest constraints, refer to tieequtiing descrip-

tions of the mixed integer formulation of SRM.

min » _ vj; (5.14)
€M
s.t.
Y afeytuf>1,vieM jeN (5.15)
k)EKS.t.aij::l
> wpey—u;=0,YieM, jEN (5.16)
keKs.t.a;j=1
Z [L':I;ij — U;; S tijB, Vi € M, ] eN (517)
keKs.t.CLij:O
Y wpeytu;>1-(1—ty)M,Vie M, je N (5.18)
k)EKS.t.aij:O
x4z, <1, Vk,j (5.19)
yr > a5, Vke K, i€ M (5.20)
yp > 2, VkeE K, ie M (5.21)
ti; € {0,1}, Vie M,j € N (5.23)
e an € {01}, Vke K,i € M (5.24)
u:;,u; >0,Vie M,j €N (5.25)

(5.26)



SRM Il is given A and X to find C. The mixed integer program formulation
for SRM Il is the same as Equations (5.14 - 5.25). But note #haa matrix in
{—1,0,1}, is represented by two Boolean matri" and X . If the useri is

assigned to the ro[epositively,xj; = 1. Ifitis a negative assignment;, = 1.

5.6 Algorithm Design
5.6.1 Partial SRM |

In the language of EBMD, the partial SRM | problem is given aBan matrixA
and a concept matrik' to find the combination matriX’ € {—1,0, 1} such that
|A— X ® C||; is minimized. As||A - X © C||, = >, ||Ai — X; ©® C||1, where
A; and X; denote theth row of A and X respectively, a partial SRM | problem
can be divided into a set of subproblems with each row @fs an input Boolean
matrix. So without loss of generality, we considéto be a Boolean row vector.
As a result of that, the partial SRM | problem can be descrésed variant of the

RBSC problem as follows.

Consider the following partial SRM | problem, where the gates{x, =5, x3}

need to be determined.

oo
o~ o
—__ o
oo

Let each column correspond to a distinct element, wheredhgms at which
the elements of the input Boolean vector are 1, correspobtumelements and
the remaining rows correspond to red elements. Then, thedasond and fourth
columns correspond to blue elemefiis, b,, b; } respectively and the third column

corresponds to the red elemégnt }, as illustrated in Figure 5.5a. Consequently,
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0000
(1101) 00 00! 0

(a) Columns Mapped to Ele- (b) Concepts Mapped to Baskets
ments

Figure 5.5. Mapping lllustration |

the given concept matri€’ can be mapped a collectighof subsets of red-blue
element§ BUR}, whereB andR denote the blue element set and the red element
set respectively, such th&{b,, b5}, {bs, 1 },{r1}}, as illustrated in Figure 5.5b.

Hence, the partial SRM | problem becomes:

e Given a collectionC of subsets of red-blue elemert® U R}, find two

subcollectiong; andC, such that(UC; )\ (UC,) maximizes

#(covered blue elements) — #(covered red elements).

Denote baskets from left to right in Figure 5.5b to &§e ¢;, and c3 respec-
tively. It is not difficult to see that the optimal solution(ig U ¢;)\c3. Therefore

{1’1,1’2,1'3} = (1, 1, —1)

As proven in the previous section, the decision partial SRivbblem is NP-
complete in general. So we propose an efficient and effegtigedy heuristic.
We first divide the given subset collectighinto three groupgC?,C*, CBF},
whereC? includes subsets containing blue elements afffyconsists of red ele-
ments only and the subsets@#-* have both red and blue elements. Obviously,
includingC? in ¢; andC® in C, dose not introduce any covering error. Siiice
has been included i6,, assigning any subset 6%, in which all contained red

elements belong t6%, to C; does not introduce covering error either. Next, we
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need to assign the remaining subset§®ft to eitherC, or C,. We will do it in an
iterative fashion. At each step we select a subgatm the remaining’?# and
put it in C;. The selection criteria is based on the following function:

#(Newly Covered Blue)

: 2
#(Newly Covered Red) (5.28)

fi=

The numerator part in the criteria function denotes the remolb newly cov-
ered blue elements by includimgwhile the denominator part denotes the number
of newly covered red elements. We iteratively select thessulwith the great-
est criteria value till all blue elements are covered in tbpenthat the least red
elements would be included in the final solution. The congp@gorithm is as

described in Algorithm 5.6.

Algorithm 5.6 Partial SRM |

Input: A collectionC of subsets of B U R}.

Output Two subcollectiong; andCs.

: Divide C into {C®Z,C% CB1}

IncludeC? in C;, andCR in Cy;

UpdateC?f by deleting elements containedd® andC¥;

SetB’ = UCBE N BandR = 0;

while The objective value can be further improved.
Select the subsetc C?F with the largestf; value and include it i€, ;
UpdateB’ asB’\(cN B), andR’ asR’' U (cN R).

end while

OO RN R

5.6.2 Conservative Partial SRM |
The conservative partial SRM | problem requires no 0 becgrtierrors. In the

red-blue set cover problem setting, it can be describedliasvia

e Given a collectior€ of subsets of red-blue eleme8 U R}, find two sub-

collections’C; andC, such tha{UC, )\ (UCy) maximizes#(covered blue elements),
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while no red elements are covered.

Its decision problem has been proven to be NP-complete |&itithe partial
SRM | problem, we propose a greedy heuristic for its congmaversion as
described in Algorithm 5.7. Notice that the first two steps #re same as that
for the partial SRM | problem. After the first two steps, onljbsets irC{ B, R}
remain. For each remaining subsgit its contained elements are already included
in Cy, we include it inCy, as it will not introduce any red element in the final

solution.

Algorithm 5.7 Conservative Partial SRM |

Input: A collectionC of subsets of B U R}.
Output: Two subcollectiong; and(s.
. Divide C into {C®,C%, CP1}
- IncludeC? in C; andC® in C,
: for eache € C5%% do

if cN R e Cfthen

Includecin C;.

end if

end for

S R - e

5.6.3 Partial SRM Il

The partial SRM Il problem is given a Boolean matdxand a combination matrix
X in{-1,0,1}, tofind a concept matri’, such that| A— X ©C|, is minimized.
As the ® operator has the commutative property, the objective fanatan be

rewritten ag|A” — CT © X7|

1, Which basically changes the order@fand X .
So we can viewX as the concept matrix, while concepts may contain negative
elements. A$|AT — CT o XT||; = 3 ,(I|AF — (CT); ® XT|,), then the original

problem can be divided into a set of subproblems with eactofod/ as the input
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data. Therefore without loss of generalization, we consitfeas a Boolean row

vector.

0 -1
-1 0 |. (5.29)
1 1

S = O

1
(1 101)=(z 2 23)0( 0
1

For ease of explaining our algorithm later, we firstly lookaatexample as
shown in Equation 5.29. The row vector on the left and the imatn the right
are the input data.{z, zs, 23} are Boolean variables to be determined. This
partial SRM Il problem can be also viewed as a variant of tliehleie set cover
problem. First, we map columns to red-blue elements. Thepmgypolicy is the
same as what we did for the partial SRM | problem. The mappasglt is as
shown in Figure 5.6a. Now we will map each row vector in theosgr matrix on
the right side of Equation 5.29 to a basket of red-blue eléméxotice that each
row vector may contain three different component val4ds0, 1}. The value of
1 corresponds to the set union operation, while the the \@fluE corresponds to
the set different operation. To reflect that, we map each regtor to a special
red-blue element basket in the formof\c¢~, where bothe™ andc™ are red-blue
element subsets. Based on this mapping rule, the row veitctdre example
of Equation 5.29 are mapped to baskets as illustrated inr€&igL6b, where the
symbol of\ denotes the set difference operator. The partial SRM Il lpratzan

be described as follows:

e Given abasket setdf ¢ \ci }, ..., {¢i \ci }}, where{c], ¢ } are red-blue

element subsets, select a basket suBsetch that U;csc; )\ (Uiesc; ) max-

imizes# (covered blue elements) — #(covered red elements).
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0000
(1 101) 10\0;\0\6;1009\;

(a) Columns Mapped to Ele- (b) Concepts Mapped to Baskets
ments

Figure 5.6. Mapping lllustration I

For the example of Figure 5.6b, it is not difficult to see tlm dbptimal solu-
tion is to select the second and third baskets. The resuéirs@ll blue elements
without introducing a red elements. However, the partiaMSRproblem in gen-
eral has been proven to be NP-hard in the previous sectionweSpropose a
greedy heuristic. Its basic idea is to iteratively seleet blest remaining basket
based on some selection criteria. We observe that four caagsoccur when
including a basket into the solution: (1) new blue elememisidp covered; (2)
new red elements being covered; (3) new blue elements bgoigded; (4) new
red elements being excluded. Obviously the first and thaliatases are desired
while the other two cases are disliked. So our selectioergaiis based on the

function in Equation 5.30 and the greedy heuristic is degctin Algorithm 5.8.

#(Newly Covered Blue) + #(Newly Excluded Red)
#(Newly Covered Red) + #(Newly Excluded Blue)

fo= (5.30)

Algorithm 5.8 Partial SRM Il

Input: A red-blue element basket setfcf \c; }, ..., {ci\c;. }}-
Output: A red-blue element basket subset
1: Iteratively include the basket with the greatésvalue intoS till the objective
value cannot be improved.
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5.6.4 Conservative Partial SRM lI

The conservative partial SRM Il differs from the partial SRIMbroblem only in
the objective value. It can be similarly studied in the settof the red-blue set

cover problem as follows:

e Given a basket set df ¢ \ci }, ..., {¢i \¢; } }, where{c], ¢; } are red-blue

element subsets, select a basket suBsetch that U;csc; )\ (Uiesc; ) max-

imizes#(covered blue elements) while no red elements are covered.

As the objective is to cover as many blue elements as pos$iblsimplicity
we only consider baskets;\c!} with ¢! C R only. The intuition behind is not
to exclude any blue elements in the final solution. Howevevgi select all such
baskets, red elements may be included. To eliminate redegltsnwe remove
troubling baskets in an iterative fashion. At each step, aletd the basket which
reduces the number of covered red elements the most. Theetengiescription

is provided in Algorithm 5.9.

Algorithm 5.9 Conservative Partial SRM ||

Input: A red-blue element basket setofci \cy }, ..., {c; \c; }}-
Output: A red-blue element basket subset
1. For each baskec; \c; }, if ¢; C R, include it intoS.
2: lteratively remove the baskét; \c; } from S, which reduces the number of
covered elements the most, till no red elements being cdvere

5.7 Experimental Study

In this section, we present extensive experimental resutboth synthetic and
real data sets to validate the performance of our proposedsties. Our algo-

rithms are compared on one hand against standard matrixmesition, and on



the other hand against conventional Boolean matrix decsitipn. The algo-
rithm computing standard matrix decompositiorbis D, which is a benchmark
for computing standard matrix decomposition. As SVD resugsults of real val-
ues, to be fair, we round them to be binary by setting all \aless than 0.5 to
0, and all other values to 1. Hence, this algorithm is calle®®/1. The algo-
rithm computing conventional Boolean matrix decomposii®the Lod: IterX
algorithm proposed in [48], which has been experimentaibven to have better

performance than other Boolean matrix decomposition #lyuos.

5.7.1 Synthetic Data

We study the behavior of the heuristics with respect to tle@agosition size and

noise.

The synthetic data is generated as follows. First, genér&@eolean vectors
randomly as basis, each of which has 50 elements and aboalelf®nts are
1. Second, use basis vectors to generate oth@r— & vectors. The detailed
procedures are : (i) randomly selectih@ basis vectors; (ii) randomly assigning
half selected basis vectors@p and the other half t6,; (iii) computinguC; \ UC,
as a generated vector. The size of such a generated maifixig00. After that,
add noise to the matrix by randomly flipping the values of agifraction of the

data.

To compare reconstruction error, we use two kinds of meastine first is
ER1 = ||A — A'||,/size(A), where A is the input matrix and!’ is the recon-
structed matrix. The second ISR2 = ||A — A'||1/||A||:. ER1 reflects how

much fraction of the data is not correctly reconstructéd?2 is to compare the
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amount of reconstruction error against the total numbers€dlls. The reason
of employing F R2 is that if the input Boolean matrix is sparse, a low value of
ER1 does not demonstrate the input matrix is correctly recanstd, as simply

returning a matrix of zeros would have a low valuefaR1.

The first experiment is to test the effect of skizevith respect to reconstruction
error. We varyk from 4 to 20 and for each size we generate 5 matrices. Reported
results are mean values over these five matrices. For digmibf Lo&lterX,

EBMD and 0-1 error free EBMD we use basis vectorg’as

-0-EBMD
0.8 =—+—0-1 Error Free EBMD
=v-Loc & lterX
06 -A-SVD 0/1
5
0.4
0.2
O A A
5 10 15 20

k

Figure 5.7. Reconstruction Error Ratio withR1 w.r.t. k

-0-EBMD

—+0-1 Error Free EBMD
=7~Loc & IterX

0.2/ A-svp 01

ER2

0.1

5 10 15 20
k

Figure 5.8. Reconstruction Error Ratio withR?1 w.r.t. k

The experimental results are as shown in Figures 5.7 andhS.@e can see,
the reconstruction error ratios of all three EBMD approade lower than those

of Loc&lterX and close to those of SVD 0/1. WithiRR1, the reconstruction error



102

ratios of EBMD approaches are as low as 0.05 on average. Wb, they are

still as low as 0.2 on average.

The second experiment is to test the effect of noise witheetdp reconstruc-
tion error. We vary noise ratio from 0 to 0.5. The experimerggults are as
shown in Figures 5.9 and 5.10. The reconstruction erroosatf EBMD and 1-0
error free EBMD are still lower than those of LbtterX and close to SVD 0/1.
However, the reconstruction error ratios of 0-1 error fr&\VED are much higher

than other approaches even though the amount of noisdas litt

0.5/|"0-~EBMD

—+—0-1 Error Free EBMD
0.4{|=9~Loc & lterX

-A-SVD 0/1

ER1

0.2 _ o ;
0.1

L

0 01 02 03 04
Noise Ratio

Figure 5.9. Factorization Cost w.r.t. Reconstruction ERatio for Synthetic
Data

2.5

-0-EBMD

2||=+=0-1 Error Free EBMD
=¥Loc & lterX

15 -4-SVD 0/1

ER2

1

o<

0.5y

>

0 01 02 03 04
Noise Ratio

Figure 5.10. Factorization Cost w.r.t. ReconstructioroERatio for Synthetic
Data
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5.7.2 Real Data

One of our main contributions that we claim is that our heigiglgorithm can
decompose a Boolean matrix with much less reconstructiar dran the con-
ventional Boolean matrix decomposition method. In thidisa¢cwe demonstrate

that the claim holds for real data as well.

Four real data sets are used. The News data set is a subselNefi\&groups
dataset. We select the first 400 messages and the top frequent 106 wditem,
and replace the counts with 1 or 0. Then, we obtai®@x 400 matrix, which
happens to have no repetitive columns. Votes datasentains plenary votes of
Finnish Parliament. Same as [48], we only consider those M&sserved an
entire term. During 1999-2001, there were 773 plenary vaites196 MPs served
the entire term. As an MP can cast four different types ofv{fea, Nay, Abstain,
and Absent), two different dataset are actually used: Matesets Yeas as 1s and
all other votes are 0s, while VotesNo sets Nays as 1's andlar wotes as 0’s.
The Query data set is a user/clicked URL binary matrix, exémh from a large-
scale query log. The query log data include two importamiaittes, UserID (the
identity query issuer), and ClickedURL (the URL eventualigked by that user
in that single query). We have first selected the top 40 frejakcked URLS
from the query log with 1,889,761 queries in total and rendoak the queries
that are not related to those 40 Clicked URLs (we thus obt@® 2118 queries
with 40 clicked URLs). Consequently, we have generatedhamnatimension of

the matrix by choosing the top 1000 users who have executstigneries in this

http://people.csail.mit.edu/jrennie/20Newsgroups/
2http://Iwww.fsd.uta.fi/lenglish/data/cagalogue/FSD2frieF2117e.html



Data k | EBMD | 0-1 EBMD | Loc& IterX | SVD 0/1
News 5 | 0.2575| 0.3966 0.2811 0.2085
10| 0.2350| 0.3791 0.2633 0.1750

15| 0.2200| 0.3647 0.2397 0.1457

VotesNo | 5 | 0.0777| 0.1921 0.0830 0.0642
10| 0.0704| 0.1860 0.0763 0.0496

15| 0.0684| 0.1755 0.0722 0.0398

VotesYes| 5 | 0.1531| 0.6491 0.1613 0.0779
10| 0.1334| 0.6421 0.1459 0.0929

15| 0.1244| 0.6320 0.1336 0.0775

Query | 5| 0.1162| 0.1220 0.1168 0.0892
10| 0.0921| 0.0974 0.1071 0.0536

15| 0.0710| 0.0812 0.1451 0.0301

Table 5.1. Reconstruction Error Ratios wiihi?1 for real datasets

small group of query log. The result is a binary matrix witle thimension of

40*1000. After deleting repetitive columns, finally we havenatrix of40 x 200.

The experimental results are shown in Tables 5.1 and 5.2.aWWsee that the
heuristic of EBMD decomposes real datasets with less réxzart®n errors than

Loc&lterX and close to SVD 0/1, while decomposition solutionsvyided by the

heuristics for 0-1 EBMD have higher reconstruction errdiosa
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Data k | EBMD | 0-1 EBMD | Loc& IterX | SVD 0/1
News 5 | 0.6154| 0.9477 0.6718 0.4982
10| 0.5616| 0.9058 0.6293 0.4181

15| 0.5258| 0.8714 0.5728 0.3482

VotesNo | 5 | 0.3829| 0.9464 0.4091 0.3161
10| 0.3471| 0.9164 0.3761 0.2445

15| 0.3368| 0.8647 0.3557 0.1963

VotesYes| 5 | 0.2311| 0.9799 0.2435 0.1176
10| 0.2014| 0.9692 0.2203 0.1403

15| 0.1878| 0.9540 0.2017 0.1170

Query | 5| 0.6961| 0.7305 0.6992 0.5340
10| 0.5516| 0.5831 0.6415 0.3211

15| 0.4251| 0.4865 0.4925 0.1804

Table 5.2. Reconstruction Error Ratios withR2 for real datasets
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CHAPTER 6
RANK-ONE BOOLEAN MATRIX DECOMPOSITION

Rank-one Boolean matrix decomposition is a special BMD cagere the de-
composed matrices are limited to Boolean vectors. Matheait speaking, it

is to decompose a Boolean matr, ., into the product ofX,,.; ® Ci«,. One

important application of BMD is to mine discrete patterndinary data, which
is important for many data analysis tasks, such as data sanpgbmpression,
and clustering. An example is that replacing individuabrrels with their patterns
would greatly reduce data size and simplify subsequent alzdysis tasks. As
a straightforward approach, rank-one binary matrix apjpnaxion has been ac-
tively studied recently for mining discrete patterns fromdvy data. It factorizes
a binary matrix into the multiplication of one binary patiefector and one binary

presence vector, while minimizing mismatching entries.

However, this approach suffers from two serious problenrst, K all records
are replaced with their respective patterns, the noisedamake as much as 50%
in the resulting approximate data. This is because the apprsimply assumes
that a pattern is present in a record as long as their matamibges are more
than their mismatching entries. Second, two error typdsedeming-0 and O-
becoming-1, are treated evenly, while in many applicatiomdins they are dis-

criminated. To address the two issues, we propose weigatédane binary ma-
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trix approximation. It enables the tradeoff between thaiesxy and succinctness
in approximate data and allows users to impose their perpoeterences on the

importance of different error types.

In this section, we will study weighted rank-one BMD. Its ten problem
will be proved to be NP-complete. To solve it, several déf@grmathematical pro-
gramming formulations are provided, from which 2-approaiion algorithms are
derived for some special cases. An adaptive tabu searclstieis presented for
solving the general problem, and our experimental studystibe effectiveness

of the heuiristic.

6.1 Motivation of Weighted Rank-One BMD

With the fast development of computer and internet tectgiekand the de-

creased cost of data storage devices, a large volume of daigeaerated and

gathered every day. Many datasets have discrete attrjlsuel as those gener
ated from information retrieval, bio-informatics, and etrtransactions. Much
attention has been focused on efficient techniques for aimgytarge and high
dimensional datasets. Common tasks for analyzing high risioeal data in-
clude extracting correlations between data items, claasibin, and clustering
data items and finding condensed representations. Thesanallylarge-scale
datasets commonly has to deal with the curse of dimenstgnah useful ap-

proach is to compress datasets while preserving importashnlying patterns.
Conventional matrix factorization techniques can effexi and efficiently com-
press datasets with continuous attributes. For examplguksr value decompo-

sition (SVD) can efficiently reduce a given matrix into a loark matrix while
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minimizing the Frobenius norm of the difference. Howevegult interpretation

is difficult for datasets with discrete attributes.

Existing techniques for mining discrete patterns from byrtata include PROX-
IMUS [34], which can serve the purpose of data compressiavedls The idea is
to decomposes a given binary matrix into a pattern vectoragpietsence vector,
which are restricted to be binary, such that the multiplccadf two decomposed
vectors has the least mismatching entries with the origdnma@dry matrix. It is
also calledank-one binary matrix approximatioriven the presence vector, the
matrix is partitioned into two parts. The part with the prese of the pattern is
grouped together. By recursively applying the same pro@ksow vectors are
clustered and their respective patterns are identified. tasle of analyzing the
original binary matrix can be switched on those mined pasiewhich have much
smaller size. This technique has received increased iattergcently [35, 59].
For example, Shen et al. [59] even provide an efficient 2-@ppration algorithm
for rank-one binary matrix approximation recursively caotéd in a process of

PROXIMUS.

Rank-one binary matrix approximation is to solwénxy||lA — XY7||F,
where X andY are binary vectors and called presence vector and pattemn ve
tor respectively. Based on entry valuesof rows of A can be divided into two
parts. The part associated with entries with the value of X iare considered
having patterry”. By recursively applying rank-one binary matrix approxtraa,

a collection of discrete patterns are mined, which can dedi to approximate

the original data and cluster row vectors.
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Example 6.1 Given a matrixA, a rank-one approximation is computed as fol-

lows:

(1 1110)=XxY"  (61)

— O~
—_— O = O
— = =
— O =
O O = O
— O~

The discrete pattern mining approach based on rank-oneodippation is
straightforward and not difficult to implement. Howevessitffers from two seri-

ous issues.

The firstissue is that according to the objective function x y || A— XY ||,
a row vectorA;., denoting theith row of A, is considered having pattein as
long as their matching components are greater than mismgtchmponents. In
other words, the mismatching ratio could be nearly as mudiftgppercent. As
a result, the final collection of mined discreet patternsnoarserve as a good
approximation to the original data matrix and all subsetjdata analysis results
would be questionable. To illustrate it, we give Example 82early rank-one
binary matrix approximation is not able to divide row vestof the binary matrix
on the left side of Equation (3). As a result, rank-one bimaagrix approximation
is only able to identify one discrete pattern, while there avo obvious discrete
patterns in the original data. Furthermore, the mined pat{é, 1,1,1,0} can
hardly represent row vectd®, 1, 1, 1,1}, as their matching entries are only one

more than mismatching entries.

Example 6.2 The rank-one binary matrix approximation for a binary matwith



two obvious patterns is computed as below:

11110 1
11110 1
11110 |~|1[(11110). (6.2)
01111 1
01111 1

The second issue with rank-one binary matrix approximasioimat it does not
support discrimination on 1-becoming-0 errors and 0-bengri errors, which
however is requested by many applications. To illustratevét give Example 3.
With (1, 1,1, 1, 0) as the pattern to approximate all row vectors, it introdures
0-becoming-1 error to the first row vector and one 1-becor@iegror to the third
row vector. For the role mining problem arising from implertieg role-based
access control [42], the value of 1 in a binary matrix repmése permission
assignment. Analyzing an approximate user-to-permisgiatrix with many O-
becoming-1 errors would generate roles with surplus pesions, which seriously
affect system security and safety. In this applicationg@eming-1 errors should

be forbidden.

Example 6.3 Consider the following rank-one approximation:

1
~(1 (1 1110),. (6.3)

1111
1111
1110 1

OO =

6.2 Weighted Rank-One Binary Matrix Approximation

Desired features of a discrete pattern mining techniqueldhaclude allowing

the trade-off between the approximation accuracy and tmglgiity of mined
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patterns, and enabling users to impose their preferencéisecgrror type distri-
bution. We achieve them by proposing a new measure on thédisaggcte of a
pattern in a row vector and a new definition of pattern presembey are defined

as below.

Definition 6.1 (Pattern Significancé The significance of a pattefin € {0, 1}1*"

in an objectA € {0, 1}'*" denoted by5(Y, A), is measured by

S(Y, A) = maz{0, f11 (Y, A) — w1 fro(Y, A) — wafor (Y, A)}

where f;;(Y, A) is the number of attributes which afén Y andj in A, andw;

andw, are positive weight parameters.

Definition 6.2 (Pattern Presencelf S(Y, A) > 0, the patterny” € {0,1}'*" is

considered present in the objeéte {0, 1}1*".

Weight parameters); andw, have two purposes. First, the sum value.of
andw, can be utilized to control the level of error tolerance, ihestwords ap-
proximation accuracy. The greater sum value leads to less t®terance, hence
higher accuracy in approximation. The ratio betwegrandw, reflects the pref-

erences on two error types. The greater weight means being aisdiked.

The essential goal of rank-one binary matrix approximaisoto discover a
pattern with the most significance in the data matrix. We @ath a patterdom-
inant discrete patternWeighted rank-one binary matrix approximatiisrto take

penalty weights into account at the basis of conventiomi-@e matrix approx-
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imation. Whenw,; = 1 andw; = 1, the weighted problem is the same as the
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conventional problem. Given a patteyh it is easy to determine presence vector
X even with the presence of penalty weights. So instead ofgdir the pair of
X andY at the same time, we consider weighted rank-one binary xrebprox-

imation as the dominant discrete pattern mining problemméddfas following.

Definition 6.3 (Dominant Discrete Pattern Mining Givenm objects consisting
of n binary attributes represented by a matrixe {0, 1}"*", find a dominant pat-
ternY € {0,1}'*", such that its total values of pattern significarice S(Y, A;.)

are maximized, wherd;. denotes théth row vector ofA.

Two following examples are illustrated to show how weightaak-one binary
matrix approximation can effectively address the two issuigh rank-one binary

matrix approximation.

Example 6.4 Reconsider the binary matrix in Example 6.2. By letting= w, =
2, its weighted rank-one binary matrix approximation, wh#re vector on the

right side is the dominant discrete pattern, is as below:

11110 1
11110 1

11110 |~|1|(11110). (6.4)
01111 0

01111 0

In the above example, by doubly penalizing errors, row vwschoe successfully
divided and{1,1,1,1,0} is indeed a true pattern for rows associated with the
presence vector. By applying weighted rank-one binary isnapgproximation to

the other part, patterf0, 1,1, 1, 1} is also successfully revealed.



113

Example 6.5 Look at the binary matrix in Example 6.3. By letting = 1 and
wo = 3, its weighted rank-one binary matrix approximation is afle

1
~(1 (1 1100). (6.5)

1 111
1 111
1110 1

OO =

It is free of 1-becoming-0 errors.

Due to the binary data type, each row can be represented dssatsafn
attributes. Such a representation provides a convenienttovaescribe some
relationships between two binary row vectors which we wiilize later. They

are defined as following.

Definition 6.4 (Superset, Strict Superset, Subset, and Strict SupBet two bi-
nary n-dimensional row vectorX andY, if Y; = 1,VX; = 1, Y is a superset of
X andX isasubsetol. If Y is superset oX and there existssuch thaty; = 1

and X; = 0, Y is a strict superset ok, while X is a strict subset of".

6.3 Relation with Other Existing Problems

The dominant discrete pattern mining problem can be reltadany research
problems that have been studied in the literature. Thodalgmes can be viewed

as either its special case or its variant.

Definition 6.5 (Maximum Edge Biclique Problenj53]) Given a bipartite graph
G = (V1UV4, E) and a positive integeK’, does contain a biclique with at least

k edges?
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A bicilique is a kind of bipartite graph where every vertextio¢ first set is con-
nected to every vertex of the second set. The maximum ed¢jgusgroblem
defined as above is a special case of the dominant discré¢erpatining problem
whenw; is 0 andw, is greater than the maximal number of 1’s entries in a row of
A, denoted bynax;|| A;.||1. With w; being 0,f10(Y, A;.) is not counted in the pat-
tern significance formula of (Y, A;.). With w, being greater thamaz;||A; ||,

a patterny” can never be present in a row vectdr, which is an exact subset of
A;.. Therefore the dominant discrete pattern mining probletn wi = 0 and

wy > max;||A;|]1 is to find a patterry” which covers the most 1's entries in row
vectors ofA, which are supersets of. Any binary matrixA4,,,, can be expressed
as an equivalent bipartite graph= (V1 U V5, F), wherel; hasm vertices corre-
sponding to all rows V5 hasn vertices corresponding to all attributes, and there
is an edge connecting vertices(i) andV;(j) if A;; = 1. Asal's entry inA cor-
responds to an edge in its equivalent bipartite graph, a mimidiscrete pattern

with w; = 0 andws > max;|| A;.||; induces a maximum edge biclique.

For illustration, consider the binary matrix in Equationl{(6as an example.
It can be expressed as the bipartite graph in Figure 6.1ladohlsnant discrete
pattern withw; = 0 andw, greater tham is given as in Equation (6.6) and its

induced biclique is as shown in Figure6.1b.

10110 0
11111 1
00100 =l x(r1110) (6.6)
11110 1

Definition 6.6 (Maximum Tile [19]) Given a databaseD as a binary matrix

A..xn, find the tile with the largest area iV, where a tile corresponds to a row
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@)
(@) (b)

Figure 6.1. A Bipartite Graph and Its maximum Edge Biclique

index subsef and a column index sét, such thatA(i,j) = 1,Vi € R,j € C'.

The maximum tile problem defined as above is essentially tbtfie largest
tile full of 1's entries in a binary matrix, allowing the mamilation on the order
of rows and columns. It is equivalent to the maximum edgeueligroblem, and
hence equivalent to the dominant discrete pattern problghmw = 0 andwsy >

max;||Aill1-

Consider the binary matrix on the left side of Equation (6% tiling database.

The largest tile induced by the dominant discrete patteas ishown in Equation

(6.7).
1011 0
111 1| 1
0010 0 (6.7)
111 1] 0

Definition 6.7 (Maximum Edge Weight Biclique Problen3]) Given a bipar-
tite graph{V; U V,, E'} and weightgw;; } associated with edgggV; (i), V2(j))}

respectively, find a bicliqué’, where the sum of the edge weights is maximum.
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The dominant discrete pattern problem with andw, being equal can be
mapped to a special case of the maximum edge weight bicliqpidgm. The
maximum edge weight biclique problem is to find a bicliquehatlie maximum
weight from a complete bipartite graph. As we have illugidaany binary matrix
Axn Can be expressed as a bipartite graply; U 15, E). We can further ex-
pand it as a weighted complete bipartite graph. First cota@t missing edges
to make it as a complete graph. Then assign a weight of 1 todgksin the
original bipartite graph and a negative weight-ef); to the newly added edges.
A dominant discrete pattern in the original binary matrixuldbcorrespond to a

maximum weight biclique in the constructed weighted corgplepartite graph.

For illustration, reconsider the binary matrix in Equat(éti). Its correspond-
ing maximum edge weight biclique problem instance is as shiowFigure 6.2,
where dashed lines are original edges with the weight of 1thio# lines are

added edges with the weight efw; .

Figure 6.2. Edge-Weighted Complete Bipartite Graph
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6.4 Mathematical Programming Formulation

The main result of this section is to present mathematicad@mming formula-
tions for the dominant discrete pattern mining problem. drtipular, we give an
unconstrained quadratic binary programming formulatammjnteger linear pro-
gramming formulation, and a relaxed linear programmingniaation, which for

the case ofv; = wy = 1 induces a 2-approximate algorithm.

6.4.1 Unconstrained Quadratic Binary Programming

The dominant discrete pattern mining problem is to find thegpaY” maximizing
the global pattern significance,, S(Y, A;.) for a given binary matrix4. Its cor-
responding presence vectdrcan be obtained easily after the dominant discrete
patternY” is found. But in the quadratic binary programming formwatgiven as

below, we treat presence vectlras variables along with pattern vector

>S5, Az)
= > imaz{0, fu (Y, Ai) — wifro(Y, Ai.) — w2 for (Y, Ai) }
= Zi Xi(fll(}/v Ai:) - wlflo(Y’ Ai:) - w2f01(Y, Ai:))

—wz ) _; A (1 =Yj))

= (A Fwi Ay 4+ w Ay — wn) XY — Y wa Ay X

= XTUy - XTv1
whereU is defined ad/;; = A;; + wiA;; + waA;; —wy, Vi; is defined asv, A5,

and1 denotes the all-ones vector.

The explanation of the above equation deduction processfalaws: (i) The
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first induction step is obvious; (ii) The second inductiogpsis by the fact that if
f11(Y, Ai)—wy f10(Y, Ay) —wa for (Y, Ai) < 0, X; = 0; (iii) In the third induction
step, f11(Y, A;.) counting the number of attributes whereand A;. both are 1 is
measured bﬁj A;;Y;, and fio(Y, A;.) and fo; (Y, A;.) are by (1 — A;;)Y; and
A;;(1 —Y;) respectively; (iv) The last induction step arranges thelesfmrmula

as matrix multiplications.

Therefore the dominant discrete pattern mining problem marsimplified
as an unconstrained binary quadratic programming probemae{XTUY —
XTVI|X € {0,1}™,Y € {0,1}"}. A binary matrix is closely related to a bipar-
tite graph. Itis also a useful approach for problems invdhéh a bipartite graph

to be formulated as an unconstrained quadratic binary progning problem [4].

6.4.2 Integer Linear Programming

The unconstrained quadratic binary programming formaitetan be linearized as
an integer linear programming problem by introducing aaryl binary variables
{Z,;} as below.
max Z UijZij - Z V;sz
i i
-X;—-Y;+2Z; <0 Vij (6.9)
s.t. XZ—FY;—ngl V’L,j
Xiv }/}7 ZZ] S {07 1}
The linearization is done by replacing;Y; with Z;;. As the value ofX.Y; can

only be either O or 1, s&;; is binary. Constraints-X; — Y; 4+ 2Z;; < 0 and
X, +Y; — Z;; <1guarantee: (i¥;; = 1 when bothX; andY; are 1, (ii)Z;; = 0

when one ofX; andY; is O.

The linearization skill of replacing’;Y; with a binary variableZ;; is also em-



ployed by Shen et al. in [59] for formulating the rank-one@pgmation problem.
However their enforcing constraints are as below.

—XZ—Y}—}—QZUSO fO’I“Aij:].

Notice that constraints-X; — Y; + 2Z;; < 0 andX; +Y; — Z;; < 1 are not
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being enforced for everfij). Therefore, technically speaking their integer linear

programming formulation is not strict, but a relaxed vensio

6.4.3 Linear Programming Relaxation

In general the integer linear programming problem is NRthahile the linear
programming problem is not. It has polynomial algorithmelsas interior point
method [32] and also has simplex method algorithms whicle avy good prac-
tical performance despite exponential worst-case runtimg [12]. Thus a typ-
ical approach to solve an integer linear programming proki&eto derive an ap-
proximate solution, also an upper bound to its optimum (i§ ia maximization

problem) by solving its linear programming relation.

The linear programming relaxation for the dominant diseq@ttern mining
problem can be easily obtained by simply replacing the caimtset{ X, Y;, Z;; €
{0,1}} in Equation (6.9) by{ X;,Y;, Z;; € [0,1]}. The relaxation essentially ex-
pands the feasible solution region to a polytope and makepitbblem easier
to solve. But the optimal solution of the relaxation problemmot necessarily a
feasible solution of the original problem, because its congmts could be frac-
tional. So people usually round either down or up those ifvsaet components

to make a feasible solution and use it as an approximateisolutowever, the



approximation ratio is not guaranteed.

As we mentioned earlier, the integer programming formartafor the rank-
one approximation problem provided by Shen et al. in [59]as a strict for-
mulation, but a relaxed version. However, such a relaxeghet programming
formulation surprisingly leads to a 2-approximation alton via simplex meth-
ods. We may directly apply their approach to our problem. okdmgly a new

linear programming relaxation for Equation (6.11) is giesrbelow.

max Z Ui Zij — Z Vi Xi
i 4]
s.t. Xz + Y; - Zij S 1 fO’I“ Aij =0
Xi7 Y;ﬁ Zij S [07 1]
Theorem 6.1 The optimal solution of Equation (6.11) via simplex algmmiis is

integral, in other words a feasible solution of Equatior96.

Proof. As Equation (6.11) has the same constraints as the linegrgroning re-
laxation problem studied in [59], the same result holds thatcoefficient matrix
of the inequality constraint set is a totally unimodular matA totally unimod-

ular matrix is a matrix for which the determinant of every agunon-singular
submatrix is 1 or -1. All parameters on the right side of ireddies are also in-
tegral. Two properties lead to that the optimal solution gui&tion (6.11) via
a simplex algorithm is integral. The reason is as followilgsimplex method
is searching from one basic feasible solution to anotheicldaasible solution

till the optimum is reached. Suppose the constraint set retaradard form as
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{AX = b, X > 0}, to which any linear constraint set can be transformed. A
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basic feasible solution is corresponding to a partitiph z, X} of variablesX
and accordingly the constraint set can be reforme®as; + NXy = b. By

letting Xy = 0, Xp = B~'b. If B~'b > 0, {B~'b,0} is a basic feasible solution.

det(B’)
det(B)

According to the Cramer’s rule [22], th#h competent ofX; is , Where
det(B) denotes the determinant &f, B’ is B except itsith column is replaced
by b. Because in Equation (6.11) the coefficient matrix of thest@int set is
totally unimodular, the determinant of every square nawgigiar submatrix is 1 or
-1. Hence the denominator ddft%) is 1 or -1. Since all parameters in Equation
(6.11) is integral, the nominator dj% is also integral. Thus every component
of any basic feasible solution of Equation (6.11) via a ser@lgorithm is inte-

gral, and the optimal solution of the relaxation problem feasible solution of

its original problem.

Our proof is built on the basis of the proof given by Shen ef58]. But in
addition to pointing out the existence of two sufficient ciiodis that a totally
unimodular coefficient matrix and all integral parameters,provide a deep in-
sight on why those two conditions make all basic feasiblatsmis via a simplex

algorithm integral.

Unfortunately, one cannot prove that the optimal solutibBquation (6.11) is
2-approximate to the optimal solution of Equation (6.9). d@ajecture that they
are at least very close. More importantly the optimal solutf Equation (6.11)
is a feasible solution of Equation (6.9). The problem of fimgda feasible solution
of a system of inequalities in integers in general is NP-detep Many good
heuristics for complex combinatorial optimization prabkeare starting from a

feasible solution and then iteratively improving the cuatrsolution by certain



rules. A good starting feasible solution such as the optsoaltion of Equation

(6.11) could save much computing time.

6.5 Computational Complexity and Approximation Algorithm

The main result of this section is to prove that the decisi@mblem of dominant
discrete pattern mining is NP-complete and present 2-appedion algorithms

to some special cases of the dominant discrete pattern gnomoblem.

6.5.1 Computational Complexity

We prove NP-completeness of the decision problem of domidigorete pattern

mining by a reduction from the decision maximum edge bidiguoblem.

Lemma 6.1 The decision maximum edge biclique problem is NP-compb&tk [

Theorem 6.2 The decision problem of dominant discrete pattern mininyfs

complete.

Proof. The decision problem of dominant discrete pattern miningiven a bi-

nary matrix 4,,., and a valuej to determine if there is a patteii such that
Zj S(A;.,Y) > 6. Given a dominant discrete patteyi it is easy to determine
whether the instance is true. Thus the decision problem wiigiant discrete pat-
tern mining belongs to NP. In the previous section, we shaivatithe dominant
discrete pattern mining problem is a generalization of tagimum edge biclique
problem, the decision version of which is NP-complete. €fae, the decision

problem of dominant discrete pattern mining is NP-complete
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6.5.2 Approximation Algorithm

We will study three special cases of the dominant discreteramining prob-
lem and present approximation algorithms for them. Befanaglthat, we first

introduce a result.

Lemma 6.2 Any integer linear programming problem with variables subject
to m linear constraints with at most two variables per inequaliand with all
variables bounded between 0 afidhas a 2-approximation algorithm which runs

in polynomial timeO (mnU?log(Un*m)) [26].

Hochaum et al. in [26] present a 2-approximation algoritomiriteger linear
programs with at most two variables per inequality. We byi@fkroduce this
algorithm here. It transforms the integer program into a otone integer system
first 1, computes an optimal solution for it, and then modifies tisailtevia some
simple rule to obtain a feasible solution to the originallppeon, which is also a

2-approximate solution.

Case 1l:w; = 1 andwsy > T whereT is the maximal number of entries with

the value of 1 in a row ofl.

As we have shown in the preceding section, the dominantetespattern min-
ing problem withw; = 1 andw, > T is equivalent to the maximum edge biclique
problem. Hochbaun in [25] gives a linear programming foratioh for the edge

weighted biclique problem which is to delete from a biparttaph{V;, V5, E'},

1For the definition of a monotone integer system, refer to tigep[24].
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a minimum weight collection of edges so that the remainingesdnduce a com-
plete bipartite graph. By slight modifications, we obtainrear programming

formulation for our special case as below.

27 — (Xi+Y;) <0, for Aj; =1 (6.12)
s.t. XZ —}—Y; S ]., fO’I“ Aij =0

Becausev, > T, XY cannot cover 1’s entries iA. In otherwordsX,Y; = 0
if A;; = 0, which is guaranteed by the constraint§&t +Y; <1, for A;; = 0}.
The objective functiorEAij:1 Z;; counts(4, j) such that both4;; andZ;; are 1.
Z;; can be 1 if and only if bothX; andY; are 1, which is guaranteed by the first

constraintse{27;; — (X; +Y;) <0, for A;; =1}.

The constraint oRZ;; — (X; + Y;) < 0 can be spit into two equivalent con-
straintsZ;; — X; < 0 andZ;; —Y; < 0. The similar skill is also used in [25]. Then
Equation (6.12) can be put in the form with at most two vagahper inequality

as below.

max E Zij
A

ij=1

Zij — X; <0, for Ay =1
Zi; —Y; <0, for A4;; =1
Xi+Y; <1, for Ai; =0~
X.,Y;, Z;; € {0,1}

(6.13)
s.t.

It naturally leads to the following theorem.

Theorem 6.3 The dominant discrete pattern mining problem with = 1 and
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we > T'is 2-approximable.

Case 2:w; > T whereT is the maximal number of entries with the value of 1

in a row of A.

wy > T enforces that a patteiri can only be present in its subset. In the pre-
ceding section, we have shown that the dominant discreterpahining problem
with w; > T is equivalent to finding a maximum weight biclique from a com-
plete weighted bipartite graph. In which, the weight for duges corresponding
to entries with the value of 1 id is 1 and the weight for the other edges-is);.
It is a special case of the edge weighted biclique problemietuin [25]. Again
by modifying the linear programming formulation for the edgeighted biclique
problem provided in [25], we obtain a linear programmingnatation for our

problem as below.

max Z Zz'j — Z wQZij
A

Z'j:l AijZO

Zij— X; <0 (6.14)
s.t. Zij — Y} S 0
Xi7Y}7Zij S {07 1}

Equation (6.14) is similar to Equation (6.13), except tifgthe constraint set
of X;+Y; <1, for A;; = 0is deleted because it is not necessary, and the weights
of {Z,;} are replaced with 1 andw, accordingly. Every inequality constraint of
Equation (6.14) has only two variables. Obviously the apjpnation algorithm

presented in [26] applies to it. We state it as below.

Theorem 6.4 The dominant discrete pattern mining problem with > 7' is 2-

approximable.
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Case 3:w; = 1 andwy = 1.

The dominant discrete pattern mining problem with = 1 andw, = 1 is
equivalent to the rank-one approximation problem. A 2-agjnation algorithm
via linear programming relaxation is proposed by Shen ehdb9]. For simplic-

ity, we skip its details.

6.6 Adaptive Tabu Search Heuristic

A tabu search heuristic is presented for the dominant despattern mining prob-
lem. For large-scale problems running time for mathembgicegramming is al-
ways an issue. A 2-approximation algorithm sometimes caprozluce satisfac-
tory results in practice. The dominant discrete patternmgiproblem essentially
is a combinatorial optimization problem. For such type aflppem heuristics
usually bring good practical performance. An iterativersic is employed for
the rank-one approximation problem by both [59] and [343.dé&sic idea is that
starting from a feasible solution of patterhand presence vectof, alternatively
fixing one of them and then searching for the best solutiomefcbunterpart till
both are stable. The only difference between [59] and [3#jas in [59] instead
of a random starting solution the starting feasible sotuisothe optimal solution
of Equation (6.11), which is 2-approximate to the optimduson of the origi-
nal problem. Their iterative heuristic can be viewed as adyéheuristic, which
greedily picks a neighboring solution at each iteratione @rawback with greedy
heuristics is that it is easy to reach local optimums, ane@aaching it the solu-

tion cannot be improved any more.

To address the local optimum issue, we present an adapbueéarch heuris-
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tic. Tabu search is a mathematical optimization methodsdeatially belongs to
the class of local search techniques as well. But it enhatheeperformance of
a local search method by using memory structures. When anfgatsolution

has been determined, it is marked as "taboo” so that thei#igpdoes not visit
that possibility repeatedly. In Section 6.4, we have shdvat the dominant dis-
crete pattern mining problem can be formulated as an un@net quadratic bi-
nary program. In literature, tabu search has been sucdigssfoployed to solve
guadratic binary programming problems [21]. This is anotie@ason why we

choose tabu search.

The dominant discrete pattern mining problem is given aryinaatrix A to

maximize) . S(A;,Y). Itis easy to computé(A4;.,Y) onceY is determined.

The adaptive tabu search approach taken here is a modificdtibe adaptive
memory tabu search presented in [21]. The basic proceduoceiroalgorithm
is as following. It starts with an initial solution df and then goes through a
series of alternative constructive phases and destrystises. In the constructive
phases, progressively set 0 component®s @b 1, while in the destructive phase,
progressively set 1 componentsiofto 0. At each iteration, one componentiof

is chosen and its value is flipped.

A greedy rule would be choosing the component by changingmwiniproves
the objective function the most. However, to avoid visitsmme solutions re-
peatedly, frequency and recency information is utilizedegaency information
is aboutcritical solutionsencountered to date. A critical solution is the solution
at which the next move (either add 1 or drop 1) causes the tgecnction to

decrease. Such an event is calledtitical event Recency information is about
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span number of further steps after a critical event
span* maximum value okpan
Dir direction on changing the value gfan
Dy penalty weight from the recency tabu list
Dr penalty weight from the frequency tabu list
IterCount count of total iterations
IterCount* maximum value of ter C'ount
IterSpan count of iterations at the current valueglun
t scale parameter on the maximum valud @frSpan

Table 6.1. Parameter Descriptions

Algorithm 6.10 Tabu Search Algorithm
Input: A, IterCount*, p,, py, span*, t,
Output: X,Y;
1. Y=0, Y;.+=0, [IterCount=0, span=1, Dir=increase Count=0,
Iter Span=0;
2: while IterCount < IterCount* do
3: Conduct the constructive phase;
4:  Conduct the transitive phase;
5.  Conduct the destructive phase;
6
7:

Conduct the transitive phase;
end while

critical solutions recently visited. Two pieces of infortiea are stored in two tabu
lists respectively. A greedy approach would stop at a @littwent. But the tabu
search heuristic taken here would keep moving. The numbg&mrtfer moving
steps is based astrategic oscillation Such a scheme would enable the solution
to step out some local optimums. The amplitude of osciltgtiao other words
the number of further moving steps, is determined by a paemspan The
span parameter is fixed for a certain number of iterationstla@a changed in a
systematic fashion. To manage the valusmdn an additional transitive phase is
added between each constructive phase and each destplase So technically

speaking the adaptive tabu search approach consists effiheses.
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The general structure of the tabu search approach is as@diil Algorithm
6.10. Parameter descriptions are provided in Table 6.iabarspan determines
the further steps that can be made after encountering eatrélution.span* is
an input parameter, limiting the maximum valuesptin. The value ofDir indi-
cates the direction of changing the valuespéin, either increasing or decreasing.
pr andp; are penalty weights on information derived from recency faeguency
tabu lists respectively. Its usage will be elaborated ladariable IterCount
counts the total iterations to datéterC'ount™ is an input parameter limiting the
maximum value of ter Count and hence the algorithm runtim&.er Span counts
iterations that have been made at the current valug®@f. ¢ is an input scale pa-
rameter on the maximum value éfer Span. We explain it explicitly later. The
termination condition of Algorithm 6.10 is the total numlméiterations less than
IterCount*. It could be replaced with a termination condition on thetime. In

each loop, three phases are traversed in order.

6.6.1 Constructive Phase

In the constructive phase, we progressively pick a 0 compiookeY and flip
it to 1. The intuitive component-picking policy is to choade component by
flipping which contributes the largest net increase to theailve function value
> S(A;,Y). But we want to avoid repeatedly visiting some solutions.thie
end, two tabu lists are utilized to influence the search m®c&he recency tabu
list is a vector denoted by, which is the sum of the most recentritical solu-
tions. At each critical event, it is updated as beldw: = V, + Y (current) —

Y (current — k), whereY (current) denotes the current critical solution and



Y (current — k) denotes the critical solution encountered beforgitical events.
The frequency tabu list is the sum of all critical solutiom&ee@untered so far. At
each critical event, it is updated as beloWi = V; + Y (current). To avoid re-
peatedly visiting some critical solutions, we give cerfagémalty on a 0 component
which was 1 in recent critical solutions or was 1 frequemtlyhie past critical so-
lutions. So the final evaluation on a 1 component atjthgosition is determined

by the following measure:

fi(G) = 22S(Ai,Y +ej) =32, 8(A:,Y)
ok Vi) — py < Vi) | (6.15)

In above; is a unit vector with thgth entry of 1,p, andp; are penalty weights,

andV,(j) andV;(j) are thejth entry ofV, andV; respectively.

The details of the constructive phase are as described iorithign 6.11. It
consists of two parts. The first part is to iteratively flip tb@mponent which
maximizes the evaluation formula of Equation (6.15). Theoge part is to make

span more iterations after a critical event occurs.

6.6.2 Destructive Phase

In the destructive phase, we progressively pick a 1 compganén and change it
to 0. The evaluation measure for component picking is asabdlois similar to

Equation (6.15) except that we add penalty terms.

fo() = 228(Ai,Y —ej) = >, S(Air,Y)
ok Vilj) + p1 Vi) | (6.16)

The details of the destructive phase is as shown in AlgorBhi®. It is same

as Algorithm 6.11 except that the component picking ruléhsnged.
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Algorithm 6.11 Constructive Phase
1: while |Y'| < ndo
2:  Findj’ maximizing f;(j) subject toY (j) = 0;

3 if f1(j') > O0then

4 Y =Y +ej;

5 IterCount = IterCount + 1;

6: Updatey;.,; if necessary;

7. endif

8: end while

9: while CountSpan < span and|Y’| > 0 do

10:  j' = argmazyj)=1(f2(j));

11 if fi(j') < 0then

12: UpdateV, andV/;

13:  endif

14: Y=Y+ €j;

15:  CountSpan = CountSpan + 1,
16:  IterCount = IterCount + 1;
17:  UpdateY,..; if necessary;

18: end while

19: C'ountSpan = 0;

6.6.3 Transitive Phase

If span is an unchanged constant, the constitutive phase and ttrectese phase
constitute a complete tabu search algorithm. A lasgen would enlarge the
search space at the expense of increasing runtime. But wsthadl span the
algorithm might not be able to find a satisfactory solution.afldress the issue,
adaptive tabu search adjusts the values@fn in a systematic fashion. We fix
the value ofspan for a certain number of iterations and then increase it by 1.
Keep doing this untikpan reachespan*, the maximum value predefined. After
that, we gradually decrease the valuespin by 1. Therefore, the value apan

will transverse back and forth between 1 apdn*. The complete procedure of

transitive phase is as described in Algorithm 6.13.
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Algorithm 6.12 Destructive Phase
1: while |Y'| > 0 do
2:  Findj’ maximizing f»(j) subject toY (j) = 1.

3 if fo(j') > O0then

4 Y=Y —ej

5 IterCount = IterCount + 1;

6: Updatey.,; if necessary;

7. endif

8: end while

9: while CountSpan < span and|Y’| > 0 do

10:  j' = argmazyj=1(f2(j));

11 if fo(j') < O0then

12: UpdateV, andV/;

13:  end if

14: Y=Y - €j,

15:  CountSpan = CountSpan + 1;
16:  IterCount = IterCount + 1;
17:  UpdateY,..; if necessary;

18: end while

19: C'ountSpan = 0;

6.7 Experiments

In this section, we illustrate the properties of weighteakrane binary matrix
approximation by implementing it on synthetic data. Thetkgtic data are cre-
ated as following: (i) Generate eight random binary row gestsuch that each
vector is of sizel x 50 and has exactl0 x p components of 1, whergis the
parameter determining data sparseness and wjithin; (i) Generate 200, 200,
150, 150, 100, 100, 50, and 50 copies respectively for eatheogight vectors,
and put them together to constitute a binary matrix with i@ x 50. There-
fore the resultant binary matrix contains eight discretégoas;(iii) Flip the value
for each cell in the binary matrix with probabiligy= &, wheref is the parameter

determining noise ratio and is withjf, 1].



Algorithm 6.13 Transitive Phase

1: if Dir = increase then
2. if span > span* then

3: span = span™;
4: Dir = decrease;
5: IterSpan = 0;
6. else
7 if IterSpan > t * span then
8: span = span + 1,
9: IterSpan = 0;
10: end if
11:  endif
12: else
13:  if span = 0 then
14: span = 1;
15: Dir = increase,
16: IterSpan = 0;
17: else
18: if IterSpan > t * span then
19: span = span — 1;
20: IterSpan = 0;
21: end if
22:  endif
23: end if

We first study the performance of the adaptive tabu searchstieuvith re-
spect to its speed of convergence. Parameter settingsdfadidptive tabu search
heuristic are asp, = 1, py = Herlount gpqn* = 3, IterCount* = 500, and
t = 3. We run it on two synthetic binary matrices with generatiraggmeter
values as{p = 0.3, = 0.2} and{p = 0.3, = 0} respectively. The experi-
mental results are as shown in Figures 6.3a and 6.3b. Ind-&)8a, it shows that
the adaptive tabu search heuristic only takes about 15idesto reach a discrete
pattern with significance value of 200. The pattern is thégloptimum solution,

because according to the data generating process with ibe parametef = 0

the dominant discrete pattern covers 200 row vectors. InrEi§.3b, it shows
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Figure 6.3. Speed of Convergence

that the adaptive tabu search heuristic only takes aboutetations to reach a
pattern with significance value of about 220. As no efficieaywo check if the

found pattern is dominant, but according to the data geingratocess, it should
be nearly dominant at least. Both graphs verify the high eagence rate of our

adaptive tabu search heuristic.

We then evaluate the performance of the adaptive tabu sé@atistic by
comparing it to the alternating iterative approach propgasg34] with respect to
approximation ratio. The approximation ratio measure fned as%
where f1; is the number of matching entries with the value offi, is the num-
ber of 1-becoming-0 errorgy; is the number of 0-becoming-1 errors, ghd||;
is the number of 1 entries in the original data. For a fair cangon, we let
penalty weighesy, andw, for weighted rank-one binary matrix approximation
be 1. Specific parameter setting for the adaptive tabu séenahistic is:p, = 1,
pr = W, span* = 3, IterCount* = 500, andt = 3. Regardingpy,

W means that the frequency tabu list has more and more impaat Wie

algorithm proceeds.

We compare our algorithm with the alternating iterativerapgh on various
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datasets. We first generate data by fixing the noise tatmbe 0.2 and vary-
ing the density parameter valpdrom 0.1 to 0.5. As both algorithms require an
initial solution. To be favorable to the alternating itératapproach, we employ
the Partition and Neighborprocedures designed for the alternating iterative ap-
proach proposed in [34] to generate initial solutions. Txgeeimental results are
as shown in Figures 6.4a. The observation is that the tabulséauristic per-
formances significantly better than the alternating iteesipproach in any case.
According to the data-generating process, the dominactetes pattern should
cover about 20 percent of the whole binary matrix. So the mari approxima-
tion ratio is around 0.2. Experimental results show thatath@ptive tabu search
heuristic produces nearly optimal solutions, while thefgrenance of the alter-
nating iterative approach is unsatisfactory. We then gdaetata by fixing the
density parameter valyeto be 0.3 and varying noise from 0 to 0.4. The results is
as shown in Figure 6.4b. They again confirm the conclusiatttiesadaptive tabu

search heuristic has significantly better performance.

Next we investigate the impact of penalty weights on theiguahd proper-

ties of mined patterns. Two measures could be employed loateathe quality



136

of mined patterns. The first measure is the number of pattdrne objective of
rank-one matrix approximation is to reduce the size of aagdata by replac-
ing individual records with their corresponding patterSa less patterns means
more succinct approximate data. The second measure isxapatteon ratio. It
is always desirable to retain the original data informatrotihhe approximate data,
because severely contaminated data would hardly produceanvincing data

analysis result.

Again we run our adaptive tabu search heuristic on syntluztta with the
same data-generating process as before. First, we let w, and increase their
values gradually. We run our pattern mining algorithm oriauas data with dif-
ferent data-generating parameter settings. The expetan@sults are as shown
in Figures 6.5a-6.5d. In these four graphs, the same oligmristhat by increas-
ing penalty weights approximation ratio increases coestst. However, with
conventional rank-one binary matrix factorization, apqmation ratio is not ad-
justable. When penalty weights are increased to 4, the appadion ratio can be
improved to be nearly 1, while the required number of pattégstill significantly

less than the number of original records.

We then fix one of penalty weights and vary the other to ingas#i the impact
of penalty weights on error type distribution. First, we fix to be 1 and then
vary w;, from 1 to 4. The experimental result is as shown in Figure .6.6e
is clearly observed that type | error rate decreases censligtwith increasing
wi. Whenw; = 4, the type | error rate is as low as 0.1. We then«fixand
vary we. The experimental result is as shown in Figure 6.5f. The skatteis

observed. It supports the second main advantage of weightddone binary



137

matrix factorization. By adjusting the value of andws, users can easily reflect

their preferences on error type distribution.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

This dissertation studies BMD, extended BMD and weightetkd@ne BMD.
BMD has many applications including text mining, role migjrclustering, and
information retrieval. Important BMD variants are extesdy investigated and a
general integer programming framework for studying BMDiamts is provided.
Extended BMD improves the conventional BMD model by inchglthe set dif-
ference operation, which not only makes the decomposittution more inter-
pretable, but also decomposes an input Boolean matrix inra@ swccinct way.
Weighted rank-one BMD provides a flexible approach to mirsemite patterns
from binary records. It allows users to effectively impokeit preferences on
the approximation level of mined discrete patterns and tha &/pe distribution
in the approximation. For each presented Boolean matripmeosition vari-
ant, computational complexity is performed, integer paogming formulation is
given, and alternative approaches such as approximagon#ims and heuristics
are provided. Extensive experiments on synthetic and edalskts are conducted

to evaluate the performance of our proposed algorithms.

There are still a lot of future work remaining. We will nameeavfhere. First,
there are some other interesting applications of BMD thaehet been inves-

tigated. For example, BMD can be applied to social networkyais, because
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social network data can be represented as a Boolean mattia BMD solution

identifies cliques among the data. Another application erlepping clustering
which is important in many domains such as DNA microarraylyais. A BMD

solution divides observed Boolean records into clustefslena record can be-
long to multiple clusters. Second, in reality data oftenngeaover time. So the
real observed data could be a three-dimensional Boolearixm@here is no any
existing approach that can effectively discover patteromfthree-dimensional
Boolean matrix. In the future, we plan to look at those indérng remaining

problems.
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