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ABSTRACT OF THE DISSERTATION
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by Kaveh Akram

Dissertation Director: Roger Klein

Econometric models usually relate a known function of a dependent variable, Y ,

with some observable covariates X. A misspecified transformation function, however,

can cause inconsistency. The estimated parameters will be biased and inconsistent.

The marginal effects and the elasticities calculated using these estimated parameters

can be far from the truth and any inference based on them will be misleading.

The problem of misspecification can be resolved simply by estimating the trans-

formation function. There are different methods of estimating the model based on the

parametric assumptions on the transformation function, or the distribution of the er-

ror term, or both. In a completely parametric setup, both the transformation function

and the distribution of the error term are known up to a vector of parameters. The

Box-Cox transformation is a good example of using parametric transformation func-

tions. It is also possible, however, to estimate the transformation function without

parametric assumptions.

In this dissertation two Hausman tests for transformation functions are proposed

where validity does not depend on distributional assumptions. These tests compare

estimators that remain consistent regardless of the transformation function to an
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estimator whose consistency depends on the transformation function. The proper-

ties of these test statistics are studied in finite sample and under different designs.

The behavior of these test statistics is studied both when the adopted transforma-

tion function is correct and when the true transformation function deviates from the

hypothesized one.

This dissertation applies the semiparametric transformation function test to study

reported crimes in the U.S. metropolitan areas. Most studies in this literature adopt

a logarithmic transformation of reported crimes. There is no theoretical justification

for this specific function. In addition, it is likely that city level crime is misreported

(underreported). Therefore, testing is particularly relevant. I show that, although

for particular types of crimes the log function is appropriate, the same log function

cannot be used for broadly defined categories of crimes.
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Chapter 1

Introduction

It is often of interest to estimate the price elasticity of demand or the elasticity

of crime with respect to police force. It would be tempting to take the logarithm

of quantity or the logarithm of crime, and use it as the dependent variable in a

regression on the logarithm of price or the logarithm of police force. The estimates

from these regressions could be interpreted as the elasticities of interest, and the

use of the logarithmic transformation would simplify an otherwise more cumbersome

calculation. In other settings, for example in wage regressions, the use of the logarithm

of the dependent variable has been justified to obtain the normality of the error term.

Such transformations of the dependent variable also have been justified to produce

a better fit of the model to the data. In all these examples, for various reasons, the

researchers have used a transformation function (e.g. the logarithm) of the dependent

variable.

If, however, the transformation is incorrect, the estimators will be inconsistent.

Suppose the true transformation function is To. i.e.:

To(Y ) = Xβ + u

but instead, the parameters are estimated in a misspecified model. i.e.:

T (Y ) = Xβ + ε,

where T is not a linear transformation of To.
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Figure 1.1: True Transformation Function Vs. Used Transformation Function

Then the error term in the misspecified model is:

ε = u+
[
T (Y )− To(Y )

]
The difference between the two functions T (Y ) and To(Y ) is now part of this

error term. This part of the error term depends on Y and consequently on X. The

induced endogeneity is the reason why using an incorrect transformation can lead to

inconsistent estimators.

To illustrate the magnitude of the bias, assume that the true model is given as:

ln(Y ) = 0.5X + 1 + ε,

However, suppose that we misspecify the transformation function and estimate:

Y = Xb+ c+ u,

With X generated as a normal random variable centered at zero and with the
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variance of 9 and ε generated as a standard normal random variable , The above

model was estimated in a Monte Carlo with N = 1000 observations and R = 1000

replications. For the parameter estimates, the results were as follows:

Monte-Carlo Results Bias Std.Error

Estimated Slope 6.32 2.12

Estimated Intercept 12.69 2.00

The bias and the standard error when the true transformation function is used

are shown in the following table.

Monte-Carlo Results Bias Std.Error

Estimated Slope −0.0002 0.0107

Estimated Intercept −0.0006 0.0308

As seen the estimated bias and standard error are larger in the misspecified model;

However, in comparing results across models, it is difficult to compare coefficients.

In the true model, the coefficient on X describe the percentage change in Y for

a one unit change in X, while in the misspecified model, the coefficient describes

the change in Y for a one unit change in X. Accordingly, rather than comparing

coefficients, we turn to a comparison of marginal effects. Namely, in both models we

report the percentage change in Y for a one unit change in X. In the true model,

this percentage change is constant and is equal to the estimated slope; However, this

percentage change is not constant in the misspecified model and depends on the value

of X. The percentage changes of Y when X is increased by one unit are presented in

Table 1.1. These marginal effects are calculated using the average estimates for the

intercept and the slope in the Monte Carlo study. As seen in Table 1.1, the marginal

effects can be very different in the misspecified model compared to the true model.

The reason the marginal effect is very different at X = −2 is that the marginal effect
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in the misspecified model is equal to b̂

X∗b̂+ĉ and in our Monte Carlo ĉ happens to be

very close to 2b̂, thus the denominator of the marginal effect is very close to zero.

Table 1.1: Marginal effects in the true and the misspecified models

X -3 -2 -1 0 1 2 3

The marginal effects in

the misspecified model

-1.0059 169.77 0.9941 0.4985 0.3327 0.2496 0.1998

The marginal effects in

the true model

0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997

Transformation functions are very common in many different fields of study. There

are different justifications why the dependent variable is transformed. For example,

a logarithmic transformation is usually used when the dependent variable is positive

and skewed to the right. Logarithmic transformation also reduces the effect of outliers.

Such a transformation also tends to diminish the effect of heteroskedasticity. Prob-

ably the most famous example of using logarithmic transformation is Mincer’s wage

equation (Mincer, 1974). In such models, the logarithm of wage or earnings is used

as the left-hand-side variables with explanatory variables like education, experience,

gender, and race.

The logarithmic transformation is also used in health economics literature. In

many cases where the dependent variable is health care expenditure, health care

utilization, or number of hospital days, the log transformation is used. For example

in Zweifel et al. (1999), the logarithm of health care expenditure is used to reduce

the skewness of this variable. This paper studies the relationship between age and

health care expenditure.

In Bamezai et al. (1999), the logarithm of operating hospital costs is used as

the dependent variable in a study that analyzes the effect of health maintenance

organizations and preferred provider organizations on the cost of hospitals in different
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market structures.

In addition, the logarithmic transformation is used for variables like the length

of stay in hospital. The log transformation for such a variable is usually justified

because it is right skewed and can have a long right tail. For example in Robinson

and Luft (1985), where the impact of market structure on average hospital cost is

studied, the log transformation is used for the following dependent variables: length

of stay, number of outpatient visits, and inpatient admissions.

The logarithmic transformation is used in crime literature as well. This literature

will be discussed in more detail later in this dissertation. In most studies regarding

city level crime rate, the logarithm of crime or logarithm of crime rate are used as

left-hand-side variables. Some examples are: Glaeser and Sacerdote (1999), Levitt

(1997), McCrary (2002), Kelly (2000), and Lott and Mustard (1997).

The misspecification problems arisen by using a wrong transformation function

can be resolved by estimating the transformation function. There are different es-

timation methods that are based on parametric assumptions on the transformation

function, on the distribution of the error term, or on both. In a completely parametric

setup, both the transformation function and the distribution of the error term are

known up to a vector of parameters. In these models, a “flexible function” is used as

the left-hand-side variable. In these setups, the shape of the transformation function

is assumed to be known up to a vector of parameters. The Box-Cox transformation is

a good example of using a parametric transformation function (Box and Cox, 1964).

The transformation functions in these models are as follow.

T (Y ) =


Y λ−1
λ

if λ 6= 0

ln(Y ) if λ = 0

(1.1)

for Y > 0

or
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T (Y ) =


(Y +λ2)λ1−1

λ1
if λ1 6= 0

ln(Y + λ2) if λ1 = 0

(1.2)

for Y > −λ2

Box-Cox transformation is widely used because this family of functions includes

both the logarithmic transformation and the linear transformation (no transforma-

tion). For example Box and Cox themselves studied the survival time of animals in a

3×4 factorial experiment where the factors are 3 poisons and 4 treatment. Although

the Box-Cox transformation is probably the most common flexible function, there are

many other flexible functions in the literature. Most of these flexible functions are

modifications of the Box-Cox transformation. Some of these flexible functions are

presented in John and Draper (1980), Bickel and Doksum (1981), and MacKinnon

and Magee (1990).

Bickel and Doksum argued that Box-Cox transformation requires Y to be positive

as Y λ is not real for negative values of Y , unless λ is an integer. Also the left-hand-

side variable in such a model is bounded from below (when λ > 0). One way to

extend the model in (1.1) is a model in which the dependent variable can also take on

negative values. Bickel and Doksum suggested the following transformation function:

T (Y ) =
|Y |λsign(Y )− 1

λ
(1.3)

where λ > 0 and Y ∈ R.

John and Draper argued that a power transformation such as Box-Cox transfor-

mation eliminates the skewness even when such a correction is not necessary. They

suggest the alternative “modulus” transformation:
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T (Y ) =


sign(Y ) (|Y |+1)λ−1

λ
if λ 6= 0

sign(Y )ln(|Y |+ 1) if λ = 0

(1.4)

where Y ∈ R.

They argued that such a transformation is more appropriate for distributions that

are not normal but almost symmetric. They also applied this transformation in a 4×5

factorial experiment of comparing the performance of expert inspectors in assessing

the thickness of certain types of piping. The experiment was done with 4 different

locations on pipes and 5 equally qualified inspectors.

MacKinnon and Magee argued that the original Box-Cox transformation cannot

be used when the dependent variable takes on negative values or zero. Also, the

assumption of normality of the error term contradicts the fact that the left-hand-side

variable is bounded from below when λ > 0 and is bounded from above when λ < 0.

To overcome these problems, they suggested the following transformation function:

T (Y ) =
H(αY )

α

Where the function H satisfies the following conditions:

H(0) = 0,

H
′
(0) = 1, and

H
′′
(0) 6= 0

However, such a family of functions does not include logarithm. The proposed

function by MacKinnon and Magee was:

H(Y ) = sinh−1(Y ) = ln(Y +
√
Y 2 + 1)
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Using a flexible function can reduce the problem of misspecification. By allowing

the transformation function to take on different shapes, we can choose the closest

function to the true transformation function in the flexible function family. While a

flexible function would appear to reduce the problem, it requires the distribution of

the error term to be correctly specified. If the distribution of the error term is not

correctly specified, the estimators are typically inconsistent. Since the distribution

of the error term is seldom known, it is problematic to employ an estimator that

depends on a correct error distribution.

In order to see why in a flexible function model, both the error distribution and

the transformation function may need to be correctly specified, first consider the

following model without a flexible function:

T0(Y ) = Xβ + ε

If there are no unknown parameters in T0, then we can estimate the above model

by OLS and obtain consistent estimates provided that we correctly specify the trans-

formation function. The distribution of the error is irrelevant in this case, provided

that it does not depend on X; However, in this case there is no flexibility in the

transformation that would allow it to adapt to the data. Now, consider a wider class

of transformation functions that would allow their shape to adapt to the data:

T0(Y ;λ) = Xβ + ε

Here, λ is a parameter that alows the shape of the transformation to vary. While this

formulation provides needed flexibility in the transformation function, the distribution

of the error term now becomes important. If the above model is estimated by OLS,

it can be shown that the resulting estimator is not consistent.

To deal with the above inconsistency, one could employ maximum likelihood.
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However, to obtain the likelihood, we require the distribution of the error. We should

note that even if the error is normally distributed, the maximum likelihood estimator

will not be equivalent to OLS. When the value of λ is unknown, we construct the

likelihood from the conditional density of Y conditioned on X = x: f(y|X = x).

This distribution will not be normal even when the error term is normally distributed.

More formally, this density depends not only on that for the error, but also on the

jacobian of the transformation, which is not constant and generally depends on λ.

To overcome this limitation, the models with parametric transformation functions

can also be estimated by allowing both the error distribution and the transformation

to have flexible functional forms. However, such flexibility can result in numerical

problems in estimating the model. Moreover, the true transfromation and error dis-

tribution may not fall in the class of flexible forms. In other words, the “flexible

functions” are not flexible enough to encompass all transformations and error distri-

butions. Therefore, it would be desirable to be able to estimate the parameters with

less assumptions on the transformation function.

It is also possible to estimate (up to location and scale) the transformation func-

tion with no parametric assumptions either on the transformation function or the

distribution of the error term (see Horowitz (1996), Klein and Sherman (2002)). In

these models, the consistency of the estimators neither depends on the form of the

transformation nor on the distribution of the error term.

However, because in most studies the transformation function is not estimated,

and a known function of Y is used as the left-hand side variable, this dissertation

tries to test the validity of the employed transformation function without estimating

it. Moreover, typically the transformation function is not of direct interest. Rather,

we are only interested in it to the extent that it enables us to correctly estimate

marginal effects. In proposing a test below, one of the estimators that we will study

will provide correct marginal effects without having to even specify or estimate the



10

transformation function.

The tests constructed in this dissertation are Hausman tests which compare two

estimators: one is consistent only if the used transformation function is the true trans-

formation function, and one is consistent regardless of the form of the true transfor-

mation function (provided it is monotone). Two different tests are proposed in this

dissertation based on two different ways of deriving the latter estimator. The test is

constructed once using an ordered estimator and once again using a semiparametric

least squares estimator. While the ordered test presented in this dissertation uses

a semiparametric estimator, it is important to note that this test can also be done

parametrically where the distrubution of the error term is specified. For example

under normality or logistic assumptions, such tests would use the ordered probit or

the ordered logit estimators as estimators whose consistencies do not depend on the

employed transformation function. In applications, it is important to have good para-

metric tests of transformation function in addition to ones based on semiparametric

estimators. Accordingly, while the focus of this dissertation will be on tests based on

semiparametric methods for which consistency does not depend on the form of the

transformation function, we will also discuss in detail how to perform such tests using

parametric ordered models.

Although these tests can be used in various models, testing the transformation

function is particularly relevant in some specific cases. First, such tests are partic-

ularly important in models where there is no theoretical justification for the trans-

formation function that is used. Almost all examples in economics suffer from this

problem. Economic theory usually has little to say about the functional form of the

relationship between the dependent variable and the explanatory variables. Economic

theory sometimes suggests that some variables might be related and in some other

cases also suggests the direction of the relationship, but almost never specifies the

functional form of the relationship. One example can be the wage equation where the
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logarithm of wage is used as the dependent variable. The theory might suggest that

human capital and consequently education, are related to wage. The theory can also

suggest that there is a positive relationship between education and wage; However,

the functional form of the relationship is not specified through economic theory.

Second, transformation models are important where the dependent variable is

underreported or overreported. In these models, the reported value of the dependent

variable is used instead of the actual value of the dependent variable. In most cases, it

is plausible to assume that the reported value of the dependent variable is a monotone

transformation of the actual value of the dependent variable. By using the reported

value rather than the actual value, the transformation function which relates the

actual value to the reported value is neglected and these models can suffer from the

misspecification of the transformation function. These models can be written in the

following way:

Y actual = Xβ + ε

but since Y actual is not known, the reported value of Y , Y reported, is used.

Y reported = Xβ + ε (1.5)

if Y actual = T (Y reported), then (1.5) suffers from the misspecification of the trans-

formation function.

Some examples where variables are underreported are: crime, traffic accidents

with minor damages, and health status. Self-reported data would seem to be particu-

larly susceptible to misreporting isues. In the case of crime, which forms the basis for

the application employed here, the degree of missreporting is probably not the same

for all categories of crime. For example one expects that homicide suffers less from

underreporting compared to larceny theft. An example of an overreported variable is
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reported demand for future products from survey data.

The ordered test developed in this dissertation is applied to study the logarithmic

transformation of city level crimes. Most studies in this area use the logarithm of crime

as the left-hand-side variable, and there is no theoretical justification for this specific

function. Also as mentioned above, it is likely that city level crime is misreported

(underreported). This study shows that the logarithmic transformation function is

not rejected for most of the specific crime categories but is more likely to be rejected

for more aggregate categories.

This dissertation is organized as follows. In Chapter 2, the estimators needed

to construct the tests are presented. The estimators that remain consistent inde-

pendent of the shape of the transformation function are the semiparametric ordered

estimator and the semiparametric least squares estimator. Some of the properties of

these estimators are also discussed in this section. Furthermore, the test statistics

are constructed and their asymptotic properties are discussed. In Chapter 3, the

finite sample properties of these test statistics are presented using some Monte Carlo

experiments. In Chapter 4, an empirical application is presented. In this chapter the

validity of the logarithmic transformation function which is widely used in the study

of city level crime is tested. Concluding remarks are presented in Chapter 5.
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Chapter 2

Semiparametric Tests for Transformation

Functions

Economists often transform the dependent variable in the regression model. A com-

mon example is the log transformation of the wage equation

ln(Wage) = Xβ + u

or the log-log transformation imposed to calculate elasticities in a demand function.

ln(Quantity) = Xβ + η ln(Price) + u

In this example, if the logarithmic transformation is the true transformation of the

dependent variable, there is no misspecification and the estimators are consistent. For

example, η̂ can be safely interpreted as the price elasticity of demand in the second

model; However, if the true transformation in the demand equation is not logarithm,

it means that the demand curve does not have constant elasticity and η̂ can no longer

represent “the elasticity ” along such a demand curve.

In general, a transformation function model is a model where the expectation of

a monotone function of the dependent variable is linearly related to the explanatory

variables. In other words, in models where the dependent variable itself is not linearly

related to the explanatory variables, a transformation function can help us to find a

model in which a transformed version of the dependent variable has the desired linear
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relationship with the explanatory variables.

As mentioned before, in this chapter three test statistics are developed to test the

validity of the transformation function. One of these test statistics is based entirely

on existing and widely used parametric estimators in the literature: OLS and the

parametric ordered probit. The other two estimators avoid parametric assumptions

on error distributions by employing semiparametric methods.

A Transformation function model has the following representation:

T (Y ) = β0 +Xβ + u, (2.1)

where Y is the dependent variable, T is a monotone function1, X = (X1, . . . ,Xk)

is a full rank matrix of independent variables, β is a vector of unknown parameters,

and u is an error term with distribution F .2 Observations are i.i.d., and X and u

are independent.

As explained in the introduction, although T can be approximated using a flexi-

ble function parametrically or estimated up to location and scale semiparametrically,

most researchers often use a known transformation of Y as their left-hand-side vari-

able. The main objective of this paper is to test whether or not the used transforma-

tion is correct. Thus, the following hypothesis is tested:

H0 : T (Y ) = T0(Y ) vs H1 : T (Y ) 6= T0(Y )

where T0(Y ) is the hypothesized transformation function.

As discussed in the introduction, logarithmic transformation function is used in

many different studies. By setting T0(Y ) equal to ln(Y ) for example, one can test if

1Note that T does not have to be smooth or even continuous. Note also that the left-hand-side
of equation (2.1) is the vector [T (Y1), . . . , T (Yn)]′.

2This distribution is unknown in a semiparametric framework.
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such a transformation is appropriate. Even in models where the dependent variable

itself is used as the left-hand-variable, there exists a transformation function which is

the identity function. By setting T0(Y ) equal to Y , one can test whether or not the

model needs a transformation function which is not equal to the identity function. In

other words, we will know if Y itself is linearly related to the explanatory variables

or if a transformation of Y has such a linear representation.

As mentioned before, the transformation function can be estimated semiparamet-

rically up to location and scale. Since the transformation function can be estimated,

it is tempting to construct a test statistic based on a measure of difference between

the estimated transformation function and the hypothesized transformation function.

In this work, however, this method is not used. The test proposed in this disserta-

tion is a Hausman test. To construct a test statistic using Hausman’s method, two

estimators are needed: one is consistent only if the used transformation function is

the true transformation function, and one is consistent regardless of what the true

transformation function is. The Hausman test is better than a test which is based

on a measure of difference between an estimated transformation function and the

hypothesized one, in the sense that in a Hausman test the comparison of interest

is between two k dimensional vectors of parameters whereas in the other test, two

functions should be compared with each other. Also, the convergence rate is faster

for a k dimensional vector of estimated parameters than for a function. When testing

the validity of a transformation function using a Hausman test, the transformation

function in fact is not estimated. This can also save computation time.

In this chapter, two semiparametric estimators and one parametric estimator that

remain consistent if an incorrect transformation function is used are presented. Let

θ̂∗ be an estimator that is consistent whether or not the null hypothesis holds (i.e.

whether or not the employed transformation function is the true transformation func-

tion). Let θ̂ be an estimator for the same parameter vector of interest under the null
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hypothesis. Both of these estimators are close to the truth under the null and a

distance measure of (θ̂∗ − θ̂) is close to zero; However, while θ̂∗ remains to be close

to the truth under the alternative, θ̂ deviates from the truth and a distance measure

of (θ̂∗ − θ̂) deviates from zero; Hence based on how different θ̂ is from θ̂∗, one can

judge the validity of the employed transformation function. The tests presented in

this dissertation are based on a distance measure between an estimator that remains

to be consistent under the alternative and an estimator that is consistent under the

null.

2.1 The estimator that is consistent under the null

This estimator can be chosen among all consistent estimators under the null. One

possibility would be to make no assumptions on the distribution of the error term and

employ OLS under the assumption that the transformation function is correct. An-

other possibility is to assume a distribution for the error term and employ maximum

likelihood. For example, if we assume that the error is i.i.d. distributed as normal

and that X is exogenous, then the following log-likelihood can be used to estimate

the unknown parameters:

Q(β0,β, σ) = − lnσ2 − 1

2

1

n

n∑
i=1

(T0(Yi)− β0 −Xiβ

σ

)2

. (2.2)

Notice that if we maximize the above likelihood, then we must minimize the sum

of squared residuals. In other words, and as is well known in the literature, under

normality and with no unknown parameters in the transformation function, the OLS

estimator and the maximum likelihood estimator coincide. If the error term is not

normally distributed, then we can still employ the OLS estimator in constructing our

test, but we need to be careful not to rely on this estimator being fully efficient (as

would be the case if it were a maximum likelihood estimator). As discussed before, if
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T0 is not the true transformation function, this misspecification causes the error terms

in the model to be related to the explanatory variables. Such an induced endogeneity

is the source of inconsistency of the estimators when the transformation function is

misspecified.

The inconsistency of the estimators in the presence of misspecified transformation

function is desirable in the sense that in order to construct a Hausman test, one also

needs an estimator that becomes inconsistent if the null hypothesis is not true. By

comparing this inconsistent estimator (when the null is false) with a consistent one,

one has a natural test for the transformation function.

We must emphasize again that this particular likelihood also assumes the normal-

ity of the error term; However, even if the error term is not normally distributed,

this estimator is still consistent and asymptotically normal provided that the trans-

formation function is equal to the hypothesized transformation function. The reason

is although (2.2) is not the true likelihood function when the errors are not normally

distributed, the function in (2.2) still converges uniformly to its expectation, and the

expectation has a unique maximizer at the truth. These are the sufficient conditions

to prove the consistency of the estimator.

In the rest of this dissertation, this model is referred to as the “linear model”,

since one who uses T0(Y ) as the left-hand-side variable, believes that T0(Y ) is linearly

related to the explanatory variables.

2.2 Estimators that remain consistent under the alternative

In this work, we present three estimators whose consistency does not depend ont he

assumed form of the transformation function. One of these estimators is the para-

metric ordered model which assumes the error distribution is normal. The other

estimators are semiparametric and remain consistent regardless of the form of the
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transformation function or the form of the error distribution. One of them is a semi-

parametric ordered estimator and the other one is a Semiparametric Least Squares

(SLS) estimator. Although I focused more on these semiparametric estimators, it is

important to note that the ordered estimation can also be done parametrically and a

Hausman test can be constructed by comparing the parametric ordered estimator to

the linear estimator. This is important because most researchers are more familiar

with parametric estimators and also many computer packages provide these estima-

tors. Another advantage of a parametric estimator is that the computation time is

much shorter than of a semiparametic estimator. Therefore, in this section three

consistent estimators under the alternative are presented: the parametric ordered es-

timator, the semiparametric ordered estimator, and the semiparametric least squares

estimator.

2.2.1 The parametric ordered estimator

An ordered model can provide a consistent estimator of the parameters even if the

employed transformation function is not correct. The reason is that in an ordered

model, the value of the transformation function is not important. What is important

is the monotonicity of the function and the fact that the transformation function

preserves the order of the dependent variable. Intuitively, because T is a mono-

tone function, data can be sorted based on Y into some ranked categories, and the

unknown parameters can be estimated using an ordered model. This estimator is

consistent with any monotone transformation function, and its consistency does not

depend on whether or not the hypothesized transformation function is correct. The

reason is that any monotone transformation of the dependent variable preserves the

same ordinality of the sorted categories. It is not important whether or not this

monotone transformation is actually the true transformation function. As long as

one knows that the true transformation function is increasing (decreasing) and sorts
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the dependent variable, Y , ascendingly (descendingly), the estimator remains con-

sistent. The next few paragraphs formalize this intuition, which will apply to both

parametric and semiparametric ordered models.

To estimate the unknown parameters in the ordered model, first Y is categorized

into q quantiles. Let t1 = min{Yi}, t2, . . . , tq be the cutpoints of quantiles of Y , and

tq+1 = max{Yi}. Then, the monotonicity of T (in this case T is increasing) implies

that:

tj−1 < Yi ≤ tj iff T (tj−1) < T (Yi) ≤ T (tj) ∀j = 2, . . . , q + 1. (2.3)

Using equation (2.1) , equation (2.3) can be written as:

tj−1 < Yi ≤ tj iff T (tj−1) < β0 +Xiβ + ui ≤ T (tj) ∀j = 2, . . . , q + 1. (2.4)

Notice that (2.4) is the description of an ordered model with unknown cutpoints.

The dependent variable, Yi, falls in some ordered categories based on the value of a

linear index, β0+Xiβ. The reason why the cutpoints are unknown is that although tjs

are known, T , the true transformation function, is not known. Since it is impossible to

seperate β0 from the unknown cutpoints, β0 is not identified in these ordered models.

For example adding the same constant to both the unknown cutpoints and β0 will

keep the model the same, thus β0 is not separately identified. σ is not identified

either. For example if ui has a normal distribution with mean zero and variance σ2,

then dividing the inequalities in (2.3) by σ will not change the probabilities of being

in different categories since the inequalities contain unknown cutpoints. Although σ

is not identified, β/σ is identified.

Let θ∗ = β/σ. θ∗ can be estimated consistently using an ordered model. The

properties of this estimator are independent of the shape of the transformation func-

tion, since in this ordered model only the monotonicity of T is important; Thus the

ordered estimators remain consistent whether or not the employed transformation
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function is the true transformation function. If one assumes that the error terms are

normally distributed, then this model is ordered probit with unknown cutpoints, and

θ∗ can be estimated using a maximum likelihood estimator. In order to construct

the Hausman test, θ∗ should be compared to its counterpart in the linear model.

Therefore the likelihood in (2.2) is rewritten as follows:

Q(β0,θ, σ) = − lnσ2 − 1

2

1

n

n∑
i=1

(T0(Yi)

σ
− β0

σ
−Xiθ

)2

, (2.5)

where θ = β/σ.

Although both β0 and σ are identified in the linear model, since they are not

identified in ordered probit, the estimators for these parameters cannot be used to

construct the test statistic.

The test statistic for the transformation function is a measure of the difference

between θ̂ and θ̂∗. If the true transformation function is employed, both are close

to the truth and the difference is close to zero and while θ̂∗ remains close to the

truth with an incorrect transformation function, θ̂ deviates from the truth and the

difference between θ̂ and θ̂∗ becomes greater. Thus a measure of difference between

θ̂ and θ̂∗ can be helpful in identifying an incorrect transformation function.

A Hausman test could now be described as follows:

Under the null hypothesis, both θ̂ and θ̂∗ are consistent estimators of θ0 and both

are normally distributed.

√
n(θ̂∗ − θ0)

d−→ Z∗ ∼ N(0,Σ∗),

and

√
n(θ̂ − θ0)

d−→ Z ∼ N(0,Σ).
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Thus under the null, (θ̂∗− θ̂)
p−→ 0, and it can also be proven that

√
n(θ̂∗− θ̂) is

convergent in distribution to a random variable that is normally distributed. In fact,

these estimators have the following linear structure that guarantees their normality:

√
n(θ̂∗ − θ0) = −H∗−1G∗,

and

√
n(θ̂ − θ0) = −H−1G,

where H and H∗ are the hessians of these estimators, and G and G∗ are the

gradients. It can also be shown that the difference between these two estimators

follows this linear form and it is also normally distributed.

It should be noted that under the null, and with correct specification of the

distribution of the error term (normality), the linear estimator is more efficient than

the ordered estimator. In other words, the difference between Σ∗ and Σ is positive

definite.

Hausman (1978) proved that once you have a consistent and normally distributed

estimator like θ̂∗ whose consistency does not depend on the specification, and another

estimator like θ̂ which is normally distributed and consistent under the null, then the

difference between these two estimators is normally distributed and centered at zero

under the null. Furthermore, he proved that if one of the estimators is more efficient

than the other one, then the covariance matrix of the difference between the estimators

is equal to the difference between the covariance matrices of the estimators. In other

words:

√
n(θ̂ − θ̂∗)

d−→W∼N(0,Σ−Σ∗),
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and the test statistic has χ2
k distribution where k is the dimension of θ0.

Test =
√
n(θ̂ − θ̂∗)

′
(Σ̂− Σ̂∗)−1(θ̂ − θ̂∗)

√
n

It is important to notice that constructing such a test statistic is very easy. Most

of the computer packages are equipped with both the OLS estimator and the ordered

probit estimator. All that is needed to construct this test statistic are these two

estimators and their covariance matrices.

This test is done under the normality for null and alternative hypotheses; How-

ever, the error term may not be normally distributed and the incorrect assumption

of normality may lead to inconsistent estimators. Furtunately is it possible to relax

the normality assumption in two respects. First, while the OLS estimator is not

fully efficient under non-normality, it can still be employed in the test as it will be

consistent when the transfromation function is correct irrespective of the error distri-

bution. As to an estimator that is consistent regardless of of whether the assumption

transformation function is correct, we note that the ordered model can be estimated

semiparametrically without any parametric assumptions on the distribution of the er-

ror term. The semiparametric ordered estimator provides a consistent estimator that

depends neither on the shape of the transformation function, nor on the distribution

of the error term; Thus, the test statistic which employes the semiparametric ordered

estimator is independent of the distribution of the error term. Below, we describe the

semiparametric ordered estimator and the resulting test statistic.

2.2.2 The semiparametric ordered estimator

The Model, Assumptions, and Identification

As mentioned before, the monotonicity of the transformation function implies that

by sorting the dependent variable into some ordered categories, the transformation
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function of the dependent variable is also sorted into the same ordered categories

(This happens if the transformation function is increasing, and if the transformation

function is decreasing they are sorted inversely). For example, if Y is sorted into

q quantiles, the fact that the true transformation function is linearly related to the

explanatory variables, implies that:

tj−1 < Yi ≤ tj iff T (tj−1) < β0 +Xiβ + ui ≤ T (tj) ∀j = 2, . . . , q + 1.

In the semiparametric model the distribution of ui is not known and at least one

of the explanatory variables, let’s say X1, is continuous. Just like before, T is a

monotone function, X is full rank, the observations are i.i.d., and the explanatory

variables are independent from u.

This ordered model is an example of single-index models. Here:

P (Yi being in the jth category|Xi) = G(β0 +Xiβ) (2.6)

where G is an unknown function, and vi = β0 +Xiβ is the index. In this model,

the interaction between Xi and the probability of Yi being in different categories is

through this linear index. This means that the single-dimensional vector of v contains

the same information as the k dimientional vector of X when it comes to calculate

the probability of Yi being in the jth category. In other words:

P (Yi being in the jth category|Xi) = P (Yi being in the jth category|vi = β0 +Xiβ)

(2.7)

Under the single-index assumption, any linear transformation of the index contains



24

the same information as the original index.

P (Yi being in the jth category|vi = β0 +Xiβ)

=P (Yi being in the jth category|avi + b = a(β0 +Xiβ) + b) (2.8)

for any two constants a 6= 0 and b.

No information is gained or lost by linearly transforming the index in a single-

index model, since the function G in (2.6) is unknown and can adjust accordingly. For

this reason, the unknown parameters in these single-index models are only identified

up to location and scale. The constant, β0, is not identified and other parameters

are only identified up to a multiplicative constant. There are different methods for

scale normalization. One of these methods enforces the norm of β to be equal to

a constant, for example one, while the other method enforces the coefficient on the

first explanatory variable to be equal to a constant, for example one. In this work,

the second method is chosen. The index, vi, is equal to X1i + Ziθ. Where θ′ =

[β2, . . . , βk]/β1 and Z = (X2, . . . ,Xk).

Although βs are not identified, θ is identified. Since the β’s are not identified, one

might wonder how to calculate the conditional probabilities of Yi falling in different

categories. Fortunately, θ is all we need to calculate such probabilities. According to

(2.8), knowing β and θ are equivalent when it comes to calculating these probabilities.

In other words, the same reason that causes β not to be identified enables us to use θ

instead to calculate the probabilities. Any question regarding these probabilities (e.g.

marginal effects) that can be answered through β0, β1, . . . , βk, can also be answered

through θ.

To estimate the identified parameter, the ordered model in equation (2.4) can be
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reparametrized as follows:

tj−1 < Yi ≤ tj iff T (tj−1) < β0 + β1(X1i +Ziθ) + ui ≤ T (tj) ∀j = 2, . . . , q + 1.

(2.9)

To estimate the vector of identified parameters, a likelihood function is maximized.

This likelihood is based on the reparametrized model in (2.9).

Estimation

In order to estimate θ in (2.9), one can no longer rely on knowing the distribution of

the error term; However, the probabilty of Yi falling in different categories can still

be calculated without distributional assumptions on the error term. To do so, Bayes’

rule can be used.

P (Y being in category j|v) =
P (Y being in category j) ∗ g1(v|Y being in category j)

g(v)
,

(2.10)

where g is the density of the index, and g1 is conditional density of the index

based on the category in which Yi falls in.

The probability of Y being in the jth category can be estimated by sample fre-

quency. g and g1 can also be estimated by kernel density estimators. Let Pij(θ)

be the semiparametric conditional probability of Yi being in the jth quantile. Then

Pij(θ) can be estimated as follows:

P̂ij(θ) =

∑
j 6=i{tj−1 < Yi ≤ tj}Kij(θ)∑

j 6=iKij(θ)
,

where Kij(θ) = 1
h
φ
(
vi(θ)−vj(θ)

h

)
, with φ being a symmetric density around 0. In

this dissertation, φ is the standard normal density, and h is the bandwidth.
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Using these semiparametric probabilities, θ can be estimated. The estimation

method used in this work is that in Klein and Sherman (2002), but employs the

bias reduction devices in Klein and Shen (2010).3 The conditional probability in

(2.10) is estimated as the ratio of two estimated densities. In order to consistently

estimate such a probability, the density in the denominator should be kept away from

zero. This is done by using a trimming function. The estimation is done in two

stages. In the first stage, the trimming is on the continuous Xs. In order to prove the

normality of the estimator, the gradient of the likelihood at the truth should have zero

expectation. This can be achieved utilizing a property the conditional expectations

in single-index models proven by Whiteney Newey. Newey proved that the gradient

of the conditional expectation of the dependent variable on the linear index has zero

expectation when evaluated at the truth. This conditional expectation however is

not necessarily equal to zero if the trimming function is based on the explanatory

variables. With a trimming function based on the index, Newey’s result holds and one

can prove the normality of the estimator. Thus a second stage likelihood is maximized

where the trimming is on the estimated index using the first stage estimates.

The second stage quasi-log-likelihood is:

Q̂2(θ) =
1

n

n∑
i=1

τ(v̂i)

q+1∑
j=2

{tj−1 < Yi ≤ tj} ln(P̂ij(θ)) (2.11)

and

θ̂ac1 = arg max
θ

Q̂2(θ)

Where τ is a simple trimming function on the first stage estimated index. Since

this trimming function is very commonly used, it is also used in this dissertation. τ

3A brief overview of the estimation technique can be found in the appendix.
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is zero on the tails of the index and is equal to one at other places. This trimming

function is particularly useful if the density of the index is only close to zero on the

tails of the distribution. A more complex trimming function could also be used which

does not require the density of the index to be close to zero only on the tails of the

index. Such a trimming function would be close to zero where the estimated density

of the index is close to zero and the trimming function is close to one otherwise. Using

such a trimming function, one does not need to worry if the density of the index is

close to zero only at extreme values of the index.

It is important to first point out that the above estimator requires a modification

so that it is technically correct. In the second stage above, trimming is based on

an estimating index. View such trimming as depending on true index, as that is

what one proves in establishing the properties of the estimator. Accordingly, such

trimming provides protection against small denominators when parameter values are

evaluated at the truth. In establishing normality of the estimator, the derivative

of the objective function is evaluated at the truth, and such trimming is all that

one requires. However, to show that the parameter estimates are consistent, one

needs to show that the objective function converges to a fixed function “essentially”

for all values of the parameters. Without some adjustment or modification, it is

then not possible to establish consistency as trimming only provides “protection”

at the true parameter values. To circumvent this difficulty, in the second stage the

semiparametric probabilities need to be adjusted as in Klein and Shen (2010) or in

Klein et al. (2010).

It is also important to notice that this estimator is independent of the shape of the

transformation function. In fact, the transformation function does not even appear in

the likelihood (2.11). The presence of a monotone transformation is only reflected in

this likelihood through Yi falling in some ordered categories. Therefore, all properties

of this estimator are independent from the transformation function. In particular,



28

this estimator is consistent whether or not the hypothesized transformation function

is the true transformation function.

Here, this estimator, θ̂ac1, is referred to as the “always consistent estimator1 ”to

emphasize that it is consistent both under the null and under the alternative. It

is called θ̂ac1 because later, another estimator will be presented which also stays

consistent with any transformation function. That estimator, θ̂ac2, will be called

“always consistent estimator2 ”

Since the unknown parameters of the semiparametric model are only identified

up tp location and scale, and since this semiparametric estimator is going to be

compared to the consistent estimator under the null in order to construct the test

statistic, throughout this study the model in equation (2.1) is reparametrized in the

following way:

T (Y ) = β0 + β1(X1 +Zθ) + u, (2.12)

where θ′ = [β2, . . . , βk]/β1 and Z = (X2, . . . ,Xk)

In the rest of the dissertation, the comparison of interest will be between two dif-

ferent estimators for θ, the identified vector of parameters. Under the null hypothesis

that the transformation is correct, we employ OLS. This estimator can be viewed as

the maximum likelihood estimator, in which case we rewrite the likelihood in (2.2)

as:

Q(θ, β0, β1, σ) = − lnσ2 − 1

2

1

n

n∑
i=1

(T0(Yi)

σ
− β0 + β1(X1i +Ziθ)

σ

)2

.

Notice that the presence of T0(Y ) in this likelihood implies that the consistency of

this estimator depends on whether or not T0(Y ) is the true transformation function

and unlike the ordered estimator, the linear estimator suffers from inconsistency when

the transformation function is not correctly specified.
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Let θ̂nc be the Maximum Likelihood Estimator of θ in equation (2.12), i.e. :

{θ̂nc, β̂0, β̂1, σ̂} = arg max
(θ,β0,β1,σ)

Q(θ, β0, β1, σ)

In this dissertation, this estimator, θ̂nc, is referred to as the “null consistent estimator”

to emphasize that its consistency is only guaranteed under the null. When we do not

want to assume that the error term is normally distributed, we still can employ OLS

but note that it is not fully efficient.

2.2.3 The Semiparametric Least Squared (SLS) estimator

As mentioned before, in order to construct this Hausman test, two estimators are

needed. One of them is only consistent under the null while the other one remains

consistent even if the null is not true. In the previous section an ordered estimator

was used as the latter. However, the ordered estimator is not the only estimator

that remains consistent under the alternative. In this section another consistent esti-

mator is proposed that remains consistent under the alternative. Another estimator

of equation (2.12) is a semiparametric least squares estimator. This estimator takes

advantage of the single-index assumption. In such a model, as it will be explained

in more detail later, the relationship between the dependent variable and the ex-

planatory variables is through a linear index. Unlike the objective function of the

ordered estimator which does not change with different transformation functions, the

SLS objective function changes with different transformation functions. However,

as explained in the next few paragraphs, the SLS estimator remains consistent with

different transformation functions. The SLS estimator unlike the ordered estimator

can take advantage of the curvature of the transformation function whereas in the

ordered estimation method, only the ranking of the dependent variables is important.

The ordered estimator thus does not use all the information that is available in the
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data.

Here is the reason why the single-index assumption can be exploited in trans-

formation function models and why an SLS estimator can be used to estimate the

parameters consistently:

Since T is a monotone function, it has an inverse and the equation in (2.1) can

be rewritten as follows:

Y = T−1(β0 +Xβ + u),

which means

E(Y |X) = G(β0 +Xβ),

or

Y = G(β0 +Xβ) + ε, (2.13)

where G is an unknown function, and the explanatory variables are related to Y

through a linear index, v = β0 +Xβ.

The single-index assumption is used in this model as well. Therefore, the identifi-

cation is the same as the ordered model. Since E[Y |β0 +Xβ] = E[Y |a(β0 +Xβ)+c],

the parameters in this model are also only identified up to location and scale. For

example, if we assume the single-index assumption holds in a wage equation with the

explanatory variables of education and experience, it means that in order to calculate

the expectation of wage, knowing the exact value of education and experience is not

necessary. Knowing the index is enough to calculate such an expectation since the

index encapsulates all the necessary information; However, any linear transformation

of the index provides the same information as the index itself. For example:

E
[
Wagei|β1educi+β2experi = 3

]
= E

[
Wagei|2(β1educi+β2experi)−1 = 2∗3−1 = 5

]
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Another way to explain the identification of the parameters in a single-index model

is as follows.

The Single-index assumption implies:

E(Y |X) = E(Y |β0 +Xβ) = G(β0 +Xβ) (2.14)

Notice that G is an unknown function. Let M be another function which is related

to G in the following way:

G(x) = M(ax+ b)

for all values of x and some a 6= 0 and b.

In other words:

E(Y |X) = G(β0 +Xβ)

= M(a(β0 +Xβ) + b) = M(aβ0 + ab+ aXβ)

The functions M and G are both unknown and are indistinguishable from one

another. Any linear transformation of the index in (2.14) keeps the model the same

since the unknown function can also change accordingly. In fact, the model when the

function is G and the unknown parameters are β0 and β is the same as when the

function is M and the unknown parameters are aβ0 + b and aβ. Thus the parameters

in single-index models are only identified up to location and scale.

Using Ichimura’s unweighted Semiparametric Least Squares (SLS) estimator (Ichimura,

1993), the normalized unknown parameter, θ, can be estimated. Here, we em-

ploy Shen’s variant of SLS for two reasons (Shen, 2011). First, the finite sample

performance of the estimator can be improved by employing regular kernels and
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making a bias correction based on Newey’s result as was done above. Second,

even if u is homoskedastic in (2.1), the nonlinearity of the transformation function

causes ε to be heteroskedatic in equation (2.13). The reason is E[Y |X] is equal to

E[T−1(β0 +Xβ + u)|X] and unless T is linear, this conditional expectation is not

equal to E[T−1(β0 + Xβ)|X] + E[T−1(u)|X]. In other words, the new error term

has some interaction with the explanatory variables. Such an interaction will cause

the variance of ε not to be constant and be dependent on the explanatory variables.

The following example will clarify why a nonlinear transformation causes ε to be

heteroskedastic.

Consider the following model:

ln(Y ) = β0 +Xβ + u

where u is homoskedastic with standard normal distribution, u and X are inde-

pendent, and observations are i.i.d.

Then:

Y = eβ0+Xβ+u

= eβ0+Xβ.eu

Thus:

E(Y |X) = E(eβ0+Xβ.eu|X)

= eβ0+XβE(eu|X)

= eβ0+XβE(eu)

Since eu has log normal distribution, its expectation is equal to e
1
2 . Thus:
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E(Y |X) = G(β0 +Xβ) = eβ0+Xβ+ 1
2

and since

Y = G(β0 +Xβ) + ε,

ε is equal to

eβ0+Xβ(eu − e
1
2 ).

Variance of such an error term clearly depends on the explanatory variables and

even when u is homoskedastic, ε is heteroskedastic.

To deal with the issues raised above, Shen’s method of estimating the parameters

in transformation and retransformation models is employed (Shen, 2011). First, σ2
i =

V ar(εi), is estimated. Then the following objective function is minimized:

Q̂2(θ) =
1

n

n∑
i=1

τ(v̂i)
(Y − Ê[Yi|vi = X1i +Ziθ])2

σ̂2
i

(2.15)

Where Ê[Yi|vi = X1i + Ziθ] is the semiparametric conditional expectation of Yi on

vi = X1i + Ziθ, and τ is a trimming function on the first stage estimated index.

Ê[Yi|vi = X1i +Ziθ] has the following structure:

Ê[Yi|vi = X1i +Ziθ] =

∑
j 6=i YiKij(θ)∑
j 6=iKij(θ)

,

where Kij(θ) = 1
h
φ
(
vi(θ)−vj(θ)

h

)
, with v = X1 +Zθ being the index and φ being

a symmetric density around 0. Just like the previous estimator, φ is chosen to be the

standard normal density, and h is the bandwidth.
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In order to have an estimate for σ2
i , first the following objective function is mini-

mized:

1

n

n∑
i=1

τ(v̂i)(Y − Ê[Yi|vi = X1i +Ziθ])2 (2.16)

Although the estimator for θ is not efficient because of heteroskedastisity, it is

consistent. Using this estimator, σ̂2
i can be estimated consistently as follows:

σ̂2
i = Ê(ε̂2i |X1i +Ziθ̂)

where ε̂i = Yi − Ê[Yi|X1i +Ziθ̂]

There are several different semiparametric estimators for θ that are consistent

and asymptotically normal. The estimator employed here is the same that used for

the other semiparametric estimator. This estimator is the one proposed by Klein and

Shen (2010).

It is important to notice that this estimator remains consistent as long as the

transformation function satisfies the monotonicity condition. Unlike the ordered es-

timator, the objective function of this estimator presented in equation (2.15) is not

independent of the shape of the transformation function. In fact, Ê[Yi|vi = X1i+Ziθ]

can change with different transformation functions. What keeps this estimator con-

sistent is the single-index assumption. In this paper, this estimator, θ̂ac2, is referred

to as the “always consistent estimator2” to emphasize that it is consistent both under

the null and under the alternative.

Just like the previous estimator, it can be shown that this estimator also has the

consistency and the asymptotic normality properties (Klein and Shen, 2010). Thus,

to construct the Hausman test, the “always consistent estimator2 ” and the “null

consistent estimator” can also be used.
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2.3 The Test Statistics

Recall that a Hausman specification test is based on a comparison between two es-

timators. One of them must be consistent even if an incorrect specification is used,

while the consistency of the other estimator is guaranteed only if the correct spec-

ification is used. The previous section introduced one estimator that is consistent

under the null, and two semiparametric and one parametric estimators that remain

consistent even when an incorrect transformation function is used. The consistency

and normality of these estimators have been proven elsewhere.

Theorem. Let θac be either of the two “always consistent” estimators discussed previ-

ously. Under the null, the difference of the “always consistent” estimator and the “null

consistent” estimator is normally distributed and Test = (θ̂ac−θ̂nc)′Ω̂−1(θ̂ac−θ̂nc) has

χ2
k distribution, where Ω̂ is the covariance matrix of the difference of the estimators.

In fact, both of the “always consistent” estimators and the “null consistent” esti-

mators have the following structure:

√
n(θ̂ − θ0) = −H−1

√
nG,

whereH is the hessian matrix, G is the gradient, and
√
nG has a normal distribution

centered at 0. Thus under the null,

√
n
(
θ̂ac − θ̂nc

)
d−→ Z ∼ N(0,V ),

where V is the covariance matrix of
√
n(θ̂ac − θ̂nc).

More generally, let θ̂a and θ̂b be any two estimators for θ0 with the following

structure:
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√
n(θ̂a − θ0) = Aa

n∑
i=1

ωai
n

√
n+ op(1)

and

√
n(θ̂b − θ0) = Ab

n∑
i=1

ωbi
n

√
n+ op(1)

where Aa and Ab are fixed k × k matrices with bounded elements, ωai and ωbi

are k × 1 vectors, and ωai and ωbi are i.i.d.

Also

E(ωai) = 0 , E(ωbi) = 0

and

V ar(ωaj) <∞ , V ar(ωbj) <∞ ∀j = 1, ..., k

In our case, Aa and Ab are the negative inverse hessians and ωai and ωbi are the

gradients.

Given the linear structure of θ̂a and θ̂b, the difference between these two estimators

has the following structure:

√
n(θ̂a − θ̂b) =

n∑
i=1

Aaωai −Abωbi
n

√
n+ op(1)

Let γi = Aaωai −Abωbi

γi is i.i.d. because ωai and ωbi are i.i.d. Also:

E(γij) = 0 ∀j = 1, ..., k

because E(ωai) = E(ωbi) = 0.
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Also V ar(γj) is bounded for all j = 1, ..., k since the variance of ωaj and ωbj are

bounded and Aa and Ab are matrices with bounded elements.

Thus the difference between these two estimators also has a linear structure. This

difference therefore is normally distributed exactly for the same reason θ̂a and θ̂b are

normally distributed.

Using the “null consistent” estimator and the “always consistent” estimator, a

Hausman test for the transformation function can be constructed as:

Test = (θ̂ac − θ̂nc)′Ω̂−1(θ̂ac − θ̂nc), Ω ≡ V
n
, Ω̂ ≡ V̂

n
(2.17)

Test has a standard quadratic form. Thus, under the null Test ∼ χ2
k, where k is the

dimension of θ, which equals the number of identified parameters in the semipara-

metric models.

Hausman proved that in cases where one of the estimators is efficient, the covari-

ance matrix of the difference of the estimators, Ω, has the following structure under

the null hypothesis (Hausman, 1978):

Ω = Σac −Σnc,

where Σac is the covariance matrix of the “always consistent” estimator, and Σnc

is the covariance matrix of the “null consistent” estimator. This structure of the

covariance matrix enables the researcher to calculate the test statistic very easily. All

that is needed to construct the test statistic are the estimators and their covariance

matrices. The test statistic then can be calculated as follows.

Test = (θ̂ac − θ̂nc)′(Σ̂ac − Σ̂nc)
−1(θ̂ac − θ̂nc) (2.18)

Calculating the test statistic as done in (2.18) can cause a problem. Even if the
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“null consistent” estimator is efficient under the null, its efficiency is not guaranteed if

the null is not true. In other words, Σ̂ac− Σ̂nc need not be positive semidefinite, and

the test may return a negative value under the alternative. Another problem is that

calculating the covariance matrix of the difference using Hausman’s method, relies

on the asymptotic efficiency of one of the estimators. Although one of the estimators

might be asymptotically more efficient compared to the other one, its variance is not

necessarily smaller in a finite sample. If so, the difference between Σ̂ac and Σ̂nc is not

necessarily positive definite even under the null.

To overcome these problems, the efficiency property of the “null consistent” esti-

mator is not exploited in this work. Ω̂ is not calculated as the difference between the

estimated covariance matrices, but it is calculated in a way that assures the estimated

covariance matrix is positive semidefinite.

Let Gac and Gnc be the gradients of the objective functions of the “always con-

sistent” and the “null consistent” estimators; let Hac and Hnc be the hessians of

the objective functions of these estimators. Using a Taylor expansion, the difference

between each estimator and the truth can be written as:

θ̂ac − θ0 = −H−1
ac (θ+)Gac(θ0) where θ+ ∈ [θ̂ac,θ0],

θ̂nc − θ0 = −H−1
nc (θ+)Gnc(θ0) where θ+ ∈ [θ̂nc,θ0],

where θ+ p−→ θ0 because both θ̂ac and θ̂nc are consistent under the null.

Therefore, the difference in the estimators can be written as:

θ̂ac − θ̂nc = −H−1
ac (θ+)Gac(θ0)− (−H−1

nc (θ+)Gnc(θ0))

As a consequence, the variance of
√
n(θ̂ac − θ̂nc) has the following structure:

V ≡ nΩ =V ar(
√
n(θ̂ac − θ̂nc)) =
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=E
[√

n
(
−H−1

ac (θ0)Gac(θ0) +H−1
nc (θ0)Gnc(θ0)

)
√
n
(
−H−1

ac (θ0)Gac(θ0) +H−1
nc (θ0)Gnc(θ0)

)′]
, (2.19)

To estimate Ω, the estimated gradients and hessians evaluated at the estimates

can be used:

V̂ ≡ nΩ̂ =
(
− Ĝ∗

ac(θ̂ac)Ĥ
−1
ac (θ̂ac) + Ĝ∗

nc(θ̂nc)Ĥ
−1
nc (θ̂nc)

)′
(2.20)(

− Ĝ∗
ac(θ̂ac)Ĥ

−1
ac (θ̂ac) + Ĝ∗

nc(θ̂nc)Ĥ
−1
nc (θ̂nc)

)
.

Where Ĝ∗ is an n×k matrix of gradients. Ĝ∗
ij is the gradient of the ith observation

with respect to the jth parameter. Ω̂ is a quadratic form and is therefore positive

semidefinite.

The proof that (2.20) is a consistent estimator for (2.19), uses the uniform conver-

gence of the estimated hessians and gradients, and the consistency of both estimators.

To sum up, these test statistics follow χ2
k distribution under the null, and never

return a negative value. In the next section the performance of these tests in finite

samples is presented.
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Chapter 3

Finite Sample Properties of the Test Statistics

3.1 The Data Generating Process

To examine the finite sample properties of the test, the behavior of test statistic is

studied in Monte Carlo experiments under different designs. First, the distribution of

the test statistic is studied when the null is true. In these designs, the transformation

function is natural logarithm, and the data are generated in the following way:

Y = eXβ+u.

Thus:

ln(Y ) = Xβ + u,

where u follows standard normal distribution, X = (X1,X2,X3,X4,X5) has five

columns. X1 through X4 are explanatory variables and X5 is a vector of ones.

In design 1, all the explanatory variables are continuous and follow standard normal

distributions. In design 2, all the explanatory variables are continuous except X4

which is a standardized binary variable that is either 1 or -1. The probabilities of

being 1 or -1 are 1
2
. In design 3, X1 and X2 are standard normal and X3 and X4

are standardized binary variables. In design 4 all explanatory variables are standard-

ized binary variables except X1 which is standard normal. β′ = [−2, 2, 1,−2, 1]. In

these designs n = 1000 and number of Monte Carlo replications is 500. These designs

were chosen to check the robustness of the test statistic and the estimators in the
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presence of discontinuous variables. As mentioned before, in order to estimate the

semiparametric probabilities consistently, one need to make sure that these probabil-

ities are calculated where the density of the index is not going to zero. This is usually

done through trimming of the continuous index. Although the consistency and nor-

mality of these estimators are proven asymptotically, and although the presence of

one continuous variable guarantees a continuous index, in finite sample, the absence

of enough continuous variables can be problematic. Furthermore, in some empirical

analysis researchers do not have many continuous explanatory variables.

3.2 Performance of the Tests Under the Null

To observe the performance of the test under the null, the following hypothesis is

tested:

H0 : T (Y ) = ln(Y ) vs H1 : T (Y ) 6= ln(Y ).

Since only three of the parameters are identified in semiparametric estimations, the

test statistic should have χ2
3 distribution under H0. The results of these Monte Carlo

experiments when the ordered estimator is used are shown in Figure 3.1(a) to Figure

3.1(d).

The solid line is the estimated density of the test statistic and the dashed line is

the density of χ2
3.1

As seen, the estimated density is close to χ2
3. By increasing n, the estimated

density of the test statistic becomes closer to χ2
3.

With exactly the same data generating process, the behavior of the test statistic

that uses the SLS estimator is studied. The results of these Monte Carlo experiments

are shown in Figure 3.2(a) to Figure 3.2(d).

1Results are robust to changes in the distribution of the error term. These results are available
upon request. More designs will be presented in future versions of this paper.
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(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure 3.1: Estimated density of the test statistic using the ordered estimator in
different designs when the hypothesized transformation function is logarithm and the
null is true

The solid line is the estimated density of the test statistic and the dashed line is

the density of χ2
3. As seen, the estimated density is close to χ2

3.

To compare these tests under the null, the estimated densities of both test statis-

tics along with the density of χ2
3 are presented in Figure B.1(a) to Figure B.1(d) in

the appendix. The solid line is the estimated density of the test statistic which uses

the semiparametric ordered estimator, the dashed line is the estimated density of

the test statistic which uses the SLS estimator, and the dotted line is the density of

χ2
3. Both tests perform better in designs number three and four compared to designs

number one and two as the estimated densities of the test statistics are closer to the

true density in these designs. The test that uses the SLS estimator has a better size

except in design number one. Since the comparison of these test statistics vary by

design, we cannot state that one of them is better than the other one.
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(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure 3.2: Estimated density of the test statistic using the SLS estimator in different
designs when the hypothesized transformation function is logarithm and the null is
true

Unlike the test that uses the ordered estimator where the “always consistent es-

timator” is independent of the transformation function, the SLS estimator depends

on the transformation function. Although the SLS estimator remains consistent with

different transformation functions (as long as they are monotone), to observe the be-

havior of the test statistic in finite sample with another transformation function, the

following Monte Carlo experiment is implemented.

Y = Xβ + u

In this case the true transformation function is the identity function. The following

hypothesis is tested.

H0 : T (Y ) = Y vs H1 : T (Y ) 6= Y .
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(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure 3.3: Estimated density of the test statistic using the SLS estimator in different
designs when the hypothesized transformation function is the identity and the null is
true

As seen in Figure 3.3(a) to Figure 3.3(d), the estimated density of the test statistic

is very close to χ2
3. In this example, since the transformation function is the iden-

tity function, the estimator does not suffer the heteroskedasticity that the nonlinear

transformation functions induce. If one wants to test the hypothesis that the trans-

formation function is the identity function with the assumption that the error terms

are homoskedastic, the test can also be done without calculating σ̂2
i . One can use the

minimizer of the (2.16) as the “always consistent estimator”.

3.3 Performance of the Tests Under the Alternative

To observe the power of the test, the data is generated under the alternative hy-

pothesis. In the first example, the hypothesized transformation function is natural
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logarithm but the data is generated as follows:

Y =


eXβ+u if Xβ + u ≤ 0

(λ(Xβ + u) + 1)
1
λ if Xβ + u > 0,

(3.1)

where (λ(Xβ + u) + 1)
1
λ is the inverse of the Box-Cox transformation for positive

values of Xβ + u. So

Xβ + u =


ln(Y ) if Xβ + u ≤ 0

Y λ−1
λ

if Xβ + u > 0

(3.2)

(a) λ = 0.1 (b) λ = 0.2

(c) λ = 0.5 (d) λ = 1.0

Figure 3.4: Estimated density of the test statistic using the ordered estimator when the
true transformation function is Box-Cox but the hypothesized function is logarithm

For small values of λ, Y
λ−1
λ

is close to ln(Y ), and the null is not expected to be

rejected very frequently. On the other hand, as λ gets large, the true transformation
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function deviates from the hypothesized one. Therefore, for high values of λ, the null

hypothesis is expected to be rejected frequently.

The results of these Monte Carlo studies using the ordered estimator are shown

in Figure 3.4(a) to Figure 3.4(d). The solid line is the estimated density of the test

statistic and the dashed line is the density of χ2
3.

As seen in these figures, the solid line and the dashed line are close when λ is

small. As λ increases, the true transformation function deviates from the hypothesized

transformation function, the density of the test statistic deviates from χ2
3, and the

null hypothesis is more likely to be rejected.

(a) λ = 0.1 (b) λ = 0.2

(c) λ = 0.5 (d) λ = 1.0

Figure 3.5: Estimated density of the test statistic using the SLS estimator when the true
transformation function is Box-Cox but the hypothesized function is logarithm

This Monte Carlo experiment is repeated using the SLS estimator. The results of

these Monte Carlo studies are shown in Figure 3.5(a) to Figure 3.5(d). The solid line

is the estimated density of the test statistic and the dashed line is the density of χ2
3.

When the true transformation function is close to logarithm, the estimated density
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of the test statistic is close to χ2
3 but as λ increases and the true transformation

function deviates from logarithm, the null hypothesis is rejected more frequently and

the estimated density of the test statistic deviates from χ2
3.

To see the behavior of the test when the hypothesized transformation function is

the identity function, data is generated as follows:

Y = a(Xβ + u)3 + b(Xβ + u)2 + (Xβ + u), (3.3)

and the following hypothesis is tested: H0 : T (Y ) = Y vs H1 : T (Y ) 6= Y .

(a) b = 0.1 (b) b = 0.2

(c) b = 0.5 (d) b = 1.0

Figure 3.6: Estimated density of the test statistic using the ordered estimator when the
true transformation function is an inverse cubic function but the hypothesized function is
the identity

As a, b → 0, the transformation function is getting closer to the hypothesized

transformation function and as a and b deviate from zero, the true transformation

function deviates from the hypothesized one. To make sure that the transformation

function is monotone, a is chosen to be greater than b2

3
. In this study, a = 1.1b2

3
.
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The results are shown in Figure 3.6(a) to Figure 3.6(d). As the true transformation

function deviates from the hypothesized one, the null is more likely to be rejected.

The behavior of the test statistic that uses the SLS estimator is also studied in

some Monte Carlo experiments. The results are shown in Figure 3.7(a) to Figure

3.7(d). As the true transformation function deviates from the hypothesized one, the

null is more likely to be rejected.

(a) b = 0.1 (b) b = 0.2

(c) b = 0.5 (d) b = 1.0

Figure 3.7: Estimated density of the test statistic using the SLS estimator when the true
transformation function is an inverse cubic function but the hypothesized function is the
identity

To compare these tests, we show the size adjusted power results for these examples.

First, the size adjusted powers of the example where the true transformation function

is a modified Box-Cox are presented in Tables 3.1 and 3.2.

As seen in Tables 3.1 and 3.2, the test which uses the semiparametric ordered

estimator seems to have slightly higher power compared to the test that uses the SLS

estimator.
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Table 3.1: Size-adjusted power for the test statistic which uses the semiparametric
ordered estimator when the true transformation function is the one in (3.2)

Significance level

10% 5% 1%

λ = 0.1 23.0% 13.5% 2.0%
λ = 0.2 37.5% 22.5% 12.5%
λ = 0.5 66.0% 55.5% 34.0%
λ = 1.0 83.5% 75.5% 61.0%

Table 3.2: Size-adjusted power for the test statistic which uses the SLS estimator
when the true transformation function is the one in (3.2)

Significance level

10% 5% 1%

λ = 0.1 8.5% 0.5% 0.0%
λ = 0.2 28.0% 6.0% 0.0%
λ = 0.5 60.5% 31.0% 1.5%
λ = 1.0 84.0% 69.0% 25.0%

The size adjusted powers are also presented in Tables 3.3 and 3.4 for the example

where the true transformation function is the inverse cubic function.

As seen in Tables 3.3 and 3.4, the test which uses the SLS estimator has clearly

higher power compared to the test that uses the ordered estimator. Thus the power

comparison is inconclusive as one of the tests has slightly higher power in one example

and the other test has a higher power in the other example.

Table 3.3: Size-adjusted power for the test statistic which uses the semiparametric
ordered estimator when the true transformation function is the one in (3.3)

Significance level

10% 5% 1%

λ = 0.1 15.0% 7.5% 2.0%
λ = 0.2 31.0% 19.0% 6.5%
λ = 0.5 71.5% 56.5% 37.5%
λ = 1.0 89.5% 85.0% 63.0%



50

Table 3.4: Size-adjusted power for the test statistic which uses the SLS estimator
when the true transformation function is the one in (3.3)

Significance level

10% 5% 1%

λ = 0.1 24.5% 12.0% 3.5%
λ = 0.2 58.0% 42.5% 18.5%
λ = 0.5 97.5% 94.5% 75.5%
λ = 1.0 98.5% 98.5% 93.0%

3.4 Conclusion

In summary, in the designs where the data are generated under the null, the distri-

bution of the test statistics is close to their asymptotic distributions. Therefore, the

hypothesized transformation function is not rejected frequently. On the other hand,

when the data are generated under the alternative, the tests reject the hypothesized

transformation function more frequently and specially in cases where the true trans-

formation function is very different from the hypothesized one. Thus, in the Monte

Carlo experiments presented, the tests behave as expected under the null and under

the alternative. The properties of the two test statistics are very similar. While the

test which uses the semiparametric ordered estimator is slightly more powerful in the

example that the true transformation function is Box-Cox, the test that uses the SLS

estimator is more powerful when the true transformation function is an inverse cubic

function.
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Chapter 4

An Application of a Transformation Function Test

As mentioned before, in many studies, a known function of the dependent variable is

used as the left-hand-side variable. In many cases, there is no theoretical justification

for the employed transformation function. The use of the logarithmic transformation

function in particular simplifies the calculation of elasticities. This transformation

is also justified in the literature in cases where the variable of study is positive and

skewed to the right. Diminishing the effect of heteroskedasticity is another justifica-

tion for the logarithmic transformation; However, although this particular transfor-

mation may solve some of these problems or simplifies some calculations, this does

not mean that it is the true transformation function. In other words, the logarithmic

transformation of the dependent variable may not be linearly related to the explana-

tory variables. Using this function can still lead to inconsistent estimators if logarithm

is not the true transformation function. In this chapter, the validity of logarithmic

transformation is tested in an example.

4.1 Example: Explaining Crime Rates

In most studies of city level crime, logarithm of crime is used as the left-hand-side

variable. The fact that the theory does not say anything about the functional form of

the dependent variable, and the common belief that crimes are underreported, make

the study of this transformation function particularly interesting. Reviewing the lit-

erature, no discussion of the choice of the functional form of the dependent variable



52

was found. The logarithmic transformation therefore appears to be the preferred

specification because it is the most used one, it simplifies some calculations (e.g. elas-

ticities), and it reduces the problems of heteroskedasticity and having large outliers;

However, the choice of this particular function seems arbitrary and not discussed in

any study.

4.2 Data

The data used are from Metropolitan Statistical areas between 2000 and 2008. The

data on crime are from Uniform Crime Report and the data on explanatory vari-

ables are from the Current Population Survey (CPS). The explanatory variables

are as follows. ln(population), is the natural log of the population. Most studies

assume a linear relationship between ln(crime) and ln(population). The expected

sign of the coefficient on ln(population) is obviously positive. In some other stud-

ies, ln(crime rate) = ln(crime/population) is used as the left-hand-side variable.

Age1525 represents the fraction of people in the metropolitan area that are between

15 and 25 years old. Age2535 is the fraction of people in the metropolitan area

that are between 25 and 35 years old. These two variables are generated because

of the belief that different age groups may have different propensity to crime. The

effect of these age groups may also be different across different categories of crime.

Median(ln(Wage)) is used to capture the relationship between income and crime

rate. We expect the coefficient on this variable to be negative. Black is the fraction

of blacks, and Hispanic is the fraction of Hispanics in the metropolitan area. The race

and ethnicity variables are generated to see if the crime rate is different in the cities

that have higher percentage of blacks or hispanics. Based on the previous studies, we

expect the coefficient on these two variables to be positive. Drop out is the fraction

of people between 19 and 30 who do not have at least 12 years of schooling. College is

the fraction of people who have at least some college education. These two variables



53

show the relationship between crime and the distribution of different education levels

in the city. Employed is the fraction of the population in each metropolitan area that

is employed. The expected sign of the coefficient on this variable is negative. Central

is the fraction of people who live in central city. We expect a positive coefficient on

this variable. The means and standard deviations of the dependent and explanatory

variables can be found in Table C.1.

4.3 Testing the Logarithmic Transformation

The test is done using the semiparametric ordered estimator. As observed in the

previous chapter the performance of these two tests are very similar so the same

results are expected if the SLS estimator is used. The test is done for different

groups of crimes. FBI categorizes crimes into two main categories: property crimes

and violent crimes. Property crimes are burglary, larceny, and motor vehicle theft.

Violent crimes are homicide, rape, robbery, and aggravated assault. These categories

of crime are often separately studied since the nature of these crimes are different and

the relationship between crimes and explanatory variables might vary across different

categories. Researchers often use as dependent variable both the logarithm of total

crime and the logarithm of a specific crime within the same analysis. In this work,

first the plausibility of the logarithmic transformation function is tested in specific

categories.

The test statistic and the P-values can be seen in Table 4.1.1 As seen, the loga-

rithmic transformation function is not rejected at 5% significance level in any of the

categories of property crimes.

The test is done for different categories of violent crimes as well. The results can

be seen in Table 4.2. For all categories of violent crimes except robbery, the logarithm

1 The linear and the semiparametric ordered estimates of different categories of property crimes,
violent crimes, and total crimes can be seen in Table C.2 to Table C.4.
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Table 4.1: Testing the Log Transformation Function for Different Categories of Property
Crime

Burglary Larceny Motor Vehicle Theft

Critical Value at 5% significance level 16.9190 16.9190 16.9190

Test 10.1407 7.4642 7.1910

P-Value 0.3392 0.5889 0.6172

transformation function is not rejected at 5% significance level.

Table 4.2: Testing the Log Transformation Function for Different Cartegories of Violent
Crime

Homicide Assault Rape Robbery

Critical Value at 5% significance level 16.9190 16.9190 16.9190 16.9190
Test 4.0215 5.3463 8.7787 19.9294
P-Value 0.9100 0.8031 0.4579 0.0184

It should also be noted that most of the coefficients have expected signs in both

the linear and the ordered estimations. These results are shown in Table C.2 to Table

C.4. The coefficients on the variables of ln(population), Median(ln(Wage)), Black,

Hispanic, Employed, and Central all have the expected signs. The coefficients on Drop

out and College sometimes do not have the expected signs or they are not significant.

The cities with larger fraction of people between 15 and 25, on average have less

property crimes and violent crimes (except rape) and the coefficient on Age2535 is

either positive or insignificant in all categories.

Obviously, if logarithm is the transformation function for burglary, larceny, and

motor vehicle theft, it cannot possibly also be the transformation function for property

crimes as a whole, as by definition property crime is the sum of these three categories

of crimes.

If

ln(burglary) = Xβ1 + ε1,
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and

ln(larceny) = Xβ2 + ε2,

and

ln(motor vehicle theft) = Xβ3 + ε3,

then it is wrong to model the property crimes as:

ln(property crimes) = Xβ + ε. (4.1)

Similarly, if the researcher assumes that the transformation function for property

crimes and violent crimes is logarithm, i.e.:

ln(violent crimes) = Xα+ v (4.2)

as in (4.1) and (4.2), then the transformation function for total crimes cannot possibly

be logarithm as well.

It is, however, a common practice in this literature to use the log specification of

property crimes, violent crimes, and total crimes as dependent variables. Accordingly,

subject to qualifications discussed below, results for tests on the log transformation

of broadly defined categories of crime are reported in Table 4.3. Before presenting

the results, it should be noted that if you assume that the specification for each cate-

gory of crime is a non-linear function (e.g. logarithmic), the transformation function

for the aggregate category might not even exist, and if it does, it is not necessarily a

monotone function. In such a case, the test presented in this dissertation is not appro-

priate as the consistency of the ordered estimator depends on the monotonicity of the

transformation function. In general, a researcher who uses a transformation function

model is implicitly making three claims about the model: That there is a function

of the dependent variable which is linearly related to the explanatory variables, that
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such a function is monotone, and that such a function is known. Throughout this

work, the first two claims are accepted, and the third claim is tested. There are, how-

ever, examples in which one should doubt the existence or the monotonicity of the

left-hand-side function. For example, if there is evidence that there is a logarithmic

transformation for specific categories, then the existence of a transformation function

for an aggregate category should be doubted.

From Table 4.3, the logarithm transformation function is not rejected for violent

crimes but it is rejected at 10% significance level both for property crimes and total

crimes. Notice that probably the logarithmic transformation for violent crimes is not

rejected as most of these crimes are assaults, and two of the categories are very small

(homicide and rape). Besides assault and the other two small categories, robbery is

the other component of violent crimes, and it is not adequately represented with a

log function.

Table 4.3: Testing the Log Transformation Function for Different Cartegories of Total
Crime

Violent Property Total

Critical Value at 5% significance level 16.9190 16.9190 16.9190
Test 4.4599 14.9661 16.9058
P-Value 0.8786 0.0919 0.0502

To conclude, if the transformation function exists and is monotone, more broadly

defined categories of crime are less likely to have logarithmic representations. Unfor-

tunately in many papers on city level crime rate, the same nonlinear transformation

function (logarithm)is used for very specific crimes as well as very broadly defined

crimes. In Glaeser and Sacerdote (1999), ln(crimes) is used as the dependent variable

and similarly ln(assault) and ln(rape) are also used as dependent variables. Levitt

(1997) and McCrary (2002) estimate the elasticity of crime with respect to the num-

ber of sworn police officers. Both authors use the logarithm of seven specific crimes,
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the logarithm of all property crimes, and the logarithm of all violent crimes as their

dependent variables. In Kelly (2000), the elasticity of crime with respect to inequality

is calculated, and the logarithm of different categories of crime is used as the depen-

dent variable as well as the logarithm of all property crimes. In Spenkuch (2010), the

elasticity of crime with respect to different groups of immigrants is calculated and the

logarithm of different categories of crime is used as dependent variables as well as the

logarithm of all violent crimes and the logarithm of all property crimes. In Lott and

Mustard (1997), the effect of carrying concealed weapons on crime rate is calculated,

and again the logarithm of different categories of crime is used as dependent vari-

ables as well as the logarithm of all violent crimes and the logarithm of all property

crimes. Although it is very convenient to calculate elasticities in a log − log model,

it does not justify the use of an incorrect transformation function. The logarithmic

transformation function may be close to the true transformation function in some

categories of crime, but it should not be used for more broadly defined categories

since a misspecified transformation function will lead to inconsistent estimators and

although calculating the elasticities are easier with this transformation function, such

elasticities are not consistently estimated.

If the use of logarithmic transformation is justified in specific categories, the elas-

ticity of a broader category can be calculated without imposing the logarithmic trans-

formation. For example if:

ln(Burglary) = ln(Median(Wage))β1 + ε1

and

ln(Larceny) = ln(Median(Wage))β2 + ε2

and

ln(Motor V ehicle Theft) = ln(Median(Wage))β3 + ε3
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then elasticity of Property Crimes with respect to Median(Wage) in the ith city

is:

Burglaryi
Property Crimesi

β1 +
Larcenyi

Property Crimesi
β2 +

Motor V ehicle Thefti
Property Crimesi

β3 (4.3)

This method does not assume constant elasticity. In fact, elasticity is constant

only if β1 = β2 = β3. For example in our data, β̂1 = −0.4369, β̂2 = −0.6488, and

β̂3 = −0.4311. These results suggest that elasticity of property crimes with respect to

median wage is close to -0.64 for cities where larceny theft is a big fraction of property

crimes and elasticity is close to -0.43 in cities where motor vehicle theft or burglary are

bigger fractions of property crimes. When a constant elasticity is assumed for property

crimes, the calculated elasticity is -0.5631 and the model assumes that this elasticity

is the same for all cities. The method in (4.3) will deliver consistent estimates of the

elasticities and does not rely on the logarithmic transformation of the property crimes.

It should therefore be preferred in cases where both broad and specific categories of

crimes are analyzed.
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Chapter 5

Conclusion

In this dissertation two Hausman specification tests are presented where the source

of the misspecification is a wrong transformation function of the dependent variable.

These tests are constructed by comparing an estimator that is only consistent if the

true transformation function is used to two estimators that remain consistent re-

gardless of what the true transformation function is. One of the latter estimators

is a semiparametric ordered estimator and the other one is a semiparametric least

squares estimator. The ordered estimator exploits the fact that the transformation

function is a monotone function thus without knowing the curvature of the function

one can estimate the unknown parameters by sorting the dependent variable in or-

dered categories. The semiparametric least squares estimator utilizes the single-index

assumption and the face that the transformation function is monotone thus invertible.

The asymptotic distribution of these test statistics is discussed and the finite sam-

ple properties of the test are presented in Monte Carlo experiments. The test statistic

has the desired distrubution under the null and the alternative. In examples where

the true transformation function is close to the true transformation function, the em-

pirical distribution of the test statistic is close to its asymptotic distribution. On the

other hand, as the true transformation function deviates from the true transformation

function, the empirical distribution of these test statistics deviate from the asymp-

totic distribution and the null hypothesis of the assumed transformation function is

rejected more frequently.

At last, the ordered test is used to check if the log transformation is appropriate
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in models studying crime across metropolitan areas. It was shown that although

for particular types of crimes the log function is appropriate, the same log function

should not be used for broadly defined categories of crimes.
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Appendix A

Estimation of the Semiparametric Ordered Model

(Klein and Shen, 2010)

The first stage of estimator is the maximizer of the following Quasi- Log-Likelihood:

Q̂1(θ) =
1

n

n∑
i=1

τ(Xi)

q+1∑
j=2

{tj−1 < Yi ≤ tj} ln(P̂ij(θ)) (A.1)

In order to have a normally distributed estimator, the gradient of the likelihood

should have zero expectation at the truth. If the trimming function only depends on

X, then Newey’s result about zero expectation of the derivative of the conditional

expectation at the truth does not hold anymore thus the gradient of the likelihood does

not necessarily have zero expectation. We can overcome this problem by maximizing

a second stage likelihood function in which the trimming function depends on the

estimated index rather than X (Klein, 1993, Klein and Sherman, 2002).

In this likelihood, the semiparametric probabilities are calculated slightly differ-

ently using an inside trimming function. The semiparametric probability can be

written as the ratio of two estimated densities.

P̂ ({tj−1 < Yi ≤ tj} = 1|X) =
f̂i
ĝi

To keep the denominator away from zero, P̂ is approximated by
f̂i+∆fi

ĝi+∆gi
where ∆s go

to zero rapidly when the estimated densities are away from zero and go to zero slowly

when the estimated densities go to zero. In other words, ∆fi and ∆gi can be chosen
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such that
f̂i+∆fi

ĝi+∆gi

p−→ f
g
.

The window that is used in (2.11) is not the optimal window to estimate the

semiparametric probabilities. Hence, the bias is not going to zero at the optimal

rate. To overcome this problem, Klein and Shen (2010) suggest a “bias- correction”

method that is also used in this paper.
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Appendix B

Figures

(a) Design 1 (b) Design 2

(c) Design 3 (d) Design 4

Figure B.1: Estimated density of the test statistics using both the SLS estimator
and the ordered estimator in different designs when the hypothesized transformation
function is logarithm and the null is true

The solid line is the estimated density of the test statistic which uses the semi-

parametric ordered estimator, the dashed line is the estimated density of the test

statistic which uses the SLS estimator, and the dotted line is the density of χ2
3.
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Appendix C

Tables

Table C.1: Descriptives

Means

ln(population) 13.06

( 0.97 )

Age1525 0.14

( 0.03 )

Age2535 0.13

( 0.03 )

Median(ln(wage)) 2.62

( 0.18 )

Black 0.11

( 0.12 )

Hispanic 0.17

( 0.21 )

Drop out 0.02

( 0.01 )

College 0.37

( 0.07 )

Employed 0.72

( 0.06 )

Central 0.24

( 0.24 )

Burglary 65,076

( 94,164 )

Larceny theft 208,658

( 300,643 )

Motor vehicle theft 39,169

( 78,791 )

Aggravated assault 26,976

( 53,365 )

Homicide 515

( 1,133 )

Rape 2,664

( 3,617 )

Robbery 14,348

( 34,678 )

Property crime 312,903

( 464,014 )

Violent crime 44,503

( 91,397 )

Total crime 357,407

( 550,647 )

N 1,225
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Table C.2: Parametric and Semiparametric Results
of Different Categories of Property Crime

Burglary Larceny Motor Vehicle Theft

ln(population) 0.9544∗∗∗ 0.9662∗∗∗ 1.2241∗∗∗

( 0.0100 ) ( 0.0085 ) ( 0.0154 )

Age1525 -1.2431∗∗∗ -0.9623∗∗∗ -2.0375∗∗∗

( 0.3544 ) ( 0.2469 ) ( 0.3894 )

Age2535 0.8280∗∗ 1.1613∗∗∗ 1.0418∗∗

( 0.3834 ) ( 0.2911 ) ( 0.4126 )

Median(ln(wage)) -0.4369∗∗∗ -0.6488∗∗∗ -0.4311∗∗∗

( 0.0773 ) ( 0.0538 ) ( 0.0831 )

Black 1.0300∗∗∗ 0.4800∗∗∗ 0.5766∗∗∗

( 0.1005 ) ( 0.0827 ) ( 0.1224 )

Hispanic 0.2290∗∗∗ 0.1395∗∗∗ 0.3780∗∗∗

( 0.0605 ) ( 0.0468 ) ( 0.0722 )

Drop out 2.8267∗∗∗ -0.1029 3.0441∗∗∗

( 0.8452 ) ( 0.6172 ) ( 0.9570 )

College 0.7421∗∗∗ 0.6190∗∗∗ 0.7927∗∗∗

( 0.1966 ) ( 0.1404 ) ( 0.2112 )

Employed -1.0287∗∗∗ -0.1028 -0.9671∗∗∗

( 0.2190 ) ( 0.1469 ) ( 0.2175 )

Central 0.2330∗∗∗ 0.2956∗∗∗ 0.3761∗∗∗

( 0.0493 ) ( 0.0352 ) ( 0.0546 )

Constant -0.6560∗∗ 0.4226∗∗ -3.8329∗∗∗

( 0.2780 ) ( 0.2019 ) ( 0.2779 )

sigma 0.3528∗∗∗ 0.2696∗∗∗ 0.4889∗∗∗

( 0.0077 ) ( 0.0057 ) ( 0.0101 )

R2 0.884 0.928 0.871

R̄2 0.883 0.927 0.870

Semiparametric Ordered Model Results

Age1525 -1.4619∗∗ -0.4651 -1.6503∗∗∗

( 0.5838 ) ( 0.5104 ) ( 0.6130 )

Age2535 1.5579∗∗∗ 1.0770∗∗ 1.2647∗∗

( 0.6005 ) ( 0.5258 ) ( 0.6372 )

Median(ln(wage)) -0.5334∗∗∗ -0.5194∗∗∗ -0.6366∗∗∗

( 0.1161 ) ( 0.1048 ) ( 0.1272 )

Black 1.2752∗∗∗ 0.4589∗∗∗ 0.6752∗∗∗

( 0.1544 ) ( 0.1377 ) ( 0.1707 )

Hispanic 0.0857 0.1792∗ 0.2240∗

( 0.1211 ) ( 0.0976 ) ( 0.1178 )

Drop out 0.5352 -0.1499 1.1580

( 1.2847 ) ( 1.1927 ) ( 1.3633 )

College 0.4389 0.2465 0.6687∗∗

( 0.2992 ) ( 0.2584 ) ( 0.3177 )

Employed -0.9993∗∗∗ -0.1737 -1.0090∗∗∗

( 0.3033 ) ( 0.2775 ) ( 0.3463 )

Central 0.1933∗∗ 0.3430∗∗∗ 0.4565∗∗∗

( 0.0756 ) ( 0.0681 ) ( 0.0844 )

N 1225 1225 1225

Critical Value 16.9190 16.9190 16.9190

Test 10.1407 7.4642 7.1910

P-Value 0.3392 0.5889 0.6172

Standard errors in parentheses.
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
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Table C.3: Parametric and Semiparametric Results of
Different Categories of Violent Crime

homicide Assault Rape Robbery

ln(population) 1.1745∗∗∗ 1.0487∗∗∗ 0.9155∗∗∗ 1.3011∗∗∗

( 0.0201 ) ( 0.0172 ) ( 0.0125 ) ( 0.0159 )

Age1525 -1.0252∗∗ -0.9867∗∗ 0.9993∗∗ -0.5457

( 0.4902 ) ( 0.4663 ) ( 0.4263 ) ( 0.3671 )

Age2535 0.6872 -0.1968 1.2700∗∗∗ 0.4419

( 0.4699 ) ( 0.4726 ) ( 0.4468 ) ( 0.3884 )

Median(ln(wage)) -0.0256 -0.3388∗∗∗ -0.3590∗∗∗ 0.0244

( 0.1045 ) ( 0.0977 ) ( 0.0896 ) ( 0.0755 )

Black 2.1825∗∗∗ 1.0718∗∗∗ 0.0642 1.5289∗∗∗

( 0.1457 ) ( 0.1200 ) ( 0.1234 ) ( 0.0966 )

Hispanic 0.4627∗∗∗ 0.7726∗∗∗ -0.1163 0.2046∗∗∗

( 0.0971 ) ( 0.0926 ) ( 0.0811 ) ( 0.0768 )

Drop out 1.4270 2.8181∗∗ 2.4254∗∗ 2.1263∗∗

( 1.1776 ) ( 1.2458 ) ( 1.1531 ) ( 0.9556 )

College -0.6727∗∗∗ 0.6679∗∗∗ 0.7242∗∗∗ -0.5576∗∗∗

( 0.2404 ) ( 0.2464 ) ( 0.2467 ) ( 0.1865 )

Employed -0.8976∗∗∗ -0.9278∗∗∗ -0.4231∗ -0.4009∗

( 0.2741 ) ( 0.2597 ) ( 0.2386 ) ( 0.2047 )

Central 0.1717∗∗∗ 0.1481∗∗ 0.4516∗∗∗ 0.1880∗∗∗

( 0.0646 ) ( 0.0621 ) ( 0.0624 ) ( 0.0435 )

Constant -7.9813∗∗∗ -2.9591∗∗∗ -4.5132∗∗∗ -6.3911∗∗∗

( 0.3543 ) ( 0.3544 ) ( 0.3182 ) ( 0.2584 )

sigma 0.5791∗∗∗ 0.4864∗∗∗ 0.3990∗∗∗ 0.4744∗∗∗

( 0.0099 ) ( 0.0093 ) ( 0.0077 ) ( 0.0077 )

R2 0.822 0.833 0.844 0.889

R̄2 0.820 0.832 0.842 0.888

Semiparametric Ordered Model Results

Age1525 -1.4680∗∗ -0.5147 1.0611 -0.4004

( 0.6597 ) ( 0.5840 ) ( 0.6580 ) ( 0.5493 )

Age2535 0.4062 0.9942 0.8522 1.1763∗∗

( 0.6987 ) ( 0.6541 ) ( 0.7052 ) ( 0.5705 )

Median(ln(wage)) -0.1660 -0.2023∗ -0.5672∗∗∗ 0.2678∗∗

( 0.1411 ) ( 0.1236 ) ( 0.1461 ) ( 0.1190 )

Black 2.1346∗∗∗ 0.7925∗∗∗ 0.3469∗ 1.5028∗∗∗

( 0.1969 ) ( 0.1849 ) ( 0.1881 ) ( 0.1578 )

Hispanic 0.2906∗∗ 0.6061∗∗∗ -0.0246 0.1434

( 0.1309 ) ( 0.1267 ) ( 0.1279 ) ( 0.1085 )

Drop out 0.9422 2.0210 0.3370 0.7918

( 1.5148 ) ( 1.3835 ) ( 1.5417 ) ( 1.2478 )

College -0.4534 0.3953 1.2706∗∗∗ -0.5185∗

( 0.3479 ) ( 0.3203 ) ( 0.3535 ) ( 0.2862 )

Employed -0.8975∗∗ -1.2711∗∗∗ -0.5800 0.1026

( 0.3691 ) ( 0.3390 ) ( 0.3646 ) ( 0.3102 )

Central 0.2233∗∗ 0.0840 0.6175∗∗∗ 0.2922∗∗∗

( 0.0952 ) ( 0.0810 ) ( 0.0916 ) ( 0.0764 )

N 1212 1225 1225 1225

Critical Value 16.9190 16.9190 16.9190 16.9190

Test 4.0215 5.3463 8.7787 19.9294

P-Value 0.9100 0.8031 0.4579 0.0184

Standard errors in parentheses.
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.
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Table C.4: Parametric and Semiparamet-
ric Results of Different Categories of Violent
Crime, Property Crime, and Total Crime

Violent Property Total

ln(population) 1.0961∗∗∗ 0.9861∗∗∗ 0.9971∗∗∗

( 0.0132 ) ( 0.0082 ) ( 0.0081 )

Age1525 -0.6587∗ -1.1101∗∗∗ -1.0483∗∗∗

( 0.3563 ) ( 0.2468 ) ( 0.2405 )

Age2535 0.1342 1.0489∗∗∗ 0.9375∗∗∗

( 0.3701 ) ( 0.2879 ) ( 0.2810 )

Median(ln(wage)) -0.1890∗∗ -0.5631∗∗∗ -0.5200∗∗∗

( 0.0747 ) ( 0.0539 ) ( 0.0524 )

Black 1.2250∗∗∗ 0.6060∗∗∗ 0.6709∗∗∗

( 0.0924 ) ( 0.0775 ) ( 0.0739 )

Hispanic 0.5516∗∗∗ 0.2160∗∗∗ 0.2516∗∗∗

( 0.0699 ) ( 0.0487 ) ( 0.0476 )

Drop out 2.4200∗∗ 0.9312 1.1020∗

( 0.9562 ) ( 0.6276 ) ( 0.6149 )

College 0.2316 0.6950∗∗∗ 0.6507∗∗∗

( 0.1901 ) ( 0.1448 ) ( 0.1414 )

Employed -0.6188∗∗∗ -0.4049∗∗∗ -0.4349∗∗∗

( 0.1992 ) ( 0.1465 ) ( 0.1429 )

Central 0.1777∗∗∗ 0.2822∗∗∗ 0.2669∗∗∗

( 0.0469 ) ( 0.0348 ) ( 0.0336 )

Constant -3.4377∗∗∗ 0.5093∗∗ 0.4059∗∗

( 0.2672 ) ( 0.1998 ) ( 0.1949 )

sigma 0.3934∗∗∗ 0.2687∗∗∗ 0.2641∗∗∗

( 0.0071 ) ( 0.0057 ) ( 0.0056 )

R2 0.892 0.932 0.936

R̄2 0.891 0.931 0.935

Semiparametric Ordered Model Results

Age1525 -0.2141 -0.7581 -0.4308

( 0.5639 ) ( 0.4747 ) ( 0.5035 )

Age2535 0.6129 1.4248∗∗∗ 1.3062∗∗

( 0.5825 ) ( 0.5104 ) ( 0.5231 )

Median(ln(wage)) -0.1769 -0.5943∗∗∗ -0.5385∗∗∗

( 0.1210 ) ( 0.0974 ) ( 0.1031 )

Black 0.9956∗∗∗ 0.6021∗∗∗ 0.5438∗∗∗

( 0.1631 ) ( 0.1270 ) ( 0.1375 )

Hispanic 0.3973∗∗∗ 0.1158 0.1790∗

( 0.1114 ) ( 0.0901 ) ( 0.0961 )

Drop out 2.3520∗ -0.6367 -0.9084

( 1.2720 ) ( 1.0834 ) ( 1.1236 )

College -0.0294 0.0288 -0.0747

( 0.3483 ) ( 0.2408 ) ( 0.2527 )

Employed -0.5638∗∗ -0.1797 -0.2118

( 0.3105 ) ( 0.2622 ) ( 0.2740 )

Central 0.1551∗∗ 0.3673∗∗∗ 0.3316∗∗∗

( 0.0774 ) ( 0.0626 ) ( 0.0677 )

N 1225 1225 1225

Critical Value 16.9190 16.9190 16.9190

Test 4.4599 14.9661 16.9058

P-Value 0.8786 0.0919 0.0502

Standard errors in parentheses.
Significance levels: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%.



68

References

Anil Bamezai, Jack Zwanziger, Glenn A. Melnick, and Joyce M. Mann. Price compe-
tition and hospital cost growth in the united states (1989-1994). Health Economics,
8(3):233–243, 1999.

Peter J. Bickel and Kjell A. Doksum. An analysis of transformations revisited. Journal
of the American Statistical Association, 76(374):pp. 296–311, 1981.

George E.P. Box and David R. Cox. An analysis of transformations. Journal of the
Royal Statistical Society, 26(2):211–252, 1964.

Edward L. Glaeser and Bruce Sacerdote. Why is there more crime in cities? The
Journal of Political Economy, 107(6):pp. S225–S258, 1999.

J. A. Hausman. Specification tests in econometrics. Econometrica, 46(6):1251–1271,
1978.

Joel L Horowitz. Semiparametric estimation of a regression model with an unknown
transformation of the dependent variable. Econometrica, 64(1):103–37, 1996.

Joel L. Horowitz. Semiparametric Methods in Econometrics. Springer-Verlag New
York, Inc., 1998.

Hidehiko Ichimura. Semiparametric least squares (sls) and weighted sls estimation of
single-index models. Journal of Econometrics, 58(1-2):71 – 120, 1993.

J. A. John and N. R. Draper. An alternative family of transformations. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 29(2):pp. 190–197, 1980.

Morgan Kelly. Inequality and crime. The Review of Economics and Statistics, 82(4):
pp. 530–539, 2000.

Roger Klein, Chan Shen, and Francis Vella. Triangular semiparametric models fea-
turing two dependent endogenous binary outcomes. Working Paper, 2010.

Roger W. Klein. Specification tests for binary choice models based on index quantiles.
Journal of Econometrics, 59(3):343 – 375, 1993.

Roger W. Klein and Chan Shen. Bias Correction in Testing and Estimating Semi-
parametric, Single Index Models. Econometric Theory, 26(6):1683–1718, December
2010.



69

Roger W. Klein and Robert P. Sherman. Shift restrictions and semiparametric esti-
mation in ordered response models. Econometrica, 70(2):663–691, 2002.

Steven D. Levitt. Using electoral cycles in police hiring to estimate the effect of police
on crime. The American Economic Review, 87(3):pp. 270–290, 1997.

John R Jr Lott and David B Mustard. Crime, deterrence, and right-to-carry concealed
handguns. Journal of Legal Studies, 26(1):1–68, January 1997.

James G. MacKinnon and Lonnie Magee. Transforming the dependent variable in
regression models. International Economic Review, 31(2):pp. 315–339, 1990.

Justin McCrary. Using electoral cycles in police hiring to estimate the effect of police
on crime: Comment. The American Economic Review, 92(4):pp. 1236–1243, 2002.

Jacob Mincer. Schooling, experience, and earnings. NBER New York, 1974.

James C. Robinson and Harold S. Luft. The impact of hospital market structure
on patient volume, average length of stay, and the cost of care. Journal of Health
Economics, 4(4):333 – 356, 1985.

Chan Shen. Semiparametric transformation and retransformation models. Working
Paper, 2011.

Bernard W Silverman. Density Estimation for Statistics and Data Analysis. Chapman
and Hall, 1992.

Jörg L. Spenkuch. Understanding the impact of immigration on crime. Mpra paper,
May 2010.

Peter Zweifel, Stefan Felder, and Markus Meiers. Ageing of population and health
care expenditure: a red herring? Health Economics, 8(6):485–496, 1999.



70

Vita

Kaveh Akram

2003-2011 Ph. D. in Economics, Rutgers University

1999-2002 M. Sc. in Socioeconomic Systems Engineering - Economics from Institute
for Research on Planning and Development (IRPD) Tehran-IRAN.

1994-1999 B. Sc. in Electrical Engineering - Power from Sharif University of Tech-
nology - Tehran, Iran

2007-2011 Part Time Lecturer, Department of Economics, Rutgers University

2004-2007 Teaching assistant, Department of Economics, Rutgers University


	Abstract
	Acknowledgements
	Dedication
	List of Tables
	List of Figures
	Introduction
	Semiparametric Tests for Transformation Functions
	The estimator that is consistent under the null
	Estimators that remain consistent under the alternative
	The parametric ordered estimator
	The semiparametric ordered estimator
	The Model, Assumptions, and Identification
	Estimation

	The Semiparametric Least Squared (SLS) estimator

	The Test Statistics

	Finite Sample Properties of the Test Statistics
	The Data Generating Process
	Performance of the Tests Under the Null
	Performance of the Tests Under the Alternative
	Conclusion

	An Application of a Transformation Function Test
	Example: Explaining Crime Rates
	Data
	Testing the Logarithmic Transformation

	Conclusion
	Appendix A. Estimation of the Semiparametric Ordered Model (Klein and Shen, 2010)
	Appendix B. Figures
	Appendix C. Tables
	References
	Vita

