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ABSTRACT OF THE DISSERTATION

Network virtualization on the wireless edge

By Gautam Dilip Bhanage

Dissertation Directors: Dr. Dipankar Raychaudhuri and Dr. Yanyong Zhang

This thesis presents a comprehensive investigation of wireless network virtualization, a

technique for creating multiple independent software-definable networks on a single set of

hardware resources. Network virtualization has previously been applied to wired network-

ing scenarios, but the general problems of wireless virtualization represents an important open

problem that we address in this work. The main aspects include technical challenges, sys-

tem concepts and architectures, as well as specific protocols and algorithms for implementing

wireless network virtualization. In particular, this thesis addresses the following aspects of

wireless network virtualization: (1) Basic mechanisms for link (spectrum) sharing with virtual-

ized WiFi networks, (2) Virtualization techniques and traffic isolation algorithms for virtualized

WiFi networks, (3) Virtualization of cellular basestations including an experimental evaluation

for a prototype 4G/WiMAX virtual network, and finally, (4) an analytical evaluation of virtual-

ization algorithms for more general multi-hop wireless topologies.

The first part of the thesis presents an exploratory discussion on the co-existence of multiple

virtual networks. A comparison is presented for understanding the tradeoffs between sharing

the radio through spatial and temporal separation on the ORBIT wireless testbed. Experimental

evaluations reveal that while virtual networks sharing channel resources by space separation

achieve better efficiency than those relying on time, the isolation between experiments in both

cases is comparable. Further, we propose and implement a policy manager to alleviate the
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isolation problem.

Supporting virtualized WiFi access point based networks allows for a convenient sharing of

a physical access point across multiple ISPs or network operators. The second part of the thesis

discusses our SplitAP architecture, which builds on the virtual access point (VAP) mechanism

by extending it to support fair-sharing of airtime across multiple wireless networks. This is

done by implementing a dynamically controlled isolation framework across competing slices.

The framework also allows the user to deploy custom algorithms for enforcing uplink airtime

fairness across client groups within the SplitAP framework. The thesis shows up to 40% im-

provement in isolation measured through a modified Jain fairness index with LPFC and LPFC+,

two sample algorithms implemented on the framework.

The third part of the thesis addresses the challenge of virtualization of resources in a cel-

lular basestation (BTS) while allowing operators to use distinct flow types, quota allocations,

slice schedulers, and network layer protocols. The proposed virtual basestation architecture is

based on an external substrate which uses a layer-2 switched datapath, and an arbitrated control

path to the WiMAX base station. The virtual network traffic shaping (VNTS) slice isolation

mechanism allows the virtual basestation users to obtain at least an allocated percentage of

the BTS resources in the presence of saturation and link degradation, helping make the perfor-

mance repeatable. The fairness index and coupling coefficient show an improvement of up to

42%, and 73% respectively with preliminary indoor walking mobility experiments. Outdoor

vehicular measurements show an improvement of up to 27%, and 70% with the fairness index

and coupling coefficient respectively.

Finally, a theoretical formulation describes how a mapping mechanism can be used for pro-

visioning and allocating resources on wireless networks that are supported by wireless virtual-

ization schemes such as the virtual basestation and the SplitAP framework. Results show that

the wireless mapping problem can be reduced to solving a combinatorial optimization problem

at nodes selected greedily based on their capabilities to generate revenue. Results show that

the proposed algorithm and infrastructure can be used to map networks with (1) both wired and

wireless nodes, (2) networks with multiple sinks.
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Chapter 1

Introduction

1.1 What is Network Virtualization?

The term virtualization originates from the area of server systems virtualization, where multi-

ple virtual machines are emulated on a single physical machine. It refers to a mechanism for

seamlessly sharing an underlying physical resource while providing complete isolation across

the user base of the system. Network virtualization technology is used for extending these

ideas of virtualization to networks. This dissertation specifically addresses the design issues

and technical challenges of virtualization of wireless networks. Before we delve into the ad-

vantages, and details of wireless virtualization, we present a brief background on the field of

network virtualization.

1.1.1 Background

Wired Virtual Networks: Among the very first applications in networks, virtual local area

networks (VLANs) [1] were created in switches, which behave like independent ethernet net-

works connected to the same hardware. Such a mechanism allows the network operator to

administer multiple independent LANs or broadcast domains on the same physical network.

Such an approach helps to improve the manageability of the underlying network. Virtual pri-

vate networks (VPNs) [2] use tunneling as a mechanism to emulate MAC frames on a remote

network as if coming from a client on the local area network. This technique is used by enter-

prises to allow employees to log in to the company networks remotely.

In terms of network architectures, network virtualization was introduced to the wired world

with the primary purpose of sharing the underlying physical network across virtual topologies
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Figure 1.1: A wired virtualized network architecture. This figure shows how independent
virtual networks can share the underlying wired infrastructure.

while permitting significant degree of customization across an independent set of users. A vir-

tualized wired network architecture looks like the example shown in Figure 1.1. The underlying

physical network is shared by the virtual networks, such that all the components in the virtual

networks are some subset of the physical network, and the sum of resource requirements (such

as link bandwidth, node computation capacity) across all virtual networks do not exceed the

value that can be supported by the physical network.

Some of the previous studies discussing applications and deployments of virtualized frame-

works are as follows. The X-Bone [3] architecture was proposed for rapid deployment of over-

lays which was used for the proposed virtual internet design [4]. The Tempest architecture [5]

is a control framework that describes how multiple control architectures can be used to run over

a single ATM architecture. Similar ideas have been proposed in the CABO project [6] which

relies on virtualization for supporting multiple concurrent architectures. These ideas have also

been put to use for conventional wired testbeds such as the Planetlab [7] and VINI [8] frame-

works. Independent algorithms have also been proposed for mapping such virtual networks

to wired substrates [9]. Architecture and mechanisms for making a framework based on vir-

tual routers fault tolerant is discussed as a part of VROOM [10]. All of these ideas have been

pre-dominantly considered for wired networks. We will present a discussion on the impact of

extending virtualization to wireless networks.
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Wireless Virtual Networks This dissertation systematically extends the ideas from wired net-

work virtualization to wireless networks while addressing the underlying challenges arising due

to the nature of the wireless medium. We define virtual wireless networks as logical entities

that are provisioned on an underlying shared physical substrate, which can provide seamless

and transparent connectivity to their clients. In this case, the term transparent is used to indi-

cate that the clients of the system are oblivious to the fact that both the virtual networks being

mapped and their wireless clients are oblivious to the fact that the radio hardware is shared.

Some previous studies have tried to address specific aspects of wireless virtualization. They

are as follows. A study on virtualizing commodity wireless devices [11] proposes enhancement

to the ORBIT radio grid, through the use of a time division multiplexing scheme for scheduling

networks. This study provides a motivation for challenges in scheduling and context swapping

virtual networks. Our approach is orthogonal to this study, in that we share the inherent time

sharing nature of the MAC, and build mechanisms on top to ensure isolation across slices. The

Multinet [12] project discusses an architecture for supporting a virtualized client connection to

multiple networks from a single wireless client. Our setup discusses a solution for virtualized

networks by splitting the AP.

As can be seen from these, the field of wireless network virtualization is very new. In the

next section we will define use cases to justify the need for virtualized wireless networks.

1.2 Why do we need to virtualize Wireless Networks?

We begin with a presentation of three strong motivation case studies for supporting wireless

network virtualization, followed by a detailed discussion on our contributions.

1.2.1 Case 1: Shared Commercial Wireless Networks

Recent years have seen a dramatic surge in the number of mobile subscribers with the number

crossing 4.6billion in Feb 2010, which is approximately 67% of the world’s population [13].

Further, some research studies see this number crossing 5.9 billion by 2013 [14]. With large

number of users from various backgrounds using cellular networks, there is a tremendous po-

tential for launching niche services through mobile virtual network operators (MVNOs). These
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Figure 1.2: A shared heterogeneous network architecture. This figure shows how independent
MVNOs and ISPs could possibly lease the wireless infrastructure for providing service to their
clients.

MVNOs lease the network from the mobile network operator to provide their services. Cur-

rently, the network operators achieve this by leasing basestations and spectrum to these op-

erators. However, we observe that it would be much nicer if the basestations itself, and the

wireless spectrum on each basestation could be shared among multiple MVNOs. Doing this

allows the mobile network operator to maximize profit by reducing the amount of hardware

deployed (where possible) and also lowers costs for the MVNOs leasing the hardware.

Similarly, recent studies have shown that WiFi is used by over 700 million people, and

there are over 750,000 hotspots (places with WiFi internet connectivity) around the world, and

about 800 million new WiFi devices every year [15]. In such scenarios, it will be very useful

if we are able to share some of these public WiFi hotspots among multiple internet service

providers. Specially, in areas such as airports, hospitals, train stations, where the number of

deployed devices would possibly be limited by space or by the availability of spectrum, sharing

hardware provides a good solution. Additionally, these hotspots could possibly be used by

mobile network operators or MVNOs to provide supplementary data service to their mobile
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subscribers with smart phones.

Once we are able to share these WiFi hotspots and cellular basestations across MVNOs

and ISPs, we envision the wireless architecture to look similar to that shown in the Figure 1.2.

As shown, depending on the agreements between the MVNOs and the network operator who

owns individual points in the infrastructure, wireless clients belonging to different MVNOs can

connect to appropriate shared points on the infrastructure.

1.2.2 Case 2: Large Shared Wireless Testbeds

Apart from this application of sharing basestations and hotspots across MVNOs and ISPs,

appropriate sharing mechanisms could also be used for implementing large shared testbeds

such as GENI [16], and also for provisioning and providing leased services (such as video

on demand), through the core network. The GENI initiative in particular envisions a nation-

wide wired experimental facility with numerous shared wireless edges. The initial ideas in

this design are drawn from existing testbeds like Planetlab [7]. However, the issue of sharing

wireless devices for experimentation purposes is still largely a topic of research. It will be

beneficial if the wireless components of the testbed are able to support this shared model of

usage along with their wired counterparts.

1.2.3 Case 3: End - to - End Protocol Stack Customization

The current architecture of the internet supports different functionalities through the use of

overlay services. However, as the number of users and the diversity of their applications keep

increasing, at some point the architecture will not be able to address all the requirements at scale

through the use of a single protocol stack [17, 18]. This problem is further aggravated when

we also wish to cater to diverse need of wireless networks through a common protocol stack.

For example, a common incremental solution on IP is not ideal for supporting diverse wireless

systems such as mesh networks [19], peer - to - peer systems [20], delay tolerant networks [21],

vehicular networks [22], and sensor networks [23]1. Rather in such a case, it is envisioned that

both the wired and the wireless parts of the network will eventually provide support for running

1These emerging wireless scenarios are also responsible for motivating research projects on clean slate protocols
like the NSF FIND program, and the European FP7 program.
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multiple simultaneous protocol stacks (which are possibly different from layer-3 and up), and

these independent stacks will cater to different network requirements.

1.2.4 Design Requirements For Shared Networks

Based on the motivation from the three leading application use cases: (1) sharing commercial

wireless networks and (2) wireless testbeds, and (3) supporting end - to - end customized pro-

tocol stacks, we can summarize a set of core features in the infrastructure that would make the

sharing simpler, and seamless:

• Transparency: The slicing of the radio to be shared has to be transparent to the user of

the system. From the client perspective this means that the clients need not be aware

of the sharing of the infrastructure. From an MVNO perspective, this means that each

of the MVNOs should not be concerned with the fact that the radio is shared i.e. they

should have an interface that is similar to that enjoyed by them when they lease the entire

radio. The transparency feature is also a big plus from the testbed deployment perspective

since it allows for easy porting of prototypes from the wireless testbed to actual network

hardware.

• Service differentiation through customization: The architecture of the shared radio in-

terface should allow the slices (groups of users2, in this case the MVNOs or the ISPs) of

the system, to customize their interaction within their slice.

• Performance Assurance: The sharing should be such that the users of the system are

able to use the system oblivious to each other. Such a mechanism ensures that some

service level agreements (SLAs) are satisfied between the network provider and MVNOs.

Similarly, in case of testbeds, performance assurance across multiple experimental slices

ensures repeatability of results.

Through the remainder of this chapter, we will discuss how these requirements are satisfied

through wireless network virtualization.

2The terms slices and user groups will be used interchangeably through the rest of this dissertation.
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Figure 1.3: Virtualization applied to a general purpose radio. After virtualization, we observe
that every slice will see independent virtual radio (VRs) interfaces where the radio resource
management can be done by individual slices.

1.3 Wireless Virtualization Based Solution

Wireless network virtualization is a design paradigm that allows the network operator to support

multiple virtual wireless networks on wireless infrastructure. All the requirements described

in the previous sections can be satisfied through the wireless virtualization methodology. The

transformation required to conventional wireless networks for supporting virtualization is as

shown in the Figure 1.3. In order to virtualize a component of the network, we need to extend

the basic principles of (1) abstraction, (2) programmability, and (3) isolation to both the radio

devices and the network as a whole. Thus for virtualization, we add an extra layer over the MAC

layer of the radio, which abstracts the single physical radio device, and emulates multiple virtual

interfaces to the upper layers of the network stack. This allows every MVNO (or ISP or slice)

to customize its interaction with the interface. The virtualization layer also provides isolation

between each of the virtual interfaces, thus allowing them to operate and use the physical radio

independent of each other. Programmability is provided by exposing part of the radio resource
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management (RRM) functionality to each of the slices and allows them to customize their share

of the radio.

1.3.1 Technical Challenges

Enforcing virtualization at the wireless edge poses several challenges. Through the remainder

of the thesis we will discuss how the underlying design challenges are met by our proposed

virtualized architectures:

• Generality of design: Beginning with the determination of which wireless network com-

ponents need to be virtualized, the eventual prototype’s design has to be simple and

generic enough to permit portability to other hardware devices. E.g. virtualization guide-

lines and design laid down for a mobile WiMAX basestation have to be generic enough to

permit easy portability across multiple manufacturers adhering to the 802.16e standard.

• Wireless Infrastructure Abstraction issues: While abstracting the underlying resource, if

any extra virtual machines are used, they should export suitable features for supporting

control features similar to those supported by the underlying resource. E.g. In case

of a virtualized WiMAX basestation, the framework should be capable of emulating

virtualized instances of basestations that support some subset of functionality supported

on the physical basestation. Such a feature allows for more detailed experimentation

setup in case of a testbed usage scenario, and permits better customization in the MVNO

use case. This problem specifically requires more care in wireless networks due to widely

varying nature of layer-2 wireless devices, as compared to those on the wired side.

• Isolation issues: This thesis also presents detailed design and prototyping of mechanisms

for facilitating slice isolation. This problem is specifically harder in wireless networks

due to the rapidly changing nature of the wireless medium. E.g. When we virtualize a

wireless access point (discussed in Chapter 3), changing client channel conditions either

due to mobility should not impact other co-existing slices at the access point.

• Protocol independence: One of the design goals which make the virtualization method-

ology particularly important is that it allows us to slice the networks in such a way that
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they can be made protocol independent. In our case, we show that by virtualizing wire-

less devices at layer-2 we can make the system protocol independent from layer-3 and up.

E.g. In our virtualized basestation design, we show that special mechanisms are needed

for supporting L2 frame forwarding on virtualized basestations.

• Co-existence/Spectrum reuse: Even if we are able to virtualize and share individual net-

work devices, we want multiple virtualized and non-virtualized networks to be able to

co-exist in certain environments. E.g. While virtualizing the ORBIT testbed, we would

want two or more virtual networks mapped on the testbed to share wireless spectrum

(discussed more in Chapter 2). This problem is also harder in wireless networks since it

is easier to provide isolation across networks in the wired case.

• Virtual Wireless Resource Mapping: Finally, after the issues in virtualizing wireless de-

vices, and co-existence of multiple virtualized networks has been discussed, it is im-

portant to understand how a network operator will be able to map virtual network to

the physical substrate. This problem is also harder in case of wireless networks due to

complex interactions arising due to interference and hidden nodes in the network.

1.3.2 Methodology

To address the technical challenges described above, this dissertation describes how the con-

cepts from systems virtualization can be extended to wireless networks for providing a mecha-

nism for seamless sharing across diverse user sets. Specifically, it will begin with a discussion

on the impact of multiple networks sharing the spectrum by comparing the time division and

space division approaches. Using this insight, we propose the SplitAP framework for sharing

public access points among groups of users (belonging to different ISPs). In a similar space,

the virtual basestation framework discusses the efforts in design and prototyping. Attention

is focussed on mechanisms used for platform independent, and indirect means for radio re-

source provisioning, using traffic shaping. Finally, a theoretical model and mapper are shown

for provisioning virtual networks on top of existing physical networks.
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Figure 1.4: Dissertation layout.

1.4 Contributions And Dissertation Layout

This thesis is organized as shown in Figure 1.4. Chapter 2 describes the performance achieved

when we have multiple co-existing wireless mechanisms separated in space and time, with no

radio resource provisioning mechanisms. This part will focus on measuring performance when

virtualization is used for sharing of the wireless spectrum rather than the nodes themselves.

Chapter 3 will describe the design and implementation of a virtualized 802.11 access point on

the ORBIT indoor wireless grid. Chapters 5, 4 discuss the different aspects in the design of a

virtualized WiMAX basestation. Chapter 6 describes mechanisms for mapping virtual wireless

points of presence (PoP) requests to the underlying physical wireless mesh network. Finally,

Chapter 7 discusses conclusions and future directions. Chapter 8 described in the Appendix

shows different aspects in the selection of platforms for virtualized wireless systems.

1.5 Previously Published Material

Chapter 2 revises a previous publication [24]: R. Mahindra, G. Bhanage, G. Hadjichristofi, I.

Seskar, D. Raychaudhuri, and Y. Zhang. Space versus time separation for wireless virtualiza-

tion on an indoor grid. In proceedings of NGI, pages 215− 222, April 2008.
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Chapter 3 revises a previous publication [25]: G. Bhanage, D. Vete, I. Seskar, and D. Ray-

chaudhuri. SplitAP: leveraging wireless network virtualization for flexible sharing of WLANs.

In IEEE Globecom 2010 - Next Generation Networking Symposium (GC10 - NGN), Miami,

Florida, USA, 12 2010.

Chapter 4 revises a previous publication [26]: G. Bhanage, I. Seskar, R. Mahindra, and

D. Raychaudhuri. Virtual Basestation: architecture for an open shared wimax framework. In

ACM Sigcomm conference, VISA workshop, New Delhi, India, 09 2010.

Chapter 5 revises a previous publication [27]: G. Bhanage, R. Daya, I. Seskar, and D.

Raychaudhuri. VNTS: a virtual network traffic shaper for air time fairness in 802:16e slices.

In IEEE ICC - Wireless and Mobile Networking Symposium, South Africa, 5 2010.
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Chapter 2

Wireless Medium Separation and Integration

2.1 Summary

The decreasing cost of wireless hardware and ever increasing number of wireless testbeds has

led to a shift in the protocol evaluation paradigm from simulations towards emulation. In addi-

tion, with a large number of users demanding experimental resources and lack of space and time

for deploying more hardware, fair resource sharing among independent coexisting experiments

is considered important. We study the proposed approaches to wireless virtualization with a

focus on schemes conserving channels rather than nodes. Our detailed comparison reveals that

while experiments sharing channel resources by space separation achieve better efficiency than

those relying on time, the isolation between experiments in both cases is comparable. We pro-

pose and implement a policy manager to alleviate the isolation problem and suggest scenarios

in which either of the schemes would provide a suitable virtualization solution.

2.2 Introduction

The GENI Project [16], supported by NSF, aims to provide a flexible, programmable, shared

experimental infrastructure for investigation of future Internet protocols and software. GENI

will consist of a global-scale wired network with programmable and virtualizable network el-

ements (routers, switches, servers) along with several wireless access network deployments

intended to support experimentation with mobile computing devices, embedded sensors, radio

routers, etc. This project is aimed at finding solutions to the virtualization of wireless network

resources to provide capabilities for simultaneous support of multiple concurrent experiments

(“slices”) on the same set of radio devices.

The ORBIT [28] is a 400 node wireless testbed sponsored by NSF for indoor wireless
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experimentation. It is a multi-user radio grid that allows “sequential” short term access to

the radio resources for repeatable experiments. Time scheduling is done so that users have

exclusive access to the grid during their slot. Excessive usage leading to lack of available time

slots in the light of the GENI initiative has further motivated efforts for ORBIT virtualization.

Thus, virtualization in the ORBIT context refers to the ability of splitting the wireless testbed

resources among multiple concurrent experiments with each experimenter controlling a ”slice”

of the entire radio grid.

Suitableness of a wireless virtualization scheme is decided by:

• Resource Constraints: Different virtualization schemes can help conserve different re-

sources (number of nodes, available orthogonal channels, ability of the experiment con-

trol mechanism to handle parallel experiments).

• Efficiency: Sharing a resource by virtualization introduces additional overheads for

the management framework. For example, in case of a UML [29] based approach to

virtualization excessive resource utilization may be seen in the form of context switching.

The virtualization scheme should be efficient such that there is minimal management

overhead, since it eventually decides the maximum number of parallel experiments.

• Inter-experiment interference: Virtualization of any resource almost always results in

some form of compromised performance for co-existing experiments. While mapping

virtualization to scientific experiments it is necessary to quantify any performance degra-

dation of experiments.

• Experiment Repeatability: An important aspect with performing indoor controlled ex-

periments is to ensure the repeatability of results. Improper resource sharing may result

in unpredictable performance across multiple experiment runs.

A wide range of wireless virtualization schemes have been proposed [30]. We select and

compare two approaches to wireless virtualization: space separation and time separation; based

on their suitableness for deployment on the ORBIT testbed. Empirical evaluation of sample

scenarios are used for comparison and deduction of overheads with wireless virtualization.

Despite having minimal overhead in terms of CPU utilization in both approaches, we show the
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usefulness for a policy management mechanism that dynamically allocates channel resources

for experiments.

The contributions are as follows:

1. Compare strengths and drawbacks of space and time based virtualization among other

schemes and determine their suitableness for deployment on a type of wireless testbed.

2. Provide empirical measurements from a systematic setup and use them to determine

efficiency of the virtualization schemes.

3. Propose metrics to compare interference between experiments and provide an imple-

mentation of a Click based policy manager. We show that this policy manager makes it

is possible to select a higher efficiency virtualization scheme irrespective of the level of

inter-experiment interference.

This research is based on devices that use the same MAC and physical layers. All devices

in the virtualization schemes use MAC and PHY layers that are compatible with the 802.11

standard. Our study does not aim to provide a comprehensive virtualization solution across

heterogeneous wireless devices and drivers, but can serve as a reference to show the trends

in performance that may be observed with the use of the two aforementioned virtualization

approaches. This study lays out the criteria, which could be used for deciding virtualization

schemes on testbeds. We believe that our study lays the foundation for some of the key design

issues and deployment strategies for wireless virtualization on large-scale network testbeds like

GENI [16].

The rest of the chapter is organized as follows. Section 2.3 describes some of the important

approaches of wireless virtualization. Section 2.4 and 2.5 compare the performance difference

between SDMA and VAP-based virtualization schemes. Section 2.6 discusses inter-experiment

effects that may be seen in channel multiplexed wireless virtualized schemes. Finally, in Sec-

tion 2.7, we propose a policy manager for ensuring isolation between virtualized experiments.
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2.3 Virtualization Schemes

Wireless virtualization approaches may be conveniently classified along the space, time, and

frequency axes as:

• Frequency separation channel sharing

• Space separation channel sharing

• Time separation channel sharing

Before providing an overview of these approaches, we briefly describe our experimental

testbed.

2.3.1 Virtualization Platform

ORBIT is a two-tier laboratory emulator/field trial network testbed designed to achieve repro-

ducibility of experimentation, while also supporting evaluation of protocols and applications

in real-world settings. The laboratory-based wireless network emulator uses a novel approach

involving a large two-dimensional grid of 400 802.11 radio nodes which can be dynamically

interconnected into specified topologies with reproducible wireless channel models. The ma-

jority of the ORBIT nodes are fitted with Atheros 5212 based cards while the remaining have

Intel cards. We used Atheros cards for our experiments.

2.3.2 Outline Of Virtualization Approaches

The author in [30] presents virtualization techniques that are intended to share a set of wireless

resources amongst multiple users.

Frequency Separation Channel Multiplexing: Frequency separation implies partitioning of

the experiments in the frequency domain with different experiments assigned orthogonal chan-

nels to prevent interference. Multiple experiments are executed on the same physical nodes,

with each experiment being executed in an instance of an OS or virtual OS. Thus, the resources

of a physical node are split into multiple virtual nodes. This virtualization would introduce a

finite channel switching delay when switching from one virtual node to another. In most facil-

ities, there is a provision for multiple wireless interfaces. Hence, individual experiments could
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be mapped to different wireless interfaces on the same physical node eliminating switching

delays.

Space Separation Channel Multiplexing: The space separation approach splits the testbed

resources to provide sufficient spatial separation between the transmitting nodes and avoid in-

terference across individual experiments. During this allocation, a subset of the physical re-

sources is assigned to a specific experiment. This means that space separation provides vir-

tualization across multiple nodes eliminating the need for experimenters to share experiment

nodes. Space separation will be broadly referred to as space division multiple access (SDMA)

scheme.

Time Separation Channel Multiplexing: Time separation or Time division multiple ac-

cess (TDMA) virtualization partitions the network in time domain across multiple experiments.

In [11], the authors propose the assignment of unique time slots during which all virtual nodes

corresponding to a specific experiment use the wireless channel. Time sharing of the channel

is discussed in further detail in subsection E.

2.3.3 Most Suited Approaches

Selection of a virtualization scheme primarily depends on the resource being conserved. Wire-

less virtualization can be targeted at either the conservation of nodes (hardware) or channels

(frequency). Frequency multiplexing of the wireless channel, allows for node conservation

where the same node could be shared using a UML [29] like mechanism on multiple channels

to emulate different experiments. Keeping in mind Moore’s Law, the concern for deployment

of a virtualized testbed would be more on channel conservation with availability of relatively

cheaper commodities. For instance, with access to 800 wireless interfaces on the ORBIT grid

the focus was more on channel conservation rather than node conservation. Frequency multi-

plexing may not scale well with provision of only three orthogonal channels in 802.11b mode

of experimentation. Since time and space separation allow for channel conservation we will

compare and contrast these approaches for selecting an apt virtualization setting.
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2.3.4 Space Separation on ORBIT

The ORBIT wireless testbed is located in a 20 meter x 20 meter space and hence the nodes are

in close physical proximity of one another. Under these conditions, partitioning the resources

in space to avoid interference would not be practically possible. This holds true for most of

the emulator testbeds. Artificial stretching of the distance between the nodes is achieved by

controlling transmission power of the nodes and using “noise injection” to emulate barriers

between the nodes of different experiments. Observation from previous studies [31] reveals

that it is considerably difficult to create and limit the effect of noise locally with the current

noise injection subsystem on ORBIT. Our experiments explore the possibility for virtualizing

the ORBIT grid using SDMA by controlling power in addition to providing spatial separation.

In this artificially stretched SDMA scheme, the individual experiments are multiplexed on the

same channel.

2.3.5 Time Sharing On ORBIT

Time sharing on the ORBIT wireless grid can be achieved using two approaches:

• Explicit TDMA implementation

• Virtual access points (VAP)

TDMA: TDMA has been implemented and tested on the ORBIT grid in [29]. This approach

runs multiple UML instances on the same node, which use the same wireless device. They

ensure through tight synchronization, that at any time all the nodes are running the same exper-

iment slice across the network of nodes.

Efficiency of implementation and overall performance seen with a TDMA scheme will

greatly depend on:

• Experiment Synchronization: In TDMA, there is a stringent need for high degree of

time synchronization between all the experiment nodes. Moreover, wireless experiments

can potentially involve a high number of experimental nodes. Though tools like the net-

work timing protocol daemon (NTPD) [32] can provide distributed time synchronization,

accuracies achieved may not be sufficient.
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• Design Dilemma: The choice of time slot allotted to the different experiments is another

design issue for the TDMA approach. A small value may not be possible due to practical

limitations of wireless hardware like switching time and a large value would adversely

affect the performance in delay sensitive experiments. Since, in this approach, several

concurrent experiments share one or more physical nodes, there is also a need to provide

isolation on every node between the experiments.

The TDMA approach requires design and deployment of a complicated infrastructure on

current testbeds like ORBIT which does not seem plausible. To offset these disadvantages we

consider the use of virtual access points as a mechanism for channel multiplexing.

Virtual Access Points (VAPs) A VAP is defined as a logical abstraction that runs on a physical

access point while emulating the behavior of a conventional access point to all the stations in the

network [33]. Using a VAP allows for two or more AP mechanisms to share the same channel

thereby helping channel and energy conservation. In contrast to the TDMA approach for space

separation channel multiplexing, VAPs are more suitable for running short-term experiments

with less stringent constraints on the current testbed resources.

The concept of VAPs is incorporated in the 802.11 driver, which operates just above the

MAC layer and below the IP layer. The driver provides the multiple AP abstraction to the

higher layers though it is operating on a single lower layer. Hence all the protocols operating

on the machine are agnostic to the presence of the abstraction. As we will show in the coming

sections this setup can be extremely useful for minimizing down link interference with multiple

infrastructure mode setups. We plan to use this mechanism to provide virtualization of fixed

star topology wireless networks.

Since channel conservation is of prime importance, we choose to evaluate the space and time

separation approaches for virtualization on the ORBIT grid. As the VAP approach provides

a more plausible solution to time multiplexing over conventional TDMA approaches intended

for long term experimentation, we will use if for further quantitative evaluation with space

separation.
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(a) A physical access point and four clients (b) Four virtual access points and their individ-
ual clients

Figure 2.1: Experimental setup for performance evaluation with physical and virtual access
points.

2.4 Throughput Comparison

Throughput, latency and jitter are usually the three main parameters, which determine a users

utilization and experience on a network device. Throughput for individual experiments in a vir-

tualized environment is expected to be lesser than those under single user conditions. However,

performance under these conditions is largely contingent to how fairly the resources are shared.

A virtualized channel is likely to see multiple experimenters running simultaneous experi-

ments and the end performance can largely be a function of individual experiment parameters

rather than just a fair share between users.

Prior to investigating and comparing VAP and SDMA based virtualization schemes, we

discuss briefly about the implementation and working of a VAP, which is a relatively new

concept. This study should be insightful in determining if a VAP buys us significant advantages

over a conventional physical access point setup.

2.4.1 Virtual Access Point Overhead

A VAP creates an abstraction of multiple physical access points running from the same hard-

ware for the clients associating with it. Creation of these logical entities requires state main-

tenance and independent management signaling for each of the networks managed by each

VAP.
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Parameter V alue

Channel Rate 36Mb/sec

Aggregate Offered Load 50Mb/sec

Experiment Duration 5 Minutes

Averaging Duration Per Second

Operation Mode 802.11a

Traffic type Uplink

Chipset ATHEROS

Driver Madwifi(0.9.3.1)

Figure 2.2: Experimental Parameters Used With ORBIT Nodes

Before we evaluate the benefits of using VAPs, we consider it important to determine the

overheads of maintaining the state of multiple networks at a single hardware device. The ex-

perimental setup for comparison is as shown in Figure 2.1(a) and Figure 2.1(b). Figure 2.1(a)

shows a setup with one AP and all four clients within the same network. Figure 2.1(b) has the

same nodes. However, each of the clients now belongs to a different logical network created

by the VAPs. Care was taken to ensure that there is no capture within the network by choosing

client nodes such that they had comparable RSSI at the access point. Results are evaluated

for both uplink and downlink performance with a saturated channel and equal offered load per

client. Other experiment parameters were maintained as shown in Figure 5.1.

Figure 2.3 plots the observed per client throughput (Mbits/sec
client ) for uplink and downlink

traffic. Performance of a single client with a single access point is taken as a reference for

comparison. Key observations that can be made from the results are:

• As with any time sharing approach, the entire bandwidth (which is seen in the scenario

with 1 client) is now shared across 4 clients.

• Uplink traffic sees a slight deterioration in performance with both the AP and the VAP as

compared to the reference flow with 1 client.
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Figure 2.3: Impact of virtualizing using channel multiplexing approaches.

(a) Topology for VAP-based vir-
tualization.

(b) SDMA scenario with maxi-
mum spatial separation between
experiment nodes

(c) SDMA scenario with experi-
ment nodes placed close together

Figure 2.4: Experimental setup for performance evaluation of VAP and SDMA schemes on
ORBIT.

• There is no added deterioration with uplink traffic using VAPs for having clients on

multiple networks, as compared to an AP with all clients in one network. Hence, we can

conclude that the deterioration seen in both cases which leads to a net channel throughput

of 21.76Mbps as compared to 24.11Mbps is due to the increased channel contention

overhead.

• Downlink overheads for both AP and VAP with 4 clients are neglibible as compared to

that with a single client.

• Error bars for both cases show little variance in throughput.

Hence we can conclude that using a VAP adds no conspicuous overhead to the throughput

performance of a convention AP. We confirmed this behavior by investigating the source code

for the MADWifi [34] driver where the VAPs are created. The driver does minimal additional
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processing to differentiate between the packets received for the different virtual interfaces. The

above study suggests that experiments evaluating aggregate throughput with test setups running

a single AP or multiple VAP should generate comparable results with the channel utilization

being determined by the number of clients. Based on this conclusion, we can now compare the

performance of virtualization with VAP and that with space separation based on:

1. Offered load

2. Packet sizes

2.4.2 Variation With Offered Load

Performance comparison of the VAP versus space separation (SDMA) uses the experiment

setup as shown in Figure 2.4(a) and Figure 2.4(b). We compare the performance of both vir-

tualization schemes by mapping four co-existing experiments. Each individual experiments

consist of an AP-client single hop wireless.

Figure 2.5 shows the results for the aggregate throughput for virtualized experiments with

varying offered load. We observe that below saturation both SDMA and VAP have the same

performance. However, as the offered load is pushed into the saturation limits of the channel,

there is a clear difference in the throughput.

The difference in performance observed in Figure 2.5 is due to the physical layer cap-

ture [35]. Capture is the phenomenon by which a receiver correctly decodes one of the many

simultaneously colliding packets due to relatively high signal to noise ratio. Physical layer

capture was detected either by sniffing packets from the channel with multiple sniffers (since

the sniffers themselves are susceptible to capture) or by comparing the number of MAC retries

with a case without capture. Figure 2.6 shows the the aggregate number of MAC retries with

the VAP and the SDMA case. It is clearly seen that the number of MAC retries with SDMA

were significantly lesser than with VAP since the receivers are able to decode colliding packets

due to capture.
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Figure 2.5: A comparison of available bandwidth for SDMA and VAP based virtualization
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Figure 2.6: A comparison of number of MAC frame retries for SDMA and VAP based virtual-
ization schemes supporting four concurrent experiments.

2.4.3 Variation With Packet Sizes

Packet sizes in a saturated channel impact both the MAC and physical layer overhead, as well

as the aggregate channel access time. The goal of varying the packet sizes with experiments is

to test if they have similar effect on performance with both the VAP and SDMA approach.

The setup of these experiments is the same as shown in Figures 2.4(a) and 2.4(b). To

determine the effect of node positioning on the capture effect with SDMA, we measure SDMA

performance with two setups as shown in Figures 2.4(b) and 2.4(c). In Figure 2.4(b) the nodes

of the experiments are setup far from one another. In Figure 2.4(c) the experiments are setup

next to each other. For each experiment packet sizes were varied and the aggregate throughput
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Figure 2.7: A comparison of available bandwidth for SDMA and VAP showing the effect of
space and transmission power control.

was measured. In Figure 2.7, we plot the difference in throughput of each of the SDMA setups

from the VAP experiment and show the performance gains.

The general trend for both setups follows intuition where performance is poor for small

packet sizes and vice versa. However, SDMA setup with nodes placed far away had the advan-

tage of decreased interference and improved performance with higher capture. The positive in-

crease in difference in throughput shows that the benefits of capture increase with packet sizes.

The SDMA setting without spatial separation shows a degraded performance as compared to

the VAP setting. The MAC-ACKS in the downlink see lesser interference and collisions in the

VAP due to time scheduled downlink transmission and hence the setting has a better perfor-

mance as compared to the SDMA without spatial correlation. As the packet size increases this

difference is even more pronounced since the effect of a collision is more pronounced for larger

packet sizes.

2.5 Delay-Jitter Comparisons

Experimenters often use delay as a metric measured for performance of an experimental setup.

Jitter, defined as the variation of delay is also an important metric in the performance of real

time traffic, such as voice or video. We will compare the effect of time and space separation

for virtualization on both observed delay and jitter per experiment.
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Figure 2.8: Round trip delay variations with packet size for VAP and SDMA based virtualiza-
tion schemes as compared to the non-virtualized scenario.

Experiment setup for delay and jitter measurements is the same as that shown in Fig-

ures 2.4(a) and 2.4(b). Figure 2.8 shows the round trip delay measurements for the follow-

ing cases: 1)No Virtualization, 2)SDMA and 3)VAP with different offered loads. We use two

different offered loads to test the deterioration in delays with varying offered loads. With no

virtualization, experiments show a linear increase in delay with packet sizes due to increase in

transmission times. This deduction is based on the assumption that the individual experiments

have a one hop wireless topology with single flows. Hence there are no CSMA contentions.

However, in the case of virtualization, experimenters have a V-shaped curve for delay results.

The nodes of every experiment face CSMA contentions with nodes from other experiments.

Delay values decrease with packet size for smaller packets as the CSMA contentions decreases

with lesser number of packets. However for large packet sizes, the transmission and queueing

times are more prominent than CSMA contentions and the delay increases with packet size.

The per-packet delays for SDMA experiments are lower as a result of capture effect. Capture

ensures that the MAC frames are received despite collision, which lowers the net MAC retries

for getting a packet across and consequently the queueing delays.

Figure 2.9 shows the round trip jitter as a function of different packet sizes and offered

load. The trend for jitter follows the same pattern as that for delay i.e., high for small packets,

decreases for bigger sizes and slightly increases for the biggest packets sizes. However, unlike

delay, the jitter decreases with packet size for no virtualization scenario. Since we measure

RTT jitter, there is contention even with one hop, single flow topologies. Hence, as the packet
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Figure 2.9: Round trip jitter variations with packet size for VAP and SDMA based virtualization
schemes as compared to the non-virtualized scenario.

size increases, for a constant offered load the number of contending packets decrease resulting

in decreased jitter.

2.6 Inter-experiment interference Illustrations

Repeatability of experiments is strongly related to the isolation in the experimentation environ-

ment. Often it is seen that abuse of resource by one device sharing a resource leads to a dete-

rioration in performance for other experiments sharing the same platform. We will elaborate

the consequences of these inter-experimental effects with time and space separation for virtu-

alization and suggest approaches to mitigate them. In this section, we use the same experiment

set-up as used in the throughput, delay and jitter characterization of VAP and SDMA-based

virtualization schemes. The experiment setup is shown in Figures 2.4(a) and 2.4(b).

2.6.1 Metrics

For lack of accurate delay characterization tools, we consider inter-experimental effect primar-

ily in terms of throughput. To quantify the inter-experiment effects we define a coupling factor

between virtualized experiments as:

σ(nv num, v num) =
(Tnon−virtualized − Tvirtualized)

Tnon−virtualized
(2.1)

σ(nv num,v num) indicates the coupling between non-virtualized experiment nv num and
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Figure 2.11: Effect on jitter measurements in channel multiplexing virtualization approaches.

virtualized experiment v num. Tnon−virtualized and Tvirtualized represent the throughput of

the experiments in the non-virtualized and virtualized cases respectively. A σ of 0 indicates

an ideal experiment setup where there is no interference between experiments while a σ of 1

indicates complete interference of one experiment with the others. The Coupling Factor gives

a direct indication of the level of interference expected between the virtualized experiments

sharing a common wireless medium. Another approach is to use anti-correlation among the

throughput of virtualized experiments.
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2.6.2 Coupling Factors

Throughput Coupling Factor

In this subsection we study the transient behavior of the experiments using VAP and SDMA-

based virtualization schemes. In the scenario with four concurrent experiments for both VAP

and SDMA, we observe the impact of the fourth experiment on the first three experiments for

different traffic scenarios of the fourth experiment. We plot the coupling factor for the first

three experiments with varying offered loads for both VAP and SDMA-based approaches. The

packet size used by all four experiments was set to 1024 bytes. The plot of the throughput

coupling factor is shown in Figure 2.10:

• In the initial runs we keep the offered load of the fourth experiment at 1 Mbps and

find the coupling factors for both virtualization schemes is negligible for low offered

loads and start to become prominent after the offered loads for the three experiments

crosses 6 Mbps. The channel is driven into saturation and effects the performance of the

experiments. The effect is less for SDMA, since the performance of SDMA is superior

to the VAP.

• In the case where the offered load of the fourth experiment is about 8 Mbps the channel

saturates at lower values of offered loads of the first three experiments and therefore the

coupling factor is higher.

• In the case where the fourth experiment uses TCP, the coupling on other experiments

observed is relatively higher than that with UDP. TCP flow pumps traffic at the maximum

possible rate and its effect is more significant on the other experiments than that observed

with a UDP flow. This increase can also be accounted by the overhead of the TCP-ACK

traffic that increases the amount of contention among the different experiment flows.

Jitter Coupling

Similar to throughput results, the experimental measurements of packet jitter is affected by

traffic from other experiments. We investigate jitter coupling in VAP and SDMA-based virtual-

ization approaches by streaming a video from a client to an AP as a part of one experiment and
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running UDP flows as part of the other three experiment. Figure 2.11 shows the plot for jitter

coupling factor values for videos of different bit-rates for VAP and SDMA-based virtualization

scenarios. The jitter values are calculated for a real-time experiment that streams videos of

different bit-rates from a client to an AP. With no virtualization, it was observed that the jitter

of the video does not depend upon its bit-rate. However, in the virtualized case as the bit-rate

increases the jitter value increases. Moreover, the jitter values of the video increase as the chan-

nel approaches saturation due to increase in the offered load of the other 3 UDP experiments.

Similar to throughput results, the jitter coupling is more for the VAP setting as compared to that

with the SDMA virtualization.

2.6.3 Summary

A comparative evaluation of the coupling factors for various offered loads and packet sizes

have been shown. The coupling factor could be thoroughly evaluated by calculating it as a ma-

trix. Where each experiment coupling with all other is measured with varying experimentation

parameters such as packet sizes, offered loads and channel rates. On an average it is seen that

the setup with SDMA behaves better than that with VAP in terms of relative coupling. How-

ever, the absolute values of coupling in both the cases are significantly high, thereby making

the setup unsuitable for scientific experimentation. Thus to assuage inter-experiment effects we

propose and implement a policy manager.

2.7 Traffic Shaping/Policy Management for Virtualization

Results in Section 2.6 show that though the coupling factor is low for SDMA as compared to a

VAP based approach, it is a non-zero entity and needs to be limited. Enforcing resource man-

agement across multiple experiments requires a systematic control framework for bandwidth

assurance across multiple experiments.

2.7.1 Policy Manager

We will describe the implementation and testing of our policy manager with a VAP based setup.

However, the same mechanism can be replicated and used without change for SDMA. A policy
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manager primarily performs the following functions:

• Admission control: To make a decision to allow or deny an experiment to share a VAP

(slice for SDMA) with other experiments depending on its bandwidth requirements.

• Assigning And Enforcing Bandwidth: To allot the different experiments a maximum

bandwidth value based on the number of experiments on a single VAP (slice) and their

bandwidth requirements.

The Policy manager could be integrated with the experiment scheduling and resource track-

ing mechanisms to ensure that each of the experiments get a fair share of the resources. The

experiments would be rate limited to their maximum assigned bandwidth, even before the ex-

periment execution is started. Our implementation is based on a kernel module created with

the CLICK modular router. The configuration setup for the CLICK [36] module is as shown in

Figure 2.12.

Figure 2.13 shows the throughput results. For demonstration purposes, we allow each of

the experiments to have unbounded bandwidth for the first 75 secs. We see that increased

offered loads for experiments 1 and 2 results in performance degradation for experiment 3.

Enforcement of the policy manager results in limiting experiment 1 and 2 to 6Mbits/sec and

4Mbits/sec respectively. Thus by artificially reducing the bandwidth available to each of the

experiments we reduce the inter-experiment coupling factors to 0.

2.8 Scheme Selection

Previous sections show the relative efficiency and inter-experiment coupling with the use of

Space and time separation. Apart from these quantitative aspects other considerations for se-

lection of a scheme are:

• Topology: VAPs are limited to infrastructure mode setups, while SDMA can work with

ad hoc as well.

• Space Separation: Achieving isolation and efficiency with SDMA requires considerable

spatial separation between slices (of the order of 10dB) or artificial stretching [31] of the

testbed by use of noise.
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• Scalability: Number of experiment slices with SDMA is limited due to the number of

nodes, space constraints of the testbed and or the granularity of the noise generation

mechanism.

Thus the quantitative approaches along with a qualitative comparison would possibly yield

the best virtualization for a given testbed.

2.9 Conclusions And Discussion

Our study shows two approaches to channel conservation for a wireless testbed. Evaluation

of the space and time separation scheme reveal benefits and weaknesses for both. Space sep-

aration provides relatively higher efficiency, lesser coupling between experiments. We layout

selection criterion for each of these schemes based on the requirement of the testbed and fi-

nally propose and implement a policy manager for controlling inter-exeperiment interference.

Finally, incorporating arbitrary topologies in a slice or across VAPs allocated to the experiment

may be challenging or impossible for some experiments.
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Chapter 3

SplitAP Architecture For Supporting Virtualized WLANs

3.1 Chapter Summary

Providing air-time guarantees across a group of clients forms a fundamental building block in

sharing an access point (AP) across different virtual network providers. Though this problem

has a relatively simple solution for downlink group scheduling through traffic engineering at

the AP, solving this problem for uplink (UL) traffic presents a challenge for fair sharing of

wireless hotspots. Among other issues, the mechanism for uplink traffic control has to scale

across a large user base, and provide flexible operation irrespective of the client channel con-

ditions and network loads. In this study, we propose the SplitAP architecture that address the

problem of sharing uplink airtime across groups of users by extending the idea of network vir-

tualization. Our architecture allows us to deploy different algorithms for enforcing UL airtime

fairness across client groups. In this study, we will highlight the design features of the SplitAP

architecture, and present results from evaluation on a prototype deployed with: (1) LPFC and

(2) LPFC+, two algorithms for controlling UL group fairness. Performance comparisons on the

ORBIT testbed show that the proposed algorithms are capable of providing group air-time fair-

ness across wireless clients irrespective of the network volume, and traffic type. The algorithms

show up to 40% improvement with a modified Jain fairness index.

3.2 Introduction

The advent of pervasive wireless systems in the form of inexpensive handheld devices is ex-

pected to lead to an ever increasing deployment of wireless hotspots [37]. With more and more

ISPs aiming to provide services at locations such as airports, cafes and common shopping areas,

differentiation in the quality of service provided on shared hardware for wireless ISPs provides
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a substantial challenge. A mechanism is required to ensure that this access point (AP) shar-

ing will work across a wide range of client hardware, while providing each user group (clients

belonging to a single ISP) with aggregate air-time commensurate to the revenue contract of

the ISP with the wireless infrastructure provider. Apart from providing baseline fairness in

air-time across groups, other requirements for sharing WLAN access point hardware across

different ISPs include: (1) Different broadcast domains, (2) Different levels of security, (3)

Support different protocols above a basic L2 connection, (4) Ease of deployment, and (5) Min-

imum bandwidth loss for resource partitioning.

To solve this problem we propose the SplitAP architecture that employs wireless network

virtualization. Network virtualization is a concept derived from the server systems area of re-

search which has recently been applied to network sharing. Virtualization is a mechanism that

allows for seamless sharing of a particular resource by using three key features: Abstraction,

Programmability and Isolation. We apply each of these features as shown in the Figure 3.1.

Abstraction allows the users of the system to use our architecture with minimal changes to the

client hardware or software. As shown in the Figure, we use virtual access points [33] sup-

ported by most commodity AP hardware to emulate the functionality of two different physical

APs (ISP1, ISP2) with a single physical AP, thus allowing us to use the client MAC protocols

and hardware unchanged. We provide programmability in the setup by allowing the person

deploying the hardware to allocate different UL air-time quotas for individual virtual access

points. Finally, isolation across groups of wireless users is provided through air-time control

at the clients based on the information provided by the SplitAP controller running at the AP.

Since downlink air-time fairness has been studied previously [27], and a spate of recent ap-

plications such as those supported by web 2.0 [38], peer-to-peer file sharing [39], and video

conferencing have resulted in significantly increased uplink air-time usage, we specifically ad-

dress the problem of uplink air-time control across the virtual networks formed by wireless user

groups. Through the use of a SplitAP prototype discussed in the paper, we will show the per-

formance of our sample algorithms for providing uplink air-time fairness across user groups,

while providing all of the features discussed above.

Specifically the contributions of this study are:
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Figure 3.1: A single wireless access point emulating multiple virtual access points. Clients
from different networks associate with corresponding VAPs though they use the same underly-
ing hardware.

1. We propose, design and implement the SplitAP software architecture based on the ex-

tension of the virtual access point functionality for sharing a single physical AP across

groups of users.

2. We design and evaluate the LPFC and LPFC+ algorithms for group UL air-time control

using our SplitAP setup on commercial off-the-shelf hardware.

3. Extensive evaluation is performed to show that the results obtained on our infrastruc-

ture are as per the requirement while achieving the system performance with minimal

overhead.

Rest of the chapter is organized as follows. In Section 8.6 we discuss related work on

previous approaches to providing uplink air-time fairness in WLANs. Section 3.4 discusses

the problem of providing uplink air-time fairness across user groups, and presents the design

of our SplitAP architecture. Section 3.5 presents a discussion on the two sample algorithms

evaluated with the SplitAP framework. Section 8.5 presents the results from the system, and

finally, Section 8.7 discusses the conclusions and future work.
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3.3 Related Work

Among AP based infrastructures, the DenseAP architecture proposed in [40], describes a mech-

anism for sharing airtime by managing handoffs across APs. Another setup to share downlink

air-time has been discussed for WiMAX radios in [27]. Our SplitAP setup specifically deals

with the problem of providing an architecture for sharing UL air-time of a single AP across

multiple WLAN user groups. In terms of the methodology itself, a comparison of wireless

virtualization approaches is presented in [24]. However, it does not address the problem of fair

sharing of UL air-time across client groups.

In the domain of air-time fairness, a body of work [41–44] discusses the use of EDCA

parameters such as contention windows and transmission opportunities for controlling airtime

usage across clients. The study in [41] attempts to ensure fairness across competing uplink

stations with TCP traffic using EDCA parameters. Time fair CSMA protocol proposed in [42]

controls minimum contention window size to achieve estimated target uplink throughput for

each competing station in multirate WLAN. In [44] authors suggest that in a proportional fair

allocation based on 802.11e EDCA parameters, equal share of channel time is given to high and

low bit rate stations and, as a result, high bit rate stations can obtain more throughput. Another

study in [43] proposes two control mechanisms for airtime fairness, one using AIFS and the

other using contention window size. The studies in [41–44] are based on simulations.

One study in [45] proposes a Time Based Regulator system that achieves uplink air-time

fairness by ensuring equal ”long term” channel occupancy time for every node in the WLAN.

Though this study presents results based on an implementation, it does not deal with the prob-

lems of clients sending traffic with different frame sizes, offered loads, and sharing of airtime

across user groups. The TWHTB system discussed in [46] uses information on current channel

quality to the respective station associated with AP to schedule downlink transmission to that

particular station by limiting frame transmission rate. However, this scheme does not take into

account Uplink flows and corresponding traffic variations. Another study discussed in [47]

discusses an approach where each station monitors the number of active stations and calculates

the target access time based on this information. The study uses sniffing on the client side,

while also requiring modification of NAV field in the MAC header, and results are based on
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simulations.

In addition none of these studies address the problem of enforcing client-group UL airtime

fairness which is addressed by algorithms run on our SplitAP setup.

3.4 SplitAP Design Overview

Throughout this study we use the notion of slices to refer to the resources allocated to a group

of users belonging to a single ISP. The terms groups or slices will be used interchangeably in

further discussion. Our infrastructure will try to enforce fairness in uplink (UL) airtime usage

across slices, thus allowing individual ISPs to fairly share the underlying WLAN hardware and

the corresponding channel. We begin with a formal definition of the problem of sharing UL

airtime across a group of users, followed by a conceptual description of our virtualization based

design. Eventually, we will discuss the details of the algorithms used for UL airtime allocation.

3.4.1 Group Uplink Airtime Fairness: Problem Statement

Consider a set of M client groups (slices) with each group Si having Ni clients. Let the fraction

of UL air time allocated for every slice Si ∈ M , be denoted by Wi. Wi for each slice is decided

during the time of deployment of the infrastructure and can be dependent on a wide range of

criterion like pricing, importance of the group and so on. If ϕi
j denotes the measured UL air

time consumed by the client j ∈ Si slice, the fraction of UL air-time used by every client

associated with the access point is calculated as Ci
j :

Ci
j =

ϕi
j∑M

p=1

∑Ni
q=1 ϕ

p
q

(3.1)

The condition of group fairness requires that, the total measured UL airtime for all clients

within a slice Si is limited to Wi:

∀{i ∈ M},
Ni∑
j=1

Ci
j ≤ Wi (3.2)
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The above condition should be fulfilled while placing no limitation on the individual values of

Ci
j i.e all nodes within a single slice Si should be able to share the UL airtime fairly, indepen-

dent of the usage on other slices. Hence, in the worst case every client should be able to utilize

UL airtime 0 ≤ Ci
j ≤ Wi as long as the Equation (3.2) is not violated and all clients within Si

share the available UL airtime fairly.

Qualitatively summarizing the constraints of the slice/group fairness mechanism: (1) Flex-

iblity: If the channel usage is below saturation, and there are no hard guarantees, each client

should be able to access the entire available channel time for the slice, (2) Within a group:

Sharing of UL airtime should be fair and equal, (3) Scalable: Should work with a large number

of clients without significant control overheads, (4) Adaptable: Should be able to comfortably

adapt to changing environment with dynamic addition or removal of wireless clients, the net-

work load, protocol type and the channel conditions for individual clients. Hence, to allow

deployment of algorithms that will be able to realize such a group airtime fairness mechanism,

our SplitAP infrastructure will need to provide all needed control and measurement features

while being transparent to the users of the system.

3.4.2 Virtualization Based Design

We will now discuss how each of the virtualization features are implemented as a part of our

SplitAP architecture.

Abstraction: We employ and extend the functionality of virtual access points which are avail-

able as a standard feature on commercial access points for emulating multiple virtual access

points on a single physical access point while operating on the same wireless channel [33].

Using this feature the physical AP will be able to broadcast beacons for independent virtual

networks (ISPs). Hence clients belonging to different ISP slices can see the ESSID of their ISP

and associate with it, thereby making client side connectivity transparent and simple.

Programmability: Each of the ISPs should have independent control of settings in their net-

work. Using virtual access points, we can set different features per WLANs such as different

security policies, broadcast domains, IP settings, independent control of MAC settings such as

aggregation and 802.11e based WMM parameters.

Isolation: Isolation across virtual networks (client groups) is a fundamental requirement for
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Figure 3.2: A single wireless access point emulating multiple virtual access points. Clients
from different networks associate with corresponding VAPs though they use the same underly-
ing hardware.

supporting multiple networks and will be the main topic discussed in this chapter. Ideally, this

could be done through a strict TDMA scheduler across the virtual networks. However, such

a scheduler would require a large change in the MAC mechanism of the clients, thus making

them completely incompatible with other 802.11 based commercial access points. The SplitAP

mechanism proposed in this chapter is an incremental design to the existing 802.11 framework

and is currently capable of existing as a stand alone entity outside of the driver.

The functionality in our system is split as shown in the Figure 3.2. The SplitAP controller

at the AP is responsible for emulating the virtual access points, accounting of traffic by client

groups, and determining the weights of UL airtime for each group. The client software is

responsible for enforcing the commands broadcasted by the controller and reporting usage

statistics like the physical layer rate and the average packet size reported by the client interface.

The remaining discussion will focus on the implementation of individual components, followed

by a brief overview of our algorithms for providing uplink airtime fairness across the ISP slices.

3.4.3 SplitAP Controller

The access point infrastructure runs a multi-threaded ruby controller that performs the actions

described in Algorithm (1). In the controller, sliceID is a unique identifier used for identifying

independent slices owned by different ISPs. The algorithm computes slice UL airtime usage

time[sliceID] for every sliceID, by iterating and determining the UL airtime usage reported

by individual clients within every slice sliceID. Based on this estimate, it determines the
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Figure 3.3: Network stack at the wireless client associating with the SplitAP infrastructure.

offset of the actual slice utilization from the allocated UL airtime fraction. If this offset is

greater than a threshold (Θ), the AP controller broadcasts1 CsliceID the maximum UL airtime

fraction that can be consumed by any individual client within the slice sliceID. The value of

CsliceID is always chosen as inversely proportional to the UL airtime utilization for that slice.

This fraction of channel time is calculated based on the previously broadcasted value and the

corresponding slice utilization. LPFC and LPFC+ algorithms discussed later are two means

of calculating CsliceID based on current UL airtime utilization numbers and or the number of

associated clients.

3.4.4 Client Plugin Design

In the current design, the client needs to install an application that allows the user to connect

to a SplitAP based wireles service provider. Eventually, to make this application platform

independent, it could be implemented as a web browser plugin that controls client’s UL traffic

based on commands from the controller. The client software stack in the current SplitAP

architecture is as shown in Figure 3.3. The SplitAP client control and reporting module is

responsible for two functionalities: (1) Determining and reporting client side parameters such

as physical layer rate (through access of the rate table maintained in the driver), and average

packet sizes by querying the proc filesystem or using the driver statistics. (2) Converting the

1UDP broadcast is deliberately used as a means of sending CsliceID to clients to limit control traffic, since the
number of control messages are now dependent on the number of slices rather than number of clients. Ideally,
these CsliceID will be included in the beacons of individual virtual access points, thereby eliminating the need for
a separate signalling mechanism.
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Algorithm 1: The SplitAP controller running at the AP that monitors slice usage and
correspondingly broadcasts slice weights to clients.

W0..M = init slice weights()
while True do

foreach sliceID = getNextSlice() do
time[sliceID] = 0
foreach clientID = getNextClient(sliceID) do

rate = getPhyRate(clientID)
bytes = getDataVol(clientID)
cl time = bytes×8

rate
time[sliceID] + = cl time

δ = time[sliceID] - WsliceID

if (abs(δ) > Θ) then
CsliceID = getWt(sliceID, slice wt, δ)
broadcast(sliceID,CsliceID)

maximum airtime limit enforced by the SplitAP controller to a rate value, and accordingly

controlling the shaping module to rate limit the client. The shaping module is implemented

by using the Click [36] modular router that transparently controls outbound traffic from the

interface.

3.5 Algorithms For Deployment With SplitAP

Our SplitAP design offers a convenient way to deploy different algorithms on the AP for con-

trolling uplink airtime across slices. Each of the algorithms discussed in this section are ways

to implement the getwt() function discussed in Algorithm (1) and provide the value CsliceID,

which is the maximum airtime that can be consumed by any client in Slice SsliceID.

3.5.1 Algorithm(1): LPFC

This is a simple linear proportional feedback control (LPFC) based algorithm that uses a dy-

namic estimate of the number of clients associated with the AP to calculate the CsliceID. Infor-

mation on the number of clients associated with the AP is available in the SplitAP controller

through querying of the proc interface on the AP. The algorithm calculates CsliceID simply

by determining current number of clients in the slice SsliceID and proportionally splitting the
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available (quota of) airtime WsliceID among the number of clients NsliceID within the slice.

The SplitAP architecture allows this corrected CsliceID to be broadcasted every one second or

at another interval desired by the ISP using the slice.

3.5.2 Algorithm(2): LPFC+

Instead of generating and broadcasting the CsliceID purely based on the slice UL airtime quota

and number of clients in the slice, the LPFC+ algorithm relies on monitoring the current UL

airtime utilization for the slice, which is available through the SplitAP client reports and ap-

propriately controlling CsliceID. The algorithm selects CsliceID in such a way that even if the

offered load by clients in a slice is not the same, it allows the clients to increase traffic, by

increasing CsliceID until the UL airtime quota for the slice is reached. If the quota is exceeded

(or under-utilized), the LPFC+ controller proportionally reduces (or increases)CsliceID, the

maximum airtime that can be used by any client in the Slice sliceID. As with the LPFC al-

gorithm, the CsliceID can be broadcasted every one second or at any other value desired by the

ISP owning the slice.

3.6 Configuration Through Simulations

In this section, we will discuss the implication of selection of different design parameters on

the performance of the algorithms designed in the previous section. Specifically, the idea of

these simulations is to evaluate the baseline performance of the system, and gaining a better

understanding of the selection of different parameters on the performance of the system.

3.6.1 Simulation Model

Our simulations are setup in MATLAB. The goal of these simulations is to show a broad impact

of the control loop established with the LPFC+ algorithm on the SplitAP framework.

Channel model: As a part of our simulations we do not model the physical layer character-

istics like packets lost due to interference, noise or 802.11 MAC failures such as collisions.

Rather, this model takes an orthogonal approach, where we study the achievable performance

of the system by considering specific failure rates in the signalling mechanism in the SplitAP
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Table 3.1: Parameters for the simulation model.

Parameter V alue

Number of clients (Slice 1,2) {5, 20}

Desired airtime (Slice 1,2) {0.5, 0.5}

Number of control loop runs 1000

Hysteresis time 0

Number Of Beacon Repititions 1

Probability Of Beacon Loss 0.4

Control conservativeness None

framework.

Network and traffic model: In our simulations we consider two virtual access points created

on a single physical access points. For the simulations we assume that both of these virtual

access points in the SplitAP framework are allocated 50% of the entire radio resources on the

access point. Uplink traffic is generated with the assumption that the first slice has 5 clients,

while the second slice has 20 clients on an average. The amount of traffic generated by each

of the clients within these slices is determined by a scaled poisson random variable (emulating

number of flows per client).

In all further evaluations, the parameters used are as shown in the Table 3.1, unless men-

tioned otherwise. In all of the experiments with this model, we measure the sum of the fraction

of airtime used by all clients within the slice. It is important to note that the performance seen

with these simulations will be different from those seen with a physical system. In the simula-

tions we allow for the sum of fraction of channel times used by clients across slices to exceed

1. Specifically, in a real system when a slice exceeds its quota it can lead to a reduction in

the airtime available to the other slice. However, instead of modeling that effect, we allow the

total airtime of the both slices to exceed their quota, which allows us to clearly determine when

either a single or both slices are not able to successfully curtail the airtime used by their clients.
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Figure 3.4: Performance of the LPFC+ algorithm on the simulated SplitAP controller. The
graph plots the sum of airtime used by all clients per slice.
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Figure 3.5: Boxplot showing the performance of the airtime usage per slice as a function of
varying fraction of control beacon loss probability. We observe that as the probability of loosing
beacons increases, more points for the slice usage measurement are obtained as outliers.

3.6.2 Baseline Performance

To study the baseline performance of the system, we present the results of the experiment as

shown in the Figure 3.4. The x-axis of the plot is the number of control loop iterations with

the SplitAP framework. The y-axis of the plot shows the fraction of airtime used by both the

slices. We observe that both the slices are able to achieve 0.5 fraction of airtime on an average,

which corresponds to the set value that needs to be achieved by the system. We further observe

that there are a considerable number of oscillations in the airtime that is used by each of these

slices. We can classify the reasons for these oscillations as:
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• Changing offered loads: Due to continuous changes in the offered load of the system,

the framework has a certain amount of response time before which corrective action can

be taken.

• Hysteresis: The default settings does not have any hysteresis, because of which there

could be oscillations in the system.

• Missing control beacons: In our simulations we have also modeled random drop of con-

trol beacons from the SplitAP due to noise or interference and broadcast (non-acknowledged)

nature of the messages. This will result in clients not being able to update the shaping

rate with changing demand and utilization.

We will now investigate the impact of each of these parameters on the performance of the

system.

3.6.3 Varying Beacon Loss Probability

In this experiment we will determine the impact of loosing control beacons from the SplitAP

framework on each of the wireless clients. This experiment is important from a practical per-

spective because we use a broadcast UDP client-server as a part of the framework, and hence

there are no guarantees of control beacon delivery to clients. To measure performance with this

phenomenon, we vary the probability with which a beacon is successfully received at every

client.

Results from the experiments are as shown in the Figure 3.5. We will begin by inspecting

the first subplot which indicates overall performance of the clients in the first slice. As seen in

the boxplot for slice 1, we observe that as the probability of loosing beacons increases, more

points for the slice usage measurement are obtained as outliers. Thus we see a direct correlation

of the stability of the system with the control beacon loss probability. Though, this result is as

per expectations, we observe through the second subplot (for slice 2) that even though the

probability of loosing beacons increases, the system still performs very well. This performance

is justified because, the traffic generated by the 20 clients in slice 2 is causing the SplitAP

controller to allocate very little traffic shares to individual clients. Since each of the clients are

generating more traffic (on an average) than that allowed by the controller, we see very small



46

1 2 3 4 5
0

0.2

0.4

0.6

F
ra

ct
io

n 
O

f A
irt

im
e

 Number Of Beacon Repitions Per Cycle

Slice 1 − 5 nodes

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

n 
O

f A
irt

im
e

 Number Of Beacon Repitions Per Cycle

Slice 2 − 20 nodes

Figure 3.6: Performance with repeating beacons per control loop of the system. Increasing
the number of beacon transmissions per control loop increases the probability of delivering the
broadcast beacons to the clients.

deviations in the offered load from each client. This in turn leads to very small change in the

overall airtime consumed by the slice.

Thus this experiment allows us to draw two inferences. (1) When the number of clients

in a slice are significantly high (of the order of 10s of nodes), the impact of the beacon loss

probability does not affect the overall performance of the system, and (2) When the number

of clients in the slice are less, it is advisable to have some mechanism to counter the loss of

control beacons. We will test two mechanisms to determine how performance can be improved

in such a case using:

• Replication of beacon transmissions

• Conservativeness of the shaping

Each of these will be discussed in further experiments.

3.6.4 Replicate Control Beacons

In order to improve control beacon delivery on lossy links, we did not actually make the de-

livery of the broadcast message reliable, rather, we consider multiple duplicate broadcasts of
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Figure 3.7: Performance with varying conservativeness of the traffic shaping scheme of the
clients. As seen in the results, increasing the conservativeness reduces the chances of the slice
overshooting its quota, but can also result in decreasing the overall performance of the system.

control beacons. Replicating broadcast messages instead of making unicast delivery guaran-

teed takes advantage of the inherent broadcast nature of the wireless medium, thus providing

better spectrum efficiency. Results from this experiment are as shown in the Figure 3.6. The

boxplot shows that increasing the number of beacon transmissions per control loop increases

the probability of delivering the control beacons to the clients. We observe that for slice 1, as

the number of beacons per control loop are increased, we have fewer outliers in terms of the

number of times the slice airtime overshoots the allocated quota. Another interesting tradeoff

in this decision to replicate broadcast packets is that the number of times a control broadcast is

replicated should be inversely proportional to the rate at which the control updates in CsliceID

are done at the SplitAP controller.

We also observe that for the lower subplot depicting slice 2, there is no significant difference

in performance. This reasoning is the same as that described in the earlier experiment, and is

basically due to very small variations in the broadcasted control weight (CsliceID) when the

slice is operating at saturation with a large number of clients. Thus the rate of duplication of

the control beacons should also be chosen in inverse relation to the number of clients in the

virtual network.

3If we define the beacon packet loss probability (discussed in the previous section), at every client as Pb |Pb ≤ 1
by definition, and the number of duplications as m, then the probability of loosing beacon control packets at any
client drops to Pm

b
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Figure 3.8: Performance impact of selecting different hysteresis parameters with the system.
Results show that increasing the hysteresis may result in possibly less oscillations with the
control loop, but it also causes a more sluggish reaction with changing load, resulting in worse
performance.

3.6.5 Vary Shaping Conservativeness

Varying the conservativeness with which we shape the offered load per client can also provide

a mechanism to counter against lost control beacons. To determine the impact we scale the rate

at which we shape the traffic using the weights: {1, 12 ,
1
3 ,

1
4 ,

1
5}. Results from the experiments

are as shown in the boxplot in Figure 3.7. As observed for slice 1, scaling with smaller mul-

tiplying factors results in comparatively lesser deviations from the median. We also observe

that the overall utilization in terms of fraction of airtime consumed by the slice also deceases as

we increase the conservativeness of the shaping scheme. However, it is important to note that

increasing the conservativeness of the shaping algorithm beyond a certain point does not signif-

icantly improve performance because, at that point performance is limited by the offered load

on the slice rather than shaping rate. As expected, in the second subplot, with higher number

of clients in slice 2, the system works well even without increasing the conservativeness of the

shaping algorithm. Thus, we can conclude from these experiments that it would make sense to

increase the conservativeness of the shaping algorithm only when we have a small number of

clients.
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3.6.6 Impact Of Hysteresis δ

Finally, we will try to assess the impact of selecting a hysteresis parameter on the stability of the

system. Hysteresis is implemented at the SplitAP controller by updating the CsliceID parameter

only if the difference in the current airtime used by the slice exceeds the allocated quota by a

certain margin (δ). Results from this experiment are as shown in the boxplot in Figure 3.8. The

x-axis shows the amount of hysteresis used by the controller in terms of fraction of airtime. As

seen in the results for slice 1, we observe that increasing the hysteresis may result in possibly

less oscillations with the control loop, but it also causes a more sluggish reaction with changing

load, resulting in worse performance. We observe a similar performance for slice 2. However,

we observe that there are no outliers on the lower side of the slice quota of 0.5. The reason

we see this is because even though the airtime consumed by individual slices can go above the

quota due to the hysteresis. However, the load on the slice with large number of clients does

not decreases significantly below the median resulting in the performance trend shown in the

plot.

3.6.7 Summary Of System Parameters Selection

Experiments discussed above allow us to have a better insight into the working of the system,

and help select better suited control parameters. Based on the discussion above we recommend

following guidelines for selecting various system parameters with different deployments of the

system:

1. When the number of clients in the slice are large, and the airtime quota is fairly used, we

observe that the system will stay stable irrespective of the loss of control beacons, and as

long as there are no large fluctuations in the number of active clients in the slice.

2. When the number of clients in the slice are less or vary a lot, we can use mechanisms like

multiple control beacons per control loop, or change the conservativeness of the shaping

algorithm to improve performance.

3. Number of replications of broadcast beacons should be inversely proportional to the rate

at which the control updates in CsliceID are done at the SplitAP controller, and directly
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proportional to the beacon loss probability.

4. Conservativeness of the shaping algorithm can improve performance at the cost of effi-

ciency of the system and should not be used when airtime utilization is a concern.

5. Finally, adding significant hysteresis in the system will only add to the sluggishness of

the controller and is not very useful when the offered traffic keeps changing rapidly.

However, a small amount of hysteresis may be useful for preventing the system from

oscillations.

Remainder of the paper will show the performance of the SplitAP prototype on the ORBIT

testbed.

3.7 Experimental Evaluation

All experimental results presented in this evaluation are based on the clients with Atheros 5212

chipsets, and using Madwifi 0.9.4 [34] drivers. The clients are all operating in the 802.11a mode

with a frame size of 1024bytes, and 54Mbps physical layer rate unless mentioned otherwise.

Traffic is generated with the Iperf tool [48]. We begin with a brief definition of the metrics used,

followed by baseline performance of the LPFC algorithm and a comparison with LPFC+.

3.7.1 Metrics

Preliminary evaluations with a small number of clients will be based purely on comparison of

UL airtime allocated to individual slice. Further, in our evaluations, we modify and use the Jain

fairness index [49] for determining weighted UL airtime fairness across flows and flow groups.

Modified Jain Index: Let the sum of fraction of channel time used by all clients in slice k be

denoted as Ck.Then,

I =
(
∑N

k=1Ck)
2

N ×
∑N

k=1C
2
k

(3.3)

The fairness index (I) determines the global variation in channel utilization across slices. We

further scale the airtime by slice quotas to evaluate fairness under saturation with different slice

weights, while also accounting for performance deterioration due to bad channel quality.
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Figure 3.9: Baseline results for comparison of performance with and without the the SplitAP
setup with the LPFC algorithm. Results indicate performance with two clients on different
virtual networks with varying physical layer transmission rates used with a UDP saturated
offered load.

3.7.2 Baseline Performance With LPFC

To measure the baseline performance with the LPFC algorithm, we consider a setup with two

clients on different slices sending UDP UL traffic.

Varying Transmission Rates In the first experiment, we vary transmission rates of the two

clients on Slice 1 and 2 as shown on the x-axis in Figure 3.9(a). We observe that, in the vanilla

case (without the SplitAP mechanism running the LPFC algorithm), the air-time used by the

two clients are inversely dependent on the transmission rates. This is a result of statistical

multiplexing of packets by the CSMA MAC operating as a part of the 802.11 DCF mechanism.

To alleviate this problem, the SplitAP framework controls the shaping of traffic at the source

to consequently provide proportional fair channel usage across clients. As shown in the results

in Figure 3.9(a), we are able to control air-time provided to each client in desired proportion.

Sample results are provided for a 50− 50 percent air-time sharing across the two clients.

Varying Packet Sizes Now we will vary the packet size of the uplink traffic from each client
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Figure 3.10: TCP and UDP co-existence in a single slice with LPFC+. Constant UDP traffic
of 5Mbps is supported by slice 1, while the Client 2 with FTP transfer and the client 3 with
varying UDP loads share the slice 2.

to check its impact on the overall sharing of air time at the access point for the two clients.

As seen in the results in Figure 3.9(b), the air-time consumed at the access point without the

use of our scheme (vanilla) is directly dependent on the size of the packets used by the uplink

traffic. Typically, this results from a statistical multiplexing of packets over the air. However,

using our SplitAP infrastructure with the LPFC algorithm we are able to control uplink traffic

in direct proportion to the air time usage by each client. Our scheme accounts for the extra air-

time spent in channel accesses and PHY/MAC overheads with smaller packet sizes resulting

in fair sharing across the clients and thus virtual networks. As before we observe, that our

infrastructure allows control of air-time across the clients in a preset 50 − 50 percentage. In

later experiments this percentage will be changed.

Varying Offered Loads In this experiment, we vary the offered loads across the two clients.

Combinations of offered loads used across the clients are as shown on the x-axis in the results

in Figure 3.9(c). The maximum offered load is limited to 33Mbps because the channel saturates

at that value2 of the offered load when the physical layer rate is 54Mbps. We observe that the

LPFC algorithm limits airtime of slice 1 (with 33Mbps physical rate) even though the other

client is not using its share. Even though the LPFC scheme is conservative, it limits airtime of

Slice 2, to ensure better fairness as compared to the vanilla case with no control.

2The channel saturates at a slightly higher value than normal since the Madwifi drivers use fast framing opti-
mizations to improve performance within allocated txops. However, this does not affect our evaluation since it is
enabled in all measurement cases.
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Figure 3.11: Comparison of UL airtime group fairness for: LPFC, LPFC+, and a vanilla system
without our SplitAP framework.

3.7.3 Improvement With LPFC+

Since the LPFC+ algorithm allows the allocation of slice weights such that within a slice we

may have varying utilization by independent clients, such a mechanism allows for fair co-

existence of transport protocols with different requirements. In this experiment we have two

slices: Slice 1 has a client sending constant UDP uplink traffic, while the Slice 2 has two clients.

The first client in Slice 2 is sending varying amount of UDP uplink traffic, while the other client

in Slice 2 is transfering a 200MB file with a FTP file transfer. Results from this experiment are

as shown in Figure 3.10. We observe that the client on slice 1 is not affected despite one of the

clients on Slice 2 using UDP traffic. We also observe, that the clients on Slice 2 share the UL

airtime. When the UDP offered load is less at 4Mbps, the FTP transfer is faster and happens

at an aggregate rate of 18.3Mbps. When the UDP offered load on the client increases, the

FTP client reduces its rate, thereby requiring longer time for the FTP transfer completion. It

is important to note that a similar performance could be achieved even by using LPFC instead

of LPFC+. However, in that case the FTP client on slice 2 would always be limited to a fixed

uplink rate thereby resulting in a wastage of free bandwidth.

3.7.4 Comparison: LPFC Vs LPFC+

In a final experiment we consider a setup with two slices: Slice 1 has a single client pump-

ing UDP UL traffic at saturation, while Slice 2 has 5 clients associated with it. For different
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Figure 3.12: Comparison of UL throughput for: LPFC, LPFC+, and a vanilla system without
our SplitAP framework.

experiments, varying number of clients 1 − 5 on Slice 2 will send saturation UL traffic along

with the client on Slice 1. In this case we consider the performance of both LPFC and LPFC+

algorithms, as compared to that without our SplitAP setup (Vanilla). A comparison of the mea-

sured modified fairness index is as shown in Figure 3.11. We observe that the group fairness

index I is always greater than 0.97 with the use of our infrastructure, while it falls down up to

0.6 in a vanilla system without our setup. The throughput measurements in Figure 3.12 show

that the improvements in fairness are at the cost of a small decrease in net throughput with

LPFC+, thus justifying the use of our scheme. The throughput performance with our LPFC

scheme is less when lesser number of clients on Slice 2 pump traffic. This is because it sees

5 clients associated with the slice from the beginning, and presents a conservative estimate of

CsliceID which results in lower throughput. The LPFC+ scheme on the other hand dynamically

measures airtime for every slice and adapts its CsliceID resulting in better performance. It can-

not reach channel capacity since it keeps a 15% tolerance, but is able to divide the remaining

airtime fairly.

3.8 Conclusions And Future Directions

This study discusses the design of the SplitAP architecture that allows the operator to deploy

a shared physical access point, which is capable of running algorithms that control UL airtime
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across user groups. We demonstrate the feasibility of the proposed architecture by implement-

ing the LPFC and LPFC+ algorithms on a prototype. Results obtained from the measurements

on the ORBIT testbed show a significant improvement in the group airtime fairness, while re-

sulting in marginal degradation of overall system throughput. Future directions include search

for more efficient algorithms that can be deployed on the SplitAP framework.
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Chapter 4

Virtual Basestation Design

4.1 Chapter Summary

This chapter presents the architecture and performance evaluation of a virtualized wide-area

“4G” cellular wireless network. Specifically, it addresses the challenges of virtualization of

resources in a cellular base station to enable shared use by multiple independent slice users

(experimenters or mobile virtual network operators), each with possibly distinct flow types and

network layer protocols. The proposed virtual basestation architecture is based on an external

substrate which uses a layer-2 switched datapath, and an arbitrated control path to the WiMAX

base station. The framework implements virtualization of base station’s radio resources to

achieve isolation between multiple virtual networks. An algorithm for weighted fair sharing

among multiple slices based on an airtime fairness metric has been implemented for the first

release. Preliminary experimental results from the virtual basestation prototype are given,

demonstrating mobile network performance, isolation across slices with different flow types,

and custom flow scheduling capabilities.

4.2 Introduction

Capital and operating expenditures (CapEx and OpEx) are the dominant costs in operating a

cellular basestation. These costs typically scale with the number of independent basestations

deployed rather than the capacity allocated at each cell site deployment. If the CapEx and

OpEx are normalized with the capacity allocated and used across all deployments, we see that

the aggregate expenditures will be lower if the network of basestation deployments is well

provisioned. Approaches at different layers of the protocol stack have been proposed earlier

for maximizing capacity allocation and utilization of basestation deployments. However, all of
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these approaches address the problem within a single administrative domain, i.e. basestations

belonging to a single entity like an internet service provider (ISP), or a cellular service provider.

The reason for doing this was partly because, previously there was no clean approach to share

the underlying basestations across multiple independent entities. In this study we present the

virtual basestation design that allows the network provider to share a single basestation across

multiple entities. Before we delve into details of the design itself, we motivate our work with

two concrete examples where sharing basestations across entities would prove beneficial.

4.2.1 Motivational Examples

(1) Mobile Virtual Network Operators (MVNOs): With the advent of a new generation

of wireless technologies like 4G, the number of subscribers and the corresponding set of cus-

tomers are on the rise in developing countries [13–15]. MVNOs are wireless network providers

that lease the physical network from the mobile network operators (MNO) to provide wireless

services catering to niche needs among customers. The current approach to supporting MVNOs

requires the mobile network operator to lease basestations, spectrum and other related infras-

tructure to the MVNOs. The proposed virtual basestation design will allow the network

provider to house multiple MVNOs on a single basestation, and share its spectrum resources as

opposed to provisioning independent basestations.

(2) Experimental Testbeds: Sharing a basestation will also prove useful on large scale het-

erogeneous testbeds such as GENI [16]. The GENI testbed envisions a nationwide shared

infrastrucuture with mobile wireless edges for supporting simultaneous experimentation. To

support shared end to end experiments on such a framework, the wireless edge will need to

be shared among multiple experimental slices. Using our proposed virtual basestation de-

sign, experimenters will be able to control independent virtual basestations and perform their

experiments in a repeatable fashion.

4.2.2 Contribution

The applications described above clearly show that a mechanism is needed by which cellular

basestations can be shared among multiple entities (MVNOs or experimenters). Our proposed

virtual basestation design, which addresses this concern is based on the systems concepts of
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Figure 4.1: Application of the abstraction, programmability and isolation principles within the
virtual basestation design.

virtualization. Virtualization is achieved by applying its three fundamental principles: (1) ab-

straction - for emulating multiple basestations on a single physical basestaion, (2) programma-

bility - for control, and (3) isolation - for ensuring performance guarantees. As seen in Fig-

ure 4.1, each of the system users will now be able to use an independent virtual basestation

for running MVNOs (or testbed slices depending on the applications), while behaving as if op-

erating on a physical basestation albeit with a less powerful radio. For example, if the airtime

on the physical basestation is shared equally by two virtual basestations, then both the slices

will see a radio which is half as powerful as the physical radio. However, the advantage of such

an approach is that in the MVNO application context, these deployments on the virtual bases-

tations can be easily ported to a physical basestation, and that each slice will always receive

its share of radio resources. In the testbed application context, experimenters will be able to

program virtual basestations as if they were programming real physical basestations while de-

signing repeatable experiments, made possible because of the slice isolation. Thus even though

the results obtained in the experiments might not be the same as that would be obtained on a

physical basestation, they can still be easily used for performance evaluation by appropriately

scaling them with the allocated quota of the physical radio.

4.3 Related Work

Network Virtualization: A previous study on virtualizing commodity wireless devices [11]

proposes enhancement to the ORBIT radio grid, through the use of a time division multiplex-

ing scheme for scheduling wireless networks. This study provides a motivation for challenges



59

in scheduling and context swapping virtual networks. Our approach is orthogonal, in that we

share the inherent time sharing nature of the MAC, and build mechanisms on top to ensure

isolation across slices. The Multinet [12] project discusses an architecture for supporting a

virtualized client connection to multiple networks from a single wireless client. Our virtual

basestation setup discusses a solution for virtualizing a 802.16e basestation. A survey of

general virtualization techniques is discussed here [50]. However, it does not address the appli-

cation of virtualization to wireless networks. Apart from these, the GENI [16] working group

has also proposed some approaches for virtualization of the wireless medium which rely on

MAC multiplexing, but they do not discuss specifics.

Wireless Virtualization: In the case of wireless devices, one of the first approaches to virtual-

ize was proposed for short range WiFi radios in the form of virtual access points(VAPs) [33].

VAPs were proposed as abstractions on a physical access points (APs), such that the functional-

ity provided by the VAP is similar to that of an AP. VANU supports a MultiRAN virtual basesta-

tion design [51]. This design aims at running the entire virtualized BTS radio in software while

our approach relies on leveraging commercial carrier grade BTSs, and builds around them for

providing virtualization. A similar approach is followed by the Open Basestation project [52]

which relies on implementing a 2G BTS in software, though it does not support virtualization.

A study on isolating groups of flows as a means to virtualization is discussed in [53]. This

study relies on solving a utility maximization problem for allocating resources within the MAC

scheduler. This approach requires us to have access to the MAC frame scheduler for resource

allocation, which is not available for most carrier grade basestations. Another study [54] dis-

cusses approaches in which the network architecture may be emulated using virtual machines,

but does not deal with the emulation of the radio itself. One more feature which differentiates

our work from previously described work such as [51], [52], and [53] is that they work only

with a specific hardware product. The approach we propose is backward compatible and can be

evaluated with existing basestations (which do not have native support for virtualization), that

support a similar network architecture.
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4.4 Design Methodology

We begin this discussion with a brief description of a conventional WiMAX network. This

is followed by a discusion on how we apply the concepts of virtualization to the WiMAX

framework in our virtual basestation design.

4.4.1 Conventional WiMAX Network

A standard Profile-A/C WiMAX system typically consists of two important components: (1)

Basestation transceiver system (BTS)1, (2) Application service network gateway (ASN-GW

or ASN)2. The BTS is the main component of the WiMAX system and consists of the air

interface that includes the radio which communicates with the clients. Among other things,

the BTS is capable of controlling RF features such as the transmission frequency, power, rate,

symbol ratios, retransmission mechanisms, and other client management functionality. The

BTS interacts with the wired world through the ASN-GW. The ASN-GW is used to route traffic

appropriately from the wired interface(s) to individual service flows on WiMAX clients. After

describing the requirements for our virtualized framework, we will discuss the modifications

and additions needed to these components for realizing our virtual basestation design.

4.4.2 Virtualized WiMAX Network

Virtualization can be defined as the methodology by which an underlying resource is shared

across multiple consumers, while providing each of the consumers with the illusion of owning

the entire resource independent of the other consumers. Though this concept originated as a

part of conventional server systems and operating systems virtualization, it has been extended

to networks under various usage cases [7, 8, 18, 55, 56]. In case of network virtualization, the

resource under consideration could be the network interface, bandwidth, airtime, device drivers,

and logical devices among others. In this paper, using our virtual basestation design we

discuss how virtualization can be extended to wireless networks, specifically, wireless networks

1From here on, the terms BTS and basestation will be used interchangeably.
2There are other components like the Content service network gateway, and the AAA authentication server, but

we do not discuss these since they are not a part of the core prototype in our setup.
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Figure 4.2: Basic building blocks of the virtual basestation design.

with a star topology.

Our virtual basetation relies on multiple components that are used to emulate basetations

within individual slices. A brief overview of the virtual basestation design is as shown in the

Figure 4.2, and the components are explained as below:

• vBTS Environment: We will need to select a virtual machine technology for housing the

virtual basestations (vBTSs) or slices. The virtual basestation framework also sup-

ports a set of services for providing arbitrated access to the underlying physical basesta-

tion from within every slice. The environment and services are discussed in our previous

work [57, 58] and will not be discussed here.

• Virtual WiMAX Network Device: As shown in Figure 4.2, within every slice our vir-

tual basestation framework, provides a network device which acts as an interface on

an actual basestation. Hence every frame directed to this interface transparently reaches

the WiMAX clients through the physical basestation. In further sections we will discuss

different aspects of this virtual interface such as the datapath connecting the virtual base-

tations to the physical basestation, and the delay performance with such a virtualized

device.

• Resource Mapping and Isolation: We need to virtualize the WiMAX radio itself includ-

ing important sub-components such as the WiMAX MAC scheduler, service flows, and
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the time-frequency slots of the spectrum used by that scheduler for sharing across slices.

Other important aspects for achieving true virtualization of the radio interface include

emulation of MAC specific features such as multiple SSIDs to represent virtual BTSs for

different slices.

Details on each of these design aspects will be discussed through the rest of the paper.

4.5 Virtual Basestation Environment

Our virtual basestation design emulates an independent physical basestation to each slice

by using virtual machines. The first part of this discussion will focus on selection of the vir-

tual machine (VM) technology for emulating the vBTSs, while the second part will provide a

discussion on the grid services required for providing an actual BTS like interface within the

virtual machines.

4.5.1 VM Technology Selection

Choosing an appropriate virtualization technology plays a strong role in the overall system per-

formance. In our virtual basestation framework, the features and the set of experiments that

can be supported within the slices are largely dependent on the type of virtualization technol-

ogy used for running the virtual machines (VMs). We begin with a discussion on the choices

available for the virtualization platform, followed by selection criterion for usage in the virtual

basestation framework, and finally, our choice for the prototype.

Production scale virtualization systems can be broadly classified into full, para and OS vir-

tualization. Full virtualization [59,60](e.g.,VMWare, KVM) refers to a technique that emulates

the underlying hardware and uses a software layer called hypervisor that runs directly on top

of the host hardware to trap and execute privileged instructions on the fly4. Full virtualiza-

tion is the least intrusive5 form of system virtualization. In para virtualization [61, 62](e.g.,

3Throughout the rest of the paper we will use the terms slice, user, and vBTS interchangeably.
4Native virtualization is a virtualization approach where the processor has support for virtualization e.g.,IBM

System/370 and allows multiple unmodified operating systems to run together. Full virtualization does not include
these systems.

5Intrusiveness refers to the degree of changes that need to be made to the guest OS to get it working with
virtualization.
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Xen, UML) the hypervisor layer exists within the host operating system to intercept and ex-

ecute privileged instructions. Unlike full virtualization, para virtualization requires changes

to the guest operating system. The most intrusive form of virtualization is operating system

based [63](e.g.,OpenVZ) where the virtualized systems run as isolated processes in the host

operating system. The host OS is modified to provide secure isolation of the guest OS. In

case of operating system level virtualization, since the guest OS is not able to run a separate

kernel, we prefer to chose from the previous two mechanisms for virtualization. A more com-

prehensive comparison on the different types of virtualization schemes and their suitability to

the wireless testbed are discussed in previous studies [57, 58].

For the purpose of a virtualized WiMAX basestation, we consider the following qualita-

tive criteria as the main selection parameters among full virtualization and para virtualization

mechanisms:

1. Ease of administration: Clean API to schedule node resources such as CPU, disk and

memory on a per slice basis should be possible.

2. Shared or exclusive interface mapping: The setup should allow flexible mapping of vir-

tual interfaces within the slice to physical interfaces or one or more virtual interfaces (on

the hardware like virtual access points).

3. Control over network connectivity: Mechanisms should be available to bandwidth limit

slices and control interaction between slices.

4. Support with mainstream kernels: As long as the virtualization technology does not re-

quire huge changes to the kernel, there are high chances of it supporting the latest kernels,

and their upgrades thus allowing the software to stay current.

All types of virtualization schemes discussed above support most of these functions. However,

in our experience, the most flexible and easy approach for controlling the VMs is through

using KVM [60], a full virtualization mechanism that works directly with debian based systems

which is widely used in the rest of the ORBIT testbed. Such a setup also allows for the reuse

and extension of regular system administration tools (such as IPTABLES, DHCP, SSH, LDAP)

for controlling VMs.
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4.5.2 OMF Based Grid Services

To emulate a physical basestation accurately to a user, we need to make the user interface of the

virtual basestations as similar to the physical BTS as possible. To achieve this, we propose

using OMF [64] based services for arbitrated control of the underlying basestation from within

the slice. Software services are needed which will allow the user of the virtual basestations

to control the physical basestation while being oblivious to other users of the systems. These

software services, referred to as ”grid services” in the ORBIT testbed [28] context are used to

provide both, control of the virtual machine (slice) instances as well as control of the RF related

features.

In our virtual basestation framework, we highlight four fundamental service functionali-

ties that are essential for the working of the virtualized framework: 1) environment control - for

providing API to the experimenters to initiate, start and stop their slices, (2) virtual radio con-

trol - for providing API to the experimenters for controlling the radio device through change of

parameters. These parameters will be a subset of all the parameters that can be changed on the

physical basestation (3) slice feedback - this service will provide feedback about performance

of the wireless clients belonging to the slice, and finally, (4) a virtual radio isolation service -

will be responsible for enforcing radio isolation across multiple slices.

To encompass all of the functionalities described above, we build three services for our

virtual basestation framework. The WiMAX-VM service is responsible for implementing

the slice control, and also automatically controlling the datapath connecting the vBTSs to the

physical basestation. We built the WiMAX-RF service which provide access to different aspects

of the WiMAX radio. Finally, the slice isolation engine is implemented as a separate module

and discussed in more detail in Section 4.7B.

4.6 L2 Device Datapath

Since the impact of virtualizing the physical BTS by running virtual machines has been dis-

cussed previously [57, 58], we will focus on the design choices and the possible performance

implications of the datapath mechanism required for forwarding frames from the vBTSs to the

physical basestation.
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4.6.1 L2 Datapath To BTS

The WiMAX network interface for every vBTS is emulated by virtual ethernet interfaces within

the virtual machines acting as the vBTSs [26]. However, as seen in Figure 4.2, we need some

mechanism by which these frames can be forwarded from and to the physical BTS. In order to

ensure that the datapath is able to work in a wide range of application environments, we will

require our frame transport mechanism to satisfy three core requirements:

• Protocol independence: We want our datapath to work independent of any layer-3 mech-

anism, such as IP, IGMP, IPsec, ATM, or any other new protocol. Also, it should be

able to work with existing and new protocol mechanisms for mapping network layer

addresses to link layer addresses, such as the address resolution protocol (ARP). Inde-

pendence from protocol requirements allows the vBTSs to customize their own protocol

stack and possibly use the same for client interaction, thus providing another dimension

for service customization in the hosted MVNOs or the operation of experimental protocol

stacks in the testbed context.

• Slice traffic separation: We need some mechanism by which we can separate traffic from

and two vBTSs.

• Transparent: This datapath mechanism should be transparent to the slices.

We will discuss two different design alternatives and determine how they may be used to satisfy

the requirements discussed above.

Case 1: An L2 Lookup-based Frame Forwarding: One approach to the creation of the

datapath from the vBTS to the physical basestation is using pure layer-2 frame information for

grouping clients from each slice together, and forwarding them to the BTS queues accordingly.

In this case, we use the source MAC address as a classifier on the host of the vBTS substrate to

classify traffic and forward it to a pre-determined VLAN interface. Virtual local area networks

(VLANs) provide a convenient mechanism for separating and grouping traffic through tagging

of MAC frames before and after they arrive at a VLAN device. The VLAN interface identifier

is the slice identifier allocated by the the framework. This design satisfies both the protocol

independence and the grouping requirements listed above.
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Figure 4.3: Model of service classes with and without virtualization on the WiMAX BTS.

This design has a fundamental issue which makes it infeasible. In this case, it was assumed

that the packets arriving from the virtual interface within the vBTSs will be forwarded irrespec-

tive of the updation of their IP and TCP headers. However, since this is not a pure L2 tunnel

and frames are being forwarded, the IP and transport checksums need to be re-calculated at

intermediate points in the datapath. Frames are forwarded purely on MAC addresses, the pack-

ets are not propagated in the kernel stack, the forwarding framework has to implement the

checksum re-calculation mechanism. However, such a design places a limitation on the num-

ber and type of network and transport protocols that may be supported, since all their checksum

re-calculation mechanisms need to be pre-provisioned in the datapath, which is infeasible.

Case 2: An L2 over L3 Tunnel: This approach is an improvement over our previous design.

Instead of using layer-2 forwarding, we tunnel all layer-2 frames over a layer-3 based IP net-

work. In this case, protocol independence is achieved because of tunneling, and the grouping

of slice traffic is achieved by separating packets within different IP tunnels. This mechanism

also allow us to geographically de-couple the vBTS substrate and the ASN-GW i.e. as initially

mentioned, we do not need them to be present on the same local area network, and can be

housed on different networks as long as the required tunnels are established.
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4.6.2 Delay Performance

We will now discuss how the virtualization framework discussed before will impact the overall

delay performance of the system. A general approach for achieving bounded queueing delay in

multiplexed flow systems is discussed in the GPS study [65]. It is shown that bounded delays

for different sessions can be achieved by limiting the queuing delays of admitted flows. This

study can be extended for understanding flow admission control on the virtual basestation

substrate. However, the goal of the analysis in this section is rather to compare the achievable

system delays with the virtual basestation design as compared to the non-virtualized case.

The comparison of the queueing system in the virtualized and non-virtualized system are as

shown in the models described in Figure 4.3. We first consider the overall delay for downlink

frames in a non-virtualized basestation. Consider the two independent BTSs operating with

poisson downlink frame arrival rates as λnv−1 and λnv−2, and respective service rates of the

basestation schedulers to be exponential as denoted by µnv−1 and µnv−2. If these independent

BTSs are modeled as M/M/1 queueing systems, then the average delays at each of these

BTSs are calculated as Tnv−1 = 1
µnv−1−λnv−1

and correspondingly Tnv−2 = 1
µnv−2−λnv−2

.

Generalizing, for k independent basestations, their individual delays in delivering downlink

frames would be:

Tnv−k =
1

µnv−k − λnv−k
(4.1)

To virtualize these independent BTSs, we host them as virtual basestations (vBTSs) within

virtual machines which eventually share the same underlying BTS radio as shown in Figure 4.3.

In this case we continue with our earlier assumptions that the packets arriving from the virtual

BTSs (vBTSs) are poisson distributed with the rates λnv−1 and λnv−2. Let the service rate with

which the operating system redirects packets from each of these virtual devices to the actual

WiMAX interface be denoted by µvm−wm
6. In this setup the total delay seen by the slices will

be the addition of the forwarding delay (TF ) and the queueing delay seen at the BTS (Tbts). The

delay for forwarding frames from the virtual basestations to the physical basestation is given

6Note that assuming two separate servers with equal capacities instead of the one for traffic from two VMs will
not change out analysis.
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by:

TF =
1

µvm−wm −
∑k

i=1 λnv−k

(4.2)

Since, we are generating traffic for a WiMAX BTS which can typically handle less than 25Mbps

of peak traffic, and the packet forwarding from the VMs to the physical basestaion is done in

software by the operating system µvm−wm >> λnv−1 + λnv−2. Hence, the forwarding delay

from the vBTSs (TF ) is typically very small. Thus the total delay seen by the slices: TF + Tbts

can be approximated by Tbts. Also, since µvm−wm >>
∑

k λnv−k, it is also clear that the

packets arriving at the BTS MAC scheduler are arriving at the rate of min(µvm−wm, (λnv−1+

λnv−2)), i.e. (λnv−1 + λnv−2).

Now, since we assume that the work of both BTSs in the non-virtualized case is handled by

the virtualized radio, we can design the system such that µbts = µnv−1 + µnv−2. Also, using

Burke’s theorem [66] we know that the two queuing systems (for the vBTSs and that of the

actual BTS) are independent. Hence, we can consider the physical BTS as an M/M/1 system

with arrival rate of λbts = λnv−1 + λnv−2 and service rate of µbts = µnv−1 + µnv−2. Using

this information we can determine the steady state delay in the system as:

Tbts =
1

µbts − λbts
(4.3)

Tbts =
1

(µnv−1 − λnv−1) + (µnv−2 − λnv−2)
(4.4)

Substituting from equation 4.1, we get:

1

Tbts
=

1

Tnv−1
+

1

Tnv−2
(4.5)

We can further generalize the above equation for k virtualized slices to:

1

Tbts
=

k∑
i=1

1

Tnv−i
(4.6)
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Since we know that ∀i, Tnv−i ≥ 0, we can conclude that the delay in the virtualized system

will be lesser than the delay observed at any individual non virtualized BTS (Tnv−i). The

actual overall delay in the system is the sum of Tbts and the forwarding delay TF from the

VMs to the physical basestation. However as seen earlier in equation 4.2, the forwarding delay

from the vBTSs is very small, Tbts >> TF , and hence the overall delay is dominated by

Tbts which is always lower than that can be achieved in any individual non-virtualized system.

It is important to note that this inference will hold true only when the following conditions

always hold true: (1) Tbts >> TF , and (2) the radio capacity of the virtualized system is equal

to or greater than the sum of radio capacities of the individual non-virtualized systems. For

example, in terms of rate, if we had two radios which could do X and YMbps each, for the

delay to be better in a virtualized case, we would need to have a virtualized radio which could

at least support X + Y Mbps. It is important to note that in some practical cases, even if the

delay performance of the virtualized system is slightly worse than the original non-virtualized

systems (by design), we still gain significantly in terms of spectrum reuse in the virtualized

case. A similar analysis can be done for uplink delay performance, where we will observe that

the overall delay in the system will improve in a virtualized case as compared to equivalent

independent non-virtualized setups.

This reasoning can be used to further calculate the minimum service rate required on the

virtualized setup to achieve the delay which at least matches the best delay performance seen

in the non-virtualized case. Let us assume that the slice k has the minimum average delay in

the non-virtualized case, given by Tnv−k. Hence it is clear that for the virtualized setup to do

better than or equal to this delay,

Tbts ≤ Tnv−k (4.7)

Also, we know that the delay in the virtualized case is:

Tbts =
1

µbts −
∑

k λnv−k
(4.8)

Hence, we can calculate the minimum µv to match the minimum delay of any non-virtualized
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slice as:

µbts ≥
1

min∀k(Tnv−k)
+

∑
k

λnv−k (4.9)

As long as the above mentioned lower bound condition on µv is always maintained by the

system designer, the average delay seen in the virtualized system will be less than or equal to

the delay seen in any of the non-virtualized cases.

4.7 BTS Radio Virtualization

In this section we will discuss the design issues encountered in the provisioning of radio re-

source for users across multiple slices. This problem differs significantly from that of radio

resource provisioning for the users of a single BTS since the allocation needs to be done both

at the slice level (virtual basestation), and at the BTS scheduler. We will specifically deal with

two aspects of radio virtualization:

• Service flow abstraction: This part of the study will focus on extending the idea of service

flows in the physical basestation to the virtual basestations.

• Virtual radio isolation: This part of the study will focus on isolating the performance of

groups of service flows belonging to one virtual radio from others.

4.7.1 Service Flow Abstraction

The conventional WiMAX medium access control architecture relies on a connection oriented

MAC for providing quality of service differentiation across wireless clients. It does this by

ensuring that both the uplink and downlink traffic differentiation is carried out at the BTS MAC

scheduler. The scheduler works with logical entities known as service flows which define a

unidirectional flow of packets either from the BTS to the clients, or the other way around,

and is identified by a service flow identifier (SFID). These service flows allow the definition

of certain QoS features such as maximum throughput, minimum throughput, maximum delay,

minimum delay, jitter tolerated, and other features such as the ARQ mechanism used used for

the packets controlled by that service flow. The five standard service flow types supported by
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Figure 4.4: Virtual service flow mapping approaches for the virtual basestation framework.
Both the models discussed here can be used without significant changes to the framework itself.
The line types in the figure are used to show service flows of different types.

WiMAX are: (1) Unsolicited grant service (UGS) - typically used for voice services without

silence suppression, (2) Real Time Polling Service (rtPS) - supports real time traffic such as

video, (3) Non-Real Time Polling Service (nrTPS) - used for services such as FTP, (4) Best

Effort (BE) - used for most generic traffic, and (5) Extended real time variable rate (ertVR)

- for supporting applications such as VOIP with silence suppression. More details of these

service flow types and their applications can be found here [67]. In this section we will focus

on how different service flow types which are defined in the physical WiMAX BTS are exposed

to each of the vBTSs. Specifically, we discuss the issues with provisioning of service classes

on the physical BTS and the mechanisms for mapping service classes within the vBTS to the

service classes in the physical BTS.

Virtual service flows: Since the idea of service flows is originally maintained only in the phys-

ical basestation, we extend this abstraction to the virtual machines (vBTSs) with virtual service
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flows. These virtual service flows will be eventually mapped to underlying service flows in the

basestation and will be identified using virtual service flow identifiers (vSFIDs). The identifier

for these virtual service flows consists of the slice-id and the flow-number. Appropriate data

structures are maintained in virtual basestation framework for identifying flows across slices.

We will now discuss how packets will be classified into these individual flows.

Identifying service flows: Service flows are created in a WiMAX BTS depending on a pre-

defined set of rules when the client associates with the BTS. A general approach to definition

of service flows on the BTS is through the specification of five-tuples: source IP address,

destination IP address, source port, destination port and the IP TOS. This information is used

by the BTS to classify and identify different service flows, and appropriately schedule their

packets. However, this approach has the limitation of requiring it to work with the internet

protocol (IP), which may or may not be used in all our vBTSs. Another approach is by using a

modified version of our BTS R6 controller [67], which allows the user to create service flows

by defining a flow of one flow type such as UGS, BE, ertPS, nrtPS, or ertVR per MAC address

associated with the BTS. However, this approach is not the best since it limits us to using

one service flow type with every client. Hence, as a compromise in the design, we plan to use

simple port address translation (PAT) to carry out the service flow provisioning. This eliminates

protocol dependence, and allows the definition of more than one service flow per client per

slice. The entire port address space is used at the physical BTS to identify unique service

flows. An identical port address space is used by the virtual service flows for classification

of their flows. Hence, a virtual service flow being classified on port X may eventually be

mapped to a physical service flow in the BTS at either the same port X or any other port Y ,

as decided by the mapping mechanism discussed below. Note that we can afford replication of

port address space for classification since the classification happens at two different levels. For

virtual service flows, classification is at the vBTS substrate, and for the physical service flows,

classification is in the BTS’s MAC scheduler.

Mapping Of Service Flows: The options available for this mapping virtual service flows

to physical service flows are as depicted in the Figure 4.4. The first approach shown in the

Figure 4.4(a) relies on a simple one-one mapping of each of the vBTS’s virtual service flows

to corresponding service flows in the BTS. The figure depicts different service flow types with
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different line types like dotted, plain and bold, both for virtual and physical service flows. Such

an approach allows for the clear definition of flow metrics and an easy application of these

settings to the BTS MAC scheduler. However, this approach also limits the number of service

flows that may be defined to the number of available flow classification ports. An alternate

design is shown in Figure 4.4(b), where we define a broad set of service flows in the BTS and

reuse them by mapping multiple service flows from the vBTSs to the same flow in the BTS.

For example, in this case, all virtual service flows of type UGS will be mapped to a single

underlying UGS physical service flow and so on. Hence the physical basestation will only

require creation of the 5 fundamental service flow types. This would normally be infeasible

with a conventional service flow definition. However, only by using a port address classifier

for service flow determination, we can multiplex multiple virtual service flows from different

vBTSs on the same service flow in the BTS. This provides an opportunity for conservation of

physical service flows at the BTS. A disadvantage with this approach is that some flow specific

parameters defined in the BTS such as maximum or minimum throughput, may apply to the

entire pipe of virtual service flows encompassed in that single service flow at the BTS, and a

lot would depend on the statistical multiplexing of frames from the virtual service flows and

channel conditions to the clients. This condition can be partly alleviated by using the radio

isolation mechanisms discussed in the following sections, but for now we use our previous

approach of mapping one client to a single service flow type.

4.7.2 Radio Isolation

Once the virtual service flows from the vBTSs have been mapped to the physical radio, we

need a mechanism by which we can limit the amount of total radio resources consumed by the

virtual service flows within a slice. The problem can be formulated as follows. In all further

discussion we will use the term airtime as a measure of fairness. Though airtime literally means

the amount of time allocated to a single flow or wireless client, in the WiMAX context, this

airtime actually refers to a set of time × frequency blocks in the OFDMA WiMAX radio,

which we will also refer to as a slice of the radio. Hence, in this context whenever we mention

the term airtime fraction, we are referring to the fraction of the WiMAX scheduler resources

allocated to that client or flow.
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Problem Statement: If the airtime used by every flow fi,j from a client Ci belonging to

slice Sj is denoted by ϕi,j , then we need to have a mechanism by which we are able to limit∑
∀fi,j∈Sj

ϕi,j , the total airtime consumed by all flows belonging to all clients within the slice.

It is important to note that this limit should be enforced while placing no other constraints on

the flows within the slice i.e we should not have a requirement that splits slice airtime equally

within all flows. This discretion should be left up to the slice (vBTS frame schedulers).

Software Architecture For VNTS: To enforce this radio airtime fairness across slices, we

propose and use the virtual network traffic shaping mechanism (VNTS) [27]. This mechanism

is responsible for adaptively determining usage of resources by every slice slice and limiting the

traffic flowing into the BTS scheduler from every slice. The software architecture for achieving

the same is as shown in the Figure 4.5. Traffic from each of the virtual machines (slices)

passes through the ASN-GW before being fed to the BTS MAC scheduler. In our virtual

basestation architecture all of these frames must pass through a slice isolation engine (SIE) on

the ASN-GW. The slice isolation engine is responsible for limiting the aggregate flow (across

all virtual service flows belonging to a slice) of traffic to the BTS radio in such a way that the

fraction of radio resources used by the slice are conformant with that allocated in the quotas.

The SIE is implemented by a click router [36] module based datapath that is responsible for
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handling the frames from and to the vBTS substrate. The number of frames per slice that are

dropped by the click datapath are controlled by the SIE datapath. The SIE control algorithm

is implemented in Ruby, and it communicates with the SIE datapath module through a TCP

socket. The control algorithm computes appropriate rates for shaping aggregate traffic from

slices, and writes the control information to the datapath module. The rate at which aggregate

traffic from the slices needs to be traffic limited is computed by comparing overall airtime

usage by all clients belonging to the slice with the allocated quota. If this quota is exceeded

either due to a high offered load or poor channel conditions of certain clients within the slice,

the shaping rate for that slice is appropriately throttled. Feedback from the BTS radio such

as the modulation and coding scheme used to reach the client, throughput, and MAC retries

is obtained through SNMP [68] calls to the physical BTS. More details on the exact shaping

algorithms are discussed here [27].

4.8 Performance Evaluation

The goal of experiments presented in this section will be two fold:

(1) Experiments on abstraction and programmability will be used to show that we are able to

use our virtual basestation framework in experimental scenarios where a physical basestation

would be conventionally used. We explain applications in the testbed context by showing

how a handoff may be emulated. We also show an application of the programmability of the

framework in an MVNO type scenario where a user may chose video service from different

MVNOs depending on wireless channel conditions.

(2) Experiments on isolation will be used to show that the isolation engine in our virtual bases-

tation framework is capable of providing performance isolation across slices irrespective of ser-

vice classes, and the layer at which traffic is scheduled. Isolating slice traffic is essential in both

the testbed context (for repeatability), and in the MVNO context (for performance guarantees).

We begin with a description of our prototype, followed by experiments to show programma-

bility, abstraction, and isolation built in the virtual basestation framework.
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4.8.1 Virtual Basetation Prototype

All experiments are performed on a Profile-A WiMAX BS deployed at the Rutgers University,

WINLAB campus. The BS is capable of up to 8 modulation and coding schemes (MCS) and

implements two mechanisms for downlink (DL) rate adaptation. Default downlink rate adap-

tation is active and changes rate every 200frames. Downlink-Uplink symbol ratio is variable

between (35 : 12) − (26 : 21), and is currently set to 35 : 12 to allocate a higher ratio of

symbols for downlink traffic. A Profile-A BS allows the creation of pre-provisioned best effort

service flows which are used in all experiments. The BS is operating at 2.59Ghz, with a 10MHz

bandwidth, and the clients are using a Beceeem chipset.

Client connectivity is provided by PCMCIA cards. Experimenters can include clients as a

part of their slices through virtual machine instances [60] running on the vBTS substrate ma-

chine. The layer-2 datapath from the vBTSs to the physical basestations is built using layer-2

tunnels over a layer-3 network. The prototype uses a one - one flow mapping i.e.every virtual

service flow corresponds to a pre-provisioned physical service flow in the basestation. Finally,

the slice isolation engine (SIE) is running on the ASN-GW as a service. The quota allocations

to this service are controlled by a slice control grid service. It is important to note that QoS only

provides traffic prioritization, while our virtual basestation framework supports weighted fair-

ness provisioning. Rest of the evaluation section will describe different use cases of the virtual

basestation framework for the purpose of supporting multiple simultaneous experimenters /

MVNOs on the same physical basestation.

4.8.2 Programmability

As discussed before, abstracting the underlying hardware allows for transparent sharing of the

underlying resources. We will show how our virtual basestation abstraction along with its

support for programmability helps us provide support for some conventional usage cases of a

wireless basestation. Specifically, we will discuss how we can support: (1) handoff strategy

performance evaluation across different VBTSs, and (2) a sample video rate matching scheme

on the edge that does not involve video transcoding.
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significantly the handoff is initiated. We observe that the pseudo channel quality indicator
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Case 1: Handoff Emulation Across VBTSs. An experimental prototype to evaluate the per-

formance of a handoff mechanism will typically involve the following apparatus: (1) multiple

wireless basestations across which the handoff is to be implemented, and (2) some back end

gateway from which flow switching will be implemented to a different basestation based on the

handoff strategy. We will now discuss how our virtual basestation framework can be used to

emulate a generic handoff strategy supported on physical basestations. The goal of this experi-

ment is not to demonstrate a new approach for implementing handoff itself, but rather to show

that we can support evaluation of handoff strategies.

To provide a proof of concept demonstration, we consider a simple handoff strategy where

the handoff is infrastructure initiated, and is decided directly depending on the channel charac-

teristics seen by the wireless client. We will consider handoff between two physical basestations

and both the basestations will execute the following common logic: If any one of the two bases-

tations find that the downlink modulation and coding scheme (MCS) used by their client(s) is

below a particular threshold value, it requests the other basestation to accept the client.

We will now explain how the above handoff strategy can be evaluated on our virtual bases-

tation framework. The two physical basestations are now emulated by two virtual basestation

slices running on a single physical basestation. Since we are using a single physical BTS, the

perceived channel condition of the client to both the vBTSs does not change. Hence to emulate
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channel condition change, we divide the modulation and coding scheme (MCS) index range

experienced by the basestation for any client into half using a pseudo channel quality indicator

(θ). The value of θ is calculated from the actual MCS measurement of the client as follows:

θvBTS1 = max(0,MCS − 18) (4.10)

θvBTS2 = max(0, 18−MCS), (4.11)

where MCS is between 16 and 217. Thus if the MCS of the client is greater than 18, the virtual

basestation 1 (vBTS01) sees good channel quality, and for MCS less than 18, the vBTS02

sees good channel quality. Hence we observe that when a client moves away from (or towards)

the physical basestation, though the actual MCS used by the basestation monotonically de-

creases (or increases), the two vBTSs perceive the pseudo channel quality indicator as mapped

by the individual functions described above. Though we have chosen simple linear functions

for implementing the pseudo channel quality indicators, more realistic conditions could be em-

ulated by using exponentially decaying θvBTS1, and a complimentary function for θvBTS2. The

programs for detecting client MCS, and deciding if a handoff is necessary are implemented as

identical ruby scripts running in two vBTSs. For providing a more realistic emulation, we can

also ask our framework to de-register the client, and register again to account for association

delays.

A preliminary evaluation of the system is as shown in the Figure 4.6. The experiment con-

sists of a client moving away from coverage of a single physical basestation. The y-axis of

the results shows the θ at the wireless client. We notice that as the client moves away, at one

point, the θ at the vBTS02 is much better because of which the handoff happens. Using this

information, other metrics can be used for measurement such as handoff delays with different

mobility conditions. The goal of this experiment was not to show the performance of the hand-

off mechanism itself, but rather to show the ease with which experiments for understanding

performance with handoffs can be emulated.

716 indicates the slowest supported rate with the most robust modulation and coding (MCS) scheme and 21
indicates the fastest possible rate.
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Figure 4.7: Measured value of PSNR for the reception of the same video encoded at different
bitrates at different clients connected with different physical layer rates. We see that at low
physical layer rates the video encoded at a lesser bit rate does better and vice-versa.

Case 2: Video Service On The Edge. Transcoding independent videos for rate matching has

been an active experimental research area [69, 70]. In this example instead of actually doing

transcoding, we show how our virtual basestation design facilitates specialized MVNOs. We

consider a hypothetical situation where we have three MVNOs, all housed on the same physical

basestation. All of these MVNOs specialize in video delivery. However, one of them provides

a cheap low resolution video coverage which is typically encoded at 1Mbps, while the other

MVNO is expensive, and encodes the same video at 9Mbps. The third MVNO covers the same

popular video event at 4Mbps. We envision that when all of these MVNOs are covering popular

live events, wireless clients might want to have the flexibility to chose service from either of

the three MVNOs.

In our example, we consider that the cost is not a deciding criterion for the subscriber, but

the perceived video quality is. The motivation for choosing a specific MVNO for receiving

video service is as shown in the Figure 4.7. This plot shows the perceived PSNR [71] at

WiMAX receivers for the reception of the same video, encoded at different bitrates for clients

connected with different downlink physical layer rates. We see that at lower physical layer

rates the video encoded at a lesser bit rate does better and vice-versa. Hence, in our setup

described above, it would be ideal if a wireless client is able to select video coverage based

8Even though we consider this situation with one shared physical basestation, in a practical situation MVNOs
will possibly share more than one physical basestation in the network that support the virtual basestation frame-
work. The results for this use case will remain unchanged though.
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Figure 4.8: An experiment showing video rate matching done by the client. In this case the
upper graph shows the matched video rate in comparison with the physical rate. The lower
graph shows the PSNR achieved with the adapted video rate. We observe that the PSNR with
the adapted video rate is better than that with the best rate.

on its connection with the physical basestation9. Under the assumption that the MVNOs agree

among themselves and allow their clients to switch among any of their services (as done in

providing roaming services), the wireless clients can significantly improve the performance of

the video delivered to them by making this decision adaptively. It is important to note that

the goal of this experiment is not to show the best way of implementing the wireless video

delivery solution, but rather to show that deployment of the virtual basestation framework

fosters innovation in the network by housing multiple custom MVNOs on the same BTS.

To show how a user may switch among services provided by the three MVNOs, we im-

plement a simple algorithm on the client that allows it to switch to the MVNO which provides

video rate that is closest to its physical rate. Movement across MVNOs is achieved by a mech-

anism similar to the handoff described in the previous experiment. Results from an experiment

with such an adaptive video rate matching done by the client is as shown in the Figure 4.8.

In this case we consider a mobile client moving within the coverage area of the BTS over a

period of time. The physical layer rate used by the MAC scheduler in the BTS to reach the

client is as shown in the upper subgraph in the figure. The matched video bit rate achieved by

switching between the three MVNOs is as indicated. Finally, the lower subgraph within the

9Conventional dynamic transcoding is highly compute intensive if done by a single BTS since it would require
every individual BTS to rate match video flows for every client.
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Figure 4.9: Experiment topology for indoor Femtocell emulation experiment. Position of sta-
tionary client is fixed in the control room, and the mobile client moves along the marked tra-
jectory.

same Figure 4.8 shows the PSNR as perceived by the wireless client receiving the video. We

see that the PSNR with adaptive switching is always better than or equal to that achieved with

a high bit rate video. Specifically, the average improvement in PSNR across all locations is at

least 1.7dB. In some cases, the improvement in PSNR is up to 5dB over the high bit rate

video. It is important to note that these performance improvements in PSNR are independent

of the cost savings that are achieved in the spectrum (by adaptively switching to lower bitrate

videos). Thus, through this experiment we have shown that our virtual basestation framework

is capable of supporting MVNOs for providing specialized services, which can be dynamically

selected by the users of the system.

4.8.3 Isolation

The goal of these set of experiments is to evaluate the performance of the slice isolation mecha-

nism. These experiments are performed in two parts, the first set of experiments are just testing

isolation across slices which support service classes of different priorities. Later we will show

how our isolation mechanism facilitates custom scheduling within the slices.

Case 4: Across Service Classes. This experiment emulates mobility in a Femtocell deploy-

ment, and is repeated in all further indoor measurements. We consider two slices which are

sending traffic from vBTS1 and vBTS2 to their corresponding clients. Client for the flow from
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Figure 4.10: Improvement in the aggregate throughput to the wireless clients due to improve-
ment in isolation across slices.

vBTS1 (slice1) is stationary, and the client for the flow from vBTS2 (slice2) is mobile. The

link from each vBTS to the corresponding client constitutes of a slice. The stationary client is

located such that it has a channel to interference and noise ratio (CINR) greater than 30 which

allows the basestation to send traffic comfortably at 64QAM5
6 . An experimenter walks with

the mobile client as per the coverage map shown in the Figure 5.3. As per the RSSI trace for the

walk, the link degrades in a corner of the corridor and improves as the experimenter returns to

the starting position. Each slice is configured to saturate the link to its client with UDP traffic.

To justify the performance across service classes, we will consider an extreme condition

where the slice with the mobile client is using unsolicited grant service (UGS) flows. UGS

flows are typically used for voice services (VOIP) and are given priority over all other service

flow types. The static client uses best effort (BE) flows, which have no reservation. The to-

tal throughput for both clients is as shown in Figure 4.10. An initial run of the experiment is

performed without our framework, followed by varying reservation for the UGS flow. When

we do not have any slice scheduling through our framework, the total throughput suffers when

the UGS client traverses through the region with poor coverage. This is because the basesta-

tion frame scheduler tries to ensure all the traffic to the mobile UGS client is delivered, while

resulting in a very poor throughput performance for the static client. However, we notice that

by using our virtual basestation framework, we are able to limit airtime allocated to the UGS

client, thus improving overall throughput performance when the client traverses through the
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Figure 4.11: Airtime utilization with two custom scheduling schemes for the scheduler running
within the first slice.

region with poor coverage. The minimum value of the aggregate throughput improves by up to

193%.

Case 5: Hierarchical Scheduling Understanding and optimizing the MAC scheduling frame-

work on the wireless edge presents an important avenue for improving end-to-end perfor-

mance of specialized services such as voice, video or bulk file transfers. Customizing the

MAC scheduling framework also provides a means for service differentiation which could help

MVNOs to attract customers. As a part of our framework, one of the design goals was to al-

low the emulation of multiple MAC schedulers within different vBTSs. Since our mechanism

allows isolation of a fixed percentage of the BTSs radio resources, every slice can use a custom

scheduler to allocate these resources to their clients.

As an example, we show the performance of two flow schedulers implemented within the

first slice: (1) Round robin: which alternately sends a packet for each of its two clients, and

a simple proportional scheduler. (2) The proportional scheduler sends 85% of the allocated

traffic to one client and the remainder packets for the other client. The first slice SLC1 has two

clients: a static client, and a mobile client that follows the trajectory described in Figure 5.3.

The second slice SLC2 has a single static client that has similar channel conditions to the static

client in SLC1. Since SLC2 has a single client, it does not need a flow scheduling mechanism.

We send downlink UDP traffic at saturation to each of these clients. Measured fraction of
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airtime used by the clients during the course of the experiment are as shown in Figure 4.11.

We observe that when the first slice uses a simple round-robin scheduler, both clients in SLC 1

get similar airtime when channel quality is good for the mobile client. However, as the mobile

client passes through the area with poor coverage, the airtime consumed by the mobile client

increases, leading to a corresponding decrease in airtime available to the static client in SLC1.

We observe that our slice isolation engine which is a part of the virtual basestation framework

succeeds in preventing SLC1 from using airtime allocated for SLC2. A similar performance

isolation is seen when the experiment is repeated with a proportional flow scheduler in SLC1.

Hence, this experiment shows that each of individual slices could run a custom flow scheduler

without affecting performance of other slices, thus making experiments repeatable and isolated.

This flexibility provided by our virtual basestation framework makes it an attractive candidate

for deployment in both experimental testbeds and for hosting MVNOs.

4.8.4 Discussion

Client Side Interface: We will now discuss the implication of our virtualization mechanism on

the interface exposed to the clients from different slices. Since the virtualization is done outside

of the physical BTS radio and the MAC layer, the client will still see standard WiMAX beacons

as it did from a single physical BTS. However, in this case, after associating with the physical

BTS, based on the clients credentials and MAC address, it can be claimed by any operating

slice on the BTS. The BSID contained in the beacons from the physical BTS can be generated

as a hash of the slice identifiers belonging to the slices hosted on that BTS. In this way, the

wireless clients scanning for the physical BTS will be able to determine if the WiMAX BTS in

range supports their carrier or not.

Uplink (UL) Slice Fairness: In the case of WiMAX, even though the UL is scheduled, there

is no way to directly limit the amount of UL traffic, thus making the problem of enforcing UL

fairness complicated. A possibly tractable solution to this problem would require instituting

some mechanism that controls or limits the number and type of UL flows defined by each slice

thereby limiting the UL usage per slice. It is to be noted that any UL unfairness that could

possibly result from a lack of an enforcement mechanism will affect the UL traffic only. This

is because the uplink downlink symbol ratio used by the MAC is fixed and the MAC uses time
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division duplexing.

4.9 Conclusions And Future Work

This study describes the design of the infrastructure for supporting a virtualized WiMAX frame-

work. Specifically, through an elaborate design discussion this study highlights different op-

tions available for building such a virtualized substrate, and the design tradeoffs of choosing

one approach over the other. Further, using proof of concept evaluations, it shows how dif-

ferent services that are usually supported on a conventional non-virtualized basestation can be

supported on the proposed virtual basestation framework.
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Chapter 5

Virtual Network Traffic Shapers

5.1 Chapter Summary

The 802.16e standard for broadband wireless access mandates the presence of QoS classes, but

does not specify guidelines for the scheduler implementation or mechanisms to ensure air time

fairness. Our study demonstrates the feasibility of controlling downlink airtime fairness for

slices while running above a proprietary WiMAX basestation (BS) scheduler. We design and

implement a virtualized infrastructure that allows users to obtain at least an allocated percent-

age of BS resources in the presence of saturation and link degradation. Using Kernel virtual

machines for creating slices and Click modular router for implementing the virtual network

traffic shaping engine we show that it is possible to adaptively control slice usage for down-

link traffic on a Profile A WiMAX Basestation. The fairness index and coupling coefficient

show an improvement of up to 42%, and 73% with preliminary indoor walking mobility exper-

iments. Outdoor vehicular measurements show an improvement of up to 27%, and 70% with

the fairness index and coupling coefficient respectively.

5.2 Introduction

One of the general trends in wireless networking research is the growing use of experimen-

tal testbeds for realistic protocol evaluation. Open networking testbeds such as ORBIT [28],

Dieselnet [72] and Kansei [73] have been widely used in the past 5 years for evaluation of new

wireless/mobile architectures and protocols based on available radio technologies. With the

emergence of so-called “4G” networks, there is a need to support open experimentation with

wide-area cellular radios such as mobile WiMAX or LTE. A recent initiative by GENI [16] is

aimed at making an open WiMAX base station available to GENI and ORBIT outdoor testbed
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users. As a part of this initiative, we address the design challenges of integrating a WiMAX

basestation as a part of a virtualized wireless testbed.

Virtualization of the WiMAX Basestation (BS) provides a convenient approach to provide

separate environments for different slices. A slice refers to the subset of BS resources and

WiMAX clients allocated to a user/experimenter. The problem of ensuring radio fairness and

policies across slices is specially hard since the channel for mobile wireless devices changes

continuously, thereby consuming varying amount of resources at the BS transmitter.

This study describes challenges in ensuring air time fairness when access to the 802.16e

scheduler is unavailable. Evaluation is provided for a carrier grade BS deployed at the Rut-

gers university. The WiMAX clients are accessible to experimenters through virtual machines

(VMs) running on the ORBIT network [28]. The entire experimenter space from the VMs to its

corresponding clients refers to a single slice. Implementation and evaluation of our proposed

V NTS architecture is provided under both walking and vehicular mobility.

Rest of the chapter is organized as follows. Section 8.6 provides a brief survey of related

work. Section 5.4 provides pilot measurements that help justify the use of our V NTS mecha-

nism for administering fairness policies across slices. Section 5.5 discusses details and design

considerations for implementation of the VNTS architecture. Section 5.6 provides a thorough

evaluation of the system under varying network conditions. Finally, Section 5.7 gives conclud-

ing remarks.

5.3 Related Work

WiMAX being a relatively new technology, most of the recent work in this area has been

focussed on theoretical modeling. There have been significant efforts with the development of

models to modify the scheduler for quality of service [74–77] guarantees and or for ensuring

fairness [78,79]. However, in our problem we take a practical approach that QoS is provided as

per pre-set classes by the built in proprietary scheduler. By treating the scheduler as a black-box

device, we provide an architecture that provides air time fairness across slices.

A study in slice control [24] has addressed issues of space versus time multiplexing of

802.11 links for interference minimization. However, since we operate in 802.16e, links with



88

Parameter V alue

Channel Rate Adaptive

Frequency 2.59GHz

DL/UL Ratio 35 : 12

Bandwidth 10Mhz

Client Chipset Beceem

Figure 5.1: Basestation (BS) settings for all experiments. Explicit change in parameters are as
mentioned in the experiments.

a single BS are interference free. A token-passing based air time fairness mechanism was

implemented in [80]. Though this approach is suitable for implementation on 802.11 devices,

it does not demonstrate performance with varying traffic loads, and frame sizes. To the best of

our knowledge we are not aware of any study which implements an air time fairness mechanism

for user groups in 802.16e devices at this time.

5.4 Motivation

We begin with a brief description of the experiment apparatus followed by a pilot experiment

to motivate the study.

5.4.1 Hardware Setup

The deployed BS is capable of up to 8 modulation and coding schemes (MCS) and implements

two mechanisms for downlink (DL) rate adaptation. DL-link adaptation is active and changes

rate every 200frames. Downlink-Uplink symbol ratio is variable between (35 : 12)− (26 : 21).

A Profile-A BS allows the creation of pre-provisioned Best effort service flows which are used

in all experiments. Other BS settings unless mentioned otherwise are as shown in Figure 5.1.

The system architecture integrated in the ORBIT framework is as shown in the Figure 5.2.

The Application Service Network gateway (ASN−GW ) is used for connecting the basestation

to the outside world. The internal control interfaces of the basestation (network and RF) as well

as the ASN-GW are networked as a part of the instrument network. The external interface of
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Figure 5.2: Integration of the WiMAX setup into the ORBIT testbed.

the ASN-GW is a part of the outdoor network. Client connectivity is provided by PCMCIA

cards. Due to limited hardware we have to limit one client per slice. However, this can be easily

extended to multiple clients per slice using our setup. Experimenters can include clients as a

part of their slices through virtual machine instances [60] running on the VM Host machine.

Access through the VM host machine also allows administrators to control slice access to pre-

provisioned service flows, thereby determining slice QoS. It is important to note that QoS only

provides traffic prioritization, while our mechanism aims at providing fairness.

5.4.2 Baseline Experiment - Femtocell Mobility

Our baseline experiment emulates mobility in a Femtocell deployment, and is repeated in all

indoor measurements. As shown in Figure 5.2, the virtual machines VM1 and VM2 are send-

ing traffic to a stationary and and mobile client respectively. The link from each VM to the

corresponding client constitutes of a slice. The stationary client is located such that it has a

CINR greater than 30 which allows the basestation to send traffic comfortably at 64QAM 5
6 .

An experimenter walks with the mobile client as per the coverage map shown in the Figure 5.3.

As per the RSSI trace for the walk, the link degrades in a corner of the corridor and improves

as the experimenter returns to the starting position. Each VM is configured to saturate the link

to its client with UDP traffic. Other parameters as shown in Figure 5.1. The observed downlink

throughput for both the clients is as shown in Figure 5.4(a). We observe that as the mobile
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Figure 5.3: Walking path used by the mobile client for indoor experiments (Topo-1). Typical,
variations observed in RSSI are as shown.
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Figure 5.4: Performance improvement using VNTS for walking mobility shown in Figure 5.3
(Topo-1).

client reaches areas where the RSSI drops below certain threshold, the rate adaptation scheme

at the basestation selects a more robust modulation and coding scheme(MCS). However, in

the process the link with the mobile client ends up consuming a lot more radio resource at the

basestation, which affects performance of the stationary client. Thus we observe that while

the BS scheduler is capable of providing QoS, it does not ensure radio resource fairness across

links.

For simplicity, we will consider the initial problem of assigning 50% of BS resources to

each of the two clients. A conservative solution to this problem is through static shaping. As-

suming that we have some way of knowing about the movement of the mobile client, we could

calculate throughput based on 50% channel time at the slowest MCS that would be used by

the BS to reach the mobile client. In this case, the basestation uses 1
2QPSK when link quality
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deteriorates the most. Hence we use this information to statically shape the throughput of the

slice with the mobile client. The goal of this shaping mechanism is to limit the offered load for

the slice in such a way, that the slice can use only the allocated share of basestation resources.

The results of an experiment that demonstrates performance with such a static shaping policy

is as shown in Figure 5.4(b). The measurements show that this time the throughput of the slice

with the stationary node becomes independent as a virtue of the shaping for the mobile client.

Pro-active traffic shaping results in lower throughput for the mobile client, which helps prevent

the saturation of the basestation and eliminates coupling between slice performances. How-

ever, we also observe that while fairness increases, aggregate downlink throughput decreases

significantly even when channel to the mobile client is good. Static shaping will also require

the knowledge of mobility and link saturation in advance.

Hence, no shaping gives better overall channel utilization with no slice fairness, and static

shaping gives us better fairness with significantly lesser utilization. To alleviate this problem we

propose and implement the virtual network traffic shaping (VNTS) technique, which adaptively

controls slice throughput. Results from the experiment repeated with VNTS are as shown in the

Figure 5.4(c). Even as the channel for the mobile client deteriorates, the VNTS mechanism

is able to appropriately limit the basestation utilization for the mobile client (slice) thereby

providing fairness to the stationary client. The next section will provide details on the design

and working of the VNTS architecture.

5.5 VNTS Architecture

The VNTS architecture is as shown in the Figure 5.5 and consist primarily of the VNTS engine

and the VNTS controller. The VNTS engine is responsible for performing the traffic shaping

from the virtual machines, and the VNTS controller component is responsible for controlling

the VNTS engine by determining slice throughput and current operating conditions.

5.5.1 VNTS Engine

The virtual network shaping engine is implemented in the Click Modular router [81] run in user

mode as shown in Figure 5.5. This mechanism is responsible for-
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Figure 5.5: Overview of version 1 architecture for virtualization with the Wimax Basestation

Algorithm 2: Algorithm for adaptive virtual network traffic shaping (VNTS) controller.

Input: MCS Rate Ai, Slice Weight Wk,
Number of clients per slice Nk

Output: Shaping rate per client γi
while True do

foreach Slice k do
Nk = getNumClientsForSlice(k) foreach Client i ∈ Slice k do

SNMPGet(Ai)
γi = Ai × Wi

Nk

Set(γi)

sleep(UpdateInterval)

1. Separating VM traffic based on a slice identifiers. We are currently using MAC identifiers

of virtual machine interfaces as the slice identifiers.

2. Arping, routing and shaping as per policies to and from the virtual machines.

3. Providing element handlers that allow dynamic control of virtual machine traffic by using

the VNTS controller.

5.5.2 VNTS Controller

Resource blocks at the BS are defined as a set of time - frequency tiles in the OFDMA radio that

are allocated to individual links by the BS scheduler. Isolation between slices is compromised

when the WiMAX basestation runs out of resource blocks and the slice with a poor link, eats
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into the resources of the slice with a better link. Since allocation of these resource blocks is

only accessible to the BS scheduler, we aim to alleviate this problem by input to the scheduler.

The controller is based on our observation that the number of resource blocks used per slice

at the WiMAX BS are directly proportional to the offered load per slice in terms of channel

time required per second. Hence the end goal of our VNTS controller is to detect saturation,

and limit the offered load (in Mbps) per slice in such a way that channel time required per

second for every slice scales in proportion to the weight assigned to that slice.

The complete algorithm is as shown in Algorithm 2. The rate at which a client is receiving

downlink data is determined by sending SNMP -GET queries to the basestation. The current

rate adaptation algorithms on the WiMAX BS change MCS every 200 frames. Hence, there

is a good chance that the MCS received from the SNMP query varies from the MCS used for

the batch of frames for which shaping is done. Averaging the MCS bit rate obtained for every

200 frames would provide a solution to this problem, but this would demand a large amount

of control overhead and make it infeasible with current latencies for SNMP call completion.

Instead, we shape the traffic every 1sec with a conservative estimate of the MCS based on the

BS feedback. The control algorithm scales the saturation throughput for slices in proportion

to their weights. The Set() function is used to remotely set throughput limit for each virtual

machine. UpdateInterval is a parameter that determines how often the control loop is run.

Both of these parameters are controllable. By default, this loop is executed every second, to

achieve repeated control. The sleep duration for the loop can eventually be made adaptive based

on observed link conditions.

5.6 Evaluation

In this section we present results from experimental evaluation of the VNTS architecture. We

begin with a brief description of the metrics used for slice fairness followed by results from

indoor and outdoor experiments.
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5.6.1 Metrics

In our evaluations, we modify and use the Jain fairness index [49] for determining weighted

fairness across flows for varying levels of offered loads. Let the throughput observed at a client

i be given by Ti, bit rate achieved with the current modulation and coding scheme for the slice i

be given by Ai. Number of clients (flows) belonging to a slice k be given by nk. Total number

of such concurrent slices is given by N . Fraction of channel time used by all links in slice k

can be calculated as ϕk-

∀ Clientsi ∈ Slicek, ϕk =

nk∑
i=1

Ti

Ai
(5.1)

I =
(
∑N

k=1 ϕk)
2

N ×
∑N

k=1 ϕ
2
k

(5.2)

The fairness index (I) determines the global variation in channel utilization across slices. We

further modify the index to evaluate fairness under saturation with different slice weights while

also accounting for performance deterioration due to bad channel quality. To measure worst -

case performance, our experiments will determine minimum value of this index for different

scenarios. Due to the availability of only two clients at this time, each slice constitutes of a

single client.

Another metric used in our measurement is defined as the coupling coefficient. The cou-

pling coefficient is used to measure the performance impact of the mobile slice on throughput

obtained by a stationary slice. The coefficient Ck for every client k is measured as-

Ck =
(Tk − T fix

k )

Tk
(5.3)

T fix
k is the average throughput measured at client k, when all clients are stationary and in

similar channel conditions. Tk denotes the average throughput of the stationary client k over

one second, with the other client being mobile. The smaller the coupling coefficient, lesser the

coupling between client k and other clients. In our measurements we focus on improving the

worst case performance. Hence we will plot the maximum value of the coupling index seen
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(c) Channel utilization

Figure 5.6: Performance for indoor walking experiments (Topo-1) with various shaping poli-
cies.

4 10 14 20
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Aggregate Load (Mbps)

M
in

im
um

 −
 F

ai
rn

es
s 

In
de

x

 

 

Packet Size − 128 Bytes
Packet Size − 256 Bytes
Packet Size − 512 Bytes
Packet Size − 1024 Bytes

(a) Fairness Index (I)

4 10 14 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Aggregate Load (Mbps)

M
ax

im
um

 −
 C

ou
pl

in
g 

C
oe

ffi
ci

en
t

 

 

Packet Size − 128 Bytes
Packet Size − 256 Bytes
Packet Size − 512 Bytes
Packet Size − 1024 Bytes

(b) Coupling Coefficient (Ck)

4 10 14 20
3

4

5

6

7

8

9

10

11

12

13

Aggregate Load (Mbps)

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
M

bp
s)

 

 

Packet Size − 128 Bytes
Packet Size − 256 Bytes
Packet Size − 512 Bytes
Packet Size − 1024 Bytes

(c) Channel utilization

Figure 5.7: Performance with varying frame size. Frame sizes are varied for both flows.

over the duration of the experiments in all measurements.

5.6.2 Policy Conservativeness

Limiting slice throughput to more conservative values will enable better performance isolation

between slices. However, this will also lead to a lesser net utilization of the available resources

at the BS. To determine optimum rates for shaping, we perform more experiments with walking

mobility using the same layout from Figure 5.3.
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(c) Channel utilization

Figure 5.8: Performance with ratio of flow weights across slices. Flow weight for the mobile
client is fixed while that for the stationary client is increased.
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We measure performances by shaping at 80% (most conservative), 90% and 100% of the

prescribed channel rates for each of the modulation and coding schemes. We repeat the same

baseline experiment as in the previous section, by having a stationary client and a mobile client

moving as shown in Figure 5.3. Figure 5.6(a) plots the minimum value of the fairness index

from equation (5.2) for each slice based on the radio resources promised to that slice as a func-

tion of aggregate load on the system. Without shaping, the fairness index hits lows of up to

0.67. However, with adaptive shaping at 80%, 90% and 100% of saturation values, we see the

index ranging from 0.82 − 1 while being independent of the system load. We also see an im-

provement of up to 42% in certain cases. Performance of the coupling coefficient for stationary

client is as shown in Figure 5.6(b). We observe that without the VNTS mechanism coupling

between slices reaches up to 0.66 under saturation, which can be limited to around 0.22 by the

use of the VNTS mechanism. It is also seen that irrespective of the conservativeness of the

shaping scheme, similar reduction in coupling is observed. Since we do not see a significant

difference in fairness or coupling by varying conservativeness, we use channel utilization as a

metric for deciding the best shaping rates.

Figure 5.6(c) shows the total channel utilization of the slices as a function of aggregate

offered load. These results are as per intuition and show that the mean channel utilization

across all system loads is the best when we use the prescribed channel rates without making the

policy conservative. Since the throughput drop due to the use of a conservative policy is much

more than the benefits in fairness, we chose prescribed channel rates as the default shaping

values.

5.6.3 Varying Frame Sizes

As seen in previous experiments, slice fairness improves significantly after using our VNTS

mechanism. We will now evaluate the performance of our system in the presence of varying

frame sizes for slices. Experiment setup is the same as described earlier. Frame sizes used for

the UDP traffic are varied as 128, 256, 512 and 1024Bytes.

Figure 5.7(a) shows the minimum value of the fairness index with the use of different frame

sizes as a function of aggregate offered load across clients. We observe that the fairness index

varies between 0.85 − 1. This shows that the fairness obtained across slices is independent
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Figure 5.9: Relative performance of indoor and Vehicular experiments.

of the frame sizes used by the slice. In all experiments, worst case fairness index or coupling

performances are similar for loads > 10Mbps because, as seen in Figure 5.4(a), the aggregate

link capacity with mobility drops below 10M causing the BS to run out of resources despite

low offered loads.

Results in Figure 5.7(b) show that despite varying the frame size for slices, we see that the

coupling coefficient for the stationary client reaches a maximum value of 0.27 which is signifi-

cantly lesser than that achieved without the VNTS mechanism. Finally, results in Figure 5.7(c)

show that the VNTS mechanism works fairly across the clients and the aggregate throughput is

similar to that achieved without shaping.

5.6.4 Varying Flow Weights

To study weighted fairness performance, we vary the weights of downlink resources given to

the mobile and stationary slice in the following proportion- 1 : 1, 1 : 2 1 : 5, and 1 : 10. The
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results are plotted for different values of aggregate load on the system and are as shown in the

Figure 5.8(a), 5.8(b) and 5.8(c). Each client loads the system equally during these tests. Across

all loads we observe that the minimum value of fairness index in Figure 5.8(a) is maintained

under acceptable limits. Typically as the weight for the stationary client is increased, fairness

improves since we expect lesser impact of unfairness from the mobile slice. The Figure 5.8(b)

shows that maximum coupling for the stationary client is also kept within limits (< 0.25) under

all experiment conditions. Channel utilization is only limited by the offered load, and weights

assigned to each slice.

5.6.5 Vehicular Measurements

To further validate the working of our VNTS system, we perform experiments with the mobile

client placed in a vehicle. Experiment setup is same as that in the previous sections, with the

exception that performance is determined only under saturation conditions, where each slice has

a downlink offered load of 10Mbps. Outdoor results are measured for two topologies (Topo-2,3)

as shown in Figure 5.9(a). Average velocity of the vehicle is maintained greater than 10Mph

for both Topo-2,3. These results are compared with those obtained from the indoor experiment

Topo-1 as shown in Figure 5.3.

Figure 5.9(b) shows the modified fairness index for the three experiment setups. We observe

that in all the cases, we obtain better fairness using our VNTS mechanism. Average values of

the fairness index show improvements across all the topologies, and the worst case performance

(minimum fairness points) is significantly improved with the use of VNTS. Figure 5.9(c) plots

the performance of the coupling factor for the stationary client across all topologies. In the

average case, we observe that the coupling reduces for all topologies with the use of our VNTS

mechanism. The VNTS mechanism also improves the worst case performance for all topologies

with reduction in coupling of up to 70% in some cases. Thus, using our VNTS mechanism, we

are able to significantly improve fairness across slices even under vehicular mobility.
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5.7 Conclusions And Future Work

This study motivates the need for an airtime fairness mechanism to be built with a virtualized

WiMAX basestation. Design and prototyping results are presented to demonstrate the feasi-

bility of such an approach outside the 802.16e scheduler thereby making the implementation

platform independent. Preliminary evaluation of the VNTS architecture shows that it is pos-

sible to assign a certain percentage of the BS resources to experimenters or slice users while

assuring significant isolation even under bad channel conditions. Future work involves more

extensive evaluation, and using more client feedback to improve performance.
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Chapter 6

Virtual Wireless Network Mapping

6.1 Chapter Summary

Virtual network mapping is a useful tool for mapping virtual networks to physical mesh net-

works. This chapter extends this idea from the wired world by showing potential applications

of virtual wireless network mapping, on wireless mesh infrastructure. Specifically, using ex-

amples, this study motivates the need for such a mapping service and discusses how virtual

networks could be used over wireless mesh networks for providing wireless points of pres-

ences (POPs) as additions to cellular voice and data services. Specifically, this chapter will

show that the deployment of virtual networks over wireless networks varies significantly from

that of deployments over wired networks, which has been studied earlier. Using a focus on pro-

visioning capacity to virtual networks from different points on the mesh to the sink, we show

how such requirements could be met. We propose two heuristics to solve the mapping prob-

lem, one based on a greedy static allocation (GSA) approach, and the other based on a greedy

dynamic re-allocation (GDR) strategy. Evaluations based on determining the performance for

different mesh topologies, comparison with a similar performance on a wired mesh show that

the mobile network operator can easily use this mechanism for maximizing its profits.

6.2 Introduction

A virtual network topology can be defined as a network topology description that when re-

alized on a physical network of nodes, results in the virtual network behaving exactly like a

physical network with the same specification. The virtual network topology description is usu-

ally dictated by application or the service providers requirement, while the physical network

is designed to support a diverse set of virtual network topologies. This fundamental design
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clients
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POP#2

Figure 6.1: Mobile virtual network operators (MVNOs)- This broad architecture diagram de-
picts how the backhaul, mesh network operator, and the MVNOs operate together. A mecha-
nism for mapping would be needed to support MVNOs on the mesh operators infrastructure.

paradigm of decoupling the physical network design from the virtual network design allows

the mobile network operators (MNOs) to provide a more generalized infrastructure, which

finds wide application resulting in better utilization of hardware and spectrum. Other bene-

fits of such a network virtualization approach include fault-tolerant network deployment, and

load-based leasing [6] among other applications.

6.2.1 Motivation

Though virtual network mapping has been studied extensively in previous literature, the prob-

lem has remained relatively untouched in the wireless domain. We argue that the reason for the

wired virtual network mapping problem not extending to the wireless domain is essentially due

to the nature of application requirements for the wireless domain. To elucidate our point, we

consider the following two (possible) applications for virtual wireless networks to be used:

Case (1) Mobile virtual network operators (MVNOs): Consider the example shown in Fig-

ure 6.1. Mobile virtual network operators (MVNOs) are entities which rely on providing en-

hanced network coverage to their clients while not owning any network hardware themselves.

MVNOs are typically enabled by Mobile network operators (MNOs) who own the network

hardware. In this case we consider an application where the MVNO intends to provide supple-

mentary connectivity to its core coverage through the addition of WiFi mesh hotspots to allow
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Satellite Network

Field user

Figure 6.2: Tactical Networks- This network architecture depicts how a typical mobile ad hoc
network might be setup with multiple points of usage for reaching some backbone or command
center. A wireless topology mapping mechanism could be used to map and provision different
services across the network.

their clients to connect to the backend. This is particularly useful in areas such as airport arrival

terminals, or movie halls, where flash crowds can cause congestion on the wireless edge. In

such cases, the MVNO could leverage the Mesh framework provided by the MNO to provide

additional WiFi based coverage to its clients. This coverage requirement could vary across lo-

cations with time of the day and would depend on the service level agreement reached between

the MNO and MVNO. In this study we will discuss how our virtual wireless network mapping

approach could be used by MNOs to maximize their profits in deploying multiple MVNOs on

their wireless Mesh infrastructure.

Case (2) Tactical Networks: Another application for our virtual network mapping algorithm

could be for tactical networks as shown in Figure 6.2. Typically, a quasi-stationary tactical

network which relies on deploying communication nodes at certain points will be setup with

the end goal of allowing access to some back office or command center from those nodes. In

such a case, the command center may decide to provide specialized ”virtual network mappings”

across the mesh so that certain nodes are able to securely sustain a voice connection to the

command center. Another requirement could be a data-intensive but a not so secure transfer of

huge map files detailing access routes, and so on.

From the applications discussed above, we can deduce the following. The reason why the

virtual network mapping problem from the wired world does not translate directly or find appli-

cations as is in the wireless world is because of a few fundamental differences in requirements.
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(1) Both applications (MVNOs and MANETs) of virtual wireless network mapping are con-

cerned about last-mile connectivity, rather than emphasis on obtaining a topology itself on the

physical network, which is typical in wired virtual network mapping. (2) Since the physical

network is a wireless mesh, instead of a wired network, we also observe that the accounting of

resources at every node for the purposes of mapping are very different from that in the wired

domain. Taking these requirements into consideration, we propose our virtual wireless network

mapping (VWNM) algorithm.

Specifically, the contributions of this study will be:

1. We discuss and motivate how a virtual wireless network mapping algorithm would prove

useful in the context of wireless mesh infrastructure.

2. We discuss how a wireless network mapping problem may be simplified from an arbitrary

sub-graph isomorphism problem to a simplified resource allocation problem.

3. Our study takes into account a cost function based on the working of CSMA radios,

a popularity metric based on demand at particular points of presence and presents an

approach for performing this mapping.

4. Through comparison of performance on three standard wireless topologies, we quantify

the results that can be obtained from the mapping algorithm.

Rest of the chapter is organized as follows. Section 8.6 presents a brief discussion on

the related work in the area of virtual network mapping. Following this, Section 6.4 formally

defines the problem and explains our approach to virtual wireless network mapping. Section 6.5

presents results from the simulations under different scenarios. Finally, Section 8.7 discusses

the conclusions and future directions of the study.

6.3 Related Work

We discuss related work for this study in two parts. We will begin by discussing work done in

understanding the virtual network mapping problem itself. Following this, we will discuss the

progress in a related work of network component virtualization, which allows us to extend the

idea of virtual network mapping to wireless devices.
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Wired Virtual Network Mapping: Several efficient VNMP heuristics solving different variants

of the VNMP have been proposed in the past years [9,82–85]. Some of these studies deal with

data rate constraints for wired links [85], while some studies assume that the link mapping is

known before hand [84]. In [82] the mapping is done by simulated annealing, but the problem is

limited to topology constraints. Ref. [9] presents a two stage mapping algorithm, handling the

node mapping in a first stage and doing the link mapping in a second stage, based on shortest

path and multi commodity flow detection.

Network Component Virtualization: Several approaches have been independently proposed for

virtualizing individual network components. The PlanetLab testbed [7] relies on time sharing

an inter-network of nodes that are virtualized. One of the first approaches for virtualizing core

network components has been proposed in the VINI [8] study that attempts to run multiple

router instances on the same physical machine. In terms of wireless networks, the virtual

access point [86] framework allows a single physical WiFi access point to emulate multiple

logical entities. This idea is extended for providing isolation across virtual access points in

[25]. A similar attempt to provide multiple virtual basestation transceivers has been discussed

in [26, 27].

Thus we have seen that our approach addresses aspects of mapping virtual networks on

wireless meshes which differs from previous mapping studies. Also, we see that the progress in

the network component virtualization domain has begun an advance into wireless devices thus

providing a framework for housing multiple virtual networks on the same physical wireless

network.

6.4 Wireless Mapping Methodology

6.4.1 Mapping Approach Overview

To tackle the PoP mapping problem defined above we follow a two-step approach.

• Step 1: The first step of the problem involves analyzing the capacity of the physical

network described by Gp by determining the airtime cost metric at each node.
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• Step 2: And the second step would be to use the set of incoming requests for mapping

radio resources at appropriate PoPs.

For performing the first step the mesh network operator can leverage from a comprehensive

body of literature that deals with mesh planning and resource allocation and management [87].

Though we will propose an approach for performing this allocation, we will not focus much

on this part of the PoP mapping process. For solving the second step of the problem, we

propose and evaluate two mapping algorithms: (1) GSA and (2) GDR, which will be discussed

in detail in the following sections. We will begin with a description of the approach taken for

pre-processing and resource allocation on the physical substrate.

6.4.2 Physical Substrate Pre-Processing

For the purpose of physical substrate processing, we use a simple algorithm for resource pro-

visioning on the substrate. There are other more comprehensive approaches for resource allo-

cation [87], which we do not discuss here. Our mapping algorithms discussed here will work

independently of the substrate resource allocation algorithm.

Capacity allocated at every PoP as a part of this substrate pre-processing phase is defined

in terms of bandwidth. This bandwidth at the PoP will be used to provide wireless connectivity

to clients at the PoP. This resource allocation strategy would require accounting of appropriate

capacity allocation on the nodes on-path to the network sink. This resource accounting is

significantly more complex in wireless networks due to the inherent nature of the wireless

medium. Before we begin a description of our resource allocation approach, we present some

assumptions about the physical substrate itself-

• Every transmitter in the physical substrate is able to send frames at different physical

rates to different destinations depending on link conditions to the receiver.

• Each node is running a version of the CSMA-CA [88] protocol.

Our substrate pre-processing phase aims to achieve equal resource allocation at all physical

nodes in the network. In order to achieve this, we need information on routing path of packets

from every node to the network sink. This allows us to calculate
∑N

i=i F
k
i which is the sum
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Algorithm 3: The greedy static allocation (GSA) strategy for resource mapping at wire-
less PoPs on the mesh.

Input: {Vp, Lv}
Output: {M,Rev,Cap}
Cap = Rev = 0;
# Sort phyiscal nodes
Vp = sortPhyNodes(Vp, cost, popularity);
for i = 1 : num p nodes do

Lv = SelectUnMappedV nodes(Lv, Vp(i));
N = size(Lv);
# Generate knapsack parameters
V alues = revenueAchievable(Lv);
Weights = capacityRequiredAtPoP (Lv);
Capacity = phyCapacity(Vp[i]);
# Invoke knapsack.
amount = sack(weights, values, capacity);
items = find(amount);
mapped nodes = Lv(items);
# Calculate allocations.
if items > 0 then

Vp = UpdatePhy(mapped nodes);
Cap = Cap+ CapAlloc(mapped nodes)
Rev = Rev + V alue(mapped nodes);
PopulateMappings(M, items)

of fraction of air-times (F k) used at every node i on the path to the sink from the node k.

This value is further compensated by the air-time loss at neighbors of all intermediate nodes

because of falling into the carrier sense region. Hence, we are able to determine the cost of

reaching the network sink from every node in the network, and we can use this information to

calculate the maximum possible transmission rate from every node. We can easily incorporate

multiple sinks in the mesh network as long as the routing strategy for every node is known.

This routing strategy could rely on using either a single sink or multiple sinks to reach the

backhaul. However, this extension is not discussed further in the study. Also, note that we

do not take into account interfering links in the substrate pre-processing phase. Rather, this is

taken into account while allocating resources at individual nodes as discussed in the GSA and

GDR algorithms.
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6.4.3 Greedy Static Allocation (GSA)

To begin a discussion of the mapping algorithms we will describe how the PoP mapping re-

quests are made by MVNOs. The PoP mapping request contain the following information: (1)

Node characteristic descriptor of the PoP, (2) Capacity desired at PoP, and (3) Bid for that

corresponding capacity for that characteristic of the PoP. We define the characteristic descrip-

tor of a PoP as any metric that could be used to describe the PoP. Examples of characteristic

descriptors are: location type (movie halls, coffee shops, schools), or degree of density metric

(densely populated, medium density, sparse). In this case, we propose using a popularity met-

ric as a characteristic descriptor10. The capacity desired at every PoP is defined in terms of the

aggregate bit rate desired at that PoP. Finally, we define the bid as the aggregate amount in any

units that an MVNO is willing to pay for that capacity at that PoP. The bidding amount can vary

from using simple proportional pricing approaches to the use of Nash games [89] based pric-

ing strategies, depending on individual bidding strategies by MVNOs. This approach allows

complete de-coupling of the pricing model from the mapping problem, and allows the mapping

algorithms to focus purely on the network operators profit maximization. This mapping phase

also uses interference graphs to determine which node’s transmissions will result in interfer-

ence. Pre-constructed interference graphs based on a two hop protocol interference model are

used for determining the appropriate subset of nodes that can be scheduled on the path to the

sink. For self interference of the flows, we calculate quotas in the phase 1 with the assumption

that the nodes are within carrier sense region of each other, thereby allowing us to make the

assumption that a higher layer MAC scheduling mechanism can be used to prevent this self

interference.

The basic idea of the GSA algorithm is as described in algortihm 3. Using the pre-processed

and pre-provisioned physical substrate, the nodes are sorted in a descending sequence of their

popularity
cost−per−bit . Now, the algorithm selects each of these nodes and determines their characteristic

descriptor. Using this descriptor as the selection criterion, we select all PoP requests (from

possibly different MVNOs). Using these requests, we populate the standard weights, capacity

and value parameters for initializing a knapsack. By solving a 0 − 1 knapsack using dynamic

10It has to be noted that though we use popularity as a metric in our study, our mapping algorithms can work with
any other characteristic descriptors.
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Algorithm 4: Algorithm for greedy dynamic re-allocation of the physical substrate’s re-
sources and mapping of the PoP requests from the MVNOs.

Input: {node, sink, req cap}
Output: {Rp}
# Det. sink path
Pp = getSinkPathNodes(node, sink);
Rp = getRate(node, Pp, req cap); # CS losses.
Rp = accountCS(node, Pp, Rp);
# Prev. allocations.
Rp = cmpAlloc(node, Pp, alloc, Rp);
if req cap < max cap(node) then

Rp = setRate(node, Pp, req cap);
else

Rp = setRate(node, Pp,max cap);

# Return allocation.
return Rp;

programming for that physical substrate node, we are able to fit the best possible combination

of incoming requests, that will yield maximum profit for the network operator. Once mapping

of the pre-provisioned capacity at the current physical node is completed, the algorithm moves

to other nodes in the list.

6.4.4 Greedy Dynamic Re-Allocation (GDR)

The generic structure of the GDR algorithm is similar to that of the GSA algorithm. However,

this approach goes one level deeper in the mapping process by dynamic re-provisioning of re-

sources on the underlying physical nodes for revenue maximization. The pseudo-code for the

GDR approach is the same as that for the GSA approach, the only difference being a condi-

tion that checks if the aggregate required capacity at the PoP is greater than that is currently

provisioned. If this is the case, the GDR algorithm requests a re-provisioning request to the re-

allocation module described in Algorithm 4. As described, the re-allocation module computes

the maximum possible rate that can be achieved at that physical node to the sink. This value is

then decremented based on the carrier sense losses and previous allocations made on that path

to the sink in the previous mappings. Using this information, it allocates the lesser value of the

maximum capacity at that node, and the aggregate requested capacity. This re-provisioning of

resources on the physical substrate is done by setting up appropriate routing, and radio resource
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Figure 6.3: Topologies used in the simulation for evaluation of the mapping approach.

provisioning on all nodes in the path to the sink.

Max. Throughput Calculation: In order to calculate the maximum capacity available from

any node to the sink, we calculate the effective rate from that node to the sink and scale it by

the airtime required at other nodes along the path. The intuition behind this allocation is that

the airtime allocated at different nodes along the path to the sink is inversely related with the

physical layer rates of each node. These allocations are further scaled and reduced based on

previous airtime allocations along the path to the sink.

6.5 Evaluation And Analysis

Based on the approach proposed in the previous sections, we will now perform evaluation of

the algorithms by generating varying mapping requests for the framework.

6.5.1 GSA Baseline Performance

For evaluating the baseline performance of the system we will begin by comparison of the GSA

algorithm on the three topologies discussed in Figures 6.3(a), 6.3(b), 6.3(c). The number of
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Figure 6.4: Comparison of performance for different physical substrates with the GSA algo-
rithm.

simultaneously generated mapping requests vary from 1 to 50. Each of these mapping request

will require mapping of 3 PoPs with randomly generated requirements. Specifically, each of

these 3 PoP requirements will specify a randomly generated capacity, and a randomly generated

popularity value (the node’s characteristic descriptor), and a bid value. In our evaluation, we

have chosen the bid value for every PoP as: capacity × popularity(1 + rand), where rand

represents a random real number between 0 and 1. The rand value represents a randomly

offered bonus on top of a baseline bid which is proportional to the product of the desired

physical node popularity and capacity at that PoP. As discussed earlier, we have chosen a simple

pricing model, since the model itself is not a critical part of the study, and can be changed to

suite every requestors need. Each of the mapping runs are executed 5 times to average the

mapping performance.

Figure 6.4(a) shows the amount of normalized revenue generated by the mapping algorithm

for the MNO. We observe that as the number of virtual topology requests, and hence the ef-

fective number of PoPs requested increase, the amount of revenue generated for all topologies

is increasing. Beyond, a certain threshold we observe that an increase in the number of virtual

topologies requested does not result in an increased revenue, since the capacity of the physical

network is reached. We observe that this threshold is different for different physical network

topologies. Typically, the Star network topology has the least capacity due to a high CSMA

cost in terms of fraction of airtime (cost/bit) needed to send a single bit to the network sink.
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Figure 6.5: Comparison of mapping on wired, wireless, and hybrid networks for the same
physical layer rates on the star topology.

Using this information as a guideline, physical network providers can appropriately limit the

number of wireless PoP requests, and hence the number of virtual topologies.

Figure 6.4(b) describes the fraction of successes in mapping of the virtual topology nodes

as compared with the total number of PoPs requested in the virtual topology. We observe

that initially, for small topologies we have almost 100% success in the mapping. However,

as the number of nodes being requested increase, we see that the mapping function declines

exponentially. Typically, we observe that the fraction is least for the star topology, which has

the highest average mapping cost per node in terms of the fraction of airtime required per bit

sent to the sink.

6.5.2 Comparison: Wired and Wireless Meshes

In this experiment, the goal is to measure the performance of the mapping algorithm and the

underlying physical network when the wireless links are changed by wired i.e. we consider

the mapping problem on a wired mesh. The motivation for performing this experiment is to

determine the impact of having wireless links on the physical network as opposed to wired

links. Such an analysis allows the network provider to perform a cost-benefit study before

making a decision to deploy the mesh as a wired/wireless network. Specifically, if the benefits

are significantly higher, the network operator may decide to deploy the substrate as a wired

network and vice versa.
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To keep the comparison fare, we consider the same topologies for both the wired, and

the wireless cases. Specifically, to highlight the impact of a large number of carrier sense

regions on the virtual network mapping, we consider the Star topology discussed previously.

All other physical layer characteristics such as the physical layer rate and timing constraints

of the network are also kept the same in both cases. The only aspects not accounted for wired

networks, which are considered by wireless networks are: (1) Interference and (2) Carrier sense

regions. The goal is to see the impact of these two wireless aspects, in the presence of varying

amount of PoP mapping requirements. All other experiment parameters are the same as that

used for the previous experiment.

The amount of normalized revenue generated for varying number of virtual topology re-

quests are as described in the results shown in the Figure 6.5(a). We observe that there is a

large amount of difference in the revenues generated by the wired and the wireless networks.

This difference in revenue is mainly due to the difference in capacities of the networks, caused

due to high carrier sense cost in the wireless network, which is absent in the wired network.

The fraction of the virtual topology mapping request which are successfully mapped to

the physical substrate are as shown in the Figure 6.5(b). As discussed previously, the results

show a non-increasing trend. We also observe that though the fraction of request being mapped

fall significantly for the wireless network, the mapping fraction remains almost constant for

the wired network, indicating that the capacity is not reached yet for the same. This result

corroborates with the findings from Figure 6.5(a), where the revenue from the wired network

is always increasing, and does not reach a plateau indicating that the capacity of the underlying

network is not reached.

In both the results earlier we note that replacing even two links which have a high CSMA

cost with wired links in the hybrid network leads to a dramatic performance improvement over

the wireless network performance.

6.5.3 GSA versus GDR performance

We will now compare the performances of the GSA and the GDR algorithms. Comparison is

done by evaluating mapping performance on the same physical substrate and the same set of

virtual topology requests. As before, we use a wireless mesh in a star topology as the substrate
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Figure 6.6: Performance comparison of the GSA and the GDR algorithms with the Star phys-
ical topology.

and the number of requested topologies are varied from 1 to 50. Results are averaged over 5

runs.

Figure 6.6(a) shows the amount of normalized revenue generated with both the algorithms

as a function of the number of requested virtual topologies. We observe that both algorithms

are able to generate increasing revenue with increasing number of virtual topology requests.

Results show that the GDR algorithm is able to generate more revenue as compared to the

GSA algorithm. We notice that up to a few number of requests, the revenue generated by

both algorithms is similar. This is because, when the number of requests are less, the GDR

algorithm does not have enough individual PoP requests to achieve performance better than the

GSA algorithm. As the number of requests increase, the GDR algorithm is able to request

re-allocation of more resources at the most profitable physical nodes.

Figure 6.6(b) shows the fraction of mapping requests that were successful for increasing

number of virtual topology requests. We observe that the success fraction measurements are

similar for both the GSA and the GDR algorithms. This is because the capacity of the physical

network is same due to the same network setups for both algorithms. However, the GDR

algorithm does slightly better because it is able to better allocate resources at the most profitable

nodes with the least cost.

It is to be noted that these results are obtained with a uniform distribution for generating re-

quests. If these requests are skewed towards a particular probability value, the benefits achieved
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Figure 6.7: .

from the GDR algorithm will be much more significant.

6.5.4 PHY Node Selection Strategy

In this experiment, we wish to test the impact of the PHY node selection strategy on the overall

performance achieved in the system. The results from the experiments are as shown in Fig-

ures 6.7(a), 6.7(b). As seen in the Figure 6.7(b), the success fraction is directly related to the

algorithm used for the mapping process since the overall capacity of the underlying substrate

is dependent upon the allocation strategy used for phase 1. The normalized revenue generated

is as shown in the Figure 6.7(a). We observe that the normalized revenue with the GDR algo-

rithm is always better than that for the GSA algorithm. However, we note that even though the

average capacity using the three strategies S1 (Popularity), S2 (Cost), and S3 (Popularity/Cost)

are the same, allocating quotas purely based on cost results in selection of the least profitable

nodes for mapping which results in an overall inferior revenue performance. On the other hand

either selection on popularity or the popularity value scaled by cost yields reasonable revenue

performance as expected.

6.6 Conclusions

This part of the dissertation proposes approaches to map virtual wireless networks on to physi-

cal wireless meshes. This study shows that the motivation for virtual wireless network mapping
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is different from that typically considered in the mapping of virtual wired topologies. Further,

we show how these problem features can be used to simplify the mapping process itself. Re-

sults from three different physical mesh networks show that: (1) There is a significant differ-

ence in mapping between wired and wireless networks, (2) The performance in the wireless

case is largely topology dependent, and (3) our heuristic using greedy re-allocation of physical

resources on the mesh is able to produce the best results.
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Chapter 7

Conclusions

7.1 Summary

This dissertation discusses the issue of extending virtulization to wireless networks. The fol-

lowing points summarize the findings of this dissertation:

1. Medium Sharing With Virtual Networks: shows two approaches to channel conserva-

tion for a wireless testbed. Evaluation of the space and time separation scheme reveal

benefits and weaknesses for both. Space separation provides relatively higher efficiency,

lesser coupling between experiments. We layout selection criterion for each of these

schemes based on the requirement of the testbed and finally propose and implement

a policy manager for controlling inter-exeperiment interference. Finally, incorporating

arbitrary topologies in a slice or across VAPs allocated to the experiment may be chal-

lenging or impossible for some experiments.

2. SplitAP architecture: discusses the design of the SplitAP architecture that allows the

operator to deploy a shared physical access point, which is capable of running algo-

rithms that control UL airtime across user groups. We demonstrate the feasibility of the

proposed architecture by implementing the LPFC and LPFC+ algorithms on a proto-

type. Results obtained from the measurements on the ORBIT testbed show a significant

improvement in the group airtime fairness, while resulting in marginal degradation of

overall system throughput. Future directions include search for more efficient algorithms

that can be deployed on the SplitAP framework.

3. Virtual Basestation Architecture: provides for seamless sharing of a single physical

basestation which could be implemented both by testbed operators and mobile network
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operators. Primarily, we discuss the approach used for emulating virtual wireless bases-

tations to multiple slices, while also providing isolation to ensure repeatability of results.

Representative results from over-the-air experiments are provided for baseline perfor-

mance validation, isolation testing, and demonstration of custom flow scheduling using

our framework. Future work involves a more detailed analysis of custom flow scheduling

mechanisms used in conjunction with different underlying slice isolation strategies. And

finally,

4. Virtual network mapping: proposes approaches to map virtual wireless networks on to

physical wireless meshes. This study shows that the motivation for virtual wireless net-

work mapping is different from that typically considered in the mapping of virtual wired

topologies. Further, we show how these problem features can be used to simplify the

mapping process itself. Results from three different physical mesh networks show that:

(1) There is a significant difference in mapping between wired and wireless networks, (2)

The performance in the wireless case is largely topology dependent, and (3) our heuristic

using greedy re-allocation of physical resources on the mesh is able to produce the best

results.
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Chapter 8

Appendix: Platform Selection For Virtualization

8.1 Chapter Summary

A scalable approach to building large scale experimentation testbeds involves multiplexing the

system resources for better utilization. Virtualization provides a convenient means of sharing

testbed resources among experimenters. The degree of programmability and isolation achieved

with such a setup is largely dependent on the type of technology used for virtualization. We con-

sider OpenVZ and User Mode Linux (UML) for virtualization of the ORBIT wireless testbed

and evaluate their relative merit. Our results show that OpenVZ, an operating system level vir-

tualization mechanism significantly outperforms UML in terms of system overheads and per-

formance isolation. We discuss both qualitative and quantitative performance features which

could serve as guidelines for selection of a virtualization scheme for similar testbeds.

8.2 Introduction

Experimental validation of research ideas in a realistic environment forms an important step in

identifying many practical problems. This is specially true for wireless networks since wireless

communication environment is hard to accurately model through simulations. Public access

testbeds like ORBIT [7, 90, 91], provide the research community with platforms to conduct

experiments. ORBIT [90], typically uses a time shared experimentation model where each

experimenter can reserve the grid nodes for a fixed duration (slot - approximately two hours)

and has complete control of these nodes during the reservation period. An ever increasing de-

mand for grid slots can only be met through sharing of the testbed whenever possible. Since

spatial expansion is not an economically viable solution due to the limited space, prohibitive

cost of setup and maintenance, we propose virtualization of ORBIT to support simultaneous
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experiments. Wired testbeds like VINI [8] and Planet lab already use node and network virtual-

ization for the same reason. In our study, we will cater specifically to requirements for sharing

a wireless testbed through virtualization.

Another important motivation for ORBIT testbed virtualization is the integration with the

GENI [16] framework. This requires ORBIT to be virtualized for allowing integration with

other shared testbeds such as PlanetLab and VINI [30]. GENI also requires combining of con-

trol and management across wired and wireless networks, providing researchers with a single

programming interface and experimental methodology. Since the ORBIT testbed currently sup-

ports only a single experimenter mode of operation, virtualization is essential for integration.

While wired network virtualization may be achieved by pre-allocating memory, CPU cycles

and network bandwidth, to achieve perfect virtualization of the wireless network, we need to

perfectly isolate both the physical devices and the wireless spectrum while providing flexibility

for experimentation. This additional requirement makes the problem of wireless virtualization

much harder compared to the wired counterpart [11]. Figure 8.1(a) shows different options

for sharing the radio spectrum. The authors in [11] attempt to solve the spectrum sharing

problem by separating experiments in time. As observed, time sharing of a single channel can

result in a less repeatable performance due to context switching overheads even though it could

possibly reduce the wait time for experiments. Due to the availability of a large number of

radio interfaces (800 - 2/node), we share the spectrum by allocating orthogonal channels to

slices. ORBIT nodes are equipped with two wireless interfaces each and therefore two virtual

machines may be run on each node thereby doubling the capacity of the grid. Figure 8.1(b)

shows the potential capacity of the ORBIT grid with such a frequency division (FDM) based

virtualization. We observe that the number of simultaneous experiments supported on the grid

are limited either by the number of orthogonal channels 11 or the number of nodes allocated per

experiment.

In order to provide meaningful experimentation in the virtualized wireless testbed, the

choice of the vitualization platform is critical. In this work, we start by identifying the require-

ments and qualitative issues to consider when selecting a virtualization platform in Section 8.3.

11Experiments that use other wireless technologies like zigbee and GNU radio may be run simultaneously pro-
vided they use non-interfering frequencies
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Figure 8.1: Options for sharing radio resources on ORBIT and potential capacity of the ORBIT
grid with 800 interfaces(2/node), 12 channels(802.11a), 2VMs/Node

After discussing the relative merits of OpenVZ for our application, we present a comparative

experimental evaluation of UML and OpenVZ in Section 8.5. Related work is discussed in

Section 8.6. Finally, conclusions and future directions are presented in Section 8.7.

8.3 Background and Platform Selection

Production scale virtualization systems can be broadly classified as full, para and OS virtual-

ization. Full virtualization [59, 60](e.g.,VMWare, KVM) refers to a technique that emulates

the underlying hardware and uses a software layer called hypervisor that runs directly on top

of the host hardware to trap and execute privileged instructions on the fly12. Full virtualiza-

tion is the least intrusive13 form of system virtualization. In para virtualization [61, 62](e.g.,

Xen, UML) the hypervisor layer exists within the host operating system to intercept and ex-

ecute privileged instructions. Unlike full virtualization, para virtualization requires changes

to the guest operating system. The most intrusive form of virtualization is operating system

based [63](e.g.,OpenVZ) where the virtualized systems run as isolated processes in the host

operating system. The host OS is modified to provide secure isolation of the guest OS. For the

purpose of this study we lay out the main qualitative criteria and select candidates for perfor-

mance evaluation based on their suitability for the ORBIT testbed.

Qualitative features of a virtualization scheme which are important from a wireless testbed

12Native virtualization is a virtualization approach where the processor has support for virtualization e.g.,IBM
System/370 and allows multiple unmodified operating systems to run together. Full virtualization does not include
these systems.

13Intrusiveness refers to the degree of changes that need to be made to the guest OS to get it working with
virtualization.
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Table 8.1: Comparison of schemes from an ORBIT user perspective

Feature/Experiments Full - Para - OS -

Virtualization Virtualization Virtualization

Security Experiments Yes Yes Yes

Network Coding In Kernel Overlay* Overlay*

Mobility and Routing Yes Yes Yes

Rate And Power Control In Driver Radiotap** Radiotap**

Wireless Applications Yes Yes Yes

Phy Measurements Yes Yes Yes

MAC Parameter Control Yes Yes Yes***

Transport layer Modification In Kernel Emulation∇ Emulation∇

* Transport layer experiments can be implemented as a part of overlays.

*** Radiotap headers allow for per frame rate and power control.

**** For Atheros devices MAC parameters (txop, CW, AIFS)are supported per interface.

∇ Use a click like mechanism on top of IP for custom flow or error control

administrator’s perspective are as follows:

1. Ease of administration: Clean API to schedule node resources such as CPU, disk and

memory on a per slice basis should be possible.

2. Shared or exclusive interface mapping: The setup should allow flexible mapping of vir-

tual interfaces within the slice to physical interfaces or one or more virtual interfaces (on

the hardware like virtual access points).

3. Control over network connectivity: Mechanisms should be available to bandwidth limit

slices and control interaction between slices.

All types of virtualization schemes allow for such functions. However, in our experience the

most flexible and easy approach for controlling the VMs is through operating system level

virtualization such as OpenVZ. Such a setup also allows for the reuse and extension of regular

system administration tools (such as IPTABLES, DHCP, SSH, LDAP) for controlling VMs.

From the perspective of an ORBIT experimenter we consider the following:
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Figure 8.2: Experiment setup for OpenVZ evaluation

1. Support for standard and custom Linux distributions: Orbit nodes supports a wide va-

riety of Linux distributions and users are free to use their own customized version. The

virtualization platform running on ORBIT must support similar flexibility for the exper-

imenter.

2. Root access within container: This feature is useful for an experimenter for providing

complete freedom within the container.

Multiple Linux distributions with root access in VMs are inherently supported in all three forms

of virtualization. A more detailed comparison is shown in the Table 8.2. It is observed that all

wireless experiments scenarios can be either directly supported or emulated (using open source

radiotap libraries and overlays) with all the virtualization setups. Traffic control elements such

as Click [36] can also be run on hosts to allow for bandwidth shaping and interface mapping.

Appropriate API can also be exposed from the driver to allow experimenters to have a con-

trolled interaction with the driver. The only experiments not supported in operating-system

level virtualization is the option of customizing the host kernel itself to cater to individual

VMs. Despite needing emulation to support experiments that would conventionally be done

by direct changes in the host kernel, the possibility of obtaining very tight slice isolation [92]

make OS-level virtualization a strong candidate for evaluation.

Based on these inferences, the choice of a virtualization mechanism for ORBIT is not lim-

ited to any one type. However, full virtualization such as KVM requires specific CPU virtual-

ization extensions (E.g. Intel VT or AMD-V) which are currently not available with our ORBIT

boxes, and hence is not considered for evaluation. We consider OpenVZ (OS level) and User

Mode Linux (Para - level) virtualization for quantitative comparison with testbed deployment.



123

Since UML based virtualization has been performed in a previous study [93], this study fo-

cusses on the performance analysis of OpenVZ. We ruled out Xen in this performance study

due to incompatibility with the Via C3 processors used in the ORBIT testbed.

8.4 Experiment Setup

The Orbit testbed is a two-dimensional grid of 400 small form factor PCs with 1GHz Via C3

CPU, 512 MB RAM, 20 GB hard disk, three ethernet ports (control, data and chasis man-

agement) and two WiFi interfaces14. We used Atheros 5212 chipset cards with the Mad-

WiFi(0.9.4) [34] drivers for our experiments.

Figure 8.2 shows our experiment setup. OpenVZ uses the concept of a container also called

virtual private server (VPS), an entity that performs like a stand alone server. It also provides

a virtual network device named as venetX per VPS that acts as a point to point link between

the container and the host system. We configure the venet devices from each of the two VPSs

(on every node) to map to a corresponding WiFi card on the host. Effective virtualized and

non-virtualized links are as shown in the figure. The UML virtualization setup is described in

detail in [93] and is quite identical to the OpenVZ setup.

We run each experiment for 3 minutes using UML and OpenVZ setups as well as with no

virtualization. The operating mode of the WiFi cards was 802.11a with bit rate of 36Mbps set

at channel 36. The debian linux distribution (Woody) was used for both guest and host operating

systems.

8.5 Performance Evaluation

We measure overheads in throughput and delay, followed by measurement of slice isolation

achievable between slices. Quantitative evaluation presented in this section takes into account

the importance of different measurement criterion. For instance, the isolation achieved be-

tween slices is far more important than sustainable peak throughput as it directly determines

experiment repeatability.

14It should be noted that though the results presented in the following section are hardware specific, performance
trends will hold and scale with hardware capacity and load on the system.
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(b) Variance in UDP bandwidth.

Figure 8.3: UDP throughput and variance in throughput as measured with different schemes.
Performance is measured as a function of offered load per flow with a fixed packet size of
1024bytes. Variance in UDP bandwidth is measured over per second observed throughput at
the receiver.
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Figure 8.4: Measurement of UDP throughput with varying packet sizes and file transfer time
with FTP. For the UDP throughput measurement, channel rate is constant at 36Mbps and packet
size is varied. For the FTP experiment, packet size is constant at 1024 and channel rate is varied.

8.5.1 Throughput Measurements

We use the iperf [94] tool to generate saturation UDP traffic and average the througphut over

3 min intervals. We plot the observed UDP throughput with varying offered loads and fixed

frame size of 1024bytes in Figure 8.3(a) and its variance in Figure 8.3(b). Throughput obtained

in the virtualized case are averaged over the two links. We observed that both below and above

channel saturation there is no distinct difference in throughput with or without virtualization.

This trend indicates that both virtualization platforms perform efficiently under saturation con-

ditions. However, the variance in throughput with UML increases with offered load specially

near and above saturation. Typically, this suggests that the OpenVZ platform benefits from

tighter scheduling and lower overheads compared to UML.
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Figure 8.5: Delay in different experiment scenarios. Minimum and average round trip time
measurements are based on ping while interframe space measurements are based on difference
in arrival times of packets at the receiver.

To determine the effect of varying packet sizes, we fix the offered load to 40Mbps and trans-

mission rate to 36Mbps, and vary packet sizes from 128bytes - 1470bytes. Figure 8.4(a) shows

that for packet sizes less than and equal to 1024 bytes, UML has a significantly higher packet

processing overhead which leads to a degraded performance. We attribute this degradation in

performance with UML to the lack of support for virtualization in the host kernel.

Finally, we measure throughput performance of TCP by setting up a FTP transfer of a 1GB

file with varying channel rates. Resulting file transfer times are as shown in Figure 8.4(b). For

all channel rates, performance of UML is on par with OpenVZ and no virtualization due to the

use of larger IP frames resulting in less performance overheads.

Thus for all three cases, we observe that OpenVZ has satisfactory performance, while

UML’s throughput performance suffers for small frame sizes.

8.5.2 Transmission Delay

Delay and jitter are typically important for experiments that measure performance of real time

systems or data. We measure delay and jitter performance in terms of distribution of delay

across slices and distribution of delay overhead with varying packet sizes.

To measure the distribution of delay across slices we generate ICMP traffic (ping) across

both slices and measure the round trip times (RTT). In Figure 8.5(a) we present the average

RTT over an interval of 300 secs for varying packet arrival rates using OpenVZ. We plot delay

measurements without virtualization, average delay across both slices, and delay across indi-

vidual slices. The results show that in all cases, OpenVZ adds a very small average overhead (of
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the order of 0.05msec) in terms of absolute delay. The RTT delays for slices increase slightly

with smaller sending rates due to slight decrease in CPU time spent on network tasks. De-

spite the overhead being negligible, we notice that the performance across both slices is always

comparable. Efficient buffer copying mechanisms enable OpenVZ to operate with little or no

delay overheads, and it is safe for making temporal measurements across slices. A separate

study [93] has shown performance degradation in UML under similar experiment settings.

In order to evaluate the processing delay using OpenVZ, we measure the arrival time differ-

ences consecutive packets at the receiver with a constant sending rate. This difference in arrival

times is also directly proportional to the delay [95]. We present this result as an average over

10, 000 consecutive frames of UDP traffic at 36Mbps in Figure 8.5(b). We repeat these exper-

iments with various packet sizes. We observe that the delay increases with packet sizes due to

increasing transmission times but there is little or no difference between the measurements with

and without virtualization. Therefore we conclude that OpenVZ adds little overhead in packet

processing and the overhead does not vary with packet size.
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Figure 8.6: Experiments for measuring the cross coupling and interference between experi-
ments. First plot shows a performance with time, while the second plot displays results aver-
aged over 180secs.

8.5.3 Slice Isolation

Isolation is an important requirement for a virtualized testbed since it directly determines the

degree of repeatability achievable in a virtualized setting. Since OpenVZ has clearly outper-

formed UML in the previous experiments we will rule out UML for further experiments. To

measure isolation we coin two performance measurement metrics: transient response and cross

coupling between experiment.

We define transient response as the instantaneous change in throughput of an experiment
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running on one slice caused due to time varying change in offered load on another slice. To

measure the transient response, we maintain the offered load for the experiment running on slice

1 at a constant value of 20Mbps and vary the offered load on slice 2 from 5 Mbps to 5 Gbps

in steps. Results are presented in Figure 8.6(a). We see that there is little or no correlation in

the throughput of the experiment running on slice 1 (over time) in response to the change in

offered load in slice 2. Therefore we may conclude that OpenVZ provides reasonable isolation

between slices.

We define cross coupling as the difference in throughput with virtualization as a percentage

of the throughput without virtualization. To measure cross coupling we maintain the offered

load of the experiment in slice 1 at constant values of 30Mbps and vary the offered load of the

experiment on slice 2 from 5 Mbps to 10Gbps in steps. This experiment is then repeated with

slice 1 fixed at 5Mbps. The throughput of each experiment averaged over 180seconds are as

shown in Figure 8.6(b). We see that the results of the experiments in slice 1 are never affected

by the change in offered load on slice 2 and therefore we concur that there is negligible cross

coupling of experiments. It is important to note that these results are achieved without tweaking

features of OpenVZ that allow the user to set custom cpu usage per slice.

Finally we present test results that measure process space isolation between the VPSs. As

a part of these tests, each of the containers are triggered with fork bombs, and the number

of processes spawned in each of the VPSs are as shown in Figure 8.6(c). We observe that

the system quickly settles to an equilibrium where each of the containers share equal number

of processes. Thus we observe that OpenVZ allows for successful containment of processes

within each VM.

8.6 Related Work

There are several prior works that provide comparative analysis of virtualization platforms [96–

98]. However, most of this work is in the context of server/machine virtualization. Authors

in [96] study the scalability of four virtual platforms: Vserver [92], UML [62], Xen [61]

and VMWare [59]. They perform a quantitative evaluation by measuring virtualization over-

head, and isolation between VMs. They also measure startup time and memory occupancy
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of each virtualization platform. A similar study [98] has presented a comparative analysis of

Xen, OpenVZ and VMWare Server using industry standard benchmarks for evaluating filesys-

tem, network, multiprocessing and parallel processing performances. While these performance

measures are important in our context as well, we concentrate more on the networking aspect

of virtualization and platform suitability from a wireless testbed perspective.

The study in [93] discusses virtualization performance using UML by running two in-

stances on a single Orbit node and isolating slices based on orthogonal channels. In our work,

we extend this study by comparing the performance of OpenVZ based virtualization with the

UML based scheme. Other previous wireless testbed [99] studies have more focus on the sys-

tem architecture rather than features exported by the technology itself.

8.7 Conclusion and Future work

This study presents a comparison of qualitative features and performance which are useful

from the perspective of a virtualized wireless testbed deployment. Our qualitative comparison

shows that all forms of system virtualization could be used for virtualization of a wireless

testbed. Measurements presented in the chapter show that OpenVZ consistently outperforms

UML in terms of system overheads, slice isolation and its performance is closest to that of

the native non-virtualized system. This performance can be attributed to a tight virtualization

mechanism and efficient approach to packet handling. Having selected Open VZ as the platform

for Orbit virtualization, integration with the orbit framework and measurement library are the

most important next steps. From a measurement standpoint comparison with Xen and Vservers

on newer Intel chipset based machines are important future research items.
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