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A time-resolved stereoscopic scanning particle image velocimetry (TR-SSPIV) system 

was developed to investigate the fine-scale 3D structures in free shear turbulent jets. The 

system provided a simultaneous measurement of the three-component velocity field in a 

three-dimensional volume (3D3C) with Kolmogorov-scale ( ) resolution, providing a 

true representation of the complete nine-component velocity gradient tensor. Quantitative 

visualization of the coherent structures at fine-scale turbulence is obtained and four basic 

structural shapes (sheets, tube, square ribbons and spherical blobs) are identified as 

building blocks of complex turbulent structures. The measurement volume had 

dimensions of 43 20 18    , which allowed isolating individual structures.  These 

rendered shapes had dimensions that range from 1.5 5  to 20 30 . The local 

acceleration t u  is obtained and represented as 3D structures. These showed a strong 

anti-alignment with the convective acceleration term, which helps validate 
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experimentally the Random Taylor Hypothesis. A novel vortex identification scheme is 

also introduced based on the local pressure.  The method is compared to other published 

ones including enstrophy, Q, 2  and   criteria. Four different flow configurations are 

tested and extensive statistical analyses are performed to study the probability density 

function (PDF), joint PDF, and spectra of the velocity gradients. The analysis also 

considered the vorticity, rate of strain, enstrophy, and dynamic parameters such as 

enstrophy production rate and energy dissipation rate. Accuracy assessments included 

result comparison to isotropy theory and evaluation of the local conservation of mass. 

The flow statistics and scaling of turbulence at fine scales are compared extensively to 

published theoretical, numerical, and experimental results. 
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Chapter 1 

Introduction 

1.1 Background  

Turbulent flows can be observed in everyday life such as water flow in a river, running 

tap water, smoke from a chimney, or vortices around a helicopter. In industrial 

applications, turbulent flows are common and of great importance, as turbulence has the 

ability to transport and mix fluid very effectively. The study of turbulence is also of great 

interest to researchers as it occurs in many natural and manmade flows, and the 

understanding of mass, momentum and energy transport in turbulence has both 

theoretical and practical importance. 

 

The eddies found in turbulent flows vary greatly in size. The large scale motions are 

controlled by the geometry of the flow, while the small scale motions generally depend 

on viscosity and the energy transported from large scales. The small scales in turbulent 

flows have been widely studied for their nearly universal structures (Kolmogorov 1941) 

yet they still remain a challenging problem. This is the case when trying to resolve with 

Kolmogorov-scale resolution turbulent flow structures to obtain a detail three-

dimensional representation of their geometry. The Kolmogorov scale,  
1 4

3    
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(where ν is the kinematic viscosity of the fluid and ε is the energy dissipation rate), 

arguably represents the smallest scales in the flow where viscous dissipation dominates 

and where the energy cascade ends. Fully resolving the smallest scales can then provide a 

better understanding of the local viscous dissipation process, its relation to larger scales 

in the energy cascade process in turbulence as well as characterizing the intermittent 

fluctuations of velocity.  

 

1.2 Review of velocity gradient tensor measurements 

The velocity gradient tensor is known to play an important role in the dynamics of 

turbulence. The analyses of vorticity, rate of strain, enstrophy production and energy 

dissipation all depend on the availability of the velocity gradients. But the acquisition of 

the full nine components of the velocity gradient tensor has been a challenge to 

experimentalists due to its complexity involving the three-component velocity field and 

three-dimensional spatial locations. In most instances when the velocity gradient tensor 

was not available, the dynamic parameters in turbulence, such as energy dissipation rate, 

had to be estimated using the longitude velocity fluctuations by applying a local isotropic 

assumption (Kolmogorov 1941) and Taylor Hypothesis (Taylor 1935).  

 

Browne et al. 1987 was among the first to obtain multiple velocity gradient components 

through experiments. They studied the energy dissipation at the wake of a cylinder and 

obtained eight of the velocity gradient components using a point measurement hotwire 

technique. They observed departure from isotropy at the cylinder wake especially by the 

edges. All nine components were later obtained by Tsinober et al. 1992 with a twelve-
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wire hotwire probe in a turbulent grid flow. Other variations of the hotwire technique 

have been used by Vukoslavcevic & Wallace 1996, Ong & Wallace 1998, Kholmyansky 

et al. 2001, Wallace & Vukoslavcevic 2010 and Gulitski et al. 2007. The latter obtained 

the nine components of velocity gradient tensor simultaneously without the need to apply 

the Taylor hypothesis. They also obtained time derivatives of the velocity (acceleration). 

Nonintrusive flow measurement techniques such as laser-Doppler velocimetry (LDV) 

have also been developed to access velocity gradients with higher spatial resolution 

(Lang & Dimotakis 1982 and Agui & Andreopoulos 2003) but they are still limited to 

point measurements. 

 

With the development of flow imaging techniques, the spatial resolution of velocity 

gradient measurement has been greatly improved. Particle tracking velocimetry (PTV) is 

a technique that measures the three-dimensional location of low concentrated particle 

fields during a time sequence, from which the velocity vector and full velocity gradient 

tensor can be obtained (Ishikawa et al. 2000, Holzner et al. 2008, Holzner et al. 2009). 

Classical particle image velocimetry (PIV) is a two-component velocity planar 

measurement, which can provide four of the velocity gradient components and isotropic 

assumptions are required to compute energy dissipation rate (George & Hussein 1991, 

Saarenrinne & Piirto 2000, Tanaka & Eaton 2007, 2010). To fully resolve the velocity 

gradient tensor, several new methods were developed as an extension of the traditional 

PIV system, including dual-plane stereoscopic PIV (Ganapathisubramani et al. 2006, 

Mullin & Dahm 2006), Holographic PIV (Zhang et al. 1997, Tao et al. 2000, Sheng et al 

2008), cinematographic stereoscopic PIV (Ganapathisubramani et al. 2007, 2008), 
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Orthogonal-plane cinema-stereoscopic PIV (Steinberg et al. 2009), and tomographic PIV 

(Staack et al. 2010, Elsinga et al. 2010). The comparison of different PIV techniques used 

in the measurement of velocity gradient tensor is discussed in §1.4.  

 

1.3 Review of turbulent flow structure visualization 

The fine scales of turbulent flows are dominated by coherent structures that are 

responsible for the mass and momentum transport and energy dissipation. The presence 

of these coherent structures was first observed by Kline et al. 1967 near the wall of a 

turbulent boundary layer. Recent reviews (Wallace 2009; Ishihara et al. 2009) show that 

the study of the 3D turbulent structures has been generally done using direct numerical 

simulations (DNS). For instance, the three-dimensional Navier–Stokes equations were 

solved to obtain the 3D vorticity field of turbulent flows (Siggia 1981, Kerr 1985, She et 

al. 1990, Vincent & Meneguzzi 1991). However, a restriction of DNS is that all scales of 

the flow must be resolved, from the Kolmogorov scale to the large eddies present in the 

flow. As a result, the larger the range of scales present (i.e., high Reynolds number), the 

larger the computational cost. In general, the computational grid number is reduced by 

limiting the smallest scales resolved to a value on the order of η (Donzis et al. 2008). For 

instance, Kim et al. (1987) suggested grid spacing on the order of 15η for DNS 

simulations of turbulent flows to resolve the essential turbulent scales, while more recent 

studies numerically simulated isotropic turbulence in a box with a 1.57η resolution 

(Moisy & Jiménez 2004) and even down to 0.95η (Wang 2010) and 0.25-0.3η (Donzis et 

al. 2008, Schumacher et al. 2010).  
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In turbulent flow at fine scales, the statistics significantly deviate from Gaussian. Rather, 

it is dominated by random bursts of vorticity and energy dissipation isolated in both space 

and time. This phenomenon, known as intermittency, is one of the most significant 

characteristics of turbulence. The characterization of turbulence intermittency has been 

challenging to researchers due to the lack of a quantitative description of fine scale 

structures (Frisch & Orszag 1990). Over the years, one of the goals of many DNS studies 

has been to visualize and quantify the coherent flow structures in fine-scale turbulence. 

For instance, previous DNS work indicated that strong vorticity fields consist of long 

tube-like structures (or “worms”) that have diameters on the order of Kolmogorov length 

scale (Siggia 1981, Kerr 1985, She et al. 1990, Vincent & Meneguzzi 1991). Also, She et 

al. 1990 visualized the vortex tubes by choosing a vorticity magnitude threshold that is 3-

4 times of its RMS value and observed the spiral profile of the velocity field around the 

vortex tubes. Vincent & Meneguzzi 1991 also discussed the visualization of vortex tubes 

with different thresholds and they further quantified the geometry of the tubes by plotting 

the vorticity magnitude along a direction perpendicular to its axis. Passot et al. 1995 

explained the formation of vortex tubes and suggested that the vortex tubes evolve from 

unstable strained vortex layers under combination of compression and self-induced 

rotation. More recent DNS studies suggest that the intense flow structures are not in fact 

randomly distributed in space but are organized in a sense of large-scale with clustering 

(Moisy & Jimenez 2004). They also observed a strong relation between intense vorticity 

and energy dissipation, which shows that the high vortex tubes are often accompanied by 

high dissipation rate structures (Sreenivasan 1999, Schumacher et al. 2010). This 
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correspondence was also observed in terms of time, suggesting that a rapid strain growth 

triggers rising vorticity with a sudden decline in stretching (Zeff et al. 2003).  

 

To resolve the turbulent structures experimentally, various flow imaging techniques have 

been developed over the past two decades. Holographic PIV was applied to obtain 3D 

coherent turbulent structures (Meng & Hussain 1991, Zhang et al. 1997, Pu et al. 2002) 

and the availability of reconstructed 3D vorticity and strain rate structures has enabled the 

observation of alignment of vortex tubes to local strain (Tao et al. 2000). Sakakibara et al. 

2001 applied a time resolved PIV technique to the measurement of an impinging jet and 

3D „wall rib‟ structures were visualized indicating the high production of vorticity at the 

merge of cross and wall ribs. Ganapathisubramani et al. 2006 performed a dual-plane PIV 

experiments which obtained the complete velocity gradient tensor and identified the 

hairpin vortex structures in a turbulent boundary layer.  

 

The spatial resolution is an important factor in the visualization of 3D turbulent 

structures. Large scale three-dimensional vortical structures were obtained in the wake of 

a turbulent jet with 10η resolution by Hori & Sakakibara 2004. Steinberg et al. 2009 

developed the orthogonal-plane cinema-stereoscopic PIV system to reconstruct the 3D 

vorticity structures with a resolution of 6η. The spatial resolution was further increased 

using cinematographic stereoscopic PIV to 2-3η (Ganapathisubramani et al. 2007, 2008). 

High temporal resolution was also achieved in the study of supersonic (Mach 2) turbulent 

boundary layer and the 3D hairpin structures were observed to be aligned with the 

streamwise direction (Elsinga et al. 2010). One of the primary goals of the present study 
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is the resolution ofthe fine-scale turbulent coherent structures with near Kolmogorov 

resolution and the time-resolved stereoscopic scanning PIV system was designed to 

visualize 3D structures with 0.6-0.83η grid separation.  

 

1.4 Review of PIV techniques used in the study of turbulence  

PIV is a non-intrusive optical technique that has been widely used over the last two 

decades and has seen a surge in recent years due to improvement in its components 

(cameras, lasers and computers) but also due to the development of new techniques based 

on PIV. Table 1.1 lists the different types of PIV systems applicable to the study of small-

scale turbulence. Traditional PIV provides two velocity components in a plane which 

allows calculating four components of the velocity gradient. Also, the out of plane 

vorticity (Willert et al. 1991, Olsen & Dutton 2003) and the three components of the 

strain rate tensor can be derived. Kinetic energy dissipation rate can also be estimated 

with one velocity gradient by using isotropic assumptions (Saaernrinne & Piirto et al. 

2000). Time-resolved PIV is also a planar measurement but compared to traditional PIV, 

it provides two in-plane acceleration components thanks to the high speed recording 

system. The acceleration can be used to estimate the dissipation rate in turbulence (Dahm 

& Southerland 1997) based on Taylor‟s hypothesis (Taylor 1935).  

 

Stereoscopic PIV is a planar velocity measurement but it also provides the out-of-plane 

velocity component. Six components of the velocity gradient tensor can also be obtained 

with this technique which allows estimating the kinetic energy dissipation more 

accurately (Han et al. 2000 and Piirto et al. 2003). Mullin & Dahm 2006 introduced a 
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dual-plane stereoscopic PIV system to study the intermediate-scales of turbulence. The 

full nine velocity gradient components were obtained simultaneously in a plane of 15.5 

mm ⅹ 12.5 mm. This technique provided dynamic properties including energy 

dissipation rate, enstrophy and enstrophy production rate.  

 

Of particular interest to the present work are those measurements that can be extended to 

three-dimensional space. Ganapathisubramani et al. 2007 applied a time-resolved 

stereoscopic PIV system to the study of a turbulent jet. Consecutive high speed PIV 

images were taken at the same plane and the Taylor‟s frozen hypothesis used to provide a 

quasi-instantaneous reconstruction of the vortical structures in a volume (250η × 160η × 

160η) with an excellent resolution (3η) for the size of the volume observed.  

 

As part of the present work (Cheng et al. 2011, Diez et al. 2011) a time-resolved scanning 

PIV system is developed to measure the small scales of the flow in a low Reynolds 

number turbulent jet. Scanning PIV combines conventional PIV with scanning techniques 

to obtain the two components of the velocity field in a set of light-sheet planes across a 

volume (Brücker 1997). For scanning frequencies adjusted sufficiently high compared to 

the characteristic time scale of the flow, the measurements can be considered as quasi-

instantaneous over a scan cycle. Scanning systems have been used in the past for laser 

induced fluorescence measurements to obtain concentration and also velocity fields (Yip 

et al. 1988, Merkel et al. 1995, Dahm et al. 1992). The present scanning system is on the 

other hand used for particle image velocimetry measurements. As shown in Table 1.1, the 

time-resolved scanning PIV system also provides 3D volumetric measurements with two-
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component velocity information, in comparison to 2D visualization using the dual-plane 

stereoscopic PIV system (Mullin & Dahm 2006). Six components of the velocity gradient 

and two components of the acceleration can also be derived.  

 

The time-resolved scanning PIV was further expanded during the present work with a 

second camera resulting in a time-resolved stereoscopic scanning PIV (TR-SSPIV). This 

technique has been used by a limited number of researchers due to its high complexity. 

Burgmann et al. 2006 applied stereoscopic scanning PIV to investigate the structure and 

dynamics of vortices in a laminar separation bubble. The method was also applied to 

extract the large vortical structures present in turbulent jets (Hori & Sakakibara 2004). 

Nevertheless, the results are limited to vortex structures within scales far from the inner 

length scales due to the large volume used (i.e.: 100 mm × 100 mm × 100 mm) during the 

measurements.  

 

The time-resolved stereoscopic scanning PIV (TR-SSPIV) system provides the three-

component velocity field in a three-dimensional volume and it is time resolved. The 

complete nine-component velocity gradient tensor can also be simultaneously obtained, 

together with the three components of the acceleration. Vorticity, strain rate, enstrophy, 

kinetic energy and other important dynamic properties can be calculated with the 3D3C 

velocity information. The developed TR-SSPIV system is a tool to study the small-scales 

of turbulence, where the small coherent structures dominate the process of momentum, 

heat transport and energy dissipation. The TR-SSPIV system not only enables 

quantitative visualization of small-scale coherent flow structures, but also offers a true 
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measurement of the kinetic energy. It also provides statistical information that helps 

understand the physics of turbulence which could also be used for validating and 

improving numerical simulations. 

 

1.5 Dissertation outline 

As mentioned in the previous section, two different systems (time-resolved scanning PIV 

and time-resolved stereoscopic scanning PIV) are used to study the fine scales of 

turbulence. This dissertation focuses on the latter results from the TR-SSPIV system, 

since it provides simultaneously 3D3C velocity measurements. The detailed 

configuration and results for the time-resolve scanning PIV system can be found in 

Cheng et al. 2011 and Diez et al. 2011.  

 

Chapter 2 provides the detailed description of the TR-SSPIV system including the 

implementation of the imaging acquisition and scanning system. Chapter 3 describes the 

free shear turbulent jets which will be investigated for the purpose of resolving the fine 

scales of turbulence. This chapter includes the experimental setup and flow conditions as 

well as the validation of jet velocity profile and discussion of the parameters that 

characterize turbulent motion. 

 

Chapter 4 present quantitative visualization results in three-dimensional volumes. 

Structures of velocity, velocity gradients, and dynamic parameters such as enstrophy and 

dissipation rate are illustrated to show the coherent „building blocks‟ of the flow 

structures of turbulence at the fine scales. A novel approach in vortex identification with 
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local pressure is introduced and compared with current identification schemes. Chapter 5 

discusses the statistics of the fine scales in turbulence. The statistical analysis includes 

probability density function (PDF) of the velocity gradient, joint PDFs, and the energy 

spectrum of velocity gradients among other parameters studied. The accuracy of the 

measurements is discussed and a comprehensive comparison to published work is also 

included. Chapter 6 summarizes the results and emphasizes the main contributions of the 

current work.  
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Table 1.1. Comparison between current PIV techniques. 
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Chapter 2 

Time-Resolved Stereoscopic Scanning PIV System 

 

The present work successfully resolves the nine components of the velocity gradient in a 

three-dimensional volume simultaneously and as a function of time. With this 

information, the fine scales in a turbulent jet are resolved and the flow structures are 

visualized at those scales. To obtain these three-dimensional three-component (3D3C) 

velocity field information, a time-resolved stereoscopic scanning PIV system, TR-SSPIV, 

was designed, built and applied to the study of small scale turbulence for the first time. 

The system is able to provide flow information including velocity, velocity gradients, 

vorticity, rate of strain, and acceleration with Kolmogorov-scale resolution.  

 

The design of the TR-SSPIV system is shown in Fig. 2.1. The main components of the 

time-resolved stereoscopic scanning PIV system include a high repetition laser, two high 

speed cameras, a synchronization unit, a computer, a series of optics and an oscillating 

mirror. The laser beam first passes through a set of spherical and cylindrical lenses and 

expands into a laser sheet. A rotating mirror is used to redirect the single laser sheet into a 

“fan” of laser sheets, which are passed through a spherical lens becoming parallel to each 

other and illuminating the observation volume. Two high speed cameras are focused on 

the same observation volume from two different angles (nearly 90 degrees from each 
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other).  The observation volume is located at some distance downstream of the turbulent 

jet. A synchronization unit was used to communicate between the laser, scanning mirror 

and the two cameras.  

 

The direct output of the TR-SSPIV system are PIV image pairs taken with the two 

cameras from two different angles at twenty different planes in the observation volume. 

The images at each plane are processed with INSIGHT 3G software by TSI, a PIV 

software that generate the three-component velocity fields from the images from the two 

cameras. The set of planar parallel three-component velocity fields obtained from 

scanning are reconstructed into a volume, to form a 3D3C velocity field. Further analyses 

were done to provide vorticity, energy dissipation and other statistical information about 

the turbulent flow at its fine scales. The detailed description of the system is presented in 

this chapter.  

 

2.1 Image acquisition system 

The configuration of the image acquisition system is shown in Fig. 2.1. The system 

consists of two high speed cameras (Photron Ultima APX) with 1024 pixels × 1024 

pixels resolution at 2000 Hz, an Nd-YAG 532 nm pulsed laser (Pegasus) with 10 mJ at 

1000 Hz, and a synchronization unit with 1ns resolution. The pulsed laser, with a short 

duration of 3-5 ns, allows the camera images to „freeze‟ the particle motion at a 

determined instance in time without producing a streaking effect typical of longer 

exposure illumination systems. The thickness of the laser sheet at the test section is kept 

at less than 1 mm to ensure proper spatial resolution.  
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By placing the two cameras at 30° from the laser-sheet, the images obtained maximize 

the overlapping viewing area between the two cameras and minimize the error in the 

calculation of the out-of-plane velocity component. To eliminate the out-of-focus effect 

on the images due to the perspective angles between camera and laser sheet, two 

scheimpflugs are used between the cameras and their lenses which corrects the 

perspective angle. Camera lenses with 100 mm focal length are used at f# of 16 with a 0.5 

m focus distance. For these lens conditions, the measured depth of focus is 14 mm, which 

is larger than the observed volume and ensures that all the PIV planes are in focus. A 

timing unit synchronized the laser, cameras, and the function generator that controls the 

scanning mirror. The Photron FASTCAM Viewer 3.2 software is used as the image 

acquisition platform with the images first stored in the camera (up to 1000 images per 

second) and then transferred to the computer.  

 

2.2 Scanning light sheets characterization 

While the three components of the velocity are obtained using a stereoscopic PIV 

arrangement, the three-dimensional volumetric information is achieved using a mirror 

system that scans the laser sheet through a volume. The Nd:YAG 532 nm laser generated 

a 3 mm diameter laser beam that passed through a spherical lens (1000 mm focal length), 

and a cylindrical lens (15 mm focal length) and it is redirected by the scanning mirror to 

generate a set of laser sheets as shown in Fig. 2.2. The cylindrical lens expands the laser 

beam vertically into a sheet while the first spherical lens creates a laser sheet waist at the 

test section, with an effective thickness of 0.9 mm. The silver coated oscillating mirror (6 
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mm × 5 mm) is mounted on a GSI Lumonics VM500 galvanometer, and is controlled by 

a MiniSax modular driver that provides a maximum scanning angle of 25 degrees. To 

remove the divergence angle generated by the scanning mirror between contiguous laser 

sheets, a second spherical lens (500 mm focal length) is placed 500 mm after the mirror 

and makes the laser sheets parallel to each other. 

 

The scanning mirror sweeps an angle α that is proportional to the driving voltage while 

the rotating speed of the mirror is controlled by the frequency from a function generator. 

Figure 2.3 illustrates the change in mirror angle by the input peak-to-peak voltage. The 

square symbols represent the experimental results which are fit by a straight line given by 

0.0079 0.0855ppV    with 
2 0.9996R  . In the present work, a 200 mV signal is used 

and the total scanned angle of the mirror is 1.43 degrees resulting in a 12 mm scanning 

width at the observation volume location. 

 

The laser sheet thickness is an important characteristic of any PIV system which limits its 

resolution in the out-of-plane direction as well as the accuracy achievable by the 

measurements. Two methods are used to quantify the thickness as described by Cheng et 

al. 2011: (1) laser intensity distribution (power measurement), (2) particle distribution 

(particle count measurement). Both methods showed a good agreement.  The first method 

involves traversing a knife edge across the laser sheet and collecting the transmitted light 

onto a photodiode detector. The knife edge is mounted on a traversing stage with 1 μm 

accuracy. The knife edge is traversed from one side of the laser sheet to the other with at 

50 μm increments. The photodiode detector measures the intensity of the laser pulsing at 
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1000 Hz. Figure 2.4 shows the laser intensity profiles at different locations in the laser 

sheet. As shown in Fig. 2.4a, the laser power reaching the photodiode goes from 0 (when 

the knife edge blocks the laser beam completely) to a constant maximum near 8000 mV 

(when the knife edge allows the laser beam to pass freely). The laser power is then 

differentiated (central-difference) along the knife edge position and the resulting intensity 

profile is illustrated in Fig. 2.4b. The measurements are fitted with a first order Gaussian 

showing a good match with the results. 

 

The second method used to calculate the laser sheet thickness is based on the number of 

detected PIV particles across the laser sheet. A knife edge slit, made with two sharp knife 

edges separated by 200 μm, is oriented vertically parallel to the incident laser sheet. It 

blocked most of the incident light except for the small portion of the laser sheet that 

passed through the slit. The knife edge slit is traversed along the laser-sheet-normal 

direction in 100 μm increment. The laser light that passed through the slit illuminated a 

water tank seeded with 10 μm diameter tracer particles. Particle images are taken of the 

still water in the tank at the same location where the jet measurements will be taken. 

Images are taken for each slit location. A MATLAB code is created to analyze the images 

and identify the number of tracer particles in each image. The detailed particle 

identification technique can be found in Cheng et al. 2010. Figure 2.5 shows that the 

particle distribution along the laser-sheet-normal also has a Gaussian profile, and it is 

equivalent to the laser sheet intensity profile measured previously. 
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These two methods to measure the laser sheet thickness are compared in Fig. 2.6, where 

the two profiles are normalized by their peak values. Both profiles are fitted with a 

Gaussian, and the 1/e value of each peak is used to determine the effective laser sheet 

thickness. The thicknesses are 0.94 mm and 0.96 mm for the laser intensity method and 

for the particle count method respectively. This thickness provided the appropriate spatial 

resolution in the out-of-plane direction for the measurements performed in the present 

work.  

 

2.3 System timing and synchronization 

One key aspect to this time-resolved stereoscopic scanning PIV system is the 

synchronization between the laser, the scanning mirror and the two cameras. A 50 Hz 

triangle wave with 200 mV peak-to-peak voltage (Vpp) is used to control the scanning 

mirror angle. Within one period of the triangle wave, the mirror rotated from -α/2 to α/2 

and back to – α/2, sweeping the laser sheet across the observation volume twice during its 

forward and backward motion. Therefore, the volume is scanned once every half period, 

and it takes 10 ms for the mirror to rotate from –α/2 to α/2 degrees. During every half 

period, the laser pulses 20 times at 500 μs intervals, with each camera taking an image 

during each pulse. As a result, each volume contained 20 particle images taken at 20 

equally spaced planes. Only the first half of each period is used for the present 

measurements.  

 

To create a PIV image-pair, the images taken with each camera at the same plane (same 

scanning mirror angle) in adjacent volumes were used. The time delay between the two 
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images in a PIV image pair (∆t) can be changed by choosing images from different 

volumes. For instance, in Fig. 2.7a, ∆t is 20 ms (one period of the signal) by pairing 

images from volume 1 and 2, and is 40 ms (two periods of the signal) by pairing images 

from volume 1 and 3. To get stereo results (i.e.: three components of the velocity) the 

PIV image pair from both cameras are combined through the stereoscopic calibration.  

 

The PIV system uses two double exposure cameras synchronized with a double pulsed 

laser. To further explain the synchronization between these components, Fig. 2.7b shows 

a timing diagram for the two cameras, scanning mirror and laser for the first four images 

in a period. Fig. 2.7b shows that each camera shutter was opened twice (i.e.: frame 1A 

and 1B) with the same duration (500 μs) during one synchronization period, and the laser 

was also pulsed twice with an initial delay of 250 μs followed by a 500 μs separation. 

This provided a sequence of images taken at 2000 frames per second with each volume 

containing 40 images (only the first half of each volume is saved). This setup provides 

continuous capturing of 3D3C velocity volumes and has an adjustable frequency and ∆t 

suitable for PIV in different flow configurations. 

 

2.4 Stereoscopic calibration  

The stereoscopic calibration is a critical process for the TR-SSPIV system as it 

determines the accuracy of the out-of-plane velocity component. The calibration provides 

the mapping information to obtain the three components of the velocity from two PIV 

image pairs taken with two cameras from different angles. The schematic of the 

stereoscopic projection principle is sketched in Fig. 2.8. Briefly, the object plane (the 
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laser sheet plane) is defined with 3D world coordinates (X, Y, Z). When the object plane 

is being imaged, it appears on both left and right cameras in 2D image coordinates (x, y). 

As shown in the figure, the rectangular grids on the object plane are projected to the two 

image planes as warped grids. During the experiment, a calibration target with reference 

markers (dots) with known locations is used. For the present work, the calibration target 

has reference marks (dots) 0.5 mm diameter precisely spaced 3 mm apart on a planar 

acrylic glass with a fiduciary marker in the center, as shown in Fig. 2.9. The calibration 

target is set on a two-directional traverse stage and calibrations are obtained at five object 

planes in the measurement volume. The projection correlation can be derived for each 

object plane from geometric analysis assuming pinhole cameras, but the actual 

correspondence can be more complex due to the optical distortions and other image 

nonlinearities. But these distortions can be accounted for through additional optical 

corrections when the calibration target is used to increase the accuracy of the mapping 

parameters.  

 

During the calibration process five calibration images are taken, one image is taken with 

the target plane at the laser sheet location, two more images are taken at 10 and 20 m in 

front of the laser sheet and two more images are taken at 10 and 20m behind the laser 

sheet. These five calibration images are used to calculate a third-order mapping 

polynomial for one laser sheet location. The current stereoscopic scanning PIV system 

has 20 collimated laser sheets with 600 µm spacing. In total five mapping polynomial 

sets are obtained and each correlation set is used to map four adjacent planes. Last, 

particle images are taken when fluid stood still to perform disparity correction (Wieneke 
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2005). This process corrected any possible misalignments between laser sheet and target 

plane and thus increased the accuracy of the stereoscopic mapping. 

 

2.5 Image processing procedure 

The image processing algorithms extract the displacement information from particle 

images, obtain the three-component velocity fields and reconstruct the three-dimensional 

volumetric velocity field. The flowchart of the image processing procedure for the 

current study is illustrated in Fig. 2.10. The images are first processed via FFT cross-

correlation algorithms in Insight 3G software (TSI Inc, MN, USA) to obtain 2D vector 

fields. The images are not pre-processed and are correlated with 24 pixel × 24 pixel 

interrogation windows with 50% overlapped. There were approximately 15-20 particles 

in each interrogation window. Processing resulted in >99% good vectors, and is followed 

by a 3 × 3 local median validation filter to replace the few spurious vectors. 

 

In each volumetric measurement set, both left and right cameras captured 20 pairs of 

particle images. Through the FFT cross-correlation, each image pair becomes a two-

dimensional two-component 2D2C planar velocity field. The mapping polynomial 

obtained during target calibration is used to correlate the 2D2C planar velocity field from 

the left and right camera and produce a two-dimensional three-component planar velocity 

field. The position of the 20 2D3C planar velocity fields is known so they can be 

combined and reconstructed into a three-dimensional three-component volumetric 

velocity field. TR-SSPIV system enabled the true representation of 3D3C velocity 

information as well as its evolution in time.  
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Further analysis is done to calculate the nine-components of the velocity gradient and the 

three-components of the local acceleration using a second-order central difference 

schemes. The velocity gradient tensor is used to calculate the strain rate, vorticity, 

enstrophy, energy dissipation rate and other dynamitic flow properties. Statistical analysis 

is done to study the probability density function (PDF) and spectrum of these flow 

parameters. The TR-SSPIV system‟s ability to provide the 3D3C volumetric velocity 

field and the instantaneous velocity gradient tensor will be used during the present work 

to study the fine-scale flow structures in a turbulent jet.  
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Figure 2.1. Layout of time-resolved stereoscopic scanning PIV system. 
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Figure 2.2. Layout of optical system used in the time-resolved stereoscopic scanning PIV 

system. A low-inertia galvanometric scanning mirror rapidly sweeps a vertical laser sheet 

horizontally through a small volume 
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Figure 2.3. Calibration curve for rotating mirror. The angle of rotation α is linearly 

proportional to the input peak-to-peak voltage Vpp. 
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Figure 2.4. Typical results for laser sheet profile measurements normal to sheet direction, 

showing raw measured power values and error function fit (left), and corresponding 

derivatives giving sheet power profile and its Gaussian fit (right).   
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Figure 2.5. Typical result of number of particles that the camera detects across the laser 

sheet, showing raw measured number of particles (symbols) and Gaussian fit (line). 
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Figure 2.6. Normalized laser sheet intensity profile and normalized detected number of 

particles profile across the laser sheet. The 1/e value was used to quantify the sheet 

thickness. The two methods provide very similar results. 
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Figure 2.7. Timing diagram showing mirror position during PIV image acquisition for 

each volume (top), and camera exposure timing during laser pulse.   
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Figure 2.8. Schematic of stereoscopic projection principles. 

 

  

Left Camera 

Image Plane

(x, y)

Right Camera 

Image Plane

(x, y)

Object Plane

(X, Y, Z)

11 12 13 14

21 22 23 24

31 32 33 34

j o

j i

j o

j i

j o

i

o

X w
x w a a a a

Y w
y w a a a a

Z w
w a a a a

w

 
     
          
        

 

Obtained Through Target Calibration



31 

 

 

  

 

 

 

 
 

Figure 2.9. Picture of calibration target on a traverse stage. 
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Figure 2.10. Flowchart of image processing procedure with calibration, volume 

reconstruction and velocity and velocity gradients calculation. 
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Chapter 3 

Free Round Turbulent Jets 

 

Free round turbulent jets have been widely studied for their  isotropic turbulence flow 

properties (along the centerline) and other basic turbulence characteristics. As mentioned 

in Chapter 1, the main purpose of the present work is to investigate the small scales of 

turbulence, visualize the fundamental three-dimensional „building blocks‟ at those scales, 

and statistically study the energy dissipation within small eddies which are proportional 

to the Kolmogorov length scale. This chapter describes the experimental setup of the free 

round turbulent jet and the three different flow cases studied. Single planar PIV results 

are obtained to validate the turbulent jet behavior at both the exit and downstream 

location. The results are compared with published turbulent jet velocity and Reynolds 

stress profiles (Wygnanski & Fiedler 1969, Panchapakesan & Lumley 1993, Hussein et 

al. 1994, Boersma et al. 1998). The main length scales in turbulent flows are also 

discussed emphasizing their physical significance and their use as non-dimensionalizaton 

parameters in the results chapters.  

 



34 

 

 

  

3.1 Experimental setup 

The experiment is performed in a glass tank filled with distilled water with a water jet 

injected from a horizontal nozzle. The water tank had dimensions of 750 mm ⅹ 300 mm 

ⅹ 400 mm and the water level is kept at 300 mm as shown in Fig. 3.1. The side walls 

and the bottom of the tank are made of 3 mm thick glass panels to provide optical access 

for the scanning laser sheets and cameras. The tank contained distilled water that is kept 

at 21 ºC and is seeded with silver coated hollow glass spheres as tracer particles. The 

mean diameter of the tracer particles was 10 μm ± 2 μm and the density was 1.05-1.15 

g/cm
3
. This type of particles is chosen for their small velocity lag in water and good light 

scattering capabilities for easy detection by the cameras. 

 

In order to create the free turbulent jets without any buoyancy effect, the injection system 

for the jet is filled with the seeded water from the tank maintaining the temperature and 

particle concentration. The jet exits into the tank through a 5 cm long acrylic tube nozzle, 

with smooth 3.2 mm inner diameter, that is mounted horizontally. The jet is generated by 

a pulse-less syringe pump (Harvard Apparatus, PHD2000) with two 140 cc syringes. The 

adjustable injection flow rate allowed the generation of turbulent jets with different 

Reynolds number. A soft tube connected the nozzle and syringes and had a total length of 

200 mm to ensure a fully developed flow at the exit.  

 

As mentioned in §2.2, the measurement volume is illuminated by the sweeping laser 

sheet which enters the water tank from the wall opposite to the jet nozzle. Figure 3.1b 

shows a close-up view of the observation volume. It is located 480 mm (x/D=150) 
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downstream of the jet exit and is 31 mm × 15 mm × 12 mm in size. The overlapping field 

of view (FOV) from the two cameras (31 mm × 15 mm) is obtained with two 100 mm 

macro camera lenses that provided sufficient magnification to visualize the structure of 

the small scales of turbulence.  The scanning laser system generates 20 laser sheet planes 

0.9 mm thick spaced 0.6 mm apart resulting in a 12 mm observation volume width 

scanned in 10 ms. The small spacing between laser sheets is chosen to achieve a 

sufficient spatial resolution in the z-direction. 

 

Two different camera orientation configurations are used in the present work. Figure 3.2 

shows a sketch of the side-view and cross-view configurations. The main difference 

between the two configurations is the direction of the scanning laser sheets. In the side 

view configuration, the laser sheets are in the XY plane, parallel to the jet centerline, 

while in the cross view configuration, the laser sheets are in the YZ plane, scanning the 

cross-section of the jet. The two cameras are placed with at small angles facing the laser 

sheets. These two configurations are used to verify that the TR-SSPIV measurements are 

independent of the camera orientation while ensuring accuracy and repeatability. 

 

3.2 Flow conditions 

The present study of the small scales of turbulence examines a turbulent jet at two 

different Reynolds number, at two downstream locations and at two radial locations (jet 

centerline and off-axis). The three different flow conditions used in the TR-SSPIV 

measurements are shown in Table 3.1. Case 1 and 2 are taken at the same downstream 

location of the jet but the Reynolds number is doubled from Case 1 to Case 2. The 
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observation volume was at the centerline for both Case 1 and 2. Case 3 kept the same 

general flow condition as Case 1, but changed the measurement location closer to the jet 

exit (x/D=80) and at an off-centerline location at the shear layer at the edge of the jet.  

 

3.3 Turbulent jet validation 

The purpose of the turbulent jet validation is to verify that the generated jet in the present 

study satisfies the observed jet behavior previously reported in the literature. Planar PIV 

is used to investigate the velocity field at the jet exit and downstream in the jet.  

Measurements were obtained along the jet centerline at two downstream locations, one 

location is at the jet exit and the other at x/D=40. The velocity fluctuation and Reynolds 

stress terms are calculated and compared with classical work on round turbulent jets 

(Wygnanski & Fiedler 1969, Panchapakesan & Lumley 1993, Hussein et al. 1994).  

 

The radial profile of the jet velocity at the exit from the nozzle shown in Fig. 3.3 is 

obtained from 200 PIV images taken with a low speed PIV system (15 fps). This is the 

averaged jet velocity normalized by the nozzle inner diameter D. The velocity is 

symmetric with respect to the jet centerline and has a near flat-top profile right after the 

nozzle exit. The jet expands in the radial direction as it moves downstream and the 

streamwise velocity profile gradually becomes Gaussian. This behavior agrees with 

previous experimental work (Hasselbrink & Mungal 2001, Staack et al. 2010).  

 

The jet is also investigated at downstream locations x/D=40-75 using a low speed (15 

fps) stereoscopic PIV system. The mean u  velocity field is shown in Fig. 3.4 and is 
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obtained from the instantaneous velocity field from 20 independent sets of 50 image pairs 

each (1000 images total). The centerline velocity 
cu
 
is used to normalize the mean u

velocity and to compare the results at different local Reynolds number. The field of view 

for this test was 35 24D D with a 1mm 1mm  resolution. Figure 3.5 shows both the 

streamwise rmsu  and radial rmsv  RMS velocity fluctuations fields. After normalizing by 

the centerline velocity cu , both rmsu  and rmsv  are less than 0.25 cu , with the rmsu  

component showing the higher fluctuations. The mean velocity and RMS velocity 

fluctuation fields are symmetric with respect to the centerline of the jet. The normalized 

Reynolds stress u v   field is shown in Fig. 3.6. It is antisymmetric with respect to the 

centerline of the jet and the values are comparable to Mullin 2002.  

 

To further investigate the jet velocity behavior, the radial profile of the normalized mean 

streamwise velocity is shown in Fig. 3.7 for four downstream locations x/D=40, 50, 60 

and 70. The radial direction is normalized by the local streamwise position, r/x. Results 

are compared to previous experimental results obtained with hotwire anemometer 

(Wygnanski & Fiedler 1969) and with laser-Doppler anemometry (Hussein et al. 1994). 

The streamwise velocity profiles for the different downstream locations collapsed into 

one after being normalized and matched previous published work as shown in Fig. 3.7.  

 

The radial profiles of the streamwise ( rmsu ) and radial ( rmsv ) RMS velocity fluctuations 

at downstream locations x/D=40, 50, 50 and 70 are calculated and compared with DNS 

results (Boersma et al. 1998) and hotwire measurements (Panchapakesan & Lumley 

1993) in Figs. 3.8 and 3.9. Both rmsu  and rmsv  radial profiles are symmetric with respect 
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to the jet centerline and are below 25% and 20% of the centerline streamwise velocity 

value. The streamwise RMS velocity fluctuation has two symmetric peaks off the 

centerline since the shear production of kinematic energy occurs there. The radial RMS 

velocity of the current data set shows smaller peak value than the DNS results (Boersma 

et al. 1998) but shows a better agreement with the experimental data (Panchapakesan & 

Lumley 1993). The radial profile of the Reynolds stress u v   normalized by cu  is shown 

in Fig. 3.10. The profile is antisymmetric with upper and lower limits at ±0.02 

respectively. The results show excellent agreement with classical jet measurements 

(Wygnanski & Fiedler 1969, Papanicolaou & List 1988 and Hussein et al. 1994).  

 

The planar PIV measurements characterized the flow showing that it matches the typical 

velocity and velocity fluctuations profile observed experimentally and numerically in the 

literature. These results ensure that the small scale three-dimensional flow structures that 

will be obtained with the TR-SSPIV system are performed in fully developed round 

turbulent jet.  

 

3.4 Scales of turbulent motion 

A range of flow scales determined by eddy sizes can be found in all turbulent flows. 

Generally, the largest size eddies are responsible for most of the momentum transport and 

their sizes are comparable to the size of the flow, while the smallest size eddies are 

mainly affected by viscose dissipation. In the study of turbulent flows four main scales 

are commonly considered: the local outer scale (integral scale), the local inner scale 

(viscous scale), the Taylor microscale, and the Kolmogorov microscale. 
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The local outer scales of turbulent shear flows are the following: the outer length scale δ, 

given by the local flow width of the jet, the outer velocity scale uc, given by the local 

mean centerline velocity of the jet, and the timescale τδ. For turbulent jets, δ and uc are 

related to the downstream distance x from the jet exit, the density of the fluid, and the 

only invariant of the jet dynamic parameter,  thelocal momentum flux Jo (Diez & Dahm 

2007). These relations for round turbulent non-buoyant jets are: 

( ) 0.36x x  , (Eqn. 3.1a) 

1/2 1

0( ) 7.2( / )cu x J x  , (Eqn. 3.1b) 

     / cx x u x  , (Eqn. 3.1c) 

     Re cx x u x   , (Eqn. 3.1d) 

where the constants in Eq. 3.1 are obtained from Papanicolaou & List 1988. Also, the 

integral invariant associated with the flow is given by  

2

0
0

4

U D
J


 . (Eqn. 3.2) 

The local outer scales are often used to normalize flow parameters in turbulent jets since 

they characterize the structural and statistical flow properties and it is only affected by the 

downstream location (Mullin & Dahm 2006).  

 

Unlike the local outer length scales, Kolmogorov microscales are the smallest scales in 

turbulent flows, where the viscous effects cannot be neglected and the energy is 

dissipated into heat. The mean dissipation rate of kinetic energy ε is given by 
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2 ij ijS S  , (Eqn. 3.3a) 

where Sij is the rate of strain given by 

1

2

ji
ij

j i

uu
S

x x

 
  

   

. (Eqn. 3.3b) 

The kinetic energy dissipation rate ε and the kinematic viscosity ν are used to define the 

Kolmogorov length, velocity and time scales (Kolmogorov 1941) as follows, 

 
1/4

3
/   , (Eqn. 3.4a) 

 
1/4

u  , (Eqn. 3.4b) 

1/2( / )   . (Eqn. 3.4c) 

One of the goals of the present study is to obtain the three-dimensional flow structures 

with Kolmogorov-scale resolution in a turbulent jet.  

 

The local inner (viscous) length scale is the largest length scale at which the eddies in 

turbulent flows are still strongly influenced by viscosity, but at the same time there is 

inertia from the local strain rate and equilibrium is achieved. This requires the inertia 

terms to be of the same order as the viscous term (Tennekes & Lumley 1972) giving by 

1 2Re






: . (Eqn. 3.5) 

Also, the viscous length scale is proportional to the Kolmogorov length scale (Friehe et 

al. 1971) and given by 

5.9  , (Eqn. 3.6a) 

The corresponding time scale is then defined as 
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2

    . (Eqn. 3.6b) 

The viscous scales are used to nondimesionalize the velocity, velocity gradients, and 

higher order parameters throughout the present work with the goal of investigating the 

universality of the structures in turbulent free shear flow regardless of Reynolds number 

and other flow conditions.  

 

In small scale eddies, the motions tend to be independent of orientation effects introduced 

by the flow itself at the large scales, and thus small scale turbulence are considered 

locally isotropic. In that case, the mean energy dissipation rate can be simplified to 

2

1

1

15
u

x
 

 
  

 
. (Eqn. 3.7a) 

Both Eqns. 3.3a and 3.7a will be evaluated in the present work to show the local isotropy 

of turbulent jets. Taylor 1931 defined the following length scale 
g  (transverse Taylor 

length scale) 

2
2

1

2

1 g

u u

x 

  
 

 
, (Eqn. 3.7b) 

where u is the RMS turbulence intensity given by 

1 2
1

3
i iu u u

 
   

 
. (Eqn. 3.7c) 

Alternatively, the longitudinal 
f  and transverse 

g  Taylor length scales can be 

expressed by 
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2
2

2

2i

j fi j

u u

x 


  
 

  
, (Eqn. 3.8a) 

2
2

2

2i

j gi j

u u

x 


  
 

  
. (Eqn. 3.8b) 

For isotropic turbulence, both Eq. 3.8a and 3.8b can be combined to give 

2f g  . (Eqn. 3.8c) 

The Reynolds number based on the Taylor length scale is widely used in numerical and 

experimental studies to describe turbulent flows (Dimotakis 2005, Mullin & Dahm 2006, 

Ganapathisubramani et al. 2007 and Elsinga et al. 2010). The Taylor microscale 

Reynolds number is given by 

Re
gu








 . (Eqn. 3.9) 

The present study uses the Taylor Reynolds number when comparing the results with 

previously published numerical and experimental work. 

 

The parameters for the three cases studied are listed in Table 3.2. The resolution of the 

volume is given by the thickness of the laser sheet, 1.24, and the interrogation window 

used 1.21 ⅹ 1.21 (0.88 ⅹ 0.88 mm). Calculated velocity vectors are spaced 0.6 in 

the x- and y-directions and 0.83 in the z-direction (which corresponds to 0.6 mm 

separation between planes). The final measurement volume is 43 20 18     (

7 3 3      ). In comparison, the two-dimensional field of view used in Mullin & 

Dahm 2006 was 12.5 10.1    and the three-dimensional observation volume used in 
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Ganapathisubramani et al. 2008 was 1300 160 160     with a resolution of 3 3  . 

The small observation volume used in the present study increased the resolution to near-

Kolmogorov scale resolution over previous studies allowing a close-up view of the flow 

structures that form the „building blocks‟ in small-scale turbulence.  
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Figure 3.1. Sketch of the flow facility and laser illumination. a) Jet injected in a seeded 

water tank horizontally along x direction. b) Close up view of the observation volume 

showing size and location. 
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Figure 3.2. Sketch of the orientation of the laser sheet and camera with respect to the jet 

showing a) the side view, and b) the cross-sectional view orientation. 
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Parameter Symbol Unit Value 

Temperature T °C 21 

Kinematic viscosity ν m
2
/s 1.00472×10

-6
 

Density  kg/m
3
 998 

Source diameter D mm 3.2 

   Case 1 Case 2 Case 3 

Flow rate Q  ml/min 210 420 210 

Exit velocity Uo m/s 0.4352 0.8704 0.4352 

Source Reynolds number ReD -- 1386 2772 1386 

Center of observation volume from jet 

exit 
X mm 480 480 256 

Radial location of observation volume 

in terms of source diameter 
r/D -- 0-4.6 0-4.6 0.6-5.2 

Axial location of observation volume 

in terms of source diameter 
x/D -- 145-155 145-155 75-85 

Local jet centerline velocity uc m/s 0.0185 0.037 0.0347 

 

Table 3.1. Flow conditions of the three cases for the turbulent round jet measurements. 
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Figure 3.3. Radial profile of jet velocity at the exit, computed with 200 images from 10 

independent sets. 
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Figure 3.4. Normalized mean streamwise velocity contour at x/D=40-75 downstream of 

the jet exit. The mean was computed with 1000 planar PIV images.  
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a)  

 

b)  

 

Figure 3.5. Contour plot of the normalized (a) streamwise and (b) radial rms velocity 

fluctuations at x/D=40-75 downstream of the jet exit.   
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Figure 3.6. Normalized Reynolds stress term contour at x/D=40-75 downstream of the jet 

exit. 
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Figure 3.7. Normalized mean streamwise velocity profile at x/D=40-70 downstream of jet 

exit. The profiles at different downstream locations collapse into one and match with the 

experimental data from previous work (Wynanski & Fiedler 1969 and Hussein et al. 

1994). 
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Figure 3.8. Normalized streamwise RMS velocity fluctuation profile at x/D=40-70 

downstream of jet exit compared to DNS results (Boersma et al. 1998) and experimental 

results (Panchapakesan & Lumley 1993).  
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Figure 3.9. Normalized radial RMS velocity fluctuation profile at x/D=40-70 downstream 

of jet exit compared to DNS results (Boersma et al. 1998) and experimental results 

(Panchapakesan & Lumley 1993). 
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Figure 3.10. Normalized Reynolds stress term profile at x/D=40-70 downstream of jet 

exit compared to DNS results (Boersma et al. 1998) and experimental results 

(Panchapakesan & Lumley 1993). 
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Parameter Symbol Unit Value Value Value 

   Case 1 Case 2 Case 3 

Momentum flux at jet exit J0 N 1.5×10
-3

 6.1×10
-3

 1.5×10
-3

 

Local outer length scale δ m 0.17 0.17 0.092 

Local centerline velocity uc m/s 0.019 0.037 0.035 

Local outer Reynolds number Reδ -- 3200 6400 3200 

Local outer time scale τδ s 9.3 4.7 2.7 

Local mean dissipation rate ε m
2
/s

3
 2.9×10

-6
 2.3×10

-5
 3.6×10

-5
 

Kolmogorov length scale η m 7.7×10
-4

 4.6×10
-4

 4.1×10
-4

 

Kolmogorov time scale τη s 0.58 0.21 0.17 

Local inner length scale λν m 4.5×10
-3

 2.7×10
-3

 2.4×10
-3

 

Local inner time scale τν s 20.4 7.2 5.8 

 

Table 3.2. Scaling parameters of round turbulent jet for the three flow configurations. 
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Chapter 4 

Visualization of Fine-Scale Flow Structures in Turbulent Jets 

 

Resolving the extraordinary spatial and temporal complexity of turbulent flows has been 

a challenge for both numerical and experimental researchers. Direct numerical simulation 

(DNS) is computationally expensive especially at intermediate and small scales, while 

large eddy simulation (LES) is limited by the spatial resolution (Wallace 2009). On the 

other hand, few experimental approaches have simultaneously obtained the nine 

components of velocity gradient in a three-dimensional volume (Elsinga et al. 2010, 

Ganapathisubramani et al. 2008). Experimentally resolving these velocity gradients at the 

smallest scales of turbulent flows is of great importance since it provides true insight to 

the fine scale dynamics helping validate turbulence theories and numerical models.  

 

The present study resolves the dissipation scales in a turbulent jet by measuring 3D3C 

velocity and nine-component velocity gradient. The primary goal is to investigate the fine 

scale coherent structures or „building blocks‟ that contribute to the more complex 

turbulent behavior, as previously discovered by several numerical and experimental 

studies (Siggia 1981, Moisy & Jimenez 2004, Ganapathisubramani et al. 2008). To 

visualize and study the dynamics of these structures, the TR-SSPIV system is used to 
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measure the flow field of turbulent jets at different Reynolds numbers, downstream 

locations, and radial positions.  

 

This chapter presents the quantitative visualization results of fine-scale turbulence in 

terms of velocity and velocity gradients, and dynamic parameters including rate of strain, 

vorticity, enstrophy, vorticity production rate and energy dissipation rate. Last, a novel 

approach is used to obtain the local pressure by solving the Navier-Stokes equation with 

the velocity and velocity gradient measurements. This approach introduces a new 

methodology to vortex identification, which has been studied previously using the Q 

criteria, ∆ criteria and λ2 criteria among others (Jeong & Hussain 1995, Chakraborty et al. 

2005, Elsinga et al. 2010). Visualization of vortex with local pressure is presented and 

compared to other criteria.  

 

4.1 Visualization of flow structure: velocity 

Turbulent flows have complex three-dimensional velocity structures that classical planar 

PIV measurements cannot resolve. Time-resolved stereoscopic scanning PIV provides 

simultaneous 3D3C velocity fields. This allows visualizing the three-component velocity 

field in a volume using different visualization techniques such as surface contours, iso-

surface groups, planar slices, 3D vector fields and streamlines to better understand the 3D 

turbulence structures. 

 

The velocity magnitude (
2 2 2V u v w   ) contour plot is often used to represent the 

flow obtained with planar stereoscopic PIV (Mullin & Dahm 2005). With TR-SSPIV, the 



58 

 

 

  

planar velocity magnitude contour plot can be extended to surface contour plot in a 3D 

volume, as shown in Fig 4.1a. Furthermore, to visualize the velocity structures inside the 

volume, an iso-surface plot can be used (Fig. 4.1b). The velocity magnitude is 

represented by both the color scale and the 3D surfaces to help identify flow structures.  

 

To visualize the typical velocity patterns in fine-scale turbulence, ten independent 

reconstructed volumes of instantaneous velocity magnitude are shown in Fig. 4.2. This 

figure shows the results from 3D2C velocity measurements obtained at x/D=157 

downstream in a turbulent jet with the side-view time-resolved scanning PIV setup. The 

observation volume was at the center of the jet and the local Taylor-microscale Reynolds 

number ( Re ) was 44. In these 10 different sets, the velocity magnitude varied along the 

x-direction (set 1 and 9), y-direction (set 3, 4 and 7), z-direction (set 8) or any other 

arbitrary directions (set 2, 5, 6 and 10). This indicates that at small scales, the turbulent 

structure can have any orientation. Figure 4.3 illustrates another ten independent sets of 

velocity structures taken at the same x/D=157 downstream location of the jet but using 

the cross-view time-resolved scanning PIV setup. Both PIV setups (i.e.: side-view and 

cross-view) provided similar results as shown in Fig. 4.2 and Fig. 4.3. The results also 

show that the velocity did not have a preferred direction, which suggest that the results 

satisfy the Kolmogorov‟s hypothesis of local isotropy.  

 

As a result of the high temporal resolution of the TR-SSPIV system, the evolution of 

velocity structures in time can be obtained. Figure 4.4 illustrates a time sequence of the 

velocity field with increments of 20 ms between images. The flow pattern maintains the 



59 

 

 

  

same structure during at least 100 ms and it is convected along the x-direction with the 

streamwise velocity of the jet. The fact that the same geometries were tracked in time 

with a displacement of 5% the length of the observation volume in 5 time steps validates 

the temporal resolution of the TR-SSPIV system and demonstrates an accurate volume 

reconstruction from the set of scanning planes.  

 

Further details about the flow can be obtained by visualizing the flow structures. These 

are represented using iso-surfaces in combination with contour plots. Figure 4.5a shows a 

typical instantaneous measurement volume of the velocity distribution. In this case, there 

is an increase in velocity in the x-direction and almost constant values in the y-direction. 

In order to extract other features of the flow, such as turbulent eddies, a Galilean 

decomposition (Ganapathisubramani et al. 2008) is used. This involves subtracting a 

convection velocity from the instantaneous velocity field. For instance, Fig. 4.5b shows 

the velocity field after a streamwise convection velocity 0.80uc is subtracted from the 

local jet velocity. This process reveals, with the aid of selected streamlines, two structures 

in the observed volume, a tube-like structure and a sheet-like structure. A 2D velocity 

vector field close-up of the tube-like structure, shown in Fig. 4.5c, clearly reveals the 

presence of a small vortex. The velocity structures observed in Fig. 4.5 were common in 

the other independent data sets, as shown in Fig 4.2-4.3.  

 

4.2 Visualization of flow structure: velocity gradient 

The 3D3C velocity field obtained with the TR-SSPIV system allows resolving the nine 

components of the velocity gradient tensor simultaneously. The three components of the 
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velocity iu  were differentiated along the three directions jx  to obtain the nine-

components of the velocity gradient i ju x  . Finite central-difference is used to 

calculate all the terms to achieve a higher accuracy with second order numerical error. 

The velocity gradients are plotted with iso-surfaces at chosen thresholds to reveal the 

„core‟ of flow structures.  

 

The choice of threshold for iso-surfaces plays an important role in separating complex 

structures to visualize simple fundamental shapes. Before choosing the threshold, the 

velocity gradient values were all normalized with their RMS values calculated from all 

the data sets. This enables a comparison of data sets with each other as well as with 

published results (Moisy & Jimenez 2004). Figure 4.6 illustrates the velocity gradient 

structure at different thresholds α, where    i j i ju x u x 
     . If lower thresholding 

values had been chosen, especially for |α| < 1, the particular gradient structures observed 

can be fairly complex as they are formed from the merging of weaker strength individual 

shapes. On the other hand, if higher thresholding values are chosen, the structures 

identified maintain their shape, but get smaller and only their core is observed.  

 

Additionally, even though the structures observed correspond to a particular instant in 

time, they maintain their shape for periods of time of the order of the Kolmogorov time 

scale as shown in Fig. 4.7. In this figure, two tube-like structures are convected 

downstream with only small observable changes in shape during ∆t = 400 ms. This 

indicates that the flow structure visualization by using iso-surfaces with certain 
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thresholds is a reliable and consistent method. Meanwhile, it is interesting to note that the 

ability to track the trend of derived velocity parameters in time is another significant 

advantage of the TR-SSPIV system. This also enables the calculation of acceleration in 

the 3D volume, as presented in §4.3.  

 

Some typical velocity gradient visualization results are shown in Fig. 4.8. The 

thresholding values of the normalized velocity gradients are 1.5,  2    . It should be 

noted that velocity gradients with a threshold above  1.5 i ju x


   fill 11% of the volume, 

while those above  2 i ju x


   fill 5% of the volume. Therefore, these values correspond 

to values close to the maximum velocity gradient levels observed from all the 

measurements taken. Incidentally, similar ratios (although in terms of vorticity) are used 

by Moisy & Jimenez 2004 and Jimenez et al. 1993 in the visualization of vorticity and 

dissipation structures.  

 

For example, Fig. 4.8 shows the iso-surfaces of the six velocity gradients for one of the 

more feature-rich data sets taken with the 3D2C single camera scanning PIV 

measurements. They reveal simple geometrical shapes such as sheets (Fig. 4.8d), tubes 

(Fig. 4.8a, c, and e), square ribbons (Fig. 4.8f) and also spherical blobs (Fig. 4.8d). 

Similar individual shapes corresponding to vorticity structures have also been observed in 

DNS simulations (Moisy & Jimenez 2004). The size of these basic shapes ranged from 

1.5-5 for the core of the tube or thickness of a sheet, to 20-30 for the length of a tube 

or sheet. More complex structures, formed from “individual blocks”, extended beyond 
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the observation volume and could not be sized. Also, if lower threshold values are 

chosen, more of the particular gradient structures are exposed which corresponds to 

complex structures formed from the merging of weaker strength individual shapes.  

 

Another example taken with the 3D3C TR-SSPIV measurements shows the iso-surfaces 

of the nine velocity gradients in Fig. 4.9. To compare the strength of each velocity 

gradient component, the values are normalized by the viscous length scale 
2


  . As 

shown in Fig. 4.9, the nine velocity gradients have structures varying in shape and 

strength. While previous studies focus solely on the strain rate or vortex structures 

(Vincent & Meneguzzi 1991, Ganapathisubramani et al. 2008, Elsinga et al. 2010), the 

current measurement results present the structure of individual components of velocity 

gradients. This shows that the „worm‟- like or „sheet‟-like shapes of vortex structures, as 

visualized by Ganapathisubramani et al. 2008 and Elsinga et al. 2010, are composed of 

different velocity gradients with simple shapes. In this example, u y   and v x   are the 

dominating components out of all nine and they are responsible for the vortex structures 

explained in §4.5. The results are comparable to Mullin & Dahm 2006, where the full 

nine components were presented. However, unlike the planar representation from their 

dual-plane stereoscopic PIV system, the TR-SSPIV system provides the full three-

dimensional velocity structures and therefore offers a more accurate determination of the 

shapes of these structures. 

 

The next example of velocity gradients shows intense structures detected that are over 

three times the RMS values. Two cases of strong velocity gradient peaks are represented 
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by iso-surfaces in Fig. 4.10a & b. They show two basic shapes, a tube-like structure in 

Fig. 4.10a and spherical blob structures in Fig. 4.10b, with dimensions, 10-20, in 

agreement with DNS simulations (Ishihara et al. 2009). These two volumes are the only 

ones that have strong flow structures out of the 10 individual data sets taken at the same 

condition, which means high strength vortex structures are rare. The streamlines shown 

indicate a good correlation between the velocity and the specific velocity gradient. 

 

4.3 Visualization of flow structure: acceleration 

As a result of the high temporal resolution of the high speed system, local acceleration at 

each grid point in the observation volume can be calculated using second order central 

difference from three adjacent volume data. Figures 4.11a & b illustrate the 3D iso-

surfaces of the two local acceleration terms u t   and v t  . Surprisingly, the features 

of the local acceleration u t   and v t   correlate very well with the convective 

acceleration u u x   and u v x   shown in Figs. 4.11c & d. In fact, they have nearly the 

same structures yet with opposite values. This anti-alignment phenomenon can be 

explained by the random Taylor hypothesis summarized by Tennekes 1975.  

 

The total fluid particle acceleration is defined as:  

i i j i jDu Dt u t u u x      , (Eqn. 4.1) 

where iu t   is the local acceleration at a fixed reference point and j i ju u x   is the 

convection acceleration due to the bulk movement of the flow. Random Taylor 

hypothesis suggests that the total (Lagrangian) acceleration of a fluid particle in isotropic 
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turbulent flow is considerably small so that it can be treated as 0iDu Dt  . This 

hypothesis has previously been proven by DNS study (Tsinober et al. 2001). In the 

current measurements, jet centerline was along x-direction, and thus streamwise velocity 

u is much larger than the other two radial components v and w, which makes iu u x   the 

dominating term in the convective acceleration. Therefore, the behavior of the local 

acceleration structures nearly cancelling the convective ones is observed in Fig. 4.11. The 

measurement from TR-SSPIV system provided an experimental proof of the random 

Taylor hypothesis in isotropic turbulence.  

 

4.4 Visualization of flow structure: vorticity and strain rate 

Once the 9 components of the velocity gradient tensor are obtained, other important 

parameters including vorticity, rate of strain, enstrophy, enstrophy production rate and 

energy dissipation rate can be derived. The visualization of these parameters is another 

step towards understanding the basic „building blocks‟ of small-scale turbulence and 

were traditionally only available through numerical simulations (Siggia 1981, Jimenez et 

al. 1993, Moisy & Jimenez 2004). Recent experiments have resolved the 3D structures of 

the large scales in the flow (Sakakibara et al. 2001, Elsinga et al. 2006) and also resolved 

the intermediate-scale of turbulence (Ganapathisubramani et al. 2008 and Elsinga et al. 

2010). The current work intends to resolve the smallest scales with a 0.8η resolution in 

43ηⅹ 20ηⅹ 18η volumes and observe the interaction between rate of strain and vorticity 

at close-up views. 
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Having calculated the nine velocity gradient components, the rate of strain tensor is 

directly given by 

1

2

ji
ij

j i

uu

x x


 
  

   

, (Eqn. 4.2) 

The normal strain rate components, ,  ,  ,xx yy zz    are the same as the diagonal velocity 

gradient components and were shown in Fig. 4.9. The shear rate components, 

,  ,  ,xy xz yz    are normalized by the viscous scale and shown as contour plots in Fig. 

4.12. These results in Fig. 4.12 can be directly compared with the 2D contour plots in 

Fig. 7 in Mullin & Dahm 2006. The nondimensionalized rate of strain appears to be less 

intense than in Mullin & Dahm 2006, probably due to the higher Reynolds number they 

used. However, the width of the structures is in the same range ( 2 3  ) in both studies, 

which shows the universality of small-scale turbulence structures regardless of Reynolds 

number or other flow conditions.  

 

To visualize the intense structures in the flow, iso-surfaces of the rate of strain 

components are shown in Fig. 4.13. The component 
xy  is the most intense and has a 

tube-like shape, which contributed the most to the energy dissipation rate discussed in 

more detail later. In comparison, the component zx  had a blob-like structure (this 

structure is also represented as a contour plot in Fig. 4.12). A comparison between Figs. 

4.12 and 4.13 shows the effectiveness of the thresholding iso-surface representation 

technique to obtain the 3D shapes of the rate of strain. 
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Having calculated the nine velocity gradient components, the three vorticity components 

can also be derived. They are plotted in Fig. 4.14 and given by 

1

2

j i
i

i j

u u

x x


  
  

   

, (Eqn. 4.3) 

From the three components of the vorticity field for the particular instant of the flow 

shown in Fig. 4.14, the z  component is the most intense one and its 3D structure has a 

tube-like shape. Surprisingly, this structure appears to be very similar to that of the rate of 

strain component zx , so both of them are illustrated in the same graph in Fig. 4.15. 

These two similar shapes are very closely spaced as if they interact with each other. This 

pairing of rate of strain and vorticity has been reported in numerical studies (Kida & 

Ohkitani 1992, Pradeep & Hussain 2006) as well as experimental studies 

(Ganapathisubramani et al. 2008). To help visualize the flow behavior where the strong 

vorticity and rate of strain occurs, the relative velocity field (instantaneous velocity field 

subtracted from the mean velocity field) is also shown. In this case, a „focus‟ type of 

vortex occurs at the location of the intense tube structures. More details about vortex 

identification techniques are described in the next section. 

 

To investigate the energy dissipation mechanisms at the viscous length scales in 

turbulence, the enstrophy is calculated. This is the integral of the square of vorticity, 

1

2
  , and is often used to describe the kinetic energy that corresponds to dissipation. 

The enstrophy is illustrated in Fig. 4.16a, where it is calculated from the vorticity 

components in Fig. 4.14. For this particular instant of the flow, the enstrophy has an 

intense core in the center of the volume. The 3D shape is similar to the vorticity 
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component z , since this component was the most intense. Third order velocity gradient 

parameter, the enstrophy production rate 
i ij j  , is the result from local stretching of 

vortex rings by the rate of strain tensor. Figure 4.16b and 4.17b show the enstrophy 

production rate, which has a dominating positive value and the magnitude is consistent 

with work by Mullin & Dahm 2006, showing its universality at the smallest scales.  

 

Critical to the study of the fine-scale turbulence is the accurate calculation of the energy 

dissipation rate 2 ij ij  . This is used to define the Kolmogorov scale and is related to the 

effectiveness of energy passing from large eddies to smaller ones. During the present 

work, the energy dissipation rate was directly calculated and the typical instantaneous 3D 

structures were represented in Fig 4.16c and 4.17c. For instance, the iso-surfaces shown 

in Fig 4.17c have a value two times the calculated mean energy dissipation rate and they 

reveal the location where intense dissipation occurs. Without the 3D3C velocity 

measurements, energy dissipation rate can only be estimated through local isotropy 

theories or experimental correlations. Our approach provides a true representation of 

turbulent kinetic energy dissipation rate with high spatial and temporal resolution and is 

compared with other work where different isotropy assumptions were used (Friehe et al. 

1971, Tanaka & Eaton 2007, Saarenrinne & Piirto 2000, George & Hussein 1991) in 

§5.7.  
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4.5 Vortex identification 

The presence of three-dimensional vortex structures is one of the most significant 

characteristics of turbulent flows and many vortex identification criteria have been 

established to isolate vortex structures from the low turbulence background flow. 

However, there is still no universal definition to extract them (Jeong & Hussain 1995, 

Chakraborty et al. 2005). Table 4.1 lists a brief description of the most well-known 

criteria, as well as a proposed pressure criterion that has originated as part of the present 

study. 

 

Enstrophy, the square of vorticity, is the most common way to define strong vortex cores 

(Hussain & Hayakawa 1987, Jeong & Hussain 1995). However, the high enstrophy 

criterion does not always identify vortex cores successfully especially when strong shear 

is involved or high vorticity sheets occur. Figure 4.18 is an example of a typical 

instantaneous enstrophy field visualized using iso-surfaces. For clarification, velocity 

streamlines and contours are also included showing that the high enstrophy structure in 

the center of the volume represents a „focus‟ type vortex core. Moreover, the iso-surfaces 

on the left side of the volume show a „saddle‟ type vortex. In another example shown in 

Fig. 4.19 of a typical instantaneous enstrophy field visualized using iso-surfaces, the 

vorticity field is shown as contours to help identify the vortex. While the high vorticity 

magnitude successfully reveals a vortex core on the top right, the other high magnitude 

region on the bottom right appears to be a sheet-like structure and does not characterize a 

vortex core. This suggest that although high enstrophy structures can help identify vortex 
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cores in small-scale isotropic turbulence, more sophisticated criteria are needed to 

characterize vortices in broader circumstances.  

 

Another method to identify vortex structures is the Q criterion, proposed by Hunt et al. 

1988, is defined as the second invariant of the velocity tensor using 

 2 21

2
Q S   , (Eqn. 4.4) 

where  
1 2

TS tr SS 
   and  

1 2
Ttr   

  . The Q criterion detects vortices using 

0Q  , which is a balance between high vorticity and high strain rate. Figures 4.20b, 

4.21b, and 4.22b illustrate three different cases of vortex structures identified using the Q 

criterion. The Q iso-surfaces appear similar to the enstrophy ones but in general they are 

smoother. For instance, in Fig. 4.21a, the structure identified by the enstrophy is 

composed of multiple elements but in Fig. 4.21b, the structure identified by the Q 

criterion is a single element with a smooth surface. Although the structure does not have 

a uniform cross section, it is still considered as tube-like structure due to the fact that the 

vortex core is aligned along the tube.  

 

Another method to identify vortex structures is the 2  criterion introduced by Jeong & 

Hussain 1995 to detect the local pressure minimum region in a plane perpendicular to the 

vortex axis. The intermediate eigenvalue 2  ( 1 2 3    ) of the symmetric tensor 

2 2S   is used to define the vortex core as „a connected region with two negative 

eigenvalues‟, which means 2 0   within the vortex core. Figures 4.20c, 4.21c and 4.22c 
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show three examples of structures identified by the 
2 0   criterion. The 

2  criterion 

gives similar results to the Q criterion, but with a smaller boundary in general. This is 

expected since the 2  criterion captures the pressure minimum in a plane and is more 

restrictive criterion compared to the Q criterion. However, in other circumstances such as 

in Fig. 4.22c, the 2  criterion may not be suitable to define the vortex core, especially 

when the local pressure difference is small, since this criterion neglects the irrotational 

straining and viscous terms in the Navier-Stokes equation.  

 

Another method to identify vortex structures is the   criterion (Chong et al. 1990).  It 

uses the complex eigenvalues of velocity gradient tensor to identify local streamline 

patterns.  This includes spiral streamlines or streamlines that form a close loop around a 

point in the flow in a moving reference frame. For incompressible flow,   is defined as  

2 3
1 1

2 3
R Q

   
     

   
, (Eqn. 4.5) 

where  R det v   and  2 21

2
Q S   . A pair of complex conjugate eigenvalues 

occur when 0  , which corresponds to a swirling vortex core. The   criterion 

resembles the Q criterion, as shown by the similar extracted structures in Figs. 4.20-4.22d 

with both methods. From the definition of   and Q, however, 0   is less restrictive 

than 0Q   and it may have the benefit of keeping the vortex core from broken into small 

segments. 
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The different criteria discussed have been widely applied in many DNS studies in 

turbulence (Hunt et al. 1988, Chong et al. 1990, Jeong et al. 1995, Chakraborty et al. 

2005, Kolar 2007) but only recently could experimental measurements provide the 

necessary results to evaluate these criteria (Elsinga et al. 2010). From the 3D3C velocity 

data obtained in the present study all the parameters required to apply the different 

criteria for vortex identification can be obtained. Furthermore, this experimental work 

can also resolve for the pressure which will be applied as a vortex identification method. 

To our knowledge, only a few numerical simulations have used the local pressure to 

charaterize the vortex core (Douady et al. 1991, Kalelkar 2006, Wang 2010), and this is 

the first time it is evaluated experimentally. This is mainly due to the complexity of 

calculating the pressure experimentally, which involves solving the Navier-Stokes 

equation after measuring the 3D3C velocity field.  

 

The proposed pressure criterion detects the local low pressure region to represent the 

vortex core structures. Starting from the unforced Navier-Stokes equation,  

  2u p
u u u

t




 
     


, (Eqn. 4.6) 

applying the continuity equation and taking the divergence, the Poisson equation is 

obtained (Bradshaw & Koh 1981): 

2 2 21

2
p S

 
    

 
. (Eqn. 4.7) 

The right hand side of the equation can be calculated from the experimental 3D3C 

velocity field. The evaluated right hand side consists of a calculated scalar value at every 

grid point in the observation volume. The Poisson equation is then solved using a 
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numerical iteration code in MATLAB to provide the pressure field in the observation 

volume. A low pressure threshold is used to extract iso-surfaces from the pressure field as 

shown for an instantaneous snapshot of the flow in Fig. 4.22e. For this simple flow, the 

shape of the low pressure region is similar to that of enstrophy, Q and  . However, the 

pressure iso-surface has a smoother and better defined boundary. It is speculated that this 

smoother shapes observed is the result of solving the full Navier-Stokes equation without 

discarding some of the terms as the other criteria do, which allow precise calculation of 

the low-pressure regions. Figure 4.22f shows the low-pressure iso-surface and a velocity 

field in a plane near the center of the volume is also included to show further flow 

patterns. The velocity field suggests that a rotational vortex (focus) occurs at the low-

pressure region and the thresholding iso-surface successfully represents the core of the 

vortex.  
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Figure 4.1. Instantaneous 3D velocity profile. a) 3D contour surface plot. b) Group iso-

surface plot, which shows the flow structure in more detail. 
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Figure 4.2. Instantaneous velocity profile showing iso-surfaces from 10 independent 

experiments at x/D=157 (side view camera orientation). 
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Figure 4.3. Instantaneous velocity profiles from 10 independent experiments at x/D=157 

cross view camera orientation. 
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Figure 4.4. Evolution of the velocity structure in time. The structures maintain their shape 

and propagate downstream along the jet centerline axis  
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Figure 4.5. a) Typical instantaneous velocity magnitude showing selected iso-surfaces, 

and b) same volume after performing a Galilean decomposition by subtracting a velocity 

0.80 uc to visualize a turbulent eddy shown by streamlines and by c) a 2D vector field in a 

close up view. 
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Figure 4.6. Identification of the iso-surfaces for the same velocity gradient component for 

different thresholding values: a) a = 1, 1.5; b) a = 2, 3; c) a = 3,4. 
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Figure 4.7. Resolved time series showing at selected time steps the iso-surface for one 

velocity gradient component being convected in the x-direction. 
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Figure 4.8. Six instantaneous three-dimensional velocity gradients, shown as iso-surfaces 

for chosen threshold values to extract simple geometrical shapes. 
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Figure 4.9. Nine instantaneous three-dimensional velocity gradients obtained with 3D3C 

measurements, shown as iso-surfaces with values normalized by viscous scales.  
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Figure 4.10. Extracted three-dimensional structures of two volumes with velocity 

gradients that deviated more than 3rms (among 10 3D2C data sets). The streamlines show 

good correlation between the velocity and velocity gradients. 
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Figure 4.11. Extracted three-dimensional local acceleration structures for a) /u t  and b) 

/v t   c) /u u x  and d) /v v x   normalized by local viscous scales. The local 

accelerations appear to be anti-aligned with the convection acceleration terms. 
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Figure 4.12. Contour plots on surfaces in a volume of the three shear (off-diagonal) rate 

of strain components. 
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Figure 4.13. Extracted iso-surfaces of the same volume as in Fig. 4.11, showing the three 

shear (off-diagonal) rate of strain components. 
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Figure 4.14. Extracted iso-surfaces of the same volume as in Fig. 4.12, showing the three 

vorticity components. 
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Figure 4.15. Combination of strong vorticity and strain rate component structures. The 

slices show contour of subtracted velocity magnitude and the vectors show the three-

component velocity field. The combination of vorticiy and strain rate appears at a focus 

type of vortex.  
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Figure 4.16. Contour plots of enstrophy, enstrophy production rate and energy dissipation 

rate. 
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Figure 4.17. Extracted iso-surfaces of the same volume as in Fig. 4.15, showing 

enstrophy, enstrophy production rate and energy dissipation rate. 
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Methods Description 
Criteria for 

vortex core 

Enstrophy 
2

    0  

Q criterion  2 21

2
Q S    0Q   

λ2 criterion 
λ2 is the intermediate eigenvalue ( 1 2 3    ) of tensor 

2 2S  .  
2 0   

∆ criterion 

2 3
1 1

2 3
R Q

   
     

   
, 

where  R det u   and  2 21

2
Q S    

0   

Pressure 

Local pressure solved with Poisson equation 

2 2 21

2
P S

 
    

 
 0P   

 

Table 4.1. Description of various vortex identification methods. 
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Figure 4.18. Iso-surfaces of enstrophy accompanied with velocity slices showing velocity 

magnitude (contour) and streamlines. Enstrophy structures occur at both focus and saddle 

type of flow pattern. 
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Figure 4.19. Enstrophy and velocity field. a) 3D view with enstrophy iso-surfaces and 

velocity slices; b) 2D view of enstrophy contour. Enstrophy represents both vortex tubes 

and sheet-like structure created by shear. 
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Figure 4.20. A sample observation volume showing iso-surfaces represented by different 

vortex identification parameters. a) Enstrophy b) Q Criterion c) λ2 criterion d) ∆ criterion.  
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Figure 4.21. A sample observation volume showing iso-surfaces represented by different 

vortex identification parameters. a) Enstrophy b) Q Criterion c) λ2 criterion d) ∆ criterion. 
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Figure 4.22. A sample observation volume showing iso-surfaces represented by different 

vortex identification parameters. a) Enstrophy b) Q Criterion c) λ2 criterion d) ∆ criterion 

e) Pressure f) pressure with a slice of velocity field showing location of the vortex. 
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Chapter 5 

Statistical Analysis of Turbulence 

 

Due to its extreme complexity, turbulence is often quantitatively characterized through 

statistical analysis. Many previous studies in turbulent flow have performed different 

types of averaging, probability density, and spectra analyses on velocity gradients and 

energy dissipation. Most of these studies were done in DNS simulations (Biferale et al. 

1991, Gotoh et al. 2002, Wilczek et al. 2010) and only two experimental studies (Mullin 

& Dahm 2006, Ganapathisubramani et al. 2008) were also able to obtain the full velocity 

gradient components with sufficient samples for statistical analysis. The present work 

includes results from 4 different flow and measurement conditions, each obtained from 

10 independent sets with 10 instantaneous reconstructed volumetric velocity fields each. 

The analysis includes the statistics of velocity gradients, velocity gradient ratios, 

principle strain rates, vorticity, enstrophy, enstrophy production rate, energy dissipation 

rate, energy spectrum and dissipation spectrum. The results were compared among the 

four cases and validated with published work where possible. A detailed error analysis is 

presented considering the continuity relation, isotropy assumption and repeatability.  
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5.1 Measurement configurations 

The present study considers four different flow configurations in a free shear turbulent 

jet. A description of the four cases is listed in Table 3.2. Case 1 and 2 are taken at the 

same downstream centerline location x/D=150 at jet exit Reynolds numbers ReD=1400 

and ReD=2800 respectively (Fig. 5.1a). Case 3 is taken at a downstream location x/D=80 

off-axis from the centerline at ReD=1400 (Fig. 5.1b). Case 4 considers the same flow 

condition as Case 1 (x/D=150, ReD=1400, centerline), but with the two cameras in a 

cross-view orientation (Fig. 5.1c). Case 4 should yield similar statistical results as Case 1 

since they observe the same volume and the TR-SSPIV system provides the 3D3C 

velocity in that volume regardless of the camera orientation.  

 

5.2 Velocity gradients and isotropy 

Velocity gradients are responsible for the rotation and deformation of fluid material in 

turbulence. Material propagation, mixing, vortex stretching, dissipation, and many other 

dynamic phenomena are closely related to the presence of velocity gradients. Especially 

in fine-scale turbulence, the statistics of the velocity gradients are often studied to 

characterize the universality of the flow. Probability density function (PDF) of the 

velocity gradients have been widely investigated in both DNS and experimental studies 

(Biferale et al. 1991, Mullin & Dahm 2006, Ganapathisubramani et al. 2008, Yoshimatsu 

et al. 2009, Ishihara et al. 2009). The present study calculates the PDF of nine velocity 

gradients for three flow conditions (Case 1-3 in §5.1) and compare it with available 

published results.  
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The nine components of velocity gradients are calculated using a central-difference 

scheme in the volumetric velocity fields. The PDFs calculated at the boundaries of the 

observation volume are discarded considering that the higher accuracy central difference 

scheme could not be applied at these boundaries. Each volumetric velocity field contains 

20 planes. Each plane contains 76 ⅹ 38 grid points with the three components of the 

velocity known at each point. The analysis is performed in 10 individual sets with 10 

instantaneous reconstructed volumetric velocity fields each. Figures 5.2-5.4 illustrate the 

PDFs of velocity gradients for Case 1-3. The results are sown in semi-logarithmic axes, 

with the velocity gradient components non-dimensionalized by the viscous scale (
2

  ) 

to allow for comparison between different flow conditions. The PDF shapes are similar 

between different flow conditions and between the different velocity components as well. 

The shape of the PDFs deviates significantly from Gaussian profiles which has been 

previously reported in both numerical and experimental studies (Chen et al. 1989, 

Sreenivasan & Antonia 1997, and Ganapathisubramani et al. 2008). This is due to the 

intermittency of turbulence, the presence of occasional high velocity gradient values 

causing the separation at the tails.  

 

Some revealing features of the velocity gradient PDFs will be discussed next. First, the 

tail of the pdfs for the three on-diagonal velocity gradient components ( ,i ju x i j   ) in 

Figs. 5.2a-5.4a, have steeper gradient than the tails of the pdfs for the off-diagonal 

components ( ,i ju x i j   ) in Figs. 5.2-5.4b. This is consistent with other experimental 

results for free shear turbulence (Mullin & Dahm 2006 and Ganapathisurbarmani et al. 
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2008) where the data satisfied the local homogeneous isotropy relation 

   
2 2

2i j i ji j i j
u x u x

 
     . This is further verified in Table 5.1 for the present data 

where the ratios of the root mean square statistics are compared to local isotropy and with 

Mullin & Dahm 2006 and Ganapathisubramani et al. 2007. Mullin & Dahm 2006 also 

concluded that they had a reasonable agreement when comparing their calculated ratios to 

local isotropy conditions as shown in Table 5.4. On the other hand, Ganapathisubramani 

et al. 2007 indicated that their measurements do not satisfy local isotropy conditions, 

especially along the mean flow direction as indicated by their ratios of 1.455 and 1.629 

shown in Table 5.4 which depart from the isotropy value of 2. Instead, 

Ganapathisubramani et al. 2007; George & Hussein 1991 observed that their far field data 

in a turbulent jet conformed to axisymmetric isotropy conditions and not to homogeneous 

isotropy. 

 

A second revealing feature observed corresponds to the behavior of left and right tails of 

the velocity gradient PDFs. The right tails appear steeper and less separated than the left 

ones, especially in Case 1 (Fig. 5.2) and Case 3 (Fig. 5.4), where the Reynolds numbers 

are smaller compared to Case 2 (Fig. 5.3). Considering that all the PDFs appear to have a 

straight line profile when plotted on semi-logarithmic axes, the slopes can be computed 

as exponentials decay using 

 log i j

i j

d P u x

d u x


 
 

 
, (Eqn 5.1) 

where   is the scaling factor (slope of the straight-line) and  i jP u x   is the PDF of 

any velocity gradient. A least-square fit was used to compute the scaling factor   and the 
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results are listed in Table 5.1-5.3 for the three cases studied. The scaling factors can vary 

significantly between the left and right tails of the same velocity gradient component with 

up to 34% difference. These results indicate a slight departure from local homogenous 

isotropy. This phenomenon was also observed in DNS simulations (Gotoh et al. 2002) 

and experimental studies (Mullin & Dahm 2006, Ganapathisubramani et al. 2008).  

 

The third observation is the slight variations in the velocity gradient PDFs between the 

three cases. These variations are observed when the Reynolds number was varied. For 

instance, from Case 1 to Case 2 the Reynolds number was doubled. As a result, when 

comparing the PDFs between these two cases in Fig. 5.2 and 5.3, Case 1 shows less 

separation between different velocity gradient components in both on- and off-diagonal 

directions. This can be explained by reports suggesting that homogeneous isotropy 

requires sufficient large Reynolds number, and Case 1 ( Re 44  ) is considered at the low 

end of turbulent shear flow. Variations between the PDFs are also observed when 

measurements were taken along the jet centerline or off-axis.  For instance, Case 1 and 2 

were both taken at the centerline of the jet, while Case 3 was taken in the shear layer 

region near the jet‟s edge. Clearly, Case 3 departs from isotropy in the shear layer as 

shown in Fig. 5.4b, but not the other two cases along the centerline. This was also 

discussed in detail by Mullin & Dahm 2006.  

 

To further investigate the isotropy of free shear turbulent flows, the ratios of the RMS 

velocity gradients are calculated. When possible, the measurements are compared to the 

results by Ganapathisubramani et al. 2007 in Table 5.5 which observed local 
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axisymmetry for these flows. The requirements for axisymmetric isotropy 

(Ganapathisubramani et al. 2007, George & Hussein 1991) are only a subset of the 

requirements needed for homogeneous local isotropy. The present data shows a 

reasonable agreement with axisymmetric isotropy with a largest error of 9%, compared to 

the largest of 7% by Mullin & Dahm 2006 and 14% by Ganapathisubramani et al. 2007. 

The departure from local isotropy is possibly related to the fact that the RMS are 

averaged in a 3D volume for the current case and Ganapathisubramani et al. 2007, 

whereas in a 2D plane by Mullin & Dahm 2006.  

 

Higher order derivatives of the velocity gradients can be calculated and compared with 

previously published work. Table 5.6 shows the skewness (third-order moments) and 

kurtosis (fourth-order moments) of velocity gradients. They compared favorably to the 

measurements by Mullin & Dahm 2006 at Re 45  , and to Gulitski et al. 2007 at 

Re 1600  . Meanwhile, the calculated skewness and kurtosis for the velocity gradient (

u x  ) from Table 5.6 match the results in Fig. 1 from Sreenivasan & Antonia 1997 at 

Re 38  . 

 

5.3 Principal strain rates 

Strain rate describes the basic flow structures in terms of stretching and compression and 

affects the dynamics of the flow. Three principal strain rates ( ,  ,     ) are often used to 

characterize the strain rate tensor. Principal strain rates are defined as the three 

eigenvalues of the strain rate tensor (    ), where   is the compressive principal 
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strain, 
 
  is the intermediate principal strain, and   is the extensive principal strain. A 

PDF analysis of the three principal strain rates is presented in Fig. 5.5. In Fig. 5.5a (Case 

1, Re 3200   centerline), the compressive and extensive strain rates are nearly 

symmetric from each other around the 0 value, which correspond to the near symmetric 

shape of the intermediate strain rate. The profiles of the principal strain rate PDFs are in 

agreement with recent published work (Nomura & Post 1998 and Dahm & Mullin 2006). 

The PDFs showed improved symmetry compared to those by Ganapathisubramani et al. 

2008, perhaps due to the improved resolution of the present measurements. 

 

For incompressible flow, the continuity equation requires the three principal strain rates 

to satisfy 0     . The calculated RMS for      in the present study is 0.2 

which is comparable to Ganapathisubramani et al. 2007. The small departure from zero is 

created by the uncertainty and error in the velocity and velocity gradients measurements 

with a more detailed error analysis presented in §5.7. There are also some differences 

between the three flow conditions studied. For instance, Fig. 5.5c (Case 3, Re 3200   

off-centerline) shows the results for the same turbulent jet as in Fig. 5.5a (Case 1, 

Re 3200   centerline), but at a different radial location. The value of the principal strain 

rates appears to vary significantly, with the off-axis case being nearly two times that of 

the centerline case. This indicates that higher strains occur at the interface between the jet 

and the quiescent fluid. Mullin & Dahm 2006 reported similar findings.  

 

Intermediate principal strain   can be either positive or negative depending on the 

values of   and  . Previous studies show that the sign of   affects the structures of the 



103 

 

 

  

flow, where 0   characterizes tube-like structures and 0   represents higher strain 

rate with sheet-like structures (Betchov 1956, Diamessis & Nomura 2000). To study the 

intermediate principal strain, it is normalized using 
* 2 2 26       . Figure 5.6 

shows the profile of the PDF of the normalized intermediate strain rate * . In all three 

cases, the profiles appear to be near symmetric with a slight preference towards * 0  . 

This is consistent with the statement that the ensemble average of intermediate strain rate 

is larger than zero in homogeneous turbulence (Diamesiss & Nomura 2000). The profile 

of intermediate strain reveals some error in the velocity measurements, since there are 

values of 
*  that exceeds 1 , which are physically impossible. Nevertheless, Lund & 

Rogers 1994 and Ganapathisubramani et al. 2007 also noted that the tails of PDF of 
*  

extends to 1.5  due to uncertainty in experimental measurements. 

 

To study the relationship between the normalized intermediate strain rate 
*  and the 

magnitude of strain rate tensor 
2 2 2e      , their joint PDF is calculated and shown 

in Fig. 5.7. While 
*  is nearly symmetric, the peak of the joint PDF shows a slight 

tendency toward higher intermediate strain rate. This is another indication that the high 

strain rate yields sheet-like structures, as previously reported by DNS study (Ashurst et 

al. 1987) and experimental measurements (Ganapathisubramani et al. 2008). Also, the 

highest probability of strain rate magnitude varies between the three cases. Case 2 has the 

highest strain rate magnitude among all and is about 2.8 times that of Case 1. The relation 

of the strain rate and outer Reynolds number can be expressed using 2 3 2Ree    , and 

since the outer Reynolds number of Case 2 is 2 times of that of Case 1, the ratio in strain 
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rate magnitude (2.8) matches the above relation. This further suggests that using viscous 

scale normalization ( 2

  ) helps characterizing the flow independent of Reynolds 

number for the range of Re discussed. 

 

The three eigenvectors ˆ
ie  of the strain rate tensor that correspond to the three principal 

strain rates are also evaluated for isotropy. A spherical coordinate frame is used to 

characterize the alignment of eigenvectors. The PDFs of the two spherical angles   and 

  are: 

 
1

2
P 


 , (Eqn 5.2) 

 
1

sin
2

P   ,

 

(Eqn 5.3) 

when the flow is isotropic. The PDFs of the two spherical angles for the three principal 

eigenvectors are shown in Fig. 5.8-5.10. The theoretical PDFs for isotropy are shown 

with solid lines for comparison with the experimental results. The PDFs of the spherical 

angles for the three eigenvectors have some preferred alignment direction: 2   and 

0  . This indicates that the departure from isotropy is due to the mean shear from the 

bulk flow movement. Case 1 (Fig. 5.8) and 2 (Fig. 5.9) have better resemblance 

compared to Case 3 (Fig. 5.10), where stronger alignment with 0   is observed, 

indicating more intense shear at the boundary of the jet. Comparable results were 

previously reported by Mullin & Dahm 2006 and the similar fashion of departure from 

isotropy in the three cases suggests the consistency of the current measurements.  
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5.4 Enstrophy and enstrophy production rate 

The study of higher order velocity gradient parameters can provide additional 

information about the isotropy of the flow. This includes the enstrophy, 
1

2
  , a second 

order velocity gradient parameter, which will be evaluated to check for isotropy and 

investigate its relation with the dissipation at the fine scales in turbulence. Figure 5.11a 

(Case 1) presents the PDF of the enstrophy normalized by the viscous length scale. The 

PDF shows a peak at about 40 with occurrences of some large values up to 1000. This is 

due to the intermittency of turbulence at fine scales where local intense fluctuations exit. 

Taking the logarithm of enstrophy, the PDF can be fitted with a log-normal distribution 

as shown in Fig. 5.11b. The PDF peaks at 2.5 and similar peak values were obtained by 

Mullin & Dahm 2006 although under different flow condition. Figure 5.12 shows the 

PDF of enstrophy for Case 2. A closer resemblance to lognormal is observed with this 

flow with higher Reynolds number ( Re 6400  ), indicating that the departure in Case 1 

is due to its lower Reynolds number which is at the low end of isotropic turbulence. 

 

Enstrophy production rate,

 

S   , is a third order velocity gradient parameter that 

describes the local stretching of vortices by strain rate tensor. Figures 5.14a-16a show the 

PDF of enstrophy production rate normalized by the appropriate viscous scale,  
3

2

  . 

The PDF shows a sharp spike at 0 which is expected from high velocity gradient 

parameters and it then quickly drops to less than 
51 10  . A Semi-logarithm scale is used 

in Figs. 5.14b-16b to better observe the tails of the PDF of enstrophy production rate. The 

profile is nearly symmetric and the rarely occurring high values are bonded between 
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42.5 10  . It is also observed that Case 3 (Fig. 5.16) shows the lowest enstrophy 

production rate. This indicates that the enstrophy production rate is lower at the shear 

layer of the jet.  

 

5.5 Energy dissipation rate 

The kinetic energy dissipation rate, 2 ij ijS S  , represents the intensity of the local strain 

and is an important parameter in turbulence since its average value is used to define the 

Kolmogorov scale parameters. Therefore it has been widely studied in numerical 

simulations. Also, this is part of the k   model which is often used to solve the Navier-

Stokes equation especially in free shear turbulence. The calculation of the mean energy 

dissipation rate is related to axisymmetric and homogenous isotropy and will be 

discussed in detail in §5.7. First, the probability distribution of the energy dissipation rate 

will be analyzed. Figure 5.17a illustrates the PDF of energy dissipation rate normalized 

by 
3 4

  . The tail of the high energy dissipation rate is not as pronounced as that for the 

high enstrophy in Fig. 5.11a. This behavior is consistent with the observation by Donzis 

et al. 2008 through DNS methods. Enstrophy appears to be more intermittent and have 

more scattered intense values compared to energy dissipation rate.  

 

The logarithm of the energy dissipation rate PDF is shown in Fig. 5.17b. It has a high 

resemblance to the PDF of the enstrophy (Fig. 5.11b), and it has a better lognormal 

distribution fit. These PDFs and their statistical similarity between energy dissipation rate 

and enstrophy are consistent with DNS results from Zeff et al. 2003 and Donzis et al. 

2008 and experimental measurement by Mullin & Dahm 2006 They indicate the 



107 

 

 

  

universality of the energy dissipation field in fine-scale turbulent flow. Figures 5.18-5.19 

show the PDFs of energy dissipation rate for Case 2 and 3. Their shapes and range of 

values are both same to those of Case 1. This is due to the fact that the energy dissipation 

rate is normalized with viscous scales 3 4

  , which is on the same order of  .  

 

5.6 Energy and dissipation spectrum 

The energy spectrum  E   is of great interest since it characterizes how the turbulent 

kinetic energy is distributed among eddies of different sizes. The waved number  , is 

defined as 2 l   , where l is the characteristic length of eddies. The energy spectrum 

of the u velocity along the streamwise direction is calculated from the instantaneous 

volumetric velocity fields and normalized by Kolmogorov scales. The energy spectrum is 

plotted in Fig. 5.20a with the experimental data shown by circles. For comparison, a 

theoretical model of the energy spectrum for homogeneous isotropic turbulence (Pope 

2000) is also shown by the solid line. Although the inertial range is mostly missing for 

such a low Reynolds number studied, the experimental data approach this inertial range 

with the -5/3 slope. The high spatial resolution of the PIV measurements allowed the 

experimental data to collapse with the theory, even at high wave number  .  

 

The actual spatial resolution and the filtering behavior that can be obtained with PIV 

measurements have been considered in great detail by Hart 2000 and Foucaut et al. 2004. 

From these studies it can be shown that for the present measurements the smallest eddies 

(with a near Kolmogorov length size) would be slightly under-resolved. This can be 
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estimated from an expression in Hart 2000, where an assumed sinusoidal velocity is used 

to compare the gain GFFT of the computed velocity with the true velocity using FFT 

spectral correlation. The expression for the gain is given by 

 2sin 2FFT cal trueG V V L L   , where L is the size of the interrogation window. For 

the present work the maximum wavenumber calculated, as shown in Fig. 5.20a, is 

max 1.5   which corresponds to 4.2l  and a gain of 0.87FFTG  . This corresponds to 

the lowest gain for the highest wavenumber shown in Fig. 5.20a, and therefore even 

smaller deviation from the true velocities are obtained for 1.5  . In addition, the 

minimum wavenumber is calculated by 0 max2 L   (Pope 2000), where Lmax is the 

length of the field of view 48.8 which corresponds to 0 0.129   . 

 

The dissipation spectrum  D   is the spectrum of the kinetic energy dissipation rate   

and is related to the way energy is dissipated between different size eddies. The 

dissipation spectrum of the streamwise velocity can be easily derived from the energy 

spectrum using    2

11 11D E   . Figure 5.20b shows the normalized dissipation 

spectrum on semi-logarithm axes, where solid line represents model spectrum by Pope 

2000. A peak value occurs at around 0.1  , which is consistent with other work 

(Antonia et al. 1982 and Mi & Nathan 2003). This indicates that most of the dissipation 

occurs at eddies that are larger than the Kolmogorov scale.  
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5.7 Accuracy assessment 

The accuracy analysis for stereoscopic PIV systems has long been considered a challenge 

due to its complexity and involvement of numerous hardware components and 

computational correlation. Time-resolved stereoscopic scanning PIV, TR-SSPIV, is a far 

more complex system and thus a complete accuracy assessment is necessary. The sources 

of error can be categorized into three main types: a) errors from experimental setup and 

procedure b) errors from image processing correlation c) numerical computation.  

 

The largest error in the experimental configuration comes from the projection of 3D 

world coordinates to 2D image coordinates. This geometric error relates closely to the 

camera viewing angles and calibration process. Lawson & Wu 1997 performed both 

theoretical analysis and experimental investigation on the geometric error of stereoscopic 

PIV system. Their study suggested that the in-plane velocity measurement bears 

minimum error when the cameras have minimum included angle, while the out-of-plane 

velocity error is minimum when the cameras are 90 degrees apart. An optimal error 

condition is found to be when the camera angle is 40-50 degrees. Coudert et al. 2000 

performed PIV measurements with different camera angle combination and concluded 

that higher accuracy is obtained when the two cameras are located symmetrically with 

respect to the laser sheet.  

 

In the current study, the two cameras were kept at 29 degree and 30 degree to minimize 

the error ratio, which is defined as the ratio between the standard deviation of out-of-

plane velocity and that of the in-plane velocity    re z x     (Lawson & Wu 1997). 
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Table 5.7 shows the RMS velocity fluctuations in all three directions and the calculated 

error ratio is 1.6. This value is consistent with the results by Lawson & Wu 1997 and 

Mullin & Dahm 2006.  

 

Another possible error in the experimental configuration is related to the calibration, 

when the target plane is not perfectly aligned with the laser sheet. As mentioned in §2.4, 

this disparity was corrected by taking particle images simultaneously with both cameras. 

The displacement obtained after applying the mapping correlation is used to correct the 

calibration polynomial. This process can eliminate the disparity down to the order of 0.01 

pixel (Wieneke 2005). Given that the current average particles move 12 pixels in the x-

direction, the error caused by misalignment is less than 0.1% and is negligible. Moreover, 

large F number (#16) scheimpflugs were used to eliminate the out-of-focus effect and 

image distortion.  

 

The errors generated during image processing cross-correlation include the outliers, the 

mean-bias errors and RMS errors (Huang et al. 1997). In the present study, a 3 × 3 

median filter is applied to the vector field to remove the outliers (random uncorrelated 

vector). The other two errors are in the order of 0.1 pixel (Huang et al. 1997). Since these 

errors generally remain the same regardless of the experimental conditions, a higher 

displacement is preferred to reduce the error. For instance, a relatively large t  is chosen 

to maximize the velocity displacement. An interrogation shifting is applied and the 

particles moved about 12 pixels in the x-direction and 3 pixels in the y-and z-directions. 

This makes the cross-correlation in the current system to be 2% in the x-direction and 6% 
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in the y-and z-directions. Note that a larger displacement is not suitable considering that 

the particles would move out of the laser sheet plane, which would result in a failed 

correlation.  

 

The complete nine velocity gradient components are computed using discrete differential 

methods, which also generates numerical errors. The accuracy of velocity gradient 

measurements are tested by comparing the calculated values with the mass conservation 

equation for incompressible flow. Figure 5.21 shows the PDFs of the out-of-plane 

velocity gradient w z  , with measured data and derived data from 

w z u x v y       . As shown in the figure, the two PDFs collapse with each other 

and show very good agreement. The scaling factors for the two tails were off by only 1%. 

Next a local divergence error defined as 
 

     

2

2 2 2

u x v y w z

u x v y w z


       


       
 is computed 

and the PDF is shown in Fig. 5.22. Mass conservation requires 0  , and the PDF shows 

the highest peak occurs at 0 and drastically decreases with some high value  . The mean 

value of 

 

is 0.3. The result is comparable to Zhang et al. 2007 where the mean values 

are 0.12-0.74.  

 

Another way to quantify the local divergence error is to scale the divergence of velocity 

u by the norm of local velocity gradient tensor  
1 2

:u u   (Mullin & Dahm 2006). 

Figure 5.23a shows the PDF of this ratio, and the mean was 0 with an RMS of 0.4. This is 

consistent with the RMS value of 0.35 by Mullin & Dahm 2006 and 0.25 by 

Ganapathisubramani et al. 2007. Further analysis includes plotting the joint PDF of the 
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divergence error ratio with the norm of velocity gradient tensor, as shown in Fig. 5.23b. 

The divergence error appears to be higher when the norm of velocity gradient is lower, 

which indicates that the measurement is more accurate with high velocity gradient, where 

the intense sheet-like structures are present.  

 

To check the repeatability and reliability of the TR-SSPIV system, an experiment (Case 

4) was done at the exact same downstream and radial location of the same turbulent jet as 

in Case 1, except for the camera configuration. As shown in Fig. 5.1c, the laser sheets are 

perpendicular to the jet centerline and the cameras are looking at the cross section of the 

jet. The PDFs of the same component of velocity gradient for the two cases are plotted in 

Fig. 5.24. The profiles are near identical, which proves the repeatability of the experiment 

and the reliability of the TR-SSPIV system.  

 

A final check of the accuracy of the measurements included comparing the energy 

dissipation rate measured to various isotropic assumption and experimental correlations, 

as illustrated in Table 5.8. Since the current TR-SSPIV system provides the complete 

velocity gradient tensor, the energy dissipation rate can be calculated by its definition 

2 ij ijs s  . Compared to the experimental correlation using centerline velocity and local 

outer length scale (Papanicolaou & List 1988), the difference of the value is 4%. If the 

flow were completely homogenous isotropic, the energy dissipation rate can be calculated 

using  
2

15 u x     (Saarenrinne & Piirto 2000), the difference is 3%. Some other 

estimation of the energy dissipation rate was done (George & Hussein 1991, Tanaka & 
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Eaton 2007) due to the lack of 3D3C velocity measurement, and the difference is within 

5% among all.  
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Figure 5.1. Schematic of the four measurement configurations: a) x/D=150 downstream 

jet centerline side-view (Case 1 and 2); b) x/D=80 downstream off-centerline side-view 

(Case 3) c) x/D=150 downstream jet cross-view (Case 4).  

  

a)

c)

X

Z

Y

b)

X

Z

Y

X

Z

Y



115 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Component 

 

Present 

data 

Mullin & 

Dahm 2006 

Ganapathisubramani 

et al. 2007 

Homogeneous 

isotropy 

value 
2 2

u u

y x

   
   
   

 2.014 1.932 1.455 2 

2 2
u u

z x

    
   
    

 1.991 1.816 1.629 2 

22
v v

x y

   
  

    
 1.724 1.890 2.051 2 

22
v v

z y

   
  

    
 2.103 2.064 1.997 2 

 

Table 5.1 Measured ratios of mean square velocity gradients, also showing results from 

Mullin and Dahm 2006, Ganapathisubramani et al. 2007 and from homogeneous 

isotropic theory for comparison. 
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Figure 5.2. PDF of (a) three on-diagonal and (b) six off-diagonal velocity gradients for 

Case 1 (ReD=1500, x/D=150, centerline side-view). 

 

 

 

 


 

u x   v x   w x   u y   v y   w y   u z   v z   w z   

Left 0.068 0.067 0.068 0.067 0.064 0.068 0.068 0.067 0.068 

Right 0.095 0.102 0.102 0.101 0.095 0.100 0.101 0.102 0.102 

 

Table 5.2. Scaling exponent   of left and right tails of the 9 velocity gradient PDFs for 

Case 1. 
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Figure 5.3. PDF of (a) three on-diagonal and (b) six off-diagonal velocity gradients for 

Case 2 (ReD=3000, x/D=150, centerline side-view). 

 

 

 

 


 

u x   v x   w x   u y   v y   w y   u z   v z   w z   

Left 0.066 0.064 0.062 0.061 0.066 0.060 0.057 0.062 0.063 

Right 0.080 0.073 0.067 0.073 0.077 0.066 0.059 0.066 0.073 

 

Table 5.3. Scaling exponent   of left and right tails of the 9 velocity gradient PDFs for 

Case 2. 
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Figure 5.4. PDF of (a) three on-diagonal and (b) six off-diagonal velocity gradients for 

Case 3 (ReD=1500, x/D=80, off-centerline side-view). 

 

 

 

 


 

u x   v x   w x   u y   v y   w y   u z   v z   w z   

Left 0.146 0.141 0.145 0.119 0.145 0.137 0.137 0.141 0.143 

Right 0.150 0.139 0.147 0.150 0.153 0.132 0.132 0.145 0.145 

 

Table 5.4. Scaling exponent   of left and right tails of the 9 velocity gradient PDFs for 

Case 3. 
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Component 

 

Present 

data 

Mullin & Dahm 

 2006 

Ganapathisubramani 

et al. 2007 

Axisym. 

isotropy 

value 
2 2

u u

y z

   
   
   

 1.09 1.07 0.893 1 

2 2
v w

y z

   
   
   

 0.981 0.937 1.01 1 

2

2 2
1 1

3 3

v

y

u v

x z

 
 
 

         
     

 

 1.09 0.937 0.855 1 

 

Table 5.5. Measured ratios of mean square velocity gradients, also showing results from 

Mullin & Dahm 2006, Ganapathisubramani et al. 2007 and from axisymmetricisotropic 

theory for comparison. 

 

  



120 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 u x   v y   w z   ,i ju x i j    

 Skewness 

Present Work (Re=44) -0.43 -0.30 -0.15 -0.15 - 0.12 

Mullin & Dahm 2006 (Re=45) -0.43 -0.38 -0.14 -0.22 - 0.03 

Gulitski et al.2007 (Re=1600) -0.46 -0.35 -0.29 0.01 - 0.14 

 Kurtosis 

Present Work (Re=44) 4.5 5.2 4.8 4.2-8.4 

Mullin & Dahm 2006 (Re=45) 4.2 3.8 4.5 4.2 - 6.0 

Gulitski et al. 2007 (Re=1600) 5 - 13 5 - 13 5 - 13 5 - 13 

 

Table 5.6. Comparison of present measured velocity gradient moment skewness and 

kurtosis with other work. 
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a)  

b)  

c)  

 

Figure 5.5. PDF of three principal strain rates , ,    for the Case 1-3. The values of 

principal strain rates are not normalized. The unit is 1/s.  
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a)  

b)  

c)  

 

Figure 5.6. PDF of normalized intermediate strain rate for Case 1-3. 
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a)  

b)  

c)  

 

Figure 5.7. Joint PDF of magnitude of strain rate tensor e and intermediate strain rate 
*
β 

for Case 1-3. Unit of e is 1/s. The contour lines are from 0 to 1 with increment of 0.1.  
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a)  

 

b)  

 

Figure 5.8. PDF of the orientation angle of φ and θ for three principal strain axes ei for 

Case 1. 
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a)  

 

b)  

 

Figure 5.9. PDF of the orientation angle of φ and θ for three principal strain axes ei for 

Case 2.  
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a)  

 

b)  

 

Figure 5.10. PDF of the orientation angle of φ and θ for three principal strain axes ei for 

Case 3. 
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a)  

 

b)  

 

Figure 5.11. PDF of enstrophy field with log normal fits for Case 1. 
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a)  

 

b)  

 

Figure 5.12. PDF of enstrophy field with log normal fits for Case 2. 
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a)  

 

b)  

 

Figure 5.13. PDF of enstrophy field with log normal fits for Case 3. 
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a)  

 

b)  

 

 

Figure 5.14. PDF of enstrophy production rate field with log normal fits for Case 1. 
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a)  

 

b)  

 

 

Figure 5.15. PDF of enstrophy production rate field with log normal fits for Case 2 
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a)  

 

b)  

 

 

Figure 5.16. PDF of enstrophy production rate field with log normal fits for Case 3. 
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a)  

 

b)  

 

Figure 5.17. PDF of energy dissipation rate with log normal fits for Case 1. 
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a)  

 

b)  

 

Figure 5.18. PDF of energy dissipation rate with log normal fits for Case 2. 
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a)  

 

b)  

 

Figure 5.19. PDF of energy dissipation rate with log normal fits for Case 3. 
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Figure 5.20. a) Energy and b) dissipation spectra of streamwise velocity compared to the 

model spectra by Pope 2000.  
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Parameter Current data Mullin & Dahm 2006 

rmsu  0.0047 0.006 

rmsv  0.0039 0.004 

rmsw  0.0069 0.008 

Error ratio re  1.6 1.8 

 

Table 5.7. RMS velocity fluctuation for each component and the error ratio. The result 

compares favorably to Mullin & Dahm 2006.  
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Figure 5.21. PDFs of w z  measured and w z  calculated using mass conservation 

0u x v y w z        . 
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Figure 5.22. PDF of local divergence error defined as 
 

     

2
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

       
. 

Mass conservation requires 0  . 
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a) b)  

 

Figure 5.23. a) PDF of local divergence error normalized with norm of velocity gradient 

tensor; b) Joint PDF of local divergence error and norm of velocity gradient tensor. 
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Figure 5.24. PDF of w z  of the same jet downstream location measured with side-view 

configuration (Case 1) and cross-view configuration (Case 4). They show very good 

agreement, indicating the reliability of the TR-SSPIV system. 
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Turbulent kinetic energy dissipation rate Value

 

6 2 310 m s

 30.08 cu 

 
(Papanicolaou & List 1988)

 3.88 

2 ij ijs s 

 (Definition) 
4.04 

2 22

3
u v u v

x y y x
 

 
        

        
            

(Tanaka & Eaton 2007) 

4.06 

2 22 2

2 2 8
u u v v

x y x y
 

 
          

           
           

 

(George & Hussein 1991) 

3.87 

2 2 2 2
5 8

2 2
3 3

u u v v

x z x z
 

            
           

              

(George & Hussein 1991) 

3.70 
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15
u

x
 

   
   

   

 

(Saarenrinne & Piirto 2000) 

3.93 

2

7.5
u

z
 

   
   

     

(Saarenrinne & Piirto 2000) 

3.89 

22

6
u u u v

x y y x
 

 
        

       
            

(Saarenrinne & Piirto 2000) 

4.82 

 

Table 5.8. Energy dissipation rate calculation with different methods and assumptions. 
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Chapter 6 

Concluding Remarks 

 

A time-resolved stereoscopic scanning particle image velocimetry (TR-SSPIV) system is 

developed, implemented, and applied to investigate free turbulent jets of 

Re 3200 and 6400   at both centerline and off-centerline locations. The TR-SSPIV 

system provided simultaneous 3D3C velocity fields and the complete nine-component 

velocity gradient tensor. These results are able to provide both quantitative visualization 

of coherent structures as well as important dynamic properties of turbulence. The major 

contributions of the current works are listed below.  

 

1. The TR-SSPIV system is applied to the study of turbulence at small scales for the first 

time. Hori & Sakakibara 2004 developed a similar system to visualize the vorticity 

structures in a jet. Their resolution, however, was over 10 Kolmogorov length scale  , 

which is not small enough to resolve fine-scale turbulence. The TR-SSPIV system in the 

current study was specifically developed to resolve the fine-scale structures with a spatial 

resolution of 0.6 0.9 , which is among the highest in experimental studies (3  by 

Ganapathisubramani et al. 2008). 
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2. With the simultaneous measurement of nine-component velocity gradient tensor, the 

visualization results revealed the building blocks of complex velocity gradient structures 

including sheets, tubes, ribbons, and blobs in a three-dimensional volume. Compared to 

Mullin & Dahm 2006, who also studied small scale turbulent structures but in a 2D plane, 

the current measurement has the benefits of visualizing the shapes in the 3D domain, 

which provide better identification of the actual structures.  

 

3. Local acceleration terms were obtained thanks to the high temporal resolution of the 

TR-SSPIV system. The structures are also visualized in the 3D volume and they showed 

a strong anti-alignment to the local convection acceleration terms. This experimentally 

verified the Random Taylor Hypothesis. Ganapathisubramani et al. 2008 was also able to 

resolve the small scale full velocity gradient structures in a 3D volume, but the 

acceleration and time evolution of the structure could not be measured due to their system 

using the Taylor Hypothesis for quasi-instantaneous volume reconstruction.  

 

4. A novel vortex identification algorithm was proposed to detect core of vortical 

structures. This criterion identifies local low pressure region by solving the Poisson 

equation for incompressible flow using the full nine-component velocity gradient tensor. 

This pressure criterion has a high potential in vortex core identification since it provides 

better defined and restricted boundaries, compared to the current enstrophy, Q, 2  and   

criteria. 
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5. The statistical analysis along the centerline of the round turbulent jet for two Reynolds 

number revealed isotropic flow conditions. But the analysis also show that off-axis 

measurements departed significantly for isotropy. The enstrophy production rate at the 

interface between the jet and the still fluid was much lower than at the jet centerline. The 

many results obtained during the statistical analysis also provide experimental support to 

both DNS and theory of fine-scale turbulence.  

 

6. The measurement of complete nine-component velocity gradient tensor provides the 

true value of parameters related with important turbulent scaling constants. The kinetic 

energy dissipation rate is obtained directly and can be used to test the isotropy conditions 

of the flow by comparing it with results estimated using local homogenous isotropic or 

axisymmetric isotropic assumptions.  

 

Furthermore, extensive verifications and comparisons with previously published work 

were completed, including the jet profile validation, RMS velocity fluctuation tests, local 

divergence error analysis with mass conservation equation, scaling factor comparison of 

velocity gradient PDFs, repeatability test with different camera configuration. Results are 

also compared to published works where possible.  

 

The TR-SSPIV system has proven to be an effective and accurate measurement technique 

in the study of fine-scale turbulence. The system can be applied to the study of other flow 

behaviors such as turbulent boundary layer and turbulent wakes behind object. Although 

the goal of the current research is to experimentally resolve the finest scale possible in 
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turbulence, the TR-SSPIV system is versatile enough to be used on the visualization of 

3D flow structures at large scales with minor adjustments. Another goal for the future is 

to develop a more robust vortex identification scheme. Given the current experimental 

technique and 3D3C data, the computation of local pressure can be improved in terms of 

the efficiency and accuracy of the numerical algorithm. The ability of obtaining pressure 

value with the high resolution grids (60,000 grid points in each domain) through 

experimental data will help investigating the relationship between pressure distribution 

and occurrence of vortices, which support the DNS studies and help developing the flow 

vortex theories.   
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