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ABSTRACT OF THE DISSERTATION

Mathematical Optimization Methods for Clustering and

Classification with Biological and Medical Applications

by Chun-An Chou

Dissertation Director: Wanpracha Art Chaovalitwongse

The focus of the thesis is on the development of effective combinatorial optimization

approaches for both large-scale clustering and classification problems in data mining

with high computational complexity by massive biological and medical data.

In the first part, we study an important clustering problem in computational and

population biology, namely sibling reconstruction problem. The problem is mathemati-

cally considered a special case of capacitated clustering problem. A mathematical opti-

mization model is proposed to establish the sibling relationships (i.e., groups of siblings)

based on the biological concept of combinatorial constraints and similarity likelihood of

genetic data. Both exact and heuristic solution approaches are developed, which enable

the problem to be solved comparably and outperform other existing combinatorial and

statistical approaches significantly.

In the second part, we develop new combinatorial and pattern-based optimization

approaches in the framework of Logical Analysis of Data (LAD) for binary classifica-

tion. In the framework, while patterns are the building blocks for the LAD classification

model, a new mathematical optimization model is proposed for generating decisive and

high-quality patterns. Moreover, a column generation framework, where the proposed

ii



pattern generation approach is employed, is developed to build an “optimal” LAD clas-

sifier such that the classification accuracy and computational efficiency are improved.

In the third part, we investigate feature selection that has two-fold advantages in

classification problems with massive data: data reduction and noise reduction. First, we

formulate a quadratic program by using statistical information (relevancy and redun-

dancy) of features as inputs to select critical features that are favorable for classifiers.

Second, we propose a new pattern-based optimization approach using a decomposed

nearest neighbor rule for direct classification. The preliminary results show the poten-

tial for the improvement in data reduction and classification accuracy.
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Chapter 1

INTRODUCTION

Clustering and classification in data mining have frequently appeared in various practi-

cal areas, such as engineering, health care, biology, finance, etc. Data mining is a process

of discovering useful knowledge from database to build a structure (i.e., model or pat-

tern) that can meaningfully interpret the data. Clustering, an unsupervised learning,

is to find cluster information without historical information such that members in each

cluster are similar. Classification, a supervised learning, is to construct a prediction

model for classifying future events in a way consistent with historical information.

When many statistical and machine learning methods have been developed, math-

ematical programming techniques, even combined with them, have started being suc-

cessfully applied to clustering and classification problems. However, when real-life clus-

tering and/or classification problems with massive data are formulated as mathematical

programming models, there is a challenge to be faced because of highly computational

complexity increased by the size and dimensionality of data. For this reason, there

are a vast amount of investigations into developing new computational approaches to

effectively and efficiently solve such large-scale and complex problems.

The focus of this dissertation is on developing effective mathematical optimization

models and efficient computational algorithms for the problems in clustering, classifi-

cation and feature selection. The presentation of the thesis is structured as follows.

In Chapter 2, we study an important problem recently arising in computational

population biology, namely, sibling reconstruction problem. The goal of this study

is to develop mathematical optimization models and computational algorithms based

on the concepts of combinatorics and statistical likelihood to reconstruct the sibling
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relationships. The input data sets used are multi-featured genetic markers of a single-

generation population, which were sampled without parentage information. In this

chapter, we propose a mathematical programming model based on the combinatorial

concept from the inheritance rules (i.e., Mendel’s Laws [30, 107]), and a more sophis-

ticated mathematical programming model combining the similarity measure function.

The studied problem also can be presented as a special version of the capacitated

clustering problem. Due to the highly computational complexity, we develop an ex-

act approach and greedy heuristic approaches to effectively and efficiently solve such a

large-scale optimization problem. We present the experimental results on real biological

and simulated data sets and show the comparable performance with the existing sibling

reconstruction approaches.

In Chapter 3, for binary classification, we develop accurate prediction models based

on the technique of Logical Analysis of Data (LAD) that particularly deal with binary

inputs/outputs. A LAD classification model mainly consists of the sets of positive and

negative patterns/rules from binarized features of known (numerical) data sets. To

efficiently generate decisive patterns, we propose a new mathematical programming

approach for pattern generation. Further, we develop a new column generation frame-

work, where widely used objectives are considered in master problem and the proposed

pattern generation approaches is employed in subproblem, to construct an accurate

LAD classification model. We present the experimental results on various benchmark

data sets in medical prognosis and diagnosis.

In Chapter 4, we attempt to develop new optimization-based feature selection ap-

proaches because the feature selection are shown to be beneficial for improving the per-

formance in classification or clustering problems. The selected feature subset, instead

of the full feature set, is used in classification models (or classifiers). First, we propose

a new quadratic program incorporated with statistical information as inputs, which

ultimately selects a compact subset of informative features. Second, we also propose

a pattern-based optimization approach, called decomposed support feature machine,

using a decomposed nearest neighbor rule, which is directly applied to classification.

The preliminary results on a number of biomedical data sets show the potential for the
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improvement of classification performance.

In Chapter 5, the dissertation is concluded.
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Chapter 2

CLUSTERING STUDY IN COMPUTATIONAL

BIOLOGY: SIBLING RECONSTRUCTION PROBLEM1

2.1 Introduction

In studies of many natural populations, it is more practical to sample genetic data

from a cohort of individuals without parental information. The sibling reconstruction

problem (SRP) is a problem of establishing sibling relationships (i.e., groups of individ-

uals who are siblings) among individuals using their genetic markers that are sampled

and genotyped from a single generation without parental information. Such problem

has become increasingly more important to computational biologists and population

biologists as the sibling relationships enable them to study several fundamental bio-

logical phenomena, including mating systems, ecological behaviors and evolution, and

social organizations. Microsatellites, also known as simple sequence repeats (SSRs) or

short tandem repeats (STRs), have been widely used as molecular markers in popula-

tion genetics for reconstructing family relationships, including sibships. Microsatellites

can be described as polymorphic simple sequence repeats genotyped in DNA (typically

one to six base pairs). Because microsatellites often present high levels of inter- and

intra-specific polymorphism, they are used to detect variation among individuals and

populations in a particular segment of DNA [116].

1The chapter is part of two published papers [37, 42] and one submitted manuscript [44] in collabo-
ration with Wanpracha Art Chaovalitwongse, Tanya Y. Berger-Wolf, Bhaskar DasGupta, and Mary V.
Ashley.
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2.1.1 Literature Reviews

Over the past decade, several computational methods have been developed for the sib-

ling reconstruction problem from microsatellites. Those methods can be categorized

into statistical and combinatorial approaches. The main principle of statistical ap-

proaches is based on the inference of possible sibling groups that can be derived from

pairwise or group-based likelihood [113, 127, 24, 130, 33, 86, 135, 136]. Because such

approaches estimate the likelihood of all possible pairs or group partitions, they all are

very time consuming. Although the reconstructed solutions from those approaches are

fairly accurate when dealing with genetic data that are error-free, almost all datasets

contain genotyping errors or missing data. In a recent study, [135] proposes a new

group-likelihood method that tolerates genotyping errors in genetic markers. There are

also a few studies integrating optimization with statistical approaches such as graph-

based approaches [13, 24, 12] and a simulated annealing approach [11]. Until recently,

combinational optimization approaches have been developed with some degree of suc-

cess [21, 22, 36]. The main principle of combinatorial approaches is based on the

complex combinatorial constraints derived from the Mendel’s laws. Those approaches

enumerate all possible sibling groups, and solve the sibling reconstruction problem as a

set covering problem. To overcome the inefficiency of complete enumeration, a greedy

approach is proposed to solve an integrated optimization model subject to the combi-

natorial constraints of the Mendel’s laws [37]. In addition, a related topic, called hap-

lotype reconstruction, has been studied using combinatorial optimization approaches

[53, 95, 93].

Although both statistical and combinatorial approaches individually have made

great strides in extracting biological knowledge from microsatellite data, they are still

faced with several challenges including computational complexity and inaccurate recon-

struction due to incomplete or erroneous genetic data [78, 136]. Statistical approaches

need to quantify comprehensive inference of all possible combinations of sibling groups

from the entire population. This procedure is computationally expensive and the com-

putational time grows drastically as the data set is expanded. Combinatorial approaches
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also suffer from the need to enumerate good sibling group candidates [21, 22, 36] while

optimizing an artificial objective based on the parsimony assumption, which often traps

optimization algorithms in local solutions [37]. In addition, genotyping errors and miss-

ing data in sampled genetic markers are other key challenges. Statistical approaches at-

tempt to infer the relatedness of individuals using similarity measures between genetic

markers from individual pairs as the main objective while those genetic markers are

susceptible to genotyping errors [136]. On the other hand, combinatorial approaches

restrict themselves to hard combinatorial constraints of sibling groups based on the

Mendel’s laws [37]. Thus, even a few genotyping errors or missing data may make an

actual sibling group violate those constraints, and the true sibling groups will not be

considered as feasible groups.

2.1.2 Contributions

In this study, we first present a mathematical programming model to construct and

assign individuals into sibling groups that satisfy the complex combinatorial constraints

derived from Mendel’s laws. The model is provably a true presentation of the sibling

reconstruction problem under a parsimony assumption. We propose a new heuristic

approach based on a well-known approximation algorithm to solve this model as we

find that this model is a very large-scale mixed-integer programming model.

Tn order to efficiently provide a more accurate solution to the sibling reconstruction

problem, we develop a new computational approach that incorporates both combina-

torial and statistical concepts in a single optimization model. Specifically, based on

a branch-and-price framework, we formulate a set covering problem to minimize the

number of reconstructed sibling groups while using the column generation technique

to generate high-quality sibling group candidates. As high-quality sibling groups are

generated in the subproblem, we propose mixed-integer linear (and nonlinear) program-

ming formulations to generate a sibling group with the maximum likelihood (statistical

similarity measure) subject to the combinatorial constraints derived fromMendel’s laws.

In addition, we show that the sibling reconstruction problem can be presented as
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a special case of the well-known capacitated clustering problem (CCP). We propose a

new heuristic optimization algorithm, which has similar concept to a greedy randomized

adaptive search procedure (GRASP) [56] that integrates the combinatorial constraints

and the concept of parsimony with a statistical similarity measure. The proposed frame-

work involves the following phases: the construction of clusters and the enhancement

of quality of clusters. In the first phase, an efficient greedy approach, proposed by [37],

is employed repeatedly to construct a number of different possible partitions of (dis-

joint) sibling groups by introducing a randomized perturbation. Subsequently, among

all possible partitions of sibling groups, a set covering problem (SCP) is solved to select

the minimum set of sibling groups to cover the population. In the second phase, we

propose a new two-stage local search with a memory function to improve the quality

of sibling reconstruction based on the similarity of individuals in the sibling groups.

Finally, a SCP is solved again to find the minimum number of sibling groups.

2.1.3 Organization

The structure of this chapter is organized as follows. In Section 2.2, the biological

background for the sibling reconstruction problem introduced. From genetic data, the

functions of combinatorial implications (constraints) of Mendel’s laws and statistical

similarity measure are described in detail. In Section 2.3, a new mathematical pro-

gram based on the 2-allele constraints and further a complete mathematical program

integrated with the similarity measure function for the sibling reconstruction problem

are presented. In Section 4.2.3.1, the background of real biological data sets used in

this study is described. The simulated data sets are generated and used for the demon-

stration of the capability of the proposed approaches on larger and complex data sets.

In Section 4.2.3.3, a widely used metrics to evaluate the reconstruction accuracy is

presented. In Section 2.6, a greedy heuristic approach is proposed and the results are

presented by testing on the real biological data sets and the synthetic data sets. In Sec-

tion 2.7, a column generation framework with a branch-and-price approach is proposed

to efficiently solve the sibling reconstruction problem. In Section 2.8, we describe how

the sibling reconstruction problem can be solved as a capacitated clustering problem
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by a proposed heuristic optimization algorithm. We conclude this chapter in Section

2.9.

2.2 Biological Background and Problem Definition

In this section, we introduce basic biological background from genetic data for the

sibling reconstruction problem.

2.2.1 Basics of Genetic data

Microsatellites are repeating sequences of DNA, for example, (AGC)n or (GT )n, where

n is the length of repeated tandems. A different number of repeated tandems defines a

distinct pattern of variable DNA sequences, which is called an allele. There are many

microsatellite locations (called loci) that can be genotyped on the chromosome. There

are often many alleles present at a microsatellite locus, which make them fully infor-

mative within pedigrees. Figure 2.1 illustrates a schematic example of microsatellites

sampled from chromosome pairs of a cohort of individuals. From the figure, we assume

that two microsatellite loci are genotyped from each individual. At locus 1, the two

tandem repeats, (CA)2 and (CA)3, are encoded as alleles #1 and #2, respectively.

At locus 2, the two tandem repeats, (GA)3 and (GA)4, are encoded as alleles #12 and

#13, respectively. In diploid organisms, the genotype is determined by two homologous

copies of each chromosome and two alleles. At each locus, homozygous alleles denote a

pair of identical alleles, and heterozygous alleles denote a pair of different alleles. For

example, shrimp b is heterozygous due to two distinct alleles #2 and #3 at locus 1 and

homozygous due to a single allele #12 at locus 2.

In order to mathematically model microsatellites, we present the alleles in a multi-

dimensional matrix form that encodes the allele information. We first define the follow-

ing sets that will be used throughout this chapter: I is a set of individuals, L is a set of

loci, and Kl is a set of alleles at locus l ∈ L. We define the matrix entry alik ∈ {0, 1, 2}

of individual i ∈ I at locus l ∈ L, where alik = 1 when distinct allele k ∈ Kl is present,

alik = 2 when homozygous allele k ∈ Kl is present, and 0 if allele k is not present.
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CACA

(1/2) and (12/13)

CACACA

GAGAGA GAGAGAGA

Locus        1                     2

Locus 2:
Allele #11 = GAGA
Allele #12 = GAGAGA
Allele #13 = GAGAGAGA

Locus 1:
Allele #1 = CACA
Allele #2 = CACACA
Allele #3 = CACACACA

Chromosome Pair

Maternally

Inherited

Paternally

Inherited

Locus 1

Locus 2

Microsatellites

Individuals

Shrimp a

(1/2) and (12/13)
Shrimp b

(2/3) and (12/12)

Shrimp c

(3/3) and (12/13)

Shrimp d

(4/5) and (17/14)

Shrimp e

(6/7) and (14/16)

Figure 2.1: An illustration of microsatellites genotyped at two loci from a chromosome
pair of diploid individuals. Individual genotypes are defined by a pair of co-dominant
alleles at each locus.

Figure 2.2 illustrates an example of how to encode the allele information from a cohort

of five individuals with two loci. For example, a2d,14 = 1 indicates that shrimp d has a

distinct allele #14 at locus 2, while a1c,3 = 2 indicates that shrimp c has homozygous

alleles #3 at locus 1. We note the case where two allele pairs (#1/#3) and (#3/#1),

having the same alleles located at different sides, present the same genotype.

2.2.2 Combinatorial Implications of Mendel’s Laws

To describe the genetical inheritance in diploid organisms, Mendel’s laws (or Mendelian

inheritance laws) [30, 107] laid down simple rules: an offspring inherits one allele from

each of its parents at each locus and the inheritance pattern of alleles at one locus is

independent of the other loci. A sibling group is defined as a set of individuals (i.e.,

siblings) that share common alleles from the same parents at each locus. Based on

these rules, [21, 36] first introduced the 4-allele condition, which is a necessary (but

not sufficient) condition to ensure the sibling construction to be genetically consistent.

Specifically, the 4-allele condition for any given valid sibling group constrains that the

number of distinct alleles at each locus is less than or equal to four. Subsequently,
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0 0 0 1

1 0 0 1

1 1 0 0

0 2 0 0

1 0 1 0

Allele   #1    #2    #3    #4    #5    #6

Locus 1

Locus 2

Shrimp Locus 1 Locus 2

a 1/2 11/13

b 2/3 12/12

c 3/3 11/12

d 4/5 11/14

e 6/4 14/16

0 0 0 1

0 0 0 1

0 0 2 0

0 1 1 0

1 0 1 0

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

Allele   #11   #12   #13  #14  #16 

Figure 2.2: A multidimensional matrix presents microsatellites from a cohort of shrimps
sampled at two loci. Note that each allele is represented by a number and same numbers
represents the same alleles.

[22] proposed the 2-allele condition, which is tighter and more restricted than the 4-

allele condition. Specifically, the 2-allele condition for any given valid sibling group

constrains that (1) the number of distinct alleles plus the number of homozygous alleles

at each locus is less than four, and (2) each allele cannot appear together with more

than two other alleles at each locus. [37] derived the mathematical constraints of the

2-allele condition by using the multi-dimensional matrix alik of microsatellites, which

are expressed as follows:

Definition 1 (2-allele constraints). A sibling group of individuals S ⊆ I satisfies the

2-allele condition if and only if they satisfies the following constraints:

(a) at any locus l ∈ L, the sum of the numbers of distinct alleles and homozygous alleles

is less than or equal to 4, i.e., |
∪

i∈S{k1il}|+ |
∪

i∈S{k2il}| ≤ 4, where k1il is an allele such

that alik ̸= 0 and k2il is an homozygous allele such that alik = 2, and

(b) at any locus l ∈ L, each allele k cannot appear together with more than two other

alleles (excluding itself), i.e., |
∪

i∈S
∪

k′∈Kl\kkil : {k, k
′} ∈ Kl| ≤ 2.
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For illustration, we shall show how the 2-allele constraints are applied to the recon-

struction of sibling groups with the population shown in Figure 2.2. Shrimps a and b

can be considered a valid sibling group because they satisfied both constraints (a) and

(b). Specifically, the group {a, b} has distinct alleles {1, 2, 3} at locus 1, and distinct

alleles {11, 12, 13} and homozygous alleles {12} at locus 2. The sum of the numbers

of distinct alleles and homozygous alleles is less than or equal to 4 for both loci 1 and

2. At both loci, each allele appears with at most two others alleles. On the other

hand, shrimps b, c, and d are not a valid sibling group. The group {b, c, d} fails to

satisfy constraint (a) because the sum of the numbers of distinct alleles {2, 3, 4, 5} and

homozygous alleles {3} exceeds 4 at locus 1 although both constraints (a) and (b) are

satisfied at locus 2.

2.2.3 Similarity Measure from Genetic Data

Assume there are no typing errors or missing data, the similarity likelihood from genetic

data can provide the direct inference of the sibling relationships when we do not have

parentage information in advance. Here we propose a pairwise approach to score the

similarities between the genotypes of all individual pairs. We define the similarity score

qlii′ in Equation (2.66) to describe the similarity degree of two individuals i and i′ ∈ I

from the distance between both genetic markers, |alik − ali′k|, for each locus l ∈ L.

qlii′ =



1 if
∑
k∈K
|alik − ali′k| = 0;

0.5 if
∑
k∈K
|alik − ali′k| = 2;

0 if
∑
k∈K
|alik − ali′k| = 4.

(2.1)

If two individuals share both common alleles at a locus, then qlii′ = 1, i.e., they are said

to be identical. If two individuals share only one common allele at a locus, then qlii′ =

0.5. If two individuals share no common alleles at a locus, then qlii′ = 0. Subsequently,

with the similarity score for each locus, we can determine the pairwise similarity score
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for an individual pair over all loci, which is computed by

qii′ =
∑
l∈L

qlii′ . (2.2)

The higher the degree, the more similar two individuals. Furthermore, we are able to

obtain the total score of individuals in a sibling group j ∈ J , where J is a set of sibling

groups. The group similarity is computed by

qj =
∑

(i,i′)∈S

qii′ ∀j ∈ J. (2.3)

Compare groups {a, b, c}, and {b, c, d} in Figure 2.2. From their group similarity scores

2 and 1, we rather select the sibling group {a, b, c} with higher similarity score for the

reconstruction when both satisfy the 2allele constraints.

In most studies of natural populations, it is more practical to sample genetic data

from a cohort of individuals without parentage information. Reconstructing sibling

groups would mostly rely on the similarity likelihood from genetic data of individuals,

while all sibling groups satisfy the 2-allele constraints. For this, in the next section, we

propose a complete mathematical formulation that combines both combinatorial and

statistical functions to find the sibling reconstruction with the objective of the minimal

set of sibling groups as there is no real objective defined properly.

2.3 Mathematical Programs for the Sibling Reconstruction Problem

In this section, we present two mathematical optimization models for the sibling recon-

struction problem using the biological concepts of the combinatorial constraints and

the similarity measure.

We define the following notations that are used thorough this chapter. Consider

a set of individuals i ∈ I presented by a set of loci i ∈ L of alleles k ∈ Kl, where

K1 ∪ K2... ∪ K|L| = K, in a set of sibling groups j ∈ J . The decision variables are

defined as follows:
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• zj ∈ {0, 1}: indicate if any individual is selected to be a member of sibling group

j;

• xij ∈ {0, 1}: indicate if individual i is selected to be a member of sibling group j;

• yljk ∈ {0, 1, 2}: indicate if any members in sibling group j has distinct (yljk = 1)

or homozygous (yljk = 2) allele(s) k at locus l;

• vljkk′ ∈ {0, 1}: indicate if allele k appears with allele k′ in sibling group j at locus

l.

2.3.1 2-Allele Optimization Model

The first optimization model, called 2-allele optimization model (2AOM), is to find a

minimum set of sibling groups subject to the 2-allele constraints alone. A mix-integer

linear program is given by.

(2AOM) min
∑
j∈J

zj (2.4)

s.t.
∑
j∈J

xij ≤ zj ∀ i ∈ I, j ∈ J (2.5)

∑
j∈J

xij ≥ 1 ∀ i ∈ I, (2.6)

∑
i∈Ij

alikzj ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L, (2.7)

∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L, (2.8)∑
i∈I

alika
l
ik′zj ≤Mvljkk′ ∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L, (2.9)∑

k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L, (2.10)

zj , xij , v
l
jkk′ ∈ {0, 1}; yljk ∈ {0, 1, 2}

∀ j ∈ J, k and k′ ∈ K, l ∈ L. (2.11)

The objective in Equation (2.4) is to minimize the total number of sibling groups.

Equation (2.5) ensures that the binary sibling group variables must be activated for



14

the assignment of any individual i to sibling group j. Equation (2.6) ensures that

every individual i has to be assigned to at least one sibling group j. Constraint set in

Equation (2.7) ensures that a group j is activated as the integer variable yljk for distinct

or homozygous indication must be activated for the existence of distinct or homozygous

allele(s) at locus l in sibling group j. Constraint set in Equation (2.8) ensures that in

a group j, the total number of distinct and homozygous alleles is not greater than

4. We relate these two constraint sets in Equation (2.7)-(2.8) to (a) in Definition 1.

Constraint set in Equation (2.9) restricts that allele pair k and k′ must be activated

when individual i is assigned to group j. The big M is a large positive number, defined

by M = |I|+ 1. Constraint set in Equation (2.10) ensures that every allele in a sibling

group does not appear with more than two other alleles (excluding itself). We relate

these two constraint sets in Equation (2.9)-(2.10) to (b) in Definition 1.

The 2AOM problem is considered to be a generalization of the well-known set cover-

ing problem with additional constraints such as the 2-allele constraints. For computa-

tional complexity, the total number of discrete variables is O(max(|J |∗|K|∗|L|, |I|∗|J |)),

and the total number of constraints is O(|J |∗|K|2∗|L|). It is easy to see that the 2AOM

problem is a very large-scale complex problem and may not be easy to solve for large

data sets.

An implementation issue is noted here. Solving the 2AOM problem requires an

initialization in terms of the total number of sibling groups. If the initial number of

sibling groups is too small, the problem will become infeasible. If the initial number

of sibling groups is too large, we will have to introduce much more binary variables

then we need to. The proposed heuristic approach discussed next can also be used to

initialize the number of sibling groups as its solution can be theoretically shown to be

an upper bound of the 2AOM problem.
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2.3.2 Integrated 2-Allele Optimization Model with Similarity Mea-

sure

In the 2AOM, only the combinatorial constraints and the concept of parsimony, which

is to minimize the number of sibling groups, were considered in the model. More impor-

tantly, statistical similarity measure from genetic features of individuals can provide di-

rect information to benefit the sibling relationships, while the combinatorial constraints

give the robustness of reconstructing sibling groups. Therefore, we further incorporate

the similarity measure in the model. We slightly modify the sibling group set. Assume

there is a completely enumerated set of sibling groups j ∈ J and an assignment matrix

is known as δij ∈ {0, 1} to indicate that individual i ∈ Ij is assigned in group j. A

modified mixed-integer linear program is given by

(I2AOM) min
∑
j∈J

(1− θqj)zj (2.12)

s.t.
∑
j∈J

zj ≥ 1 ∀ i ∈ I, (2.13)

∑
i∈Ij

alikδijzj ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L, (2.14)

∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L, (2.15)∑
i∈I

alika
l
ik′δijzj ≤Mvljkk′

∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L, (2.16)∑
k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L, (2.17)

zj , v
l
jkk′ ∈ {0, 1}; yljk ∈ {0, 1, 2}

∀ j ∈ J, k and k′ ∈ K, l ∈ L. (2.18)

The objective in Equation (2.12) includes the minimization of sibling groups and the

maximization of similarity degrees of individuals in the same groups, where we intro-

duce a parameter θ balancing two different scales. Equation (2.13) ensures that every

individual i has to be assigned to at least one group j. Constraint set in Equation
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(2.14) ensures that a group j is activated as the integer variable yljk for distinct or

homozygous indication must be activated for the existence of distinct or homozygous

allele(s) at locus l in sibling group j. Constraint set in Equation (2.15) ensures that

in a group j, the total number of distinct and homozygous alleles is not greater than

4. We relate these two constraint sets in Equation (2.14)-(2.15) to (a) in Definition 1.

Constraint set in Equation (2.16) restricts that allele pair k and k′ must be activated

when individual i is assigned to group j. The big M in Equation (2.16) is a large

positive number defined by M = |I|+1. Constraint set in Equation (2.17) ensures that

every allele in the group does not appear with more than two other alleles (excluding

itself). We relate these two constraint sets in Equation (2.16)-(2.17) to (b) in Definition

1.

2.4 Description of Data Sets

In this section, we describe the real biological data sets and simulated data sets, used

for testing the performances of our proposed approaches.

2.4.1 Real Data Sets

The real biological data sets are considered the benchmark data sets widely used in

the literature because the true sibling relationships (ground truth) are known. The

background of the data sets is described as follows:

Salmon: The Atlantic salmon Salmo salar data set comes from the genetic im-

provement program of the Atlantic Salmon Federation [76]. We use a truncated sample

of microsatellite genotypes of 250 individuals from 5 families with 4 loci per individual.

The data does not have missing alleles at any locus. This data set is a subset of one of

the samples of genotyped individuals used in [13]. There are 2.66% alleles missing in

the data set.

Radish: The wild radish Raphanus raphanistrum data set [45] consists of samples

from 150 radishes from two families with 5 loci and 5 alleles per locus. There are 37

missing alleles among all the loci.
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Shrimp: The tiger shrimp Penaeus monodon data set [80] consists of 59 individuals

from 13 families with 7 loci. There are 8 pairs of missing alleles.

Fly: The Scaptodrosophila hibisci data set [139] consists of 190 individuals in the

same generation from 6 families sampled at various number of loci with up to 8 alleles

per locus. All individuals shared 2 sampled loci which were chosen for our study.

Around 39% of the alleles are missing in the data set.

Ant: The Leptothorax acervorum data set [72] are haplodiploid species. This data

set is a subset of one of the samples used in [135], which consists of 377 worker diploid

ants. There are 9% of the alleles missing in the data set.

Turtle: Kemp’s ridleys sea turtle data set, Lepidochelys Kempi, is polyandrous and

sampled from 26 mothers and offspring groups at 3 loci [82]. There are 16.38% of the

alleles missing in the data set. The other data set is a subset obtained from the original

sampled data by eliminating most violated and indefinite sibling groups. There are still

12.12% missing alleles.

Characteristics of the data sets are summarized in Table 4.1. The numbers of

individuals, actual sibling groups, loci, and different types of alleles genotyped at each

locus, missing values in data are, in turn, reported. Based on our preliminary analysis of

the genotypes, except salmon and turtle, there are no violations of the 2-allele condition

(2-allele constraints) in the data sets of shrimp, fly, and ant. There are missing alleles

in the data sets except salmon, especially fly and turtle data sets that contain larger

portions. In our study, we do not leave them out and treat the missing alleles as a wild

card that can represent any alleles in comparison with the others. Thus, a lower bound

(the worst case) for the reconstruction is guaranteed.

2.4.2 Simulated Data Sets

To create a set of simulation data, we developed a random population generator, which

works as follows. The generator first constructs a number of adults (parents) with

the full genetic information. Based on this information, a single generation of sibling

data was generated and the parentage information was retained so that the true sibling
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Table 2.1: Characteristics of biological data sets
No. of No. of No. of No. of types of Missing

Species individuals groups loci alleles per locus alleles (%)

Salmon 351 6 4 (9, 11, 9, 7) 0.00
Radish 531 2 5 (3, 2, 4, 4, 2) 3.99
Shrimp 59 13 7 (20, 18, 12, 7, 23, 9, 16) 2.66
Fly 190 6 2 (7, 7) 37.89
Ant 377 10 6 (22, 16, 15, 3, 5, 8) 9.00
Turtle 175 26 3 (5, 13, 10) 16.38
Turtle-ma 55 9 3 (5, 9, 8) 12.12
a Turtle-m is the subset of turtle without most indefinite sibling groups.

groups are known. The sibling problem generator requires the following parameters:

M is the number of adult males; F is the number of adult females; l is the number of

sampled loci; a is the number of alleles per locus; j is the number of juveniles in the

population per one adult female; o is the maximum number of offsprings per parent

couple. Although the random problem generator is rather simplistic, it is consistent with

the genetics of known parents and provides a baseline for the accuracy of the algorithm.

The procedure of our random generator can be described in detail as follows:

Step 1. First, we generated the parent population of M males and F females with

parents with l loci, each having a distinct alleles per locus.

Step 2. After the parents were generated, we created a population of their off-

springs by randomly selecting j pairs of parents. A male and a female were chosen

independently and uniformly at random from the parent population.

Step 3. For each of the chosen parent pairs, we generated a specified number of

offsprings, o, each randomly receiving one allele from its mother and one from its father

at each locus.

This population generator is a rather simplistic approach; however, it is consistent

with the genetics of known parents and provides a baseline for testing the performance

of the any solution approaches. To produce a simulated data set used in this study, we

varied the parameters of the population generator as follows:

• The number of adult females (F ) and the number of adult males (M) are set to
10, 30;

• The number of sampled loci (l) is set to 2, 3, 4, 6, 10;
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• The number of alleles per locus (a) is set to 2, 5, 10, 20;

• The number of families (j) is 1, 2, 5, 10;

• The maximum number of offsprings per couple (o) is set to 2, 5, 10, 40, 50.

For each parameter setting, we obtained a set of offspring population with known

parent pairs. In each population, there are o× j individuals in j known sibling groups.

2.5 Evaluation and Assessment

In our study, the ultimate goal of SRP is the accurate reconstruction of sibling rela-

tionships. However, in SRP, the objective of minimizing the number of sibling groups

and maximizing the similarity likelihood is made for easy implementation, but cannot

be used as a real objective for assessing the reconstruction results. Moveover, the real

relationships (ground truth) are specifically known in all test data sets, so reconstruc-

tion accuracy is among the most used to evaluate the performance by measuring the

percentage of individuals correctly assigned to the sibling groups in comparison with

the actual sibling groups. The reconstruction accuracy can be calculated by quantifying

the error rate from the minimum partition distance [63], which is equal to (1 - error

rate). The minimum distance is equivalent to a maximum assignment linear problem

(MALP) and known to be a maximum bipartite weighted matching problem. The

MALP can be formulated as follows. Given two (non-) disjoint sets of sibling groups

A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} . We denote a m× n cost matrix C, where

cij is the cost of assigning group ai to bj , which is the number of individuals correctly

assigned. We define a binary decision variable: xij = 1 if group ai is assigned to group

bj , and 0 otherwise. The mathematical programming formulation is given by

(MALP) max
∑
i∈I

∑
j∈J

cijxij (2.19)

s.t.
∑
i∈I

xij ≤ 1 ∀ j ∈ J, (2.20)∑
j∈J

xij ≤ 1 ∀ i ∈ I, (2.21)

xij ∈ {0, 1} ∀ i ∈ I, j ∈ J. (2.22)
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The objective in Equation (2.19) is to maximize the cost of assigning groups in A to

groups in B. The constraints in Equations (2.20) and (2.21) ensure that each group in

B (A, respectively) is assigned to at most one group in A (B, respectively). Note that

the solution to MALP can be represented as the minimum number of individuals to be

removed from the resulting sibling groups (i.e., error rate) so as to be identical to the

actual sibling groups.

2.6 2AOM by Heuristic Approach: Iterative Maximum Covering Set

2.6.1 Iterative Maximum Covering Set

In the 2AOM problem, the parsimony assumption to minimize the number of sibling

groups may not give the most accurate sibling reconstruction, which is the real objective

of our sibling reconstruction problem. In addition, we can only say, that the optimal

solution to 2AOM (the number of sibling groups) is biologically a true lower-bound

of the real sibling groups. Therefore, to solve the 2AOM problem more efficiently, we

herein propose a heuristic approach, namely Iterative Maximum Covering Set (IMCS),

which is an iterative optimization approach motivated by the standard approximation

algorithm of the set covering problem, i.e., a maximum coverage approach. The idea

behind this approach is to construct one sibling group maximizing the individual cover

in each iteration. Essentially, in each iteration, we solve a reduced problem of 2AOM.

The objective of IMCS is to maximize the total number of individuals to be covered

by a sibling group, which satisfies the 2-allele constraints. The IMCS problem can be

formally defined as follows. We define the following decision variables:

• xi ∈ {0, 1}: indicate if individual i is selected to be a member of the current

sibling group;

• ylk ∈ {0, 1, 2}: indicate if any members in the current group has distinct (yljk =

1) or homozygous (yljk = 2) allele(s) k at locus l;

• vlkk′ ∈ {0, 1}: indicate if allele k appears with allele k′ in the current sibling group

at locus l.
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The mathematical formulation of IMCS problem is given by

(IMCS) max
∑
i∈I

xi (2.23)

s.t. alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L, (2.24)∑
k∈K

ylk ≤ 4 ∀ l ∈ L, (2.25)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L, (2.26)∑

k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L, (2.27)

xi, v
l
kk′ ∈ {0, 1}; ylk ∈ {0, 1, 2}

∀ i ∈ I, k and k′ ∈ K, l ∈ L. (2.28)

The objective in Equation (2.23) is to maximize the total number of individuals assigned

to the current sibling group. Similarly, Constraint sets in Equations (2.24)-(2.27) ensure

that all individuals assigned in current sibling group must satisfy the 2-allele constraints.

The big M is a large positive number defined by M = |I|+ 1.

The heuristic approach is to iteratively solve the IMCS problem. In each iteration,

the solution of the IMCS problem is a set of individuals assigned to the current sibling

group. Then we remove the assigned individual from the set I and repeat the proce-

dure until all individuals are assigned. Note that the IMCS approach is viewed as a

assignment problem where every individual belongs to only one sibling group, while the

2AOM problem is solved for non-disjoint sibling groups. The IMCS approach is fast and

scalable for very large-scale sibling reconstruction problem because the problem size is

significantly reduced as we remove the possible groups of larger individual assignment.

2.6.2 Reconstruction Results of 2AOM and IMCS

We present the reconstruction results of the 2AOM and IMCS approaches on real and

simulated data sets. All programs were coded in MATLAB with synchronization of

CPLEX version 10.0 in GAMS on the platform of an Intel Xeon Quad Core 3.0GHz

processor workstation with 8 GB RAM memory. The computational times reported
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Table 2.2: Performance characteristics of the 2AOM and IMCS approaches on real
biological data sets.

2AOMa IMCS

Actual no. No. of Accuracy Gap (%) Timeb No. of Accuracy Timeb

Species of groups groups (%) in CPLEX (sec.) groups (%) (sec.)
Salmon 6 8 94.02 63 > 72000 7 98.29 130
Radish 2 3 51.98 0 75 3 52.54 26
Shrimp 13 14 96.61 67 > 72000 13 100.00 150
Fly 6 7 67.72 55 > 72000 8 53.80 23
Antc 10 - - - > 72000 11 93.10 506
Turtle 9 9 47.27 60 > 72000 8 61.82 12
a The initial number of sibling group is 30.
b Computational time limit is set to be 20 hours.
c No feasible solution to 2AOM was found within time limit.

were obtained from the desktop’s internal timing calculations, which include time used

for preprocessing and postprocessing. The computational time for each instance is 20

hours liimit.

Table 2.2 reports the accuracies and computational times for the real data sets. It

is seen that the IMCS approach obtains the optimal solutions in all instances, whereas

solving 2AOM problem directly obtains the optimal solution only for the radish data

set. Specifically, solving 2AOM in CPLEX failed to obtain the optimal solution within

20 hour time limit for the salmon, shrimp, fly, ant, turtle data sets. Note that the

reported results (i.e., the numbers of sibling groups) were based on the best integer

feasible solutions.

We further show the capability of the 2AOM and IMCS by testing various simulated

data sets generated by the population generator. We also compare the accuracies of both

approaches to a set covering approach M4SCP proposed in [36]. The M4SCP approach

is a similar combinatorial approach that involves enumerating all possible sibling groups

and solving a set covering problem to find a minimum set of sibling groups among them.

In Table 2.3, the results are reported for different parameter settings. For each instance,

we fix one parameter at a time. We observed that the IMCS approach outperforms the

2AOM and M4SCP approaches on average. We note that all instances were solved to

optimality except an instance with the setting of l = 10, a = 10, j = 10, and o = 10. In

addition, in most cases, the 2AOM approaches could not obtain the optimal solutions

except the instance with setting of a = 2 and j = 2.
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Table 2.3: Accuracies of the 2AOM and IMCS approaches compared to the M4SCP
approach [36] from simulated data sets.

Parameter 2AOM IMCS M4SCP
Settings Accuracy Time Accuracy Time Accuracy Time
l=2 59.25% 2273.04 57.61% 2.28 54.18% 0.26
l=4 63.94% 2754.80 66.53% 8.28 52.71% 0.21
l=6 64.28% 3005.49 71.44% 28.96 54.78% 0.19
l=10 60.56% 3078.93 71.89% 239.21 55.28% 0.19
a=2 26.67% 0.56 26.67% 0.21 36.98% 0.16
a=5 69.42% 3679.45 72.19% 30.54 58.34% 0.16
a=10 71.81% 3699.62 81.83% 225.17 60.71% 0.39
a=20 80.14% 3732.64 86.78% 22.81 60.91% 0.19
j=2 76.67% 1.50 78.13% 0.72 62.88% 0.02
j=5 64.63% 3079.56 64.58% 3.65 49.56% 0.11
j=10 44.73% 5253.14 57.90% 204.68 34.00% 0.75
o=2 49.48% 1711.83 54.38% 2.67 18.19% 0.22
o=5 69.46% 3250.27 69.83% 14.41 36.66% 0.27
o=10 67.08% 3372.10 76.40% 191.97 53.98% 0.22

2.7 Column Generation Framework with a Branch-and-Price

In this section, we propose a column generation framework with a branch-and-price as

an alternative to solve the sibling reconstruction problem.

Recall that the 2AOM and I2AOM are a generalization of the set covering problem

and has been shown to be strongly NP- hard [15, 37]. The main challenge of solving

set covering problems lies in the enumeration of all possible sets. In our case, explicitly

enumerating the complete set of valid sibling groups is intractable and impractical. Our

group has also shown that it is very hard to approximate as well [15]. In addition, one

will have to fine tune and optimize the balancing parameter θ. For these reasons, we

develop a column generation approach to efficiently generate high-quality (more prob-

able) sibling groups. Here we use the terms sibling group and column interchangeably

when mentioned throughout this section.

In our column generation approach, the master problem (MP) is formulated as a

mini- mum set covering problem, and the pricing subproblem (SP) is formulated as a

generalized knapsack problem where sibling groups that satisfy the 2-allele constraints

and maximize the similarity scores are constructed. We solve the linear programming

(LP) relaxation of the restricted master problem (RMP) with a limited set of valid

sibling groups. A set of (optimal) dual variables is produced corresponding to the
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constraint set of individual i ∈ I and is passed to the pricing subproblem as a guide for

generating sibling groups. The task of the subproblem (SP) is to price out improving

sibling groups with respect to the dual variables. In particular, some of sibling groups

have individuals hardly being grouped together with other individuals. New sibling

groups are added into the RMP after checking the optimality. The RMP is updated

and resolved. The procedure is iteratively performed until there is no new sibling

groups to improve the solution, which implies that the current LP solution to the

master problem is optimal. Note that we need to solve the original RMP for an integer

programming (IP) solution (i.e., a final set of sibling groups) at the end of column

generation iterations. Moreover, a branch rule is introduced to the column generation

at each node in the branch and bound search to find a proven optimal solution.

2.7.1 Restricted Master Problem: Set Covering Model

Given a limited set Js ⊂ J of valid sibling groups, the RMP for the sibling reconstruction

is formulated as a minimum set covering problem (Min-SCP) as follows. We define the

binary variable: εi = 1 if any individual i is not assigned to any group and 0 otherwise.

We denote an assignment matrix δij , where i ∈ I and j ∈ Js. Each column δj of the

assignment matrix represents a valid sibling group such that δij = 1 if individual i is

assigned to the group j and 0 otherwise.

(Min-SCP) min
∑
j∈Js

zj + C
∑
i∈I

εi (2.29)

s.t.
∑
j∈Js

δijzj + εi ≥ 1 ∀ i ∈ I, (2.30)

zj , εi ∈ {0, 1}, ∀ i ∈ I, j ∈ Js. (2.31)

The objective in Equation (2.29) is to minimize the number of sibling groups plus the

penalty cost of individuals not assigned. Constraint set in Equation (2.30) ensures

every individual has to belong to at least one sibling group. If an individual i is not

assigned to any sibling groups, then penalized in the objective function with the cost

C = |I|+ 1. Equation (2.31) fixes binary variables.
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It is noted that LP relaxation of Min-SCP is solved during column generation iter-

ations and the IP formulation of Min-SCP is solved to obtain the exact IP solution at

the last iteration since some columns are left out of the LP (i.e., fractional solutions).

Next, we present the pricing subproblem to find new sibling groups to improve the

objective function value of Min-SCP.

2.7.2 Subproblem: Generating Valid Sibling Groups

For the optimal reconstruction, we attempt to construct a sibling group with (maxi-

mum) negative reduced cost, which is able to improve the solution to the RMP. We

obtain the optimal dual variables πi associated to the constraint set in Equation (2.30).

The reduced cost for a new sibling group j is computed by

cj = 1−
∑
i∈I

πiδij ∀j ∈ J. (2.32)

The new sibling group j is assumed not identical to any groups in the existing set Js.

Note that individuals need not be considered in computation if the associated dual

variables are zero or extremely small numbers. Subsequently, we check the optimality

condition:

c̄ := min{cj = 1−
∑
i∈I

πiδij | j ∈ J}. (2.33)

If c̄ ≥ 0, no improving sibling groups are eligible to add into the RMP, which states that

the optimal solution is found. Otherwise, any sibling group j with negative reduced

cost is added into the RMP.

2.7.2.1 Weighted Maximization Problem

To construct a sibling group from the reduced cost in Equation (2.32), we propose a

weighted maximization problem (WMP), which uses the dual variables πi as weight co-

efficients of individuals. We define the decision variables as follows. xi = 1 if individual

i is selected to be a member of current sibling group and 0 otherwise. ylk = 1 if any
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individual in current sibling group has distinct allele k at locus l, ylk = 2 if any member

in current sibling group has homozygous allele k at locus l, and 0 otherwise. vlkk′ = 1 if

allele k appears with allele k′ at locus l in current sibling group, and 0 otherwise. The

mathematical programming formulation of WMP is given by

(WMP) max
∑
i∈I

πixi (2.34)

s.t. alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L, (2.35)∑
k∈K

ylk ≤ 4 ∀ l ∈ L, (2.36)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L, (2.37)∑

k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L, (2.38)

xi, v
l
kk′ ∈ {0, 1}; ylk ∈ {0, 1, 2} ∀ i ∈ I, k and k′ ∈ K, l ∈ L.(2.39)

The objective in Equation (2.34) is to maximize the weighted sum of individuals as-

signed to the current sibling group. Similarly, Constraint sets in Equations (2.35)-(2.38)

ensure that all individuals assigned in current sibling group must satisfy the 2-allele con-

straints. The big M is a large positive number defined by M = |I|+1. Equation (2.39)

fixes decision variables. The constructed sibling group is associated to a new column

δj , where j ∈ J , that could be added to the RMP as a possible sibling group.

2.7.2.2 Similarity Maximization Problem

In theWMP, we only consider a sibling group constructed subject to 2-allele constraints.

To integrate the genetic data, we further propose a similarity maximization problem

(SMP) with the similarity measure function as follows. We first define a |I| × |I|

symmetric matrix Q̄ = πTQπ, where the vector π is the dual variables and Q = (qii′)

is a |I| × |I| symmetric matrix, whose each element represents the pairwise similarity

measure as computed in Equation (2.2).It is important to note that the SMP is a
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nonlinear program. The mathematical programming formulation of SMP is given by

(SMP) max
∑
i∈I

∑
i′∈I

q̄ii′xixi′ (2.40)

s.t. alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L, (2.41)∑
k∈K

ylk ≤ 4 ∀ l ∈ L, (2.42)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L, (2.43)∑

k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L, (2.44)

xi, v
l
kk′ ∈ {0, 1}; ylk ∈ {0, 1, 2} ∀ i ∈ I, k and k′ ∈ K, l ∈ L.(2.45)

The only difference between WMP and SMP lies in the objective function. The ob-

jective function of WMP is linear whereas the objective function of SMP is quadratic.

The quadratic objective in Equation (2.40) is to maximize the total similarity score of

individuals with non-zero dual variables assigned in the current sibling group. Simi-

larly, constraint sets in Equations (2.41)-(2.44) ensure that all individuals assigned in

the current sibling group must satisfy the 2-allele constraints. To solve the quadratic

SMP, we employ a linearization technique proposed in [38] to reformulate the quadratic

program as a mixed integer linear program. We define si ≥ 0 as the total pairwise simi-

larity score for individual i and ri ≥ 0 as a surplus variable.The linearized mathematical
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formulation of SMP is given by

(L-SMP)max
∑
i∈I

si (2.46)

s.t.
∑
i′∈I\i

qii′xi′ − ri − si = 0 ∀ i ∈ I, (2.47)

si ≤M2xi ∀ i ∈ I. (2.48)

alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L, (2.49)∑
k∈K

ylk ≤ 4 ∀ l ∈ L, (2.50)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L, (2.51)∑

k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L, (2.52)

xi, v
l
kk′ ∈ {0, 1}; ylk ∈ {0, 1, 2}; si, ri ≥ 0 ∀ i ∈ I, k and k′ ∈ K, l ∈ L.(2.53)

The objective in Equations (2.46) is still to maximize the total similarity score of in-

dividuals with non-zero dual variables assigned to the current sibling group. Constraint

set in Equation (2.47) is to calculate the total pairwise similarity score of individuals

grouped with individual i, excluding itself. Constraint set in Equation (2.48) ensures

individual i is activated to select. The big M2 is a large positive number. which can

be set to M =
∑

i,i′∈I
||qii′ ||. Constraint sets in Equations (2.49)-(2.52) ensure that all

individuals assigned in the current sibling group must satisfy the 2-allele constraints.

2.7.2.3 Greedy Generation Procedures

According to [132] and [19], solving the SP in the column generation is computationally

intensive. However, in practice, it is not necessary to select the only column with the

highest reduced cost i.e., any column with a negative reduced cost can be a good

candidate. In addition, it is extremely hard to generate a sibling group containing all

individuals with non-zero dual variables at one time due to the 2-allele constraints. To

overcome these challenges, we develop two greedy sibling group generation procedures,

and combine them with the WMP or SMP. The key idea of these greedy procedures is
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to generate multiple “good” columns in each iteration of the column generation such

that the overall number of iterations is reduced.

The first procedure, a greedy set partitioning procedure (GSPP), iteratively gen-

erates disjoint sibling groups by solving the WMP (or SMP) to obtain a group after

removing individuals already assigned in the previous iteration. The procedure contin-

ues until all individuals are assigned. In this procedure, the number of individuals in a

group decreases with the iterations. In the latter iterations, there may be one or a few

individuals that are hard to assign to the same groups. The second iterative procedure,

a greedy set covering procedure (GSCP), generates possibly non-disjoint sibling groups.

We use individuals with non-zero dual variables as base individuals. In every iteration,

we solve the WMP (or SMP) to obtain a group that contains other individuals with

a selected base individual. in contrast with GSPP, we do not remove any individuals

being assigned previously after solving the WMP (or SMP) in every iteration. We note

that GSCP generally requires more computational time than GSPP because the number

of iterations of the GSCP is only fixed with the size of individuals with non-zero dual

variables.

2.7.3 Branching Rule

In the branch-and-bound search, we consider a branching rule (called a branch-on

follow-on rule) [120, 19]. We determine, on the one hand, two individuals belong to

the same sibling group and, on the other hand, to different sibling groups. In other

words, on the one (right) branch, a binding rule B(xi, xi′) is defined that a sibling

group is considered when it contains individuals xi and xi′ ; On the other (left) branch,

a releasing rule R(xi, xi′) is defined that a sibling group is forbidden when it contains

individuals xi and xi′ . After determining the branch rule, at each node, the Min-SCP

in the MP and the WMP (or SMP) in the SP need to be modified by adding a new

constraint. For the Min-SCP, on the right branch, we add zj ≤ 0 for the binding rule so

that the sibling group j containing individuals xi and x′i is forbidden to select, whereas,

on the left branch, we do nothing for releasing rule because of zj ≤ 1 originally. For
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the WMP (or SMP), on the right branch, we add a bound constraint for the binding

rule that is given by

xi − x′i = 0, (2.54)

and, on the left branch, for the releasing rule that is given by

xi + x′i < 1. (2.55)

Usually, the determination of a beneficial branch rule (i.e., a pair of individuals)

at a node would reduce the branch-and-bound search procedure. We here consider a

pair selection that determines a pair of two individuals xi and xi′ having the highest

probability of being together among all groups based on the LP solution to the RMP.

We define p(xi, xi′) as a probability of xi and xi′ being together. The pair selection rule

is given by

h(xi, xi′) = arg max
(i,i′)∈I

{p(xi, xi′) =
∑

j | i and i′∈Ij zj∑
j | i or i′∈ Ij

zj
}. (2.56)

For example, we assume there are three sibling groups g1 = {1, 2, 3, 4}, g2 = {1, 2, 3}

and g3 = {3, 4} with LP solutions lp1 = 0.5, lp2 = 0.5, and lp3 = 0.5. As a consequence,

we have several options for the pair xi and xi′ , such as (x1, x2), (x2, x3), (x3, x4) and so

on. By using the rule in Equation (2.56), between two pairs (x1, x2) with the probability

p(x1, x2) = (0.5 + 0.5) / (0.5 + 0.5) = 1 and (x2, x3) with p(x2, x3) = (0.5 + 0.5) /

(0.5 + 0.5 + 0.5) = 2/3, we determine the pair (x1, x2) to branch. Note that if the pair

has been selected at previous nodes, we skip to the next highest one and so on.

According to the determined branching rules at each node, additional constraints

to the master problem and the subproblem would leave a number of variables from

consideration. We only eliminate the infeasible columns in the master problem and

avoid to generate columns forbidden in the subproblem. However, in the branch-and-

bound search, the problem structures in column generation procedure at each node

remain unchanged.
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2.7.4 Implementation Settings

Before we present the implementation results, there are some specific settings in our

experiments needed to address ahead when applying a column generation framework

to the large-scale combinatorial problems such as SRP. First, the column generation

procedure starts with an initial (valid) solution. To obtain a good initial solution that

can reduce the number of iterations of procedure, we directly employ the proposed

greedy approaches GSPP and GSCP to generate a set of sibling groups. The solution

is shown to be good enough and can provide a lower bound for comparison with final

solutions. Secondly, it has been mentioned that there may be very similar (degenerate)

solutions for large-scale problems [100]. To prevent the degeneracy, a perturbation is

introduced and may result in different dual variables so as to obtain different combi-

nations of solutions (e.g., sibling groups). We here introduce a perturbation to the

coefficients in the objective function of Min-SCP. We rewrite the Equation (2.29) to

become
∑

j∈Js σjzj + C
∑

i∈I εi, where σj is a random variable uniformly ranging be-

tween [1− ϵ, 1+ ϵ] and ϵ is a small positive number. The perturbation is only executed

during the iterations where there is no improvement on the objective function value.

Thirdly, poor convergence towards final optimal solution (tailing-off effect) frequently

appears in implementing column generation for large-scale problems [19, 100]. In our

experiments, we propose the following termination criteria to prevent a possible long

tail. (1) The optimality condition in Equation (3.26) is met. We also consider the

situation, i.e., cj = 0, where different sibling groups may be priced out after a certain

number of column generation iterations. (2) There is no improvement in the objective

function value of the RMP after a maximum number of iterations (e.g., 50). Within

the period, a maximum number of perturbation iterations is also considered (e.g., 10).

(3) In every node in the branch-and-bound search, the computational time Trun(L),

where L is the level of a node in the search tree, starts with Trun(0) = 5 hours at

root node, decreases geometrically by Trun(L) = (1/2)(L−1)Trun(0), and becomes 0.25

hour by max{0.25, Trun(L)} in a long run. The depth-first strategy is applied for favor-

able improvement. The procedure terminates when whichever criterion is reached first

within a computational time limit of 20 hours.
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Table 2.4: Configuration of experiments.
Approach in subproblem

Subproblem GSPP GSCP

WMP GSPP-WMP GSCP-WMP
SMP GSPP-SMP GSCP-SMP
HYBRID GSPP-HYBRID GSCP-HYBRID

As formulated in column generation, the (dual) SP is mathematically associated to

the (primal) MP and the objective of SP is usually formulated based on the reduced cost

derived from the dual variables in the MP. Columns are then generated in the SP and

checked with the optimality according to the associated reduced costs. Although the

proposed SMP in the SP can generate “good” columns according to our experiences, the

quadratic objective function in Equation (2.40) of SMP is not directly derived from the

reduced cost in Equation (2.32) and not intuitively associated to the MP. The eligibility

of generated columns still cannot be guaranteed by checking the optimality condition

directly. Therefore, we propose a hybrid approach consisting of the WMP and the SMP.

In every column generation iteration, the SMP is first solved to generate high-quality

columns and some of columns with negative reduced costs are possibly added in the

RMP. If the optimality condition is met, we then solve the WMP with the same dual

variables to make sure if the optimality is met again.

Experiments of performing all the proposed approaches are summarized in Table

2.4. Programs were coded in MATLAB with synchronization of CPLEX version 10.0

in GAMS on the platform of an Intel Xeon Quad Core 3.0GHz processor workstation

with 8 GB RAM memory. The computational times reported were obtained from the

desktop’s internal timing calculations, which include time used for preprocessing and

postprocessing. Note that the LP relaxation solution to the RMP in each column

generation iteration was obtained by using the barrier LP solver in CPLEX in order to

reduce the heading-in and the tailing-off effects.
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2.7.5 Reconstruction Results

The results of our proposed approaches with the above-mentioned implementation set-

tings for all instances are presented in Table 2.5. The LP and IP solutions, accuracies,

computational times, and total numbers of new columns added in the column genera-

tion procedure at the root node are reported in the first part (on the left). The total

numbers of visited nodes and computational times of the branch-and-bound search are

reported in the second part (on the right). Overall, when the column generation is

carried out along the root node of branch-and-bound search, we observe that very good

solutions are obtained in most instances in terms of the IP solutions and accuracies

in comparison with actual solutions (ground truth). Particularly, we obtain the best

solution among all instances from GSCP-SMP and obtain the exact sibling reconstruc-

tion with 100% accuracy in some instances of the shrimp and ant data sets. As for

the computational efficiency, there are relatively small quantities of columns (sibling

groups) generated to the RMP of Min-SCP when compared to a brute enumeration.

All experiments are terminated based on the preset stopping criteria within about 5

hours. In addition, it is noted that an instance of implementing GSCP-WMP on the

fly data set is shown to be optimal. However, the sibling reconstruction is not 100%

accurate. It might be caused by high percentage of missing alleles in the data set.

Because the solutions in most instances are not proven to be optimal in the col-

umn generation, we further employed a branch-and-price approach with the proposed

branching rule. The stopping criteria are set as follows: (1) IP solution obtained at

current (descendent) node is close to the LP solution from the root node (the global

lower bound); (2) LP solution obtained at current (descendent) node is larger than the

best IP solution on record; (3) there are no new columns generated at current (de-

scendent) node; and (4) the total computational time is limited to 20 hours. As seen

in the second part of Table 2.5, the nodes are pruned only after one branching (i.e.

3 nodes visited in total) in most instances based on the above stopping criteria. For

the instances (especially the turtle data set) where the branch-and-bound search is not

pruned within 20 hours, we also report the comparison results from the root node and
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best node on record in Table 2.6. It shows that already obtained solutions at the root

node are good enough compared to the IP and LP solutions reliably provided from the

best node.

The effectiveness of incorporating the similarity measure are proved in our exper-

iments. For clarity and briefness, we only plot a representative (the ant set) of all

instances by the behaviors of IP/LP solutions and accuracies obtained by implement-

ing GSCP-WMP (on the top) and GSCP-SMP (on the bottom) in Figure 2.3. Compared

to GSCP-WMP, GSCP-SMP with the similarity measure results in relatively stable and

better solutions fast in a short period of iterations.

In addition, we here remark two causes of undesirable reconstruction. As mentioned

previously, the resultant reconstruction is susceptible to missing alleles in data sets. In

our study, however, we do not leave them aside by using a wild card that can represent

any alleles when compared to the other alleles in a group. When constructing in a

group, the worst-case reconstruction is then promised. Surprisingly, we obtain a good

reconstruction with higher accuracy for the fly data sets (shown in Table 2.10) even

if there are a lot of missing alleles. In addition, we found the violations of the 2-

allele constraints appearing in the actual data sets. This indeed causes the wrong base

comparison although the 2-allele constraints is robust to accurate reconstruction. For

instance, 98.29% is the best accuracy we obtained for the salmon data set. However,

after reassignment of wrong sibling groups manually, we obtain the exact reconstruction

result with 100% accuracy.

2.7.6 Comparison with Existing Approaches

Next, we compared the reconstruction solutions obtained by our proposed approaches

with other existing methods, including 2AOM and IMCS [37], BMG [22], A&F [13], B&M

[24], KINGROUP [86], and COLONY [135]. The 2AOM is a simple version of SRP without

considering the similarity measure function and solved by the greedy heuristic approach

(IMCS). Both 2AOM and IMCS approaches generated sibling groups only based on the

2-allele constraints. Their experimental results showed that the 2AOM could not be
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Table 2.5: The results of our proposed approaches on real biological data sets. The first
part (on the left) reports the characterization of results obtained from the last column
generation iteration at root node. The second part (on the right) reports the numbers
of visited nodes and computational times of the branch-and-bound search. The best
results among all experiments are highlighted in bold-face in terms of the numbers of
IP solution and accuracy. The total computational time is limited to 20 hours.

Column Generation at root node Branch-and-Price
No. of LP IP Accuracy Time No. of new No. of Time

Configuration Species groups Solution Solution (%) (sec.) columns nodes visited (sec.)
GSCP-WMP Salmon 6 7.00 7 98.29 807 140 3 4900

Shrimp 13 13.00 13 100 3539 392 3 11966
Fly 6 5.78* 7 75.26 11413 2558 3 11624
Ant 10 10.00 10 99.73 3890 543 3 13958
Turtle 26 15.61 17 47.43 18079 2716 43 >72000
Turtle-m 9 6.75 7 67.27 602 615 3 2298

GSPP-WMP Salmon 6 7.00 7 98.29 366 79 3 1622
Shrimp 13 13.00 13 100 3147 163 3 15129
Fly 6 7.50 8 47.89 94 64 66 >72000
Ant 10 11.00 11 93.1 1496 109 3 5017
Turtle 26 15.55 18 54.29 18026 1150 43 >72000
Turtle-m 9 7.14 8 76.36 293 123 264 >72000

GSCP-SMP Salmon 6 7.00 7 98.29 2091 3 3 8382
Shrimp 13 13.00 13 100 1262 2 3 4367
Fly 6 7.00 7 84.74 649 93 3 2648
Ant 10 10.00 10 100 2998 12 3 14667
Turtle 26 30.00 30 70.29 5212 245 3 16105
Turtle-m 9 10.00 10 83.64 689 36 3 2111

GSPP-SMP Salmon 6 7.00 7 98.01 11860 19 3 29516
Shrimp 13 13.00 13 100 4420 1 3 12657
Fly 6 6.40 7 69.47 890 66 3 2084
Ant 10 10.00 10 97.61 15558 58 3 34597
Turtle 26 16.19 18 53.14 18728 185 32 >72000
Turtle-m 9 6.80 7 69.09 357 43 3 1460

GSCP-HYBRID Salmon 6 7.00 7 98.01 3477 13 3 >72000
Shrimp 13 13.00 13 100.00 1549 15 3 4946
Fly 6 7.00 7 75.26 650 83 3 2588
Ant 10 10.00 10 100.00 4849 23 3 18098
Turtle 26 30.00 30 70.29 5475 236 3 16434
Turtle-m 9 10.00 10 81.82 369 30 3 1163

GSPP-HYBRID Salmon 6 7.00 7 98.29 11565 26 3 30274
Shrimp 13 13.00 13 100 6275 12 3 20009
Fly 6 6.40 7 66.84 1125 63 3 3395
Ant 10 10.00 10 98.41 15999 56 3 34982
Turtle 26 16.19 18 53.14 18739 185 32 >72000
Turtle-m 9 6.80 7 67.27 781 57 3 1944

* The optimal solution is proved.

Table 2.6: Comparison results of the fly, turtle, and turtle-m data sets obtained from
the root node and the best node on record in the branch-and-bound search.

Root node Best node
Configuration Species LP IP Accuracy LP IP Accuracy
GSCP-WMP Turtle 15.61 17 47.43 15.55 17 53.71
GSPP-WMP Fly 7.50 8 47.89 5.50 7 82.11
GSPP-WMP Turtle-m 7.14 8 76.36 7.00 7 74.55
GSPP-WMP Turtle 15.55 18 54.29 15.53 17 48.57
GSPP-SMP Turtle 16.19 18 53.14 16.18 18 55.43
GSPP-HYBRID Turtle 16.19 18 53.14 16.18 18 55.43
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Figure 2.3: Display of the behaviors of the objective values (IP/LP solutions) and
accuracies over the column generation iterations by performing the GSCP-WMP (on
the top) and GSCP-SMP (on the bottom) for the ant data set.

solved in CPLEX to find an optimal solution within 20 hours. There are the gaps

between IP and LP solutions such as 63%, 67%, and 57% for the salmon, shrimp, and

fly data sets, and it failed to obtain a feasible solution for the ant data set. On the

other hand, although the IMCS could result in better accuracies for all the data sets

in a relatively short run when compared to the 2AOM, the optimal solution still could

not be guaranteed. The BMG algorithm in is a 2-allele set construction version of the

set covering model proposed by [36]. The procedure includes enumerating all maximal

sibling groups subject to the 2-allele condition and then solve a set covering problem to

find a minimum set of sibling groups. Without considering computational complexity,

this approach could guarantee the best reconstruction (see accuracy shown in Table

2.10 except the turtle data set). The A&F algorithm is a combinatorial approach to

exhaustively enumerate all possible sibling groups satisfying the 2-allele condition (al-

though the authors did not explicitly state the condition) and to obtain a maximal, not

necessarily optimal, collection of sibling groups. The B&M algorithm is an approach

based on a mixture of likelihood and combinatorial techniques to construct a graph
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with individuals as the nodes and the edges weighted by the pairwise likelihood (relat-

edness) ratio. The algorithm identifies potential sibling groups by finding the connected

components in the graph. The KINGROUP (KG) algorithm is an approach based on

the likelihood estimates of partitions of individuals into sibling groups by comparing,

for every individual, the likelihood of being part of any existing sibling group with

the likelihood of starting its own group. The COLONY approach uses the maximum

likelihood method to assign sibship and parentage jointly.

In Table 2.10, we only report among the best reconstruction accuracy from our

experiments in comparison with the above-mentioned combinatorial and statistical ap-

proaches. Because these approaches were performed on different computing platforms,

the computational times are not reported here. From the results, we observed that the

proposed approach outperforms the other approaches. Compared to the combinatorial

approaches such as 2AOM, IMCS, BMG, A&F, and B&M, our approach combining the

similarity measure function with the 2-allele constraints can give a better reconstruction

although the 2-allele constraints have provided a robust base for sibling reconstruction.

On the other hand, compared to the statistical approaches KG and COLONY, our ap-

proach still leads to a very competitive reconstruction. It is worth noting that our ap-

proach does not generate all possible sibling groups, whereas most of listed approaches

are based on an enumeration. Computational complexity increases drastically as the

data size increases. For instance, the results of A&F on most instances except the

shrimp and fly data sets were not obtained due to computational resource limitations.

In addition, for the data sets (e.g., the fly and turtle data sets) with large percentages

of missing alleles, our approach obviously can handle the uncertainty from missing data

to achieve higher reconstruction accuracy.

2.8 Randomized Greedy Optimization Algorithm for Capacitated Clus-

tering Model

The capacitated clustering problem (CCP) has been one of the most challenging prob-

lems in clustering research. Several variants of CCP have been studied in the literature
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Table 2.7: Recovery values of true full sibling groups (accuracy) when comparing our
method with other existing approaches in five different species.
Species GSCP-SMPa 2AOM IMCS BWG A&F B&M KG COLONY

Salmon 98.29 94.02 98.29 98.29 –b 98.29 94.60 56.70
Shrimp 100.00 96.61 100.00 100.00 67.80 100.00 77.97 100.00
Fly 84.74 66.84 47.37 100.00 31.05 19.62 54.73 –d

Ant 100.00 –c 93.10 100.00 –d 97.61 97.10 100.00
Turtle 70.29 –c 40.00 48.00 –d 38.18 39.40 40.00
Turtle-m 83.64 47.27 61.82 –d –d –d –d –d

a We report the best accuracy among all experiments.
b A&F ran out of 4GB memory as it enumerates all possible sibling groups.
c There are no results acquired within computational time limit.
d There are no results available.

including a capacitated centred clustering problem (CCCP) as well as a capacitated

p-median problem (CPMP). The CCP can be formally defined as follows. Given a set

of data points with associated weights (or features), the CCP is to partition the data

points into clusters such that the total weight of data points in each cluster does not

exceed the capacity limit of the cluster. In general, the objective of CCP is to maximize

the homogeneity (similarity) of the data points in each cluster or to maximize the sepa-

ration (dissimilarity) among different clusters [74]. Although clustering techniques have

been essential tools to solve many practical problems, previous studies on the CCP are

mostly applied to facility location problems and they often focus on the development

of solution algorithms.

In this section, we present the sibling reconstruction problem to be formulated as a

special version of the CCP. We propose a new heuristic optimization algorithm, which

has similar concept to a greedy randomized adaptive search procedure (GRASP) [56],

that integrates the combinatorial constraints and the concept of parsimony with a sta-

tistical similarity measure. The proposed framework involves the following phases: the

construction of clusters and the enhancement of quality of clusters. In the first phase,

an efficient greedy approach IMCS is employed repeatedly to construct a number of

different possible partitions of (disjoint) sibling groups by introducing a randomized

perturbation. Subsequently, among all possible partitions of sibling groups, a set cov-

ering problem (SCP) is solved to select the minimum set of sibling groups to cover the
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population. In the second phase, we propose a new two-stage local search with a mem-

ory function to improve the quality of sibling reconstruction based on the similarity of

individuals in the sibling groups. Finally, a SCP is solved again to find the minimum

number of sibling groups.

2.8.1 Capacitated Clustering Problem

The mathematical model of the CCP was first proposed by [109] and its variants were

used to study several practical problems in diverse applications. Here we consider one

of the most common variants of CCP. Given a set of data points i ∈ I with associated

positive weights πi and resources ci, and a set of edges (i, i′) ∈ E with associated

positive weights (e.g., similarities) wii′ , where i ̸= i′. Assume that there is a set of

clusters j ∈ J used to cover (represent) all data points. Let p be a predefined number

of clusters. There is a resource limitation Wj on each cluster j. The objective of CCP

is to find a set of clusters with the maximum weight (or similarity) per cluster subject

to a resource capacity.

Define xij and zj as binary variables, where xij = 1 if data point i is assigned to

cluster j, and xij = 0 otherwise; zj = 1 if cluster j is selected, and zj = 0 otherwise.

The formulation of CCP is given in Equations (2.57)-(2.63). The objective in Equation

(2.57) is to maximize the total weight of all selected clusters. The constraint set in

Equation (2.58) calculates the total weight of data points assigned to cluster j. The

constraint set in Equation (2.59) ensures that every data point is assigned to one cluster,

while the constraint set in Equation (2.60) guarantees that a cluster must be selected

if there is any data point assigned to it. The constraint set in Equation (2.61) ensures

that only p clusters are selected. The constraint set in Equation (2.62) is a knapsack

constraint ensuring that the total resource of data points assigned to a cluster does not

violate its capacity.
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(CCP) max
∑
j∈J

Wjzj (2.57)

s.t. Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

wii′xijxi′j ∀ j ∈ J (2.58)

∑
i∈I

xij = 1 ∀ j ∈ J (2.59)

xij ≤ zj ∀ i ∈ I, j ∈ J (2.60)∑
j∈J

zj = p (2.61)

∑
i∈I

cixij ≤ Cj ∀ j ∈ J (2.62)

xij , zj ∈ {0, 1}. (2.63)

In the literature, exact solution methods have been proposed to solve different ver-

sions of CCP. [106] used a column generation with a specialized branching technique

and solved a maximum weighted cluster problem (MWCP) in the subproblem. [18]

presented a new exact algorithm by modeling the capacity location problem as a set

partitioning problem with cluster-feasibility constraints. [99] proposed an approach

that integrates the column generation and Lagrangean/surrogate relaxation techniques

to solve capacitated p-median problems. More recently, [34] proposed a computational

framework based on column generation and branch-and-price approaches to solve the

capacitated network problems. Due to the computational complexity of real-life CCPs,

a large number of heuristic approaches have been developed. Those include classi-

cal sub-gradient heuristics [109, 87], simulated annealing and tabu search [58, 111],

bionomic approach [104], cluster search [41], GRASP-based algorithms [124, 50], and

other heuristics [112, 123, 110, 17].
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2.8.2 Capacitated Clustering Model for Sibling Reconstruction Prob-

lem

2.8.2.1 Capacitated Clustering Model

We formulate the SRP as a CCP by using the statistical likelihood measure as the

objective function subject to the Mendelian combinatorial constraints. We note that

this is the first mathematical model that integrates both statistical and combinatorial

concepts to reconstruct the sibling relationship. We shall mathematically define our

integrated problem as follows.

Given a set of individuals i ∈ I with associated weights πi and a set of edges

(i, i′) ∈ E with associated similarity measures wl
ii′ over all loci l ∈ L, where i ̸= i′.

Assume that there is a set of sibling groups j ∈ J to represent the relationship of the

given population. Because there is no prior parental information, the number of sibling

groups is not known and will have to be determined by the model. Next we define the

following decision variables.

• zj ∈ {0, 1}: indicates if there is individual(s) assigned to be a member of sibling

group j;

• xij ∈ {0, 1}: indicates if individual i is assigned to be a member of sibling group

j;

• yljk ∈ {0, 1, 2}: indicates if any member in sibling group j has distinct (yljk = 1)

or homozygous (yljk = 2) allele(s) k at locus l;

• vljkk′ ∈ {0 1}: indicates if allele k appears with allele k′ in sibling group j at locus

l.

Statistical Similarity Measure as Objective Function

The overall objective here is to reconstruct a set of sibling groups such that the

total similarity degree and weight of individuals assigned to the selected sibling groups
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is maximized. The objective function is given by

max
∑
j∈J

Wjzj , (2.64)

where Wj is the sum of weight and similarity score for a sibling group j, which can be

calculated by

Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

(
∑
i∈L

wl
ii′)xijxij ∀ j ∈ J. (2.65)

The above equation takes into account not only the weights of individuals assigned to

the sibling group j but also the pairwise similarity measures over all loci. The weight

of each individual can be estimated from the prior information; however, in our case

all individuals are equally weighed because of the small sample size. To calculate the

pairwise similarity score, we apply a simple pairwise approach to score the similarity

based on genetic features at loci between a pair of individuals. The pairwise score can

be calculated by

wl
ii′ :=



1 if
∑
k∈K
|alik − ali′k| = 0;

0.5 if
∑
k∈K
|alik − ali′k| = 2;

0 if
∑
k∈K
|alik − ali′k| = 4.

(2.66)

The sum of similarity score
∑
l∈L

wii′ over all loci represents the degree of similarity

for a pair of individuals i and i′. The higher the degree, the more similar two individuals.

Capacity Constraints: Combinatorial Rules from Mendel’s Laws

The capacity constraints of SRP are more complex than those of simple CCP’s be-

cause the capacity constraints are multi-dimensional. That is, each capacity constraint

must be satisfied for individual independent locus of a sibling group.

In [22], the 4-allele and 2-allele properties were first proposed based on the Mendel’s

laws. [37] augmented 2-allele property with a tighter constraint. For mathematical rep-

resentation, we formulate combinatorial constraints from the modified 2-allele property

by employing an indication matrix, alik ∈ {0, 1, 2}. From the first rule of the Mendel’s
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laws, the combinatorial constraints are given in Equations (2.67)-(2.68). Equation

(2.67) ensures that the integer variable yljk for distinct or homozygous indication must

be activated for the existence of distinct or homozygous allele(s) at locus l in sibling

group j. Equation (2.68) ensures that the number of distinct allele and the number of

homozygous alleles is less than or equal to four.

alikxij ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L, (2.67)∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L. (2.68)

From the second rule of the Mendel’s laws, the combinatorial constraints are given in

Equations (2.69)-(2.70). Equation (2.69) restricts that the binary variable for allele pair

indication vljkk′ must be activated for any assignment of individual i to sibling group j.

Equation (2.70) ensures that every allele in the group does not appear with more than

two other alleles (excluding itself). A big M number is defined by M = |I|+ 1.

∑
i∈I

alika
l
ik′xij ≤Mvljkk′ ∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L, (2.69)∑

k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L. (2.70)

For the rest of the section, a so-called “feasible sibling group (or cluster)” is a set

of individuals that satisfies the capacity constraints in Equations (2.67)-(2.70) at every

locus.

Covering constraints

For certain species in natural populations that do not belong to the monogamous

mating system, the overlapping situation where any individual can be assigned to more

than one sibling group are commonly seen. We therefore consider the covering con-

straint set instead of the partitioning constraint set in Equations (2.60)-(2.61). The
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covering constraint sets are given by

∑
i∈I

xij ≥ 1 ∀ j ∈ J, (2.71)

xij ≤ zj ∀ i ∈ I, j ∈ J. (2.72)

Equation (2.71) ensures that every individual is assigned to at least one sibling

group. Equation (2.72) ensures that the binary sibling group variable must be activated

for the assignment of any individual i to sibling group j.

It is noted that because the actual number of sibling groups is not known in general,

in this study, we therefore employ the parsimony assumption to find the minimum

number of sibling groups instead of using the constraint set in Equation (2.61). For

this purpose, sibling group selection can be formulated as a set covering problem (SCP)

that incorporates the covering constraints.

2.8.2.2 Preliminaries of Solving CCP for SRP

According to the formulation in the previous subsection, the CCP for SRP can be

considered as a complete optimization model (CCP-SRP) shown in Equations (2.73)-

(2.78). The objective of CCP-SRP in Equation (2.73) integrates the minimization of

sibling groups and the maximization of similarity degrees of individuals in the same

sibling groups, where a balancing parameter θ is introduced between the two terms.

The constraint sets in Equations (2.74)-(2.78) follow the same definitions described in

the previous section.
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(CCP-SRP) max
∑
j∈J

(θWj − 1)zj (2.73)

s.t. Wj =
∑
i∈I

πixij +
∑

(i, i′)∈E

(
∑
i∈L

wl
ii′)xijxij ∀ j ∈ J (2.74)

∑
i∈I

xij ≥ 1 ∀ j ∈ J (2.75)

xij ≤ zj ∀ i ∈ I, j ∈ J (2.76)

alikxij ≤ yljk ∀ j ∈ J, k ∈ K, l ∈ L (2.77)∑
k∈K

yljk ≤ 4 ∀ j ∈ J, l ∈ L (2.78)∑
i∈I

alika
l
ik′xij ≤Mvljkk′ ∀ j ∈ J, k ∈ K, k′ ∈ K\k, l ∈ L(2.79)∑

k′∈K\k

vljkk′ ≤ 2 ∀ j ∈ J, k ∈ K, l ∈ L. (2.80)

The CCP-SRP is a mixed-integer nonlinear programming (MINLP) problem, which

is viewed as a generalization of 2AOM. To solve the CCP-SRP, there are issues encoun-

tered such as highly computational complexity and the calibration of the parameter θ.

Firstly, let us look back on the optimization model 2AOM in [37], which is to find a

minimum number of sibling groups subject to capacity constraints and without the inte-

gration of statistical similarity measure. The 2AOM has been proved to be an NP-hard

problem with many discrete variables and many constraints. It is hard to solve directly

to obtain an optimal solution. According to our computational experiments, we failed

to find a feasible solution to 2AOM in CPLEX after 20 hours of run. Consequently, it

is not easy to calibrate the balancing parameter at a precise level, which plays a role in

solving the SCP-SRP, when the value of similarity varies with assignments of individu-

als into different sibling groups. These observations and experiences have motivated us

to develop an efficient heuristic method to solve this problem. In the next section, we

thus propose a new greedy optimization heuristic to solve the decomposed CCP-SRP

model in two phases.



46

2.8.3 Randomized Greedy Optimization Algorithm

we develop a new randomized greedy optimization algorithm (RGOA) to solve the CCP

of SRP. The underlying concept behind the RGOA is motivated by the Greedy Ran-

domized Adaptive Search Procedure (GRASP) [56]. The RGOA is divided into two

phases: construction and enhancement phases. Recall that the objective of CCP in

Equation (2.64) and its total weight in Equation (2.65) contains two terms, the indi-

vidual weight and the pairwise similarity, to be maximized. The individual weight of

sibling group assignment is maximized in the construction phase while the pairwise

similarity is maximized in the enhancement phase.

The flowchart of our RGOA is shown in Figure 2.4 and the associated pseudo-code is

presented in Algorithm 1. In the construction phase, we modify an efficient approach,

called IMCS, for the SRP [37] by introducing a randomized perturbation on the individ-

ual weight. The function of randomized perturbation is added into IMCS to construct

diverse, yet high-quality feasible, partitions of (disjoint) sibling groups. A number of

diverse partitions of sibling groups are accumulated over a number of iterations in the

construction phase, where a parameter max t is predetermined for limiting the max-

imum number of iterations. Subsequently, we perform cluster selection by solving a

SCP to find the minimum set of sibling groups, which will be an initial solution for the

next phase. In the enhancement phase, we propose a new local search with a memory

function in two scales, cluster-based and individual-based neighborhoods, to improve

the solution quality with respect to the pairwise similarity degree. In order to explore

more high-quality solutions, we implement the RGOA procedure repeatedly to obtained

a number of (high-quality) elite sets of sibling groups, where a parameter max r is

predetermined for limiting the maximum number of replications. Finally, among all

(elite) solutions, the cluster selection is again performed by solving a SCP to obtain the

final minimum set of sibling groups.

Construction Phase: Finding good and feasible sibling groups

The goal of the construction phase is to construct high-quality partitions of feasi-

ble sibling groups, each maximizing the total weight of individuals assigned to it. In
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Figure 2.4: Flow diagram of randomized greedy optimization algorithm. Construction
phase is to construct a set of sibling groups with the randomized perturbations. En-
hancement phase is to employ the two-stage local search to improve the solution quality.
Cluster selection is to solve a set covering problem (SCP) to obtain the minimum set
of sibling groups. A solution is defined a set of sibling groups (clusters).

Algorithm 1 Randomized greedy optimization algorithm

1: Input: a set of individuals with genetic data
2: Output: a minimum set of sibling groups
3:
4: procedure Randomized greedy optimization algorithm(input)
5: repeat
6: initialization: solution← apply IMCS
7: repeat
8: solution ← solve IMCSP
9: solution ← Update(solution) ◃ accumulate solution
10: until t > max t
11: solution ← ClusterSelection(solution) ◃ solve a SCP
12: solution ← LocalSearch Cluster(solution)
13: solution ← LocalSearch Individual(solution)
14: solution ← Update(solution) ◃ accumulate solution
15: until r > max r
16: solution ← ClusterSelection(solution) ◃ solve a SCP
17: return output
18: end procedure
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this study, the greedy IMCS approach is employed and generalized by adding a new

randomized weight perturbation to it. The idea behind the IMCS procedure is to it-

eratively construct a sibling group that covers the maximum number of individuals

until no individuals are left while each group is subject to the Mendelian capacity con-

straints. Please refer to [37] for more details. Because the IMCS uses a greedy-based

optimization model that has an combinatorial objective function, it is very likely that

there exist alternate or multiple optimal solutions. In other words, there may be sev-

eral different groups with the same number of individuals that can be assigned to the

group. In order to obtain diverse solutions in the construction phase, a randomized

weight perturbation scheme is introduced. The weight of individual i is defined by πi

and added to the objective function of the IMCS. The concept behind the randomized

perturbation is motivated by the noise method proposed in [40]. Note that, without the

loss of generality, one can say that the IMCS in [37] uses πi = 1, ∀i ∈ I. In our case, the

weight is perturbed by adding a noise with a uniform distribution [1− ϵ, 1 + ϵ], where

ϵ is a small positive number. The perturbed IMCS (IMCSP) can then be formulated as

follows. Define the following decision variables:

• xi ∈ {0, 1}: indicates if individual i is assigned to be a member of the current

sibling group;

• ylk ∈ {0, 1, 2}: indicates if any members in the current sibling group has distinct

(ylk = 1) or homozygous (ylk = 2) allele(s) k at locus l;

• vlkk′ ∈ {0 1}: indicates if allele k appears with allele k′ in the current sibling group

at locus l.
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The optimization model of IMCSP is given by

(IMCSP) max
∑
i∈I

πixi (2.81)

s.t. alikxi ≤ ylk ∀ i ∈ I, k ∈ K, l ∈ L (2.82)∑
k∈K

ylk ≤ 4 ∀ l ∈ L (2.83)∑
i∈I

alika
l
ik′xi ≤Mvlkk′ ∀ k ∈ K, k′ ∈ K\k, l ∈ L (2.84)∑

k′∈K\k

vlkk′ ≤ 2 ∀ k ∈ K, l ∈ L. (2.85)

The objective in Equation (2.81) is to maximize the total weight of individuals selected

to be in the sibling group. The constraint sets in Equations (2.82)-(2.83) are derived

from the first rule of the Mendel’s laws, which is to ensure that the sum of the total

number of distinct alleles and the number of homozygous alleles is less than or equal

to four. The constraint sets in Equations (2.84)-(2.85) are derived from the second rule

of the Mendel’s laws, which is to ensure that each and every allele does not appear

with more than two other alleles, except itself, in each locus. The procedure of IMCSP

approach is shown in Algorithm 2, which is to solve the IMCSP model iteratively.

Algorithm 2 IMCSP

1: Input: a set of individuals with genetic data
2: Output: a partition of sibling groups
3:
4: procedure IMCSP(input)
5: initialization: generate a perturbation randomly
6: repeat
7: solution ← solve IMCSP(input)
8: solution ← Update(solution) ◃ accumulate solution
9: remove selected individuals from the input set
10: until no individual is assigned
11: return output
12: end procedure

In addition to the randomized weight perturbation scheme, we introduce a cut

constraint to explore and further diversify alternate optimal solutions of IMCSP. This
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situation discussed in [37]. The cut constraint is defined by

∑
i∈Ī

xi ≤ |Ī| − 1, (2.86)

where Ī ⊂ I contains only the individuals assigned in the current group. The implemen-

tation of this cut constraint is described as follows. We first solve the original IMCSP

model, add the cut constraint to the IMCSP to remove the current optimal solution

from the feasible space, and then resolve the IMCSP model with the cut constraint to

obtain an alternate optimal solution. By using this cut constraint, we propose two

variants other than the original IMCSP:

1. IMCSP 1: add the cut constraint to the original IMCSP in the first and second

iterations;

2. IMCSP 2: add the cut constraint to the original IMCSP repeatedly in the first

iteration.

Cluster Selection: Minimum Set Covering Problem

Cluster selection is the last step of the construction phase. The goal of cluster se-

lection is to select the best subset of sibling groups from a pool of high-quality solution

candidates generated by the iterative IMCSP. It can also be used to remove redundant

or dominated groups from the solution pool. Cluster selection can thus be mathemati-

cally formulated as a SCP. Define a binary assignment matrix dij , which presents that

individual i ∈ I is assigned to sibling group j ∈ S, where S is a pool of all sibling group

candidates. The SCP is given by min
∑
j∈S

zj ; s.t.
∑
i∈I

dijzj ≥ 1,∀j ∈ S. The objective of

SCP is to find the minimum set of sibling groups. The constraint set ensures that each

individual must be covered by at least one of sibling group candidates. Note that this

SCP is relatively small, and it can be solved efficiently by any MIP solvers.

Enhancement Phase: Improving the solution quality

The goal in the enhancement phase is to improve the solution quality with respect

to the pairwise similarity degree of individuals assigned to the same sibling groups

by performing local search. Generally, a local search starts with an initial solution,
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explores alternative solutions in the neighborhood, makes a move to a better solution,

and terminates when no better solution is found. In our case, the initial solution is

given as a set of sibling groups j ∈ J selected in the construction phase. The associated

feasible space is defined as all constructed sibling groups j ∈ S. The effectiveness of local

search thus relies on its evaluation function, initial solution, neighborhood definition,

and search strategies. The evaluation function, which we want to maximize, is herein

defined by the pairwise similarity degree of individuals assigned to the same sibling

groups, which is the second term in Equation (2.65),

∑
j∈J

∑
(i, i′)∈E

(
∑
l∈L

wl
ii′)xijxij . (2.87)

To improve the efficiency of search procedure, we employ a memory function, which

is motivated by the tabu search [59, 61]. The memory function is used to collect the

past movements, which are associated to solutions, and to guide the search path in an

improving direction. In the search path, the most recently visited solution enters the

memory, and the oldest one is removed from the memory. Each solution in the memory

must be visited until it is removed from the list. This is mainly to prevent a local cyclic

search where there are many similar solutions to explore. In addition, the memory

length is one of keys to affect the search efficiency. Longer memory length may guide

the search path in the wrong direction, while shorter memory length may not have any

effect. However, there is not a standard setting for the memory length, which really

depends on the problem complexity.

We herein propose a two-stage local search in cluster-based and individual-based

neighborhoods. In the cluster-based search, a cluster switch is performed when a sibling

group with a higher pairwise similarity is randomly selected from other solutions to

replace a sibling group with a lower similarity in the current solution. To record the

cluster movement, we define the memory structure as (j1, j2, ..., jn), where j is the label

of sibling group visited and n is the memory length. Subsequently after the cluster-based

search, local search in the individual-based neighborhood is performed. An individual

shift is performed when an individual is randomly selected from one sibling group and
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shifted to another sibling group, also selected randomly. Similar to the cluster-based

search, the memory structure is defined as ([j1, i1], [j2, i2], ..., [jm, im]), where j and i are

the labels of sibling group and individual visited, and m is the memory length. After

some moves, the solution may no longer be feasible because the new individual added to

the sibling group may violate the Mendelian capacity constraints. In such a case, this

movement is forbidden and a new neighbor (solution) is reselected. Thus, it is necessary

to check if the current movement is forbidden in every iteration. Note that, by definition

of individual-based neighborhood, the feasible space is reduced from S to J and fixes on

only sibling groups j ∈ J determined from the first stage. The local search is performed

iteratively. The stopping criteria are the maximum number of search iterations for both

stages and the maximum number of no-improvement consecutive iterations. The local

search terminates when whichever stopping criterion is reached first.

Final Cluster Selection

The final step of RGOA is to perform the final cluster selection to find the minimum

set of sibling groups from a number of elite sets. This step is similar to the last step of

the construction phase.

2.8.4 Computational Settings

In this study, all computational experiments were programmed in MATLAB, and all

MIP models were solved using a callable GAMS library with CPLEX version 10.0 (de-

fault setting). All experiments were run on an Intel Xeon Quad Core 3.0GHz processor

workstation with 8 GB RAM memory. Execution time reported in this section were

obtained from the desktop’s internal timing calculations, which include time used for

preprocessing and postprocessing.

The parameter settings of algorithm implementation are as follows. Each test data

instance was implemented in a 20-hour computing time limit. The maximum number

of RGOA replications was set to max r = 100. The maximum number of construction

iterations was set to max t = 50 in the construction phase, where three variants of

IMCSP, IMCSP 1, and IMCSP 2 were applied. In the enhancement phase, the major
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stopping criterion, the maximum number of search iterations, for two stages of local

search were given by 50 × |J | and 50 × |I|, respectively, and the auxiliary stopping

criterion, the maximum number of no-improvement consecutive iterations, was set to

20, where |J | is the cardinality of cluster set and |I| is the cardinality of individual set.

2.8.5 Reconstruction Results of RGOA

As mentioned in the previous section, there are three variants of our approach in the

reconstruction phase: IMCSP, IMCSP 1, and IMCSP 2, and there are two stages in

the enhancement phase: cluster-based and individual-based. The average and standard

deviation of the reconstruction accuracies of all three variants after each phase of the

framework are reported in Table 2.8. It can be seen that there are not significant

differences among the three variants. Overall the accuracies gradually increase from

the construction phase to the enhancement phase with the exceptions of the salmon

and shrimp data sets. However, for the ant data set, the local search achieved a 100%

reconstruction accuracy.

Table 2.8: Reconstruction accuracies (%) in terms of mean ± standard deviation of the
reconstruction results from different phases of RGOA tested on all data sets.

Constructive Phase 1 Phase 2 Phase 2
Species strategy cluster-based individual-based

Salmon IMCSP 98.29 ± 0 98.29 ± 0 98.29 ± 0
IMCSP 1 98.01 ± 0 98.01 ± 0 98.29 ± 0
IMCSP 2 98.29 ± 0 98.29 ± 0 98.29 ± 0

Shrimp IMCSP 98.73 ± 2.54 98.73 ± 2.54 98.73 ± 2.54
IMCSP 1 98.73 ± 2.54 98.73 ± 2.54 98.73 ± 2.54
IMCSP 2 94.92 ± 0 94.92 ± 0 94.92 ± 0

Fly IMCSP 52.82 ± 4.14 56.79 ± 4.78 59.59 ± 5.07
IMCSP 1 54.74 ± 5.86 56.56 ± 4.83 58.02 ± 5.25
IMCSP 2 53.16 ± 3.79 56.05 ± 3.90 58.36 ± 3.83

Ant IMCSP 98.81 ± 0.94 99.60 ± 0.18 100 ± 0
IMCSP 1 98.81 ± 0.56 99.47 ± 0 100 ± 0
IMCSP 2 98.67 ± 0 99.47 ± 0 100 ± 0

Turtle IMCSP 47.54 ± 1.87 48.57 ± 2.22 49.03 ± 2.05
IMCSP 1 46.50 ± 2.26 48.00 ± 2.07 48.43 ± 2.11
IMCSP 2 46.29 ± 6.47 46.29 ± 6.47 46.86 ± 5.66

Table 2.9 presents the best final results of reconstruction accuracies and the numbers

of sibling groups from the last step of elite cluster selection. It is observed that the

proposed RGOA achieved 100% reconstruction accuracy on the shrimp and ant data
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sets. It is interesting to note that in other data sets that RGOA did not achieve 100%

accuracy either there are missing allele information (fly and turtle) or violations in the

Mendel’s laws (salmon and turtle). For these reasons, RGOA did not provide accurate

reconstruction results on those data sets. Nevertheless, even if the true optimal solutions

were obtained, the reconstruction accuracies would be poor as well. The real reason is

that the objective of our optimization framework and the Mendelian constraints assume

that the data are not erroneous. In fact, most genetic data are erroneous. Thus a more

robust optimization framework should be further investigated. From the table, it is also

observed that IMCSP 1 and IMCSP 2 with the cut constraint are more time-consuming.

From the last column in Table 2.9, for the same amount of time limit the numbers of

replications of IMCSP 1 and IMCSP 2 are obviously smaller than IMCSP because each

iteration of IMCSP takes much less time than that of IMCSP 1 and IMCSP 2. From

our computational experience, we conclude that the IMCSP variant without the cut

constraint should be used in order to save the computing time, yet maintain a good

solution quality. On the other hand, the introduction of randomized perturbation can

be helpful in terms of the diversification in the case where practitioners want to explore

alternate solutions.

Table 2.9: Final results of the number of sibling groups, accuracy (%) and the number
of replications. The computing time is limited within 20 hours (72,000 seconds). The
perfect reconstruction are underlined.

Final Results
Constructing Actual # of # of Accuracy # of Time

Species strategy sibling groups sibling groups (%) replications (sec.)
Salmon IMSCP 7 7 98.29 6 > 72,000

IMSCP 1 7 7 98.29 2 > 72,000
IMSCP 2 7 7 98.29 1 > 72,000

Shrimp IMSCP 13 13 100.00 4 > 72000
IMSCP 1 13 13 94.92 4 > 72,000
IMSCP 2 13 13 94.92 1 > 72,000

Fly IMSCP 6 7 58.95 22 > 72,000
IMSCP 1 6 7 65.79 22 > 72,000
IMSCP 2 6 7 63.16 7 > 72,000

Ant IMSCP 10 10 100.00 2 > 72,000
IMSCP 1 10 10 100.00 2 > 72,000
IMSCP 2 10 10 100.00 1 > 72,000

Turtle IMSCP 26 18 56.57 10 > 72,000
IMSCP 1 26 17 51.43 9 > 72,000
IMSCP 2 26 18 42.86 2 > 72,000
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2.8.6 Comparison with Other Existing Methods

To illustrate that our approach is among the best sibling reconstruction methods de-

veloped thus far, we compare the solution quality of RGOA and that of other state-of-

the-art methods in the literature. The methods in the literature reported here include

2AOM, IMCS, A&F, B&M, KINGROUP, and COLONY. The IMCS approach solves a full

optimization model 2AOM with 2-allele constraints to generate a partition of maximal

sibling groups with 2-allele constraints while the statistical likelihood measure is not

incorporated [37]. The A&F algorithm is based on a completely combinatorial approach

to exhaustively enumerate all possible sibling groups satisfying the 2-allele constraints

and obtain a maximal, not necessarily optimal, collection of sibling groups [13]. The

B&M algorithm is based on a mixture of likelihood and combinatorial techniques used

to construct a graph with individuals as the nodes and the edges weighted by the pair-

wise likelihood (relatedness) ratio. The algorithm identifies potential sibling groups by

finding the connected components in the graph [24]. The KINGROUP algorithm is based

on the likelihood estimates of partitions of individuals into sibling groups by comparing,

for every individual, the likelihood of being part of any existing sibling group with the

likelihood of starting its own group [86]. The COLONY approach uses the maximum

likelihood method to assign sibship and parentage jointly [135].

Table 2.10: Comparison results in accuracy (%) with other state-of-the-art approaches
on five different species. The best results are underlined.

Species RGOA a IMCS 2AOM A&F B&M KG COLONY

Salmon 98.29 98.29 94.02 –b 98.29 94.60 56.70
Shrimp 100.00 100.00 96.61 67.80 100.00 77.97 100.00
Fly 63.16 47.37 66.84 31.05 19.62 54.73 –c

Ant 100.00 93.10 – d –b 97.61 97.10 100.00

Turtle 56.57 40.00 –d –b 38.18 39.40 40.00
a We report the best accuracy among all experiments.
b A&F ran out of 4GB memory as it enumerates all possible sibling groups.
c There are no results available.
d No feasible solutions are obtained within 20 hours time limit.

Reconstruction accuracies of the above-mentioned reconstruction methods and RGOA

on all biological data sets are shown in Table 2.10. Note that the best reconstruction

results of RGOA among different parameter settings are reported. The most accurate
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reconstruction results are underlined. In all cases, RGOA obtained the best reconstruc-

tion results and outperformed all other methods. It is worth noting that although the

RGOA’s construction phase is based on the IMCS approach, randomized perturbation

and local search can greatly improve the reconstruction accuracies. Specifically for the

fly and turtle data sets, in which there are a lot of missing values, RGOA was able

to increase the accuracies by about 15%. Both B&M and KINGROUP appear to be

inaccurate on the data sets with a lot of missing values. We were not able to obtain

the reconstruction results from the A&F algorithm on the salmon, ant, and turtle data

sets because it ran out of memory when enumerating all possible combinations.

In Figure 2.5, we show the reconstruction accuracies of RGOA with the constructing

strategy IMCSP on two real data sets (ant and turtle) over the time shift, which are

compared to 2AOM and IMCS. Accuracies of RGOA are averaged by the number of

replications at the time of 4, 8, 12, and 16 hours, and accuracies at 20 hours are

obtained by final cluster selection. RGOA approach can achieve as good as, even better

than accuracies IMCS approach although it takes longer computing time to obtained

solutions. Moreover, it guarantees to have more diverse solutions so that we obtain

better reconstruction accuracies on these two data sets. On the other hand, compared

to 2AOM, we can always obtain good feasible solutions in a relatively short time (< 20

hours) for large and complex data sets.

2.8.7 Performances on Simulated Data sets

To show the ability of the proposed RGOA approach for larger complex data sets,

we apply a random population generator [37] to generate larger simulated data sets

when the real data sets at hand are relatively small-size, even the largest available in

the literature. Essentially, the mechanism of the random population generator is to

first construct a group of parents with the full genetic information such that a single

generation of true sibling groups is known a priori. The generation process is as follows

with parameters required: M/F is the number of male/female adults, l is the number

of sampled loci, a is the number alleles per locus, j is the number of juveniles in the
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Figure 2.5: Averaged accuracies of RGOA on real data sets (ant and turtle) are ob-
tained over time shift, compared to 2AOM and IMCS approaches in [37]. Accuracy =
0 represents that no feasible solution is available by 2AOM at the time. For IMCS, all
solutions are obtained within two hours.

population per one adult female, and o is the number of maximum number of offsprings

per parent couple.

Step 1. First, we generated the parent population of M males and F females with

parents with l loci, each having a distinct alleles per locus.

Step 2. After the parents were generated, we created a population of their offsprings

by randomly selecting j pairs of parents. A male and a female were chosen independently

and uniformly at random from the parent population.

Step 3. For each of the chosen parent pairs, we generated a specified number of

offsprings, o, each randomly receiving one allele from its mother and one from its father

at each locus.

The parameter settings for larger simulated data sets are given: M and F = 30,

j = 10, o = 40 and 50, l = 2, 3, and 4, and a = 10. Additional computational

settings are considered as follows. As mentioned previously, we suggest to adopt the

constructive strategy IMCSP in the construction phase to save the computing time. For

diversification reason, we expect to have more replications of ROGA) within a fixed

computing time by shortening the construction phase. We add a stopping criterion of

the maximum number of no-improvement consecutive iterations based on the similarity

score in the construction phase and slightly reduce the maximum number of construction
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iterations to 20. Thus, the construction procedure terminates when whichever stopping

criterion is reached first. The results are reported in Table 2.11, in turn, the number

of sibling groups, accuracy (%) and the number of replications within 20 hours time

limit, and compared to the known sibling relationships. We can still obtain good results

in terms of the number of sibling groups and reconstruction accuracy. More accurate

reconstruction is obtained when there are more genetic information (i.e., more loci).

However, more loci make the problem more complex to solve, which can be seen that the

number of replications of RGOA decreases with the complexity of problems because it is

more time-consuming to solve for a single solution in the construction phase. Moreover,

we compare the performance of the RGOA to IMCS and 2AOM approaches in [37]. The

accuracies are reported in Table 2.12. With proposed randomized perturbation and

local search, we obtain better reconstruction accuracies than IMCS. 2AOM can not be

solved to obtain the solutions within 20 hours time limit. It is shown that our proposed

approach is capable of solving larger complex problems effectively.

Table 2.11: Results of RGOA approach tested on larger simulated data sets. Final
results are reported, in turn, the number of sibling groups, accuracy (%) and the number
of replications within 20 hours (72,000 seconds) time limit, and compared to the known
sibling relationships. The perfect reconstruction are underlined.

Final Results
Simulated Actual # of # of Accuracy # of Time
data set sibling groups sibling groups (%) replications (sec.)

Rand-j10-o40-l2-a10 10 10 91.00 24 > 72,000
Rand-j10-o50-l2-a10 10 10 91.60 13 > 72,000
Rand-j10-o40-l3-a10 10 10 100.00 7 > 72,000
Rand-j10-o50-l3-a10 10 10 99.80 7 > 72,000
Rand-j10-o40-l4-a10 10 10 100.00 3 > 72,000
Rand-j10-o50-l4-a10 10 10 100.00 3 > 72,000

Table 2.12: Accuracy results of RGOA approach compared to IMCS and 2AOM ap-
proaches [37] from the simulated data sets.

Simulated data set RGOA IMCS 2AOMa

Rand-j10-o40-l2-a10 91.00 89.00 -
Rand-j10-o50-l2-a10 91.60 79.40 -
Rand-j10-o40-l3-a10 100.00 98.25 -
Rand-j10-o50-l3-a10 99.80 96.80 -
Rand-j10-o40-l4-a10 100.00 99.25 -
Rand-j10-o50-l4-a10 100.00 100.00 -
a No feasible solution is obtained within 20 hours
time limit.
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2.9 Conclusion

In this chapter, we studied an important clustering problem, sibling reconstruction

problem, in computational and population biology. The objective of the problem is

to establish sibling relationships in a population with parental information. We first

presented an optimization model 2AOM based on the 2-allele constraints derived from

Mendel’s laws and further extend the 2AOM to a complete optimization model inte-

grated with the statistical likelihood of genetic data. The sibling reconstruction prob-

lem had shown to be a generalization of the well-known NP-hard set covering problem.

We developed a heuristic approach IMCS to efficiently solve the 2AOM model based

on a maximum covering approximation algorithm. Although the IMCS approach has

been able to accurately reconstruct sibling groups, the solution (i.e., the number of

sibling groups) is yet guaranteed to be optimal mathematically. A column generation

approach was therefore proposed to obtain an exact solution (not a real objective for

sibling reconstruction). Moreover, we modeled the problem as a capacitated clustering

problem to be solved by a proposed randomized greedy optimization algorithm. From

the comprehensive experiments for the real and simulated data sets, the computational

results demonstrated the effectiveness and practicability of the proposed approaches,

and better performance when compared to the existing approaches.

Moreover, in practice, the full sibling reconstruction is limited to monogamous

species. Various open questions in population biology that undergo the common chal-

lenges in accuracy and efficiency, such as half-sibling or high-level sibling relationship

reconstructions, have been investigated. In [126], similar combinatorial optimization

models and algorithms for half-sibling group reconstruction have been proposed.
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Chapter 3

IMPROVED PATTERN GENERATION METHODS IN

LAD USING MEDICAL DATA1

3.1 Introduction

Binary classification is one of nominal classification problems in data mining and typ-

ically deals with the determination of two-class data. The goal of classification is to

classify the nature of new (testing) data in consistent with the hidden structural infor-

mation that decision patterns or rules extract from the historical (training) data. For

instance, in clinical medicine, a patient is diagnosed to have heart disease according

to the health history from which the decision pattern is the fasting blood sugar be-

ing greater 120 mg/dl and the resting electrocardiographic result being abnormal; and

otherwise. For such problem, supervised learning approaches are usually focused on

discovering the decision patterns to precisely classify the new data.

While in the literature there have been several statistical and machine learning

methods being proposed such as support vector machines (SVM), decision tree (J48 ),

neural network (NN), and logistic regression (LR), Logical Analysis of Data (LAD) is

a relatively new data mining framework based on combinatorics and optimization, and

designed for data analysis with both binary input and output [68, 47]. The reason that

the LAD appears to be more of a practical choice of classifiers is because the final LAD

model can be easy to interpret by the end user. In contrast, the classification models of

SVM or NN are commonly treated as a black box. In addition, the advantages of LAD

also include exhaustively identifying the entire set of features less or more correlated

1The chapter is part of a submitted manuscript [43] in collaboration with Wanpracha Art Chaoval-
itwongse, Tibérius Oliveira Bonates, and Chungmok Lee.
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to the outcome and the inter-effects among features, possibly providing the detailed

explanation for the conclusion of LAD, and guiding to develop customized decision

systems (e.g, a personalized treatment for breast cancer) [69].

The LAD framework consists of four main steps: data binarization, feature selection,

pattern generation, and classification model construction [29]. Given a set of observed

data of I objects in positive and negative classes represented by K features. As LAD

is designed for binary data analysis, the first step is to employ data binarization, which

converts each individual non-binary (e.g., nominal and numerical) feature into associ-

ated binary features. The binarization usually produces a much larger number of binary

features than original features. Next the feature selection step is carried out to find a

(minimum) support set of binary features that can best describe the characterization

of original data. With the feature support set, positive or negative patterns are gener-

ated in conjunction with one or more binary features that can distinguish at least one

object in one class from all objects in the other class. Finally, a classification model

(called LAD model or classifier) is built by aggregating all patterns into a discriminant

function that is used to classify new objects. The basic of the LAD framework will be

described in more detail in Section 3.2.

In the literature, patterns in the LAD framework are shown to be the key building

blocks [29, 71, 7, 10, 3, 8]. Patterns are combinatorially formed of one or more fea-

tures to capture the indications of the nature of historical data and aggregated into a

classifier to classify new data. In the past, most studies proposed enumeration-based

approaches to generate all patterns to build a “good” classifier [29, 52, 7, 4]. Although

enumerating all possible patterns can result in a good classifier, it is computationally

expensive as the data size increases and some redundant patterns are governed by other

dominant patterns to cover the target objects. On the other hand, some studies devel-

oped heuristic approaches to generate a limited set of “good” patterns by controlling

parameters such as the degree (the number of features included), coverage (the number

of observed data covered), and number of patterns [10, 26, 27, 121]. However, they are

faced with the difficulty to improve accuracy due to limitations on the parameters of

patterns. Therefore, generating good patterns with considering the tradeoff between
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classification accuracy and computational efficiency appears to be very challenging.

Because pattern generation from any given (binary) features can be viewed as a

combinatorial procedure, in this study, we propose a new combinatorial optimization

approach to only solve for decisive and high-quality patterns without setting parameters

in advance. Each pattern is generated based on only uncovered objects. Furthermore,

we develop a new column generation framework to build an “optimal” LAD classifier

to improve the classification accuracy and computational efficiency of LAD, where the

proposed pattern generation approach is employed.

This chapter is organized as follows. In Section 3.2, the basic knowledge of LAD

is reviewed. In Section 4.2.2, new mathematical optimization approaches for pattern

generation are presented and then a new column generation framework is developed.

In Section 3.4, the background of test data sets is described. In Section 4.2.3.3, the

evaluation of LAD classification performance is introduced. In Section 3.6, the classifi-

cation performance of the proposed approaches on widely used medical data sets from

the UCI machine learning repository are demonstrated, compared with other existing

pattern generation approaches in LAD and state-of-the-art classification methods. This

chapter is concluded in Section 3.7.

3.2 Basics of Logical Analysis of Data

In this section, we review the basic implementation of LAD, which can be divided into

four steps: data binarization, feature selection, pattern generation, and classification

model construction. The LAD framework is displayed in Figure 3.1. For more de-

tailed information, we refer the interested reader to the literature where the theory and

implementation of LAD are exhaustively explained [68, 47, 29].

We first define the following notations that will be used thorough out the chapter.

Given a set I of observed objects in both positive and negative classes, where I = I+∪I−

and ∅ = I+ ∩ I−. Each object is represented by a set of features, denoted by F . A

set of binary features, denoted by K, is additionally defined as it is generated from

the binarization of the original feature set F . Assume there are two set S+ and S− of



63

Data 
binarization

Feature 
selection

Pattern 
generation

Classification
model

Use level or 
interval variables 
based on the pre-
determined 
cutpoints

Determine a 
minimum support 
set of binary 
features

Generate decisive 
pattern or rules of 
combinatorial 
collections of 
binary features  

Aggregate all 
generated 
patterns into a 
linear 
combination of  
LAD model 

Figure 3.1: The LAD framework with four steps: data binarization, feature selection,
pattern generation, and classification model.

positive and negative patterns, where S+ ∪ S+ = S, generated on the basis of binary

feature setK, are aggregated into a LAD classifier. Other variables will be subsequently

defined later as needed.

3.2.1 Data Binarization

As LAD requires the binary input in data analysis, data binarization is needed as

a preprocessing step for the data containing non-binary (e.g., nominal and numerical)

features (or variables). The objective of data binarization is to design a binary mapping

by generating a finite set of “cutpoints” to map the original features into a new set

of binary features [28, 29]. A set of cutpoints Cf = {cf1 , c
f
2 , ..., c

f
bf
} for feature f is

determined according to the distribution of its values in relation to class information.

First, the feature values along with class information are sorted in ascending order.

Subsequently, searching from the smallest value, a cutpoint is determined by taking

the average of the feature values of the two objects when the labels of their associated

class change, and so on. Finally, a new set of binary features is mapped by using the

set of cutpoints. There are usually two ways for a mapping of non-binary features

using “level” and “interval” variables [29]. The level variable mapped from non-binary
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variable x by a cutpoint c is defined as

L(x, c) =

 1, for x ≥ c ;

0, for x < c.
(3.1)

The interval variable mapped from non-binary variable x by a pair of cutpoints c1 and

c2, where c1 < c2 , is defined as

I(x, c1, c2) =

 1, for c1 ≤ x < c2 ;

0, otherwise.
(3.2)

The determination of cutpoints largely depends on the user, so it also can be done

in any other manner, such as a variant of interval variable considering an equal-sized

interval based on the mean and variance of feature values [88].

After data binarization, as explained, the number of binary features is in turn in-

creased to be much larger than the number of original features. To efficiently determine

a small set of principal cutpoints that is critical to distinguishing the two classes of data,

[28] not only provided a theoretical foundation of data binarization, but also developed

an optimization approach. Later, [105] proposed an eliminative approach (IDEAL) to

iteratively remove redundant cutpoints to achieve a minimal discriminant set. Other

discretization approaches can be found in [97, 88].

3.2.2 Support Feature Selection

Redundant features to discriminate the same objects and irrelevant features unable to

discriminate any objects may be produced after the data binarization. The selection

of an irreducible set of features, called a “minimum support set”, is carried out by

eliminating such redundant or irrelevant features. The problem of finding the minimum

support set can be formulated as a set covering problem in combinatorial optimization

in Equations (3.3)-(3.5) [29]. First binary variables are defined: yk = 1 indicates if

feature k is selected, and yk = 0 otherwise; εij = 1 indicates if the pair of i ∈ I+ and
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j ∈ I− is not properly discriminated by new binarized features, and εij = 0 otherwise.

(FS-SCP) min
∑
k∈K

ϕkyk +M
∑

i∈I+,j∈I−
εij (3.3)

s.t.
∑
k∈K

ckijyk ≥ dij(1− εij) ∀ i ∈ I+, j ∈ I− (3.4)

yk, εij ∈ {0, 1}, k ∈ K, i ∈ I+, j ∈ I−. (3.5)

In FS-SCP, the coefficient ϕk is a weight controlling the importance of feature k. It is

based on prior domain knowledge. However, when no domain knowledge is available,

ϕk is usually set to 1. The binary indicator ckij ∈ {0, 1} defines whether or not the

value of feature k is different for a pair of i ∈ I+ and j ∈ I−. The right-hand-side

value dij > 0 is a minimum quantity to ensure that each pair of i ∈ I+ and j ∈ I− is

distinguished by at least dij features. In general cases, dij = 1 as default. For a case

where a pair of i ∈ I+ and j ∈ I− is not distinguishable on feature k, it is penalized

with a cost M = |K|+ 1 in the objective function in Equation (3.3).

Not that any feature selection methods can be employed in the LAD framework as

long as the interpretation of selected features for the original data still keeps retained

when new feature space is reduced.

3.2.3 Combinatorial Pattern Generation

Patterns in LAD are combinatorially formed by one or more binary features, which

characterize common structural information that objects from the same class share.

By definition, a pure positive (or negative) pattern consists of a set of conditions on the

values of binary features. Such pattern must have has an empty intersection with the

subset in the class and a nonempty intersection with any subset in the other class. Here

we shall define parameters that are used to characterize patterns: “degree” is defined

as the number of features used in a pattern, ranging from one up to the length of a

minimum support set; “coverage” is defined as the number of objects covered in the

class. Note that after the feature selection step, feature is referred to a binary feature

of the minimum support set whenever mentioned.
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Pattern generation is mostly carried out in an enumeration way. Several diverse

types of patterns with different characteristics have been well studied in the literature.

A prime pattern is a pattern that any one of features included cannot be removed; other-

wise it is not considered a pattern [29]. A combinatorial top-down-bottom-up approach

was proposed to enumerate all possible prime patterns that are small-sized (simplicity)

and cover at least one objects (comprehensiveness). A spanned pattern is a pattern that

is spanned if it does not include properly any other interval containing the same subset

of objects. An incrementally polynomial time algorithm was proposed to enumerate all

spanned patterns [7]. A maximum pattern is a pattern that covers as many objects in

the class as possible and covers no objects in the other class [27]. The authors proposed

several exact and heuristic approaches to generate maximum patterns. Meanwhile, a

maximum box problem was studied for generating patterns directly from original data

[52] and an accelerated algorithm was proposed for enumerating all possible patterns

of limited degree [10]. Pareto-optimal patterns with respect to suitability criteria were

analyzed [71]. More recently, a mixed-integer linear programming (MILP) based ap-

proach was proposed to iteratively generate a limited set of patterns by specifying the

parameters [121].

3.2.4 Classification Model Construction

According to the definition of patterns, each pattern must cover at least one object, and

each object is covered by at least one pattern. Ideally, a collection of such patterns is

expected to be aggregated into a good classifier, which in turn interprets comprehensive

information of the data. A LAD classification model therefore can be built as a linear

combination of positive and negative patterns, given by

∆(x) =
∑

s+∈S+

ω+
s+
Ps+(x) +

∑
s−∈S−

ω−
s−Ns−(x), (3.6)

where ω+
s+
≥ 0 and ω−

s− ≤ 0 are the weight coefficients for positive and negative patterns.

Indicator Ps+(x) = 1 if an object x is covered by positive pattern s+, and Ps+(x) = 0
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otherwise. Ns−(x) = 1 if an object x is covered by negative pattern s−, and Ns−(x) = 0

otherwise.

When classifying a new object x, if ∆(x) > 0, x is classified as positive. On the

other hand, if ∆(x) < 0, x is classified as negative. If ∆(x) = 0, new object x is left

unclassified. Note that when prior information is not available, the equal weights, i.e.,

ω+
s = 1

|S+| and ω−
s = −1

|S−| , are usually used for positive and negative patterns in the

discriminant function in Equation (3.6).

3.2.5 Medical Applications

Since the introduction of LAD, it has been successfully applied to practical problems

in biomedicine [94, 9, 6, 2, 118], finance [84, 70], and other disciplines. In clinical

applications, LAD was applied to risk stratification of coronary artery disease according

to health history, medication (beta blockers, verapamil, etc.), and specific measurements

(resting abnormal ECG, resting heart rate, change in heart rate, etc.) [94, 9]. LAD was

also applied to identifying high-risk patients who would benefit from aggressive therapy,

and low-risk patients who needed to be treated with conservative care. Later, LAD was

applied to the diagnosis of ovarian cancer from mass spectroscopy-generated proteomic

data [6], the diagnosis of diffuse large B-cell lymphomas from gene expression data [2],

and the prognosis of breast cancer from gene expression data [1]. More recently, [118]

adapted the LAD technique to diagnose acute ischemic stroke. Other than these clinical

applications, LAD was used for selecting features from a vast number of genomic and

proteomic data based on different criteria [5], and for selecting short oligo probes in

genotyping applications [83].

3.2.6 Illustrative Example

We illustrate the LAD procedure with an example of five data points with two numerical

features in Figure 3.2. In binarization, we use the level and interval variables on feature

f1 and the interval variable on feature f2 to discretize the original feature values of a

data point into a new set of binarized features. The binarized features b1, b2, and b3 are
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Class f 1 f 2
1 3.8 2.8

1 1.6 5.2

1 2.1 3.8

0 1.6 3.8

0 2.1 1.0

Class b1 b2 b3 b4

1 0 0 1 0

1 1 0 0 0

1 0 1 0 1

0 1 0 0 1

0 0 1 0 0

Binarized
feature

f 1 < 1.85 1.85 <= f 1 < 2.95 2.95 <= f 1 3.3 <= f 2 <= 4.5

0

1

2

3

4

5

6

0 1 2 3 4 5 6

0

1

2

3

4

5

0 1 2 3 4 5 6

0

0 1 2 3 5 6

Positive patterns:
(1, 1) or (0, 0)

Negative patterns:
(1, 0) or (0, 1)

Binarized features on  f 1 Binarized features on  f 2 Intersection of  f 1 and f 2

b1 b3b2

b4

Figure 3.2: An illustration of the LAD procedure for a data set of two numerical features
f1 and f2. Binarized features b1, b2, and b3 are from f1, and a binarized feature b4 is
from f2. Two binarized features b2 and b4 are selected in feature selection. In pattern
generation, two positive and two negative patterns are constructed and used in the
LAD model.

associated to the feature f1, and the binarized feature b4 is associated to the feature f2.

Subsequently, feature selection enables one to obtain a minimum support set, {x2, x4},

where x2 associates to 1.85 ≤ f1 < 2.95 and x4 associates to 3.3 ≤ f2 ≤ 4.5. Positive

and negative patterns cane be generated based on these two binarized features. As a

result, positive patterns {1, 1} and {0, 0} are generated to cover positive data points,

while negative patterns {1, 0} and {0, 1} are generated to cover negative data points. We

then construct a LADmodel consisting of two positive and two negative patterns. A new

data point with features {f1, f2} = {2.5, 1.0} is classified negative using the discriminant

function in Equation (3.6) (i.e., ∆ = (0.5)×(0)+(0.5)×(0)+(−0.5)×(1)+(−0.5)×(0) =

−0.5).
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3.2.7 Other Classification Methods

In the literature, classification techniques range from statistics, machine learning, data

mining, to optimization. Here we briefly introduce the state-of-the-art methods pro-

posed in recent years, which are also used for performance comparison in this chapter.

There are support vector machines [125], decision tree (J48) [117], random forests [32],

logistic regression [77], and multilayer perceptron [75]. They are available in Weka pack-

age [65, 140]. The support vector machines (SVM) was first introduced in [133, 125].

The SVM is an optimization based classification method, which constructs a linear clas-

sifier in a (possible) high-dimensional space (called hyperplanes) exploiting the Kernel

trick to separate the two classes so that the margin between the support vectors is

maximized. In general, soft margin is considered to allow some data points incorrectly

classified, that is, to avoid overfitting (permits models to make errors). The Decision

Tree (C4.5) method (J48) was first introduced in [117]. This induction method consists

of a hierarchical partition of a given space into (nearly) homogenous spaces. In a de-

cision tree, a rule on one or more features is involved at each node, and each branch

of the node corresponds to one of possible outcomes of the decision rule. For example,

x1 ≥ 3 is one outcome of the rule on the feature x1, and x1 < 3 is the other outcome

of the rule. The random forests (RF) method proposed in [32] is a generalized model

of the decision tree. The idea of RF is to build a collection of decision trees by boot-

strapping from the data, which has been shown to be a more powerful classification

method. The logistic regression (LR) is a regression technique especially tuned for bi-

nary classification problems. The maximum likelihood estimation is trained to build a

logistic regression model that is fit in a linear function and able to predict a nonlinear

function over input features. The multilayer perceptron is a neural network (NN) that

comprises input, hidden, and output layers. The objective is to minimize the error

between output of built network and actual weight value. The key settings involved

are determining the number of layers and nodes (neurons), which vary depending on

experienced experiments.
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3.3 New Pattern Generation Methods in LAD

As pattern generation is a very hard combinatorial optimization problem, the main focus

of this work is to propose new pattern generation methods to improve the accuracy and

efficiency of the LAD framework. In the first part, we propose a new mathematical

optimization approach using a mixed-integer programming (MIP) model for decisive

pattern generation. In the second part, we develop a new column generation framework

to construct an “optimal” LAD classification model so as to improve classification

accuracy.

Without loss of generality, it is assumed that the data sets can be perfectly classified

without noises (excluding missing data), and each object being classified belongs to one

and only one class, The set K is redefined as a minimum support set of binary features

since all features have been preprocessed by the steps of data binarization and feature

selection. For the sake of brevity, all descriptions are given only for positive patterns,

unless explicitly mentioned, because the symmetric definition of positive and negative

patterns is obvious.

3.3.1 Mixed-Integer Programming Models for Pattern Generation

3.3.1.1 Maximum Coverage Patterns

From the definition of maximum patterns [27], a pattern is generated to cover as many

objects in the class as possible and to cover no objects in the other class. Following

this idea, we present a new approach to generate a maximum coverage pattern (MCP)

such that the degree is minimal, the coverage is maximized and any opposite coverage

is penalized. This approach is motivated by the soft margin concept in SVM. MCP can

be formulated as a MIP problem. First we define binary variables used in the model.

xi = 1 indicates if object i is covered by the pattern, and xi = 0 otherwise. yk = 1

indicates if feature k is used in the pattern, and yk = 0 otherwise. εj = 1 indicates if

negative object j is misplaced due to the situation where certain positive and negative

objects are identical (since it may be caused by mistakes in the sampling process), and
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εj = 0 otherwise. The MIP formulation of MCP is given in Equations (3.7)-(3.10).

(MCP) max
∑
i∈I+

xi −M
∑
j∈I−

εj (3.7)

s.t. (1− b+ik)yk ≤ 1− xi ∀ i ∈ I+, k ∈ K (3.8)∑
k∈K

(1− b−jk)yk ≥ 1− εj ∀ j ∈ I− (3.9)

xi, yk, εj ∈ {0, 1}. (3.10)

Binary indicator b+ik = 1 indicates if the values of positive object i and the reference

pattern are not distinguishable on feature k, and b+ik = 0 otherwise. Binary indicator

b−jk = 1 indicates if the values of negative object j and the reference pattern are not

distinguishable on feature k, and b−jk = 0 otherwise. The objective in Equation (3.7)

is to maximize the number of covered positive objects. The constraint set in Equation

(3.8) ensures that positive objects are covered, whereas the constraint set in Equation

(3.9) ensures that the pattern discourages negative objects covered. When a peculiar

situation happens to a negative object, it is penalized with a cost M = |I| + 1 in the

objective function.

In order to solve this MCP, a reference pattern is required a priori. How to choose a

good starting reference pattern is, however, not intuitive. Here, we propose a heuristic

approach to choose a reference pattern. An object r with the maximum dissimilarity

to the opposite subset is chosen from the uncovered subset to be a reference pattern

r. The dissimilarity is calculated by the sum of distances of an object i ∈ I+ to all

negative objects j ∈ I− over all features k ∈ K. The reference pattern is determined

by

r = argmax
i∈I+
{
∑
j∈I−

∑
k∈K

hkij : h
k
ij ∈ {0, 1}, j ∈ I−, k ∈ K}, (3.11)

where hkij = 1 if the values of objects i and j are different on feature k, and hkij = 0

otherwise. If two or more objects have the same degree of dissimilarity, then any one

of them is chosen arbitrarily.

In most real-life problems, a single pattern cannot possibly cover all objects at a
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time. Thus, we propose an iterative procedure to iteratively generate multiple patterns

such that all objects are guaranteed to be covered. In every iteration, we determine a

reference pattern from the uncovered subset, update b+ik and b−jk, and then solve MCP.

After solving the MCP, we remove objects that have been covered. The procedure is

performed until all objects are covered. In the end, patterns generated are very diverse,

including “dominant patterns” and “odd patterns”. The former is defined as a pattern

that covers most objects in the class, while the latter is defined as a pattern that only

covers a few objects hard to be covered by dominant patterns.

3.3.1.2 Weighted Maximum Coverage Patterns

While the MCP model emphasizes the pattern size of covered objected, it is also impor-

tant to generate more patterns that are diverse. We We introduce the diversification to

the MCP model by introducing a weighted coefficient 1
βni to each object in the objective

function, where β is a given adjustable variable (β ≥ 1) and ni is the number of times

object i is covered by previously generated patterns. The modified MIP formulation of

the weighted MCP (WMCP) is given by

(WMCP) max
∑
i∈I+

1

βni
xi −M

∑
j∈I−

εj (3.12)

s.t. (1− b+ik)yk ≤ 1− xi ∀ i ∈ I+, k ∈ K (3.13)∑
k∈K

(1− b−jk)yk ≥ 1− εj ∀ j ∈ I− (3.14)

xi, yk, εj ∈ {0, 1}. (3.15)

The objective function in Equation (3.12) is to maximize the total weight sum of covered

objects. The constraint sets in Equations (3.13)-(3.14) follow the same descriptions in

MCP. A peculiar situation happening to a negative object is penalized with a cost

M = |I| + 1 in the objective function. It is important to note that, in the iterative

procedure, we do not remove the covered objects after solving the WMCP in each

iteration. Thus each object can be covered by more than one pattern although we still

determine a reference pattern from the uncovered subsets, and update b+ik and b−jk.
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It can be observed that when β is very large, the weighted coefficient becomes

rather small and the objects covered by previously generated patterns would not be

covered again. This is conceptually equivalent to the MCP. On the other hand, when

β is equal to one, no matter how many times objects are covered in previous pattern

iterations, they can be covered by a new pattern as the covered object contributes

to the objective function value as much as other uncovered objects. This situation

is similar to the approach to exact maximum patterns (EMP) [27]. The difference is

that WMCP only generates a limited set of decisive patterns while EMP generates a

number of patterns bounded by the number of target objects. In short, this intermediate

approach WMCP, between EMP and MCP, can generates flexible patterns by varying

the value of parameter β.

3.3.1.3 Other Remarks

Here several advantageous properties of the patterns generated by MCP and WMCP are

remarked. First, our approach can account for missing values that is very common in

real-life data. In pattern generation, the missing value of an object is treated to be the

opposite value. For example, a positive object with a missing value (1, 0, *) is replaced

by (1, 0, 0) when compared to a positive pattern (1, 0, 1), and this object cannot be

covered. On the contrary, a negative object with a missing value (1, 0, *), replaced

by (1, 0, 1), is covered by the positive pattern (1, 0, 1). This property guarantees any

improper objects not to be classified and is referred to the robustness mentioned in the

literature [29, 27]. Secondly, a pattern generated can tolerate the peculiar situation

to cover a few objects in the other class since they are identical to certain objects

in the class. This property is referred to the fuzziness [27]. In addition, instead of

enumerating all possible patterns, MCP and WMCP generate a relatively small set of

decisive patterns, each using a minimum feature set (simplicity), that ensure every

object to be covered (comprehensiveness).
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3.3.2 Column Generation for Construction of LAD Classification Model

In the previous subsection, we propose a fast and effective pattern generation approach

for a LAD classifier. However, the generated patterns may miss certain coverage in

which some objects are hard to cover or already covered by the objects from other

class. Such odd patterns are not desirable in a classification model. For these reasons,

we realize that the construction of LAD classifier can be cast into a column generation

framework. This study is then focused on how to construct the best possible LAD clas-

sification model by using the column generation framework. We propose two objective

approaches to construct an optimal LAD classification model, which are (I) minimum

positive and negative pattern sets and (II) a maximum separation margin between pos-

itive and negative subsets. For the sake of simplicity, we may use the terms of pattern

and column interchangeably throughout this section.

In a column generation framework, the problem is decomposed into a master prob-

lem (MP) and a subproblem (SP). First, we solve a linear programming (LP) relaxation

of restricted master problem (RMP) with a limited set of patterns. A set of (optimal)

dual variables associated to the target objects is produced and passed to the SP as a

guide for generating patterns. The purpose of SP is to price out improving (or beneficial)

patterns with respect to the (optimal) dual variables. Subsequently, newly generated

patterns are added into the RMP after checking the optimality of MP. The RMP is

updated with new patterns and resolved. The procedure is iteratively performed until

there are no patterns to improve the objective function value of MP, which implies that

the current LP solution to the MP is optimal.

3.3.2.1 Master Problem

Objective I: Minimum Pattern sets

The first objective approach is to generate the minimum number of positive and negative

pattern sets that cover all objects. The master problem can be modeled as a minimum

set covering problem. Binary variable zs+ = 1 indicates if positive pattern s+ is selected

to be a member of LAD classifier from the positive pattern subset S+, and zs+ = 0
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otherwise. Indicator Pis+ = 1 indicates if positive object i is covered by positive pattern

s+, and Pis+ = 0 otherwise. The integer programming (IP) formulation of the problem

is given in Equations (3.16)-(3.18).

(Min-Pattern) min
∑

s+∈Ŝ+

zs+ (3.16)

s.t.
∑

s+∈Ŝ+

Pis+zs+ ≥ 1 ∀ i ∈ I+ (3.17)

zs+ ∈ {0, 1}. (3.18)

The objective in Equation (3.16) is to minimize the number of positive patterns used

in the LAD classifier. The constraint set in Equation (3.17) ensures that every positive

object i has to be covered by at least one positive pattern.

In column generation iterations, we can start Min-Pattern with a subset of feasible

positive patterns Ŝ+ ⊂ S+ as a RMP. We also need to relax binary variables zj ∈ {0, 1}

to zj ∈ [0, 1] since Min-Pattern is an IP problem. Subsequently, the LP relaxation of

RMP of Min-Pattern is solved to obtain a set of dual variables µ+
i , which are associated

to the constraint set in Equation (3.17). With these dual variables, it provides the

information for generating patterns in SP. Finally, we solve the original IP model of

Min-Pattern with all generated patterns to obtain the IP solution (i.e., the set of selected

patterns) to Min-Pattern.

We note that the above Min-Pattern is only carried out to generate positive patterns.

Because there is no inter-effect on both positive and negative pattern generations, in

this objective approach, column generation procedures for both positive and negative

patterns are performed independently.

Objective II: Maximum Separation Margin

The second objective approach directly associates the discriminant function in Equation

(3.6) and model a LAD classification model as a maximization of the discriminant

function. The objective function can be viewed as a hyperplane in the feature space with

the margins of separation of two classes that are maximized. We first denote positive
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and negative separation margins r ≥ 0 and t ≤ 0. Indicator Pis+ = 1 if positive object

i is covered by positive pattern s+ and Pis+ = 0 otherwise, and indicator Njs− = 1 if

negative object j is covered by negative pattern s− and Njs− = 0 otherwise. ω+
s+

and

ω−
s− are weight coefficients for positive and negative patterns, respectively. In addition,

ζi ≥ 0 and ζj ≥ 0 are introduced to indicate if positive object i and negative object

j is correctly classified, respectively. The Maximum Separation Margin formulation is

given by

(Max-Margin) max r + t−M(
∑
i∈I+

ζi +
∑
j∈I−

ζj) (3.19)

s.t. r −
∑

s+∈Ŝ+

ω+
s+
Pis+ +

∑
s−∈S−

ω−
s−Nis− − ζi ≤ 0 ∀ i ∈ I+ (3.20)

t+
∑

s−∈Ŝ−

ω+
s+
Pjs+ −

∑
s−∈S−

ω−
s−Njs− − ζj ≥ 0 ∀ j ∈ I−(3.21)

∑
s+∈Ŝ+

ω+
s+

= 1 (3.22)

∑
s−∈Ŝ−

ω−
s− = 1 (3.23)

r ≥ 0, t ≤ 0, ω+
s+
≥ 0, ω−

s− ≥ 0, ζs+ ≥ 0, ζs− ≥ 0. (3.24)

The objective in Equation (3.19) is to maximize the sum of positive and negative

separation margins. The constraint sets in Equations (3.20) and (3.21) determine the

smallest positive and negative separation margins over all objects, respectively. If there

is any object misclassified, it is penalized with a cost M = |S+| + |S−| + 1 in the

objective function. The constraint sets in Equations (3.22) and (3.23) ensure that the

margins for both positive and negative patterns do not increase to infinity by restricting

the sums of positive and negative weights to 1.

In column generation iterations, similarly, we solve Max-Margin to obtain dual vari-

ables µ+
i , µ

−
j , λ

+
i , λ

−
j , which are associated to Equations (3.20), (3.21), (3.22), and

(3.23), respectively. With these dual variables, it provides the information for generat-

ing patterns in SP. Note that in Max-Margin, it has considered the effects of positive and

negative patterns simultaneously on the construction on LAD classifier, so we do not
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need to separately perform Max-Margin for positive and negative patterns. However,

generating positive and negative patterns in SP are still performed independently in

every iteration.

3.3.2.2 Pricing Subproblem: Apply MCP and WMCP

As mentioned previously, the purpose of SP is to price out beneficial patterns that can

improve the objective function value of the MP. Here we directly employ the proposed

pattern generation approaches MCP (and WMCP) while any exact and approximation

approaches can be applied to solve the SP. Passed from the RMP, dual variables, e.g., µ+
i

and µ−
j in the Min-Pattern, provide the information about objects hardly being covered

and are simply used as weight coefficients in the objective function of MCP in Equation

(3.7). It is rewritten as max
∑
i∈I+

µ+
i xi −M

∑
j∈I−

εj for positive patterns and similarly

for negative patterns. It is noted that when we solve the MCP to generate positive

patterns, only the constraints in Equation (3.8) associated to the positive objects with

non-zero dual variables need to be considered while all the constraints in Equation

(3.9) associated to negative objects must be included. In such a way, we ensure that

the identified pattern only covers the associated objects and avoid any objects in the

other class. It can be done for Max-Margin in a similar way.

3.3.2.3 Calculating Reduced Costs

In every iteration, a new pattern generated in SP is associated with a reduced cost that

is computed with dual variables and used to check if the new pattern is a candidate to

be added in MP. Any pattern can be a candidate as long as its associated reduced cost is

imposed to improve the objective function value of MP. When no improving patterns are

generated, the optimal discriminant function is obtained for LAD classification model.

ForMin-Pattern, we consider patterns with “negative” reduced costs to be candidates

added in the RMP since it is a minimization problem. The reduced cost for positive
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pattern is computed by

γs+ = 1−
∑
i∈I+

µ+
i Pis+ ∀s+ ∈ Ŝ+, (3.25)

where µ+
i is the dual variable. The optimality condition is given by

z̄ := min{γs+ = 1−
∑
i∈I+

µ+
i Pis+ | s+ ∈ Ŝ+}. (3.26)

If z̄ ≥ 0, there are no improving patterns to be generated that is, optimality condition

holds. Otherwise, patterns s+ is a candidate. It can be done for negative patterns in a

similar way.

Similarly, for Max-Margin, we obtain the dual variables associated to positive and

negative object subsets. We only consider patterns with “positive” reduced costs to be

candidates included in the RMP since it is a maximization problem. The reduced cost

for a positive pattern is computed by

γ+
s+

= λ+ +
∑
i∈I+

µ+
i Pis+ −

∑
j∈I−

µ−
j Pjs+ ∀s+ ∈ Ŝ+ (3.27)

and the reduced cost for a negative pattern by computed by

γ−
s− = λ− −

∑
i∈I+

µ+
i Njs− +

∑
j∈I−

µ−
j Njs− ∀s− ∈ Ŝ−, (3.28)

where µ+
i , µ

−
j , λ

+
i , λ

−
j are duel variables. The optimality condition is similar to Equation

(3.26) by replacing the reduced costs in Equations (3.27) and (3.28). The optimality

condition holds if z̄ ≤ 0; otherwise.
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3.4 Description of Data Sets

To show the practicability of our proposed approaches in medical applications, we adopt

14 medical data sets available from the UCI machine learning repository [16]. These

data sets include three sets of Wisconsin breast cancer (wbc, wdbc, and wpbc), five

sets of heart disease diagnosis from different databases (hrt-c, hrt-h, hrt-s, hrt-lb, and

hrt-stat), one set of hepatitis (hpts), one set of Bupa liver disorder (bld), one set of

Pima Indians’ diabetes(pid), two sets of Cardiac Single Proton Emission Computed

Tomography (SPECTF and SPECT), and one set of Parkinson’s disease (prks). The

characteristics of the data sets are summarized in Table 3.1, including the numbers of

observations, class representation, and numbers of features. For most data sets with

non-binary features, the preprocessing steps of data binarization and feature selection

are carried out in advance, as described in Section 3.2. The numbers of binary features

and minimum support set are also reported in the last two columns in Table 3.1. The

minimum support sets of binary features, instead of original support sets, are used in

all experiments. The background of the data sets is given as follows:

Breast cancer: There are three data sets used in the applications of diagnosis and

prognosis of breast cancer, which are obtained from William H. Wolberg at University

of Wisconsin Hospitals, Madison. The objective of diagnosis is mainly to discriminate

that the tumor is malignant or benign. For diagnosis, the data set (wbc) contains 699

observations in two classes (malignant and benign) with 9 sampled features, and the

other data set (wdbc) contains 569 observations in two classes with 30 sampled features.

There are 3% and 2% missing values, respectively. Another data set (wpbc) is used in

prognosis to predict if breast cancer is likely to recur when a patient has the cancer

excised. There are 198 observations in two classes (recurrence or non-recurrence) with

33 sampled features. These data sets were first analyzed in [103], and [102].

Heart disease: There are four data sets (hrt-c, hrt-h, hrt-s, and hrt-lb) obtained

from Andras Janosi from Hungarian Institute of Cardiology in Budapest, William Stein-

brunn from University Hospital in Switzerland, Matthias Pfisterer from University Hos-

pital in Switzerland, and Robert Detrano from V.A. Medical Center, Long Beach and
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Cleveland Clinic Foundation. They are used in the application of predicting the pres-

ence of heart disease. Numbers of observations are, respectively, 303, 294, 122, and 200

in two classes (sick and normal) with 13 sampled features. After eliminating features

having a larger portion of missing values that primarily are unclassified, the numbers of

used features are 13, 10, 10, and 8. Small portion of missing values still appear in the

data sets. Another data set, StatLog (hrt-stat), is obtained from the Cleveland Clinic

Foundation, courtesy of R. Detrano, which is in a slightly different format from above

data sets. There are 270 observations in two classes with 13 sampled features and no

missing values.

Hepatitis: This data set (hpts) was donated by Gail Gong and examined in the

application of predicting whether or not the patient with hepatitis lives. It contains 142

observations in two classes (die and live) with 18 sampled features. Note that we use a

subset of original data set by eliminating observations with a larger portion of missing

values and age feature due to no significant discrimination. There are remaining 7%

missing values.

BUPA liver disorders: This data set (bld) was donated by Richard S. Forsyth

from BUPA Medical Research Ltd., which is used in the application of predicting

whether or not the male patient has a liver disorder based on blood tests and alco-

hol consumption. There are 345 observations in two classes (positive and negative)

with 6 sampled features. There are no missing values.

Pima Indians’ diabetes: This data set (pid) was donated by Vincent Sigillito

from National Institute of Diabetes and Digestive and Kidney Diseases, which is used

for the diagnosis of whether or not the patient shows signs of diabetes. There are 768

observations in two classes (positive and negative) by 8 sampled features. All patients

are at least 21-year-old females of Pima Indian heritage. There are no missing values.

Cardiac Single Proton Emission Computed Tomography: This data set

(SPECTF) was originally donated by Lukasz A. Kurgan and Krzysztof J. Cios [91]

from the University of Colorado at Denver, which is used for the diagnosis of cardiac

Single Proton Emission Computed Tomography images . There are 267 observations

in two classes (normal and abnormal) with 45 continuous-valued features. The logical
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version of SPECTF data set (SPECT) is processed to obtain 22 binary features. There

are no missing values.

Parkinsons disease: This data set (prks) was created by Max Little from the

University of Oxford in collaboration with the National Centre for Voice and Speech,

Denver, Colorado, which is used for the objective to discriminate healthy patients from

ones with parkinsons disease by detecting dysphonia [96]. There are 195 observations

with 22 sampled features. There are no missing values.

Table 3.1: Characteristics of real data sets.
Observations Class Original Binaried Minimum

Dataset Total + − Representation (+, −) Features
wbc 699 458 241 (malignant, benign) 9 75 12
wpbc 198 47 151 (recurrent, nonrecurrent) 33 1361 15
wdbc 569 212 357 (malignant, benign) 30 3384 18
hrt-c 303 139 164 (sick, normal) 13 306 11
hrt-ha 294 106 188 (sick, normal) 10 239 23
hrt-sa 122 114 8 (sick, normal) 10 74 7
hrt-lba 200 149 51 (sick, normal) 8 165 34
hrt-stat 270 120 150 (sick, normal) 13 296 16
hptsa 142 28 114 (die, live) 18 149 12
bld 325 200 125 (positive, negative) 6 269 17
pid 768 268 500 (positive, negative) 8 857 19
SPECTF 267 212 55 (abnormal, normal) 44 1031 18

SPECTb 267 212 55 (abnormal, normal) 22 22 16
prks 195 147 48 (parkisons, normal) 22 731 9
a Heart disease and hepatitis data sets are modified by removing some observations with relatively
more missing values and not using the feature of age.
b This data is the logical version of SPECTF data set that contains non-binary values.

3.5 Performance Measurement

To evaluate the classification performance, we adopt the calculation by counting the

number of correctly classified objects, which is widely used in the LAD studies [29, 69,

26, 27]. Let us denote sets of correctly classified positive and negative objects by I+c

and I−c , and sets of incorrectly classified positive and negative objects by I+u and I−u .

Accuracy is calculated as the average of sensitivity and specificity plus the average of

unclassified objects (i.e., ∆ = 0) shown in Equation (3.29).

Accuracy = 0.5× (sensitivity + specificity + 0.5× (
|I+u |
|I+|

+
|I−u |
|I−|

)), (3.29)
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where sensitivity is the ratio of positive objects correctly classified to the entire positive

data set, given by |I+c |
|I+| , and specificity is the ratio of negative objects correctly classified

to the entire negative data set, given by |I−c |
|I−| .

Due to possible influences by the unbalanced or contaminated data, we repeat n

times k-fold cross validation on randomly shuffled data sets in order to obtain unbiased

outcomes. In cross validation, a target data set is equally divided into k subsets, in

which one of subsets is used as a testing data set while the remaining k − 1 subsets

are used as a training data set. The classification accuracy is referred to the accuracy

based on the testing data set validated for the model that the training data set is used

to learn. The overall accuracy is reported by the average of n× k experiments, where

n = 10 and k = 5 are set in our experiments

3.6 Experimental Results

3.6.1 Results of Analyzing Patterns by MCP and WMCP

In this subsection, we present the analyses of patterns generated by the proposed ap-

proaches MCP and WMCP. We first recall that WMCP is an intermediate approach that

can generate more flexible patterns by varying controlling parameter β. For the purpose

of comparison, we choose two relatively extreme cases, WMCP-2 and WMCP-M, with

β = 2 and β = M , where M is a very large number. Figure 3.3 illustrates the statistics

of patterns generated among MCP, WMCP-2, and WMCP-M. The subset of Cleveland

heart disease (hrt-c) data set is used for demonstration. The degree of positive (on the

left) and negative (on the right) patterns are shown on the top, and the coverage of

positive (on the left) and negative (on the right) patterns are shown on the bottom.

Compared to WMCP, MCP uses more diverse patterns of large ranging degrees on the

target data set. For the coverage, WMCP generates more dominant patterns while MCP

generates more odd patterns. Besides, it is hard to see significant differences between

WMCP-2 and WMCP-M.

We also show the performance of these three approaches on 14 data sets in Table 3.2.

The numbers of generated patterns, accuracies, and computational times are reported
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Figure 3.3: Illustration of the numbers of used features (i.e., degree) and intra-class
coverage varying in positive (right-hand side) and negative (left-hand side) pattern
iterations. Cleveland heart disease data set (hrt-c) is used for demonstration.

for each approach. All experiments were performed within about 30 minutes. From the

results, we do not see any significant differences among all in pattern size and accuracy.

Note that WMCP-M is reduced to MCP when β = M . We can see that the quantities

of patterns generated by both WMCP-M and MCP are very close.

In addition, as mentioned in Section 3.3.1, WMCP-1 with setting β = 1 is somehow

equivalent to the approach EMP to generate a number of maximum patterns [27]. Table

3.3 present the performance of both approaches. In can be seen that there is no signif-

icant difference in accuracy. However, compared to WMCP-1, EMP needs to generate

relatively more patterns and takes much more computational time on most instances.
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3.6.2 Results of Column Generation for LAD Classification Model

Before we present the results of the proposed column generation framework with the

two objective approaches, there are several implementation settings needed to address

ahead. In Min-Pattern, the objective function in Equation (3.16) is to find a linear

combination of patterns and there may be very similar or duplicate combinations oc-

curring as the quantity of candidate patterns generated gets larger. As studied in the

literature [19, 138], in column generation, it is hard to obtain the real optimal solution

due to degeneracy and tail-off effects in the large-scale IP problems. For this reason, we

introduce a perturbation to the objective function of Min-Pattern in order to attempt to

find different possible combinations (diversification). We can rewrite Equation (3.16) as∑
s+∈Ŝ+

σs+zs+ , where σs+ is a random coefficient uniformly ranging between [1−ϵ, 1+ϵ]

and ϵ is a small positive number. The perturbation is executed only when there is no im-

provement on the objective function value over several iterations. Note that, however,

we do not need to apply the perturbation to Max-Margin because the objective function

considers the separation margin resulting from the generated patterns instead of the

combination of them. For the termination criterion of the procedure, we terminates it

when whichever the following stopping criteria is reached first within a computational

time limit of 10 hours. First, the optimality is reached. We also consider the degen-

eracy, i.e., z̄j = 0, so different patterns may be priced out after a certain number of

iterations. Secondly, there is no improvement of the objective function value of RMP

after a maximum number of iterations.

Table 3.4 presents the comparison of the performance of Min-Pattern and Max-

Margin, compared to MCP, on 14 data sets. The numbers of patterns, accuracies,

and computational times are reported. In the column generation of Min-Pattern and

Max-Margin, We adopt the initial (feasible) patterns generated by MCP to start with.

These patterns are expected to provide a lower bound in terms of the accuracy and

the quantity of patterns for Min-Pattern and Max-Margin. Compared to MCP, Min-

Pattern yields competitive accuracies with lower quantity of patterns used in the LAD

classification model in most instances. Whereas, Max-Margin achieve higher accuracies
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by 10-20% with a lot more of patterns in 9 out of 14 instances. As for the computation

time, the procedure are finished with the time limit of 10 hours in most stances. We

note that for Min-Pattern, it requires double computational time because both positive

and negative pattern generations are carried out separately. Besides, we want to point

out the efficiency of our approach to generate only decisive patterns. We take an the

most complex example of the Pima Indians diabetes data set (pid). Applying Max-

Margin results in very good accuracy by using 902 positive and 79 negative patterns

approximately for the LAD classification model, whereas a brute-force enumeration

needs
∑19

k=1 2
k

19

k

 in total.

Table 3.5 presents the statistics of the degree of patterns of Min-Pattern, Max-Margin,

and MCP. Compared to the minimum support set, it is clear that lower degrees are

required to form patterns in most instances. It is worth mentioning that we observe that

the LAD classification model with positive patterns of degree 1 yields to 100% accuracies

in the instances of the wpbc, wdbc, and prks data sets. It can be interpreted that every

measured feature is an independently key feature in the diagnosis and prognosis of these

diseases. On the other hand, in the LAD framework, it reflects that the steps of data

binarization and feature selection are successfully to extract very critical features.

In addition, here is an important point when implementing column generation for

IP problems. Because Min-Pattern is an IP problem, it needs to be relaxed to a LP

formulation in the column generation algorithm. Although the final LP solution to Min-

Pattern is obtained to be optimal, it is not a real optimal solution and we need to solve

the original problem to obtain the final IP solution in the end of procedure. To make

sure if the final solution is optimal, we further employ a branch-and-price approach to

obtain an exact IP optimal solution, where the column generation algorithm is carried

out in a branch and bound framework [19]. In our experiments, the results showed that

the final solution of implementing the column generation algorithm is good enough for

the LAD classification model although it is still not guaranteed to be optimal. On the

other hand, however, there is not a matter in implementing Max-Margin because it is a

LP formulation and the final LP solution can be obtained to be optimal.
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3.6.3 Comparisons with Existing Approaches

We have presented the effective results of our proposed approaches. To show the clas-

sification accuracy, we compare our approaches to a number of related LAD methods

proposed in the literature and several state-of-the-art classification algoirhms in freely

used package Weka [140, 65].

Table 3.8 presents the accuracies of our pattern generation approaches MCP and

WMCP-1, compared to the other similar methods EMP [27], CAP-LAD [27], and MILP

[121]. These approaches were carried out using different cross validation and tested

on four medical data sets. These approaches somehow have a similar idea of their

mathematical optimization models. EMP is an approach to generate an exact number

|I| of maximum patterns, each generated based on an object. CAP-LAD is a heuristic

approach to improve the computational efficiency. MILP is a MILP-based approach to

generate a number of patterns with setting the parameter of degree in advance, each

generated by minimizing the number of objects that cannot be covered. All patterns

are used to construct a LAD classification model. CAP-LAD and MILP yield among all

higher accuracies on average.

Table 3.6 presents the accuracies of our column generation algorithms Max-Margin-

MCP and Max-Margin-WMCP-M compared to an existing approach LM-LAD proposed

by [26]. Similarly, LM-LAD proposed an objective approach to construct a LAD clas-

sification model based on a column generation framework, where the difference is that

a branch and bound approach is proposed to generate patterns in subproblem. The

results show a significant performance in all instances. Further, compare all results in

Table 3.8 and 3.6, our column generation algorithmsMax-Margin-MCP and Max-Margin-

WMCP-M yield among all higher accuracies on average.

Among statistical and machine learning algorithms, we choose five widely used al-

gorithms that are usually used to compare, including support vector machines (SVM)

[125], decision tree (J48 ) [117], random forests (RF) [32], logistic regression (LR) [77],

and multilayer perceptron (NN) [75]. They are all available in the software package

Weka [140]. To perform a fair comparison, we also run 10 times 5-fold cross validation
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and choose the best results among all calibrated parameters for each algorithm. In

SVM, radial basis function is chosen as the kernel function and complexity parameters

are 1, 5, and 50. In J48, we use the settings of reduced error pruning and binary splits

on nominal features, and consider the minimum number of instances per leaf in the

tree by taking values 1 and 2. In RF, only a few features (e.g., 2 or log2(n), where n

is the number of features) are selected in a single decision tree. We use the numbers

of features to be used in random selection by taking values 2 and 10, and trees to be

generated by taking values 10, 100, and 1000. In LR, we consider the setting of stoping

fitting of logistic models if no new error minimum has been reached in the last iteration

(e.g., 50 and 100) and use an error on the probabilities as measure when determining

the best number of the LogitBoost iterations. Also, the maximum numbers of Logit-

Boost iterations are 100 and 500. In NN, we consider the learn rates of 0.3 and 0.5,

momentums of 0.2 and 0.4, numbers of hidden layers by taking number of features, and

sum of numbers of features and classes. Table 3.8 reports the best accuracies among

our proposed approaches, as well as the above-mentioned classification algorithms. It

can be seen that our column gneration algorithm Max-Margin-MCP yields the best per-

formance in 9 of 14 instances and the competitive results in the remaining instances.

It is worth noting that Max-Margin achieves exactly 100% accuracies in the instances

of the wpbc, wdbc, and prks data sets, while the other algorithms have lower accura-

cies by 10-20%. Max-Margin-MCP achieves good accuracies 10% higher than the other

algorithms in the instances of larger and more complex bld and pid data sets.

3.7 Conclusion

As LAD has been shown to be an effective data mining technique for binary classifica-

tion in many disciplines, there are still underlying issues encountered in classification

accuracy and computational efficiency. In this study, we present a new pattern genera-

tion approach using a mathematical optimization technique in the LAD framework and

develop a new column generation algorithm for the construction of LAD classification

model. Tested on a number of widely used medical data sets, the results evidently show
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the effectiveness of the proposed approaches for LAD classification. Our approaches are

delivered with the following points: (1) to achieve higher accuracy by using less crit-

ical patterns in the classification model compared to other enumeration-based LAD

methods, (2) to generate diverse patterns including dominant and odd patterns with-

out additional limitations on patterns (parameter-free), and (3) to construct among the

most accurate classification model compared to other algorithms such as support vector

machines, decision tree, random forests. neural network, and logical regression.

From the perspective of computational implementation, the proposed column gen-

eration framework can be generalized. One can propose different objective approaches

to meet particular purposes and employ any exact or approximation approaches for

pattern generation. To develop more effective and efficient LAD framework, there are

many studies to undertake, such as proposing novel data binarization and feature se-

lection methods for logical data, developing new integrated LAD algorithms. and so

on. Also, it can be extended to multi-classification problems.

For practicality in the application to medical diagnosis and prognosis, one of the

most important advantages of LAD technique is to provide clear and interpretable

solutions that are beneficial of decision making in treatment plans. This study indeed

offers a new useful tool to overcome the difficulties in efficiency and effectiveness in

practical.
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Table 3.6: Comparison of the results of pattern generation approachesMCP andWMCP-
1, and the other approaches EMP, CAP-LAD, and MILP on four data sets.

Data MCP WMCP-1a EMPb CAP-LADb MILPc

wbc 0.95 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
hrt-c 0.78 ± 0.05 0.80 ± 0.01 0.81 ± 0.01 0.83 ± 0.03 0.82 ± 0.06
bld 0.61 ± 0.05 0.61 ± 0.02 0.64 ± 0.04 0.73 ± 0.05 0.70 ± 0.04
pid 0.67 ± 0.04 0.69 ± 0.01 0.58 ± 0.03 0.75 ± 0.02 0.76 ± 0.03
a WMCP-1 with β = 1 is conceptually equilalent to EMP and CAP-LAD.
b The results are reported by 10-fold cross validation [27].
c The results are reported by 5-fold cross validation [121].

Table 3.7: Comparison of the results of our column generation algorithms Max-Margin-
MCP, Max-Margin-WMCP-M, and the other approach LM-LAD by [26] on four data
sets.

Data Max-Margin-MCP Max-Margin-WMCP-M LM-LAD
wbc 0.97 ± 0.02 0.97 ± 0.01 0.94 ± 0.02
hrt-c 0.86 ± 0.04 0.85 ± 0.05 0.81 ± 0.03
bld 0.84 ± 0.04 0.84 ± 0.06 0.68 ± 0.02
pid 0.83 ± 0.03 0.83 ± 0.03 0.68 ± 0.03

Table 3.8: Comparison of the results of our best approaches and five state-of-the-art
algorithms on 14 data sets.

Data Oura SVM J48 RF NN LR
wbc 0.97 ± 0.02 0.97 ± 0.02 0.94 ± 0.02 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.02
wpbc 1.00 ± 0.00 0.77 ± 0.02 0.75 ± 0.05 0.80 ± 0.04 0.77 ± 0.05 0.80 ± 0.05
wdbc 1.00 ± 0.00 0.97 ± 0.01 0.93 ± 0.02 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.02
hrt-c 0.86 ± 0.04 0.84 ± 0.05 0.78 ± 0.05 0.83 ± 0.05 0.79 ± 0.05 0.83 ± 0.05
hrt-h 0.85 ± 0.05 0.81 ± 0.04 0.79 ± 0.04 0.80 ± 0.04 0.78 ± 0.05 0.83 ± 0.05
hrt-s 0.86 ± 0.18 0.94 ± 0.02 0.93 ± 0.02 0.93 ± 0.03 0.89 ± 0.06 0.92 ± 0.04
hrt-lb 0.71 ± 0.06 0.75 ± 0.01 0.72 ± 0.05 0.75 ± 0.04 0.69 ± 0.07 0.74 ± 0.04
hrt-stat 0.87 ± 0.04 0.84 ± 0.05 0.78 ± 0.05 0.83 ± 0.04 0.80 ± 0.05 0.83 ± 0.05
hpts 0.81 ± 0.09 0.87 ± 0.05 0.82 ± 0.06 0.87 ± 0.05 0.81 ± 0.06 0.85 ± 0.06
bld 0.84 ± 0.04 0.58 ± 0.00 0.62 ± 0.05 0.73 ± 0.06 0.68 ± 0.06 0.69 ± 0.05
pid 0.83 ± 0.03 0.77 ± 0.03 0.74 ± 0.03 0.76 ± 0.03 0.75 ± 0.03 0.77 ± 0.03
SPECTF 0.87 ± 0.06 0.79 ± 0.00 0.78 ± 0.05 0.81 ± 0.03 0.77 ± 0.05 0.79 ± 0.04
SPECT 0.83 ± 0.06 0.83 ± 0.04 0.80 ± 0.03 0.82 ± 0.04 0.80 ± 0.04 0.82 ± 0.05
prks 1.00 ± 0.00 0.87 ± 0.04 0.83 ± 0.07 0.91 ± 0.05 0.92 ± 0.05 0.85 ± 0.06
a Max-Margin-MCP yields among the best results in our experiments.
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Chapter 4

OPTIMIZATION-BASED FEATURE SELECTION FOR

CLASSIFICATION1

4.1 Introduction

While there are more and more available data (e.g., the genome data containing hun-

dreds or thousands features [62, 14]), more sufficient information can be provided to

solve classification and clustering problems. However, along the line, it may encounter

a difficulty of computational complexity increased by data size and noise (including

missing and erroneous values). To handle this, feature selection is a process to find a

subset of “good” features from the original feature set [25, 64], which has been shown to

be beneficial for the classification performance of learning models/algorithms in some

applications [23, 39, 79, 55, 115]. In general, there are several advantages of feature

selection in classification: data reduction, noise reduction, and interpretability. By re-

ducing the feature space, a smaller feature subset obtained is more desirable to reduce

the computational complexity and cost of learning a classification model/algorithm, and

noise could be removed to improve the classification accuracy. Moreover, a small sub-

set of the good features out of a huge quantity of features is favorable for interpretably

identify the detailed characteristics or functions behind the problem.

To solve the feature selection problem, three types of approaches are usually sug-

gested: filter, wrapper, and hybrid approach of filters and wrappers [85, 49, 122]. The

filter approach can be viewed as a pre-processing step that selects a feature subset based

1The chapter is part of two working papers in collaboration with Wanpracha Art Chaovalitwongse,
Chungmok Lee, Myong-K. Jeong, and Shouyi Wang
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on the inherent characteristics of training data and does not convolve with any classifi-

cation models. The wrapper approach searches for the candidate features according to

the performance of a pre-determined classification model learnt by which features are

selected. Furthermore, a hybrid approach combined filter and wrapper approaches is

to use a goodness measure (e.g., classification accuracy or number of selected features)

as an objective function in a classification framework to find a best combination of

features [137, 39, 55].

Among statistic and machine learning methods, mathematical optimization pro-

vides a perspective in feature selection to improve the classification performance [31].

The objectives usually includes separation margin maximization [26, 43], classification

accuracy maximization [39, 55], and others [60, 101]. In the chapter, we attempt to

develop new optimization-based approaches to solve feature selection problem in classi-

fication. In the first part, we propose an optimization model, integrated with statistical

information from features as inputs, solved by a hybrid heuristic algorithm. The op-

timal characterization of selected features relies on the separability with respect to

the target class (maximum relevancy) and the correlation with other selected features

(minimum redundancy). In the second part, we propose a pattern-based classification

method, called decomposed feature support machine. The idea, modified from the fea-

ture support machine (FSM) [39], is to maximize the classification accuracy using a

decomposed k-nearest neighbor rule (DKNN). The preliminary results for the test data

sets are presented.

4.2 Separation-Correlation Feature Selection Using Statistical Infor-

mation

Recently, mutual information (MI), first discussed in statistics and information theory

in 1990s [89, 131], has been widely used as a criterion in feature selection to evalu-

ate how good selected features are. Relevancy and redundancy are common criteria

[143, 114, 54, 119]. A feature is expected to be individually selected with high rele-

vancy with respect to the target class. Among all selected features, it is more likely
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to have redundant features leading to the identical classification. Thus, a redundancy

criterion is used to find a feature less correlated with the other selected features. Con-

sequently, a combined criterion of maximum-relevancy and minimum-redundancy has

been shown a more significant advance. Furthermore, many hybrid heuristic approaches

were developed to search for top ranked features based on different mutual information

criteria with pre-determined parameters such as number of selected features and selec-

tion threshold in the literature [20, 92, 129, 114, 54]. Along the research direction, there

are some other studies that adopt the similar statistical concepts of correlation [66, 143]

and divergence [90, 128] used for the feature selection and classification. Recently, a

quadratic programming approach was proposed, integrated with similarity (correlation)

measure [119]. The interested reader is referred to the literature for detailed reviews

[98, 134].

In feature selection, however, it is shown that “good” individual features with higher

information are not always a good combination yielding good classification performance.

In fact, the feature selection can be viewed as a combinatorial optimization problem. In

this study, we propose a new concept of combinational optimization using the mutual in-

formation to find a best and compact subsets of features that maximize the separability

of individual selected features with respect to the target class and minimize the corre-

lation with other selected features. On the other hand, it is computational expensive to

solve such combinational optimization problem as the size and dimensionality of data

increase drastically. We therefore develop an incremental heuristic search algorithm to

solve it with selection criteria such as maximum-relevancy, minimum-redundancy, and

maximum-relevancy-minimum-redundancy.

The remainder of this section is structured as follows. In Section 4.2.1, the back-

ground of statistical information in feature selection is reviewed. In Section 4.2.2, a new

mathematical optimization model for feature selection is presented based on the mutual

information and then an efficient heuristic algorithm is developed. In Section 4.2.3, the

effectiveness of the proposed approach is tested for widely used data sets from the UCI

machine learning repository and in the literature using several classification techniques,

along with exhaustive computational experiments. This chapter is concluded in Section
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4.4.

4.2.1 Statistical Information in Feature Selection

In this section, we review the background of mutual information that has been increas-

ingly used for feature selection in data mining. Also, we briefly introduce the similar

concepts of correlation and divergency.

We first define the following notations that will be used thorough out the paper. In

this study, we mainly focus on the two-class data. Given a set I of samples in both

positive and negative classes, where I = I+ ∪ I− and ∅ = I+ ∩ I−. Each sample is

represented by a set of features, denoted by F . The target class of samples is denoted

by C. A feature subset S ⊆ F is defined a set selected from the whole feature set. Other

variables will be defined later as needed. Moveover, we note that the terms “feature”

and “variable” are used interchangeably sometimes.

4.2.1.1 Mutual Information

MI (also called cross entropy) is shown to be favorable in feature selection to measure

the relationship (e.g., relevancy) of any two target random features. Consider two

continuous random features X and Y , the MI between them is defined based on the

probability distribution as follows.

I(X;Y ) =

∫
y

∫
x
p(x; y) log

p(x; y)

p(x)p(y)
dxdy, (4.1)

where p(x) and p(y) are the marginal probability density functions for X and Y , re-

spectively, and p(x, y) is the joint probability density function. It is defined for discrete

features in a similar way as follows.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x; y) log
p(x; y)

p(x)p(y)
dxdy. (4.2)
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The MI has the following favorable properties due to using probability density func-

tion [89, 54]. The MI is capable of measuring any kind of features because it is not

based on statistics of any order. The characterization and order of original variables

are retained because the calculated value does not rely on the transformation in the

variable space. In calculation, the value of MI is not upper bounded by 1 and depen-

dent on intrinsic characteristic of variables. The two features are independent when

I(X;Y ) = 0 and get more relevant as I(X;Y ) increases. In addition, The pairwise MI

is symmetric so that I(X;Y ) = I(Y ;X).

Because the value of MI highly depends on features themselves, the measure should

be revised in order to evaluate features at the same standard. [54] therefore proposed

a concept of normalized mutual information (NMI) and the NMI is defined between

feautres X and Y as the entropy of MI normalized by the minimum entropy of both

features, given by

NI(X;Y ) =
I(X;Y )

min{H(X), H(Y )}
, (4.3)

where H(·) is the entropy.

In feature selection, there are several useful criteria derived on the basis of mutual

information as the goal of feature selection is to find the most correlated features with

the target class. I(fj ;C) is defined to quantify the relationship of an individual feature

fj with respect to the target class C, and I(fj ; fk) is defined to quantify the relationship

between features fj and fk. A feature is selected among all considered features such

that it has the maximum relevancy with the target class. The “Max-relevancy” (MR)

selection criterion is defined as

max
fj∈F

I(fj ;C). (4.4)

To extend a single feature to any feature subset S, it can consider the average Max-

relevancy for a feature subset given by

max
S⊆F

1

|S|
∑
j∈S

I(fj ;C). (4.5)
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However, when selecting such relevant features, some of them may be correlated to

each other and redundant to govern the discrimination of the target class. To avoid

this redundancy, it needs to find out redundant features from the relevant features with

the target class. A feature subset S with the least with the least correlation with other

features is selected by “Min-redundancy” (mR) selection criterion, which is defined by

min
S∈F

1

|S|2
∑

fj fk∈S
I(fj ; fk). (4.6)

Consequently, a combined selection criterion, “Min-redundancy and Max-relevancy”

(mRMR), was proposed to select a feature subset; each feature is highly dependent on

the target class and very less correlated with the other features [51, 114]. The mRMR

is defined as

max
S⊆F

1

|S|
∑
j∈S

I(fj ;C)− β
1

|S|2
∑

fj fk∈S
I(fj ; fk), (4.7)

where the parameter β controls the tradeoff between the two terms mR and MR.

With the selection criteria based on mutual information, many feature selection

methods have been proposed over the past years such as MIFS [20], MIFS-U [92],

AMIFS [129], mRMR [114], NMIFS [54]. The MIFS is the first MI-based approach to

select a feature subset S ⊆ F that maximizes the MI I(S,C) using the MR criterion in

Equation 4.5. The authors proposed a heuristic to iteratively select informative features

based on the criterion given by

max
fj∈F

I(fj ;C)− β
∑

fj∈F fk∈S
I(fj ; fk), (4.8)

where β = 1
|S| , until the pre-determined size of feature subset is met. Note that the

above criterion is a reduction of Equation (4.7) with f1 ∈ F and |F | = 1. MIFS-U is an

improved version of MIFS by changing the selection criterion. Later, an enhancement

AMIFS over MIFS and MIFS-U was proposed, which considers an adaptive parameter

β for the tradeoff of relevancy and redundancy. More recently, NMIFS is a comprehen-

sive approach that takes into account all limitations appearing in the previous MI-based
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approaches. The authors proposed an average normalized MI so that the parameter β

is no longer considered a matter in the selection criterion and developed a new genetic

algorithm to solve it. In addition, the mRMR is an approach that exactly uses the selec-

tion criterion in Equation (4.7). the authors have proven that the first-order selection

is equivalent to “Maximum dependency”, which considers the joint mutual information

of features with respect to the target class, i.e., max I({fj , j = 1, ..., |S|};C). Then

they proposed the first-order incremental search by using β = 1 to iteratively select one

informative feature at a time. Moreover, they proposed a two-stage algorithm: in the

first stage, a feature subset with pre-determined size is selected using the first-order

incremental search and in the second stage, they consider both forward and backward

wrapper scheme to finally reach a compact feature subset. Meanwhile, another ap-

proach using conditional mutual information was proposed for binary feature selection

[57].

4.2.1.2 Correlation

Correlation is a classical measurement in statistics to evaluate the relevancy of two

random variables. There are two correlation-based approaches widely used. The first

approach is simply based on the classical linear correlation coefficient r. The r takes

the values between -1 and 1. If r < 0, two features are negatively correlated while if

r > 0, two features are positively correlated. If r = 0, two features are completely

independent. In feature selection, it does not a matter if two features are positively or

negatively correlated, so we take the absolute value of r and the pairwise correlation

is defined |r| ∈ [0, 1]. However, the linearity property may not suitable to most real-

life features because their correlation are not linear in nature. The second approach

based on the information-theoretical concept of entropy is considered to overcome the

above limitation. While features with highly relevancy with respect to the target class

are easily identified, some studies recently proposed approaches to identify the features

with significant redundancy using a correlation-based measure. The interested reader

is referred to the rich literature [66, 67, 142, 143, 141, 48].
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4.2.1.3 Divergence

Kullback-Leibler (KL) divergence (also called relative-entropy) is well-known as a mea-

sure to quantify the dissimilarity between two features [90, 89]. The definition of KL

divergence is related to the MI. The entropy of KL is also calculated based on the

probability distributions p(x) and p(y) of both discrete features given by

KL(X;Y ) =
∑
x∈X

p(x) log
p(x)

p(y)
. (4.9)

Since the KL divergence is not symmetric, the entropy from p(x) to p(y) is not equal to

the entropy from p(y) to p(x). To avoid the bias of measurement, the Jensen-Shannon

(JS) divergence [81] is generally considered by taking the average entropy given by

JS(X;Y ) = 0.5(
∑
x∈X

p(x) log
p(x)

p(y)
+

∑
y∈Y

p(y) log
p(y)

p(x)
). (4.10)

For use of divergence in feature selection, we propose a simple way for relevancy

calculation. It can be used for the relevancy of a feature with respect to the target class.

We separate the samples on the feature into two groups based on the class information.

Because both sizes of the original features may not be equal, feature values of the

samples in both groups are discretized on the same domain with a preset interval. In

such way, we obtain two discrete probability distributions employed in Equation (4.10)

to calculate the relevancy. It can be similarly used for the relevancy between two

features.

4.2.2 The Proposed Optimization-based Approach

This section is divided into two parts. In the first part, we propose a new optimization

model to find a compact subset of informative features based on statistical information

as input (the mutual information is the main focus). In the second part, we propose

an efficient algorithm to solve the proposed optimization problem as the computational

complexity of the model is increased by the feature dimensionality.
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4.2.2.1 Optimization Model

With the mutual information, the goal of the feature selection here is to select a subset

S ⊆ F of features; each individual feature has high relevancy on the target class C

and has less relevancy with the other selected features j ∈ S. Ultimately, this feature

subset is expected to yield a better performance in classification. How to find such a

feature subset can be formulated as a combinatorial optimization problem with mutual

information as an input. We define yj ∈ {0, 1} as a binary variable indicating if feature

j is selected. Inputs of mutual inforamtion include: P is a |J | × 1 vector, where pj is a

value of relevancy of feature j ∈ J with respect to the target class, i.e., pj = I(fj ;C),

and Q = (qjk) is a |J |×|J | symmetric matrix, where qjk is a value of pairwise relevancy

between feature j and k, i.e., qjk = I(fj ; fk). The quadratic programming formulation

of SCOM-Q is given by

(SCOM-Q) max
∑
j∈J

pjyj (4.11)

s.t.
∑

j, k∈J
qjkyjyk ≤ θ, (4.12)

∑
j∈J

yj ≥ α, (4.13)

yj ∈ {0, 1}, (4.14)

where θ ∈ [0, |J |2] is a threshold to control the relevancy of selected features and α is a

positive number to control the number of selected features. The objective in Equation

(4.11) is to maximize the overall relevancy of selected features with respect to the

target class. The constraint in Equation (4.12) ensures that the overall relevancy among

selected features has to be less than a pre-determined threshold θ. The constraint in

Equation (4.13) ensures that at least α features have to be selected. For simplicity,

α is usually set to 1. Consequently, we employ a linearization technique by [38] to

linearize the quadratic constraint in Equation (4.12). We define uj ≥ 0 as the total

pairwise relevancy for feature j and vj ≥ 0 as a surplus variable. The linearized model
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of SCOM-Q is reformulated by

(SCOM-MI) max
∑
j∈J

pjyj − β
∑
j∈J

uj (4.15)

s.t.
∑

k∈J\j

qjkyk = uj + vj ∀j ∈ J, (4.16)

vj ≤M(1− yj) ∀j ∈ J, (4.17)∑
j∈J

yj ≥ α, (4.18)

yj ∈ {0, 1}, (4.19)

where we delete the parameter θ and add a new parameter β as a tradeoff between two

terms in the objective function. The objective in Equation (4.15) is to maximize the

overall relevancy of selected features with respect to the target class and additionally

to minimize the sum of the average relevancy of selected features. The constraints in

Equation (4.16) is to calculate the total pairwise relevancy between feature j and the

other selected features. The constraints in Equation (4.17) ensure that feature j is

activated to select. The constraint in Equation (4.18) ensures that at least α features

have to be selected.

It is worth noting that, the linearized model SCOM-L is more interpretable that each

feature is selected with high relevancy with respect to the target class and less relevancy

to all other selected features. It is obviously seen that the objective function in Equation

(4.15) of SCOM-L is conceptually equivalent to the mRMR criterion in Equation (4.7).

On the other hand, when solving the SCOM-L, it is difficult to calibrate the value of

the parameter β at a precise level so that the two terms in the objective function are

comparable. To tackle this issue, we employ the result of normalized mutual information

proposed in [54] by replacing I(fj ; fk) with NI(fj ; fk) =
I(fj ;fk)

min{H(fj), H(fk)} . Thus, the

parameter can be set to be a constant β = 1
|J | , where |J | is the cardinality of feature

set J , without the calibration of β.

For generality, the redundancy and relevancy of selected features can be evaluated

by the correlation and divergence as mentioned in Section 4.2.1. In SCOM-MI, the

inputs can be simply replaced with the divergence pj = JS(f+
j , f−

j ) for relevancy and
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the correlation coefficient qjk = |r| for redundancy. The SCOM-MI is carried out to

obtain a feature subset based on both statistical information.

To conclude, the proposed approach SCOM-MI has several advantages compared to

the existing MI-based feature selection methods. Firstly, the SCOM-MI does not need to

pre-determine the number of selected features, and always find a very compact selected

feature subset. Whereas, other MI-based methods find a feature subset with a fixed

size. This may lead to an additional step to remove irrelevant or redundant features.

Secondly, the SCOM-MI also does not need to consider any threshold parameters to

filter out features due to imposing the relief by normalized mutual information on the

objective function. Finally, the resultant feature subset is considered an ”optimal”

combination of high informative features, not the first |S| “good” features based on

the mutual information. Most importantly, the model indeed considers the inter-effects

among all candidate features. For example, given a subset of ordered features f1, f2,

and f3 based on the mRMR criterion. The best solution may be a combination of f1

and f2 substituted for f1 although f1 alone gives the highest mutual information.

4.2.2.2 Incremental Optimization Search Algorithm

It is challenging to obtain an optimal solution among
|J |∑
k=1

|J |
k

 combinatorial solutions

in a reasonable computational time as the data (feature) size increases drastically.

For this reason, we propose an incremental optimization search algorithm (IOSA),

integrated with the SCOM-MI to find the best combination of selected features. The

idea of IOSA is to iteratively solve the SCOM-MI by adding one feature at a time;

the feature to be added to the candidate feature set is selected based on the different

criteria of mutual information, such as MR and mRMR. Note that here we redefine the

candidate feature set S and the unselected feature set F . The entire iterative procedure

is described in Algorithm 3. The classification accuracy is calculated by the percentage

of samples correctly classified by a sophisticated classifier such as SVM, LDA, or KNN.

To determine a feature to be added to the candidate feature set, we propose three

selection criteria as follows.



105

Algorithm 3 Incremental Optimization Search Algorithm

1: Input: a training subset with the whole feature set F .
2: Output: a best combination of selected features B with the associated classification accu-

racy.
3:

4: procedure Incremental Optimization Search Algorithm(input)
5: Initialization: feature set F = {F}, candidate set S = ∅
6: Choose the best feature f1

c ∈ F in terms of the MR criterion.
7: Update: S ← S = {f1

c } and F ← F\{f1
c }.

8: repeat
9: Determine a candidate feature f t

c according to the given selection criterion.
10: Update: S ← S = {f t

c} and F ← F\{f t
c}.

11: Solve SCOM-MI with undated P and Q as inputs from S.
12: Calculate classification accuracy on the training subset.
13: Update: selected features B.
14: Check stopping criterion: no improvement on either classification accuracy (as high

as possible) or the number of selected features (as less as possible). If it is met, stop search.
15: until t > T
16: return output
17: end procedure

IOSA-1 Consider a feature f t
c having maximum relevancy among all unselected fea-

tures with respect to the target class C. The criterion is given by

MI1 : t = argmax
fj∈F
{I(fi;C)|fj ∈ F}. (4.20)

IOSA-2 Consider a feature f t
c having maximum relevancy among all unselected fea-

tures with respect to the target class C and minimum total pairwise relevancy

(that is, minimum redundancy) with other unselected features. The criterion is

given by

MI2 : t = argmax
fj∈F
{I(fj ;C)− 1

|F | − 1

∑
fk∈F\fj

NI(fj ; fk)|fj , fk ∈ F}. (4.21)

IOSA-3 Consider a feature f t
c having maximum relevancy among all unselected fea-

tures with respect to the target class C and minimum total pairwise relevancy

(that is, minimum redundancy) with all candidate features. The criterion is given
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by

MI3 : t = argmax
fj∈F
{I(fj ;C)− 1

|S|
∑
fk∈S

NI(fj ; fk)|fj ∈ F, fk ∈ S}. (4.22)

The proposed algorithm IOSA can be viewed as a hybrid forward selection scheme,

in which a filter approach (i.e., SCOM-MI) to select a good combination of features is

convolved in a wrapper approach to evaluate the classification performance. Compared

to the existing MI-based feature selection algorithms such as MIFS, NMIFS, mRMR,

etc., the solving process is relatively fast although the cost of computational complexity

does not change very much. One reason is that in the IOSA framework, the SCOM-MI

only targets at the candidate feature set starting from 2 features and the size is much

smaller.

4.2.3 Preliminary Experiments

To test the proposed feature selection approaches, we use several state-of-the-art clas-

sification techniques for a number of data sets. All experiments were implemented on

Intel Xeon Quad Core 3.0GHz processor workstation with 8 GB RAM and were coded

in MATLAB with synchronization of CPLEX version 10.0 in GAMS. For classification

techniques, we directly employ the developed MATLAB toolboxes. Computational

times reported were obtained from the desktop’s internal timing calculations, which

include the time used for preprocessing and postprocessing.

4.2.3.1 Data sets

we use 6 two-class data sets from the UCI repository [16]: Cleveland and Statlog heart

disease, Wisconsin breast cancer, bupa liver disorders, Pima Indians diabetes, and

Parkinson’s disease. For the purpose of noise reduction, the data is discretized into a

binary format by using a threshold for each feature. The threshold cj for feature j is

determined by the average of the means µ+
j and µ−

j of the subsets in two classes, i.e.,

cj =
µ+
j +µ−

j

2 . For example, a binarized feature value x = 1 if x ≥ cj , and x = 0 otherwise.



107

Table 4.1: Characteristics of data sets.
Samples Class

Data Total + − (+, −) Features
Breast cancer-Wisconsin 699 458 241 (malignant, benign) 9
Heart disease-Cleveland 303 139 164 (sick, normal) 13
Heart disease-Statlog 270 120 150 (sick, normal) 13
Bupa liver disorders 325 200 125 (positive, negative) 6
Pima Indians Diabetes 768 268 500 (positive, negative) 8
Parkinson’s disease 195 147 48 (parkinsons, normal) 22
Leukemia 72 47 25 (ALL, AML) 7070
Colon Cancer 62 40 22 (tumor, normal) 2000

Note that the feature space still remains the same. We also use two biomedical data

sets for comparison: leukemia [62] and colon cancer [14], that have been tested in

[114]. For the reason to reduce noise, the obtained data sets have been preprocessed

by discretizing all feature values into 3-state values with respect to the mean µ and

standard deviation σ. For example, a feature value x = 2 if x > µ + σ/2, x = 0 if

µ− σ/2 ≤ x ≤ µ+ σ/2, and x = −2 if x < µ− σ/2. The characteristics of all data sets

are summarized in Table 4.1.

In addition, missing values usually appear in real-life data due to sampling errors.

According to the literature [73], the feature selection and the construction of classifi-

cation model are susceptible to missing values in the data analysis. To remove this

effect, we consider missing values in one class to be simply replaced by the means of

the feature values in the opposite class.

Synthetic Data sets

To show the effect of increase in data size on the solving process, we create new

data sets of 100, 500, and 1000 features by adding new artificial features to the original

Wisconsin breast cancer and Parkinson’s disease data sets. The sample sizes of both

new data sets remain unchanged. New feature values are randomly generated from the

uniform distribution over the interval [ub, lb], where ub is a random integral number

between 1 and 50 and lb is a random integral number between 51 and 100. A set of

feature values is generated with the same seed.
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4.2.3.2 Classifiers

The proposed feature selection approaches in this paper do not convolve with any spe-

cific classification models or techniques. To test the effectiveness of selected features,

we therefore choose three widely used classification techniques such as linear discrim-

inate analysis (LDA) [108], k nearest neighbor rule (KNN) [46], and support vector

machine (SVM) [125]. We directly employ the MATLAB toolboxes with specific pa-

rameter settings. LDA is to find a combination (or classification boundary) of features

that can distinguish one class data from the other class data. We choose a linear type

of discriminant function. KNN is amongst the simplest machine learning algorithm.

The idea is that a sample is classified based on the closest known (training) k sam-

ples, where k is the number of samples used for comparison. Here we propose to use

k = min{|I+|, |I−|}. SVM is a mathematical programming technique for classifica-

tion, which constructs a boundary in highly dimensional feature space with a kernel

function based on all known samples. We use the LIBSVM package [35] to implement

experiments using a linear type of kernel function.

4.2.3.3 Performance Accuracy

To evaluate the classification performance, we adopt the accuracy that is defined by

the percentage of correctly classified samples to the target sample set. Let us denote

sets of correctly classified positive and negative objects by I+c and I−c . The accuracy

is calculated by accur = |I+c |+|I−c |
|I| . Due to possible influences by the unbalanced or

contaminated data, we repeat n times k-fold cross validation on randomly shuffled data

sets in order to obtain unbiased outcomes. For cross validation, a target data set is

equally divided into k subsets, in which one of subsets is used as a testing data set while

the remaining k− 1 subsets are used as a training data set. The classification accuracy

is referred to the accuracy in terms of the testing data set to validate the effectiveness

of the selected features from which the training data set is used to learn. The overall

accuracy is reported by the average of n× k experiments, where n = 10 and k = 5 are

set in our experiments. Note that we use the leave-one-out cross validation in order for
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comparison with the mRMR approach in [51] on the leukemia and colon cancer data

sets. One sample is left out as a testing sample while the remaining samples in the

data set is used as a training subset at a time. The entire cross validation process is

bounded by the number of samples.

4.2.3.4 Computational Results

Tables 4.2 and 4.3 display the results of classification performance of the proposed ap-

proaches obtained by 10 times 5-fold cross validation using classifiers LDA, KNN, and

SVM for both original and binarized UCI data sets. The first column presents the

baseline results by using all features in classification for comparison purpose. The sec-

ond column presents the results of solving SCOM-MI directly. The remaining columns

present the results of solving SCOM-MI by the heuristic searches with MI1, MI2, and

MI3 selection criteria. The accuracy is calculated based on the testing data subsets.

It is clearly seen that compared to the baseline, there are relatively less features se-

lected by the proposed approaches for classifiers to yield very competitive classification

performance. Among all the proposed approaches, the heuristic search with MI3 se-

lection criterion gives better performance in terms of both the number of features and

classification accuracy. There is no significant difference among all applied classifiers.

Because the data may be contaminated by the noises (sampled errors), the significant

classification improvement is obtained for the binarized data sets of the Cleveland and

statlog heart disease compared to the original data sets.

Figure 4.1 illustrates the behaviors of accuracy and number of selected features over

the feature iteration by the heuristic search. It shows how the search terminates when

there is no improvement on either the classification accuracy or the number of selected

features. We observed that not all features in the candidate subset are selected in the

optimal combination in each iteration. It reflects the fact that more or better selected

features turns out to be a better performance.

To show the capability of the proposed heuristic search to improve computational

efficiency, we use larger synthetic data sets of Wisconsin breast cancer and Parkinson’s
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Figure 4.1: Behaviors of accuracy and number of selected features over the feature
iteration. The iteration is terminated based on the stopping criterion that there is no
improvement on classification accuracy when adding more features. The data used for
illustration is a training subset of the breast cancer data set.

disease. Tables 4.4 and 4.5 shows the performance of the SCOM-MI and the heuristic

search with MI3 selection criterion in terms of the number of selected features, accu-

racy, and computational time. The reason that we only apply the heuristic approach

with MI3 selection criterion is because it overall outperforms the other two selection

criteria. Note that the blank part means not results obtained because it ran out of

computational time (20 hours for each cross validation). Obviously, the computational

time increases with the number of features. Applying the heuristic approach to the

SCOM-MI indeed saves a lot more computational time than solving the SCOM-MI di-

rectly. For the heuristic approach, we obtained the consistent results no matter if the

data size increases; it always selects the most reliable (original) features as the artificial

features are treated as contaminated features. Whereas, directly solving the SCOM-MI

is not tractable for larger data sets.
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Table 4.4: Comparison results of the SCOM-MI and IOSA-3-SCOM-MI for larger syn-
thetic data set of Wisconsin breast cancer using classification techniques LDA (top),
KNN (middle), and SVM (bottom).

SCOM-MI IOSA-3-SCOM-MI
Data size features accur Time a features accur Time a

9 7.6 0.96 ± 0.02 1 4.54 0.95 ± 0.02 6
100 13.14 0.96 ± 0.02 2604 5 0.95 ± 0.02 16
500 b 4.76 0.95 ± 0.02 53
1000 5.42 0.95 ± 0.02 129

Data size features accur Time a features accur Time a

9 7.5 0.94 ± 0.02 2 2.9 0.93 ± 0.02 5
100 13.08 0.74 ± 0.05 2917 2.68 0.93 ± 0.02 9
500 3.04 0.93 ± 0.02 17
1000 2.62 0.93 ± 0.02 23

Data size features accur Time a features accur Time a

9 7.56 0.97 ± 0.01 9 5.74 0.96 ± 0.02 33
100 13.08 0.96 ± 0.02 3430 5.32 0.95 ± 0.02 57
500 5.82 0.96 ± 0.02 124
1000 6.2 0.96 ± 0.02 221
a The computational time (in second) is reported by the average time of 10
repetitions of cross validation.
b The blank means no results obtained because the experiments ran out of
time limitation (20 hours for each cross validation).

Table 4.5: Comparison results of the SCOM-MI and IOSA-3-SCOM-MI for larger syn-
thetic data set of Parkinson’s disease using classification techniques LDA (top), KNN
(middle), and SVM (bottom).

SCOM-MI IOSA-3-SCOM-MI
Data size features accur Time a features accur Time a

22 7.9 0.75 ± 0.06 96 1.62 0.76 ± 0.07 275
100 b 1.48 0.76 ± 0.08 314
500 1.68 0.76 ± 0.06 602
1000 1.66 0.76 ± 0.06 843

Data size features accur Time a features accur Time a

22 7.82 0.85 ± 0.06 92 1.5 0.85 ± 0.07 256
100 18.94 0.83 ± 0.05 23720 1.46 0.84 ± 0.06 326
500 1.34 0.83 ± 0.07 470
1000 1.38 0.84 ± 0.06 599

Data size features accur Time a features accur Time a

22 7.88 0.84 ± 0.06 303 1.58 0.84 ± 0.05 529
100 1.58 0.85 ± 0.05 631
500 1.72 0.85 ± 0.06 920
1000 1.58 0.84 ± 0.06 1098
a The computational time (in second) is reported by the average time of 10
repetitions of cross validation.
b The blank means no results obtained because the experiments ran out of
time limitation (20 hours for each cross validation).
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Table 4.6: Comparison results of the proposed approaches SCOM-MI, IOSA-1-SCOM-
MI, and IOSA-3-SCOM-MI with the mRMR method [114] for the discretized (3-state)
data sets using classification techniques LDA (top), KNN (middle), and SVM (bottom).

SCOM-MI IOSA-1-SCOM-MI IOSA-3-SCOM-MI mRMR
Data features accura features accur features accur features accur
Leukemia xb x 2.4 42/72 4.68 67/72 5.0 71/72
Colon cancer x x 1.3 30/62 2.08 50/62 2.0 54/62

SCOM-MI IOA-1-SCOM-MI IOA-3-SCOM-MI mRMR
Data features accur features accur features accur features accur
Leukemia x x 1.2 38/72 3.03 70/72 –c –
Colon cancer x x 1.8 31/62 2.74 51/62 – –

SCOM-MI IOA-1-SCOM-MI IOA-3-SCOM-MI mRMR
Data features accur features accur features accur features accur
Leukemia x x 1.0 47/72 2.96 68/72 3.0 68/72
Colon cancer x x 1.2 38/62 2.18 51/62 2.0 54/62
a The accuracy is the number of correctly classified samples by leave-one-out cross validation.
b The program ran out of memory.
c The result is not available in the original paper.

4.2.3.5 Comparison with mRMR Feature Selection Method

We compare the performance of the proposed approaches (besides IOSA-2-SCOM-MI)

with the mRMR method in [114] for the same large gene expression data sets in Table

4.6. The accuracy is reported as the number of correctly classified samples using leave-

one-out cross validation. Due to high dimensionality of feature space, it ran out of

memory as solving the SCOM-MI directly for all instances. The MR and mR selection

criteria used in the heuristic search are not effective to achieve the same performance as

the mRMR selection criterion. Compared to the mRMR approach, our heuristic search

with the MI3 selection criterion obtains competitive performance when both use the

similar selection criterion. Note that their approach needs to pre-determine the number

of features to be selected (and our approach do not), so the reported results is extracted

from the implementation with the approximate number of selected features as what we

obtained.

4.2.3.6 Generalization of the Proposed Framework

In Tables 4.8 and 4.8, we also present the comparison results by the SCOM using

different statistical information such as the correlation coefficient and the divergence.

The first column presents the result by the SCOM-MI (using mutual information)
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Table 4.7: Comparison results of SCOM-MI and SCOM-Cor-Div for the original data
sets using classifiers LDA (top), KNN (middle), and SVM (bottom).

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.3 0.95 ± 0.02 4.1 0.95 ± 0.02
Heart disease-Cleveland 9.4 0.83 ± 0.04 3.6 0.63 ± 0.06
Heart disease-statlog 9.5 0.83 ± 0.05 5.4 0.73 ± 0.07
Bupa liver disorders 3.0 0.55 ± 0.06 3.6 0.63 ± 0.06
Pima Indians diabetes 4.6 0.73 ± 0.03 5.4 0.75 ± 0.04
Parkinsons 8.7 0.78 ± 0.06 12.0 0.77 ± 0.05

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.2 0.93 ± 0.03 3.9 0.92 ± 0.02
Heart disease-Cleveland 9.3 0.82 ± 0.05 5.4 0.63 ± 0.06
Heart disease-statlog 9.6 0.82 ± 0.04 5.3 0.64 ± 0.04
Bupa liver disorders 3.1 0.57 ± 0.04 3.5 0.63 ± 0.06
Pima Indians diabetes 4.6 0.71 ± 0.04 5.4 0.65 ± 0.04
Parkinsons 8.7 0.84 ± 0.05 12.0 0.85 ± 0.05

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.4 0.95 ± 0.02 4.1 0.95 ± 0.02
Heart disease-Cleveland 9.5 0.82 ± 0.04 5.4 0.73 ± 0.06
Heart disease-statlog 9.3 0.83 ± 0.05 5.2 0.72 ± 0.06
Bupa liver disorders 3.0 0.56 ± 0.06 3.5 0.60 ± 0.07
Pima Indians diabetes 4.6 0.72 ± 0.04 5.4 0.76 ± 0.04
Parkinsons 8.6 0.86 ± 0.05 12.0 0.82 ± 0.05

and the second column presents the results by the SCOM-Cor-Div (using correlation

coefficient and divergence). We observed that the SCOM-Cor-Div gives worse accuracy

(2̃0% lower) for the original data sets of Wisconsin and statlog heart disease while

better accuracy for the original data sets of Bupa liver disorders. For the binarized data

sets, there is no significant difference for all instances. It is noted that the SCOM-MI

used relatively less features than the SCOM-Cor-Div to achieve the same classification

performance.

4.3 Decomposed Feature Support Machine

Feature support machine (FSM), motivated by the support vector machines (SVM) in

[31], is a pattern-based classification approach based on a nearest neighbor rule and

was first applied to abnormal brain activity classification problem [39]. The goal of the

FSM is to maximize the classification accuracy (or minimize the classification error)

by selecting “good” features that have strong separability with respect to the target

class. A nearest neighbor rule is used to identify (vote) the class of samples according
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Table 4.8: Comparison results of SCOM-MI and SCOM-Cor-Div for the binarized data
sets using classifiers LDA (top), KNN (middle), and SVM (bottom).

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.3 0.95 ± 0.02 4.8 0.94 ± 0.02
Heart disease-Cleveland 9.4 0.83 ± 0.04 8.1 0.84 ± 0.04
Heart disease-statlog 9.5 0.83 ± 0.05 8.2 0.84 ± 0.04
Bupa liver disorders 3.0 0.55 ± 0.06 3.6 0.56 ± 0.06
Pima Indians diabetes 4.6 0.73 ± 0.03 4.2 0.72 ± 0.03
Parkinsons 8.7 0.78 ± 0.06 x x

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.2 0.93 ± 0.03 4.9 0.93 ± 0.03
Heart disease-Cleveland 9.3 0.82 ± 0.05 8.1 0.81 ± 0.04
Heart disease-statlog 9.6 0.82 ± 0.04 8.4 0.82 ± 0.05
Bupa liver disorders 3.1 0.57 ± 0.04 3.6 0.58 ± 0.06
Pima Indians diabetes 4.6 0.71 ± 0.04 4.2 0.72 ± 0.04
Parkinsons 8.7 0.84 ± 0.05 9.2 0.81 ± 0.05

SCOM-MI SCOM-Cor-Div
Data features accur features accur
Breast cancer-Wisconsin 5.4 0.95 ± 0.02 4.9 0.94 ± 0.02
Heart disease-Cleveland 9.5 0.82 ± 0.04 8.0 0.83 ± 0.05
Heart disease-statlog 9.3 0.83 ± 0.05 8.3 0.84 ± 0.04
Bupa liver disorders 3.0 0.56 ± 0.06 3.6 0.57 ± 0.06
Pima Indians diabetes 4.6 0.72 ± 0.04 4.2 0.72 ± 0.03
Parkinsons 8.6 0.86 ± 0.05 9.2 0.84 ± 0.06

to the nature of the closest baseline samples. The FSM is modeled as follows. We

define the following sets and decision variables. I is a set of target samples and J is

a set of features. Binary variable yj = 1 indicates if feature j is selected by FSM, and

0 otherwise. Binary variable xi = 1 indicates if sample i is correctly classified. Given

a data set, an input parameter is defined: accuracy matrix A, where aij = 1 indicates

if the nearest neighbor rule correctly classifies sample i on feature j, and 0 otherwise.

The mathematical program for the FSM is given by

(V-FSM) max
∑
i∈I

xi (4.23)

s.t
∑
j∈J

(aij −
1

2
)yj ≤Mxi ∀i ∈ I (4.24)

∑
j∈J

(
1

2
− aij)yj + ϵ ≤M(1− xi) ∀i ∈ I (4.25)

∑
j∈J

yj ≥ 1 (4.26)

yj , xi ∈ {0, 1}, (4.27)
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where M = |J |/2 and 0 < ϵ < 1/2 is used to break a tie during the voting. The

objective in Equation (4.23) is to maximize the total number of correctly classified

samples. There are two constraint sets in Equations (4.24) and (4.25) used to ensure

that the samples are classified based on the nearest neighbor rule. A logical constraint

in Equation (4.26) ensures that at least one feature is used in the nearest neighbor

rule for classification. Later, a relaxation of FSM (rFSM) was proposed [55], which

relaxes the binary decision variable yj to yj ∈ R and applied to medical prognosis and

diagnosis.

Here we propose a new FSM, called decomposed feature support machine (dFFM).

Specifically, a decomposed k-nearest neighbor (DKNN) rule is proposed and applied to

identify (vote) the class of samples so as to construct an accuracy matrix.

4.3.1 Accuracy Matrix by Decomposed k-Nearest Neighbor

A k-nearest neighbor (KNN) rule is an intuitive and effective technique, which has long

been associated to classification. Traditionally, the KNN rule identifies the class of a

sample through the majority voting based on the closest k samples in the baseline data

set. A DKNN rule is proposed in a similar way. The idea is that a baseline data set is

divided into two subsets (positive and negative) and the class of a sample is identified

through the majority voting based on distances to the closest k samples from both

positive and negative data subsets. The distance is measured between the sample and

the average of the closest k samples. The sample is assigned (voted) to closer subset.

In terms of computational complexity, a KDNN rule runs faster than a KNN rule

because O(|N | · |D|+ |N |2) ≤ O(|N | · |D|+ |N+|2+ |N−|2), where N is the baseline data

set, D is the data dimension (feature space), and N = N+ ∪ N−, where N+ is positive

baseline data subset and N− is negative baseline data subset. Moreover, it is easy to

prove that both KDNN and KNN rules equivalently yields identical classification.

An accuracy matrix A is constructed based on the baseline data set in the training

stage. For clarity, the baseline data set here refers to a subset of the training data set.

The nature of the training samples is known. The classification of every feature of every
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training samples can be directly identified by applying the proposed KDNN rule with

a pre-determined parameter k. In the voting scheme, aij = 1 indicates if the KDNN

correctly classifies sample i on feature j, and 0 otherwise. The correct classification is

based on average intra-class distance dij and average inter-class distance d̄ij of positive

and negative baseline data subsets. That is, if dij < d̄ij , then aij = 1, and 0 otherwise.

4.3.2 Optimization Models

Given an accuracy matrix A. We denote I+ is a positive data subset and I− is a

negative data subset, where I+ ∩ I− = I and I+ ∩ I− = ∅. The mathematical program

for the accuracy maximization problem is given by

(VAMM) max
α

|I+|
∑
i∈I+

xi +
1− α

|I−|
∑
i∈I−

xi (4.28)

s.t
∑
j∈J

(aij −
1

2
)yj ≤Mxi ∀i ∈ I (4.29)

∑
j∈J

(
1

2
− aij)yj + ϵ ≤M(1− xi) ∀i ∈ I (4.30)

∑
j∈J

yj ≥ 1 (4.31)

xi, yj ∈ {0, 1}, (4.32)

where 0 < α < 1 is an important weight of true positive ratio, M = |J |/2, and

0 < ϵ < 1/2 is used to break a tie during the voting. The objective in Equation

(4.28) is to maximize the sum of weighted classification accuracies of both positive

and negative classes. The constraint sets in Equations (4.29) and (4.30) ensure that

the training samples are classified based on the k-nearest neighbor rule. The logical

constraint in Equation (4.31) ensures that at least one feature is used in the k-nearest

neighbor rule.

On the other hand, with the accuracy matrix A, we also can consider classifica-

tion error minimization. Binary variable zi = 1 indicates if sample i is not correctly

classified by a KDNN rule, and 0 otherwise. The mathematical program for the error
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minimization problem is given by

(VEMM) min
β

|I+|
∑
i∈I+

zi +
1− β

|I−|
∑
i∈I−

zi (4.33)

s.t
∑
j∈J

(aij −
1

2
)yj +Mzi ≥ 0 ∀i ∈ I (4.34)

∑
j∈J

yj ≥ 1 (4.35)

zi, yj ∈ {0, 1}, (4.36)

where 0 < β < 1 is an important weight of false positive ratio and M = |J |/2. The

objective in Equation (4.33) is to maximize the sum of weighted classification errors of

both false positive and false negative. The constraint set in Equation (4.34) ensures

that each training samples receives enough votes with a penalty cost M , where M is a

large positive number. The logical constraint in Equation (4.35) ensures that at least

one feature is used in the k-nearest neighbor rule.

4.3.3 Experimental Results

The classification performance of the proposed approach is tested for four medical data

sets (Wisconsin breast cancer, heart disease-Cleveland, Bupa liver disorder, and Pima

Indian’s diabetes). Table 4.9 summarizes the characteristics of the data sets when

applying a KDNN rule. In the experiment, the number of baseline data set needs to

be pre-determined. We define k as the percentage of the baseline data set to the whole

data set. We perform 10 times 5-fold cross validation for each instance. Tables 4.10-

4.13 present the computational results by varying the value of k for each data set. The

accuracy is calculated by the average of sensitivity and specificity and leaving aside

unclassified samples. We observed that the classification accuracy does not vary with

the parameter k. The VAMM outperforms the EAMM. In Table 4.14, we compare the

performance of the VAMM and the V-FSM. It is seen that we obtain a little higher

classification accuracy by using relatively small number of features on all data sets.
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Table 4.9: Characteristics of data sets.
Samples Class

Data Total + − (+, −) Features
Breast cancer-Wisconsin 699 458 241 (malignant, benign) 9
Heart disease-Cleveland 303 139 164 (sick, normal) 13
Bupa liver disorders 325 200 125 (positive, negative) 6
Pima Indians diabetes 768 268 500 (positive, negative) 8

Table 4.10: Results of the VAMM and VEMM for the Wisconsin breast cancer data
set. Accuracies of training and testing data sets, numbers of selected features, and
computational times (in second) are reported for each approach.

VAMM VEMM
Accuracy # of Accuracy # of

k Training Testing features Time Training Testing features Time
0.1 0.93 0.92 3.6 120.29 0.96 0.86 4.92 101.00
0.2 0.95 0.94 4.52 123.96 0.97 0.93 5.6 106.93
0.3 0.96 0.95 4.52 124.58 0.97 0.93 5.8 107.11
0.4 0.95 0.94 4.4 125.37 0.97 0.93 5.64 108.13
0.5 0.94 0.93 4.16 127.45 0.97 0.92 6.6 113.05
0.6 0.94 0.94 4.68 132.42 0.96 0.91 7.68 114.76
0.7 0.94 0.94 4.88 128.65 0.96 0.91 7.68 113.86
0.8 0.93 0.93 4.56 129.36 0.96 0.89 6.28 111.86
0.9 0.92 0.92 5.08 128.52 0.96 0.88 6.04 109.86
1.0 0.92 0.91 4.12 131.03 0.94 0.86 5.24 109.65

Table 4.11: Results of the VAMM and VEMM for the Cleveland heart disease data
set. Accuracies of training and testing data sets, numbers of selected features, and
computational times (in second) are reported for each approach.

VAMM VEMM
Accuracy # of Accuracy # of

k Training Testing features Time Training Testing features Time
0.1 0.69 0.69 1.00 74.86 0.86 0.37 2.00 45.24
0.2 0.72 0.70 2.28 135.83 0.87 0.41 2.00 56.41
0.3 0.80 0.76 2.80 87.30 0.90 0.55 2.76 56.82
0.4 0.85 0.83 3.36 67.11 0.92 0.64 3.96 56.89
0.5 0.85 0.83 3.88 74.99 0.91 0.64 4.56 61.01
0.6 0.85 0.83 3.84 71.94 0.92 0.63 4.32 63.36
0.7 0.85 0.82 4.96 82.83 0.91 0.56 3.68 68.26
0.8 0.85 0.82 4.96 82.67 0.91 0.52 3.52 63.25
0.9 0.85 0.82 4.40 81.07 0.91 0.52 3.80 64.73
1.0 0.82 0.78 5.56 99.20 0.92 0.50 3.12 62.67

Table 4.12: Results of the VAMM and VEMM for the Pima Indians diabetes data
set. Accuracies of training and testing data sets, numbers of selected features, and
computational times (in seconds) are reported for each approach.

VAMM VEMM
Accuracy # of Accuracy # of

k Training Testing features Time Training Testing features Time
0.1 0.73 0.72 1.00 118.29 0.86 0.51 2.00 97.87
0.2 0.74 0.73 1.00 123.91 0.86 0.54 2.00 102.02
0.3 0.74 0.74 1.00 121.01 0.86 0.54 2.00 101.67
0.4 0.74 0.74 1.00 122.45 0.86 0.55 2.00 101.86
0.5 0.74 0.74 1.00 123.61 0.85 0.55 2.00 100.76
0.6 0.74 0.74 1.04 120.29 0.85 0.55 2.00 106.31
0.7 0.74 0.74 1.00 119.76 0.85 0.55 2.00 102.92
0.8 0.74 0.74 1.00 119.76 0.85 0.56 2.00 105.88
0.9 0.74 0.74 1.00 120.21 0.83 0.57 2.00 104.59
1.0 0.74 0.74 1.00 118.50 0.81 0.59 2.00 103.63
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Table 4.13: Results of the VAMM and VEMM for the bupa liver disorders data set.
Accuracies of training and testing data sets, the numbers of selected features, and
computational times (in second) are reported for each approach.

VAMM VEMM
Accuracy # of Accuracy # of

k Training Testing features Time Training Testing features Time
0.1 0.61 0.59 1.44 45.72 0.80 0.35 2.00 36.49
0.2 0.62 0.59 1.44 50.37 0.79 0.37 2.00 38.20
0.3 0.62 0.58 1.40 43.41 0.78 0.35 2.00 39.92
0.4 0.60 0.56 1.52 46.33 0.79 0.33 2.00 36.93
0.5 0.60 0.55 1.76 44.23 0.79 0.33 2.00 35.70
0.6 0.60 0.55 2.08 44.13 0.78 0.36 1.98 36.65
0.7 0.60 0.56 2.04 46.29 0.74 0.39 1.98 36.15
0.8 0.59 0.56 2.04 43.14 0.72 0.41 1.84 38.65
0.9 0.58 0.57 1.52 40.80 0.62 0.51 1.48 38.81
1.0 0.58 0.58 1.20 40.88 0.58 0.57 1.10 38.69

Table 4.14: Comparison results of VAMM and V-FSM from [55]. The accuracy is
reported on the testing data sets.

VAMMa V-FSM
Data set Accuracy K No. of features Accuracy No. of features
Breast cancer-Wisconsin 0.95 0.3 4.5 0.94 11.6
Heart disease-Cleveland 0.83 0.4 0.59 0.82 7.4
Pima liver disorders 0.74 0.1 1.0 0.72 4.3
Bupa Indian’s diabetes 0.59 0.1 1.4 0.58 3.3
a The best results is reported among all instances for each data set.

4.4 Conclusion

In feature selection, selecting critical and informative features is very important for

classification problems with massive data sets in practice. In the first part of this

study, we proposed a new concept of combinatorial optimization, SCOM-MI, to find

a best combination of features based on the statistical information. To reduce com-

putational complexity, we proposed an incremental optimization search algorithm to

solve the SCOM-MI using different proposed selection criteria. We demonstrated the

classification performance using support vector machine, k nearest neighbor rule, and

linear discriminant analysis for various data sets. The exhaustive experimental results

showed that the heuristic search with the selection criterion of “minimum-redundancy

and maximum-relevancy” gives amongst the best performance and the discretization of

the original data sets yields better performance for the data sets of Cleveland and stat-

log heart disease. In addition, we obtained the competitive results for very large data

sets of gene expressions when compared to the existing mRMR method. We finally

showed that the proposed framework can be generalized by employing any different
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useful information as inputs in the SCOM-MI model. In the second part of this study,

we have proposed a new patten-based optimization approach (dFSM) for direct clas-

sification by selected features based on the decomposed k-nearest neighbor rule. We

presented better performance compared to the original FSM.

According to the preliminary results by testing a number of real data sets, we saw

the potential of the proposed feature selection approaches in classification. In future

research, there are studies in several directions to be continued. (1) Comprehensive

experiments with comparisons with other existing approached needs to be further im-

plemented. (2) Since the statistical information is shown to be effective to select good

features, it may be combined in the dFSM to directly solve the classification problem.

(3) The results show that it is faster to solve the problem with binary input features

than numerical input features. Thus, the SCOM-MI can be employed for the feature

selection in the LAD framework. In addition, the feature selection is not limited to

classification problems while clustering problems are commonly faced with the similar

challenge by massive data.
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Chapter 5

CONCLUSION

In this dissertation, we presented new combinatorial optimization modeling and com-

putational algorithms for large-scale clustering and classification problems with highly

computational complexity increased by the size of dimensionality of massive and com-

plex data.

In the first part (clustering), we have studied a very important problem in com-

putational and population biology, a sibling reconstruction problem. It can be mathe-

matically formulated as a spacial case of capacitated clustering problem. We proposed

mathematical optimization models based on the concepts of combinatorics and similar-

ity likelihood. We proposed exact and heuristic solution approaches that were able to

solve the problems comparably and significantly outperform other existing approaches

on the same real biological data sets. In the second part (classification), we focused

on the development of effective approaches for improving the classification performance

of LAD method. We proposed a new mathematical optimization model for generat-

ing decisive patterns. Moreover, we proposed a column generation framework, where

the proposed pattern generation approaches, to improve the classification accuracy and

computation efficiency. We demonstrated the effectiveness and practicability in med-

ical applications and better performance compared to other existing approaches. We

showed that the column generation technique in optimization is favorable for above two

types of problems in data mining with huge and complex data.

In the third part (feature selection), we proposed new optimization-based feature

selection methods. The first approach is an optimization model incorporated with

statistical information to select a compact subsets of informative features that can be

used for any classifiers. The second approach is a pattern-based optimization approach
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using a decomposed nearest neighbor rule, which can be directly used as a classifier.

Along the line, there are many potential studies to be continued for the future research.
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