©2011

Hrishikesh Gadre

ALL RIGHTS RESERVED

INVESTIGATING MAPREDUCE FRAMEWORK EXTENSIONS FOR
EFFICIENT PROCESSING OF GEOGRAPHICALLY SCATTERED

DATASETS
By
HRISHIKESH GADRE
A thesis submitted to the
Graduate School — New Brunswick
Rutgers, The State University of New Jersey
In partial fulfillment of the requirements
For the degree
Master of Science
Graduate program in Electrical and Computer Enginge
Written under the direction of
Professor Manish Parashar

And approved by

New Brunswick, New Jersey

OCTOBER 2011

ABSTRACT OF THE THESIS

INVESTIGATING MAPREDUCE FRAMEWORK EXTENSIONS FOR
EFFICIENT PROCESSING OF GEOGRAPHICALLY SCATTERED

DATASETS

By HRISHIKESH GADRE
Thesis Director

Professor Manish Parashar
We observe two important trends brought about leydtolution of Internet in recent
years. Firstly to improve end-to-end applicatiomf@@nance in presence of bottlenecks
in the wide-area Internet communication, modern ldégrnet services are designed in a
decentralized fashion involving geographically distted datacenters connected through
the Internet. Secondly the pervasive nature ofrietie services has resulted into an
exponential growth in the size of digital infornwati created, captured or replicated.
Organizations are keenly interested in mining tmfrmation to uncover trends,
statistics and other actionable information whiem give them competitive advantage.
These two trends necessitate the design of a lrgle-data processing system which can
operate efficiently in a distributed environmentatving multiple datacenters connected

through the Internet.

In recent years, MapReduce programming model aretifsgally its open source
implementation Hadoop is gaining a lot of tractitor performing large-scale data
processing in a centralized environment. Our evenaof different real-world usage

scenarios of Hadoop deployments revealed that than@ations with the distributed

datasets are required to copy the entire datasetcentralized location so that it can be
efficiently processed by the Hadoop MapReduce fraone. As the Internet evolves

growth in the size of distributed datasets woultpaoe the improvements in the network
bandwidth available in the Internet. At that pothe approach of copying the entire

dataset to a single location using Internet wowddme infeasible.

In this thesis, we have investigated the possybitit extending the MapReduce and
specifically Hadoop framework to operate in a disited environment involving
multiple datacenters connected through the InteMvet also have proposed policies to
improve the performance of Hadoop MapReduce framewm a distributed
environment. We have observed that our policiesravg the performance of Hadoop

framework substantially.

ACKNOWLEDGEMENT AND DEDICATION

| would like to thank my advisor Professor Manislrdshar for giving me this

opportunity to work on something practical and hegting, for his enthusiasm, his
inspiration, his encouragement, his sound advicegaeat efforts during my research in
The Applied Software Systems Laboratory (TASSLam grateful to my colleagues at
TASSL and other friends at Rutgers University foeit emotional support and help,
which made my study at Rutgers enjoyable and fruitfwould like to thank the staff at

the Center for Autonomic Computing (CAC) and Depet of Electrical and Computer
Engineering for their assistance and support. hwisthank my parents and my sister for

their understanding, endless encouragement, ared lov

Table of Contents

ABSTRACT OF THE THESIS ... i
Acknowledgement and DediCationcommmneeeeeeeeeereeeeeiiiiiiirnre e e e e eeeeaeaeeaaaaees \Y
Table Of CONENTS ...t e e e e %
LISt Of IIIUSTFALIONS ...t e e viii
(O [o1 oo [¥ o3 1 o] o BN PP UT R TPPPPPPPN 1
1.1 MOUIVALION ...ttt e e et e e e e e e e e enn e e e e eans 1
1.2 Problem Statement..........ccooiiiiiiiiiscmmeer e 3
1.3 CONMDULIONS. ...ttt reeeeee s 4
2. Background and related WOIKcommrrnnmninineee e eeeeeeeeiiiiiebnneeenae 5
2.1 MapReduce Programming Model...........cooiicee i
2.1.1 Functional programming in the context of paralleqessingccccce.....
b0 A Y/ o 0 U od 1 o o PRSP 8
2.1.3 RedUCE FUNCLIONutiiiiiiiiiiiiiii e 9
2.1.4 Example MapReduce appliCationcceeemeeerimuiiiiiiniieeee e eeeeeeeeeeeiiiieens
2.2 Hadoop MapReduce frameWOrKueieeeeieeeeieieeiiiiiiiiinise e e e e e eeaeeeeen 11

2.2.1 Modeling network topology in Hadoop framework w..............vvveveennn.. 13

2.2.2 Hadoop Distributed File System (HDFS)ccooriiiiiiiiiiiiiiiieeeee e 14
2.3 Hadoop MapReduce frameWOrKieeeeieriiiiiiiieiiiiiiienne e 22
2.3.1 Hadoop MapReduce Schedulers..............oouuiiueiiiiiiiiiie s 24
2.4 Related WOTK ...t ettt e e 26
2.4.1 Cotemporary MapReduce frameworkscocccceeeeeeviveieeeiiiviiicieee e, 26
2.4.2 Large-scale data transfer mechanisms over Internet...............ccoceeeeee. 28
2.4.3 Delay SCheduling..........ieeee e 30
3. MapReduCE EXtENSIONS......ciiiii i e e e e et e e e e e e e e e e e e e e e e e eaesennnneeeeees 31

3.1 WAN aware Hadoop Distributed File SysStem... . .eeeeeveeieiiiiiiiiiieeeeennnnnn. 34

3.2 Intelligent Scheduling of Reduce phase.....ccccccvvvviiiiiiiiiiiiieeeeeeeeeeeeeeeiiis 35
.21 TEIASOIT. ..ttt ——————- 37
3.2.2 WOIACOUNT ...ttt ettt et e e e e e e e e e e e e e e e s 39

Y £SY (= 1. 1D =] o | o P UPSPRRRS 41

4.1 Adaptive Reduce Task Scheduling (ARTS) algorithm................cccccennnnn. 41
4.1.1 ARTS Algorithm for different types of workloadS.............ccccevveeeeeeeennnne. 45
4.1.2 Calculation of estimated Map phase completion time..............ccc........e. 48
4.1.3 Determination of workload type of the JoD ... 49
4.1.4 Determination of expected number of Reduce tasksing 49

5. Experimental EValuation................uuuuimmmmmmiiiiie e e 50

5.1 BeNCNMAIKS....oeiiiiiiiiiiiiceeeee e 50
5.1.1 TESIDFSIO ... ettt a e 50
9.1.2 TeraGeN....ccoiii i 50
9.1.3 TeIASOIT.....ciiiiiiiiiii e ——————— 51
5.1.4 WOICOUNT.....eiiiiiiee ettt i et e et e e e e e e e e smnne s 51

5.2 Evaluation of baseline I/O performance of Hadodgdiystem (HDFS) in
ITTErENT CIUSTEIS. ... et e s e e e e e e e e e e eees 52

5.3 Performance evaluation of HDFS write operation gislifferent replica
PIACEMENT POIICIESceieiiiiiiie e e e e e e e e e e e e e e e e e eeeeeeees 54

5.4 Evaluation of response time for a job for differ&#duce phase scheduling
= 1[0 [0 11 0] 0 1 SR 57

5.5 Performance evaluation of adaptive slow-start algor using different
Hadoop SChEAUIETS ... e e e e e e e e 59

5.5.1 Performance evaluation of Adaptive Reduce Task @divey (ARTS)
algorithm using First-In-First-Out (FIFO) Hadooph®dulercccooeeeeeenennne. 59

Vi

5.5.2 Performance evaluation of Adaptive Reduce Task @divey (ARTS)

algorithm using Hadoop Fair Share Scheduler...c..........oovvvviiiiiiiiiieeee, 6l
5.6 Performance evaluation of Adaptive Reduce Task @divey (ARTS)
algorithm in a distributed Hadoop cluster involvimgltiple datacenters................... 71
6. Summary, conclusion and future WOrKooeeeeeeeeeieeeeeeee e 74
6.1 SUMIMAIY ..ot eeeeee e e e e et e e e e e e e et e e e e eeesbnaaaaeeeaeennen 74
6.2 CONCIUSION ..o ettt e e e e e e e e e e e e eeenn e 75
6.3 FULUIE WOIK ...ttt 76
7. REIEIENCES ..ottt ettt ettt e e e e as 79

Vil

List of illustrations

Figure 1: Map operation transforms every elementh@ input set using the user-
specified conversion function

Figure 2: Reduce function iterates over the inptite produce an aggregated value.
Figure 3: Network topology in Hadoop (Reference:Fxrack awareness proposal)
Figure 4: HDFS Architecture

Figure 5: HDFS Read Operation

Figure 6: Write operation in HDFS

Figure 7: Overview of job execution in Hadoop MapRee

Figure 8: Architecture diagram for Log processiggtem at Rackspace

Figure 9: Task timeline for TeraSort benchmark g®arly start of Reduce phase

Figure 10: Task timeline for TeraSort benchmarkgslelayed start of Reduce phase
Figure 11: Task timeline for WordCount benchmarkg®arly start of Reduce phase
Figure 12: Task timeline for WordCount benchmarikgslelayed start of Reduce phase
Figure 13: Adaptive Reduce Task Scheduling (ART&)r&hm

Figure 14: Task timeline for TeraSort benchmark@#\RTS algorithm

Figure 15: Task timeline for WordCount benchmarnkg@#RTS algorithm

Figure 16: The system architecture for adaptiversdtart algorithm

Figure 17: HDFS write performance for differentesof datasets

Figure 18: HDFS read performance for different siakdatasets

Figure 19: Relative performance of write-operatiarssng different replica placement

policies.

viii

Figure 20: Average response time for TeraSort beack for different Reduce phase
scheduling alternatives

Figure 21: Average response time for TeraSort beack for different Reduce phase
scheduling alternatives

Figure 22: Average relative response time for sfintéractive) jobs for different Reduce
phase scheduling alternatives

Figure 23: Average relative response time for I¢bgtch) jobs for different Reduce
phase scheduling alternatives

Figure 24: Average relative response time for sfintéractive) jobs for different Reduce
phase scheduling alternatives

Figure 25: Average relative response time for Igbgtch) jobs for different Reduce

phase scheduling alternatives

1. Introduction

1.1 Motivation

Today evolution of Internet is radically improvirgyery aspect of human society e.g.
social networking sites like Facebook provide aparpunity to connect and socialize
with other people in a way previously unimaginabteservices like Amazon or eBay

make the experience of shopping almost effortless.

Most of the modern enterprise applications andisesvon the Internet require rigorous
end-to-end system quality. Even a small degradatigmerformance and reliability can
have a considerable impact on business metrics ascpplication adoption and site
conversion rates. A 2009 Forrester Consulting suft#] found that a majority of online
shoppers cited website performance as an impoféatdr in their online store loyalty,
and that 40% of consumers will wait no more thase8onds for a page to load before

abandoning a site.

The performance and reliability of the Internet laagreat influence on the end-to-end
performance of any Internet service. Since thermeteis designed as a best-effort
network, it cannot provide guarantees about engltbperformance or reliability. So the
services deployed in a centralized environment (hea single datacenter) are often
subjected to bottlenecks in the wide-area Integ@hmunication, resulting in poor

performance.

To overcome this problem, modern Internet serviees based on decentralized

architecture so that they can be geographicalliribdiged (using multiple datacenters).

The key benefit of this approach is the significdatrease in the data volume that needs
to be moved, the subsequent network traffic, amddistance the data needs to travel

which reduces transmission costs, latency and ivgsrthe quality-of-service (Qo0S).

Another interesting trend brought about by the etioh of Internet is the growth in the
size of the digital information created, capturedeaplicated. A report published by IDC
[9] states that overall 988 Exabyte of digital imf@mtion (including structured as well as
unstructured) was generated in year 2010 and psedi@at the size of the total
information would grow exponentially over comingaye. Also over 95% of the digital
information is available in unstructured (or semmustured) form such as music, images,
application logs or event streams generated byako&tworking applications such as

Twitter or Facebook.

Organizations are keenly interested in mining tm&rmation to uncover trends,

statistics and other actionable information whiem give them competitive advantage.
For example processing the click-stream data fleenelCommerce website logs helps to
figure out interesting trends in usage patternsiartdrn customer behavior. These two
trends necessitate a large-scale data processstgnsyvhich can operate efficiently in a

distributed environment.

In recent years, a MapReduce programming mode3][Z5 gaining a lot of traction for
performing large scale data processing in a cemdlenvironment. Inspired by the
concepts of functional programming, this model dga the required computation into a
set of small tasks that execute in parallel on ipleltmachines, and scales nicely to very

large clusters of inexpensive commodity computeffie key benefits of this

programming model include its simple programmintggiface, ability to process large-
scale unstructured (or semi-structured) dataséisegitly as well as ability to achieve
massive scalability (and fault-tolerance) withouequiring high-end computing

infrastructure.

Hadoop [12] is a popular open source implementatbrMapReduce programming
model, primarily developed by Yahoo! and used hyuanber of organizations such as
Facebook, Amazon, and LinkedIn etc. We noticed that current design of Hadoop
framework is targeted towards a centralized arctute involving a single datacenter.
We studied the real-world usage scenarios for Hadlaployments and observed that the
organizations with dataset distributed across mileltiatacenters (such as Rackspace [5])
are required to copy the entire dataset to a dexgdalocation so that it can be efficiently

processed by Hadoop MapReduce framework.

The feasibility of copying the entire dataset ®irggle datacenter depends upon a number
of factors such that the total size of the datdbeocopied from each datacenter, total
number of datacenters involved in the copy as wasllcapacity of inter datacenter
network. But as the Internet evolves, the growthhia size of geographically scattered
datasets would outpace the improvements in the arktwandwidth available in the
Internet. At that point the approach of copying #ntire dataset to a single location

using the Internet becomes infeasible.

1.2 Problem statement
As part of this research, we study the design apsans behind the different

components of Hadoop eco-system (specifically Hpdoistributed File System (HDFS)

and MapReduce) which mandate the processing of Mdpée computations in a

centralized environment. For each such design gstsom we propose and implement a

policy to improve its performance in a distributavironment. Finally we compare and

contrast our policies with the native Hadoop framdwin an execution environment

involving two datacenters, one at CAC Lab at Ruggeniversity and the other at

Amazon EC2 for different classes of workloads.

1.3 Contributions

Specifically, the contributions of this research as follows,

Design and implementation of a WAN aware Hadoogptribisted File System
(HDFS) replica placement policy which improves therformance of write
operations with respect to the default policy i ttange of 100% to 200%
depending upon the size of the dataset being writte

Design and implementation of an Adaptive Reducek Tasheduling (ARTS)
algorithm. This algorithm substantially reduces tbtal size of the Map phase
output copied across the datacenters by takingdobhsideration the datacenter-
locality of the Map phase output while scheduliregRce tasks.

Also in case of a shared Hadoop cluster, this dlgaradapts the start of the
Reduce phase with respect to the type of the wadklkexecuted as well as the
size of the job (such as batch or interactive). deethis algorithm consistently
outperforms default Reduce phase scheduling pslicieHadoop framework

(such as early-start and delayed-start).

2. Background and related work

2.1 MapReduce Programming M odel

To perform large-scale data analysis (e.g. loggssitnig, building web indexes etc.) over
a commodity cluster (comprising of thousands of mvaes); programmer has to make
complex decisions such as effective parallelizatbbrcomputation for speedup, data-
distribution, fault tolerance as well as scalapilétc. Without support of a suitable
parallel programming model, these issues obscuee itplementation of original

computation with large amounts of complex codedal avith them.

To avoid such complexity, MapReduce programming @hdgl designed, which enables
the programmer to express intended computation owiththe messy details of
parallelization, data-distribution, fault-toleraneed scalability. This programming model
is inspired by the concepts of ‘map’ and ‘reduceimitives in the functional

programming languages like LISP and ML.

Parallel processing is a technique to divide tlygiired computation into a set of tasks so
that they can be executed concurrently on multipdehines in a cluster. At the end, the
results of all the tasks are merged together tduwre final result. The framework is also
responsible to implement necessary mechanismsafai-tblerance as well as load-
balancing. The complexity of parallel algorithmsesimated in terms of space (memory
requirements), time (processor cycles) as wellhascommunication overhead between

different subtasks.

The communication between different subtasks capdrormed in different ways. In

case of shared-state architecture, a central atyth®responsible to maintain the state of
the computation. Different parts of computation ocammicate with each other by
updating this shared state. In order to maintainssbency of the underlying data-
structures, the concurrent accesses to the shadare serialized by implementing
appropriate locking protocols. This results intoiadezation of part of computation as
well as extra communication overhead, leading raided performance. Also, systems

designed with shared-state architecture tend difbeult to scale.

On the other hand in case of shared-nothing aathite, each of the subtasks is
independent and self sufficient, and there is nehgle point of contention in the system.
This helps to achieve high-degree of parallelismwasl as lower communication
overhead. Generally, the systems designed withedhaothing architecture tend to be

easy to scale.

2.1.1 Functional programming in the context of parallel processing

The imperative programming paradigm is charactdriae having an implicit state that
can be modified (i.e. side effected) by constrictthe source language. As a result, this
paradigm has a notion of sequencing the consttagiermit a precise and deterministic

control over the state.

In contrast, functional programming paradigm isrelterized as having no implicit state
(i.e. immutable data-structures and no shared)statel the computation is expressed
solely as an evaluation of mathematical expressibhs state-oriented computations are

accomplished by explicitly passing the state aargnment to the function.

Due to the requirement of immutable data-structutles systems based on functional
programming paradigm are not subject to data-racelitons and hence don’t require
elaborate locking schemes to ensure the consistehttyeir data-structures. Hence, we
can say that this paradigm is based on the shartiilRg architecture - making it suitable

for efficient parallel processing.

Another interesting property of functional programgiparadigm is the notion of higher
order functions, which accept one or more functiassrguments and optionally return a
function as a result. This property is very useéfulbstracting the common behavior of

the system at one place.

Also, any computation expressed as a functionagnara is deterministic in nature
regardless of the order in which the parts of tepmutations are performed (known by
the Church-Rosser theorem [7]). This property alaith the higher order functions can
be used to build a software framework which caneptaiser defined functions as
arguments and automatically execute them on a e set in a highly parallel fashion

on a commaodity cluster.

Finally functional programming is declarative intur@. Hence functional programs tend
to be much more concise as compared to their irtigeraounterparts. This helps in

improving the programmer productivity.

Thus, the MapReduce programming framework utilizes concepts of functional
programming to provide a concise interface in imapiee languages (like C++, Java,
Python etc.) to the application programmers to espitheir computations in the form of

two functions ‘map’ and ‘reduce’ which are autornaliy executed in a highly parallel

fashion on a commodity cluster by taking into cdesation the factors like fault-

tolerance, data-distribution and scalability.

2.1.2 Map function

As shown in figure 1, Map function accepts a setlefents as an input and executes
user specified conversion (or mapping) over evepyi element. It returns all the output
elements as a set. Here the input and output elsnaga expressed as key-value pairs.
The result of this mapping function forms the imediate result of the MapReduce

computation.

Input Set

Output Set

Figure 1: Map operation transforms every element in the input set using the user-
specified conversion function

The independent execution of mapping function otrex input elements helps to
automatically divide the input dataset and perftmexmapping operation in parallel over
a cluster. After completion of Map operation onividual fraction of the input, system

groups the intermediate result based on the keyth&tend of Map phase (i.e. after

successful execution Map function over entire ddjasystem merges the results of

individual groups based on parallel-merge-all sggt[8].

The system then executes a reduce function ovet af sntermediate values associated
with each of the intermediate key. To improve tlaeafielization, the key-space for the
intermediate keys is uniformly partitioned. Thislgse parallel execution of reduce

function using multiple machines in the cluster.

2.1.3 Reducefunction

As shown in figure 2, Reduce function accepts ac$etlements as an argument and
executes user defined accumulation function oveutielements sequentially and returns

the final value of the computation as a results{aswn in the figure above).

——

Initial Value

Figure 2: Reduce function iterates over the input set to produce an aggregated
value.

2.1.4 Example MapReduce application

A MapReduce framework can be used to perform laeggssing to extract useful trends

in the interaction between the users and the agpit. For example, one interesting

10

trend would be to find out distinct client machineteracting with the application along

with their request count. Consider following sampiéog statements,

66.249.65.107 - - [08/0Oct/2010:04:54:20 -0400] "GEdpport.html HTTP/1.1" 200 11179 "-"

"Mozilla/5.0"

66.249.90.107 - - [08/0ct/2010:04:54:20 -0400] "GEdpport.html HTTP/1.1" 200 11179 "-"

"Mozilla/5.0"

66.249.90.107 - - [08/Oct/2010:04:54:21 -0400] "GHgontact.html HTTP/1.1" 200 11179 "-"

"Mozilla/5.0"

The Map function would accept a set of log statesiés shown above). Here each input
element would comprise of key (the line numberia lbg file) and value (the actual log

statement).

The Map function would extract the client IP addré®m the log statement using the
specified log format. The output of the Map openativould be client IP address (as a
key) and request count (as a value). During thisrapon, the request count would

always be 1.

Function Map (String key, String value)
/lignore key (which is a line number) in thisea
String ipAddress = extractlpAddress(value);

Emitintermediate(ipAddress, “1”);

The result of applying the Map function on the shmpg statements would be

['66.249.65.107", “17]

11

[“66.249.90.107", “17]

[“66.249.90.107”, “1"]

The Reduce function accepts all the intermediagalt@ntries with the same key (in this
case client IP address). This function iterates ¢hve input set and outputs the sum of

request counts for each client IP address as thesccbelow.

Function Reduce(String key, Iterator values)
int result = 0;

for each v in values

result += parselnt(v);

Emit(key, AsString(result));

The result of reduce operation in case of the sahggl statements would be,
['66.249.65.107", “1"]

['66.249.90.107", “27]

2.2 Hadoop MapReduce framework

Hadoop is an open source implementation basedeoribinal Google MapReduce [2]
and Google File System [3] publications. Hadoopcisated by Doug Cutting (the
originator of Apache Lucene — a widely used texdree library) while developing an

open source web search engine called Apache Nutch.

Hadoop eco-system is based on Google Cluster Aathite [1]. This architecture differs

from traditional High Performance Computing (HPChvieonment in two key

12

dimensions. Firstly, the reliability of the systesrbuilt in the system software rather than
depending upon server-class hardware. This helpsitd a high-end computing cluster
using commodity hardware at a much lower cost. 8&go this architecture focuses on
aggregate request throughput rather than peakrsasgonse time. The response time of
the application is improved by increasing the paliahtion of the request processing

tasks.

Since Hadoop is designed to perform large-scale gabcessing in a clustered
environment, it is very important to ensure to thedcessing nodes in the cluster have
fast access to the required data, which ultimadelyends upon availability of inter-node
network bandwidth. Hence design of datacenter nétwaochitecture is one of the key

elements to achieve acceptable performance fagittesm Hadoop cluster.

Basically there are two options for designing uhgleg communication substrate for a
large-scale cluster. One option is to use speeidlihardware and communication
protocols (like InfiniBand or Myrinet). This optioprovides excellent scalability for
clusters of thousands of machines with very highdiadth. But due to the specialized

hardware requirements, it is quite expensive.

On the other hand, using commodity Ethernet swided routers to connect different
machines in the cluster brings down the cost dickaiter networking setup considerably.
This design also resonates with the Google Clustehitecture [1] and hence used for

most of the Hadoop deployments in practice.

The main drawback of using commodity networking ipoent is that the aggregate

network bandwidth provided across the cluster scplorly with respect to the cluster

13

size. Also it is not economically feasible to aceidighest level of aggregate bandwidth

as the cost increases non-linearly with respetitdaize of the cluster.

To overcome this limitation, Hadoop ecosystem abersi network bandwidth as a scarce
resource and implements mechanisms to optimizes#ge as far as possible. This is
done by carefully modeling the topology of dataeemetwork being used in the Hadoop

cluster.

2.2.1 Modeling network topology in Hadoop framewor k

Datacenter 1
Datacenter 0

[fosto] [Host1] [Host2] [Host3| [Host4] [Hosts| [Host] [Host7]

Figure 3: Network topology in Hadoop (Reference: HDFS rack awar eness proposal)

As shown in the figure 3, Hadoop models the topplofydatacenter network as a tree.
The machines in the cluster represent leaves otrdes which are connected to each
other with the help of one or more racks. Typicadlgch rack hosts around 30-40
machines connected to each other by a 1GB/s intewitch. Multiple racks in a single
datacenter are connected to each other by corehsithich normally is 1GB/s or

better).

14

The levels in the tree are not predefined and @ednfigured by the administrator to

suit the needs of the deployment. In practice @oisimon to have levels in the tree which
correspond to the datacenter, the rack as weheasnachine in the cluster. The distance
between any two machines is equal to the sum af ditances to their closest common

ancestor.

Since the bandwidth available for each level desgsaas we move up the tree from
bottom to top, distance between nodes in a tredearsed as a measure of availability of
bandwidth between given two machines in the clugtirdoop attempts to schedule
operations such that the distance between soumdeal@stination of data is as small as

possible.
The Hadoop infrastructure mainly comprises of feilog components,

» Hadoop Distributed File System (HDFS)

* Hadoop MapReduce

2.2.2 Hadoop Distributed File System (HDFYS)

HDFS is a distributed file-system designed to ojgemver a cluster of commodity
hardware catering high-throughput batch-orientegliegtions processing large-scale
data (typically in the range of terabytes). HDFSugable to store small number of very
large files (typically in the range of hundredsgafabytes in size) with write-once and
read-many-timeaccess pattern.

A typical application generates dataset and stibiesHDFS once; and performs various

analyses on the stored dataset over a period d. tlBach analysis would normally

15

require scanning a large portion of the datasenhcelex key system requirement is high
read-throughput rather than low read-latency. Algote-once semantic helps to avoid
issues related to data coherency due to concurpefates from multiple clients.

Another key design consideration for HDFS is basedhe assumption that it is more
efficient to move the computation closer to requiidata rather than moving data closer
to the computation being performed. This helps @wgi network congestion due to

large-scale data movement and improving the appmicaperformance. To this end,

HDFS is designed to be location-aware. This me&ias HDFS provides necessary
functionality to model the network topology of tbkister (in terms of racks, switches
and datacenters etc.) as well as interfaces foapipdéications to discover the location of
operated data. This is helpful for the applicatiigpically MapReduce jobs) to schedule
computations over the cluster intelligently in arte minimize network traffic.

Since Hadoop cluster is deployed on a cluster ofroodity hardware, a failure of one or

more hardware components is a norm rather tharpagoe Hence a key goal for HDFS

is to detect hardware failures and automaticalpver from them.

Also, HDFS is developed using Java platform, whadtilitates easy portability between

different computing platforms.

2221 Architecture

Every file stored in HDFS is composed of one or emtbaita-blocks of fixed size. The size
of block can be configured at the time of file ¢rea (the default size is 64MB). To
guard against data-loss due to hardware failureryeblock is replicated on multiple
machines in the cluster (default replication fa¢so8 although it can be configured at the

time of file creation).

16

Metadata Ops MetaData(fileName, replicas)
- Namenode : . 1
(/input/filel, {replical, replica2})

Client
Block Operations

e Datanodes ——
D |:| BIGCKSD“‘ — :.D Blseks D D
|:| Blocks Replication

Blocks

o g
Rack1 s

Figure 4: HDFS Architecture

As shown in figure 4, Hadoop File-System (HDFS) based on Master/Slave
architecture. It separates the functionality of agement of file-system metadata from
handling data-blocks so that each can be delegatselparate components in the system.
Every HDFS cluster consists of a single meta-dataes (called NameNode in Hadoop
terminology) and a group of data-block servers l¢dal DataNode in Hadoop
terminology).

NameNode manages the namespace of Hadoop filassysid regulates access to files
by clients. It exposes file system namespace dpesmt(like opening, closing, and
renaming files and directories) to the HDFS cliefitss also responsible for maintaining
the mapping between files and their associatedkbldeor every block in the file-system,
it keeps an up-to-date information regarding setDataNodes currently holding its
replica. The NameNode also makes decisions retatbbbck-placement and replication.
By having a single NameNode in the HDFS clusteg thesign of the system is
simplified. It also enables the NameNode to takphsiticated block-placement and

replication decisions based on the current statheo€luster. The downside of this design

17

is the fact that NameNode is a single-point-oftfiggl in the system and also it limits
scalability of Hadoop cluster.

In order to make sure that NameNode doesn’t becanimttleneck during the file
operations, HDFS never directs actual file readéwperations through NameNode. The
client instead requests NameNode for the appraprizdtaNode to contact (the one
containing data in case of read operation or the will contain data in case of write
operation). The communication between client ared@ataNode happen independently
without any involvement of the NameNode.

HDFS cluster consists of a number of DataNodesc#éyly one per every machine in the
cluster. DataNode is responsible to serve storagalulity for the HDFS cluster using its
local storage resources. The DataNode handleswataltequests from the clients as

well as commands from the NameNode related to btoetion, deletion and replication.

2.2.2.2 Important Operationsin HDFS

Read Operation

The figure 5 describes the sequence of operatieriermed during Read operation using

HDFS.
2. Get block
1. Open _______E?EE_IEE?IES_____,. NameNode
i e 3
Application . HDFS
Program nf' Rf?d Client
-"'-._ ~ &l Ry
5 Close uH:F‘__Read
Client JVM T
* DataNode

Figure5: HDFS Read Operation

18

1. The application program requests the HDFS cliempen the required file on its
behalf. The HDFS client consults with NameNode ¢oify if the requested file
exists in the system. Upon success, the HDFS dlezatns application with a file
handle which is be used during subsequent file aijpgrs. The state of the file
handle is maintained exclusively in HDFS client.isThdesign helps keep
NameNode completely stateless and hence can bedssatcessfully in case of
large clusters.

2. HDFS client requests NameNode for the informatidooud the locations of
replicas for the first few logical blocks in thelefi For each logical block,
NameNode ensures that the list of replicas retuisesorted according to its
proximity with the requesting client host. This eres that HDFS client can fetch
the contents of file from the nearest possibletioaan the cluster.

3. Using the file-handle, the application programf@ens read operations on the
file in a streaming mode. Internally HDFS clientcfees the contents of entire
logical block in one step and buffers them to inwarahe performance of read
operation.

4. For each logical block, HDFS client sequentiallptawts DataNodes in the order
provided by the NameNode until the read operatiseteeds. HDFS client also
keeps a track of failed DataNodes and makes suteinnolve them during
reading subsequent blocks. At the end of read @parait also verifies
checksums of the data transferred from the givetal®ade. If a corrupted block
is found, it reports the logical block number are tassociated DataNode

information to the NameNode so that appropriatevery could be performed.

19

5. At the end, the application program requests HDIESitcto close the file opened

for reading by passing the corresponding file handl

Write Operation

The figure 6 describes sequence of actions perfbrohging write operation using

HDFS.
L. Create _______%_ErFfE___...
Application [_3_ _Y_‘L-: "™ HDFS 7. Complete NameNode
Program ey =fm3 Client R R ™
Tre. M
6. Close -l
Client JVM .
4. Write Packet i i 5. Ack Packet
i i
¥ 3
4 4
- . | B _* = * e
Pipeline of DataNode DataNode DataNode
datanodes -~ -
5 3

Figure 6: Writeoperation in HDFS

1. The application program requests HDFS client taterea new file of a given
name in HDFS.

2. The HDFS client requests NameNode to create a flevoff given name. The
NameNode performs various checks to make surdithaloesn’t already exist in
HDFS as well as the client has necessary write igsroms in the requested
namespace. Upon verification, NameNode createsag ®r the requested file
in the namespace and reports success to HDFS .chHDES client returns

corresponding file handle to the application progra

20

3. As the application performs write operation using file handle, the HDFS client
splits data being written into logical blocks. T$igze of each logical block can be
configured per file basis. For each block beingttem, HDFS client requests
NameNode to allocate new block in the HDFS clustdameNode uses
configured replica-placement policy to select a sketDataNodes to hold the
contents of the block. The client receives listDaftaNodes from NameNode in
sorted order based on their location proximity wita client.

4. For each block write operation, the given set ofaDi@des form a pipeline among
themselves such that each DataNode forwards blootents to the next one in
order. This design helps to fully utilize each maets outbound network
bandwidth instead of dividing it amongst multiplecipients (in case of
transferring data directly from client to a set DhtaNodes). Also since
DataNodes are sorted based on their location pibkieach entity in the pipeline
has to transfer the block content only to the dbgessible entity in the network
which reduces the possibility of network bottlergck

5. The DataNodes also send back corresponding ackdgemeents in the pipelined
fashion back to the client. The client waits fokmmwledgements from all the
DataNodes before declaring write operation as ssfak

6. At the end of file operation, the application pragr requests HDFS client to
close the file. The HDFS client ensures that theme no pending

acknowledgements and informs NameNode that fitomplete.

21

2.2.2.3 HDFS replica placement policy

During the allocation of a new block, NameNode cdisswith the configured replica
placement policy to determine set of DataNodesetsddected to host the replica of new
block. The replica placement policy attempts toléraff between read-bandwidth, write-
bandwidth and the reliability. e.g. to optimize t®rbandwidth utilization, the policy can
host all the replicas in a single rack (therebyiding off-rack write traffic). But this
results into lower reliability (e.g. if the racksles network connectivity, the stored data
would be unavailable) as well as lower read-bantwigince all the requests for the
given block would be directed to a single rack).

The default replica selection policy provided in HB is suited for deployments in a
single datacenter. This policy works as follows,

» If the client machine is hosting a DataNode prodesshe HDFS, it is used to
place first replica. Otherwise policy selects angtdNode at random after
verifying its suitability (e.g. DataNode should leasufficient space available to
store the data and it should not be too busy hagdiiher requests).

* The second replica is placed on a DataNode inréifterack as compared to first
one at random.

* Third replica is placed on a DataNode in the same& as the second one but on
different machine (as compared to second one)tselet random.

» If there are still more replicas needs to be plat@d policy selects DataNodes at
random. Here the policy attempts to avoid placomrmany replicas on the same

rack.

22

This policy provides excellent balance in all agpec
* Reliability (since blocks are stored on two diffetreacks)
* Write-bandwidth (since data has to pass througimglesnetwork switch during
write operation).
* Read-bandwidth (since the request load for a gbleok can be divided between

two racks).

2.3 Hadoop MapReduce framework

Hadoop MapReduce framework is based on Master/Slesldtecture. A master (called
JobTracker in Hadoop terminology) accepts jobs stiedhby the clients and performs
‘data-aware’ scheduling using a set of workers I¢dalTaskTracker in Hadoop
terminology). Master partitions the input data iateet of M splits and processes them in
parallel using a set of workers. Reduce invocatiares distributed by partitioning the
intermediate key space into R pieces using a g function. The number of

partitions (R) is specified by the client.

Figure 7 demonstrates the flow of execution of apMeduce job using Hadoop

MapReduce framework.

23

Submit Job

.
Client Program ™ ‘::> < JﬂhTrszE::)

—

Assign Map Task WL A iedmoc ok

e
.~ TaskTracker ,.\L‘\
VN Write
Spht 0 Femote TaskTracker}— 5 Output 0
o Local Read
Sphit 1 i
P Write
Sphit 2

TaskTracker
= REﬁd i .-.“./_.' =..
il ~
; o TaskTracw—. Output 1

: @i_ﬂa—. ,,,,, o
Input Map Phase Intermediate Reduce Phase Output
Files Files Files

Figure 7: Overview of job execution in Hadoop M apReduce
After client submits a MapReduce job to the JobReacit splits the input dataset
into M pieces (each typically 64MB) and createsapNbask per input split.
JobTracker attempts to schedule each Map taskKiygténto consideration data
locality between the input split (stored on HDF84 @¢he idle TaskTracker (ready
to execute a Map task) such that copy of inputsdtaver the network is reduced
as far as possible.
During the execution of Map task, the TaskTraclkeads the contents of the
corresponding input split. It parses key/value gaint of the input data and passes
each pair to the user-defined Map function. Thermediate key/value pairs
produced by the Map function are buffered in memdPgriodically, these
buffered key/value pairs are written to local dig&rtitioned into R regions by the
partitioning function. The TaskTracker informs Joddker about locations of this

intermediate output periodically.

24

JobTracker inform Reducers the locations of Mapsphautput. The Reducer in
turn copies the contents from the local disks ofpptxs using HTTP protocol.

When Reducer has read all intermediate data, i $ioby the intermediate keys
so that all occurrences of the same key are groupgether. The sorting is

needed because typically many different keys mapdsame Reduce task. If the
amount of intermediate data is too large to fitnemory, an external sort is used.

The reduce worker iterates over the sorted intermbedlata and for each unique
intermediate key encountered, it passes the keytla@dcorresponding set of
intermediate values to the user defined ReducedifuncThe output of the Reduce
function is appended to a final output file forstiteduce partition.

After successful completion, the output of the Mag&ce job is available in the

R output files (one per Reduce task).

2.3.1 Hadoop MapReduce Schedulers

In this section, we discuss different scheduleedusy the typical Hadoop deployments

in practice.

23.1.1 Hadoop Fair Share Scheduler

The Hadoop Fair Share scheduler [13] is develope&drebook in collaboration with

University of California, Berkeley. Fair schedyirs a method of assigning resources to

jobs such that all jobs get, on average, an edwaaksof resources over time. When there

is a single job running, that job uses the entluster. When other jobs are submitted,

tasks slots that free up are assigned to the nbg; g0 that each job gets roughly the

same amount of CPU time. This allows short jobéinish in reasonable time without

25

starving long jobs. It is also a reasonable wagltare a cluster between multiple users.
Finally, fair sharing can also work with job prites - the priorities are used as weights

to determine the fraction of total compute timet #ech job should get.

This scheduler organizes jobs into "pools”, andreshaesources fairly between these
pools. The pools can be configured for each indi@iduser or for each UNIX group.
Within each pool, fair sharing is used to shareacdp between the running jobs. Pools

can also be given weights to share the clusterpgmopertionally.

In addition to providing fair sharing, the Fair ®duler allows assigning guaranteed
minimum shares to pools, which is useful for ermsyrthat certain users, groups or
production applications always get sufficient rases. When a pool contains jobs, it gets
at least its minimum share, but when the pool dugsieed its full guaranteed share, the
excess is split between other running jobs. This tlee scheduler guarantee capacity for

pools while utilizing resources efficiently wherefe pools don't contain jobs.

The Fair Scheduler lets all jobs run by default, ibis also possible to limit the number
of running jobs per user and per pool through th&figuration. This can be useful when
a user must submit hundreds of jobs at once, @eimeral to improve performance if
running too many jobs at once would cause too mieimediate data to be created or

too much context-switching.

26

2.4 Related Work

2.4.1 Cotemporary MapReduce frameworks

In this section we compare and contrast betweermnéfatMapReduce framework and the

other contemporary data processing systems.

24.1.1 Sector/Sphere

Sector/Sphere [10] is a software suite designedhigh-performance distributed data
storage and processing not only within a singledsatter but also across geographically
distributed data centers over high speed wide-aedaork (greater than 1 Gb/s). This
system is originally designed at University ofritis, Chicago and currently maintained

as an Open source project.

Sector is a user-space distributed file system hvhiges local storage capacity of each
node for data storage. Similar to HDFS, this fiystem is network topology aware and
hence can optimize the network bandwidth used &ta transfer. Also it does not support

concurrent write operations and is designed mdorlyhe read intensive workloads.

However the design of Sector differs from HDFS inuenber of ways. Firstly, Sector is
not a block-oriented file-system like HDFS. Thisane that it doesn’t split the user files
into blocks; instead a user file is stored intacttbe local file-system of one or more
slave nodes. Although this design helps to protwietiter robustness due to its simplicity
and better performance over wide-area-networksmaeimum size of the file which can
be stored in Sector cannot exceed the maximumside supported by the individual
nodes in the cluster. Secondly, it uses UDT (UDBeHadata transfer) protocol for data

transfer unlike other distributed file-systems saslHDFS which use TCP protocol. This

27

enables Sector to provide high performance dataatfdss geographically distributed

data-centers.

Sphere is a parallel data processing engine irteedyrim Sector and it can be used to
process data stored in Sector with the help of-deéned functions (UDFs) in parallel.
The flexibility of specifying the UDFs for procersgi makes this system more generic to
other MapReduce frameworks like Hadoop since MapRedan be implemented as a
special case of UDFs. The Sphere computing platfigriedso network topology aware
and hence can optimize the network bandwidth coesutiuring computation by making

data-locality aware scheduling decisions.

24.1.2 Twister

Twister [21], developed at Indiana University idigtributed in-memory MapReduce
framework optimized for iterative MapReduce comgotss. It reads data from local
disks of worker nodes and handles Map phase intdatgeoutput in distributed memory
of worker nodes. It users publish/subscribe mesgamifrastructure for communication
and data transfers. Twister assumes that the dathfrom the local disks are maintained
as files and hence supports file based input fgrmaich simplifying implementation of
Twister runtime. This approach requires users tib $y@ir dataset into a number of files
unlike Hadoop Distributed File System (HDFS) whicéin automatically partition the
input dataset into a number of blocks. Twister aspports sending input data for Map
tasks directly via messaging infrastructure which extremely useful in iterative
MapReduce computations since it avoids performiigl-drite operation to save the
results of Reduce phase for the next iteratiortelus the results of Reduce phase of last

iteration are directly fed to the Map tasks of nglxdise via messaging infrastructure.

28

24.1.3 Comet MapReduce

Comet MapReduce framework [22] is being developedratgers University. It is
designed using Comet, a decentralized (peer-to-pmenputational infrastructure that
extends Desktop Grid environments to support agpdios that have high computational
requirements along with non linear communicatioqureements. Comet provides a
decentralized and scalable tuple space, efficiemmngunication and coordination
support, and application-level abstractions thah dse used to implement Grid
applications. The tuple space is essentially aajlobtual shared-space constructed from
the semantic information space used by entitiesctmrdination and communication.
This information space is deterministically mappesing a locality-preserving mapping,
onto the dynamic set of peer nodes in the GridesysT he resulting structure is a locality
preserving semantic distributed hash table (DHTiltben top of a self-organizing
structured overlay. This MapReduce framework usettiple-space provided by Comet
infrastructure to propagate the Map phase interatedoutput thereby avoid disk
read/write operations. This is particularly usdfuil MapReduce computations involving

small to medium scale input datasets.

2.4.2 Large-scaledatatransfer mechanismsover Internet

The problem of efficiently transferring large dasover the Internet has been studied
extensively in the past. Jim Gray [15], DOT (Datae@ted Transfer service) project [16]
and the PostManet project [17] have proposed upwgjal service as an alternative
option for large-scale data transfer over the herin this approach, the entire dataset is
loaded to a portable storage device which is slippa postal service (such as USPS,

FedEx or UPS) to the destination site. The datasgtloaded at the destination site using

29

the storage device. This helps to completely atlogdcopy of dataset over the Internet.
Now even Amazon provides a similar mechanism naimgubrt/Export [18] in its Cloud
offerings. This approach is suitable in environrsewhere a small set of source sites
transfer bulk datasets to a single destinatiorequiently. But as the number of source
sites or the frequency of data transfer increabesgost of shipping the datasets increase

substantially. Hence this approach is not feasibkich environments.

Pandora project [14] attempts to solve the probtdngroup-based data transfer in an
environment involving multiple source sites eaclstimy a large dataset and single
destination site, such that it reduces both totdlad costs incurred by the group as well
as the total transfer latency of the collectiveadat. It makes use of both the Internet as
well as postal service (such as USPS, FedEx or UR®) consolidated dataset at the
destination site can later be used to perform caatipnms using frameworks like Hadoop

[12] or Dryad [19] locally.

The basic difference between this work and our gsapis in the fact that we do not
attempt to consolidate the entire dataset to desiogation. Each participating site hosts
a part of Hadoop Distributed File System (HDFS) #mel dataset created at the site is
stored locally in HDFS thereby avoiding data trensfver the Internet as far as possible.
During the execution of a MapReduce job, the comijiarts moved to the participating

sites hosting the datasets over the Internet.

Stork [18] is a scheduler for data placement antisideveloped for Grid environments
executing data intensive scientific computation®s& wide-area networks. It attempts to

solve the problem of efficient and reliable dataaceiment over distributed Grid

30

environments by taking into consideration the sdrmsnand characteristics of data
placement tasks and implementing techniques tamagi them. The basic difference
between this work and our proposal is in the faat tnstead of moving the data towards
computation through intelligent data placement népies, we move the computation
closer to the data sources and avoid the dataféeraoger wide-area networks as far as

possible.

2.4.3 Delay scheduling

Zaharia et.al. [20] propose a Fair Share schedotddadoop framework. The Fair Share
scheduler attempts to resolve the conflict betwiagness in scheduling and data locality
with the help of a delay scheduling algorithm foe tMap phase. The main idea here is
that when the job that should be scheduled nextrdowy to fairness cannot launch a
data-local task, it waits for a small time intervaletting other jobs to launch tasks itself.
In this work, we have attempted to apply the cohoéplelay scheduling for the Reduce
phase (i.e. an Adaptive Reduce Task Scheduling @Rdlgorithm. Please refer to

section 4.1 for details).

31

3. MapReduce Extensions

Today most of the modern enterprise applicatiorss services on the Internet require
rigorous end-to-end system quality and even smedjratiation in performance and
reliability can have a considerable business imp@tce the Internet is designed as a
best-effort network, it cannot provide guaranteé®ua end-to-end performance or
reliability. So the applications deployed in a calited environment are often subjected

to bottlenecks in the wide-area Internet commuiocatesulting in poor performance.

To overcome this problem, modern enterprise appbica are designed to be
decentralized so that they can be deployed todjed! extremes of Internet instead of a
centralized environment. The key benefit of thiprapch is the significant decrease in
the data volume that needs to be moved, the subsegatwork traffic, and the distance
the data needs to travel which reduces transmissosts, latency and improves the

guality-of-service (Qo0S).

A good example of such decentralized architecwitbe email-hosting platform designed
by a company name®ackspace (which provides managed hosting services for the
enterprises). Its email hosting platform ‘Mailtrustirrently host emails for more than
one million users and thousands of companies usingreds of email servers distributed
across multiple geographies [8]. The decentralinature of this platform helps to

improve the performance and hence the user peoreptithe Email service provided.

During processing user requests, this platform gdas considerable amount of logs
(around 150GB per day) in various formats. Thepogeessing subsystem is required to

aggregate this log information in a timely fashiovhich can be used for different

32

purposes such as growth planning, understandinggeuspatterns as well as

troubleshooting customer problems.

To facilitate this, Rackspace utilizes Hadoop tocess the logs to build Lucene indexes
that customer-support team can query. The actudlseraer logs are stored using HDFS

on a dedicated Hadoop cluster. The figure belowessmts the deployment scenario of

this system.
| Data Center Data Center
Crat
S anode I Datanode —
e ™ [Hodoor |
{ Collector e Hadoo fe Collectar)
N 4 -
II(-'_"‘#_\-N‘\'I-_I
search Hode Search Node (’j' Internet l\
Mail Mail L A '-5‘k i Mail Mail
SRV SETYEr - .-_F,J’“—’ SRV SRV
Mail || Mail Mail Mail
server sarver SEIVET senver
Mail Trust Query Management AP Mail Trust

Figure 8: Architecture diagram for L og processing system at Rackspace

As shown in the figure 8, the email servers gemegdbgs are distributed across multiple
data centers. One of these datacenters also hotdieated Hadoop cluster to perform
the Log storage and processing. Within every datacea variant of UNIX syslog is

used to transfer the logs from email server to @adlector component. The Collector
component in turn aggregates each type of log ansingle stream and writes it to the
dedicated Hadoop file system performing the logagfe. Once the raw logs are placed in
Hadoop file system, they can be processed by theRdduce jobs. The result of this

processing is the Lucene index, which is used terygwarious trends in the system

33

behavior such as the geographical sources of ctinonec average latency between

specific machines, most effective spam rules etc.

There are many different MapReduce application$ ficbuilding inverted-index for a
search engine, performing distributed Grep opemattc. which also may require

operating on data distributed in multiple datacemte

The feasibility of copying the entire dataset ®iragle datacenter depends upon a number
of factors such that the total size of the datde¢ocopied from each datacenter, total
number of datacenters involved in the copy as wasllcapacity of inter datacenter
network. But as the Internet evolves, the growtlhi@ size of geographically scattered
datasets would outpace the improvements in the arktwandwidth available in the
Internet. At that point the approach of copying #ntire dataset to a single location

using the Internet becomes infeasible.

In the past Jim Gray [15], DOT project [16] and tRestManet project [17] have
suggested using postal service as an alternativendjo large-scale data transfer over the
Internet. But this alternative is not feasible istdbuted environments involving a large

number of data-sources frequently generating delbe fprocessed.

Hence as part of this research, we have studiedyrdessumptions behind different
components of Hadoop eco-system which mandate tbeegsing of Map/Reduce
computations in a centralized environment. Spelificwe focus on two aspects of

Hadoop framework,

» Design of an underlying Hadoop Distributed File t8ys (HDFS)

* Design of scheduling algorithm for the Reduce phase

34

3.1 WAN awareHadoop Distributed File System

The fundamental design assumption in a MapRedwrework is the availability of a
single logical distributed file-system storing thput dataset. So in order to execute
MapReduce computation across multiple datacenteissessential to have a distributed
file system which can scale over the wide-area atsv As part of this research, we

have experimented with Hadoop Distributed File &ys{HDFS).

In order to understand the implications of deplgyia single HDFS cluster across
multiple datacenters, we conducted an experimesvé&buate the performance of HDFS
spanning multiple datacenters and observed thatwhte performance of HDFS

degrades considerably for the large datasets.q@leder to section 5.3 for details of this

experiment.)

The cause of performance degradation in HDFS is ttie default replica placement
policy in HDFS does not take into considerationdhaé¢er-locality of the client while
selecting the replicas. This results in unnecessapy of data blocks over the Internet

during the write operation.

To solve this problem, we have designed a WAN-awepdica placement policy which

ensures that the replicas are placed in the sartecetder as the client, provided
sufficient storage space is available in that datser. Using the proposed policy, HDFS
clients in multiple datacenters would be able tareha unified hamespace without the
overhead of data transfer over the Internet. With YWAN aware replica placement

policy, the performance of write-operation in HDF&proves from 100% up to 200%

35

depending upon the size of the dataset being writfelease refer to section 5.3 for

details of this experiment.)

We also observed that the network-topology awarerfieature in HDFS ensures that
during the read operation, the client accessestacelater-local copy of the block if
available and hence the performance of the reatabpe does not suffer unnecessarily
due to deployment of HDFS over the wide-area ndkw@n case when there is no
datacenter-local copy of the block available, tk®a client would need to fetch it from
one of the remote datacenters. But this cost isaidable and can be improved in future

by using intelligent data-transfer protocols).

3.2 Inteligent Scheduling of Reduce phase

The execution time of a MapReduce job depends upertime at which the Reduce
phase starts. In Hadoop framework this can be gordd by setting an appropriate value
for ‘mapreduce.job.reduce.slowstart.completedmap®perty (henceforth termed as
slow-start threshold), which denotes a fractiorthaf total number of Map Tasks in the
Job which should be complete before the Reduceeptes begin. After this threshold is

reached, Hadoop selects any random node to exénaiReduce task.

Although this policy works well on dedicated Hadoatuster in a centralized
environment, it is very inefficient when Hadoop deployed in either distributed
environment involving multiple datacenters or isle@red environment in which multiple
MapReduce jobs can execute concurrently in a siogister. Existing literature [3, 4]
does not offer any guidelines for intelligent Reeluphase scheduling in such

environments.

36

Consider a distributed environment involving mu#ipatacenters connected through the
Internet. As the MapReduce computation operatessaattered dataset in multiple
datacenters, each datacenter hosts a fractiontalf kéap phase output. Now if the
Reduce task is scheduled to a node in datacengtinoonly a small fraction of total
Map phase output, it will require to copy substargize of Map phase output from other
datacenters over the Internet. This can degraderdbponse time of a MapReduce
computation considerably. Hence the Reduce phdsedstng algorithm should take
into consideration locality between the node exeguReduce task and the nodes storing
Map phase output. This means that in a distribetedronment, Reduce task should be
scheduled to a node in datacenter hosting the mamifraction of total data size for the

corresponding partition.

On a dedicated cluster, Hadoop uses early-stanv{start threshold = 0.05) policy by
default. Early start of Reduce phase helps to apetthe compute intensive Map phase
and 1/O intensive Shuffle phase, resulting in inye response time for the Job. This
configuration is especially suitable for clustepse@iting short and interactive jobs,
where response time is very important. This is bseashort jobs suffer greater
percentage degradation in the response time iR#duce phase is delayed (Please refer

to section 5.4 for details).

On the other hand, in case of a shared clustesucmantly executing both long running

batch-processing jobs and short interactive jotastisg the reduce phase early results in
reducing the overall throughput of the system. Tiki®ecause after the Reduce phase
begins for a long running job, it occupies majomtyReduce slots in the cluster. As a

result concurrent short jobs in the cluster arevetifor the Reduce slots. This results in

37

degrading the response time for short jobs duregperiods of high contention (Please

refer to section 5.5.2 for details).

Although delaying the start of Reduce phase he&pmprove the total throughput of the
cluster; for an individual Job, it ends up havinglyoa partial-overlap between the
compute intensive Map phase and the I/O intensiveffl®@ phase. Hence during the
periods of low contention, response time sufferthasReduce tasks have to wait longer

for the Shuffle phase to complete (due to delayad)s

Since the total time required for the Shuffle phssdirectly proportional to the size of
the dataset generated during the Map phase, weaimgreged with different workloads
using a realistic cluster configuration. During leaxperiment, we used early-start and
delayed-start Reduce phase scheduling policiesdier@o understand its effect on the job
execution time. During these experiments, we camne following two important classes

of MapReduce workloads.

3.2.1 TeraSort

TeraSort is a write-intensive MapReduce benchmahich sorts the input dataset using
a MapReduce paradigm (Please refer section 5.1.8dtails). The size of the output

generated at the end of Map phase is equivaldhetsize of the input dataset (there is no
reduction for this benchmark). Hence this benchnaréracterizes all the workloads

generating substantial amount of Map output as esetpto original input dataset.

For this experiment, we used a large input datésetund 4GB) and executed this
benchmark on a 3-node Hadoop cluster for Reducsepbaheduling policies such as

early-start (slow-start threshold = 0.05) and dethgtart (slow-start threshold =0.8).

38

From figures 9 and 10, we can see that a delayetisilicy for Reduce phase results in
reducing the overlap between the Map and Shuffieses, thereby increasing the total
job execution time (around 586s). On the other heatly-start of Reduce phase results
in substantial overlap between the Map and Shpfileses, thereby reducing the total job
execution time (around 564s). Hence consideringamese time, this class of workload is

sensitive to the slow-start threshold value.

(7]
X
[%,]
(1}
'—
(Yo
5} H Reduce
S
2 ;
m Sort
€
=]
3 m Shuffle
H Map
[eleleolololololeoloXe]
ANTOOOANTOVNONTLVOONTLOVOONTOVOONT O
Il Rl K o\ No Ko \No Na Koo NesNeoNeaReo S s S U S il S i Sl Fo RN o NNo N W)

Time (seconds)

Figure 9: Task timelinefor TeraSort benchmark using early-start of Reduce phase

12

10
L2
s 8
'—
‘s 6 B Reduce
3 Sort
g A m Sor
2 m Shuffle

2

H Map

Time (seconds)

Figure 10: Task timelinefor TeraSort benchmark using delayed-start of Reduce
phase

39

3.2.2 WordCount

WordCount is a MapReduce benchmark which countsatia number of occurrences of

all the distinct words available in the given inplattaset (please refer to section 5.1.4 for
details). The size of the Map phase output is subisily smaller as compared to the

original dataset (of reasonable size). Hence theacbmark represents workloads

performing aggregation over the input dataset.

For this experiment, we used a large input dat@setind 5GB of eBooks in text format)
and executed this benchmark on a 3-node Hadoopeclies Reduce phase scheduling
policies such as early-start (slow-start threshol®.05) and delayed-start (slow-start

threshold =0.8).

From figures 11 and 12, we can clearly see thaeasing the delayed-start of Reduce
phase does not result in increase in the job eketdime as compared to early-start
policy. Hence considering response time, this cti#sworkload is not sensitive to the
slow-start threshold value. Therefore we can dfaé¢ the decision to start the Reduce
phase should also depend upon the type of workimad given Job as well as total size
of input dataset (which would classify a Job asomgl running or short/interactive).
Considering only the total progress of Map phaseadims of fraction of total Map tasks

complete) is not sufficient to provide acceptaldef@rmance on a shared Hadoop cluster.

40

L2

[72)

(T

[

‘s B Reduce

3 = Sort

g or

3 m Shuffle
® Map

Time (seconds)

Figure 11: Task timelinefor WordCount benchmark using early start of Reduce
phase

W Reduce
W Sort

m Shuffle

Number of Tasks

® Map

[ejeololojoojoloNololololoolololoNo)
ONSOUXNONTOVNOANTOO0ON
A AT A AN ANANANANOOOOOONN < <

Time (seconds)

Figure 12: Task timelinefor WordCount benchmark using delayed start of Reduce
phase

41
4. System Design

4.1 Adaptive Reduce Task Scheduling (ARTYS) algorithm

We have designed a new algorithm for schedulinguBeghase in Hadoop which works
well both in distributed environments involving mple datacenters as well shared

environments. This algorithm is based upon two irtgoud observations,

» A Shuffle phase cannot complete unless the entap phase is complete. Hence
for any given partition, we can delay the executibrorresponding Reduce task
if the time to copy the Map output for this paditiis less than the estimated
finish time for the Map phase. Also among multigbgible partitions, the

partition containing largest Map output needs ted®eduled earliest.

» At any point during the execution of a Map phake, dize of partial Map output
can be used to infer the type of the workload beirgcuted. This information
can be used to decide if a Reduce task needs $ohseluled immediately or can

be delayed.

This algorithm is orthogonal to the deployment emwment (such as centralized or
distributed) as well as scheduling policy configurfer the Hadoop cluster (e.g. a

Capacity Scheduler or a Fair Share scheduler etc.).

Figure 13 describes the proposed algorithm. Duergcution of MapReduce job, the
Hadoop master (called JobTracker) keeps a tractotal size of Map phase output
segregated with respect to datacenters. This mimatSor every partition, it keeps a

track of total size of Map output in each datacentais helps to identify the datacenter-

42

locality while scheduling Reduce phase in distouenvironment. It is also used to
classify the workload which helps in deciding thadé when the Reduce phase could

start.

We have implemented a mechanism to identify datacedentity for any node based on

its IP address or domain-name (e.g. all machinés damain name .edu are part of CAC
Lab). This configuration is static in nature ancde to be performed manually during
the initialization of Hadoop cluster. This algonihs executed when the master (called
JobTracker) identifies any worker (called TaskTeagkn the cluster with an available

Reduce slot. Let's assume that the datacenter ifigentor this worker is Q. The

important steps in this algorithm are as follows,

43

Determine estimated Map
phase completion time.

!

Determine datacenter-local
partition Rx containing maximum
fraction of total Map output

v

Determine partition Rx for which
this datacenter holds maximum size
of Map output.

Is Rx available?

l Yes

Determine the estimated
time to copy Map phase
output for partition Rx.

l

timeToCopy > \N—O. Determine the type of

mapFinisthﬂl/ workload being executed.

Workload is
write-intensive?

Schedule
Reduce task Bx.

Determine expected
<+————| number of Reduce
Tasks running.

runningTasks <
expectedTasks

lNo

/ Do not schedule
Reduce Task Rx.

%

Figure 13: Adaptive Reduce Task Scheduling (ARTS) algorithm

» JobTracker calculates estimated time required toptete the Map phase using
the information such that total number of Map task®ained to be processing

and average Map task completion time (please sefetion 4.1.2 for details).

44

Among all the unscheduled partitions, JobTrackemmapts to find out a partition
Ry for which datacenter Jholds maximum fraction of total Map output compared
to other datacenters.

If no such partition could be found, then it sedeany partition Rsuch that
datacenter P has maximum size of Map output as compared to tdero
unscheduled partitions. Please note that in ths® gaartition R may not hold
maximum fraction of total Map output as comparedtiver datacenters. This is
just an optimization to reduce the cost of dataydopm other datacenters.
JobTracker calculates estimated time required fiy ¢be entire Map output for
selected partition R

If the estimated time to copy is larger than thep\ddase completion time, then it
schedules the partitionsfor executioron the identified worker.

If the estimated time to copy is smaller than thap\phase completion time, then
JobTracker classify the workload for job by usihg total size of Map output for
partition R and the total Map phase input processed (pledse section 4.1.3
for details).

If the workload is not write-intensive, then it doeot schedule the partitiory fer
execution.

If the workload is write-intensive, then it calcida estimated number of Reduce
tasks executing at the given point of time usitiger model (explained in section
4.1.1). If the total number of Reduce tasks exegutare lagging behind the
expected number then it schedules the partitipfoiRexecutioron the identified

worker.

45

4.1.1 ARTSAIgorithm for different types of workloads

The figure 14 depicts the task timeline for the aBert benchmark using the ARTS
algorithm. Here we observe that although the sdirgglof the Reduce tasks start early
(after completion of 5% Map tasks), not all the Regltasks are started immediately (like
in case of early-start policy). Instead, the altdjon figures out the next best partition

depending upon the size of Map phase output getkesat far at each point of time.

12

M Reduce

Sort

Number of Tasks

m Shuffle
= Map

Time (seconds)

Figure 14: Task timelinefor TeraSort benchmark using ART S algorithm

Here we would like to note that the calculatiortiofe-to-copy Map output depends upon
the network bandwidth estimation provided by therusn case this estimation is overly
optimistic, it can result into delaying the stafttloe Reduce phase thereby degrading the
performance of the Job. In order to avoid such a&ges, we also implement a linear step
function which calculates expected number of Redasks to be executing at any point
of time (please refer section 4.1.4 for detail$)e Blgorithm uses this functido ensure

that scheduling of the Reduce tasks is not lagtgmogfar behind this expected number.

46

This helps to avoid the inefficient scheduling demms made due to optimistic network

bandwidth estimations.

In our experience such step function is requirety am case of workloads similar to

Terasort since they tend to generate large amduntesmediate Map output and hence
are more vulnerable to incorrect network bandweihmates. In the future work, we are
planning to automatically infer the network bandiicivailable in the given Hadoop

cluster.

The figure 15 depicts the task timeline for the Wémunt benchmark using the ARTS
algorithm. Here we can see that the schedulinghef Reduce tasks start late (after
completion of around 90% Map tasks) like in casdealfyed-start policy while providing

execution time comparable with the best case dy-start policy.

12
10
(%]
=
(y]
e 8
L
° ¢ M Reduce
S
2 Sort
m Sor
E 4
>
2 H Shuffle
2
H Map
0
eNoNeoNoNolNoNololNololololNolololoNolNololNololNololNo]
N<FOoOANSOVWNOANTOUONSTSTOVNON I O
e AT A AN AN ANANANOOOOOOOND S
Time (seconds)

Figure 15: Task timeline for WordCount benchmark using ART S algorithm

a7

We have implemented the proposed ARTS algorithiHdadoop framework. The figure

16 represents system architecture diagram forropleimentation.

JobTracker
Rl | & 5j=581+P1+Q1+Tl
e—— } oo R [sk | | Sk=82+P2+Q2+T2
i | TaskTracker | | it
Mo || [RTsHT
| R | s2]| . E
‘ : ’ ‘i /| TaskTracker | |
MO t [TaskTracker i,z g Rl
O I T T : 5
Ml i n ||l y 5
E ; 2 . TaskTracker | !
M2 ! | TaskTracker |/ i
i > i R2
M2 | Rl [T |} !
M3 ! R || 5 :
: " s 7 = Output
Input ! [TaskTracker | Reduce Phase utpy
M3 | Ri [Qi || |
: R |Q ||
Map Phase

Figure 16: The system architecturefor adaptive slow-start algorithm

As shown in figure 16, upon completion of a Magktasach worker in Hadoop cluster
(called TaskTracker) notifies the master (calledbTracker) with the sizes of Map
outputs for each of the partition. For each panitithe master performs aggregation
(segregated with respect to datacenters). Thisshalgster to keep a track of aggregate

size of available Map output for each partitioreach datacenter.

The master also has access to following information

* Total number of Map tasks for this Job (totalTasks)

» Total number of Reduce tasks for this Job (totalRedasks)

48

» Total number of completed Map tasks (totalTasksOetef)

» Total time spent during the Map phase (totalTimedpMhase)

» Total number of Map tasks being executed currgntigningTasks)

» Total number of Map slots currently allocated tustJob (mapSlotsAllocated)

» Estimated network bandwidth available inside eaatackenter as well as across
datacenters.

* For each partition, the total size of available Maput. (mapOutput[x] where x

denotes the partition number).

Following subsections describe procedures usetdldmMRTS algorithm. Please refer to

section 4.1 for details of the algorithm.

4.1.2 Calculation of estimated Map phase completion time
Following steps are used to calculate estimated piegse completion time.

Stepl:Calculate number of remaining Map tasks
remainingTasks = totalTasks - totalTasksCompleted - runningTasks

Step2:Calculate average completion time for a Map task.

avgMapTime = totalTimeInMapPhase / totalTasksCompleted

Step3:Calculate estimated Map phase finish time.

mapFinishTime = ([(remainingTasks/mapSlotsAllocated) |) * avgMapTime

49

4.1.3 Determination of workload type of the job

Following steps are used to determine type of vaitlis executed.
totalMapOutput = 0;

For each partition Rx, totalMapOutput += mapOutput|[x]
totalMapInputProcessed = totalTasksCompleted * hdfsBlockSize
outputFraction = totalMapOutput / totalMapInputProcessed;

If (outputFraction < Threshold)
WorkLoad is of type Aggregating

Else

Workload is of type Write-Intensive

4.1.4 Determination of expected number of Reduce tasksrunning

Following steps are used to determine the expentedber of Reduce tasks in the

Running state.

Stepl:Calculate the step to be used during this calicudatt is calculated by using the
values of total number of Map tasks (after the Redphase starts) and the total number

of Reduce tasks.

step = [((numTasks - completed TasksForSlowStart)/numReduceTasks) |

Step2:Calculate the expected number of Reduce tasks ing tise values of total Map

tasks completed after the slow-start and the valudke step calculated above.

value = totalTasksCompleted - completedTasksForSlowStart
expectedReduceTasks = min ([(value/step)™] , numReduceTasks)

50

5. Experimental Evaluation

51 Benchmarks
This section summarizes different benchmarks indéadramework used for evaluation

as part of this research.

5.11 TestDFSIO

TestDFSIO tests the /O performance of HDFS by gissn MapReduce job as a
convenient way to read or write files in paralléach file is read or written in a separate
map task, and the output of the map is used foecatg statistics relating to the file just

processed. The statistics are accumulated in theceg to produce a summary.

5.1.2 TeraGen

TeraGen is a MapReduce application designed torgenefficial input dataset for the
TeraSort benchmark. The user specifies the numbews and the output directory in
HDFS and this application executes a MapReducdgalenerate the dataset. It divides
the desired number of rows by the desired numbéviagh tasks and assigns ranges of
rows to each Map task. The Map tasks generate ateltlve dataset in parallel in HDFS.

The format of the data is as follows,

(10 bytes key) (10 bytes rowid) (78 bytes fillar)n
The keys are random characters from the set"! ..
The rowid is the right justified row id as an int.

The filler consists of 7 runs of 10 characters frénrto 'Z'.

51

Since this benchmark is write intensive, it carubed for stress testing HDFS write

performance apart from generating input dataset éosaSort benchmark.

5.1.3 TeraSort

This is a MapReduce application to sort the dateegded by the TeraGen benchmark.
The input is a set of hundred-byte long recordsestan a HDFS in the format described
in section 5.1.2. TeraSort is a standard MapRedodg except for a custom partitioner

that uses a sorted list of N — 1 sampled keysdkéihe the key range for each reduce. In
particular, all keys such that sample [i — 1] <3y kesample[i] are sent to reduce i. This
guarantees that the output of reduce i are alltiems the output of reduce i+1. To speed
up the partitioning, the partitioner builds a twevél Trie data structure that quickly

indexes into the list of sample keys based on tfs fiivo bytes of the key. TeraSort

generates the sample keys by sampling the inporddiie job is submitted and writing

the list of keys into HDFS.

Since this benchmark is read and write intensivas iused for stress testing entire

Hadoop eco-system including both HDFS and MapReduce

5.1.4 WordCount

WordCount benchmark accepts a set of text filesnamput and counts how often words
occur. The output of the benchmark is a set of téed, each line of which contains a
word and the count of how often it occurred, sejgardy a tab. Each Map task accepts a
line as an input and breaks it into words. It tkemts a key/value pair of the word and 1.
Each Reduce task sums the counts for each worctaitd a single key/value with the

word and sum. As an optimization, the Reduce tagilementation is also used as a

52

combiner on the map outputs. This reduces the ahafutata sent across the network by

combining each word into a single record.

5.2 Evaluation of baseline I/O performance of Hadoop file-system

(HDFS) in different clusters

Since the configuration of hardware componentsesegally not uniform in multiple
datacenters, we want to evaluate baseline I/O pedoce of Hadoop File System in

different clusters.

In this experiment we setup a single node Hadoaptet (psudo distributed mode) on
CAC cluster at Rutgers University as well as on Aara EC2 (using small instance

type). The hardware configurations for both thee®id given as follows.
Amazon EC2

1.7 GB memory

1 EC2 Compute Unit (1 virtual core with 1 EC2 Corgounit)
160 GB instance storage

32-bit platform

CAC Lab (glitch.rutgers.edu)

Intel(R) Xeon(R) CPU 2.40GHz (4 processors)
3.6 GB memory
1TB storage

64-bit platform

53

For this experiment, we utilizied TestDFSIO benchmarovided by the Hadoop
distribution (please refer section 5.1.1for dejails this case, we conducted following

experiments.

 Executed TestDFSIO benchmark locally on CAC clustee. using both
JobScheduler as well as HDFS in the CAC cluster).
 Executed TestDFSIO benchmark locally on EC2 cludiex. using both
JobScheduler as well as HDFS in the EC2 cluster).
Figures 17 and 18 show the performance of HDFSQova three combinations for read
and write operations for different data sizes (2B)MOOMB and 750MB respectively).
From this experiment, we can conclude that the GAGter provide much better 1/O

performance for HDFS operations as compared t& @2 environment.

140.00 ~
120.00

100.00

80.00 -

60.00 - B CAC Cluster
40.00 - B EC2 Cluster
20.00 -

0.00 - T T

250.00 500.00 750.00

Write Throughput (MB/s)

Total Data Processed (MB)

Figure 17: HDFS write performance for different sizes of datasets

54

160.00 ~
140.00
120.00
100.00
80.00
60.00
40.00
20.00
0.00

m CAC Cluster
M EC2 Cluster

Read Throughput (MB/s)

250.00 500.00 750.00

Total Data Processed (MB)

Figure 18: HDFSread performancefor different sizes of datasets

5.3 Performance evaluation of HDFS write operation using different
replica placement policies

The objective of this experiment is to evaluate pleeformance of write operation in
HDFS using different replica selection policiesthis experiment we have experimented
with two repica placement policies — (a) the ddfadlicy provided by the Hadoop
framework. This policy is suitable only for the HBEeployments in a single datacenter.
(b) WAN aware replica placment policy designed ad pf this research. We have used

Hadoop TeraGen benchmark (described in sectio)5.1.

In this experiment we setup a six node Hadoop etussing CAC cluster at Rutgers
University as well as on Amazon EC2. The hardwardigurations for both the nodes is

given as follows.

Amazon EC2 (small instance)

1.7 GB memory

55

1 EC2 Compute Unit (1 virtual core with 1 EC2 Corgounit)

160 GB instance storage

32-bit platform

CAC Lab (glitch.rutgers.edu/spring.rutgers.edu/dank).rutgers.edu)

Intel(R) Xeon(R) CPU 2.40GHz (4 processors)

3.6 GB memory

1TB storage

64-bit platform

We experimented with following three cluster configtions.

Executed benchmark locally on EC2 cluster. For éxgeriment, we setup a six
node Hadoop cluster on Amazon EC2. This experimgotild help us to
understand the baseline performance of TeraGerhbeark in a single datacenter
environment.

Executed benchmark using both nodes in both CACE®A cluster using the
Hadoop’s default replica placement policy (termedHadoop Native henceforth).
For this experiment, we divided the 6 node clustprally into two parts such that
each cluster would host a part of it (having 3 oédach). This experiement
would help us to understand the performance deticeddue to the Hadoop’s
standard replica placement policy in a distribigadironment.

Executed benchmark using both CAC and EC2 clustgr viith the newly
designed WAN aware replica placement policy. Thiseegiment would help us to

understand the performance improvement gainedthigipolicy.

56

The graph in figure 19 represents time requiredctompleting the write operation using
different replica placement policies. We have ralized the value of time required for
the write operation with respect to the correspogdvalue in a single datacenter

environment. This is calculated using followingrfarda.

Tnormalized =((Tactual— Tbasé * 100) / Tbase

Where,

Tacwarepresents the value of time taken to completenttii® operation in a distributed

environment for a specific size of dataset.

Thaserepresents the value of time taken to completenttie operation in a centralized

environment for the same size of dataset as above.

Thormalized IS the normalized value of time taken to compldte tvrite operation in a

distributed environment.

300.00

250.00 Pad
200.00 /‘\/
150.00

=¢="Hadoop (Native)
100.00
.\-__,.\. ={i—Hadoop (WAN Aware)
50.00

0-00 T T T 1
500.00 1000.00 2000.00 4000.00

Relative Time required (%)

Total size of data written to HDFS (MB)

Figure 19: Relative performance of write-operations using different replica
placement policies.

57

From figure 19, we can clearly see that in a disted environment the default replica
placement policy in Hadoop suffers from severe degtion in performance of write
operation with respect to its performance in areized environment for any specific
size of dataset (greater than 200%). The WAN awepdica placement policy on the
other hand performs significantly better than thédIt policy (improvement in the range

of 100% to 200%).

Another interesting point to note here is thatbioth policies time required to complete
write operation fluctuates (e.g. it required lesset to write 2GB data than 1GB using
default policy). The reason behind this behavidhéallocation of Map tasks to different
datacenters. The hardware configurations of nodesnultiple datacenters are not
homogeneous (please refer to section 5.2 for dgtatlence if a large number of Map
tasks are allocated to a datacenter having bé@epdrformance then the time required to

complete the operation is reduced considerably.

5.4 Evaluation of responsetimefor ajob for different Reduce phase
scheduling algorithms

The goal of this experiment is to understand hoffeint Reduce phase scheduling
policies ultimately affect the response time obh.In this experiment we use TeraSort
benchmark (please refer section 5.1.3 for detaifg)e it is sensitive to the Reduce phase

start policy.

We conducted multiple iterations of this experiméyt increasing the size of input
dataset from 256MB up to 4GB. This helped us terirthe type of jobs (interactive or
batch) which are more sensitive to a change in Beghase scheduling policy. For each

size of input dataset, we measure response timea flmb using both early-start and

58

delayed-start Reduce phase scheduling policiesc@\ilate percentage degradation in

response time as follows,

% Degradation in response time :c{e(l-z[yed-stan‘Tearly-star) / Tdelayed-sta]t* 100

Where,

Tdelayed-startr€presents response time using a delayed-start cReghase scheduling

algorithm (slow-start threshold = 0.8)

Teary-startf€presents response time using early-start Rediasepscheduling algorithm

(slow-start threshold = 0.05)

16
14

12 ~.
i N

: == % Degradation in

\ response time

% Degradation in Response Time

o N B~ OO

256 512 1024 2048 4096

Total Data Processed (MB)

Figure 20: % degradation in response time after delaying the Reduce phase
scheduling

From the figure 20, we can clearly see that therteshgobs suffer larger percentage
degradation in the response time. As the size d¢hsea increases, the percentage

degradation in the response time becomes less domin

59

5.5 Performance evaluation of adaptive slow-start algorithm using

different Hadoop schedulers

The adaptive slow-start algorithm attempts to soledreduce tasks such that an
appropriate overlap between compute intensive Mags@® and 1/O intensive Shuffle
phase can be achieved without penalizing shortAntere jobs (executing on a shared
Hadoop cluster) on response time. The algorithnitself is orthogonal to the design
(and goals) of any specific scheduling algorithocfsas fair share scheduling or first-in-
first-out scheduling) and hence can become a coraponent of the MapReduce

framework.

We conducted a set of experiments to evaluate ¢hsildility of adaptive slow-start
algorithm in different execution environments bypexmenting with different Hadoop
schedulers namely First-In-First-Out (FIFO) schedand the Fair Share scheduler. This
will help us to determine the feasibilty of usinigetproposed algorithm as a core

component of Hadoop MapReduce framework.

5.5.1 Performance evaluation of Adaptive Reduce Task Scheduling
(ARTS) algorithm using Fir st-I n-First-Out (FIFO) Hadoop Scheduler

Hadoop FIFO Scheduler performs sequential scheglolinobs such that atmost one job
can execute in every phase. This means that themebe no two concurrent jobs
competing for the Reduce slots. Hence in this sognan early start of Reduce phase (by
configuring a low slow-start threshold) helps topnove the overlap between the

compute and /O intensive phases of a MapReducarnobas a result its response time.

60

The goal of this experiment is to evaluate the qgremince of adaptive slow-start

algorithm using the First-In-First-Out (FIFO) Hagboscheduler.

In this experiment we setup a three node Hadooptariuton CAC cluster at Rutgers

University. The hardware configurations for botk tiodes is given as follows.

Intel(R) Xeon(R) CPU 2.40GHz (4 processors)

3.6 GB memory

1TB storage

64-bit platform

For this experiment, we used TeraSort benchmadaga refer section 5.1.3 for details)
since it is sensitive to the changes in the sl@at sthreshold. To verify that this algorithm
is not sensitive to the size of the input datasetused datasets of different sizes starting

from 256MB up to 4GB.

For every dataset, we measured response time figrstart scheduling (by setting a low
value for slow-start threshold such as 0.05) a$ aslsing the proposed adaptive slow-

start algorithm. The results of this experimesmt stniown in figure 21.

From the graph in figure 21, we can see that th@ 3\Rlgorithm provides comparable
results with respect to the early-start schedulifiigo the proposed algorithm is not
sensitive to the size of the dataset (and hencedhee of the job for example a short-

interactive job OR a long running batch-job) beaxgcuted.

Hence we can conclude that it is feasible to useptioposed ARTS algorithm in case of

a FIFO Hadoop scheduler.

61

600

500

400

300

M Early Start
200

B ARTS
100

Average Response Time (seconds)

256 512 1024 2048 4096

Total Data Processed (MB)

Figure 21: Averageresponsetimefor TeraSort benchmark for different Reduce
phase scheduling alter natives

5.5.2 Performance evaluation of Adaptive Reduce Task Scheduling
(ARTS) algorithm using Hadoop Fair Share Scheduler

The Hadoop Fair Share scheduler (please referctoore?2.3.1.1) can be configured with

multiple queues (typically one per user or per UNI¥up) so that users can submit and
execute multiple jobs concurrently. Each pool canconfigured to have guaranteed
capacity in terms of number of Map and Reduce dlotthe cluster. When there are

pending jobs in the specified pool, it gets atti¢las configured capacity; otherwise those
slots are assigned fairly to other pools havingvagbbs. Fair sharing ensures that over
time, each job receives roughly the same amourngswiurces. This helps shorter jobs to

finish quickly without starving the longer jobs.

As explained in section 0, the scheduling decisioredde for the Reduce phase can

impact the response time (and hence the throughputhdividual jobs. This impact is

62

substantial for short (interactive) jobs. The goélthis experiment is evaluate the

performance of adaptive slow-start algorithm usitagioop Fair Share scheduler.

For this experiment, we used a 20 node Hadooperlust Amazon EC2 (using large
instances)The cluster is configured such that each node helgf2 slots and 2 Reduce
slots. Hence the cluster has total number of 40 Mlaps and 40 Reduce slots. The

configuration each node is as follows,

7.5 GB memory
4 EC2 Compute Units (2 virtual cores with 2 EC2 Qaoite Units each)
850 GB instance storage

64-bit platform

In this experiment, we wanted to evaluate the perémce of the proposed ARTS
algorithm for different combinations of workloadseeuting concurrently on a Hadoop
cluster configured with a Fair Share scheduler.eHeur intention is to select one
workload executing a large (batch-processing) joth ane or more workloads executing
short (interactive) jobs. Since TeraSort benchmg@kplained in section 5.1.3) is
sensitive to the slow-start threshold, we useritstoort interactive jobs. For long batch-
processing job, we alternate between WordCountafgregation workload — explained

in section 5.1.4) and TeraSort.

63

Following table shows the configurations of diffiet@orkloads used for this experiment.

TeraSort (Long batch-processing) job 30GB inpuasiett 434 Map Tasks
37 Reduce Tasks

TeraSort (Short interactive) job 512MB input datase¢ 11 Map Tasks

5 Reduce Tasks
WordCount (Long batch-processing) | 6GB input dataset 396 Map Tasks
job

37 Reduce Tasks

For this experiment, we configure a queue (nameaddipction’) to execute batch jobs.
This queue is configured to have minimum 20 Mapssind 29 Reduce slots. (These
numbers are selected at random). The remainingcitgpa the cluster is shared fairly

among the other queues in the system.

For this experiment, the Hadoop cluster is conguio have five queues — one for long
running batch jobs (named production) and other fou short interactive jobs. Users
submit a job in the one of the configured queues wait for it to complete before

submitting the next job.

During each iteration of the experiment, we enshia¢ at least one batch job is always in
progress by executing X number of batch jobs (X configurable parameter set to fairly

high value).

For each experiment, we start with a single useceting N number of short jobs (N is a
configurable parameter) and measure average resgone for the short jobs. At this
point, we also calculate average response timbdtoh jobs by considering all the batch

jobs which were submitted during the time spanhw iteration. Then we gradually

64

increase the number of users executing short jopsiging a step of 1 and going up to 4).
Again for each case, we calculate the average msspdime for the short jobs

(irrespective of the associated queues) and theageeesponse time for batch jobs. The
graphs represented for this experiment are norethheith respect to the response time
of the job in the best case (i.e. having an eadyt ©f the reduce phase in a dedicated

cluster).

55.2.1 A combination of aggregating and write-intensive
wor kloads

As per the description above, we conducted an erpet with an aggregating workload
(A large WordCount job) and one or more short jekscuting write-intensive workload

(A short TeraSort job).

The figure 22 depicts the average response tima &hort job (relative to corresponding
value on a dedicated cluster configured with eatéyt policy) against the total number
of concurrent jobs in the system. Here the casa eingle job represent the average
response time for a job on a dedicated Hadoopeaslasinfigured with early-start policy

which is used to normalize all other values inghagph.

We can see that on a dedicated cluster (withoutcamyention), early start of Reduce
phase helps to improve the response time. In scehasio, the delayed start of Reduce

phase results into degradation of average resgonegapproximately 10%).

65

600
£ 500 A
(]
'g /
~ 400
2
c
§ 300 - == Early-start
(]
ﬁ 200 == Delayed-start
2
=
5 100 ARTS
o

0 T T T T 1

1 2 3 4 5

Total number of concurrent jobs

Figure 22: Averagerelativeresponsetimefor short (interactive) jobsfor different
Reduce phase scheduling alter natives

But as the contention in the cluster grows, théyesdart of Reduce phase helps batch job
to occupy the Reduce slots for longer duration ané result the short jobs are starved
for Reduce slots in the cluster. Hence in suchaterhe average response time for short

jobs degrades substantially (as shown in figure 21)

Delaying the start of Reduce phase helps to avwédstarvation of short jobs for the
Reduce phase and as a result average responsenfinoes with respect to early-start at
the same level of contention. As shown in figure &2 delayed start of Reduce phase
improves the average response time for short jobshe range of 4% to 20%

(approximately) in a contented Hadoop cluster.

66

140
g 120 - - 7/.,‘/4—
g 100 & me=—v_
£
2 80
S —¢—Early-start
$ 60
< —fi—Delayed-start
2 40
E ARTS
€ 20

O T T T T 1
1 2 3 4 5
Total number of concurrent jobs

Figure 23: Averagerelative responsetimefor long (batch) jobsfor different Reduce
phase scheduling alter natives

The figure 23 depicts the average response tima batch job (relative to corresponding
value on a dedicated cluster configured with eatéyt policy) against the total number
of concurrent jobs in the system. Here the casa eingle job represent the average
response time for a batch job on a dedicated Hadbmter configured with early-start

policy which is used to normalize all other values$he graph.

From figure 23, we can see that early-start of Redahase is especially helpful for batch
jobs as their average response time doesn’t degmaagderably (as compared to short
jobs). On careful analysis we observed that whike ghort jobs are starved for Reduce
slots in the cluster (after completing the Map ghadatch job gets access to more
number of Map slots (since there is no contentiorthie cluster for the Map slots)

resulting into an early completion of Map phasenfpared to a contented cluster with

multiple jobs active in Map phase). This behavieady violates the basic design goal of

67

the Hadoop scheduler (in this case Fair Share stdm®dio provide a fair share of

Hadoop cluster to jobs submitted to different qsenehe system.

As we delay the start of Reduce phase, the cootefidr Reduce slots decreases which
results in an increase in the contention for the Mlats. This affects the time required to
complete the Map phase and hence the responsddimaebatch job. From figure 23 we
can see that as the contention in the system isesedhe average response time for a

batch job degrades in the range of 5% to 10% asdheention in the cluster increases.

The proposed ARTS algorithm attempts to find annopin balance between these two
alternatives (early-start vs. delayed-start) byinigkinto consideration factors such as

class of workload as well as the size of job.

In case of a short job, the proposed algorithm ge@es the fact that it is a write-
intensive workload and hence attempts to schedhweld&reduce phase early. Hence when
there is no contention in the cluster, the propadgdrithm provides comparable results
with respect to early-start (thereby improving thesrlap between 1/O and computation
in the cluster). But as the contention grows, ifpeuforms both early-start algorithm (in
the range of 8% to 25%) and delayed- start algorifapproximately 5%) in the average

response time. (Please refer to figure 22)

In case of a batch job, the proposed algorithmgeizes the fact that it is an aggregating
workload and hence attempts to delay the scheduolirigeduce as far as possible. (We
observed that the Reduce phase is scheduled pfiemxamately 95% completion of Map

phase resulting into slow-start threshold of 0.95pm figure 23 we can see that the

68

adaptive slow-start algorithm provides comparalesults with respect to the delayed-

start algorithm.

Since the improvement in average response timsHort jobs is not at the expense of
corresponding degradation of batch job, we can lodecthe proposed adaptive slow-
start algorithm is able to improve the utilizatiohHadoop cluster without compromising

on the objectives of Hadoop scheduler.

5522 Writeintensive workloads in batch and interactive modes

In this experiment we use write-intensive workldadboth the long running batch jobs

(a TeraSort job operating on 30GB of input data) ane or more short jobs (a TeraSort
job operating on 512MB of input data). The mainlguafathis experiment is to evaluate

the performance of adaptive slow-start algorithmcase of write-intensive batch jobs

(since this workload hints the algorithm to stag Reduce phase early).

The figure 24 depicts the average response tima &brort job (relative to corresponding
value on a dedicated cluster configured with eatéyt policy) against the total number
of concurrent jobs in the system. Here the casa eingle job represent the average
response time for a batch job on a dedicated Hadbmer configured with early-start

policy which is used to normalize all other valueshe graph.

From figure 24 we can see that as in previous éxjert (please refer to section 5.5.2.1),
the proposed adaptive slow-start algorithm outperfo early-start algorithm by
approximately 2% to 10% for short jobs on a congehdluster while providing

comparable results when there is not contention.

400
350
300
250
200
150
100

Relative Response Time (%)

50

—¢—Early Start

== Delayed Start

ARTS

Total number of concurrent jobs

69

Figure 24: Averagerelativeresponsetimefor short (interactive) jobsfor different

Reduce phase scheduling alter natives

For this combination of workloads, it provides cargble results with respect to

delayed-start algorithm on a contented clusterr@iiggion in average response time is in

the range of 1% - 2%). This is different from peaws experiment (please refer to section

5.5.2.1) since the class of workload for the batthis different (explained later in this

section).

The figure 25 depicts the average response tinlati(re to corresponding value on a

dedicated cluster configured with early-start pglifor a batch job against the total

number of concurrent jobs in the system. Here te of a single job represent the

average response time for a batch job on a dediddéeloop cluster configured with

early-start policy which is used to normalize dHer values in the graph.

70

140
£ 120 —
‘é’ ,—v__.—"
£ 100 ~
[}
g 80
2 =—&—Early Start
o 60
: 40 == Delayed Start
>
% ARTS
T 20
o
O T T T T 1
1 2 3 4 5
Total number of concurrent jobs

Figure 25: Averagerelative responsetimefor long (batch) jobsfor different Reduce
phase scheduling alter natives

In case of a batch job, the proposed algorithm geizes the fact that it is a write-
intensive workload and hence attempts to schedetkiée phase early. But unlike early-
start algorithm, it doesn’t start all the Reduceksaimmediately. At every point it
intelligently selects a partition which would takeaximum (estimated) time for the
shuffle operation and the task is scheduled ontheftime to copy exceeds (estimated)
Map phase completion time (please refer section We observed that after
approximately 50% completion of Map phase, all fReduce tasks are scheduled
(resulting into a slow-start threshold of 0.5). kenthis algorithmoutperforms the
delayed-start algorithm (slow-start threshold d8)Oby approximately 5% in average

response time on a contended cluster.

The proposed algorithm uses a linear model to speetthe scheduling of Reduce tasks
(please refer section 0). This helps to shield regjaihe wrong estimation of network
bandwidth value. We observe that in case of laopetlis linear model ends up forcing

early start for too many Reduce tasks. This resnttsincreased contention for Reduce

71

slots for short jobs (similar to early-start). Wiarpto experiment with different models
which can help to reduce the contention for theuRedslots. This may further improve

the average response time for the short jobs.

5.6 Performance evaluation of Adaptive Reduce Task Scheduling
(ARTS) algorithm in a distributed Hadoop cluster involving multiple
datacenters

In this experiment we evaluate the performance ropgsed Adaptive Reduce Task
Scheduling (ARTS) algorithm in a distributed Hadabpster involving two datacenters
one at CAC Lab at Rutgers University and the otaerAmazon EC2. For this
experiment, we use a TeraSort benchmark with 2@Btidataset. During the experiment
we very the distribution of input dataset betwewm tdatacenters and measure the
response time as well as total Map output copieat tive Internet for both schemes (a)
the proposed ARTS algorithm and (b) Native HadoepwRe task scheduling algorithm.
To ensure that the distribution of Map output remahe same in both of these cases, we
modified the Map phase scheduling algorithm to lmsahe execution of Map tasks

across the datacenters.

In the first experiment we setup the entire 2GBuingataset in Amazon EC2 and
executed the TeraSort benchmark for both of theuBedask scheduling policies. The

following table shows the results for this expenie

Native Hadoop ARTS

Map Output - EC2 2129.92 2129.92
Map Output - CAC 0 0
Reduce Tasks - EC2 1 3
Reduce Tasks - CAC 2 0
Data Transfer over

Internet (MB) 1418.08 0
AVG Runtime (s) 186.25 132.67

72

Here we can see that since the entire Map outpawasiable in EC2 datacenter, the
proposed ARTS algorithm schedules all the Redusliestan EC2 and as a result there is
no copy of Map output across the datacenters. BtigenHadoop scheme, on the other
hand, does not understand the datacenter-locdlitieoMap output and hence scatters
the Reduce tasks across the datacenters resuttiogcopy of substantial size of Map

output.

In the second experiment, we divide the input adtasch that distribution is 4:5 (EC2:

CAC). The following table shows the results,

Native Hadoop ARTS
Map Output - EC2 946.63 946.63
Map Output - CAC 1183.29 1183.29
Reduce Tasks - EC2 1 2
Reduce Tasks - CAC 2 1
:Dnatt;:;: r(’[f/lf;; over 1022.03 1100.78
AVG Runtime (s) 208.25 171.33

From the table above we can see that in this casweNHadoop scheduling algorithm
performs better in terms of total data transferrdhe Internet with respect to proposed
ARTS algorithm. But in terms of execution time tARTS algorithm outperforms the

Native Hadoop scheduling algorithm. Careful analysijob execution for both of these

73

policies reveal that the relative performance ofdiRe phase depends upon the
capabilities of the worker executing the Reduc&das well as the total amount of data
transfer over the Internet. Since the workers in2B@ve better 1/0O performance
(medium-large instances) than the workers in CAf; the ARTS policy provides better
execution time (although this not by design). Aduture work, we would like to
incorporate the understanding of worker node prafil the scheduling algorithm (along

with the total data transfer over the Internet).

74

6. Summary, conclusion and future work

6.1 Summary

The primary objective of this research was to stadg evaluate design assumptions
behind different components of Hadoop eco-systgradifically Hadoop Distributed File
System (HDFS) and MapReduce) which mandate theepsoty of MapReduce

computations in a centralized environment.

The study and evaluation of Hadoop MapReduce frammevon different types on

workloads in a distributed environment involving ltiple datacenters (namely CAC Lab
at Rutgers University and the Amazon EC2) reveleefficiencies in the design of
Hadoop Distributed File System (HDFS) as well as fReduce phase scheduling

algorithm in MapReduce.

The fundamental design assumption of Hadoop frammeveothe availability of a single
logical distributed file-system storing the inputalset. Hence for executing MapReduce
computation across multiple datacenters, it is rasdefor Hadoop Distributed File
System (HDFS) to scale over the Internet. We oleskthat in such an environment
performance of HDFS write operations suffer seyeseice the default replica placement
policy does not take into consideration the datseocality of the client during replica

selection resulting into unnecessary copy of daiekis over the Internet.

To solve this problem, we have designed a WAN-awepdica placement policy which
ensures that the replicas are placed in the sartecaider as the client, provided

sufficient storage space is available in that datger. With this policy clients in multiple

75

datacenters would be able to share a unified namseswithout the overhead of data

transfer over the Internet.

We also observed that in Hadoop framework Redueseis started after completion of
user-specified fraction Map phase for a job. Onoe Reduce phase starts, Hadoop
assigns a Reduce task to any node at random. fis task scheduling policy is very
inefficient in distributed environment involving miple datacenters as well as in a
shared environment executing concurrent MapRedots. jWe have designed an
Adaptive Reduce Task Scheduling (ARTS) algorithmiciwhperforms well both in
distributed and shared environments. This algorike®aps a track of total size of Map
phase output for each partition segregated witpe&sto datacenters. In a distributed
environment, this information helps to identify tHatacenter-locality while scheduling
Reduce task. Also this information is used to dfggthe workload for the job. Adapting
start time for Reduce phase with respect to typsarkload as well as size job helps this
algorithm to consistently outperform default Redystease scheduling algorithm in a

shared Hadoop environment.

6.2 Conclusion

The investigation conducted as part of this reseaaints out the necessity of a large-
scale data processing framework for geographicaittered datasets. MapReduce being
a popular programming model for large-scale datxgssing; we have proposed two
extensions for Hadoop MapReduce framework whichrawe its performance in
distributed environment involving multiple datacenst

Firstly, proposed WAN aware replica placement polin HDFS improves the

performance of write operations in the range of%Q{p to 200% over the default policy

76

in a distributed Hadoop cluster involving CAC ckrsat Rutgers University as well as
Amazon EC2.

Secondly, proposed Adaptive Reduce Task Sched(@ARJ'S) algorithm significantly
reduces the size of Map phase output copied adatsenters over the Internet by
understanding the datacenter-locality of the Mapsghoutput during the scheduling
Reduce tasks. In addition in a shared Hadoop emviemt, this algorithm adapts the start
time of the Reduce phase for a job by taking inbmstderation factors like type of
workload as well as the size of job. This algoritlmonsistently outperforms default
Reduce phase scheduling policies (namely early-stad delayed-start) in a shared

Hadoop environment for different combinations ofrkéoads.

6.3 FutureWork

During our current evaluation we have not considemany design aspects such as Map
phase scheduling, speculative execution etc. ofMapReduce framework. Improving
efficiency of these aspects is critical to truhjhiwve the goal of extending MapReduce
framework in a distributed environment involving tiple datacenters connected over

the Internet.

Specifically, we plan to evaluate and improve failog aspects of MapReduce

framework.

* Map phase scheduling. Whenever a worker requests for a Map task, thaobia
master attempts to find out if there is any Mak takich is either data-local (i.e.
having an input data block on the requesting nadeanck-local (i.e. having an

input data block on one of the nodes in the sarole aa the requesting node). If

77

no such Map task can be found, it assigns any Mag tt random. In a
centralized environment, this helps to improvettikzation of Hadoop cluster.
But as we scale Hadoop cluster over the Interins, gcheduling may not be
efficient as the cost to copy the data block torgmaote node over the Internet
may be substantial. Hence in such environment, édadtould carefully weigh
different criteria such as cost (and time) requiteadopy the data block to the
remote location, cost (and time) required for tamote worker to perform the
Map computation as well as the gain in the respamse achieved by remote
execution. We are planning to extend the Map pbkabBeduling framework with
different policies which optimize factors such asstcof computation, cost of
network bandwidth consumed over the Internet or sigecified deadlines etc.

e Speculative execution. The speculative execution mechanism in Hadoop
MapReduce improves the response time of a MapRgdbde the presence of a
poorly performing faulty worker nodes (called stykeys) executing Map or
Reduce tasks. This is achieved by speculating whidrker nodes (and
corresponding tasks) are stragglers and executiaother copy of such tasks as a
backup. The master accepts the result of which&ask completes first (either
original or the backup) and other task is killecaddop scheduler assumes that
there is no cost of launching a speculative taskronidle worker available. This
assumption may not be valid in a distributed Hadcdlogter. We are planning to

evaluate this aspect of MapReduce framework.

We are also planning evaluate following aspecté\adptive Reduce Task Scheduling

(ARTS) algorithm,

78

The linear model used during the design of ARTSrllgm (please refer to

section 4.1 for details) is not optimized for sahlewy Reduce tasks for write-
intensive workloads (Please refer to section R225@. details). We are planning
to evaluate different models which can improveeftgiency.

At present the ARTS algorithm depends upon theevalunetwork bandwidth

provided by the user for calculating the time reggiifor Shuffle phase. We are
planning to automatically infer the network bandthichvailable in the given

Hadoop cluster.

79

7. References

[1] Luiz Barroso, Jeffrey Dean, and Urs H'olzle. 200&b Search for a Planet: The
Google Cluster ArchitecturéEEE Micro 23, 2 (March 2003), 22-28.

[2] Sanjay Ghemawat, Howard Gobioff, and Shun-Takng. 2003. The Google file
system. In Proceedings of the 19th ACM symposiumOperating systems principles
(SOSP '03). ACM, New York, NY, USA, 29-43.

[3] Jeffrey Dean and Sanjay Ghemawat. 2004. MapBedimplified data processing on
large clusters. In Proceedings of the 6th conferemcSymposium on Operating Systems
Design & Implementation - Volume 6 (OSDI'04), Vdb. USENIX Association,
Berkeley, CA, USA, 10-10.

[4] Matei Zaharia, Andy Konwinski, Anthony D. JosgRandy Katz, and lon Stoica.
2008. Improving MapReduce performance in heterogese environments. In
Proceedings of the 8th USENIX conference on Opegatsystems design and
implementation (OSDI'08). USENIX Association, Bdeke CA, USA, 29-42.

[5] Hadoop - The Definitive Guide. Tom White (O’Rgipublication)

[6] http://www.rackspace.com/whyrackspace/network/dattars.php

[7] Alonzo Church and John Barkley Rosser. "Someperties of conversion”.
Transactions of the American Mathematical Sociéttume 39, No. 3. (1936), 472-482.

[8] D. J. Dewitt, S. Ghandeharizadeh, D. A. Scheeid. Bricker, H. -I. Hsiao, and R.
Rasmussen. 1990. The Gamma Database Machine PigE& Trans. on Knowl. and
Data Eng. 2, 1 (March 1990), 44-62.

[9] http://www.emc.com/collateral/analyst-reports/exsiag-digital-idc-white-paper.pdf

[10] Yunhong Gu and Robert Grossman. Sector andei®phThe Design and
Implementation of a High Performance Data Clouderi Issue of the Philosophical
Transactions of the Royal Society A: Crossing Bauies: Computational Science, E-
Science and Global E-Infrastructure, 2009, vol.,38% 1897, page 2429-2445

[11] Forrester Consulting. eCommerce Web Site Perdmce Today: An Updated Look
at Consumer Reaction to a Poor Online Shopping ieqee. 2009.

[12] Hadoop http://hadoop.apache.org/

80

[13] The Hadoop Fair Share scheduler.
http://hadoop.apache.org/common/docs/r0.20.2/feireduler.html

[14] Brian Cho and Indranil Gupta. 2010. New Algbms for Planning Bulk Transfer
via Internet and Shipping Networks. In Proceediofythe 2010 IEEE 30th International
Conference on Distributed Computing Systems (ICDGYB. IEEE Computer Society,
Washington, DC, USA, 305-314.

[15] Jim Gray and David Patterson, 2003. “A Conaton with Jim Gray”. Queue 1, 4
(June 2003), 8-17.

[16] Niraj Tolia, Michael Kaminsky, David G. Andens, and Swapnil Patil. 2006. An
architecture for internet data transfer. In Procggslof the 3rd conference on Networked
Systems Design \& Implementation - Volume 3 (NSB);0vol. 3. USENIX Association,
Berkeley, CA, USA, 19-19.

[17] Randolph Y. Wang, Sumeet Sobti, Nitin Gargiskh Ziskind, Junwen Lai, and
Arvind Krishnamurthy. 2004. Turning the postal syst into a generic digital
communication mechanism. In Proceedings of the 2€@4ference on Applications,
technologies, architectures, and protocols for agetpcommunications (SIGCOMM
'04). ACM, New York, NY, USA, 159-166.

[18] Tevfik Kosar and Miron Livny. 2004. Stork: Miglg Data Placement a First Class
Citizen in the Grid. In Proceedings of the 24thetnational Conference on Distributed
Computing Systems (ICDCS'04) (ICDCS '04). IEEE Catap Society, Washington,
DC, USA, 342-349.

[19] Michael Isard, Mihai Budiu, Yuan Yu, Andrew rBll, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sadial building blocks. SIGOPS Oper.
Syst. Rev. 41, 3 (March 2007), 59-72.

[20] Matei Zaharia, Dhruba Borthakur, Joydeep Semfa, Khaled Elmeleegy, Scott
Shenker, and lon Stoica. 2010. Delay schedulinginaple technique for achieving
locality and fairness in cluster scheduling. Ind&edings of the 5th European conference
on Computer systems (EuroSys '10). ACM, New YorK, NSA, 265-278.

