
©2011

Gabriel Greenberg

ALL RIGHTS RESERVED



THE SEMIOTIC SPECTRUM

by

GABRIEL J. GREENBERG

A dissertation submitted to the

Graduate School-New Brunswick

Rutgers, The State University of New Jersey

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Philosophy

written under the direction of

Prof. Jeff King and Prof. Jason Stanley

and approved by

New Brunswick, New Jersey

October 2011



ABSTRACT OF THE DISSERTATION

The Semiotic Spectrum
by GABRIEL GREENBERG

Dissertation Directors:

Jeff King and Jason Stanley

Because humans cannot know one another’s minds directly, every form of communication

is a solution to the same basic problem: how can privately held information be made publicly

accessible through manipulations of the physical environment? Language is by far the best studied

response to this challenge. But there are a diversity of non-linguistic strategies for representation

with external signs as well, from facial expressions and fog horns to chronological graphs and

architectural renderings. The general thesis of this dissertation is that there is an impressively

wide spectrum of conventional systems of representation, corresponding to the many ways that the

problem of communication can be solved, and that these systems can be described and explained

using the tools of contemporary mathematical semantics.

As a partial corrective to the countervailing norm, this work concentrates on the class of sys-

tems arguably most different from language— those governing the interpretation of pictorial images.

Such representations dominate practical communication: witness the proliferation of maps, road

signs, newspaper photographs, scientific illustrations, television shows, engineering drawings, and

even the fleeting imagery of manual gesture. I argue that systems of depiction and languages embody

a parallel technologies of communication. Both are based on semantics: systematic and conventional

mappings from signs to representational content. But I also provide evidence that these semantics

are profoundly divergent. Whereas the semantics of languages are based on arbitrary associations

of signs and denotations, the semantics of systems of depiction are based on rules of geometrical

transformation. Drawing on recent research in computer graphics and computational vision, I go

on to develop a precise theory of pictorial semantics. This in turn facilitates a detailed comparison

of iconic, image-based representation, and symbolic, language-based representation.

A consequence of these conclusions is that the traditional, language-centric conception of se-

mantics must be overhauled to allow for a more general semantic theory, one which countenances

the wide variety of interpretive mechanisms actually at work in human communication.
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Chapter 0

Introduction: General Semantics

The theme of this dissertation, familiar enough students of semiotics, occurred to me one warm

summer night in 2008, while I was staying at a friend’s cabin in rural Vermont. Turning off the

election-season radio broadcast, I stepped onto the back porch and found myself instantly engulfed

by the darkness of the forest. The scene was peaceful, but hardly still. The arresting smells of cut

grass and lilac bushes in bloom were heavy in the air. The shrill chirping of frogs and crickets

rose and fell in swells of sound. Fireflies, with alternating flashes of bioluminescence, swirled

over a field. Visible in the further distance were the more regular flashes of lights at the top of

a satellite tower. A jet crossed the sky, displaying tiny red and green beacons on its wing-tips.

And my cell phone buzzed quietly in my pocket, my reception in the woods just strong enough to

receive text messages. As these signals drifted into perception, their deep commonalities became

suddenly vivid. In varying degrees, each was an instance of systematic communication. Each was

a solution to the same basic problem that faces all physical organisms whose survival depends on

social exchange.

For physically distinct creatures, isolated from one another in space as well as time, informa-

tion can only be exchanged by making it publicly accessible through manipulations of the physical

environment. By modulating light and sound frequencies (or properties salient to other sensory

modalities), and interpreting these modulations, living organisms coordinate and promote sur-

vival. But in order for such exchanges to be fast and reliable, they must be governed by shared

codes— codes which determine how practicable information can be encoded in and then extracted

from the altered environment. Many such codes, like those of the lilac, frog, or firefly, are biolog-

ically determined. Others are the product of human convention, including not only language, but

also symbolic, diagrammatic, and pictorial signaling. The thesis of this dissertation is that there

is an impressively wide spectrum of conventional systems of representation, corresponding to the

many ways that the problem of communication can be solved, and that these systems can be de-
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scribed and explained using the tools of contemporary mathematical semantics.

The remainder of this introduction is devoted to contextualizing and elaborating this claim,

and anticipating the ways in which the remaining chapters provide evidence for it. In §1, I lo-

cate the subject of the dissertation within the broader philosophical category of representation. In

§2, I describe the project of “general semantics”, which aims to study the full range of conven-

tional systems of representation, within the broad framework of natural language semantics. The

present work is cast a contribution to this study. Finally, in §3 I discuss the conjecture that there is

a “semiotic spectrum” of representational kinds, extending from purely symbolic to purely iconic

representation. This dissertation is a study of the spectrum’s polar limits.

1 Philosophical Setting

In the broadest terms, the subject of this dissertation is REPRESENTATION. Representation, as I

shall use the term, is a very general asymmetric relation that holds between at least two entities—

that which represents, and that which is represented. I will call that which represents a SIGN, and

that which is represented its CONTENT. For A to represent B is for A to be in some sense of, or

about B, and in many cases for A to make ascriptions about B. Characteristically, representation can

hold between entities that are spatially and causally quite distant from one another, and lack any

substantive commonality.

Representation inherits its philosophical importance from the central explanatory role it plays

in common-sense psychology, contemporary cognitive science, and linguistics. We regularly ex-

plain why people and animals behave in the way that they do by appeal to their beliefs and de-

sires. Cognitive scientists explain why organisms have the neural anatomy that they do in terms of

the computational operations such anatomy can perform on biologically adaptive representations.

And linguists explain why communicative exchanges take the form that they do in terms of the

representational content carried by the signals that make up such exchanges. In all cases, expla-

nations cast in terms of representation allow us to describe the relationship between agents, signs,

and the world at a uniquely illuminating level of abstraction.

As is often noted, representation cannot be defined simply as the transmission of physical in-

formation. Smoke carries physical information about fire, and waves carry physical information

about the direction of the wind. But these are not instances of representation in the sense intended

here. Whereas phenomena such as these merely indicate their causes, representations are objects,

events, or states which are specifically exploited by thinking agents to guide attitudes and actions.
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Through such use, representations are given the function of ascribing properties to states of the

world. And when this function is realized, representations are true, accurate, or correct. The capac-

ity to be correct or incorrect characteristically distinguishes representations from ordinary objects

like smoke or waves.1 There remains the open and difficult question of exactly what grounds the

difference between information transmission and genuine representation. But in this dissertation,

I’ll have little to say about this metaphysical puzzle.

A different breed of open question concerns the taxonomy and structure of representational

kinds: what are the various forms of representation? how they related? what are their respective

architectures? These are the questions taken up here. In what follows I’ll try to specify the lim-

ited range of phenomena under consideration in this dissertation, in a way that is sensitive to the

tremendous variety of representation found in nature.

Mental and public representation

Mental states have the ability to represent states of affairs outside the mind. Thus my concept

of Nelson Mandela represents the person Nelson Mandela; my mental image of Mandela revisiting

Robben Island in 1994 represents that historical situation; my current perceptual experience repre-

sents the desk at which I am writing this document. Mental, and especially perceptual states are

arguably the fundamental forms of naturally occurring representation.2 But mental states are not

the only entities with representational powers. The word `Nelson Mandela’ refers to Mandela, and

in the relevant general sense represents him. The following sentence expresses, in English, a certain

proposition, and in the same general sense it represents that proposition.

Nelson Mandela revisited Robben Island in 1994.

And the photograph below represents a particular moment during Mandela’s return.

1This conception of the relationship between content and functional norms is derived from Burge (2010).
2See Burge (2010) for extensive discussion.
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Broadly speaking, there are two kinds of representation. MENTAL REPRESENTATION is that

which relates cognitive states and processes— such as concepts, mental images, perceptual states,

and the like— to their content. PUBLIC REPRESENTATION associates content with objects and states

which are physically instantiated outside of the organisms that produce them, and perceptually

accessible to others.3 They include firefly flashes, cricket chirps, and products of human commu-

nication like sentences, pictures, diagrams, and gestures. What is the relationship between mental

and public representation? The dominant view, which I accept here, is that public representation is

always derived, one way or another, from mental representation.4 Yet the topic of my dissertation

is the derivative thing: public representation. Though the theory of mental representation informs

the present investigation, it is not its subject matter.

There are two main justifications for this choice of focus. First, though public representations

may be metaphysically derivative, they differ in basic ways from mental representations. The dom-

inant naturalistic theories of mental representation ground it in universal features of human biology

and our causal interactions with the physical world.5 By contrast, public representation is at least

partly a product of human social convention, as evinced by the dramatic cross-cultural diversity

of linguistic, diagrammatic, and pictorial systems of representation.6 In addition, it is public rep-

resentation that plays the primary role in communication: while solipsistic thought requires only

mental representation, communication requires that we generate sounds, gestures, or marks on pa-

per which are endowed with representational properties. Thus public representation’s social roots

bring with it a unique set of problems and questions. It constitute’s a legitimate subject of study in

its own right.

Second, public representation is by nature easier to study than mental representation, and

therefore serves as one important window into the obscure mechanisms of the mind. On one hand,

public representations, unlike mental representations, are themselves perceptually accessible, so it

is relatively easy to measure and model their structure. On the other hand, because public rep-

3This taxonomy is not intended to be exhaustive. In particular, abstract objects such as propositions may have represen-
tational powers. (King 2007, pp. 129-32) Though King himself would likely classify propositions as artifacts, one need not:
Frege (1918) conceived of “thoughts” as timeless abstracta, independent of human affairs, but representational nonetheless.
Another possible locus of representations are the internal states of man-made computers. Note also that not all public ob-
jects which figure in communication are necessarily representations. Thus Kivy (1984) argues that instrumental music lacks
representational properties.

4Three classic proposals of this form are Grice (1957), Lewis (1969; 1975), and Fodor (1975). See Speaks (2010, §3.1) for a
survey of such proposals.

5Theories of this form are proposed by Dretske (1981), Millikan (1984), andFodor (1992). See Loewer (1997) for a survey
of such proposals.

6This point, obvious for languages, is still not widely recognized with respect to pictorial systems; this issue is taken
up in Chapter 1. On cultural and historical variation in diagrammatic systems, see Tufte and Schmieg (1985) and Tversky
(2000).
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resentations play a central role in social exchange, sophisticated communicators such as humans

have developed ways to talk and think directly about representational properties such as truth,

accuracy, meaning, and entailment. And because we are able to form robust and stable judgements

about these properties, it is possible to develop detailed mathematical theories which model their

behavior. It is presumably for these kinds of reasons that the formal analysis of public language has

played such a key role in the study of symbolic thought.7 My hope is that by developing parallel

formalizations of other kinds of public representation, we will be able to make new strides in un-

derstanding their mental counterparts. In particular, the formal analysis of pictorial representation

may serve as a model for the philosophical understanding of picture-like representations in the

mind, such as sensory perception and mental imagery.

Improvised and systematic representation

Even among public representations there are basic differences in kind. Suppose you have lost

your favorite writing pen. In order to help you regain it, I ask you what it looks like. You hold

up another pen in response to my question. Your act of holding up a pen communicates specific

information— to wit, the missing pen looked like the held pen. Thus you used the held pen to

represent the lost pen. But there was no fully systematic rule that associates the act of holding up

a pen with the information that some other item looked like it. Instead, I infer the significance of

your improvised gesture by reasoning about the probable motivations behind it. This case of rep-

resentation was devised “on the fly”; it was an example of IMPROVISED REPRESENTATION.8

Improvised representation is an effective means of communicating so long as the stakes are

sufficiently low and the information which must be communicated is relatively unspecific. When

the stakes are high, some guarantee must be secured that a given signal will be interpreted in a

predictable and efficient manner. The solution is for the signal sender and receiver to converge on

a code, or scheme of SYSTEMATIC REPRESENTATION. Systematic representation allows communica-

tors to bypass the unpredictable complexity endemic to improvised signaling, relying instead on

established rules of representation.

Consider an example championed by Lewis (1969). On April 18, 1775 Paul Revere and his ac-

complice Robert Newman faced the following communication problem: it was necessary for New-

man, on one side of the Charles River, to communicate the path of the British invasion to Revere,

located on the other side of the river. One can imagine that the men might have left the problem

7Fodor (1975) is a classic source of such developments.
8Stanley (2000) marks this distinction between means of conveying content which are improvised and pragmatic, and

those that are systematic and semantic.
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alone, to be resolved by improvisation. But the stakes were too high; improvised representation

is typically highly ambiguous, and in this case, the reliable exchange of information was crucial.

A pre-arranged, systematic solution would be necessary. Thus the famous code: Newman would

hold up one lantern if the British were coming by land, and two if by sea. This is a paradigm case

of systematic representation.

My dissertation is concerned exclusively with systematic representation. Improvised represen-

tation is governed by all-purpose reasoning and general world-knowledge. A theory of impro-

vised representation depends largely on an inclusive account of the psychology of the organisms

engaged in communication. Systematic representation, by contrast, is always governed by a small

number of interpretive rules. A theory of systematic representation attempts to articulate the rules

underlying particular systems of representation. Though systematic representation is, by defini-

tion, constrained, a theme of this dissertation is the variety rule-architectures at work in human

communication. The differences among such systems turns out to be illuminating.

Conventional and biological representation

Finally, forms of representation which are both public and systematic further divide into those

which are regulated largely or entirely by biology, and those for which social convention plays a

significant role. For example, Von Frisch (1967) first described a system of public representation

used by honey bees to communicate the location of sources of water, pollen, and nectar. By flying

along a diagonal axis in relation to the position of the sun, these bees are able to convey precise

spatial information to their hive mates. The code by which such information is communicated is

surprisingly precise and consistent. Presumably it is also fixed by genetics: it is a case of BIOLOG-

ICAL REPRESENTATION. It is very likely that many forms of human signaling, such as smiling on

the part of infants, have similar biological determiners. (Wolff 1963)

By contrast, signaling systems which are established by explicit agreement, such as Paul Re-

vere’s lantern code, are obvious examples of CONVENTIONAL REPRESENTATION. Following Lewis’

(1969) landmark analysis of convention, I will also count natural languages as conventional systems

of representation. This is so even though the structure of human languages is partly constrained

by biology, and even though languages are not, in general, established by explicit agreement. As

I will argue in Chapter 1, systems of pictorial representation are conventional in the same way.

Lewis (1969) observed that such representational conventions come about as solutions to coordi-

nation problems of communication. In this way, conventional systems of representation are cast

as social tools, created and sustained by humans to overcome recurrent obstacles to information
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exchange. The variety of systems of representation corresponds to the variety of way such tools

may be designed and deployed.

We have now arrived, finally, at the general subject of this dissertation: those forms of rep-

resentation which are public, systematic, and conventional. Following King and Stanley (2005), I

propose that these types of representation are exactly those which have a semantics. Thus my con-

cern in this dissertation is not with representation generally, but with those kinds of representation

that are governed by semantics. This usage of “semantics” is admittedly irregular, since the term is

typically applied to languages alone. Yet, as I will now discuss, my usage corresponds to a natural

broadening of the traditional purvey of natural language semantics.

2 General Semantics

I have identified my subject as those forms of representation which are at once public, system-

atic and conventional. It should be evident that this class includes more than the natural languages.

For example, maritime signaling with flags, traffic lights, and trail-blazes all rely on interpretive

rules for signals which are obviously systematic and fixed by social convention. And we can imag-

ine a general semantics, a study much like that of contemporary natural language semantics, which

explores this broader class of systems.9 Indeed, the kinds of examples mentioned above all seem to

rely on simple correlations of signs and content very much akin to the lexicons of natural language.

An extension of natural language semantics to include these other, essentially symbolic systems,

would be straightforward.

But a general semantics should not stop there. In Chapter 1, I will argue that pictorial repre-

sentation, like linguistic representation, is both systematic and conventional. If this conclusion is

correct, then a general semantics must account not only for languages and language-like systems,

but also for those systems which are paradigmatically unlike language. (Some have attempted to

assimilate pictorial representation to the familiar architecture of linguistic representation; but I will

argue that this approach is misguided.) Others have argued persuasively that systems of diagram-

matic representation are governed by rigorous logics, and even offered detailed semantic analyses

of these systems.10 A general semantics would study all such systems of representation— symbolic

codes, languages, diagrams, pictures, three-dimensional models, audio representations, and so on.

It would attempt, for each kind of system, to articulate the rules governing the interpretation signs

9The phrase “general semantics” is a play on Lewis’ (1970) article by the same name. Lewis envisioned his proposal
providing a framework for the semantics of languages, not systems of representation in general.

10For example, Shin (1994) was the first to provide a model theory and accompanying proof of soundness and complete-
ness for Venn diagrams.
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in that system.

So conceived, general semantics subsumes natural language semantics, and thereby gains ex-

tra philosophical edge. While linguistic representation does appear to constitute a natural kind,

worthy of independent study, it does not appear to be the most general natural category in the

nearby taxonomic vicinity. Philosophical inquiry, whose special charge is inquiry into general and

abstract regularities, should be especially interested in the broader categories into which linguistic

representation fits. It is general semantics, not natural language semantics, which seems to me of

primary philosophical interest.

The project of general semantics is more or less that of the discipline of semiotics or semiology,

the “science of signs.” From its inception, semioticians have envisioned an ecumenical project, far

broader than contemporary linguistic analysis. Consider, for example, Saussure’s early statement

of purpose:

A language is a system of signs expressing ideas, and hence comparable to writing, the deaf-
and-dumb alphabet, symbolic rites, forms of politeness, military signals, and so on.... It is
therefore possible to conceive of a science which studies the role of signs as part of social life. It
would form part of social psychology, and hence of general psychology. We shall call it semi-
ology (from the Greek sēmeîon, `sign’). It would investigate the nature of signs and the laws
governing them. (Saussure et al. 1922, §33)

The difference between the agenda envisioned here and that of semiotics is largely one of his-

tory and methodology, not subject matter. The progenitors of semiotics were Saussure et al. (1922)

and Peirce (1906); it was later developed by Morris (1946), Barthes (1968), Sebeok (1977), Eco (1979),

and others. The discipline came of age in the era of structural linguistics and anthropology, before

the influences of Montague and Chomsky were fully ramified, and later iterations were influenced

by phenomenology and post-structuralism. Even at its most scientific, semiotics has been an in-

formal discipline. By contrast, the course taken here is the inheritance of contemporary analytic

philosophy of language, formal linguistics, and computer science. It aspires towards mathemat-

ically precise models of actual behavior, even when this means abstracting away from important

empirical variations. While freely drawing from the insights of semiotics, I hope that this approach

can shed light where semiotics has fallen short.

I conclude this section by clarifying what I take to be the three key elements of any theory

within general semantics: signs, content, and systems of representation. SIGNS are the bearers

of content; they are abstract types whose tokens are physical signals. Words and sentences are

examples of signs; so are gestures, diagrams, and pictures; in the right setting, actions, events, or

states may also instantiate signs. Linguistic theory posits only simple signs with atomic structure



9

and complex signs with syntactic tree structure, but a general semantics need not be limited by

this assumption. Interpretive rules take sign structure as input, whatever that may be, including

graph-theoretic, topological, or geometrical structure, or some hybrid of these.11 For example, in

Chapter 3, I’ll develop a semantics for pictures where the signs have geometrical structure.

CONTENT, in one of its primary instances, is that information which is systematically associ-

ated with signs in the course of communication. The nature of content is a philosophically fraught

subject, and I wish to avoid substantive commitments here. Typically, theorists countenance both

referential and representational content. Referential content, normally associated with individual

linguistic terms, includes objects, sets of objects, and properties. Representational content is nor-

mally associated with clausal linguistic expressions, but here with complete diagrams and pictures

as well. It construes the world as being a certain way, and as a consequence, it either correctly or

incorrectly represents the world. Thus many theorists have either modeled content as, or identi-

fied content with correctness-, accuracy-, or truth-conditions. Linguists have recently posited still

other forms of content, including dynamic content— whose function is to transform a conversational

state, rather than merely describe the world. Further complications have to do with various modes

of content for questions, commands, and declaratives. For the purposes of this dissertation, I shall

typically model the content of complete expressions (linguistic or pictorial) as truth- or accuracy-

conditions, modeled in turn as sets of possible worlds. But I flag here that this is only a working

assumption, useful for the purposes of the analytical tasks at hand and familiar to a range theoret-

ical projects. I trust the presentation here can be translated into other terms if necessary.

Finally, SYSTEMS OF REPRESENTATION are the interpretive rules which map signs to content.

They can be implemented in the cognitive mechanisms of individuals, and shared by interpretive

communities. A semantics for such a system describes the rules of the system in such a way as to

abstract from the computational details of different possible implementations. General semantics,

as I have defined it here, is the study of the semantics of those systems of representation which

have been established by social convention. The aim of this dissertation is to make a contribution

to this general study, and to demonstrate its viability.

3 The Semiotic Spectrum

My investigation of semantic representation is guided by Pierce’s (1906) distinction between

SYMBOLIC and ICONIC representation, which I take, at least pre-theoretically, to demarcate a natu-

11It is worth noting that all such structures, including syntactic trees, can be modeled as graphs, and it may be that graph
theory provides the most general framework for describing the various possible inputs to semantic interpretation. I won’t
pursue this speculation here.
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ral distinction among types of semantic system. The paradigm case of symbolic representation is

linguistic meaning, but the class of of symbols also includes stop lights, smoke signals, maritime

signal flags, gang signs, and conventional gestures like “thumbs up”. The paradigm case of iconic

representation is pictorial depiction, exemplified by drawings, paintings, photographs, and maps,

but the class of icons also includes audio recordings, three-dimensional models, and depictive ges-

tures. To a first approximation, symbolic representations are those which bear a merely arbitrary

relation to their content, while iconic representations are those which bear more intimate or natural

relation to theirs— a relation often characterized in terms of “resemblance” or “likeness”.

Between the poles of iconic and symbolic representation seem to lie a vast swath of interme-

diate representational kinds. These are systems of representation which appear in various ratios

to be both iconic and symbolic. Proximal to pure pictorial representation are images which rep-

resent non-visual modalities visually, such as spectrograms (visual representations of sound) and

thermograms (pictorial representations of heat distribution). Somewhat more symbolic are stylized

images, such as cartoons and stick figure drawings. The vast majority of images created before the

advent of photography exhibit some form of stylization. Even more symbolic and abstract rep-

resentations include directional arrows, temporal graphs, and Venn diagrams. Further down the

scale towards language are pictographic writing systems such as Egyptian hieroglyphics or the his-

torical precursors of contemporary Chinese Han characters. Finally, phenomena such as quotation,

onomatopoea, and conventional sound effects (e.g. “knock, knock!”) all suggest the presence of

picture-like expressions in natural language itself. Any empirically adequate account of human

communication must allow for this incredible range of representational systems.

A natural hypothesis is that these representational kinds constitute a more or less smooth spec-

trum extending from the purely symbolic to the purely iconic.12 I term this the SEMIOTIC SPEC-

TRUM. But since so little is known about the mechanisms of non-linguistic systems, it remains

an open question whether the observed variation does in fact reflect a continuum of possibilities.

This dissertation begins to investigate this question by charting out the poles of the hypothesized

spectrum— pictorial representation, at one extreme, symbolic representation at the other. I will not

address the rich variety of intermediate representational kinds; happily, there is much more work

to be done.

In the 20th century, the semantic analysis of representational systems has has focused almost

exclusively on language. When philosophers and linguists have undertaken semantic analysis of

non-linguistic representation, the general strategy has been to extend linguistic models of meaning

12Similar claims are defended by Eco (1979) and McCloud (1993).
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to the non-linguistic realm.13 But our rich understanding of language has come at the expense of

an equally detailed and rigorous understanding of non-linguistic sign systems.

My dissertation is intended as a partial corrective. I begin with the class of systems arguably

most different from language: those governing the interpretation of pictorial images. I argue that

the kinds of imagery which figure in practical communication— maps, architectural drawings,

road signs, gestures, and the like— are governed by systematic and conventional semantic rules,

broadly akin to those of natural language. But whereas the semantics of languages are based on

arbitrary associations of sign and denotation, conventional “systems of depiction,” as I term them,

are based on rules of geometrical transformation. Drawing on recent research in computer graphics

and computational vision, I go on to develop a geometrical semantics in precise formal detail,

for a simple system of perspective line drawing. One upshot is that the traditional, language-

based conception of semantics must be overhauled to allow for the wide variety of interpretive

mechanisms actually at work in human communication.

In Chapter 1, I present and defend the Pictorial Semantics Hypothesis, the claim that pictures

are associated with their content by systematic and conventional interpretive rules. Chapter 2 ex-

amines the most orthodox theory about what kind of semantics pictures actually have. According

to this proposal, pictorial representation is always grounded in resemblance. I argue that the very

structure of this theory renders it empirically inadequate: there are systems of depiction which

cannot be modeled in terms of resemblance alone, but must instead be based on a more general

conception of geometrical transformation. In Chapter 3, I therefore introduce the Geometrical Pro-

jection Theory, an alternative, and largely novel account of the semantics for pictures, according to

which pictorial representation is grounded in geometrical projection. Finally, in Chapter 4 I turn

to symbolic representation. Here I survey extant attempts to define symbolic representation, and

offer a new account which is aimed at teasing apart the crucial difference between symbolic and

iconic representation.

Ultimately, I conclude that both pictorial and linguistic representation have semantics; both are

governed by conventions which systematically map signs to content; both are types of social tool

created and sustained to solve coordination problems of communication. Yet, as I will argue, they

embody deeply divergent strategies to achieve this mandate; they are very different kinds of tools,

suitable for very different kinds of communication. Whereas linguistic representation is based on

arbitrary associations and compositional rules, pictorial representation is based on methods of geo-

13See, for example, Goodman (1968), Shin (1994), Lascarides and Stone (2009a). There are also exceptions: Malinas (1991)
and Blumson (2009b).
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metrical projection. This distinction reflects an even more basic one. Purely iconic representation is

based on general rules for mapping signs to content, while purely symbolic representation is based

on particular rules for mapping individual signs to content. This deceptively subtle contrast ex-

plains many of the obvious differences between the two types of representation, and suggests why

each has found such a central role in human communication.
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Because humans cannot know one another’s minds directly, every form of communication is a

solution to the same basic problem: how can privately held information be made publicly accessible

through manipulations of the physical environment? Language is by far the best studied response

to this challenge. But there is a diversity of non-linguistic strategies for representation with external

signs, from facial expressions and fog horns to chronological graphs. Among these alternatives, the

class of pictorial representations dominate practical communication— witness the proliferation of

maps, road signs, newspaper photographs, scientific illustrations, television shows, architectural

drawings, and even the fleeting imagery of manual gesture.1 In such cases, what bridges the gap

between the physical media of pictures and the information they manage to convey? Over the

course of the next three chapters, I offer a partial answer to this question.

The thesis of this chapter is that pictures are associated with their informational content by

1See McCloud (1993), Tversky (2000), and Lascarides and Stone (2009a; 2009b) for a wide range of examples.
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systematic rules selected by social convention— not, as one might have thought, by a purely bio-

logical reflex of vision, nor by open-ended rational speculation. In this respect, the interpretation

of pictures is importantly similar to the interpretation of sentences in a language. I will call this

the Pictorial Semantics Hypothesis.2 In Chapter 2, I will argue against the most prominent extant

proposal about what kind of semantics pictures actually have; according to this view the semantics

of pictorial representation are always grounded in resemblance. The failure of this view sets the

stage for Chapter 3, where I defend a specific and largely novel theory of pictorial semantics. Ac-

cording to this idea, for a picture to accurately depict a scene is for there to be a projective mapping

from the three-dimensional features of the scene to the two-dimensional features of the picture

plane. Recovering a picture’s content from its surface features involves working out the kind of

scene from which the picture could have been projected. In this respect, the strategy used to en-

code information in pictures is decidedly unlike that employed by languages. I will call this the

Geometrical Projection Theory.

If correct, these conclusions have import for the study of a variety representational kinds be-

yond the pictorial. By providing a precise formal framework in which geometrical structures are as-

sociated with correspondingly geometrical content, they show that rigorous semantic analysis can

assume forms quite unlike those most familiar today. Languages constitute just one class among

a broad spectrum of representational systems, all of which deserve to be studied under a general

science of semantics. In addition, this framework may serve as a model for the philosophical anal-

ysis of visual perception. Just as the study of public languages has informed our understanding of

private cognition, the present account of public images may help to guide the philosophic theory

of perceptual representation generally.3

The argument of the chapter is laid out in four parts. In §1, I articulate the Pictorial Seman-

tics Hypothesis, the claim that pictures are associated with their contents by rules which are both

systematic and conventional. Sections §2-4 defend the key components of this hypothesis. In §2,

I argue that pictures are the bearers of genuine representational content. In §3, I provide evidence

that the mapping between pictures and their content is systematic. In §4, I argue that these system-

atic mappings are established by social convention. In §5, I provide a formal, accuracy-conditional

2I shall simply assume that natural languages have semantics, but even this is still contested. Stanley (2000) and King
and Stanley (2005) survey such anti-semantic accounts of language and argue against them. The present paper takes the
same basic considerations that motivate King and Stanley and applies them to the case of pictures.

3There are other potential applications as well. A precise semantics of pictures would be illuminating for the study
of imagistic mental representation— whether or not the suggestive analogies between these domains are taken literally.
(Block 1982, pp. 1-16; Pylyshyn 2006, ch. 7) In the philosophy of science, debate has arisen recently about the nature of
scientific models and scientific representation in general; here pictures are frequently held up as a paradigm case (see, e.g.
French 2003; Giere 2004, §4; Cohen and Callender 2006, p. 11). Even in metaphysics a pictorial semantics might elucidate
the metaphysical account of possible worlds known as “pictorial ersatzism.” (Lewis 1986, §3.3)
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framework for any theory of pictorial semantics. Finally §6 defines the scope of inquiry for the

chapters that follow.

1 The Pictorial Semantics Hypothesis

The use of languages in human society is universal. Languages, manifested variously in speech,

writing, and bodily signs, enable the fast and reliable communication of complex information be-

tween individuals. It is widely believed that languages are based on complex rules which regulate

the production, structure, and meaning of linguistic signals. The study of SEMANTICS, in particular,

hypothesizes the existence of tacitly understood rules which govern meaning— rules which map

linguistic signs to representational content. Such theories contribute to an explanation of linguistic

communication by describing mechanisms through which language users employ shared conven-

tions to encode and decode information in linguistic signs. Since the 1960’s and 70’s the mathe-

matical study of semantics has flourished, producing detailed predictions about an ever-widening

range of linguistic data. Now one of the central pillars of modern linguistics, semantic theory has

proven to be a progressive and exact research program.

Of course, there are other, non-linguistic forms of representation as well, most notably, repre-

sentation by pictorial images. The use of pictorial representations as tools of public expression is

ancient in human history, and thrives without special training or tools in the form of iconic gesture.

In modern industrial society, pictures are ubiquitous, used to efficiently encode and transmit vast

quantities of information— exemplified by maps, road signs, text book illustrations, architectural

drawings, television broadcasts, and so on. And the roots of pictorial representation run deep: the

spatial organization of the human visual cortex strongly suggests that picture-like representation

is one the basic strategies for information management implemented by the brain, particularly in

low-level perceptual processing.4

The thesis of this chapter is that we should posit a semantics for pictures, just as we have

posited a semantics for natural language. The proposal is not, implausibly, that pictorial and lin-

guistic representation are governed by the same kind of semantics— only that both are governed

by semantics.5 More explicitly:

(1) Pictorial Semantics Hypothesis

Pictures are associated with their content by systematic and conventional interpretive rules.

4See Pylyshyn (2006) for extended discussion. It remains a controversial question whether there are also picture-like
representations in higher cognition.

5On the general conception of semantics see Tarski (1944, p. 345) and Haugeland (1991, p. 62).
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This Hypothesis is constituted by three key claims, each of which will be defended separately over

the course of this chapter: (i) that pictures have representational content; (ii) that the association be-

tween pictures and their content is systematic; (iii) that the systematic association between pictures

and their content is conventional.

The Pictorial Semantics Hypothesis has few allies. Both philosophers of language and philoso-

phers of depiction have doubted that non-linguistic representation is amenable to the same kind

of semantic analysis that characterizes language. As a consequence, representation by pictorial

images is widely dismissed as a legitimate subject of systematic study. Those who are moved by

such skepticism must admit that pictures often play a pivotal role in successful communication, but

they insist that pictorial communication is wholly accounted for by some admixture of facts about

human visual perception, general principles of rationality, and heterogeneous world knowledge.

In short, they believe there is a pragmatics of pictorial representation, but not a semantics. Thus

Walton (1990, p. 351) writes that language “is to be defined in semantic and/or syntactic terms,”

but “depiction is a pragmatic notion.” And Stanley (2000, p. 396) concludes, “we should there-

fore be suspicious of attempts to forge philosophically significant analogies between the different

processes underlying the interpretation of linguistic and non-linguistic acts.”6

What accounts for the widespread skepticism about pictorial semantics— given the widespread

acceptance of linguistic semantics? One reason, I believe, is that the evidence for pictorial semantics

has not been fully appreciated; one of the central tasks of this chapter is to review this evidence.

There are also a number of substantive conceptual and empirical worries one might have about

a pictorial semantics; another central task of this chapter is to address these concerns. But there

are other sources of doubt which stem from basic misunderstandings about the project of pictorial

semantics. In the remainder of this section, I address three of these issues, with an eye towards

clarifying the core aims of the present investigation.

First and foremost is the simple conflation of pictures and visual art. The interpretation of works

of art is by nature unbounded, in part because artistic meaning is specifically tuned to expressive

and metaphorical significance beyond literal content, in part because such meaning is often a prod-

uct of intentionally violating the very interpretive norms that govern ordinary communication.

This makes artistic meaning an admittedly unlikely candidate for systematic semantic analysis.

But just as linguists do not take poetry as their primary source of data, there is no reason that stu-

6And Borg (2006, p. 261) announces “fundamental differences between communicative acts in general and linguistic
acts in particular. Linguistic acts, uniquely in this area, have a crystallized component to their meaning, an element which
they carry with them across all contexts and which may be accessed by a competent language user even if she has no access
at all to the speaker’s original intentions... Yet these genuinely code-like qualities seem very different to the properties of
other communicative acts, which depend on context in a far more constitutive way.”
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dents of pictorial representation should take visual art works as their point of departure. Instead,

we should only expect robust semantic regularities to emerge from the use of pictures deployed for

practical information exchange, under conditions in which efficiency and fidelity are at premium.

Examples include road signs, maps, architectural and engineering drawings, textbook illustrations,

police sketches, and so on. In this paper I will confine my attention exclusively to pictures which

are intended to answer to such standards; works of art are not my subject matter. (Still, I will use

the term “artists” to refer generically to the creators of pictures.)

A second reason for doubt is the assumption that, as a matter of definition, semantics has the

structure of linguistic semantics. Yet it is correctly observed that the mechanisms underlying pic-

torial representation are not those of linguistic representation. Today there is near consensus about

how sentences of public languages encode representational content, at least in broad outline: arbi-

trary conventions associate individual words with meanings; then compositional rules determine

the meanings of sentences from word meanings, the way these words are combined, and contexts.

But this linguistic model is inappropriate for pictorial representation for many reasons. The most

fundamental is that successful pictorial representation does not seem to be arbitrary at all. The

relationship between a drawing or photograph of a scene and the scene itself is one of intimate

geometrical correspondence, nothing like the stipulative association between a word and its deno-

tation. Since semantics is defined in terms of the the atomic and arbitrary architecture of language,

and since pictorial representation resists such definition, semantics is not for pictures.

But this argument assumes an obtuse vision of pictorial semantics. Insofar as the idea of a pic-

torial semantics is plausible, it is not the idea of a semantics whose architecture is just like that of

language. Rather, by abstracting away from the atomic and arbitrary basis of linguistic representa-

tion, we can isolate a more general concept of semantics. The Pictorial Semantics Hypothesis posits

a semantics for pictures only in this ecumenical sense— a systematic and conventional mapping

from signs to content.

A third and final concern is that none of the extant theories of depiction could plausibly form

the basis of a systematic pictorial semantics. In many cases this is quite deliberate. For example,

the Symbol Theory of depiction introduced by Nelson Goodman in his 1968 Languages of Art was

articulated with groundbreaking rigor, but it rejected the view that depiction was in any substan-

tive sense systematic. Goodman held the implausible view that pictures are associated with their

content only by arbitrary stipulations, much like the relation between the word “tree” and the prop-

erty of being a tree. A much more promising tack is pursued by Perceptual Theories, which define

the content of a picture in terms of the cognitive and perceptual effects it has on viewers. Yet in
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general, such theories purposefully eschew the systematicity of semantic analysis, holding instead

that an exact definition of depiction ultimately rests in part on the gnarly mechanics of biological

vision. The only theory of depiction which immediately lends itself to a semantics is the orthodox

Resemblance Theory, according to which a picture represents a scene in virtue of being similar to it

in certain relevant respects. But such accounts are generally products of philosophical dialectic,

not quantitative empirical inquiry. And they have been the subject of numerous and vigorous ob-

jections over the last fifty years. In Chapter 2, I add my voice to this dissenting chorus, arguing

that the the very structure of such similarity-based views forces them into false predictions for a

broad range of cases. But if none of the extant philosophical theories of depiction could form a

suitable basis for a pictorial semantics, how could the Pictorial Semantics Hypothesis possibly be

right?

The argument of this chapter is not intended as an endorsement, even implicit, of any of the

extant philosophical theories of depiction. If the Pictorial Semantics Hypothesis is correct, then we

will need to identify some other, perhaps novel account of depiction to answer to the requirements

of a pictorial semantics. And it is this mandate which Chapter 3 aims to fulfill. Inspired by the

study of images in projective geometry and recent work in computational perceptual science, the

Geometrical Projection Theory which I’ll defend there diverges from its predecessors both in the

substance of its analysis and the exactness of its expression. According to this theory, a picture

depicts a scene just in case the picture can be derived from the scene by general but precise rules

of geometrical projection. Thus pictorial representation is grounded neither in arbitrary meaning

associations, subtle resemblances, nor the perceptual responses of viewers. The result is an account

that boasts a rigor, simplicity, and empirical validity which has eluded other proposals; it is an

appropriate foundation for a semantics of pictorial representation.

I hope to have clarified the rudimentary commitments and ambitions of the Pictorial Seman-

tics Hypothesis. In the remainder of the chapter I will elaborate and defend each of its three key

components: (i) the presupposition that pictures have representation content; (ii) the posit of sys-

tematic mappings from pictures to their content; and (iii) the claim that these systematic mappings

are established in human communication by social convention.

Finally, a terminological note: a PICTURE, as I use the term, is a type of pictorial sign, not a

concrete token. I intend to include typical cases of photography and so-called “representational”

(as opposed to abstract) painting and drawing. But I will not consider composite images, such as

comic books, or images which integrate symbolic elements like textual labels or color-coding. For

purposes of brevity, I shall also ignore such abstract representations as cartesian graphs, pie charts,
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and Venn diagrams— as well as alternative media such as cartoons, film, relief, scale models, music,

and audio recording.7

2 Pictorial content

The Pictorial Semantics Hypothesis presupposes that pictures have REPRESENTATIONAL CON-

TENT. In this section I will elaborate and defend this position.8 At minimum, by claiming that

pictures have representational content, I mean that pictures are representations which specify a

way reality could be, with respect to objects and properties that can be physically remote from the

picture itself. The content of a picture is identical to the way reality could be, as specified by the

picture.9 The opposing view holds that pictures are ordinary, non-representational objects; their

communicative power stems only from their causal effects on the minds of viewers.

The idea of pictorial content at work here is familiar enough. Of Frank Lloyd Wright and

Jack Howe’s 1935 architectural drawing with which we began, it is natural to say that it depicts

a house, of a certain shape and color, in a certain relationship to its environment, perched over

a waterfall, and so on. In this way, we commonly associate pictures— flat, marked surfaces—

with specifications of reality as having specific, spatially extended features. That is, we naturally

associate pictures with representational content. (Such content need not specify how reality actually

is; the drawing here was made before it was certain that the house depicted would be built.)

Content in this sense is not an aesthetic or impressionistic property of pictures. Like sentences,

images can reliably carry precise and useful informational content. For example, the exact content

carried by the Frank Lloyd Wright drawing, about a hypothetical building plan, played a cru-

cial part in the Kauffman family’s eventual decision to build the house, at considerable cost.10 In

general, the use of pictures to communicate specific information in high-stakes contexts, such as

those involving engineers, architects, and pilots, demonstrates the efficacy of pictorial content, and

should quell the suspicion that the content of pictures is any way less exact or stable than that of

sentences.

Pictorial content must be distinguished from other semantic properties of pictures. First, the

content of a picture is not its REFERENT. Whereas the content of a picture is the depictive infor-

mation it carries, its referent is the scene which the picture is supposed to carry information about.

7The discussion here can be recapitulated for nearly any of these media. See Kivy (1984, ch. 1-2) for a detailed parallel
discussion of musical content.

8The general thrust of this section— that pictures have content much like sentences, and that this content can be defined
in terms of correctness conditions— is clearly prefigured in Wittgenstein (1921/1997, §2.21-224).

9Since this characterization does not put direct constraints on the nature of content, it is compatible with the many
divergent theories of content on offer in contemporary debates. See Siegel (2009, §3) and King (2007, ch. 1) for discussion.

10See Toker (2003, pp. 195, 250-7).
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While pictorial reference and content both answer to colloquial uses of the phrase “what is de-

picted”, they come apart strikingly in cases of misrepresentation.11

Let’s say that I attended the Obama press con-

ference on April 27, 2006 at the National Press Club

in Washington, D.C. The next day I decide to draw

what I saw there at a particular moment during the

day, from the vantage point of my front row seat. I

produce the first image at right. A week later I set

out to draw the same scene, but this time poor memory and lack of common sense conspire against

me, resulting in the second image.12 There is a certain sense in which both pictures depict the very

same scene— a particular, real situation that occurred at a certain time and location. In this sense

the two images have the same referent. On the other hand, there is a clear sense in which they do

not depict the same thing. The first picture depicts Obama with short hair; the second depicts him

with longer, spiky hair. In this sense, the two images have different content.
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In addition, not all content associated with pic-

tures is genuinely pictorial. In the 17th century paint-

ing by Philippe de Champaigne at right, the render-

ing of the tulips represents life, the painting of the

hour-glass represents the passing of time, and that of

the skull, inevitable death.13 Yet none of these sym-

bolic elements figure in the image’s pictorial content,

in the sense intended here. Instead, the painting de-

picts a flower, a skull, and an hour-glass, in a certain arrangement, at a certain time, and under

certain lighting conditions, but nothing more.14

Finally, the content of a picture is distinct from what it happens to communicate to a particular

viewer on a particular occasion; rather the picture’s content is what it depicts independent of what

11The distinction between pictorial reference and pictorial content is widely observed in the Philosophy of Art; see for ex-
ample Beardsley (1958, pp. 270-2), Goodman (1968, pp. 27-31), and Lopes (1996, pp. 151-2). Various ways of prising reference
from content, including cases of misrepresentation, are discussed by Knight (1930, pp. 75-6), D. Kaplan (1968, pp. 198-9),
and Lopes (1996, pp. 94-8). Cummins (1996, pp. 5-22) observes a parallel division with respect to mental representation. In
general, the distinction between pictorial reference and pictorial content is closely aligned with Kripke’s (1977) distinction
between speaker reference and semantic reference. A more thorough analysis might reveal that these are species of the same
phenomenon. See Burge (2010, pp. 30-46) for an extended discussion along these lines.

12Both drawings are based on the photograph by Mannie Garcia, AP.
13See Lubbock (2006).
14The distinction between pictorial representation and other kinds of representation by pictures has been made by most

authors on the subject; see especially Novitz (1975, §2) and Peacocke (1987, p. 383). Goodman (1968, p. 5), for one, appears
to reject the distinction altogether.
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For example, if you write to me asking how my vaca-

tion in Nova Scotia is going, I might respond with nothing

but the drawing at right, thereby communicating to you

is that I am passing the summer in happy and idle recre-

ation. But this is not what is depicted: what is depicted is

me sailing a boat. However misleading, it is also compat-

ible with the picture on its own that I have had a stressful,

miserable experience (shortly after the moment depicted,

the boat capsized and my dissertation sank to the bottom of the ocean).

In general, what a picture communicates on a particular occasion is independent of what it

depicts. What is communicated can exceed the content of picture— as in the case above; or it

can fall short— as when a picture is only partially viewed; or the two may be disjoint— when a

picture is improperly viewed or interpreted. Of course, if such behavior accompanies every act

of interpretation, then the content associated with pictures may change or dissolve. The associa-

tions of pictures with content inevitably depends on the interpretive practices of the population

of artists and viewers in which the picture has currency; I discuss this matter later in the chapter.

But content is never held hostage to the responses of specific individuals on specific occasions. It

is this individual-independent content which I propose the semantic rules associate with pictorial

signs.

I have pinpointed the concept of representational content presupposed by the Pictorial Seman-

tics Hypothesis. But should we believe that pictures have such content? The alternative is the null

hypothesis that pictures are ordinary, non-representational objects. According to this eliminativist

view, pictures carry physical information in the same way that any physical object carries physi-

cal information about its causal sources. Thus waves carry information about the direction of the

wind and smoke carries information about the location of fire. The eliminativst alleges that this the

only sense in which pictures indicate the state of the world; by contrast, I maintain that they carry

genuine representational content.

Unlike ordinary objects, representations— objects with representational content— construe the

world as being a certain way. As such, they can be evaluated according to whether or not they are

correct in the way they construe the world to be. For example, the fact that sentences have content

15The distinction between what is communicated and what is depicted by a picture is borrowed directly from Grice’s (1975,
pp. 43-4) distinction between what is communicated and what is said by a sentence.



22

is reflected by the fact that we can evaluate sentence for truth and falsity; truth and falsity are mea-

sures of the correctness of a sentence’s representational content. By contrast, unadulterated sticks

and stones cannot be evaluated for truth or falsity, though they may carry floral and geological

information, because they are not bearers of representational content. It is in exactly this sense that

pictures are like sentences, and unlike sticks and stones.

While it is admittedly awkward to speak of a picture being “true” or “false”, the counterpart of

truth-like correspondence with reality for pictures is accuracy.16 It is perfectly natural to evaluate

pictures for their relative accuracy and inaccuracy. This reflects the fact, I suggest, that pictures have

content. It is in virtue of carrying content that pictures represent the world accurately or inaccu-

rately. The concept of accuracy invoked here plays a central regulatory role in information exchange

with pictures. For example, accuracy is the standard of pictorial fidelity which governs high-stakes

communicative acts with pictures, like engineering and medical drawing. In such cases, where the

information contained in the drawing may form the basis for decisions with life and death con-

sequences, accuracy is the standard which artists characteristically strive for, and viewers expect

them to achieve. When the stakes are lowered, it is permissible for artists to infringe upon this

standard proportionately. Accurate depiction is simply representation without error. Accuracy in

this sense is not the exclusive denotation of the word “accuracy” in colloquial English, but it is one

of them.17

It may help to clarify what accuracy is not. By accuracy, I do not mean mere realism. Realism is a

style of painting that approaches illusion: under the right conditions, an observer cannot discern a

realist rendering of an object from the object itself. Yet the selective line drawings used by architects,

engineers, and medical artists are often perfectly accurate, though hardly illusory.18 Nor does

accuracy imply precision. The first drawing of Obama is perfectly accurate in the black and white

system despite the fact that it is wholly indeterminate with respect to color. It is also accurate

even though the lines that compose it are wobbly; this does not mean that the shape of Obama’s

face is correspondingly wobbly, only that the standards of accuracy determined by this system of

depiction are insensitive to a certain level of detail.19 Nor does accuracy imply closeness to reality,

in any straightforward sense; a full-scale animated model of Obama is arguably more similar to

16Fodor (1975, pp. 180-1) argues that, even in principle, pictures cannot have truth-values.
17More or less the same concept of accuracy is widely invoked in discussions of pictorial realism (see, e.g. Lopes 1995;

Abell 2007; and Hyman 2006, pp. 194-7). Yet such accounts typically aim to analyze the richer concept of realism, taking
some form of (non-factive) accuracy as a merely necessary but insufficient condition. Accuracy also corresponds to what
Walton (1990, §3.2) calls the relation of “matching”.

18At any rate, this is one sense of the term “realism” among many. See Jakobson (1921/1987), Lopes (1995), and Hyman
(2006, Ch. 9) for discussion.

19See Block (1983, pp. 655-8).
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the man than a black and white line drawing, but both may be perfectly accurate representations.

Finally, accuracy does not entail actuality. A picture may accurately depict a merely possible scene

just as well as an actual one, a point vividly demonstrated by Frank Lloyd Wright’s architectural

drawing of a proposed building plan with which we began.

For any given state of the world, a picture’s content determines whether the picture represents

that state accurately or inaccurately. In other words, it determines the conditions under which a

picture is accurate or inaccurate. Such accuracy-conditions can in turn be used to characterize the

content of a picture, just as truth-conditions are used to characterize the content of sentences. In

§5, I’ll provide a formal exposition of this same idea; and I’ll use this analysis to define pictorial

semantics, formally, as a mapping from pictures to accuracy-conditions.20

A final concern allows that pictures have representational content, but objects that it is not

the sort of content required by a semantics. Instead, semantics essentially involves the definition

of truth, and counterpart notions such as accuracy fall short of this criteria.21 While accepting

that pictures are neither true nor false, I reject this rigid truth-theoretic conception of semantics.

Contemporary semantic theories are keyed to a variety of alternative standards of correctness.22 I

simply add accuracy to this roster. I conclude that pictures have representational content, and that

this content is a suitable basis for a semantics of pictures.

3 Systematicity

I have argued that pictures are bearers of representational content. The Pictorial Semantics

Hypothesis further holds that pictures are assigned their content by systematic rules.23 The thesis

that there are systematic mappings from pictures to content is widely doubted. The opposing view

is that pictures themselves simply do not make systematic contributions to the information they

happen to convey. Like winks or kicks under the table, pictures are thought to impose at most

loose and defeasible constraints on interpretation.24 The rest is left to rational inference and quirks

20Truth and accuracy appear to come apart in two ways. First, pictures and descriptions are accurate and inaccurate,
while only sentences are true and false. Second, accuracy comes in degrees while truth is binary.

21The assumption, widespread among semanticists, is typified by Lewis’ (1970, p. 18) statement: “Semantics with no
treatment of truth conditions is not semantics.” That said, it is clear that Lewis, if not others, had a quite ecumenical notion
of truth. For example, in Lewis (1969), he defines the satisfaction conditions for imperatives in terms of truth. Clearly it is
not natural to speak of imperatives as being “true” or “false”; but equally clearly, their content should be characterized in
terms of a constraint on how the world must be.

22See Hamblin (1958), D. Kaplan (1999), and Starr (2010) for discussion of a variety of non-truth-conditional approaches.
23Here and throughout I use the term “systematicity” to denote the property of being systematic, as applied to inter-

pretive schemata. This is distinct from the use of the same term by linguists in discussions of compositionality to denote a
specific feature of language in which expressions of the same type can be inter-substituted while preserving interpretability.
(Szabo 2010)

24Describing the parallel anti-semantic view of language, Stanley (2000, p. 396) uses the examples of the meaning con-
veyed by kicking someone under the table or tapping them on the shoulder; Borg (2006, p. 261) uses the example of raising
one’s eyebrow.
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of psychological response; there is no code for interpreting pictures.

Tellingly, for the greater part of the twentieth-century, the same kind of anti-semantic attitude

dominated philosophical views of language. Ordinary language was thought to be essentially una-

menable to systematic analysis. Yet such skepticism ultimately gave way. Following the pioneering

work of Chomsky (1965), Montague (1970a, 1970b) and others, theorists of language increasingly

warmed to the idea that natural languages are basically rule-governed phenomena. They have

even largely converged on the particular proposal that linguistic communication relies on seman-

tics— systematic and conventional codes which arbitrarily assign basic meanings to simple linguis-

tic signs, and then derive complex semantic content from strings of signs, by recursive rules of

combination and context sensitivity.25 This is an explanatory posit, not an article of faith. Humans

are able to interpret sentences they have never encountered before, and they are able to do so with

extraordinary speed and reliability. Such feats would not be possible, it is thought, if linguistic in-

terpretation were governed solely by open-ended guess work. Instead, these phenomena are best

explained by the hypothesis that humans have tacit knowledge of interpretive rules, and they in-

terpret novel sentences by automatically applying these rules.26 The plausibility of this hypothesis

has increased as semantic theories for language have grown ever more detailed and precise.

I propose that essentially the same argument can be made about the interpretation of pictures.27

The first key observation here is that humans are consistently able to extract content from pictures

they have never seen before. For example, a cognitively normal consumer of contemporary global

media would have no trouble interpreting the architectural drawing presented at the beginning of

this chapter, even if she had never seen it before. She would not necessarily be able to identify the

particular building depicted, but she would easily recognize the basic three-dimensional spatial

and chromatic configuration the picture represents. The fact that we can all interpret unfamiliar

images in this way demonstrates that picture interpretation is not based on a finite list of memo-

rized correspondences. Instead, it stems from some general capacity which may be applied to new

particular cases. But what is the nature of this general capacity?

The second key observation is that the interpretation of unfamiliar images is fast and reliable,

despite the fact that both the stimuli and the recovered content are significantly complex. Pre-

25See King and Stanley (2005) for a canonical statement of this view.
26The phenomena described here is commonly termed “productivity.” Linguists also argue for the same conclusion on

the basis of “systematicity”. (See footnote 23.) In either case, the details of the explanation are by no means straightforward.
See Lewis (1975), Soames (1989), and Dummett (1996) for three very different perspectives on the matter.

27Here I will focus on considerations of productivity for pictorial interpretation. I do believe, however, that it is possible
to mount arguments for pictorial semantics from phenomena that correspond roughly to the linguistic concept of system-
aticity. (See footnote 23.) For example, if a picture is interpretable, so is its mirror image; and certain parts of images can be
shifted, rotated, and replaced while maintaining interpretability. I believe the conclusions suggested by this evidence are
much the same as those argued for in the main text.
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sented with our initial architectural drawing, normal media consumers would attribute to the im-

age approximately the same spatial interpretation, and each would be able to do so nearly instan-

taneously. These facts are not easily explained by supposing that interpretation is based merely on

open-ended speculation. That is the kind of reasoning we engage when choosing a chess move, or

guessing the intentions behind an ambiguous nod. It is characteristically slow and variable, par-

ticularly when applied to complex stimuli— nothing like the automatic and consistent responses

exhibited in picture interpretation. A better explanation is simply that the mechanisms at work

here are governed by general interpretive rules. The speed and reliability with which humans as-

sociate unfamiliar complex images with content is explained by the systematic application of these

rules. Viewers need not explicitly represent such rules themselves; it is sufficient that they apply

certain systematic capacities in regular ways.

It is undeniable that pictures are used in communication; any theory of communication owes

an explanation of how this transpires. The considerations reviewed here indicate that at least part

of the explanation will be systematic. Positing systematic interpretive mechanisms is the best avail-

able explanation for our observations of human interaction with pictures. Of course, this hypothe-

sis is open to empirical falsification. But since this argument is essentially the same as the argument

offered for the existence of a semantics of language, the conclusion is just as robust. We should ex-

pect to find a semantics of pictures.

The extent and limits of this claim must be understood. First, the claim of systematicity should

not be construed too broadly. The preceding argument shows only that a significant portion of pic-

torial communication is governed by semantic regularities. I do not deny that pragmatic principles

play an important role as well. For example, I discussed earlier how an image of a sailboat, sent

by mail, would reasonably elicit from its intended audience the judgement that the passengers de-

picted were especially happy and carefree. But this judgement cannot be warranted by the picture

itself, since the passengers themselves are scarcely visible in the image; instead, it is partially jus-

tified by the audience’s knowledge of the artist’s likely intentions, informed by further knowledge

of the social norms governing the communicative exchange. That is, the judgement is the result of

unconstrained pragmatic reasoning; such imaginative engagement with pictures is ubiquitous. But

note that, as is often the case, the pragmatic reasoning on display here depends crucially on first

securing that content which is made available semantically. One cannot deduce that the passengers

depicted are sailing happily, unless one first appreciates that the image depicts a sailboat, and even

more basically, a certain boat-shaped arrangement of edges in spaces. The extraction of this last

dimension of content is strictly determined by the structure of the image itself and the rules of in-
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terpretation, and is not the result of pragmatic speculation. It is a substantive and difficult question

exactly how much content typically associated with pictures should be counted as purely semantic.

My contention here is only that some significant portion is, and in Chapter 3 I will make this idea

precise.

The claim of systematicity must not be understood too rigidly either. An instrumental part of

modern natural language semantics was brought on by the development of the theory of CONTEXT-

SENSITIVITY. Context-sensitivity arises when the content of a linguistic expression depends on the

context in which it is uttered, but in ways that are strictly constrained by the underlying gram-

mar.28 Perhaps the simplest example in English is the indexical “I”, the referent of which varies

with speaker, and thus context, but in a manner that is obviously rule-governed. (The grammar

requires that “I” refer to its utterer, whoever that may be.) Cases like this illustrate an important

moral. The mere fact that the content of a linguistic expression depends in part on context does

not imply that such content is not determined by a semantics. Instead, the semantics may associate

expressions with meanings which systematically regulate the contribution of context. The same

lesson applies to pictorial representation. Given the considerations provided above, we should

expect the mapping of pictorial signs to content to be systematic. But as we shall presently see,

such content depends in part on context. This does not imply that pictorial representation has no

semantics; it suggests instead that the semantics is context-sensitive.

Consider a series of drawings, each produced under different conditions, yet all of which coin-

cidently turn out to be qualitatively identical to the accurate depiction of Obama presented above.

One depicts Obama; one depicts a wax sculpture; a third depicts a chance configuration of lines in

the sand. In so far as the concepts Obama, wax-sculpture, and lines in the sand are part of— or play

an essential role in specifying— the content of each image, such content must be context-sensitive.

Since the structure of the image is the same in each case, only the variation in their context of ex-

pression can account for the variation in their content. Yet, as the context-sensitivity of language

demonstrates, these facts do not imply that the content of each image is entirely context-dependent,

hence unsystematic.29 Indeed, it is quite obvious that each scene depicted shares some basic spa-

tial configuration, specified by the structure of the image itself. It is this core component which, I

propose, the semantics of pictures directly associates with image structure; the rest is contributed

by context.

Following precedents in linguistic theory and recent work in the philosophy of depiction, I

28The classical source of this view is David Kaplan (1989). See Stanley and Gendler-Szabo (2000) for more recent elabo-
ration.

29Balog (2009, §2) presents such an argument against pictorial semantics.
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propose that a pictorial semantics associates each picture with two levels of content: a primary,

EXPLICIT level of content is context-invariant and sparsely geometrical; a secondary, EXTENDED

level of content is context-dependent and richly referential.30 The explicit content of an image

is that minimal spatial and chromatic profile of visible surfaces which can be derived from the

structure of the image alone. (In Chapter 3, I develop a precise theory of explicit pictorial content.)

The extended content of an image elaborates the explicit content with reference to individuals,

properties, and richer spatial features. It is extended content that is most naturally grasped when

we talk about, say, the picture depicting Obama as having a certain kind of hair cut.

But extended content always depends constitutively on explicit content. For example, it is part

of the extended content of the Obama picture that the man’s hair has a very specific outline shape,

one which we struggle to articulate in words. It is this kind of purely structural feature which

is supplied by the explicit content of the image. Explicit content also functions to constrain the

way that context may enrich a picture’s representational properties. A single image type might

accurately depict Obama, or lines in the sand. But the same image could not accurately depict

a cube or a plane, no matter the circumstances of its creation. The image’s explicit content places

hard constraints what the image may be used to accurately depict. It constitutes the core of pictorial

representation.

In this and subsequent chapters, I directly defend the systematicity of pictorial semantics only

with respect to explicit pictorial content. That is, I defend the claim that there is a context-invariant

component to pictorial content which is associated, by systematic rules, with image structure. Any

theory of extended content, which takes into account the influence of context, necessary depends

on a prior theory of explicit content. This dissertation is restricted to the more basic task.

Despite the evidence that pictures are systematically mapped to their content, and the appro-

priate qualifications of this claim, the very possibility of such a mapping is widely doubted. Lan-

guage, it is thought, is the paradigmatic site of systematic semantics. It is clear that language

provides a poor model for pictorial representation, but this fact is taken to impugn the viability of

a pictorial semantics. On this view, there can be no semantics outside of language. Three kinds of

concern motivate this outlook.
30This idea has two sources. The suggestion that pictures have two levels of content— a thin, geometrical level, and a

rich, referential level— is due to Haugeland (1991, pp. 73-5), who distinguishes between “bare-bones” and “fleshed-out”
pictorial content; this idea is developed extensively by Kulvicki (2006a, p. 59). (Siegel (2006, p. 2) discusses analogues for
perceptual content.) The suggestion that a sign’s context-sensitive content can be derived from a thin level of context-
invariant meaning, together with context is due to David Kaplan (1989). Kaplan theorizes that the grammar associates each
lexical entry with a “character” (also called a “standing meaning”), which, together with context, determines “content”.
Explicit content in my sense is the pictorial analogue of Kaplan’s character; extended content in my sense is the analogue of
Kaplan’s content. Thanks to Matthew Stone for suggesting the term “explicit content”.



28

(i) First, it does not seem that pictures have syntax in the manner of linguistic expressions.

Semantic rules are typically understood as systematic mappings from syntactic structures to con-

tents. But without syntactic structures to take as inputs, it seems that a semantics of pictures could

never gain firm footing. Yet this objection misunderstands the general character of semantics. In

the most general sense, it is structure, not logical syntax, that is the point of departure for semantics.

Thus I grant that pictures do not have a syntactic structure like that of linguistic expressions, and

they may not be governed by substantive rules of syntactic well-formedness.31 Yet in Chapter 3

I will develop a view according to which pictures have geometrical structure instead. The seman-

tics of pictorial representation associates geometrical structures with representational content using

systematic techniques of geometrical projection.

(ii) A second concern has to do with compositionality. Compositionality is often understood

as the recursive derivation of the meaning of a complex expression from the meanings of each of a

finite number of atomic parts, along with the way these parts are put together. But pictures do not

seem to be composed from a finite set of atomic parts. Hence their content cannot be derived com-

positionally; and without compositionality, it is wagered, there is no semantics.32 But the worry

is unfounded. Compositionality, in its most general construal, is the derivation of the content of a

complex expression from its internal structure— it need not require that this structure is decompos-

able into finitely many atomic parts. In the formalization presented at the conclusion of Chapter

3, I demonstrate that the proposed geometrical semantics for picture is fully compositional in this

general sense.

(iii) The last objection is purely inductive. The only semantic theory which is well-understood

is that of language. There have been no other correspondingly plausible candidates for a systematic

account of depiction. And it is fundamentally unclear what such a system of pictorial representa-

tion would be. If there were a semantics of pictures, it is thought, such an account would have been

established by now. The preceding discussion has amounted to a defense of the very idea of a sys-

tematic pictorial semantics. But I have not proven that any such semantics exists. Until a systematic

theory of depiction is actually articulated, this last form of skepticism will reasonably persist. It is

this concern which Chapters 2 and 3 are intended to assuage. The remainder of the present chapter

continues to establish the necessary groundwork for subsequent development.

31For example, it might be that a picture belongs to the system of black and white line drawing just in case it consists of
(a) black lines and (b) white regions. This amounts to a rule of well-formedness, but not a substantive one.

32Thanks to Jeff King and Mark Baker for pressing this concern.
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4 Conventionality

I have argued that pictures are assigned representational content by systematic rules. The Pic-

torial Semantics Hypothesis further holds that these rules are conventional. There are a diversity of

interpretive systems for pictures, varying across history and culture, which are selected for use by

social convention, just as languages are. The opposing view is that the ability to interpret pictures is

simply a manifestation of the biologically fixed abilities which make up human visual perception.

If there were a theory of pictures, it would be a byproduct of the science of vision, not a topic of

independent interest.33 On this view, conventional knowledge plays no role in the interpretation

of pictures.

Despite its naïve plausibility, this deflationary hypothesis is now widely discredited. As early

as 1921, the linguist Roman Jakobson observed, “it is necessary to learn the conventional language

of painting in order to “see” a picture, just as it is impossible to understanding what is said without

knowing the language.” (1921, p. 21) Since then, theorists of pictorial representation have docu-

mented a diversity of pictorial conventions, or SYSTEMS OF DEPICTION.34 Such systems crucially

mediate between pictures and the informational content they carry.

Consider, by way of illustration, the pair of

images at right. The first contains spatial as well

as chromatic information about the scene featur-

ing my plant— e.g. that the cone-shaped object is

a particular shade of brown. Part of what deter-

mines its chromatic content is of course the color

of the pigments in the picture itself. If these col-

ors had been different, the picture would have had a different content. By contrast, the second

image is a black and white line drawing of the same scene. It has the same spatial content as the

first drawing, but contains no chromatic information about the scene it depicts. If it were a color

drawing, it would depict a plant, pot, and desk which were all paper-white; plainly this is not the

case. So while both pictures have content, the relationship between the surface properties of the

picture and its content is different in the two cases. The explanation for this is that different systems

of depiction, like line drawing versus color drawing, determine different ways of mapping pictures

33This need not imply that seeing a picture of a scene is the same as seeing the scene itself. After all, black and white
drawings look nothing like the scenes they depict. Instead, it is held that the mechanisms which ground picture interpreta-
tion are fully determined by (but not necessarily the same as) those which ground normal visual perception.

34Three excellent books on the topic are Art and Illusion (Gombrich 1960), Varieties of Realism (Hagen 1986), and Art and
Representation (Willats 1997). The term “system of depiction”, or a close cousin, is widely used (see, e.g. Manns 1971, p. 286;
Newall 2003, p. 384; Abell 2009, p. 222).
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to content.

Differences between systems of depiction are not limited to variation in the treatment of color;

they differ in their handling of line, shading, and texture as well. Importantly, they also determine

divergent treatments of pictorial geometry. Consider the two drawings below; each depicts a cube,

but in a different way. In the drawing on the left, converging lines in the picture are used to depict

the parallel edges of the cube. In the drawing on the right, parallel lines are used to depict the

parallel edges of the cube. The first is rendered in a PERSPECTIVE system, the latter in a PARALLEL

system.35 If the drawing at right were in perspective it would depict an irregularly shaped solid—

not a cube at all. Thus, like line and color drawing, these two systems determine different relations

between features of the picture surface and its content.

PERSPECTIVE PARALLEL

Far from artificial constructs, these systems of depiction and a vast diversity of others have been

widely used across history and culture. Classical Chinese painting, for example, employed a type

of parallel depiction; another dominated ancient Egyptian imagery, with very little variation for

over 2,000 years; meanwhile, Western post-Renaissance depiction has typically been presented in

perspective.36 Notably, parallel depiction systems like those used by classical cultures are the norm

in contemporary engineering and architectural drawing. All such systems exhibit a characteristic

stability, whereby artists and viewers may continue to exploit the same system across time and in

varying contexts.

These facts cannot be explained by appeal to the normal workings of the perceptual system

alone. The activity of the perceptual system is widely recognized to be cognitively “impenetrable”.

That is, its internal processes are in an important sense automatic; they cannot be modified through

the interference of rational inference or conscious decision making. The visual system is also be-

lieved have essentially the same structure in all human populations. By contrast, the use of systems

of depiction varies widely across human populations, and is depends heavily on contingencies of

35The class of parallel systems includes the more familiar and specific systems of oblique, isometric, and orthogonal
projection. Orthogonal projections include plan and elevation depictions common in architecture and engineering. The
drawing above is an isometric projection.

36On classical Chinese depiction, see Willats (1997, p. 55). On classical Egyptian depiction, see Hagen (1986, pp. 168-72).
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social context. Thus the interpretation of pictures cannot be explained by appeal to biological vision

alone.

At the same, it is evident that those systems of depiction used by human societies depend in

crucial ways on the workings of the human visual systems. The interpretive computations required

by systems of depiction are broadly of a kind with those performed by the human visual system.

Overlapping cognitive resources are called upon in normal vision and the interpretation of pictures.

This idea is made concrete in Chapter 3. Because of their perceptual origins, the space of humanly

realizable systems of depiction is indeed constrained by universal features of human vision. Not

anything can become a human system of depiction.

On the other hand, the conventionality of pictorial representation frees it from the strictures

and ideosyncracies of vision. Systems of depiction introduce expressive devices never found in

perceptual experience. These include outlines, alternative color schemes (like black and white, or

negative color), color coding, and alternative projection systems (like parallel projections or map

projections), to name just a few. Such departures from normal vision demand interpretive famil-

iarity. Systems of depiction also determine objective standards of accuracy that do not depend on

the visual impairments or special abilities of individuals. This facilitates reliable communication.

In this way, systems of depiction are both conventional crystalizations of visual perception and

extensions of it.37

Thus systems of depiction are the pictorial analogues of languages: culturally specific inter-

pretive rules for encoding content in signs. Are systems of depiction therefore conventional in the

same way that languages are? They are. Although systems of depiction have a very different in-

ternal architecture from languages, the use of systems of depiction in human communication is

conventional. More carefully: there are infinitely many possible systems of depiction, considered

as abstract interpretive rules; among these, a select few are selected by social convention for use in

human communication, just as languages are.

Following Lewis’ (1969) influential account, conventions of interpretation, such as languages,

arise when a population wishes to communicate, but more than one methods of communication is

available for use. In order to successfully communicate, the population must collectively coordinate

on one such method for repeated use, thereby establishing a convention. Systems of depiction are

conventional in exactly this way. Consider a concrete example: the engineers in a construction firm

must share drawings amongst themselves while designing and building a bridge. It is important to

37See Gombrich (1960, pp. 3-30), Kennedy (1974, pp. 24-7), Lopes (2009, pp. 18-9), Durand (2002, §4), and DeCarlo and
Stone (2010, p. 5).
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everyone that all the drawings produced within the firm be accurate and be accurately interpreted,

since inaccuracy in production or interpretation could have disastrous effects. The only reliable

and efficient way to achieve this goal is to establish a standard system by which drawings are

produced and read. That is, the engineers must collectively establish a convention of producing

and interpreting drawings according to a given system of depiction.

The same phenomena is repeated, at a larger scale, in contemporary media. For example, the

use of perspective line drawing is a global convention. Here, the coordination among artists and

viewers is tacit and disparate. Nevertheless, the basic considerations are the same: all seek to effi-

ciently communicate approximately accurate information; yet there are always multiple ways this

might be achieved; communicative success is ultimately realized by coordinating on a stable inter-

pretive convention for pictures. Of course, contemporary media relies on a great variety of systems

of depiction. Just as many human societies are multi-lingual, human societies can and do use a

multitude of systems of depiction. Those which are used recurrently become conventions.

In spite of the considerations reviewed here, many have thought that systems of depiction could

not be conventional, even in principle. Paralleling the debate about systematicity, objections here

tend to take languages as the paradigm case of conventionality, and argue that, because of their

disanalogies with language, systems of depiction could not be conventional in the same way. Dis-

pelling such concerns will help elucidate the central claim of this section. I focus on three objections

in particular.

(i) If systems of depiction were conventional, it is thought, they would be arbitrary in the way

that languages are. Yet while words bear a merely arbitrary relationship to their content, pictures

bear a much more intimate and direct relationship to theirs. Thus systems of depiction cannot

be conventions. This objection trades on a simple but widespread confusion between the sort of

arbitrariness associated specifically with language, and that which is a feature of all conventional

behavior.

It will be helpful here to recall a key feature of David Lewis’ influential analysis of convention.

Lewis observed that for a regularity of behavior within a population to count as a convention, there

must be some alternative regularity with which the population could have conformed, while still

realizing their dominant needs. Part of what makes a regularity a convention, then, is that it reflects

a choice (not necessarily a conscious one) on the part of the group, between mutually acceptable

options. For example: driving on the left is a convention in some nations, in part because drivers

could have collectively driven on the right instead, while still realizing their dominant need to pass

each other while driving.
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The sense in which all conventions are arbitrary is simply this: a population which conforms

with a given convention could have conformed with a different convention, while still realizing

their dominant goals. The use of, say, perspective line drawing by some population is a conven-

tion, in part because that population could have used parallel projection line drawing for the same

purposes instead; in that sense the use of perspective line drawing by that population is arbitrary.

In the same way, the use of English by some population is a convention, in part because the pop-

ulation could have used Shona for the same purposes; in that sense the use of English is arbitrary.

But this kind of arbitrariness is not unique to systems of symbolic representation.38

The other kind of arbitrariness is unique to systems of symbolic representation. This is the kind

displayed by the arbitrary link between the word “tree” in English and the property it denotes of

being a tree; there is no intrinsic connection between the sign and its content. The same kind of

arbitrariness is not displayed by the link between a picture of a tree and the tree it depicts. Since

there are non-symbolic systems of representation, such arbitrariness is not a necessary feature of

conventional systems of representation. And it is not even sufficient. As Fodor (1975, p. 178)

has observed, if there are mental symbols, they bear an arbitrary relation to their content, but the

relation is not determined by convention. I discuss this kind of arbitrariness at greater length in

Chapter 4, in my analysis of symbolic representation.

Thus it is essential to distinguish one kind of arbitrariness, in a group's choice to use a partic-

ular system of representation, from arbitrariness in the relation between a sign and its content within a

system. The former is a necessary condition on conventionality; the latter is specifically a feature

of language, compatible with, but not necessary for conventionality. “Arbitrary” here has simply

acquired two related but independent meanings. Public systems of depiction and public languages

are both selected for use, by populations, conventionally. But of the two, only public languages

rely on arbitrary pairings of signs and contents. A simplified example may help to make this point

more vivid.

Suppose you and I must communicate our credit card numbers in a crowded room. To guard

our privacy, we must come up with some kind of code. Here are four codes we might use:39

38Eco (1979, pp. 189-92) is one of the few authors to make this point explicitly.
39Here I put the message expressed in quotation marks, to distinguish it from the numeral thereby indicated. Strictly

speaking, it is probably most apt to think of both relata of the code as numerals, not numbers.



34

+1 Code +2 Code A-List Code B-List Code
“1” means 0 “2” means 0 “9” means 0 “2” means 0
“2” means 1 “3” means 1 “3” means 1 “5” means 1
“3” means 2 “4” means 2 “4” means 2 “4” means 2
and so on... and so on... “7” means 3 “8” means 3

“5” means 4 “9” means 4
“2” means 5 “6” means 5
“8” means 6 “1” means 6
“1” means 7 “3” means 7
“0” means 8 “7” means 8
“6” means 9 “0” means 9

The +1 and +2 codes exploit simple computations to disguise their message; other such codes

could employ other once-place mathematical functions like multiplication or exponentiation by a

constant. The A-List and B-List codes employ distinct, arbitrary pairings between numerals. There

are as many such possible codes as their are possible distinct sets of pairings. Let us suppose that

all four codes described here are sufficiently secretive for our purposes.

If the problem of communicating with codes is a recurrent one, it is convenient to establish

a convention; the convention dictates which of the infinitely many possible codes (including the

four above) we are to select for use on subsequent occasions. In the first sense, the selection would

be arbitrary. Because all four codes suit our purposes equally well, the choice to use the +1 code

instead of the +2 code or the A-List code is an arbitrary choice. But now consider that the A-List and

B-List codes are arbitrary in a way that the +1 and +2 codes are not. They rely on arbitrary pairings

of input and output, whereas the others rely on mathematical laws. Clearly, then, arbitrariness in

the selection of a code for use is quite a different thing from arbitrariness in the structure of the

code itself.

The lexicons of natural language are the analogues of the A-List and B-List codes. They are

conventions of interpretation which are based on arbitrary pairings of signs and contents. Systems

of depiction are the analogues of the +1 and +2 codes. They are possible conventions of interpre-

tation which are based on law-like associations between signs and contents. Although I have said

little thus far about the internal structure of systems of depiction, in Chapter 3 I develop a the-

ory according to which they are based on rules of geometrical projection. For present purposes,

such projective rules are merely complex cousins of the +1 and +2 codes. The general moral is this:

conventionality requires that the agents exploiting the conventional rule have made an arbitrary se-

lection of that rule over another. But conventionality makes no claim about the nature of this rule.

It may be arbitrary, like a lexicon, or law-like, like a geometrical projection. Systems of depiction,

as it happens, are often deployed in communication by convention.
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(ii) A second objection holds that, for all we have just said, languages must

be more conventional than systems of depiction. The evidence is this: pictures

produced according to one system of depiction can typically be successfully in-

terpreted by viewers familiar only with other, even very distant systems.40 For

example, a viewer familiar only with systems based on the geometry of perspective projection would

be able to recover the spatial information from the picture at right, even though it is the product

of a system based on parallel projection. By contrast, sentences from one language are not gener-

ally comprehensible to speakers of another language. Thus languages must be more a product of

convention, and systems of depiction less so.

The argument relies on an implicit false premise: although viewers may manage to recover the

crude content of pictures from unfamiliar systems, it is never possible to determine with certainty

the exact content of a picture without acquaintance with the relevant system. Thus, without know-

ing whether the picture above belongs to a perspectival system, or a system with some alternative

geometry, it is impossible to tell whether the object represented is in fact a cube, or a related but

irregular solid. Conventional knowledge is required, after all, for correct interpretation.

What the objection does reveal is that the space of humanly implementable systems of depiction

is narrower than the space of humanly implementable languages, restricted as it is by the univer-

sal structure of the human visual system. As a consequence, human viewers can generally make

educated guesses about the interpretation of pictures in unfamiliar systems. Yet this difference be-

tween languages and systems of depiction is only one of degree. Genetically determined neural

anatomy put severe constrains on the space of languages that can be used by humans, as well.41 In

both cases, restrictions are imposed by the biological structure of the interpretive anatomy.

Ultimately, it is immaterial to the conventionality of a given system of representation whether

it belongs to a wide or narrow space of humanly realizable alternatives. The conventionality of

a given system requires only that there exist some alternative. Driving on the left, for example,

may be a convention, even when there is only one possible alternative which satisfies the goals of

population— driving on the right. Drawing in perspective, like driving on the right, or speaking

French, is a matter of social convention.

(iii) A third and final objection, due to Lopes (1992, §3-4; 1996, §6.6), contests the claim that

systems of depiction are conventional, on the grounds that the choice to use one system of depiction

over another is rarely arbitrary. For example: drawings from systems of black and white depiction

40See Carroll (1999, pp. 42-4).
41See Pinker (1995).
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and those from systems of color depiction reveal different features of their subjects, and require

different technologies to produce. The choice to use one kind of system or the other in a given

communicative exchange is invariably motivated by the practical demands of the task at hand. We

might specifically wish to communicate color information, or specifically wish to suppress it. But,

it is argued, whenever the choice to use one system or another has a specific rationale that use is no

longer based on convention.

The objection rests on the principle that conventions only arise when the population in question

is truly indifferent between alternative regularities in behavior, so that the choice between them is

entirely arbitrary. But the principle is false. It is true that, for a regularity in behavior to be a

convention, the population must select that regularity from a space of alternatives. But the selection

need not be unmotivated. By way of illustration, consider a population for whom, through a quirk

of genetics, driving on the left side of the road is discomfiting, while driving on the right side of

the road is relatively pleasurable. (And not driving at all is still more pleasurable.) It is a matter

of common knowledge throughout the population that this is so. Nevertheless, if all members

of the population drove on the right, and expected all others to do the same, it would still be a

convention, despite the fact that it is the mutually preferred alternative. It would be a convention,

in part, because all would have been prepared to drive on the left, if necessary, in order to pass each

other on the road. Thus a regularity in behavior can be a convention, despite the fact that it would

be the preferred behavior quite apart from convention; also a regularity can be a convention even

if it would be dispreferred. Conventionality does not require indifference.

In his analysis of convention, Lewis (1969) is sensitive to these facts. Rather than requiring that

a populations be indifferent between alternative regularities, Lewis imposes a subtler, and more

plausible requirement. For a regularity to be a convention, it must be one among a set of alternatives

which are such that each member of the population prefers conformity to that regularity on the

condition that everyone else conforms. Thus, I prefer to speak English if everyone else speaks English;

I prefer to speak Shona if everyone else speaks Shona. This condition can be met, even if the

alternatives are preferentially ranked. All things being equal, I may prefer to drive on right; but

this preference is trumped by the desire to drive in the manner of everyone else. This is sufficient

to qualify the regularity for conventionality.

In the original case of depiction, the dominant goal of the typical communicative exchange is

to communicate accurate information using a picture. Thus, while it may be that, all things being

equal, I prefer to produce and view color drawings, I prefer most to use the same system of de-

piction that everyone else is using. Under such conditions, a system of black and white depiction
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or one of color depiction could become the convention. Thus the conjecture that the use of any

given systems of depiction is often or always motivated by practical concerns does not impugn its

conventionality.

Together, the last three sections constitute my defense of the Pictorial Semantics Hypothesis. I

have argued: (i) that pictures are bearers of representational content; (ii) that the mapping between

pictures and their content is systematic; and (iii) that there are a diversity conventional systems

according to which pictures are associated with their content. The Pictorial Semantics Hypothesis

can now be more precisely construed as the hypothesis that every actually occurring system of

depiction determines a systematic and conventional mapping from pictures to their content. The

aim of the next section is to render this claim with sufficient formal precision that we may reliably

evaluate particular theories of pictorial semantics.

5 Accuracy-conditional pictorial semantics

The aim of this section is to give formally explicit expression to the Pictorial Semantics Hy-

pothesis, by defining the concept of pictorial content adumbrated above in terms of its accuracy

conditions relative to a system of depiction. This accuracy-conditional framework will set the stage

for the assessment and development of specific theories of pictorial semantics in the next two chap-

ters.

We begin by developing a formal model for depictive content that abstracts away from the

distinguishing features of different systems of depiction.42 There are a number of ways to proceed

here, but following Blumson (2009b), a natural course is to extend the popular possible-worlds

theory of linguistic content to the case of pictures.43 On this view, since a picture represents a certain

way things might be, its content can be modeled by the set of possible worlds so represented.44 But

this is too crude: a world could be just as a picture represented it at one time, but not at another.

42There are two sorts of theory of content. One seeks to place purely formal constraints on the structure of content, but
remains silent on the metaphysical nature of the objects realizing these constraints. This is the norm in linguistic theory.
(See Lewis (1970, p. 32) for a brief but apt defense of this norm.) The heroic few (e.g. King 2007) take on both the formal and
metaphysical questions. In this paper I am concerned only with the formal characterization of pictorial content.

43For a canonical statement of the possible-worlds account of content, see Stalnaker (1984). The application of this theory
to pictorial content has been proposed by Howell (1974), Ross (1997, pp. 17-21), and Blumson (2009b). Alternatively, we
coud define the content of a pictures as a complex property (Lopes 1996, p. 111) or as a structured situation (Malinas 1991,
p. 276). Further proposals might be usefully adopted from the theory of linguistic content, perceptual content, or the content
of mental imagery.

44Does the existence of “impossible” pictures like the Penrose triangle or the illustrations of Escher require that pictorial
content also include impossible worlds? (See Huffman (1971) and Sorensen (2002) for examples.) It is known that all familiar
impossible pictures can be divided into possible parts. (Kennedy 1974, pp. 149-50; Sorensen 2002, p. 346) On the strength
of this observation, I deny that impossible pictures have content, while allowing that their possible parts are individually
contentful, though mutually incompatible. Thus the pressure to countenance impossible worlds is diffused. Blumson
(2009b, §7), for one, opts instead to include impossible worlds in pictorial content.
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Similarly, it could be just as a picture represented it at one location, but not at another. It is therefore

inappropriate to think of pictures as representing the way the world is across the board; instead

we should think of them as representing worlds at particular times and locations.45 (For now I

choose to ignore the further matter of a picture’s angle of view. I will return to this issue in Chapter

3 once we have developed a richer understanding of the mechanics of perspective.) We can think

of these particular locations and times within worlds as scenes. Pictures do not, as adverted before,

represent the entire world as being a certain way— they represent a more limited scene as being a

certain way. Thus the content of a picture is modeled as a set of scenes. We may define a SCENE

simply as a ⟨world, location, time⟩ triple, what is sometimes called a “centered world.”46

Depictive content is modeled by sets of scenes, rather than individual scenes, because pictorial

representation is always indeterminate.47 In the system of black and white line drawing, for ex-

ample, the picture of Obama does not represent Obama’s suit as being any particular color. So the

picture is compatible with worlds in which the suit is blue, as well as worlds in which it is grey or

red. While color systems are not indeterminate in this particular way, nearly all systems are inde-

terminate with respect to occluded surfaces— that is, those surfaces obscured by some more nearby

surface. Thus the picture of Obama does not represent Obama’s back as being any particular way;

it is compatible with worlds in which Obama has wings, occluded from view, and worlds in which

he doesn’t. In such cases the picture fails to specify a complete description of the scene before it,

hence the characterization of its content as a set, rather than a single scene.

Though the content of a picture may always be modeled by a set of scenes, which set of scenes

must depend on the operative system of depiction. For example, the set of scenes compatible

with the content of a color drawing is more restricted chromatically than those compatible with its

black and white counterpart. A quite natural suggestion is to define pictorial content in terms of

DEPICTION— understood as a two-place relation between a picture and a scene, specified relative

to a system of depiction.48 The idea is that a single picture may depict a range of possible scenes—

for example a single black and white line drawing may depict a chromatic variety of scenes— but

the placement of lines in the picture ensures that every scene the picture depicts has the same basic

configuration of objects in space. Taken together, the set of scenes which a picture depicts in a

45See Blumson (2009b, §2).
46The original idea is due to Lewis (1979). For our purposes, it doesn’t matter much how we think about possible worlds,

though conceptions of worlds as constructed from linguistic objects may introduce certain difficulties.
47See Lopes (1996, §6.1) and Ross (1997, p. 18).
48A different approach, pursued by Ross (1997) and Howell (1974) is to characterize pictorial content indirectly, by

considering what it must be in order to satisfy true sentences about pictures. This kind of consideration has its place, but
my primary interest here is in pictures, not language about pictures. Still another strategy is developed by Malinas (1991,
pp. 288-9), who defines picture content in terms of what “queries” a picture answers with “yes”, “no”, or “neither”. It is
hard to evaluate this proposal, because such terms are so alien to the concepts we ordinarily use in thinking about pictures.
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system defines the picture’s content in that system.49

My only complaint here is that the term “depicts” can be used ambiguously to track either

pictorial reference or pictorial content. What we need to specify is a depictive relation that holds

between all and only the scenes which conform with a picture’s content, independent of its in-

tended referent. This can be isolated by focussing on the accurate or successful depiction of a scene.

Thus the spiky-hair image of Obama accurately depicts all and only scenes with spiky-hair-shaped

objects of the appropriate sort— though none of these scenes are the actual referent of the picture.

The definition of pictorial content can then be expressed unambiguously, for any picture P and

system of depiction I:50

(2) The content of P in I = the set of scenes S such that P accurately depicts S in I.

The content of a picture, according to this view, is its accuracy conditions in a system. Note that

although accuracy can come in degrees, my interest here is in maximal or perfect accuracy. The

content of a picture is the set of scenes it perfectly accurately depicts.51 Here and throughout, by

“accurate depiction” I mean perfectly accurate depiction, or very near it.

The concept of accuracy at play here is that which is required to define pictorial content in the

way specified by (2). But it is more than that: it is the same concept which figured in my initial

defense of the idea of pictorial content in §2. As I argued there, not only do we easily make direct

and robust judgements of accuracy, it is the standard of fidelity to which artists aim, and viewers

expect them to achieve, particularly in high-stakes contexts of communication with pictures. In

short, accuracy is the basic measure of success for pictorial representation.

I have defined the content of a picture in a system as the set of scenes or “conditions” it ac-

curately depicts in that system. I thereby join a formidable rank of philosophers and linguists to

characterize the content of a variety of representational kinds in terms of some type of correctness

conditions.52 Most prominently, natural language semanticists in the twentieth century have over-

whelmingly specified the content of assertoric sentences in terms of truth-conditions. The same

49This way of defining content is implicit in Blumson (2009b).
50An accuracy-conditional definition of content is briefly considered in Haugeland (1991, p. 78) and Blumson (2009b,

§3). Appropriately enough, parallel accuracy-conditional accounts of content has been proposed for perceptual experience.
(Siegel 2009, §2; Burge 2010, pp. 34-42)

51It seems to me that a definition of perfect accuracy is all one needs to specify the content of a picture. Part of the
content of the spiky-hair image of Obama is that Obama has precisely that shape of hair— not close-cropped hair, not
even hair which is slightly less spiky, nor hair which is slightly more spiky. For any hair-shape not perfectly accurately
represented by the picture, that shape is not part of the content of the picture. Methodologically, this is good news, for to
specify the representational content of a picture, a semantic theory need only supply necessary and sufficient conditions for
perfect accuracy without involving itself in the dalliances of gradability.

52See Stalnaker (1998), D. Kaplan (1999), Gunther (2003, pp. 4-6), and Burge (2010, pp. 38-9) for discussion of the connec-
tion between content and correctness conditions. Once again, I mean to include in this group those theorists who refuse to
identify some signal as its correctness conditions— for example defenders of Russellian and Fregean theories of content—
but who nevertheless accept that their preferred notion of content must determine correctness conditions.
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kind of approach has been fruitfully extended to questions, commands, and even perceptual ex-

periences.53 In general, observing the connection between content and conditions of correctness

has been the key to the development of formal semantics as a precise and progressive research

program; here I follow this precedent.

The Pictorial Semantics Hypothesis can now be formally articulated as the claim that, for ev-

ery system of depiction, that system determines a systematic mapping from pictures to accuracy

conditions. A theory of pictorial semantics for a given system is therefore a theory of accuracy in

that system. Given a system of depiction I, such a theory must complete a schema of the following

form, for any picture P in the system I, and scene S:54

(3) P accurately depicts S in I if and only if .

Ultimately, the empirical plausibility of any semantic theory depends on the specific predictions

it makes in particular cases. The primary import of the accuracy-conditional schema presented

here is to provide a standard format by which the predictions of such theories can be expressed,

and their success rigorously measured. It provides the basic framework for the development of a

pictorial semantics in the next two chapters.

6 The scope of inquiry

In this chapter I have defined and defended the hypothesis that there are pictorial semantics,

systems of depiction which determine systematic and conventional mappings from pictures to con-

tent. In the next two chapters I take up the question of what sort of semantics pictures actually have.

While the final aim of any pictorial semantics is to complete the semantic schema articulated above,

I will limit the scope of the following inquiry in two important ways.

First, philosophers of language distinguish between FOUNDATIONAL and DESCRIPTIVE seman-

tic theories, each necessary components of a complete theory of content.55 Foundational semantic

theories attempt to explain, from the metaphysical ground up, how inanimate concrete objects

come to have representational properties.56 Such theories are characteristically concerned with

53The truth-conditional approach has dominated twentieth-century semantics. Contemporary theorists in the dynamic
tradition have added to this a variety of “update” conditions; see, for example, Groenendijk and Stokhof (1991) and Veltman
(1996). In the realm of non-assertoric sentences, Hamblin (1958) proposes that the content of questions be defined in terms of
“answer-hood” conditions; see Groenendijk and Stokhof (1997, p. 24) for further discussion. And see Starr (2010, Ch. 4) for
a recent non-truth-conditional analysis of imperatives. Perceptual content, for its part, is often defined in terms of accuracy
conditions. (Siegel 2009, §2)

54This schema is based on Tarski’s (1944, p. 344) T-schema for truth.
55See Stalnaker (1997, pp. 535-6) and Stanley and Gendler-Szabo (2000, pp. 220-6).
56This is the sort of theory taken up by Putnam (1975; 1981), Field (1978), Dretske (1983), Stalnaker (1984), and Fodor

(1990a; 1990b). See Loewer (1997) for a useful overview.
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how an intelligent agent’s interactions with an object, in a social context, manage to imbue that ob-

ject with representational content. Descriptive semantic theories, by contrast, simply assume a class

of objects with representational properties, and aim instead to explain why these representations

have the content that they do. Such theories are the norm in linguistics, which aims only to articu-

late the formal rules which map linguistic signs to their content. This is typical in the philosophy of

depiction as well, where the dominant theories, such as resemblance and perceptual accounts, are

primarily distinguished by their approaches to the descriptive analysis of pictorial content.57 My

ambitions in this paper are the same. I’ll have nothing to say about what separates accidental marks

on a piece paper from genuine pictures. Instead, I’ll begin with the class of pictures, and proceed

directly to a descriptive account of the rules by which they are associated with their content.

Second, as I indicated above in §3, the discussion that follows is only concerned with the

context-invariant, or explicit, component of pictorial content. While a final theory of pictorial rep-

resentation must also contend with the context-sensitive, extended content of pictures, any such

theory necessarily depends on a prior account of explicit content. So it is there that I begin. Hence-

forth, when I speak of “accurate depiction” I mean accurate depiction with respect to explicit con-

tent alone. In this sense, the same picture may accurately depict Obama, a wax sculpture, or lines

in the sand.

Eventually, a theory of pictorial semantics must come to grips with both the foundational and

the context-sensitive aspects of depiction. But we are still very far from that achievement, and there

is a danger of seeking completeness at the cost of rigor. In this dissertation, I propose instead to

purse a rigorous account of the central, context-invariant semantic architecture of certain common

systems of depiction. I hope this will provide the firm bedrock which will ultimately be necessary

for a systematic account of all aspects of pictorial representation.

57Abell and Bantinaki (2010) provide a clear discussion of this point, in the context of philosophy depiction, including
an useful survey of foundational theories of depiction from the literature.
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Chapter 2

Beyond Resemblance

In the last chapter I presented evidence for the Pictorial Semantics Hypothesis, the claim that pic-

tures are associated with their content by systematic and conventional interpretive rules. But I

offered no concrete proposal about what kind of semantics pictures actually have. Yet until we can

articulate a plausible and detailed theory of depiction, the Pictorial Semantics Hypothesis remains

purely conjectural. So, in this chapter, I will examine one particular family of theories, according

to which all forms of pictorial representation should be analyzed in terms of resemblance. Such re-

semblance theories are among the oldest and most historically popular accounts of depiction, and

I will show how they can be construed as a precise and plausible theories of pictorial semantics.

But I will ultimately argue that, once suitably precisified, any resemblance-based analysis fails.

The investigation of this failure motivates the positive proposal which I develop in the following

chapter.

M
annie

G
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Inquiry into the nature of pictorial representation traditionally be-

gins with the metaphysical question: what is it for a picture to depict

a scene? Orthodoxy holds that pictorial representation is grounded in

resemblance. The observation that motivates this view is simple and

incontrovertible. Suppose we were to return to the time and place at

which the photograph at right was taken, and view the scene from the

original position of the camera lens. Obama would appear to us much

as the photograph itself appears. His apparent shape would resemble a

particular region of the image. His apparent surface color would resemble the surface colors of the

image. The scene and the picture would seem to be linked by many dimensions of similarity.

Understood as an account of pictorial content, resemblance theory also makes computational

sense. To the extent that depiction is grounded in resemblance, an interpreter may extract infor-

mation about a scene simply by coming to understand the structural properties of a picture which
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depicts that scene, for each has the same properties. Recovering information about a sign’s sub-

ject by directly perceiving the sign is surely the simplest and most efficient interpretive computa-

tion available. We should expect to find representational systems governed by resemblance in this

way.

Such considerations are the basis for all RESEMBLANCE THEORIES of depiction.1 As I will argue

in the first part of the chapter, resemblance theories are best understood as theories of pictorial

semantics: they define necessary and sufficient conditions for a picture to accurately depict a scene.

Though these theories are diverse in content, and range from simplistic to highly nuanced, all more

or less agree that the correct analysis of depiction takes the following form. For any picture P and

scene S:

P accurately depicts S if and only if P resembles S (and X)

where the optional constraint X guarantees that any foundational pre-conditions for depictive rep-

resentation are met, but is itself compatible with both accurate depiction and its failure. It is the

resemblance condition that does the work in resemblance theories; as a shorthand, I shall say that

according to analyses of this form, accurate depiction is “grounded in resemblance.” Parallel pro-

posals have emerged from cognitive science and the philosophy of mind. Taking pictures as their

model of representation, such theories hold that mental representation is grounded in ismorphism,

a kind of similarity with respect to abstract relational structure.

In proportion to their historical currency, resemblance theories have been the target of numer-

ous objections. Far from dampening the spirit of resemblance, however, the proposed counterex-

amples have only shown the way for more nuanced and plausible articulations of the same basic

idea. Today resemblance theories remain popular, resilient to objections, and defended at each turn

by ever more sophisticated adherents.2 I will show how resemblance theorists have successfully

responded to all of the most important charges pressed against them thus far.

But in the final part of the chapter, I present a new and general argument against what I con-

sider to be the best version of the resemblance theory. The argument emerges from a body of

knowledge more familiar to artists and geometers than philosophers, according to which accurate

images are produced by following particular recipes for projecting three-dimensional scenes onto

two-dimensional surfaces. Yet there are many kinds of projection, corresponding to the myriad

1In the 20th and 21st centuries, resemblance theorists have included Peirce (1906), Wittgenstein (1921/1997), Morris
(1946), Gibson (1960; 1971), Manns (1971), Novitz (1975), Fodor (1975), Lewis (1986, §3.3), Neander (1987), Peacocke (1987),
Malinas (1991), Files (1996), Hopkins (1998), Newall (2003), Kulvicki (2006a), Blumson (2007; 2009a), and Abell (2009). Re-
semblance has also found adherents in the adjacent domains of mental representation and scientific representation, typically
under the banner of “isomorphism”; see Cummins (1996), French (2003), and Giere (2004, §4).

2See, for example, Blumson’s (2007) dissertation and a recent article by Abell (2009).
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systems of depiction. I concentrate here on linear perspective and curvilinear perspective. I ar-

gue that linear perspective can be characterized in terms of similarity, but curvilinear perspective

is an intractable counterexample to resemblance theory. For this system, the differences between a

picture and a scene are as much factors in determining the success of pictorial representation as

the similarities. Unlike some previous opponents of resemblance, I do not claim that resemblance

between a picture and its object is irrelevant to accurate depiction, only that differences are relevant

as well.3

The chapter is organized as follows: §1 argues that resemblance theory is properly understood

as a theory of pictorial semantics— a theory of accurate depiction. §2 takes the reader through

four successive versions of the resemblance theory, beginning with the naïve and implausible, and

building up to a sophisticated and compelling treatment of linear perspective. §3 lays out the

argument against all such resemblance theories of depiction, by examining in detail the cases of

curvilinear perspective. I argue that although linear perspective can be accounted for in terms of

resemblance, curvilinear perspective cannot. §4 is a conclusion: here I discuss how the same ex-

amples that undermine resemblance lead naturally to the positive view of depiction as geometrical

transformation.

1 Resemblance theory as pictorial semantics

Advocates of resemblance theory have not always been perfectly explicit about their subject

matter. Resemblance theories are typically presented simply as theories of “depiction”. But as

we have seen, there are two salient notions of depiction which play independent roles in pictorial

communication. The first is that which determines pictorial reference— the thing which a picture is

of or about. The second is that which determines pictorial content— the set of properties the picture

ascribes to its referent. As we observed in the last chapter, the two notions come apart in cases of

misrepresentation. In such cases, the content of a picture represents its referent as being a certain

way, even while its referent does not actually answer to this representation. We also saw how

pictorial content can be characterized in terms of conditions of accurate depiction. In that idiom,

misrepresentation arises when a picture refers to a given entity, but fails to accurately depict the

same. The question at hand is whether resemblance theories aim to provide an analysis of pictorial

reference or accurate depiction? In what follows, I’ll argue that the only plausible interpretation of

such theories is as accounts of accurate depiction; resemblance theories, in other words, are theories

3Goodman (1968, p. 5) notoriously rejects any role for resemblance in the analysis of depiction. Van Fraassen (2008) has
also recognized that accurate depiction typically requires difference, though his reasons differ from those offered here.
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of pictorial semantics.

Given that reference and accuracy can come apart, what determines each? The examples of

misrepresentation discussed in the previous chapter suggest that pictorial reference is determined

by the etiology of the picture, unfettered by the degree of “fit” between the picture and its subject.

What makes the spiky-hair picture a picture of Obama despite its significant misrepresentation,

rather than of someone else more appropriate, or of no one at all, seems to be the referential in-

tentions of the artist that it be of Obama, along with a sufficient causal connection between artist

and subject to warrant such intentions. By contrast, once pictorial reference has been established,

the accuracy of the picture is independent of its history, determined instead by the degree of “fit”

between picture and subject. Thus even if I had produced the spiky-hair picture with the intention

of making an accurate drawing, my intention would have been thwarted. The formal properties of

my drawing, on one hand, and those of Obama, on the other, inflexibly determine that the drawing

is inaccurate.4

The dependence of pictorial reference on the history of a picture’s cre-

ation is illustrated even more starkly when honest creative intentions are

combined with impaired skills or inhospitable drawing conditions. For ex-

ample, in an amusing parlor game, participants first look at a scene, and

then draw it while blindfolded. At right is my own, admittedly pathetic at-

tempt to render Obama using the same technique.5 Anyone familiar with

circumstances of the drawing’s creation would agree that this is a drawing of

Obama– that is, it refers to Obama. At the same time, the picture is a grossly inaccurate represen-

tation of Obama. Since the features of this blindfold-drawing that correspond to Obama’s actual

features are negligible at best, the only plausible explanation for why this picture is a pictorial ref-

erence to Obama, instead of to something else or nothing at all, must go largely via the intentions

of the artist and the context in which the drawing was produced. Meanwhile, once we know that

the image does refer to Obama, we need only a little knowledge of Obama’s actual appearance to

infer the image’s obvious inaccuracy.

Such examples strongly suggest that accurate depiction, and not reference, is what has been

at stake in the debate over resemblance. This is because resemblance is at best a dubious analysis

4On the intention-relativity of pictorial reference, see Cummins (1996, Ch. 2), Cohen and Callender (2006, p. 14), and
Van Fraassen (2008, p. 23). If Goodman’s concept of denotation for pictures is understood as pictorial reference, then he can
be read as making much the same point. (1968, p. 5) It must be admitted that, in the case of photography, it is less apparent
that pictorial reference and accurate depiction can come apart. I suspect that, in fact, they can; but a defense of this claim is
beyond the scope of this footnote. See Costello and Phillips (2009, p. 16) for related discussion.

5This type of example was suggested by Jeff King.
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of pictorial reference, but an interesting and plausible analysis of accurate depiction.6 For consider

again the first pair of drawings of Obama: the short-hair drawing at once accurately depicts Obama,

depictively refers to him, and significantly resembles him. (left) By contrast, the spiky-hair drawing,

despite depictively referring to Obama, is not an accurate depiction, and also resembles its subject

much less than its counterpart. (right)

resemblance

accurate depiction

picture scene

pictorial reference

picture sceneresemblance

accurate depiction

pictorial reference

Thus, on one hand, accurate depiction appears to covary closely with resemblance: it holds where

resemblance holds, and fails where resemblance fails. On the other hand, pictorial reference is

relatively insensitive to resemblance, obtaining with or without significant resemblance.

It might be thought that, nevertheless, there is a minimum lower bound of resemblance neces-

sary for pictorial reference— once the loss of resemblance becomes too great, reference cannot sur-

vive.7 But this view is belied by cases of extreme misrepresentation such as the blindfold-drawing

above. For that is a misrepresentation of Obama, hence refers to Obama, despite resembling him

in almost no relevant respects.8 In any case, all parties will agree that, if resemblance matters to

pictorial representation at all, it matters more to accurate depiction than to pictorial reference. This

much is enough to justify confining my discussion of resemblance theories to those targeted at ac-

curate depiction. If resemblance does play a role in determining reference by pictures, it is not my

concern here.9

For these reasons I will understand resemblance theory as a theory of accurate depiction, hence

as an account of pictorial semantics. In this guise resemblance theory is not a pictorial semantics for

just one one or some systems of depiction. It is uncontroversial that there are some systems which

6The irrelevance of resemblance to pictorial reference, but plausible relevance to accurate depiction is noted by Cohen
and Callender (2006, Section 4) and Van Fraassen (2008). Suarez (2003) argues against resemblance theories of pictorial
reference, though on different grounds than those cited below. It is also possible to read Goodman’s (1968) attack on
resemblance as an attack on resemblance as a theory of pictorial reference. See Walton (1990, pp. 122-4) for detailed exegetical
discussion.

7In the words of Hopkins (1998, p. 30), “pictorial misrepresentation... has its limits.” See also Abell (2009, p. 212).
8The primary evidence cited in defense of a minimal resemblance accounts of pictorial reference is that, out of context,

a viewer looking at the blindfold-picture could not identify it as of Obama, even when familiar with Obama’s actual ap-
pearance. But this evidence is compatible with, for example, a wholly intention-based approach to pictorial reference. For
though the image may be of Obama, a viewer unfamiliar with the context of the image’s creation could not guess as much.
Indeed, what is right about the minimum lower bound view is that, unless there is a minimum amount of resemblance,
viewers will not be able to correctly guess the artist’s referential intentions. Nevertheless, correct guessing on the part of
uninformed viewers is not a necessary criteria for pictorial reference.

9For those authors who do not explicitly distinguish pictorial reference from accuracy there is an exegetical question
about what they mean by “depiction” and “pictorial representation”. My policy is to assume that other authors mean by
“depiction” roughly what I mean by “accurate depiction”, except where there is decisive evidence to the contrary.
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are governed by resemblance. The system by which paint-chips are used to depict the color of paint

from a bucket is a plausible example. Rather, resemblance theory must be understood as a general

claim about the semantic structure of all systems of depiction. Like Tarski’s theory of truth for

language, resemblance theory embodies a view about the universal architecture of pictorial seman-

tics. In the next section, I will show how this claim can be made precise, and plausible. But in the

subsequent section I will argue that this view of pictorial semantics is ultimately untenable.

2 Resemblance theories of accurate depiction

For a picture to accurately depict a scene is for the picture itself to resemble the scene. This is

the intuition that guides all resemblance theories of pictorial semantics. The concept of resemblance

may then be extrapolated in one of two ways. On the first approach, for two objects to resemble one

another is for them to have the same “look”, to be similar in appearance to the relevant audience.

This way of understanding resemblance defines it as similarity with respect to properties which are

viewer-dependent.10 The second approach analyzes resemblance in terms of viewer-independent

properties. Such properties include intrinsic features such as size and shape, and relational prop-

erties like causal connection to an event or spatial relations to a point. In either camp there is space

for a huge variety of approaches, corresponding to the myriad potentially relevant dimensions of

similarity. But for the purposes of this chapter, a resemblance theory of pictorial semantics is a

theory that grounds accurate depiction in any kind of similarity, be it viewer-dependent, viewer-

independent, or some admixture.11

In the remainder of this section, I develop a series of versions of the resemblance theory, at

each stage raising what I take to be the most basic problem with that account, and then revising the

analysis to circumvent this problem. At the end we will be left with a version of the resemblance

theory which is at once flexible and compelling. Since my overall goal is to critique resemblance

10The useful distinction between characterizations of resemblance in terms of viewer-dependent and viewer-
independent properties is due to Newall (2006, p. 588).

11Resemblance theories also divide up according to whether the similarity in question is real or merely experienced. For
example, even if we set upon similarity with respect to shape, theories diverge over whether accurate depiction requires
actual similarity with respect to shape, or just the experience– on the part of a prototypical viewer– of similarity with respect
to shape. One reason for introducing this subjective element has been as a way of overcoming challenges associated with
the pictorial representations of fictional and generic entities. (This is the strategy adopted by Peacocke (1987) and Hopkins
(1998); see Abell (2009, p. 188) for discussion.) But since in this chapter I concentrate exclusively on the depiction of extant
particulars, there is no reason to involve ourselves with these complexities. For our purposes, resemblance is always real
resemblance.

A second reason for this subjective turn is its resonance with the intuitive motivation for resemblance theory: that a
picture resembles an object to an agent from a certain viewpoint. But I take it that even on experienced similarity accounts,
the observer in question must be significantly idealized, in such a way that both her perception and judgement is guaranteed
to be accurate. Ultimately, I develop an enriched notion of imagery which captures this idealized experience by relativizing
resemblance to abstractly defined viewpoints for both scene and picture. This kind of resemblance can then be defined as
real similarity. So, for my purposes, nothing is gained by focusing on experienced similarity as opposed to real similarity.
(Thanks to Matthew Stone for this point.)
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theories in general, at each step I will incorporate only those specifics which are absolutely required

to avoid counterexample. As I will emphasize in the subsequent section, it is not necessary to

elaborate a resemblance theory in much detail in order to appreciate that the whole approach faces

fundamental problems. But to get to the point where we can see this, we will have to be precise

about those details which we are forced to include along the way.

2.1 Fixed resemblance

The cornerstone of contemporary resemblance theories is the philosopher’s concept of similar-

ity, according to which similarity is defined simply as sharing of properties.12 Yet if similarity is

defined this way, depiction cannot be grounded in total similarity, for pictures and the scenes they

depict nearly always differ in some respects. For example the picture of Obama is flat, while Obama

himself is spatially extended. Since total similarity is too demanding, a more reasonable theory

should employ a more restricted notion of similarity.13 Such a notion may be defined relative to a

conscribed set of properties relevant to comparisons of similarity. Let X be such a restricted set of

properties. Then we may say that any objects A and B are SIMILAR WITH RESPECT TO X just in case

A and B have all the same properties, of those included in X. More explicitly:

Restricted Similarity for any A and B, and any set of properties X:

A and B are similar with respect to X if and only if

for any property F in X, A is F if and only if B is F.

The most basic resemblance theory hypothesizes that a common, but suitably restricted notion

of similarity underlies all instances of depiction. For example, this might be similarity with respect

to shape, or similarity with respect to the visual impression elicited among viewers.14 To express

this analysis, the resemblance theorist posits a fixed set of properties F which are those properties

relevant to determinations of depiction in general. The initial resemblance theory of depiction is

then formulated as follows.15

R1 Fixed Resemblance for any picture P and scene S:

P accurately depicts S if and only if P is similar to S with respect to F .

12A consequence of this definition is that everything is similar to itself, since every object has the same properties as
itself. And if A is similar to B, then B is similar to A, for parallel reasons. In these respects the philosopher’s concept may
diverge from the layman’s. Other conceptions of similarity are considered as bases for a theory of depiction by Eco (1979,
§3.5) and Van Fraassen (2008, pp. 17-20).

Here and throughout I shall assume a liberal conception properties, allowing that for every possible distinct predicate,
there is a corresponding distinct property. I will also quantify over properties freely, with the assumption that nominalistic
reconstructions of the various definitions provided below can be articulated if necessary.

13See Neander (1987, p. 214) for the same observation.
14The latter is the view of Peacocke (1987) and Hopkins (1998).
15Such a theory is described by Lopes (1996, Section 1.2).
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We may illustrate this theory diagrammatically. Where a picture P accurately depicts a scene S,

we shall draw: P S. Where P and S are similar with respect to F , we draw: P F

S. According to R1, the drawing of Obama is an accurate depiction of Obama if and only if the

drawing itself is similar to the man with respect to F . This condition is displayed below.

picture scene

iff

F

According to R1, one kind of similarity grounds all instances of accurate depiction, hence the

“fixed” character of the analysis. Of course, this species of similarity must be sufficiently lenient to

allow that a flat, black and white, line drawing may be relevantly similar to an extended, full-color

scene. But it must also be sufficiently stringent that, for example, the inaccurate spiky-hair drawing

of Obama is not similar to its subject in the same way.

R1 might be better classified as a schema for theories of depiction, rather than a theory itself,

because it does not specify the contents ofF . (Still, I will often refer to it as a “theory”.) In principle,

any number of more specific accounts could be based on it. Yet despite this range of potential

articulations, it is possible to show that any analysis based on R1 will fail. They fail because R1

treats depiction as if it were a single, invariable relation. But in fact, the definition of accurate

depiction varies according to system of depiction, and different systems require that we interpret

images in incompatible ways.16

To see this, consider the first image at right.

There is a system of depiction for colored line

drawings, call it C, according to which this is an

accurate pictorial representation of my plant. It is

accurate, evidently, in part because of certain re-

semblances between the specific colors in the pic-

ture itself and the colors in the scene depicted;

very different colors in the picture would have yielded inaccuracy. Meanwhile, according to a

different system of depiction for black and white line drawings, call it D, the second drawing is ac-

16The objection below follows Neander’s (1987, pp. 214-5) reasons for rejecting any resemblance theory defined in terms
of a universal notion of resemblance. But whereas Neander answers the objection by making resemblance flexibly context
dependent, I make it system relative. The same criticism of unified approaches to resemblance is developed by Lopes (1996,
pp. 20-32), albeit with respect to a Peacocke’s (1987) particular version of the resemblance theory.
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curate. D clearly does not require similarity with respect to color, for this image is black and white

while its subject is multi-colored. If D did require similarity with respect to color, then the picture

would only be accurate if the plant and pot were paper-white, on a paper-white desk, against a

white wall— which of course they are not.

Thus we see that (i) some systems of depiction (e.g. C) must require similarity with respect

to color for accuracy; but (ii) other systems of depiction (e.g. D) cannot require similarity with

respect to color for accuracy. The conclusion is that R1 must be wrong, for there is no single class

of properties, fixed across all systems of depiction, such that similarity with respect to that set of

properties is necessary for depiction. Instead, if resemblance theory is to succeed at all, it must

make similarity relative to systems of depiction.

2.2 Variable resemblance

In order to accommodate systems of depiction, let us revise the resemblance theory so that a

picture accurately depicts a scene only relative to a system, and each such system specifies its own

kind of similarity underwriting accurate representation.17 Thus a color line drawing is properly

evaluated relative to a system of depiction for which similarity with respect to color, as well as

shape, are conditions on accuracy; meanwhile a black and white line drawing is properly evaluated

relative to a different system of depiction for which similarity with respect to shape, but not color

is a condition on accuracy. The tension caused by the examples above is dissolved.

To state such a theory compactly and explicitly, let us introduce the following nomenclature.

When a picture P accurately depicts a scene S relative to a system of depiction I, let us say that “P

accurately depictsI S”. Next, let us call the kind of similarity relevant to I, “similarity with respect

to F I” – where F I is a set of properties determined by I. Then the improved, variable view can be

stated as follows:18

R2 Variable Resemblance

for any picture P, scene S, and system of depiction I:

P accurately depictsI S iff P is similar to S with respect to F I.

Again, we may illustrate this proposal diagrammatically. Where a picture P accurately depicts

17How is the relevant system selected for a particular communicative act? Novitz (1975) suggests that the artist’s in-
tentions are determinative. Abell (2009) provides a more nuanced account that accommodates the influence of both artistic
intentions and communicative conventions.

18While none since Goodman (1968) have defended this version of the resemblance theory – the reason why is discussed
below – the move to system relativity was clearly anticipated by Manns (1971) and recapitulated by Novitz (1975). Lopes
(1996, Section 1.5) describes, but does not endorse the variable approach. Variants on the view are defended in detail by
Malinas (1991, pp. 282-91) and Abell (2009).
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a scene S relative to a system I, we shall draw: P I S. Where P and S are similar with respect

to F I, we draw: P
IF S. According to R2, the black and white drawing accurately depicts the

plant-scene relative to the system of line drawing D iff the drawing and the scene are similar with

respect to FD. (left). Whereas accurate depiction in the system of color drawing C is grounded in a

different kind of similarity– similarity with respect to FC. (right)

picture scene

iff

FD

D

picture scene

iff

FC

C

While the schema described by R2 leaves much to be filled in, it provides a flexible guide

for more detailed accounts. Line drawing and color systems each determine their own appropriate

kind of similarity. The same approach could be extended to black and white and color photography,

and plausibly such challenging cases as color-negative or X-ray photography.

Unfortunately, despite its apparent flexibility, R2 is susceptible to a pair of objections put forth

by Nelson Goodman (1968, p. 4). Simply put, Goodman’s complaint is that similarity is a reflexive

and symmetrical relation, but depiction is neither, so depiction cannot be equivalent to any kind of

similarity.19 To begin, consider a line drawing which accurately depicts a scene involving Obama

in system D.20According to R2, similarity with respect to FD grounds depiction for drawings in D.

So the picture and the scene are similar in that respect. (left) Yet similarity is reflexive: for any A, A

is similar to A.21 This holds no matter how FD is defined. Thus the picture of Obama is similar to

itself with respect to FD. Yet this picture does not depict itself. (right) Instead, it depicts Obama. In

this case, depiction and similarity come apart, contrary to the claims of R2.

19It is not entirely clear that Goodman would approve of this application of his argument, because he may have been
attacking resemblance theories of depictive reference rather than of accurate depiction. Walton (1990, Ch. 3 fn. 11) surveys
the textual evidence both for the view that Goodman’s notion of pictorial represenation is most like Walton’s notion of
“representation” (≈ depictive reference), and for the view that it is more akin to “matching” (≈ accurate depiction). Walton
concludes that the textual evidence is contradictory. In a subsequent discussion, Lopes (1996, §3.2) suggests that Goodman
had in mind both relations, and believed they were independent. For the sake of storytelling, if nothing else, I shall continue
to speak as if Goodman’s objection was targeted at some theory of accurate depiction like R2.

20Several of Goodman’s original cases are susceptible to the complaint that resemblance theory only aims to define
depiction for pictures not objects in general. Here I have been careful only to use cases in which depiction, or its failure, is
ascribed to pictures. This has the unfortunate result that the counterexamples provided here are more involved than those
described by Goodman.

21That similarity is reflexive and symmetrical follows from the definition of similarity in terms of the sharing of proper-
ties.
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picture scene

FD

D

picture

FD

D

picture

As it is possible to have similarity without accurate depiction, it follows that similarity alone is

not sufficient for depiction. And since the argument does not assume any particular way of defining

similarity with respect toFD, it follows that no kind of similarity is sufficient for accurate depiction.

The objection cannot be met by prohibiting pictures from depicting pictures; for obviously pictures

can depict other pictures. Alternatively, one might try to block the objection by requiring that the

picture and the scene be distinct things. But this response comes at too high a cost, since plausibly

pictures can depict themselves.22 In any case, a closely related objection based on the symmetry of

similarity cannot be defeated in this way.

Suppose I create a color drawing of Obama, and a black and white line drawing of the color

drawing– a picture of a picture. In the line drawing system D, the black and white drawing is an

accurate depiction of the color drawing. So according to R2, the black and white drawing is similar

to the color drawing with respect to FD. (left) But similarity of any kind is symmetrical: for any

A and B, if A is similar to B, then B is similar to A. Thus the color drawing is similar to the black

and white drawing in with respect to FD. Yet the color drawing does not depict the line drawing.

(right) Instead, it depicts Obama. Once again depiction and similarity come apart, contrary to the

claims of R2.

line drawing color drawing

FD

D

color drawing

FD

D

line drawing

Here again we find a case of similarity without depiction; thus similarity alone is not sufficient for

depiction.23 The resemblance theory must be revised.

22Newall (2003, pp. 386-7) suggests that a picture titled “Picture 12” with the caption “A picture of Picture 12” could
accurately depict itself.

23While this is the same conclusion I advocate in §3, Goodman’s reasons and mine are basically different. Furthermore,
my argument target all resemblance theories, even those which are amended so as to circumvent Goodman’s objection.
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2.3 The reference condition

While Goodman’s objection is valid and illuminating, it is easily deflected, as Goodman himself

passingly observed. (Goodman 1968, p. 6) The proffered counterexamples to resemblance theory

all involve pairs of objects in which one object does not pictorially represent the other at all, let alone

represent it accurately. Thus the line drawing of Obama is not a pictorial representation of itself,

accurate or inaccurate; and the color drawing is not a pictorial representation of the line drawing,

accurate or inaccurate. These are the facts that the objection trades on. One solution, then, is to

augment the resemblance analysis with the requirement that the first object bears the relation of

pictorial reference to the second, however accurately or inaccurately it depicts it.24 This condition

voids each of Goodman’s counterexamples. For the line drawing does not refer to itself; and the

color drawing does not refer to the line drawing.

This is not the only solution available – any condition which captures the communicative asym-

metry between Obama and the picture of Obama will do. For example, several recent defenders

of resemblance pursue a Gricean account of pictorial communication, effectively requiring that, for

successful depiction, not only must there be resemblance, it must also be the case that the artist

intends that the picture be recognized as resembling the object. (Abell 2009, p. 211; Blumson 2009a)

I do not wish to try to adjudicate between the various alternative responses to Goodman’s worry.

All have the same schematic form of imposing a suitably asymmetric “reference condition” on the

picture P and the scene S. I shall abbreviate this relation REF, writing the entire representation con-

dition REF(P, S). We can define this schematic but improved version of the resemblance theory as

follows:

R3 Variable Resemblance with Reference Condition

for any picture P, scene S, and system of depiction I:

P accurately depictsI S iff P is similar to S with respect to F I & REF(P, S).

The reference condition REF(P, S) can then be fleshed out in any way the best theory sees fit, so

long as it is strong enough to answer Goodman’s objection, but weak enough to be compatible with

both accurate and inaccurate pictorial representation. In the resulting version of the resemblance

theory, the reference condition and resemblance condition divide their work. The reference condi-

tion guarantees the minimal requirements for both accurate and inaccurate pictorial representation.

It is the task of the resemblance condition to determine the accuracy of the representation.

24This reply is considered by Lopes (1996, p. 18) and defended, more or less, by Files (1996, pp. 404-5). Blumson (2009a)
argues convincingly that it is not enough to require merely that (the artist intend that) the first object represent the second –
the solution suggested by Goodman (1968, p. 6) – but that (the artist intend that) the representation be distinctively pictorial.
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Thus, according to R3, the drawing of Obama accurately depicts its subject relative to system

D if and only if the picture and the scene are similar with respect to FD, and in addition, the picture

depictively refers to the scene (or the like). Here again we may illustrate the relation of depictive

reference between a picture P and scene S by P S:

picture scene

iff

FD

D

R3 presents us with a plausible and apparently flexible schema for theories of resemblance.

At the same time, it expresses the substantive hypothesis about pictorial semantics that for any

given system of depiction, the accuracy conditions for that system are grounded in similarity. As

we will see in the following section, the demands imposed by such a theory are in fact rather

stringent.

2.4 Linear perspective

At the outset I identified photography and perspectival drawing as prototypical examples of

pictorial representation, systems which any pictorial semantics should be able to account for. In this

section we will consider a particularly common such system: line drawing in linear perspective.

This system deserves special attention because it is ubiquitous, and because it has already been

largely codified through the development of projective geometry.
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Linear perspective is based on linear projection, a geo-

metrical technique for transposing a three-dimensional scene

onto a two-dimensional surface, much the way a flashlight

may be used at night to project the shadow of a spatially ex-

tended object onto a flat wall. Linear perspective projection

is just one of infinitely many such 3D-to-2D mappings, but

it has special human interest, for it was developed, with dif-

ficulty and over several centuries, by artists and scholars at-

tempting to recreate human perceptual experience on paper.

This endeavor proved successful in several notable respects. (Gombrich 1960, pp. 4-30) For exam-

ple, perceptual experience and linear perspective projection have in common that objects which are

more distant from the vantage point of the artist/viewer are represented by smaller regions on the
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picture plane/visual field. A consequence of this effect is that parallel linear objects in the scene–

such as the rails at right– are represented by converging lines on the picture plane. For while every

rail tie is in fact the same width, they are represented by shorter and shorter lines on the picture

plane as they recede from the camera.

Nevertheless, linear perspective is the product of geometry, not biology. So it is a matter of

debate whether linear perspective, or some non-linear alternative, best models the structure of

visual perception. But for our purposes, it doesn’t matter how this debate is settled. This is because,

since the Italian Renaissance, linear perspective projection has become extraordinarily popular in

its own right as a technique for making pictures. Today, drawings made in linear perspective are

the norm, and nearly all mass market camera lenses are designed to mimic its results. All the

accurate drawings exhibited in this chapter thus far have been produced according to systems of

linear perspective.

The challenge for resemblance theorists is to show that the antecedently discovered geometrical

understanding of linear perspective can be reformulated in terms of resemblance. As we will see,

the challenge is acute, but surmountable.

I’ll begin here by presenting an objection to resemblance theory which originates with Descartes.

The objection shows that accuracy in linear perspective often depends on the differences in shape

between the picture and the scene it depicts, so cannot be analyzed straightforwardly in terms of

intrinsic similarity. Instead, a successful resemblance theory must somehow incorporate the key

notion of a projection relative to a viewpoint. This in turn will require a further revision of R3.

The remaining discussion is devoted to motivating and explaining this revision. After rehearsing

the Cartesian argument, I describe in outline the mechanics of linear perspective projection. I go

on to show how this concept can be used to define a precise constraint on any pictorial semantics

for linear perspective. Finally, I’ll show how resemblance theorists can meet this constraint. The

development and success of such a projection-based account is a major triumph for resemblance

theory. Only in the next part of the chapter will we see that even this sophistication cannot save the

theory from demise.

Linear perspective and necessary difference

Consider again the drawing of Obama and the scene it accurately depicts. The challenge faced

by the advocate of a resemblance theory like R3 is to show how accuracy in this case may be under-

stood in terms of similarity between the picture and the scene depicted. Clearly, accuracy depends

in large part on a some kind of “fit” between the shape of regions in the picture and the shape of
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the scene it represents; if the picture is misshapen, it cannot be accurate. Letting L be the system of

linear perspective line drawing to which the picture in question belongs, the most obvious way to

define accuracy in term of similarity is something like the following. For any picture P and scene

S:

(1) P accurately depictsL S iff P is similar to S with respect to shape & REF(P, S)

Proposition (1) aims to analyze accuracy in L in terms of simple similarity of shape. Here

the requirement of similarity with respect to shape need not be understood, obtusely, as implying

that the scene must be square because the picture plane is square. Instead, we should understand

similarity of shape as the sharing of intrinsic properties of shape between the regions defined by

the picture and the regions that make up the scene. For the sake of argument let us assume there is

some systematic way of working out the regions defined by each entity in the intended way.

Nevertheless, it is not clear how (1) can be made to work. The theory fails, first of all, on

the simplest and most general conception of shape. Every region on the picture plane is flat; but

the scene it depicts, and the objects in that scene are spatially extended. Thus the picture and the

scene do not have the same shape in this general sense. But perhaps there is a more restricted

notion of intrinsic shape that will do. For example, perhaps there is a planar slice of the scene

such that the picture and this slice are similar with respect to shape. Yet this is also a non-starter,

for the regions specified by such a plane would perforce include the internal structure of the scene

depicted— for example, the structure of Obama’s skeleton and internal organs. By contrast, the

lines of a drawing describe the external shape of the objects depicted; such shapes are extended in

three-dimensions, across many planes, not one privileged slice. Is there some other way of defining

shape that vindicates (1)?

Adapting an argument from Descartes’ Optics (1637/2001), I will argue in this section that

there is not: on any way of understanding similarity with respect to shape, (1) is wrong. No notion

of similarity in shape, no matter how restricted or nuanced, can ground depiction. But whereas

Descartes took these considerations to undermine resemblance theory generally, I draw a different

moral: accurate depiction in linear perspective must instead be defined in terms of similarity with

respect to relational features of picture and scene. This conclusion will provoke a natural revision

of R3, taken up in the following subsections, in which resemblance is defined in terms of projection

relative to a chosen viewpoint.

Descartes’ original argument is disarmingly compressed (Descartes 1637/2001, p. 90):

T his resemblance [between a picture and its subject] is a very imperfect one, seeing that, on
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a completely flat surface [pictures] represent to us bodies which are of different heights and
distances, and even that following the rules of perspective, circles are often better represented
by ovals than by other circles; and squares by diamonds rather than by other squares; and so
for all other shapes. So that often, in order to be more perfect as images and to represent an
object better, they must not resemble it.

Descartes argues against resemblance theories on the grounds that, in perspective depiction, a more

“perfect” image will often resemble its subject less than an “imperfect” one; hence pictorial perfec-

tion in such a system and resemblance cannot be equivalent. Taking “perfection” to be accuracy, I

now turn to reconstructing Descartes’ argument in greater detail.

Consider a flat white surface traversed by two parallel lines running on forever in both direc-

tions. From a bird’s eye view, they look like this:

Now suppose you and I are each charged to draw these parallel lines in linear perspective.

Further, we have been instructed to draw exactly the same scene, from the same precisely speci-

fied vantage point, with the same position and orientation of the picture plane. We both intend to

comply with these instructions. Taking turns, we each render the scene to the best of our abilities.

Unfortunately, while you are an expert practitioner of linear perspective, I am a novice, and I mis-

judge certain crucial angles during the construction of my image. As a result, our pictures come

out subtly different:

(2) (3)

I have drawn (2), while you have drawn (3). The difference, visible above, is that in (2) the angle

between the two lines is narrower than that of (3). Intuitively, given the strictly specified vantage

point of the drawing, your rendering is perfectly accurate, but mine is not. In the illustration below

I have included, first, my picture beside a bird’s eye view of the scene that it would accurately depict,

and, second, your picture and the a bird’s eye view of the scene it actually accurately depicts.
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(2)

bird’s eye viewperspective

(3)

bird’s eye viewperspective

These examples now form the basis for a general argument that there can be no adequate anal-

ysis of perspective depiction in terms of similarity of intrinsic shape, no matter how nuanced or

restricted the relevant notion of shape. The argument proceeds from three key premises, where S

is the scene consisting of the two parallel lines described above.

Premise 1. Image (3) accurately represents S in linear perspective.

Premise 2. Image (2) inaccurately represents S in linear perspective.

Premise 3. For every respect of intrinsic shape relative to which (3) is

similar to S, (2) is similar to S in the same respect.

Informally, the argument is just this: by Premise 1 and 2, Image (3) and Image (2) have different

accuracy values; but by Premise 3, they are on par with respect to intrinsic similarity to S. Thus an

analysis in terms of intrinsic similarity lacks the resources to explain their divergence in accuracy.

Formally, the argument proceeds as a reductio of (1), the proposition that depiction can be defined

in terms of similarity with respect to shape. Let the shape properties invoked by (1) be arbitrarily

selected. Begin by supposing (1); it follows from Premise 1 than Image (3) is similar to S in the

relevant respects of shape. By Premise 3, it follows that (2) is similar to S in the same respects. By (1)

again, it follows that (2) accurately represents S. But this contradicts Premise 2, that (2) inaccurately

represents S. We conclude that (1) is false.

The third, crucial premise requires explanation, for it follows from a subtle feature of the sce-

nario described above. The illustration below includes first the parallel lines of S itself, shown

again in bird’s eye view, this time along the vertical axis, second the inaccurate narrow image of

the scene, and third the accurate wide image of the scene.
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S (2) (3)

Begin by considering those shape features of (3) held in common with S— for example both

are planes, both planes contain only two straight lines, both sets of lines are non-intersecting, both

sets of lines are tilted at symmetrical angles, and so on. But note that all of these shared features are

also ones that (2), the inaccurate image, holds in common with S. Of course, there is a difference

between (2) and (3), the lines in the former define a more acute angle than those in the latter. But

this does not make (3) more similar to S than (2) in any way. This is because, if anything, the lines of

(2) are more nearly parallel than those of (3), while those in S are perfectly parallel; so (2) shares the

property of minimal degree of parallelism with S, but (3) does not. Recall that the claim defended

here is not that (3) and (2) are have all the same intrinsic shape properties in common with S, but

only that whatever such properties (3) has in common with S, (2) does as well. The difference in

angle between the two does not undermine this claim.

Note that the argument was deliberately built around a case in which the image which is more

similar to the scene is inaccurate, while the image less similar to the scene is accurate. For if the

scenario had been inverted, so that (3) were inaccurate and (2) accurate, it would have been pos-

sible to object that (2) had something in common with the scene that (3) lacked, namely degree

of parallelism. The objector could have claimed that this difference in degree of parallelism ex-

plained the accuracy of (2) and inaccuracy of (3). But as the case actually stands, no such response

is available.

The most obvious way of analyzing accurate depiction in linear perspective as grounded in

similarity has failed. This failure illustrates an important lesson: accuracy under the system of lin-

ear perspective is not determined by merely copying the intrinsic properties of the scene, however

selective the copying. As Descartes appreciated, this feature is a consequence of the fact that pic-

tures in linear perspective are created and interpreted as projections from viewpoints. If similarity

underlies accurate depiction, it must be a species of similarity which is in some way sensitive to

this viewpoint relativity. In the remainder of this section, we will develop a resemblance-based

analysis of linear perspective which incorporates these insights.
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Linear perspective projection

In order to make headway we must secure a more detailed understanding of the mechanics of

depiction in linear perspective. We begin with a short exposition of LINEAR PERSPECTIVE PROJEC-

TION (for short, LINEAR PROJECTION), the geometrical technique for mapping three-dimensional

scenes onto a two-dimensional surfaces, which lies at its heart.

The basic mechanism of linear projection is vividly illustrated by a thought experiment origi-

nally suggested by Leon Battista Alberti and elaborated by Leonardo da Vinci.25 To begin, suppose

you are looking out flat a glass window onto a static scene. But instead of looking through the

window to the scene, as one normally does, concentrate instead on the surface of the glass itself,

where the rays of light reflected from the scene pass through the translucent medium of the glass.

Now take a marker in hand and proceed to draw on the surface of the window pane, according

to the following rule: wherever you see the salient edge of an object through the window, draw a

line on that part of the window pane where that edge is reflected. Continue until you have marked

every salient edge. (The exercise is much easier to conceptualize than to actually perform.) At the

end, you are left with a drawing of the scene on the surface of the glass– and you have effectively

constructed a representation in linear perspective.

Linear projection simply formalizes and abstracts from this thought experiment: the window

pane is replaced by a geometrical plane, rays of light by lines, and the eye by a point. The result

is an algorithm for mapping three-dimensional scenes onto two-dimensional picture planes.26 To

illustrate exactly how such a projection is defined, suppose the scene we wish to represent consists

only of a grey cube in white space. We begin by fixing a VIEWPOINT – literally a geometrical point

in space – at some distance from the cube.27 The viewpoint determines the “perspective” of the

picture. We then introduce PROJECTION LINES which trace straight paths between select points on

the cube and the viewpoint.28

25See Alberti (1991, Book I) and Da Vinci et al. (1970, II.83-5).
26The mathematical details of the following discussion are based on presentations in Sedgwick (1980), Hagen (1986, ch.

2-5), and Willats (1997, ch. 2, 5).
27The viewpoint is often called the “station point”; here I opt for the more intuitively vivid term. Informally, I will

also refer to it as the “vantage point.” Note that the viewpoint is not the same thing as a picture’s “vanishing point”. The
viewpoint is a position in the space of the scene, outside the picture plane, introduced to define a perspective projection.
A vanishing point is any position in the space of the picture plane to which two lines depicting parallel lines in the scene
will converge. There may be as many vanishing points in a picture as there are such pairs of lines. The distinction between
“one-point”, “two-point”, and “three-point” perspective describes vanishing points, not viewpoints.

28The diagrams of this chapter are all drawn according to a highly imprecise system of depiction. The information they
convey is impressionistic, not exact.
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scene

projection lines

viewpoint

Crucially, we need not draw a line from every point on the cube to the viewpoint. Which points

in the scene are relevant will depend on the style of perspective representation under consideration.

For present purposes, let us consider only those points which lie along an edge of the cube; of these,

let us select only those that can be connected to the viewpoint by a straight line, without passing

through a surface of the cube. The resulting projection lines can be thought of as “lines of sight”,

since, like sight, they link the viewpoint to only those surfaces in the scene which are not occluded

by another surface. For visual clarity in the diagrams above and below, I have only indicated those

projection lines which connect the viewpoint to the accessible corners of the cube.

Into the spray of projection lines emanating from the viewpoint, we now introduce a PICTURE

PLANE – analogous to Alberti’s window. The picture plane can be positioned at any angle, but

customarily, as suggested in the illustration below, it lies perpendicular to the line that connects

the center of the scene to the viewpoint. At every point at which a projection line intersects the

picture plane, a point is inscribed on the picture plane. When such points form a continuous line, a

corresponding line is inscribed on the picture plane ( ). If the picture plane is now seen face on,

as at right, it reveals a side view of the cube.29

scene
A

projection lines

A

viewpoint

We can further manipulate the relative positions of the picture plane and viewpoint, with pre-

dictable consequences for the resulting image. The following figure illustrates the results of alter-

ing the location and orientation of the picture plane. Shifting the plane closer to or farther from the

viewpoint (B) has the effect of altering the scale of the resulting image. Shifting the picture plane

vertically (C) causes the projection of the scene to drift from the center. When the picture plane is

29To be clear, talk of inscription here is purely metaphorical; to “inscribe” a point or line on the picture plane is just to
define the geometry of the picture plane in a certain way. Also, in the account given here, edges in the scene are correlated
with lines on the picture plane. But other styles of linear perspective can be produced by varying this choice. For example,
edges themselves can be defined in a number of ways. (DeCarlo et al. 2003) Beyond line drawing there are other possibilities:
in color drawings, colored surfaces in the scene are matched with regions of the same color on the picture plane; in cross-
hatch drawings, shaded surfaces in the scene correspond to regions in the drawing with a certain line density; and so on.
Some of these cases are discussed in the next chapter.
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tilted (D), the resulting image records exactly the same aspects of the cube as (A), but introduces

the characteristic “railroad-track effect” of perspective projection, where edges of the cube which

are in fact parallel are now represented by converging lines.

B

C

D

A B C D

Each of the alterations just described changes the way the scene is represented, but none reveal

additional information about the scene not already reflected in (A). By contrast, when the view-

point is shifted, new features of the scene are revealed. For example, let us move the viewpoint

above and to the side of the cube, while simultaneously sliding the picture plane to intercept the

projection lines. The principle effect of repositioning the viewpoint in this way is that it can now

“see” two additional faces of the cube, represented below on the picture plane (E).

E E

Images (A)-(E) are all produced by the same general method of projection, their differences

owing to different selections of picture plane orientation and viewpoint. In general, there is no

such thing as “the perspective projection” of a scene, independent of such parameters. As the

diagram above suggests, the image inscribed on the picture plane depends on three factors: (i) the

shape of the scene itself; (ii) the position of the viewpoint relative to the scene; and (iii) the position,

orientation, and size of the picture plane relative to the scene and the viewpoint. Thus relative to a

choice of positions for picture plane and viewpoint, the method of perspective projection delivers

a unique projection of any scene. Here it is convenient to collect picture plane and viewpoint

position together into a single PROJECTIVE INDEX. Then we may say that, relative to a projective
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index, perspective projection determines a unique projected image of any scene.

Since the mechanism of picture generation is entirely explicit and determinate, it can be rep-

resented by a mathematical function, what I will call a PROJECTION FUNCTION. Such a function

takes as inputs the spatial properties of the scene and a projective index, and outputs the inscribed

picture plane. The mathematical details of this equation do not concern us here; it will suit our

purposes best to reduce the formula to its most basic, structural elements.30 In any given case, we

may label the scene S and projective index j. Finally, naming the projection function lin(⋅), we shall

say that lin applied to S and j returns an inscribed picture plane P, that is, lin(S, j) = P.

Linear perspective as a system of depiction

Linear perspective projection defines an algorithm for deriving pictures from scenes. The sys-

tem of linear perspective, on the other hand, determines a mapping from pictures to content, and

thus a standard of pictorial accuracy. The two are directly related: to a first approximation, a

picture accurately depicts a scene in the system of linear perspective just in case there is a linear

perspective projection from the scene to the picture. Accuracy in linear perspective requires linear

projection.

To focus this proposal, let us confine our attention to L, the system of monochrome line drawing

in linear perspective which corresponds to the projective technique described above. Now suppose

two artists set out to draw a cube S from the vantage point used to produce image A above, relative

to system L. The first picture, (4), is created in such a way that it conforms with linear perspective

projection. Intuitively, (4) is an accurate pictorial representation of S in the system of linear per-

spective. But the second picture (5), even though it deviates only slightly from the intended rule,

is such that that there is no index, much less the intended one, relative to which (5) could be de-

rived by linear perspective projection. Intuitively (5) is an inaccurate pictorial representation of S

in the system of linear perspective. Thus accuracy in L and linear projection appear to march in

lockstep.

(4) (5)

This suggests that we can state the accuracy conditions for L quite simply in terms of the pro-

30An explicit definition is supplied at the end of the next chapter.
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jective formula lin(S, j) = P:31

(6) P accurately depictsL S iff P = lin(S, j).

The problem with this definition is that it makes the projective index j part of the system itself.

This would mean that all accurate images in linear projection would have to be drawn from the

same viewpoint. This is clearly false: both (8) and (9) below are accurate depictions of S in linear

perspective, but only from different viewpoints. The solution is to allow some variability in j. One

way to achieve this would be to existentially quantify over the projective index on the right hand

side of the equation.

(7) P accurately depictsL S iff there is some j such that P = lin(S, j).

On this analysis, two distinct projections of a scene, such as the two views of the cube below, are

both accurate representations of that scene, since both can be projected from that scene according

to some index.

(8) (9)

I concede that there is a strand in the concept of accurate depiction that conforms to this analysis,

but my interest here is in a more specific notion, with equal currency in everyday usage. In this

alternative, depiction is always relative to a projective index, and artists always intend that their

pictures be interpreted relative to a particular projective index. If the picture is not a perspective

projection of the scene from that index, then it is not accurate – even if it is a correct projection

of the scene from some other index. Thus, if two artists create (8) and (9), but both intend to

represent the scene from the same vantage point, only one succeeds in accurately depicting the

scene. To accommodate this idea, we now analyze depiction as a relation between a picture and

scene relative to a system of depiction and a projective index:

(10) P accurately depictsL S relative to j iff P = lin(S, j).

This formula is nearly right, but somewhat too demanding. Linear perspective is often invoked

in such a way that, even when the entire projective index is explicitly fixed, the size of the resulting

picture is immaterial to its accuracy. Again, suppose two artists intend to draw the cube from the

31To facilitate the statement of this definition, we will also assume that pictures are picture planes– geometrical instead
of physical objects. Alternative views may be accommodated without difficulty.
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vantage point of image A, and produce the following pair of pictures:

(11) (12)

Intuitively, both (11) and (12) are both perfectly accurate representations of S, from the vantage

point specified in A, despite their difference in size. But this flexibility is not allowed by (10),

for lin(S, j) yields a picture plane of fixed size, and any deviation from this leads to a failure of

the biconditional. There are a variety of ways of handling this complication; a simple one is as

follows.32 Let us use the term SHAPE to describe what we normally mean by the intrinsic shape

of an object excluding its size. In this sense, a large and a small equilateral triangle have the same

shape. Then we can revise the definition of L as follows:

(13) P accurately depictsL S relative to j iff the shape of P = the shape of lin(S, j).

One final emendation is required. According (13), any arrangement of shapes could depict a

given cube S, relative to an index, so long as it conformed to the geometric requirements of lin.

These arrangements could include lines left by waves in the sand, floor tiling, or an infinity of

abstract shapes. Yet arguably, these entities should not all count as accurate depictions of S.33 It

is not that they inaccurately represent S, but rather that some neither accurately nor inaccurately

represent it; they are not representations of S at all. The problem appears to be the same as that

dramatized by Goodman’s objection to resemblance theory. The solution, it seems, should also

be the same. What is required is a condition which is sufficient to guarantee depictive reference

without generally determining whether the representation in question is accurate or not. This was

just the mandate of the representation condition REF(P, S) introduced in response to Goodman’s

objection, and I shall rely on it here as well.

LP The System of Linear Perspective for any picture P, scene S, index j:

P accurately depictsL S relative to j iff

the shape of P = the shape of lin(S, j) & REF(P, S).

We can illustrate this analysis with a moderate expansion of the chapter’s diagramatic idiom.

The top half of the diagram below illustrates the condition that a picture P accurately depictsL a

scene S relative to j. The bottom half illustrates the condition that the shape of P = the shape of

32A more general and precise treatment of the same issue is presented in the next chapter.
33This problem was raised by H. Putnam 1981, p. 1. The solution adopted here is compatible with Putnam’s own.



66

lin(S, j). For convenience, I hereafter omit illustration of the reference condition.

iff

P

P SL
j

L

S

the shape of P = the shape of lin(S,j)

Proposition LP is a powerful tool for the theorist of depiction. By describing the exact relation-

ship between a scene and a picture required by linear perspective, its sets a precise gold-standard

for any pictorial semantic theory. The challenge for resemblance theorists is to reformulate LP with

strict equivalence in terms that conform to the resemblance schema R3.

Resemblance theories of linear perspective

Given that linear perspective cannot be defined in terms of intrinsic similarity, a natural thought

is that it should instead by analyzed in terms of similarity under perspective projection. According

to this suggestion, a picture depicts a scene just in case the picture is similar in shape to a given

projection of that scene. That is, for any picture P, scene S, and index j:

(14) P accurately depictsL S relative to j iff P is similar to lin(S, j) with respect to shape

& REF(P, S).

According to this proposal, illustrated below, accurate depiction is determined by first taking a

linear projection of S relative to j (right), and then requiring that the result be perfectly alike P with

respect to shape.34

P

complete similarity 
of shape

S

iff

lin(S,j)

L
j

L

34A proposal of this sort is defended by Hyman (Hyman 2000; Hyman 2006, Ch. 5).
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Proposition (14) has the virtue of being equivalent to LP, already established as providing the cor-

rect conditions for accuracy in L:

LP P accurately depictsL S relative to j iff the shape of P = the shape of lin(S, j)

& REF(P, S).

According to (14), the condition on accurate depiction is that P and lin(S, j) are similar with respect

to shape; that is, they share all the same shape properties. But this equivalent to the claim that the

shape of P = the shape of lin(S, j), which is exactly the condition imposed by LP. Unfortunately,

despite the fact that (14) succeeds as an equivalent reformulation of LP, it is no resemblance theory

of depiction. For although (14) requires similarity between two things, they are not the picture and

the scene – instead, they are the picture and a projection of the scene. This is similarity between

picture and scene in name, but not in substance. For the relation defined here is neither reflexive

nor symmetrical, and it cannot be made to comply with R3. In general, similarity under a transfor-

mation of only one relata– such as that posited by (14)– is not similarity between the relata; for real

similarity, both relata must be transformed simultaneously.

The point here is not merely one of logical typology. Rather, it is this: if (14) counts as a resem-

blance theory of depiction, then almost nothing is meant by the claim that depiction is grounded in

resemblance. Consider, for example, the relation being the biological mother of. This relation, which

is patently not similarity-based in any straightforward sense, can be equivalently reformulated as

a similarity relation under the transformation of one relata. Let the function m map individuals

to their biological mothers, and let X be the set of properties of being M for every every mother

M. Then for any individuals x and y, x is similar to m(y) with respect to X, if and only if x is the

mother of y.35 Thus similarity under the transformation of one relata has little to with genuine

similarity. The condition on depiction specified in (14) cannot count as a resemblance theory on

pain of undermining the interest of the theory.

But if (14) is not a genuine similarity analysis, how else can the resemblance theorist hope to

capture the structure of linear projection encoded in LP? To understand the answer that resem-

blance theorists have themselves elected, let us return to the original intuition that motivated the

resemblance account. We noted that the drawing of Obama and Obama himself seem to look sim-

ilar. That is, if one were able to view the picture and the person simultaneously, and from the

right vantage point, there would emerge a similarity at least in shape between the visual appear-

ance of Obama and the visual appearance of the drawing of Obama. In general, accurate depiction

35At the present time, I do not know what the limitations of this technique are– whether there are relations which cannot
be reformulated in this way.
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seems to covary with how a picture and the scene it depicts each appear in visual experience. This

suggestion is illustrated below.

picture scene

iff

similarity of visual appearance

L

This observation suggests a framework for realizing a genuine resemblance analysis of linear

persepctive, since we are asked to compare common properties of both relata– the visual appear-

ance of the picture and the visual appearance of the scene. But how can we make this intuitive

proposal sufficiently precise? A natural thought is this: following Renaissance scholars, let us treat

linear perspective projection as a model of visual appearance. Then similarity between picture and

scene with respect to visual appearance may be modeled as similarity between picture and scene

with respect to the linear projection of each. The idea, illustrated below, is that a picture P depicts a

scene S just in case the linear projection of S is similar in shape to the linear projection of P.36

iff

linear
projection

from P

linear 
projection
from Ssimilarity of shape

P SL

As the diagram makes clear, this proposal relies on the interesting suggestion that we need not

treat a picture merely as the result of a projective process, we may also treat it as a scene which

is itself projected. The current hypothesis is that, by taking the linear projection of both the scene

and the picture, and requiring that the resulting images be alike with respect to shape, we may be

36Proposals along these lines are defended by Peacocke (1987) and Hopkins (1998).
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able to recapture LP. I shall term this analytic approach the method of SIMULTANEOUS PROJECTION.

Unlike the asymmetrical analysis (14) which defines depiction in terms of similarity under selective

projection of just one relata, the method of simultaneous projection requires similarity under the

projection of both relata.

Note that the method of simultaneous projection requires complete similarity of shape between

the two derived projections. If it did not— if, for example, it only required approximate similarity

of shape— then the conditions for accuracy would be satisfied even if the original picture were

only approximately a projection of the scene. The resulting account would predict that a slightly

skewed image of a cube could accurately depict a cube. But since perfect accuracy makes no such

allowances, the similarity in shape between the simultaneously derived picture planes must be

total. In what follows, by “similarity of shape” I mean complete similarity of shape.

As we move to make simultaneous projection analysis explicit, we must grapple with a detail

that may at first appear to be a technical triviality, but in fact has important repercussions. We

have seen that perspective projection is always defined relative a projective index. In the method

of simultaneous projection, it is natural to use this index to determine projection from the scene

(at right in the diagram), just as we did in the asymmetrical analysis we rejected earlier. But the

current proposal also requires that we take another projection of the picture itself. The question is,

projection relative to what index?

A first answer is that we simply borrow the projective index used for the scene and apply it to

the picture. Then we can define depiction in L as follows:

(15) P accurately depictsL S relative to j iff lin(P, j) is similar to lin(S, j) with respect to

shape & REF(P, S).

The problem with (15) is that it makes no sense. A projective index specifies the spatial relation-

ships between a scene, the plane of projection, and the viewpoint. But in general, the spatially

extended object S and the flat picture P will have completely different spatial characteristics. As a

consequence, there is no general and motivated way of using a single projective index to simultane-

ously determine the relationship between S and a picture plane, and P and another picture plane.

Each requires its own specifications.

The best alternative is to allow that we must specify an independent projective index for the

picture. Then we may simply stipulate that depiction is relative to a pair of projective indices,

where the first is associated with the picture and the second with the scene. Thus we may say, for

any picture P, scene S, and pair of indices i and j:
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(16) P accurately depictsL S relative to i, j iff lin(P, i) is similar to lin(S, j) with respect to

shape & REF(P, S).

According to (16), we determine whether P depicts S in three steps. First we take the perspec-

tive projection of S, lin(S, j). Second we take the perspective projection of P, lin(P, i). Finally we

compare the shapes of two resulting projections. This proposal raises two questions. First, does

it correctly characterize linear perspective? My answer is that it does, but only when certain con-

straints are imposed on the projective index. Second, is it a genuine resemblance theory, or does it

merely have the trappings of resemblance? I will argue that while (16) does not conform with R3,

it does conform with a plausible revision of R3. I discuss each point in turn.

To begin, let us see how (16) may be equivalent to LP. First, if lin(P, i) and lin(S, j) are com-

pletely similar with respect to shape, then the shape of lin(P, i) = the shape of lin(S, j). Thus (16) is

equivalent to:

(17) P accurately depictsL S relative to i, j iff the shape of lin(P, i) = the shape of lin(S, j)

& REF(P, S).

If we can further show that the shape of lin(P, i) = the shape of P, as suggested in the diagram

above, then by simple substitution (16) is equivalent to LP. By now it should be clear that whether

this proposition succeeds depends heavily on the selection of the projective index i. Perspective

projection is not an “innocent” transformation; it systematically transforms scenes in a variety of

ways. Indeed, having fixed the scene’s projective index j, there are infinitely many ways of selecting

the projective index i for the picture that demonstrably invalidate (16).37 For example, suppose that

the projective index specifies that the plane onto which P is projected is titled forwards towards P,

as in the following illustration.

P

P

lin(P,i)
picture plane
specified by i

lin(P,i)

In this case, the result of projecting the scene S relative to j and the picture P relative to i are not

completely similar with respect to shape, as the diagram below clearly demonstrates. Thus accurate

depiction and similarity under simultaneous projection may come apart given a poor choice of the

projective indices.
37Lopes (1996, p. 24) makes this point regarding Peacocke’s (1987) theory of depiction, a view in many ways similar to

(16).
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iff

similarity of shape

P SL

i,j

lin(S,j)lin(P,i)

Yet it turns out that we can salvage (16) if we impose special restrictions on the projective

index. Recall the analogy to comparisons of visual appearance. Obama and the picture of Obama

look similar. What was implicit in this observation was that picture was viewed face on. If we

had tilted the picture obliquely away from our eye, it would no longer have been the case that

the picture and the scene looked similar. This suggests that, so long as we constrain the conditions

under which the picture is viewed to rule out such anomalous angles, then similarity in appearance

may be sustained.

This idea has a precise correlate in projective geometry. Simply put: for any given scene, when-

ever there is a flat surface in the scene, if the picture plane is parallel to that surface, then the shape

of that surface is preserved perfectly under linear perspective projection — with the caveat that the

shape on the picture plane will be smaller in size than the original shape in the scene. This fact is

illustrated below. Suppose our scene S consists of two parallel lines on a flat plane. We then take

two projections of S. In the first (A), S is projected onto a picture plane which is parallel to it. In

the second (B), S is projected onto a picture plane which is perpendicular to it.

S

A
B

The results of each projection are shown below. Image A, produced from the parallel picture plane

is a characteristic “bird’s eye view” of S. Note how the lines in A are parallel, just as they are in

S. Meanwhile, image B, produced from the perpendicular picture plane reveals the “train tracks

effect” of parallel lines converging. A preserves the shape, though not the size of S. B preserves

neither.
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(18)

A

(19)

B

We may draw the following conclusion: so long as we constrain the projective index such that

P is always projected onto a plane parallel to it, then we are guaranteed that P and lin(P, i) will

have the same shape. Let us call this the PARALLEL PLANES CONSTRAINT.38 With the addition of

this constraint, (16) successfully becomes equivalent to LP.

We now turn to the question of whether (16) is a genuinely resemblance-based analysis. One

one hand, (16) is clearly an improvement over its asymmetrical predecessor. For instead of compar-

ing P to S-under-transformation, (16) compares P-under-transformation to S-under-transformation.

By applying the projection function uniformly, it in effect states that P and S are similar with respect

to shape-under-transformation.

On the other hand, the projective index and the scene index are necessarily distinct; whereas

the scene index locates the viewpoint and picture plane at whatever position is specified by the

artist, the projective index must always locate the picture plane parallel to P. Thus, strictly speak-

ing, different operations are performed on each of P and S before the comparison of shape. This

threatens the claim that (16) is a genuine resemblance analysis. A defensive reply is that depiction

may be defined in terms of near similarity– similarity of P and S under only modestly different

transformations. The violation of strict resemblance is slight enough to overlook. This is an option,

but I think the resemblance theorist has a more elegant solution at her disposal.

Thus far we have assumed that depiction is a relation between a picture and a scene. But

suppose instead we let depiction be a relation between a picture-index pair, and a scene-index

pair. We may call the first a CENTERED PICTURE, and the second a CENTERED SCENE.39 For a

picture P and index i, the centered picture is written Pi, and the corresponding centered scene is

Sj. Thinking of the relata of depiction in this way is a departure from our original position, but it

is not implausible. On one hand, LP taught us that depiction obtains only relative to a selection of

index. It is cogent to think that this index is part of our notion of a scene. What a picture depicts is

38Some authors, such as Hopkins (1998), define similarity by comparing the visual angles subtended by each object rel-
ative to the viewpoint, rather than their projected shape on a picture plane. But angle subtended exhibits greater variability
than projected shape. I am not currently sure how to state the parallel planes constraint within this framework. In any
case, talk of subtended angles, rather projected shape, renders the operative notion of similarity in shape considerably less
intuitive and direct.

39The terminology of centering is borrowed from Lewis (1979); the idea of a centered scene as a way of characterizing
image content is described by Blumson (2009b).
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not merely a piece of reality – but a piece of reality from a certain point of view. Centered scenes

answer to this description. On the other hand, it cannot be denied that artists create images with

intended viewing conditions in mind. The illusory powers of a picture are most active when they

are viewed from a particular distance and angle.40 It is plausible that these conditions are built

into our conception of a picture. What depicts a scene is not merely a picture, but a picture from

a certain view. Centered pictures in turn answer to this description. Thus the move to centering is

harmonious with our intuitive conception of depiction.

In order to complete the reformulation of (16) in terms of similarity between a centered picture

and centered scene, we must finally introduce the corresponding notion of PROJECTION SHAPE:

projection shape is just the shape of a centered object under a projection. For example, for Sj to

have the property of lin-squareness is just for the lin projection of Sj to be square.41 Using these

definitions we may now equivalently reformulate (16) as follows:

(20) Pi accurately depictsL Sj iff Pi is similar to Sj with respect to lin-shape & REF(P, S).

And illustrated thus:

iff

similarity of shape

LP Sji

lin(P,i) lin(S,j)

Proposition (20) clearly qualifies as a resemblance theory of L. But since R3 presupposes that

depiction is a relation between a picture and scene simpliciter, R3 must be revised to accommodate

(16), as follows. (Note that F I, the set of relevant properties determined by a system I, should no

longer contain first-order properties of pictures and scenes, but only properties under projection –

but this requires no formal amendment.)

40This fact is vividly displayed by cases of anamorphosis, in which an apparently distorted image appears “normal”
when viewed from an unusually oblique angle. The present framework elegantly handles anamorphosis by allowing the
intended viewpoint for the picture to be realized in the projective index of the centered picture.

41More formally, where H is a shape predicate, and Xy is a variable ranging over centered pictures or scenes, the corre-
sponding lin-shape property may be stated using lambda abstraction: λ Xy.H(lin(X, y)).
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R4 Variable Centered Resemblance with Reference Condition

for any system of depiction I, centered picture Pi, centered scene Sj:

Pi accurately depictsI Sj iff Pi is similar to Sj with respect to F I & REF(P, S).

The ability of the schema expressed by R4 to accommodate the projective definition of linear per-

spective constitutes a significant victory for resemblance theory. For especially common system

of depiction, resemblance theory is able to provide a precise and descriptively adequate pictorial

semantics. Yet even as it succeeds in the case of linear perspective, I shall argue in the following

section that resemblance theory cannot be sustained for all systems of depiction in general.

3 The case against resemblance

Resemblance theory embodies a very general position about the structure of pictorial seman-

tics: it holds, not just of one particular system of depiction, but of any system of depiction, that

accuracy in that system is grounded in resemblance. In this section I will contest this claim. I argue

instead that there are commonly used systems of depiction whose conditions on accuracy cannot

be characterized in terms of similarity; these systems require for accuracy that a picture differs from

its subject according to specific rules of geometric transformation. Thus, my complaint with resem-

blance theory is not that there are no systems of depiction which can be grounded in resemblance,

but rather, that there are some systems of depiction which cannot.42 My ultimate diagnosis is that

resemblance theory has mischaracterized the basic architecture of pictorial semantics. Rather than

resemblance, accurate depiction in general is grounded in the more inclusive phenomena of geo-

metrical transformation.

I begin in §3.1 by first describing the system of curvilinear perspective and its associated

method of projection; I go on to show that the techniques which were used to analyze linear per-

spective in terms of similarity in the last section cannot be applied to the curvilinear case. Then in

§3.2 I present the core contribution of this chapter: a general argument to the effect that no kind of

similarity can ground accurate depiction in curvilinear perspective. Thus curvilinear perspective is

an irredeemable counterexample to resemblance theory. I conclude by describing the general class

of such counterexamples, of which there are many, and addressing potential objections.

42The problems I shall raise have to do exclusively with resemblance based accounts of pictorial shape; I adopt this nar-
row focus because some resemblance theorists have held the surprising view that shape is the only dimension of similarity
required for depiction. (Peacocke 1987; Hopkins 1998) I intend to meet these authors on there own terms. Challenges for
resemblance-based accounts of pictorial color, along with suggested responses, are discussed at length by Lopes (1999),
Hyman (2000), Dilworth (2005, pp. 68-9), and Newall (2006).
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3.1 Curvilinear persective

Pictures in linear perspective are constructed by projecting a scene from a point onto a flat

picture plane. By contrast, pictures in curvilinear perspective are constructed by first projecting the

scene from a point onto a curved surface, and then flattening this surface by a standard technique to

yield the final image.43 Such pictures can be drawn by hand, but are characteristically the products

of “fish-eye” cameras. These cameras produce photographs that contain noticeably warped lines,

especially around the periphery of the image.

w
w

w
.thkphoto.com

Curvilinear and linear perspective have much in common. For example, in both systems, as

objects increase in distance from the viewpoint, they are represented by regions of diminishing size

on the picture plane. As a consequence, in both systems, parallel lines in the scene traveling away

from the viewpoint appear to converge on the picture plane. The major difference between linear

and curvilinear perspective lies in how they represent straight lines. For while linear perspective

does transform shape, it also preserves line straightness. If a line is straight in the scene, it will

be straight in any linear perspective projection of that scene. This is not the case for curvilinear

perspective: straight lines in the scene become curved under curvilinear perspective projection

(with the exception of those that pass through the center point of the picture space).

Recent studies of visual perception strongly suggest that curvilinear perspective more closely

approximates natural perspective than linear perspective, though the correct explanation for this

phenomena remains a matter of dispute.44 This fact should permanently quell any instinct to de-

43See Loverde and Weisstein (2009).
44Among the defenders of the view that natural perspective is curvilinear are none other than the 19th century perceptual

scientist and physicist Hermann von Helmoltz (1867). The view has been defended by philosophers and artists (Hansen
1973, Arnheim 1974, and Hansen and Ward 1977) and more recently in empirical work by vision scientists (Rogers and
Rogers 2009).
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nounce curvilinear perspective as “invalid” and linear perspective “valid”. They are simply two

systems of perspective, each with its own interest and utility.

Curvilinear perspective projection

Curvilinear perspective projection proceeds in two distinct steps. The first step is exactly like

linear projection, save that the surface which the scene is projected onto is curved; here I will

assume that this surface is always a hemisphere. Since this surface is not the final picture plane, I

shall call it the PROJECTION SURFACE.

curved projection
surface

view point

scene

The second steps translates the lines inscribed on the curved projection surface onto the picture

plane. This process is entirely determinate, with no variable parameters. The curved projection

surface is oriented so that it directly faces the picture plane, as indicated below. Then, for every

point inscribed on the projection surface, a line is extended perpendicularly from the picture plane

to meet it. Where these lines intersect the picture plane, a correlate point is inscribed there. At the

end of the process, the image on the projection surface has been transposed in flattened form onto

the picture plane. The resulting image is shown at right.

curved projection
surface picture plane picture plane

Just as we were able to describe the method of linear perspective projection with a simplified

formula, we may do the same for curvilinear perspective. Let curv be the projection function for

curvilinear perspective, and k a projective index. Then we may say that the projection function curv

applied to a scene S and index k yields a picture P: curv(S, k) = P.

Curvilinear perspective as a system of depiction

Once again, we find that the recipe for curvilinear perspective projection is directly related to

the system of curvilinear perspective. To a first approximation, a picture accurately depicts a scene

in the system of curvilinear perspective just in case the picture can be derived from the scene by
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curvilinear perspective projection. We review the evidence for this claim below.

Here we will be concerned with U, the system of monochrome line drawing in curvilinear

perspective which corresponds to the projective technique described above. As before, suppose

that two artists set out to draw a cube S from the vantage point used to produce the image above,

relative to system U. The first picture, (21), is created in such a way that it conforms with curvilinear

perspective projection. And (21) is also an accurate pictorial representation of S in the system of

curvilinear perspective. But the second picture (22), due to the incompetence of the artists, deviates

slightly from the intended rule in such way that there is no projective index relative to which (22)

could be derived by curvilinear perspective projection. In parallel, (22) is an inaccurate pictorial

representation of S in the system of linear perspective.

(21) (22)

Clearly accuracy in curvilinear perspective and curvilinear projection covary closely. These

examples suggest we can even state the accuracy conditions for U quite simply in terms of the

projective formula curv(S, k) = P. From here, we proceed through the same chain of reasoning that

led us to adopt LP as the definition of linear perspective. I will not recapitulate every step; the same

considerations of index relativity, insensitivity of accuracy judgements to size, and the need for a

representation condition all apply. Together, these observations lead to the following definition of

the system of curvilinear perspective U:

CP The System of Curvilinear Perspective for any picture P, scene S, index k:

P accurately depictsU S relative to k iff

the shape of P = the shape of curv(S, k) & REF(P, S).

Like its linear counterpart, CP provides a correct and exact definition of accuracy under curvilinear

perspective.

Resemblance theories of curvilinear perspective?

The crucial question for the resemblance theorist is how CP may be equivalently reformulated

in terms of similarity. I’ll now show that the techniques used to successfully analyze linear per-

spective in this way cannot be applied to curvilinear perspective.

In the last section, we saw how resemblance theorists used the method of simultaneous pro-
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jection to successfully define accurate depiction linear perspective. This proposal was inspired by

the intuition that originally motivated the resemblance theory: namely, that a picture and the scene

it depicts are similar in appearance. Yet this same intuitive idea does not naturally apply to the

case of curvilinear perspective. Accurate curvilinear depictions do not resemble their subjects in

appearance, at least not to the same degree exemplified by linear perspective. The “trippy” oddity

of the curvilinear photograph above makes this point obvious. This fact may be illustrated diagra-

matically with respect to a curvilinear projection of a cube:

LU

similarity of visual appearance

In the case of linear perspective, we went on to use the method of simultaneous projection to an-

alyze depiction in linear perspective in terms of similarity with respect to shape-under-perspective-

projection. But again, this tack fails for curvilinear perspective, as I will now explain. Below I repro-

duce the simultaneous projection analysis of linear perspective, and present its natural counterpart

formula for U.

(20) Pi accurately depictsL Sj iff Pi is similar to Sj with respect to lin-shape & REF(P, S).

(23) Pi accurately depictsU Sj iff Pi is similar to Sj with respect to curv-shape & REF(P, S).

We saw before that (20) is not valid if the projective index is left unconstrained. Certain varia-

tions in the index such as the tilting of the picture plane had the effect of undermining resemblance

between the projection of S and the projection of P. The same concern applies in the curvilinear

case.45 However, it was also shown that when the parallel planes constraint was imposed on on

the projective index, (20) was thereby validated. Is there a complementary restriction that can be

imposed on the projective index of (23) that will render it valid? Unfortunately, for the resemblance

theorist, there is not.

The crucial feature of (20) which enabled its eventual success was the existence of pictorial

indices relative to which a linear perspective projection of a picture P would preserve P’s shape. But

45Lopes (1996, p. 24) notes this problem for Peacock’s (1987) theory, a cousin of (20).
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this is precisely what we do not find in the curvilinear case. In the system of curvilinear perspective,

straight lines are always projected onto curved lines, and curved lines are projected onto more curved

lines — this is so no matter how the plane of projection is oriented in relation to the scene and the

viewpoint. Lines in P will always become more curved under projection. As a consequence there

is no projective index such that a curvilinear projection of a picture P preserves P’s shape.

To see this point more vividly, consider again the grey cube, S, and an accurate depiction of

it in curvilinear perspective, P. The diagram below illustrates the simultaneous projections of S

and P – where the projective indices are configured in the most natural way. As the figure makes

clear, curv(P, i) and curv(S, j) do not have the same shape. For while the lines in curv(S, j) are

curved projections from the straight edges of the cube, the lines in curv(P, i) are the even more

curved projections from the already curved lines in P. Thus, in this case, similarity of shape under

simultaneous projection does not covary with accurate depiction. So (23) is incorrect.

similarity of shape

UP Sji

curv(S,j)curv(P,i)

Importantly, the fact that curv(S, i) and curv(P, j) are somewhat similar in shape is not enough

to save the proposed analysis. As we saw above, accuracy in curvilinear perspective is highly

sensitive to subtle variations in pictorial shape. A slightly mis-drawn curve can render an otherwise

acceptable drawing inaccurate. To capture this shape-sensitivity, the conditions for depiction in U

must be stringent; flexible conditions of similarity would allow more variation than U permits. If

depiction in U can be grounded in similarity, it must be complete similarity of shape. But this is

precisely what fails in the case above.

Lopes (p.c.) has suggested an ingenious attempt to rescue the resemblance theorist, by replac-

ing the parallel planes constraint with a more sophisticated requirement. Perspective depiction is

always defined relative to at least one parameter, the viewpoint. Why not think that, in the case

of curvilinear perspective, the degree of curvature of the projection surface is another, contextually

fixed parameter? We have so far considered only projection surfaces with a fixed, positive degree
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of curvature. Lopes suggests that the parallel planes constraint be augmented with an additional

requirement that the degree of curvature for the projection of P always be 0— that is, perfectly

flat. This solution, while technically viable, comes at too high a philosophical cost. It effectively

requires the comparison of similarity occurs between a linear projection of the picture and a curvi-

linear projection of the scene. The result is an instance of resemblance theory in name only; in fact, it

requires asymmetrical transformations of its relata. While it is true that the original parallel planes

constraint also imposes asymmetrical requirements on the picture and scene, it is at least possible

for both objects to satisfy the constraint at the same time (if the scene was also a plane). This is

not the case of the 0-curvature constraint. It is impossible to apply a 0-curvature projection to both

relata while computing real curvilinear projection— instead, the result is always an instance of lin-

ear projection. The proposed solution is necessarily assymetrical, thus a radical departure from the

guiding principle of the resemblance analysis.

In conclusion, the strategy of analyzing depiction in terms of similarity of simultaneously pro-

jected shape, which worked so well for linear perspective, cannot succeed for curvilinear perspec-

tive. The key feature of curvilinear perspective which undermines the analysis is that there is no

way of preserving the shape properties of a flat surface under curvilinear projection. In U, a picture

of a picture can never have the same shape as the original. Depiction in U is inevitably transfor-

mative. But perhaps there is some other strategy for analyzing curvilinear perspective in terms

of similarity? There is not. In the next section, I generalize the negative results of the preceding

discussion: there is no acceptable resemblance analysis which provides sufficient conditions for

accurate depiction in curvilinear perspective.

3.2 Against resemblance theories of curvilinear perspective

In this section, I will argue that the system of curvilinear perspective gives rise to counterex-

amples for any resemblance theory of depiction. These are examples in which there is resemblance

of the required sort and depictive reference, but not accurate depiction. Hence they show that the

conditions described by the best resemblance theory are insufficient for depiction.

Argument Outline

Let us begin by reviewing the definition of R4:

R4 Variable Centered Resemblance with Reference Condition

for any system of depiction I, centered picture Pi, centered scene Sj:

Pi accurately depictsI Sj iff Pi is similar to Sj with respect to F I & REF(P, S).
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I will argue that within U, the system of curvilinear perspective, there is a centered picture Pi and

scene Sj such that:

Premise 1. It is not the case that Pi accurately depictsU Sj.

Premise 2. The reference condition holds: REF(P, S).

Premise 3. Pi is similar to Sj with respect to FU.

Thus there is a case in which there is no accurate depiction (Premise 1), yet the conditions suffi-

cient for accurate depiction according to R4 are met (Premises 2 and 3). So R4 is wrong. Diagra-

matically, the argument proceeds as follows (suppressing projective indices for readability). The

accuracy conditions for U, according to R4, are shown at left. The counterexample is described at

right.

According to R4, for any P, S: Yet there is a P, S such that:

P U S 1. P U S
iff

P S 2. P S
P

UF S 3. P
UF S

The premises shown at right are the central premises of my argument. Together they contradict R4.

I’ll argue for each in turn.

The Case

The argument revolves around an unusual but certainly possible episode of drawing. Suppose

that, having mastered the art of hand drawing in curvilinear perspective, I have now taken up

the task of learning to hand draw in curvilinear perspective while blindfolded. For practice, I select

various objects from my studio, gaze at them intently for several minutes, then don the blindfold,

and begin drawing. Unfortunately, my skill at this task is still nascent, and most of my attempts are

highly inaccurate. On one occasion I select as my subject an old drawing S. I look carefully at S, and

select a vantage point such that the imagined projection surface is centered directly above S. (Let j

be the projective index so specified for the scene, and i the projective index implicitly specified for

the new picture, such that i = j.) Then I apply the blindfold, and begin to draw. When I am done,

I discover to my surprise that the drawing I have produced, P, is qualitatively indistinguishable

from S:
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P S

Of course, it is highly unlikely that, after donning a blindfold, I could attempt to draw S and

produce P. A scribble seems a more probable result of this process than a regular shape, much less

one qualitatively indistinguishable from the subject. But if a scribble might result, then so might

the regular shape. The unlikeliness of the scenario described is no mark against its possibility.

With that worry at bay, I will now argue that the centered picture Pi does not accurately depictU

the centered scene Sj (Premise 1); that P depictively refers to S (Premise 2); and further, that Pi

resembles Sj in any respect that the resemblance theorist might reasonably invoke (Premise 3). I

conclude that the resemblance theory of depiction is false.

Premise 1

Our first task is to show that Pi is not an accurate depiction of Sj in the system of curvilinear

perspective. To begin, recall that curvilinear projection works by first projecting the scene onto a

curved projection surface, and then transposing this curved surface onto the flat picture plane. Let

us consider the result of this process when the scene in question is the flat surface S. First S is

projected onto a curved projection surface:

S

This surface is then transposed onto the picture plane. The result, call it R, is the product of apply-

ing the curvilinear projection function curv to S relative to viewpoint j. That is, R = curv(S, j).

R

R

Since R is a the result of taking the curvilinear projection of S relative to a certain projective index,

by CP it follows that R accurately depictsU S relative to the same index:
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UR Si j

But now recall how sensitive CP is to picture shape. Minor changes in curvature to the lines in

R will result in inaccuracy. So long as we keep the projective index fixed, then R (or a scale copy)

is the only picture that accurately depictsU S. But R and P have very different shapes, as evidenced

below:

R P

Since the projective index that was used to generate R is the same one used in the evaluation of P,

it follows immediately that Pi does not accurately depictU Sj. The point is further dramatized if we

consider the flat surface that Pi would accurately depict in curvilinear perspective:

UPi

Quite obviously, the flat surface that P would accurately depict differs dramatically from S; so P

does not accurately depict S.

In general, a signature feature of curvilinear projection is that it maps straight lines in the scene

onto curved lines in the picture plane. Thus, no matter the projective index, the straight lines in S

will be mapped to curved lines in the picture plane. Yet the lines in P are uncurved. Thus it cannot

be a curvilinear projection of S for any index. It follows that Pi does not accurately depictU Sj.

UP Si j

Premise 2

Next, we wish to establish that the reference condition is satisfied with respect to P and S–

that P bears the relation of pictorial reference to S. In our earlier discussion of pictorial reference,
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we used the scribbled drawing of Obama made while blindfolded as a paradigmatic example of

pictorial reference without accurate depiction. If we were correct in identifying that picture as a

case of pictorial reference to Obama, then surely P also bears the relation of pictorial reference to

S. Whether or not P accurately depicts S, it was drawn with the honest intention of representing

S, and there is no reason to think that it failed. P is a picture of S, that is, a pictorial reference to S,

thus the reference conditions is satisfied with respect to P and S.

P S

Premise 3

Finally, we will now show that Pi and Sj are similar with respect to FU. By stipulation, of

course, P and S are qualitatively indiscernible. So it is very natural to conclude that they are similar

with respect to FU. My task here is to substantiate this suggestion without controversial assump-

tions about how a resemblance theorist might wish to specify FU.

I make just one, quite plausible assumption about the resemblance condition of R4: it is sen-

sitive only to the qualitative features of the scene and picture, rather than any singular properties

of each.46 That is, the resemblance condition is sensitive only to features of the scene and picture

such as size, shape, color, and so on, but not to features like being one of Granny’s favorite objects,

or containing a particular particle, or being a particular picture. While this is a substantive con-

straint on R4, it is entirely apiece with the spirit of resemblance theory, and I know of no actual

resemblance theory that violates it.47

The intuitive idea that the resemblance condition is only sensitive to qualitative properties of

objects may be expressed more formally using a substitution principle. Objects that are qualita-

tively indistinguishable may be freely substituted into the resemblance condition with no change

in truth value. This suggestion in turn may be formulated explicitly as a principle of “qualitative

indifference”:

For any system of depiction I, and any three objects A, B, and C:

46I am not sure how to define qualitative as opposed to singular properties, but I am confident there is a real distinction
to be drawn. Qualitative properties are properties such as size and shape; singular properties are are properties such as
being that desk. See Adams (1979) for discussion.

47Many resemblance theories make explicit commitments which seem to entail this assumption. For example, Files (1996,
p. 403) stipulates that “the resemblance theory of pictorial content adverts, obviously enough, to a sharing of appearance
properties.” If “appearance” properties and qualitative properties are not the same, my argument is undiminished by
substituting the former for the latter.
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if A and B are qualitatively indistinguishable,

and A and C are similar with respect to F I,

then B and C are similar with respect to F I.

To bring this principle to bear on our argument, it remains to extend it to centered pictures and

scenes. There are a variety of ways to achieve this; here I offer one straightforward approach. Once

again, the intuitive idea to capture is that the resemblance condition is only sensitive to qualitative

properties of its relata. But we should allow that differences in projective index could result in dif-

ferences that are relevant to the resemblance condition. On the other hand, so long as the projective

indices of two relata are identical, then the resemblance condition should be determined entirely

by the qualitative properties of the uncentered relata.

For example, given two centered objects Ai and Bj, if i = j, then whether or not Ai is similar in

the relevant respects Bj should depend entirely on the qualitative properties of A and B respectively.

In terms of substitution, if A and B are qualitatively indistinguishable and i = j then we should be

able to freely substitute Ai for Bj into the resemblance condition with no change in truth value.

Explicitly then:

Qualitative Indifference

For any system of depiction I, and any three centered objects Ai, Bj, and Ck:

if i = j and A and B are qualitatively indistinguishable

and Ai and Ck are similar with respect to FU,

then Bj and Ck are similar with respect to FU.

We will now wield this principle to achieve our conclusion. To begin, recall that similarity with

respect to FU is a similarity relation, therefore reflexive. In the case of the centered scene Sj, it

follows that:

(24) Sj is similar to Sj with respect to FU

By stipulation, P is qualitatively indistinguishable from S. Also by stipulation, the projective in-

dices for P and S are identical, because P was drawn from S using the same vantage point that P

itself was intended to be viewed from. This does not reflect a sophisticated choice of vantage point;

it is just the very natural projective index which situates the viewpoint perpendicular to the center

of the flat surface S, and perpendicular to the center of the picture P.48 Thus, so far as Qualita-

48I can see no reason why such a stipulation could not be sustained. Except this: on some formal implementations of U, it
might be impossible that a single projective index could be applied to distinct locations in space. But the identity condition
in Qualitative Indifference could be easily and minimally modified to accommodate this requirement. For example it could
be replaced by requirement of relational similarity between indices.
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tive Indifference is concerned Pi and Sj are indiscernible, so intersubstitutable. Then by Qualitative

Indifference and (24), Premise 3 follows:

(25) Pi is similar to Sj with respect to FU

P Si jFU

Thus, so long as a theories of resemblance conform with Qualitative Indifference, then we may de-

rive our final premise with no further assumptions about the particular account of similarity at

work.

Conclusion

By combining Premises 2 and 3, we see that Pi and Sj satisfy both the resemblance and reference

conditions of R4. By R4, it follows that Pi accurately depictsU Sj. But careful consideration of the

system of curvilinear perspective justified Premise 1: that in fact, Pi does not accurately depictU

Sj.

U

P Si j

FU

Thus, contrary to R4, no degree of similarity is sufficient to guarantee accurate depiction in curvi-

linear perspective. As I have shown, this result holds for any credible definition of similarity. So

R4 is false.49

What does this argument reveal about R4’s shortcomings? In the case above, the essential

49Two comments. First: The astute reader will notice a disconnect between the failure of the method of simultaneous
projection for curvilinear perspective, illustrated above, and the argument just given. On one hand, the method of simul-
taneous projection failed because of cases of depiction without similarity. Thus the kind of similarity that it employed to
ground depiction turned out not to be necessary for depiction. On the other hand, the argument just given shows that no
degree of similarity is sufficient for depiction. Clearly these two results are not the same; what is there relationship? In fact,
another general argument closely related to the present one can be given which corresponds to the failure of the simultane-
ous projection strategy above. According to this argument, if the resemblance condition in R4 is sufficiently substantive to
explain cases of curvilinear inaccuracy, then it cannot be necessary for accuracy. Whereas the argument above relies on the
reflexivity of similarity, this one relies on the symmetry of similarity. Unfortunately, I have already taxed the endurance of
the reader, so this argument must be presented at another time.

Second: The present argument relies on the reflexivity of similarity, as did Goodman’s famous objection. What is the
difference between the two? Goodman was either oblivious to any notion of depiction beyond depictive reference, or
conflated reference with accurate depiction. (See footnote 19.) As a consequence, his arguments target cases which test the
conditions for depictive reference alone. By contrast, I have taken care to focus cases where depictive reference is already
guaranteed, and which instead test the conditions for accuracy alone. So whereas Goodman’s argument revealed that a
necessary condition for depiction is the irreflexive relation of reference, mine shows that accurate depiction requires some
further irreflexive relation of fit.
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problem for R4 was that P and S were too similar. As the discussion of Premise 1 made clear, P could

only accurately depict scenes that differed from it in certain ways; and S could only be accurately

depicted by pictures that differed in opposite ways. Yet P and S were qualitatively indiscernible;

this meant that they satisfied the similarity requirement, but were insufficiently different to be

related by curvilinear projection.

In general, accurate depiction in the system of curvilinear perspective depends on a certain

degree of difference; the point is not merely that curvilinear perspective tolerates a certain amount

of difference, but rather that it requires it. Yet it is the nature of a similarity condition that it puts

no lower bound on similarity; it makes no allowance for such conditions of non-similarity. So even

as accuracy in curvilinear perspective requires difference, the similarity condition in R4 requires

none. These requirements are obviously not equivalent. The case above was simply constructed to

reveal how they may come apart.

3.3 Against resemblance

Resemblance theory is an account of the universal architecture of pictorial semantics, for it

holds that any systems of depiction is grounded in resemblance. We have seen that this claim

fails; even at its most sophisticated, resemblance theory cannot model the accuracy conditions of

inherently differential systems of depiction like curvilinear perspective. Thus resemblance theory

does not describe the general structure of pictorial semantics.

But some may feel this conclusion is too hasty. Might it still be the case that resemblance theory

is approximately correct? Perhaps resemblance theory correctly describes some “core” class of sys-

tems of depiction, while deviations from resemblance correspond to peripheral cases of pictorial

representation.50 According to this view, linear perspective, which can be analyzed in terms of re-

semblance, is an example of a core system of depiction, while curvilinear perspective is not.

Yet it is difficult to see what could justify this ordering of the systems of depiction. The fact

that linear perspective is more common than curvilinear perspective seems to have more to do

with practical considerations— the ease of creating such images with a pencil and straightedge,

for example— than any fundamental features of pictorial representation. Further, recent empiri-

cal research appears to confirm the long-held view that the structure of human visual perception

corresponds more nearly to curvilinear than linear projection. (Rogers and Rogers 2009) (The re-

search shows that straight lines, viewed at the periphery of vision, appear curved.) If this is so,

50This is the position of Kulvicki (2006a). While Kulvicki does not explicitly allow that his is a resemblance theory, his
only substantive requirement on depiction is that it preserve projective invariants, hence that pictures and scenes be similar
with respect to projective invariants.
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then curvilinear perspective should arguably be classified as a more central case of pictorial repre-

sentation than linear perspective. That there is room for empirical debate on this question indicates

the poverty of this line of defense as a philosophical justification for resemblance theory.

But the problem with the objection is even deeper. I have chosen curvilinear perspective as

my counterexample to resemblance theory because the system is easily defined, relatively com-

mon, and involves vivid failures of resemblance in shape. But it is by no means the only system

which resists analysis in terms of resemblance. Using the rubric of the argument presented here,

the reader may go on to identify other counterexamples for herself: cases in which an accurate pic-

ture of a scene necessarily differs from its subject.51 Examples include the conventions of scale that

accompany the average road map, as well as systems of contour drawing, and the variety of map

projections. In the domain of color and tone representation, many systems are recalcitrant to sim-

ilarity analysis: overall shifts in lightness, darkness, and contrasts; false color and negative color;

and the amplification of hue— as in technicolor— or suppression of it— as in the brown-tinted

color of 19th century European painting. Of the last, Gombrich (1960, pp. 46-47) aptly wrote “it is

a transposition, not a copy.” In general, a relation which requires difference in some dimension

cannot be analyzed in terms of one which allows an arbitrarily high degree of similarity. Yet such a

similarity condition lies at the heart of any resemblance theory. Thus resemblance theory inevitably

fails.

So while the skeptic alleges that I have identified an odd outlier that does not submit to anal-

ysis in terms of resemblance, nearly the opposite is true: only a small and delicately delineated set

of systems of depiction can be analyzed in terms of resemblance. Minor changes to the rules gov-

erning these systems— for example, in terms of the linearity of perspective— render these systems

incompatible with a resemblance-based analysis.

A different kind of objection holds that I have misconstrued the ambitions of resemblance the-

ory. On this view, resemblance theory never seriously aspired (or never should have aspired) to

identify both necessary and sufficient conditions on depiction. Its only aim was to identify neces-

sary conditions: for any picture, scene, and system of depiction, if the picture accurately depicts

the scene in that system, then the picture is similar to the scene in certain respects. The problem

with this claim is that similarity is cheap. Necessarily, any two objects are similar to each other

in infinitely many respects. (Goodman 1972) For example, the number 3 and I are similar with

respect to not being the number 2, the number 4, and so on... For her claim to be substantive, the

51Dilworth (2005, pp. 68-9), for one, makes precisely this objection against resemblance treatments of pictorial color,
albeit rather briefly.
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resemblance theorist must specify the respects in question. But it turns out to be difficult, perhaps

prohibitively difficult, to specify exactly what these similarities are. We have already seen that sim-

ilarity with respect to projection shape cannot be a necessary condition on accurate depiction. Nor

even similarity with respect to such benign features as betweenness relations: the projective coun-

terparts of points that lie along a line in the picture plane do not necessarily lie along a line in the

scene. It is probably impossible to prove that there are no substantive necessary resemblance con-

ditions on accurate depiction, because it is probably impossible to rigorously define a “substantive

condition”. But I have yet to encounter a proposed similarity condition that adequately reflects the

impressive variety of systems of depiction.

A distinct and final objection holds that my definition of resemblance, in terms of the philo-

sophical concept of similarity, is too narrow. There are other, more elastic notions of resemblance,

such as the mathematical concept of isomorphism, which may be impervious to the arguments intro-

duced above. But this objection misunderstands the breadth and flexibility of my chosen concept of

similarity, defined only as sharing of properties. The properties in question need not be first-order,

qualitative properties; they may be properties cast at any level of abstraction. Indeed, isomorphism

is just a species of abstract similarity— similarity with respect to relational structure. A proof of

this claim is included in the appendix. The argument presented in this chapter undermines any

resemblance-based account of depiction, wether it is rooted in first-order similarity or sophisticated

isomorphism. It is therefore high time we looked beyond resemblance.

4 Beyond resemblance

I have argued that resemblance theory fails as a general account of pictorial semantics because

there are actual systems of depiction which require of accurate images that they differ from their

subjects in systematic ways. At the same time, it is clear that certain dimensions of resemblance do

matter for accurate depiction in many systems. In normal color photography, for example, similar-

ity of apparent surface color is a necessary condition on accuracy. In linear perspective, similarity

with respect to linearity is a necessary condition. These considerations suggest that, in general,

accurate depiction cannot be characterized wholly in terms of difference, or wholly in terms of

similarity, but should instead be defined by the broader notion of transformation that incorporates

both.

If accurate depiction is grounded not in resemblance but systematic transformation, those re-

semblances which have seemed so powerful to so many theorists are not ruled out. Instead they are
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understood as transformational invariants, properties of a scene which survive projection onto the

picture plane. In this way, resemblance theory and a transformational view of depiction, though

distinct, are closely aligned. Both hold that depiction is grounded in a certain kind of “fit” be-

tween the structural features of a picture and its subject; both reject the view that depiction is

based on arbitrary associations between pictures and scenes, or on the spontaneous perceptual

judgements of individual viewers. The transformational account is a reorientation and extension

of resemblance theory, affording greater flexibility, and freedom from a limiting interpretation of

resemblance theory’s motivating intuitions. It recognizes that there is more to accurate depiction

than invariants.

Once we appreciate how systems of depiction are precisely defined by geometrical algorithms

such as those of perspective projection, the view that depiction is grounded in projective trans-

formation becomes the natural one. Rather than trying to forcibly recast these transformational

rules in terms of resemblance, we should instead take them at face value. The correct definition

of linear perspective is simply the one given by linear perspective projection. The many systems

of projection correspond to the many systems of depiction. And different systems of depiction are

grounded in different kinds of geometrical projection. (Of course, these are projections of more than

merely spatial geometry; many define complex manipulations of color.) These conclusions should

not be surprising. Despite the apparent efficiency of resemblance-based semantics, interpretive

rules based on geometrical projection make more natural use of innate computational machinery

involved in visual, perspectival perception.

The next chapter develops this projective theory of pictorial semantics in detail.
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Appendix: Isomorphism as similarity

Here I show that isomorphism is a species of similarity. I will focus on isomorphism under-

stood as a relationship between relational structures; a RELATIONAL STRUCTURE is a pair ⟨S, R⟩

where S is a set and R is a binary relation on S. Relational structures are useful in the present con-

text, because both pictures and scenes can themselves be modeled as relational structures. Either

kind of object can be understood as a pair ⟨S, R⟩ where S is a set of points with color or mass fea-

tures, and R is a metric distance relation on those points. (A point with a feature can be modeled

as the pair of a point and a feature.)

I now define isomorphism. For any relational structures A = ⟨S, R⟩ and B = ⟨Sœ, Rœ⟩: A IS

ISOMORPHIC WITH B iff there is a bijective function f ∶ S → Sœ such that, for any m, n ∈ S: R(m, n) iff

Rœ( f (m), f (n)).

If A and B are isomorphic, they are similar with respect to certain abstract structural features.

These abstract features are difficult to characterize directly. Instead, we will do so indirectly. Let

Q be a set of all possible relational structures defined over some continuous class of points (for

example, the real numbers). Let P be the set of properties being isomorphic with q for every q ∈ Q.

More formally: P = {F ∣ §q ∈ Q ∶ F = lx.x is isomorphic with q}. We can think of the properties in P

as abstract structural properties. Now we can show that similarity with respect to P is equivalent

to isomorphism.

First, from similarity to isomorphism. Suppose A is similar to B with respect to P. I assume that

any relational structure must have at least one property in P. Then there is at least one property F

in P such that A is F and B is F. Then there is at least one element q in Q such that A is isomorphic

with q and B is isomorphic with q. But isomorphism is symmetrical, so q is isomorphic to B.

Isomorphism is also transitive, so A is isomorphic with B.

Second, from isomorphism to similarity. We proceed by reductio. Suppose A is isomorphic

with B, but A and B do not share all the same properties in P. Then there is some property G in

P such that A is G but B is not G. Then there is some structure q in Q such that A is isomorphic

with q, but B is not isomorphic with q. But isomorphism is symmetric and transitive; since, by

assumption, A isomorphic with B, and A is isomorphic with q, it follows that B is isomorphic with

q. Contradiction.

Thus isomorphism is equivalent to similarity with respect to P. Isomorphism is therefore a

species of similarity.
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Chapter 3

Depiction as Projection

In the last chapter, I argued that the natural idea that pictorial representation is grounded in re-

semblance is, in conception, flawed. Any adequate account of depiction must be based instead in

some more general notion of transformation. In this chapter, I’ll apply that lesson. Inspired by

the analysis of images in projective geometry and computational perceptual science, the theory I’ll

defend here holds that, in any system, depiction is defined in terms of geometrical projection: a pic-

ture accurately depicts a scene just in case the picture can be derived from the scene by a method

of projecting three-dimensional scenes onto two-dimensional surfaces. The resulting Geometrical

Projection Theory is a largely novel account of depiction, boasting an exactness and accuracy that

make it a promising foundation for any future pictorial semantics.1

The proposal is developed in four parts. §1 presents the theory in its most general form: §1.1

briefly introduces the key concept of geometrical projection; §1.2 then articulates the core commit-

ments of the Geometrical Projection Theory; §1.3 distinguishes the theory from the main alternative

accounts of depiction. In §2 the theory is elaborated in greater detail for the particular system of

perspective line drawing. §3 concludes the informal discussion. Finally, in §4 I develop the analysis

of perspective line drawing as a precise formal semantics.

1 The Geometrical Projection Theory

According to Geometrical Projection Theory, accurate depiction is directly defined in terms

of projection. I begin, then, with a brief review of the mechanisms and variety of geometrical

1There are, to my knowledge, only a very few explicit proposals for semantic accounts of pictorial representation. They
include Malinas (1991) and Mackworth and Reiter (1989). Setting aside its affiliation with semantics, the novelty of the
Geometrical Projection Theory depends on the comparison class. In projective geometry and perceptual science something
like this account is simply assumed (see, e.g. Hagen 1986, Willats 1997, Durand 2002). But such inquiry tends to be inexplicit
about the notion of depiction under analysis. On the other hand, in philosophical discussion, where the subject is more
clearly set out, the theory has little precedent. The most similar account is that of Hyman (2006, ch. 6). The present theory
generalizes, precisifies, and diverges from Hyman’s proposal in a number of ways; see footnote 14 for discussion. A related
account, which nevertheless differs fundamentally from the present theory is that of Kulvicki (2006a, ch. 3-4); see footnotes
8 and 35.
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projections.

1.1 Geometrical Projection

GEOMETRICAL PROJECTION is a general method for transposing three-dimensional scenes onto

two-dimensional picture planes, much the way a flashlight may be used at night to project the

shadow of an extended object onto a flat wall. The method works by first defining an array of PRO-

JECTION LINES which connect a scene to a picture plane according to a rule of projection; these lines

are then used to map spatially distributed features of the scene to surface features of the picture. A

simple example is illustrated below, with the resulting picture plane revealed at right.2 (Note that

the projection lines indicated here are only a representative sample of the full array).

scene

picture plane

projection lines

picture planePERSPECTIVE PROJECTION

In this particular method of projection, known as PERSPECTIVE PROJECTION, all the projection lines

are defined by a single point of convergence (the above). This point can be shifted, with the effect

that new features of the scene are revealed in the projected image. The result is a different projection

from the one just illustrated, but the method of projection— perspective— remains the same.

PERSPECTIVE PROJECTION

Perspective projection was first fully codified by artists and scholars of the Italian Renaissance, but

it is only one of a great many other methods of projection. The diagram below illustrates a version

of PARALLEL PROJECTION, in which the projection lines, rather than converging on a single point,

are all perpendicular to a single plane, hence parallel to one another. The resulting image is subtly

but visibly distinct from the perspective projection.3

2The diagrams of this chapter are all drawn according to a highly imprecise system of depiction. The information they
convey is impressionistic, not exact.

3The projection illustrated below is an oblique projection, a species of parallel projection.
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PARALLEL PROJECTION

These examples illustrate how methods of projection may vary with respect to the configura-

tion of their projection lines, hence distinct structural relationships between the scene and the pro-

jected image. But systems can also be distinguished according to which particular features of the

scene are mapped to the picture plane, independent of the structure of the mapping. For example,

in all of the drawings considered above, visible edges in the scene were mapped to lines on the pic-

ture plane. But there are many other possibilities: in “wireframe” projections, all edges in the scene

are mapped to lines in the picture. In methods of color projection, colors in the scene are mapped

to suitably related colors in the picture. These and other variations— by no means exhaustive— are

illustrated below, in combination with the distinctive structure of perspective projection.4

visible edges⇒ lines all edges⇒ lines surfaces⇒ red visible edges⇒ lines colors⇒ colors

visible faces⇒ pink

In §2 I will explain the method of projection for perspective line drawings in considerably

more detail, and in the Appendix the definition is explicitly formalized. For the present, I hope

the preceding illustrations are sufficient to provide the reader with a working understanding of the

general notion of geometrical projection. With this in hand, we are now in a position to examine

this chapter’s specific proposal for a semantics of pictures.

1.2 The Geometrical Projection Theory

What is the relation that characteristically holds between a picture and a scene it accurately

depicts? As we’ll see, philosophers of art have considered a variety of answers to this question.

The orthodox view is that the relation is one of similarity with respect to a carefully constrained

4This explanation of geometrical projection, along with the notation for feature mappings, is drawn from Willats (1997).
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set of spatial and chromatic properties. A radical reaction is that the relation is utterly arbitrary,

determined by a library of picture-scene associations. A very different approach holds that the

relation is defined in terms of the perceptual effects of the picture on a suitable viewer. The theory

on offer here diverges markedly from all of these, holding instead that the relationship in question

is simply that of geometrical projection.

Officially, the Geometrical Projection Theory has two components: the first describes the re-

lationship between systems of depiction and methods of geometrical projection, while the second

defines accurate depiction relative to a system in terms of projection.

(1) Geometrical Projection Theory

(a) Every system of depiction determines a unique method of projection.

(b) A picture accurately depicts a scene in a given system if and only if the picture can

be derived from the scene by the projective method characteristic of that system.

I have in mind a formally precise rendering of this hypothesis, at least for the particular system

of perspective line drawing, which I will develop in the next section. But for now, my aim is

to elucidate the philosophical underpinnings of the theory while contrasting it with the principal

alternatives.

The first claim of the Geometrical Projection Theory is that every system of depiction deter-

mines a unique method of projection. Recall that systems of depiction are interpretive conventions

which establish standards of accuracy for pictures. Methods of projection, on the other hand, are

geometrical techniques for mapping three-dimensional scenes onto two-dimensional surfaces. Ac-

cording to the Geometrical Projection Theory the two are directly correlated. For example, the

system of perspective line drawing uniquely specifies the method of projection for perspective line

drawings. Each system encodes a distinct and stable projective rule of interpretation, its use in

communication established by convention.5 To understand a system of depiction, on this view, is

to be able to apply its characteristic method of projection. Such an ability need not be based on ex-

plicit knowledge. Just as language users rely on tacit knowledge of abstract grammar rules to guide

interpretation, successful pictorial communication requires only a tacit knowledge of methods of

geometrical projection.6

5Jakobson (1921/1987, p. 21) again: “The methods of projecting a three-dimensional space onto a flat surface are estab-
lished by convention; the use of color, the abstracting, the simplification, of the object depicted, and the choice of repro-
ducible features are all established by convention.”

6See Hagen (1986, pp. 84-5). Admittedly, in the typical case, competent expression in a system of depiction requires formal
training, while comprehension does not. This is rather different from the case of language, where mastery of expression and
comprehension are regularly achieved without formal training. But all this shows is that implicit knowledge of the rules of
pictorial interpretation does not automatically entail an ability to draw. And it should also be emphasized that even formal
artistic training never takes the form of fully precise and explicit drawing rules, but rather of loose heuristics the likes of
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The second component of the Geometrical Projection Theory specifies the role of geometrical

projection in any system’s definition of accuracy: a picture bears the relation of accurate depiction

to a scene if and only if it is possible to derive the picture from the scene by geometrical projection.

For an artist to intend to draw accurately is for the artist to intend (perhaps unconsciously) to

perfectly execute a geometrical projection of some intended scene. Note that this is only an in

principle projective mapping from pictures to scenes, not a physical process by which pictures are

generated, nor a computational process by which projections are calculated. Like all descriptive

semantic theories, the Geometrical Projection Theory articulates the conventional standards which

govern the creation and interpretation of pictures, but imposes no constraints on how creation and

interpretation are actually carried out.

The best positive evidence for the Geometrical Projection Theory is simple induction over cases.

Suppose two artists set out to draw a cube S from a given vantage point, relative to the system of

perspective line drawing. The first picture, (2), is created in such a way that it conforms with per-

spective projection. And it seems that (2) is an accurate pictorial representation of S in the system of

perspective line drawing. But the second picture (3), even though it deviates only slightly from (2),

is such that there is no way that (3) could be derived from a cube by perspective projection. (The

validity of this claim will become apparent in the next section.) Furthermore, (3) is an inaccurate

pictorial representation of S in the system of perspective line drawing. Thus accuracy in a per-

spective system and perspective projection appear to covary precisely, exactly as the Geometrical

Projection Theory requires. This thought experiment may be carried out indefinitely on any given

scene built from simple geometrical solids, and multiplied indefinitely with appropriate modifica-

tions for any other system of depiction.7

(2) (3)

A pictorial semantics ultimately determines a mapping from pictures to content. At the outset

I defined the content of a picture as the set of scenes it accurately depicts. According to the Geo-

metrical Projection Theory, a picture accurately depicts a scene just in case it can be derived from

which require a prior understanding of the relevant standards of accuracy.
7In particular, the evaluation can be carried out for the system of perspective line drawing with any given scene built

from polyhedra— geometrical solids with only flat faces. The restriction is necessary because, in the crude method of
edge-to-line mapping defined above, curved surfaces fail to register on the picture plane. Later we will consider more
sophisticated projective methods which correct this problem. In the next section, we will also see that the claim of precise
covariation requires some qualification.
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the scene by geometrical projection. Putting these definitions together yields the following analysis

of pictorial content:8

(4) Geometrical Projection Theory for Content

The content of a picture in a given system is the set of scenes from which it may be derived by

the projective method characteristic of that system.

Thus, to grasp what a picture depicts is to understand the space of possible scenes from which it

could be projected. Those features held in common among the scenes in a picture’s content corre-

spond to how it represents the world as being; those features which vary among the scenes in a pic-

ture’s content correspond to features of the worlds about which the picture is non-commital.

So, for example, the content of the drawing at right below will include all and only scenes

containing shapes with visible faces which I will loosely describe as “square-like”, because these

are the scenes the picture could have been projected from. This “square-like” property is the feature

which the picture represents the world as instantiating. But the picture does not represent the world

as containing a cube or even a shape with a square face necessarily. For there are infinitely many

irregular shapes, like those illustrated below, whose irregularities are not preserved in the given

perspective projection.

Furthermore, because geometrical projection in general is insensitive to the identity and typo-

logical properties of the scene projected, such features are also left out of a picture’s content. For

example, the image of Obama presented earlier could equally well be a projection of Obama, a

wax-sculpture of Obama, or suitably arranged lines in the sand. Thus its content would not differ-

8The analysis of content provided here is superficially like that proposed by Kulvicki (2006a, p.57-9). But Kulvicki and
I reach these conclusions by very different routes. Kulvicki holds that content of a picture is (or is defined by) its projective
invariants (but offers no explicit account of depiction)— a view I argue against specifically in Greenberg (2010a). I hold
instead that content of a picture is its accuracy conditions, and define accurate depiction in terms of projection. These
conceptual differences result in subtly but crucially divergent precisifications of the formulation here. See footnote 35 for
discussion. In addition, Kulvicki holds that perspective projection is, in some sense, the prototypical method of projection,
while I believe nothing of the sort.
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entiate between these alternatives.9 As a consequence, a purely projective semantics like the one

offered here is only suitable as a theory of spatial and chromatic explicit content. It is not intended

to capture the rich, typological extended content sometimes ascribed to pictures (e.g. that this is a

picture of Obama, or of a man).10

It might seem incredible that a semantics whose output is content as abstract and unspecific

as this could play any role in an explanation of how novel pictures are quickly and reliably con-

verted into useful information. But it is important to remember that pictures, like any kind of

sign, are always interpreted against a backdrop of world knowledge. The same content which is

quite unspecific taken as a whole, also contains quite specific conditional information that is elicited

under the right presuppositions. A semantics based on geometrical projection provides the sys-

tematic and conventional rules which are necessary to extract bare-bones representations of the

world from marked, flat surfaces. In concert with appropriate background knowledge about the

world— as opposed to further knowledge of interpretive conventions— these admittedly skeletal

representations can yield impressively precise and useful information.

For example, we saw how the content of the square drawing above is indeterminate between

an infinite space of radically different objects. But suppose that we are independently informed

that this picture accurately depicts a scene containing exactly one Platonic solid. (Roughly, a three-

dimensional solid is Platonic if all of its faces are regular polygons of the same kind.) On its own,

this knowledge restricts the space of possible scenes to �ve, corresponding to the five Platonic solids,

but not fewer. Yet the square picture could only be a projection of one Platonic solid, the cube. Thus

the content of the picture and background knowledge together entail an exact description of the

scene in question— information which is more specific than either source on its own.11 In the same

way, the Obama drawing considered in isolation could equally well depict lines in the sand, wax-

sculptures, and infinitely many other oddities. But once we are informed that it accurately depicts a

human, and given our background knowledge about humans, we are thereby provided with a mass

of quite precise information about the physical characteristics of the person in question. When such

supplementary correspondences between picture and world are specifically intended by the artist,

9Similarly, I understand “ambiguous” images like the Necker cube or duck-rabbit illustration to be merely semantically
indefinite between, in the latter case, duck-scenes, rabbit-scenes, and infinitely many others. For psychological reasons
anterior to the semantics, the duck and rabbit interpretations are especially vivid to human viewers.

10See Chapter 1 for further discussion of this distinction, and footnote 30 for its sources in the literature.
11Of course, the background knowledge in question need not put direct constraints on the content of an image in order

to allow a viewer to extract rich content from it. Consider an agent who has antecedent knowledge that a picture accurately
depicts some actual scene— because of her knowledge of the reliability of the artist— but who is otherwise wholly ignorant
about what it depicts. Given background knowledge about what the world contains, she may come, after viewing the picture,
to conclude that it accurately depicts a cube, because there is nothing else in the world it could accurately depict. Richer
interactions, which make way for more measured confidence in the reliability of the artist and the furniture of the world,
are the characteristic domain of Bayesian models of interpretation.
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it may be appropriate to construct a model of rich pictorial content, where these mappings are built

into the content itself. But this development lies beyond the scope of the present inquiry.12

1.3 Alternative theories

The Geometrical Projection Theory takes its inspiration from the study of projective geome-

try and recent work in computational perceptual science.13 But the view differs sharply from the

theories of depiction which have dominated contemporary Philosophy of Art, each of which has

evolved from a correspondingly different point of origin.14 In what follows I distinguish the Ge-

ometrical Projection Theory from the three main proposals discussed in this literature. Here two

provisos are necessary. First, I do not assume that these theories are mutually exclusive; they rep-

resent distinct areas of emphasis in a spectrum of actual and possible proposals. Second, I will

treat all the theories under discussion as theories of accurate depiction, though in the literature they

are typically stated simply as theories of depiction. I hope the translation does not substantively

distort the original intent. Given the constraints of space, I am not able to pursue detailed ob-

jections and replies; my aim is merely to distinguish The Geometrical Projection Theory from the

alternatives.

(i) The Symbol Theory of depiction articulated by Nelson Goodman (1968, p. 5) begins with

the recognition that communication with pictures, as with language, is governed by conventional

systems of interpretation. Impressed by this analogy, Goodman went on to hold that depiction is

based on a library of arbitrary correspondences between pictures and their content, much like the

lexicons of language.15 Yet this view is implausible on its face: the relationship between, say, a

drawing of Obama and the scene it accurately depicts is much more intimate and direct than the

admittedly arbitrary connection between, say, the word “tree” and the property of being a tree (or

12See Greenberg (2010b) for further discussion.
13An active research program in computational perceptual science over the last forty years has attempted to articulate

ever more complete algorithms for the interpretation of line drawings. (Early contributions include Huffman (1971), Clowes
(1971), and Waltz (1975). Two excellent overviews of this field are Willats (1997, ch. 5) and Durand (2002).) The principles
evolved in this literature are not general standards of correct interpretation. Rather, they are implementable algorithms,
based on reasonable heuristic assumptions, for determining reasonable interpretations. (e.g. Huffman 1971, pp. 297-9)
Pictorial semantics occupies a distinct but compatible level of theoretical description: it articulates an abstract mapping from
pictures to information which computational theories of interpretation aim to make practically computable. (See Feldman
(1999) for a discussion of the analogous distinction for vision.) The present work owes a special debt to the discussion of
depiction in Willats (1997).

14Among proposals by philosophers, the account of Hyman (2006, ch. 6) most nearly prefigures the Geometrical Pro-
jection Theory. Hyman’s account is based on the recognition that projection is a necessary condition for depiction. But
the similarities with the present view largely end there. For example, Hyman does not construe his account as a theory of
accuracy; his proposal is highly informal, with little detail about the role of the projective index, or the connection between
the geometry of projection and the definition of pictorial line and color (see §3 for my own position on these matters); and
he seems to assume that perspective projection in particular is central to the definition of depiction, which I reject.

15Goodman would have objected to the label “symbol theory”, but not the characterization in terms of arbitrary mean-
ings. Lopes (1996, p. 65) notes that Goodman also resisted the view that systems of depiction are conventional in any
obvious sense. Bach (1970) is among the few adherents of Goodman’s view.
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a given tree). Furthermore, as Wollheim (1987, p. 77) has pointed out, the theory fails to explain

how we are able to interpret novel images with such facility, for there is no straightforward way of

extrapolating from a list of arbitrary associations to new cases.

According to the Geometrical Projection Theory, by contrast, accurate depiction is based on

general rules of projective transformation, not a long list of arbitrary meaning associations. On this

view, the interpretation of novel images is straightforwardly explained as the application of a fa-

miliar general rule to unfamiliar particular cases. To determine whether a novel image accurately

depicts a given scene, one must simply consider whether the former can be derived from the latter

by geometrical projection. Meanwhile, the apparently intimate relationship between an accurate

depiction and its subject is explained by the relative simplicity of such projection rules and the

speed with which they are applied— aided no doubt by the computationally powerful visual sys-

tem. Of course, the projection analysis is compatible with the fact that systems of depiction, like

languages, define conventional rules of interpretation. But the theory rejects the conflation of these

rules with the arbitrary lexicons of language. Instead, each system is a convention for interpreting

pictures according to a one of the many possible methods of projection.

(ii) Resemblance Theory is the oldest and most orthodox view of depiction.16 Its starting place is

the powerful intuition that a picture, say of Obama, and the scene it accurately depicts are substan-

tively similar with respect to certain color and shape properties. This observation has inspired the

following view, roughly stated: a picture accurately depicts a scene just in case the picture and the

scene are similar in the appropriate respects (and, in many accounts, the artist intends the picture

to represent that scene).17 Resemblance theorists have widely acknowledged the importance of

geometrical projection in specifying the right relationship between pictures and scenes, but have

attempted, sometimes with considerable effort, to fold this fact into a genuinely similarity-based

analysis.18

The Resemblance Theory has been subjected to a host of objections, each met with ever more

sophisticated revisions.19 Yet as I have argued in Chapter 2, the very structure of the theory renders

it empirically inadequate. The basic point can be made with respect to the system of CURVILINEAR

16In the 20th and 21st centuries, resemblance theorists have included Peirce (1906), Wittgenstein (1921/1997), Morris
(1946), Gibson (1960; 1971), Manns (1971), Novitz (1975), Fodor (1975), Neander (1987), Peacocke (1987), Malinas (1991),
Files (1996), Hopkins (1998), Newall (2003), Kulvicki (2006a), Blumson (2007; 2009a), and Abell (2009). Resemblance has also
found adherents in the adjacent domains of mental representation and scientific representation, typically under the banner
of “isomorphism”; see Cummins (1996), French (2003), and Giere (2004, §4).

17Resemblance theorists vary considerably in how they revise or extend this rather crude formulation.
18For example: Peacocke 1987; Hopkins 1998, pp. 71-81; and Kulvicki 2006a, ch. 3-4.
19The most fundamental objections have been those posed by Descartes (1637/2001, p. 90), Goodman (1968, pp. 3-10,

34-9), and Lopes (1996, ch. 1). Recent, sophisticated forms of Resemblance Theory have been proposed by Kulvicki (2006a),
Blumson (2007) and Abell (2009).
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PERSPECTIVE, as in the “fish eye” photograph below. Due to its characteristic curvature, the image

clearly does not resemble its subject in the intuitive and direct way exhibited by standard perspec-

tive depictions. Resemblance theorists have tried to preempt this concern by claiming that such

curvature is semantically inert, inconsequential to the content of the image, which they insist on

analyzing in terms of similarity. Yet I showed that just the opposite is the case. The accuracy of a

picture in curvilinear perspective depends on the precise degree of deviation between the straight-

ness of edges in the scene and curvature of lines in the picture. In this and many other systems,

accuracy depends as much on a picture’s systematic differences with the scene depicted as on its

similarities. It follows that these systems cannot be analyzed in terms of similarity alone. Instead,

a more general notion of transformation is required; I propose geometrical projection.

w
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Both the Geometrical Projection Theory

and the Resemblance Theory reject the view

that accurate depiction is based on arbitrary

associations between pictures and scenes; and

both hold that it is grounded instead in a spa-

tial and chromatic relation of “fit” between a

picture and its subject. But they differ funda-

mentally in their construal of this relation. For-

mally, the Resemblance Theory holds that the relation underlying accurate depiction is a symmet-

rical relation of similarity, but for the Geometrical Projection Theory it is an asymmetrical relation

of transformation. These relations are conceptualized very differently in each case: whereas the

Resemblance Theory claims that accurate depiction arises from the commonalities between the pic-

ture and the scene, the Geometrical Projection Theory holds that depiction arises from the fact that

the picture may be derived from the scene by projection. This shift in conception buys the latter a

theoretical simplicity and empirical validity that resemblance accounts fall short of.

At the same time, those apparent similarities between pictures and scenes which have seemed

so powerful to so many theorists are not ruled out. For any kind of transformation, there are

INVARIANTS— properties which are always held in common between the inputs and outputs of

the transformation.20 The transformational invariants for common methods of projection are well

known. For example, under perspective projection, straight lines in a scene are always mapped

onto straight lines in the picture; so straightness of line is an invariant. (The inverse does not

hold generally.) A consequence is that “betweenness” relations are also invariant. By contrast,

20See Hagen (1986, ch. 2).
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parallelism is not an invariant; in perspective, parallel lines are usually mapped onto converging

lines. By understanding the alleged resemblances between pictures and scenes as transformational

invariants, the intuition of similarity may be substantiated even while the proposal to ground de-

piction in resemblance is rejected.

(iii) Finally, Perceptual Theories follow from the striking analogies between the process of picture

interpretation and that of normal visual perception; depiction is then analyzed in terms of the kinds

of perceptual effects a picture has on suitable viewers. The crudest perceptual account holds that a

picture accurately depicts a scene if and only if seeing it causes a viewer to have the same perceptual

experience she would have upon seeing the scene.21 Depending on the theory, more sophisticated

variants hold that a picture accurately depicts a scene if and only if it permits a viewer to see the

scene in the picture, it facilitates the viewer’s recognition of the scene, or it is a suitably vivid prop

with which the viewer may pretend to see the scene, and so on.22

Despite their diversity, all Perceptual Theories face the same basic problem of giving precise

articulation to their preferred notion of a “suitable viewer”. The problem arises because not just any

viewer will fit the designated theoretical role. There is no hope, for example, of defining accurate

depiction in terms of the perceptual reactions of a chronic hallucinator or an acute myopic. Instead,

Perceptual Theories require that the perceptual system of a suitable viewer must be, in some sense,

ideal. In order to give substance to her proposal, it is incumbent on the Perceptual Theorist to

specify the operative notion of ideal perception. And because perceptual abilities vary so widely,

is not clear that such an idealization can be derived straightforwardly from the generalizations of

contemporary perceptual science, or from statistical regularities. That is not all: in order to capture

the difference in accuracy conditions between various systems of depiction, a Perceptual Theory

must posit differences in perception for each. But then we are owed an account not merely of ideal

perception, but of ideal black and white perception, ideal color perception, ideal line drawing perception

and so on. What are these different modes of perception? Perceptual Theorists have had little to

say in the way of specific answers to this question. But without these details explicitly worked out,

Perceptual Theories cannot claim to offer a substantive analysis of accurate depiction.

The Geometrical Projection Theory, by contrast, offers a significant advance over Perceptual

Theories by explicitly and precisely defining the conditions of accurate depiction in terms of ge-

ometrical transformation. (In the next section and in the formal presentation of §4, I show that

21Such a view is defended by Gibson (1954), and often ascribed to Gombrich (1960), though it is unclear if the ascription
is entirely apt.

22The “seeing-in” theory is due to Wollheim (1987, pp. 46-59; 1998). Schier (1986, ch. 3) and Lopes (1996, ch. 7) defend
recognition-based views. Walton (1990, ch. 8) is the originator the pretense theory. Loewer and Godbey (1978, pp. 339-40)
and Wollheim (1998, pp. 217-8) succinctly capture the core commitments of this group of theorists.
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this definition can be quite exact.) The many systems of depiction do not engender many modes

of ideal perception, but merely many varieties of projection. Plausibly, if there were an ideal per-

ceiver of pictures, her visual system would perforce follow the geometrical rules supplied by the

Geometrical Projection Theory. But the theory need not posit any such creature; it characterizes the

rules directly, without mediation. This is not to say that the forms of geometrical projection at work

in common systems of depiction are divorced from visual perception. Instead, they are abstrac-

tions and strategic extensions of the optical projection of light into the eye. Thus the computations

required to interpret a picture are broadly of a kind with those required of the visual system to

interpret patterns of illumination reflected to the eye in normal perception.

Of course, Geometrical Projection Theory on its own does not explain why only a narrow range

of projective methods are actually implemented in normal human pictorial communication. There

are many possible systems of depiction, and some, like those that scramble their projection lines

in eccentric ways, are never actually used. A plausible explanation is that although the human

visual system can be trained to interpret a variety of projective methods that diverge from those

that figure in normal perception, this capacity of limited. Ultimately, only a narrow range of projec-

tive methods can be computed by that part of the human visual system which is harnessed for the

interpretation of pictures. Yet this appeal to visual biology is philosophically innocent. Whereas

Perceptual Theories rely on the workings of ideal viewers, the Geometrical Projection Theory ap-

peals only the capacities of actual viewers to explain why only a narrow range of projective methods

are actually used. Systems of depiction are geometrical abstractions, just as generative grammars

are logical abstractions; the extent and variety of such abstractions which can be successfully com-

puted by the organs of human cognition is matter of ongoing empirical inquiry.

This concludes my general presentation of the Geometrical Projection Theory. I’ve shown how

the theory yields a pictorial semantics— a systematic and conventional mapping from pictures to

content— and I’ve indicated why it realizes the aims of pictorial semantics better than the alterna-

tives. If the theory can be stated explicitly and precisely for at least one system of depiction, then

I will have begun to meet the principle challenge facing the Pictorial Semantics Hypothesis. In the

next section, I show that such precision can be achieved.
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2 Semantics for Perspective Line Drawing

Having laid the foundations of the Geometrical Projection Theory, I now turn to developing it

in detail for the particular case of perspective line drawing.23
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Though this is just one of infinitely many possible sys-

tems of depiction, it has witnessed an extraordinary rise in

global popularity since its codification in the Italian Renais-

sance. Today, drawings made in perspective are the norm,

and nearly all mass market camera lenses are designed to

mimic the geometry of perspective depiction.24 Its most

notable characteristic is that more distant objects are repre-

sented by smaller elements in the image, like the railroad ties

at right; consequently, receding parallel lines in the scene are

represented by converging lines in the image.25

This system is too complex to analyze systematically in the space of just one paper. Instead,

my method here will be to develop an exact semantic theory for a recognizable fragment of the

system of perspective line drawing.26 According to the Geometrical Projection Theory, all systems

of depiction are defined in terms of their characteristic method of projection. So I will begin in §2.1

by describing in some detail the method of projection associated with this simplified version of

perspective line drawing. §2.2 then integrates this account into a precise semantics for the system

of depiction in question. An explicit formalization of this analysis is included in §4. Finally, §2.3

considers how the semantics for this fragment might be extended to match the systems of line

drawing found in ordinary pictorial communication.

23What I am calling “perspective” here is sometimes referred to as “linear perspective”, in contrast with “curvilinear
perspective” which involves projection onto a curved projection surface.

24More exactly, mass market camera lenses are designed to mimic linear, as opposed to curvilinear perspective; they yield
merely perspectival representations more or less by default. See Pirenne (1970) for discussion.

25Here it is crucial to observe a distinction between the geometry of perspective depiction and the geometry of human
visual perception. Although perspective was developed over many centuries by artists and scholars attempting to recreate
perceptual experience on paper, the one is ultimately a product of convention, the other biology. (See: Da Vinci et al. 1970,
II.107-109; Gombrich 1960, pp. 4-30; Gibson 1978, p. 232; Hyman 1995.) In fact, recent empirical research by Rogers and
Rogers (2009) strongly suggests that some roughly perspectival but non-linear system best models the structure of visual
perception. Many have been led to the same conclusion by less quantitative methods: Helmholtz 1867; Pirenne 1970; Hansen
1973; Arnheim 1974; and Hansen and Ward 1977.

26This is the approach pioneered by Montague (1970a, 1970b) in the study of natural language semantics. See Partee
(1980, pp. 1-5) for discussion.
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2.1 The method of perspective projection

A method of projection is a kind of algorithm for mapping three-dimensional scenes onto a

two-dimensional picture planes.27 Following Willats (1997), this method may be divided into two

stages. In the first stage, an array of connecting lines are established, linking points in the scene

to point in the picture plane. In the second, properties of the scene are mapped onto colors in the

picture plane, according to a spatial distribution determined by the connecting lines of the first

stage. Methods of projection can be defined by how they carry out these two stages: the first

stage is specified by a given method’s PROJECTION CONDITION, the second by its DENOTATION

CONDITION.28

In any method of projection, we begin by positioning a finite PICTURE PLANE in relation to

a given scene, and then defining a set of PROJECTION LINES which establishes a system of corre-

spondences between points in the picture and points in the scene— illustrated below.29 For every

point in the picture plane, exactly one projection line passes through it. The projection condition

structures this set of correspondences by specifying a certain configuration of projection lines. The

projection condition characteristic to methods of perspective projection requires that all projection

lines converge on a single point, commonly called the VIEWPOINT. This ultimately determines the

“point of view” of the picture.30

Here it is often convenient to speak of the PROJECTIVE COUNTERPARTS of a point on the picture

plane: these are the points in the scene to which it is connected by a projection line.31 Typically, not

all projective counterparts of a point in the picture are relevant to the final image. Only those that

are ACCESSIBLE from the viewpoint in the following sense are of consequence: they can be reached

by a projection line without passing through a surface in the scene. Projection lines from picture

points to their accessible counterparts can be thought of as “lines of sight”, since, like sight, they

link the viewpoint to those surfaces in the scene which are not occluded by any other surface in

the scene. For visual clarity, I have indicated only those projection lines below which connect the

viewpoint to the accessible corners of the object in the scene.

27The mathematical details of the following discussion are based on presentations in Sedgwick (1980), Hagen (1986, ch.
2-5), and Willats (1997, ch. 2, 5).

28Willats (1997) correspondingly organizes methods of projection into “projection systems” and “denotation systems”.
See Durand (2002) for an extension and critical discussion of this approach.

29Admittedly, “picture plane” is a misnomer; I mean it to refer to a contiguous finite region of a plane.
30The viewpoint is sometimes called the “station point”; I will also refer to it as the “vantage point.” Note that the

viewpoint is not the same thing as a picture’s “vanishing point”. The viewpoint is a position in the space of the scene,
outside the picture plane, introduced to define a perspective projection. A vanishing point is any position in the space of
the picture plane to which two lines depicting parallel lines in the scene will converge. There may be as many vanishing
points in a picture as there are such pairs of lines. The distinction between “one-point”, “two-point”, and “three-point”
perspective describes vanishing points, not viewpoints.

31Some points in the picture, for example at the periphery, may not have projective counterparts in the scene.
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scene
picture plane

projection lines

viewpoint

The next stage in the projection is specified by the denotation condition— the rule by which

features of the scene are mapped onto features of the picture plane along the lines of projection. In

this case I’ll use a simplified version of the rule characteristic of line drawing: a point in the picture

is colored red (for example) just in case it has a projective counterpart that lies on an accessible edge

in the scene. I’ll define an EDGE, for now, as the intersection of two flat planes. This rule is applied

to every point on the picture plane; those points whose color is thereby left undefined assume the

background color of the “page.” If the picture plane is now seen face on, as at right, it reveals a side

view of the cube, drawn in red.

scene
A

projection lines

A

viewpoint

We can further manipulate the relative positions of the picture plane and viewpoint, with pre-

dictable consequences for the resulting image. The following figure illustrates the results of alter-

ing the location and orientation of the picture plane. Shifting the plane closer to or farther from the

viewpoint (B) has the effect of altering the scale of the resulting image. Shifting the picture plane

vertically (C) causes the projection of the scene to drift from the center. When the picture plane is

tilted (D), the resulting image records exactly the same aspects of the cube as (A), but introduces

the characteristic “railroad-track effect” of perspective projection, where edges of the cube which

are in fact parallel are now represented by converging lines.

B

C

D
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A B C D

Each of the alterations just described changes the way the scene is represented, but none reveal

additional information about the scene not already reflected in (A). By contrast, when the view-

point is shifted, new features of the scene are revealed. For example, let us move the viewpoint

above and to the side of the cube, while simultaneously sliding the picture plane to intercept the

projection lines. The principle effect of repositioning the viewpoint in this way is that it can now

“see” two additional faces of the cube, represented below on the picture plane (E).

E E

Images (A)-(E) are produced by the same general method of projection, their differences ow-

ing to different selections of picture plane orientation and viewpoint. In general, there is no such

thing as “the perspective projection” of a scene, independent of such parameters. But relative to a

choice of positions for picture plane and viewpoint, the method of perspective projection delivers

a unique projection of any scene. Here it is convenient to collect picture plane and viewpoint posi-

tion together into a single PROJECTIVE INDEX. Then we may say that, relative to a projective index,

perspective projection determines a unique projected image of any scene.

Let me summarize. A method of projection is an algorithm for mapping a three-dimensional

scene onto a two-dimensional picture plane. All methods of projection are defined in terms of an

array of projection lines where exactly one passes through each point on the picture plane. The

method of projection for perspective line drawing can then be identified first by how it structures

these projection lines, and second by how it uses them to determine a mapping of features from

scene to picture, its projection and denotation conditions respectively:

Projection: Every projection line intersects the viewpoint.

Denotation: A point in the picture is red if and only if it has a projective counterpart

in the scene which lies on an accessible edge.
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Together, these conditions define a method of projection such that, given a scene and a projective

index— that is, the position of the viewpoint and picture plane— the method determines a unique

projected image. Thus where S is a scene and j a projective index, we may speak of the perspective

projection of S relative to j. An explicit formalization of the method of perspective projection is

provided in §4.

Other methods of projection can be derived by independently modifying the projection and

denotation conditions. For example, methods of parallel projection differ with respect to the pro-

jection condition: the viewpoint of perspective projection is replaced by a view plane, such that all

projection lines intersect it at right angles. On the other hand, methods of color projection differ

with respect to the denotation condition: instead of correlating red points in the picture with edges

in the scene, a rudimentary color system might hold that points in the picture picture simply have

the same color as their accessible projective counterparts in the scene. And so on. Formal defi-

nitions of these alternatives are also included in §4. For now, I turn to integrating the method of

perspective projection into a theory of accuracy.

2.2 Semantics for the system of perspective line drawing

The method of perspective projection just illustrated is an algorithm for deriving pictures from

scenes. The system of perspective line drawing, on the other hand, determines a standard of picto-

rial accuracy. I shall say that every possible composition of red lines on a bounded white plane cor-

responds to a picture belonging to the system of perspective line drawing.32 For any such picture

and any scene, a definition of accuracy in this system determines whether the picture accurately

depicts the scene. According to the Geometrical Projection Theory, the system of perspective line

drawing defines accuracy in terms of perspective projection in roughly the following way. For any

picture P in the system and scene S:

(5) P accurately depicts S in the system of perspective line drawing if and only if

P is a perspective line drawing projection of S.

To state this formula more precisely, let L be the system of perspective line drawing suggested

by the projective method above. Where a picture P accurately depicts a scene S in system L, we may

write: “P accurately depictsL S”. Now, since the specified method of perspective projection was en-

tirely determinate, it can be represented by a mathematical function, what I will call a PROJECTION

32This does not imply that every marking of red ink on paper specifies a picture in this system, just as merely sounding
like a word of English is not sufficient for being a word of English. The sign must be created with the proper intent under
the appropriate conditions.
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FUNCTION. A projection function takes as inputs (i) a scene and (ii) a projective index, and outputs

an image— the unique perspective projection of the scene relative to the index. Where proj(⋅) is the

perspective projection function, S a scene, and j a projective index I shall say that proj(⋅) applied to

S and j returns an inscribed picture plane P, that is, proj(S, j) = P. Then a first attempt to render (5)

in more exact terms may be articulated. For any picture P in L and scene S:

(6) P accurately depictsL S iff proj(S, j) = P.

That is: P accurately depicts S in L if and only if the perspective projection of S relative to j is P.

The problem with this definition is that it makes the projective index j part of the system itself. This

would mean that all accurate perspective images would have to be drawn from the same viewpoint.

But this is clearly false: both (8) and (9) below are accurate perspective depictions of S, but from

different viewpoints. The solution is to allow some variability in j. One way to achieve this is to

existentially quantify over the projective index on the right-hand side of the equation.

(7) P accurately depictsL S iff there is some j such that proj(S, j) = P.

On this analysis, two distinct projections of a scene, such as the two views of the cube below, are

both accurate representations of that scene, since both can be projected from that scene according

to some index.

(8) (9)

I concede that there is a strand in the concept of accurate depiction that conforms with this analysis,

but my interest here is in a more specific notion. According to this alternative, accurate depiction

only obtains in relation to a projective index, and artists always intend that their pictures be inter-

preted relative to a particular index. If the picture is not a perspective projection of the scene from

that index, then it is not accurate — even if it is a correct projection of the scene from some other

index. Thus, if two artists create (8) and (9) respectively, but both intend to represent the scene from

the same vantage point, then only one succeeds in accurately depicting the scene. To accommodate

this idea, I now analyze depiction as a relation between a picture and a scene relative not only to a

system of depiction, but also to a projective index.33 Where P accurately depictsL relative to index

j, I will write “P accurately depictsL at j”. Then for any picture P in L, scene S, and index j:

33See Hyman (2006, p. 82).
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(10) P accurately depictsL S at j iff proj(S, j) = P.

Unfortunately, this implementation of the Geometrical Projection Theory is too demanding in

a subtle but important way. It is not the case that an accurate picture can always be derived by

projection from its subject; sometimes a picture is accurate when it is merely similar to some other

picture which can be so projected. This principle is plainly illustrated by considerations of scale.

Suppose that two artists intend to draw a cube from a given vantage point, and produce (11) and

(12) below. Both images are perfectly accurate representations of S, despite their difference in size.

Yet this flexibility is not allowed by (10), for proj(S, j) yields a picture plane of fixed size, and any

deviation from this picture leads to a failure of the biconditional. To accommodate this, (10) should

be revised; rather than requiring that the picture itself be derived from the scene by projection, I

instead require that some copy at the same or different scale be so derived.

(11) (12)

Other systems of depiction require other dimensions of freedom besides scale, including flexi-

bility with respect to choice of color, line smoothness, and in extreme cases, overall metrical struc-

ture.34 We need a general way of handling these various cases. To do this, let us introduce a

FLEXIBILITY FUNCTION, flex(⋅), which takes a picture and returns the set of suitably related pictures

for that system of depiction. Now, instead of requiring for accuracy that the projection of S be iden-

tical with P, we merely require that the projection of S be within flex(P), that is, the class of pictures

appropriately similar to P. On this approach, the flexibility and projection functions play against

each other, for while the projection function constrains the conditions on accurate depiction, the

flexibility function weakens these constraints. But note that the idea here is not to introduce an

open-ended parameter; rather, we must define specific flexibility functions for for specific systems.

Thus, for L, we might define flex(⋅) as follows, for any picture P in L:

(13) flex(P) = the set of pictures which are scale variants of P.

34Some color systems tolerate constrained variations in color among accurate depictions of the same scene. (Thanks to
Dom Lopes for bringing this to my attention.) Some line drawing systems tolerate limited deviations from perfectly straight
lines in the depiction of straight edges. Subway maps exhibit constrained deviations from the metrical structure of a strict
projection, while preserving quasi-topographic features like station-betweenness. (Willats (1997, pp. 70-7); Giere 2004, §4).
An alternative approach is rather natural at least the case of wobbly lines. Pictures, considered as abstract objects, may differ
in interesting ways from the marks which express them— just as sentence structure can depart from the “surface structure”
of an utterance. Then we might think that it is only marks on the page which are wobbly; they express pictures composed
of perfectly smooth lines. I have no particular complaint with this approach, but presumably it should also be extended
to scale and color. But then pictures are so abstract— lacking determinate size, for example— that they become difficult to
discuss without excessive technicality.
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With this amendment, we arrive at the final analysis:

(14) Accuracy in Perspective Line Drawing

For any picture P in L, scene S, and index j:

P accurately depictsL S at j iff proj(S, j) is in flex(P).

This is a definition of accuracy for the system of perspective line drawing. It follows from this

analysis plus my initial definition of depictive content that the content of a picture in perspective

line drawing is, setting aside the flexibility function, the set of scenes from which it can be derived

by perspective projection. To make this statement precise, one must account for the observation

that accurate depiction holds not only relative to a system of depiction, but also to a choice of pro-

jective index. A natural view here is that pictorial content is defined relative to such an index as

well.35 Then just as linguistic content is determined in part by isolated features of conversational

context, pictorial content depends on communicative context to specify an intended projective in-

dex. Formally, the content of a picture P in system L relative projective index j is, roughly, the set

of scenes P could be derived from by perspective projection relative to j. More exactly:

(15) Content in Perspective Line Drawing

For any picture P in L, scene S, and index j:

the content of P in L relative to j = the set of scenes S such that: proj(S, j) is in flex(P).

I have thus demonstrated, for one simple system of depiction, how the Geometrical Projection

Theory determines a pictorial semantics— a systematic and conventional mapping from pictures

to content. The analysis may be extended to other systems of depiction, and so to depiction in

general, by defining alternative projection and flexibility functions. Once again, the details of such

definitions are included in §4.

2.3 Natural systems of perspective line drawing

By demonstrating that it is possible to state a precise semantics for one simple system of line

drawing, I have shown that unqualified skepticism about the Pictorial Semantics Hypothesis is un-

35This is not the only way. We might also define the content of P in L, independent of a projective index as the set of
scene-index pairs `S, je such that proj(S, j) is in flex(P). The difference between this view and the one expressed in the text
is analogous to the difference between eternalist and temporalist theories of linguistic content. (Richard 1981) In each case
there is a question about whether content is fixed by the value of given contextual parameter, or whether it generalizes over
the possible values of this parameter. Kulvicki (2006a, pp. 57-9) holds yet another view, which derives from his assumption
that content is determined by projective invariants; he defines the content of a picture, independent of projective index,
as the set of scenes it could be projected from according to some index. (The resulting set is the set of scenes which share
projective invariants with the picture itself.) But at least for the case of linear perspective, this proposal seem to me too crude:
it misses the fact that by gaining information about a picture’s viewpoint, we are able to extract more specific information
from the content of the picture. Both the position in the text and that sketched above can accommodate this observation.
For the case of curvilinear perspective, the view faces even more fundamental problems, as I argue in Greenberg (2010a).
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warranted. But even this may not satisfy the entrenched doubter: perhaps artificially constructed

systems of depiction like L have semantics, she admits, but the prospects seem dim for the unreg-

imented depictive styles actually found in ordinary communication. The aim of this section is to

offer a partial response to such a challenge. First I’ll highlight the sense in which the skeptic is

right: by design, L is only a fragment of any natural system of line drawing. But then I’ll show

how recent developments in computational perceptual science can be used to expand this frag-

ment in promising ways. These findings give us reason to hope that, for all their complexity, even

natural forms of depiction are undergirded by systematic rules, capable of mathematically precise

articulation.

Following a precedent of linguistic theory, we can roughly distinguish NATURAL from ARTIFI-

CIAL systems of depiction. Natural systems have evolved organically in ordinary communication,

while artificial systems are introduced and disseminated by solely by explicit definition. For the

scientist of human behavior, natural systems are the primary quarry, but because of their stipula-

tive origins, the semantics of artificial systems are easier to define. For this reason, well-understood

but artificial systems like L serve as useful stepping stones on the path toward the analysis of the

not-yet-understood natural systems. Thus, while L is recognizable as a system of perspective line

drawing, it is only a fragment of any natural drawing system, for it is suitable for interpreting only

depictions of geometrical solids with flat sides.

The chief shortcoming of L lies in the denotation condition for the method of perspective pro-

jection upon which L is based, reproduced here:

(16) A point in the picture is red if and only if it has a projective counterpart in the scene which

lies on an accessible edge.

Recall that an EDGE was defined as the intersection of two flat surfaces. As a consequence, L cannot

be used to depict curved objects like spheres, since spheres contain no intersecting flat surfaces.

It doesn’t help to expand the definition of edge to include what are sometimes called “creases”—

abrupt intersections of any kind of surfaces— because spheres contain no such discontinuities.

Indeed, given that spheres are completely uniform, it may seem puzzling how features of a sphere

could be mapped to lines in a picture at all.

The answer is that we must introduce a very different concept of edge— one which applies

not to intrinsic features of a scene, but instead to relational properties defined relative to the view-

point.36 Such is the notion of CONTOUR. Intuitively, a contour is any visible perimeter in a scene

36The idea of a “view-dependent” edge is described by Durand (2002, §6.2). Philosophical writing on depiction has
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which occludes features of a scene behind it. Formally, we can define a contour as that region of

a surface which is tangent to a projection line extended from the viewpoint— that is, the region of

a surface which a projection line “barely touches”, as illustrated below. With this, we can define

the denotation condition for a revision of L in such a way that yields successful renderings of a

sphere. (Here a CONTOUR LINE is just a line in the picture which corresponds to a contour in the

scene.)

(17) A point in the picture is red if and only if it has a projective counterpart in the scene which

lies on an accessible contour.

contour contour line

Yet contours cannot replace edges in the analysis of line, for while (17) would successfully cap-

ture the silhouette of a cube, it would fail to depict any of the cube’s internal edges— those edges

facing the viewpoint which occlude nothing from view. Instead, we must combine the two defini-

tions, allowing that a point is inscribed on the picture plane when it has a projective counterpart

in the scene which lies either on an accessible edge or an accessible contour. This definition yields

successful depictions both of spheres, like that above, and of cubes, as in (18).

But even this innovation will not suffice. Common line drawings in perspective contain certain

kinds of line that correspond neither to edges in the scene, nor to contours. Instead, they merely

suggest the shape of the object depicted. DeCarlo et al. (2003) dub these SUGGESTIVE CONTOURS.

Consider, for example, the suggestive contour line tagged in (19). It does not indicate the sharp

intersection of two surfaces (an edge) nor is it naturally interpreted as describing a jutting cranial

ridge hiding a valley behind it (a contour). Instead it merely suggests a certain structural arc at a

certain location on Obama’s head.

employed the related notion of “occlusion shape”, or its close kin (Peacocke 1987; Hopkins 1998, pp. 53-7; Hyman 2006,
pp. 75-9).
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(18)
contour line and edge line

edge line

(19)

contour line

edge line

suggestive contour line

One might think that we have here finally reached the limits of systematic inquiry, that line

drawing is ultimately organic and improvised, and that a semantic analysis will never be able to

account for such expressive fluctuations as suggestive contour. But this skepticism is premature.

In a recent paper from the field of computer graphics, DeCarlo et al. (2003) propose an ingenious

analysis of suggestive contour lines. They offer an algorithm according to which suggestive con-

tour lines are inscribed not when they correspond to actual contours relative to the viewpoint, but

when they would correspond to contours under constrained permutations of the viewpoint. On this

account, the presence of the suggestive contour line in (19) indicates that the shape of Obama’s

head at that point is such that, if the viewpoint were shifted slightly to the left, that region would

emerge as a genuine contour. Such “nearby” contours obviously reflect structurally significant fea-

tures of a scene; the suggestion is that, in the system of perspective line drawing, the rules for

rending contours are naturally extended to capture this additional structure.

These considerations are only a small indication of the challenges facing the analysis of natural

line drawing. The moral is that there remain substantive matters to work out in the elaboration of

pictorial semantics, from details to foundations— and not just in the theory of line reviewed here.

Such developments will inevitably require a steep and steady descent from the relative simplic-

ity of definitions like that of L into nuance and complexity.37 On the other hand, mathematically

precise accounts of ordinary drawing systems, like that of DeCarlo et al. (2003), show that picto-

rial semantics is not merely an analytic contrivance practiced on artificial examples. Despite the

wide-spread skeptical attitude that depiction is basically unsystematic, such results show the po-

tential for a progressive and rigorous analysis of natural systems of depiction. It remains to be seen

whether this method can be extended to the myriad systems of depiction in use across history and

culture. But the hypothesis of this chapter is that it can.38 I hope to have shown that this hypothesis

is at least plausible.
37For example, Pirenne (1970, pp. 116-35) and Hagen (1986, pp. 170-1) document systems in which the operative method

of projection varies according to the type of object being depicted.
38Thanks to Tendayi Achiume for helping me see both the limitations and import of the present work in this way.
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3 Conclusion

Carnap (1963, p. 938) once described language as “an instrument... like any other... useful

for a hundred different purposes.” Arguably the most basic such purpose is the mobilization of

public signs to disseminate private beliefs. According to the the Pictorial Semantics Hypothesis de-

fended in Chapter 1, systems of depiction embody a parallel technology of communication. Both

languages and systems of depiction are based on semantics: systematic and conventional mappings

from signs to representational content. By contrast, the thesis of this chapter, the Geometrical Pro-

jection Theory, suggests that these semantics are profoundly divergent. Whereas the semantics of

language are based on arbitrary associations and rules of logical transformation (intersection, func-

tion application, and the like) the semantics of depiction, on this account, is based on non-arbitrary

rules of geometrical transformation.

In informal discussion, pictorial representation is often described as “natural”, in analogy with

the phenomena of “natural meaning” exhibited shadows, tree rings, or foots prints.39 On the view

of depiction as projective transformation, accurate pictorial representation falls between linguistic

meaning and natural meaning in a precise and intuitive way. Like linguistic meaning, depiction

is conventional; there are many possible systems of depiction which must be selected amongst

for successful communication. But like natural meaning, and unlike language, depiction is not

mediated by arbitrary associations of sign and content. Yet no such arbitrary correspondences are

exploited by natural meaning or depiction. Instead, depiction and natural meaning alike convey

information in a more direct and unmediated way, in virtue of general, rule-based transformations.

In the case of natural meaning these rules are the laws of physics; foot prints and shadows are

related to their sources by causal transformation. The rules underlying systems of depiction are the

abstract laws of geometry; the transformations are geometrical projections.

These conclusions provide compelling evidence that semantic analysis can thrive outside of

the linguistic arena. They suggest that general semantics, the inclusive study of signs, is a viable

endeavor. Such a study would apply the method of semantic analysis across the representational

spectrum, covering languages, diagrams, pictures, and all the varying complexity in which these

modes can be combined. It would bring into the light phenomena rarely studied, and shed new

light on those which have come to seem familiar.

This concludes the informal contribution of this chapter. In the next section I develop a formal

39The term “natural meaning” is due to Grice (1957, p. 378).
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semantics for the system of linear perspective line drawing L.

4 Formal semantics for L

This section partially formalizes the semantics for perspective line drawing presented in §3. I

begin by modeling the key notions of picture, scene, projective index, and perspective projection.

These components are then integrated into definitions of accuracy and content for the system of

perspective line drawing, which are subsequently shown to be fully compositional. My aim in

what follows is to formalize the relevant notions only as much as is required to show that a fully

precise and algebraic analysis is possible, but not so much as to provide every detail of such an

analysis.

As we embark, it is necessary to remember that formal models, in linguistics and here, are

by definition abstract, mathematical representations of real phenomena. Consider two prominent

examples: (1) Linguists typically model sentences as abstract logical structures which they distin-

guish from physically instantiated utterances. Here too I will model pictures as abstract geomet-

rical objects, distinct from physically instantiated inscriptions.40 (2) Mathematical linguists define

languages in part by infinitely large sets of sentences— not merely those that have actually been

uttered, but all the possible sentences of that language. In the same way, I will define systems

of depiction in part by infinitely large sets of pictures. From the perspective of naturalistic meta-

physics, such formally-motivated definitions may seem problematic. But I flag these issues only to

set them aside: the definitions here are intended only to give my account precise articulation while

abstracting away from irrelevant details.

The analysis employs a basic geometrical framework. I will be discussing Euclidean spaces of

2 and 3 dimensions, of finite and infinite extent, which I will refer to as 2-SPACES and 3-SPACES

respectively. For every dimensionality, there are infinitely many distinct spaces of that dimension-

ality, individuated by the chromatic properties of and spatial relations among the points that make

up each space. A REGION is a part of a space, such as a point, line, line segment, plane, convex solid,

and so on. A COLORED REGION is a region where every point in that region is associated with ex-

actly one color, but I also allow for colorless regions.41 An OBJECT is defined as a connected colored

region. Finally, an EMBEDDING is a function which maps a region in one space to an isomorphic

40Willats (1997, pp. 98-100) argues that we should distinguish pictures from inscriptions on the ground that not all marks
on a page are semantically significant. For example, there may be stray marks or smudges on a piece of paper that are
irrelevant to interpretation. One can imagine an entire science devoted to identifying the correct mappings from marks on
paper to lines in the picture. But such details only distract from the project of semantics, which is to provide general rules
of interpretation.

41Colors can be modeled as real numbers associated with positions on a color wheel.
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region in another space. The only kinds of embeddings relevant here are those that preserve met-

rical relations between points and their chromatic properties. An embedding may occur between

spaces of the same or different dimension. For example, one embedding may locate lines of a par-

ticular 2-space within a particular 3-space; another may locate lines of a particular 2-space within a

distinct 2-space.

De�nition of picture and scene

Let us define a PICTURE as a colored, rectangular segment of plane in a 2-space.42 The decision

to define pictures in this way is obviously an idealization, for it rules out pictures which are round,

pictures which are not perfectly flat, and so on. Perhaps most artificially, I assume that the color of

regions in a picture can be characterized independent of viewers or viewing conditions.43 We shall

model SCENES in a parallel fashion. At the outset we defined scenes as time- and location-centered

worlds. We will now assume that every such scene determines a 3-space, which may be populated

by objects, or not, in any way. We will refer interchangeably to scenes, considered as time- and

location-centered worlds, and the spaces they determine.

De�nition of projective index

Recall that in order to construct a perspective projection of some scene one must specify both

the position of a viewpoint from which the projection lines are drawn, and the position and orien-

tation of a picture plane onto which the image of the scene is projected. The specification of these

parameters is the job of the PROJECTIVE INDEX. Different kinds of projective indices are required for

different methods of projection. In the case of perspective projection, the projective index consists

only of two components ⟨v, r⟩, where v is a VIEWPOINT FUNCTION, and r is a PICTURE POSITION

FUNCTION.

The viewpoint function embeds a unique viewpoint— understood as a point— within the 3-

space of a given scene. Formally, v is a function from scenes to points in the 3-spaces of those scenes.

Where S is a scene, we shall refer to v applied to S, the viewpoint in S, as “vS”. The picture position

function correspondingly embeds a picture— understood as a colored region within a 2-space—

into the 3-space of a given scene. Formally, r is a function from pictures and scenes to colored flat

42A richer representation of pictorial structure would parse pictures as arrangements of parts. Such an account would
allow the theorist to classify “ambiguous” images like the Necker Cube as syntactically ambiguous, rather than merely
semantically unspecific. (Necker 1832; Wittgenstein 1921/1997, §5.5423) Associating pictures with part structure may also
play a role in intelligent interpretation of abstract images. (Mi, DeCarlo, and Stone 2009; DeCarlo and Stone 2010)

43This last assumption would be unsustainable in any careful study of color painting or photography. But here my goal
is to take on as few complications as possible. Since I will only seriously examine systems of line drawing, such simplistic
modeling choices will help, not hinder understanding. I hope that readers interested in color depiction can see how the
definitions here could be extended to treat their preferred subject matter.
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regions in the 3-spaces of those scenes. Where S is a scene and P is a picture, we will refer to the

picture embedded in S by r as “PrS”. The following diagram shows a possible arrangement of the

viewpoint and a picture P, as specified by v and r relative to the scene S.

v

S

S

PrS

De�nition of perspective projection

I now define perspective projection in more exact terms. All forms of projection are defined in

terms of an array of projection lines which pass through every point on the picture plane. Relative

to this array of projection lines, methods of projection are defined by their PROJECTION and DENO-

TATION conditions. In §3.1, we described these conditions for the method of perspective projection

as follows:

Projection: Every projection line intersects the viewpoint.

Denotation: A point in the picture is red if and only if it has a projective counterpart

in the scene which lies on an accessible edge.

To formalize this proposal, we begin by defining the array of projection lines passing through every

point on the picture plane, which these conditions presuppose. Where PrS is a picture situated

relative to the space of the scene:

(20) for every point p in PrS , there is a projection line l intersecting p

We will treat these projection lines as rays. Then we can state the projection condition (i) as the

requirement that all projection lines have their endpoints at the viewpoint vS. That is, for any

projection line l:

(21) l is a ray with its endpoint at vS

l1

l2

p1

p2

l3p3

v

S

S

PrS

The diagram shows three projection lines l1, l2, and l3 passing through the picture plane at points
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p1, p2, and p3 respectively. Of course, these are only a representative selection of the total array;

according to (20), some projection line passes through every point in the picture. As per (21), each

projection line has its endpoint at the viewpoint. The interactions between these lines and the scene

will become relevant shortly.

Next, the denotation condition (ii) specifies a rule for mapping edges in the scene onto lines

in the picture plane. For line drawing (with red ink), the rule is that a point in the picture is red

just in case it has some projective counterpart in the scene which is (a) accessible and (b) lies on an

edge. Recall that a picture-point’s “projective counterparts” are just those points in the scene which

lie along the projection line which passes through that point. Then we may state the denotations

condition as follows, where S is the scene, p is any point on the picture plane, and l is the projection

line intersection p:

(22) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on an edge in S.

A point in the scene s is ACCESSIBLE from the viewpoint vS along a line of projection l just in case

vS and s can be connected by l without passing through any other point in the scene. An EDGE is

the line segment at the intersection of two flat surfaces. (Note that I assume that every point in a

picture is either red or white, thus the schema above determines the color for every point in the

picture.44) The diagram below illustrates the application of (22) to each point on the picture plane,

along with the resulting picture at right.

l1

l2

p1

p2

l3p3

v

S

S

PrS

s1

s2

s3

p1 p2

p3

P

Note how the three projection lines included here interact with the scene in different ways. First,

l1 fails to intersect the scene at all; thus p1, the point at which l1 passes through the picture is left

white. Next, l2 intersects the scene at two points; the first, s1 is accessible from the viewpoint, but

does not lie on an edge; the second, s2, lies on an edge, but is not accessible from the viewpoint;

thus p2, the point at which l2 passes through the picture is also left white. Finally, l3 intersects the

44The definition here fails if this assumption is relaxed, since on that condition, two pictures with different background
colors would be compatible with the scene and index. Of course, the “whitespace” condition can be written into the defini-
tion of the projection function, but I find this distracting.
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scene at s3, which lies on an accessible edge; thus p3 is colored red.

Finally, by combining each of these components, we may define perspective projection. For

any picture P, scene S, and projective index j = ⟨v, r⟩:

(23) The perspective projection of S relative to j, proj(S, j) = P iff

for every point p in PrS , there is a projection line l intersecting p such that:

(i) l is a ray with its endpoint at vS;

(ii) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on an edge in S.

That is: a picture P is a perspective projection of a scene if and only if for each point p in P, as

embedded in S by r, there is a projection line l such that (i) l originates at vS and passes through p;

and (2) p is red just in case there is some point s in the scene lying along l such that (a) s is accessible

from vS along l, and (b) s happens to lie on an edge in the scene.

By independently varying the projection and denotation conditions, one can derive a spectrum

of projective methods besides that of perspective line drawing. Consider first the projection condi-

tion (i), which states that every point p in the picture defines a projection line l which intersects the

viewpoint vS and p. This simple stipulation characterizes all forms of perspective projection. Other

methods of projection define the projection lines in other ways. For example, in the method of

parallel projection, the projection lines are defined as rays extended perpendicularly from a plane.45

Letting oS be such a plane, we could then write the projection condition for such as method as

follows, where l is any projection line passing through a point in the picture PrS :

(24) l = the ray extending perpendicularly from oS

oS

PrS
PS

The denotation condition (ii) describes how features of the scene determine features of the
45Note that this would require changes to the definition of the projective index.
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picture plane, given a certain projective mapping. The condition has two components. The first

(a) states which of a picture-point’s projective counterparts in the scene it is defined by; the second

(b) states how it is defined by these counterparts. Alternatively, the first states which of a picture-

point’s projective counterparts it “says something” about; and the second states what it “says”

about them.

In most cases, (a) isolates those projective counterparts which are accessible from the viewpoint

along the line of projection. Occasionally, however, this condition is modified to reveal occluded

edges and faces. This results in the style of so-called “wire-frame” pictures like (26) below. To

achieve this effect, we may weaken condition (ii) by eliminating the restriction to accessible points

in S. The denotation definition then states that a point in the picture is red just in case it has

some projective counterpart in the scene which lies on an edge. The second part of the denota-

tion condition, (b), determines the relationship between the spatial or chromatic properties of a

picture-point’s projective counterparts, and the chromatic properties of the picture point itself. In

the definition above, the picture-point is determined to be red just in case its accessible counterparts

lie along an edge. But we may introduce some simple variations of this condition. To redefine the

projection function as one that yields silhouettes, we may replace the denotation condition with

(27). Then a picture-point is determined to be red just in case its accessible counterparts lie on any

surface in the scene. To reveal the faces of the cube, but distinguish them from the edges, we must

introduce two conditions— one for the edges, and one for the faces— as in (28).

(25) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on an edge in S.

(26) p is red iff there is a point s on l such that:

(a) ——-

(b) s lies on an edge in S.

(27) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l

(b) s lies on a surface in S.
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(28) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on an edge in S.

p is pink iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on a face in S.

These kinds of associations between surface type and point color are quite arbitrary. An edge could

be mapped to a point of some other color, or something other than a point, such as a patterned

region. But the relation between point color and properties of the scene may also be much more

direct. For example, in a system reminiscent of color painting, the color of the points in the picture

are simply inherited from the color of points in the scene:46

(29) for any color C:

p is C iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on a surface in S and s is C.

In general, modifications to the denotation condition result in changes to the kind of information

a picture records about its subject. Silhouette drawings are probably the least informative of the

options just considered— they record merely the outline shape of a scene. Color projections contain

the same outline information, but add to this the colors of the accessible surfaces in the scene. In

the original system of edge-to-line projection, the picture reflected no color information about the

scene, but it did contain additional spatial information not explicitly recorded in the color image—

to wit, the location of edges in the scene.

Finally, it must noted that the original definition of perspective projection from §3.1 results

in images composed of true lines, colored regions of zero width. Ideally, however, the definition

should allow us to adjust line thickness as a parameter.47 There are various ways to achieve this;

the approach adopted here will require a slight change to the overall definition. The idea is that

a point is colored red— not, as before, if it has a projective counterpart on an appropriate edge—

but instead, if some nearby point has a projective counterpart on an appropriate edge. The result is

that, for every one of the points that was assigned red by the original definition, there now will be

a cloud of nearby points also assigned red. The metric of nearness defines the size of the “pen nib”.

46Willats (1997, ch. 6) argues that many forms of color depiction map color features of light from the scene to points on
the picture plane, rather than intrinsic color features of the scene itself (if such there be).

47See Durand (2002, §6.3) for discussion.
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To formalize this suggestion, let n(⋅) be a NIB FUNCTION which takes a picture P and point p in P

and returns a circular region of P which includes p. Different nib functions may specify the size of

this region differently. We then revise the definition of perspective projection as follows. For any

picture P, scene S, and projective index j:

(30) The perspective projection of S relative to j, proj(S, j) = P iff

for every point p in PrS , there is a projection line l intersecting some pœ in n(PrS , p) such that:

(i) l is a ray with its endpoint at vS;

(ii) p is red iff there is a point s on l such that:

(a) s is accessible from vS along l;

(b) s lies on an edge in S.

From perspective projection, we now turn to semantics.

De�nition of system of depiction

A SYSTEM OF DEPICTION has three components. It specifies (i) the set of all possible pictures

belonging to that system; (ii) the set of projective indices compatible with that system; and (iii) an

accuracy function. The first component, the set of all possible pictures in the system, effectively

fixes the system’s syntax. In principle, the definition of this set might be quite complex, but at least

for the systems included here, it is not. For our purposes, a picture belongs to the system of red

on white line drawing just in case every region of the picture is a red region of a given minimum

diameter or a white region.48

The second component of a system of depiction describes the range of projective indices com-

patible with that system. As we’ve seen, different systems of depiction require different kinds of

projective indices. In some cases, systems put only technical constraints on indices, like substituting

a plane of projection for the viewpoint characteristic of perspective projection. Other constraints

are more “stylistic”: some systems differ only in the orientation of the picture plane relative to

48Researchers in computer science have sometimes claimed that the constraints on well-formedness for line drawings
are much more substantive. (e.g. Huffman 1971, p. 313) They have deemed apparently uninterpretable drawings, like
the Penrose triangle to be ill-formed, and have produced intricate formal theories of well-formedness. But I think this
diagnosis of the situation is premature. In such cases it is possible to explain this uninterpretability semantically, by the
fact that there are no objects that such a picture could depict. My methodological assumption is that it is always preferable
to explain uninterpretability as semantic impossibility, rather than by fiat of syntactic rule. If I am right, the results of
research on impossible drawings from computer science are significant, but they are not what their discoverers claim them
to be. Rather, this field is the analogue of proof theory for pictures. In logic, proof-theory attempts to isolate the syntactic
transformations which will produce or preserve semantic properties such as contradiction, theoremhood, and contingency.
Similarly, research into impossible drawings attempts to isolate graphic transformations which will produce or preserve the
semantic properties of impossibility and possibility. (As Wittgenstein (1921/1997, §2.225) observed, drawings cannot be a
priori true; thus they cannot be theorems.) Further discussion of this question must be postponed.
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whatever is considered the “dominant” plane of the scene.49

Finally, the accuracy function simply formalizes the relation of accurate depiction. It maps a

picture P, scene S, and index j to 1 if and only if P perfectly accurately depicts S at j. (Thus the accu-

racy function is the correlate of the valuation function familiar from the semantics of propositional

logic.) In this chapter, we are concerned only with perfect accuracy and its failure, but in principle

one might set out to give conditions for all degrees of accuracy between 0 and 1. The main task in

analyzing a system of depiction is to define its accuracy function; here we shall do this implicitly,

by specifying necessary and sufficient conditions on perfectly accurate depiction.

Semantics for L

In §3.2 we presented a schematic definition of accuracy for the system of simple line drawing

in perspective, L:

(31) P accurately depictsL S at j iff proj(S, j) is in �ex(P).

And the correlate definition of content:

(32) the content of P in L relative to j = the set of scenes S such that: proj(S, j) is in flex(P).

To obtain a explicit semantic analysis of L, we need only substitute into each of these formulae

the definition of the projection function proj(⋅) provided above, along with the definition of the

flexibility function flex(⋅) given in §3.2:50

(33) flex(P) = the set of pictures which are scale duplicates of P.

Alternative systems of depiction can be derived by suitably redefining the projection function and

flexibility functions. We have already considered several variations of the projection function corre-

sponding to familiar alternative systems of depiction. Such variations can be multiplied by altering

the flexibility function so as to allow some degree of freedom with respect, for example, to straight-

ness of line or choice of color.
49As Hagen (1986, pp. 242-7) notes, in some systems there are clear conventions about the definition of the dominant

face, dependent on object type. Modeling such a system would require a richer representation of scenes than I have elected
for here.

50The substitution is achieved perhaps more perspicuously with following equivalent reformulation of (33): P accurately
depictsL S at j iff there is a P′ in �ex(P) such that P′ � proj(S, j).
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Compositional semantics for L

The semantics on offer here describes a general rule for interpreting pictures. The ability to

interpret novel pictures is straightforwardly explained as the application of the general rule to

novel particular cases. But it has been argued in the linguistic case that for this explanation to work,

a semantics must be COMPOSITIONAL, that is, the content of the whole sign must be determined by

the content of its parts and the way they are put together.51 In this section I show how this principle

may be realized for the case of pictures.

My treatment is shaped by two observations, both adapted from Fodor (2007, pp. 108-9). First,

I assume that every contentful part of a picture is also a picture. This is very different, note, from

the linguistic case, where sentences have contentful non-sentential parts. A compositional seman-

tics for pictures must show how the content of the whole picture can be derived from the content

of pictures which are its parts. Second, I assume that, unlike complex linguistic expressions, pic-

tures have no “canonical decomposition”. That is, the content of a picture may be compositionally

derived from any division of the picture into parts– so long as the parts are members of the same

system as the whole. For any given picture, there are many possible decompositions; at the limit, at

least for L, one may decompose a picture into points. Illustrated below are three arbitrarily selected

possible decompositions of a given image.

To begin, let D = ⟨P, m⟩ be a DECOMPOSITION of a picture P relative to a system I. Intuitively,

P is the set of picture-parts that results from cutting P up into pieces, and m, which we’ll call the

ARRANGEMENT, shows you how to put them back together again. Formally, P is a sequence of

finite, colored 2-spaces belonging to I; where the member of P at the nth position, is referred to

as “pn”. Next, the arrangement m is a sequence of embeddings, each of which embeds a ranked

member of P into the same 2-space; again the member of m at the nth position, is referred to as

“mn”. P and m are coordinated in the following way: for every mn in m, mn(pn) is a disjoint

subset of P, and the union of every embedding in m applied to its corresponding member in P is

identical to P— that is, ⋃ i≤nmi(pi) = P.52 The order of parts in P doesn’t matter; but since it may be

51See Fodor and Lepore (2002) and Szabo (2010).
52This way of defining the members of m requires that the spaces in question encode absolute position. To accommodate

spaces that support only relative positions, m could be redefined so as to map pairs of members of P to relative locations in
a single 2-space.
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necessary to map intrinsically identical regions to different locations, m distinguishes the different

mappings by their order. According to the principle of compositionality, the content of the whole

is determined by the content of the parts and the way they are combined; we will capture the way

they are combined by the arrangement m.

The diagram below illustrates an example decomposition. Here the picture is divided into

two parts such that P = ⟨p1, p2⟩ and the arrangement m maps these parts to their original positions

within P. An alternative arrangement m∗maps the same parts to different positions, at right.

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1

p2

2

m

m

m (p  )1 m (p  )21 2
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Having defined the relevant notions of a picture’s parts and mode of composition, we now

define the content of a part. Here we encounter a decision point: the content of a picture is defined

relative to a projective index, which effectively fixes the vantage point of that picture. Is the content

of picture’s part defined relative to the same vantage point, or is it effectively “cut free” from the

evaluative context of the original? Both seem to me reasonable ways of thinking about the content

of a picture’s parts. In what follows, I shall mainly elaborate the first approach, assuming that the

projective index of the whole constrains the projective indices relative to which the the content of

the parts are determined. Afterwards I will show how to execute a compositional analysis using

the latter definition.

This tack engenders some technical complications. Recall that we defined the content of a

picture relative to a projective index j = ⟨v, r⟩ where v is a viewpoint function and r is the picture

position function. Given a scene S, rS maps pictures in 2-space to flat regions in the 3-space of S.

But we can’t apply such a function straightforwardly to members of P in a given decomposition,

for two reasons. First, there is a size mismatch: rS takes whole pictures as inputs; the members of P

are parts of pictures. The solution here is simply to let rS range over regions of P, where the outputs

are corresponding regions of rS(P).
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A second challenge is more fundamental. The members of P are independent spaces, not re-

gions of P; they contain no intrinsic information about their original relative position in P. Where

in the scene then, should rS embed such regions? How do we guarantee that they won’t get mis-

placed in the process? The solution here is to first apply the embeddings in m to the members of P.

Each such function cannily locates a member of P within a unified picture space. At that point rS

can be brought in to map subregions of this space to their corresponding regions in the space of S.

The diagram below illustrates this technique for a simple example where P = ⟨p1, p2⟩.

P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

m

m
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p2

m (p  )1 m (p  )2 S

r

1r m (p  )S

2r m (p  )S

S

rS

2

1

1 2

1

2

Given a member mn of m and a picture position function rS, we can define a function rSmn

which maps pn into the space of S. (Correspondingly, rmn takes a scene S and yields rSmn.) In this

way we can say that the content of pn is defined relative a projective index ⟨v, rmn⟩. In general,

where j = ⟨v, r⟩ is the projective index for a picture P, let jn = ⟨v, rmn⟩ be the projective index for any

part pn of P relative to a decomposition D. Thus we have arrived a definition of the content of a

part of a picture.

In summary: we began with the idea of the content of a picture P in a system I at index j. We

then introduced the concept of a decomposition D of P, which consists of an arbitrary division of

the picture into parts, and a record of how these parts are combined in the original. Then, for every

part pn of P relative to the decomposition, we showed how to define the content pn in I at index jn,

where jn is determined by the decomposition D and the original index j. Thus given a picture, a

system, an index, and a decomposition, we gave a general definition of the content of each part. To

show that a pictorial semantics is compositional, we must further demonstrate that the content of

the whole can be derived from the content of the parts and the way they are combined, as reflected

in the decomposition. As we proceed, it will be convenient to refer to the content of a picture P in

system L at an index j as “[[P]]L,j”, and the content of a picture part pn relative to decomposition D as
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“[[pn]]L,jn”. What we aim to show is that, for any picture P in system L, index j, and decomposition

D of P, we can derive [[P]]L,j from [[pn]]L,jn for every pn in P and the mode of composition reflected

in the arrangement m.

To motivate our final analysis, let us see how a simple first suggestion fails. According to this

proposal, the content of a whole picture is the generalized union of the content of its parts. That is,

given the system L, for any picture P in I and decomposition D:

(34) [[P]]L,j = ⋃{[[pn]]L,jn ∣ pn in P}

Consider the predictions of this analysis for the case illustrated below. Here a picture P is decom-

posed into two parts p1 and p2. Image p1 accurately depicts scene A and scene B, but not scene C.

Image p2 accurately depicts scene B and scene C, but not scene A. If we take the union of the sets

of scenes that both p1 and p2 accurately depict, we get a set that includes all of A, B, and C. But

obviously only B is in the content of P; P does not accurately depict A and C. Evidently, the content

of P cannot be so defined; so (34) is false.

p1

p2

A

B

C

p1 p2

P

p1
p2

The failure of this method clearly suggests a better one. The content of P in the example above

includes A, the scene accurately depicted by both p1 and p2, but none of the scenes accurately

depicted by p1 alone or p2 alone. Thus it seems we should define the content of the whole, not as

the generalized union of the content of its parts, but as their generalized intersection:

(35) [[P]]L,j = ⋂{[[pn]]L,jn ∣ pn in P}

This analysis is evident enough, but here is an informal proof, with indices freely suppressed for

brevity. Let D be a decomposition of a picture P into two parts, p1 and p2 (the number of parts
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is chosen arbitrarily for the example). Then proposition (35), applied to P is equivalent to the

following claim: for any scene S, P accurately depicts S if and only if p1 accurately depicts S and

p2 accurately depicts S. By the Geometrical Projection Theory, this in turn is equivalent to the

proposition that P is a perspective projection of S if and only if p1 is a perspective projection of

S and p2 is a perspective projection of S (here I suppress mention of the flexibility function). But

this proposition follows directly. From left to right: if a picture can be derived from a scene by

projection, then each of its parts can be so derived as well. From right to left: if all of a pictures

parts can be individually derived from a scene when located at their original position in the picture,

then the picture itself can also be derived from the scene. Thus (35) correctly defines the content of

the picture in terms of the content of its parts.

But is the proposed semantics compositional? Though it is clear how the content of the picture is

derived from the content of its parts, one might wonder what happened to the “mode of composi-

tion” in this compositional semantics. In fact, it is encoded in the definition of the index jn in terms

of original index j and the arrangement m. An unfortunate consequence of this approach that the

conclusions derived above appear trivial; unlike the sophisticated combinatorics of language, the

compositional rule for pictures amounts to little more than simple intersection. So it may prove

more intellectually satisfying to see how compositionality can also be derived when the mode of

composition is not built into the definition of part-content, but instead imposes a substantive con-

straint on how the content of the whole is derived from the content of its parts.

To this end, we will replace the definition of content at work in the preceding discussion, ac-

cording to which the content of a picture is defined relative to a projective index, with the alterna-

tive conception of picture content discussed in footnote 35 which abstracts away from projective

index, as follows:

(36) [[P]]L = {⟨S, j⟩ ∣ P accurately depictsL S at j}

Here the content of a picture is modeled as the set of all scene-index pairs such that the picture

accurately depicts the scene at that index. The definition applies to the content of parts of pictures,

without modification. The result is that the content of a picture part is “cut free” from any pro-

jective index that might be used to evaluate the whole. As a consequence, picture parts do not

encode their mode of composition in their content, and so there is no very simple technique for

deriving the content of a whole picture from a set containing the content of each of its parts. As in

the familiar linguistic case, merely intersecting the relevant contents is too unconstrained, leaving

compositional semantics for pictures a substantive matter.
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These observations are illustrated by the following case. In the diagram below, the scene D

is incompatible with the content of the picture P, but compatible with each of its parts p1 and p2

considered individually— even when the viewpoint and orientation of the picture plane is held

fixed across cases.

Dp1

p2 D P

p1
p2

An unsophisticated method of intersection would incorrectly allow D (along with the common

viewpoint) into the content of P, because it is in the content of both parts considered individually.

What goes wrong with such a method? A clue is that the only conditions in which p1 and p2

can be projected from D at the same viewpoint are those in which they arranged relative to one

another in a way that differs from their original arrangement in P. The diagram below makes this

fact clear.

p1
2p D

While the scenes in the content of the whole will indeed be contained in the intersection of the

content of the parts, this case illustrates that such intersection is too permissive. Instead, we must

specify a spatial arrangement of the contents so as to reflect the spatial arrangement of the parts in

the original picture. This can be achieved by defining the content of the whole not directly in terms

of the contents of its parts, but in terms of the content of its parts when their projective indices are

suitably constrained to conform with their position in the picture’s compositional structure. Thus

for any system I, picture P and decomposition D of P:

(37) [[P]]L = {⟨S, ⟨v, r⟩⟩ ∣ ∀pn in P ∶ ⟨S, ⟨v, rmn⟩⟩ ∈ [[pn]]L}

That is: the content of a whole picture is the set of all scene-index pairs such that each pair is in the

content of every part of the picture, when the index is suitably constrained to reflect the position
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of the part within the whole picture’s compositional structure. Now more clearly than before, the

content of the whole is determined by the contents of the parts ([[pn]]L for each pn) and the way they

are put together (by m). Thus the proposed semantics for the system of perspective line drawing is

fully compositional.
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Chapter 4

Iconic and Symbolic Semantics

Since the pioneering work of Charles Sanders Peirce, theorists of signs have distinguished two

basic forms of representation. ICONIC representation is exemplified by pictures, maps, sculptures,

videos, and audio recordings. SYMBOLIC representation is exemplified by words and sentences, but

also maritime flags, smoke signals, and sequences of lanterns used as coded warnings at night. As

a very rough heuristic: symbolic representations are those which bear a merely arbitrarily relation

to their content, while iconic representations are those which bear a more direct relationship to

their content, one often glossed as “resemblance.” Thus the relationship between the English word

`tree’ and the property of being a tree is utterly arbitrary; but the relationship between an accurate

depiction of a tree and its subject is much more immediate and rich. This chapter is an investigation

of this distinction.

The examples cited above are case of symbolic and iconic representation in public communi-

cation, but the distinction also arises in the more fundamental domain of mental representation.

Some form of iconic representation seems to be operative in low-level perception. For example,

early regions of the visual cortex have a retinotopic organization: the spatial distribution of neural

activity literally corresponds to the pattern of light reflected to the eye. (Pylyshyn 2006) Still, the ex-

act role of such apparently iconic representations is not well understood. Symbolic representation,

on the other hand, has secured a foundational place in the contemporary understanding of human

cognition and communication. The computational theory of mind— the account of the mind pre-

supposed by contemporary cognitive science— characterizes higher-order mental representations

as mental symbols, and defines processes of thought as transformations of such symbols.

Let us term the feature of a public or private sign which determines whether it is iconic, sym-

bolic, or the like, its REPRESENTATIONAL MODE. As I noted in the Introduction to this dissertation,

it seems likely that there is a full spectrum of representational modes that lie between those which

are entirely symbolic and those which are entirely iconic. There may be other dimensions of repre-
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sentational mode as well. Peirce, for example, believed that INDEXICAL representation was third,

distinct such category. But my focus in this chapter is on the apparently distal cases of iconic and

symbolic representation; explanation must begin somewhere. And of course, the application of

terms such as “symbolic” and “iconic” is pre-theoretical. A theory of representational mode should

help to illuminate these untutored distinctions, but it may ultimately revise them as precision and

generality require.

By now, we have encountered concrete and examples of semantics for both iconic and sym-

bolic representational systems. Semantic theories of natural language, familiar from contemporary

linguistic research, describe one family of symbolic systems in detail. The semantic theory of pic-

torial representation, developed over the course of the last three chapters, describes one family of

iconic system. Though I have stressed their common foundations, the semantics of language and

the semantics of pictures are undeniably different. There seem to be too many differences to prof-

itably enumerate. Still, we want to know, what are the fundamental and distinguishing differences

which set these forms of representation apart? And what explains their commonalities with other

systems of the same representational mode? Answering these questions is the task for a theory of

representational mode.

Until such a theory is secured, we lack the necessary means to adjudicate debates about whether

this or that representation is symbolic or iconic. Even more pressing, we are unable to give precise

substance to the theory that the mind is symbol-manipulating computational device, or that lan-

guage users communicate by means of coordination on public symbols. Ultimately, a theory of

representational mode should be more than diagnostic; it should help explain the empirical distri-

bution of representational modes in human communication. Why have both symbolic and iconic

representation thrived in contemporary media? What special communicative needs do each serve?

Why does so much of cognition and communication depend on symbolic, as opposed to iconic

representation— if indeed this is true? Despite their evident importance, the attempts to answer

these questions have been relatively few.

This chapter sketches the foundations of new account of representational mode. I will ulti-

mately argue that symbolic and iconic representation are distinguished by the architectures of the

systems in which they are physically instantiated. Symbolic systems, I suggests, exploit regulari-

ties which associate particular signs structures with content, whereas iconic systems exploit general

regularities in the associations between sign and content. This conclusion substantiates the view

that symbolic and iconic representation constitute different representational strategies, by which

an agent may encode content in a physical sign.
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Section §1 reviews theories in the formalist tradition, according to which representational mode

is merely a matter of the structural features of signs and their contents. §2 addresses theories in the

resemblance-theoretic tradition, which attempt to analyze representational mode in terms their

relative dependence on relations of resemblance. §3 investigates Saussure’s promising suggestion

that symbolic, but not iconic representation, is based on arbitrary links between sign and content.

§4 sketches an alternative, computational approach to the theory of representational mode.

1 The formalist tradition

Theories in the FORMALIST tradition treat representational mode merely as a matter of formal

structure. After considering and then rejecting some of the most prominent examples from this

tradition, I’ll define this family of theories more precisely, and argue that none can succeed.

To the naked eye, the most obvious difference between typical symbols, such as words, and

typical icons, such as pictures, is how they look. This suggests that icons and symbols differ essen-

tially in their physical instantiation. But this suggestion is easily refuted, as Fodor (1975, pp. 178-9)

as noted: we could easily construct a novel lexicon by borrowing a collection of pictures from some

system of depiction, and arbitrarily assigning these pictures to our choice of denotations. The re-

sult would be a system of representation which, for all intents and purposes, was symbolic, though

its signs had the same physical instantiation as those of some system of depiction. Thus the in-

trinsic physical characteristics of a sign is at best a poor indicator of its representational mode.

(The same argument can be recapitulated for mental representations: if there are iconic mental rep-

resentations, then duplicates of the neural realization of these states could also realize symbolic

representations in some other cognitive system.)

A more refined approach to the same intuitive idea, distinguishes representational mode by the

kinds of formal structures which are provided to interpretation. Formal structures here are abstrac-

tions from physical structure; they reflect all and only those features which are salient for interpre-

tation. For example, in a typical semantic theory for a natural language, the inputs to interpretation

are PARSE TREES, complex objects whose structure corresponds to the underlying syntactic struc-

ture of each disambiguation of a linguistic string. By contrast, in the pictorial semantics articulated

in Chapter 3 took colored two-dimensional planes as inputs. Even if this particular proposal is

ultimately revised, something quite like this, and quite different from linguistic parse trees, surely

serve as the input to pictorial interpretation.

Based on these kinds of observations it becomes tempting to distinguish representational modes
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on the basis of formal structure. Symbolic signs, perhaps, have logical form or syntactic structure,

while iconic signs do not. But what is the relevant notion of logical form or syntactic structure?

By way of elaboration, one approach holds that symbolic signs are uniquely those with finitely

many atomic parts, while iconic signs have uncountably many parts. But this suggestion imme-

diately runs afoul of digital imagery: pictorial representations with finitely many atomic parts.

Fodor (2007, p. 108) has a more sophisticated suggestion: symbolic signs are uniquely those with

a “canonical decomposition”. A canonical decomposition is the unique structure associated with

any sign for the purposes of interpretation. As Fodor observes, linguistic expressions have parse

trees as canonical decompositions. But there is not uniquely correct way to parse a picture; the

compositional semantics offered in Chapter 3 gave formal ratification to this claim. Yet, despite

these success, Fodor’s proposal faces basic problems. Again, there is the issue of digital imagery. It

is true that images in such systems do not necessarily have a unique canonical decompositions, but

it is worrying that it would be easy to stipulate such a decomposition, in which the basic inputs to

interpretation are the pixels, together with their spatial arrangement. A second problem is that the

claim that linguistic structures have canonical decompositions is itself an contentious empirical hy-

pothesis. There are viable theories of linguistic interpretation which reject the principle. (Steedman

1996; Steedman and Baldridge 2009)

More generally, all attempt to representational mode in terms of the formal structure of the

representation face the problem that distinctions in mode arise even among compositionally sim-

ple signs. We can imagine codes which map modulations in the brightness of a single lamp to

some gradable quantity, such as the amount of water in a reservoir. Some such codes are distinctly

iconic— brightness is mapped to water level according to transformational code reminiscent of pic-

torial or diagrammatic systems of representation. Other codes are distinctly symbolic— brightness

levels are arbitrary mapped to different quantities of water. These codes are described in much

more detail later in this chapter; suffice for now to observe that they seem to differ with respect

to representational mode, but their signs are exactly alike with respect to formal structure. They

are all unitary lamp states at different levels of brightness. Thus attempt to define representational

mode in terms of the formal structure of signs has little promise.

This conclusion illustrates an important lesson: the distinction between symbolic and non-

symbolic representation is not a distinction among signs considered in isolation. It is at least a

distinction among signs evaluated relative to systems of representation. To simplify matters, we

may stipulate that an entire system is symbolic just in case every sign in that system is symbolic

with respect to it. Then the mandate of the present inquiry is to identify criteria by classify systems
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as symbolic or not-symbolic. (On this way of proceeding, if there are systems which combine

symbolic and non-symbolic elements, those systems will be counted as non-symbolic, but this is

acceptable.)

These kinds of consideration give rise to a more popular and sophisticated class of theories

which analyze symbolic representation in terms of the structure of the domain of signs in a system,

rather than the structure of individual signs. Holistic accounts like these typically seek to reduce

the distinction between symbolic and iconic representation to the distinction between digital and

analog signals, or close counterparts. The simplest such approach defines symbolic systems as

those with only a finite or countable domain of signs, while non-symbolic systems have continuous

domains. Yet all such accounts are flummoxed by the existence of digital imagery: genuine systems

of depiction with finite domains of images, each composed of finitely many atomic parts. Since

there is a functional mapping from images to contents, such systems also have only finitely many

contents. So distinguishing symbolic systems by the cardinality of their range won’t work either.1

Thus the advent of digital imagery shows that the suggestive connections between the symbolic

and the digital are misleading. Analog and digital are categories of signal; symbolic and iconic are

categories of representational system.

All of the accounts of symbolic representation discussed thus far belong to an theoretical tradi-

tion which I will call FORMALIST.2 Theories in the formalist tradition treat systems of representation

abstractly, as interpretation functions defined set theoretically— sets of ⟨sign, content⟩ pairs. The ac-

tual mechanism of interpretation remains a black box. Formalist theories contend that a functional

description is sufficient to determine the mode of representation of a given system. Theories which

focus especially on the sign domain or content domain, like those discussed above, are species of

formalism; and we have seen how these fail. But perhaps there is some more sophisticated way of

describing the functional connections between the sign domain and the content domain which will

successfully capture the concept of symbolic representation? Indeed, this was the strategy elected

by none other than Nelson Goodman (1968). Yet I now argue that no purely formalist account can

successfully define symbolic representation.

Consider a grid of a fixed and finite size. Let S be the set of every possible way of filling this

grid with black and white squares. Since the grid is finite, and there are only two ways of filling in

each square on the grid, S itself is finite. Now let D be a system of digital black and white drawing,

1Haugeland (1991) is one of the few authors to analyze representational mode in terms of types of content alone.
2The nice distinction between theories of representational mode that focus on the sign domain, the content domain, or

the connection between them is due to Kulvicki (2006b). Kulvicki’s discussion there has strongly influenced the direction of
the present discussion.
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whose domain is S. For every image in this domain, D assigns it a content (modeled as a set of of

⟨ scene, index⟩ pairs) according to some method of projection. Let M be the range of D; since D has

finitely many inputs, and is deterministic, M is also finite.

Now suppose that everyday we develop a new code that randomly assigns a member of S

to a member of M. Such codes are symbolic: they depend on a library of arbitrary associations

that match signs with their content, in the same manner of linguistic lexicons. If we go on long

enough (at most, ∣S∣! days), eventually, on day n we will hit upon a code whose inputs and outputs

are paired exactly as they are by D. Call this Code n. Even though Code n matches D, a pictorial

system, in terms of inputs and outputs, it associates its signs with contents by an utterly arbitrary

mechanism quite unlike that of D. Interpretation in Code n, like that of the codes created just before

and after it, requires that we consult a library of sign-content associations, not that we apply some

method of geometrical projection. Indeed, there is no principled distinction between Code n and

its other, obviously symbolic sequence-mates. We should therefore conclude that Code n is also a

system of symbolic representation.

The case involves two systems of representation— D and Code n— which are identical with re-

spect to input and outputs, but differ with respect to mode of representation; one is iconic, the other

symbolic. It follows immediately that the defining feature of symbolic representation cannot be de-

scribed in terms of sets of input and output pairs. No formalist theory of symbolic representation

can succeed. (Some may object that, despite their duplicate physical instantiation, expressions of

Code n are distinct from those of D. But the same argument can be rerun using the system of struc-

turally simple iconic representations described above, as the reader may verify for herself.)

The failure of formalism reveals a principle which will guide the remainder of my investiga-

tion. The defining feature of symbolic representation is not to be found in the nature or structure

of the signs that a system takes as inputs, or the contents it delivers as outputs. Rather, it must be

something about the relation between signs and content determined by that system which defines

symbolic representation. Symbolic and iconic representation, we may conclude, correspond to dif-

ferent kinds of sign-content relations; that is, they correspond to different kinds of representation

relations. This is a conclusion we should have anticipated. The kind of semantics for pictures de-

scribed in Chapter 3 differs fundamentally from the more familiar semantics of natural languages;

that difference is not merely a matter of the internal structure of the inputs to interpretation. There

is an obvious difference in the mechanics of the semantic analysis in each case. But it remains to be

seen what this difference is.
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2 The resemblance tradition

One prominent family of views attacks the problem of representational mode by focussing

on iconic representation. Reflecting the considerations of the last section, this tradition holds that

iconic representation is distinguished by the relation it imposes between iconic sign and content.

Indeed, the iconic connection between a picture of a tree and the tree itself is undeniably intimate

and direct when contrasted with the very thin symbolic connection between the word `tree’ and the

property of being a tree. But how to define this intimate connection? A seemingly obvious answer

holds that the connection is one of resemblance, understood as sharing of properties. This would

explain the “intimacy” and “directness” of iconic representation. Symbolic representation is then

defined, contrastively, as representation which is not based in resemblance.

A first worry with this account is that it is not clear how it overcomes the problems facing

theories in the formalist tradition. The resemblance requirement on iconic representation cannot be

a merely extensional; it must be somehow reflected in conditions that extend beyond the intrinsic

features of the sign and content so related. This is a challenge, not a fatal problem. Perhaps, as

some theorists of depiction have recently suggested, iconic representation depends on an agent’s

intending to bring about a relation of resemblance between sign and content. (Abell 2009; Blumson

2009a) This strategy cannot be carried over to the domain of mental representation, though it might

be held that it is the cognitive function of some representational system to bring about resemblance

between sign and content. Obviously, more must be said to avert the anti-formalist worries.

In any case, fundamental problems render the entire approach unfeasible. As I have argued

at length in Chapter 2, resemblance cannot ground pictorial representation. There are forms of

pictorial representation, thus forms of iconic representation, which cannot be analyzed in terms of

resemblance alone. And there are no obvious species of resemblance which can even be claimed

as uniquely necessary to pictorial representation. Consequently, symbolic representation cannot be

defined in terms of the absence of resemblance either. These conclusions only complicate matters.

The most straightforward criterion by which symbolic and iconic representation might have been

differentiated cannot succeed. We must search elsewhere.

3 The Saussurian tradition

A progenitor of modern linguistics, Ferdinand de Saussure famously proposed that the dis-

tinctive feature of linguistic representation is the arbitrary relation between sign and content. He

contrasted this with systems of representation, such as mime, which determine a “natural” relation
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between sign and content. Following is a canonical passage from Saussure’s Course in General Lin-

guistics. (1922/1983, I.2) Note that Saussure’s terminology here is idiosyncratic: he calls the inputs

to interpretation “signals”— corresponding approximately to what I have called “signs”; the out-

puts of interpretation are “significations”— corresponding to my “contents”; finally, he reserves the

term “sign” for a complex whole that includes the signal, the signification, and the representational

relation between them.

T he link between signal and signification is arbitrary. Since we are treating a sign as the
combination in which a signal is associated with a signification, we can express this more
simply as: the linguistic sign is arbitrary.

There is no internal connexion, for example, between the idea `sister’ and the French se-
quence of sounds s-ö-r which acts as its signal. The same idea might as well be represented by
any other sequence of sounds. This is demonstrated by differences between languages, and
even by the existence of different languages. The signification `ox’ has as its signal b-ö-f on
one side of the frontier, but o-k-s (Ochs) on the other side.

Though Saussure uses his language as his primary example, it is clear that he intends the analysis in

terms of arbitrariness to extend to all symbolic representations. Indeed, I will construe Saussure’s

proposal as a general theory of representational mode, albeit one which cleaves the space of modes

into those which are symbolic and those which are not.

As a theory of representational mode, Saussure’s proposal succeeds exactly where theories in

the formalist tradition fail. He holds that that the distinctive feature of symbolic representation is

located in the relation between sign and content. And it is natural to understand arbitrariness as a

property of the causal or historical connections which link physically instantiated signs to contents.

Representational mode therefore depends on factors which extend beyond the mere structural char-

acteristics of signs and contents alone. Furthermore, Saussure’s view is powerfully intuitive. The

relationship between, for example, a drawing of a cat and the cat itself is in some way obviously

motivated or natural; the relation between the word “cat” and the biological family of cats (or any

member of that family) is completely arbitrary. Another term could have served to denote that

category just as well.

I will argue that Saussure’s theory is correct but incomplete. In so far as we have a pre-

theoretical grasp of the notion of arbitrary representation, those cases of representation which seem

to be arbitrary are just those which seem to be symbolic. Yet the account is incomplete, for Saussure

supplies no explicit account of what it is for such a relation to be arbitrary, nor of the nature of those

relations which are not arbitrary. The danger is that Saussure’s account replaces the pre-theoretical

notion of symbolic representation with another, equally opaque concept. Nor is it trivial to fill the

lacuna. To dramatize the difficulty of this task, we will consider two possible elaborations of the
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arbitrariness analysis. Each can be detected in Saussure’s own text, but both are ubiquitous in dis-

cussions of the topic. Each pursues the hypothesis that arbitrariness is a naturalistic feature of the

sign-content relation, to be understood in terms of its profile of causal or historical connections to

the environment.

The Conventionality Analysis. Perhaps the most popular interpretation of of Saussure’s proposal

takes arbitrariness and conventionality to be equivalent.3 According to this analysis, the relation-

ship between a sign and its content is symbolic if and only if the sign is mapped to the content

by an interpretive social convention. Yet despite its widespread appeal, this condition is neither

necessary nor sufficient for symbolic representation.

Fodor (1975, p. 178) was first to observe that conventionality is unnecessary for symbolic repre-

sentation: “English would be a discursive (i.e., a symbolic; i.e., a noniconic) representational system

even if it were innate (i.e. nonconventional).” Indeed, symbolic, non-conventional representation

is regularly deployed by non-human animals. For example, fireflies of different species employ

distinct flash patterns to indicate species identity, thereby facilitating coordination with potential

mates. The use of a given flash pattern by a species is symbolic. It is an arbitrary representation of

membership in a given species; another flash pattern would have worked just as well, so long as it

wasn’t in use by another species. But it is also genetically determined, therefore non-conventional.

(Lewis and Cratsley 2008) Hence symbolic, arbitrary representation can exist without social con-

vention.

The point can be extended by to the human mind (at least, according to the computational

theory of mind). Mental symbols, like their public counterparts are thought to bear a merely arbi-

trary relation to their contents. To make the point vivid, consider an alien mind very much like a

computer; in this mind the computational symbol “101” represents the property of being a cat. But

“011” would have served the creatures purpose just as well. The mental symbols are arbitrary. Yet

the representational relation between a mental symbol and its content is not in general determined

by social convention. Instead it is a product of biological evolution and the causal history of the

organism which is the bearer of that symbol.

The insufficiency of the conventionality analysis was observed by Eco (1979), who noted that

a code may be selected for use by culture even when it is fully “motivated”. Indeed, in Chapter

1, I argued at length that there are systems of depiction which are established by social conven-

tion. Thus there are systems of representation which are definitionally non-symbolic, yet conven-

3Saussure himself appears to have shared this conviction: “The main object of study in semiology will none the less be
the class of systems based upon the arbitrary nature of the sign. For any means of expression accepted in a society rests in
principle upon a collective habit, or on convention, which comes to the same thing.” (Saussure 1922/1983, I.2)
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tional. As I stressed in that discussion, we should not confuse the concept of arbitrariness asso-

ciated with the open-ended selection of an interpretive rule by a population— a prerequisite for

social convention— with the concept of arbitrariness used to describe the internal structure of a

representaitonal relation— the defining characteristic symbolic representation. The two concepts

are essentially independent.

The Counterfactual Analysis. Instead of attempting to specify specific social relations underlying

symbolic representation, an alternative is to look to the causal networks in which physically instan-

tiated symbols are embedded. These in turn are spelled out in terms of counterfactual conditions

on representation: the relationship between a sign and its content is symbolic if and only if users of

the sign could have employed some other sign to designate the same content. This suggestion cap-

tures our intuitive idea of arbitrariness rather well; Saussure himself relied on such counterfactuals

to elucidate the notion in his original discussion. But taken as a serious analysis of symbolic repre-

sentation, it is unclear how to make this proposal precise while maintaining its plausibility.

One one hand, if the counterfactual modal is read narrowly, then the condition appears not

be necessary. For example, if we allow that a representation is symbolic just in case its bearer

could have chosen to use a different sign for the same content, or could have taken some course

of action that would have lead to the use of a different sign, then we run afoul of biologically

determined symbolic representation. The bearer of a mental symbol, for example, typically has

no choice about what symbol she employs to represent a given content, nor, typically, is there any

discreet alternative action which could have lead to that result. Indeed, in order to coherently

specify a situation in which the bearer of a mental symbol used some other symbol to represent the

same content, we may have to re-imagine the agent’s entire lifespan; for biologically basic symbolic

representation, such revision may engulf entire branches of the evolutionary tree.

On the other hand, if the counterfactual modal is read broadly, then the condition appears

not to be sufficient. For example, suppose we allow that representation is symbolic just in case,

starting arbitrarily far back in history, a situation could have evolved in which the agent used a

different symbol to represent the same content. Then the condition appears to be necessary for

symbolic representation, but it also includes a variety of non-symbolic representational forms. A

given population may rely on a system of depiction which maps a picture P to a certain content

C; if history had evolved differently, the same population might have used a different system of

depiction, relative to which a different picture Pœ depicted C. Such a counterfactual would satisfy

the proposed condition, but the representation in question would not be symbolic. As stated, the

counterfactual analysis fails to provide a productive solution to the problem at hand.
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Neither precisificaiton works, and it is not clear how better to proceed. Without an explicit

theory of arbitrariness, Saussure’s project remains incompletely realized. In the next section I aim

to provide a theory of symbolic representation which is broadly Saussurian, but gives substance to

the motivating idea of arbitrary representation.

4 A computational approach

In this section, I sketch an alternative theory of representational mode. By dint of the nature of

this chapter’s subject matter, and the time I have left myself to write it, what follows is necessarily

speculative. I ask for the reader’s patience.

The moral of the discussion of formalism was that differences in representational mode must

be traced to the variety of representation relations. Saussure offered such an account, cast in terms

of representational arbitrariness; this was promising in part because it suggested an avenue by

which representational mode might be grounded in the physical conditions that give rise to rep-

resentation. But as we saw, this idea could not be straightforwardly elucidated in terms of social

convention, nor causal etiology.

The computational alternative I’ll develop here holds instead that systems of representation

belonging to different modes are distinguished by the kinds of algorithms that compute them.

The view is most clearly articulated with respect to public systems of representation. I propose that

public systems of representation should be understood as interpretive algorithms that map signs to

content.4 There are many kinds of algorithm, corresponding to variety of representational systems.

The various algorithmic kinds are distinguished principally by their architecture— the structure of

rules they enlist to compute a content, given a sign. According to the computational approach to

representational mode advocated here, iconic and symbolic representation are reflections of fun-

damentally different algorithmic architectures. The algorithms grounding symbolic representation

exploit individuated rules which map signs to content in a piecemeal fashion, by applying a dis-

tinct procedure to each sign. The algorithms grounding iconic representation exploit uniform rules

which map signs to content by a applying the same procedure to each sign. On this view, symbolic

and iconic representation are distinguished by different kinds of computational architecture. They

reflect different strategies for storing and retrieving content from signs.

This analysis presupposes that systems of representation can be identified with interpretive

algorithms, which I understand, following Fodor (1975), as systematic mappings from public signs

into signs of a mental code. The computations involved in such a mapping take public repre-
4Thanks to Matthew Stone for helping to clarify this basic orientation.
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sentations as inputs and deliver mental representations as outputs. Symbolic representation is

based on one family of such computations, while non-symbolic, including iconic representation is

based on another. Yet ultimately, the theory must be extended to the mental representations them-

selves. Here my discussion will be especially imprecise. Quite roughly, I propose that the analysis

of representational mode cast in terms of differences of algorithmic structure can be extended by

generalizing the idea of an algorithm. Algorithms are one among a family of mechanisms that de-

terministically map inputs to outputs. Others include physical laws, chains of causal interaction,

and teleological norms. Letting the blanket term rule cover all these phenomena, I propose that

the same architectural distinctions arise among rules. And these in turn ground the differences in

mode of mental representations.

To simplify the ensuring discussion, I will focus almost entirely on compositionally simple

signs. In the final section, I will indicate how the proposed analysis might be extended to complex

signs as well.

4.1 Simple iconic and symbolic representation

As advertised, I will initially confine my discussion to SIMPLE signs. A sign is simple in a

system of depiction if its content is not computed as a function of the content of its parts. Since

simple signs with full-blown representational content are unusual in any mode, I pause in this

section to provide detailed examples of simple iconic and symbolic representational systems. They

will serve as points of reference in the remainder of the chapter.

Suppose I must communicate to you information about the the amount of water in a reservoir,

over a great enough distance that merely shouting will be ineffective. I have a lamp which can

be set at ten evenly distributed levels of brightness. We agree to use different settings of the lamp

to represent the percentage of the reservoir that has been filled with water. Of course, there are

many different kinds of codes we might establish to facilitate this communication. Here is one.

According to the I-Code (“I” for iconic), the brightest setting of the lamp indicates that the reservoir

is between 100% and 90% full; the next lowest setting indicates that the reservoir is between 90%

and 80% full, and so on, down to the dimmest setting, which corresponds to the reservoir being

between 10% and 0% full. To express the semantics for such a system, let level() be a function which

maps worlds to the percentage of the reservoir which is filled in that world, rounded up to the

nearest 10-percentile. Let bright() be a function from states of the lamp to a numerical measure of

the brightness of the lamp in that state, ranging from 1 to 10. Then the semantics for the I-Code is

as follows. For any state of the lamp S:
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(1) I(S) = {w ∣ level(w) = bright(S) ‡ 10}

That is, the content of a given setting of the lamp is the set of worlds in which the percentage of the

reservoir which is full is at most 10 percentage points lower than the measure of the brightness of

the lamp multiplied by 10.

A very different code would exploit randomly stipulated correspondences between levels of

brightness and ranges of fullness. Call one such system the S-Code (“S” for symbolic). Here is its

semantics, for any state of the lamp S:

(2) I(S) = {w ∣ level(w) = 10} if bright(S) = 7

{w ∣ level(w) = 20} if bright(S) = 3

{w ∣ level(w) = 30} if bright(S) = 6

{w ∣ level(w) = 40} if bright(S) = 1

{w ∣ level(w) = 50} if bright(S) = 5

{w ∣ level(w) = 60} if bright(S) = 8

{w ∣ level(w) = 70} if bright(S) = 4

{w ∣ level(w) = 80} if bright(S) = 9

{w ∣ level(w) = 90} if bright(S) = 2

{w ∣ level(w) = 100} if bright(S) = 10

The S-Code corresponds to a system of representation which appears to be straightforwardly

symbolic. The mappings from signs to content in that system are arbitrary in exactly the way Saus-

sure associated with symbols. By contrast, the I-Code is highly iconic. The brightness of the light

represents the state of the reservoir in a manner which is at least diagrammatic, if not simply pic-

torial. (Nautical maps often associate variations in color lightness with water depth in essentially

the same way.) All signs in either system are simple because in neither case do the signs have com-

ponent parts which are assigned content by the system of representation in question. This is not

deny that they have structure; signs must be differentiated on the basis of something after all. But

the component parts of this structure are not assigned content in the calculation of the content of

the whole.

When we go to actually use the I-Code or the S-Code, the receiver of the message must inter-

pret it. It will be useful to establish a reasonably explicit representation of the procedure an agent

might use when interpreting a message in each of these codes. This would be an algorithm which

computes the interpretation function of each, by taking signs as inputs, and returning content as
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output.5 Again, I assume a framework in which the process of interpretation for public signs is one

of systematically mapping public signs into signs of a mental code. The computations involved in

such a mapping take public representations as inputs and deliver mental representations as out-

puts. These computations map signs to content only in the derivative sense that the representations

which are outputs have an explicit and immediate connection to the environment, and therefore

real representational content. (This is the same derivative sense in which an algorithm which com-

putes the successor function delivers numbers as outputs.)

Here I will describe algorithms that take signs as inputs and output sets of worlds. Strictly

speaking, these algorithms should be understood as outputting data structures which contain un-

ordered lists (i.e. sets) of names of worlds, and assume that that, for the purposes of computation,

there are only finitely many worlds. I take this to be an especially explicit and reasonably meta-

language-neutral representation of content. Those who wish to imagine alternative computational

architectures whose native tongue does not include names of worlds should have no trouble port-

ing the examples provided here into their preferred framework.

I-Code
READ sign
WRITE { w | level(w) = bright(sign)*10 }

S-Code
READ sign
IF bright(sign) = 7

WRITE { w | level(w) = 10 }
ELSE IF bright(sign) = 3

WRITE { w | level(w) = 20 }
ELSE IF bright(sign) = 6

WRITE { w | level(w) = 30 }
ELSE IF bright(sign) = 1

WRITE { w | level(w) = 40 }
ELSE IF bright(sign) = 5

WRITE { w | level(w) = 50 }
ELSE IF bright(sign) = 8

WRITE { w | level(w) = 60 }
ELSE IF bright(sign) = 4

WRITE { w | level(w) = 70 }
ELSE IF bright(sign) = 9

WRITE { w | level(w) = 80 }
ELSE IF bright(sign) = 2

WRITE { w | level(w) = 90 }
ELSE IF bright(sign) = 10

WRITE { w | level(w) = 100 }

In both cases, the READ operation retrieves the value of a variable input; the WRITE operation out-

puts a new value.

So much for public representation. Could there be simple iconic and symbolic mental repre-

5I shall use the terms “algorithm” and “procedure” more or less interchangeably; I take these terms to denote what
theorists of computation sometimes call an “effective procedure”— a step-wise process so simple and deterministic that it
can be carried out by a mechanical device.
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sentations as well? I assume that the idea of a simple symbolic mental representation is familiar

enough. Typically, simple symbolic mental representations in humans are thought of, in anal-

ogy with the words of public language as having denotational content, rather than fully truth-

conditional content. But it is not difficult to imagine (perhaps much simpler) creatures that would.

The same considerations apply to simple iconic representation. I can see no in-principle reason

why intelligent agents could not have iconic mental representations. A mental code much like the

I-Code, might use intensity of chemical or electrical signals to carry content about some internal or

external state. Unfortunately, there is no consensus about the structure of the causal network which

relates mental representations to their content, so I cannot express this relation as simple algorithm,

as I did for the interpretive rules of public language. At most, we can allow that the mapping of

mental signs to content is governed by deterministic regularities, though the nature and structure

of these regularities remains obscure.

4.2 Individuated and uniform representation

I now turn to the analysis of representational mode, again confining my discussion to simple

representations. The heart of the analysis is a distinction between two kinds of rule. Initially I’ll

draw this distinction in a quick and informal way; later I’ll discuss whether and to what extent

the definition can be precisified. To begin, let us temporarily distance ourselves from the specific

problem of representation. Consider the following two algorithms, roughly described.

+1 Algorithm
READ input
WRITE input + 1

Table Algorithm
READ input
IF input = 1

WRITE 2
ELSE IF input = 2

WRITE 3
ELSE IF input = 3

WRITE 4
...

Modulo spatial constraints on physical implementation, each procedure maps the same inputs

to the same outputs. Each computes the same function, successor, but in very different ways. The

+1 Algorithm computes the successor function by applying the same rule to each possible input.

Because it applies the same procedure to all inputs, it is an example of what I will call a UNIFORM

RULE. By contrast, the Table Algorithm treats each input differently, applying a different procedure

to each individual case. It is an example of a INDIVIDUATED RULE. By “rule” I mean any schematic

procedure which maps inputs to outputs by a process sufficiently incremental and deterministic

that it can be carried out by a mechanical device. When referring to computational algorithms in
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particular, I will speak of uniform and individuated algorithms

In general, uniform rules apply the same procedure to each input in order to derive its output.

Individuated rules apply a different procedure to each input in order to derive its output. This

distinction is difficult to make entirely exact, in part because a rule is itself a procedure, so there

is one sense in which even an individuated rule applies the “same” procedure to each input. To

fend off this misunderstanding, we might say that, in the case of a individuated rule, the procedure

applied to each input is specified by a different part of the global rule; while in a uniform rule, the

procedure applied to each input is same part of the global-rule. Even this way of putting things

faces tricky counterexamples, but it is enough for now to convey a reasonably clear idea of the

distinction at hand.

My analysis of representational mode among simple representations can now be stated suc-

cinctly:

(3) I is a system of symbolic representation iff I is a individuated rule.

The analysis is most clearly elaborated with respect to the interpretive algorithms underlying pub-

lic systems of representation. After explaining this application I’ll briefly discuss the ways in which

the same analysis may be extended the domain of mental representation. Consider again the algo-

rithms used to compute the S-Code and I-Code:

I-Code
READ sign
WRITE { w | level(w) = bright(sign)*10 }

S-Code
READ sign
IF bright(sign) = 7

WRITE { w | level(w) = 10 }
ELSE IF bright(sign) = 3

WRITE { w | level(w) = 20 }
ELSE IF bright(sign) = 6

WRITE { w | level(w) = 30 }
ELSE IF bright(sign) = 1

WRITE { w | level(w) = 40 }
...

The S-Code is a clear example of a individuated rule. It applies a distinct procedure to each

possible input to derive its content. And as I argued above, the S-Code is a symbolic system of

representation. By contrast, the I-Code is a clear example of a uniform rule. It applies the same

procedure to all possible inputs in order to derive their content. And it is an iconic system of repre-

sentation. Thus, at least for these simple cases, our pre-theoretic judgement about the distribution

of iconic and symbolic modes covaries closely with the individuation and uniformity of the in-

terpretive algorithms which correspond to those systems. The same analysis applies smoothly to

other examples of simple symbolic representation. Paul Revere’s famous symbolic code, for exam-
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ple, was obviously individuated, for it contained a distinct clause for each possible input sign: one

if by land, two if by sea. In the same way, linguists typically specify the lexicons of natural language

by tables which separately match each possible lexeme with its denotation. Lexicons are core cases

of symbolic representation, and they are realized by individuated algorithms.

This account of symbolic representation allows for a precise rendering of Saussure’s intuitive

ascription of arbitrariness, which I describe briefly here, and return to in more detail later. In

their most natural implementation, individuated algorithms include, for each possible sign input, a

single clause which assigns content to that input. In the S-Code, for example, each sign is mapped

to its content by a single clause of the form “IF f(sign) = n, WRITE content”. Because of the

modularity of this algorithmic architecture, it is always possible to replace one such clause with

a new clause which maps a different sign to the same content— without disrupting the normal

functioning of the rest of the procedure. And it is in this sense that symbolic representation is

arbitrary: for any sub-routine of an algorithm which maps a given sign to its content, an alternative

sub-routine could be used to map a different sign to the same content, while holding fixed every

other sub-routine of the algorithm. Such a construal of arbitrariness is broadly counterfactual, since

it conforms to the general idea that a sign is arbitrary just in case a different sign could have been

used to represent the same content. But the range of possible arbitrary variations is fixed by the

architecture of the interpretive algorithm, not the causal history of the representation.

As expected, the I-Code is not arbitrary in this way, for there is no obvious modular trans-

formation which can discretely replace one clause for another, without disrupting the rest of the

procedure. For example, suppose I set out to modify the I-Code so that a lamp state of brightness 7

is mapped to the reservoir being 10% full, but the rest of the algorithm remains fixed. The most nat-

ural way to do this is to add an exception clause to the procedure, as illustrated at right. There is no

straightforward way of replacing the existing WRITE clause with another to achieve the same result.6

I-Code
READ sign
WRITE {w | level(w) = bright(sign)*10}

Modi�ed I-Code
READ sign
IF bright(sign) = 7

WRITE {w | level(w) = 10}
ELSE

WRITE {w | level(w) = bright(sign)*10}

This is the result we should expect. The I-Code is most akin to a system of diagrammatic or pictorial

6But it can be done— by replacing bright() itself with a individuated algorithm. This particular maneuver could be
avoided by making the definition of bright() explicit in the code itself. Yet even then there may be no fool-proof way of
ruling out tricks like these.
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representation. It does not determine an arbitrary relation between its signs and their content. And

it fails the characterization of arbitrariness on offer here.

Naturally, the question arises whether the present analysis can be carried over to iconic sys-

tems of representation as well. Do simple iconic systems correspond to all and only the uniform

algorithms? I am not sure. Consider the interpretive rules which govern indexical representations

like directional arrows and pointings. These are certainly uniform, in the sense that that the same

rule maps every arrow and its position to an indicated direction. But I suspect that there are good

reasons for distinguishing such indexical representations from iconic representations. If so, then

rule individuation is not a sufficient condition for iconic representation.

On the other hand, it does seem that rule uniformity is a necessary condition on iconic repre-

sentation. We saw that the I-Code is both iconic and uniform. Although, officially, I am not yet

considering higher-order systems of representation, it is easy to see how a semantics of pictorial

representation based on geometrical projection, such as that presented in Chapter 3, lends itself to

a uniform algorithm as well. Setting aside certain details, for any given picture p and projective

index i, the algorithm outputs {s | lin(s,i) = p}. It too is uniform. If all iconic systems are

uniform algorithms, this makes sense of the widespread characterization of iconic representation

as “motivated” or “natural”. In a unfiorm algorithm, every sign is mapped to its content by the

same procedure. Since the same procedure can be applied to every sign, it must be general and

systematic. Thus iconic representation is general and systematic, a surrogate for “natural”. And

since the same procedure is applied to every input, the variation in content must derive from the

variation in the intrinsic features of the sign. Thus the content of the sign is “motivated” by the

structure of the sign itself.

These considerations suggest that the distinction between symbolic and non-symbolic repre-

sentation is the primary taxonomic distinction among representational modes, corresponding as it

does to the basic distinction between individuated and uniform rules. Further distinction, for ex-

ample, among pictures, diagrams, and indexical signs, correspond to differences among the variety

of uniform interpretive rules.

I have defined an interpretive algorithm as a translational mapping from signs in a public repre-

sentational system to those of a private, cognitive representational system. What if it turns out that

all mental representation is symbolic? Does this imply that all iconic representations are therefore

symbolic? It does not. The statuses of public and mental representational modes, while parallel,

are autonomous. The distinction between iconic and symbolic public signs is pre-theoretical, clear

without significant empirical understanding of private representation. Even if all mental represen-
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tation is symbolic, there remain obvious and unaccounted for differences between, say, the systems

of natural language, and those of perspective depiction. While the ultimate mapping from iconic

public representations to content may go via symbolic mental representation, the first, public-to-

private stage of this mapping, is what significantly distinguishes public systems of different modes.

Differences in this stage of the mapping are what I have described above.

The more pressing challenge for the rule-based analysis of representational mode is whether

it can be applied to the potentially various modes of mental representation. Thus far I have only

discussed the individuation/uniformity distinction with respect to interpretive rules; but mental

signs do not, in general, acquire their content through a process of interpretation. Rather, mental

content is a product, broadly speaking, of a sign’s causal and functional role in an environmentally

embedded computational system. Still, I believe the present analysis can be extended to the repre-

sentational mode of mental signs. But I regret that my comments here will be at best sketchy and

circumspect.

I begin with a series of basic assumptions which I hope are held in common by all representa-

tional theories of mind which are more or less naturalistic. First, I assume that the mapping of signs

to content, whether mental or public, is deterministic, so can be modeled by an interpretation func-

tion. Second, I assume that these mappings emerge from rules, broadly construed, again, as any

type of schematic mechanism for mapping inputs to outputs. Rules may be realized by algorithms,

patterns of causal determination, laws, or norms. Third, I assume that these rules themselves have

internal structure which can be richer than the pairings of inputs and outputs. For example, I as-

sume that the rules which govern the interpretation of mental lexemes have a different and simpler

structure than the compositional rules which govern the interpretation of complex mental represen-

tations. Finally, I assume the rule structure may vary by representational systems. In the context

of mental representation, such systems may correspond to the various modules or sub-modules

posited by contemporary cognitive scientists. In sum: I assume that the mappings from signs to

content, whether mental or public, are grounded in internally structure rules, which vary according

to representational system.

The many available theories of intentionality posit very different kinds of rules grounding men-

tal representation. Whatever theory ultimately prevails, I propose that the distinction between indi-

viduated and uniform rules, applied to the psychosemantic conditions of that theory, will track the

distinction among representational modes for mental representations.

Consider, for example, the causal lineages linking singular signs to environment properties

posited by causal theories of reference. For each mental “word”, a distinct lineage links that sign to
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its referent. The entire mental “lexicon” (for a particular cognitive system) is based on the collection

of all such lineages for the signs of that system. But these causal paths need not result from any one

mechanism; instead, the lexicon is grounded in a sequence of largely independent causal threads

linking signs to content. It is governed by an individuated causal rule; thus it is a symbolic system

of representation. By contrast, consider the causal mechanism, whatever it is, which underlies the

correlation of perceptual content with perceptual representations. It is obvious that there is no

dedicated causal mechanism linking, say, a perception of an edge at a particular position with the

content that there is an edge at that position. Rather, there is a general causal mechanism, embodied

in the visual system, which links any of a range of perceptual representations to any of a range of

distal stimuli. The psychosemantics of perception, whatever form it ultimately takes, and however

it is ultimately implemented, is governed at least in part by a uniform causal rule; thus it is, at least

in part, an iconic system of representation.

I mention these examples by way of suggestive illustration; they are too noisy to ground any

robust theoretical conclusions. (For example, the inputs to perceptual interpretation are not simple

representations.) The following more idealized cases may make the point more vividly. Consider

two machines. One maps temperature to binary strings according to a tally system, reminiscent of

the I-Code: for every full degree fahrenheit above 0, the system outputs a 1. When the temperature

is n degrees fahrenheit, the system outputs n 1’s. Call this the I-Machine. Another machine maps

temperatures to tally marks according to a tabular system, reminiscent of the S-Code: 1XF is en-

coded as “11111”, 2XF as “111”, 3XF as “111111”, and so on. The outputs of each machine probably

do not qualify as representations unless they are embedded in more complex computational devices

which use the outputs to guide action. But suppose they are so embedded. The outputs of each are

representations.

It is clear here that the representational content of the outputs of each machine are grounded

by their causal connection to the environment, and also that this causal connection has a very

different character in each case. The S-Machine establishes a causal relation between each possible

temperature and a string of 1’s, but in a way that is piecemeal. For each sign, a distinct causal

mechanism connects it to its environmental counterpart. Thus the S-Machine is governed by a

causally realized individuated rule. A representational system which depends on the S-Machine is

therefore dependent on an individuated representational rule. By the analysis proposed here, the

representational mode of the system is symbolic. By contrast, the I-Machine contains a mechanism

which can causally relate any of a variety of states in the world to any of a variety of strings of 1’s, in

a manner which is entirely general. There is no dedicated mechanism which relates one particular
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string to a particular temperature in the environment. Thus the I-Machine is governed by a causally

realized uniform rule. A representational system which depends on the I-Machine is therefore

dependent on a uniform representational rule. By the analysis proposed here, the representational

mode of this system is non-symbolic, and possibly iconic.

Without being able to provide much more detail, I hypothesize that the symbolic representa-

tional mode, manifested in both public and mental representation, is grounded in individuated

interpretive rules. Non-symbolic modes, including iconic representation, are grounded in uniform

interpretive rules. Each employs a fundamentally different strategy for storing information in a

physical medium, reflected by correspondingly distant causal and algorithmic architectures. If the

analysis proposed here is correct, than the core semiotic distinction between symbolic and iconic

representation reflects this basic difference in semantic organization.

4.3 The architecture of representational rules

I now turn to discussing, in greater detail, the architecture of individuated rules which underly

symbolic representation. I have leaned heavily on the informal distinction between a uniform and

individuated rule. Can we make this idea more precise? Yes and no. In this section, I’ll elaborate

on the key distinction as applied to algorithms, and indicate some of its important consequences

and properties. Disappointingly, I know of no way to make this distinction perfectly rigorous, and

I suspect that there is no way to do so.7

One very natural way to implement an individuated algorithm is by using a LOOK-UP TABLE. A

look-up table is an algorithmic architecture in which an explicit representation of an input is paired

with an explicit representation of the output. (Gallistel and King 2009, p. 51) Mapping a sign to its

content using a look-up table requires testing the sign against every entry in the table until the sign

is found. If the table is long, this could be time consuming. On the other hand, no more intelligent

operation need be performed to compute the output than looking down the table. By contrast, a

typical uniform algorithm requires the application of much more complex computations.

Individuated algorithms based on look-up tables differ from uniform algorithms in other ways

that are relevant to interpretation. A look-up table requires an explicit representation of each and

every possible input. The algorithm itself must store, or have access to, the entire suite of possible

signs. As a consequence, an individual who acquires the ability to interpret in a given symbolic

7In practice, drawing the distinction between systems that follow a uniform or individuated rule seems may depend on
facts about when a given event or action counts as following a given rule. This idea in turn has been the subject of consider-
able philosophical scrutiny. (Saul Kripke 1982) The moral of that discussion seems to be that the concept of following a rule
cannot be fully formalized.
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system must have a mental representation for every symbol in the system. By contrast, it is always

possible to specify a uniform algorithm which has no representations of any inputs. Competence

with an interpretive algorithm of this kind requires the ability to apply a general rule to a range of

inputs and nothing more.

In any physical implementation of a look-up table, a representation of each input-output pair

occupies a distinct position in physical memory. This fact too has important consequences. Since

each entry in the table is physically independent, entries can be added and removed piecemeal,

without impairing the overall function of the computational machinery. For symbolic systems, this

means that it is easy to add new simple symbols to the lexicon, and easy to drop or replace old ones.

By contrast, in iconic systems, there is no straightforward way of adding new signs or jettisoning

old ones with making significant changes to the interpretive rules.

The fact that entries in a table can be easily replaced with new ones leads to the definition of

arbitrariness offered in the previous section. It is interesting to make this definition explicit. Let I

be a system of representation which assigns a sign S to the content C. The representation of C by S

is arbitrary in I because it is possible to replace S with alternative sign Sœ such that, in the resulting

system Iœ, Sœ carries C, but in all other respects, Iœ is just like I. I take this to be a reasonable

precisification of Saussure’s guiding idea. Here is a first attempt to render it more exactly:

(4) Symbolic Representation — First Attempt

For any system of representation I and sign S in I: S is symbolic in I iff

there is system Iœ x I and sign Sœ not in I and structurally distinct from S such that:

(a) Iœ is derived from I by replacing S with Sœ throughout;

(b) For every sign E x S in I: I(E) = Iœ(E), and I(S)=I’(S’).

According to this definition, a sign is symbolic in a system of representation just in case that sign

could be replaced with a structurally distinct alternative sign, and, modulo this change, the sys-

tem could go on functioning as before. Clause (a) describes the replacement component of the

definition; clause (b) describes the “go on functioning as before” component.

To see how the definition applies to symbolic systems of representation, consider again the

S-Code. It is possible to make a modular change to this code, by replacing the representation of

one input with another, without engendering any more holistic alteration. In the example below,

the content assigned to brightness level 7 is re-mapped to brightness level 0 in the modified code.

Hence, according to the definition, brightness level 7 is symbolic with respect to the S-Code.
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S-Code
READ sign
IF bright(sign) = 7

WRITE { w | level(w) = 10 }
ELSE IF bright(sign) = 3

WRITE { w | level(w) = 20 }
ELSE IF bright(sign) = 6

WRITE { w | level(w) = 30 }
ELSE IF bright(sign) = 1

WRITE { w | level(w) = 40 }
...

S'-Code
READ sign
IF bright(sign) = 0

WRITE { w | level(w) = 10 }
ELSE IF bright(sign) = 3

WRITE { w | level(w) = 20 }
ELSE IF bright(sign) = 6

WRITE { w | level(w) = 30 }
ELSE IF bright(sign) = 1

WRITE { w | level(w) = 40 }
...

I illustrated in the previous section how similarly modular changes cannot be made to uniform

codes such as the I-Code.

Yet this definition fails to correctly classify signs which are components of other, complex signs

that are inputs to the same system. Though my aim, for now, is only to define symbolic repre-

sentation for atomic signs, the definition should apply to atomic signs even when they figure in

systems which also interpret complex signs. The definition fails because if a complex expression E

contains S, and is not identical to S, then it will not be the case, once the modification of clause (a)

is implemented, that I(E) = Iœ(E).

Luckily the problem is easily solved by altering clause (b). Instead of requiring that the two

systems be exactly alike for every sign, save for their treatment of S and Sœ, we now require that the

two systems be exactly alike for every sign when S' replaces S in every case.

(5) Symbolic Representation — Second Attempt

For any system of representation I and sign S in I: S is symbolic in I iff

there is system Iœ x I and sign Sœ not in I and structurally distinct from S such that:

(a) Iœ is derived from I by replacing S with Sœ throughout;

(b) For every sign E in I: I(E) = Iœ(E[S~Sœ]).

Insofar as the key concepts of the definition— such as the replacement of a sign within an algorithm—

can be made explicit, the definition here offers a significant clarification of Saussure’s original idea,

at least as applied to symbolic systems which rely on look-up tables to compute the content of their

simple signs.

Explicit representation of inputs, piecemeal extension, and arbitrary replaceability— all of

these are relevant properties of individuated algorithms implemented as look-up tables. They

are particularly useful because each can be precisely defined. Unfortunately, none of these def-

initions can serve as a definition of individuated algorithms in general, because it is possible to

implement individuated algorithms without using look-up tables, and many such implementations
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satisfy none the conditions described above. (I must postpone a detailed elaboration of the evidence

for this claim.) The variety of ways in which this can be done resists formal characterization.

But there is one possible definition which is not implementation-bound in this way. In a great

many cases, uniform algorithms are exactly those which computer scientists term COMPACT. A

compact algorithm is one whose code takes up less physical space than a pair-wise list of its pos-

sible inputs and outputs. (Gallistel and King 2009) Since many finitely-specifiable uniform rules

have infinitely many inputs and outputs, they are trivially compact. Even when the domain of

interpretation is explicitly restricted, the generalization typically holds. Furthermore, a pair-wise

list of inputs and outputs is, within a reasonable margin, the same size as the code for individuated

algorithm with the same inputs and outputs. So in a great many cases, individuated algorithms are

exactly those which are not compact. Thus compactness is a useful heuristic for diagnosing rule

type. But it is not an analysis. It is possible to devise apparently uniform rules applied over narrow

finite domains which are not compact. Thus the concepts of uniformity and individuation remain

formally elusive.

4.4 The hierarchy of representational modes

Thus far I have discussed representational mode only with respect to simple signs. We could

stop there. Perhaps representational mode is a feature of simple signs alone: systems which coun-

tenance complex signs contain subsystems which countenance only simple signs, and these are

the primary bearers of representational mode. On this view, though pictures and sentences are

complex, they inherit their representational mode from that of their simplest parts.

But there are compelling reasons to reject this proposal. Most striking is the observation of

complex signs which appear to employ different modes of representation at different levels of com-

position. For example, consider a seating chart consisting only of names spatially arranged on a

page to reflected the intended seating position of the individuals named.8 The simple constituents

of the sign are names— paradigmatic symbolic representations. But the way in which the names

are arranged is determined by some system of geometrical projection— characteristic of iconic rep-

resentation. In this case it seems that the complex sign is iconic with respect to composition, but

symbolic with respect to simple parts.

This order can be reversed. Imagine a code that used a sequence of lamp flashes to indicate the

water level in each of a group of reservoirs. Each lamp flash is governed by something very much

like the I-Code described above, save that the identity of the reservoir is a variable parameter;

8The example is due to Jeff King.
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but the correspondence between sequential position and reservoir identity is simply stipulated

(1st flash → reservoir X, 2nd flash → reservoir Y, and so on). Here, the simple parts are iconic

representations, yet their mode of composition is distinctly symbolic. After all, the correspondence

between sequential position and reservoir identity is entirely arbitrary. In this case, it seems the

complex sign is symbolic with respect to composition, but iconic with respect to simple parts.

These examples demonstrate that representational mode is not a matter of simples alone. It

manifests in different ways at different levels of sign composition. Therefore we must replace the

blanket concepts of iconic and symbolic representation with those of ATOMICALLY ICONIC (SYM-

BOLIC) representation and COMPOSITIONALLY ICONIC (SYMBOLIC) representation. The seating

chart is composed of atomically symbolic representations; but the chart itself is a composition-

ally iconic representation of its subject. Note that, because composition is hierarchical, each ap-

plication of a compositional rule has the potential to introduce a new variation of representational

mode. A sequence of seating charts, for example, could be used to represent each of several seat-

ing arrangements in different rooms, where sequence position is arbitrarily associated with room

identity. Such a complex sign would be compositionally symbolic; it would have parts (the seating

charts) that were compositionally iconic; these in turn would have parts (the names) which were

atomically symbolic. Thus a hierarchy of representational modes emerge. (It would be profitable to

spell out the semantics for such a system in detail, but I postpone this task for now.)

This analytical framework can illuminate the mechanisms of more familiar complex signs. In

a color digital photograph, for example, each pixel can be thought of as an iconic simple: the color

of the pixel corresponds to the color of a surface region in the scene in a general, characteristically

iconic manner, reminiscent of the I-Code. Meanwhile, the arrangement of pixels on the picture

plane is determined by a different general rule of geometrical projection. The signs of such a system

are both atomically iconic and compositionally iconic.9

A plausible, if somewhat surprising, proposal is that line drawing is compositionally iconic,

but atomically symbolic. In such systems, colored points in the picture are associated with contours

at a point in the scene. Allowing the points to be the simples of this system, we can detect a kind of

arbitrariness in this rule. Instead of points of a given color, we could equally well associate points

of another color, or regions (of various shapes) with contours. The point is even more vivid for the

case of systems of depiction which use solid lines to depict unoccluded contours, but dotted lines to

depict occluded contours. The mapping here is obviously arbitrary; an informationally equivalent

9In the presentation of the pictorial semantics of Chapter 3, I did not quite follow this characterization. I did not explicitly
assign content to points independent of their position. Still, a semantics of this form is not hard to envision. I hope to
implement this change in the near future.
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system could map dotted lines to unoccluded contours, and solid lines to occluded contours. Thus

line drawing and color photography are alike in compositional iconicity, but arguably different

with respect to the representational mode of simples.

In natural languages, the lexical simples are symbolic representations. But the composition

rules are also plausibly symbolic. Their arbitrariness is evidence for this claim. For example, sup-

pose a semantics includes the following composition rule:

(6) For all f, y ∶ [[�fy#]] = [[f]]([[y]]).

That is, given a concatenation of two, possibly complex signs, the content of the whole is the result

of applying the content of the first to the content of the second. Yet the same semantic function

could be served by the following composition rule (so long as counterpart changes were made in

the syntax). Here, the function-functor order is reversed: the content of the whole results from

applying the content of the second to the content of the first.

(7) For all y, f ∶ [[�yf#]] = [[f]]([[y]]).

And even if, in decomposition, sister nodes are unordered, alternative composition rules could

have required the presence of a special concatenation symbol— but would again have served the

same semantic function:

(8) For all f, y ∶ [[�f Xy#]] = [[f]]([[y]]).

Thus, at the clausal level, natural languages are typically compositionally symbolic, while

their simple parts are atomically symbolic. Interestingly, considerable evidence shows that, in

the case of narrative discourse, language is iconic at the discourse level. Specifically, sentence or-

der is used to represent temporal sequence, much the way spatial order is used in a time line.

(cummings2010narrative) Thus narratives are compositionally iconic, while their sentential parts

are compositionally symbolic, and their simple, lexical parts are atomically symbolic.

The distinction between compositionally iconic and symbolic representation can be drawn

fairly neatly by appeal to the distinction between individuated and uniform interpretive rules.

The application of this framework to rules of composition might at first seem confusing. All com-

position rules of practical use are uniform, in a certain sense, since any such rules applies the same

compositional computation to any of a range of possible constituents. (If the composition rules are

recursive, the point is even more vivid.) But here it is important to recall that signs themselves

are signal types. By further abstraction, we arrive at higher-order sign types— those which corre-
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spond to the inputs to composition rules. It is these sign types which are mapped to content by

compositional rules which are either uniform or individuated.

We must accordingly distinguish between two kinds of individuated rule: on one hand, there

are rules which are classified as individuated with respect to simple signs— rules which map each

simple sign to its content according to a different rule. On the other hand, there are rules which

are classified as individuated with respect to complex sign types— rules which map each complex sign

type to its content according to a different rule. Using this distinction, I revise the initially proposed

analysis of symbolic representation as follows:

(9) (a) I is a system of atomically symbolic representation iff

I is an individuated rule with respect to simple signs.

(b) I is a system of compositionally symbolic representation iff

I is an individuated rule with respect to complex sign types.

By way of illustration, consider a language with two composition rules, one for binary branch-

ing trees, and one for ternary branching trees, as follows. (For convenience, I’ll represent binary

trees by pairs, and ternary trees by triples)

(10) For all f, y, c:

(i) [[⟨f, y⟩]] = [[f]]([[y]]).

(ii) [[⟨f, y, c⟩]] = [[y]]([[f]], [[c]]).

Here, a distinct rule maps each complex sign type to its content. Relative to the level of typolog-

ical abstraction which these rules themselves exploit, the composition rules of this language are

compositionally individuated, hence symbolic. The same considerations apply to languages which

employ just one composition rule.

By contrast, even at the level of abstraction of complex sign types, the composition rules for

pictures are uniform. Assume a pictorial semantics in which the simples are colored points, and

the complex signs are spatial arrangements of colored points. The semantic rules for the simples

map each point of a given color to a property; the rules of composition map each point and its

position in the overall spatial arrangement to the set of scenes in which that point’s viewpoint-

relative projective counterparts instantiate the point’s simple content.10 Such composition rules are

emphatically uniform: for every possible position on the picture plane, they map the simple at that

position to a content, according to a general projective rule. It is not as if there are distinct rules for

the position ⟨0, 0⟩, another for ⟨0, 1⟩, another for ⟨1, 1⟩ and so on. Thus the compositional iconicity

10See Chapter 3, and footnote 9 for details.
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of complex signs in the system of line drawing is reflected by the uniformity of its compositional

rules.

I do not pretend that this discussion has been sufficiently precise to qualify as a clear position

statement on the representational mode of complex signs. I have merely gestured at the semantics

of the systems under discussion here; ultimately, these semantics must be spelled out explicitly

and cast in a standard idiom. Only then can the distinction between singular and uniform be made

more explicitly for compositional rules. Instead, the discussion here is a road map for future work.

I hope, at least, to have convinced the reader that the rule-based analysis of representational mode

has the potential generality to profitably illuminate simple and complex signs accross the semiotic

spectrum.

5 Conclusion

I argued initially that theories of representational mode which are concerned only with the

formal features of signs and their contents are fatally impoverished. One way or another, repre-

sentational mode is a matter of the representational relationships that obtain between signs and

their content. I considered two prominent families of theory which promised to make good on

this lesson: the resemblance-based tradition, and the Saussurian arbitrariness-based tradition. The

former I found empirically invalid, the latter wanting in detailed explication. Finally, I sketched

an alternative approach, according to which representational mode is a property of the causal and

computational rules that underly the association of content with physical signs. Iconic and sym-

bolic representation correspond to fundamentally different possible architectures which these rules

may assume. I argued that these structural features faithfully track representational mode in both

simple and complex signs. I hope thereby to have detected the rudiments of a useful representa-

tional taxonomy.
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Chapter 5

Conclusion: The Semiotic Spectrum

At the beginning of this dissertation, I hypothesized a continuous spectrum of semantic kinds, ex-

tending from the purely symbolic to the purely iconic. Over the course of the last four chapters, I

have taken initial steps towards establishing this claim. For I have argued that there are represen-

tational systems whose internal mechanisms are profoundly divergent, but which are all genuinely

semantic. Thus I have sketched the outer limits of semantic variation.

Symbolic representation, the most basic and familiar semantic kind, exploits interpretive rules

which modularly associate particular signs with their content. Symbolic representation is opposed

with systems which rely on general transformations to map any one in a field of signs to their

corresponding content. I have argued that this distinction marks a basic difference in the strategies

available for encoding content in sign structure. Among the latter, transformational systems, an

important class exploit methods geometrical projection from a viewpoint. These are the pictorial

systems: they are abstractions and extension of the psychosemantics of perception. I have first

argued, and then demonstrated, that pictorial representation can be analyzed in terms which are

just as precise and systematic as those commonly applied to symbolic systems. All are subject to a

general semantics.

Of course the analyses offered here scratch only the surface of the variety and complexity of

representational kinds that figure in our daily communications. Some of this complexity simply

results from the combination of signs that belong, on their own, to purely pictorial or purely lin-

guistic systems. Formal semantic analyses of such multi-modal representations have been carried

out recently for the case of speech with iconic gesture. (Lascarides and Stone 2009a; Lascarides

and Stone 2009b) By bringing together the insights of these studies with the account of pictorial

representation proposed here, it may be possible to arrive at productive analyses of complex multi-

modal signs like the two featured below. The first, a daily weather broadcast, contains a rich blend

of text, spoken word, video imagery, and map depiction. The second, part of a detailed visual ex-
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planation provided by my dentist prior to a root canal, integrates perspective line drawing with

sequenced textual annotations.

Other species of sign systems fuse iconic and symbolic elements more thoroughly, and in a

manner less tractable to theoretical framework of this dissertation. Consider the two Mayan fig-

urines pictured below. The three-dimensional representation on the left is recognizably pictorial

in a sense which is now familiar. For it is plausible that there exists a projective transformation

which would map a real human head to the figure on display. The transformation would involve

a reduction in size and an abstraction from structural detail. But this form of representation falls

broadly within the range of phenomena I have been discussing. More puzzling is the sculpture

pictured at right. This highly stylized representation of a human is the result of no generally appli-

cable transformation. For consider the fact that there is no obvious way to extend the same system

of representation to the portrayal of, say, an elephant or a television. The figure is the product of a

system which is at once arbitrary and broadly pictorial. Stylization of this kind is anathema to the

kind of analysis I have been developing here.

And yet, such stylization is ubiquitous. More contemporary examples are rendered in the pop-

ular “DOT style”, in which human limbs and torsos are depicted by connected black oblongs, while

the head is depicted by a disconnected black circle. Such images result from what Gombrich (1960)

called “schemas”— predetermined recipes for drawing specific kinds of objects. In these cases, a
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schema dictates that heads are represented by floating circles.

Are such representations icons or symbols? They seem to involve aspects of both modes. The

gross spatial arrangement of parts is a product of projective geometry, as evidenced by the differ-

ence in spatial configuration of the two bodies depicted above. But the arbitrary choice to render

the head as a circle— as a opposed to a square or an oval— is strongly reminiscent of the sort of

singular procedure I have connected with symbolic representation. How should we construct a

semantics for such images? And where do they stand in relation to pictures, on one hand, and

words, on the other? I do not know.

However these questions are resolved, the answers must also illuminate the connections be-

tween these images and graphics which use spatial structure in ways that are both more abstract

and more concrete. The directional arrows pictured on the left, for example, derive their mean-

ing in part from their own spatial orientation. The graph on the right, sketched by my banking

representative to illustrate the relationship between “linked” bank accounts, also relies on spatial

relationships to make its point, but invokes neither orientation nor projection.

It is foolish to expect that all forms of representation will fit into neat and rational categories;

new systems of representation are continually invented to fit the evolving demands of communi-

cation. Yet the variation they exhibit is not random. No student of language or of depiction can
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afford to leave aside the basic question which such signs force upon us: what are the dimensions

along which the myriad systems of representation vary? I have not managed to find an answer to

this question, or even to settle on any reasonable conjectures. Instead, I hope that my contribution

has been to ask the question more clearly.
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